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Preface

The 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2016), organized annually by the Indian Association for Research
in Computing Science (IARCS), was held at the Chennai Mathematical Institute, Chennai,
from December 13 to December 15, 2016.

The program consisted of 6 invited talks and 44 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2016 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.
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thank all those who submitted their papers to FSTTCS 2016. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Tevfik Bultan (University of Califor-
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University), Aleksander Mądry (Massachusetts Institute of Technology), Mooly Sagiv (Tel
Aviv University), and Mikkel Thorup (University of Copenhagen) who readily accepted our
invitation to speak at the conference.

There was one pre-conference workshop, Rangoli of Algorithms (RoA) and one post-
conference workshop, Algorithmic Verification of Real-Time Systems (AVeRTS). We thank
Fedor V. Fomin (University of Bergen), Krishna S. (IIT Bombay), Saket Saurabh (IMSc &
University of Bergen), Roohani Sharma (IMSc), Ashutosh Trivedi (University of Colorado,
Boulder), and Meirav Zehavi (University of Bergen), for organizing these workshops.

On the administrative side, we thank the entire Computer Science Group, Chennai
Mathematical Institute (CMI), who put in many months of effort in ensuring excellent
conference and workshop arrangements at the Chennai Mathematical Institute.

We would also like to thank G. Ramalingam, Madhavan Mukund, S. P. Suresh, Supratik
Chakraborty and Venkatesh Raman for promptly responding to our numerous questions and
requests relating to the organization of the conference.

We also thank the Easychair team whose software has made it very convenient to do many
conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff for their coordination
in the production of this proceedings, particularly Marc Herbstritt who was very prompt
and helpful in answering our questions.
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Fast and Powerful Hashing Using Tabulation∗

Mikkel Thorup

University of Copenhagen, Dept. of Computer Science, Copenhagen, Denmark
mikkel2thorup@gmail.com

Abstract
Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed
to yield the desired probabilistic guarantees are often too complicated to be practical. Here we
survey recent results on how simple hashing schemes based on tabulation provide unexpectedly
strong guarantees.

Simple tabulation hashing dates back to Zobrist [1970]. Keys are viewed as consisting of c

characters and we have precomputed character tables h1, ..., hq mapping characters to random
hash values. A key x = (x1, ..., xc) is hashed to h1[x1] ⊕ h2[x2]..... ⊕ hc[xc]. This schemes is very
fast with character tables in cache. While simple tabulation is not even 4-independent, it does
provide many of the guarantees that are normally obtained via higher independence, e.g., linear
probing and Cuckoo hashing.

Next we consider twisted tabulation where one character is "twisted" with some simple oper-
ations. The resulting hash function has powerful distributional properties: Chernoff-Hoeffding
type tail bounds and a very small bias for min-wise hashing.

Finally, we consider double tabulation where we compose two simple tabulation functions,
applying one to the output of the other, and show that this yields very high independence in
the classic framework of Carter and Wegman [1977]. In fact, w.h.p., for a given set of size
proportional to that of the space consumed, double tabulation gives fully-random hashing.

While these tabulation schemes are all easy to implement and use, their analysis is not.

This invited talk surveys results from the papers in the reference list. The reader is refered
to [8] for more details.

1998 ACM Subject Classification E.1 [Data Structures] Tables, E.2 [Data Storage Representa-
tions] Hash Table Representations, F.2.2 [Nonnumerical Algorithms and Problems] Sorting and
Searching, H.3 [Information Search and Retrieval] Search Process

Keywords and phrases Hashing, Randomized Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.1

Category Invited Talk

References
1 Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From independence to expansion and

back again. In Proceedings of the 47th ACM Symposium on Theory of Computing (STOC),
pages 813–820, 2015.

2 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. The
power of two choices with simple tabulation. In Proceedings of the 27th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1631–1642, 2016.

∗ Research is partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research.

© Mikkel Thorup;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 1; pp. 1:1–1:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


1:2 Fast and Powerful Hashing Using Tabulation

3 Søren Dahlgaard and Mikkel Thorup. Approximately minwise independence with twisted
tabulation. In Proc. 14th Scandinavian Workshop on Algorithm Theory (SWAT), pages
134–145, 2014.

4 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. Hashing
for statistics over k-partitions. In Proceedings of the 56th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1292–1310, 2015.
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Simple Invariants for Proving the Safety of
Distributed Protocols
Mooly Sagiv

Tel Aviv University, Tel Aviv, Israel
mooly.sagiv@gmail.com

Abstract
Safety of a distributed protocol means that the protocol never reaches a bad state, e.g., a state
where two nodes become leaders in a leader-election protocol. Proving safety is obviously unde-
cidable since such protocols are run by an unbounded number of nodes, and their safety needs
to be established for any number of nodes. I will describe a deductive approach for proving
safety, based on the concept of universally quantified inductive invariants – an adaptation of
the mathematical concept of induction to the domain of programs. In the deductive approach,
the programmer specifies a candidate inductive invariant and the system automatically checks if
it is inductive. By restricting the invariants to be universally quantified, this approach can be
effectively implemented with a SAT solver.

This is a joint work with Ken McMillan (Microsoft Research), Oded Padon (Tel Aviv Univer-
sity), Aurojit Panda (UC Berkeley), and Sharon Shoham (Tel Aviv University) and was integrated
into the IVY system1. The work is inspired by Shachar Itzhaky’s thesis2.
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My O Is Bigger Than Yours∗

Holger Hermanns

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
hermanns@cs.uni-saarland.de

Abstract
This invited talk starts off with a review of probabilistic safety assessment (PSA) methods cur-
rently exercised across the nuclear power plant domain worldwide. It then elaborates on crucial
aspects of the Fukushima Dai-ichi accident which are not considered properly in contemporary
PSA studies [6, 8, 7]. New kinds of PSA are needed so as to take into account external hazards,
dynamic aspects of accident progression, and partial information. All of these come with obvious
increases in algorithmic analysis complexity. This motivates our ongoing work to gradually tackle
the resulting modelling and analysis problems. They revolve around static and dynamic fault
trees [5, 1], open interpretations of compositional Markov models [2, 4] and advances in their
effective numerical analysis [3].
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Continuous Optimization: The “Right” Language
for Graph Algorithms?∗

Aleksander Mądry

MIT, Cambridge, MA, USA
madry@mit.edu

Abstract
Traditionally, we view graphs as purely combinatorial objects and tend to design our graph
algorithms to be combinatorial as well. In fact, in the context of algorithms, “combinatorial”
became a synonym of “fast”.

Recent work, however, shows that a number of such “inherently combinatorial” graph prob-
lems can be solved much faster using methods that are very “non-combinatorial”. Specifically,
by approaching these problems with tools and notions borrowed from linear algebra and, more
broadly, from continuous optimization. A notable examples here are the recent lines of work on
the maximum flow problem [5, 1, 4, 6, 9, 3, 8, 7, 2], the bipartite matching problem [6, 7, 2], and
the shortest path problem in graphs with negative-length arcs [2].

This raises an intriguing question: Is continuous optimization a more suitable and principled
optics for fast graph algorithms than the classic combinatorial view? In this talk, I will discuss
this question as well as the developments that motivated it.
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Graph Decompositions and Algorithms
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University of Bergen, Norway
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Abstract
We overview the recent progress in solving intractable optimization problems on planar graphs
as well as other classes of sparse graphs. In particular, we discuss how tools from Graph Minors
theory can be used to obtain

subexponential parameterized algorithms
approximation algorithms, and
preprocessing and kernelization algorithms

on these classes of graphs.
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Side Channel Analysis Using a Model Counting
Constraint Solver and Symbolic Execution∗

Tevfik Bultan

Dept. of Computer Science, University of California, Santa Barbara, CA, USA
bultan@cs.ucsb.edu

Abstract
A crucial problem in software security is the detection of side-channels [5, 2, 7]. Information
gained by observing non-functional properties of program executions (such as execution time or
memory usage) can enable attackers to infer secret information (such as a password). In this
talk, I will discuss how symbolic execution, combined with a model counting constraint solver,
can be used for quantifying side-channel leakage in Java programs. In addition to computing
information leakage for a single run of a program, I will also discuss computation of information
leakage for multiple runs for a type of side channels called segmented oracles [3]. In segmented
oracles, the attacker is able to explore each segment of a secret (for example each character of a
password) independently. For segmented oracles, it is possible to compute information leakage
for multiple runs using only the path constraints generated from a single run symbolic execution.
These results have been implemented as an extension to the symbolic execution tool Symbolic
Path Finder (SPF) [8] using the SMT solver Z3 [4] and two model counting constraint solvers
LattE [6] and ABC [1].
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Abstract
In the mixed-criticality job model, each job is characterized by two execution time parameters,
representing a smaller (less conservative) estimate and a larger (more conservative) estimate on
its actual, unknown, execution time. Each job is further classified as being either less critical or
more critical. The desired execution semantics are that all jobs should execute correctly provided
all jobs complete upon being allowed to execute for up to the smaller of their execution time
estimates, whereas if some jobs need to execute beyond their smaller execution time estimates
(but not beyond their larger execution time estimates), then only the jobs classified as being more
critical are required to execute correctly. The scheduling of collections of such mixed-criticality
jobs upon identical multiprocessor platforms in order to minimize the makespan is considered
here.
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1 Introduction and motivation

The problem studied in this paper has its genesis in a collaborative project between our
universities-based research group and a major US defense contractor. The defense contractor
is developing fleets of unmanned aerial vehicles (UAVs) that are capable of coordinating
with one another autonomously in order to accomplish goals that are broadly specified at
a relatively high level. The embedded computer control systems on board such UAVs are
responsible for two general classes of functions:
1. safety-critical functions relating to the safe flight of the UAV – these functions are

expected to be subject to mandatory certification by the US Federal Aviation Authority
(FAA); and

2. mission-critical functions that enable the UAV to actually accomplish its stated mission.
The mission-critical functions are not subject to certification (although our collaborator –

∗ Work supported by NSF grants CNS 1115284, CNS 1218693, CNS 1409175, and CPS 1446631, AFOSR
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the defense contractor manufacturing the UAV – will subject them to analysis using their
own correctness criteria).

Systems such as this are mixed-criticality systems; in mixed criticality (MC) systems,
functionalities of different degrees of importance (or criticalities) are implemented upon a
common platform. As stated above, the more critical functionalities may be required to have
their correctness validated to a higher level of assurance than less critical functionalities.
This difference in correctness criteria may be expressed by different Worst-Case Execution
Time (WCET) estimates for the execution of a piece of real-time code. For validating the
timing correctness of critical functionalities it is desirable to use WCET estimates that
are obtained using extremely conservative tools (for example, some certification standards
require that particular “certified" tools based on static code-analysis be used for determining
WCET of highly safety-critical code), while less critical functionalities are often validated
using (less conservative) measurement-based WCET tools. Vestal [11, page 239] articulated
the practical implication of such practices in this manner: “the more confidence one needs
in a task execution time bound [...] the larger and more conservative that bound tends
to become.” He proposed that each piece of code therefore be characterized by multiple
WCET parameters, which are obtained by analyzing the (same) piece of code using different
WCET-analysis tools and methodologies. Different sets of WCET estimates are then used
to validate different correctness properties. We illustrate the essence of Vestal’s idea via a
simple (contrived) example.

I Example 1. Consider two jobs J1 and J2 executing upon a shared processor, with job J1
being more critical than J2. Both jobs are released at time 0, and share a common deadline
at time 10. Let us suppose that the WCET of J1, as determined by a more conservative
WCET tool, is equal to 5, while the WCET of J2, as determined using a less conservative
WCET tool (since J2 is less critical), is equal to 6. Since the sum of these WCETs exceeds the
duration between the jobs’ common release time and their deadline, conventional scheduling
techniques cannot schedule both jobs to guarantee completion by their deadlines. However,
Vestal observed in [11] that

with regards to validating the more critical functionality (e.g., from the perspective of a
certification process), it may be irrelevant whether the less critical job J2 completes on
time or not; and
assigning J1’s WCET parameter the value of 5 may be deemed too conservative for
validating less critical functionalities.

Let us suppose that the WCET of J1 is estimated once again, this time using the less
conservative WCET-determination tool; J1’s WCET is determined by this tool to be equal
to 3 (rather than 5). If we were now to schedule the jobs by assigning J1 greater priority
than J2,

In validating the more critical functionalities, we would determine that J1 completes by
time-instant 5 and hence meets its deadline.
The validation process for less critical functionalities concludes that J1 completes by
time-instant 3, and J2 by time-instant 9. Hence they both complete by the deadline.

We thus see that the system is deemed as being correct in both analyses, despite our initial
observation that the sum of the relevant WCETs (5 for J1; 6 for J2) exceeds the duration
between the jobs’ common release time and deadline.

The idea exposed in Example 1 – that the same system, represented using more and
less conservative models, may be demonstrated to satisfy different correctness criteria for
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functionalities of different criticalities – has been widely explored since first proposed by
Vestal [11]; there is a nice review of the current state of the art in [3].

This research. Much of the prior study on mixed-criticality scheduling has focused upon
the scheduling of mixed-criticality workloads that are executed upon a single processor. A
few pieces of work (e.g., [2, 9, 8, 7]) have considered multiprocessor scheduling, but they have
all dealt with a very different workload model: systems of recurrent (periodic or sporadic)
tasks that need to meet deadlines, rather than collections of independent jobs. In this paper,
we seek to initiate the study of mixed-criticality scheduling of collections of independent jobs
upon multiprocessor platforms, by considering a simple multiprocessor scheduling problem
for such workloads – that of scheduling a given collection of mixed-criticality jobs (each of the
kind described in Example 1 above) upon a specified number of identical processors in order to
minimize the makespan of the resulting schedule. Makespan minimization is one of the basic
and fundamental problems studied in multiprocessor scheduling, and we are optimistic that
obtaining a better understanding of this fundamental problem will facilitate the development
of a more comprehensive theory of multiprocessor mixed-criticality scheduling. Although this
specific mixed-criticality problem is a highly simplified version of the motivating application
problem – it was obtained by applying a large number of simplifying assumptions to the
actual application system under analysis – it is hoped that exposing this problem domain to
the FST&TCS community will motivate further work upon less simple, but more realistic,
variants.

Our results. We derive algorithms for both non-preemptive scheduling (in which a job, once
it begins execution, is allowed to execute through to completion upon the same processor
on which it started to execute), and preemptive scheduling (in which an executing job may
be preempted during execution, and its execution resumed later upon any processor) of
collections of mixed-criticality jobs to minimize makespan upon identical multiprocessor
platforms. The non-preemptive problem is NP-hard, but can be solved approximately in
polynomial time to any desired degree of accuracy by a polynomial-time approximation
scheme. We do not yet know whether or not the preemptive version of the problem is solvable
in polynomial time; we derive here a polynomial-time 4

3 ’rds-approximation algorithm for
solving it. To our knowledge, the precise computational complexity of determining the
minimum makespan under preemptive scheduling remains open.

2 System model

In this section we formally define the semantics of the mixed-criticality model and specify the
problem that we are seeking to solve. An instance I of the scheduling problem we consider is
specified as follows.
1. A collection J of n mixed-criticality jobs J1, J2, . . . , Jn. Each job Ji is characterized

by the parameters (χi, cLi , cHi ), with χi ∈ {lo,hi} and cLi ≤ cHi . The χi parameter
denotes the criticality of job Ji; a job Ji with χi = lo is called a lo-criticality job,
and one with χi = hi is called a hi-criticality job. The parameters cLi and cHi are the
lo-criticality WCET estimate and the hi-criticality WCET estimate of job Ji; since the
lo-criticality WCET estimates are assumed to be made using a less conservative tool
than the hi-criticality WCET estimates, we require that cLi ≤ cHi for all Ji ∈ J . (For
lo-criticality jobs, we assume that cLi = cHi .)

2. A number m of unit-speed processors upon which the jobs in J are to to be executed.
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Some additional notation: let JH ⊆ J denote the collection of all the jobs Ji ∈ J for which
χi = hi, and JL ⊆ J denote the collection of all the jobs Ji ∈ J for which χi = lo.

System behavior. Our mixed-criticality model has the following semantics. Each job
Ji is released at time 0, and needs to execute for a total duration γi. This execution
must be sequential, meaning Ji is not allowed to simultaneously execute on more than one
processor. The value of γi is not known prior to running time; it can only be discovered by
actually allowing Ji to execute until it signals that it has completed execution. These values
〈γ1, γ2, . . . , γn〉 upon a particular execution of the collection of jobs J together define the
kind of behavior exhibited by J during that execution.

If γi ≤ cLi for each i (i.e., each Ji signals completion without exceeding cLi units of
execution), J is said to have exhibited lo-criticality behavior .
If cLi < γi ≤ cHi for any i (i.e., some job Ji only signals completion upon executing for
more than cLi but no more than cHi units of execution), J is said to have exhibited
hi-criticality behavior .
If cHi < γi for any i (i.e., some job Ji does not signal completion despite having executed
for cHi units), J is said to have exhibited erroneous behavior .

Correctness criteria. We define an algorithm for scheduling mixed-criticality instances to be
correct if it is able to schedule any instance in such a manner that (i) during all lo-criticality
behaviors of the instance, all jobs receive enough execution to be able to signal completion;
and (ii) during all hi-criticality behaviors of the instance, all hi-criticality jobs receive enough
execution to be able to signal completion. This is formally stated in the following definition:

I Definition 2 (MC-correct). A scheduling algorithm for mixed-criticality instances is MC-
correct if it ensures that:

during any execution of an instance in which it exhibits lo-criticality behavior, all jobs
signal completion; and
during any execution of an instance in which it exhibits hi-criticality behavior, all
hi-criticality jobs signal completion (although lo-criticality jobs may fail to do so).

We point out that upon some job failing to signal completion despite having executed
for up to its lo-criticality WCET, (i) an MC-correct scheduling algorithm may immediately
discard all lo-criticality jobs; and (ii) only those hi-criticality jobs that have not already
signaled completion may need to execute for up to their hi-criticality WCETs – those that
have already signaled completion (upon executing for ≤ their lo-criticality WCET) do not
now need further execution.

Problem statement. Given an instance I comprising a collection J of n mixed-criticality
jobs to be scheduled uponm unit-speed processors, obtain an MC-correct scheduling algorithm
that minimizes the makespan of the resulting schedule.

Since the instance I may generate arbitrarily many different behaviors (the values of the
actual running times 〈γ1, γ2, . . . , γn〉) during different executions, we clarify what we mean
by minimizing makespan: we desire that the maximum makespan over all non-erroneous
behaviors of the instance be minimized.
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3 MC-correct scheduling algorithms that minimize makespan

Observe that the maximum amount of execution that could be required in any lo-criticality
behavior is equal to

(∑
Ji∈J c

L
i

)
, while in any hi-criticality behavior in which each hi-

criticality job executes to its hi-criticality WCET, the amount of execution that must occur
is at least equal to

(∑
Ji∈JH

cHi
)
. It is therefore evident that upon an m-processor platform,

max
{∑

Ji∈J c
L
i ,
∑
Ji∈JH

cHi
}

m

is a lower bound on this desired makespan. An obvious upper bound on the makespan is
given by∑

Ji∈J
cHi .

If we had a procedure for validating whether mixed-criticality instance I could be scheduled
by some MC-correct scheduling algorithm with a makespan no larger than some specified
constant, we could use bisection search (“binary search") between the upper and lower
makespan bounds obtained above, in order to determine the minimum makespan to any
desired degree of accuracy. In the remainder of this section, we will therefore attempt to
design MC-correct scheduling algorithms that generate schedules with makespan no greater
than some specified constant D.

3.1 Non-preemptive scheduling
The non-preemptive version of this problem is easily seen to be solved by transforming it to
a two-dimensional vector scheduling problem [12], for which a PTAS is known [4, 5]. The
transformation is fairly straightforward: given an instance I of the mixed-criticality scheduling
problem comprising the n jobs J to be scheduled upon m processors with a makespan ≤ D,
we seek to partition J into the sub-sets J1,J2, . . .Jm satisfying the constraints that for each
j, 1 ≤ j ≤ m,( ∑

Ji∈Jj

cLi ≤ D
)

and
( ∑
Ji∈Jj∧χi=hi

cHi ≤ D
)
.

If such a partitioning is found, then during run-time we would execute the hi-criticality jobs
in Jj upon the j’th processor first for each j, 1 ≤ j ≤ m. If each job Ji completes within cLi
units of execution, then we execute the lo-criticality jobs in Jj next upon the j’th processor
for each j, while if some Ji does not complete within cLi units of execution we simply discard
the lo-criticality jobs and execute the hi-criticality jobs each to completion.
Observe that obtaining such a partitioning is equivalent to
1. First representing each job Ji by a 2-dimensional vector of size cLi along the first dimension,

and size along the second dimension depending upon the value of χi: if χi = hi then
the size along this dimension is set equal to cHi while if χi = lo then the size along this
dimension is set equal to zero.

2. Next, partitioning the n vectors so obtained into m sub-sets, such that each partition
sums to ≤ D along each of the two dimensions – this is exactly the 2-dimensional vector
scheduling problem of [12].
The non-preemptive version of our scheduling problem, which is easily seen to be NP-hard

(since the specialization of the problem to “regular” – non mixed-criticality – scheduling, in
which all the jobs in J are of the same criticality, is already known to be NP-hard), is thus
solvable in polynomial time to any desired degree of accuracy by a PTAS.
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Each Ji is initially executed at a constant rate φLi
If some Ji does not signal completion despite having received cLi units of execution, then

All lo-criticality jobs are immediately discarded, and
Each hi-criticality job henceforth executes at a constant rate φHi until completion

Figure 1 Our preemptive run-time scheduling algorithm.

3.2 Preemptive scheduling

In contrast to the regular (i.e., not mixed-criticality) case, where preemptive scheduling of
independent jobs to minimize makespan is easily seen to be solvable optimally in polynomial
time using McNaughton’s rule [10], this problem turns out to be surprisingly challenging
for mixed-criticality instances. Indeed, we have not yet been able to determine whether the
problem is solvable in polynomial time or not; what we have instead is a polynomial-time
approximation algorithm with approximation factor 4/3 for solving this problem1.

Given instance I and a desired makespan D, our strategy, which is based upon an
algorithm called MC-Fluid [8, 1] for scheduling mixed-criticality sporadic tasks in order to
meet all deadlines, is as follows. We will seek to determine a schedule for the jobs in J upon
the m unit-speed processors under a fluid scheduling model, which allows for schedules in
which individual jobs may be assigned a fraction ≤ 1 of a processor (rather than an entire
processor, or none) at each instant in time, subject to the constraint that the sum of the
fractions assigned to all the jobs do not exceed m at any instant. That is, we will determine
execution rates φLi and φHi for each task τi such that the scheduling algorithm depicted in
Figure 1 constitutes an MC-correct scheduling strategy for the jobs in J upon m processors.
(Standard techniques are known for converting such a fluid schedule to schedules in which
there is no processor-sharing; see, e.g., [6, page 116] for details.)
We will now describe how the values for the φLi and φHi parameters are determined. We
start out defining some additional notation:

For each job Ji ∈ J , let flow rates fLi and fHi be defined as follows:

fLi
def= cLi /D

fHi
def= cHi /D

Intuitively, a fluid schedule in which Ji is executed at a constant rate fLi (fHi , respectively),
over the interval [0, D] will complete at or before time-instant D in any lo-criticality
behavior (hi-criticality behavior, resp.) of the instance. It should be evident that it is
necessary that fLi be ≤ 1 for each job Ji, and that fHi be ≤ 1 for each hi-criticality job
Ji, if we are to be able to guarantee a makespan D.

Various cumulative flow requirements are defined for J as follows – here, FLL denotes the
cumulative lo-criticality flow rates of all lo-criticality jobs; FLH denotes the cumulative lo-
criticality flow rates of all hi-criticality jobs; and FHH denotes the cumulative hi-criticality

1 A trivial algorithm with approximation factor 2 can be obtained using McNaughton’s rule as follows.
First schedule the hi-criticality jobs based on their hi-criticality WCET estimates in the time interval
[0, D], and then schedule the lo-criticality jobs based on their lo-criticality WCET estimates in the
time interval [D, 2D].
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1. Define a scaling factor ρ as follows:

ρ← max
{(FLL + FLH

m

)
,
(FHH
m

)
, max
Ji∈JH

{
fHi
}}

(1)

2. If ρ > 1 then declare failure; else assign values to the execution-rate variables as follows:
φHi ← (fHi /ρ) for all Ji ∈ JH (2)

φLi ←


fL

i

φH
i
−(fH

i
−fL

i
) × φ

H
i , if Ji ∈ JH

fLi , else (i.e., if Ji ∈ JL)
(3)

3. If ∑
Ji∈J

φLi ≤ m (4)

then declare success else declare failure

Figure 2 Computing execution rates.

flow rates of all hi-criticality jobs:

FLL
def=

∑
Ji∈JL

fLi

FLH
def=

∑
Ji∈JH

fLi

FHH
def=

∑
Ji∈JH

fHi

The following observation directly follows from the definitions of FLL , FLH , and FHH :

I Observation 3. It is necessary that
(
FLL +FLH) ≤ m, and FHH ≤ m, if we are to be able to

guarantee a makespan D for J upon m processors.

As stated in Figure 1, our run-time scheduling algorithm requires that values be assigned
to the execution-rate variables {φLi }Ji∈J

⋃
{φHi }Ji∈JH

prior to run-time. In Figure 2 we
describe, in pseudo-code form, the algorithm for computing the values of these execution-rate
variables. Before proving the correctness of this algorithm (in Section 3.3), we first illustrate
its application via an example.

An example. Consider the following collection of 4 mixed-criticality jobs, to be scheduled
preemptively upon a 2-processor platform with a target makespan D ← 10.

χi cL
i cH

i

J1 hi 3 8
J2 hi 4 7
J3 hi 1 1
J4 lo 5 5
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The flow rates for the jobs are obtained by dividing the corresponding WCET parameters by
10 (the value of D); the cumulative flow requirements are then computed as follows:

FLL = fL4 = 0.5
FLH = fL1 + fL2 + fL3 = 0.3 + 0.4 + 0.1 = 0.8
FHH = fH1 + fH2 + fH3 = 0.8 + 0.7 + 0.1 = 1.6

The scaling factor ρ is therefore

ρ = max
{0.5 + 0.8

2 ,
1.6
2 ,max{0.8, 0.7, 0.1}

}
= max

{
1.3/2, 1.6/2, 0.8

}
= 0.8

The hi-criticality jobs J1, J2, and J3, are assigned φHi values as follows:

φH1 = 0.8
0.8 = 1.0

φH2 = 0.7
0.8 = 0.875

and φH3 = 0.1
0.8 = 0.125

All the jobs are assigned φLi values as follows:

φL1 = 1.0× 0.3
1.0− (0.8− 0.3) = 0.6

φL2 = 0.875× 0.4
0.875− (0.7− 0.4) = 14

23 < 0.61

φL3 = 0.125× 0.1
0.125− (0.1− 0.1) = 0.1

and φL4 = 0.5

Since
∑4
i=1 φ

L
i <

(
0.6 + 0.61 + 0.1 + 0.5

)
= 1.81, which is ≤ 2 (the number of processors),

our algorithm declares success.

3.3 Preemptive scheduling – proof of correctness
We will now show that the preemptive scheduling algorithm described above is correct: if
the execution rates are computed as specified in Figure 2 without declaring failure for a
given instance I, then the schedule resulting from using these execution rates in the manner
described in Figure 1 does indeed constitute an MC-correct scheduling algorithm that always
generates schedules of makespan ≤ D upon all non-erroneous behaviors. Our proof proceeds
in several steps.
1. We first prove, in Lemma 4 below, that the rate-assignment in Figure 2 is correct, by

showing that the sum of the lo-criticality and the hi-criticality execution rates assigned
to the jobs in Figure 2 do not exceed m, the number of available processors.

2. Next, we show in Lemma 5 that each execution rate is assigned a valid value in Figure 2:
a non-negative real number that is no larger than one.

3. We then prove, in Lemma 6, correctness upon all lo-criticality behaviors, by showing
that the φLi values assigned in Figure 2 are no smaller than the corresponding fLi values.
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4. Finally, we prove correctness upon all hi-criticality behaviors by examining the actions of
the scheduling algorithm in the event that some job does not signal completion despite
having executed for up to its lo-criticality WCET (which indicates that the instance is
exhibiting a hi-criticality behavior rather than a lo-criticality one).

I Lemma 4. The sum of the lo-criticality execution rates assigned to all the jobs, and the
sum of the hi-criticality rates assigned to all the hi-criticality jobs (i.e., the jobs in JH),
each does not exceed the number of processors m.

Proof. It follows from Condition 4 of Figure 2 that our algorithm declares success only if
the assigned lo-criticality execution rates sum to ≤ m.

To show that the assigned hi-criticality rates also sum to no more than m, observe that∑
Ji∈JH

φHi =
∑
Ji∈JH

fHi
ρ

(By Eqn 2) = 1
ρ
FHH (By definition of FHH )

By Equation 1, ρ ≥ (FHH /m); hence

1
ρ
FHH ≤

( m
FHH

)
FHH = m

and the lemma is proved. J

I Lemma 5. Each φLi and φHi is assigned a value ≤ 1 in the algorithm of Figure 2.

Proof. Observe that Line 1 of Figure 2 assigns ρ a value ≥ fHi for all Ji ∈ JH . Since Line 2
of Figure 2 assigns each φHi a value fHi /ρ, it follows that each such φHi has a value ≤ 1, as
required.

With regards to the φLi ’s, the value assigned to φLi for each Ji ∈ JL is equal to fLi (and
hence ≤ 1).

For each Ji ∈ JH , we will now show that φLi ≤ φHi . It follows from the assignment of
values to φLi (Equation 3 in Figure 2) that this will hold provided (Removed the justification
in the last derivation step.)

fLi
φHi −

(
fHi − fLi

) ≤ 1

⇔ fLi ≤ φHi −
(
fHi − fLi

)
⇔ fHi ≤ φHi

which follows from the requirement that ρ be ≤ 1 (else, the algorithm in Figure 2 would
declare failure in Step 2).

We have thus shown that φLi ≤ φHi for each Ji ∈ JH (i.e., the execution rate guaranteed
to each hi-criticality job does not decrease upon identification of hi-criticality behavior).
Since we saw above that all such φHi values are ≤ 1, it follows that the φLi variables are also
assigned values ≤ 1. J

I Lemma 6. The instance is scheduled with a makespan ≤ D in all lo-criticality behaviors.

Proof. We will first prove that for each Ji ∈ J

φLi ≥ fLi (5)

Let us separately consider jobs in JL and JH . Observe that by the definition of φLi
(Equation 3),
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1. For each Ji ∈ JL , φLi = fLi .
2. For each Ji ∈ JH ,

φLi = fLi ×
φHi

φHi −
(
fHi − fLi

)
≥ fLi ×

φHi
φHi

(Since (fHi − fLi ) ≥ 0)

= fLi

These two cases together establish that φLi ≥ fLi for all Ji ∈ J ; it hence immediately follows
that φLi · D, the amount of execution that would be received by Ji if it were allowed to
execute at a rate φLi over the entire duration [0, D) in any lo-criticality behavior of J , is
≥ cLi . From this we conclude that the makespan in any lo-criticality behavior is ≤ D. J

I Lemma 7. The instance is scheduled with a makespan ≤ D in all hi-criticality behaviors.

Proof. Consider any hi-criticality behavior of the instance, and let to denote the first
time-instant at which some job does not signal completion despite having executed for its
lo-criticality WCET. We will prove below that any hi-criticality job that is active (i.e., that
has not yet completed execution) at time-instant to receives an amount of execution no
smaller than its hi-criticality WCET by time-instant D.

Suppose that hi-criticality job Ji is active at time-instant to. Over the interval [0, to),
this job will have received an amount of execution equal to φLi × to; since the job is still
active, it must be the case that

to ≤ cLi /φLi (6)

Henceforth job Ji will execute at a rate φHi . Hence for it to complete within a makespan D,
it is sufficient that

toφ
L
i + (D − to)φHi ≥ cHi

⇔ DφHi − to(φHi − φLi ) ≥ cHi

⇐ DφHi −
cLi
φLi

(φHi − φLi ) ≥ cHi (By Inequality 6)

⇔ DφHi ≥
cLi
φLi

(φHi − φLi ) + cHi

⇔ DφHi ≥
cLi φ

H
i

φLi
− cLi + cHi

⇔ D ≥ cLi
φLi

+
(cHi − cLi

φHi

)
⇔ 1 ≥ fLi

φLi
+
(fHi − fLi

φHi

)
(Dividing by D, and applying definitions of fLi , fHi ) (7)

Also by Equation 3, for each Ji ∈ JH we have

φLi = fLi φ
H
i

φHi −
(
fHi − fLi

)
⇔
φHi −

(
fHi − fLi

)
φHi

= fLi
φLi



S. Baruah, A. Easwaran, and Z. Guo 7:11

⇔ 1−
(fHi − fLi

φHi

)
= fLi
φLi

⇔ 1 = fLi
φLi

+
(fHi − fLi

φHi

)
thereby establishing Condition 7 and completing the proof of the lemma. J

3.4 Preemptive scheduling – A 4/3’rds approximation Bound

We now prove that MC-correct scheduling algorithm described in Section 3.2 is a 4/3’rds
approximate algorithm for preemptive scheduling to minimize makespan. Our approach
towards showing this is as follows. A straightforward generalization of Observation 3 leads us
to conclude that for mixed-criticality instance J to be schedulable with makespan s×D upon
m processors, it is necessary that (FLL + FLH) and FHH for the instance both be ≤ m× s, and
that in addition fHi ≤ s for each Ji ∈ JH and fLi ≤ s for each Ji ∈ JL. It therefore follows
that the scaling factor ρ that is computed in Expression 1 of the algorithm of Figure 2 for
such a system is ≤ s. We will show below, in Lemma 9, that if ρ ≤ 3/4 and the φHi , φLi values
are computed as specified in Expressions 2–3 of Figure 2, then the φLi ’s so computed are
guaranteed to sum to ≤ m and therefore satisfy Condition 4 of Figure 2 (which in turn means
that the system is scheduled with makespan ≤ D upon m processors). The approximation
ratio follows, by observing that 4/3 is the multiplicative inverse of 3/4.

First, a technical lemma.

I Lemma 8. Let c denote any positive constant. The function

f(x) def= x(c− x)
c
3 + x

is ≤ c
3 for all values of x ∈ [0, c].

Proof. (This lemma is easily proved rigorously using standard techniques from the calculus;
we skip the details here in favor of a high-level outline.) Taking the derivative of f(x) with
respect to x, we see that the only value of x ∈ [0, c] where this derivative equals zero is
x ← c/3. We therefore conclude that f(x) takes on its maximum value over [0, c] for one
of the values of x ∈ {0, c/3, c}. Explicit computation of f(x) at each of these values reveals
that the value is maximized at x = c/3, where it takes on the value c/3. J

I Lemma 9. If ρ ≤ 3/4 and φHi , φLi values are computed as specified in Expressions 2–3 of
Figure 2, then the φLi values so computed satisfy Condition 4.

Proof. Let us first rewrite Condition 4 to an equivalent form expressed in Condition 8 below.∑
Ji∈J

φLi ≤m

⇔
∑
Ji∈JL

φLi +
∑
Ji∈JH

φLi ≤ m

⇔FLL +
∑
Ji∈JH

fLi φ
H
i

φHi −
(
fHi − fLi

) ≤ m
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⇔FLL +
∑
Ji∈JH

fLi

(
1 +

(
fHi − fLi

)
φHi −

(
fHi − fLi

)) ≤ m
⇔FLL +

∑
Ji∈JH

fLi +
∑
τi∈JH

fLi (fHi − fLi )
φHi −

(
fHi − fLi

) ≤ m
⇔FLL + FLH +

∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m (8)

We will show, in the remainder of this proof, that if ρ ≤ 3/4 then Condition 8 is satisfied;
this will serve to establish the correctness of Lemma 9.

Let us assume henceforth that ρ ≤ 3/4. From the definition of ρ (Expression 1), it follows
that

FLL + FLH ≤ 3
4m (9)

FHH ≤ 3
4m (10)

∀Ji ∈ JH fHi ≤ 3
4 (11)

Additionally, since φHi ← fHi /ρ, it must hold that

∀Ji ∈ JH φHi ≥
4
3 f

H
i (12)

Let us use Inequalities 9–12 to further simplify Condition 8.

FLL + FLH +
∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m
⇐ 3

4m+
∑
Ji∈JH

fLi
(
fHi − fLi

)
φHi −

(
fHi − fLi

) ≤ m (By Ineq. 9)

⇐ 3
4m+

∑
Ji∈JH

fLi
(
fHi −Li

)
4
3 f

H
i −

(
fHi − fLi

) ≤ m (By Ineq. 12)

⇔ 3
4m+

∑
Ji∈JH

fLi
(
fHi − fLi

)
fH

i

3 + fLi

≤ m

⇔
∑
Ji∈JH

fLi
(
fHi − fLi

)
fH

i

3 + fLi

≤ m

4

⇐
∑
Ji∈JH

fHi
3 ≤ m

4 (By Lemma 8)

⇔ 1
3 · (F

H
H ) ≤ m

4
⇐

(1
3 ·

3
4m ≤

m

4

)
(By Inequality 10)

⇔
(m

4 ≤
m

4

)
and Lemma 9 is thereby proved. J
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4 Summary and conclusions

Mixed-criticality scheduling is emerging as an increasingly important topic in the design,
analysis, and implementation of safety-critical embedded systems. Most prior work on this
topic has been restricted to uniprocessor scheduling; what little work has been done on
multiprocessor scheduling has primarily focused upon recurrent (periodic and sporadic)
workload models that are very different from the one we consider in this paper. We have
adapted ideas from some such prior work, and have applied them to our problem of scheduling
collections of independent jobs in order to minimize makespan. We have designed algorithms
for both preemptive and non-preemptive scheduling of such workloads, but have not yet
been able to classify the computational complexity of preemptive scheduling to minimize
makespan – we leave this as an open problem.

We reiterate a point we had made earlier in this manuscript – although the particular
problem we have presented here was obtained by applying a large number of simplifying
assumptions to the actual application system under analysis, we hope that exposing this
very interesting and important problem domain to the FST&TCS community will encourage
members of this community to work upon more realistic, and more complex, variations.
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Abstract
We study the capacitated k-center problem with vertex weights. It is a generalization of the
well known k-center problem. In this variant each vertex has a weight and a capacity. The
assignment cost of a vertex to a center is given by the product of the weight of the vertex and its
distance to the center. The distances are assumed to form a metric. Each center can only serve
as many vertices as its capacity. We show an n1−ε-approximation hardness for this problem, for
any ε > 0, where n is the number of vertices in the input. Both the capacitated and the weighted
versions of the k-center problem individually can be approximated within a constant factor. Yet
the common extension of both the generalizations cannot be approximated efficiently within a
constant factor, unless P = NP. This problem, to the best of our knowledge, is the first facility
location problem with metric distances known to have a super-constant inapproximability result.
The hardness result easily generalizes to versions of the problem that consider the p-norm of the
assignment costs (weighted distances) as the objective function. We give n1−1/p−ε-approximation
hardness for this problem, for p > 1.

We complement the hardness result by showing a simple n-approximation algorithm for this
problem. We also give a bi-criteria constant factor approximation algorithm, for the case of
uniform capacities, which opens at most 2k centers.
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Keywords and phrases approximation hardness, k-center, gadget reduction
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1 Introduction

Resource location problems are a class of problems in which one is required to find a set
of locations to open centers in order to serve clients (demands) placed in a metric space.
The objective is to reduce the cost of opening the centers and/or the cost incurred to assign
the clients to the centers. Various notions of distance/cost are used in different applications.
The k-center problem is a very well known resource location problem in which a metric
on n vertices is given. The objective is to open k centers and assign vertices (clients) to
these centers such that the maximum distance between a vertex and its assigned center is
minimized. This problem is NP-hard. It also has a (2 − ε)-approximation hardness. [14]
2-approximation algorithms were given by Gonzalez [12] and Hochbaum and Shmoys [13].

Motivated by practical scenarios where each center has a limitation on the number of
clients that it can serve, a generalization of this problem is the capacitated k-center problem.
In this problem, each vertex has a capacity and a center opened at a vertex cannot serve more
number of vertices than its capacity. Khuller and Sussmann [16] gave 5 and 6-approximation
algorithms for uniform soft and hard capacities respectively. For non-uniform capacities,
Cygan et al. [10] and An et al. [1] provide constant factor approximation algorithms using
LP rounding.
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Another generalization of the k-center problem is one where vertices have weights. The
assignment cost of a vertex to a center is given by the product of the weight of the vertex
and its distance (weighted distance) to the center. This variant is motivated from scenarios
where the clients are not treated equally. Some clients are more important than others and
need to be kept closer to an open center. Weights can also be used to model the likelihood
of clients demanding services. Wang and Cheng [20] provide a 2-approximation for the
k-center problem with vertex weights. This is best possible as the k-center problem has
(2− ε)-approximation hardness.

A common extension of the above two generalizations is the capacitated k-center with
vertex weights. In this variant each vertex has a capacity and a weight. Each center can
serve no more vertices than its capacity. The assignment cost of a vertex to a center is
given by its weighted distance to the center. In this paper we study the approximability of
this problem. We show an n1−ε-approximation hardness and provide an n-approximation
algorithm. The hardness result easily generalizes to variants of the problem that consider
the p-norm of the assignment costs (weighted distances) as the objective function. We give
n1− 1

p−ε-approximation hardness for the general p-norm, for p > 1. This immediately shows
that for p > 1, the problem is hard to approximate within a constant factor. Although
this generalization does not immediately provide an inapproximability result for the 1-norm
which is the corresponding variant of the k-median problem, it provides insights into the
capacitated (unweighted) version of the problem. The capacitated k-median problem is
interesting as not much is known about its approximability. Constant factor approximation
algorithms by either violating the capacity constraints or the cardinality constraints up to a
constant factor are studied in [9], [4], [18], [5].

A vast body of work is available on various facility location problems. A variety of
techniques like local search [17], [2], [6], LP rounding [7] and primal-dual method [15] have
been studied. The capacitated facility location problem is well studied in [17], [19], [8], [3]
and constant factor approximations are known.

Our results and techniques

The main result of this paper is the approximation hardness of the capacitated k-center
problem with vertex weights. We show that this problem cannot be efficiently approximated
within a factor of n1−ε, unless P = NP, for any ε > 0, where n is the number of vertices in the
input. We give a reduction from the Exact Cover by 3-Sets, which is an NP-complete
problem. It requires one to find a set cover from a family of sets, where each set has exactly
three elements, such that each element of the universe is in exactly one of the sets in the set
cover. This set cover variant was used by Cygan et al. in [10] to show a (3− ε)-approximation
hardness for the capacitated k-center problem. The set gadget used in the reduction in [10] is
designed for the unweighted case and does not generalize for the weighted case. In this paper,
we introduce a novel set gadget that allows to create an polynomial factor gap between the
solution cost of the yes and the no instances. It achieves this by allowing the vertices in a set
gadget to be assigned to centers inside the gadget with small costs and making assignments
to centers outside the gadget incur a large cost. Similarly, the vertices in an element gadget
can only be assigned to centers in set gadgets corresponding to sets that it belongs to, with a
small cost. Our reduction generates instances where the capacities are uniform and constant,
showing that even this special case is hard to approximate within a constant factor.

An immediate consequence of the hardness result is an n1− 1
p−ε-approximation hardness

for the case where the objective function is a general p-norm of the assignment costs, for
p > 1. The k-center problem is a special case where the objective function is the ∞-norm of
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the assignment costs. This shows that interesting variants of the problem which consider a
p-norm for p > 1 are hard to approximate within a constant factor.

We complement the hardness result by showing a simple n-approximation algorithm. For
this algorithm, we use the standard thresholding technique modified to handle weights. We
create threshold graphs corresponding to each distinct weight in decreasing order and open
as many centers, in decreasing order of capacities, in each connected component as required
to cover all the vertices in it.

Next, we relax the cardinality constraint on the set of centers. We consider the variant
with uniform capacities where we show that if we are allowed to open twice the number of
centers then we can output a solution with cost within a constant factor of the optimum
cost. This simply modifies the 2-approximation by Wang and Cheng [20] by opening as many
capacitated centers required in place of each uncapacitated center to serve all the vertices
assigned to it.

2 Problem statement

The input for the capacitated k-center problem with vertex weights (CkCW) is a set of vertices
V , a metric distance d : V × V → R≥0 on V , an integer k, a capacity function L : V → Z≥0
and a weight function W : V → R≥0. The output is a set S ⊆ V of k vertices called centers
and an assignment map h : V → S such that |{j ∈ V | h(j) = i}| ≤ L(i),∀i ∈ S. The
assignment cost of a vertex j ∈ V to a center i ∈ S is given by W (j)d(i, j). The goal is to
minimize the maximum assignment cost of a vertex to its assigned center. Formally, the cost
of the solution is given by maxj∈V W (j)d(h(j), j). Let |V | = n.

The metric distance d satisfies the following properties for i, j, u ∈ V :
1. d(i, j) ≥ 0
2. d(j, j) = 0
3. d(i, j) = d(j, i)
4. d(i, j) ≤ d(i, u) + d(u, j)

3 Hardness of approximation

In this section we show that the above problem cannot be approximated within a constant
factor. We give a reduction from the Exact Cover by 3-Sets (EC3S), which is an NP-
complete problem. This problem is used in [10] to show a (3− ε)-approximation hardness for
the k-center problem (unweighted) with non-uniform capacities. The input of the problem
is a set system (F ,U), where each set in F has exactly 3 elements. The goal is to decide
whether there exists a subset F ′ ⊆ F , such that each element of U belongs to exactly one set
in F ′. For such a set cover to exist, |U| must be a multiple of three.

An instance of the EC3S problem can be viewed as a bipartite graph (F ∪ U , E) where
the edge set E encodes the membership of the elements of U in the elements of F . In our
reduction, we encode this bipartite graph into an instance I of CkCW, with each vertex
having a uniform capacity of L. We replace each vertex of F with the corresponding set
gadget and that of U with the corresponding element gadget.

Figure 1 illustrates these gadgets. The set gadget consists of three long arms, one for each
of the three elements in the set, joined together with a clique at the top. Each arm is divided
into integral levels 0, 1, . . . , t and fractional levels 0.5, 1.5, . . . , t+ 0.5, where t is an odd
integer which we will fix later in this construction. An integral level l consists of a vertex of
weight Wl. A fractional level l + 0.5 contains L

3 vertices of weight Wl if l is odd and 2L
3 − 2
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Figure 1 Gadgets for reduction.
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vertices of weight Wl if l is even. The two vertices in levels l and l + 1 are connected to each
other and to the vertices in level l+ 0.5 by edges off length Rl. The L

3 vertices in level t+ 0.5
(the highest level) from each of the arms are all connected to each other by edges of length
Rt, forming a clique of size L. The element gadget is a collection of L3 vertices of unit weight
connected to the level 0 vertex of the corresponding arm of the set gadget of each of the sets
that it belongs to. The length of each of these connecting edges is S0.

Let Sl denote the shortest distance of a level l vertex from the vertices in the element
gadget connected to the corresponding arm (refer to Figure 1). Then we have the following
relation:

Sl = Rl−1 + Sl−1 (1)

We would like to set the parameters of the construction in such a way that any solution
with cost < w2 must assign the vertices in a set gadget to centers in the same gadget. It
must also assign the vertices of an element gadget to centers in set gadgets corresponding to
the sets it belongs to. So, we want the following relations to hold:

W0 = w (2)
WlRl = w (3)
WlSl = w2 (4)

where w is some parameter. From equations 1, 3 and 4 we get:

Sl = Sl−1

(
1
w

+ 1
)

= S0

(
1
w

+ 1
)l

= w

(
1
w

+ 1
)l

(from equations 2 and 4)

We fix t such that:

St = w

(
1
w

+ 1
)t
≥ w2

t ≥ log(w)
log
(
1 + 1

w

) ≤ 2w logw

We set t to be an odd integer just greater than 2w logw and k to be 3
(
t+1

2
)
|F|+ |U|

3 . The
distance metric d is given by the shortest distance metric.

I Lemma 1. If there exists a solution to the EC3S instance, then there exists a solution to
the instance I with cost w.

Proof. Let F ′ ⊆ F be the solution of the EC3S instance. Note that, |F ′| = |U|
3 . For a

sets A ∈ F ′ place a center on each of the three vertices at even levels 0, 2, . . . , t-1 in the
corresponding set gadget and one center on a vertex at level t+ 0.5. Assign the vertices of
the element gadget corresponding to the elements in A and the vertices in levels 0, 0.5 and
1 to the centers at level 0. For a level l ∈ {2, 4, . . . , t − 1}, assign all the vertices at levels
l− 0.5, l, l+ 0.5 and l+ 1 to the centers at level l. Assign all the vertices in the clique at level
t+ 0.5 to the center opened at this level. For all sets not in F ′, place centers similarly at odd
levels 1,3, . . . , t. For a level l ∈ {1, 3, . . . , t}, assign all the vertices at levels l − 1, l − 0.5, l
and l + 0.5 to the centers at level l. This is an assignment with cost w. The total number of
centers opened is

∑
A∈F ′

(
3
(
t+1

2
)

+ 1
)

+
∑
A/∈F ′ 3

(
t+1

2
)

= 3
(
t+1

2
)
|F|+ |U|

3 = k. J
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Now consider a solution S to the instance I with maximum assignment cost < w2. Note
that each center must serve L vertices as |V | = 3

(
t+1

2
)
|F|L+ |U|L3 = kL.

I Lemma 2. S does not have a center in any of the element gadgets.

Proof. Consider the vertex set ga of the element gadget for an element a ∈ U . From the
construction of the gadget we can say that any j /∈ ga and i ∈ ga,W (j)d(i, j) ≥ w2. Therefore,
only the vertices in ga can be assigned to a center in ga. But, |ga| = L

3 < L. J

I Lemma 3. Each set gadget in S has at least 3
(
t+1

2
)
and at most 3

(
t+1

2
)

+ 1 open centers
in it.

Proof. Consider the vertex set gA of the set gadget for a set A ∈ F . For any j ∈ gA and
i /∈ gA,W (j)d(i, j) ≥ w2. Thus, all the vertices in gA must be assigned to centers in gA.
Therefore, the number of centers in gA ≥ d|gA|/Le = 3

(
t+1

2
)
.

Assume, for contradiction, that the number of centers in gA > 3
(
t+1

2
)

+ 1. Let a, b and c
be the elements of set A and let ga, gb and gc be the vertex sets of their respective gadgets.
For any j /∈ gA ∪ ga ∪ gb ∪ gc and i ∈ gA,W (j)d(i, j) ≥ w2. Thus the number of vertices that
the centers in gA can serve ≤ |gA|+ |ga|+ |gb|+ |gc| =

(
3
(
t+1

2
)

+ 1
)
L. Therefore, at least

one of the centers in gA must be serving less than L vertices. J

I Lemma 4. In S, gadgets corresponding to any two sets in F sharing a common element
cannot have 3

(
t+1

2
)

+ 1 open centers in each one of them.

Proof. Assume, for contradiction, that there exist two sets A,B ∈ F having at least one
element in common such that the vertex sets gA and gB of the corresponding gadgets each
have 3

(
t+1

2
)

+1 centers. As shown in the proof of Lemma 3, the vertices that can be assigned
to a center in the gadget of a set C = {d, e, f} are only those in gC ∪ gd ∪ ge ∪ gf . Thus, the
number of vertices that can be assigned to centers in gA and gB ≤ 2×

(
3
(
t+1

2
)

+ 1
)
L− L

3
(since at least one element is common in A and B). Therefore, at least one of the centers in
gA or gB must be serving less than L vertices. J

I Lemma 5. If there exists a weighted k-center solution with cost R < w2, then there exists
a solution to the EC3S instance.

Proof. From Lemmas 2, 3 and 4, there are |U |3 set gadgets each of which have 3
(
t+1

2
)

+ 1
centers and the corresponding sets are all disjoint. These |U |3 sets form the solution set
F ′. J

I Theorem 6. The weighted k-center solution cannot be approximated within a factor of
n1−ε for any ε > 0, unless P = NP.

Proof. From Lemmas 1 and 5, an α-approximation is not possible for α < w, unless P = NP.
Now, we show a lower bound on w in terms of n. In the construction, the number of

vertices is given by:

n = kL =
(

3
(
t+ 1

2

)
|F|+ |U|3

)
L

≤ constant× w logw|F| (|F| ≥ |U|3 , t ∼ 2w logw and L is constant)

≤ constant× w1+ 1
q logw (setting w = |F|q, q > 0)

≤ constant× w1+ 2
q

w ≥ constant× n
1

1+ 2
q > n1−ε (for sufficiently large n and q > 2

ε )

J
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I Remark. The capacity L of each vertex does not depend on the input of the reduction.
Thus, L can be fixed to be a sufficiently large constant. In Appendix A, we show that the
known hardness results of (3− ε) for the {0, L} capacitated version [10] and (2− ε) for the
uniform L capacitated version (which follows from the (2− ε)-approximation hardness of the
uncapacitated problem [14]) of k-center problem hold even when L is a constant. Note, that
for L = 1 the problem can be solved trivially.

Generalizing to other cost functions

In the k-center problem the goal is to minimize the maximum assignment cost, that is, to
minimize the infinity norm of the assignment costs. Now we generalize the hardness result
for any p-norm as the objective function. The objective function is given by:∑

j∈V
(W (j)d(h(j), j))p

 1
p

.

Consider the instance I generated by the reduction. If there exists a solution to the EC3S
instance, there exists a solution to the instance I with cost at most n

1
pw and if there is no

solution to the EC3S instance then any solution to I must have a cost at least w2. Thus an
approximation factor of w/n

1
p or, n1− 1

p−ε cannot be achieved, unless P = NP. This gives a
super-constant inapproximability result for, p > 1.

4 n-approximation algorithm

In this section, we present a simple n-approximation algorithm for the capacitated k-center
problem with vertex weights. It guesses through all possible values R of the optimal solution
cost in increasing order. The number of possible values can be at most |V |2 as each value
must be equal to W (j)d(i, j) for some i, j ∈ V . For each R, consider the distinct values of
the weights w1 > w2 > · · · > wm in decreasing order, where m is the number of distinct
weights. For each distinct weight wi, it creates the undirected graph Gri

= (V,Eri
) where

V is the input set of vertices and Eri
= {(i, j) | d(i, j) ≤ ri = R/wi}. Note that if R is the

optimal solution cost then the optimal solution cannot assign a vertex j to a center i such
that d(i, j) > R/W (j). Let Γi be the set of connected components of Gri

which have at least
one vertex of weight at least wi. For a component γ ∈ Γi, let Hγi = {v ∈ γ | W (v) ≥ wi}
be the set of heavy vertices and Pγ be the set of open centers in γ. Pγ for γ ∈ Γi, initially
consists of the centers opened at vertices in γ up till iteration i− 1. We say a center in Pγ is
unsaturated if the number of vertices assigned to it is less than its capacity. The algorithm, in
iteration i, assigns vertices from Hγi for each component γ to unsaturated centers in Pγ till
their capacities are exhausted and then adds new centers to serve all the remaining vertices
in Hγi . After m iterations, if the number of open centers is at most k it returns the set as
the solution. Algorithm 1 illustrates this procedure.

I Lemma 7. The assignment cost of each vertex is at most nR.

Proof. Note that in each iteration i, the algorithm assigns all the vertices of weight wi
to some center. Also, each vertex in a component is assigned to some center in the same
component. Thus the assignment cost is at most winri = winR/wi = nR. J

Consider an optimal solution S∗. Let R∗ be the optimal solution cost. For a center u in
the optimal solution, let σ(u) be the number of vertices assigned to it. Now consider the
iteration of Algorithm 1 when R = R∗.

FSTTCS 2016



8:8 Capacitated k-Center Problem with Vertex Weights

Algorithm 1 n-approximation algorithm
for each guess R of the optimal solution cost in increasing order do

Order the weights w1 > w2 > · · · > wm
for each wi, i ∈ {1, 2, . . . ,m} do

Construct Gri

Construct the set Γi for Gri

for each component γ ∈ Γi do
Construct Pγ
while ∃ unassigned vertex v ∈ Hγi do

if ∃ unsaturated center u ∈ Pγ then
assign v to u

else
Pγ → Pγ∪{u}, where u ∈ γ\Pγ , such that L(u) = max{L(v) | v ∈ γ\Pγ}

end if
end while

end for
end for
if |
⋃
γ∈Γm

Pγ | ≤ k then
return set of open centers and vertex assignment map

end if
end for

I Lemma 8. For a component γ ∈ Γi of any Gri
, there exists a set of centers χγ opened by

S∗ in component γ with the following properties:
1. |χγ | = |Pγ | = κγ
2. Order the elements ui of χγ in decreasing order of the value of σ(ui) and the elements pi

of Pγ in decreasing order of their capacities L(pi). For i ∈ {1, 2, . . . , κγ}, σ(ui) ≤ L(pi).

Proof. We prove this by induction on i. The lemma holds for Γ1 since the algorithm opens
centers in decreasing order of capacities in each of the components. Assume it holds for Γi
for some i. Note that, from the construction of a component in Γi, we can say that each
component in Γi is disjoint from other components in Γi and is a subset of some component
in Γi+1. Now consider a component γ ∈ Γi+1. Let γ1, γ2, . . . , γz be the components in
Γi which are subsets of γ. As long as there is an unsaturated center from iteration i, the
algorithm assigns vertices to that center. If all the vertices in γ are assigned to some center
from iteration i, then the lemma holds for Γi+1. The corresponding Pγ and χγ would be
Pγ1 ∪ Pγ2 ∪ · · · ∪ Pγz

and χγ1 ∪ χγ2 ∪ · · · ∪ χγz
respectively.

Now consider the case when all the centers from iteration i are saturated. Pγ =
Pγ1 ∪ Pγ2 ∪ · · · ∪ Pγz

and χγ = χγ1 ∪ χγ2 ∪ · · · ∪ χγz
satisfy the conditions of the lemma.

Arrange all the vertices in γ in decreasing order of capacities. Let q be the smallest index in
this ordering such that the algorithm has not opened a center at the qth vertex. Replace
the first q − 1 centers in χγ with the highest q − 1 centers opened in γ by S∗, according to
the number of vertices served. The new χγ and Pγ also satisfy both the conditions of the
lemma. Now, if there are unassigned vertices even after all centers in Pγ are saturated, the
algorithm opens center at the vertex at index q and adds it to Pγ . The optimum solution
must also have an open center u /∈ χγ as the centers in χγ do not serve all the vertices in
γ. σ(u) can be at most the number of vertices served by the qth maximum center in the
optimum solution which is at most the capacity of the newly opened center. We compute q
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again and replace the q − 1 centers in χγ as previously. This shows that both the conditions
of the lemma hold when each new center is added by the algorithm. Hence, the lemma holds
for Γi+1. J

I Theorem 9. Algorithm 1 is an n-approximation algorithm for the capacitated k-center
problem with vertex weights.

Proof. When R = R∗, consider Pγ for γ ∈ Γm after the algorithm has iterated through all the
distinct weights. At this point, each vertex is assigned to some open center. From Lemma 8,
there exists a set of centers χγ opened by S∗ in component γ such that |χγ | = |Pγ | = κγ .
Since all the components are disjoint, the number of centers opened by the algorithm is∑
γ∈Γm

|Pγ | =
∑
γ∈Γm

|χγ | ≤ k. Also, from Lemma 7, each assignment cost is at most
nR∗. J

5 Relaxing the number of centers

In this section we present a greedy (2, 2)-approximation algorithm1 for the uniform soft
capacitated k-center problem with vertex weights. In the soft capacitated version, the
solution is allowed to have multiple centers at a vertex. All vertices have equal capacities of
L. The algorithm uses the greedy clustering technique used by Wang and Cheng in [20] to
produce a solution for the uncapacitated version of the problem. It then replaces the open
uncapacitated centers with the required number of capacitated ones.

For an input instance I and a solution cost R, we can construct a digraph GR = (V,ER),
where V is the set of vertices in I and ER = {(j, i) | W (j)d(i, j) ≤ R} is the set of edges
that a solution with cost R can potentially use to assign vertices to centers. Thus, a directed
edge (j, i) ∈ ER if j can be assigned to i within cost R. It is easy to verify that there exists
a solution to I with cost R if and only if there exists a set S ⊆ V, |S| = k and an assignment
map h : V → S assigning vertices to centers respecting the capacity constraint and using
only the edges in ER, that is, h(j) = i =⇒ (j, i) ∈ ER.

Given an instance I of the problem, the algorithm goes through all possible values R
(which can be at most |V |2) of the optimal solution cost, in increasing order. It constructs
the graph GR and for each vertex v ∈ V , computes its neighbourhood N(v) as:

N(v) = {v} ∪ {u | (u, v) ∈ ER} ∪ {u | ∃x ∈ V, (v, x), (u, x) ∈ ER}

It then select a set of vertices S greedily according to weight and clusters (Cv) the vertices in
the neighbourhood of each vertex v ∈ S. It opens sufficient number centers at the vertices in
S (with multiple centers at a vertex if required) such that all the vertices can be assigned to
some center with cost at most 2R, respecting the capacity constraint. Algorithm 2 formally
defines this greedy procedure.

I Lemma 10. For any vertex in a cluster Cv,∀v ∈ S, its cost of assignment to an open
center at v is at most 2R. Formally,

d(v, j)W (j) ≤ 2R,∀j ∈ Cv .

Proof. The lemma holds trivially for v. All other vertices j ∈ Cv are of the following two
types:

1 An (α, β)-approximation algorithm outputs a solution with cost at most αR by opening at most βk
centers

FSTTCS 2016
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Algorithm 2 Greedy algorithm
for each guess R of the solution cost in increasing order do

Construct GR.
for each v ∈ V do

Construct N(v)
end for
X ← V

S ← φ

while X is not empty do
select v ∈ X such that W (v) = max{W (v) | v ∈ X}
S ← S ∪ {v}
Assign X ∩N(v) to cluster Cv
Open d|Cv|/Le centers at v
X ← X \N(v)

end while
if number of open centers ≤ 2k then

return set of open centers
end if

end for

Type 1: (j, v) ∈ ER. In this case, by definition of ER we have:

W (j)d(v, j) ≤ R ≤ 2R .

Type 2: ∃x ∈ V, (v, x), (j, x) ∈ ER. Algorithm 2 in its while loop selects the maximum weight
vertex v from the set X in a given iteration. Since, Cv ⊆ X , therefore, W (j) ≤W (v).

W (j)d(v, j) ≤W (j) (d(v, x) + d(x, j)) (using triangle inequality)

≤W (j)
(

R

W (v) + d(x, j)
)

((v, x) ∈ ER)

≤W (j)
(

R

W (j) + d(x, j)
)

(W (j) ≤W (v))

≤ R+W (j)d(x, j) ≤ 2R ((j, x) ∈ ER)

J

Let R∗ be the optimal solution cost. Now consider the iteration of Algorithm 2 when
R = R∗.

I Lemma 11. Algorithm 2 opens at most 2k centers and every vertex in cluster Cv can be
assigned to some open center at v.

Proof. Algorithm 2 opens d|Cv|/Le centers at vertex v in cluster Cv which is sufficient to
serve all vertices in Cv. Also, no two vertices in S can be served by the same center in the
optimal solution, otherwise one of them must be in the neighbourhood of the other. Thus,
k ≥ |S|. The total number of centers k′ opened by Algorithm 2 follows,

k′ =
∑
v∈S
d|Cv|/Le = |S|+

∑
v∈S
b|Cv|/Lc ≤ |S|+ b|V |/Lc ≤ 2k (all clusters are disjoint)

J
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I Theorem 12. Algorithm 2 is a (2, 2)-approximation algorithm for the uniform soft capa-
citated k-center problem with vertex weights.

Proof. Follows from Lemmas 10 and 11. J

I Remark. Algorithm 2 can be modified to a (4, 2)-approximation for the uniform hard
capacitated k-center problem with vertex weights. In the hard capacitated version, multiple
centers are not allowed to be opened at the same location. So, instead of opening all the
centers in a cluster at one vertex we open one center at each of the top d|Cv|/Le vertices in
Cv in decreasing order of weight. The cost of assigning a vertex with a lower weight to a
center with higher weight is at most 4R.

6 Conclusion and open problems

In this paper we make progress towards showing approximation hardness for capacitated
facility location problems with vertex weights. To the best of our knowledge, this is the
first facility location problem known to be hard to approximate within a constant factor.
This provides insight into other variants, for many of which not much is known about their
approximabilities. It would be interesting to extend our result for the k-median problem.

Other directions for future work would be to reduce the gap between the lower bound of
n1−ε and the upper bound of n presented in this paper and to design algorithms that achieve
a constant factor on the solution cost by relaxing the cardinality or capacity constraints up
to a constant smaller than 2.

Acknowledgements. We thank Naveen Garg and Amit Kumar for many helpful discussions.
We also thank anonymous reviewers for their valuable comments.
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Θ(|F|). A different version of the EC3S problem in which each element of U can belong to
at most three sets in F is also NP-complete [11] [12]. We use the same reduction as in [10].
Figure 2 illustrates the gadgets used in the reduction. Each vertex has a uniform capacity of
L and k = |F|+ |U|

3 . All edges are of unit length.

I Lemma 13. If there exists a solution to the EC3S instance, then there exist a capacitated
k-center solution with cost ≤ 1.

Proof. Let F ′ ⊆ F be the solution of the EC3S instance. Note that, |F ′| = |U|
3 . For each set

A ∈ F , place a center at the vertex xA in the corresponding set gadget. For each set A ∈ F ′,
place a center at the vertex A in the corresponding set gadget. Thus, the vertices in each
set gadget gA is served by the center at vertex xA and the vertices in the element gadget of
the elements in a set A ∈ F ′ are served by the center at A. The number of centers used is
|F|+ |F ′| = |F|+ |U|

3 = k. J

Now consider a solution S of the capacitated k-center instance with cost < 2. Note that
each center must serve L vertices as |V | = kL.

I Lemma 14. S does not have a center in any of the element gadgets.

Proof. Consider an element a ∈ U . The vertices with distance < 2 to a vertex in the element
gadget ga are the vertex itself and the vertices xA for each set A ∈ F that it belongs to.
Since, each element can belong to at most three sets in F , the number of vertices that can
be assigned to a center in an element gadget is bounded by a constant. For sufficiently large
but constant L, the center will not be able to serve L vertices. J

I Lemma 15. Each set gadget in S has at least one and at most two open centers in it.

Proof. Consider the vertex set gA of the set gadget for a set A ∈ F . The L − 2 pendant
vertices in ga cannot be served by a center outside ga. Thus, gA has at least one center in it.

Assume, for contradiction, that the number of centers in gA > 2. Let a, b and c be the
elements in set A and let ga, gb and gc be the vertex sets of their respective gadgets. The
vertices that are at a distance < 2 from some vertex gA are the ones in gA, ga, gb, gc. Thus,
the number of vertices that the centers in gA can serve ≤ |gA| + |ga| + |gb| + |gc| = 2L.
Therefore, at least one of the centers in gA must be serving less than L vertices. J

I Lemma 16. In S, gadgets corresponding to any two sets in F sharing a common element
cannot have two open centers in each one of them.

Proof. Assume, for contradiction, that there exist two sets A,B ∈ F having at least one
element in common such that the vertex sets gA and gB of the corresponding gadgets each
have 2 centers. As shown in the proof of Lemma 15, the vertices that can be assigned to a
center in the gadget of a set C = {d, e, f} are those in gC ∪ gd ∪ ge ∪ gf . Thus, the number of
vertices that can be assigned to centers in gA and gB ≤ 4L− L

3 (since at least one element is
common in A and B). Therefore, at least one of the centers in gA or gB must be serving less
than L vertices. J

I Lemma 17. If there exists a capacitated k-center solution with cost R < 2, then there
exists a solution to the EC3S instance.

Proof. From Lemmas 14, 15 and 16, there are |U|3 set gadgets each of which have 2 centers
and the corresponding sets are all disjoint. These |U|3 sets form the solution set F ′. J
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Figure 2 Gadgets for reduction (for the capacitated k-center problem).

I Theorem 18. An α-approximation is not possible for the uniform capacitated k-center
problem for α < 2, unless P = NP.

Proof. Follows from Lemmas 13 and 17. J

I Remark. Using the same reduction and allowing capacities of L at vertices xA and A in
gA for each set A ∈ F and a capacity of zero at every other vertex, it can be shown that the
{0, L}-capacitated k-center problem is hard to approximate within a factor of (3− ε) for a
constant L.
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Abstract
We study the strip packing problem, a classical packing problem which generalizes both bin
packing and makespan minimization. Here we are given a set of axis-parallel rectangles in the
two-dimensional plane and the goal is to pack them in a vertical strip of fixed width such that
the height of the obtained packing is minimized. The packing must be non-overlapping and the
rectangles cannot be rotated.

A reduction from the partition problem shows that no approximation better than 3/2 is
possible for strip packing in polynomial time (assuming P6=NP). Nadiradze and Wiese [SODA16]
overcame this barrier by presenting a ( 7

5 +ε)-approximation algorithm in pseudo-polynomial-time
(PPT). As the problem is strongly NP-hard, it does not admit an exact PPT algorithm (though
a PPT approximation scheme might exist).

In this paper we make further progress on the PPT approximability of strip packing, by
presenting a ( 4

3 + ε)-approximation algorithm. Our result is based on a non-trivial repacking of
some rectangles in the empty space left by the construction by Nadiradze and Wiese, and in some
sense pushes their approach to its limit.

Our PPT algorithm can be adapted to the case where we are allowed to rotate the rectangles
by 90◦, achieving the same approximation factor and breaking the polynomial-time approxima-
tion barrier of 3/2 for the case with rotations as well.
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1 Introduction

In this paper, we consider the strip packing problem, a well-studied classical two-dimensional
packing problem [6, 14, 28]. Here we are given a collection of rectangles, and an infinite
vertical strip of width W in the two dimensional (2-D) plane. We need to find an axis-parallel
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embedding of the rectangles without rotations inside the strip so that no two rectangles
overlap (feasible packing). Our goal is to minimize the total height of this packing.

More formally, we are given a parameterW ∈ N and a set R = {R1, . . . , Rn} of rectangles,
each one characterized by a width wi ∈ N, wi ≤W , and a height hi ∈ N. A packing of R is a
pair (xi, yi) ∈ N×N for each Ri, with 0 ≤ xi ≤W −wi, meaning that the left-bottom corner
of Ri is placed in position (xi, yi) and its right-top corner in position (xi +wi, yi + hi). This
packing is feasible if the interior of rectangles is disjoint in this embedding (or equivalently
rectangles are allowed to overlap on their boundary only). Our goal is to find a feasible
packing of minimum height maxi{yi + hi}.

Strip packing is a natural generalization of one-dimensional bin packing [13] (when all the
rectangles have the same height) and makespan minimization [12] (when all the rectangles
have the same width). The problem has lots of applications in industrial engineering and
computer science, specially in cutting stock, logistics and scheduling [28, 20]. Recently, there
have been a lot of applications of strip packing in electricity allocation and peak demand
reductions in smart-grids [36, 27, 32].

A simple reduction from the partition problem shows that the problem cannot be
approximated within a factor 3

2 − ε for any ε > 0 in polynomial-time unless P=NP. This
reduction relies on exponentially large (in n) rectangle widths.

Let OPT = OPT (R) denote the optimal height for the considered strip packing instance
(R,W ), and hmax = hmax(R) (resp. wmax = wmax(R)) be the largest height (resp. width)
of any rectangle in R. Observe that trivially OPT ≥ hmax. W.l.o.g. we can assume
that W ≤ nwmax. The first non-trivial approximation algorithm for strip packing, with
approximation ratio 3, was given by Baker, Coffman and Rivest [6]. The First-Fit-Decreasing-
Height algorithm (FFDH) by Coffman et al. [14] gives a 2.7 approximation. Sleator [34]
gave an algorithm that generates packing of height 2OPT + hmax

2 , hence achieving a 2.5
approximation. Afterwards, Steinberg [35] and Schiermeyer [33] independently improved the
approximation ratio to 2. Harren and van Stee [21] first broke the barrier of 2 with their
1.9396 approximation. The present best ( 5

3 + ε)-approximation is due to Harren et al. [20].
Nadiradze and Wiese [31] overcame the 3

2 -inapproximability barrier by presenting a
( 7

5 + ε)-approximation algorithm running in pseudo-polynomial-time (PPT). More specifically,
the running time of their algorithm is O((Nn)O(1)), where N = max{wmax, hmax}1. As strip
packing is strongly NP-hard [17], it does not admit an exact PPT algorithm. However, the
existence of a PPT approximation scheme is currently not excluded.

1.1 Our contribution and techniques
In this paper, we make progress on the PPT approximability of strip packing, by presenting
an improved ( 4

3 + ε) approximation. Our approach refines the technique of Nadiradze and
Wiese [31], that modulo several technical details works as follows. Let α ∈ [1/3, 1/2) be
a proper constant parameter, and define a rectangle Ri to be tall if hi > α · OPT . They
prove that the optimal packing can be structured into a constant number of axis-aligned
rectangular regions (boxes), that occupy a total height of OPT ′ ≤ (1 + ε)OPT inside the
vertical strip. Some rectangles are not fully contained into one box (they are cut by some box).
Among them, tall rectangles remain in their original position. All the other cut rectangles
are repacked on top of the boxes: part of them in a horizontal box of size W ×O(ε)OPT ,

1 For the case without rotations, the polynomial dependence on hmax can indeed be removed with
standard techniques.
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Here γ is a small constant depending on ε.

Figure 1 Comparison of final solutions.

and the remaining ones in a vertical box of size O(εW )× αOPT (that we next imagine as
placed on the top-left of the packing under construction).

Some of these boxes contain only relatively high rectangles (including tall ones) of
relatively small width. The next step is a rearrangement of the rectangles inside one such
vertical box B (see Figure 3a), say of size w × h: they first slice non-tall rectangles into
unit width rectangles (this slicing can be finally avoided with standard techniques). Then
they shift tall rectangles to the top/bottom of B, shifting sliced rectangles consequently (see
Figure 3b). Now they discard all the (sliced) rectangles completely contained in a central
horizontal region of size w× (1 +ε−2α)h, and they nicely rearrange the remaining rectangles
into a constant number of sub-boxes (excluding possibly a few more non-tall rectangles, that
can be placed in the additional vertical box).

These discarded rectangles can be packed into 2 extra boxes of size w
2 × (1 + ε− 2α)h

(see Figure 3d). In turn, the latter boxes can be packed into two discarded boxes of size
W
2 × (1 + ε − 2α)OPT ′, that we can imagine as placed, one on top of the other, on the
top-right of the packing. See Figure 1a for an illustration of the final packing. This leads
to a total height of (1 + max{α, 2(1− 2α)}+O(ε)) ·OPT , which is minimized by choosing
α = 2

5 .
Our main technical contribution is a repacking lemma that allows one to repack a

small fraction of the discarded rectangles of a given box inside the free space left by the
corresponding sub-boxes (while still having Oε(1) many sub-boxes in total). This is illustrated
in Figure 3e. This way we can pack all the discarded rectangles into a single discarded box
of size (1− γ)W × (1 + ε− 2α)OPT ′, where γ is a small constant depending on ε, that we

FSTTCS 2016
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can place on the top-right of the packing. The vertical box where the remaining rectangles
are packed still fits to the top-left of the packing, next to the discarded box. See Figure 1b
for an illustration. Choosing α = 1/3 gives the claimed approximation factor.

We remark that the basic approach by Nadiradze and Wiese strictly requires that at
most 2 tall rectangles can be packed one on top of the other in the optimal packing, hence
imposing α ≥ 1/3. Thus in some sense we pushed their approach to its limit.

The algorithm by Nadiradze and Wiese [31] is not directly applicable to the case when
90◦ rotations are allowed. In particular, they use a linear program to pack some rectangles.
When rotations are allowed, it is unclear how to decide which rectangles are packed by
the linear program. We use a combinatorial container-based approach to circumvent this
limitation, which allows us to pack all the rectangles using dynamic programming. This way
we achieve a PPT (4/3 + ε)-approximation for strip packing with rotations, breaking the
polynomial-time approximation barrier of 3/2 for that variant as well.

1.2 Related work

For packing problems, many pathological lower bound instances occur when OPT is small.
Thus it is often insightful to consider the asymptotic approximation ratio. Coffman et
al. [14] described two level-oriented algorithms, Next-Fit-Decreasing-Height (NFDH) and
First-Fit-Decreasing-Height (FFDH), that achieve asymptotic approximations of 2 and 1.7,
respectively. After a sequence of improvements [18, 5], the seminal work of Kenyon and
Rémila [28] provided an asymptotic polynomial-time approximation scheme (APTAS) with
an additive term O

(
hmax

ε2

)
. The latter additive term was subsequently improved to hmax by

Jansen and Solis-Oba [24].

In the variant of strip packing with rotations, we are allowed to rotate the input rectangles
by 90◦ (in other terms, we are free to swap the width and height of an input rectangle). The
case with rotations is much less studied in the literature. It seems that most techniques that
work for the case without rotations can be extended to the case with rotations, however this
is not always a trivial task. In particular, it is not hard to achieve a 2 + ε approximation, and
the 3/2 hardness of approximation extends to this case as well [24]. In terms of asymptotic
approximation, Miyazawa and Wakabayashi [30] gave an algorithm with asymptotic perfor-
mance ratio of 1.613. Later, Epstein and van Stee [16] gave a 3

2 asymptotic approximation.
Finally, Jansen and van Stee [25] achieved an APTAS for the case with rotations.

Strip packing has also been well studied for higher dimensions. The present best asymp-
totic approximation for 3-D strip packing is due to Jansen and Prädel [23] who gave
1.5-approximation extending techniques from 2-D bin packing.

There are many other related geometric packing problems. For example, in the independent
set of rectangles problems we are given a collection of axis-parallel rectangles embedded in
the plane, and we need to find a maximum cardinality/weight subset of non-overlapping
rectangles [1, 10, 11]. Interesting connections between this problems and unsplittable flow on
a path were recently discovered [3, 4, 7, 9, 19]. In the geometric knapsack problem we wish
to pack a maximum cardinality/profit subset of the rectangles in a given square knapsack
[2, 26]. One can also consider a natural geometric version of bin packing, where one needs to
pack a given set of rectangles in the smallest possible number of square bins [8]. We refer
the readers to [29] for a survey on geometric packing problems.
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1.3 Organization of the paper
First, we discuss some preliminaries and notations in Section 2. Section 3 contains our main
technical contribution, our repacking lemma. There we also discuss a refined structural result
leading to a packing into Oε(1) many containers. In Section 4, we describe our algorithm to
pack the rectangles. Then in Section 5, we extend our algorithm to the case with rotations.
Finally, in Section 6, we conclude with some observations.

Due to space constraints, some proofs are omitted from this extended abstract and will
appear in the full version of the paper.

2 Preliminaries and notations

Throughout the present work, we will follow the notation from [31], which will be explained
as it is needed.

Recall that OPT ∈ N denotes the height of the optimal packing for instance R. By trying
all the pseudo-polynomially many possibilities, we can assume that OPT is known to the
algorithm. Given a setM⊆ R of rectangles, a(M) will denote the total area of rectangles
inM, i.e., a(M) =

∑
Ri∈M hi · wi, and hmax(M) (resp. wmax(M)) denotes the maximum

height (resp. width) of rectangles inM. Throughout this work, a box of size a× b means an
axis-aligned rectangular region of width a and height b.

In order to lighten the notation, we sometimes interpret a rectangle/box as the corre-
sponding region inside the strip according to some given embedding. The latter embedding
will not be specified when clear from the context. Similarly, we sometimes describe an
embedding of some rectangles inside a box, and then embed the box inside the strip: the
embedding of the considered rectangles is shifted consequently in that case.

A vertical (resp. horizontal) container is an axis-aligned rectangular region where we
implicitly assume that rectangles are packed one next to the other from left to right (resp.,
bottom to top), i.e., any vertical (resp. horizontal) line intersects only one packed rectangle
(see Figure 2b). Container-like packings will turn out to be particularly useful since they
naturally induce a (one-dimensional) knapsack instance.

2.1 Classification of rectangles
Let 0 < ε < α, and assume for simplicity that 1

ε ∈ N. We first classify the input rectangles
into six groups according to parameters δh, δw, µh, µw satisfying ε ≥ δh > µh > 0 and
ε ≥ δw > µw > 0, whose values will be chosen later (see also Figure 2a). A rectangle Ri is

Large if hi ≥ δhOPT and wi ≥ δwW .
Tall if hi > αOPT and wi < δwW .
Vertical if hi ∈ [δhOPT, αOPT ] and wi ≤ µwW ,
Horizontal if hi ≤ µhOPT and wi ≥ δwW ,
Small if hi ≤ µhOPT and wi ≤ µwW ;
Medium in all the remaining cases, i.e., if hi ∈ (µhOPT, δhOPT ), or wi ∈ (µwW, δwW )
and hi ≤ αOPT .

We use L, T , V , H, S, and M to denote large, tall, vertical, horizontal, small, and medium
rectangles, respectively. We remark that, differently from [31], we need to allow δh 6= δw and
µh 6= µw due to some additional constraints in our construction (see Section 4).

Notice that according to this classification, every vertical line across the optimal packing
intersects at most two tall rectangles. The following lemma allows us to choose δh, δw, µh
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0 µwW δwW W

0

µhOPT

δhOPT

αOPT

OPT

Small

Medium

Vertical

Tall

Medium

Medium

Medium

Tall

Horizontal

Medium

Large

Large

(a) Each rectangle is represented
as a point on the plane with x
(resp., y) coordinate indicating
its width (resp., height).

(b) Example of vertical
container. Every ver-
tical line intersects at
most one rectangle.

Box B

(c) Gray rectangles are nicely cut
by B; dashed rectangles are cut but
not nicely cut by B, and light gray
rectangle is not cut by B.

Figure 2 Illustration of some of the definitions used in this paper.

and µw in such a way that δh and µh (δw and µw, respectively) differ by a large factor, and
medium rectangles have small total area.

I Lemma 1. Given a polynomial-time computable function f : (0, 1)→ (0, 1), with f(x) < x,
any constant ε ∈ (0, 1), and any positive integer k, we can compute in polynomial time a set
∆ of T = 2( 1

ε )k many positive real numbers upper bounded by ε, such that there is at least
one number δh ∈ ∆ so that a(M) ≤ εk · OPT ·W by choosing µh = f(δh), µw = εµh

12 , and
δw = εδh

12 .

Function f and constant k will be chosen later. From now on, assume that δh, δw, µh and
µw are chosen according to Lemma 1.

2.2 Overview of the algorithm
We next overview some of the basic results in [31] that are needed in our result. We define
the constant γ := εδh

2 , and w.l.o.g. assume γ ·OPT ∈ N.
Let us forget for a moment small rectangles S. We will pack all the remaining rectangles

L ∪H ∪ T ∪ V ∪M into a sufficiently small number of boxes embedded into the strip. By
standard techniques, as in [31], it is then possible to pack S (essentially using NFDH in
a proper grid defined by the above boxes) while increasing the total height at most by
O(ε)OPT . See Section 4.1 for more details on packing of small rectangles.

The following lemma from [31] allows one to round the heights and positions of rectangles
of large enough height, without increasing much the height of the packing.

I Lemma 2 ([31]). There exists a feasible packing of height OPT ′ ≤ (1 + ε)OPT where: (1)
the height of each rectangles in L ∪ T ∪ V is rounded up to the closest integer multiple of
γ ·OPT and (2) their x-coordinates are as in the optimal solution and their y-coordinates
are integer multiples of γ ·OPT .

We next focus on rounded rectangle heights (i.e., implicitly replace L∪T ∪V by their rounded
version) and on this slightly suboptimal solution of height OPT ′.

The following lemma helps us to pack rectangles in M .
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I Lemma 3. If k in Lemma 1 is chosen sufficiently large, all the rectangles in M can be
packed in polynomial time into a box BM,hor of size W ×O(ε)OPT and a box BM,ver of size
(γ3W ) × (αOPT ). Furthermore, there is one such packing using 3ε

µh
vertical containers in

BM,hor and γ
3µw

horizontal containers in BM,ver.

We say that a rectangle Ri is cut by a box B if both Ri \B and B \Ri are non-empty
(considering both Ri and B as open regions with an implicit embedding on the plane). We
say that a rectangle Ri ∈ H (resp. Ri ∈ T ∪ V ) is nicely cut by a box B if Ri is cut by B
and their intersection is a rectangular region of width wi (resp. height hi). Intuitively, this
means that an edge of B cuts Ri along its longest side (see Figure 2c).

Now it remains to pack L ∪H ∪ T ∪ V : The following lemma, taken from [31] modulo
minor technical adaptations, describes an almost optimal packing of those rectangles.

I Lemma 4. There is an integer KB = ( 1
ε )( 1

δw
)O(1) such that, assuming µh ≤ εδw

KB
, there is

a partition of the region BOPT ′ := [0,W ]× [0, OPT ′] into a set B of at most KB boxes and
a packing of the rectangles in L ∪ T ∪ V ∪H such that:

each box has size equal to the size of some Ri ∈ L ( large box), or has height at most
δhOPT

′ (horizontal box), or has width at most δwW (vertical box);
each Ri ∈ L is contained into a large box of the same size;
each Ri ∈ H is contained into a horizontal box or is cut by some box. Furthermore, the
total area of horizontal cut rectangles is at most W ·O(ε)OPT ′;
each Ri ∈ T ∪ V is contained into a vertical box or is nicely cut by some vertical box.

We denote the sets of vertical, horizontal, and large boxes by BV ,BH and BL, respectively.
Observe that B can be guessed in PPT. We next use Tcut ⊆ T and Vcut ⊆ V to denote tall
and vertical cut rectangles in the above lemma, respectively. Let us also define Tbox = T \Tcut
and Vbox = V \ Vcut.

Using standard techniques (see e.g. [31]), we can pack all the rectangles excluding the
ones contained in vertical boxes in a convenient manner. This is summarized in the following
lemma.

I Lemma 5. Given B as in Lemma 4 and assuming µw ≤ γδh

6KB(1+ε) , there exists a packing
of L ∪H ∪ T ∪ V such that:
1. all the rectangles in L are packed in BL;
2. all the rectangles in H are packed in BH plus an additional box BH,cut of size W ×

O(ε)OPT ;
3. all the rectangles in Tcut ∪ Tbox ∪ Vbox are packed as in Lemma 4;
4. all the rectangles in Vcut are packed in an additional vertical box BV,cut of size (γ3W )×

(αOPT ).

We will pack all the rectangles (essentially) as in [31], with the exception of Tbox ∪ Vbox
where we exploit a refined approach. This is the technical heart of this paper, and it is
discussed in the next section.

3 A repacking lemma

We next describe how to pack rectangles in Tbox∪Vbox. In order to highlight our contribution,
we first describe how the approach by Nadiradze and Wiese [31] works.
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It is convenient to assume that all the rectangles in Vbox are sliced vertically into sub-
rectangles of width 1 each2. Let Vsliced be such sliced rectangles. We will show how to pack
all the rectangles in Tbox ∪ Vsliced into a constant number of sub-boxes. Using standard
techniques it is then possible to pack Vbox into the space occupied by Vsliced plus an additional
box BV,round of size (γ3W )× αOPT .

We next focus on a specific vertical box B, say of size w × h (see Figure 3a). Let T cut
be the tall rectangles cut by B. Observe that there are at most 4 such rectangles (2 on the
left/right side of B). The rectangles in T cut are packed as in Lemma 5. Let also T and V be
the tall rectangles and sliced vertical rectangles, respectively, originally packed completely
inside B.

They show that it is possible to pack T ∪ V into a constant size set S of sub-boxes
contained inside B−T cut, plus an additional box D of size w× (1 + ε− 2α)h. Here B−T cut
denotes the region inside B not contained in T cut. In more detail, they start by considering
each rectangle Ri ∈ T . Since α ≥ 1

3 by assumption, one of the regions above or below Ri
cannot contain another tall rectangle in T , say the first case applies (the other one being
symmetric). Then we move Ri up so that its top side overlaps with the top side of B. The
sliced rectangles in V that are covered this way are shifted right below R (note that there is
enough free space by construction). At the end of the process all the rectangles in T touch
at least one of the top and bottom side of B (see Figure 3b). Note that no rectangle is
discarded up to this point.

Next, we partition the space inside B− (T ∪T cut) into maximal height unit-width vertical
stripes. We call each such stripe a free rectangle if both its top and bottom side overlap
with the top or bottom side of some rectangle in T ∪ T cut, and otherwise a pseudo rectangle
(see Figure 3c). We define the i-th free rectangle to be the free rectangle contained in stripe
[i− 1, i]× [0, h].

Note that all the free rectangles are contained in a horizontal region of width w and
height at most h− 2αOPT ≤ h− 2αOPT

′

1+ε ≤ h(1− 2α
1+ε ) ≤ h(1 + ε− 2α) contained in the

central part of B. Let V disc be the set of (sliced vertical) rectangles contained in the free
rectangles. Rectangles in V disc can be obviously packed inside D. For each corner Q of
the box B, we consider the maximal rectangular region that has Q as a corner and only
contains pseudo rectangles whose top/bottom side overlaps with the bottom/top side of
a rectangle in T cut; there are at most 4 such non-empty regions, and for each of them we
define a corner sub-box, and we call the set of such sub-boxes Bcorn (see Figure 3c). The
final step of the algorithm is to rearrange horizontally the pseudo/tall rectangles so that
pseudo/tall rectangles of the same height are grouped together as much as possible (modulo
some technical details). The rectangles in Bcorn are not moved. The sub-boxes are induced
by maximal consecutive subsets of pseudo/tall rectangles of the same height touching the
top (resp., bottom) side of B (see Figure 3d). We crucially remark that, by construction, the
height of each sub-box (and of B) is a multiple of γOPT .

By splitting each discarded box D into two halves Bdisc,top and Bdisc,bot, and replicating
the packing of boxes inside BOPT ′ , it is possible to pack all the discarded boxes into two
boxes Bdisc,top and Bdisc,bot, both of size W

2 × (1 + ε− 2α)OPT ′.
A feasible packing of boxes (and hence of the associated rectangles) of height (1 +

max{α, 2(1− 2α)}+O(ε))OPT is then obtained as follows. We first pack BOPT ′ at the base
of the strip, and then on top of it we pack BM,hor, two additional boxes BH,round and BH,cut
(which will be used to repack the horizontal items), and a box BS (which will be used to pack

2 For technical reasons, slices have width 1/2 in [31]. For our algorithm, slices of width 1 suffice.
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some of the small items). The latter 4 boxes all have width W and height O(εOPT ′). On
the top right of this packing we place Bdisc,top and Bdisc,bot, one on top of the other. Finally,
we pack BM,ver, BV,cut and BV,round on the top left, one next to the other. See Figure 1a for
an illustration. The height is minimized for α = 2

5 , leading to a 7/5 +O(ε) approximation.
The main technical contribution of this paper is to show how it is possible to repack

a subset of V disc into the free space inside Bcut := B − T cut not occupied by sub-boxes,
so that the residual sliced rectangles can be packed into a single discarded box Bdisc of
size (1 − γ)w × (1 + ε − 2α)h (repacking lemma). See Figure 3e. This apparently minor
saving is indeed crucial: with the same approach as above all the discarded sub-boxes
Bdisc can be packed into a single discarded box Bdisc of size (1− γ)W × (1 + ε− 2α)OPT ′.
Therefore, we can pack all the previous boxes as before, and Bdisc on the top right. Indeed,
the total width of BM,ver, BV,cut and BV,round is at most γW for a proper choice of the
parameters. See Figure 1b for an illustration. Altogether the resulting packing has height
(1 + max{α, 1 − 2α} + O(ε))OPT . This is minimized for α = 1

3 , leading to the claimed
4/3 +O(ε) approximation.

It remains to prove our repacking lemma.

I Lemma 6 (Repacking Lemma). Consider a partition of D into w unit-width vertical stripes.
There is a subset of at least γw such stripes so that the corresponding sliced vertical rectangles
V repack can be repacked inside Bcut = B − T cut in the space not occupied by sub-boxes.

Proof. Let f(i) denote the height of the i-th free rectangle, where for notational convenience
we introduce a degenerate free rectangle of height f(i) = 0 whenever the stripe [i−1, i]× [0, h]
inside B does not contain any free rectangle. This way we have precisely w free rectangles.
We remark that free rectangles are defined before the horizontal rearrangement of tall/pseudo
rectangles, and the consequent definition of sub-boxes.

Recall that sub-boxes contain tall and pseudo rectangles. Now consider the area in Bcut
not occupied by sub-boxes. Note that this area is contained in the central region of height
h(1 − 2α

1+ε ). Partition this area into maximal-height unit-width vertical stripes as before
(newly free rectangles). Let g(i) be the height of the i-th newly free rectangle, where again
we let g(i) = 0 if the stripe [i− 1, i]× [0, h] does not contain any (positive area) free region.
Note that, since tall and pseudo rectangles are only shifted horizontally in the rearrangement,
it must be the case that:

w∑
i=1

f(i) =
w∑
i=1

g(i).

Let G be the (good) indexes where g(i) ≥ f(i), and G = {1, . . . , w} −G be the bad indexes
with g(i) < f(i). Observe that for each i ∈ G, it is possible to pack the i-th free rectangle
inside the i-th newly free rectangle, therefore freeing a unit-width vertical strip inside D.
Thus it is sufficient to show that |G| ≥ γw.

Observe that, for i ∈ G, f(i)− g(i) ≥ γOPT ≥ γ h
1+ε : indeed, both f(i) and g(i) must be

multiples of γOPT since they correspond to the height of B minus the height of one or two
tall/pseudo rectangles. On the other hand, for any index i, g(i)− f(i) ≤ g(i) ≤ (1− 2α

1+ε )h,
by the definition of g. Altogether

(1− 2α
1 + ε

)h · |G| ≥
∑
i∈G

(g(i)− f(i)) =
∑
i∈G

(f(i)− g(i)) ≥ γh

1 + ε
· |G| = γh

1 + ε
· (w− |G|) .

We conclude that |G| ≥ γ
1+ε−2α+γw. The claim follows since by assumption α > ε ≥ γ. J

FSTTCS 2016



9:10 Improved Pseudo-Polynomial-Time Approximation for Strip Packing

(a) Original packing in a vertical
box B after removing Vcut. Gray
rectangles correspond to T , dark
gray rectangles to T cut and light
gray rectangles to V .

(b) Rectangles in T are shifted
vertically so that
they touch either the top
or the bottom of box B, shifting
also slices in V accordingly.

0

α
1+εh

(1− α
1+ε)h

h

(c) We define pseudo rectangles
and free space in B − (T ∪
T cut). Crosshatched stripes corre-
spond to pseudo rectangles, empty
stripes to free rectangles, and
dashed regions correspond to cor-
ner sub-boxes.

1
2w

(1
+
ε
−

2α
)h

(1
+
ε
−

2α
)h

Bdisc,bot

Bdisc,top

(d) Rearrangement of pseudo and tall rectangles
to get Oε(1) sub-boxes, and additional packing
of V disc as in [31].

≥ γw
good indexes

≤ (1− γ)w

(1
+
ε
−

2α
)h

Bdisc

(e) Our refined repacking of V disc according to
Lemma 6: some vertical slices are repacked in the
free space.

Figure 3 Creation of pseudo rectangles, how to get constant number of sub-boxes and repacking
of vertical slices in a vertical box B.

The original algorithm in [31] use standard LP-based techniques, as in [28], to pack the
horizontal rectangles. We can avoid that via a refined structural lemma: here boxes and
sub-boxes are further partitioned into vertical (resp., horizontal) containers. Rectangles are
then packed into such containers as mentioned earlier: one next to the other from left to right
(resp., bottom to top). Containers define a multiple knapsack instance, that can be solved
optimally in PPT via dynamic programming. This approach has two main advantages:

It leads to a simpler algorithm.
It can be easily adapted to the case with rotations, as discussed in Section 5.

We omit the proof of the following Lemma.

I Lemma 7. By choosing α = 1/3, there is an integer KF ≤
(

1
εδw

)O(1/(δwε))
such that,

assuming µh ≤ ε
KF

and µw ≤ γ
3KF

, there is a packing of R\S in the region [0,W ]× [0, (4/3+
O(ε))OPT ′] with the following properties:
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All the rectangles in R \ S are contained in KTOTAL = Oε(1) horizontal or vertical
containers, such that each of these containers is either contained in or disjoint from
BOPT ′ ;
At most KF containers are contained in BOPT ′ , and their total area is at most a(R \ S).

4 A refined algorithm

First of all, we find µh, δh, µw, δw as required by Lemma 1; this way, we can find the set S of
small rectangles. Consider the packing of Lemma 7: all the non-small rectangles are packed
into KTOTAL = Oε(1) containers, and only KF of them are contained in BOPT ′ . Since their
position (x, y) and their size (w, h) are w.l.o.g. contained in {0, . . . ,W}×{0, . . . , nhmax}, we
can enumerate in PPT over all the possible feasible such packings of k ≤ KTOTAL containers,
and one of those will coincide with the packing defined by Lemma 7.

Containers naturally induce a multiple knapsack problem: for each horizontal container
Cj of size wCj

× hCj
, we create a (one-dimensional) knapsack j of size hCj

. Furthermore,
we define the size b(i, j) of rectangle Ri w.r.t. knapsack j as hi if hi ≤ hCj and wi ≤ wCj .
Otherwise b(i, j) = +∞ (meaning that Ri does not fit in Cj). The construction for vertical
containers is symmetric. This multiple knapsack problem can be easily solved optimally
(hence packing all the rectangles) in PPT via dynamic programming.

Note that unlike [31], we do not use linear programming to pack horizontal rectangles,
which will be crucial when we extend our approach to the case with rotations.

4.1 Packing the small rectangles
It remains to pack the small rectangles S. We will pack them in the free space left by
containers inside [0,W ]× [0, OPT ′] plus an additional box BS of small height as the following
lemma states. By placing box BS on top of the remaining packed rectangles, the final height
of the solution increases only by ε ·OPT ′.

I Lemma 8. Assuming µh ≤ 1
31K2

F

, it is possible to pack in polynomial time all the rectangles
in S into the area [0,W ]× [0, OPT ′] not occupied by containers plus an additional box BS of
size W × εOPT ′.

Proof. We first extend the sides of the containers inside [0,W ] × [0, OPT ′] in order to
define a grid. This procedure partitions the free space in [0,W ]× [0, OPT ′] into a constant
number of rectangular regions (at most (2KF + 1)2 ≤ 5K2

F many) whose total area is at
least a(S) thanks to Lemma 7. Let Bsmall be the set of such rectangular regions with width
at least µwW and height at least µhOPT (notice that the total area of rectangular regions
not in Bsmall is at most 5K2

Fµwµh ·W · OPT ). We now use NFDH to pack a subset of S
into the regions in Bsmall. By standard properties of NFDH, since each region in Bsmall
has size at most W × OPT ′ and each item in S has width at most µwW and height at
most µhOPT , the total area of the unpacked rectangles from S can be bounded above by
5K2

F ·
(
µwµhWOPT + µhOPT ·W + µwW · OPT ′

)
≤ 15K2

Fµh · OPT ′ ·W . Therefore we
can pack the latter small rectangles with NFDH in an additional box BS of width W and
height µhOPT + 30K2

FµhOPT
′ ≤ ε ·OPT ′ provided that µh ≤ 1

31K2
F

. J

The (rather technical) details on how to choose f and k (and consequently the actual
values of µh, δw, and µw) will be discussed in the full version of this paper. We next
summarize the constraints that arise from the analysis:
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µw = εµh
12 and δw = εδh

12 (Lemma 1), µw ≤ γ δh
6KB(1+ε) (Lemma 5),

γ = εδh
2 (Lemma 2), µw ≤ γ

3KF
(Lemma 7),

6εk ≤ γ
6 (Lemma 3) µh ≤ ε

KF
(Lemma 7),

µh ≤ εδw
KB

(Lemma 4), µh ≤ 1
31K2

F

(Lemma 8)

It is not difficult to see that all the constraints are satisfied by choosing f(x) = (εx)C/(εx)

for a large enough constant C and k =
⌈
logε

(
γ
36
)⌉
. Finally we achieve the claimed result.

I Theorem 9. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing.

5 Extension to the case with rotations

In this section, we briefly explain the changes needed in the above algorithm for the case
with rotations.

We first observe that, by considering the rotation of rectangles as in the optimum solution,
Lemma 7 still applies (for a proper choice of the parameters, that can be guessed). Therefore
we can define a multiple knapsack instance, where knapsack sizes are defined as before. Some
extra care is needed to define the size b(i, j) of rectangle Ri into a container Cj of size
wCj × hCj . Assume Cj is horizontal, the other case being symmetric. If rectangle Ri fits in
Cj both rotated and non-rotated, then we set b(i, j) = min{wi, hi} (this dominates the size
occupied in the knapsack by the optimal rotation of Ri). If Ri fits in Cj only non-rotated
(resp., rotated), we set b(i, j) = hi (resp., b(i, j) = wi). Otherwise we set b(i, j) = +∞.

There is a final difficulty that we need to address: we can not say a priori whether a
rectangle is small (and therefore should be packed in the final stage). To circumvent this
difficulty, we define one extra knapsack k′ whose size is the total area in BOPT ′ not occupied
by the containers. The size b(i, k′) of Ri in this knapsack is the area a(Ri) = wi · hi of Ri
provided that Ri or its rotation by 90◦ is small w.r.t. the current choice of the parameters
(δh, µh, δw, µw). Otherwise b(i, k′) = +∞.

By construction, the above multiple knapsack instance admits a feasible solution that
packs all the rectangles. This immediately implies a packing of all the rectangles, excluding
the (small) ones in the extra knapsack. Those rectangles can be packed using NFDH as in
the proof of Lemma 8 (here however we must choose a rotation such that the considered
rectangle is small). Altogether we achieve:

I Theorem 10. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing with

rotations.

6 Conclusions

In this paper we obtained a PPT 4/3 + ε approximation for strip packing (with and without
rotations). Our approach refines and, in some sense, pushes to its limit the basic approach in
previous work by Nadiradze and Wiese [31]. Indeed, the rearrangement of rectangles inside
a box crucially exploits the fact that there are at most 2 tall rectangles packed on top of
each other in the optimal packing, hence requiring α ≥ 1/3. We believe that any further
improvement requires substantially new algorithmic ideas.

A PPT approximation scheme for strip packing is not excluded by the current inapprox-
imability results (essentially, only strong NP-hardness). Note that, like bin packing, strip
packing admits an asymptotic polynomial-time approximation scheme (APTAS), and bin
packing admits a PPT approximation scheme [22, 15]. It is an interesting open problem to
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find a PPT approximation scheme for this problem, or to prove some stronger hardness of
approximation result in PPT.
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Abstract
Goemans showed that any n points x1, . . . xn in d-dimensions satisfying `22 triangle inequalities
can be embedded into `1, with worst-case distortion at most

√
d. We consider an extension of

this theorem to the case when the points are approximately low-dimensional as opposed to ex-
actly low-dimensional, and prove the following analogous theorem, albeit with average distortion
guarantees: There exists an `22-to-`1 embedding with average distortion at most the stable rank,
sr(M), of the matrixM consisting of columns {xi−xj}i<j . Average distortion embedding suffices
for applications such as the Sparsest Cut problem. Our embedding gives an approximation
algorithm for the Sparsest Cut problem on low threshold-rank graphs, where earlier work was
inspired by Lasserre SDP hierarchy, and improves on a previous result of the first and third au-
thor [Deshpande and Venkat, In Proc. 17th APPROX, 2014]. Our ideas give a new perspective
on `22 metric, an alternate proof of Goemans’ theorem, and a simpler proof for average distortion√
d.
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1 Introduction

A finite metric space consists of a pair (X , d), where X is a finite set of points, and
d : X × X → R≥0 is a distance function on pairs of points in X . Finite metric spaces arise
naturally in combinatorial optimization (e.g., the `1 space in cut problems), and in practice
(e.g., edit-distance between strings over some alphabet Σ). Since the input space may not
be amenable to efficient optimization, or may not admit efficient algorithms, one looks for
embeddings from these input spaces to easier spaces, while minimizing the distortion incurred.
Given its importance, various aspects of such embeddings have been investigated such as
dimension, distortion, efficient algorithms, and hardness results (refer to surveys [10, 16, 14]
and references therein). In this paper, we provide better distortion guarantees for embedding
approximately low-dimensional points in the `22-metric into `1, and give applications to the
Sparsest Cut problem.

In the Sparsest Cut problem, we are given graphs C, D on the same vertex set V , with
|V | = n, called the cost and demand graphs, respectively. They are specified by non-negative
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edge weights cij , dij ≥ 0, for i < j ∈ [n] and the (non-uniform) sparsest cut problem,
henceforth referred to as Sparsest Cut, asks for a subset S ⊆ V that minimizes

Φ(S) :=
∑
i<j cij |IS(i)− IS(j)|∑
i<j dij |IS(i)− IS(j)| ,

where IS(i) is the indicator function giving 1, if i ∈ S, and 0, otherwise. We denote the
optimum by Φ∗ := minS⊆V Φ(S). When the demand graph is a complete graph on n vertices
with uniform edge weights, the problem is then commonly referred to as the Uniform
Sparsest Cut problem.

The best known (unconditional) approximation guarantee for the Uniform Sparsest
Cut problem is O(

√
logn), due to Arora, Rao and Vazirani [3] (henceforth referred to as

the ARV algorithm). Building on techniques in this work, Arora, Lee and Naor [2] give a
O(
√

logn log logn) algorithm for non-uniform Sparsest Cut. These results come from a
semi-definite programming (SDP) relaxation to produce solutions in the `2-squared metric
space, i.e., a set of vectors {xi}i∈V in some high dimensional space that satisfy triangle
inequality constraints on the squared distances in the following sense.

‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖
2
2 ∀ i, j, k ∈ [n].

Since the `1 metric lies in the non-negative cone of cut (semi-)metrics, ARV [3] and Arora-
Lee-Naor[2] round their solutions via low-distortion embeddings of the above `22 solution into
`1 metric. Embeddings with low average-distortion suffice for applications to the Sparsest
Cut problem.

Any n points satisfying `22 triangle inequalities make only acute angles among themselves,
and therefore must lie in Ω(logn) dimensions (Chapter 15, [1]). However, for low threshold-
rank graphs, or more generally, when the r-th smallest generalized eigenvalue of the cost
and demand graphs satisfies λr(C,D) � ΦSDP , the above SDP solution is known to be
approximately low-dimensional, that is, the span of its top r eigenvectors contains nearly all
of its total eigenmass (implicit in [9]). Moreover, it can be embedded into `1 using solutions
of higher-levels of the Lasserre SDP hierarchy to obtain a PTAS-like approximation guarantee
[9]. This motivates the quest for finding more efficient embeddings of low-dimensional or
approximately low-dimensional `22 metrics into `1.

Goemans (unpublished, appears in [15]) showed that if the points satisfying `22 triangle
inequalities lie in d dimensions, then they can be embedded into `2 (and hence into `1, since
there is an isometry from `2 ↪→ `1 [16]) with

√
d distortion.

I Theorem 1.1 (Goemans [15, Appendix B]). Let x1, x2, . . . , xn ∈ Rd be n points satisfying
`22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ f(xi) with distortion√
d, that is,

1√
d
‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖

2
2 , ∀ i, j ∈ V.

Comparison of Goemans and ARV

Since n points satisfying `22 triangle inequalities must lie in d = Ω(logn) dimensions (Chapter
15, [1]), the ARV algorithm [3] implies an `22 ↪→ `1 embedding with average distortion O(

√
d),

and Arora-Lee-Naor [2] improve it to Õ(
√
d) worst-case distortion. In the other direction,

is it possible to extend Theorem 1.1 to give ARV-like guarantees? Here are two immediate
ideas that come to mind.
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Combine Theorem 1.1 with a dimension reduction to O(logn) dimensions for `22 metrics,
similar to the Johnson-Lindenstrauss lemma for `2. Such a dimension reduction for
`22 that approximately preserves all pairwise `22 distances is ruled out by Magen and
Moharrami [15], although their proof does not rule out dimension reduction for average
distortion.
Extend Theorem 1.1 to work with approximate `22 triangle inequalities, and then combine it
with the Johnson-Lindenstrauss lemma. The Johnson-Lindenstrauss lemma, when applied
to points satisfying `22 triangle inequalities, preserves their `22 triangle inequalities only
approximately. That is, the points after the Johnson-Lindenstrauss random projection
satisfy

‖xi − xj‖22 + ‖xj − xk‖22 ≥ (1−O(ε)) ‖xi − xk‖22 ∀ i, j, k ∈ [n].

We note that a generalization of Theorem 1.1 that accommodates approximate `22 triangle
inequalities (in the additive sense not multiplicative as above) does hold, but its only
proof (due to Trevisan [personal communication]) that we are aware of uses the technical
core of the analysis of the ARV algorithm.

Here we seek a robust generalization of Goemans’ theorem that avoids the above caveats.
Our version of Goemans’ theorem uses average distortion instead of worst-case. It is robust
in the sense that it works with approximate dimension instead of the actual dimension.
Such a robust version opens up another possible approach to the general Sparsest Cut
problem: reduce the approximate dimension while preserving the pairwise distances on
average, and then apply the robust version of Goemans’ theorem. Moreover, our definition
of the approximate dimension is spectral, and our results can be easily compared to those
of Guruswami-Sinop [9] on Lasserre SDP hierarchies and Kwok et al. [13] on higher order
Cheeger inequalities (see Sections 1.1 and 1.2 for comparisons).

1.1 Our Results
We consider a robust version of Goemans’ theorem, when the points x1, x2, . . . , xn are only
approximately low-dimensional. We quantify this approximate dimension by the stable rank of
the difference matrix M ∈ Rd×(n

2) having columns {xi−xj}i<j . Stable rank of the difference
matrix is a natural choice because (a) stable rank is a continuous proxy for rank or dimension
arising naturally in many applications [5, 17], (b) the difference matrix M is invariant under
any shift of origin, and (c) the difference matrix of the SDP solution for the Sparsest Cut
problem on low threshold-rank graphs indeed has low stable rank (implicit in [9]).

I Definition 1.2 (Stable Rank). Given x1, . . . , xn ∈ Rd, let M ∈ Rd×(n
2) be the matrix with

columns {xi−xj}i<j . The stable rank of the points is defined as the stable rank of M , given
by sr (M) := ‖M‖2F / ‖M‖

2
2, where ‖M‖F and ‖M‖2 are the Frobenius and spectral norm

of M respectively.

Note that sr (M) ≤ rank (M) ≤ d, when the points x1, x2, . . . , xn ∈ Rd. Our robust version
of Goemans’ theorem is as follows.

I Theorem 1.3 (Embedding almost low-dimensional vectors). Let x1, x2, . . . , xn ∈ Rd be n
points satisfying `22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ h(xi)
with average distortion bounded by the stable rank of M , that is,

‖h(xi)− h(xj)‖2 ≤ ‖xi − xj‖
2
2 , ∀i, j ∈ V,

FSTTCS 2016



10:4 Embedding Approximately Low-Dimensional `2
2 Metrics Into `1

and

1
sr (M)

∑
i<j

‖xi − xj‖22 ≤
∑
i<j

‖h(xi)− h(xj)‖2 .

We note that the above theorem is not a strict generalization of Goemans’ theorem to
the approximate dimension case. To obtain a truly robust version of Goemans’ theorem
quantitatively, one might ask if the dependence on sr (M) in the above theorem can be
improved from sr (M) to

√
sr (M).

Our proof technique gives a new perspective on `22 metric, an alternate proof of Goemans’
theorem, and a simpler algorithmic proof for average distortion

√
d based on a squared-length

distribution (see Section 4, and the remark following the proof of Theorem 4.1). Also,
the result can be quantitatively compared to guarantees given by higher-order Cheeger
inequalities [13]; we discuss this in more detail at the end of this section. While most known
embeddings from `22 to `1 are Frechet embeddings, our embedding is projective (similar in
spirit to [9, 7]).

Theorem 1.3 immediately implies an sr (M)-approximation to the Uniform Sparsest
Cut problem. In fact, with a slight modification, we obtain a similar result for the general
Sparsest Cut problem (see theorem below).

I Theorem 1.4. There is an r/δ-approximation algorithm for Sparsest Cut instances
C,D satisfying λr(C,D) ≥ ΦSDP /(1 − δ), where λr(C,D) is the r-th smallest generalized
eigenvalue (see Section 2) of the Laplacians of the cost and demand graphs.

The precondition on λr(C,D) is the same as in previous works [9, 7], and we improve the
O(r/δ2)-approximation of [7] by a factor of 1/δ. Our proof follows from the robust version
of Goemans’ embedding into `2 whereas these previous works gave embeddings directly into
`1 by either using higher levels of Lasserre explicitly [9] or using only the basic SDP solution
but inspired by the properties of Lasserre vectors [7]. We can infer the following corollary
almost immediately:

I Corollary 1.5. For any ε > 0 and a d-regular cost graph C satisfying λr(C) ≥ εd, there is
a max

{
O(r), 1√

ε

}
approximation to Uniform Sparsest Cut.

Proof. The implicit demand graph here is Kn, the complete graph on n vertices, and thus
the generalized eigenvalues are λr(C,Kn) = λr/n. Consider two cases: If ΦSDP ≤ εd/100n
then λr/n ≥ 100ΦSDP yielding an O(r) approximation by Theorem 1.4. Otherwise, if
ΦSDP ≥ εd/100n, then running a basic Cheeger rounding and analysis on (one co-ordinate
of) the SDP solution would itself give a cut of sparsity O(d

√
ε/n) ≤ ΦSDP /

√
ε. Thus, using

the minimum of these gives a cut within a factor max {O(r), 1/
√
ε} of the optimum. J

1.2 Related work
We recall that the best known upper bound for the worst-case distortion of embedding
`22 ↪→ `1 is O(

√
logn · log logn) [3, 2], while the best known lower bound is (logn)Ω(1) for

worst-case distortion [6], and exp(Ω(
√

log logn)) for average distortion [11]. Guarantees to
Sparsest Cut on low threshold-rank graphs were obtained using higher levels of the Lasserre
hierarchy for SDPs [4, 9]. In contrast, a previous work of the first and third author [7] showed
weaker guarantees, but using just the basic SDP relaxation. Oveis Gharan and Trevisan [8]
also give a rounding algorithm for the basic SDP relaxation on low-threshold rank graphs,
but require a stricter pre-condition on the eigenvalues (λr � log2.5 r · Φ(G)), and leverage it
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to give a stronger O(
√

log r)-approximation guarantee. Their improvement comes from a
new structure theorem on the SDP solutions of low threshold-rank graphs being clustered,
and using the techniques in ARV for analysis.

Kwok et al. [13] showed that a better analysis of Cheeger’s inequality gives a O(r ·
√
d/λr)

approximation to Uniform Sparsest Cut on d-regular graphs. In particular, when
λr(G) ≥ εd, this gives a O(r/

√
ε) approximation for the Uniform Sparsest Cut problem.

Note that Corollary 1.5 gives a slightly better approximation in this setting.
Further, while the Kwok et al. result is tight with respect to the spectral solution, our

approach allows for an improvement in terms of the dependence on r to
√
r, since it uses the

SDP relaxation rather than a spectral solution.

2 Preliminaries and Notation

Sets, Matrices, Vectors

We use [n] = {1, . . . , n}. For a matrix X ∈ Rd×d, we say X � 0 or X is positive-semidefinite
(psd) if yTXy ≥ 0 for all y ∈ Rd. The Gram-matrix of a matrix M ∈ Rd1×d2 is the matrix
MTM , which is psd.

Every matrix M has a singular value decomposition M =
∑
i σiuiv

T
i = UDV T . Here,

the matrices U, V are Unitary, and D is the diagonal matrix of the singular values σ1 ≥
σ2 ≥ . . . ≥ σn, in non-increasing order. When not clear from context, we denote the singular
values of M by σi(M).

The Frobenius norm of M is given by ‖M‖F :=
√∑

i σ
2
i (M) =

√∑
i∈[d1],j∈[d2]M(i, j)2.

In our analysis, we will sometimes view a matrix M as a collection of its columns viewed
as vectors; M = (mj)j∈[d2]. In this case, ‖M‖2F =

∑
j ‖mj‖22. The spectral norm of M is

‖M‖2 := σ1.

Generalized Eigenvalues

Given two symmetric matrices X,Y ∈ Rd × d with Y � 0, and for i ≤ rank(Y ), we define
their i-th smallest generalized eigenvalue as the following:

λi = max
rank(Z)≤i−1

min
w⊥Z;w 6=0

wTXw

wTY w

Rank and Stable Rank

The rank of the matrix M (denoted by rank (M)) is the number of non-zero singular
values. Recall that the stable rank of the matrix M , sr (M) = ‖M‖2

F

σ1(M)2 . Note that sr (M) =∑rank(M)
i=1 σ2

i (M)/σ2
1(M) ≤ rank (M).

Metric spaces and embeddings

For our purposes, a (semi-)metric space (X , d) consists of a finite set of points X =
{x1, x2, . . . , xn} and a distance function d : X × X 7→ R≥0 satisfying the following three
conditions:
1. d(x, x) = 0, ∀x ∈ X .
2. d(x, y) = d(y, x).
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z).

FSTTCS 2016
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An embedding from a metric space (X , d) to a metric space (Y, d′) is a mapping f : X → Y.
The embedding is called a contraction, if

d′(f(xi), f(xj)) ≤ d(xi, xj), ∀xi, xj ∈ X .

For convenience, we will only deal with contractive mappings in this paper. A contractive
mapping is said to have (worst-case) distortion ∆, if

sup
i,j

d(xi, xj)
d′(f(xi), f(xj))

≤ ∆.

It is said to have average distortion β, if∑
i<j d(xi, xj)∑

i<j d(f(xi), f(xj))
≤ β.

Note that a mapping with worst-case distortion ∆ also has average distortion ∆, but not
necessarily vice-versa.

The `2
2 space

A set of points {x1, x2, . . . , xn} ∈ Rd are said to satisfy `22 triangle inequality constraints, or
said to be in `22 space, if it holds that

‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖
2
2 ∀i, j, k ∈ [n].

These satisfy the triangle inequalities on the squares of their `2 distances. The corresponding
metric space is (X , d), where d(i, j) := ‖xi − xj‖22.

Graphs and Laplacians

All graphs will be defined on a vertex set V of size n. The vertices will usually be referred
to by indices i, j, k, l ∈ [n]. Given a graph with weights on pairs W :

(
V
2
)
7→ R+, the graph

Laplacian matrix is defined as:

LW (i, j) :=
{
−W (i, j) if i 6= j∑
kW (i, k) if i = j.

Note that LW � 0. We will denote the eigenvalues of (the Laplacian of) G by 0 = λ1 ≤
λ2 . . . ≤ λn, in increasing order.

Sparsest Cut SDP

The SDP we use for Sparsest Cut on the vertex set V with costs and demands cij , dkl ≥ 0
and corresponding cost and demand graphs C :

(
V
2
)
7→ R+ and D :

(
V
2
)
7→ R+, is effectively

the following:

SDP: ΦSDP := min
∑
i<j

cij ‖xi − xj‖22

subject to
{
‖xi − xj‖22 + ‖xj − xk‖22 ≥ ‖xi − xk‖

2
2 ∀i, j, k ∈ [n].∑

k<l dkl ‖xk − xl‖
2
2 = 1.

Note that the solution to the above SDP is in `22 space.
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`1 embeddings and cuts

Since `1 metrics are exactly the cone of cut-metrics, it follows from the previous discussion
on embeddings, that producing an embedding of the SDP solutions X = {x1, . . . .xn} in
`22 space to `1 space with distortion α would give an α-approximation to Sparsest Cut.
Producing one with average distortion α would give an α-approximation to Uniform
Sparsest Cut. Furthermore, since `2 embeds isometrically (distortion 1) into `1, it suffices
to show embeddings into `2 for the above purposes.

Key Lemma

The following lemma about `22 spaces was observed by Deshpande and Venkat [7]. We will
reuse this in the rest of the paper.

I Lemma 2.1 ([7, Proposition 1.3]). Let x1, x2, . . . , xn be n points satisfying `22 triangle
inequalities. Then〈

xi − xj ,
xk − xl
‖xk − xl‖2

〉2
≤ |〈xi − xj , xk − xl〉| ≤ ‖xi − xj‖22 , ∀i, j, k, l ∈ V.

An immediate consequence of this lemma is that we can show that a large class of naturally
defined `22 ↪→ `2 embeddings are contractions.

I Lemma 2.2 (Contraction). Let x1, x2, . . . , xn be n points satisfying `22 triangle inequalities.
For any probability distribution {pkl}k<l, let P be the symmetric psd matrix defined as
P :=

∑
k<l pkl (xk − xl)(xk − xl)T . Then the `22 ↪→ `2 embedding given by xi 7→ P 1/2xi is a

contraction, that is,∥∥∥P 1/2(xi − xj)
∥∥∥

2
≤ ‖xi − xj‖22 , ∀i, j ∈ V.

Proof. The following holds for all i, j:∥∥∥P 1/2(xi − xj)
∥∥∥

2
=
(
(xi − xj)TP (xi − xj)

)1/2
=
(∑
k<l

pkl 〈xi − xj , xk − xl〉2
)1/2

≤

(∑
k<l

pkl ‖xi − xj‖42

)1/2

[By Lemma 2.1]

= ‖xi − xj‖22 . [Since
∑
k<l

pkl = 1]

J

3 Embedding almost low-dimensional vectors

We now prove the robust version of Goemans’ theorem in terms of stable rank. We give two
proofs, and show an application to round solutions to Sparsest Cut on low-threshold-rank
graphs. As before, given a set of points x1, . . . , xn in Rd, define their difference matrix
M ∈ Rd×(n

2) as the matrix with columns as {xi − xj}i<j .

FSTTCS 2016
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Proof of Theorem 1.3. Let u and v be the top left and right singular vector of M , respect-
ively, and σ1 ≤ σ2 ≤ . . . ≤ σd be the singular values of M . Then Mv = σ1u, or in other
words, σ1u =

∑
k<l vkl(xk − xl). Now consider the embedding xi 7→ h(xi) = P 1/2xi, where

the probability distribution pkl ∝ |vkl|, that is

P =
∑
k<l

|vkl|
‖v‖1

(xk − xl)(xk − xl)T .

This embedding is a contraction by Lemma 2.2. Now let’s bound its average distortion.∑
i<j

‖h(xi)− h(xj)‖2 =
∑
i<j

∥∥∥P 1/2(xi − xj)
∥∥∥

2

=
∑
i<j

(
(xi − xj)TP (xi − xj)

)1/2
=
∑
i<j

(∑
k<l

|vkl|
‖v‖1

〈xi − xj , xk − xl〉2
)1/2

≥
∑
i<j

∑
k<l

|vkl|
‖v‖1

|〈xi − xj , xk − xl〉| [By Jensen’s inequality]

≥
∑
i<j

1
‖v‖1

∣∣∣∣∣
〈
xi − xj ,

∑
k<l

vkl(xk − xl)
〉∣∣∣∣∣ [By triangle inequality]

= 1
‖v‖1

∑
i<j

|〈xi − xj , σ1u〉|

= 1
‖v‖1

∑
i<j

σ2
1 |vij |

= σ2
1 =
‖M‖2F
sr (M)

= 1
sr (M)

∑
i<j

‖xi − xj‖22 .

J

3.1 An alternative proof
We can alternatively get the same guarantee as in Theorem thm:stable-rank, by giving a
one-dimensional `2 embedding (and hence also `1 embedding without any extra effort) along
the top singular vector of the difference matrix M . This gives an interesting “spectral”
algorithm that uses spectral information about the point set, akin to spectral algorithms in
graphs that use the spectrum of the graph Laplacian.

I Theorem 3.1. Let x1, x2, . . . , xn ∈ Rd be n points satisfying `22 triangle inequalities with
M as their difference matrix. Let u ∈ Rd and v ∈ R(n

2) be its top left and right singular
vectors, respectively. Then xi 7→ σ1

‖v‖1
〈xi, u〉 is an `22 ↪→ `2 embedding with average distortion

bounded by the stable rank of M .

Proof. We have Mv = σ1u, or equivalently, σ1u =
∑
k<l vkl(xk − xl). Our embedding is a

contraction since
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σ1

‖v‖1
|〈xi − xj , u〉| =

1
‖v‖1

∣∣∣∣∣
〈
xi − xj ,

∑
k<l

vkl(xk − xl)
〉∣∣∣∣∣

≤ 1
‖v‖1

∑
k<l

|vkl| |〈xi − xj , xk − xl〉|

≤ 1
‖v‖1

∑
k<l

|vkl| ‖xi − xj‖22 [By Lemma 2.1]

= ‖xi − xj‖22 .

Now let’s bound the average distortion.∑
i<j

σ1

‖v‖1
|〈xi − xj , u〉| =

∑
i<j

σ1

‖v‖1
|σ1vij | [Since uTM = σ1v

T ]

= σ2
1 =
‖M‖2F
sr (M)

= 1
sr (M)

∑
i<j

‖xi − xj‖22 .

J

3.2 Application to Sparsest Cut on low-threshold rank graphs
We first state a property of SDP solutions on low threshold-rank graphs, proved by Guruswami
and Sinop [9] using the Von-Neumann inequality.

I Proposition 3.2 (Von-Neumann inequality [9, Theorem 3.3]). Let 0 ≤ λ1 ≤ . . . ≤ λm be the
generalized eigenvalues of the Laplacian matrices of the cost and demand graphs. Let σ1 ≥
σ2 ≥ . . . ≥ σn ≥ 0 be the singular vectors of the matrix M with columns {

√
dij(xi − xj)}i<j .

Then∑
t≥r+1 σ

2
j∑n

t=1 σ
2
j

≤ ΦSDP
λr+1

.

In particular, note that on graphs where λr ≥ ΦSDP /(1 − δ),
∑
i≤r σ

2
i ≥ δ

∑
i σ

2
i . This

implies that sr (M) =
∑
i σ

2
i /σ

2
1 ≤ r ·

∑
i σ

2
i /
∑
i≤r σ

2
i ≤ r/δ.

We can now modify the proof of Theorem 3.1 to prove Theorem 1.4.

Proof of Theorem 1.4. Let x1, . . . , xn be the SDP solution on given instance C,D. We now
let M be the matrix with columns {

√
dkl(xk−xl)}k<l, and u, v, σ1 to be the top left singular

vector, top right singular vector, and the maximum singular value respectively of M . By the
preceding remark, sr (M) ≤ r/δ. The mapping we use is as follows

xi 7→
1∑

kl

√
dklvkl

〈xi, u〉 .

The proofs to show contraction and bound the distortion follow exactly as in the proof of
Theorem 3.1. Note that while looking at the distortion, we need to lower bound the quantity∑

ij dij ‖g(xi)− g(xj)‖2. J

As in Deshpande and Venkat [7], the above algorithm is a fixed polynomial time algorithm
and does not grow with the threshold rank unlike the algorithm of Guruswami and Sinop [9]
where they use r-levels of the Lasserre SDP hierarchy to secure the guarantee. Furthermore,
the above analysis improves the guarantee of Deshpande and Venkat [7] by a factor of O(1/δ).

FSTTCS 2016
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4 Embedding low-dimensional vectors à la Goemans

In this section, we first view the proof of Goemans’ theorem in the framework of Lemma 2.2
by giving a probability distribution using the minimum volume enclosing elliposid of the
difference vectors (xi − xj)’s. We then give a simpler proof, albeit for the average distortion
case, based on a probability distribution arising from a squared-length distribution. Via
a well-known duality statement, this technique recovers Goemans’ theorem for worst-case
distortion for embeddings into `1, although non-constructively.

4.1 An alternate proof of Goemans’ theorem
Here is an adaptation of the proof from [15] re-stated in our framework. The following proof
is arguably simpler and more straightforward as it works with the difference vectors instead
of the original vectors and their negations.

I Theorem 1.1 (restated – Goemans [15, Appendix B])). Let x1, x2, . . . , xn ∈ Rd be n points
satisfying `22 triangle inequalities. Then there exists an `22 ↪→ `2 embedding xi 7→ f(xi) with
distortion

√
d, that is,

1√
d
‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖

2
2 , ∀ i, j ∈ V.

Proof. Consider all the difference vectors (xi−xj)’s, and let their minimum volume enclosing
ellipsoid be given by E := {x : xTQx ≤ 1}, for some psd matrix Q ∈ Rd×d. By John’s
theorem (or Lagrangian duality for the corresponding convex program), we have Q−1 =∑
k<l αkl (xk−xl)(xk−xl)T , with all αkl ≥ 0. Moreover, αkl 6= 0 iff (xk−xl)TQ(xk−xl) = 1.

Notice that d = Tr (Id) = Tr
(
Q1/2Q−1Q1/2) =

∑
k<l αkl. We define the embedding as

f(xi) := 1√
d
Q−1/2xi.

This embedding is a contraction by Lemma 2.2. We now bound the distortion:

‖f(xi)− f(xj)‖2 = 1√
d

∥∥∥Q−1/2(xi − xj)
∥∥∥

2

≥ 1√
d

‖xi − xj‖22∥∥Q1/2(xi − xj)
∥∥

2
[By Cauchy-Schwarz inequality]

≥ 1√
d
‖xi − xj‖22 . [Since (xi − xj)TQ(xi − xj) ≤ 1, for all i, j]

J

4.2 A simpler proof for average distortion embedding
We now give an average distortion version of Goemans’ theorem using a simple squared-length
distribution on the difference vectors (xi − xj)’s in the Lemma 2.2. Interestingly, this can be
modified to weighted averages and gives yet another proof of Goemans’ worst-case distortion
result, although non-constructively.

I Theorem 4.1. Let x1, x2, . . . , xn ∈ Rd be points satisfying `22 triangle inequalities. Then
there exists an `22-to-`2 embedding xi 7→ g(xi) with average distortion

√
d, that is,

‖g(xi)− g(xj)‖2 ≤ ‖xi − xj‖
2
2 , for all i, j,

and 1√
d

∑
i<j

‖xi − xj‖22 ≤
∑
i<j

‖g(xi)− g(xj)‖2
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Proof. Let {pkl}k<l define a probability distribution with pkl ∝ ‖xk − xl‖22. Given this
distribution, let P be the symmetric psd matrix defined as P :=

∑
k<l pkl (xk−xl)(xk−xl)T ∈

Rd×d. Consider the embedding that maps xi to g(xi) := P 1/2xi. The embedding is a
contraction by Lemma 2.2.

Now let’s bound the average distortion. First, note that:

‖g(xi)− g(xj)‖2 =
∥∥∥P 1/2(xi − xj)

∥∥∥
2
≥

‖xi − xj‖22∥∥P−1/2(xi − xj)
∥∥

2
,

where the inequality follows from the Cauchy-Schwarz inequality.
Summing over all pairs i, j and using the definition of pij we have

∑
i<j

‖g(xi)− g(xj)‖2 ≥
(∑
k<l

‖xk − xl‖22

) ∑
i<j

pij√
(xi − xj)TP−1(xi − xj)

≥

(∑
k<l

‖xk − xl‖22

)∑
i<j

pij (xi − xj)TP−1(xi − xj)

−1/2

[by Jensen’s inequality]

=
(∑
k<l

‖xk − xl‖22

) (
Tr
(
P−1/2PP−1/2

)−1/2
)

=
(∑
k<l

‖xk − xl‖22

)
Tr (Id)−1/2

= 1√
d

∑
i<j

‖xi − xj‖22 .

We note that if P is not invertible then the same proof can be carried out using pseudo-inverse
of P instead. J

I Remark. Although an enclosing ellipsoid of approximately optimal volume can be computed
by a convex program [12], the proof of Theorem 1.1 requires a stronger, spectral approximation
to the quadratic form of the minimum enclosing ellipsoid. We are not aware of any efficient
algorithms for this. On the other hand, sampling (i, j) with probability ∝ ‖xi − xj‖22 can
be done in O(nd) time as follows. First we compute the mean µ =

∑n
i=1 xi/n, and all the

marginals for (i, .) using

n∑
j=1
‖xj − xi‖22 =

n∑
j=1
‖xj − µ‖22 + n ‖µ− xi‖22 .

Now we can first sample i from the marginals, and then sample j with probability∝ ‖xi − xj‖22.
This takes O(nd) time in total.

Theorem 4.1 immediately gives an efficient
√
d approximation algorithm for Uniform

Sparsest Cut when the SDP optimum solution resides in Rd. Furthermore, as we point
out next, the same proof can be tweaked to yield a similar result for the general Sparsest
Cut problem.

I Theorem 4.2 (Sparsest Cut SDP rounding in dimension d). A Sparsest Cut instance
C,D with SDP optimum solution in Rd has an integrality gap of at most

√
d.

FSTTCS 2016
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Proof. Let x1, . . . xn be the optimum solution in Rd to the Sparsest Cut SDP. We slightly
modify the embedding given in the proof of Theorem 4.1, by choosing the pij ’s based
on the demand graph D. Let P =

∑
k<l pkl (xk − xl)(xk − xl)T ∈ Rd×d, where pkl’s

define a probability distribution with pkl ∝ dkl ‖xk − xl‖22. We define the embedding as
xi 7→ g(xi) = P 1/2xi. Lemma 2.2 shows that it is a contraction. We now need to show∑
i<j dij ‖g(xi)− g(xj)‖2 ≥

1√
d

∑
i<j dij ‖xi − xj‖

2
2. It is easy to check that the same proof

goes through without any major changes. J

By a well-known duality (cf. [16, Proposition 15.5.2 and Exercise 4]), Theorem 4.2 also
implies Goemans’ worst-case distortion result (Theorem 1.1), although non-constructively.

Acknowledgements. We thank Luca Trevisan for helpful discussions and suggestions,
in particular, for bringing to our attention that Goemans’ Theorem was true even with
approximate triangle inequalities.
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Abstract
Relational properties arise in many settings: relating two versions of a program that use dif-
ferent data representations, noninterference properties for security, etc. The main ingredient of
relational verification, relating aligned pairs of intermediate steps, has been used in numerous
guises, but existing relational program logics are narrow in scope. This paper introduces a logic
based on novel syntax that weaves together product programs to express alignment of control
flow points at which relational formulas are asserted. Correctness judgments feature hypotheses
with relational specifications, discharged by a rule for the linking of procedure implementations.
The logic supports reasoning about program-pairs containing both similar and dissimilar control
and data structures. Reasoning about dynamically allocated objects is supported by a frame rule
based on frame conditions amenable to SMT provers. We prove soundness and sketch how the
logic can be used for data abstraction, loop optimizations, and secure information flow.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Relational Hoare logic, program equivalence, product programs, frame
conditions, region logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.11

1 Introduction

Relational properties are ubiquitous. Compiler optimizations, changes of data representation,
and refactoring involve two different programs. Non-interference (secure information flow)
is a non-functional property of a single program; it says the program preserves a “low
indistinguishability” relation [44]. Many recent works deal with one or more of these
applications, using relational logic and/or some form of product construction that reduces
the problem to partial correctness, though mostly for simple imperative programs. This
paper advances extant work by providing a relational logic for local reasoning about heap
data structures and programs with procedures.

To set the stage, first consider the two simple imperative programs:

C =̂ x := 1; while y > 0 do x := x ∗ y; y := y − 1 od

C ′ =̂ x := 1; y := y − 1; while y ≥ 0 do x := x ∗ y + x; y := y − 1 od
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Both C and C ′ change x to be the factorial of the initial value of y, or to 1 if y is initially
negative. For a context where y is known to be positive and its final value is not used, we
could reason that they are interchangeable by showing both

C : y = z ∧ y ≥ 0 ; x = z! and C ′ : y = z ∧ y ≥ 0 ; x = z! (1)

This is our notation for partial correctness judgments, with evident pre- and postconditions,
for C and C ′. It is not always easy to express and prove functional correctness, which
motivates a less well developed approach to showing interchangeability of the examples. The
two programs have a relational property which we write as

(C|C ′) : B(y ≥ 0) ∧ y =̈ y ≈> x =̈ x (2)

This relational correctness judgment says that a pair of terminating executions of C and C ′,
from a pair of states which both satisfy y ≥ 0 and which agree on the value of y, yields a
pair of final states that agree on the value of x. The relational formula x =̈ x says that the
value of x in the left state is the same as its value in the right state.

Property (2) is a consequence of functional correctness (1), but there is a direct way to
prove it. Any pair of runs, from states that agree on y, can be aligned in such a way that
both x =̈ x and y =̈ y + 1 hold at the aligned pairs of intermediate states. The alignment is
almost but not quite step by step, owing to the additional assignment in C ′. The relational
property is more complicated than partial correctness, in that it involves pairs of runs. On
the other hand the requisite intermediate assertions are much simpler; they do not involve !
which is recursively defined. Prior work showed such assertions are amenable to automated
inference (see Section 7).

Despite the ubiquity of relational properties and recent logic-based or product-based
approaches to reasoning with them (see Section 7), simple heap-manipulating examples like
the following remain out of reach:

C ′′ =̂ xp := new Int(1); while y > 0 do xp.set(xp.get() ∗ y); y := y − 1 od; x := xp.get()

This Java-like program uses get/set procedures acting on an object that stores an integer
value, and (C|C ′′) satisfies the same relational specification as (2). This code poses significant
new challenges. It is not amenable to product reductions that rely on renaming of identifiers
to encode two states as a single state: encoding of two heaps in one can be done, but at
the cost of significant complexity [35] or exposing an underlying heap model below the level
of abstraction of the programming language. Code like C ′′ also needs to be linked with
implementations of the procedures it calls. For reasoning about two versions of a module or
library, relational hypotheses are needed, and calls need to be aligned to enable use of such
hypotheses.

Floyd [22] articulates the fundamental method of inductive assertions for partial correct-
ness: establish that certain conditions hold at certain intermediate steps of computation,
designating those conditions/steps by associating formulas with control flow points. For
relational reasoning, pairs of steps need to be aligned and it is again natural to designate
those in terms of points in control flow. Alignment of steps has appeared in many guises in
prior work, often implicit in simulation proofs but explicit in a few works [47, 8, 28].

First contribution: In this paper we embody the alignment principle in a formal system
at the level of abstraction of the programming language – as Hoare logic does for the
inductive assertion method – with sufficient generality to encompass many uses of relational
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properties for programs including procedures and dynamically allocated mutable objects.
Our logic (Section 6) manifests the reasoning principle directly, in structured syntax. It also
embodies other reasoning principles, such as frame rules, case analysis, and hypothetical
specifications for procedures. The rules encompass relations between both similarly- and
differently-structured programs, and handle partially and fully aligned iterations. This
achievement brings together ideas from many recent works (Section 7), together with two
ingredients we highlight as contributions in their own right.

Second contribution: Our relational assertion language (Section 4) can describe agreement
between unbounded pointer structures, allowing for differences in object allocation, as is
needed to specify noninterference [4] and for simulation relations [3] in languages like Java
and ML where references are abstract. Such agreements are expressed without the need
for recursively defined predicates, and the assertion language has a direct translation to
SMT-friendly encodings of the heap. (For lack of space we do not dwell on such encodings in
this paper, which has a foundational focus, but see [40, 7].)

Third contribution: We introduce a novel form of “biprogram” (Section 5) that makes
explicit the reasoner’s choice of alignments. A biprogram run models an aligned pair of
executions of the underlying programs. The semantics of biprograms involves a number of
subtleties: To provide a foundation for extending the logic with encapsulation (based on [5]),
we need to use small-step semantics – which makes it difficult to prove soundness of linking,
even in the unary case [5]. For this to work we need to keep the semantics deterministic and
to deal with semantics of hypotheses in judgments.

Section 2 provides background and Section 3 is an overview of the logic using examples. We
have chosen to use the available space to explain fundamental intuitions. An accompanying
technical report includes worked proofs of the examples, additional examples like a loop
tiling transformation, details of semantics, and the soundness theorem.

2 Background: synopsis of region logic

For reasoning about the heap, separation logic is very effective, with modal operators that
implicitly describe heap regions. But for relations on unbounded heap structures at the
Java/ML level of abstraction we need explicit means to refer to heap regions, as in the
dependency logic of Amtoft et al. [2]. Our relational logic is based on an underlying unary
logic dubbed “region logic” (RL), developed in a series of papers [10, 5, 7] to which we refer
for rationale and omitted details. RL is a Hoare logic augmented with some side conditions
(first order verification conditions) which facilitate local reasoning about frame conditions [10]
in the manner of dynamic frames [27, 31]. In the logic such reasoning hinges on a frame rule.
In a verifier, framing can be done by the VC-generator, optionally guided by annotation [40].
Stateful frame conditions also support an approach to encapsulation that validates a second
order frame rule (at the cost of needing to use small-step semantics) [5]. Read effects enable
the use of pure method calls in assertions and in frame conditions [7] and are useful for
proving some equivalences, like commuting assignments, that hold in virtue of disjointness of
effects [15].

The logic is formalized for imperative programs with first order procedures and dynamically
allocated mutable objects (records), see Fig. 1. As in Java and ML, references are distinct
from integers; they can be tested for equality but there is no pointer arithmetic. Typing

FSTTCS 2016



11:4 Relational Logic with Framing and Hypotheses

m ∈ P rocName x, y, r ∈ V arName f, g ∈ F ieldName K ∈ DeclaredClassNames

(Types) T ::= int | bool | rgn | K
(Program Expr.) E ::= x | c | null | E ⊕ E where c is in Z and ⊕ in {=, +,−, ∗,≥,∧,¬, . . .}
(Region Expr.) G ::= x | ∅ | {E} | G‘f | G⊗G where ⊗ is in {∪,∩, \}
(Expressions) F ::= E | G
(Atomic comm.) A ::= skip | m() | x := F | x := new K | x := x.f | x.f := x

(Commands) C ::= A | let m = C in C | if E then C else C | while E do C | C ; C

(Biprograms) CC ::= (C|C) | bAc | let m = (C|C) in CC | CC ; CC

| if E|E then CC else CC | while E|E • P|P do CC

Figure 1 Programs and biprograms. Assume each class type K has a declared list of fields, f : T .
Biprograms are explained in Section 3.

of programs is standard. In specifications we use ghost variables and fields of type rgn. A
region is a set of object references, which may include the improper null reference.

A specification P ; Q [ε] is comprised of precondition P , postcondition Q, and frame
condition ε. Frame conditions include both read and write effects:

ε ::= rdx | rdG‘f | wr x | wrG‘f | ε, ε | (empty)

The form rdG‘f means the program may read locations o.f where o is a reference in the
region denoted by expression G. We write rw x to abbreviate the composite effect rdx,wr x,
and omit repeated tags: rdx, y abbreviates rdx, rd y. Predicate formulas P include standard
first order logic with equality, region subset (G ⊆ G), and the “points-to” relation x.f = E,
which says x is non-null and the value of field f equals E. A correctness judgment has
the form Φ ` C : P ; Q [ε] where the hypothesis context Φ maps procedure names to
specifications. In C there may be environment calls to procedures bound by let inside C,
and also context calls to procedures in Φ. The form G‘f is termed an image expression.
For an example of image expressions, consider this command which sums the elements of a
singly-linked null-terminated list, ignoring nodes for which a deletion flag, del, has been set.

C1 =̂ s := 0; while p 6= null do if ¬p.del then s := s+ p.val fi; p := p.nxt od

For its specification we use ghost variable r : rgn to contain the nodes. Its being closed under
nxt is expressed by r‘nxt ⊆ r in this specification:

p ∈ r ∧ r‘nxt ⊆ r ; s = sum(listnd(old(p))) [rw s, p, rd r, r‘val, r‘nxt, r‘del]

The r-value of the image expression r‘nxt is the set of values of nxt fields of the objects in r.
In frame conditions, expressions are used for their l-values. In this case, the frame condition
uses image expressions to say that for any object o in r, locations o.val, o.nxt, o.del may be
read. The frame condition also says that variables s and p may be both read and written.
Let function listnd give the mathematical list of non-deleted values.

Some proof rules in RL have side conditions which are first order formulas on one or two
states. One kind of side condition, dubbed the “frames judgment”, delimits the part of state
on which a formula depends (its read effect). RL’s use of stateful frame conditions provides
for a useful frame rule, and even second order frame rule [37, 5], but there is a price to be paid.
Frame conditions involving state dependent region expressions are themselves susceptible
to interference by commands. That necessitates side conditions, termed “immunity” and
“read-framed”, in the proof rules for sequence and iteration [5, 7]. The frame rule allows
to infer from Φ ` C : P ; Q [ε] the conclusion Φ ` C : P ∧ R ; Q ∧ R [ε] provided that
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R is framed by read effects η (written η frm R) for locations disjoint from those writable
according to ε (written η ·/. ε).

In keeping with our goal to develop a comprehensive deductive system, our unary and
relational logics include a rule for discharging hypotheses, expressed in terms of the linking
construct. Here is the special case of a single non-recursive procedure.

Link
m : R; S [η] ` C : P ; Q [ε] ` B : R; S [η]

` let m=B in C : P ; Q [ε]

3 Overview of the relational logic

This section sketches highlights of relational reasoning about a number of illustrative examples,
introducing features of the logic incrementally. Some details are glossed over.

We write (C|C ′) : Q ≈> R to express that a pair of programs C,C ′ satisfies the relational
contract with precondition Q and postcondition R, leaving aside frame conditions for now.
The judgment constrains executions of C and C ′ from pairs of states related by Q. (For
the grammar of relational formulas, see (7) in Section 4.) It says neither execution faults
(e.g., due to null dereference), and if both terminate then the final states are related by R.
Moreover no context procedure is called outside its precondition. (We call this property the
∀∀ form, for contrast with refinement properties of ∀∃ form.)

Assume f, g are pure functions. The programs

C0 =̂ x := f(z); y := g(z) C ′0 =̂ y := g(z);x := f(z)

are equivalent. Focusing on relevant variables, the equivalence can be specified as

(C0 | C ′0) : z =̈ z ≈> x =̈ x ∧ y =̈ y (3)

which can be proved as follows. Both C0 and C ′0 satisfy true; x = f(z) ∧ y = g(z), which
directly entails that (C0 | C ′0) : Btrue ≈> B(x = f(z) ∧ y = g(z)) by an embedding rule.
The general form of embedding combines two different unary judgments, with different
specifications, using relational formulas that assert a predicate on just the left (/) or right (.)
state. So BP is short for /P ∧.P . Since z is not written by C0 or C1, we can introduce z =̈ z

using the relational frame rule, to obtain (C0 | C ′0) : z =̈ z ≈> B(x = f(z)∧ y = g(z))∧ z =̈ z.
This yields (3) using the relational rule of consequence with the two valid relational assertion
schemas u =̈ u′ ∧ /(u = v) ∧ .(u′ = v′)⇒ v =̈ v′ and z =̈ z ⇒ f(z) =̈ f(z).

For the factorial example (C|C ′) in Section 1, we would like to align the loops and use the
simple relational invariant x =̈ x ∧ y =̈ y + 1. We consider the form (C|C ′) as a biprogram
which can be rewritten to equivalent forms using the weaving relation which preserves the
underlying programs but aligns control points together so that relational assertions can be
used. (A minor difference from most other forms of product program is that we do not
need to rename apart the variables on the left and right.) The weaving relation is given in
Section 5. In this case we weave to the form

(x := 1|x := 1; y := y − 1); while y > 0 | y ≥ 0 do (x := x ∗ y | x := x ∗ y + x); by := y − 1c

This enables us to assert the relational invariant at the beginning and end of the loop bodies.
Indeed, we can also assert it just before the last assignments to y. The rule for this form of
loop requires the invariant to imply equivalence of the two loops’ guard conditions, which
it does: x =̈ x ∧ y =̈ y + 1 ⇒ (y > 0 =̈ y ≥ 0). For a biprogram of the split form (C|C ′),
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11:6 Relational Logic with Framing and Hypotheses

the primary reasoning principle is the lifting of unary judgments about C and C ′. For an
atomic command A, the sync notation bAc is an alternative to (A|A) that indicates its left
and right transition are considered together. This enables the use of relational specifications
for procedures, and a relational principle for object allocation. For an ordinary assignment,
sync merely serves to abbreviate, as in by := y − 1c above.

The next example involves the heap and it also involves a loop that is “dissonant” in the
sense that we do not want to align all iterations – that is, alignment is ultimately about traces,
not program texts. Imagine the command C1 from Section 2 is run on a list from which secret
values have been deleted. To specify that no secrets are leaked, we use the relational judgment
(C1|C1) : listnd(p) =̈ listnd(p) ≈> s =̈ s which says: Starting from any two states containing
the same non-deleted values, terminating computations agree on the sums. The judgment
can be proved by showing the functional property that s ends up as sum(listnd(old(p))).
But we can avoid reasoning about list sums and prove this relational property by aligning
some of the loop iterations in such a way that listnd(p) =̈ listnd(p) ∧ s =̈ s holds at every
aligned pair, that is, it is a relational invariant. Not every pair of loop iterations should be
aligned: When p.del holds for the left state but not the right, a left-only iteration maintains
the invariant, and mutatis mutandis when p.del holds only on the right. To handle such
non-aligned iterations we use a novel syntactic annotation dubbed alignment guards. The
idea is that the loop conditions are in agreement, and thus the iterations are synchronized,
unless one of the alignment guards hold – and then that iteration is unsynchronized but the
relational invariant must still be preserved. We weave (C1|C1) to the form

bs := 0c; while p 6= null | p 6= null • / (p.del) | .(p.del)
do if ¬p.del | ¬p.del then bs := s+ p.valc fi; bp := p.nxtc od

(4)

with alignment guards /p.del and .p.del. The rule for the while biprogram has three premises
for the loop body: for executions on the left (resp. right) under alignment guard /p.del (resp.
.p.del) and for simultaneous executions when neither of the alignment guards hold. Each
premise requires the invariant to be preserved.

The final example is a change of data representation. It illustrates dynamic allocation
and frame conditions, as well as procedures and linking. A substantive example of this sort
would be quite lengthy, so we contrive a toy example to provide hints of the issues that
motivate various elements of our formal development. Our goal is to prove a conditional
equivalence between these programs, whose components are defined in due course.

C4 =̂ let push(x : int) =B in Cli C ′4 =̂ let push(x : int) =B′ in Cli

These differ only in the implementations B,B′ of the stack interface (here stripped down to
a single procedure), to which the client program Cli is linked. For modular reasoning, the
unary contract for push should not expose details of the data representation. We also want to
avoid reliance on strong functional specifications – the goal is equivalence of the two versions,
not functional correctness of the client. The client, however, should respect encapsulation of
the stack representation, to which end frame conditions are crucial. A simple pattern is for
contracts to expose a ghost variable rep (of type rgn) for the set of objects considered to be
owned by a program module. Here is the specification for push, with parts named for later
reference. Let size and rep be spec-public, i.e., they can be used in public contracts but
not in client code [30].

push(x : int) : R; S[η] whereR =̂ size < 100
S =̂ size = old(size) + 1
η =̂ rw rep, size, rep‘any

(5)
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Variables rep and size can be read and written (keyword rw) by push. This needs to be
explicit, even though client code cannot access them, because reasoning about client code
involves them. The notation rep‘any designates all fields of objects in rep; these too may be
read and written. The specification makes clear that calls to push affect the encapsulated
state, while not exposing details. Here is one implementation of push(x).

B =̂ top := new Node(top, x); rep := rep ∪ {top}; size++

Variable top is considered internal to the stack module, so it need not appear in the
frame condition. The alternate implementation of push replaces top by module variables
free : int; slots : String[ ];.

B′ =̂ if slots = null then slots := new String[100]; rep := rep ∪ {slots}; free := 0 fi;
slots[free++] := x; size++

Correctness of the two versions is proved using module invariants

I =̂ (top = null ∧ size = 0) ∨ (top ∈ rep ∧ rep‘nxt ⊆ rep ∧ size = length(list(top)))

I ′ =̂ (slots = null ∧ size = 0) ∨ (slots ∈ rep ∧ size = free)

Here list(top) is the mathematical list of values reached from top. Recall that in an assertion
the expression rep‘nxt is the image of set rep under the nxt field, i.e., the set of values of
nxt fields of objects in rep. The condition rep‘nxt ⊆ rep says that rep is closed under nxt.
This form is convenient in using ghost code to express shapes of data structures without
recourse to reachability or other inductive predicates [10, 40].

As a specific Cli, we consider one that allocates and updates a node of the same type as
used by the list implementation; this gets assigned to a global variable p.

Cli =̂ push(1); p := new Node(null, 2); p.val := 3; push(4)

Having completed the definitions of C4, C
′
4 we can ask: In what sense are C4, C

′
4 equivalent?

A possible specification for (C4|C ′4) requires agreement on size and ensures agreement
on size and on p and p.val. However, the latter agreements cannot be literal equality:
following the call push(1), one implementation has allocated a Node whereas the array
implementation has not. Depending on the allocator, different references may be assigned
to p in the two executions. The appropriate relation is “equivalence modulo renaming of
references” [2, 3, 4, 16, 17]. For region expression G and field name f , we write AG‘f for
the agreement relation that says there is a partial bijection on references between the two
states, that is total on the region G, and for which corresponding f -fields are equal. The
notation AG‘any means agreement on all fields. In the present example, we only need the
singleton region {p} containing the reference denoted by p.

To prove a relational judgment for (C4|C ′4) we need suitable relational judgments for
(B|B′) for the implementations of push. It is standard [26] that they should preserve a
“coupling relation” that connects the two data representations and also includes the data
invariants for each representation. For the example, the connection is that the sequence of
elements reached from top, written list(top), is the same as the reversed sequence of elements
in slots[0..free− 1]. Writing rev for reversal, we define the coupling and specification

L =̂ /I ∧ .I ′ ∧ LtR LtR =̂ list(top) =̈ rev(〈 〉 if slots = null else slots[0..free− 1])

(C4|C ′4) : B(size = 0) ∧ L ≈> p =̈ p ∧ size =̈ size ∧ A{p}‘any ∧ L (6)
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We now proceed to sketch a proof of (6). First, we weave (C4|C ′4) to let push(x : int) =
(B|B′) in TCliU. Here TCliU abbreviates the fully aligned biprogram bpush(1)c; bp :=
new Node(null, 2)c; bp.val := 3c; bpush(4)c. This biprogram simultaneously links the proced-
ure bodies on left and right, and aligns the client. Using bp := new Node(null, 2)c enables
use of a relational postcondition that says the objects are in agreement. Using bpush(4)c
enables use of push’s relational specification.

Like in unary RL, the proof rule for linking has two premises: one says the bodies (B|B′)
satisfy their specification, the other says TCliU satisfies the overall specification under the
hypothesis that push satisfies its spec (see rLink in Fig. 2). This hypothesis context gives
push a relational specification, using Ax as sugar for x =̈ x:

Φ =̂ push(x) : BR ∧ Asize ∧ Ax ∧ L ≈> BS ∧ Asize ∧ L [η, rw top | η, rw slots, free]

Here η is the effect rw rep, size, rep‘any in the original specification (5) of push.
The specification in Φ is not simply a relational lift of push’s public specification (5).

Invariants I and I ′ on internal data structures should not appear in push’s API: they should
be hidden, because the client should not touch the internal state on which they depend.
Effects on module variables (like top) should also be hidden. This kind of reasoning is the
gist of second order framing [37, 5]. The relational counterpart is a relational second order
frame rule which says that any client that respects encapsulation will preserve L. Hiding is
the topic of another paper, for which this one is laying the groundwork (see Section 8).

4 Relational formulas

The relational assertion language is essentially syntax for a first order structure comprised of
the variables and heaps of two states, together with a refperm connecting the states.

P ::= F =̈ F | AG‘f | �P | /P | .P | P ∧ P | P ⇒ P | ∀x|x′ : K. P (7)

A refperm is a type-respecting partial bijection from references allocated in one state to
references allocated in the other state. For use with SMT provers, a refperm can be encoded
by a pair of maps with universal formulas stating they are inverse [7]. The syntax for relations
caters for dynamic allocation by providing primitives such as F =̈ F ′ that says the value of
F in the left state equals that of F ′ in the right state, modulo the refperm. In case of integer
expressions, this is ordinary equality. For reference expressions, it means the two values are
related by the refperm. For region expressions, G =̈ G′ means the refperm forms a bijection
between the reference set denoted by G in the left state and G′ in the right state (ignoring
null). The agreement formula AG‘f says, of a pair of states, that the refperm is total on the
set denoted by G in the left state, and moreover the f -field of each object in that set has the
same value, modulo refperm, as the f -field of its corresponding object in the right state.

For commands that allocate, the postcondition needs to allow the refperm to be extended,
which is expressed by the modal operator � (read “later”): �P holds if there is an extension
of the refperm with zero or more pairs of references for which P holds. For example, after the
assignment to p in the stack example, the relational rule for allocation yields postcondition
�(p =̈ p ∧ A{p}‘any). Aside from the left and right embeddings of unary predicates (/P and
.P ), the only other constructs are the logical ones (conjunction, implication, quantification
over values).

Let 2P =̂ ¬ � ¬P. Validity of P ⇒ 2P is equivalent to P being monotonic, i.e., not
falsified by extension of the refperm. Here are some valid schemas: P ⇒ �P, � � P ⇒ �P,
and �(P ∧ Q) ⇒ �P ∧ �Q. The converse of the latter is not valid. For framing, a key
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property is that �P ∧Q ⇒ �(P ∧Q) is valid if Q is monotonic. In practice, � is only needed
in postconditions, and only at the top level. Owing to � � P ⇒ �P, this works fine with
sequenced commands. Many useful formulas are monotonic, including AG‘f and F =̈ F ′,
but not ¬(F =̈ F ′).

5 Biprograms

A biprogram CC (Fig. 1) represents a pair of commands, which are given by syntactic
projections defined by clauses including the following:

↼−−−−
(C|C ′) =̂ C,

−−−−⇀
(C|C ′) =̂ C ′,

↼−
bAc =̂ A,

↼−−−−−−−−−−−−−−−−−−
if E|E′ then BB else CC =̂ if E then ↼−

BB else ↼−CC, and
↼−−−−−−−−−−−−−−−
let m= (C|C ′) in CC =̂ let m =

C in ↼−CC. The weaving relation has clauses including the following.

(A|A) ↪→ bAc (for atomic commands A)
(C;D | C ′;D′) ↪→ (C|C ′); (D|D′)
(if E then C else D | if E′ then C ′ else D′) ↪→ if E|E′ then (C|C ′) else (D|D′)
(while E do C | while E′ do C ′) ↪→ while E|E′ • P|P ′ do (C|C ′) (for any P,P ′)

Additional clauses are needed for congruence, e.g., CC ↪→ DD implies BB;CC ↪→ BB;DD.
The loop weaving introduces chosen alignment guards. The full alignment of a command
C is written TCU and defined by TAU =̂ bAc, TC;DU =̂ TCU; TDU, Tif E then C else DU =̂
if E|E then TCU else TDU, Twhile E do CU =̂ while E|E • false|false do TCU, etc. Note that
(C|C) ↪→∗ TCU for any C.

Commands are deterministic (modulo allocation), so termination-insensitive noninterfer-
ence and equivalence properties can be expressed in a simple ∀∀ form described at the start of
Section 3, rather than the ∀∃ form needed for refinement and for possibilistic noninterference
(“for all runs . . . there exists a run . . . ”). The transition rules for biprograms must ensure
that the behavior is compatible with the underlying unary semantics, while enforcing the
intended alignment. That would still allow some degree of nondeterminacy in biprogram
transitions. However, we make biprograms deterministic (modulo allocation), because it
greatly simplifies the soundness proofs. Rather than determinize by means of a scheduling
oracle or other artifacts that would clutter the semantics, we build determinacy into the
transition semantics. Whereas the syntax aligns points of interest in control flow, biprogram
traces explicitly represent aligned pairs of executions. We make the arbitrary choice of
left-then-right semantics for the split form. In a trace of (C|C ′), every step taken by C is
effectively aligned with the initial state for C ′. This is followed by the steps of C ′, each
aligned with the final state of C. To illustrate the idea, here is a sketch of the trace of a split
biprogram (center column) and its alignment with left and right unary traces.

〈x:=0; y:=0〉 〈(x:=0; y:=0 | x:=0; y:=0)〉 〈x:=0; y:=0〉
〈y:=0〉 〈(y:=0 | x:=0; y:=0)〉
〈skip〉 〈(skip | x:=0; y:=0)〉

〈(skip | y:=0)〉 〈y:=0〉
〈bskipc〉 〈skip〉

This pattern is also typical for “high conditionals” in noninterference proofs, where different
branches may be taken (cf. rule rIf4). Here is the sync’d version in action.

〈x:=0; y:=0〉 〈bx:=0c; by:=0c〉 〈x:=0; y:=0〉
〈y:=0〉 〈by:=0c〉 〈y:=0〉
〈skip〉 〈bskipc〉 〈skip〉
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rLink m : R ≈> S [η] ` TCU : P ≈> Q [ε] ` (B|B′) : R ≈> S [η]
` let m= (B|B′) in TCU : P ≈> Q [ε]

rIf4

Φ ` (C|C ′) : P ∧ /E ∧ .E′ ≈> Q [ε|ε′] Φ ` (C|D′) : P ∧ /E ∧ .¬E′ ≈> Q [ε|ε′]
Φ ` (D|C ′) : P ∧ /¬E ∧ .E′ ≈> Q [ε|ε′] Φ ` (D|D′) : P ∧ /¬E ∧ .¬E′ ≈> Q [ε|ε′]

Φ ` (if E then C else D|if E′ then C ′ else D′) : P ≈> Q [ε, ftpt(E)|ε′, ftpt(E′)]

rIf

P ⇒ E =̈ E′

Φ ` CC : P ∧ /E ∧ .E′ ≈> Q [ε|ε′] Φ ` DD : P ∧ /¬E ∧ .¬E′ ≈> Q [ε|ε′]
Φ ` if E|E′ then CC else DD : P ≈> Q [ε, ftpt(E)|ε′, ftpt(E′)]

rWeave

Φ ` DD : P ≈> Q [ε|ε′]
CC ↪→ DD unaryOnly(Φ) terminates(↼−P ,↼−−DD) terminates(−⇀P ,−−⇀DD)

Φ ` CC : P ≈> Q [ε|ε′]

Figure 2 Selected relational proof rules.

The relational correctness judgment has the form Φ ` CC : P ≈> Q [ε|ε′]. The hypothesis
context Φ maps some procedure names to their specifications: Φ(m) may be a unary
specification as before or else a relational one of the form R ≈> S [ε|ε′]. Frame conditions
retain their meaning, separately for the left and the right side. In case ε is the same as ε′,
the judgment or specification is abbreviated as P ≈> Q [ε].

The semantics of biprograms uses small steps, which makes alignments explicit. A
configuration is comprised of a biprogram, two states, and two environments for procedures.
The transition relation depends on a semantic interpretation for each procedure in the
hypothesis context Φ. Context calls, i.e., calls to procedures in the context, take a single
step in accord with the interpretation. For the sake of determinacy, this is formalized in the
semantics of relational correctness by quantifying over deterministic “interpretations” of the
specifications (as in [7]), rather than a single nondeterministic transition rule (as in [5, 37]).

Let us sketch the semantic consistency theorem, which confirms that executions of
a biprogram from a pair of states correspond to pairs of executions of the underlying
commands, so that judgments about biprograms represent relational properties of the
underlying commands. Suppose Φ ` (C|C ′) : P ≈> Q [ε|ε′] is valid and Φ has only
unary specifications. Consider any states σ, σ′ that are related by P (modulo some refperm).
Suppose C and C ′, when executed from σ, σ′, reach final states τ, τ ′. (In the formal semantics,
transitions are defined in terms of interpretations ϕ that satisfy the specifications Φ, so this
is written 〈C, σ〉 ϕ7−→∗ 〈skip, τ〉 and 〈C ′, σ′〉 ϕ7−→∗ 〈skip, τ ′〉.) Then τ, τ ′ satisfy Q.

6 Relational region logic

Selected proof rules appear in Fig. 2.
For linking a procedure with its implementation, rule rLink caters for a client program

C related to itself, in such a way that its executions can be aligned to use the same pattern
of calls. The procedure implementations may differ, as in the stack example, Section 3. The
rule shown here is for the special case of a single procedure, and the judgment for (B|B′)
has empty hypothesis context, to disallow recursion. We see no difficulty to add mutually
recursive procedures, as done for the unary logic in [5], but have not yet included that in a
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detailed soundness proof. The soundness proof is basically an induction on steps as in [5]
but with the construction of an interpretation as in the proof of the linking rule in [7]. The
general rule also provides for un-discharged hypotheses for ambient libraries used in the
client and in the procedure implementations [5].

Rule rIf4 is the obvious rule that considers all paths for a conditional not aligned
with itself (e.g., for “high branches”), whereas rIf leverages the alignment designated by
the biprogram form. The disjunction rule – i.e., from Φ ` CC : P0 ≈> Q [ε|ε′] and
Φ ` CC : P1 ≈> Q [ε|ε′] infer Φ ` CC : P0 ∨ P1 ≈> Q [ε|ε′] – serves to split cases on the
initial states, allowing different weavings to be used for different circumstances, which is
why there is no notion like alignment guards for the biprogram conditional. The obvious
conjunction rule is sound. It is useful for deriving other rules. For example, we have this
simple axiom for allocation: ` bx := new Kc : true ≈> �(x =̈ x) [wr x, rw alloc]. Using
conjunction, embedding, and framing, one can add postconditions like A{x}‘f and freshness
of x.

A consequence of our design decisions is “one-sided divergence” of biprograms, which comes
into play with weaving. For example, assuming loop diverges, (y := 0; z.f := 0 | loop;x := 0)
assigns z.f before diverging. But it weaves to (y := 0|loop); (z.f := 0|x := 0) which never
assigns z.f . This biprogram’s executions do not cover all executions of the underlying unary
programs. The phenomenon becomes a problem for code that can fault (e.g., if z is null).
Were the correctness judgments to assert termination, this shortcoming would not be an
issue, but in this paper we choose the simplicity of partial correctness. Rule rWeave needs
to be restricted to prevent one-sided divergence of the premise biprogram DD from states
where CC in the conclusion terminates. For simplicity in this paper we assume given a
termination check: terminates(P,C) means that C faults or terminates normally, from any
initial state satisfying P , This is about unary programs, so the condition can be discharged
by standard means.

The relational frame rule is a straightforward extension of the unary frame rule. From a
judgment Φ ` CC : P ≈> Q [ε|ε′] it infers Φ ` CC : P ∧R ≈> Q∧R [ε|ε′] provided that R
is framed by read effects (on the left and right) that are disjoint from the write effects in ε|ε′.

To prove a judgment Φ ` while E|E′ • P|P ′ do CC : Q ≈> Q [ε, ftpt(E)|ε′, ftpt(E′)],
the rule has three main premises: Φ ` (↼−CC|skip) : Q ∧ P ∧ /E ≈> Q [ε| ] for left-only
execution of the body, Φ ` (skip|−⇀CC) : Q∧ P ′ ∧ .E′ ≈> Q [ |ε′] for right-only, and Φ ` CC :
Q ∧ ¬P ∧ ¬P ′ ∧ /E ∧ .E′ ≈> Q [ε|ε′] for aligned execution. A side condition requires that
the invariant Q implies these cases are exhaustive: Q ⇒ E =̈ E′ ∨ (P ∧ /E) ∨ (P ′ ∧ .E′).
Additional side conditions require the effects to be self-immune, just as in unary RL [10, 7].
Finally, the formulas �P ⇒ P and �P ′ ⇒ P ′ must be valid; this says the alignment guards
are refperm-independent, which is needed because refperms are part of the semantics of
judgments but are not part of the semantics of biprograms.

The above rule is compatible with weaving a loop body, as in (4). The left and right
projections ↼−CC and −⇀CC undo the weaving and take care of unaligned iterations.

There are many other valid and useful rules. Explicit frame conditions are convenient,
both in tools and in a logic, in part because they compose in simple ways. This may lose
precision, but that can be overcome using postconditions to express, e.g., that x := x

does not observably write x. This is addressed, in unary RL, by a rule to “mask” write
effects [10]. Similarly, the relational logic supports a rule to mask read effects. There is
a rule of transitivity along these lines: from (B|C) : P ≈> Q and (C|D) : R ≈> S infer
(B|D) : P;R ≈> Q;S where (; ) denotes composition of relations. A special case is where
the pre-relations (resp. post-relations) are the same, transitive, relation. The rule needs to
take care about termination of C.

FSTTCS 2016
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7 Related work

Benton [15] introduced relational Hoare logic, around the same time that Yang was developing
relational separation logic [45]. Benton’s logic does not encompass the heap. Yang’s does;
it features separating conjunction and a frame rule. Pointers are treated concretely in [45];
agreement means identical addresses, which suffices for some low level C code. Neither work
includes procedures. Beringer [18] reduces relational verification to unary verification via
specifications and uses that technique to derive rules of a relational Hoare logic for programs
including the heap (but not procedures). Whereas the logics of Benton, Yang, and others
provide only rules for synchronized alignment of loops, Beringer derives a rule that allows for
unsynchronized (“dissonant”) iterations; our alignment guards are similar to side conditions
of that rule. RHTT [34] implements a relational program logic in dependent type theory
(Coq). The work focuses on applications to information flow. It handles dynamically allocated
mutable state and procedures, and both similar and dissimilar control structures. Like the
other relational logics it does not feature frame conditions. RHTT is the only prior relational
logic to include both the heap and procedures, and the only one to have a procedure linking
rule. It is also the only one to address any form of encapsulation; it does so using abstract
predicates, as opposed to hiding [5, 37].

Several works investigate construction of product programs that encode nontrivial choices
of alignment [38, 42, 46, 11, 12, 13]. In particular, our weaving relation was inspired by [11, 13]
which address programs that differ in structure. In contrast to the 2-safety properties for
deterministic programs considered in this paper and most prior work, Barthe et al. [12] handle
properties of the form “for all traces . . . there exists a trace . . . ” which are harder to work
with but which encompass notions of refinement and continuity. Relational specifications
of procedures are used in a series of papers by Barthe et al. (e.g.,[14]) for computer-aided
cryptographic proofs. Sousa and Dillig [41] implement a logic that encompasses k-ary
relations, e.g., the 3-safety property that a binary method is computing a transitive relation;
their verification algorithm is based on an implicit product construction. None of these works
address the heap or the linking of procedure implementations. Several works show that
syntactic heuristics can often find good weavings in the case of similarly-structured programs
not involving the heap [28, 32, 41]. Mueller et al. [32] use a form of product program and a
relational logic to prove correctness of a static analysis for dependency, including procedures
but no heap.

Works on translation validation and conditional equivalence checking use verification
conditions (VCs) with implicit or explicit product constructions [46, 47]. Godlin and
Strichman formulate and prove soundness of rules for proving equivalence of programs with
similar control structure [23]. They use one of the rules to devise an algorithm for VCs
using uninterpreted functions to encode equivalence of called procedures, which has been
implemented in two prototype tools for equivalence checking [24]. (Pointer structures are
limited to trees, i.e., no sharing.) Hawblitzel et al. [25] and Lahiri et al. [29] use relational
procedure summaries for intra- and inter-procedural reasoning about program transformations.
The heap is modeled by maps. These and related works report good experimental results
using SMT or SAT solvers to discharge VCs. Felsing et al. [21] use Horn constraint solving
to infer coupling relations and relational procedure summaries, which works well for similarly
structured programs; they do not deal with the heap. The purpose of our logic is not to
supplant VC-based tools approaches but rather to provide a foundation for them. Our
biprograms and relational assertions are easily translated to SMT-based back ends like
Boogie and Why3.
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Amtoft et al. [2] introduce a logic for information flow in object-based programs, using
abstract locations to specify agreements in the heap. It was proposed in [8] to extend this
approach to more general relational specifications, for fine-grained declassification policies.
Banerjee et al. [9] showed how region-based reasoning including a frame rule can be encoded,
using ghost code, with standard FOL assertions instead of an ancillary notion of abstract
region. This evolved to the logic in Section 6.

Relational properties have been considered in the context of separation logic: [19] and [43]
both give relational interpretations of unary separation logic that account for representation
independence, using second order framing [19] or abstract predicates [43]. Extension of this
work to a relational logic seems possible, but the semantics does not validate the rule of
conjunction so it may not be a good basis for verification tools. Tools often rely heavily on
splitting conjunctions in postconditions.

Ahmed et al. [1] address representation independence for higher order code and code
pointers, using a step-indexed relational model, and prove challenging instances of contextual
equivalence. Based on that work, Dreyer et al. [20] formulate a relational modal logic for
proving contextual equivalence for a language that has general recursive types and general
ML-style references atop System F. The logic serves to abstract from details of semantics
in ways likely to facilitate interactive proofs of interesting contextual equivalences, but it
includes intensional atomic propositions about steps in the transition semantics of terms.
Whereas contextual equivalence means equivalent in all contexts, general relational logics can
express equivalences conditioned on the initial state. For example, the assignments x := y.f

and z.f := w do not commute, in general, because their effects can overlap. But they do
commute under the precondition y 6= z. We can easily prove equivalence judgments such
as (x := y.f ; z.f := w | z.f := w;x := y.f) : B(y 6= z) ∧ A{y}‘f ∧ w =̈ w ≈> x =̈ x ∧ A{z}‘f .
By contrast with [1, 34], we do not rely on embedding in higher-order logic.

8 Conclusion

We provide a general relational logic that encompasses the heap and includes procedures. It
handles both similarly- and differently-structured programs. We use small-step semantics with
the goal to leverage, in future work, our prior work on SMT-friendly heap encapsulation [40,
5, 7] for representation independence, which is not addressed in prior relational logics.1

As articulated long ago by Hoare [26] but never fully formalized in a logic of programs,
reasoning about change of data representation is based on simulation relations on encapsulated
state, which are necessarily preserved by client code in virtue of encapsulation. For functional
correctness this corresponds to “hiding” of invariants on encapsulated data, i.e., not including
the invariant in the specification used by a client. O’Hearn et al. [37] formalize this as a
hypothetical or second order framing rule (which has been adapted to RL [5]). In ongoing
work, the logic presented here has been extended to address encapsulation and provides
a relational second order frame rule which embodies Reynolds’ abstraction theorem [39].
Whereas framing of invariants relies on write effects, framing of encapsulated relations also
relies on read effects. Our ongoing work also addresses observational purity, which is known
to be closely related to representation independence [26, 36].

Although we can prove equivalence for loop tiling, some array-oriented loop optimizations
seem to be out of reach of the logic as currently formulated. Loop interchange changes

1 With the partial exception of [1], see Section 7. Although there has been some work on observational
equivalence for higher order programs, we are not aware of work dealing with general relational judgments
for higher order programs.
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matrix row to column order, reordering unboundedly many atomic assignments, as does loop
fusion/distribution. Most prior work does not handle these examples; [47] does handle them,
with a non-syntactic proof rule that involves permutations on transition steps, cf. [33].
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Abstract
The theory of regular and aperiodic transformations of finite strings has recently received a lot
of interest. These classes can be equivalently defined using logic (Monadic second-order logic
and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers),
and one-way register machines (regular streaming string and aperiodic streaming string trans-
ducers). These classes are known to be closed under operations such as sequential composition
and regular (star-free) choice; and problems such as functional equivalence and type checking, are
decidable for these classes. On the other hand, for infinite strings these results are only known
for regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings
and introduced an extension of streaming string transducers over infinte strings and showed that
they capture monadic second-order definable transformations for infinite strings. In this paper
we extend their work to recover connection for infinite strings among first-order logic definable
transformations, aperiodic two-way transducers, and aperiodic streaming string transducers.
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1 Introduction

The beautiful theory of regular languages is the cornerstone of theoretical computer science
and formal language theory. The perfect harmony among the languages of finite words
definable using abstract machines (deterministic finite automata, nondeterministic finite
automata, and two-way automata), algebra (regular expressions and finite monoids), and
logic (monadic second-order logic (MSO) [7]) set the stage for the generalizations of the
theory to not only for the theory of regular languages of infinite words [8, 17], trees [4],
partial orders [23], but more recently for the theory of regular transformations of the finite
strings [6], infinite strings [3, 1], and trees [2]. For the theory of regular transformations
it has been shown that abstract machines (two-way transducers [13] and streaming string
transducers [6]) precisely capture the transformations definable via monadic second-order
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z := ε α|(x, y, z) := (x, αyα, zα)
α
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#|(x, y, z) := (xy#, ε, ε)

a b b b # b a # {a, b}ω

a b b b b a

a b b b b a

# # {a, b}ω

Figure 1 Transformation f1 given as (a) two-way transducers with look-ahead (b) streaming string
transducers with F ({2}) = xz is the output associated with Muller set {2}, and (c) FO-definable
transformation for the string abbb#ba#{a, b}ω. Here symbol α stands for both symbols a and b,
and the predicate reach# is the lookahead that checks whether string contains a # in future.

logic transformations [10]. For a detailed exposition on the regular theory of languages and
transformations, we refer to the surveys by Thomas [23, 24] and Filiot [14], respectively.

There is an equally appealing and rich theory for first-order logic (FO) definable subclasses
of regular languages. McNaughton and Papert [18] observed the equivalence between
FO-definability and star-free regular expressions for finite words, while Ladner [16] and
Thomas [22] extended this connection to infinite words. The equivalence of star-free regular
expressions and languages defined via aperiodic monoids is due to Schützenberger [20] and
corresponding extension to infinite words is due to Perrin [19]. For a detailed introduction
to FO-definable language we refer the reader to Diekert and Gastin [12].

The results for the theory of FO-definable transformations are relatively recent. While
Courcelle’s definition of logic based transformations [10] provides a natural basis for FO-
definable transformations of finite as well as infinite words, [15] observed that over finite
words, streaming string transducers [6] with an appropriate notion of aperiodicity precisely
capture the same class of transformations. Carton and Dartois [9] introduced aperiodic
two-way transducers for finite words and showed that it precisely captures the notion of
FO-definability. We consider transformations of infinite strings and generalize these results
by showing that appropriate aperiodic restrictions on two-way transducers and streaming
string transducers on infinite strings capture the essence of FO-definable transformations.
Let us study an example to see how the following ω-transformation can be represented using
logic, two-way transducers, and streaming string transducers.

I Example 1 (Example Transformation). Let Σ = {a, b,#}. Consider an ω-transformation
f1 : Σω ⇀ Σω such that it replaces any maximal #-free finite string u by uu, where u is
the reverse of u. Moreover f1 is defined only for strings with finitely many #′s, e.g. for all
w=u1#u2# . . . un#v s.t ui ∈ {a, b}∗ and v ∈ {a, b}ω, we have f1(w)=u1u1# . . .#unun#v.

Logic based transformations. Logical descriptions of transformations of structures – as
introduced by Courcelle [10] – work by introducing a fixed number of copies of the vertices of
the input graph; and the domain, the labels and the edges of the output graph are defined by
MSO formulae with zero, one or two free variables, respectively, interpreted over the input
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graph. Figure 1(c) shows a way to express transformation f1 using three copies of the input
with a) logical formula φdom expressing the domain of the transformation, b) logical formulae
φcα(i) (with one free variable) for every copy c ∈ {1, 2} and letter α ∈ {a, b} expressing the
label of a position i for copy c, and c) logical formulae φc,d(i, j) with two free variables
expressing the edge from position i of copy c to position j of copy d. The formulae φdom,
φca, and φc,d are interpreted over input structure (in this paper always an infinite string),
and it is easy to see that these formulae for our example can easily be expressed in MSO. In
this paper we study logical transformations expressible with FO and to cover a larger class
of transformations, we use natural order relation ≺ for positions instead of the successor
relation. We will later show that the transformation f1 indeed can be expressed using FO.

Two-Way Transducers. For finite string transformations, Engelfriet and Hoogeboom [13]
showed that the finite-state transducers when equipped with a two-way input tape have the
same expressive power as MSO transducers, and Carton and Dartois [9] recovered this result
for FO transducers and two-way transducers with aperiodicity restriction. A crucial property
of two-way finite-state transducers exploited in these proofs [13, 9] is the fact that transitions
capable of regular (star-free) look-ahead (i.e., transitions that test the whole input string
against a regular property) do not increase the expressiveness of regular (aperiodic) two-way
transducers. However, this property does not hold in case of ω-strings. In Figure 1(a),
we show a two-way transducer characterizing transformation f1. The transducer uses the
lookahead reach# to check if the remaining part of the string contains a # in future. A
transition labeled < φ,α |β,+1 > of the two-way transducer should be read as: if the current
position on the string satisfies the look-ahead φ and the current symbol is α then output
symbol β and move the input tape head to the right. This transducer works by first checking
if the string contains a # in the future of the current position, if so it moves its head all the
way to the position before # and starts outputting the symbols in reverse, and when it sees
the end-marker or a # it prints the string before the #; however, if there is no # in future,
then the transducer outputs the rest of the string. It is straightforward to verify that this
transducer characterizes the transformation f1. However, in the absence of the look-ahead a
two-way transducer can not express this transformation.

Streaming String Transducers. Alur and Černý [6, 5] proposed a one-way finite-state
transducer model, called the streaming string transducers (SST), that manipulates a finite set
of string variables to compute its output, and showed that they have same expressive power
as MSO transducers. SST, instead of appending symbols to the output tape, concurrently
update all string variables using a concatenation of string variables and output symbols
in a copyless fashion, i.e. no variable occurs more than once in each concurrent variable
update. The transformation of a string is then defined using an output (partial) function F
that associates states with a copyless concatenation of string variables, s.t. if the state q is
reached after reading the string and F (q)=xy, then the output string is the final valuation
of x concatenated with that of y. [3] generalized this by introducing a Muller acceptance
condition to give an SST to characterize ω-transitions. Figure 1(b) shows a streaming string
transducer accepting the transformation f1. It uses three string variables and concurrently
prepends and/or appends these variables in a copyless fashion to construct the output. The
acceptance set and the output is characterized by a Muller set (here {2} and its output xz),
such that if the infinitely visiting states set is {2} then the output is limit of the values
of the concatenation xz. Again, it is easy to verify that SST in Figure 1(b) captures the
transformation f1.
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Contributions and Challenges. Our main contributions include the definition of aperiodic
streaming string transducers and aperiodic two-way transducers, and the proof of the following
key theorem connecting FO and transducers for transformations of infinite strings.

I Theorem 2. Let F : Σω → Γω. Then the following assertions are equivalent:
1. F is first-order definable.
2. F is definable by some aperiodic two-way transducer with star-free look-around.
3. F is definable by some aperiodic streaming string transducers.

We introduce the notion of transition monoids for automata, 2WST, and SST with
the Muller acceptance condition; and recover the classical result proving aperiodicity of a
language using the aperiodicity of the transition monoid of its underlying automaton. The
equivalence between FOT and 2WST with star-free look-around (Section 4), crucially uses
the transition monoid with Muller acceptance, which is necessary to show aperiodicity of the
underlying language of the 2WST. On the other hand, while going from aperiodic SST to
FOT (Section 5), the main difficulty is the construction of the FOT using the aperiodicity of
the SST, and while going from 2WST with star-free look-around to SST (Section 6), the hard
part is to establish the aperiodicity of the SST. Due to space limitation, we only provide key
definitions and sketches of our results – complete proofs and related supplementary material
can be found in longer version of this paper [11].

2 Preliminaries

A finite (infinite) string over alphabet Σ is a finite (infinite) sequence of letters from Σ. We
denote by ε the empty string. We write Σ∗ for the set of finite strings, Σω for the set of
ω-strings over Σ, and Σ∞ = Σ∗ ∪ Σω for the set of finite and ω-strings. A language L over
an alphabet Σ is defined as a set of strings, i.e. L ⊆ Σ∞.

For a string s ∈ Σ∞ we write |s| for its length; note that |s| =∞ for an ω-string s. Let
dom(s) = {1, 2, 3, . . . , } be the set of positions in s. For all i ∈ dom(s) we write s[i] for the
i-th letter of the string s. For two ω-strings s, s′ ∈ Σω, we define the distance d(s, s′) as
1
2j where j=min{k | s[k] 6= s′[k]}. We say that a string s ∈ Σω is the limit of a sequence
s1, s2, . . . of ω-strings si ∈ Σω if for every ε > 0, there is an index nε ∈ N such that for
all i ≥ nε, we have that d(s, si) ≤ ε. Such a limit, if exists, is unique and is denoted as
s = limi→∞ si. For example, bω = limi→∞ bicω.

2.1 Aperiodic Monoids for ω-String Languages
A monoidM is an algebraic structure (M, ·, e) with a non-empty set M , a binary operation ·,
and an identity element e ∈M such that for all x, y, z ∈M we have that (x·(y ·z))=((x·y)·z),
and x · e = e · x for all x ∈M . We say that a monoid (M, ·, e) is finite if the set M is finite.
A monoid that we will use in this paper is the free monoid, (Σ∗, ·, ε), which has a set of finite
strings over some alphabet Σ with the empty string ε as the identity.

We define the notion of acceptance of a language via monoids. A morphism (or ho-
momorphism) between two monoids M = (M, ·, e) and M′ = (M ′,×, e′) is a mapping
h : M →M ′ such that h(e) = e′ and h(x · y) = h(x)×h(y). Let h : Σ∗ →M, be a morphism
from free monoid (Σ∗, ·, ε) to a finite monoid (M, ·, e). Two strings u, v ∈ Σ∗ are said to be
similar with respect to h denoted u ∼h v, if for some n ∈ N ∪ {∞}, we can factorize u, v as
u = u1u2 . . . un and v = v1v2 . . . vn with ui, vi ∈ Σ+ and h(ui) = h(vi) for all i. Two ω-strings
are h-similar if we can find factorizations u1u2 . . . and v1v2 . . . such that h(ui) = h(vi) for
all i. Let ∼= be the transitive closure of ∼h. ∼= is an equivalence relation. Note that since
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M is finite, the equivalence relation ∼= is of finite index. For w ∈ Σ∞ we define [w]h as the
set {u | u ∼= w}. We say that a morphism h accepts a language L ⊆ Σ∞ if w ∈ L implies
[w]h ⊆ L for all w ∈ Σ∞.

We say that a monoid (M, ., e) is aperiodic [21] if there exists n ∈ N such that for all
x ∈ M , xn = xn+1. Note that for finite monoids, it is equivalent to require that for all
x ∈M , there exists n ∈ N such that xn = xn+1. A language L ⊆ Σ∞ is said to be aperiodic
iff it is recognized by some morphism to a finite and aperiodic monoid [11].

2.2 First-Order Logic for ω-String Languages
A string s ∈ Σω can be represented as a relational structure Ξs=(dom(s),�s, (Lsa)a∈Σ), called
the string model of s, where dom(s) = {1, 2, . . .} is the set of positions in s, �s is a binary
relation over the positions in s characterizing the natural order, i.e. (x, y) ∈�s if x ≤ y; Lsa,
for all a ∈ Σ, are the unary predicates that hold for the positions in s labeled with the letter
a, i.e., Lsa(i) iff s[i] = a, for all i ∈ dom(s). When it is clear from context we will drop the
superscript s from the relations �s and Lsa.

Properties of string models over the alphabet Σ can be formalized by first-order logic
denoted by FO(Σ). Formulas of FO(Σ) are built up from variables x, y, . . . ranging over
positions of string models along with atomic formulae of the form x=y, x�y, and La(x) for
all a ∈ Σ where formula x=y states that variables x and y point to the same position, the
formula x � y states that position corresponding to variable x is not larger than that of
y, and the formula La(x) states that position x has the label a ∈ Σ. Atomic formulae are
connected with propositional connectives ¬, ∧, ∨, →, and quantifiers ∀ and ∃ that range
over node variables and we use usual semantics for them. We say that a variable is free in a
formula if it does not occur in the scope of some quantifier. A sentence is a formula with
no free variables. We write φ(x1, x2, . . . , xk) to denote that at most the variables x1, . . . , xk
occur free in φ. For a string s ∈ Σ∗ and for positions n1, n2, . . . , nk ∈ dom(s) we say that
s with valuation ν = (n1, n2, . . . , nk) satisfies the formula φ(x1, x2, . . . , xk) and we write
(s, ν) |= φ(x1, x2, . . . , xk) or s |= φ(n1, n2, . . . , nk) if formula φ with ni as the interpretation
of xi is satisfied in the string model Ξs. The language defined by an FO sentence φ is
L(φ) def= {s ∈ Σω : Ξs |= φ}. We say that a language L is FO-definable if there is an FO
sentence φ such that L = L(φ). The following is a well known result.

I Theorem 3 ([18, 20]). A language L ⊆ Σ∗ is FO-definable iff it is aperiodic.

2.3 Aperiodic Muller Automata for ω-String Languages
A deterministic Muller automaton (DMA) is a tuple A = (Q, q0,Σ, δ, F ) where Q is a finite
set of states, q0 ∈ Q is the initial state, Σ is an input alphabet, δ : Q×Σ→ Q is a transition
function, and F ⊆ 2Q are the accepting (Muller) sets. For states q, q′ ∈ Q and letter a ∈ Σ we
say that (q, a, q′) is a transition of the automaton A if δ(q, a) = q′ and we write q a−→ q′. We say
that there is a run of A over a finite string s = a1a2 . . . an ∈ Σ∗ from state p to state q if there
is a finite sequence of transitions 〈(p0, a1, p1), (p1, a2, p2), . . . , (pn−1, an, pn)〉 ∈ (Q×Σ×Q)∗
with p = p0 and q = pn. We write Lp,q for the set of finite strings w such that there is a run
of A over w from p to q. We say that there is a run of A over an ω-string s = a1a2 . . . ∈ Σω if
there is a sequence of transitions 〈(q0, a1, q1), (q1, a2, q2), . . .〉 ∈ (Q×Σ×Q)ω. For an infinite
run r, we denote by Ω(r) the set of states that occur infinitely often in r. We say that an
ω-string w is accepted by a Muller automaton A if the run of A on w is such that Ω(r) ∈ F
and we write L(A) for the set of all ω-strings accepted by A.
A Muller automaton A is aperiodic iff there exists some m≥1 s.t. um∈Lp,q iff um+1∈Lp,q
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for all u ∈ Σ∗ and p, q ∈ Q. Another equivalent way to define aperiodicity is using the
transition monoid, which, to the best of our knowledge, has not been defined in the literature
for Muller automata. Given a DMA A=(Q, q0,Σ,∆, {F1, . . . , Fn}), we define the transition
monoid MA=(MA,×,1) of A as follows: MA is a set of |Q| × |Q| square matrices over
({0, 1} ∪ 2Q)n ∪ {⊥}. Matrix multiplication × is defined for matrices in MA with identity
element 1 ∈ MA, where 1 is the matrix whose diagonal entries are (∅, ∅, . . . , ∅) and non-
diagonal entries are all ⊥’s. Formally, MA= {Ms : s ∈ Σ∗} is defined using matrices Ms

for strings s ∈ Σ∗ s.t. Ms[p][q]=⊥ if there is no run from p to q over s in A. Otherwise,
let P be the set of states (excluding p and q) witnessed in the unique run from p to q.
Then Ms[p][q] = (x1, . . . , xn) ∈ ({0, 1} ∪ 2Q)n where (1) xi = 0 iff ∃t ∈ P ∪ {p, q}, t /∈ Fi;
(2) xi = 1 iff P ∪{p, q} = Fi, and (3) xi = P ∪{p, q} iff P ∪{p, q} ⊂ Fi. It is easy to see that
Mε = 1, since ε takes a state to itself and nowhere else. The operator × is simply matrix
multiplication for matrices in MA, however we need to define addition ⊕ and multiplication
� for elements ({0, 1} ∪ 2Q)n ∪ {⊥} of the matrices. We have α1 � α2 = ⊥ if α1 = ⊥ or
α2 = ⊥, and if α1 = (x1, . . . , xn) and α2 = (y1, . . . , yn) then α1 � α2 = (z1, . . . , zn) s.t.:

zi =


0 if xi = 0 or yi = 0
1 if (xi = yi = 1) or if (xi, yi ⊂ Fi and xi ∪ yi = Fi)
1 if (xi = 1 and yi ⊂ Fi) or (yi = 1 and xi ⊂ Fi)
xi ∪ yi if xi, yi ⊂ Fi and xi ∪ yi ⊂ Fi

(?)

Due to determinism, we have that for every matrix Ms and every state p there is at most
one state q such that Ms[p][q] 6= ⊥ and hence the only addition rule we need to introduce
is α ⊕ ⊥ = ⊥ ⊕ α = α. It is easy to see that (MA,×,1) is a monoid (a proof is deferred
to the [11]). It is straightforward to see that a Muller automaton is aperiodic if and only
if its transition monoid is aperiodic. [11] gives a proof showing that a language L ⊆ Σω is
aperiodic iff there is an aperiodic DMA accepting it.

3 Aperiodic Transformations

In this section we formally introduce three models to express FO-transformations, and
prepare the machinery required to prove their expressive equivalence in the rest of the paper.

3.1 First-Order Logic Definable Transformations
Courcelle [10] initiated the study of structure transformations using MSO logic. His main
idea was to define a transformation (w,w′) ∈ R by defining the string model of w′ using
a finite number of copies of positions of the string model of w. The existence of positions,
various edges, and position labels are then given as MSO(Σ) formulas. We study a restriction
of his formalism to use first-order logic to express string transformations.

I Definition 4. An FO string transducer is a tuple T=(Σ,Γ, φdom, C, φpos, φ�) where:
Σ and Γ are finite input and output alphabets;
φdom is a closed FO(Σ) formula characterizing the domain of the transformation;
C= {1, 2, . . . , n} is a finite index set;
φpos=

{
φcγ(x) : c ∈ C and γ ∈ Γ

}
is a set of FO(Σ) formulae with a free variable x;

φ�=
{
φc,d� (x, y) : c, d ∈ C

}
is a set of FO(Σ) formulae with two free variables x and y.

The transformation JT K defined by T is as follows. A string s with Ξs = (dom(s),�, (La)a∈Σ)
is in the domain of JT K if s |= φdom and the output string w with structure
M = (D,�M , (LMγ )γ∈Γ) is such that
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D = {vc : v ∈ dom(s), c ∈ C and φc(v)} is the set of positions where

φc(v) def= ∨γ∈Γ φcγ(v) ;

�M ⊆D×D is the ordering relation between positions and it is such that for v, u ∈ dom(s)
and c, d ∈ C we have that vc �M ud if w |= φc,d� (v, u); and
for all vc ∈ D we have that LMγ (vc) iff φcγ(v).

Observe that the output is unique and therefore FO transducers implement functions. A
string s ∈ Σω can be represented by its string-graph with dom(s) = {i ∈ N}, �= {(i, j) | i ≤
j} and La(i) iff s[i] = a for all i. From now on, we denote the string-graph of s as s only. We
say that an FO transducer is a string-to-string transducer if its domain is restricted to string
graphs and the output is also a string graph. We say that a string-to-string transformation
is FO-definable if there exists an FO transducer implementing the transformation. We write
FOT for the set of FO-definable string-to-string ω-transformations.

I Example 5. Figure 1(c) shows a transformation for an FOT that implements the trans-
formation f1 : Σ∗#{a, b}ω → Σω, where Σ = {a, b,#}, by replacing every maximal #
free string u with uu. Let is_string# be an FO formula that defines a string that
contains a #, and let reach#(x) be an FO formula that is true at a position which
has a # at a later position. To define the FOT formally, we have φdom = is_string#,
φ1
γ(x) = φ2

γ(x) = Lγ(x)∧¬L#(x)∧reach#(x), since we only keep the non # symbols that can
“reach” a # in the input string in the first two copies. φ3

γ(x) = L#(x)∨(¬L#(x)∧¬reach#(x)),
since we only keep the #’s, and the infinite suffix from where there are no #’s. The full list
of formulae φi,j can be seen in [11].

3.2 Two-way Transducers (2WST)
A 2WST is a tuple T = (Q,Σ,Γ, q0, δ, F ) where Σ,Γ are respectively the input and output
alphabet, q0 is the initial state, δ is the transition function and F ⊆ 2Q is the acceptance
set. The transition function is given by δ : Q× Σ→ Q× Γ∗ × {1, 0,−1}. A configuration
of the 2WST is a pair (q, i) where q ∈ Q and i ∈ N is the current position of the input
string. A run r of a 2WST on a string s ∈ Σω is a sequence of transitions (q0, i0=0) a1/c1,dir−−−−−−→
(q1, i1) a2/c2,dir−−−−−−→ (q2, i2) · · · where ai ∈ Σ is the input letter read and ci ∈ Γ∗ is the output
string produced during a transition and ijs are the positions updated during a transition
for all j ∈ dom(s). dir is the direction, {1, 0,−1}. W.l.o.g. we can consider the outputs to
be over Γ ∪ {ε}. The output out(r) of a run r is simply a concatenation of the individual
outputs, i.e. c1c2 · · · ∈ Γ∞. We say that the transducer reads the whole string s when
sup {in | 0 ≤ n < |r|}=∞. The output of s, denoted T (s) is defined as out(r) only if Ω(r) ∈ F
and r reads the whole string s. We write JT K for the transformation captured by T .

Transition Monoid. The transition monoid of a 2WST T = (Q,Σ,Γ, q0, δ, {F1, . . . , Fn}) is
the transition monoid of its underlying automaton. However, since the 2WST can read their
input in both directions, the transition monoid definition must allow for reading the string
starting from left side and leaving at the left (left-left) and similar other behaviors (left-right,
right-left and right-right). Following [9], we define the behaviors Bxy(w) of a string w for
x, y ∈ {`, r}. B`r(w) is a set consisting of pairs (p, q) of states such that starting in state p
in the left side of w the transducer leaves w in right side in state q. In the example in figure
1(a), we have B`r(ab#) = {(t, t), (p, t), (q, t)} and Brr(ab#) = {(q, t), (t, t), (p, q)}. Two words
w1, w2 are “equivalent” if their left-left, left-right, right-left and right-right behaviors are same.
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That is, Bxy(w1) = Bxy(w2) for x, y ∈ {`, r}. The transition monoid of T is the conjunction
of the 4 behaviors, which also keeps track, in addition, the set of states witnessed in the run,
as shown for the deterministic Muller automata earlier. For each string w ∈ Σ∗, x, y ∈ {`, r},
and states p, q, the entries of the matrix Mxy

u [p][q] are of the form ⊥, if there is no run from
p to q on word u, starting from the side x of u and leaving it in side y, and is (x1, . . . xn)
otherwise, where xi is defined exactly as in section 2.3. For equivalent words u1, u2, we have
Mxy
u1

[p][q] = Mxy
u2

[p][q] for all x, y ∈ {`, r} and states p, q. Addition and multiplication of
matrices are defined as in the case of Muller automata. See [11] for more details. Note that
behavioral composition is quite complex, due to left-right movements. In particular, it can
be seen from the example that B`r(ab#a#) = B`r(ab#)B``(a#)Brr(ab#)B`r(a#). Since we
assume that the 2WST T is deterministic and completely reads the input string α ∈ Σω, we
can find a unique factorization α = [α0 . . . αp1 ][αp1+1 . . . αp2 ] . . . such that the run of A on
each α-block progresses from left to right, and each α-block will be processed completely.
That is, one can find a unique sequence of states qp1 , qp2 , . . . such that the 2WST starting in
initial state q0 at the left of the block α0 . . . αp1 leaves it at the right in state qp1 , starts the
next block αp1+1 . . . αp2 from the left in state qp1 and leaves it at the right in state qp2 and
so on.

We consider the languages Lxypq for x, y ∈ {`, r}, where `, r respectively stand for left and
right. L``pq stands for all strings w such that, starting at state p at the left of w, one leaves
the left of w in state q. Similarly, Lr`pq stands for all strings w such that starting at the right
of w in state p, one leaves the left of w in state q. In figure 1(a), note that starting on the
right of ab# in state t, we leave it on the right in state t, while we leave it on the left in state
p. So ab# ∈ Lrrtt , Lr`tp. Also, ab# ∈ Lrrpq.

A 2WST is said to be aperiodic iff for all strings u ∈ Σ∗, all states p, q and x, y ∈ {l, r},
there exists some m ≥ 1 such that um ∈ Lxypq iff um+1 ∈ Lxypq .

Star-Free Lookaround. We wish to introduce aperiodic 2WST that are capable of capturing
FO-definable transformations. However, as we discussed earlier (see page 3 in the paragraph
on two-way transducers) 2WST without look-ahead are strictly less expressive than MSO
transducers. To remedy this we study aperiodic 2WSTs enriched with star-free look-ahead
(star-free look-back can be assumed for free).

An aperiodic 2WST with star-free look-around (2WSTsf ) is a tuple (T,A,B) where A is
an aperiodic Muller look-ahead automaton and B is an aperiodic look-behind automaton,
resp., and T = (Σ,Γ, Q, q0, δ, F ) is an aperiodic 2WST as defined earlier except that the
transition function δ : Q×QB ×Σ×QA → Q×Γ×{−1, 0,+1} may consult look-ahead and
look-behind automata to make its decisions. Let s ∈ Σω be an input string, and L(A, p) be
the set of infinite strings accepted by A starting in state p. Similarly, let L(B, r) be the set
of finite strings accepted by B starting in state r. We assume that 2WSTsf are deterministic
i.e. for every string s ∈ Σω and every input position i ≤ |s|, there is exactly one state p ∈ QA
and one state r ∈ QB such that s(i)s(i+ 1) . . . ∈ L(A, p) and s(0)s(1) . . . s(i− 1) ∈ L(B, r).
If the current configuration is (q, i) and δ(q, r, s(i), p) = (q′, z, d) is a transition, such that
the string s(i)s(i+ 1) . . . ∈ L(A, p) and s(0)s(1) . . . s(i− 1) ∈ L(B, r), then 2WSTsf writes
z ∈ Γ on the output tape and updates its configuration to (q′, i+ d). Figure 1(a) shows a
2WST with star-free look-ahead reach#(x) capturing the transformation f1 (details in [11]).

3.3 Streaming ω-String Transducers (SST)
Streaming string transducers(SSTs) manipulate a finite set of string variables to compute
their output. In this section we introduce aperiodic SSTs for infinite strings. Let X
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be a finite set of variables and Γ be a finite alphabet. A substitution σ is defined as a
mapping σ : X → (Γ ∪ X )∗. A valuation is defined as a substitution σ : X → Γ∗. Let
SX ,Γ be the set of all substitutions [X → (Γ ∪ X )∗]. Any substitution σ can be extended
to σ̂ : (Γ ∪ X )∗ → (Γ ∪ X )∗ in a straightforward manner. The composition σ1σ2 of
two substitutions σ1 and σ2 is defined as the standard function composition σ̂1σ2, i.e.
σ̂1σ2(x) = σ̂1(σ2(x)) for all x ∈ X . We say that a string u ∈ (Γ ∪ X )∗ is copyless (or linear)
if each x ∈ X occurs at most once in u. A substitution σ is copyless if σ̂(u) is copyless, for
all linear u ∈ (Γ ∪ X )∗ .

I Definition 6. A streaming ω-string transducer (SST) is a tuple T = (Σ,Γ, Q, q0, δ,X , ρ, F )
Σ and Γ are finite input and output alphabets;
Q is a finite set of states with initial state q0;
δ : Q× Σ→ Q is a transition function and X is a finite set of variables;
ρ : (Q× Σ)→ SX ,Γ is a variable update function to copyless substitutions such that any
variable x occurs at most once on the right hand side of a simultaneous substitution;
F : 2Q ⇀ X ∗ is an output function such that for all P ∈ dom(F ) the string F (P ) is
copyless of form x1 . . . xn, and for q, q′ ∈ P and a ∈ Σ s.t. q′ = δ(q, a) we have
ρ(q, a)(xi) = xi for all i < n and ρ(q, a)(xn) = xnu for some u ∈ (Γ ∪ X )∗.

The concept of a run of an SST is defined in an analogous manner to that of a Muller
automaton. The sequence 〈σr,i〉0≤i≤|r| of substitutions induced by a run r = q0

a1−→ q1
a2−→

q2 . . . is defined inductively as the following: σr,i=σr,i−1ρ(qi−1, ai) for 0 < i ≤ |r| and
σr,0 = x ∈ X 7→ ε. The output T (r) of an infinite run r of T is defined only if F (r) is
defined and equals T (r) def= limi→∞〈σr,i(F (r))〉, when the limit exists. If not, we pad ⊥ω to
the obtained finite string to get limi→∞〈σr,i(F (r))⊥ω〉 as the infinite output string.

The assumptions on the output function F in the definition of an SST ensure that this
limit exists whenever F (r) is defined. Indeed, when a run r reaches a point from where it
visits only states in P , these assumptions enforce the successive valuations of F (P ) to be an
increasing sequence of strings by the prefix relation. The padding by unique letter ⊥ ensures
that the output is always an ω-string. The output T (s) of a string s is then defined as the
output T (r) of its unique run r. The transformation JT K defined by an SST T is the partial
function {(s, T (s)) : T (s) is defined}. See [11] for an example. We remark that for every
SST T = (Σ,Γ, Q, q0, δ,X , ρ, F ), its domain is always an ω-regular language defined by the
Muller automaton (Σ, Q, q0, δ,dom(F )), which can be constructed in linear time. However,
the range of an SST may not be ω-regular. For instance, the range of the SST-definable
transformation an#ω 7→ anbn#ω (n ≥ 0) is not ω-regular.

Aperiodic Streaming String Transducers. We define the notion of aperiodic SSTs by
introducing an appropriate notion of transition monoid for transducers. The transition
monoid of an SST T is based on the effect of a string s on the states as well as on the
variables. The effect on variables is characterized by, what we call, flow information that is
given as a relation that describes the number of copies of the content of a given variable that
contribute to another variable after reading a string s.

Let T = (Σ,Γ, Q, q0, δ,X , ρ, F ) be an SST. Let s be a string in Σ∗ and suppose that
there exists a run r of T on s. Recall that this run induces a substitution σr that maps
each variable X ∈ X to a string u ∈ (Γ ∪ X )∗. For string variables X,Y ∈ X , states
p, q ∈ Q, and n ∈ N we say that n copies of Y flow to X from p to q if there exists a
run r on s ∈ Σ∗ from p to q, and Y occurs n times in σr(X). We extend the notion of
transition monoid for the Muller automata as defined in Section 2 for the transition monoid
for SSTs to equip it with variables. Formally, the transition monoidMT=(MT ,×,1) of an
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12:10 FO-Definable Transformations of Infinite Strings

SST T = (Σ,Γ, Q, q0, δ,X , ρ, {F1, . . . , Fn}) is such that MT is a set of |Q × X| × |Q × X|
square matrices over (N× ({0, 1} ∪ 2Q)n) ∪ {⊥} along with matrix multiplication × defined
for matrices in MT and identity element 1 ∈MT is the matrix whose diagonal entries are
(1, (∅, ∅, . . . , ∅)) and non-diagonal entries are all ⊥’s. FormallyMT= {Ms : s ∈ Σ∗} is defined
using matrices Ms for strings s ∈ Σ∗ s.t. Ms[(p,X)][(q, Y )]=⊥ if there is no run from state p
to state q over s in T , otherwise Ms[(p,X)][(q, Y )] = (k, (x1, . . . , xn)) ∈ (N× ({0, 1} ∪ 2Q)n)
where xi is defined exactly as in section 2.3, and k copies of variable X flow to variable Y
from state p to state q after reading s.

We write (p,X) u
α (q, Y ) for Mu[(p,X)][(q, Y )] = α.

It is easy to see that Mε = 1. The operator × is simply matrix multiplication for
matrices in MT , however we need to define addition ⊕ and multiplication � for elements
({0, 1} ∪ 2Q)n ∪ {⊥} of the matrices. We have α1 � α2 = ⊥ if α1 = ⊥ or α2 = ⊥, and if
α1 = (k1, (x1, . . . , xn)) and α2 = (k2, (y1, . . . , yn)) then α1 � α2 = (k1 × k2, (z1, . . . , zn)) s.t.
for all 1 ≤ i ≤ n zi are defined as in (?) from Section 2.3. Note that due to determinism of the
SSTs we have that for every matrixMs and every state p there is at most one state q such that
Ms[p][q] 6= ⊥ and hence the only addition rules we need to introduce is α⊕⊥ = ⊥⊕ α = α,
0⊕ 0 = 0, 1⊕ 1 = 1 and κ⊕ κ = κ for κ ⊆ Q. It is easy to see that (MT ,×,1) is a monoid
and we give a proof in [11]. We say that the transition monoid MT of an SST T is 1-bounded
if in all entries (j, (x1, . . . , xn)) of the matrices of MT , j ≤ 1. A streaming string transducer
is aperiodic if its transition monoid is aperiodic.

4 FOTs ≡ Aperiodic 2WSTsf

I Theorem 7. A transformation f : Σω → Γω is FOT-definable if and only if it is definable
using an aperiodic two way transducer with star-free look-around.

Proof (Sketch). This proof is in two parts.
Aperiodic 2WSTsf ⊆ FOT. We first show that given an aperiodic 2WSTsf A, we can
effectively construct an FOT that captures the same transduction as A over infinite words.
Let A = (Q,Σ,Γ, q0, δ, F ) be an aperiodic 2WSTsf , where each transition outputs at most
one letter. Note that this is without loss of generality, since we can output any longer string
by having some extra states. Given A, we construct the FOT T = (Σ,Γ, φdom, C, φpos, φ≺)
that realizes the transduction of A. The formula φdom is the conjunction of formulae
is_string and ϕ where ϕ is a FO formula that captures the set of accepted strings of
A (obtained by proving L(A) is aperiodic [11]) and is_string is a FO formula that
specifies that the input graph is a string (see [11]). The copies of the FOT are the states
of A. For any two positions x, y of the input string, and any two copies q, q′, we need to
define φq,q

′

≺ . This is simply describing the behaviour of A on the substring from position
x to position y of the input string u, assuming at position x, we are in state q, and reach
state q′ at position y. The following lemma (proof in [11]) gives an FO formula ψq,q′(x, y)
describing this.

I Lemma 8. Let A be an aperiodic 2WSTsf with the Muller acceptance condition. Then for
all pairs of states q, q′, there exists an FO formula ψq,q′(x, y) such that for all strings s ∈ Σω
and a pair of positions x, y of s, s |= ψq,q′(x, y) iff there is a run from state q starting at
position x of s that reaches position y of s in state q′.

An edge exists between position x of copy q and position y of copy q′ iff the input string
u |= ψq,q′(x, y). The formulae φqγ(x) for each copy q specifies the output at position x in
state q. We have to capture that position x is reached from the initial position in state q,
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and also the possible outputs produced while in state q at x. The transition function δ
gives us these symbols. The formula

∨
δ(q,a)=(q′,dir,γ) La(x) captures the possible output

symbols. To state that we reach q at position x, we say ∃y[first(y) ∧ ψq0,q(y, x)]. The
conjunction of these two formulae gives φqγ(x). This completes the FOT T .
FOT ⊆ Aperiodic 2WSTsf . Given an FOT, we show that we can construct an aperiodic
2WST with star-free look-around capturing the same transduction over ω-words. For this,
we first show that given an FOT, we can construct 2WST enriched with FO instructions
that captures the same transduction as the FOT. The idea of the proof follows [13], where
one first defines an intermediate model of aperiodic 2WST with FO instructions instead
of look-around. Then we show FOT ⊆ 2WSTfo ⊆ 2WSTsf , to complete the proof.

The omitted details can be found in [11]. J

5 Aperiodic SST ⊂ FOT

I Lemma 9. A transformation is FO-definable if it is aperiodic-SST definable.

We show that every aperiodic 1-bounded SST definable transformation is definable using
FO-transducers. A crucial component in the proof of this lemma is to show that the variable
flow in the aperiodic 1-bounded SST is FO-definable ([11]). To construct the FOT, we make
use of the output structure for SST. It is an intermediate representation of the output, and
the transformation of any input string into its SST-output structure will be shown to be
FO-definable. For any SST T and string s ∈ dom(T ), the SST-output structure of s is a
relational structure GT (s) obtained by taking, for each variable X ∈ X , two copies of dom(s),
respectively denoted by Xin and Xout. For notational convenience we assume that these
structures are labeled on the edges. A pair (X, i) is useful if the content of variable X before
reading s[i] will be part of the output after reading the whole string s. This structure satisfies
the following invariants: for all i ∈ dom(s), (1) the nodes (Xin, i) and (Xout, i) exist only if
(X, i) is useful, and (2) there is a directed path from (Xin, i) to (Xout, i) whose labels are
same as variable X computed by T after reading s[i].

Xin

Xout

Y in

Y out

ε

ε

a

b

aaa

ε

ε

c

e

f

ε

ε

ε

ε

ε

ε

ε

ε

ε

bc

ε

ε

bc

ε

run q0 q1 q2 q3 q4 q5 q6

X := aXb

Y := aaa

X := c

Y := Y

X := X

Y := eY f

X := X

Y := Y

X := X

Y := Y bc

X := XY

Y := bc

We define SST-output structures formally in [11], however, the illustration above shows an
SST-output structure. We show only the variable updates. Dashed arrows represent variable
updates for useless variables, and therefore does not belong the SST-output structure. The
path from (Xin, 6) to (Xout, 6) gives the contents of X (ceaaafbc) after 6 steps. We write
OT for the set of strings appearing in right-hand side of variable updates.

We next show that the transformation that maps an ω-string s into its output structure
is FO-definable, whenever the SST is 1-bounded and aperiodic. Using the fact that variable
flow is FO-definable, we show that for any two variables X,Y , we can capture in FO, a path
from (Xd, i) to (Y e, j) for d, e ∈ {in, out} in GT (s) and all positions i, j.
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I Lemma 10. Let T be an aperiodic,1-bounded SST T . For all X,Y ∈ X and all
d, d′ ∈ {in, out}, there exists an FO[Σ]-formula pathX,Y,d,d′(x, y) with two free variables such
that for all strings s ∈ dom(T ) and all positions i, j ∈ dom(s), s |= pathX,Y,d,d′(i, j) iff there
exists a path from (Xd, i) to (Y d′

, j) in GT (s).

The proof of Lemma 10 is in longer version [11]. As seen in [11] (in Proposition 4) one can
write a formula φq(x) (to capture the state q reached) and formula ψRecP (to capture the
recurrence of a Muller set P ) in an accepting run after reading a prefix. For each variable
X ∈ X , we have two copies Xin and Xout that serve as the copy set of the FOT. As given by
the SST output-structure, for each step i, state q and symbol a, a copy is connected to copies
in the previous step based on the updates ρ(q, a). The full details of the FOT construction
handling the Muller acceptance condition of the SST are in [11].

6 Aperiodic 2WSTsf ⊂ Aperiodic SST

We show that given an aperiodic 2WST A = (Σ,Γ, Q, q0, δ, F ) with star-free look around
over ω-words, we can construct an aperiodic SST T that realizes the same transformation.

I Lemma 11. For every transformation definable with an aperiodic 2WST with star-free
look around, there exists an equivalent aperiodic 1-bounded SST.

Proof. While the idea of the construction is similar to [3], the main challenge is to eliminate
the star-free look-around for infinite strings from the SST, preserving aperiodicity. As an
intermediate model we introduce streaming ω-string transducers with star-free look-around
SSTsf that can make transitions based on some star-free property of the input string. We
first show that for every aperiodic 2WSTsf one can obtain an aperiodic SSTsf , and then
prove that the star-free look arounds can be eliminated from the SSTsf .

(2WSTsf ⊂ SSTsf ). One of the key observations in the construction is that a 2WSTsf
can move in either direction, while SSTsf cannot. Since we start with a deterministic
2WSTsf that reads the entire input string, it is clear that if a cell i is visited in a state
q, then we never come back to that cell in the same state. We keep track in each cell i,
with current state q, the state f(q) the 2WSTsf will be in, when it moves into cell i+ 1
for the first time. The SSTsf will move from state q in cell i to state f(q) in cell i+ 1,
keeping track of the output produced in the interim time; that is, the output produced
between q in cell i and f(q) in cell i + 1 must be produced by the SSTsf during the
move. This output is stored in a variable Xq. The state of the SSTsf at each point of
time thus comprises of a pair (q, f) where q is the current state of the 2WSTsf , and f
is the function which computes the state that q will evolve into, when moving to the
right, the first time. In each cell i, the state of the SST will coincide with the state
the 2WSTsf is in, when reading cell i for the first time. In particular, in the SSTsf ,
we define δ′((q, f), r, a, p) = (f ′(q), f ′) where f ′(q) = f ′(f(t)) if in the 2WSTsf we have
δ(q, r, a, p) = (t, γ,−1). f ′(q) gives the state in which the 2WSTsf will move to the right
of the current cell, but clearly this depends on f(t), the state in which the 2WSTsf will
move to the right from the previous cell. The variables of the SSTsf are of the form
Xq, where q is the current state of the SSTsf . Update of Xq depends on whether the
2WSTsf moves left, right or stays in state q. For example, Xq is updated as Xtρ(Xf(t))
if in the 2WST, δ(q, r, a, p) = (t, γ,−1) and f(t) is defined. The definition is recursive,
and Xt handles the output produced from state t in cell i− 1. We allow all subsets of Q
as Muller sets of the SSTsf , and keep any checks on these, as part of the look-ahead.
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A special variable O is used to define the output of the Muller sets, by simply updating
it as O := Oρ(Xq) corresponding to the current state q of the 2WSTsf (and (q, f) is the
state of the SSTsf ). The details of the correctness of construction are in [11].
(SSTsf ⊂ SST). An aperiodic SST with star-free lookaround is a tuple (T,B,A) where
A = (PA,Σ, δA, Pf ) is an aperiodic, deterministic Muller automaton called a look-ahead
automaton, B = (PB ,Σ, δB) is an aperiodic automaton called the look-behind automaton,
and T is a tuple (Σ,Γ, Q, q0, δ,X , ρ, F ) where Σ, Γ, Q, q0, X , ρ, and F are defined in the
same fashion as for ω-SSTs, and δ : Q×PB ×Σ×PA → Q is the transition function. On
a string a1a2 . . . , while processing symbol ai, we have in the SSTsf , δ((q, pB , pA), ai) = q′,
(and the next transition is δ((q′, p′B , p′A), ai+1)) if (i) the prefix a1a2 . . . ai ∈ L(pA), (ii)
the suffix ai+1ai+2 · · · ∈ L(pB), where L(pA) (L(pB)) denotes the language accepted
starting in state pA (pB). We further assume that the look-aheads are mutually exclusive,
i.e. for all symbols a ∈ Σ, all states q ∈ Q, and all transitions q′ = δ(q, r, a, p) and
q′′ = (q, r′, a, p′), we have that L(Ap) ∩ L(Ap′) = ∅ and L(Br) ∩ L(Br′) = ∅. In [11], we
show that for any input string, there is atmost one useful, accepting run in the SSTsf ,
while in Lemma 29 in [11], we show that adding (aperiodic) look-arounds to SST does
not increase their expressiveness.

The proof sketch is now complete. J

7 Conclusion

We extended the notion of aperiodicity from finite string transformations to that on infinite
strings. We have shown a way to generalize transition monoids for deterministic Muller
automata to streaming string transducers and two-way finite state transducers that capture
the FO definable global transformations. An interesting and natural next step is to investigate
LTL-definable transformations, their connection with FO-definable transformations, and
their practical applications in verification and synthesis.
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Abstract
It is known that a language of finite words is definable in monadic second-order logic – MSO –
(resp. first-order logic – FO –) iff it is recognized by some finite automaton (resp. some aperiodic
finite automaton). Deciding whether an automaton A is equivalent to an aperiodic one is known
to be PSPACE-complete. This problem has an important application in logic: it allows one to
decide whether a given MSO formula is equivalent to some FO formula. In this paper, we address
the aperiodicity problem for functions from finite words to finite words (transductions), defined by
finite transducers, or equivalently by bimachines, a transducer model studied by Schützenberger
and Reutenauer. Precisely, we show that the problem of deciding whether a given bimachine is
equivalent to some aperiodic one is PSPACE-complete.
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1 Introduction

Rational languages and the aperiodicity problem

The theory of rational languages (of finite words) is robust, due to many characterizations
coming from different domains, such as computation, logic and algebra. For instance, it
is well-known that a language is rational iff it is recognized by some finite automaton,
iff it is definable in monadic second-order logic with one successor (MSO), iff its right
syntactic congruence (also known as Myhill-Nerode congruence) has finite index. The latter
algebraic characterization is closely related to the existence of a unique minimal deterministic
automaton for every rational language, the states of which are the classes of the right syntactic
congruence. Connections between computation, logic and algebra have been established for
subclasses of rational languages. Perhaps the most important example, based on seminal
works by Schützenberger [21], McNaughton and Papert [16], is the class of aperiodic languages,
characterized by aperiodic automata, first-order logic (FO), and aperiodic right syntactic
congruences. See also [23] for other classes.

Thanks to the (effective) logic-automata connections, results in logic can be obtained from
results in automata, which are well-suited for algorithmic analysis. An important example
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which motivates this paper is the FO in MSO definability problem: given an MSO formula,
is it equivalent to some FO formula, over finite strings? In automata-theoretic terms, this
amounts to decide whether a given automaton A is equivalent to an aperiodic one. We
illustrate this problem on an example, by considering the following deterministic automata
which both recognize a∗ (all states are final, and all states but q1 are initial):

q0 q1

a

a

p0

a

Roughly, an automaton is aperiodic if for some n, for all words u, un and un+1 behave the
same with respect to their effect on states. For instance, in the left automaton, any word has
one of the two following behaviours: either sending q0 to q0 and q1 to q1, or q0 to q1 and q1
to q0. This automaton is not aperiodic because an and an+1 have necessarily two different
behaviours, for all n ≥ 0. However, this left automaton is equivalent to the right one, which
is aperiodic. In general, it is not easy to see whether some automaton A is equivalent to an
aperiodic one, and this problem is known to be PSpace-complete when A is deterministic
To decide it, the connection between automata and algebra plays an important role. Indeed,
since aperiodic automata and aperiodic right congruences both characterize the same class
of languages, it suffices to (1) minimize A into the unique minimal automaton Am (which is
an effective representation of the right syntactic congruence of L(A)) and (2) decide whether
Am is aperiodic. It is well-known that step (1) is in PTime since A is deterministic, and
step (2) is known to be in PSpace [22], and this is optimal [5]. In this paper, our goal is to
extend this decidability result to functions of finite words, called transductions.

Rational transductions and the aperiodicity problem

A transduction is a function of finite words. Rational transductions are the transductions
realized by finite automata with outputs, called transducers [2]. As an example, consider the
three following transducers:

q0 q1

a|b

a|b

p0

a|b

s0 s1

a|a

a|b

The left one maps any word of the form an to bn. The middle one realizes the same
transduction, and the right one maps any word of the form a2n to (ab)n, and any a2n+1

to (ab)na. Aperiodic rational transductions are the transductions realized by transducers
with aperiodic underlying input automata. E.g., the transducer on the left is not aperiodic,
but is equivalent to the middle one, which is aperiodic. Hence both transducers realize an
aperiodic rational transduction. However, the transducer on the right is not aperiodic, and
is not equivalent to any aperiodic transducer. The left and right transducers are almost the
same, but one realizes an aperiodic rational transduction while the other does not. It shows
that to decide whether a transducer is equivalent to an aperiodic one, outputs must be taken
into account as well, reasoning only on the underlying input automata is not sufficient.

The aperiodicity problem asks, given some effective representation of a rational trans-
duction, whether this transduction is aperiodic. It has been shown in [11] that two-way
transducers (resp. aperiodic two-way transducers [14, 4]) are expressively equivalent to
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MSOT (resp. FOT), a formalism introduced by Courcelle in the general context of graph
transductions [7]. This equivalence carries over to the subclass of rational functions (resp.
aperiodic rational functions) by considering MSOT (resp. FOT) with the natural restriction
of order-preserving [3, 12]. As for languages, solving the aperiodicity problem also solves the
logic definability problem FOT in MSOT (resp. order-preserving FOT in order-preserving
MSOT). As we have seen, for rational languages, the aperiodicity checking procedure heavily
relies on the existence of a unique minimal deterministic automaton. However in the setting
of transductions, determinism is not sufficient to capture all rational transductions. In
transducer theory, the notion of determinism is called sequentiality, a transducer being
sequential if its underlying input automaton is deterministic. Consider the transduction swap
that swaps the first and last letter of a word, i.e. maps any word of the form σwβ, where
σ, β are symbols and w is a word, to βwσ. If the alphabet has more than one symbol, the
transduction swap cannot be realized by a sequential transducer, although it can be easily
shown that it is rational. The reason is that any transducer realizing it should guess in
advance the last symbol β, by using non-determinism.

To overcome this issue, it has been shown that any rational transduction is the composition
of a (left) sequential and a right sequential transduction [10]. In other words, any rational
transduction can be realized by composing a sequential transducer that reads input words
from right to left, and a sequential transducer that reads words from left to right. This
idea has been captured in a single deterministic device called bimachine, introduced by
Schützenberger [20] and studied by Eilenberg [9], and Reutenauer and Schützenberger [17].
Intuitively, a bimachine is made of two deterministic automata L and R, and some output
function ω, and works as follows: R processes an input word w from right to left and
annotates it with its states. Symmetrically, L processes w from left to right and annotates it
with its states. Finally, the output function ω is applied to any triple (r, σ, l) of the annotated
word, where r is a state of R, σ is an input symbol of w, and l is a state of L. For example,
consider again the transduction swap on the alphabet {a, b}. It is realized by the following
bimachine with a left deterministic automaton that remembers whether the prefix read so
far is empty (state l0), starts with a (state la) or starts with b (state lb). Symmetrically, the
deterministic right automaton remembers information about suffixes. Finally, the output
function ω maps any triple of the form (l0, σ, rβ) or (lβ , σ, r0) to β, and any other triple
(l, σ, r) to σ, for σ, β ∈ {a, b}. An execution on aabb is illustrated on the next figure:

l0

la

lb

a

b

a, b

a, b r0

ra

rb

a

b

a, b

a, b

l0 la la la la

a a b b

r0rbrbrbrb

b a b a

ω ω ω ω

input:

output:Left automaton Right automaton

Contributions

A bimachine is aperiodic if its two left and right automata are aperiodic. Aperiodic bimachines
define exactly aperiodic rational transductions [18]. In this paper, our main result is to
provide optimal complexity (PSpace-complete) of the aperiodicity problem for rational
transductions represented by bimachines.

We detail our contributions more precisely. In language theory, solving the aperiodicity
problem relies on the existence of a unique deterministic automaton. For transductions,
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there is no unique minimal (deterministic) bimachine in general, but a canonical bimachine
attached to every rational transduction has been defined by Reutenauer and Schützenberger
[17], and this machine can be effectively constructed from a transducer or a bimachine
realizing the transduction. As a first contribution, we show that a rational transduction is
aperiodic iff its canonical bimachine is aperiodic. As a consequence, this gives an algorithm to
solve the aperiodicity problem: (1) construct the canonical bimachine and (2) check whether
its left and right automata are aperiodic, using the algorithm of [5].

Unfortunately, step (1) cannot be done in PTime and this is unavoidable: the canonical
bimachine may be exponentially bigger than the initial bimachine. Instead of constructing
the canonical bimachine, we show that it is sufficient to construct another minimal bimachine
of polynomial size, which is aperiodic iff the function it realizes is aperiodic rational. This
other bimachine is constructed via a PTime generalization of a minimization procedure for
automata to bimachines. This yields in the end a PSpace algorithm, whose correctness is
proved based on the aperiodicity of the canonical bimachine. The lower bound is immediate
as it is already the case of deterministic automata.

Comparison with [13]

The aperiodicity problem was already shown to be decidable in [13], however with a more
general procedure working for any (decidable) variety of congruences (e.g. the class of
commutative congruences). More precisely, it is shown in [13] that the following problem is
decidable: given a transducer, is it equivalent to some transducer whose transition congruence
belongs to some decidable variety V. It is shown that a transduction is in V iff one the
minimal bimachines is in V, and hence decidability comes as follows: construct the set of
all minimal bimachines (shown to be finite) and test whether one of them belongs to V.
Instantiated by the variety of aperiodic congruences, this solves the aperiodicity problem,
however with non-optimal complexity (several exponentials). Moreover, it is shown in [13]
that the canonical bimachine of Reutenauer and Schützenberger does not necessarily preserve
the equalities of a variety in general. In this paper, we show instead that for aperiodic
congruences, the canonical bimachine is necessarily aperiodic if the transduction is, a result
which is crucial to obtain an optimal procedure.

A last improvement compared to [13] is the following: in [13], we defined a rational
transduction to be aperiodic (and more generally in a variety V) if it is realized by an
unambiguous aperiodic transducer (or an unambiguous V-transducer). This definition was
motivated by the fact that unambiguous transducers already capture all rational functions.
For a general variety V, this left open the problem of whether any transduction realized
by a V-transducer is realizable by an unambiguous V-transducer. In this paper, we close
this problem for the case of aperiodicity: as we show, a transduction is realized by some
aperiodic transducer (not necessarily unambiguous) iff its canonical bimachine is aperiodic,
and any aperiodic bimachine can be turned into an aperiodic unambiguous transducer.

2 Rational languages and transductions

Words and languages

An alphabet Σ is a finite set of symbols, and a word over Σ is an element of the free monoid
Σ∗ whose neutral element is denoted by ε. For w ∈ Σ∗, we write |w| for its length and in
particular, |ε| = 0. For a non-empty word w and i ∈ {1, . . . , |w|}, we denote by w[i] the ith
symbol of w. For u, v ∈ Σ∗, we write u � v is u is a prefix of v and in this case we denote by
u−1v the unique word v′ such that v = uv′.
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By u ∧ v we denote the longest common prefix of any two words u and v, and by ‖u, v‖
the value |u|+ |v|− 2|u∧ v|. It is well-known that ‖., .‖ defines a distance. Finally, a language
L ⊆ Σ∗ is a set of words.

Finite automata

A finite automaton (or just automaton for short) over an alphabet Σ is a tuple A = (Q, I, F,∆)
where Q is a finite set of states, I ⊆ Q (resp. F ⊆ Q) is a set of initial (resp. final) states,
and ∆ ⊆ Q× Σ×Q is a transition relation. A run r of an automaton A = (Q, I, F,∆) on a
word w ∈ Σ∗ of length n is a word r = q0 . . . qn over Q such that (qi, w[i+ 1], qi+1) ∈ ∆ for
all i ∈ {0, . . . , n− 1}. The run r is accepting if q0 ∈ I and qn ∈ F . A word is accepted by A
if there exists an accepting run of A over it. The language recognized by A is the set JAK of
words accepted by A. We write p w−→A q (or simply p w−→ q) whenever there exists a run r on
w such that r[1] = p and r[|r|] = q. An automaton A is deterministic if |I| = 1 and for any
two rules (p, σ, q1), (p, σ, q2) ∈ ∆, it holds that q1 = q2. It is unambiguous if for any word
there exists at most one accepting run of A on it. It is complete if for every state p ∈ Q and
symbol σ ∈ Σ, (p, σ, q) ∈ ∆ for some q ∈ Q.

Congruences and recognizability

Equivalently, rational languages can be defined as the languages recognized by congruences
of finite index. We present these notions. Let Σ be an alphabet and let ∼ be an equivalence
relation on Σ∗. We say that ∼ is a right congruence (resp. left congruence) if it satisfies
u ∼ v ⇒ uσ ∼ vσ (resp. u ∼ v ⇒ σu ∼ σv) for all u, v ∈ Σ∗, σ ∈ Σ. A congruence is both
a left and right congruence. For u ∈ Σ∗, the equivalence class of u is denoted by [u]∼ (or
[u] if ∼ is clear from the context), and Σ∗/∼ = {[u]∼ | u ∈ Σ∗} is called the quotient of Σ∗
by ∼. We say that ∼ has finite index if Σ∗/∼ is finite. Concatenation naturally extends to
congruence classes as follows: for all u, v ∈ Σ∗, [u]∼[v]∼ = [uv]∼. Since ∼ is a congruence,
the latter is well-defined. With this operation, Σ∗/∼ forms a monoid whose neutral element
is [ε]∼.

I Example 1. We will extensively use the following examples of congruences in this paper:
the syntactic congruence ≡L of a language L, the transition congruence ≈A of an automaton
A with set of states Q and if A is deterministic with initial state q0, the right transition
congruence ∼A. They are defined as follows, for any two words u, v ∈ Σ∗

u ≡L v ⇔ (∀x, y ∈ Σ∗, xuy ∈ L ⇔ xvy ∈ L)
u ≈A v ⇔ (∀p, q ∈ Q, p

u−→A q ⇔ p
v−→A q)

u ∼A v ⇔ (∀q ∈ Q, q0
u−→A q ⇔ q0

v−→A q)

In particular, if A is deterministic and complete, then [u]∼A can be identified with the state
of A reached by u from the initial state. In this paper, we often make this identification,
implicitly assuming that A is complete1, and rather denote [u]A instead of [u]∼A .

A language L ⊆ Σ∗ is recognized by a congruence ∼ if it is equal to the union of some
equivalence classes of Σ∗/∼, i.e. L = {u ∈ Σ∗ | [u] ∈ P} for some P ⊆ Σ∗/∼. E.g., L is
recognized by ≡L, by taking P = L/≡L

, and any language L is rational iff it is recognized by
a congruence of finite index (see for instance [23]).

1 Any automaton can be made complete in polynomial-time.
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Equivalence relations can be compared with respect to their granularity: if ∼1,∼2 are
two equivalence relations on Σ∗, we say that ∼1 is finer than ∼2 (or ∼2 is coarser than ∼1),
if for all u, v ∈ Σ∗ such that u ∼1 v, it holds u ∼2 v. We write ∼1 v ∼2 to mean that ∼1 is
finer than ∼2. E.g., ≡L is the coarsest congruence recognizing L, for any language L. In this
paper, we also compare deterministic automata A1,A2 with respect to their right transition
congruence, by saying that A1 is finer than A2 if ∼A1 v ∼A2 . We write A1 v A2 when A1
is finer than A2. For example, the minimal deterministic automaton recognizing a language
L is the coarsest deterministic automaton recognizing L with respect to v.

Rational transductions and finite transducers

A transduction f over a finite alphabet Σ is a partial function from Σ∗ to Σ∗, whose domain
is denoted by dom(f). We are interested in the class of rational transductions, defined by
finite transducers. A finite transducer 2 (or just transducer for short) over an alphabet Σ
is a tuple T = (A, o, i , t) where A = (Q, I, F,∆) is a finite automaton, o : ∆ → Σ∗ is the
output function, i : I → Σ∗ is the initial function and t : F → Σ∗ is the final function. The
transducer T realizes a binary relation JT K ⊆ Σ∗×Σ∗ defined as follows. Let r = q0 . . . qn be
a run of A on some word u. We write q0

u|v−−→T qn (or simply q0
u|v−−→ qn) whenever q0

u−→A qn
and v = o(q0, u[0], q1) . . . o(qn−1, u[n], qn). If r is an accepting run and w = i(q0)vt(qn) then
we say that (u,w) is realized by T , call u an input word and w an output word. The relation
realized by T is the set JT K = {(u,w) | (u,w) is realized by T }.

A transducer T = (A, o, i , t) is functional if it realizes a transduction (a function).
This property is decidable in PTime (see [1] for instance). T is called unambiguous (resp.
sequential) if A is unambiguous (resp. deterministic). In both cases JT K is a transduction and
we denote (u,w) ∈ JT K by JT K(u) = w. The class of rational transductions (resp. sequential
transductions) is defined as the class of transductions realized by finite transducers (resp.
sequential transducers). It is also known (see [2]) that a transduction is rational iff it is
realized by some unambiguous transducer.

Aperiodicity

We define the notion of aperiodicity for congruences, automata, transducers and rational
transductions. First, a congruence ∼ on Σ∗ is aperiodic if for some n > 0 and all words
w ∈ Σ∗, we have wn ∼ wn+1. Aperiodicity is stable by taking coarser congruences, i.e. if
∼1 v ∼2 and ∼1 is aperiodic, then so is ∼2. A deterministic automaton A is aperiodic
if ≈A is aperiodic. In other words, A is aperiodic if for some n > 0, for all words w and
states p, q, we have p wn

−−→ q iff p
wn+1

−−−→ q. Deciding whether a deterministic automaton is
aperiodic is PSpace-complete [5]. Since the minimal deterministic automaton AL recognizing
a language L is the coarsest automaton recognizing L, and aperiodicity is stable by taking
coarser congruences, AL is aperiodic iff there is some aperiodic deterministic automaton
recognizing L. Therefore, deciding whether a deterministic automaton is equivalent to some
aperiodic one is also PSpace-complete, because minimizing a deterministic automaton can
be done in PTime. Finally, a transducer T = (A, o, i , t) is aperiodic if A is aperiodic, and
a transduction f is aperiodic rational (resp. aperiodic sequential) if it is realized by some
aperiodic transducer (resp. aperiodic sequential transducer).

2 This type of transducer is sometimes called real-time transducer [19]. In the general case, a transition
of a transducer may be labelled by any word, even empty. However such a transducer is equivalent to a
real-time one if it realizes a function.
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3 Bimachines and minimization

In this section we define bimachines, and associated operators Left and Right. Then we define
canonical bimachines, that will be used in Section 4 to prove that the minimal bimachine
Left(Right(B)) is aperiodic iff the transduction realized by the bimachine B is.

3.1 Bimachines
A bimachine is a model of computation, as expressive as (functional) transducers, introduced
by Schützenberger in [20]. It is composed of two automata, an automaton reading words
deterministically backwards, called a right automaton, and a classical deterministic automaton
called here a left automaton. The right automaton acts as a deterministic look-ahead. An
output function produces words based on the current symbol, and the states of the left and
right automata.

More precisely, a right automaton R = (Q, I, F,∆) is an automaton such that I is a
singleton, and transitions are backward deterministic: for any transitions (p1, σ, q),(p2, σ, q)
∈ ∆ it holds that p1 = p2. The only difference with a (classical) automaton lies in the
notion of accepting runs (and therefore in the notion of recognized language): a run r is
accepting if r[1] is final and r[|r|] is initial. Therefore, a right automaton can be thought
of as an automaton reading words backwards. We write s2

w←−R s1 instead of s2
w−→R s1

(with the same meaning) to emphasize that R is a right automaton, and graphically any
transition (q, σ, p) ∈ ∆ is depicted with an arrow from p to q. For instance, the accepting
run on ba of the right automaton of the bimachine depicted in Section 1 is rbrbr0. The left
transition congruence ∼R of R is defined by u ∼R v ⇔ (∀r ∈ R, r u←−R r0 ⇔ r

v←−R r0).
Implicitly assuming that R is complete, we identify [u]∼R (also just denoted by [u]R) with
the state r ∈ R such that r u←−R r0. We say that R is finer than a right automaton R′
(written R v R′) if ∼R v ∼R′ . A left automaton is a deterministic automaton, called ’left’
to emphasize its role in the context of bimachines.

A bimachine over an alphabet Σ is a tuple B = (L,R, ω, λ, ρ) where L = (L, {l0}, FL,∆L)
is a left automaton, R = (R, {r0}, FR,∆R) is a right automaton, ω : L× Σ×R→ Σ∗ is the
output function, λ : FR → Σ∗ is the left final function and ρ : FL → Σ∗ is the right final
function. Both automata L and R must recognize the same language, i.e. JLK = JRK.

We now define the transduction JBK realized by B. First, we extend the function ω to
L × Σ∗ × R as follows: for all states r ∈ R and l ∈ L, all u ∈ Σ∗ and σ ∈ Σ, ω(l, ε, r) = ε,
and ω(l, uσ, r) = ω(l, u, r′)ω(l′, σ, r) where l u−→L l′ and r′

σ←−R r. Now, the domain dom(B)
of B is JLK = JRK. For all u ∈ JLK, if l0

u−→L l for some l ∈ FL and r u←−R r0 for some r ∈ FR,
the image of u by B is defined by JBK(u) = λ(r)ω(l0, u, r0)ρ(l).

3.2 Left and right bimachine minimization
Sequential transducers can be minimized by producing the outputs as early as possible [6]. No
such procedure exist for transducers in general. For bimachines, however, a similar procedure
is proposed in [17]. This one applies the “as early as possible” principle, but parameterized by
the look-ahead information of the right automaton. We describe this minimization, exhibit
some useful properties, and provide a PTime minimization algorithm.

Let f be a rational transduction realized by a bimachine B whose right automaton
is R. Our goal here is to construct a bimachine Leftf (B) = (Leftf (R),R, ω, λ, ρ), which
realizes f and has the minimal left automaton among bimachines realizing f with R as
its right automaton. We first give the construction of a minimal (wrt R) left automaton
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Leftf (R) (or simply Left(R) when it is clear from context). For simplicity, we will write
[w]R instead of [w]∼R for any word w ∈ Σ∗. For any two words w and u, we define 3

f̂[w]R(u) = ∧{f(uv) | v ∈ [w]R ∩ u−1dom(f)}.
This word is the longest possible output upon reading u, knowing that the suffix is in

[w]R. The states of Leftf (R) will be the classes of the right congruence ∼L defined by u ∼L v
if for any letter σ, any w, z ∈ Σ∗ we have:

uz ∈ dom(f) ⇔ vz ∈ dom(f)
f̂[ε]R(uz)−1f(uz) = f̂[ε]R(vz)−1f(vz), if uz, vz ∈ dom(f)
f̂[σw]R(uz)−1f̂[w]R(uzσ) = f̂[σw]R(vz)−1f̂[w]R(vzσ)

Intuitively, the second condition ensures that after reading uz and vz, Leftf (R) outputs
the same word by the final output function, and the third condition ensures that the
output produced on σ is the same after reading uz and vz. From ∼L we define the
automaton Leftf (R) = (Σ∗/∼L

, {[ε]∼L
}, F,∆) where F = {[w]∼L

| w ∈ dom(f)} and
∆ = {([w]∼L

, σ, [wσ]∼L
) | σ ∈ Σ, w ∈ Σ∗}. Finally, the output functions are defined by:

ω([u]∼L
, σ, [v]R) = f̂[σv]R(u)−1f̂[v]R(uσ), λ([v]R) = f̂[v]R(ε) and ρ([u]∼L

) = f̂[ε]R(u)−1f(u).
Symmetrically one can define Rightf (L) (and hence Rightf (B)).
The correctness of these constructions was shown in [17], i.e. Left(B) and Right(B) both

realize f . The following proposition shows that Left(R) and Right(L) are minimal automata
for which the bimachines (with fixed R and L respectively) realize f .4

I Proposition 2. If B = (L,R, ω, λ, ρ) is a bimachine, then L v Left(R) and R v Right(L).

One contribution of this paper is to show that the left automaton can be minimized in
PTime (for a fixed right automaton), and symmetrically for the right automaton.

I Theorem 3. Let B be a bimachine. One can compute Left(B) (and Right(B)) in PTime.

Proof. Let B = (L,R, ω, λ, ρ) be a bimachine realizing a function f with automata L =
(QL, l0, FL,∆L) andR = (QR, r0, FR,∆R). W.l.o.g. we assume that L is complete (otherwise
we complete it in polynomial time). The algorithm works in two steps: (i) make the output
production earliest, (ii) run state minimization on the left automaton.

Step 1: making the bimachine earliest. We construct B′ = (L,R, ω′, λ′, ρ′) a bimachine
realizing f with the same automata, but with the earliest leftmost possible outputs:

ω′([u]L, σ, [v]R) = f̂[σv]R(u)−1f̂[v]R(uσ) ρ′([u]L) = f̂[ε]R(u)−1f(u) λ′([v]R) = f̂[v]R(ε).

These functions are well-defined as they do not depend on the choice of the representatives u
(see the proof of Proposition 2). We have to show that these output values can be computed
in polynomial time. The algorithm is very close to the ones described in [6], for sequential
functions, which is why we only give the main ideas. We first remark, as in the proof of
Proposition 2, that for any words u, v, f̂[v]R(u) = λ([uv]R)ω([ε]L, u, [v]R)β([u]L, [v]R) with:

β([u]L, [v]R) =
∧{

w | ∃x ∈ [v]R ∩ u−1dom(f), ω([u]L, x, [ε]R)ρ([ux]L) = w
}

As in [6], to compute the values β([u]L, [v]R) we can take the directed graph of the automaton
L × R with the outputs of ω labelling the edges. In order to account for the functions λ
and ρ we add two vertices, a source s pointing to the initial states with the edges labelled

3 As a convention, the longest common prefix of an empty set of words is the empty word, that is: ∧∅ = ε.
4 It was already shown in [17] for total functions, we extend it with a similar proof to our setting, that is,
when the function is not total, and the automata of the bimachine both recognize dom(f).
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accordingly by the values of the initial function, and a target vertex t with edges pointing to
it from the final states with the edges labelled by the final function. The value of β([u]L, [v]R)
can be seen as the longest common prefix of the labels of all the paths starting in ([u]L, [v]R)
and ending in the target vertex t. These values can be computed in polynomial time [6].

Step 2: minimizing the left automaton. Now we describe a minimization algorithm
inspired by Moore’s minimization algorithm for DFA. It consists in computing successively
finer equivalence relations ∼0,∼1, . . . over the states of L. The only difference is in the initial
partition, for which we have to make sure that outputs are compatible. More precisely, for
all l, l′ ∈ QL and i ≥ 0, we let:

l ∼0 l
′ if l ∈ FL ⇔ l′ ∈ FL, ρ′(l) = ρ′(l′), and ∀r, σ, ω′(l, σ, r) = ω′(l′, σ, r)

l ∼i+1 l
′ if l ∼i l′ and ∀σ, l.σ ∼i l′.σ

where l.σ denotes the state reached by L after reading the letter σ from l. We extend this
notation to words in the natural way: l.u is the state such that l u−→L l.u (it is unique as L is
deterministic and complete).

Since ∼i+1 v ∼i for all i ≥ 0, this sequence converges after at most |QL| steps to an
equivalence relation that we denote by ∼∗. Moreover, ∼0 can be computed in PTime from
B′, and each ∼i can be computed in PTime from ∼i−1, for i > 0.

We extend the relations ∼i to Σ∗ as follows: u ∼i v if l0.u ∼i l0.v. We show in the long
version of this paper that ∼∗=∼L (remind that ∼L is the right congruence associated with
R and used to define Left(R)). To give an idea of the proof, we first show by induction
on i ≥ 0 that for all u, v ∈ Σ∗, u ∼i v iff for all z ∈ Σi, all w ∈ Σ∗ and all σ ∈ Σ, we
have (i) uz ∈ dom(f) iff vz ∈ dom(f), (ii) ρ′([uz]L) = ρ′([vz]L) (if uz, vz ∈ dom(f)), and
(iii) ω′([uz]L, σ, [w]R) = ω′([vz]L, σ, [w]R). This implies that u ∼∗ v iff the properties (i)–(iii)
holds for all z ∈ Σ∗. Finally, we conclude by noticing that ρ′([uz]L) = f̂[ε]R(uz)−1f(uz), and
ω′([uz]L, σ, [w]R) = f̂[σw]R(uz)−1f̂[w]R(uzσ).

Clearly, if l ∼∗ l′, then for all σ ∈ Σ, l.σ ∼∗ l′.σ. Moreover, if l ∈ FL, then since
∼∗ v ∼0, we also get l′ ∈ FL, and conversely. Therefore one can define the left automaton
L/∼∗ = (QL/∼∗ , FL/∼∗ , [l0]∼∗ , δ) where δ([l]∼∗ , σ) = [l.σ]∼∗ , and we have JL∼∗K = JLK.

Finally, ∼∗=∼L implies that the bimachine Leftf (B) is isomorphic to the bimachine
(L/∼∗ ,R, ω′′, λ′, ρ′′) where ω′′([u]∼∗ , σ, [v]R) = ω′([u]L, σ, [v]R) and ρ′′([u]∼∗) = ρ′([u]L).
Note that these output functions are well-defined since, by definition, ∼∗ is compatible with
the output functions λ′, ω′, ρ′. Moreover, L/∼∗ can be computed in PTime since ∼∗ can be
computed in PTime, and the output functions ω′′, ρ′′ can as well be computed in PTime,
which concludes the proof. A last remark is that a Hopcroft-like minimization algorithm
[15], initialized with ∼0 as well, would be more efficient, but with a more involved proof. J

3.3 A minimal and canonical bimachine
For a given function f and two bimachines B1 and B2 realizing it, we say that B1 is finer
than B2, denoted again by B1 v B2, if we have both L1 v L2 and R1 v R2, with Li and Ri
being the left and the right automata of bimachine Bi, respectively. We say that a bimachine
is minimal if there is no coarser bimachine realizing the same transduction. There is no
unique minimal bimachine in general [17]. In this section, we explain the construction of a
minimal and canonical bimachine associated with a rational transduction, the main result
of [17]. It relies on (a) a canonical right automaton, that we detail hereafter, and (b) the
construction of a minimal left automaton from a right automaton, as described in Section 3.2.
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The construction of a canonical right automaton is based on a left congruence associated
with a function that measures the effect of suffixes on the translation of prefixes. The left
congruence of a transduction f on Σ is defined ∀u, v ∈ Σ∗ by u↼fv if:
∀w ∈ Σ∗, wu ∈ dom(f)⇔ wv ∈ dom(f) and
sup{‖f(wu), f(wv)‖ | wu,wv ∈ dom(f)} <∞

This congruence has finite index if f is rational [17]. The converse does not hold but if
additionally f−1 preserves language rationality, then f is rational. For the rest of this
section [w] denotes the class of w in Σ∗/↼f

. The canonical right automaton for f is Rf =
(Σ∗/↼f

, {[ε]}, F,∆) where F = {[w] | w ∈ dom(f)} and ∆ = {([σw], σ, [w]) | σ∈Σ, w∈Σ∗}.

I Remark. We can define symmetrically the right congruence of f by u ⇀f v if ∀w,
uw ∈ dom(f) ⇔ vw ∈ dom(f) and sup{‖f(uw), f(vw)‖ | uw, vw ∈ dom(f)} < ∞ and
based on this right congruence, define the canonical left automaton Lf .

The automata Rf and Lf are coarser than any right (resp. left) automaton of a bimachine
realizing f . This was shown in [13] but only for the case of total functions. The proof is
similar in the general case and we give it in the long version of this paper for completeness.

I Proposition 4. Let f be a transduction, and let B = (L,R, ω, λ, ρ) be a bimachine realizing
f . Then L v Lf and R v Rf .

The canonical bimachine [17] associated with a rational transduction f is the bimachine
Bf = (Leftf (Rf ),Rf , ωf , λf , ρf ) where:

ωf ([u]∼L
, σ, [v]Rf

) = f̂[σv]Rf
(u)−1f̂[v]Rf

(uσ)
λf ([v]Rf

) = f̂[v]Rf
(ε)

ρf ([u]∼L
) = f̂[ε]Rf

(u)−1f(u)

By its definition, the bimachine Bf is canonical, i.e. does not depend on any description of
f . It is also minimal: indeed, suppose that f is realized by a bimachine B = (L,R, ω, λ, ρ)
such that Bf v B, i.e. Left(Rf ) v L and Rf v R. Then ω (and similarly λ, ρ) can be
restricted to ω′([u]L, σ, [v]Rf

) = ω([u]L, σ, [v]R), which is well-defined since Rf v R, so that
the bimachine (L,Rf , ω′, λ′, ρ′) realizes f . By Proposition 2 we get L v Left(Rf ). Moreover,
by Proposition 4, we also have R v Rf .

Finally, Bf is computable when f is given by a bimachine or a transducer [17].

4 Characterization of aperiodic transductions

In this section we show that to decide if a transduction given by a bimachine B is aperiodic,
one only needs to minimize B, i.e. to construct Left(Right(B)), which yields a minimal
bimachine, and check its aperiodicity (Section 4.2). To prove the correctness of this procedure,
we rely on the following characterization proved in Section 4.1: a transduction f is aperiodic
if and only if the canonical bimachine Bf is aperiodic. This is in contrast with other varieties
for which the canonical bimachine does not preserve membership in general [13]. The latter
characterization does not yield an optimal algorithm since the canonical bimachine may be
exponentially larger than the initial bimachine.

4.1 Characterization through canonical bimachine
In this section, given a rational transduction f over some alphabet Σ, we show that it is
aperiodic iff the canonical bimachine Bf associated with f , defined in the previous section,
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is aperiodic. It relies on two important facts: (i) the left congruence ↼f of an aperiodic
transduction is aperiodic (Proposition 5), (ii) any aperiodic rational transduction f can
be decomposed into f = ` ◦ labelRf

such that ` is realized by some aperiodic sequential
transducer, and labelRf

annotates every input position i with the class of the suffix from i

by ↼f (Proposition 6). From this decomposition, one can construct an aperiodic bimachine
whenever f is aperiodic. First, one shows that Rf is aperiodic when f is too:

I Proposition 5. Let f be a transduction realizable by an aperiodic transducer then the
congruence ↼f , and so the automaton Rf , are aperiodic.

A right-sequential transducer is a transducer whose underlying input automaton is a right
automaton. A right-sequential transduction is a function realized by a right-sequential
transducer. A bimachine can be seen as the composition of a right-sequential transduction
annotating the word with states of the right automaton, and a (left-) sequential transduction
obtained from the left automaton and the output function ω. We show that any aperiodic
rational transduction f can be decomposed into ` ◦ labelRf

such that ` can be realized by a
sequential aperiodic transducer, and labelRf

annotates the input word with states of Rf .
More precisely, let R be a right automaton over Σ with set of states Q, and let ΣR = {σq |

σ ∈ Σ, q ∈ Q}. We define the rational transduction labelR : Σ∗ → Σ∗R, called the labelling
function of R, which labels words in Σ∗ by states of R. It is defined by the right-sequential
transducer T = (R, o, ε̄, ε̄) where ε̄ denotes the constant function which maps any element to
ε, and with o(p, σ, q) = σq.

I Proposition 6. Let f be an aperiodic rational transduction. There exists a transduction `
such that f = ` ◦ labelRf

and ` is realized by a sequential aperiodic transducer.

Proof. We first show that there exists a sequential transduction ` such that f = ` ◦ labelRf
.

This sequential transduction is realized by the left automaton of the canonical bimachine
Bf combined with the output function ωf . Then, we show that ` is aperiodic rational, by
constructing an aperiodic transducer realizing it, obtained by taking the product of any
aperiodic transducer realizing f (which exists by assumption) and Rf , and by ensuring
that the information [u] occurring on symbols σ[u] is consistent with the information [u]
occurring on the states of the product, for all words u. Finally, any aperiodic and sequential
transduction can be realized by a transducer which is both sequential and aperiodic (i.e.
sequentialization preserves aperiodicity [13]). Details can be found in the long version. J

We can now show our characterization of aperiodic rational transductions:

I Theorem 7. A rational function f is aperiodic iff its canonical bimachine is aperiodic.

Proof. It is known that any bimachine can be transformed into an equivalent (unambiguous)
transducer whose underlying automaton is the product of the left and the right automata
[13, 17]. Roughly, the transducer has to guess the state of the right automaton, and
unambiguity is implied by the fact that the transitions of the right automaton are backward
deterministic. The product of two aperiodic automata being aperiodic, this shows the ’if’
direction.

We now show the ’only if’ direction. By Proposition 5, f can be decomposed into f = ` ◦
labelRf

such that ` is realized by some aperiodic sequential transducer Tm = (Am, om, im, tm).
Based on this decomposition we construct an aperiodic bimachine B = (D,Rf , ω, λ, ρ)
realizing f . This will allow to conclude. Indeed, by Proposition 2 we have D v Left(Rf ),
and since D is aperiodic, so is Left(Rf ). Since Rf is aperiodic as well by Proposition 5, it
implies that Bf is aperiodic. Let us now construct D, ω, λ and ρ.
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Recall that the input alphabet of Tm (and Am) is ΣQ where Q = Σ∗/↼f
. To construct B,

it is tempting to think that it suffices to take the projection of Am on Σ as left automaton,
Rf as right automaton, and to define the output function ω by ω(p, σ, [u]) = w where

p
σ[u]|w−−−−→ q is the transition of Tm on σ[u] with output w. The problem is that the projection

of Am on Σ is not a deterministic automaton in general, and by determinizing it, one loses
the information of which transition of Tm should be applied. We propose a solution that
overcomes this issue, by integrating the information of Rf in the state of the left automaton.
Let us detail this construction. We take Tm and project input letters to their Σ component,
hence we obtain a transducer realizing f which is unambiguous, since Rf has backward
deterministic transitions. Let T̃m denote the obtained transducer, and Ãm its underlying
(unambiguous) automaton. We let D be the automaton obtained by determinization, by
subset construction, of the product automaton Ãm ×Rf . States of D are therefore of the
form 2Qm×Σ∗/↼f . The output function ω is defined by:

ω({(p1, [u1]), . . . , (pn, [un])} , σ, [v]) = om(pi, σ)

such that [σv] = [ui]. The state pi is unique since Tm is unambiguous. Indeed, let us
assume by contradiction that there are two distinct such states pi, pj . This would mean that
[ui] = [uj ] and since Rf has backward deterministic transitions, for a word w which reaches
both pi and pj in Ãm, we have a labelled word z such that z[k] = w[k]c for k ∈ {1, . . . , |w|}
and c the class of the word w[k + 1] . . . w[|w|]ui. Thus we obtain q0

z−→Am
pi and q0

z−→Am
pj

which is in contradiction with the deterministic nature of Am. We define the final output
functions naturally: λ([u]) = im(qo,m) and ρ({(p1, [u1]), . . . , (pn, [un])}) = t(pi) such that
[ui] = [ε] (again, it is unique by unambiguity of Tm).

It remains to show that B is aperiodic. Aperiodicity of Rf is obtained by Proposition 5.
Aperiodicity of D is shown in the long version of this paper, as a consequence of the
aperiodicity of Tm, Rf and the fact that subset construction preserves aperiodicity. J

I Remark. This theorem gives an algorithm to decide aperiodicity of a rational function:
computing the canonical bimachine and checking that it is aperiodic. However, computing
the left automaton Left(Rf ) may cause an exponential blow-up. Consider for example, the
transduction f : Σ∗ → Σ∗ defined for w ∈ Σ∗, wn ∈ Σn by f(wwn) = wn and for |w| < n by
f(w) = w. Since the distance between the image of two words is bounded by 2n, the left
congruence of f is trivial, so the canonical bimachine of f is just a sequential transducer
and needs O(Σn) states to remember the last n letters of an input word. However this
transduction can be realized by a right-sequential transducer with only n states, but one
could define a symmetrical example (f(wnw) = wn) where the bimachine obtained from the
canonical left automaton Lf witnesses an exponential blow-up.

Another consequence is that any aperiodic transduction admits an aperiodic unambiguous
transducer realizing it. This problem is open for arbitrary varieties.

I Corollary 8. Every aperiodic transduction can be realized by an unambiguous aperiodic
transducer.

Proof. As explained in the proof of the ‘if’ direction of Theorem 7, from any bimachine one
can construct an equivalent unambiguous transducer by taking the product of the left and
right automata of the bimachine, which is aperiodic if the bimachine is aperiodic too. J
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4.2 Characterization through bimachine minimization and main result

In this section, we prove the main result of this paper, i.e. that aperiodicity is PSpace-
complete for functions realized by bimachines. We show that for a bimachine B it suffices
to construct Left(Right(B)) (or Right(Left(B))) and to check aperiodicity of the resulting
bimachine. The first step can be done in PTime and the second step in PSpace. The
operations Left(Right(B)) and Right(Left(B)) are called bimachine minimization, as they
indeed yield minimal bimachines, as shown by the following proposition:

I Proposition 9. Let B be a bimachine realizing a transduction f . Then Left(Right(B)) and
Right(Left(B)) are minimal bimachines realizing f .

Proof. Based on successive applications of Proposition 2 and given in the long version. J

The following result is a key towards the main contribution:

I Proposition 10. Let f be a transduction realized by a bimachine B = (L,R, ω, λ, ρ). Then
f is aperiodic iff Left(Right(B)) is aperiodic iff Right(Left(B)) is aperiodic.

Proof. First, we start by some observation: if there are two bimachines realizing f with
A1 v A2 as right automata, then Leftf (A2) v Leftf (A1). Indeed, if A1 provides more (i.e.
finer) information than A2 on suffixes, then the two equalities of the definition of the right
congruence used to define Leftf (A1) (see Section 3.2) are “easier” to satisfy since the set
of suffixes v taken into account in the definition of f̂[w]A1

is included in the set of suffixes
used in the definition of f̂[w]A2

for all words w. Symmetrically, if there are two bimachines
realizing f with A1 v A2 as left automata, then Rightf (A2) v Rightf (A1).

By Proposition 4 we have L v Lf and R v Rf , but also Right(L) v Rf since Pro-
position 4 holds for any bimachine realizing f , and there is a bimachine realizing f with
Right(L) as right automaton (the bimachine Right(B)). Therefore by the observation, we
get Right(Lf ) v Right(L) and Left(Rf ) v Left(Right(L)).

By Theorem 7, if f is aperiodic, then Bf = (Left(Rf ),Rf , ω, λ, ρ) is aperiodic. Therefore,
Left(Right(L)) is aperiodic. Symmetrically, exactly as shown in Theorem 7, it can be shown
that Lf and Right(Lf ) are aperiodic if f is aperiodic, which implies that Right(L) is aperiodic.
In conclusion, Left(Right(B)) is aperiodic. J

We can now prove the main result of this paper:

I Theorem 11. The problem of deciding whether a bimachine B realizes an aperiodic rational
transduction is PSpace-complete.

Proof. To get the upper-bound, by Proposition 10, it suffices to (i) construct Right(B),
(ii) construct Left(Right(B)), and (iii) test whether the left and right automata of the
bimachine Left(Right(B)) are aperiodic.

By Theorem 3, steps (i) and (ii) can be done in PTime, while step (iii) can be done in
PSpace by [5].

The lower bound is obtained from the problem of deciding whether the transition
congruence of a minimal deterministic finite automaton is aperiodic, which is PSpace-hard
[5]. The details can be found in the long version of this paper. J
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5 Perspectives

In [8] it is proved that deciding whether a regular language given by a non-deterministic
automaton is aperiodic is also PSpace-complete. As a future work, we want to obtain tight
complexity for the following problem: given a (non-deterministic) transducer, does it define
an aperiodic transduction? Based on the techniques of this paper, the latter problem could
be shown to be in 2ExpTime, since obtaining the canonical bimachine causes two exponential
blow-ups: one for the canonical right automaton and one for the determinization of the
transducer over the enriched alphabet. It is however yet unclear whether the techniques of
[8] can be combined with the ones of this paper to lower this upper bound.
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Abstract
We investigate several variants of the homomorphism problem: given two relational structures,
is there a homomorphism from one to the other? The input structures are possibly infinite, but
definable by first-order interpretations in a fixed structure. Their signatures can be either finite or
infinite but definable. The homomorphisms can be either arbitrary, or definable with parameters,
or definable without parameters. For each of these variants, we determine its decidability status.
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1 Introduction

First-order definable sets, although usually infinite, can be finitely described and are therefore
amenable to algorithmic manipulation. Definable sets (we drop the qualifier first-order in
what follows) are parametrized by a fixed underlying relational structure A whose elements
are called atoms. We shall assume that the first-order theory of A is decidable. To simplify
the presentation, unless stated otherwise, let A be a countable set {1, 2, 3, . . .} equipped with
the equality relation only; we shall call this the pure set.

I Example 1. Let

V = { {a, b} | a, b ∈ A, a 6= b } ,
E = { ({a, b}, {c, d}) | a, b, c, d ∈ A, a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d } .

Both V and E are definable sets (over A), as they are constructed from A using (possibly
nested) set-builder expressions with first-order guards ranging over A. In general, we
allow finite unions in the definitions, and finite tuples (as above) are allowed for notational
convenience. Precise definitions are given in Section 2. The pair G = (V,E) is also a definable
set, in fact, a definable graph. It is an infinite Kneser graph (a generalization of the famous
Petersen graph): its vertices are all two-element subsets of A, and two such subsets are
adjacent iff they are disjoint.
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The graph G is ∅-definable: its definition does not refer to any particular elements of A.
In general, one may refer to a finite set of parameters S ⊆ A to describe an S-definable set.
For instance, the set { a | a ∈ A, a 6= 1 ∧ a 6= 2 } is {1, 2}-definable. Definable sets are those
which are S-definable for some finite S ⊆ A.

Although definable relational structures correspond (up to isomorphism) to first-order
interpretations well-known from logic and model theory [19], we prefer to use a different
definition since standard set-theoretic notions directly translate into this setting. For example,
a definable function f : X → Y is simply a function whose domain X, codomain Y , and
graph Γ(f) ⊆ X × Y are definable sets. A relational structure is definable if its universe,
signature, and interpretation function that maps each relation symbol to a relation on the
universe, are definable. Finally, a definable homomorphism between definable structures over
the same signature is a definable mapping between their universes that is a homomorphism,
i.e., preserves every relation in the signature. All hereditarily finite sets (finite sets, whose
elements are finite, and so on, recursively) are definable, and every finite relational structure
over a finite signature is (isomorphic to) a definable one.

The classical homomorphism problem is the problem of determining whether there exists
a homomorphism from a given finite source structure A to a given finite target structure
B. This is also known as the Constraint Satisfaction Problem, and is clearly decidable (and
NP-complete). The precise computational complexity has been thoroughly studied in the
literature in many variants. The case when the target structure is fixed (and is called a
template) is of particular interest, as it expresses many natural computational problems (such
as k-colorability, 3-SAT, or solving systems of linear equations over a finite field). The famous
Feder-Vardi conjecture states that for every fixed template B, the corresponding constraint
satisfaction problem CSP(B) is either solvable in polynomial time or NP-complete [18].

In this paper, we consider the homomorphism problem for definable structures: given
two definable structures A,B, does there exist a homomorphism from A to B? Note that
definable structures can be meaningfully considered as instances of a computational problem
since they are finitely described with the set-builder notation and first-order formulas in the
language of A.

We remark that in the pure set A with equality, every first-order formula is effectively
equivalent to a quantifier-free formula. Thus, as long as complexity issues are ignored and
decidability is the only concern, we can safely restrict to quantifier-free formulas.

I Example 2. The graph G from Example 1 does not map homomorphically to a clique of 3
vertices, which is another way of saying that G is not 3-colorable. In fact, G does not map
homomorphically to any finite clique (the finite subgraph of G using only atoms 1, . . . , 2n has
chromatic number at least n, as it contains an n-clique). However, G maps homomorphically
to the (easily definable) infinite clique on the set A, by any injective mapping from V to A.
No such homomorphism is definable, as there is no definable injective function from V to A,
even with parameters.

We consider several variants of the homomorphism problem:
Finite vs. infinite signature. In the most general form, we allow the signature of both
input structures to be infinite, but definable. In a restricted variant, the signature is
required to be finite.
Finite vs. infinite structures. In general, both input structures can be infinite, definable.
In a restricted variant, one of the two input structures may be assumed to be finite.
Definability of homomorphisms. In the general setting, we ask the question whether there
exists an arbitrary homomorphism between the input structures. In other variants, the
homomorphism is required to be definable, or to be ∅-definable.
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Restrictions on homomorphisms. Most often we ask about any homomorphism, but
one may also ask about existence of a homomorphism that is injective, strong, or an
embedding.
Fixing one structure. In the uniform variant, both the source and the target structures
are given on input. We also consider non-uniform variants, when one of the two structures
is fixed.
Structured atoms. In the basic setting, the underlying structure A is the pure set, i.e.,
has no structure other than equality. One can also consider sets definable over other
structures. For instance, if the underlying structure is (Q,≤), the definitions of definable
sets can refer to the relation ≤.

Contribution. For most combinations of these choices we determine the decidability status
of the homomorphism problem. The decidability border turns out to be quite subtle and
sometimes counterintuitive. The following theorem samples some of the opposing results
proved in this paper:

I Theorem 3. Let A be the pure set. Given two definable structures A,B over a finite
signature,
1. it is decidable whether there is a ∅-definable homomorphism from A to B,
2. it is undecidable (but semidecidable) whether there is a definable homomorphism from A

to B,
3. it is decidable whether there is a homomorphism from A to B,
4. it is undecidable (but co-semidecidable) whether a given ∅-definable partial mapping

between the universes of A and B extends to a homomorphism.

In a previous paper [21], the constraint satisfaction problem is considered for source
structures definable over the pure set, or more generally over (Q,≤). We denote this problem
by CSPdef(B). The results from [21], together with the polynomial time reduction to the
finite-template CSP which we provide here, imply complexity results for different variants of
the constraint satisfaction problem:

I Theorem 4. For any definable template B over a finite signature:
1. the problem CSP(B) is in NP,
2. the problem CSPdef(B) is in NEXPTIME.

Related work. Some of the variants considered in this paper are closely related to previous
work.

Bodirsky, Pinsker and coauthors [2, 8, 10] consider fixed infinite templates over finite
signatures, and finite source structures given on input. They usually consider the template B
to be a reduct of a fixed structure A with good properties, in particular, with a decidable
first-order theory. Reducts are special cases of definable structures: a structure B is a reduct
of A if B is ∅-definable over A and both have the same domains. In general, if the template
B is definable over a structure A with decidable first-order theory, then B itself has decidable
first-order theory. It follows that the existence of a homomorphism from a given finite
source structure A is trivially decidable, as it can be expressed as an existential formula
evaluated in B. In this case, the interesting problem is to analyse precise complexity bounds.
Templates for which a complete complexity classification was obtained (modulo the Feder-
Vardi conjecture) include all reducts of countably infinite homogeneous graphs [3, 9, 12, 6],
of (Q,≤) [4], and of the integers with the successor function (Z,+1) [5]. One of the key tools
used in these results is the notion of a canonical mapping. The construction of a canonical
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mapping relies on Ramsey theory, most conveniently applied through the use of the result of
Kechris, Pestov, and Todorcevic concerning extremely amenable groups [20].

For finite templates, it is shown in [21] that the complexity analysis of CSPdef(B)
can be reduced (with an exponential blowup) to the case of finite input structures. For
example, 3-colorability of definable graphs is decidable and NEXPTIME-complete, because
3-colorability of finite graphs is NP-complete. A more general decidability result concerns
locally finite templates, i.e., definable, possibly infinite templates (over definable, possibly
infinite signatures) where every relation contains only finitely many tuples. The decidability
proof also employs Ramsey theory, applied through the use of Pestov’s theorem concerning
the topological dynamics of the group Aut(Q,≤), which is a special case of the Kechris-
Pestov-Todorcevic result. As we shall demonstrate here, for infinite signatures the local
finiteness restriction is crucial and adding even a single infinite definable relation may lead
to undecidability.

This paper, as well as [21], is part of a programme aimed at generalizing classical
decision problems and computation models such as automata [15], Turing machines [16] and
programming languages [14, 13, 22, 24], to sets with atoms. For other applications of sets
with atoms (called there nominal sets) in computing, see [26].

Motivation. Testing existence of homomorphisms is at the core of many decision problems in
combinatorics and logic. As shown in [11], decidability of pp-definability of a definable relation
R in a definable structure A can be reduced to deciding the existence of homomorphisms
between definable structures. Another application is 0-1 laws, and deciding whether a
sentence φ of the form ∃R.∃∗∀∗ψ is satisfied with high probability in a finite random graph.
In [23], after showing that the problem is equivalent to testing if φ holds in the infinite
random graph, the authors give a complex Ramsey argument based on [25] to prove the
decidability of the latter. The second step can be alternatively achieved by reducing to
several instances of the homomorphism problem from structures definable over the ordered
random graph (which is a Ramsey structure by [25], see Section 5) to finite target structures.
Finally, in [21] the homomorphism problem for locally finite definable templates is used to test
whether the logic IFP captures PTime over a certain class of finite structures, generalizing
the Cai-Fürer-Immerman construction [17].

2 Preliminaries

Throughout this section, fix a countable relational structure A of atoms. We assume that
the signature of A is finite. We shall now introduce definable sets, following [21].

Definable sets. An expression is either a variable from some fixed infinite set, or a formal
finite union (including the empty union ∅) of set-builder expressions of the form

{ e | a1, . . . , an ∈ A, φ } , (1)

where e is an expression, a1, . . . , an are (bound) variables, and φ is a first-order formula over
the signature of A and over the set of variables. Free variables in (1) are those free variables
of e and of φ which are not among a1, . . . , an.

For an expression e with free variables V , any valuation val : V → A defines in an obvious
way a value X = e[val], which is either an atom or a set, formally defined by induction on
the structure of e. We then say that X is a definable set with atoms, and that it is defined
by e with val. Note that one set X can be defined by many different expressions. When we
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want to emphasize those atoms that are in the image of the valuation val : V → A, we say
that the finite set S = val(V ) ⊆ A supports X, or that X is S-definable.

As syntactic sugar, we allow atoms to occur directly in set expressions. For example, what
we write as the {1}-definable set {a | a ∈ A, a 6= 1} is formally defined by the expression
{a | a ∈ A, a 6= b}, together with a valuation mapping b to 1. Similarly, the set {1, 2} is
{1, 2}-definable as a union of two singleton sets.
I Remark. To improve readability, it will be convenient to use standard set-theoretic encodings
to allow a more flexible syntax. In particular, ordered pairs and tuples can be encoded e.g. by
Kuratowski pairs, (x, y) = {{x, y}, {x}}. We will also consider as definable infinite families
of symbols, such as {Rx : x ∈ X}, where R is a symbol and X is a definable set. Formally,
such a family can be encoded as the set of ordered pairs {R} ×X, where the symbol R is
represented by some ∅-definable set, e.g. ∅ or {∅}, etc. Here we use the fact that definable
sets are closed under Cartesian products.

Closure properties. The following lemma is proved routinely by induction on the nesting
of set-builder expressions.

I Lemma 5. Definable sets are effectively closed under:
Boolean combinations ∩,∪,− and Cartesian products,
images and inverse images under definable functions,
quotients under definable equivalence relations,
intersections and unions of definable families,
the operations (below, x ∈ y and x ⊆ y are interpreted as false if y is an atom):
V,W 7→ { (v, w) | v ∈ V,w ∈W, v ∈ w },
V,W 7→ { (v, w) | v ∈ V,w ∈W, v ⊆ w } .

This implies that the set-builder notation (1) may be safely generalized by allowing bound
variables to range not only over A but also over other definable sets, and allowing in φ

quantifiers of the form ∃v∈V or ∀v∈V , for V a definable set presented by an expression. One
may also use binary predicates =,∈,⊆ and binary operations ∪,∩,−,×. The resulting sets
will still be definable. As an example, if V and W are definable sets, then so is

{ (v, w) | v ∈ V,w ∈W, v ⊆ w ∧ ∃a ∈ A ∃b ∈ A (a, b) ∈ v } .

Suppose that the first-order theory of A is decidable (this applies in particular to the pure
set). Then it is straightforward to prove that the validity of first-order sentences generalized
as above, such as ∀v ∈ V ∃w ∈ W v ⊆ w where V and W are definable sets presented by
expressions, is also decidable. This demonstrates that definable sets are suitable for effectively
performing set-theoretic manipulations and tests.

Definable relational structures. For any object in the set-theoretic universe (a relation, a
function, a logical structure, etc.), it makes sense to ask whether it is definable. For example,
a definable relation on X,Y is a relation R ⊆ X × Y which is a definable set of pairs, and
a definable function X → Y is a function whose graph is definable. Along the same lines,
a definable relational signature is a definable set of symbols Σ, together with a partition
Σ = Σ1 ] Σ2 ] . . . ] Σl into definable subsets, for l ∈ N. We say that σ has arity r if σ ∈ Σr.

For a signature Σ, a definable Σ-structure A consists of a definable universe A and a
definable interpretation function which assings a relation σA ⊆ Ar to each relation symbol
σ ∈ Σ of arity r. (We denote structures using blackboard font, and their universes using
the corresponding symbol in italics). More explicitly, such a structure can be represented
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by the tuple A = (A, I1, . . . , Il) where Ir = {(σ, a1, . . . , ar) | σ ∈ Σr, (a1, . . . , ar) ∈ σA} is a
definable set for r = 1, . . . , l (where l is the maximal arity in Σ).

I Remark. A definable Σ-structure A = (A, I1, . . . , Il), for Σ finite or infinite, can be seen
as a definable structure over a finite signature, denoted AΣ and defined as follows. The
universe of AΣ is A ] Σ, and its relations are I1, . . . , Il, of arity 2, . . . , l+1, respectively. The
signature is finite, with just l symbols. Then homomorphisms between Σ-structures A and B
correspond to those homomorphisms between AΣ and BΣ that are the identity on Σ.

I Example 6. The graph G from Example 1 can be seen as a structure over a signature with
a single binary relation symbol E. To give an example of an infinite, definable signature,
extend G to a structure A by infinitely many unary predicates representing the neighborhoods
of each vertex of G. To this end, define the signature Σ = {E} ∪ {Nv | v ∈ V }, where V is
the vertex set of G and N is a symbol (cf. Remark 2). The interpretation of Nv is specified by
the set I1 = { (Nv, w) | (v, w) ∈ E } (where E is defined by the expression from Example 1),
which is definable by Lemma 5.

I Lemma 7. For every S-definable set X there is an S-definable surjective function f : Y →
X, where Y is an S-definable subset of Ak, for some k ∈ N. Moreover, f and Y can be
computed from X.

I Remark. By Lemma 7, definable structures over finite signatures coincide, up to definable
isomorphism, with structures that admit a first-order interpretation with parameters in A, in
the sense of model theory [19].

Representing the input. Definable relational structures can be input to algorithms, as
they are finitely presented by expressions defining the signature, the universe, and the
interpretation function. If the input is an S-definable set X, defined by an expression e with
valuation val : V → S with V = {v1, . . . , vn} the free variables of e, then we also need to
represent the tuple val(v1), . . . , val(vn) of elements of S. For the pure set A, these elements
can be represented as 1, 2, . . ..

3 Homomorphism problems

To simplify the presentation, we now drop some of the generality of the previous section. In
this section let A be the pure set. In Section 5 we shall discuss generalizations of our results
to underlying structures other than the pure set.

3.1 ∅-definable homomorphism problem
Let’s start with the following warm-up decision problem:

Problem: ∅-definable Homomorphism
Input: ∅-definable structures A and B over a ∅-definable signature Σ.
Decide: Is there an ∅-definable homomorphism from A to B?
It is not hard to prove the following theorem, which gives (1) of Theorem 3:

I Theorem 8 ([21]). ∅-definable Homomorphism is decidable.

We sketch a proof here in order to illustrate the good algorithmic properties of definable sets,
and to emphasize the contrast with later undecidability results.
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Proof sketch. Our aim is to decide if two given ∅-definable Σ-structures A = (A, I1, . . . , Il)
and B = (B, J1, . . . , Jl) admit an ∅-definable homomorphism. The signature Σ is assumed to
be part of the input (also, it can be computed from A or from B).

We will use the following facts that hold for the pure set A, but also for many other
structures with decidable first-order theories.

I Lemma 9. For each number n ∈ N, there are finitely (doubly exponentially) many first-
order formulas with n free variables, up to equivalence in A. Moreover, they can be computed
from n.

The following lemma is a consequence.

I Lemma 10. An ∅-definable set X has only finitely many ∅-definable subsets, and expressions
defining these subsets can be enumerated from an expression defining X.

Indeed, for each definable set X represented by a single set-builder expression of the form (1),
replace φ by each (up to equivalence) quantifier-free formula ψ with the same free variables,
such that ψ → φ.

To verify existence of an ∅-definable homomorphism from A to B, apply Lemma 10 to
X = A×B and for every ∅-definable subset R ⊆ A×B, test the validity of the first-order
formula

∀a ∈ A ∃!b ∈ B R(a, b)

ensuring that R is a graph of a function; and, for i = 1 . . . l, test the validity of the formula

∀a1, . . . , ai∈A ∀b1, . . . , bi∈B ∀ρ∈Σi

∧
1≤j≤i

R(aj , bj) ∧ Ii(ρ, a1, . . . , ai)→ Ji(ρ, b1, . . . , bi)

ensuring that the function is a homomorphism. J

In a similar vein one can decide the existence of homomorphisms that are injective, strong,
or are embeddings (i.e. injective and strong), as all these properties are first-order definable.

The assumption that the structures A and B are ∅-definable is inessential in Theorem 8;
the crucial assumption is that a homomorphism we ask for is required to be ∅-definable. In
fact, a similar argument as above works even if the two given structures are definable instead
of ∅-definable, and a homomorphism is allowed to be definable with n parameters, for a
number n ∈ N given on input.

3.2 (Definable) homomorphism problem
In more relaxed versions of the homomorphism problem, we ask for a homomorphism that is
definable without any bound on the number of parameters:

Problem: Definable Homomorphism
Input: Definable structures A and B over a definable signature Σ.
Decide: Is there a definable homomorphism from A to B?

Or we may make no restriction on a homomorphism at all:

Problem: Homomorphism
Input: Definable structures A and B over a definable signature Σ.
Decide: Is there a homomorphism from A to B?
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These problems appear similar, but they are of rather different nature. On one hand,
Definable Homomorphism is recursively enumerable, by an argument similar to the proof
sketch of Theorem 8: if a definable homomorphism exists then one can find it by searching
for homomorphisms definable with n parameters, for increasing values of n. On the other
hand Homomorphism is co-recursively enumerable, by a compactness argument: if A does
not map homomorphically to B then some finite substructure of A does not map to B either,
and one can detect this by enumerating all finite substructures of A and using Theorem 11
below.
I Remark. We might also consider natural variants of (Definable) Homomorphism, where
one asks about existence of an injective homomorphism, or a strong homomorphism, or an
embedding. Theorems 11–16, stated below, apply to all these variants as well.

Below we show that both Definable homomorphism and Homomorphism are un-
decidable in general. However, when one of the input structures has finite universe, both
problems are decidable:

I Theorem 11. Definable homomorphism and Homomorphism are decidable if one of
the input structures has a finite universe.

On the other hand, the general version of the homomorphism problem is undecidable:

I Theorem 12. Homomorphism is undecidable, even if one of the input structures is fixed.

The fixed input structure is understood existentially; in particular, there exists a definable
structure B such that it is undecidable, for a given definable structure A over the same
signature, whether there is a homomorphism A→ B.

Theorem 12 is proved by a reduction from a classical quarter-plane tiling problem [1].
The following example illustrates a phenomenon used in the proof: a homomorphism can
determine an infinite ordered sequence of atoms, and thus to enumerate coordinates within
the quarter-plane.

I Example 13. Consider a signature with a single binary relation symbol R. For a chosen
atom a0 ∈ A, define structures A and B over this signature as follows:

A = A RA = 6= B = A− {a0} RB = 6=

Note that A is ∅-definable and B is {a0}-definable. Considered as graphs, A and B are
isomorphic to the countably infinite clique. However, no homomorphism h : A → B is
definable. To see this, suppose towards contradiction that an S-definable homomorphism
h actually exists for some finite S. We will exploit the fact that the S-definition of h is
necessarily invariant under every bijection π of atoms such that π(a) = a for all a ∈ S.

Since A is a clique and B has no self-loops, h must be injective. Pick the atom a1 = h(a0).
Clearly a1 6= a0, since a0 6∈ B. This means that a1 ∈ S; indeed, if a1 /∈ S then the S-definition
of (the graph of) h would be invariant under a renaming π of atoms with π(a0) = a0 and
π(a1) 6= a1, which cannot be since h is a function. Now consider a2 = h(a1). Again, a2 6= a0.
Moreover we have a2 6= a1, since a1 6= a0 and h is injective. Moreover, a2 ∈ S by the same
argument as for a1. This proceeds by induction, showing that infinitely many distinct atoms
must belong to S, which contradicts the finiteness of S.

More importantly, each homomorphism h : A → B determines an infinite sequence of
distinct atoms a0, a1, a2, . . . such that h(ai) = ai+1 for each i ∈ N.

As it turns out, Definable Homomorphism is even harder to decide than Homomorphism:
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I Theorem 14. Definable Homomorphism is undecidable even if
(i) a source structure A over a finite signature is fixed; or
(ii) a target structure B is fixed.

Theorem 14 yields (2) of Theorem 3, and is proved by reduction from periodic and ultimately
periodic variants of the tiling problem.

Example 13 shows a situation where definable homomorphisms do not exist, but non-
definable ones do, and each of them induces an infinite sequence of atoms. In the following
example definable homomorphisms do exist, and each of them determines a finite cycle of
atoms. This observation is the core of the proof of Theorem 14, much as Example 13 is the
core of Theorem 12.

I Example 15. Consider a signature with a single binary relation symbol R. Define structures
A and B over this signature as follows (for readability we write ab to denote an ordered pair
(a, b)):

A = A B = { ab | a, b ∈ A, a 6= b }
RA = 6= RB = { (ab, cd) | a, b, c, d ∈ A, a 6= b, c 6= d, a 6= c }

Note that there are many non-definable homomorphisms from A to B. For example, for any
enumeration a0, a1, a2, . . . of all atoms, one may put h(an) = anan+1 for each n ∈ N.

However, definable homomorphisms h : A → B also exist. For example, there is an
S-definable one for S = {1, 2, 3}:

h(x) = x1 h(1) = 12 h(2) = 23 h(3) = 31

where x 6∈ S. Note how the values of h on S encode a cycle of atoms of length 3. This is
a general phenomenon. Indeed, consider any S-definable homomorphism h : A → B, for
some finite S = {a1, . . . , an} ⊆ A. Denote ei = h(ai) for i = 1..n. Each ei is of the form
ajak for some 1 ≤ j 6= k ≤ n. Indeed, if some ei = bc (or ei = cb) for some b 6∈ S, then
the S-definition of (the graph of) h would be invariant under a renaming π of atoms with
π(ai) = ai and π(b) 6= b, which cannot be since h is a function.

One may view the ei as edges of a directed graph with nodes {a1, . . . , an}. This graph
has n nodes, n edges, no self-loops, and, looking at the definition of RB, no two distinct edges
have the same source. In other words, the graph is the graph of a function without fixpoints
on {a1, . . . , an}, therefore it contains a cycle of length at least 2. In other words, there is a
subset of S of size at least 2 that is mapped to a set of the form {aiaj , ajak, . . . , amai}.

The two negative results in Theorems 12 and 14 are complemented by a positive one:

I Theorem 16. Homomorphism is decidable for finite signatures.

This gives (3) of Theorem 3. Theorem 16 is implicit in the work of Bodirsky, Pinsker and
Tsankov [11], where it is proved in a special case when A = Bn, for n ≥ 1, and B is a
reduct of a finitely bounded Ramsey structure A (cf. Section 5). Our self-contained proof of
Theorem 16, given in Section 4, instead of using the machinery of canonical mappings goes
by a direct reduction to the case when the target structure is finite, which is decidable as
shown in [21]. Our reduction slightly generalizes a reduction due to Bodirsky and Mottet [7]
in the special case of the target structure being a reduct of A (both reductions need A to be
a finitely bounded homogeneous structure).

Theorems 8–16 settle the decidability landscape for the homomorphism problem almost en-
tirely. One remaining open problem is the decidability status of Definable Homomorphism
for a fixed target structure B over a finite signature.
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3.3 Homomorphism extension problem
Theorem 16 may be a little surprising in light of Theorem 12. Indeed, Remark 2 allows one
to view an arbitrary definable Σ-structure as a definable structure AΣ over a finite signature.
Homomorphisms A→ B correspond to those homomorphisms AΣ → BΣ that are the identity
on the subset Σ of the universe of AΣ. Thus by Theorem 12 we obtain undecidability, even
for finite signatures, of the following slight generalization of Homomorphism:

Problem: Homomorphism Extension
Input: Definable structures A and B over Σ and a definable partial mapping f : A→ B.
Decide: Is there a homomorphism from A to B extending f?

The above remark proves (4) of Theorem 3:

I Theorem 17. Homomorphism Extension is undecidable for finite signatures.

4 Homomorphism problem for finite signatures

Throughout this section, we assume that Σ is a finite signature. For simplicity, assume that
A is the pure set; in Section 5 we discuss how the results generalize to other underlying
structures. We consider the homomorphism problem for structures over Σ which are definable
over A. For simplicity, we assume that the input structures A and B are ∅-definable – the
proof easily generalizes to arbitrary definable structures over a finite signature.

Here is the main result of this section:

I Theorem 18. Given a ∅-definable structure B over a finite signature, one can compute a
finite structure B′ such that:

CSP(B) is polynomial-time reducible to CSP(B′),
CSPdef(B) is polynomial-time reducible to CSPdef(B′).

Note that Theorem 18 implies Theorem 16, as finite structures B′ are a special case of
locally finite ones, and decidability of the homomorphism problem for locally finite target
structures has been shown in [21]. Moreover, Theorem 18 implies Theorem 4, since as shown
in [21], for every finite template B′, the complexity of CSPdef(B′) is exponentially larger than
the complexity of CSP(B′).

Theorem 18 is a slight extension of results implicit in the work of Bodirsky, Pinsker and
Tsankov [11] that provided a decision procedure for testing the existence of a homomorphism
from A = Bn to B, where B is assumed to be a reduct of A (with further assumptions about
A, which apply also in our case, as discussed in Section 5). Instead, we allow both A and B
to be arbitrary definable structures over A (in particular, they need not be reducts). Our
reduction in Theorem 18 is based on a reduction due to Bodirsky and Mottet [7], generalized
to the case of definable structures rather than reducts (recall from Remark 2 that according
to our definition, definable structures correspond to structures which interpret in A via
first-order interpretations).

Proof of Theorem 18. The remaining part of this section is devoted to demonstrating
Theorem 18. In the sequel we fix a ∅-definable structure B over the signature Σ (assumed
to be finite). We show how to effectively construct a finite structure B′ as described in the
theorem.

First we observe that without loss of generality we may assume that the universe B of B
is a subset of Ak, for some k. To see this, apply Lemma 7 to obtain B̄ ⊆ Ak and a surjection
g : B̄ → B, both definable and computable from B. Then compute a definable structure B̄
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with universe B̄ over the same signature as B, where every relation symbol is interpreted
in B̄ as the inverse image under g of its interpretation in B. Finally, observe that there is
a homomorphism from A to B if, and only if there is a homomorphism from A to B̄. Thus
from now on we assume that B ⊆ Ak, for some k.

We now define some notation. For n ∈ N, denote {1, . . . , n} by [n]. For a set C, numbers
m,n ∈ N and an injective, monotone function i : [m]→ [n], consider a projection mapping
πi : Cn → Cm onto m coordinates induced by i in the obvious way, i.e., πi(c1, . . . , cn) =
(ci(1), . . . , ci(m)). Let C be a structure with universe C and let r ≥ 2 be an integer at least
as large as the maximal arity of the relations in C. We define a structure C≤r with universe
C≤r = C ∪ C2 ∪ · · · ∪ Cr, as follows. If R is a relation symbol of arity k in the signature of
C, then the signature of C≤r contains a unary symbol UR. If S ⊆ Ck is the interpretation of
R in C, then the interpretation of UR in C≤r is the set S ⊆ Ck ⊆ C≤r, treated as a unary
relation. Moreover, for m ≤ n ≤ r and each monotone injection i : [m]→ [n], there is a
binary projection relation Πi ⊆ Cn × Cm in C≤r which is the graph of the projection πi.

We use standard notions of group actions and orbits. The group Aut(A) acts on Ak,
where an automorphism of A acts coordinatewisely on elements of Ak. Note that this
action preserves B ⊆ Ak, since B is ∅-definable. For the same reason, automorphisms
of Aut(A) preserve the relations of B. Reassuming, Aut(A) acts on the structure B by
automorphisms. Similarly, Aut(A) acts on the structure B≤r, inducing a quotient relational
structure B≤r/Aut(A) over the same signature. The elements of B≤r/Aut(A) are orbits of
B≤r under the action of Aut(A); in other words, elements of B≤r/Aut(A) are atomic types
of k-tuples of atoms (an atomic type of a tuple of elements (a1, . . . , ak) ∈ Ak specifies all
equalities among the elements a1, . . . , ak). Relation symbols are interpreted in B≤r/Aut(A)
existentially, as expected. A crucial but obvious observation is that the quotient structure
B≤r/Aut(A) is finite, by the following lemma.

I Lemma 19. The group Aut(A) acts oligomorphically on B, i.e., the action splits Bn into
finitely many orbits, for every n ≥ 1.

We now define the structure B′ promised in Theorem 18 as B≤r/Aut(A), where r ≥ 3
is a fixed number at least as large as the maximal arity of the relations in Σ. As required,
the structure B′ is finite. It remains to prove the two items of Theorem 18. Both reductions
are shown in the same way. Let A be given, where A is either finite or ∅-definable. Define
A′ as A≤r. Note that if A is ∅-definable, then so is A′. Moreover, (the definition of) A′ is
computable from A in polynomial time, for a fixed signature Σ. To complete the reductions,
it remains to prove the following:

I Claim 20. There is a homomorphism A → B if, and only if, there is a homomorphism
A′ → B′.

The “only if” direction is immediate; from a given homomorphism h : A → B, a
homomorphism h′ : A′ → B′ is obtained by taking the pointwise extension h≤r : A≤r → B≤r

of h (also a homomorphism), and then post-composing h≤r with the quotient homomorphism
from B≤r to B≤r/Aut(A).

We now prove the “if” direction. Fix a homomorphism f : A≤r → B≤r/Aut(A). Recall
that B ⊆ Ak. Consider the set D = (A× {1, . . . , k})/∼, where the equivalence relation ∼
is defined as follows. Take (a1, . . . , an) ∈ An, for n ≤ r. Then f(a1, . . . , an) ∈ Bn/Aut(A)
corresponds to an atomic type of (n · k)-tuples of atoms. In particular for n = 2, the atomic
type concerns tuples (x1

1, . . . , x
k
1 , x

1
2, . . . , x

k
2) and for each 1 ≤ i, j ≤ k and 1 ≤ l,m ≤ 2,

specifies a relation xi
l = xj

m or xi
l 6= xj

m. Put (a1, i) ∼ (a2, j) in A×{1, . . . , k} if (a1, i) = (a2, j)
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or the atomic type specifies the relation xi
1 = xj

2. This defines an equivalence relation on
A× {1, . . . , k}, where r ≥ 3 is essential for transitivity; it is also important here that f is a
homomorphism and hence preserves projections. Since the set D is at most countable, there
is an injective function e : D → A. We define a function h : A → Ak, by composing the
abstraction function [_]∼ : A× {1, . . . , k} → D with the function e:

h(a) = (e([(a, 1)]∼), . . . , e([(a, k)]∼)).

Note that h(a) ∈ B for every a ∈ A. It follows by construction that the function h : A→ B

is a homomorphism from A to B. J

5 Concluding remarks

We investigated the homomorphism problem for definable relational structures. Our contri-
bution is a detailed decidability border in the landscape of different variants of the problem.

Most of our proofs work, or can be easily adapted to the variant of the problem where
one asks about the existence of an injective homomorphism, or a strong homomorphism, or
an embedding. The only exceptions are Theorems 12 and 14 for the case where the target
structure B is fixed. Our proofs there work for the case of injective homomorphisms, but not
for strong homomorphisms or embeddings, and the decidability of these cases remain open.

Underlying structure A. We briefly describe the assumptions on the structure A for which
the results presented in this paper still hold.

The definitions and lemmas in Section 2 hold for an arbitrary structure A. However,
one needs to specify how inputs are represented, specifically, the parameters involved in the
input. To represent all definable sets over A, we should assume that there is an effective
enumeration of its universe. Furthermore, to effectively perform tests on definable sets one
needs to assume that the structure is decidable: given any first-order formula φ over the
signature of A with n free variables, and an n tuple ā of elements of A, it must be decidable
if φ, ā |= A. For simplicity we assume that the signature of A is finite, to avoid questions
concerning the encoding of relation symbols.

Theorems 12, 14 and 17 hold for every infinite structure A. For Theorems 12 and 17 this
is clear, as every structure definable over the pure set is also definable over arbitrary infinite
A, and existence of a homomorphism does not depend on A. For Theorem 14 this is less
clear, since the existence of definable homomorphisms depends on A. However, an inspection
of the proof shows that the result holds for arbitrary A.

The ∅-definable homomorphism problem considered in Theorem 8 is decidable (with the
same proof) as long as the following conditions hold:
A is ω-categorical, i.e., it is the only countable model of its first-order theory. An
equivalent condition, due to the Ryll-Nardzewski-Engeler-Svenonius theorem [19], is that
A is countable and Aut(A) acts oligomorphically on A.
The number of orbits of An under the action of Aut(A) is computable from a given
n ∈ N.

We call such structures effectively ω-categorical. Any effectively ω-categorical structure is
(isomorphic to) a decidable structure, so every definable set can be represented. Theorem 8
can be easily generalized so that arbitrary definable structures A,B are given on input, as
well as a finite set S ⊆ A, and the algorithm determines whether there exists an S-definable
homomorphism from A to B.
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Regarding Theorem 11, in the case when the source structure A is assumed to be finite,
it is sufficient that A is a decidable structure. In the case when the target structure B is
finite, and arbitrary homomorphisms are considered, the assumptions under which the proof
from [21] works are that Aut(A) is extremely amenable or, equivalently, that A is a Ramsey
structure [20]. Examples of Ramsey structures include (Q,≤) and the ordered random graph,
by [25].

We do not know how to generalize to other atoms the case where only definable homo-
morphisms to a finite B are considered.

Regarding Theorems 4, 16 and 18, the proofs presented in Section 4 work under the
following assumptions:

The structure A is definable over a decidable Ramsey structure A. For the second item
of Theorem 4, we need some additional mild complexity assumptions about A, e.g. that
its first-order theory is decidable in NEXPTIME (for most reasonable structures it is
in PSPACE). It is shown in [11] that if A is a Ramsey structure, then extending A by
finitely many constants still yields a Ramsey structure. Clearly, this preserves decidability
of the structure. From this it follows that the assumption made in Section 4 that the
relations of A and B are ∅-definable is not relevant, since if they are S-definable over A
for some finite S ⊆ A, then they are ∅-definable over A extended by elements of S as
constants.
The structure B is definable over a structure B which is homogeneous and finitely bounded.
We say that a structure B over a signature Γ is finitely bounded if there is a finite set
F of finite Γ-structures such that for every finite Γ-structure A, A embeds into B iff
no structure from F embeds into A. For example, the pure set is finitely bounded, as
witnessed by an empty family F . This property is crucial for the proof of Claim 20. It
is straightforward to generalize this claim to a finitely bounded homogeneous structure
(see [11]). Any finitely bounded homogeneous structure is effectively ω-categorical, and
thus decidable. Moreover, any expansion of a finitely bounded homogeneous structure by
a constant is homogeneous and finitely bounded [7].
We do not know whether the finite boundedness condition can be dropped, while assuming
that B is effectively ω-categorical.

Open problems. Perhaps the most significant open question that remains is the decidability
of the isomorphism problem: decide whether two definable structures A,B (say, over the
pure set) are isomorphic, or whether there is a definable isomorphism between them. An
equivalent formulation of the former question is the orbit problem: given a definable structure
A and two elements x, y ∈ A, decide whether there is an automorphism of A which maps x
to y.

This is related to an open problem from [11]: decide whether a given relation R is
first-order definable in a given structure A. Indeed, a unary predicate R ⊆ A is first-order
definable in A iff it is preserved by all automorphisms of A, iff no x ∈ R and y ∈ A−R lie in
the same orbit of Aut(A).

Acknowledgments. We are grateful to Albert Atserias, Manuel Bodirsky and Michael
Pinsker for useful discussions.
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Abstract
The sensitivity conjecture of Nisan and Szegedy [CC’94] asks whether for any Boolean function f ,
the maximum sensitivity s(f), is polynomially related to its block sensitivity bs(f), and hence to
other major complexity measures. Despite major advances in the analysis of Boolean functions
over the last decade, the problem remains widely open.

In this paper, we consider a restriction on the class of Boolean functions through a model
of computation (DNF), and refer to the functions adhering to this restriction as admitting the
Normalized Block property. We prove that for any function f admitting the Normalized Block
property, bs(f) ≤ 4s(f)2. We note that (almost) all the functions mentioned in literature that
achieve a quadratic separation between sensitivity and block sensitivity admit the Normalized
Block property.

Recently, Gopalan et al. [ITCS’16] showed that every Boolean function f is uniquely specified
by its values on a Hamming ball of radius at most 2s(f). We extend this result and also construct
examples of Boolean functions which provide the matching lower bounds.
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1 Introduction

Sensitivity and block sensitivity are complexity measures that are commonly used for Boolean
functions. Both these measures were originally introduced for studying the time complexity
of CRAW-PRAM’s [7, 8, 15]. Block sensitivity is polynomially related to a number of other
complexity measures, such as the decision-tree complexity, the certificate complexity, the
polynomial degree, and the quantum query complexity [5]. A longstanding open problem is
the relation between sensitivity and block sensitivity. From the definitions of sensitivity and
block sensitivity, it immediately follows that s(f) ≤ bs(f), where s(f) and bs(f) denote
the sensitivity and the block sensitivity of a Boolean function f . Nisan and Szegedy [16]
conjectured that sensitivity is also polynomially related to block sensitivity:

I Conjecture 1 (Sensitivity Conjecture [16]). There exist constants δ, c > 0 such that for
every Boolean function f we have that bs(f) ≤ c · (s(f))δ.
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This conjecture is still widely open and the best known upper bound on block sensitivity
is exponential in terms of sensitivity [1]. On the other hand, the best known separation
(through an example of a Boolean function) between sensitivity and block sensitivity is
quadratic [3]; more background and discussion about the sensitivity conjecture can be found
in the survey of Hatami et al. [12].

Over the last decade, in the majority of the works concerning the sensitivity conjecture,
the focus has been on addressing the conjecture for restricted classes of Boolean functions,
where the restriction is imposed by some notion of symmetry [6, 18, 9]. The reason behind
pursuing this direction is that nonconstant Boolean functions with a high degree of symmetry
must have high complexity according to various measures. Accordingly, all the results in this
direction [6, 18, 9] show that the sensitivity of the corresponding functions is large (in terms
of the number of variables), and deduce that the sensitivity is close to block sensitivity. While
we feel that proving the sensitivity conjecture for a restricted class of Boolean functions
is a step in the right direction, we would like to argue that these specific restrictions are
limited in their potential to explicitly promote the understanding of the relationship between
sensitivity and block sensitivity.

In this paper, we prove the sensitivity conjecture for a restricted class of Boolean functions,
where the restriction is imposed on a DNF representation of the function. This is one of the
first time[s] since Nisan [15] that the sensitivity conjecture is proved for a restriction based
on a model of computation (recently, Lin and Zhang [14] proved the sensitivity conjecture for
functions admitting circuits with a small number of negation gates, and in a simultaneous
work [4], the authors prove the sensitivity conjecture in the case of regular read-k formulas
of constant depth with k constant). Informally, the restriction we impose on the DNF can
be described as follows. We assume that the maximal block sensitivity is reached on the all
zeroes input and that the function outputs a zero on this input, and notice that for each
clause in the DNF, the set of positive literals in the clause corresponds to a sensitive block.
Based on the fact that the block sensitivity counts the number of disjoint sensitive blocks,
we consider the natural restriction where the set of positive literals of each of the clauses are
also disjoint. We say that any function adhering to this restriction admits the normalized
block property, and we show that for any Boolean function f admitting the normalized block
property, bs(f) < 4s(f)2.

As the other side of the same coin, this result provides a barrier to building Boolean
functions with super-quadratic separation between sensitivity and block sensitivity. Currently,
the best known separation is given by an example of Ambainis and Sun [3] who built a
function f with bs(f) = 2

3 s(f)2 − 1
3 s(f). Ambainis and Sun additionally showed that their

example gives the best possible separation (up to an additive factor) between sensitivity and
block sensitivity for all functions that are an OR of functions whose zero-sensitivity equals 1.
We build a framework (of restrictions) over DNFs and identify where the result of Ambainis
and Sun lies within this framework, and our result that the sensitivity conjecture is true
for Boolean functions admitting normalized block property is shown to be an extension of
the result of Ambainis and Sun. Additionally, Kenyon-Kutin [13], showed that if the block
sensitivity is attained on some input which has blocks of size at most two then, bs ≤ e · s2.
More generally,

I Theorem 2 (Kenyon and Kutin[13]). For every Boolean function f on n variables, and
every ` ∈ {2, . . . , s(f)}, we have:

bs`(f) ≤ e

(`− 1)! (s(f))`,

where bs`(f) is the block sensitivity of f when each block is restricted to be of size at most `.
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Therefore, to construct examples of Boolean function with super-quadratic separation
between sensitivity and block sensitivity we now have two barriers. Moreover, we extend the
notion of block property to t-block property, and prove a lower bound on the sensitivity of
Boolean functions admitting the t-block property in terms of t, and the width and size of
the DNF.

Recently, Gopalan et al. [11] investigated the computational complexity of low sensitivity
functions and provided interesting upper bounds on their circuit complexity. This was
indicated to be a promising alternative approach to the sensitivity conjecture as opposed
to getting improved bounds on specific low level measures like block sensitivity or decision
tree depth [13, 1, 3]. In particular, they showed that every Boolean function f is uniquely
specified by its values on a Hamming ball of radius at most 2s(f), and showed various
applications of this result. We extend this result by showing that if two Boolean functions f
and g coincide on a ball of radius s(f) + s(g) then, f = g. Furthermore, for every p, q > 1,
we construct examples of Boolean functions f and g such that s(f) = p, s(g) = q, and f and
g coincide on a ball of radius s(f) + s(g) − 1 but f 6= g, showing that the above result is
tight.

Finally, we propose a computational problem motivated by the sensitivity conjecture,
and the existing work and results therein. Assuming the sensitivity conjecture to be true, we
note that this problem is in TFNP, and wonder if resolving the sensitivity conjecture would
yield an efficient algorithm to this computational problem.

This paper is organized as follows. In Section 2, we provide the basic definitions of
complexity measures, structures, and objects that will be used in the rest of the paper. In
Section 3, we define a few restrictions (such as the block property) on DNFs representing
Boolean functions and prove the sensitivity conjecture for the class of functions admitting
(some of) these structural restrictions. In Section 4, we investigate a structural result of low
sensitivity functions. In Section 5, we propose a new computational problem motivated by
the sensitivity conjecture. Finally, in Section 6, we conclude with a promising open question
on proving the sensitivity conjecture for functions admitting the t-block property.

The missing proofs can be found in the full version of the paper.

2 Preliminaries

We use the notation [n] = {1, . . . , n}. Let f : {0, 1}n → {0, 1}, be a Boolean function. Let
x ∈ {0, 1}n. For i ∈ [n], we denote by xi the input in {0, 1}n which is obtained by flipping
the ith bit of x. Also for any B ⊆ [n], we denote by xB the input in {0, 1}n which is obtained
by flipping the bits of x in all coordinates in B. We will now define two complexity measures
on Boolean functions which are of great interest.

I Definition 3. The sensitivity of a Boolean function f at input x ∈ {0, 1}n, written s(f, x),
is the number of coordinates i ∈ [n] such that f(x) 6= f(xi). The sensitivity of f , written
s(f), is defined as s(f) = maxx∈{0,1}n s(f, x). We define s1(f) = maxf(x)=1 s(f, x) and
s0(f) = maxf(x)=0 s(f, x).

I Definition 4. The block sensitivity of a Boolean function f at input x ∈ {0, 1}n, for k
disjoint subsets B1, . . . , Bk of [n] (called blocks), written bs(f, x,B1, . . . , Bk), is the number of
blocks i ∈ [k] such that f(x) 6= f(xBi). The block sensitivity of a Boolean function f at input
x ∈ {0, 1}n, written as bs(f, x), is the maximum of bs(f, x,B1, . . . , Bk) over all k disjoint
subsets B1, . . . , Bk of [n] for all k ∈ [n]. The block sensitivity of f , written bs(f), is defined
as bs(f) = max

x∈{0,1}n
bs(f, x). We define bs1(f) = max

f(x)=1
bs(f, x) and bs0(f) = max

f(x)=0
bs(f, x).
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We will now introduce a model of representation of Boolean functions.

IDefinition 5. A DNF (disjunctive normal form) formula Φ over Boolean variables x1, . . . , xn
is defined to be a logical OR of terms, each of which is a logical AND of literals. A literal is
either a variable xi or its logical negation xi. We insist that we can assume that no term
contains both a variable and its negation (otherwise we can remove this term). We often
identify a DNF formula Φf with the Boolean function f : {0, 1}n → {0, 1} it computes.

We note here that for every Boolean function f , there exists at least one (it is not unique)
DNF formula Φf that computes it.

3 Block Property

In the following, we will often use the notation ∨ (respectively ∧) for denoting the Boolean
operation OR (respectively AND). Let f be a Boolean function and Φf be one of its DNF
formulas. Let X = {x1, . . . , xn} be the set of variables. Let d∨ be the fan-in of the ∨-gate
which is usually called the size of the DNF. We label the d∨ ∧-gates as: ∧1, . . . ,∧d∨ . Let d∧i

be the fan-in of ∧i. Let d∧ = max
i

d∧i
be the width of the DNF. For every i ∈ [d∨], let Ai be

the set of variables amongst the literals connected to ∧i appearing without a negation and
let Ai be the set of variables amongst the literals connected to ∧i appearing with a negation.
An assignment of the variables is a function σ : X → {0, 1}. For every ∧i, we define Si as
follows:

Si = {σ | ∧i(σ) = 1},

where ∧i(σ) is the evaluation of ∧i when the assignment to the variables is given by σ.
By negating some variables and/or negating the output of the function, we can always

assume that the maximum block sensitivity is the maximum 0-block sensitivity (i.e., bs0)
and is reached on the all zeros input. Moreover, given a DNF representation of our function,
we can assume that this representation is minimal (i.e., any subformula of the given formula
computes a distinct function).

I Definition 6. A Boolean function f represented by a DNF formula Φf is said to be
represented in compact form if the following holds:
(a) f(0n) = 0,
(b) The maximum 0-block sensitivity is attained on the all zeroes input, i.e., bs0(f) =

bs(f, 0),
(c) and ∀i ∈ [d∨], we have that Si \

⋃
j 6=i Sj 6= ∅.

Moreover the representation is called normalized if the maximal block sensitivity is also
attained on the all zeroes input, i.e., bs(f) = bs(f, 0).

The condition (c) means that for each i there exist a σ such that σ makes only ∧i true.

I Lemma 7. For every f : {0, 1}n → {0, 1}, there exists f ′ : {0, 1}n → {0, 1} such that
s(f ′) = s(f), bs(f ′) = bs(f) = bs(f ′, 0n), and f ′ admits a normalized compact form
representation.

Proof. We claim that for any Boolean function f , there exists another Boolean function f ′
such that s(f) = s(f ′), bs(f) = bs(f ′), f ′(0n) = 0 and such that f ′ attains its maximal
block sensitivity at the all zeroes input. This is because, if f attains its maximum block
sensitivity at a ∈ {0, 1}n then, we define f ′(x) = f(a)⊕ f(x⊕ a)1, and the claim follows.

1 The operator ⊕ denotes the usual XOR function.
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Let us fix a DNF formula for f ′. If there is i ∈ [d∨] such that Si ⊆
⋃
j 6=i Sj , then we do

not change the function by removing ∧i. Thus any such AND gates can be assumed to have
been removed. J

In fact, we can remark that only the condition f(0n) = 0 from Definition 6 may need a
larger DNF (since, it could need to compute the negation of the original function), other
constraints can be achieved without increasing the size of the formula.

We will now describe a structural result about Boolean functions that admit compact
form representation. For every i ∈ [d∨], we define Γi as follows:

Γi =
{
j
∣∣∣ ∣∣Ai ∩Aj∣∣+

∣∣Aj ∩Ai∣∣ = 1
}
.

Informally, Γi is the set of AND gates which contradict on ∧i on exactly one variable.
Let Γ = max

i
|Γi|. We bound s1 using Γ as follows:

I Lemma 8. Any Boolean function f represented in the compact form admits the following
bound on s1: d∧ − Γ ≤ s1 ≤ d∧.

Proof. First, we prove that s1 ≤ d∧. Let a ∈ {0, 1}n be the input for which the maximum
s1 is attained. By definition of s1, we have that f(a) = 1. Let ∧i be an AND gate such that
∧i(a) = 1. Suppose s1 > d∧ then there exists xj ∈ X \ (Ai ∪Ai) such that f(aj) = 0. But,
as ∧i does not depend on xj , ∧i(aj) = 1 and so f(aj) still equals 1, which is a contradiction.

We will now prove that s1 ≥ d∧ − Γ. Let i0 = argmax id∧i . Let b ∈ Si0 \
⋃
j 6=i0 Sj (from

Definition 6c such a selection is possible). We have that ∧i0(b) = 1 and for all j ∈ [d∨] \ {i0},
∧j(b) = 0. It is sufficient to lower bound the cardinality of C ⊆ [n] such that for all i ∈ C,
we have that f(bi) = 0. Fix some xk ∈ (Ai0 ∪Ai0). We observe that f(bk) = 1 implies that
there is an AND gate ∧j such that

(
Ai0 ∩Aj

)
∪
(
Ai0 ∩Aj

)
= {xk}. There are exactly |Γi0 |

such k’s. The lower bound follows. J

Nisan [15] showed that for all monotone functions the block sensitivity and sensitivity
are equal. This was the first time that the sensitivity conjecture was proven for a class of
functions captured by a restriction on the model of computation for Boolean functions. In
our setting, Nisan’s result would be written as follows:

I Theorem 9 (Nisan [15]). Let f be a Boolean function and Φf be a compact form represen-
tation of f . In Φf if for every i ∈ d∨, we had that Ai = ∅ then, bs(f) = s(f).

In this paper, we look at Boolean functions through weaker restrictions on their DNF
representation. In this regard, we will now see three kinds of structural impositions on
Boolean functions in compact form representation. Later, we will prove the sensitivity
conjecture for the class of functions admitting (some of) these structural impositions.

I Property 10 (Block property). A Boolean function is said to admit the block property if
under a compact form representation ∀i, j ∈ [d∨] such that i 6= j, we have that Ai ∩Aj = ∅.
Moreover, if there exists such a compact form representation which is also normalized, we
will say that the function admits the normalized block property.

I Property 11 (Mixing property). A Boolean function is said to admit the `-mixing property
if under a compact form representation ∀i, j ∈ [d∨] with i 6= j, such that if

(
Ai ∪Ai

)
∩(

Aj ∪Aj
)
6= ∅ we have,

∣∣(Ai ∩Aj) ∪ (Aj ∩Ai)∣∣ ≥ `.
I Property 12 (Transitive property). A Boolean function is said to admit the transitive
property if under a compact form representation ∀i, j, k ∈ [d∨], we have that if (Ai ∪Ai) ∩
(Aj ∪Aj) 6= ∅ and if (Aj ∪Aj) ∩ (Ak ∪Ak) 6= ∅ then, (Ai ∪Ai) ∩ (Ak ∪Ak) 6= ∅.
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First, we see that if a Boolean function admits the Mixing property then we can improve
the bound obtained in Lemma 8.

I Lemma 13. Let ` > 1. Any Boolean function admitting the `-mixing property has Γ = 0.

Proof. Fix i ∈ [d∨]. Since the function admits `-mixing property, we know that for ev-
ery j ∈ [d∨], either

(
Ai ∪Ai

)
∩
(
Aj ∪Aj

)
= ∅ in which case we have that j /∈ Γi, or∣∣(Ai ∩Aj) ∪ (Aj ∩Ai)∣∣ ≥ ` in which case we again conclude that j /∈ Γi because of the

following:

1 < ` ≤
∣∣(Ai ∩Aj) ∪ (Aj ∩Ai)∣∣ =

∣∣Ai ∩Aj∣∣+
∣∣Aj ∩Ai∣∣ ,

where the last equality holds because in the definition of DNF formula we insisted that no
term contains both a variable and its negation. Therefore, we have that Γi = ∅. J

Consequently, we have that s1 = d∧, for all Boolean functions admitting the `-mixing
property with ` > 1.

Ambainis and Sun had previously shown in Theorem 2 of [3] that their construction gave
the (almost) best possible separation between block sensitivity and sensitivity for a family
of Boolean functions. Let us consider the Boolean functions f which can be written as a
variables-disjoint union:

f =
n∨
i=1

g(xi,1, . . . , xi,m). (1)

Then (see for example Lemma 1 in [3] or Proposition 31 in [10]) s1(f) = s1(g), s0(f) = ns0(g),
and bs0(f) = nbs0(g). So if we can find a lower bound for the sensitivity of g with respect
to bs0(g), we get the best gap for f by choosing n = s1(g)/s0(g).

I Theorem 14 (Ambainis and Sun [3]). If g is a Boolean function such that s0(g) = 1 and
bs(g) = bs0(g), then 2s1(g) ≥ 3(bs(g)− 1).

In fact, we can notice that these functions belong to our framework (this claim is implicit
in their proof of Theorem 14, but we give a proof in the full version:

I Claim 15. Let g be as in Theorem 14. Let f be the OR of several copies of g, where each
copy takes its input from a different set of variables, as in Eq. (1). Then, there exists f ′
with same block sensitivity and at most same 1-sensitivity which admits the normalized block
property, the transitive property, and the 3-mixing property.

Ambainis and Sun [3] present an explicit Boolean function f such that bs = 2
3 s2 − 1

3 s.
The function is a variables-disjoint union

f =
3n+2∨
i=1

g(xi,1, . . . , xi,4n+2).

The function g outputs one if the 4n + 2 corresponding variables satisfy the pattern
PAmbainisSun or if it is the case after an even-length cyclic rotation of the variables. The
pattern starts with 2n 0s which are followed by a block of two ones and it finishes by n copies
of the block 0_ (the underscore means the variable can be 0 or 1):

0 0 . . . . . . 0 1 1 0 _ 0 _ . . . . . . 0 _
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As we only admit the even-length rotations, we can easily see that the normalized block
property is ensured. The patterns in g pairwise intersect, so we also get the transitive
property. Finally, if we consider two rotations R1 and R2 of the pattern, we can assume that
the 11-block in R1 intersects a 0_-block in R2 (otherwise, we switch R1 and R2 and get it).
Then the 11-block in R2 will intersect a 00-block in R1. The two rotations of the pattern
disagree on at least three variables (and in fact exactly three). Hence the 3-mixing property
is also verified.

We show in the full version that other functions in literature achieving a quadratic gap
(e.g. Rubinstein [17], Virza [19], Chakraborthy [6]) fall in our framework.

We ended up proving a result which supersedes the one mentioned in Theorem 14 both in
the lower bound and for a more general family. The above lower bound is exactly matched
by the Boolean function constructed by Ambainis and Sun [3]. This implies that there cannot
exist a Boolean function admitting the normalized block property, the transitive property and
the 2-mixing property which has a better separation between block sensitivity and sensitivity
than the function constructed by Ambainis and Sun [3].

I Theorem 16. Any Boolean function admitting the normalized block property, the transitive
property, the 2-mixing property and which depends on at least two variables has 3bs ≤ 2s2−s.

The proof of the above theorem is in the full version. In a previous version of this paper, we
did not assume that the number of dependent variables is at least two. However, as Krišjānis
Prusis and Andris Ambainis pointed out to us, there was a small error in the proof and indeed
the univariate function f(x) = x does not satisfy this inequality (s = bs = 1). Moreover,
they noticed that, as the 2-mixing property implies s1 = d∧ = C1 (cf. Lemma 13 and the
following remark), their result [2] directly implies that any Boolean function admitting the
2-mixing property satisfies 3bs ≤ 2s2 + s.

Our main result is to get rid of the dependence on the transitive property and the mixing
property. Imposing only the normalized block property on DNFs is a weak restriction as there
is no constraint on Ai. Further, given the DNF in compact form representation admitting the
normalized block property is a natural way to represent the function through its (maximal)
block sensitivity complexity. We show the following theorem concerning Boolean functions
admitting block property:

I Theorem 17. Any Boolean function admitting the block property has bs0 ≤ 4s2. In
particular, if the representation is normalized, bs ≤ 4s2.

The importance of the result is that the block property seems to be a quite natural
restriction for studying the relations between the sensitivity and the block sensitivity. In
fact, by assuming that the block sensitivity is maximized, by the blocks Bi, on the all zeros
inputs with f(0n) = 0 (which is always possible), the block property intuitively asserts the
output is one if from the all zeros input, we can get an input in f−1(1) only by flipping at
least one of the blocks Bi. If it is not the case, it would mean there are other non-disjoint
blocks which are present just for diminishing the sensitivity.

Before presenting the proof, we prove three lemmas, after which the above result follows
immediately.

I Lemma 18. Any Boolean function f admitting the block property has bs0 = d∨.

Proof. From Definition 6a, we have that f(0n) = 0 and thus we have that every Ai is
non-empty. Now, it is easy to see that bs0 ≥ bs(f, 0n) ≥ d∨ – choose each Ai as a block.
Any two blocks are disjoint because of the block property and by flipping any of the blocks,
one of the AND gates will evaluate to 1.
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15:8 On the Sensitivity Conjecture for Disjunctive Normal Forms

From Definition 6b, we know that the maximum 0-block sensitivity is attained on 0n. Let
the sensitive blocks for which it attains maximum 0-block sensitivity be B1, . . . , Bk. Thus
when some Bi is flipped to all 1s, at least one of the AND gates evaluates to 1. Since the
blocks are disjoint, we can associate a distinct AND gate to each sensitive block. Therefore
the number of sensitive blocks is at most the number of AND gates, i.e., bs0 = k ≤ d∨. J

I Lemma 19. Any Boolean function admitting the block property has s ≥
⌈

d∨
2d∧ − 1

⌉
.

The previous lemma is easily seen as optimal by a multiplicative factor two by considering
the OR function.

Proof. Let E be a subset of AND gates such that for any two ∧i,∧j ∈ E, we have Ai∩Aj = ∅
and Aj∩Ai = ∅. Let P =

⋃
∧i∈E

Pi, where Pi is an arbitrarily chosen subset of Ai of size |Ai|−1

(note that |Ai| ≥ 1 as otherwise we would have f(0n) = 1, contradicting Definition 6a).
Consider a ∈ {0, 1}n, where ai = 1 if and only if xi ∈ P . We observe that for all ∧i ∈ E,
∧i(a) = 0. Also, for all ∧i /∈ E, we have that Ai ∩ P = ∅ from the block property, and
therefore ∧i(a) = 0. In short, f(a) = 0. Now for any ∧i ∈ E, let xq(i) ∈ Ai \ Pi. Since
∧i(aq(i)) = 1, we have that s0(f, a) ≥ |E|.

Now, we will prove that there is a set E such that |E| ≥
⌈

d∨
2d∧−1

⌉
. Let G be a directed

graph on d∨ vertices where the ith vertex corresponds to ∧i. We have a directed edge from
vertex i to vertex j if Ai ∩Aj 6= ∅. Let U(G) be G with orientation on the edges removed.
Consider the following procedure for constructing E:
(1) Include to E, the AND gate corresponding to the vertex with the smallest degree in

U(G).
(2) Remove the vertex picked in (1) and all its in-neighbors and out-neighbors from G.
(3) Repeat (1) if G is not empty.

From block property, we have that the out-degree of vertex i in G is at most
∣∣Ai∣∣. Thus

the total number of edges in G is at most
∑

i∈[d∨]
|Ai| ≤ d∨(d∧ − 1). This implies that the sum

of the degree of all vertices in U(G) is at most 2d∨(d∧ − 1). Therefore, there exists a vertex
in U(G) of degree at most 2d∧ − 2. By including the corresponding AND gate into E, the
number of vertices in G reduces by at most 2d∧− 1. In order for G to be empty, there should
be at least

⌈
d∨

2d∧−1

⌉
iterations of the above procedure, and since cardinality of E grows by 1

after each iteration, we have that |E| ≥
⌈

d∨
2d∧−1

⌉
.

Therefore, we have s ≥ s0(f, a) ≥ |E| ≥
⌈

d∨
2d∧−1

⌉
. J

I Lemma 20. Any Boolean function admitting the block property has s ≥
⌈
d∧
2

⌉
.

Proof. If s1 ≥
⌈ 1+d∧

2
⌉
, we are done. Therefore, we can assume s1 <

⌈ 1+d∧
2
⌉
. Let i? =

argmaxi d∧i
. Consider a ∈ {0, 1}n with aj = 1 if and only if xj ∈ Ai? . We note that

∧i?(a) = 1 and |a| (Hamming weight of a) is nonzero since Ai? is nonempty from Definition 6a.
Let xj ∈ Ai? . We claim that f(aj) = 0. The proof is by contradiction. Suppose, f(aj) = 1.

It is clear that ∧i?(aj) = 0 as xj ∈ Ai? . Thus, there must exist some k 6= i?, such that
∧k(aj) = 1. From block property, we know that Ai? ∩Ak = ∅, but all variables assigned to 1
in aj are in Ai? . This implies Ak = ∅. Therefore ∧k(0n) = 1, contradicting Definition 6a.

Now we would like to claim that for any xj ∈ Ai? , we have s0(f, aj) ≥ 1 +
⌊
d∧
2
⌋
. We

first note that s1(f, a) <
⌈ 1+d∧

2
⌉
and since for any xj ∈ Ai? , we have f(aj) = 0, we have
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that |Ai? | <
⌈ 1+d∧

2
⌉
. Let D = {xp ∈ Ai? | f(ap) = 1}. Since, s1(f, a) <

⌈ 1+d∧
2
⌉
, this implies

|Ai? | − |D| + |Ai? | <
⌈ 1+d∧

2
⌉
or equivalently, |D| >

⌈
d∧
2
⌉
− 1. Fix xp ∈ D and xj ∈ Ai? .

Since f(ap) = 1, we know there exists some k 6= i?, such that ∧k(ap) = 1. By block property,
we know that xj /∈ Ak, and this implies f(a{j,p}) = 1. Thus, we have that for any fixed
xj ∈ Ai? , s0(f, aj) ≥ |D|+ 1 as for every xp ∈ D, we have f(a{j,p}) = 1 and also f(a) = 1.
Therefore, for every xj ∈ Ai? we have s0(f, aj) ≥ |D|+ 1 > 1 +

⌈
d∧
2
⌉
− 1 =

⌈
d∧
2
⌉
.

Therefore, we have that either s1 or s0 is at least
⌈
d∧
2
⌉
. J

Proof of Theorem 17. From Lemma 19 and Lemma 20, we have that for any Boolean
function admitting the block property s2 > d∨

4 . Combining this with Lemma 18, we have
that 4s2 > bs0. J

We can notice that Lemma 20 is optimal, i.e., we give an example of a Boolean
function admitting the block property with s0 = s1 = dd∧/2e. The set of variables is
X = {x1, . . . , x2n+1}. We describe the example by its ∧-gates ∧1, . . . ,∧n+1: for all i ∈ [n],
Ai = {x2i}, Ai = ∅, An+1 = {x2i−1 | i ∈ [n+ 1]} and Ai = {x2i | i ∈ [n]}.

Finally, we conclude with an absolute lower bound on the sensitivity of functions admitting
block property.

I Corollary 21. Let f be a Boolean function which depends on n variables. If f admits the
block property, then 2s(f) ≥ n1/3.

Proof. The number of variables which appear in the DNF is at most d∨d∧, and so d∨d∧ ≥ n.
By Lemma 19 and Lemma 20,

s3 ≥
(
d∨
2d∧

)(
d∧
2

)2
≥ d∨d∧

8 ≥ n

8 . J

3.1 t-Block Property
In this subsection, we extend the notion of block property to t-block property as follows.

I Property 22 (t-Block property). A Boolean function is said to admit the t-block property
if under a compact form representation ∀x ∈ X, we have |{Ai|x ∈ Ai}| ≤ t.

We have that 1-block property is exactly the same as block property discussed in the
previous subsection. Let us notice that the notion of t-block property is far more general
than the one of read-t DNF presented in [4] since, here only the number of times where the
variables appear positively is bounded.

First, we show an upper bound on Boolean functions admitting the t-block property in
terms of the size of the DNF. The proof is very similar to the one for Lemma 18 and can be
found in the full paper.

I Lemma 23. Any Boolean function f admitting the t-block property has bs0 ≤ d∨.

Next, we prove a lower bound on Boolean functions admitting the t-block property in
terms of t, the width of the DNF, and the size of the DNF.

I Lemma 24. If f admits the t-block property, then s ≥
⌈

d∨
3td∧ − 2t− d∧ + 1

⌉
.

Proof. Let E be a subset of AND gates such that for any two ∧i,∧j ∈ E, we have (Ai ∪
Ai)∩Aj = ∅. Let A =

⋃
∧i∈E

Ai (note that any |Ai| ≥ 1 as otherwise we would have f(0n) = 1,
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15:10 On the Sensitivity Conjecture for Disjunctive Normal Forms

contradicting Definition 6a). Consider A the set of 0-vectors with support in A. More
formally, A = {a ∈ {0, 1}n | f(a) = 0 and ∀i, ai = 1 =⇒ xi ∈ A}.

First notice that 0n ∈ A, so this set is not empty. Let ā be an element of A with maximal
Hamming weight. For any ∧i ∈ E, the gate ∧i does not depend on the variables in (A \Ai)
by definition of E and A. So, f(ā) = 0 implies that there exists a variable xli ∈ Ai such that
āli = 0. Then, by maximality of Hamming weight of ā, f(āli) = 1 and so ā is 0-sensitive on
li. Finally, for all i, j ∈ E the indices li and lj are distinct since Ai ∩Aj = ∅. Consequently,
we have that s0(f, ā) ≥ |E|.

Now, we will prove that there is a set E such that |E| ≥
⌈

d∨
3td∧−2t−d∧+1

⌉
. Let G be a

directed graph on d∨ vertices where the ith vertex corresponds to ∧i. We have a directed
edge from vertex i to vertex j if Ai ∩Aj 6= ∅. Let U(G) be G with orientation on the edges
removed. Consider the following procedure for constructing E:
(1) Add to E, the AND gate corresponding to the vertex with the smallest degree in U(G).
(2) Remove the vertex picked in (1) and all its in-neighbors and out-neighbors from G.
(3) Remove any vertex from G associated with a gate ∧j with Ai ∩Aj 6= ∅.
(4) Repeat from (1) if G is not empty.

From t-block property, we have that the out-degree of vertex i in G is at most t
∣∣Ai∣∣.

Thus the total number of edges in G is at most
∑

i∈[d∨]
t|Ai| ≤ td∨(d∧ − 1). This implies that

the sum of the degree of all vertices in U(G) is at most 2td∨(d∧ − 1). Therefore, there exists
a vertex in U(G) of degree at most 2td∧ − 2t. By including the corresponding AND gate
into E, the number of vertices in G reduces by at most 2td∧ − 2t+ 1 at step (2). Moreover,
at step (3), by the t-block property, there are at most (t− 1)|Ai| ≤ td∧ − d∧ gates ∧j such
that Ai ∩Aj 6= ∅ and j 6= i. Consequently at most 3td∧ − 2t− d∧ + 1 gates are removed at
each step. In order for G to be empty, there should be at least

⌈
d∨

3td∧−2t−d∧+1

⌉
iterations of

the above procedure, and since cardinality of E grows by 1 after each iteration, we have that
|E| ≥

⌈
d∨

3td∧−2t−d∧+1

⌉
.

Therefore, we have s ≥ s0(f, a) ≥ |E| ≥
⌈

d∨
3td∧−2t−d∧+1

⌉
. J

As a corollary, we obtain the following.

I Corollary 25. Let f be a Boolean function admitting the t-block property, with t ≤ d∨d−1−ε
∧ ,

for some ε > 0. Then, bs0(f) ≤ t (3s(f))1+ 1
ε .

Proof. Since t ≤ d∨d−1−ε
∧ , we have that d∧ ≤

(
d∨
t

)1/(1+ε). Substituting in Theorem 24, we
have that s(f) ≥ d∨

3t(d∨/t)1/(1+ε) . After rearranging and simplifying, we get tε (3s(f))1+ε ≥

(d∨)ε. We substitute Lemma 23, and simplify to obtain t (3s(f))1+ 1
ε ≥ bs0(f). J

4 Low Sensitivity Boolean functions

Gopalan et al. [11] show that functions with low sensitivity have concise descriptions, so
consequently the number of such functions is small. Indeed, they show that knowing the
values on a Hamming ball of radius 2s + 1 suffices. More precisely,

I Theorem 26 (Gopalan et al. [11]). Let f be a Boolean function of sensitivity s. Then, it
is uniquely specified by its values on any ball of radius 2s.

We extend their observation to a more general one:
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I Theorem 27. Let f and g be two Boolean functions. If f and g coincide on a ball of
radius s(f) + s(g) then, f = g.

Before we prove Theorem 27, we note the following handy lemma:

I Lemma 28. Let f and g be two Boolean functions. We have s(f ⊕ g) ≤ s(f) + s(g) and
bs(f ⊕ g) ≤ bs(f) + bs(g) 2.

Proof. For any x ∈ {0, 1}n and i ∈ [n], if (f ⊕ g)(x) 6= (f ⊕ g)(xi) then we have that
either f(x) 6= f(xi) or g(x) 6= g(xi). This implies, for every x ∈ {0, 1}n, s(f ⊕ g, x) ≤
s(f, x) + s(g, x). Similarly, for any x ∈ {0, 1}n and B ⊆ [n], if (f ⊕ g)(x) 6= (f ⊕ g)(xB)
then we have that either f(x) 6= f(xB) or g(x) 6= g(xB). This implies, for every x ∈ {0, 1}n,
bs(f ⊕ g, x) ≤ bs(f, x) + bs(g, x). J

Proof of Theorem 27. The proof is by contradiction. Suppose there exists a ∈ {0, 1}n
such that for every r ∈ {0, 1}n of hamming weight at most s(f) + s(g), we have that
f(a ⊕ r) = g(a ⊕ r). This implies that for every r ∈ {0, 1}n with ||r|| ≤ s(f) + s(g), we
have (f ⊕ g)(a⊕ r) = 0. Consider x ∈ {0, 1}n of the smallest hamming distance from a such
that (f ⊕ g)(x) = 1. If such a x does not exist then it implies that f ⊕ g is the constant
zero function. In that case we have that f = g, a contradiction. Therefore, let us suppose
that x exists as described above. Let d be the hamming distance between x and a. We
know that d > s(f) + s(g). Additionally, we know that there are exactly d neighbors of x at
hamming distance d− 1 from a. Since, x was the input with the smallest distance from a

such that (f ⊕ g)(x) = 1, we know that the d neighbors of x at hamming distance d− 1 from
a all evaluate to 0 on (f ⊕ g). This means that s(f ⊕ g, x) ≥ d > s(f) + s(g), which is a
contradiction following Lemma 28. J

Next, we explore the tightness of Theorem 27.

I Proposition 29. For every p, q ∈ N, greater than 1, there exists Boolean functions f and
g such that s(f) = p, s(g) = q, and f and g coincide on a ball of radius s(f) + s(g)− 1.

Proof. Without loss of generality we will assume that p ≤ q. Fix p and q. We will build two
function f and g on p+ q variables. Let a ∈ {0, 1}p+q be a special input defined as follows:
∀i ∈ [p+ q], ai = 1 if and only if i = 1, or i > 2p, or i 6= 2p is even. Now we define f and g
as follows:

f(x1, . . . , xp+q) =



0 if
2p∑
i=1

xi < p

1 if
2p∑
i=1

xi > p

∑
xj=1,
j≤2p

j mod 2 if
2p∑
i=1

xi = p

g(x) =
{

0 if x = a

f(x) otherwise.

Now, we will show that s(f) = p. Fix x ∈ {0, 1}p+q. x is not sensitive on the last q − p
coordinates. If

∑2p
i=1 xi < p − 1 or

∑2p
i=1 xi > p + 1 then s(f, x) = 0. If

∑2p
i=1 xi = p then

s(f, x) = p. If
∑2p
i=1 xi = p− 1 then s(f, x) ≤ p. This is because for any subset of [2p] of size

p+1 there is both an odd number and an even number in the subset (by pigeonhole principle),
and thus amongst its p+ 1 neighbors of hamming weight p (in the first 2p coordinates) there

2 ∀x ∈ {0, 1}n, (f ⊕ g)(x) = f(x)⊕ g(x).

FSTTCS 2016
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must be a neighbor which is not sensitive w.r.t. x. Similarly, we have that if
∑2p
i=1 xi = p+ 1

then s(f, x) ≤ p.
Next, we will show that s(g) = q. Fix x ∈ {0, 1}p+q. If x is not in the hamming ball of

radius 1 centered at a then, s(g, x) = s(f, x) ≤ p ≤ q. If x = a then, it is sensitive on all
the last q − p coordinates and has p sensitive neighbors in the first 2p coordinates. Thus,
s(g, a) = q. If x is a neighbor of a through one of the last q − p coordinates (i.e., assuming
q − p > 0) then s(g, x) = p + 1 ≤ q. If x is a neighbor of a through one of the first 2p
coordinates then, we can assume g(x) = 1. This means hamming weight of x in first 2p
coordinates is p+ 1 and we know that it is not sensitive on the last q − p coordinates. From
the definition of a, we know that there is at least one neighbor of x of hamming weight p in
the first 2p coordinates such that its value on g is the same as g(x). Therefore s(g, x) ≤ p ≤ q.

Finally, we claim that f and g coincide on the ball of radius p + q − 1 centered at(
a⊕~1

)
(follows from the construction of g). This completes the proof as f and g are distinct

(f(a) 6= g(a)) and to distinguish between them by a ball centered at
(
a⊕~1

)
, we need to

consider a ball of radius p+ q. J

In the case of monotone Boolean functions, we can improve upon the results in Theorem 26
and Theorem 27 as follows: any monotone Boolean function f is uniquely specified by its
values on the ball of radius s centered at 0n. This is because, for any input x of hamming
weight greater than s(f), f(x) is equal to 1 if at least one of its neighbors of hamming weight
|x| − 1 is evaluated to 1 on f . In other words,

f(x) =
∨

y=x⊕ei

|y|=|x|−1

f(y).

Furthermore, this result is tight because Wegener’s monotone Boolean function [20] f of
sensitivity 1

2 logn+ 1
4 log logn+O(1) is identical to the constant zero function on the ball of

radius s(f)− 1 centered at 0n.

5 The Sensitivity Conjecture: A Computational Perspective

We would like to briefly discuss in this section a new perspective on the sensitivity conjecture.
Consider a strong version of the sensitivity conjecture which was suggested by Nisan and
Szegedy [16]: for every Boolean function f , we have bs(f) ≤ c ·s(f)2, for some constant c. Let
us assume that the above conjecture is true. We note here that there is no evidence or reason
to refute this strong version of the sensitivity conjecture. Now consider a computational
problem called the sensitivity problem defined based on this assumption.

I Definition 30 (Sensitivity Problem). Given a circuit C : {0, 1}n → {0, 1}, x ∈ {0, 1}n,
and blocks B1, . . . , Bk, the sensitivity problem is to find y ∈ {0, 1}n such that s(C, y) ≥√

bs(C, x,B1, ..., Bk)/c.

A solution to the sensitivity problem is guaranteed to exist and a solution can be verified
in poly(n) time, thus the problem is in TFNP. We wonder if the proof of the sensitivity
conjecture would give us an efficient algorithm to solve this problem in P?

We investigated the proofs of the sensitivity conjecture for restricted classes of Boolean
functions that exist in literature. In each of these proofs we indeed find an efficient algorithm
to solve the above problem in P. For instance, consider the class of Boolean functions
admitting the normalized block property. In this case, the computational problem would
be that given a DNF Φ, x ∈ {0, 1}n, and blocks B1, . . . , Bk, find y ∈ {0, 1}n such that
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s(Φ, y) ≥
√

bs(φ, x,B1, ..., Bk)/2 or find two clauses in Φ which violate Φ admitting the
block property. This problem like the sensitivity problem is in TFNP. However, the proof
of Lemma 19 gives us an efficient algorithm to find an input a1 with sensitivity

⌈
d∨

2d∧−1

⌉
and

the proof of Lemma 20 gives us an efficient algorithm to find an input a2 with sensitivity⌈
d∧
2
⌉
. Since, bs(φ, x,B1, ..., Bk) ≤ bs(Φ) = d∨, either a1 or a2 is a solution to our problem

(assuming there is no violation to the block property of Φ). Thus the computational problem
in the case of functions admitting the block property is in P.

Similarly, for every monotone function f , and every input x we have s(f, x) = bs(f, x)
[15]. Therefore, for the computational version of the sensitivity problem adapted to the
monotone restriction, the input x will be a trivial solution and thus the computational
problem would be in P. Finally, even for the case of min-term transitive functions, we have
an efficient algorithm implicit in the proof of Chakraborthy [6] who showed that for any
min-term transitive function f , bs(f) ≤ 2s(f)2.

Returning to ponder on the existence of efficient algorithms for the sensitivity problem,
while it is related to the sensitivity conjecture, it is possible that the sensitivity conjecture is
true but there is no efficient algorithm for the sensitivity problem. Similarly, it is possible that
an efficient algorithm for the sensitivity problem is found without resolving the sensitivity
conjecture (in this case the sensitivity problem should be considered to be in NP and not
in TFNP). However, our progress on the sensitivity conjecture under various restricted
settings seem to be by finding a vertex of high sensitivity by starting from a given input with
high block sensitivity. Therefore, studying various restrictions on models of computations for
Boolean functions seems to be the right direction to pursue, in order to make progress on
the sensitivity conjecture.

6 Conclusion

In this paper, we motivate the study of the sensitivity conjecture through restrictions on
a model of computation. In this regard, we introduced a structural restriction on DNFs
representing Boolean functions called the normalized block property. We showed that the
examples of Boolean functions that are popular in literature for having a quadratic separation
between sensitivity and block sensitivity admit this property. More importantly, we showed
that the sensitivity conjecture is true for the class of Boolean functions admitting the
normalized block property. Furthermore, we extended a result of Gopalan et al. [11] and also
provided matching lower bounds for our results. Finally, we motivated a new computational
problem about finding an input with (relatively) high sensitivity, with respect to the block
sensitivity for a given input.
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Abstract
The pointer function of Göös, Pitassi and Watson and its variants have recently been used to
prove separation results among various measures of complexity such as deterministic, randomized
and quantum query complexity, exact and approximate polynomial degree, etc. In particular,
Ambainis et al. (STOC 2016) obtained the widest possible (quadratic) separations between
deterministic and zero-error randomized query complexity, as well as between bounded-error and
zero-error randomized query complexity by considering variants of this pointer function.

However, as Ambainis et al. pointed out in their work, the precise zero-error complexity of
the original pointer function was not known. We show a lower bound of Ω̃(n3/4) on the zero-error
randomized query complexity of the pointer function on Θ(n logn) bits; since an Õ(n3/4) upper
bound was already shown by Mukhopadhyay and Sanyal (FSTTCS 2015), our lower bound is
optimal up to polylog factors. We, in fact, consider a generalization of the original function and
obtain lower bounds for it that are optimal up to polylog factors.

1998 ACM Subject Classification F.1.1 [Models of Computation] Relations between models,
F.1.2 [Modes of Computation] Probabilistic computation

Keywords and phrases Deterministic Decision Tree, Randomized Decision Tree, Query Com-
plexity, Models of Computation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.16

1 Introduction

Understanding the relative power of various models of computation is a central goal in
complexity theory. In this paper, we focus on one of the simplest models for computing
Boolean functions – the query model or the decision tree model. In this model, the algorithm
is required to determine the value of a Boolean function by querying individual bits of the
input, possibly adaptively. The computational resource we seek to minimize is the number
of queries for the worst-case input. That is, the algorithm is charged each time it queries an
input bit, but not for its internal computation.

There are several variants of the query model, depending on whether randomization
is allowed, and on whether error is acceptable. Let D(f) denote the deterministic query
complexity of f , that is, the maximum number of queries made by the algorithm for the worst-
case input; let R(f) denote the maximum number of queries made by the best randomized
algorithm that errs with probability at most 1/3 (say) on the worst-case input. Let R0(f)
be the zero-error randomized query complexity of f , that is, the expected number of queries
made for the worst-case input by the best randomized algorithm for f that answers correctly
on every input.
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The relationships between these query complexity measures have been extensively studied
in the literature. That randomization can lead to significant savings has been known for a
long time. Snir [10] showed a O(nlog4 3) randomized linear query algorithm (a more powerful
model than what we discussed) for complete binary NAND tree function for which the
deterministic linear query complexity is Ω(n). Later on Saks and Wigderson [9] determined
the zero-error randomized query complexity of the complete binary NAND tree function to
be Θ(n0.7536...). They also presented a result of Ravi Boppana which states that the uniform
rooted ternary majority tree function has randomized zero-error query complexity O(n0.893...)
and deterministic query complexity n. All these examples showed that randomized query
complexity can be substantially lower than its deterministic counterpart. On the other
hand, Nisan showed that the R(f) = Ω(D(f)1/3) [8]. Blum and Impagliazzo [3], Tardos [11],
Hartmanis and Hemachandra [6] independently showed that R0(f) = Ω(D(f)1/2). Thus, the
question of the largest separation between deterministic and randomized complexity remained
open. Indeed, Saks and Wigderson conjectured that the complete binary NAND tree function
exhibits the widest separation possible between these two measures of complexity.

I Conjecture 1 ([9]). For any boolean function f on n variables, R0(f) = Ω(D(f)0.753...).

This conjecture was recently refuted independently by Ambainis et al. [2] and Mukho-
padhyay and Sanyal [7]. Both works based their result on the pointer function introduced
by Göös, Pitassi and Watson [5], who used this function to show a separation between
deterministic decision tree complexity and unambiguous non-deterministic decision tree
complexity. In Section 2, we present the formal definition of the function GPWr×s, which is
a Boolean function on Θ̃(rs) bits.

Mukhopadhyay and Sanyal [7] used GPWs×s to obtain the following refutation of Conjec-
ture 1: R0(GPWs×s) = Õ(s1.5) while D(GPWs×s) = Ω(s2). While this shows that GPWs×s

witnesses a wider separation between deterministic and zero-error randomized query com-
plexities than conjectured, the separation shown is not the widest possible for a Boolean
function. Independently, Ambainis et al. modified GPWs×s in subtle ways, to establish the
widest possible (near-quadratic) separation between deterministic and zero-error randomized
query complexity, and between zero-error randomized and bounded-error randomized query
complexities.

Ambainis et al. [2] pointed out, however, that the precise zero-error randomized query
complexity (i.e. R0(GPWs×s)) was not known. One could ask if the optimal separation
demonstrated by Ambainis et al. is also witnessed by GPWs×s itself. In this work, we prove a
near-optimal lower bound on the zero-error randomized query complexity of GPWr×s, which
is slightly more general than the GPWs×s considered in earlier works.

I Theorem 2 (Main theorem). R0(GPWr×s) = Ω̃(r +
√
rs).

Such a result essentially claims that randomized algorithms cannot efficiently locate certificates
for the function. This would be true, for example, if the function could be shown to require
large certificates, since the certificate complexity of a function is clearly a lower bound on
its zero-error randomized complexity. This straightforward approach does not yield our
lower bound, as the certificate complexity of GPWr×s is Õ(r + s). In our proof, we set up a
special distribution on inputs, and by analyzing the expansion properties of the pointers,
show that a certificate will evade a randomized algorithm that makes only a small number
of queries. In fact, the distribution we devise is almost entirely supported on inputs X for
which GPWr×s(X) = 0. This is not an accident: a randomized algorithm can quickly find a
certificate for inputs X if GPWr×s(X) = 1 (see Theorem 5 below).
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It follows from Theorem 2 that the algorithm of Mukhopadhyay and Sanyal [7] is optimal
up to polylog factors.

I Corollary 3. R0(GPWs×s) = Ω̃(s1.5).

In addition to nearly determining the zero-error complexity of the original GPWs×s

function, our result has two interesting consequences.
(a) The above mentioned result of Mukhopadhyay and Sanyal [7] showed that R0(GPWs×s)

= Õ(D(GPWs×s)0.75). Our main theorem shows that GPWs×s cannot be used to show
a significantly better separation between the deterministic and randomized zero-error
complexities (ignoring polylog factors). However, the function GPWs2×s allows us to
derive a better separation1: R0(GPWs2×s) = O(D(GPWs2×s)2/3). Our main theorem
shows that this is essentially the best separation that can be derived from GPWr×s

by varying r relative to s, so this method cannot match the near-quadratic separation
between these measures, which was shown by Ambainis et al. [2] by considering a variant
of the GPWs×s function.

(b) GPWs×s exposes a non-trivial polynomial separation between the bounded-error and
zero-error randomized query complexities: R(GPWs×s) = Õ(R0(GPWs×s)2/3). This
falls short of the near-quadratic separation shown by Ambainis et al. [2], but note that
before that result no separation between these measures was known.

2 The GPW function

The input X to the pointer function, GPWr×s, is arranged in an array with r rows and s
columns. The cell X[i, j] of the array contains two pieces of data, a bit bij ∈ {0, 1} and a
pointer ptrij ∈ ([r]× [s]) ∪ {⊥}.

Let A denote the set of all such arrays. The function GPWr×s : A → {0, 1} is defined as
follows: GPWr×s(X) = 1 if and only if the following three conditions are satisfied.
1. There is a unique column j∗ such that for all rows i ∈ [r], we have bij∗ = 1.
2. In this column j∗, there is a unique row i∗ such that ptri∗j∗ 6= ⊥.
3. Now, consider the sequence of locations (pk : k = 0, 1, . . . , s− 1), defined as follows: let

p0 = (i∗, j∗), and for k = 0, 1, . . . , s − 2, let pk+1 = ptrpk
. Then, p0, p1, . . . , ps−1 lie in

distinct columns of X, and bpk
= 0 for k = 1, 2, . . . , s − 1. In other words, there is a

chain of pointers, which starts from the unique location in column j∗ with a non-null
pointer, visits all other columns in exactly s− 1 steps, and finds a 0 in each location it
visits (except the first).

Note that GPWr×s can be thought of as a Boolean function on Θ(rs log rs) bits.

Upper Bound

The pointer function GPWr×s, as defined above, is parameterized by two parameters, r and
s. Göös, Pitassi and Watson [5] focus on the special case where r = s. Mukhopadhyay
and Sanyal [7] also state their zero-error randomized algorithm with Õ(s1.5) queries for this
special case; however, it is straightforward to extend their algorithm so that it applies to the
function GPWr×s and yields the following upper bound.

I Theorem 4. R0(GPWr×s) = Õ(r +
√
rs).

1 In [1], a similar separation between R(GPWs2×s) and D(GPWs2×s) is mentioned.
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Figure 1 Input to GPWr×s for r = 5, s = 5.

Mukhopadhyay and Sanyal also gave a one-sided error randomized query algorithm that
makes Õ(s) queries on average but never errs on inputs X, where GPWs×s(X) = 1. Again a
straightforward extension yields the following.

I Theorem 5. There is a randomized query algorithm that makes Õ(r + s) queries on each
input, computes GPWr×s correctly on each input with probability at least 1/3, and in addition
never errs on inputs X where GPWr×s(X) = 1.

Theorem 2, thus, completely determines the deterministic and all randomized query com-
plexities of a more general function GPWr×s.

2.1 The distribution
To show our lower bound, we will set up a distribution on inputs in A. Let V be the locations
in the first s/2 columns, i.e., V = [r]× [s/2]; let W be the locations in the last s/2 columns,
i.e., W = [r] × ([s] \ [s/2]). In order to describe the random input X, we will need the
following definitions.

Pointer chain

For an input in A, we say that a sequence of locations p = 〈`0, `1, `2, . . . , `k〉 is a pointer
chain, if for i = 0, 1, . . . , k−1, ptr`i

= `i+1; the location `0 is the head of the p and is denoted
by head(p); similarly, `k is the tail of p and is denoted by tail(p). Note that ptr`k

is not
specified as part of the definition of pointer chain p; in particular, it is allowed to be ⊥.

Random pointer chain

To build our random input X, we will assign the pointer values of the various cells of X
randomly so that they form appropriate pointer chains. For a set of locations S we build
a random pointer chain on S as follows. First, we uniformly pick a permutation of S, say
〈`0, `1, . . . , `k〉. Then, we set ptr`i

= `i+1 (for i = 0, 1, . . . , k− 1). We will make such random
assignments for sets S consisting of consecutive locations in some row of W . We call the
special (deterministic) chain that starts at the first (leftmost) location of S, visits the next,
and so on, until the last (rightmost) location, a path. Given two pointer chains p1 and p2 on
disjoint sets of locations S1 and S2, we may set ptrtail(p1) = head(p2), and obtain a single
pointer chain on S1 ∪ S2, whose head is head(p1) and tail is tail(p2). We will refer to this
operation as the concatenation of p1 and p2.
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. . .
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width (wj) = s/(20 · 2j · 2K)
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s/2
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Figure 2 Bands and segments inside block Wj .

We are now ready to define the random input X. We will assume that r >> log s, because
otherwise

√
rs = Õ(s), and Theorem 2 follows from the certificate complexity lower bound of

Ω̃(r + s) on R0(GPWr×s) (see the sentence following Assumption 6 below). First, consider
W . For all ` ∈W , we set b` = 0. To describe the pointers corresponding to W , we partition
the columns of W into K := log s− 3 log log s blocks, W1, . . . ,WK , where W1 consists of the
first s/(2K) columns of W , then W2 consists of the next s/(2K) columns, and so on. V W1 W2 . . . WK


The block Wj , will be further divided into bands; however, the number of bands in different
Wj will be different. There will be 20 ·2j bands in Wj , each consisting of wj := s/(20 ·2j ·2K)
contiguously chosen columns (note that wj � log s by our choice of K). See Figure 2.

Each such band will have r rows; the locations in a single row of a band will be called a
segment; we will divide each segment into two equal parts, left and right, each with wj/2
columns.

We are now ready to specify the pointers in each segment of Wi. In the first half of each
segment we place a random (uniformly chosen) pointer chain; in the right half we place a
path starting at its leftmost cell and leading to its rightmost cell. See Figure 3. Once all
pointer chains in all the segments in a given row are in place, we concatenate them from left
to right. All pointers in the last column of W are set to ⊥. In the resulting input, each row
of W is a single pointer chain with head in the leftmost segment of W1 and tail in the last
column of W . This completes the description of X for the locations in W .

Next, we consider locations in V . Let q := 500 log s/
√
r. Notice that by our assumption,

q < 1. Independently, for each location ` ∈ V :
with probability q, set b` = 0 and ptr` to be a random location that is in the left half of
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tail head

random pointer chain path

Figure 3 A segment consists of a random pointer chain concatenated with a path.

some segment in W (that is, among all locations that fall in the left half of some segment,
pick one at random and set ptr` to that location);
with probability 1− q, set b` = 1 and ptr` = ⊥.

This completes the description of the random input X.

3 The lower bound for GPWr×s

We will consider algorithms that are given query access to the input bits of GPWr×s. A
location ` ∈ [r]× [s] of an input X ∈ A is said to be queried if either b` is queried, or some
bit in the encoding of ptr` is queried. By number of queries, we will always mean the number
of locations queried. A lower bound on the number of locations queried is clearly a lower
bound on the number of bits queried.

It can be shown that the certificate complexity of GPWr×s is Ω(r+s); hence R0(GPWr×s)
= Ω(r + s). It remains to show that any zero-error randomized query algorithm for GPWr×s

must make Ω(
√
rs/polylog(s)) queries in expectation. We will assume that there is a

significantly more efficient algorithm and derive a contradiction.

I Assumption 6. There is a zero-error randomized algorithm that makes at most
√
rs/(log s)5

queries in expectation (taken over the algorithm’s coin tosses) on every input X.

If r < (log s)3 (say), then this assumption immediately leads to a contradiction because
R0(GPWr×s) = Ω(s). So, we will assume that r ≥ (log s)3.

Consider inputs X drawn according to the distribution described in the previous section.
Since with probability 1− o(1) every column of X has at least one zero (see Lemma 10 (a)),
GPWr×s(X) = 0 with probability 1− o(1); thus, the algorithm returns the answer 0 with
probability 1− o(1). Taking expectation over inputs X and the algorithm’s coin tosses, the
expected number of queries made by the algorithm is at most

√
rs/(log s)5. Using Markov’s

inequality, with probability 1− o(1), the algorithm stops after making at most
√
rs/(log s)4

queries. By truncating the long runs and fixing the random coin tosses of the algorithm, we
obtain a deterministic algorithm. Hence we have the following.

I Proposition 7. If Assumption 6 holds, then there is a deterministic algorithm that (i)
queries at most

√
rs/(log s)4 locations, (ii) never returns a wrong answer (it might give no

answer on some inputs), and (iii) returns the answer 0 with probability 1 − o(1) for the
random input X.
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Fix such a deterministic query algorithm Q. In the next section, we formally establish the
following.
I Lemma 8 (Stitching lemma). With probability 1− o(1) over the choices of X, there is an
input X ′ ∈ A that differs from X only in locations not probed by Q such that GPWr×s(X ′) = 1.
Thus, with high probability, Q(X ′) = Q(X) = 0. This contradicts Proposition 7 (ii). This
immediately implies Theorem 2.

4 The approach

In this section, we will work with the algorithm Q that is guaranteed to exist by Proposition 7.
For an input X ∈ A to GPWr×s, let GX = (V ′,W ′, E) be a bipartite graph, where V ′ is the
set of columns of V and W ′ is the set of all bands in all blocks of W . The edge set E(GX) is
obtained as follows. Recall that pointers from V lead to segments in W . Each such segment
contains a pointer chain. For a location ` in such a chain, let pred(`) denote the location `′
that precedes ` in the chain (if ` is the head, then pred(`) is undefined); thus, ptr`′ = `. We
include the edge (j, β) (connecting column j ∈ V ′ to band β ∈W ′) in E(GX) if the following
holds:

There is a location v in column j and a segment p in some row of band β such that
(c1) ptrv ∈ p, that is, ptrv is non-null and points to a location in the left half of segment p

(notice that this implies that bv = 0);
(c2) pred(ptrv) is well defined and is not probed by Q;
(c3) Q makes fewer than |p|/4 probes in segment p. (Note that this implies that there is a

location in the right half of p that is left unprobed by Q and that is not the last location
of the segment.)
In the next section, we will show the following.

I Lemma 9 (Matching lemma). With probability 1 − o(1) over the choice of X, for every
subset R ⊆ V ′ of at most s/(

√
r(log s)4) columns, there is a matching in GX that saturates

R.
In this section, we will show how Lemma 9 enables us to modify the input X to obtain an
input X ′ for which GPWr×s(X ′) = 1, thereby establishing Lemma 8 (the stitching lemma).
I Lemma 10.
(a) With probability 1− o(1), each column j of the input X has a location ` such that b` = 0.

(b) With probability 1 − o(1), there is a column j ∈ [s/2] such that Q does not read any
location ` in column j with b` = 0.

Proof.
(a) All the bits in the columns in [s] \ [s/2] are 0. We show that with high probability, each

column in V ′ has a 0. The probability that a particular column in V ′ does not have any
0 is (1− 500 log s/

√
r)r ≤ s−Ω(

√
r). Thus the probability that there is a column j ∈ V ′

which does not have any 0 is at most (s/2) · s−Ω(
√

r) = o(1).
(b) By Proposition 7, Q makes t ≤ s

√
r/(log s)4 queries. For i = 1, 2, . . . , t, let Ri be the

indicator variable for the event that in the i-th query, Q reads a 0 from V . Then, the
expected number of 0’s read by Q in V is (we assume that Q does not read the same
location twice)

t∑
i=1

E[Ri] ≤ t · 500 log s/
√
r ≤ 500s/(log s)3.
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By Markov’s inequality, with probability 1− o(1), the number number of 0’s read by Q
is less than s/2. It follows, that there is a column in V in which Q has read no 0. J

Proof of Lemma 8. Assume that the high probability events of Lemmas 9 and 10 hold.
This happens with probability 1− o(1). We will now describe a sequence of modifications
to the input X at locations not queried by Q to transform it into an input X ′ such that
GPWr×s(X ′) = 1. Let j∗ ∈ V ′ be the column in V guaranteed by Lemma 10 (b). Define
A0 = {col1, . . . , colN} ⊆ V ′\{j∗} to be the set of columns in V ′\{j∗} that are not completely
read by Q (i.e. each column in A0 has a location unread by Q). Let `i be a location in the
column coli that is unread by Q. We first make the following changes to X, with the aim of
starting a pointer chain at column j∗ that passes through col1, col2, . . . , colN .
(i) For each unread location ` in the column j∗, set b` to 1. From the definition of j∗, the

bits of the read locations are already 1.
(ii) Let `∗ be the first unread location of j∗ (i.e. the location with the least row index). Set

ptr`∗ to `1.
(iii) For each unread location ` 6= `∗ in column j∗, set ptr` to ⊥. From the definition of j∗,

the pointers of the read locations are already ⊥.
(iv) For i = 1, . . . , N − 1, set b`i to 0 and ptr`i

to `i+1.
(v) Set b`N

to 0.
Clearly, the locations modified are not probed by Q. Notice that the current input has the
pointer chain p0 = (`∗, `1, . . . , `N ) and the head `∗ of the chain lies in the all-ones column
j∗. Furthermore, all locations on the chain except `∗ have 0 as their bit. We now show how
to further modify our input and extend p and visit the remaining columns through locations
with 0’s. The columns in W are already neatly arranged in pointer chains. The difficulty is in
ensuring that we also visit the set of columns in V ′ that are completely read by Q, for we are
not allowed to make any modifications there. Let A1 denote these completely read columns
in V ′. Since Q makes at most

√
rs/(log s)4 queries, we have that |A1| ≤ s/(

√
r(log s)4).

Lemma 9 implies that there exists a matching M in GX that saturates A1. Order the
elements of A1 as d1, . . . , dL in such a way that for all i = 1, . . . , L− 1,M(di) <M(di+1)
(where we order the bands in W from left to right), that is, the band that is matched with
di lies to the left of the band that is matched to di+1.

We will now proceed as follows. For i = 1, . . . , L, we modify the input (at locations not
read by Q) appropriately to induce a pointer chain pi. This pointer chain in addition to
visiting a contiguous set of columns in W , will visit column di. By concatenating these
pointer chains in order with the initial pointer chain p0 we obtain the promised input X ′ for
which GPWr×s(X ′) = 1.

To implement this strategy, recall that there is an edge in GX between the column di

and the bandM(di). From the definition of GX , it follows that there is a location qi in di

and a segment Si in bandM(di) such that
(s1) ptrqi

leads to the left half of Si;
(s2) pred(ptrqi

) is not probed by Q;
(s3) Q makes fewer than |Si|/4 queries in segment Si.
First, let us describe how p1 is constructed. Let a1 = ptrq1 and b1 = pred(a1) (by (s2) b1
is not probed by Q); let c1 be a location in the second half of S1 that is not probed by Q
and that is not the last location of S1 (by (s3) there is such a location). Now, we modify
the input X by setting ptrb1 = q1. Then, p1 is the pointer chain that starts at the head of
the leftmost segment of W1 in the same row as S1 and continues until location c1. That
is, starting from its head, it follows the pointers of the input until b1. Then it follows the
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ci−1

column ki−1

aibi

•

qi 0

ci

column ki

column di

V left half
ofM(di)

right half
ofM(di)

Figure 4 Construction of pointer chain pi.

pointer leading out of b1 into q1, thereby visiting column d1. After that, it follows the pointer
out of q1 and comes to a1, and keeps following the pointers until c1.

In general, suppose p1,p2, . . . ,pi−1 have been constructed. Suppose tail(pi−1) appears
in column ki−1. Then, pi is obtained as follows. Let ai = ptrqi

and bi = pred(ai); let ci be a
location in the second half of Si that is not probed by Q and that is not the last location of
Si. We modify the input by setting ptrbi

= qi. Then pi is the pointer chain with its head in
the same row as ai and in column ki−1 + 1 (note that since tail(pi−1) is not in last column
of segment Si−1, column ki−1 + 1 is still in the same band as Si−1); the pointer chain pi

terminates at location ci. See Figure 4. Note that pi entirely keeps to one row (the row of
Si), except for the diversion from bi to qi, when it visits column di and returns to ai. When
i = L, we let the pointer chain continue until the last column of W .

In obtaining the pointer chains p1,p2, . . . ,pL, we modified X at location b1, b2, . . . , bL.
Finally, we concatenate the pointer chains p0,p1, . . . ,pL; this requires us to modify X at
locations `N = tail(p0), c1, c2, . . . , cL−1, which were left unprobed by Q. The resulting input
after these modifications is X ′.

The pointer chain obtained by this concatenation visits each column other than j∗ exactly
once, and the bit at every location on it, other than its head, is 0. Hence, GPWr×s(X ′) =
1. J

5 Proof of the matching lemma

We will show that every subset R ⊆ V ′ of at most s/(
√
r(log s)4) columns has at least |R|

neighbors in W ′. Then, the claim will follow from Hall’s theorem.
Observe that with high probability every column in V ′ has Ω(

√
r log s) pointers leaving

it. We expect these pointers to be uniformly distributed among the at most log s blocks in
W ; in particular, we should expect that every column in V ′ sends Ω(

√
r) pointers into each

block. We now formally establish this.

I Claim 11. Let Vj be the j-th column of V ′ and Wj′ the j′-th block of W ; then,

Pr[∀j, j′ : |ptr(Vj) ∩Wj′ | ≤ 400
√
r] = o(1).
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Proof. Fix a location in ` ∈ Vj . Let χ` be the indicator variable for the event ptr` ∈ Wj′ .
Then, the number of pointers from Vj into Wj′ is precisely

∑
`∈Vj

χ`. Since

Pr[χ` = 1] ≥ 500 log s√
r
× 1

log s = 500√
r
,

the expected number of pointers from column Vj into Wj′ is at least 500
√
r. Our claim

follows from the Chernoff bound and the union bound (over choices of j and j′). Here, we
use the following version of the Chernoff bound (see Dubhashi and Panconesi [4], page 6): for
the sum of r independent 0-1 random variables Z`, each taking the value 1 with probability
at least α,

Pr[
∑

`

X` ≤ (1− ε)αr] ≤ exp(−ε
2

2 αr).

Since we assume r = Ω((log s)3)), in our application αr �
√
r ≥ log s. J

Suppose j is such that 2j ≤ |R| < 2j+1. Then, we will show that R has the required
number of neighbors among the bands of the block Wj .

I Claim 12. For a set R ⊆ V ′ and a block Wj, consider the set of bands of Wj into which
at least 2

√
r pointers from R fall, that is, Bj(R) := {b ∈ Wj : |ptr(R) ∩ b| ≥ 2

√
r}. Then,

for j = 1, . . . ,K and for all R such that 2j ≤ |R| < 2j+1, we have

Pr[|Bj(R)| ≤ 2|R|] = o(1).

Proof. We will use the union bound over the choices of j and R. Fix the set R. We may,
using Claim 11, condition on the event that there are at least 400

√
r|R| pointers from R to

Wj . Fix 400
√
r|R| of these pointers. Now, the number of pointers that fall outside Bj(R) is

at most 20 · 2j · 2
√
r ≤ 100

√
r|R|. That is, if |Bj(R)| < 2|R|, then there is a set T of 2|R|

bands into which more than 400
√
r|R| − 100

√
r|R| = 300

√
r|R| pointers from R fall. We will

show that it is unlikely for such a set T to exist. For a fixed T , the probability of this event
is at most(

400|R|
√
r

300|R|
√
r

)(
2|R|

20 · 2j

)300
√

r|R|

≤ 2−100
√

r|R|.

Using the union bound to account for all choices of R and the
(20·2j

2|R|
)
choices of T , and

using the fact that
√
r � log s, we conclude that the probability that Bj(R) fails to be large

enough is at most

log s−3 log log s∑
j=0

2j+1−1∑
m=2j

(
s/2
m

)(
20 · 2j

2m

)
2−100

√
rm = o(1). J

In order to show that with high probability the set R has the required number of neighbors,
we will condition on the high probability event of Claim 12, that is, |Bj(R)| > 2|R|. Let B
be the set of such bands b that receive at least 2

√
r pointers. For each b ∈ B, let P (b) be a

set of 2
√
r locations in the columns in R whose pointers land in b. If in at least |R| of the

2|R| such bands b, there is a pointer from P (b) satisfying the conditions (c1)–(c3), then we
will have obtained the required expansion. Fix a pointer out of P (b) (which by definition of
P (b) lands in band b), and consider the following events.
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E1: The pointer leads to the same segment as a previous pointer (assume the locations in
P (b) are totally ordered in some way).

E2: The pointer leads to the first entry of the pointer chain in its segment (so, that location
has no predecessor).

E3: At least wj/8 entries of the segment that the pointer lands in are probed by Q.
E4: The predecessor of the location where the pointer lands is probed by Q.
Consider the pointers that emanate from P (b) and land in some band b ∈ B. Let n1 be the
number of those pointers for whom E1 holds; let n2 be the number of those pointers for whom
E2 holds; let n3 be the number of those pointers for whom E3 holds but E1 does not hold; let
n4 be the number of those pointers for whom E4 holds but E1, E2 and E3 do not hold.

If the claim of our lemma does not hold, then it must be that in at least |R| of the 2|R|
bands of B, all pointers that fall there fail to satisfy at least one of the conditions (c1)–(c3);
that is, one of E1, . . . , E4 holds for all 2

√
r of them. This implies that

n1 + n2 + n3 + n4 ≥ 2
√
r|R|. (1)

To prove our claim, we will show that with high probability each ni on the left is less than√
r|R|/2. In the following, we fix a set R and separately estimate the probability that one

of the quantities on the left is large. To establish the claim for all R, we will use the union
bound over R. In the proof, we use the following version of the Chernoff-Hoeffding bound,
which can be found in Dubhashi and Panconesi ([4], page 7).

I Lemma 13 (Chernoff-Hoeffding bound). Let X :=
∑

i∈[n]Xi where Xi, i ∈ [n] are inde-
pendently distributed in [0, 1]. Let t > 2eE[X]. Then

P[X > t] ≤ 2−t.

I Claim 14. Pr[n1 ≥
√
r|R|/2] ≤ 2−r|R|/2.

Proof. The probability that a pointer from P (b) falls on a segment of a previous pointer is
at most 2

√
r/r. Thus, the expected value of n1 is at most 8|R|. We may invoke lemma 13

and conclude that

Pr[n1 ≥
√
r|R|/2] ≤ 2−

√
r|R|/2. J

Recall that the number of blocks is K = log s− 3 log log s and the width of each band in the
j-th block is wj = s/(20 · 2j · 2K).

I Claim 15. Pr[n2 ≥
√
r|R|/2] ≤ 2−

√
r|R|/2.

Proof. A pointer falls on head of random pointer chain in a segment with probability at
most 2/wj . Thus,

E[n2] ≤
(

2
wj

)
4
√
r|R| ≤ 320|R|

√
r

(log s)2 .

Again, our claim follows by a routine application of Lemma 13. J

I Claim 16. Pr[n3 ≥
√
r|R|/2] = 0.

Proof. If n3 ≥
√
r|R|/2, then the total number of locations read by Q is at least

n3
wj

8 ≥
(√

r|R|
2

)
· wj

8 ≥
(√

r2j

2

)(
s

8 · 20 · 2j log s

)
�

√
rs

320 log s .

This contradicts our assumption that Q makes at most
√
rs/(log s)4 queries. J
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I Claim 17. Pr[n4 ≥
√
r|R|/2] ≤ 2−r|R|/2.

Proof. Let us first sketch informally why we do not expect n4 to be large. Recall that in
our random input we place a random pointer chain in the left half of each segment. Once a
pointer has landed at a location in this segment, its predecessor is equally likely to be any of
the other locations in the segment. So the first probe into that segment has probability about
one in wj/2− 1 of landing on the predecessor, the second probe has probability about one in
wj/2−2 of landing on the predecessor, and so on. Since we assume E3 Q makes at most wj/8
probes in this segment. So, conditioned on the previous probes being unsuccessful, there are
still wj/2−wj/8− 1 possibilities for the location of the predecessor; so the probability of the
probe landing on the predecessor is at most 1/(wj/2− wj/8− 1). This implies that in order
for n4 to be at least

√
r|R|/2 the query algorithm Q must make Ω(wj

√
r|R|/2) queries; but

this is more than the number of probes Q is permitted.
In order to formalize this intuition, fix (condition on) a choice of pointers from V . Let

us assume that the algorithm makes t probes. For i = 1, 2, . . . , t, define indicator random
variables χi as follows: χi = 1 iff the following conditions hold.

Suppose the i-th probe is made to a segment p in band b ∈ B . Let ` be the location
where the first pointer (among the pointers from P (b) to p) lands. Then, the i-th probe
of Q is made to the predecessor of ` in the random pointer chain in b.
Fewer than wj/8 of the previous probes were made to this segment.

Observe that if more than one pointer land on p, then except for the first amongst them
(according to the ordering on the locations in P (b)), event E2 does not hold for the remaining
pointers, and hence by definition event E4 does not hold either.

Define Z =
∑t

i=1 χi. Note that Z is an upper bound on n4, and we wish to estimate
the probability that Z ≥

√
r|R|/2. The key observation is that for every choice σ of

χ1, χ2, . . . , χi−1, we have

Pr[χi = 1 | χ1, χ2, . . . , χi−1 = σ] ≤ 1
3wj/8− 1 ≤

4
wj
. (2)

Thus,

E[Z] ≤
(

4
wj

)
t ≤

(
4
wj

)
(log s)−4√rs ≤ (log s)−2√r|R|.

The variables χi are not independent, but it follows from (2) that Lemma 13 is still applicable
in this setting. We conclude that

Pr[Z ≥
√
r|R|/2] ≤ 2−

√
r|R|/2.

Since, the above bound holds for each choice of pointers from V , it holds in general. J

Finally, to establish the required expansion for all sets R, we use the union bound over
all R. The probability that some set R has fewer than |R| neighbors is at most

4
s/(
√

r(log s)4)∑
k=1

(
s/2
k

)
2−
√

rk/2 ≤
∑
k≥1

sk2−
√

rk/2 ≤
∑
k≥1

s−k = o(1),

where we used our assumption that r � (log s)2. This completes the proof of the matching
lemma.
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Abstract
We consider the following multiplication-based tests to check if a given function f : Fnq → Fq is
the evaluation of a degree-d polynomial over Fq for q prime.

Teste,k: Pick P1, . . . , Pk independent random degree-e polynomials and accept iff the function
fP1 · · ·Pk is the evaluation of a degree-(d+ ek) polynomial.

We prove the robust soundness of the above tests for large values of e, answering a question of
Dinur and Guruswami (FOCS 2013). Previous soundness analyses of these tests were known only
for the case when either e = 1 or k = 1. Even for the case k = 1 and e > 1, earlier soundness
analyses were not robust.

We also analyze a derandomized version of this test, where (for example) the polynomials
P1, . . . , Pk can be the same random polynomial P . This generalizes a result of Guruswami et al.
(STOC 2014).

One of the key ingredients that go into the proof of this robust soundness is an extension of
the standard Schwartz-Zippel lemma over general finite fields Fq, which may be of independent
interest.
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functions which are evaluations of polynomials of degree at most d. If n, d and q are clear
from context, r := (q − 1)n− d.

The proximity of two functions f, g ∈ Fq(n) is measured by the Hamming distance.
Specifically, we let ∆(f, g) denote the absolute Hamming distance between f and g, i.e.,
∆(f, g) := #{x ∈ Fnq | f(x) 6= g(x)}. For a family of functions G ⊆ Fq(n), we let ∆(f,G) :=
min{∆(f, g) | g ∈ G}. We say that f is ∆-close to G if ∆(f,G) ≤ ∆ and ∆-far otherwise.

The following natural local test to check membership of a function f in P2(n, d) was
proposed by Alon et al. [1] for the case when q = 2.

AKKLR Test: Input f : Fn2 → F2
Pick a random d+ 1-dimensional affine space A.
Accept iff f |A ∈ P2(d+ 1, d).

Here, f |A refers to the restriction of the function f to the affine space A. Bhat-
tacharyya et al. [3] showed the following optimal analysis of this test.

I Theorem 1.1 ([1, 3]). There exists an absolute constant α > 0 such that the following
holds. If f ∈ F2(n) is ∆-far from P2(n, d) for ∆ ∈ N, then

Pr
A

[f |A 6∈ P2(d+ 1, d)] ≥ min{∆/2r, α}.

Subsequent to this result, Haramaty, Shpilka and Sudan [6] extended this result to all
constant sized fields Fq. These optimal analyses then led to the discovery of the so-called
“short code” (aka the low degree long code) due to Barak et al. [2] which has played an
important role in several improved hardness of approximation results [4, 5, 9, 10, 7].

1.2 Multiplication based tests
We now consider the following type of multiplication-based tests to check membership in
Pq(n, d), parametrized by two numbers e, k ∈ N.

Teste,k: Input f : Fnq → Fq
Pick P1, . . . , Pk ∈R Pq(n, e).
Accept iff fP1 · · ·Pk ∈ Pq(n, d+ ek).

This tests computes the point-wise product of f with k random degree-e polynomials
P1, . . . , Pk respectively and checks that the resulting product function fP1 · · ·Pk is the
evaluation of a degree-(d + ek) polynomial. Unlike the previous test, this test is not
necessarily a local test.

The key lemma due to Bhattacharyya et al. [3] that led to the optimal analysis in
Theorem 1.1 is the following robust analysis of Test1,1.

I Lemma 1.2 ([3]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100. For randomly
picked ` ∈ P2(n, 1), we have

Pr
`

[∆(f · `,P2(n, d+ 1)) < β∆] = O

(
1
2r

)
,

for some absolute constant β > 0.

Observe that the AKKLR test is equivalent to Test1,r−1 for r = n− d. This observation
coupled with a simple inductive argument using the above lemma implies Theorem 1.1.

Motivated by questions related to hardness of coloring hypergraphs, Dinur and Guruswami
studied the Teste,1 for e = r/4 and proved the following result.
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I Lemma 1.3 ([4]). Let f ∈ F2(n) be ∆-far from P2(n, d) for ∆ = 2r/100 and let e =
(n− d)/4. For randomly picked P ∈ P2(n, e), we have

Pr
P

[f · P ∈ P2(n, d+ e)] ≤ 1
22Ω(e) .

Note that the Teste,1 is not a local test (as is the case with multiplication based tests
of the form Teste,k). Furthermore, the above lemma does not give a robust analysis unlike
Lemma 1.2. More precisely, the lemma only bounds the probability that the product function
f ·P is in P2(n, d+ e), but does not say anything about the probability of f ·P being close to
P2(n, d+e) as in Lemma 1.2. Despite this, this lemma has had several applications, especially
towards proving improved inapproximability results for hypergraph colouring [4, 5, 9, 10, 7].

1.3 Our results
Our work is motivated by the question raised at the end of the previous section: can
the analysis of the Dinur-Guruswami Lemma be strengthened to yield a robust version of
Lemma 1.3? Such a robust version, besides being interesting of its own right, would yield
a soundness analysis of the Teste,k for k > 1 (wherein the input function f is multiplied
by k degree-e polynomials). This is similar to how Lemma 1.2 was instrumental in proving
Theorem 1.1.

We begin by first showing this latter result (ie., the soundness analysis of the Teste,k).

I Theorem 1.4. Let q, k ∈ N be constants with q prime and ε, δ ∈ (0, 1) be arbitrary
constants. Let n, d, r,∆, e ∈ N be such that r = q(n − 1) − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and
δr ≤ e ≤ r/4k. Then, given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P1, . . . , Pk
chosen independently and uniformly at random from Pq(n, e), we have

Pr
P1,...,Pk

[fP1P2 · · ·Pk ∈ Pq(n, d+ ek)] ≤ 1
qqΩ(r)

where the Ω(·) above hides a constant depending on k, q, δ, ε.

Surprisingly, we show that the above theorem (which we had observed is a simple
consequence of a robust version of Lemma 1.3), can in fact, be used to prove the following
robust version of Lemma 1.3, answering an open question of Dinur and Guruswami [4].

I Lemma 1.5. Let q ∈ N be a constant with q prime and ε, δ ∈ (0, 1) be arbitrary constants.
Let n, d, r,∆,∆′, e ∈ N be such that r = q(n − 1) − d, qεr ≤ ∆ ≤ qr/4(q−1)−2, and δr ≤
e ≤ r/4k where k := 1 + dlogq/(q−1)(2∆′)e. Then, given any f ∈ Fq(n) that is ∆-far from
Pq(n, d) and for P chosen uniformly at random from Pq(n, e), we have

Pr
P

[∆(f · P,Pq(n, d+ e)) < ∆′] ≤ 2
qqΩ(r)

where the Ω(·) above hides a constant depending on q, δ, ε.

Equipped with such multiplication-based tests, we can ask if one can prove the soundness
analysis of other related multiplication-based tests. For instance, consider the following test
which tests correlation of the function f with the square of a random degree-e polynomial.

Corr-Squaree: Input f : Fn3 → F3
Pick P ∈R P3(n, e).
Accept iff f · P 2 ∈ P3(n, d+ 2e).

FSTTCS 2016
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This test was used by Guruswami et al. [5] to prove the hardness of approximately coloring
3-colorable 3-uniform hypergraphs. However, their analysis was restricted to the squares of
random polynomials. Our next result shows that this can be extended to any low-degree
polynomial of random polynomials. More precisely, let h ∈ Pq(n, k) be a polynomial of
degree exactly k for some k < q. Consider the following test.

Corr-he: Input f : Fnq → Fq
Pick P ∈R Pq(n, e).
Accept iff f · h(P ) ∈ Pq(n, d+ ek).

We show that an easy corollary of Theorem 1.4 proves the following soundness claim
about the test Corr-h.

I Corollary 1.6. Let q, k ∈ N be constants with q prime, k < q†, and let ε, δ ∈ (0, 1) be
arbitrary constants. Let n, d, r,∆, e ∈ N be such that r = q(n− 1)− d, qεr ≤ ∆ ≤ qr/4(q−1)−2,
and δr ≤ e ≤ r/4k. Let h ∈ Pq(1, k) be a univariate polynomial of degree exactly k. Then,
given any f ∈ Fq(n) that is ∆-far from Pq(n, d) and for P chosen uniformly at random from
Pq(n, e), we have

Pr
P

[f · h(P ) ∈ Pq(n, d+ ek)] ≤ 1
qqΩ(r)/2k

where the Ω(·) above hides a constant depending on k, q, δ, ε.

A generalization of the Schwartz-Zippel lemma over Fq.

A special case of Theorem 1.4 is already quite interesting. This case corresponds to when
the function f is a polynomial of degree d′ slightly larger than d. (It is quite easy to see
by the Schwartz-Zippel lemma over Fq – which guarantees that a non-zero polynomial of
low degree is non-zero at many points – that this f is far from Pq(n, d).) In this case, we
would expect, when we multiply f with k random polynomials P1, . . . , Pk ∈ Pq(n, e), that
the product fP1 · · ·Pk is a polynomial of degree d′ + ek with high probability.

We are able to prove a tight version of this statement (Lemma 3.3). For every degree d′,
we find a polynomial f of degree d′ that maximizes the probability that fP1 · · ·Pk has degree
< d′ + s for any parameter s ≤ e. This polynomial turns out to be the same polynomial for
which the Schwartz-Zippel lemma over Fq is tight. This is not a coincidence: it turns out
that our lemma, viewed suitably, is a generalization of the Schwartz-Zippel lemma over Fq
(see Section 3.1 and the full version for more details).

Given the utility of the Schwartz-Zippel lemma in Theoretical Computer Science, we feel
that this statement will be of independent interest.

1.4 Proof ideas

The basic outline of the proof of Theorem 1.4 is similar to the proof of Lemma 1.3 from the
work of Dinur and Guruswami [4] which corresponds to Theorem 1.4 in the case that q = 2
and k = 1. The argument is essentially an induction on the parameters e, r = n− d, and ∆.
We describe this argument in some detail so that we can highlight the variations in our work.

† The assumption k < q is necessary here is since otherwise h(P ) could be P q − P , which is always 0.
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As long as r is a sufficiently large constant, Lemma 1.2 can be used to show that for any
f ∈ F2(n) that is ∆-far from P2(n, d), there is a variable X such that for each α ∈ {0, 1} = F2,
the restricted function f |X=α is ∆′ = Ω(∆)-far from P2(n− 1, d).∗

Now, to argue by induction, we write

f = Xg + h and P1 = XQ1 +R1 (1)

where g, h,Q1, R1 depend on n− 1 variables, Q1 is a random polynomial of degree ≤ e− 1
and R1 is a random polynomial of degree ≤ e. Using the fact that X2 = X over F2, we get
fP1 = X((g + h)Q1 + gR1) + hR1.

Since f |X=α is ∆′-far from P2(n− 1, d), we see that both h and g + h are ∆′-far from
P2(n− 1, d). To apply induction, we note that fP1 ∈ P2(n, d+ e) iff hR1 ∈ P2(n− 1, d+ e) –
call this event E1 – and (g + h)Q1 + hR1 ∈ P2(n− 1, d+ e− 1), which we call E2. We bound
the overall probability by Pr[E1] · Pr[E2 | R1] (note that E1 depends only on R1).

We first observe that Pr[E1] can be immediately bounded using the induction hypothesis
since h is ∆′-far from Pq(n− 1, d+ e) and R1 is uniform over Pq(n− 1, e). The second term
Pr[E2 | R1] can also be bounded by the induction hypothesis with an additional argument.
We argue that (for any fixed R1) the probability that (g + h)Q1 + gR1 ∈ P2(n− 1, d+ e− 1)
is bounded by the probability that (g + h)Q1 ∈ P2(n − 1, d + e − 1): this follows from
the fact that the number of solutions to any system of linear equations is bounded by the
number of solutions of the corresponding homogeneous system (obtained by setting the
constant term in each equation to 0). Hence, it suffices to bound the probability that
(g + h)Q1 ∈ P2(n− 1, d+ e− 1), which can be bounded by the induction hypothesis since
(g + h) is ∆′-far from P2(n− 1, d) and Q1 is uniform over P2(n− 1, e− 1) and we are done.

Though our proofs follow the above template, we need to deviate from the proof above in
some important ways which we elaborate below.

The first is the decomposition of f and P1 from (1) obtained above, which yields two
events E1 and E2, the first of which depends only on R1 and the second on both Q1 and R1.
For q > 2, the standard monomial decomposition of polynomials does not yield such a nice
“upper triangular” sequence of events. So we work with a different polynomial basis to achieve
this. This choice of basis is closely related to the polynomials for which the Schwartz-Zippel
lemma over Fq is tight. While such a basis was used in the special case of q = 3 in the work
of Guruswami et al. [5] (co-authored by the authors of this work), it was done in a somewhat
ad-hoc way. Here, we give, what is in our opinion, a more transparent construction that
additionally works for all q. For lack of space, this part of the proof has been omitted from
this extended abstract.

Further modifications to the Dinur-Guruswami argument are required to handle k > 1.
We illustrate this with the example of q = 2 and k = 2. Decomposing as in the Dinur-
Guruswami argument above, we obtain f = Xg + h, P1 = XQ1 +R1, and P2 = XQ2 +R2.
Multiplying out, we get

fP1P2 = X(Q1Q2(g + h) + (g + h)(Q1R2 +Q2R1) + gR1R2︸ ︷︷ ︸
:=Q

) + hR1R2 .

Bounding the probability that fP1P2 ∈ P2(n, d + 2e) thus reduces to bounding the
probability of event that hR1R2 ∈ P2(n− 1, d+ 2e) – E1 depending only on R1 and R2 – and

∗ Actually, Lemma 1.2 implies the existence of a linear function with this property and not a variable.
But after a linear transformation of the underlying space, we may assume that it is a variable.
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then the probability that Q ∈ P2(n− 1, d+ 2e− 1) – denoted E2 – given any fixed R1 and R2.
The former probability can be bounded using the induction hypothesis straightforwardly.

By a reasoning similar to the k = 1 case, we can reduce bounding Pr[E2 | R1, R2] to the
probability that Q1Q2(g+h) ∈ P2(n− 1, d+ 2e− 1). However, now we face a problem. Note
that we have g + h = f |X=1 is ∆′-far from P2(n− 1, d) and Q1, Q2 ∈ P2(n− 1, e− 1). Thus,
the induction hypothesis only allows us to upper bound the probability that Q1Q2(g + h) ∈
P2(n− 1, d+ 2e− 2) which is not quite the event that we want to analyze. Indeed, if f is a
polynomial of degree exactly d + 1, then the polynomial Q1Q2(g + h) ∈ P2(n, d + 2e − 1)
with probability 1. A similar problem occurs even if f is a polynomial of degree d′ slightly
larger than d or more generally, when f is close to some polynomial of degree d′.

This naturally forces us to break the analysis into two cases. In the first case, we assume
not just that f is far from P2(n, d) but from P2(n, d′) but for some d′ a suitable parameter
larger than d. In this case, we can modify the proof of Dinur and Guruswami to bound the
probability that fP1P2 ∈ P2(n, d+ 2e) as claimed in Theorem 1.4. In the complementary
case when f is close to some polynomial F ∈ P2(n, d′), we can essentially assume that f is a
polynomial of degree d′. In this case, we can use the extension of Schwartz-Zippel lemma
referred to above to show that with high probability fP1P2 is in fact a polynomial of degree
exactly d′ + 2e and is hence not of degree d+ 2e < d′ + 2e.

1.5 Organization
We begin with some notation and definitions in Section 2. We prove the extension of the
Schwartz-Zippel lemma (Lemma 3.3) in Section 3 and then Theorem 1.4 in Section 4. Finally,
we give two applications of Theorem 1.4 in Section 5: one to proving a robust version of the
above test (thus resolving a question of Dinur and Guruswami [4]) and the other to proving
Corollary 1.6. For lack of space, many proofs have been omitted. The reader is referred to
the full version of this paper for details.

2 Preliminaries

For a prime power q, let Fq denote the finite field of size q. We use Fq[X1, . . . , Xn] to
denote the standard polynomial ring over variables X1, . . . , Xn and Pq(n) to denote the ring
Fq[X1, . . . , Xn]/〈Xq

1 −X1, . . . , X
q
n −Xn〉.

We can think of the elements of Pq(n) as elements of Fq[X1, . . . , Xn] of individual degree
at most q − 1 in a natural way. Given P,Q ∈ Pq(n), we use P · Q or PQ to denote their
product in Pq(n). We use P ∗Q to denote their product in Fq[X1, . . . , Xn].

Given a set S ⊆ Fnq and an f ∈ Pq(n), we use f |S to denote the restricted function on
the set S. Typically, S will be specified by a polynomial equation. One special case is the
case when S is a hyperplane: i.e., there is a non-zero homogeneous degree-1 polynomial
`(X) ∈ Pq(n) and an α ∈ Fq such that S = {x | `(x) = α}. In this case, it is natural to
think of f |`(X)=α = f |S as an element of Pq(n− 1) by applying a linear transformation that
transforms `(X) into one of the variables – say Xn – and then setting Xn = α.

For d ≥ 0, we use Pq(n, d) to denote the polynomials in Pq(n) of degree at most d.
The following are standard facts about the ring Pq(n) and the space of functions mapping

Fnq to Fq.

I Fact 2.1.
1. Consider the ring of functions mapping Fnq to Fq with addition and multiplication defined

pointwise. This ring is isomorphic to Pq(n) under the natural isomorphism that maps each
polynomial P ∈ Pq(n) to the function (mapping Fnq to Fq) represented by this polynomial.
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2. In particular, each function f : Fnq → Fq can be represented uniquely as a polynomial
from Pq(n). As a further special case, any non-zero polynomial from Pq(n) represents a
non-zero function f : Fnq → Fq.

3. (Schwartz-Zippel lemma over Fq [8]) Any non-zero polynomial from Pq(n, d) is non-zero
on at least qn−a−1(q − b) points from Fnq where d = a(q − 1) + b and 0 ≤ b < q − 1.

4. In particular, if f, g ∈ Pq(n, d) differ from each other in at most ∆ < qn−a−1(q − b)
places, then f = g.

5. (A probabilistic version of the Schwartz-Zippel lemma [6]) It follows from the above that
given a non-zero polynomial g ∈ Pq(n, d), then g(x) 6= 0 at a uniformly random point of
Fnq with probability at least q−d/(q−1). Similarly, if f, g ∈ Pq(n, d) are distinct, then for
uniformly random x ∈ Fnq , the probability that f(x) 6= g(x) is at least q−d/(q−1).

From now on, we will use without additional comment the fact that functions from Fnq to
Fq have unique representations as multivariate polynomials where the individual degrees are
bounded by q − 1.

Recall that m1 ∗m2 denotes the product of these monomials in the ring Fq[X1, . . . , Xn]
while m1 ·m2 denotes their product in Pq(n) = Fq[X1, . . . , Xn]/〈Xq

1 − X1, . . . , X
q
n − Xn〉.

We say that monomials m1,m2 ∈ Pq(n) are disjoint if m1 ∗m2 = m1 ·m2 (where the latter
monomial is interpreted naturally as an element of Fq[X1, . . . , Xn]).

Given distinct monomials m1,m2 ∈ Fq[X1, . . . , Xn], we say that m1 > m2 if either one of
the following holds: deg(m1) > deg(m2), or deg(m1) = deg(m2) and we have m1 =

∏
iX

ei
i

and m2 =
∏
iX

e′i
i where for the least j such that ej 6= e′j , we have ej > e′j .

The above is called the graded lexicographic order on monomials. The ordering obviously
restricts to an ordering on the monomials in Pq(n), which are naturally identified as a subset
of the monomials of Fq[X1, . . . , Xn]. The well-known fact about this monomial ordering we
will use is the following.

I Fact 2.2. For any monomials m1,m2,m3, we have m1 ≤ m2 ⇒ m1 ∗m3 ≤ m2 ∗m3.

Given an f ∈ Pq(n), we use Supp(f) to denote the set of points x ∈ Fnq such that f(x) 6= 0.
If f 6= 0, we use LM(f) to denote the largest monomial (in the ordering defined above) with
non-zero coefficient in f .

Let m =
∏
i∈[n]X

ei
i with ei < q for each i. For an integer s ≥ 0, we let

Us(m) :=

 ∏
j∈[n]

X
e′j
j

∣∣∣∣∣∣ ∀j q > e′j ≥ ej ,
∑
j

e′j = d+ s


Ds(m) :=

 ∏
j∈[n]

X
e′j
j

∣∣∣∣∣∣ ∀j e′j + ej < q,
∑
j

e′j = s

 .

Note that the monomials in Ds(m) are precisely the monomials of degree s that are
disjoint from m. Further, the map ρ : Ds(m)→ Us(m) defined by ρ(m1) = m1 ·m defines a
bijection between Ds(m) and Us(m), and hence we have

I Fact 2.3. For any monomial m and any s ≥ 0, |Us(m)| = |Ds(m)|.

For non-negative integers s ≤ e, we define Us,e(m) :=
⋃
s≤t≤e Ut(m) and Ds,e(m) :=⋃

s≤t≤eDt(m) where Ut(m) and Dt(m) are as defined in Section 2. Since |Ut(m)| = |Dt(m)|
for each t (Fact 2.3), we have |Us,e(m)| = |Ds,e(m)|.
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3 An extension of the Schwartz-Zippel Lemma over Fq

The results of this section hold over Fq where q is any prime power.

I Lemma 3.1. Let d, s ≥ 0 be arbitrary integers with d+s ≤ n(q−1). Assume d = (q−1)u+v
for u, v ≥ 0 with v < (q − 1). Then the monomial m0 := Xq−1

1 · · ·Xq−1
u Xv

u+1 of degree d
satisfies |Us(m0)| ≤ |Us(m)| for all monomials m of degree exactly d.

Proof. Fix any monomial m of degree d such that |Us(m)| is as small as possible; say
m =

∏
j∈[n]X

ej

j . By renaming the variables if necessary, we assume that e1 ≥ e2 ≥ · · · ≥ en.
If m 6= m0, then we can find an i < n such that 0 < ei+1 ≤ ei < q − 1. Consider the

monomial m′ = Xei+1
i X

ei+1−1
i+1

∏
j 6∈{i,i+1}X

ej

j . We claim that |Us(m′)| ≤ |Us(m)|. This will
complete the proof of the lemma, since it is easy to check that by repeatedly modifying the
monomial in this way at most d times, we end up with the monomial m0. By construction,
we will have shown that |Us(m0)| ≤ |Us(m)|.

We are left to show that |Us(m′)| ≤ |Us(m)| or equivalently (Fact 2.3) that |Ds(m′)| ≤
|Ds(m)|. To this end, we show that for any (n − 2)-tuple e′ = (e′1, . . . , e′i−1, e

′
i+2, . . . , e

′
n),

that |Ds(m′, e′)| ≤ |Ds(m, e′)| where Ds(m, e′) denotes the set of monomials m̃ ∈ Ds(m)
such that for each j ∈ [n] \ {i, i + 1}, the degree of Xj in m̃ is e′j . To see this, note that
Ds(m, e′) and Ds(m′, e′) are in bijective correspondence with the sets S and T respectively,
defined as follows:

S = {(d1, d2) | 0 ≤ d1 ≤ a, 0 ≤ d2 ≤ b, d1 + d2 = r}
T = {(d1, d2) | 0 ≤ d1 ≤ a− 1, 0 ≤ d2 ≤ b+ 1, d1 + d2 = r}

where a := (q−1)−ei, b := (q−1)−ei+1, and r = s−
∑
j 6∈{i,i+1} e

′
j ; note that by assumption,

(q− 1) > ei ≥ ei+1 and hence 1 ≤ a ≤ b. Our claim thus reduces to showing |T | ≤ |S|, which
is done as follows.

If r < 0 or r > a+b, then both S and T are empty sets and the claim is trivial. So assume
that 0 ≤ r ≤ a+ b. In this case, we see that |T \ S| ≤ 1: in fact, T \ S can only contain the
element (r− b− 1, b+ 1) and this happens only when the inequalities 0 ≤ r− b− 1 ≤ a− 1 is
satisfied. But this allows us to infer that S \ T contains (a, r− a) since 0 ≤ r− b− 1 ≤ r− a
and r − a ≤ b. Thus, |T \ S| ≤ |S \ T | and hence |T | ≤ |S|. J

We have the following immediate corollary of Lemma 3.1.

I Corollary 3.2. Let d, e, s ≥ 0 be arbitrary parameters with s ≤ e and d ≤ n(q− 1). Assume
d = (q−1)u+v for u, v ≥ 0 with v < (q−1). Then the monomial m0 := Xq−1

1 · · ·Xq−1
u Xv

u+1
satisfies |Us,e(m0)| ≤ |Us,e(m)| for all monomials m of degree exactly d.

The main technical lemma of this section is the following.

I Lemma 3.3 (Extension of the Schwartz-Zippel lemma over Fq). Let e, d, s ≥ 0 be integer
parameters with s ≤ e. Let f ∈ Pq(n) be non-zero and of degree exactly d with LM(f) = m1.
Then,

Pr
P∈RPq(n,e)

[deg(fP ) < d+ s] ≤ 1
q|Us,e(m1)| .

In particular, using Corollary 3.2, the probability above is upper bounded by 1
q|Us,e(m0)| where

the monomial m0 is as defined in the statement of Corollary 3.2.
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Proof. Let P =
∑
m:deg(m)≤e αmm where the αm are chosen independently and uniformly

at random from Fq. Also, let f =
∑N
i=1 βimi where βi 6= 0 for each i and we have

m1 > m2 > · · · > mN in the graded lexicographic order defined earlier.
Thus, we have

fP =

 ∑
m:deg(m)≤e

αmm

 ·( N∑
i=1

βimi

)
=
∑
m̃

 ∑
(m,j):mmj=m̃

αmβj

 m̃.

The polynomial fP has degree < d+s iff for each m̃ of degree at least d+s, its coefficient
in the above expression is 0. Since the βi’s are fixed, we can view this event as the probability
that some set of homogeneous linear equations in the αm variables are satisfied. By standard
linear algebra, this is exactly q−t where t is the rank of the linear system. So it suffices to
show that there are at least |Us,e(m1)| many independent linear equations in the system.

Recall that |Ds,e(m1)| = |Us,e(m1)|. Now, for each m ∈ Ds,e(m1), consider the monomial
m̃ = m ·m1 = m ∗m1 (the second equality is true since m is disjoint from m1). Let M̃
denote the set of all such m̃. Note that each m̃ ∈ M̃ has degree exactly deg(m) + deg(m1) ∈
[d+ s, d+ e]. Thus, for fP to have degree < d+ s , the coefficient of each m̃ must vanish.
Further, since |M̃| = |Ds,e(m1)| = |Us,e(m1)| it suffices to show that the linear equations
corresponding to the different m̃ ∈ M̃ are all linearly independent.

To prove this, we argue as follows. Let m′ be a monomial of degree at most e. We say that
m′ influences m̃ ∈ M̃ if αm′ appears with non-zero coefficient in the equation corresponding
to m̃. We now make the following claim.

I Claim 3.4. Let m̃ ∈ M̃ and m ∈ Ds,e(m1) be such that m̃ = m ∗m1. Then, m influences
m̃. Further, if some monomial m′ influences m̃, then m′ ≥ m.

Assuming the above claim, we complete the proof of the lemma as follows. Consider the
matrix B of coefficients obtained by writing the above linear system in the following manner.
For each m̃ = m ∗m1 ∈ M̃, we have a row of B and let the rows be arranged from top to
bottom in increasing order of m (w.r.t. the graded lexicographic order). Similarly, for each
m′ of degree at most e, we have a column and again the columns are arranged from left to
right in increasing order of m′. The (m̃,m′)th entry contains the coefficient of αm′ in the
equation corresponding to the coefficient of m̃.

Restricting our attention only to columns corresponding to m′ ∈ Ds,e(m1), Claim 3.4
guarantees to us that the submatrix thus obtained is a |Ds,e(m1)| × |Ds,e(m1)| matrix that
is upper triangular with non-zero entries along the diagonal. Hence, the submatrix is full
rank. In particular, the matrix B (and hence our linear system) has rank at least |Ds,e(m1)|.
This proves the lemma. J

Proof of Claim 3.4. We start by showing that m does indeed influence m̃. The linear
equation corresponding to m̃ is∑

(m′,j):m′·mj=m̃

βjαm′ = 0 (2)

where m′ runs over all monomials of degree at most e.
Clearly, one of the summands in the LHS above is β1αm. Thus, to ensure that m

influences m̃, it suffices to ensure that no other summand containing the variable αm appears.
That is, that m ·mj 6= m̃ for any j > 1. (Note that in general unique factorization is not
true in Pq(n), since Xq = X.)

FSTTCS 2016
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To see this, note further that m ·mj is either equal to m ∗mj (if they are disjoint) or has
smaller degree than m ∗mj . In either case, we have m ·mj ≤ m ∗mj . Thus, we obtain

m ·mj ≤ m ∗mj < m ∗m1 = m̃

where the second inequality follows from the fact that m1 > mj and hence (Fact 2.2)
m′ ∗m1 > m′ ∗mj for any monomial m′. This shows that αm appears precisely once in the
left hand side of (2) and in particular, that it must influence m̃.

Now, we show that no m′ < m influences m̃. Fix some m′ < m. For any j ∈ [N ] we have

m′ ·mj ≤ m′ ∗mj ≤ m′ ∗m1 < m ∗m1 = m̃

where the first two inequalities follow from a similar reasoning to above and the third from
the fact that m′ < m. Hence, we see that no monomial that is a product of m′ with another
monomial from f can equal m̃. In particular, this means that m′ cannot influence m̃.

This completes the proof of the claim. J

I Corollary 3.5. Let n, e, d, P, f be as in Lemma 3.3. Further, let r be such that (q−1)n−d = r

and assume r ≥ 2e+ (q − 1). Then, PrP∼Pq(n,e)[deg(fP ) < d+ e] ≤ q−qΩ(e/q)
.

Proof. To prove the corollary, we use Lemma 3.3 with s = e and prove a lower bound
on |Ue,e(m0)| = |Ue(m0)| = |De(m0)| where m0 is the monomial from the statement of
Lemma 3.1. Let T index the t =

⌊
r
q−1

⌋
variables not present in the monomial m0. We can

lower bound |De(m0)| by the number of monomials of degree exactly e in Pq(n, e) supported
on variables from T ; letM denote this set of monomials.

Partition T arbitrarily into two sets T1 and T2 such that |T1| = e′ = be/(q − 1)c.
To lower bound |M|, note that given any monomial m1 in Pq(n, e) in the variables of

T1, we can find a monomial m2 over the variables of T2 such that their product has degree
e. The reason for this is that m1 can have degree at most e′(q − 1) ≤ e and further, the
maximum degree of any monomial in the variables in T2 is

(t− e′)(q − 1) ≥
(

r

q − 1 − 1− e

q − 1

)
(q − 1) = r − e− (q − 1) ≥ e

where the last inequality follows from our assumed lower bound on r. Hence, we can always
find a monomial m2 such that deg(m1m2) = e. Hence, we can lower bound |M| by the
number of monomials m1 over the variables in T1 which is q|T1| = qΩ(e/q). We have thus
shown that |Ue,e(m0)| = qΩ(e/q). An application of Lemma 3.3 now implies the corollary. J

3.1 Connection to the Schwartz-Zippel Lemma over Fq

Consider the special case of Lemma 3.3 when e = (q − 1)n and s = 0. In this case, note that
Pq(n, e) is just the ring Pq(n) and hence the above lemma implies PrP∼Pq(n)[deg(fP ) <
d] ≤ 1

q|Us,e(m0)| where m0 is the monomial from the statement of Lemma 3.1. Note that as a
special case, this implies that PrP∼Pq(n)[fP = 0] ≤ 1

q|Us,e(m0)| .
Observe that by Fact 2.1, fP = 0 if and only if the polynomial fP vanishes at each

point of Fnq . However, since P evaluates to an independent random value in Fq at each
input x ∈ Fnq , we see that the probability that fP evaluates to 0 at each point is exactly
the probability that P (x) = 0 at each point where f(x) 6= 0. This happens with probability
exactly 1

q|Supp(f)| .
Putting it all together, we see that 1

q|Supp(f)| ≤ 1
q|Us,e(m0)| and hence, |Supp(f)| ≥

|Us,e(m0)| = |Ds,e(m0)|.
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For the chosen values of e and s, the latter quantity is exactly the total number of
monomials – of any degree – that are disjoint from m0, which is exactly (q − v)qn−u−1,
matching the Schwartz-Zippel lemma over Fq (Fact 2.1).

It is also known that the Schwartz-Zippel lemma over Fq is tight for a suitably chosen
degree d polynomial f . Lemma 3.3 is also tight for the same polynomial f . This fact is not
required for the other results of this paper and thus we defer it to the full version.

4 Analyzing Teste,k

We prove the main theorem of the paper, namely Theorem 1.4, in this section. The results
of this section only hold for prime fields. For lack of space, a part of the proof has been
omitted.

We argue that the theorem holds by considering two cases. We argue that when f is
∆-far from polynomials of degree d+ r/4 – a much stronger assumption than the hypothesis
of the theorem – then a modification of the proof of Dinur and Guruswami [4] coupled with
a suitable choice of basis for Pq(n, d) (see the full version for details) yields the desired
conclusion.

If not, then f is ∆-close to some polynomial of degree d′ that is slightly larger than d. In
this case, we can argue that f is “essentially” a polynomial of degree d′ and for any such
polynomial, the product fP1 . . . Pk is, w.h.p., a polynomial of degree exactly d′ + ek and
hence f 6∈ Pq(n, d+ ek). This requires the results of Section 3.

We will assume throughout that r is greater than or equal to some fixed constant (possibly
depending on q, k) since otherwise the statement of the theorem is trivial.

Case 1: f is ∆-far from Pq(n, d + r
4). For lack of space, this section has been omitted.

See the full version for details.
Case 2: f is ∆-close to Pq(n, d + r

4). Let F ∈ Pq(n, d+ r
4 ) be such that f is ∆-close to

F . Let d′ = deg(F ). Note that d′ > d since f is ∆-far from Pq(n, d) by assumption.
Hence, we must have d < d′ ≤ d+ r

4 .
Note that for any P1, . . . , Pk ∈ Pq(n, e), we have fP1 · · ·Pk is ∆-close to FP1 · · ·Pk (since
f(x) = F (x) implies that f(x) ·

∏
i Pi(x) = F (x) ·

∏
i Pi(x)). We have FP1 · · ·Pk ∈

Pq(n, d′+ r/4) ⊆ Pq(n, d+ r/2). Now if fP1 · · ·Pk ∈ Pq(n, d+ ek) ⊆ Pq(n, d+ r/2), then
by the Schwartz Zippel lemma over Fq (Fact 2.1) applied to polynomials of degree at most
d+ r/2, we see that fP1 · · ·Pk = FP1 · · ·Pk. Hence, we have FP1 · · ·Pk ∈ Pq(n, d+ ek)
which in particular implies that FP1 · · ·Pk must have degree strictly less than d′ + ek.
For this event to occur there must be some i < k such that FP1 · · ·Pi has degree exactly
d′i := d′ + ei but FP1 · · ·Pi+1 has degree strictly less than d′i + e.
The above reasoning implies

Pr
P1,...,Pk

[fP1 · · ·Pk ∈ Pq(n, d+ ek)] ≤ Pr
P1,...,Pk

[deg(FP1 · · ·Pk) < d′ + ek]

≤
k∑
i=1

Pr
P1···Pk

[deg(FP1 · · ·Pi−1Pi) < d′i + e | deg(FP1 · · ·Pi−1) = d′i]. (3)

For each i, conditioning on any fixed choice of P1, . . . , Pi−1, the right hand side of (3)
can be bounded by q−qΩ(e/q) = q−q

Ω(r) using Corollary 3.5 applied with d replaced by
d′i ≤ d+ r/2− e = (q − 1)n− (r/2 + e). This implies Theorem 1.4 in this case.
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5 Two applications

5.1 A question of Dinur and Guruswami
In this section, we show how Theorem 1.4 implies Lemma 1.5, thus answering a open question
raised by Dinur and Guruswami [4].

Proof of Lemma 1.5. The proof of the lemma for robustness ∆′ can be reduced to The-
orem 1.4 for k = 1 + dlogq/(q−1)(2∆′)e as follows.

Let f be ∆-far from Pq(n, d) as stated in the lemma. Call P “lucky” if ∆(f ·P,Pq(m, d+
e)) ≤ ∆′. We need to bound the probability PrP∈Pq(n,e)[P is lucky ]. For a lucky P , let F
be a degree-(d+ e) polynomial that is ∆′-close to f · P . Define k := 1 + dlogq/(q−1)(2∆′)e.
Now, choose P1, . . . , Pk−1 ∈R Pq(n, e) and let g = fP ·

∏
i<k Pi. Also, let G = F ·

∏
i<k Pi;

note that G ∈ Pq(n, d+ ek).
Observe that for any x such that F (x) 6= f(x)P (x), the probability that G(x) 6= g(x)

is at most the probability that all the Pi(x) are non-zero and this is
(

1− 1
q

)k−1
≤ 1

2∆′ .
Hence, the probability that any point of difference between F and fP survives as a point of
difference between G and g is at most 1

2 . Since no new points of difference are introduced,
we see that

Pr
P,P1,...,Pk−1

[fP1P2 · · ·Pk ∈ Pq(n, d+ ek)]

≥ Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[f · P ·
∏
i<k

Pi ∈ Pq(n, d+ ek) | P is lucky ]

= Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[g ∈ Pq(n, d+ ek) | P is lucky ]

≥ Pr
P

[P is lucky ] · Pr
P,P1,...,Pk−1

[g = G | P is lucky ] ≥ Pr
P

[P is lucky ] · 1
2 .

The lemma now follows since Theorem 1.4 implies that PrP,P1,...,Pk−1 [fP1P2 · · ·Pk ∈ Pq(n, d+
ek)] ≤ q−qΩ(r)

. J

I Remark 5.1. An anonymous reviewer for FSTTCS 2016 pointed out to us that Lemma 1.5
only works if log ∆′ = O(k), which in particular implies that ∆′ must be a constant
(independent of n and d). However, an easy modification of the above idea actually shows a
statement of the above form for ∆′ as large as qΩ(r). We refer the reader to the full version
for details.

5.2 Analysis of Corr-h
Recall the test Corr-h defined in the introduction where h ∈ Pq(n, k) is a polynomial of exact
degree k. In this section, we analyze this test Corr-h, thus proving Corollary 1.6.

For this we need the following properties of polynomials.

Dual of Pq(n, d): For any two functions, f, g ∈ Fq(b), define 〈f, g〉 :=
∑
x∈Fn

q
f(x) · g(x).

The set of polynomials Pq(n, r − 1) is the dual to the set of polynomials Pq(n, d) in the
following sense.

For any two polynomials P ∈ Pq(n, d) and Q ∈ Pq(n, r − 1), we have 〈P,Q〉 = 0.
Furthermore, for any P /∈ Pq(n, d) and a random Q ∈R Pq(n, r − 1), we have that
〈P,Q〉 is an unbiased element of Fq.
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This implies that the indicator variable for the event “f ∈ Pq(n, d)” can be equivalently
written as 1f∈Pq(n,d) = EQ∈Pq(n,r−1)

[
ω〈f,Q〉

]
, where ω = e2πi/q.

Squaring trick: We use a standard squaring trick to bound the absolute value of the quantity
EP

[
ω〈h(P ),f〉]. Let us consider the case when h(P ) = P 2. In this case we have

∣∣∣E
P

[
ω〈P

2,f〉
]∣∣∣4 =

∣∣∣∣ E
P,P1

[
ω〈(P+P1)2,f〉 · ω〈−P

2,f〉
]∣∣∣∣2 =

∣∣∣∣ E
P,P1

[
ω〈2PP1+P 2

1 ,f〉
]∣∣∣∣2

≤ E
P1

[∣∣∣E
P

[
ω〈2PP1+P 2

1 ,f〉
]∣∣∣2]

= E
P1

[
E
P,P2

[
ω〈2(P+P2)P1+P 2

1 ,f〉 · ω〈−(2PP1+P 2
1 ),f〉

]]
= E
P1

[
E
P,P2

[
ω〈2P1P2,f〉

]]
= E
P1,P2

[
ω〈2P1P2,f〉

]
A similar argument shows that when h(P ) is a polynomial of degree exactly k, we have∣∣∣E

P

[
ω〈h(P ),f〉

]∣∣∣2k

≤ E
P1,...,Pk

[
ω〈k!P1···Pk,f〉

]
We are now ready to prove Corollary 1.6.

Proof of Corollary 1.6.

Pr
P∈Pq(n,e)

[f · h(P ) ∈ Pq(n, d+ ek)] =
∣∣∣∣ E
P∈Pq(n,e),Q∈Pq(n,s−1)

[
ω〈f ·h(P ),Q〉

]∣∣∣∣
=
∣∣∣∣EQ [EP [ω〈h(P ),fQ〉

]]∣∣∣∣2k/2k

≤
(

E
Q

[∣∣∣E
P

[
ω〈h(P ),fQ〉

]∣∣∣2k])1/2k

≤
(

E
Q

[
E

P1,...,Pk

[
ω〈k!P1···Pk,fQ〉

]])1/2k

=
(

E
P1,...,Pk

[
E
Q

[
ω〈P1···Pkf,Q〉

]])1/2k

=
(

Pr
P1,...,Pk

[
f ·
∏
i

Pi ∈ Pq(n, d+ ek)
])1/2k

The corollary now follows from Theorem 1.4. J
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Abstract
We study the space complexity of querying regular languages over data streams in the sliding
window model. The algorithm has to answer at any point of time whether the content of the
sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular
language the optimal space requirement is either in Θ(n), Θ(logn), or constant, where n is the
size of the sliding window.
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1 Introduction

Streaming algorithms, i.e. algorithms that process a non-terminating stream a1a2a3 · · · of
data values and which have at time t only direct access to the current symbol at, received a
lot of attention in recent years, see [1] for a general reference. Two variants of streaming
algorithms can be found in the literature:

In the standard model the algorithm computes at time t a value f(a1 · · · at) that depends
on the whole history.
In the sliding window model the algorithm computes at time t a value f(at−n+1 · · · at)
that depends on the n last symbols (we should assume t ≥ n here). The value n is also
called the window size.

For many applications, the sliding window model is more appropriate. Quite often data
items in a stream are outdated after a certain time, and the sliding window model is a simple
way to model this. The typical application is the analysis of a time series as it may arise
in medical monitoring, web tracking, or financial monitoring. In all these applications, the
most recent data items are more important than older ones.

A general goal in the area of sliding window algorithms is to avoid the explicit storage of
the whole window, and, instead, to work in considerably smaller space, e.g. polylogarithmic
space. In the seminal paper of Datar et al. [9], where the sliding window model was
introduced, the authors prove that the number of 1’s in a 0/1-sliding window of size n can
be maintained in space 1

ε · log2 n if one allows a multiplicative error of 1± ε. A matching
lower bound is provided as well in [9]. Other algorithmic problems that were addressed in
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18:2 Querying Regular Languages over Sliding Windows

the extensive literature on sliding window streams include the computation of statistical data
(e.g. computation of the variance and k-median [4], and quantiles [3]), optimal sampling from
sliding windows [7], database querying (e.g. processing of join queries over sliding windows
[12]) and graph problems (e.g. checking for connectivity and computation of matchings,
spanners, and minimum spanning trees [8]) . The reader can find further references in the
surveys [1, Chapter 8] and [6]. Another natural problem, whose investigation has so far
been surprisingly neglected for the sliding window model, is the membership problem for a
language or, equivalently, the computation of Boolean queries on the sliding window. In its
general form, one fixes a language L over the alphabet of the data stream, and asks for an
algorithm that can check at any time whether the content of the sliding window belongs to
L. In this paper, we are mainly interested in the case, where L is a regular language.

Note that in the standard streaming model, it is trivial to solve the membership problem
for a regular language L in constant space. For a data stream a1a2a3 · · · the algorithm
simply runs a deterministic finite automaton for L and only stores the current state (which
needs constant space since we assume the automaton to be fixed and not part of the input).
This obvious fact might explain why the membership problem for regular languages in the
streaming model has not received any attention so far. In contrast, there exist papers that
deal with membership problems for (restricted classes of) context-free languages in the
standard streaming model, see the paragraph on related work below.

Note that in the sliding window model the above algorithm (simulation of a DFA on
the data stream) does not work. The problem is the removal of the left-most symbol from
the sliding window in each step. A naïve approach is to store the whole window in O(n)
bits and simulate the DFA on this word. In fact, there exist very simple languages L for
which this is the best possible solution in order to be able to decide at any point of time
whether the current content of the sliding window belongs to L. An example is the language
a{a, b}∗ of all words that start with a. The point is that by repeated checking whether the
sliding window content belongs to a{a, b}∗, one can recover the exact content of the sliding
window, which implies that every sliding window algorithm for querying a{a, b}∗ has to use
n bits of storage (where n is the window size). The main result of this paper is a trichotomy:
The optimal space needed for querying a regular language L in the sliding window model
falls into three classes with respect to its growth rate: constant space, Θ(logn), and Θ(n),
where n is the window size. We characterize the regular languages by its optimal growth
rate algebraically in terms of the syntactic homomorphism and the left Cayley graph of the
syntactic monoid of a regular language. The precise characterizations are a bit technical and
will be presented in Section 4.

The sliding window model we have talked about so far is also known as the fixed-size
model, since the sliding window has a fixed size n. In the literature there exists a second
model as well which is known as the variable-size model, see e.g. [3]. In this model, the arrival
of new data items and the expiration of old items can happen independently, which means
that the sliding window can grow and shrink. We also determine the space complexity of
querying a regular language for the variable-size model. Again, we prove the same trichotomy
as above (constant space, Θ(logn), and Θ(n)), but the corresponding three classes of regular
languages differ slightly from the situation in the fixed-size model.

Related work. In [5] the authors consider the problem of membership checking for various
subclasses of context-free languages in the standard streaming model (where the whole history
is checked for membership). For deterministic linear languages, a randomized streaming
algorithm is presented which works in space O(logn) and has an inverse polynomial one-sided
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error. On the other hand, a visibly pushdown language L exists, for which every randomized
streaming algorithm with an error probability < 1/2 must use space Ω(n) [5].

One may consider our streaming algorithms as algorithms for testing membership of a
dynamic word in a language L, where the update operations are restricted. In the variable-size
model, these updates are the removal of the first symbol from the word, and appending a
given symbol a to the word. Membership testing algorithms for regular languages that allow
the replacement of the symbol at a specified position were studied in [11]. The focus of [11]
is on the cell probe complexity of updates and membership queries.

2 Preliminaries

Let Σ be a finite alphabet. For a word w = a1 · · · ak ∈ Σ∗ of length |w| = k we define
w[i] = ai and w[i : j] = ai · · · aj if i ≤ j and w[i : j] = ε if i > j. A word v ∈ Σ∗ is a suffix of
the word w if there exists a word u ∈ Σ∗ such that w = uv.

We assume that the reader is familiar with the basic notions of formal languages, in
particular regular languages. Our query algorithms for regular languages make use of the
description of regular languages by finite monoids; see e.g. the textbook [14] for more details.
A monoid is a set M together with an associative operation · : M ×M →M and an element
1 ∈M satisfying 1 ·x = x · 1 = x for all x ∈M . A function h : M → N between two monoids
M,N is a homomorphism if h(1) = 1 and h(x · y) = h(x) · h(y) for all x, y ∈M . A language
L ⊆ Σ∗ is recognized by a monoid M if there exists a homomorphism h : Σ∗ →M from the
free monoid Σ∗ into a monoid M and a set F ⊆M such that w ∈ L if and only if h(w) ∈ F
for all w ∈ Σ∗. It is well known that the class of regular languages is exactly the class of
languages recognized by finite monoids. For every language L ⊆ Σ∗ the syntactic congruence
≡L on Σ∗ is defined by u ≡L v if and only if for all x, y ∈ Σ∗: xuy ∈ L iff xvy ∈ L. The
set of congruence classes Σ∗/≡L forms a monoid, which is called the syntactic monoid of
L and is denoted by M(L). It is the smallest monoid which recognizes L. The function
h : Σ∗ → M(L) which maps a word u to its congruence class [u]≡L

is a homomorphism,
called the syntactic homomorphism of L.

In this paper all graphs are finite, directed and vertex-colored. For a graph Γ we denote
by V (Γ) and E(Γ) the set of vertices and edges of Γ, respectively. Graphs may have loops,
i.e. E(Γ) is an arbitrary subset of V (Γ) × V (Γ). For graphs Γ and ∆, a homomorphism
from Γ to ∆ is a function ϕ : V (Γ) → V (∆) such that for all v ∈ V (Γ) the vertices v and
ϕ(v) have the same color and (u, v) ∈ E(Γ) implies (ϕ(u), ϕ(v)) ∈ E(∆). We call a graph Γ
homomorphic to ∆ if there exists a homomorphism from Γ to ∆. For a subset S ⊆ V (Γ) we
denote by reachΓ(S) the subgraph of Γ which is induced by all nodes that are reachable from
S. A graph Γ is strongly connected if for all u ∈ V (Γ) we have reachΓ({u}) = Γ. A strongly
connected component, briefly SCC, of Γ is an inclusion maximal subset S ⊆ V (Γ) such that
the subgraph induced by S is strongly connected. The set of SCCs of a graph is partially
ordered by S1 � S2 iff a vertex in S2 is reachable from a vertex in S1. An SCC of Γ is trivial
if it consists of a single node v and (v, v) 6∈ E(Γ), otherwise the SCC is called non-trivial.
A graph is a directed cycle if it is strongly connected and every vertex has outdegree (and
indegree) 1. Our characterizations of regular languages will refer to homomorphisms from
certain graphs (that we define below) to directed cycles. Note that every monochromatic
graph is homomorphic to a directed cycle of size one.

For a monoid M and a subset A of M we denote by Γ(M,A) the (unlabelled) left Cayley
graph over the vertex set M with the edge set {(x, y) | y = a · x for some a ∈ A}. If the
subset A ⊆M generates M , i.e. every element of M is a finite product over A, then y ∈M
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Figure 1 The left Cayley graph Γ(M, A, F ) from Example 1 for the language (aa | bb)∗. Vertices
from F are black and SCCs are shaded.

is reachable from x ∈M in Γ(M,A) if and only if x ≤L y in M , which is defined by

x ≤L y ⇐⇒ ∃` ∈M : x = ` · y. (1)

The L-equivalence is defined by x ≡L y if and only if x ≤L y ≤L x. For a subset F ⊆ M

we denote with Γ(M,A,F ) the graph Γ(M,A), where in addition all vertices from F (resp.,
M \ F ) are colored with 1 (resp., 0).

I Example 1. Consider the regular language L = (aa | bb)∗. Let h : {a, b}∗ → M be the
syntactic homomorphism of L into its syntactic monoid M with 15 elements. Figure 1 shows
the left Cayley graph Γ(M,A,F ), where A = {h(a), h(b)} and F = h(L). Note that every
SCC is homomorphic to a directed cycle.

3 Sliding window models

In the literature, one distinguishes two sliding window models: The fixed-size model and the
variable-size model, see also [3] for a discussion of these models.

3.1 The fixed-size model
A data stream over Σ is an infinite sequence a1a2a3 · · · of symbols ai ∈ Σ. The idea is that
a data stream represents the sequence of data that is produced by some process. At time t,
the observer of this process can only see symbol at.

Fix an n ∈ N, which is called the window size. Moreover, fix a data stream a1a2a3 · · · .
At time t ≥ 0 the sliding window contains the word at−n+1at−n+2 · · · at consisting of the
n last symbols, where ai = a for a distinguished symbol a ∈ Σ when i ≤ 0. Thus, in the
beginning the sliding window is filled with a’s. Let us denote with Wn(t) the content of the
sliding window at time t.

In the fixed-size sliding-window model we want to answer queries about the window
content Wn(t), where the window size n is fixed. For this, the algorithm has at time t
access to the n-th symbol at and a previously computed data structure, that w.l.o.g. can
be assumed to be a bit string Sn(t) ∈ {0, 1}∗. The goal is to compute the query, based on
at and Sn(t). The simplest solution is to store (a binary coding of) Wn(t) in Sn(t), but in
many cases we can find a better solution, where Sn(t) is considerably smaller than Wn(t).
Moreover, we would like to have such a query algorithm for every window size n. Note that
this is a non-uniform model: For every n we may have a different query algorithm. This will
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not be crucial for our upper bounds, since our algorithms will work for all window sizes n
(which is a parameter in the algorithms). But working with a non-uniform model makes our
lower bounds stronger.

In this paper, we are only interested in Boolean queries, i.e. queries that output a single
bit. Let us fix a language L ⊆ Σ∗. We say that L is streamable in space s(n) in the fixed-size
model if for every window size n there exists an algorithm such that for every input stream
a1a2a3 · · · the following holds:

The algorithm maintains a bit string Sn(t) of length at most s(n), where Sn(0) is an
arbitrary bit string of length at most s(n) (it corresponds to an initial state).
At every time t ≥ 0, the algorithm has only access to Sn(t) and at+1. Based on these
data, the algorithm computes Sn(t+ 1) and decides correctly whether Wn(t) ∈ L.

3.2 The variable-size model
In the fixed-size model, at every time a new data item arrives and the oldest data item
is removed from the window. In contrast, in the variable-size sliding-window model the
arrival of new data items and the expiration of old items is decoupled and can happen
independently. This means that the window can grow and shrink. One can think of an
adversary that executes an infinite sequence of operations op1, op2, op3 · · · , where every opi

is either a pop-operation or a push(a)-operation for a symbol a ∈ Σ. A pop-operation deletes
the first symbol from the window; this corresponds to the situation where the first item in
the window expires and falls out of the window (if the window is already empty it stays
empty after a pop). A push(a)-operation appends the symbol a at the right end of the sliding
window; this corresponds to the arrival of an a in the data stream. In this way we can
define for an infinite sequence op1, op2, op3 · · · of operations opi ∈ {pop} ∪ {push(a) | a ∈ Σ}
the window content W (t) at time t ∈ N, where W (0) = ε. We say that the language L is
streamable in space s(n) in the variable-size model if there exists an algorithm such that for
every infinite sequence op1, op2, op3 · · · of operations the following holds:

At every time t ≥ 0, the algorithm stores a bit string S(t) of length at most s(|W (t)|),
where S(0) = ε.
At time t ≥ 0, the algorithm has only access to S(t) and the operation opt+1. Based on
these data, the algorithm computes S(t+ 1) and decides correctly whether W (t) ∈ L.

Note the uniformity of this definition. There is a single algorithm that has to work for every
window size. Also note that if L is streamable in space s(n) in the variable-size model, then
L is also streamable in space s(n) in the fixed-size model.

The variable-size model captures various other streaming models that appeared in
the literature. For instance, the standard model that was mentioned in the introduction
corresponds to the case where no pop-operations are allowed. Another realistic model is the
time-stamp based model, where the data items arrive at arbitrary time points (which are
real numbers) and the sliding window contains all data values with an arrival time from the
interval [t− τ, t], where t is the current time and τ is a fixed duration. Also the time-stamp
based model can be simulated by the variable-size model, see [3] for details.

4 Streaming algorithms for regular languages

In this section, we will prove our main results. Let L ⊆ Σ∗ be a regular language. We
will query the content of the sliding window for membership in L. Let M = M(L) be the
syntactic monoid of L and h : Σ∗ → M be the syntactic homomorphism. Let F = h(L),
hence L = h−1(F ). We simply write Γ for the two-colored left Cayley graph Γ(M,A,F )
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18:6 Querying Regular Languages over Sliding Windows

Table 1 The trichotomy results for querying regular languages in the sliding window model.

constant space logarithmic space linear space

fixed-size model C1 C2 C3

variable-size model {∅, Σ∗} (C1 ∪ C2) \ {∅, Σ∗} C3

where A = h(Σ). Recall that Γ is a finite directed graph, possibly with loops. For the rest of
this section we fix Σ, L, M , h, A, and Γ. It is important for our results that L is fixed, and
not part of the input. This implies that the monoid M and the graph Γ can be hard-wired
into our algorithms.

We partition the set of all regular languages over Σ into three classes C1, C2, C3, where
L ∈ C1 if and only if for every non-trivial SCC S of Γ the subgraph reachΓ(S) is
homomorphic to a directed cycle,
L ∈ C2 if and only if L /∈ C1 and every SCC of Γ is homomorphic to a directed cycle,
L ∈ C3 if and only if L /∈ (C1 ∪ C2).

For instance, the language (aa | bb)∗ from Example 1 belongs to C2. Other examples for
languages in C1 ∪ C2 are open languages, i.e. languages of the form Σ∗L where L is a regular
language over Σ. Examples for languages in C1 are languages of the form Σ∗w for w ∈ Σ∗.

For the fixed-size model we will show that (i) languages in C1 are streamable in constant
space, (ii) languages in C2 are streamable in space O(logn) but not streamable in space
o(logn), and (iii) languages in C3 are not streamable in space o(n). For the variable-size
model, languages in C3 are still not streamable in space o(n), but here only the languages ∅
and Σ∗ are streamable in constant space. The remaining languages (C1 ∪ C2) \ {∅,Σ∗} are
streamable in space O(logn) but not streamable in space o(logn) in the variable-size model.
Table 1 summarizes both trichotomies.

I Example 2. Let L1 = {a, b}∗a be the set of all words that end with an a. Obviously, L1
is streamable in constant space in the fixed-size model: The algorithm has to store nothing.
At each time t one can determine from the current symbol at whether the window content
belongs to L1, which is the case for at = a. Similarly, for every finite word w ∈ {a, b}∗ the
language {a, b}∗w is streamable in constant space in the fixed-size model: The algorithm
has to store the last |w| − 1 symbols from the stream. Note that this argument fails for the
variable-size model: In fact, L1 is not streamable in constant space in the variable-size model;
this follows from Theorem 7 in Section 4.2.

I Example 3. Let L2 = {a, b}∗a{a, b}∗ be the set of all words that contain an a. This
language is streamable in space O(logn) in the variable-size model. The algorithm stores
(i) the current window size n (using O(logn) bits), and (ii) the position p of the right-most
a in the window (using O(logn) bits). We set p to 0 if the window contains no a. This
information can be easily updated: For a pop-operation, the algorithm sets n := max{0, n−1}
and p := max{0, p− 1}. For a push(a)-operation, the algorithm sets n := n+ 1 and p := n.
Finally, for a push(b)-operation only n is incremented.

On the other hand, L2 is not streamable in space o(logn) in the fixed-size model: If L2
would be streamable in space o(logn) then one could represent every number 1 ≤ i ≤ n by a
bit string of length o(logn), namely by the o(logn)-size data structure d(i) obtained after
moving the word bi−1abn−i into the sliding window, where n is the window size. To recover i
from d(i) one continues the stream with b’s and thereby simulates the query algorithm for L2
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starting with the data structure d(i). The smallest number of b’s after which a membership
query for L2 is answered negatively is i.

I Example 4. Let L3 = a{a, b}∗ be the set of all words that start with an a. An argument
similar to Example 3 shows that L3 is not streamable in space o(n) in the fixed-size model.
More precisely, if L3 would be streamable in space o(n) in the fixed-size model, then one
could represent every word w ∈ {a, b}n by a bit string of length o(n), namely by the o(n)-size
data structure d(w) obtained after moving the word w into the sliding window, where n is
the window size. To recover w from d(w) one simulates the query algorithm starting with
the data structure d(w). The query result after seeing i− 1 further symbols from the stream
yields the i-th symbol of w: A positive (resp., negative) query answer yields an a (resp., b).

4.1 Upper bounds
In this section we will prove two upper bounds on the space for querying regular languages
in the sliding window model. First, we show that every language in C1 ∪ C2 is streamable in
logarithmic space in both streaming models.

I Theorem 5. If every SCC of Γ is homomorphic to a directed cycle, then L is streamable
in space O(logn) in the variable-size model and hence also in the fixed-size model.

Proof. Since the fixed-size model can be simulated by the variable-size model, it suffices to
present an algorithm for the variable-size model.

Let w ∈ Σ∗ be a word of length n and Suf(w) be the set of suffixes of w, which includes
the empty word and w itself. Define the preorder � on Suf(w) by u � v iff h(u) ≤L h(v),
where ≤L is defined in (1). This is in fact a total preorder: If v ∈ Suf(w) is a suffix of
u ∈ Suf(w) then u � v. But note that we may have u � v � u for two different suffixes of w.
The word w is a smallest element w.r.t. �. The induced equivalence relation ≡ is defined by
u ≡ v iff u � v � u. Clearly, u ≡ v iff h(u) ≡L h(v). As usual, denote with Suf(w)/≡ the
set of equivalence classes of ≡. Note that |Suf(w)/≡| is bounded by a constant which only
depends on the monoid M and not on the window size n. One can identify the elements of
Suf(w)/≡ with intervals on the set of positions of w. Hence we can represent (Suf(w),�) by
storing a constant number of interval endpoints using O(logn) bits. Our streaming algorithm
(for window size n) stores the following data:

the total preorder (Suf(w),�), using O(logn) bits,
the function f : Suf(w)/≡ →M defined by f(C) = h(v) where v is the shortest suffix in
the equivalence class C, using O(1) bits.

We describe these data conveniently by a sequence

p0,m1, p1,m2, p2, . . . ,mk−1, pk−1,mk, pk (2)

such that the following holds:
1 ≤ k ≤ |M |,
0 = p0 < p1 < · · · < pk−1 < pk = n+ 1,
m1, . . . ,mk ∈M and mk is the unit element of M .

The meaning of this sequence is the following: The equivalence classes of ≡ are the sets
Ci = {w[p : n] | pi−1 < p ≤ pi} for 1 ≤ i ≤ k (the class Ck contains the empty suffix for
p = pk = n+ 1). The monoid element mi is h(w[pi : n]) for 1 ≤ i ≤ k (hence, mk = 1 is the
unit element). Thus, mi = h(v) where v is the shortest suffix in its equivalence class Ci.

On the sequence (2) we can now perform the desired queries: In order to test whether
w ∈ L, one has to check whether h(w) ∈ F . For this we consider the monoid element m1.
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18:8 Querying Regular Languages over Sliding Windows

Note that m1 ≡L h(w). Hence, the vertices h(w) and m1 = h(w[p1 : n]) belong to the same
SCC S of Γ. Note that h(w) = h(w[1 : p1 − 1])m1. We cannot store this word w[1 : p1 − 1],
in fact we do not even store its image under h. But, by assumption, the SCC S of Γ that
contains h(w) and m1 has a homomorphism ϕ onto a directed cycle Θ. Thus, we can compute
ϕ(h(w)) by traversing the cycle from ϕ(m1) for p1 − 1 steps (the homomorphic image of Γ
under ϕ is hard-wired into the algorithm). The color of ϕ(h(w)) in Θ then indicates whether
h(w) ∈ F (i.e. w ∈ L) or h(w) 6∈ F (i.e. w 6∈ L).

For a pop-operation on w and p1 > 1, the algorithm updates the sequence (2) to

p0,m1, p1 − 1,m2, p2 − 1, . . . ,mk−1, pk−1 − 1,mk, pk − 1.

Otherwise, if p1 = 1 then the algorithm updates the sequence (2) to

p1 − 1,m2, p2 − 1, . . . ,mk−1, pk−1 − 1,mk, pk − 1.

Finally, let us consider a push(a)-operation on w. Note that ≡L is a right congruence, i.e.
x ≡L y implies xz ≡L yz for all x, y, z ∈ M . This means that our interval-representation
of (Suf(wa),�) can be obtained from the interval-representation of (Suf(w),�) by possibly
merging successive intervals. In order to detect, which intervals have to be merged, note that
for all u, v ∈ Suf(w) we have

ua ≡ va ⇐⇒ h(u)h(a) ≡L h(v)h(a) ⇐⇒ f([u]≡)h(a) ≡L f([v]≡)h(a),

because h(u) ≡L f([u]≡) and h(v) ≡L f([v]≡), and the fact that ≡L is a right congruence.
Using this, we can detect whether two successive intervals that represent the classes [u]≡
and [v]≡ have to be merged into a single interval. Formally, we process the sequence (2) as
follows: We walk over the sequence from left to right. For every 1 ≤ i ≤ k − 1 we check
whether mih(a) ≡L mi+1h(a). If this is true, then we remove mi, pi from the sequence,
otherwise we replace mi, pi by mih(a), pi. Then we continue with i+ 1 (if i < k− 1). Finally,
we check whether h(a) ≡L 1. If this holds, then we replace mk, pk = 1, n + 1 by 1, n + 2,
otherwise we replace 1, n+ 1 by h(a), n+ 1, 1, n+ 2. J

Next we show that languages in C1 are streamable in constant space in the fixed-size
model.

I Theorem 6. Let reachΓ(S) be homomorphic to a directed cycle for every non-trivial SCC
S of Γ. Then L is streamable in space O(1) in the fixed-size model.

Proof. Observe that every path in Γ of length at least c := |V (Γ)| (a constant) contains
a vertex in a non-trivial SCC S and therefore ends in reachΓ(S). Fix a window size n. If
n < c, we store the window content explicitly and can test whether w ∈ L, e.g. using an
automaton for L. Now assume n ≥ c. For a window content w ∈ Σ∗ we explicitly store the
suffix v of length c. Clearly this suffix can be updated when a new symbol arrives in the
window. Also v suffices to test whether w ∈ L. We compute h(v) and a non-trivial SCC
S such that h(v) is contained in reachΓ(S). Let ϕ : reachΓ(S)→ Θ be the homomorphism
into a directed cycle Θ. Then we compute ϕ(h(w)) by traversing Θ starting from the vertex
ϕ(h(v)) for n− c steps. The color of ϕ(h(w)) determines whether w ∈ L. J

As in most previous work on the sliding window model, our focus is on the space
requirements of query algorithms. But it is also interesting to note that in Theorem 5 and 6
we can achieve constant time for all update and query operations on the RAM model with
register length O(logn). Let us show this for Theorem 5 first. Recall that the sequence



M. Ganardi, D. Hucke, and M. Lohrey 18:9

(2) that we manipulate in the proof of Theorem 5 has constant length. For a pop- or
push(a)-operation, the manipulation of (2) only needs constant time. To see this, note that
the numbers pi in (2) are only incremented or decremented and that all operations in the
monoid M need constant time since M is fixed. Finally, for a membership query we traverse
the cycle Θ starting from ϕ(m1) for p1 − 1 steps. To do this in constant time, we store also
the numbers (pi − 1) mod `(Θ), where `(Θ) is the length of the cycle. We have to maintain
these remainders for all (constantly many) cycle lengths `(Θ1), . . . , `(Θc), where Θ1, . . . ,Θc

are the cycles to which the SCCs of Γ are homomorphic. For Theorem 6 it suffices to traverse
Θ for (n− c) mod `(Θ) steps.

4.2 Lower bounds
In this section, we prove matching lower bounds for the upper bounds from the previous
section. Let us first show that constant space in the variable-size model makes it impossible
to query any non-trivial language. Roughly speaking, the reason is that in order to query a
non-trivial language in the variable-size model one has to know when the sliding window
is empty. But for this, one has to maintain the size of the window, for which logn bits are
needed.

I Theorem 7. If L ⊆ Σ∗ and ∅ ( L ( Σ∗, then L is not streamable in space O(1) in the
variable-size model.

Proof. Towards a contradiction assume that L is streamable in the variable-size model in
space m, where m is a constant, which means that the algorithm has at most 2m pairwise
distinct data structures. We can assume that ε ∈ L, otherwise consider the complement
Σ∗ \ L which is also streamable in space m. Let further w ∈ Σ∗ be a word such that w /∈ L.
Consider the 2m + 1 words w0, w1, w2, . . . , w2m . There are two numbers 0 ≤ i < j ≤ 2m

such that the stream prefixes wi and wj lead to the same data structure. After (j − 1) · |w|
further pop-operations the window contains ε ∈ L and the word w /∈ L, respectively, which
is a contradiction. J

For the remaining lower bounds, we need the following simple graph theoretic lemma:

I Lemma 8. Let Γ be a finite directed vertex-colored graph (possibly with loops) and let s be
a vertex from which all vertices of Γ are reachable. Assume that all vertices have outdegree
≥ 1 and s has indegree ≥ 1. If Γ is not homomorphic to a directed cycle, then there exist
paths π0, π1 of the same length from s to vertices s0, s1 which have distinct colors.

Proof. Let Vn be the set of vertices which are reachable from s via a path of length n for
n ≥ 0. The union

⋃
n≥0 Vn is the set of vertices reachable from s, which by assumption is

V (Γ). Towards a contradiction assume that every set Vn is monochromatic. Let ≈ be the
transitive-reflexive closure of the binary relation R on V (Γ) defined by R =

⋃
n≥0 Vn × Vn.

Then, every equivalence class of ≈ is monochromatic. Hence, we can construct the quotient
graph Γ/≈ = ({[v]≈ | v ∈ V (Γ)}, {([u]≈, [v]≈) | (u, v) ∈ E(Γ)}). Moreover, the equivalence
class [u]≈ has the same color as all its elements. Clearly, Γ is homomorphic to Γ/≈.

We claim that every vertex in Γ/≈ has out-degree 1: Since every vertex in Γ has outdegree
≥ 1, the same holds for Γ/≈. Moreover, if a vertex v is contained in some set Vn, then all
successors of v are contained in Vn+1. This implies that R respects the successor relation, i.e.
whenever (u, v) ∈ R and (u, u′), (v, v′) ∈ E(Γ), then also (u′, v′) ∈ R. Hence, also ≈ respects
the successor relation. This proves that every vertex in Γ/≈ has out-degree 1. Finally, each
node has an incoming edge since s has an incoming edge and all other nodes are reachable
from s. It follows that Γ/≈ must in fact be a directed cycle. J
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Figure 2 The origin of the words used in the proofs of Theorem 9 (left) and Theorem 10 (right).

Now we show that languages in C3 are not streamable in space o(n) in the fixed-size model.

I Theorem 9. If some SCC S of Γ is not homomorphic to a directed cycle, then L is not
streamable in space o(n) in the fixed-size model and hence not streamable in space o(n) in
the variable-size model.

Proof. We apply Lemma 8 with an arbitrary node s ∈ S to the subgraph of Γ induced by
S. Therefore, there exist paths π0 and π1 of the same length k from s to nodes s0, s1 ∈ S,
which are colored differently, say s0 6∈ F and s1 ∈ F . Let u0, u1 ∈ Σk be words representing
the paths π0, π1 and let u ∈ Σ∗ such that h(u) = s, which exists since h is surjective. Since
S is strongly connected, there also exist paths π′0 and π′1 from s0 and s1, respectively, back
to s. This results in words v0, v1 ∈ Σ+ such that h(v0u0u) = h(u) = h(v1u1u), h(u0u) 6∈ F ,
h(u1u) ∈ F . The situation is shown in Figure 2 on the left. Choose numbers p, q > 0 such
that z0 = (v0u0)p and z1 = (v1u1)q have the same length. We get h(z0u) = h(z1u) = h(u).
Let x0, x1 such that z0 = x0u0 and z1 = x1u1 and hence |x0| = |x1|.

Let z = z0 (we could also set z = z1). We have h(u) = h(zmu) for every m. Note that
z 6= ε. By replacing x0 and x1 by zmx0 and zmx1, respectively, for m large enough we can
therefore assume that |x0| = |x1| ≥ |u|. Let z = z′z′′ with |z′′|+ |u| = |x0|.

Assume now that L is streamable in space o(n) in the fixed-size model. We will deduce a
contradiction. Consider an arbitrary bit string α = a1 · · · an ∈ {0, 1}n of length n. We encode
this bit string by the word w(α) = za1za2 · · · zan

z′ of length n′ = Θ(n). Let n′ be the window
size. For n large enough, there must exist bit strings α = a1 · · · an and β = b1 · · · bn of length
n such that α 6= β but after moving w(α) and w(β) into the sliding window, the same internal
data structure arises. Let 1 ≤ i ≤ n be a position such that w.l.o.g. ai = 0 and bi = 1. We
now move the word z′′zi−1u of length (i−1)|z|+ |z′′|+ |u| = (i−1)|z|+ |x0| = (i−1)|z|+ |x1|
into the sliding window. The window contents are then:

u0zai+1 · · · zanz
′z′′zi−1u = u0zai+1 · · · zanz

iu

u1zbi+1 · · · zbnz
′z′′zi−1u = u1zbi+1 · · · zbnz

iu

Of course, the stream prefixes w(α)z′′zi−1u and w(β)z′′zi−1u must still lead to the same
data structure. But we have h(u0zai+1 · · · zan

ziu) = h(u0u) 6∈ F and h(u1zbi+1 · · · zbn
ziu) =

h(u1u) ∈ F , which is a contradiction. J

For a word w ∈ Σ∗ of length k we define the signature δ(w) = b1 · · · bk ∈ {0, 1}∗ such
that bi = 1 if h(w[i : k]) ∈ F and bi = 0 otherwise. To complete our trichotomy, we finally
show that languages in C2 are not streamable in space o(logn) in the fixed-size model.

I Theorem 10. If some SCC S of Γ is non-trivial and reachΓ(S) is not homomorphic to a
directed cycle, then L is not streamable in space o(logn) in the fixed-size model and hence
not streamable in space o(logn) in the variable-size model.
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Proof. Let S be the strongly connected component of Γ which is not trivial and where
reachΓ(S) is not homomorphic to a directed cycle. Pick an arbitrary node s ∈ S. It must
have indegree ≥ 1 since S is non-trivial. Since h is surjective there exists u ∈ Σ∗ with
h(u) = s. We apply Lemma 8 to s and the subgraph reachΓ(S). This yields words x, y ∈ Σ+

of equal length, say k ≥ 1, which correspond to the paths π0, π1 in the lemma, such that
h(xu) ∈ F and h(yu) /∈ F . Further, since S is strongly connected and non-trivial, there
exists a non-trivial path π from s back to s, which yields a word w ∈ Σ+ with h(wu) = h(u).
The situation is shown in Figure 2 on the right. Let ` = |w| and write k uniquely as
k = c · ` + (` − p + 1) = (c + 1) · ` − p + 1 for c ≥ 0 and 1 ≤ p ≤ `. Consider the word
w[p : `]wc. In Γ this word yields the path consisting of c repetitions of the circle π followed
by `− p+ 1 more steps of π such that the whole path has length k. If h(w[p : `]wcu) ∈ F
then we can replace x by w[p : `]wc, otherwise we can replace y by w[p : `]wc. Without
loss of generality we can assume that x = w[p : `]wc. From h(xu) ∈ F and h(yu) /∈ F it
follows that the signatures δ(xu) and δ(yu) differ in the first position. We can assume that
for each position i > 1 we have δ(xu)[i] = δ(yu)[i], otherwise we update the words x and y
to the suffixes x[i : k] and y[i : k], respectively, where i is the maximal position such that
δ(xu)[i] 6= δ(yu)[i].

Now assume that L is streamable in space s(n) ∈ o(logn) in the fixed-size model. We
will deduce a contradiction. For n large enough we consider the n words zi = uwn−iywi

(1 ≤ i ≤ n) of equal length n′ = ` · n+ |u|+ |y| = ` · n+ |u|+ k ∈ Θ(n). Large enough here
means that 2s(n′) < n; such an n exists since s(n) ∈ o(logn) and n′ ∈ Θ(n). We now fix the
window size to n′ and move the words zi (1 ≤ i ≤ n) into the window. Since 2s(n′) < n, there
exist i < j such that after moving zi and zj in the window, the same internal data structure
arises. Hence the two stream prefixes ziw

n−iu and zjw
n−iu also lead to the same internal

data structure. Moreover, after the stream prefix ziw
n−iu = uwn−iywnu the content of the

sliding window is ywnu (the suffix of uwn−iywnu of length n′ = ` · n+ |u|+ k), which does
not belong to L since h(ywnu) = h(yu) 6∈ F . So, it remains to show that the suffix of length
n′ of the stream prefix zjw

n−iu = uwn−jywn+j−iu belongs to L. We distinguish two cases
(recall that k = c · `+(`−p+1)): If j− i ≥ c+1, then the suffix of uwn−jywn+j−iu of length
n′ is w[p : `]wn+cu = xwnu which belongs to L since h(xwnu) = h(xu) ∈ F . If j − i ≤ c,
then the suffix of uwn−jywn+j−iu of length n′ = ` · n+ |u|+ k is y[1 + (j − i)` : k]wn+j−iu.
We have h(y[1 + (j − i)` : k]wn+j−iu) = h(y[1 + (j − i)` : k]u). Now recall that the
signatures δ(xu) and δ(yu) only differ in the first position. Since 1 + (j − i)` ≥ 2 it
follows that h(y[1 + (j − i)` : k]u) ∈ F if and only if h(x[1 + (j − i)` : k]u) ∈ F . Since
x = w[p : `]wc and j − i ≤ c we have x[1 + (j − i)` : k] = w[p : `]wc−j+i. Thus, we have
h(x[1 + (j − i)` : k]u) = h(w[p : `]wc−j+iu) = h(w[p : `]wcu) = h(xu) ∈ F , which finally
show that y[1 + (j − i)` : k]wn+j−iu belongs to L.

To sum up, we found two stream prefixes ziw
n−iu and zjw

n−iu, which lead to the same
internal data structure, but after seeing ziw

n−iu the window content does not belongs L,
whereas after seeing zjw

n−iu the window content belongs to L. This is a contradiction. J

5 Streaming algorithms for non-regular languages

It would be interesting to know whether our classification can be extended to larger language
classes. As a first step, one might consider deterministic context-free languages or the subclass
of visibly pushdown languages [2]. All visibly pushdown languages that we have considered
so far fall into our trichotomy.
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I Example 11. Let L4 = {akbk | k ≥ 0}. This language is streamable in space O(logn) in
the variable-size model. The algorithm stores (i) the current window length n and the unique
numbers k,m such that akbm is the longest suffix of the window that belongs to a∗b∗. Note
that 1 ≤ k +m ≤ n. This information can be maintained: For a pop-operation, k and m are
not changed unless n = k +m. In this case, k is decremented if k > 0. If k = 0 then m is
decremented. For a push(b)-operation, m is incremented. Finally, for a push(a)-operation,
the algorithm sets k := 1 and m := 0 if m > 0. If m = 0, then k is incremented.

Assume that L4 is streamable in space o(logn) in the fixed-size model. Similar to
Example 3 we would be able to represent every number 1 ≤ i ≤ n by a bit string of length
o(logn), namely by the data structure obtained by inserting the word an+ibn−i into a sliding
window of size 2n.

I Example 12. Let L5 be the Dyck-language over a single pair (, ) of brackets. We claim
that L5 is not streamable in space o(n) in the fixed-size model. In order to get a contradiction,
assume that L5 is streamable in space o(n) in the fixed-size model. As in Example 4 we
deduce that every bit string of length n can be represented with o(n) many bits. For this,
we encode a bit string α = a1a2 · · · an (ai ∈ {0, 1}) by the word u(α) = u1u2 · · ·un, where
ui = ()() if ai = 0 and ui = (()) if ai = 1. Note that |u(α)| = 4n. We then represent α by
the o(n)-size data structure d(α) obtained by moving u(α) in the sliding window, where the
window size is 4n. To recover ai from d(α) one continues the data stream with 2i− 1 many
repetitions of (). Then, the window content belongs to L5 if and only if ai = 0.

The following example shows that there exists a non-context-free language whose optimal
space requirement is Θ(

√
n) in the fixed-size model.

I Example 13. Let L6 = {wk | n ≥ 0, w ∈ {a, b}∗, |w| = k}. We claim that in the fixed-size
model, L6 is streamable in space O(

√
n) but not in space o(

√
n). If the window size n is

not a square, then the query algorithm can always answer with no. So, assume that the
window size is n = m2. The algorithm then stores for the window content w (i) the length-m
suffix s of w and (ii) the largest position p such that m+ 1 ≤ p ≤ n and w[p] 6= w[p−m],
where we set p = m if such a position does not exist. Note that w ∈ L6 if and only if p = m.
This information s, p can be maintained. For s this is clear. To maintain p, the algorithm
checks whether the next symbol in the stream is the first symbol of s. If this is the case, the
algorithm sets p := max{p− 1,m}, otherwise it sets p := n.

The argument that L6 is not streamable in space o(
√
n) in the fixed-size model is similar

to the argument in Example 4. One shows that from the data structure that is obtained by
moving wm (with w ∈ {a, b}m) into the sliding window, one can recover the word w.

In the variable-size model, L6 is not even streamable in space o(n): It is a basic result in
communication complexity that equality checking of two words x and y of length n needs
Ω(n) bits of communication. Assume that L6 is streamable in space o(n) in the variable-size
model. Then Alice, who initially has access to x, and Bob, who has access to y, could check
x = y by exchanging o(n) bits, where n = |x| = |y|: Alice pushes the word x into the window
and then sends the o(n)-size data structure to Bob. Bob then pushes the word yn−1 into the
window and afterwards check whether the window content belongs to L6, which is the case if
and only if x = y.

In the long version of this paper, we will present for every k ≥ 2 an example for a non-
deterministic context-free language that in the fixed-size model is streamable in space O(n1/k)
but not streamable in space o(n1/k) .
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6 Future work

Our results on querying regular languages in the sliding window model open several avenues
for further research. First of all, one might also consider randomized query algorithms for
the sliding window model. For the standard streaming model randomized query algorithms
were studied in [5] for subclasses of context-free languages.

We also plan to investigate whether our trichotomy can be extended to larger language
classes. As remarked above, it fails for non-deterministic context-free languages. But it is
open whether there exists a deterministic context-free language or even a visibly pushdown
language L such that in the fixed-size (resp., variable-size) model L is streamable in space
o(n) but not streamable in space O(logn).

It would be interesting to know the space complexity of querying regular languages in the
sliding window model, when the regular language is part of the input, and, for instance, given
by a deterministic finite automaton (DFA). The syntactic monoid of L(A), where A is an
m-state DFA, can have size mm [13]. This yields the space bound O(log(n) ·m · log(m) ·mm)
in the proof of Theorem 5, where n is the window size. But maybe a better algorithm exists.

Finally, one might also study weighted automata in the sliding window model. A weighted
automaton computes for an input word a value from a semiring, which is the Boolean semiring
for classical finite automata; see [10] for details. The goal would be to maintain the semiring
value to which the sliding window content maps.

Acknowledgements. We thank Philipp Reh for spotting a mistake in an earlier version of
the paper.
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Abstract
Fractional share models are used to reason about how multiple actors share ownership of resources.
We examine the decidability and complexity of reasoning over the “tree share” model of Dockins
et al. using first-order logic, or fragments thereof. We pinpoint a connection between the basic
operations on trees union t, intersection u, and complement � and countable atomless Boolean
algebras, allowing us to obtain decidability with the precise complexity of both first-order and
existential theories over the tree share model with the aforementioned operations. We establish
a connection between the multiplication operation ./ on trees and the theory of word equations,
allowing us to derive the decidability of its existential theory and the undecidability of its full
first-order theory. We prove that the full first-order theory over the model with both the Boolean
operations (t, u, �) and the restricted multiplication operation (./ with constants on the right
hand side) is decidable via an embedding to tree-automatic structures.
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1 Introduction

The state of the art: Fractional shares enable reasoning about shared ownership of resources
between multiple parties, e.g. ownership of memory cells by different threads in a concurrent
program [7]. Threads are then allowed to take actions depending on the amount of ownership
they have, e.g. with full ownership allowing both reading and writing, partial ownership
allowing only reading, and empty ownership allowing nothing. Although rational numbers
are the most obvious model for fractional shares, they are unfortunately not a good model for
realistic program verification because they do not satisfy the so-called “disjointness” axiom [3],
i.e. ∀x, y. x+ x = y ⇒ x = y = 0. Dockins et al. proposed a better model for fractional
shares based on binary trees with Boolean leaves [10]. A tree share τ ∈ T is inductively
defined as follows: τ , ◦ | • | τ τ , where ◦ denotes an “empty” leaf while • a “full” leaf.

The tree ◦ is thus the empty share, and • the full share. There are two “half” shares: ◦ •
and • ◦, and four “quarter” shares, beginning with

• ◦ ◦
. It is a feature that the two
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half shares in T are distinct, as compared to the two half shares in Q, 0.5 and 0.5, which are
of course equal. The ability to represent distinct partial shares of “equal measure” is closely
related to why the disjointness axiom holds. The basic operations for combining trees are
union t, intersection u, and complement �; these will be defined formally in §2 but to a
first approximation they are all defined leafwise, e.g. ◦ • t

• ◦ ◦
=

• ◦ •
.

A number of program logics incorporate tree shares to model fractional ownership [11, 12,
29, 3], but it has been unclear how to reason about them automatically, which has posed a
significant barrier to their use in verification tools. One reason for this barrier is the lack of
foundational results regarding decidability and complexity of theories over tree shares. The
only published result of this kind proves the decidability of entailment between systems of
equations over tree shares, a less-expressive format than general first-order formulae [19].

In addition to union, intersection, and complement, Dockins et al. defined a “multiplica-
tion” operator on tree shares, written τ1 ./ τ2 [10]. The basic idea is that you take each • leaf
in τ1 and replace it with a full copy of τ2, e.g.

• ◦ ◦ •
./ ◦ • =

◦ • ◦ ◦ ◦ •

.

Dockins et al. showed that ./ could be used to split any nonempty tree τ into two nonempty
trees that joined together to equal the original since ∀τ. τ = (τ ./ • ◦) t (τ ./ ◦ •). More
generally, the ./ operator can be used as a kind of “scoping” or “gluing” operator to combine
different uses of tree shares together. Although ./ has been used in metatheory [3], it has
never been used in an automated tool because its decidability properties were unclear.

Contributions: In this paper, we provide the first systematic study of decidability and
complexity of theories over the tree share model.

First (§3), we show that the tree share modelM , (u,t,�, ◦, •) is a Countable Atomless
Boolean Algebra (CABA), which are known to be unique up to isomorphism [28]. The
first-order theory over CABAs is known to be decidable and, in fact, complete for the class
STA(∗, 2cn, n) of problems solvable by an alternating Turing machine with n alternations in
exponential time [17], the same complexity class as the first-order theory over (R,+, 0, 1) [4].
In addition, the full existential theory over CABAs is known to be NP-complete [24]. Our
connection shows that these decidability and complexity results transfer toM.

We then (§4) proceed to decision problems over the tree shares with the multiplication
operator ./. Our main result here is that the tree share model S , (T, ./) that only allows ./
(i.e. but not t, u, and �) is – in a technical sense – “equivalent” to the logical structure of
words with the concatenation operator. Makanin [20] showed that reasoning about a single
equation over this structure (a.k.a. word equations) is decidable. More complex problems
are known to be reducible to this basic case in polynomial-time, e.g. the existential theory
over the structure [8]. Accordingly, we deduce that the existential theory over S is decidable
in polynomial space but NP-hard, whereas the first-order theory over S is undecidable.

Finally (§5), we consider restrictions on ./ that admit a decidable theory. We define
the family of one-argument functions indexed by tree constants that applies bowtie on
the right-hand side ./�, i.e. ./τ (τ ′) , τ ′ ./ τ . We prove that the combined theory of
T , (T,u,t,�, ./�) has an embedding into tree-automatic structures. Since the first-
order theory of tree-automatic structures is decidable [6], we obtain the decidability of the
first-order theory of this extension of the tree share model with ./�. This suggests the
potential application of powerful heuristics for automata (e.g. antichain and simulation [1])
for providing a practical decision procedure for the tree share model.
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2 Formal preliminaries: the Tree Share model T of Dockins et al. [10]

Here we summarize additional details of tree shares and their associated theory from [10].

Canonical forms. In the first paragraph of §1 we presented the first quarter share as

• ◦ ◦
instead of e.g.

• ◦ ◦ ◦
. This is deliberate: the second choice is not a valid

share because the tree is not in canonical form. A tree is in canonical form when it is in its
most compact representation under the inductively-defined equivalence relation ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼= ◦ ◦ • ∼= • •

τ1 ∼= τ ′1 τ2 ∼= τ ′2

τ1 τ2
∼=

τ ′1 τ ′2

As we will see, operations on tree shares sometimes need to fold/unfold trees to/from canonical
form, a practice we will indicate using the symbol ∼=. Canonicality is needed to guarantee
some of the algebraic properties of tree shares; managing it requires a little care in the proofs
but does not pose any fundamental difficulties to the overall theory.

Boolean algebra operations. The connectives t and u first unfold both trees to the same
shape; then calculate leafwise using the rules ◦ t τ = τ t ◦ = τ , • t τ = τ t • = •,
◦ u τ = τ u ◦ = ◦, and • u τ = τ u • = τ ; and finally refold back into canonical form, e.g:

• ◦ ◦
t

◦ • • ◦
∼=

• ◦ ◦ ◦
t

◦ • • ◦
=

• • • ◦
∼= • • ◦

• ◦ ◦
u

◦ • • ◦
∼=

• ◦ ◦ ◦
u

◦ • • ◦
=

◦ ◦ ◦ ◦
∼= ◦

Complementation is simpler, since flipping leaves between ◦ and • does not affect whether a
tree is in canonical form, e.g.:

• ◦ ◦
=

◦ • •
. Using these definitions we get all of

the usual properties for Boolean algebras, e.g. τ1 u τ2 = τ1 t τ2. Moreover, we can define a
partial ordering between trees using intersection in the usual way, i.e. τ1 v τ2 , τ1u τ2 = τ1.
We can enjoy a strict partial order as well: τ1 @ τ2 , τ1 v τ2 ∧ τ1 6= τ2.

Properties of tree multiplication ./. Since it is nonstandard, the “tree multiplication”
operator ./ deserves some additional attention. The good news first: ./ is associative, has an
identity •, and is injective for non-◦ elements, i.e. S+ , (T \ {◦}, ./) forms a cancellative
monoid. Somewhat unsurprisingly, multiplication by the “additive identity” ◦ reduces to ◦.
Unfortunately, ./ is not commutative (• ◦ ./ ◦ • =

◦ • ◦
6=

◦ • ◦
= ◦ • ./ • ◦),

although we do enjoy a distributive property over t and u on the right hand side. Accordingly:

I Lemma 1 (Properties of ./).

Associativity : τ1 ./ (τ2 ./ τ3) = (τ1 ./ τ2) ./ τ3 (1)
Identity element : τ ./ • = • ./ τ = τ (2)
Zero element : τ ./ ◦ = ◦ ./ τ = ◦ (3)
Left cancellation : τ 6= ◦ ⇒ τ ./ τ1 = τ ./ τ2 ⇒ τ1 = τ2 (4)
Right cancellation : τ 6= ◦ ⇒ τ1 ./ τ = τ2 ./ τ ⇒ τ1 = τ2 (5)

(6)
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Typical use of T in program verification. A standard way to use fractional shares in
program verification is by modifying the standard maps-to predicate of separation logic to
take a share as an additional argument. The predicate x π7→ y then means that the heap has
a cell at address x, which is owned with nonempty fraction π 6= ◦ and whose value is y. We
use π here because we often use share variables rather than concrete trees τ .

To combine divided fractional ownership stakes back together it is traditional to use the
“join” relation, written τ1 ⊕ τ2 = τ3. The join relation is defined in turn using the primitive
Boolean algebra operators: τ1⊕ τ2 = τ3 , τ1t τ2 = τ3∧ τ1u τ2 = ◦. In other words, the join
relation is a kind of disjoint union; it is partial because e.g. • ⊕ • is undefined. Critically for
verification ⊕ does satisfy the disjointness axiom: ∀x, y. x⊕ x = y ⇒ x = y = ◦. Using ⊕
we can state the following relationship between the spatial conjunction ∗ and the underlying
Boolean operators as x π17→ y ∗ x π27→ z a` y = z ∧ x π1⊕π27−→ y ( using a` for bientailment).

It is common that we want to “split” a share π into sub-shares π1, π2 so that the permission
can be transferred. This can be done withinM , (u,t,�, ◦, •) using the following rule:

π 6= ◦
x

π7→ v a` ∃π1, π2. (x π17→ v ∗ x π27→ v) ∧ π1 ⊕ π2 = π ∧ π1 6= ◦ ∧ π2 6= ◦
SplitJoin

This rule has some drawbacks. The most obvious is the lengthy size of the entailment’s
consequent, even though we only split π into two pieces. Second, existential quantifiers are
expensive in program verification since they tend to increase the size of the proof obligations
and here we introduce two of them. Third, we have no control over what the shares π1 and
π2 are – that is, π1 and π2 are not uniquely determined. Moreover, they are indistinguishable,
which makes it difficult to assign different permitted actions for them.

On the other hand, each of these issues can be solved nicely using ./ due to its right
distributivity over (u,t), and thus over ⊕, yielding the following rules:

τ1 ⊕ . . .⊕ τn = τ π 6= ◦
n∧
i=1

τi 6= ◦

x
π./τ7−→ v a` x

π./τ17−→ v ∗ . . . ∗ x π./τn7−→ v
SplitJoin ./ (7)

3 Tree Shares are a model for Countable Atomless Boolean Algebras

In this section, we pinpoint the fact thatM = (u,t,�, ◦, •) is a model for Countable Atomless
Boolean Algebra (CABA). Let B = (∩,∪,�,0,1) be a Boolean Algebra (BA), we define a
partial order ⊆ on B (v forM, resp.): a1 ⊆ a2 , a1∩a2 = 0 and a1 ⊂ a2 , a1 ⊆ a2∧a2 6⊆ a1.
B is atomless if ∀a. 0 ⊂ a ⇒ ∃a′. 0 ⊂ a′ ⊂ a. B is countable if its domain is countable.
Dockins et al. [10] proved thatM is a model for BA where 0 , ◦, 1 , •, t , ∪, u , ∩. The
atomless property can be derived from the Infinite Splitability property of tree shares [19]:
let a A ◦ and a1, a2 6= ◦ such that a1 ⊕ a2 = a. This implies a1 t a2 = a ∧ a1 u a2 = ◦. By
Stone’s representation theorem each BA is isomorphic to a BA of powerset, thus a1 t a2 = a

implies a1 ⊆ a and a2 ⊆ a. Suppose that a1 = a then a2 u a = 0 which is a contradiction
because 0 @ a2 @ a. As a result, a1 6= a and thus a1 @ a. The proof that T is countable is
achieved by enumerating T in the ascending order of tree height |τ | using the following total
strict order ≺:

◦ ≺ •
|τ1| < |τ2|
τ1 ≺ τ2

|
τ1 τ ′1

| = |
τ2 τ ′2

| τ1 ≺ τ2

τ1 τ ′1
≺
τ2 τ ′2

|
τ τ1

| = |
τ τ2

| τ1 ≺ τ2

τ τ1
≺
τ τ2
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It is known that there is a unique model for CABA up to isomorphism [28], so we can
reason about the complexity of M in terms of CABA. Let STA(f(n), g(n), h(n)) be the
class of sets accepted by alternating Turing machines which use at most f(n) space, g(n)
time and h(n) alternations between universal and existential states on a given input of
length n. Any field in the description can be replaced with symbol ∗ to indicate no bound is
required. Kozen [17] proved that the elementary theory of infinite BAs is ≤log-complete for the
Berman complexity class

⋃
c<ω STA(∗, 2cn, n), which lies between the class of deterministic

exponential space and non-deterministic exponential space.
We now investigate the complexity of an important sub-theory ofM, namely the existential

theory. Basically, this sub-theory includes all valid sentences whose prenex normal form
contains only existential quantifiers. Its counterpart is the universal theory in which all the
quantifiers are universal. A result by Marriott et al. [24] showed that the existential theory
and universal theory for infinite BAs are in NP-complete and co-NP-complete respectively.

4 Decidability of general multiplication ./ over Tree Shares

In this section, we will prove the following results about S = (T, ./):

I Theorem 2 (Complexity of S).
1. The existential theory of S is decidable in PSPACE.
2. The existential theory of S is NP-hard.
3. The general first-order theory over S is undecidable.

The proof of Theorem 2 largely rests on the identical conclusions for the key subtheory
S+ , (T+, ./), where T+ , T \ {◦} are the “positive trees” obtained by removing the “zero
element” ◦ from T:

I Lemma 3 (Complexity of S+).
1. The existential theory of S+ is decidable in PSPACE.
2. The existential theory of S+ is NP-hard.
3. The general first-order theory over S+ is undecidable.

We will prove Lemma 3 shortly, but first let us use it to polish off Theorem 2:

Proof of Theorem 2. We take each part in turn as follows:
1. Represent the set of variables V = {x1, . . . , xn} in a given formula F of S as a n-length

bitvector. We can enumerate through all possibilities P1, . . . , P2n for this vector using
linear space and binary addition. For each possibility Pj , variable xi’s bit is 0 to indicate
that xi must be ◦ and 1 when xi must be non-◦. For each xk that is marked as ◦, we
substitute ◦ for xk in F to reach Fj and simplify using the rules

π1 ./ ◦ = π2

π2 = ◦
◦ ./ π1 = π2

π2 = ◦
π1 ./ π2 = ◦

π1 = ◦ ∨ π2 = ◦

π1 ./ ◦ 6= π2

π2 6= ◦
◦ ./ π1 6= π2

π2 6= ◦
π1 ./ π2 6= ◦

π1 6= ◦ ∧ π2 6= ◦

We can then just check to make sure that the resulting “fresh” (in)equalities are consistent
with the current value of the bitvector Pj . If not, we have reached a contradiction and
can proceed to the next bitvector Pj+1. If so, then after removing the trivial equalities
(e.g. ◦ = ◦) from Fj we are left with an equivalent formula F+

j which is in S+, so
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19:6 Decidability and Complexity of Tree Share Formulas

by Lemma 3.1 we can check if Fj is satisfiable in PSPACE. If so, we know that Fj is
satisfiable, and thus that F is satisfiable. If not, we proceed to the next bitvector Pj+1;
if all Fj are unsatisfiable then F is unsatisfiable.

2. By Lemma 3.2 it is sufficient to reduce a formula F+ in S+ to S. Let V be the set of

variables in F+ and define F , F+ ∧
( ∧
x∈V

x 6= ◦
)
; note that we construct F in linear

time from |F+|. F is satisfiable in S if and only if F+ is satisfiable in S+, so we are done.
3. Any extension of an undecidable theory is also undecidable; by Lemma 3.3 we are done.

J

4.1 Word equations
To prove Lemma 3 we will show that S+ is isomorphic to the theory of word equations. Let
us recall this theory. Let A = {a1, a2, . . .} be a finite set of letters and • be a concatenation
operator that combines letters into words. Let A∗ be the Kleene closure of A using •. We
define a model for the alphabet A, written WA as the pair (A∗, •). Now let V = {v1, v2, . . .}
be a finite set of variables, and w ∈W , (A ∪ V )∗ a finitely generated word that includes
both letters and variables. We extend a word context ρ : V → A∗ to the domain A ∪ V by
mapping constants to themselves, and further to the domain W by replacing each letter
within a word with its value in ρ. A word equation EW is a pair of words (w1, w2) ∈W×W.
We say that ρ is a solution of EW if ρ(w1) = ρ(w2).

The satisfiability of word equation asks whether a word equation EW has a solution ρ,
denoted SATW(EW). Makanin proposed a complete treatment to this problem in a series
of papers [20, 21, 22] but his method was highly intractable (quadruple-exponential non-
deterministic time [16]). Substantial research since has improved this bound, e.g. [2, 13].
The best known complexity bound for this problem is PSPACE and NP-hard [25, 26] and it
is hypothesized to be NP-complete. Importantly for our present result, the existential theory
over word equations is known to be reducible to SATW in polynomial time [8]. Finally, the
first order theory over W is known to be undecidable [23, 18].

Infinite alphabets. To define our isomorphism from T+ to A∗ it will be convenient if the
alphabet A can be countably infinite. Accordingly, we must reduce word equations over
an infinite alphabet to the standard finite case. Let σ : W → P(A) be the function that
extracts the set of letters from a word w, e.g. σ(v1a1a3v2) = {a1, a3} and extend σ to
W×W by σ(w1, w2) = σ(w1) ∪ σ(w2). Let φ : W× P(A)→W be the projection function
that takes a word w and a set of letters B ⊆ A and removes all letters in w that are not
in B, e.g. φ(v1a1a3v2, {a1, a2}) = v1a1v2. It is not hard to prove that φ with fixed B is an
homomorphism over WA. Now we are ready to state and prove the extension to infinite
alphabets:

I Lemma 4 (Infinite alphabet word equations). Let A be infinite and EW = (w1, w2) a word
equation over A. EW is satisfiable in WA iff EW is satisfiable in Wσ(EW).

Proof. ⇐ is trivial. Let ρ : V → A∗ be a solution of EW over A and ρ′ = λv. φ(ρ(v), σ(EW)).
Notice ρ′ preserves all the letters in EW and ρ(w1) = ρ(w2) implies ρ′(w1) = ρ′(w2). Thus ρ′
is a new solution of EW that only contains letters from σ(EW). J

4.2 Finding an infinite alphabet inside T+

Since ./ is a kind of multiplication operation, and the fundamental building blocks of (N,×)
are prime numbers, it is natural to wonder whether there is an analogue on trees. There is:
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I Definition 5 (Prime trees). τ ∈ T+\{•} is prime if ∀τ1, τ2. τ = τ1 ./ τ2 ⇒ (τ1 = •∨τ2 = •).
Furthermore, let Prime(τ) indicate τ is prime and Tp be the set of all prime trees.

Examples of tree primes are ◦ • and
• ◦ • ◦

. On the other hand, the tree
◦ • ◦

is not prime since it can be factored as • ◦ ./ ◦ •. Prime trees have many nice properties:

I Lemma 6 (Properties of prime trees).
1. There are countably infinitely many prime trees.
2. Let τ1, τ

′
1, τ2, τ

′
2 ∈ Tp, τ1 ./ τ2 = τ ′1 ./ τ

′
2 iff τ1 = τ ′1 and τ2 = τ ′2.

3. Given two prime tree sequences S1 = τ1
1 , . . . , τ

k1
1 and S2 = τ1

2 , . . . , τ
k2
2 , S1 = S2 iff their

./ products are equal: ./k1
i=1 τ

i
1 = ./k2

i=1 τ
i
2 ⇔ (k1 = k2

∧k1
i=1 τ

i
1 = τ i2).

To prove Lemma 6 we must define the notation |τ | to be the height of τ (with |◦| = |•| = 0
and counting up from there). Given this notation it is simple to define the set of all trees up
to height n, written Tn. We will also need the following technical lemma which allows us to
split an application of bowtie τ2 ./ τ3 to children of τ2:

I Lemma 7 (Split for ./). Let τ1, τ2, τ3, τ
l
1, τ

r
1 ∈ T+ and τ1 = τ2 ./ τ3 ∧ τ1 =

τ l
1 τr

1
then

either (1) τ2 = • ∧ τ1 = τ3 or (2) ∃τ l2, τ r2 . τ2 =
τ l

2 τr
2
∧ τ l1 = τ l2 ./ τ3 ∧ τ r1 = τ r2 ./ τ3.

Proof. The case τ2 = • is trivial. Otherwise, there exists τ l2, τ r2 ∈ T such that τ2 =
τ l

2 τr
2
.

By definition of ./, τ1 = τ2 ./ τ3 is computed by replacing each leaf • in τ2 with τ3,
which is equivalent to replace each leaf • in τ l2 and τ r2 with τ3. Thus, τ l1 = τ l2 ./ τ3 and
τ r1 = τ r2 ./ τ3. J

Proof of Lemma 6.
1. We construct an infinite sequence S of prime trees: let p1 , • ◦, pj , pj−1 •, i.e.

S ,

• ◦,
• ◦ •

,

• ◦ •
•
, . . .


It is immediate that p1 is prime. To prove that pi is prime for i > 1, we proceed as
follows. Suppose pi = τ1 ./ τ2 and neither τ1 nor τ2 is •. The right subtree of each pi
is just • and by the definition of ./ must contain a copy of τ2, i.e. τ2 = •, so we have a
contradiction and pi is prime.

2. We prove by induction on the height of τ1, τ
′
1. The base case T0 is easy to verify. Assume

it holds for Tk and τ1, τ
′
1 ∈ Tk+1. Let τ1 =

τ l
1 τr

1
, τ ′1 =

τ l′
1 τr′

1
then by Lemma 7,

we derive τ l1 ./ τ2 = τ l
′

1 ./ τ ′2, τ
r
1 ./ τ2 = τ r

′

1 ./ τ ′2. By our induction hypothesis,
τ l1 = τ l

′

1 , τ
r
1 = τ r

′

1 , τ2 = τ ′2. Consequently, τ1 = τ ′1.
3. This is a simple generalization of property 2.

J

Of course the real fun with prime numbers is the the unique factorization theorem.
Since ./ is not commutative we get a stronger version of the traditional theorem:

I Lemma 8 (Unique representation of S+). For each τ ∈ T+\{•}, there exists a unique
sequence τ1, ..., τn ∈ Tp such that τ = ./ni=1 τi. Each τi is called a prime factor of τ .
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Proof. We prove by induction on the height of τ . The base case T1 is trivial. Assume it
holds for Tk and let τ ∈ Tk+1. If τ is prime then we are done. Otherwise, let τ1, τ2 ∈ Tk\{•}
and τ = τ1 ./ τ2. By our induction hypothesis, there are 2 sequences τ1

1 , ..., τ
1
k1
∈ Tp and

τ2
1 , ..., τ

2
k2
∈ Tp such that τ1 = ./k1

i=1 τ
1
i and τ2 = ./k2

i=1 τ
2
i and thus τ = (./k1

i=1 τ
1
i ) ./ (./k2

i=1 τ
2
i ).

The uniqueness is a consequence of property 3 from Lemma 6. J

I Corollary 9 (Basis of S+). Tp ∪{•} is a basis of S+, i.e. the closure of Tp over ./ together
with • is T+. Furthermore, it is the smallest basis: if B is a basis of S+ then Tp ∪ {•} ⊆ B.

Accordingly, we will use Tp as our “infinite alphabet” in our isomorphism.

4.3 Connecting Tree Shares to Word Equations
We are ready to make the central connection needed for Lemma 3:

I Lemma 10. (T+, ./) is isomorphic to (T∗p, •)

Proof. Let f : T+ → T∗p be defined as follows. First, map the identity element • to the empty
word ε and then for each prime tree τp ∈ T+ map τp to itself. Finally, for each composite
τ ∈ T+ map τ to exactly the concatenation of its (unique) prime factors.

We now wish to prove that for any τ1 and τ2, f(τ1 ./ τ2) = f(τ1) • f(τ1). Let us consider
the easy cases first. If τ1 = • then f(τ1 ./ τ2) = f(τ2) = ε • f(τ2) = f(τ1) • f(τ2). The
situation is symmetric when τ2 = •. Now let us consider the case when neither τ1 nor τ2 is •.
Let p1, . . . , pi be the unique prime factors of τ1 and p′1, . . . , p′j be the unique prime factors
of τ2. By Lemma 8, p1, . . . , pi, p

′
1, . . . , p

′
j are exactly the unique prime factors of τ1 ./ τ2, so:

f(τ1 ./ τ2) = f(p1 ./ · · · ./ pi ./ p′1 ./ · · · ./ p′j) = p1 • · · · • pi • p′1 • · · · • p′j =
(p1 • · · · • pi) • (p′1 • · · · • p′j) = f(τ1) • f(τ2)

To prove f is surjective, let w ∈ T∗p be the concatenation of primes p1 • · · · • pi; then by
the definition f(p1 ./ · · · ./ pi) = w. To prove f is injective, suppose f(τ1) = f(τ2). Let
p1, . . . pi be the prime factors of τ1 and p′1, . . . p′j be the prime factors of τ2. Accordingly we
know that p1 • · · · • pi = p′1 • · · · • p′j , and since equality over words can only occur if the words
have the same length and have the same letters, we know i = j and pk = p′k for all k. J

I Corollary 11 (Equations over Positive Tree Shares are Word Equations). Equations ET+ over
(T+, ./) contain both tree constants τ ∈ T+ and variables v ∈ V ; we can map these to word
equations EW over (T∗p, •) by mapping variables to themselves, constants to the concatenation
of their prime factors, and multiplication ./ to concatenation •. The resulting system is
equivalent, i.e. if ρ : V → T+ satisfies ET+ then f ◦ ρ satisfies EW, where ◦ in this case
means functional composition and f is the isomorphism constructed in Lemma 10.

We are now ready to start tackling Lemma 3. We start with the simplest:

Proof of Lemma 3.3. As previously mentioned, the first order theory over word equations
is known to be undecidable [23, 18]. By Lemma 10 we know that this theory is isomorphic to
the first order theory over tree shares with ./, which accordingly must be undecidable. J

To show Lemma 3.1 we need to know that tree factorization can be done within PSPACE.
In fact we can do much better:

I Lemma 12 (Factorization). Factoring an arbitrary positive tree share τ is in P.
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Proof. Let S(τ) be the set of all subtrees of τ and Sn(τ) ⊂ S(τ) be the set of all subtrees
of τ with height exactly n. S(τ) can be computed recursively: S(◦) = {◦}, S(•) = {•},
S(
τ1 τ2

) = S(τ1) ∪ S(τ2) ∪ {
τ1 τ2

}. If τ = τ1 ./ τ2 ({τ1, τ2} ⊂ T+\{•}), then there exists

n ∈ N such that Sn(τ) = {τ2}, that is, S|τ2|(τ) is exactly the singleton set {τ2}. Additionally,
S(τ) =

⋃|τ |
i=0 Si(τ).

Thus we can find all the prime factors of τ (which is inspired from the well-known sieve
of Eratosthenes) as follows: first we compute S(τ) and partition it into S0(τ), . . . ,S|τ |(τ).
Let i ∈ N be the smallest number such that Si(τ) is the singleton set {τ1} for some τ1 ∈ T
(note that i must be larger than 0 since S0(τ) = {◦, •}). If i = |τ | then τ itself is a prime,
otherwise, we replace all subtrees τ1 of τ with • and call the new tree τ ′. If all the “old” •
leaves of τ are replaced and τ ′ is in canonical form then τ = τ ′ ./ τ1, τ1 is a prime factor
of τ , and we can repeat the process with τ ′ to find the next prime factor. Otherwise, we
consider the next singleton set Sj(τ).

If τ has n leaves than its description requires O(n) bits and the time to compute S(τ) is
O(n). Note that |Sk(τ)| ≤ n

k+1 because there are at least k + 1 leaves in a tree of height k.
Therefore, the number of subtrees from height 1 to n is at most Σni=1

n
i+1 ≤ n

2. Computing
the height of a subtree τ ′ of τ requires O(n), thus the time to partition S(τ) is O(n3). The
number of times we need to restart the process is O(n2). Consequently, the time for tree
factorization is O(n5), polynomial in the description of τ (more efficient solutions exist). J

Tree factorization is fundamentally simpler than integer factorization since the representation
of a tree already contains the descriptions of all of its tree factors. In contrast, the connection
between the representation of a number and the representation of its prime factors is vague:
e.g. among the 24 factors of 74,611,647 are 333 (which does not appear at all in the
representation of the original) and 8,290,183 (which only shares a single 1 with the original).

Proof of Lemma 3.1. We take the tree shares and factor them using Lemma 12 and then
construct the isomorphic system of word equations using the calculated prime factors as
the alphabet using Corollary 11. As mentioned, the best known complexity bound for the
existential word equation problem is PSPACE [25, 26]. J

For Lemma 3.2 we need one final fact:

I Lemma 13 (Existence of small primes). For any n (represented in unary) we can find a
length-n sequence of tree primes S in polynomial time of n.

Proof. Consider the sequence S from Lemma 6: the description of pi is only a constant size
larger than the description of pi−1 so the description of S is quadratic in n. J

Proof of Lemma 3.2. Suppose we have an arbitrary problem Q in NP. We can reduce Q
to word equations in polynomial time [25, 26]. We then use Lemma 13 to construct a set
of primes the size of the number of alphabet letters that appear in the equations and map
each letter in the word alphabet to a distinct prime, creating a set of word equations over
T∗p. Since the representation of the constants does not affect the computational properties of
the theory, we can conclude that T+ is NP-hard. J

5 A reduction to Tree Automatic Structures

Theorem 2 shows that the first order theory (FO) over S is undecidable, so of course any
extension of S – e.g. with (u,t,�) – also has an undecidable FO. However, if we restrict the
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form of ./-equations to be π1 ./ τ = π2 where τ ∈ T, then the FO of S is decidable because
the relation is tree-automatic. This type of restriction is inspired by Jain et al.’s concept of
semi-automatic structures [14], in which relations are restricted so that all input arguments
are fixed constants except for one argument which is a variable. As a result, certain relations
become automatic, e.g. multiplication in unary language.

Let τ./ : T→ T and ./τ : T→ T be the left and right restricted form of ./ with respect
to τ ∈ T, i.e. τ./(τ1) , τ ./ τ1 and ./τ (τ1) , τ1 ./ τ . We will show T , (T,u,t,�, ./�),
where ./� denotes the family of all right-restricted forms of ./ indexed by tree constants, is
tree-automatic by constructing bottom-up tree automata that recognize the domain T and
the relations in T :

I Theorem 14 (Decidability of (T,u,t,�, ./�)). T is tree-automatic. As a result, the
first-order theory of T is decidable.

As indicated by equation (7) (from §2), one use for ./ is to split/join ownership of maps-to
predicates in separation logic. Here the splitting/joining occurs on the right-hand side of
the ./. Moreover, many functions need to divide their ownership only a finite number of
times before e.g. calling other functions or indeed themselves recursively. This is because
the program text of functions is finite. Accordingly, we believe that T is worthy of attention.

5.1 Tree automatic structures
Before proving Theorem 14, we recall the definition of tree automatic structures [27, 15].

Tree automaton. A bottom up tree automaton is a 4-tuple A = (Q,F,Qf ,∆) where Q is
the set of states, F is the ranked alphabet, Qf ⊂ Q is the set of accepting states and ∆ is
the set of transitions f(q1(v1), ..., qn(vn))→ qn+1(f(v1, ..., vn)) where f ∈ F is a n-ary letter,
vi ∈ V is a variable and qj ∈ Q. Let T be a tree constructed from F then A runs on T by
applying ∆ at each leaf of T spontaneously and proceeding upward. A accepts T if the state
associated with the root of T is in Qf . We will put a temporary superscript number (n)
above each letter in the definition of F to indicate its arity, i.e. f (n) means f is n-ary. For
instance, the ranked alphabet for the tree domain T is F = {◦(0), •(0),Node(2)}.

Tree automatic structures. Let R ⊂ Dk be a k-ary tree relation on some tree domain
D, its convolution set is constructed by overlapping all k trees of each element in R to
form a single tree. As trees can have different shapes and thus their convolution con-
tains “holes”, we fill the holes with a special nullary character �(0) that is not in F , e.g.
(Node(a1, a2), b,Node(c1, c2)) 7→ [Node, b,Node]([a1, �, c1], [a2, �, c2]). As a result, if FD is the
ranked alphabet of D then (FD ∪ {�})k is the ranked alphabet for Dk and the arity of each
convolution letter is the maximal arity among its letter components. R is tree-automatic if
its convolution set is accepted by a tree automaton. Generally, a structure (D,R1, . . . ,Rn)
is tree-automatic if its domain D and each of its relations Ri are tree-automatic. We restate
a well-known decidability result for tree automatic structures:

I Lemma 15 ([5, 6]). The first-order theory of a tree automatic structures is decidable.

5.2 Tree automata construction for T
Construction of AT. For the domain T, it suffices to check the canonical form. Let
AT = (QT, FT, QT

f ,∆T) such that QT = {q, q◦, q•}, FT = F , QT
f = {q} and the transition

relation ∆T contains the following:
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◦ 7→ q(◦) and • 7→ q(•)
Node(q1(v1), q2(v2)) 7→ q(Node(v1, v2)) where (q1, q2) ∈ {(q◦, q•), (q•, q◦), (q, q)}

Construction of A�. From now on, we assume that the input trees are in domain T, which
will make other constructions more pleasant. The automaton A� for complement � is
easy: we need to verify the opposite values leaf-wise between two trees . To be precise, let
(Q�, F�, Q�

f ,∆�) such that Q� = Q�
f = {q}, F� = (F ∪ {�})2 and ∆� is defined as:

[•, ◦] 7→ q([•, ◦]) and [◦, •] 7→ q([◦, •])
[Node,Node](q(v1), q(v2)) 7→ q([Node,Node](v1, v2))}

Construction of At and Au. At and Au are more sophisticated as trees can have different
shapes and thus are inapplicable for leaf-wise comparison. For instance, the convolution of
the relation ◦ • t • = • is [Node, •, •]([◦, �, �], [•, �, �]). When we proceed upward, the leaf
values of the second and third tree are initially unknown (denoted by �) but later recognized
as •. The trick to build the automaton is by guessing: when moving bottom-up, the states
of the automaton record the set of all possible values for the unknown leaves and later check
whether the observed values belong to the guessing set. When proceeding upward, if two
guessing sets meet at a certain step, they are unified into a single guessing set: first we
compute their intersection and then unify it with the observed values at the current node.
In details, we define Ft = (F ∪ {�})3, Qt = {qS | S ⊆ {(τ1, τ2, τ3) | τi ∈ {◦, •, ?}}} and
Qtf = {q{(?,?,?)}} where ? indicates the value was already seen. Let D = {◦, •, �,Node, ?}
and φ : D ×D → {?, �} be the unit unification:

φ(Node, ?) = φ(◦, ◦) = φ(•, •) = ?, φ(�, �) = �
φ(τ1, τ2) is undefined otherwise

We extend φ to φ′ : D3 × P(D3) → P(D3) to handle the convolution form of t:
φ′((τ1, τ2, τ3), S) = {(τ ′1, τ ′2, τ ′3) | ∃k1, k2, k3.((k1, k2, k3) ∈ S

∧3
i=1 φ(τi, ki) = τ ′i)}. Finally,

the transition relation is defined to be ∆t = Sg ∪ Su where Sg contains all guessing rules at
leaf level for t and Su is the transition part for unification that contains relations of the form
[τ1, τ2, τ3](qS1(v1), qS2(v2)) 7→ qS([τ1, τ2, τ3](v1, v2)) such that S = φ′((τ1, τ2, τ3), S1 ∩ S2).
Similarly, the automaton for u can be constructed by modifying Sg. For demonstration,
consider ◦ • t • = • whose convolution [Node, •, •]([◦, �, �], [•, �, �]) has the following run:

[◦, �, �] 7→ qS1([◦, �, �]) where S1 = {(?, •, •), (?, ◦, ◦)}
[•, �, �] 7→ qS2([•, �, �]) where S2 = {(?, •, •), (?, ◦, •)}
As S = S1 ∩ S2 = {(?, •, •)} and φ′((Node, •, •), S) = {(?, ?, ?)}, we have:
[Node, •, •](qS1([◦, �, �]), qS2([•, �, �])) 7→ q{(?,?,?)}([Node, •, •]([◦, �, �], [•, �, �]))

Construction of A./τ . Next, we give the description of bottom-up tree automaton A./τ
that recognizes ./τ . Let S : T→ P(T) be the function that extracts all subtrees: S(•) = {•},
S(◦) = {◦}, S(

τ1 τ2
) = {

τ1 τ2
} ∪ S(τ1) ∪ S(τ2). The ranked alphabet for A./τ is F ./τ =

(F ∪ {�})2. The state space for A./τ is Q./τ = {qτ ′ | τ ′ ∈ S(τ)} ∪ {qf} and Q./τf = {qf}.
W.l.o.g., we assume that τ 6∈ {◦, •} as those cases can be trivially reduced to equalities,
which is a special case of t: τ1 = τ2 ⇔ τ1 t ◦ = τ2. The transition relation ∆./τ is defined as
follows:

a1. [◦, ◦] 7→ qf ([◦, ◦])
a2. [�, τ ′] 7→ qτ ′([�, τ ′]) if τ ′ ∈ S(τ)

FSTTCS 2016
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a3. [�,Node](qτ1(v1), qτ2(v2)) 7→ qτ3([�,Node](v1, v2)) if τ3 =
τ1 τ2

∈ S(τ) and τ3 6= τ

b1. [•,Node](qτ1(v1), qτ2(v2)) 7→ qf ([•,Node](v1, v2)) if τ =
τ1 τ2

b2. [Node,Node](qf (v1), qf (v2)) 7→ qf ([Node,Node](v1, v2))

Briefly speaking, we traverse upward and check whether τ is a subtree of the second tree
(a1−a3). When • is seen from the first tree (b1), we check whether the two trees have similar
shape (b2).
I Remark. As we are about to prove, the other relation τ./ is not tree-automatic in this
representation. We leave an open question whether there exists a representation in which
both ./τ and τ./ are automatic i.e. whether ./ is semi-automatic.

I Proposition 16 (τ./). In the current representation of tree shares, there exists infinitely
many τ such that τ./ is not tree-automatic.

First, we recall the Pumping Lemma for tree automata:

I Definition 17 (Term, context and substitution [9]). Let A = (Q,F ,Qf ,∆) be a tree
automaton and V the set of variables. We define T (F , V ) the set of all tree terms derived
from F ∪V and T (F , ∅) is the set of ground terms. A term t is linear if each variable appears
at most once in t. A context C is a linear term of T (F , V ) and C(F) denotes the set of all
contexts with single variable. A context is trivial if it is reduced to a variable. Let C[t]
be the substitution of C ∈ C(F) by replacing the variable in C with the term t. We define
C0[t] = v where v is the variable in C, C1[t] = C[t] and Cn+1[t] = C[Cn[t]].

I Lemma 18 (Pumping Lemma for Tree Automata [9]). Let L be the set of all ground terms
recognizable by a tree automaton. There is a constant k ∈ N+ satisfying the following
condition: for all ground term t ∈ L and |t| > k, there exists a context C ∈ C(F), a nontrivial
context C ′ ∈ C(F) and a ground term t′ such that t = C[C ′[t′]] and ∀n ∈ N. C[C ′n[t′]] ∈ L.

Proof of Proposition 16. Let τ./ where τ =
• ◦ • ◦

. For an input tree τ ′ ∈ T+, the

result tree is
τ ′ ◦ τ ′ ◦

in which the left and right subtree are identical. If τ./ is automatic

then it satisfies the Pumping Lemma. However, the Pumping Lemma only allows us to pump
either the left or the right subtree and thus they will be different after pumping, which is a
contradiction. Now consider the following sequence: τ1 =

• ◦ • ◦
, τn+1 =

τn τn
then

each of the τi./ is not automatic. J

6 Future Work

We identify several directions for future research. One obvious question is the decidability of
the existential theory of the tree share model with ./, t, u, and �, where ./ is unrestricted.
Our connection to word equations does not seem to provide an answer to decidability of
this problem. Another question is the computational complexity of adding more general
constants (i.e., other than ◦ and •) to the first order theory ofM. Although such constants
are in some way “definable” (e.g. in first-order logic over the vocabulary with ◦ and •), the
definition in general requires a formula of superpolynomial size. For this reason, connections
to CABA do not immediately yield the same computational complexity. A final direction for
future work is to investigate the integration of ./� into a practical program logic.
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7 Conclusion

We have demonstrated the decidability and complexity of a first-order theory over the
Boolean logic of tree shares by pinpointing the connection to countable atomless Boolean
algebras. We have provided the first serious look at the complexity of the tree multiplication
./ operator and by way of an isomorphism to word equations prove that the existential
theory is in PSPACE while the general first-order theory is undecidable. We have identified
a restricted version of ./ that takes constants on the right-hand side ./� and have proven
that the system (T,t,u,�, ./�) has a decidable first-order theory via an embedding to
tree-automatic structures.
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Abstract
In a one-counter automaton (OCA), one can produce a letter from some finite alphabet, increment
and decrement the counter by one, or compare it with constants up to some threshold. It is
well-known that universality and language inclusion for OCAs are undecidable. In this paper, we
consider OCAs with counter observability: Whenever the automaton produces a letter, it outputs
the current counter value along with it. Hence, its language is now a set of words over an infinite
alphabet. We show that universality and inclusion for that model are PSPACE-complete, thus
no harder than the corresponding problems for finite automata. In fact, by establishing a link
with visibly one-counter automata, we show that OCAs with counter observability are effectively
determinizable and closed under all boolean operations. Moreover, it turns out that they are
expressively equivalent to strong automata, in which transitions are guarded by MSO formulas
over the natural numbers with successor.
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Keywords and phrases One-counter automata, inclusion checking, observability, visibly one-
counter automata, strong automata
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1 Introduction

One-counter automata (OCAs) are a fundamental model of infinite-state systems. Their
expressive power resides between finite automata and pushdown automata. Unlike finite
automata, however, OCAs are not robust: They lack closure under complementation and have
an undecidable universality, equivalence, and inclusion problem [12, 14]. Several directions
to overcome this drawback have been taken. One may underapproximate the above decision
problems in terms of bisimilarity [15] or overapproximate the system behavior by a finite-state
abstraction, e.g., in terms of the downward closure or preserving the Parikh image [25, 20].

In this paper, we consider a new and simple way of obtaining a robust model of one-
counter systems. Whenever the automaton produces a letter from a finite alphabet Σ, it will
also output the current counter value along with it (transitions that manipulate the counter
are not concerned). Hence, its language is henceforth a subset of (Σ ×N)∗. For obvious
reasons, we call this variant OCAs with counter observability. We will show that, under the
observability semantics, OCAs form a robust automata model: They are closed under all
boolean operations. Moreover, their universality and inclusion problem are in PSPACE and,
as a simple reduction from universality for finite automata shows, PSPACE-complete.

These results may come as a surprise given that universality for OCAs is undecidable
and introducing counter observability seems like an extension of OCAs. But, actually, the
problem becomes quite different. The fact that a priori hidden details from a run (in terms
of the counter values) are revealed makes the model more robust and the decision problems
easier. Note that this is also what happens in input-driven/visibly pushdown automata [16, 3]
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or their restriction of visibly OCAs [5, 22]. They all recognize languages over a finite alphabet
and the stack/counter operation can be deduced from the letter that is read. Interestingly,
our proofs establish a link between the observability semantics and visibly OCAs. This link
is not immediate and relies on a couple of technical lemmas. However, it somehow explains
the robustness of OCAs under the observability semantics.

It is worth noting that revealing details from a system configuration does not always help,
quite the contrary: Though timed automata and counter automata are closely related [13],
the universality problem of timed automata is decidable only if time stamps are excluded
from the semantics [1].

Note that it is not only for the pure fact that we obtain a robust model that we consider
counter observability. Counter values usually have a meaning, such as energy level, value of
a variable, or number of items yet to be produced (cf. Example 2). In those contexts, it is
natural to include them in the semantics, just like including time stamps in timed automata.

Apart from the connection with visibly OCAs, another model closely related to ours
is that of strong automata [9]. Strong automata operate on infinite alphabets and were
introduced as an extension of symbolic automata [6, 10]. Essentially, a transition of a strong
automaton is labeled with a formula from monadic second-order (MSO) logic over some
infinite structure, say (N,+1). In fact, the formula has two free first-order variables so that
it defines a binary relation over N. This relation is interpreted as a constraint between
successive letters from the infinite alphabet. We will show that OCAs with the observability
semantics and strong automata over (N,+1) (extended by a component for the finite alphabet
Σ) are expressively equivalent. This underpins a certain naturalness of the observability
semantics. Note that the universality and the inclusion problem have been shown decidable
for strong automata over (N,+1) [9]. However, strong automata do not allow us to derive
any elementary complexity upper bounds. In fact, our model can be seen as an operational
counterpart of strong automata over (N,+1).

The outline of the paper is as follows. Section 2 defines OCAs and their different semantics.
Section 3 relates the observability semantics with visibly OCAs and shows that, under the
new semantics, OCAs are closed under boolean operations and have a PSPACE-complete
universality and inclusion problem. In Section 4, we show expressive equivalence of strong
automata and OCAs with counter observability. We conclude in Section 5. Omitted proofs or
proof details can be found in the full version of this paper, which is available at the following
link: https://arxiv.org/abs/1602.05940

2 One-Counter Automata with Counter Observability

For n ∈ N = {0, 1, 2, . . .}, we set [n] := {1, . . . , n} and [n]0 := {0, 1, . . . , n}. Given an
alphabet Σ, the set of finite words over Σ, including the empty word ε, is denoted by Σ∗.

2.1 One-Counter Automata and Their Semantics
We consider ordinary one-counter automata over some nonempty finite alphabet Σ. In
addition to a finite-state control and transitions that produce a letter from Σ, they have a
counter that can be incremented, decremented, or tested for values up to some threshold
m ∈ N (as defined in [5]). Accordingly, the set of counter operations is Op = {ˆ, ´}, where
ˆ stands for “increment the counter by one” and ´ for “decrement the counter by one”. A
transition is of the form (q, k, σ, q′) where q, q′ are states, k ∈ [m]0 is a counter test, and
σ ∈ Σ ∪ Op. It leads from q to q′, while σ either produces a letter from Σ or modifies the

https://arxiv.org/abs/1602.05940
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q0 q1 q2 q3

≥1 | req

ˆ

´

≥1 | prod

=0 | prod

Figure 1 A one-counter automaton with threshold m = 1.

counter. However, the transition can only be taken if the current counter value x ∈ N satisfies
k = min{x,m}. That is, counter values can be checked against any number strictly below m

or for being at least m. In particular, if m = 1, then we deal with the classical definition of
one-counter automata, which only allows for zero and non-zero tests.

I Definition 1 (OCA, cf. [5]). A one-counter automaton (or simply OCA) is a tuple A =
(Q,Σ, ι, F,m,∆) where Q is a finite set of states, Σ is a nonempty finite alphabet (disjoint
from Op), ι ∈ Q is the initial state, F ⊆ Q is the set of final states, m ∈ N is the threshold,
and ∆ ⊆ Q× [m]0× (Σ∪Op)×Q is the transition relation. We also say that A is an m-OCA.
Its size is defined as |Q|+ |Σ|+m+ |∆|.

An OCA A = (Q,Σ, ι, F,m,∆) can have several different semantics:
Loca(A) ⊆ Σ∗ is the classical semantics when A is seen as an ordinary OCA.
Lvis(A) ⊆ (Σ ∪ Op)∗ is the visibly semantics where, in addition to the letters from Σ, all
counter movements are made apparent.
Lobs(A) ⊆ (Σ×N)∗ is the semantics with counter observability where the current counter
value is output each time a Σ-transition is taken.

We define all three semantics in one go. Let ConfA := Q×N be the set of configurations
of A. In a configuration (q, x), q is the current state and x is the current counter value. The
initial configuration is (ι, 0), and a configuration (q, x) is final if q ∈ F .

We determine a global transition relation =⇒A ⊆ ConfA × ((Σ×N) ∪ Op)× ConfA. For
two configurations (q, x), (q′, x′) ∈ ConfA and τ ∈ (Σ×N) ∪ Op, we have (q, x) τ=⇒A (q′, x′)
if one of the following holds:

τ = ˆ and x′ = x+ 1 and (q,min{x,m}, ˆ, q′) ∈ ∆, or
τ = ´ and x′ = x− 1 and (q,min{x,m}, ´, q′) ∈ ∆, or
x′ = x and there is a ∈ Σ such that τ = (a, x) and (q,min{x,m}, a, q′) ∈ ∆.

A partial run of A is a sequence ρ = (q0, x0) τ1=⇒A (q1, x1) τ2=⇒A . . .
τn=⇒A (qn, xn), with

n ≥ 0. If, in addition, (q0, x0) is the initial configuration, then we say that ρ is a run. We
call ρ accepting if its last configuration (qn, xn) is final.

Now, the semantics of A that we consider depends on what we would like to extract from
trace(ρ) := τ1 . . . τn ∈ ((Σ×N) ∪ Op)∗. We let (given (a, x) ∈ Σ×N):

oca((a, x)) = a and oca(ˆ) = oca(´) = ε

vis((a, x)) = a and vis(ˆ) = ˆ and vis(´) = ´
obs((a, x)) = (a, x) and obs(ˆ) = obs(´) = ε

Moreover, we extend each such mapping η ∈ {oca, vis, obs} to τ1 . . . τn ∈ ((Σ ×N) ∪ Op)∗
letting η(τ1 . . . τn) := η(τ1) · . . . · η(τn). Note that, hereby u · ε = ε · u = u for any word u.

Finally, we let Lη(A) = {η(trace(ρ)) | ρ is an accepting run of A}.

I Example 2. Consider the 1-OCA A from Figure 1 over Σ = {req, prod}. For readability,
counter tests 0 and 1 are written as =0 and ≥1, respectively. A transition without counter
test stands for two distinct transitions, one for =0 and one for ≥1 (i.e., the counter value
may actually be arbitrary). When looking at the semantics Lobs(A), i.e., with counter
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20:4 One-Counter Automata with Counter Observability

observability, we can think of (req, n) signalizing that the production of n ≥ 1 items is
required (where n is the current counter value). Moreover, prod indicates that an item has
been produced so that, along a run, the counter value represents the number of items yet
to be produced. It is thus natural to include it in the semantics. Concretely, we have the
following:

Loca(A) = {req prodn | n ≥ 1}
Lvis(A) = {ˆnreq (´ prod)n | n ≥ 1}
Lobs(A) = {(req, n)(prod, n− 1)(prod, n− 2) . . . (prod, 0) | n ≥ 1}

Apparently, Lvis(A) and Lobs(A) are the only meaningful semantics in the context described
above.

I Remark. Visibly OCAs [5, 22] usually allow for general input alphabets Γ, which are
partitioned into Γ = Γinc]Γdec]Γnop so that every γ ∈ Γ is associated with a unique counter
operation (or “no counter operation” if γ ∈ Γnop). In fact, we consider here (wrt. the visibly
semantics) a particular case where Γ = Σ ∪ Op with Γinc = {ˆ}, Γdec = {´}, and Γnop = Σ.

2.2 Standard Results for OCAs
Let us recall some well-known results for classical OCAs and visibly OCAs. For η ∈
{oca, vis, obs}, the nonemptiness problem for OCAs wrt. the η-semantics is defined as follows:
Given an OCA A, do we have Lη(A) 6= ∅ ? Of course, this reduces to a reachability problem
that is independent of the actual choice of the semantics:

I Theorem 3 ([24]). The nonemptiness problem for OCAs is NL-complete, wrt. any of the
three semantics.

However, the universality (and, therefore, inclusion) problem for classical OCAs is
undecidable:

I Theorem 4 ([12, 14]). The following problem is undecidable: Given an OCA A with
alphabet Σ, do we have Loca(A) = Σ∗ ?

In this paper, we show that universality and inclusion are decidable when considering
counter observability. To do so, we make use of the theory of the visibly semantics. Concretely,
we exploit determinizability as well as closure under complementation and intersection. In
fact, the following definition of determinism only makes sense for the visibly semantics, but
we will see later that a subclass of deterministic OCAs gives a natural notion of determinism
for the observability semantics as well.

I Definition 5 (deterministic OCA). An OCA A = (Q,Σ, ι, F,m,∆) is called deterministic
(dOCA or m-dOCA) if, for all (q, k, σ) ∈ Q× [m]0× (Σ∪Op), there is exactly one q′ ∈ Q such
that (q, k, σ, q′) ∈ ∆. In that case, ∆ represents a (total) function δ : Q× [m]0×(Σ∪Op)→ Q

so that we rather consider A to be the tuple (Q,Σ, ι, F,m, δ).

A powerset construction like for finite automata can be used to determinize OCAs wrt.
the visibly semantics [5]. That construction also preserves the two other semantics. However,
Definition 5 only guarantees uniqueness of runs for words from (Σ ∪ Op)∗. That is, for
complementation, we have to restrict to the visibly semantics (cf. Lemma 7 below).

I Lemma 6 (cf. [5]). Let A be an m-OCA. There is an m-dOCA Adet of exponential size
such that Lη(Adet) = Lη(A) for all η ∈ {oca, vis, obs}.
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Figure 2 Decompositions of two runs on (a1, 3)(a2, 1), and corresponding runs in normal form.

A (visibly) dOCA can be easily complemented wrt. the set of well-formed words WFΣ :=
{w ∈ (Σ ∪ Op)∗ | no prefix of w contains more ´’s than ˆ’s}. In fact, for all OCAs A with
alphabet Σ, we have Lvis(A) ⊆WFΣ.

I Lemma 7. Let A = (Q,Σ, ι, F,m, δ) be a dOCA and define Ā as the dOCA (Q,Σ, ι, Q \
F,m, δ). Then, Lvis(Ā) = WFΣ \ Lvis(A).

Finally, visibility of counter operations allows us to simulate two OCAs in sync by a
straightforward product construction:

I Lemma 8 (cf. [3]). Let A1 be an m1-OCA and A2 be an m2-OCA over the same alphabet.
There is a max{m1,m2}-OCA A1 × A2 of polynomial size such that Lvis(A1 × A2) =
Lvis(A1) ∩ Lvis(A2). Moreover, if A1 and A2 are deterministic, then so is A1 ×A2.

3 Determinizing and Complementing OCAs

In this section, we will show that, under the observability semantics, OCAs are effectively
closed under all boolean operations. The main ingredient of the proof is a determinization
procedure, which we first describe informally.

Let A = (Q,Σ, ι, F,m,∆) be the OCA to be determinized (wrt. the observability se-
mantics). Moreover, let w = (a1, x1) . . . (an, xn) ∈ (Σ ×N)∗. Every run ρ of A such that
obs(trace(ρ)) = w has to have reached the counter value x1 by the time it reads the first
letter a1. In particular, it has to perform at least x1 counter increments. In other words, we
can identify x1 transitions that lift the counter value from 0 to 1, from 1 to 2, and, finally,
from x1− 1 to x1, respectively, and that are separated by partial runs that “oscillate” around
the current counter value but, at the end, return to their original level. Similarly, before
reading the second letter a2, A will perform |x2 − x1|-many identical counter operations to
reach x2, again separated by some oscillation phases, and so on. This is illustrated on the
left hand side of Figure 2 for two runs on the word (a1, 3)(a2, 1).

We will transform A into another automaton that decomposes a run into oscillations and
increment/decrement/letter transitions, but, in fact, abstracts away oscillations. Thus, the
automaton starts in an increasing mode and goes straight to the value x1. Once it reads
letter a1, it may go into an increasing or decreasing mode, and so on. Observe that a run ρ
of this new automaton is in a sort of normal form as illustrated on the right hand side of
Figure 2. The crux is that vis(trace(ρ)) is a unique encoding of w: Of course, it determines the
counter values output when a letter is read; and it is unique, since it continues incrementing
(decrementing, respectively) until a letter is read. This normalization and encoding finally
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20:6 One-Counter Automata with Counter Observability

allows us to apply known results on visibly one-counter automata for determinization and
complementation.

There is a little issue here, since the possibility of performing an oscillation leading from
p2 to p′2 (cf. left hand side of Figure 2) depends on the current counter value. However,
it was shown in [11] that the set of counter values allowing for such a shortcut can be
described as a boolean combination of arithmetic progressions that can be computed in
polynomial time. We will, therefore, work with an extended version of OCAs that includes
arithmetic-progression tests (but is no more expressive, as we show afterwards).

The outline of this section is as follows: We present extended OCAs in Section 3.1 and
the link between the observability and the visibly semantics in Section 3.2. In Section 3.3,
we solve the universality and inclusion problem for OCAs wrt. the observability semantics.

3.1 Extended One-Counter Automata
While OCAs can only test a counter value up to some threshold, extended OCAs have access
to boolean combinations of modulo constraints. The set Guardsmod is given by the grammar
ϕ ::= c+ dN | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ where c, d ∈ N. We call c+ dN an arithmetic-progression
formula and assume that c and d are encoded in unary. For x ∈ N (a counter value), we
define x |= c+ dN if x = c+ d · i for some i ∈ N. Thus, we may use true as an abbreviation
for 0 + 1N. The other formulas are interpreted as expected. Moreover, given ϕ ∈ Guardsmod,
we set [[ϕ]] := {x ∈ N | x |= ϕ}.

Before we introduce extended OCAs, we will state a lemma saying that the “possibility”
of a shortcut in terms of an oscillation (see above) is definable in Guardsmod. Let A =
(Q,Σ, ι, F,m,∆) be an OCA and p, q ∈ Q. By XAp,q, we denote the set of natural numbers
x ∈ N such that (p, x) (=̂⇒A ∪ =́⇒A)∗ (q, x), i.e., there is a partial run from (p, x) to
(q, x) that performs only counter operations. Moreover, we define Y Ap,q to be the set of
natural numbers x ∈ N such that (p, x) (=̂⇒A ∪ =́⇒A)∗ (q, x′) for some x′ ∈ N. Note that
XAp,q ⊆ Y Ap,q. The following result is due to [11, Lemmas 6–9]:

I Lemma 9 ([11]). Let A = (Q,Σ, ι, F,m,∆) be an OCA and p, q ∈ Q. We can compute,
in polynomial time, guards ϕp,q, ψp,q ∈ Guardsmod such that [[ϕp,q]] = XAp,q and [[ψp,q]] = Y Ap,q.
In particular, the constants in ϕp,q and ψp,q are all polynomially bounded.

I Definition 10 (extended OCA). An extended OCA (eOCA) is a tuple A = (Q,Σ, ι, f,∆)
where Q,Σ, ι are like in an OCA, f : Q→ Guardsmod is the acceptance condition, and ∆ is
the transition relation: a finite subset of Q× Guardsmod × (Σ ∪ Op)×Q

Runs and the languages Lη(A), with η ∈ {oca, vis, obs}, of an eOCA A = (Q,Σ, ι, f,∆)
are defined very similarly to OCAs. In fact, there are only two (slight) changes:
1. The definition of =⇒A ⊆ ConfA × ((Σ × N) ∪ Op) × ConfA is now as follows: For

(q, x), (q′, x′) ∈ ConfA and τ ∈ (Σ × N) ∪ Op, we have (q, x) τ=⇒A (q′, x′) if there is
ϕ ∈ Guardsmod such that x |= ϕ and one of the following holds:
τ = ˆ and x′ = x+ 1 and (q, ϕ, ˆ, q′) ∈ ∆, or
τ = ´ and x′ = x− 1 and (q, ϕ, ´, q′) ∈ ∆, or
x′ = x and there is a ∈ Σ such that τ = (a, x) and (q, ϕ, a, q′) ∈ ∆.

2. A run is now accepting if its last configuration (q, x) is such that x |= f(q).

Apart from these modifications, the languages Loca(A), Lvis(A), and Lobs(A) are defined
in exactly the same way as for OCAs.
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3.2 From OCAs with Counter Observability to Visibly OCAs
To establish a link between the observability and the visibly semantics, we will encode a
word w = (a1, x1)(a2, x2) . . . (an, xn) ∈ (Σ×N)∗ as a word enc(w) ∈ (Σ ∪ Op)∗ as follows:

enc(w) := ˆx1a1 sign(x2 − x1)|x2−x1| a2 . . . sign(xn − xn−1)|xn−xn−1| an

where, for an integer z ∈ Z, we let sign(z) = ˆ if z ≥ 0, and sign(z) = ´ if z < 0. For
example, enc(ε) = ε and enc((a, 5)(b, 2)(c, 4)) = ˆ5a ´3b ˆ2c. The mapping enc is extended
to sets L ⊆ (Σ × N)∗ by enc(L) = {enc(w) | w ∈ L}. Let EncΣ := enc((Σ × N)∗) denote
the set of valid encodings. Note that enc is a bijection between (Σ × N)∗ and EncΣ, and
that EncΣ is the set of well-formed words of the form u1a1u2a2 . . . unan where ai ∈ Σ and
ui ∈ {ˆ}∗ ∪ {´}∗ for all i ∈ {1, . . . , n}.

Obviously, there is a small dOCA whose visibly semantics is EncΣ. It will be needed later
for complementation of OCAs wrt. the observability semantics.

I Lemma 11. There is a 0-dOCA Benc with only four states such that Lvis(Benc) = EncΣ.

The idea is that Benc enters an “increasing” or “decreasing” mode as soon as it performs
ˆ or, respectively, ´. Such a mode can only be quit by reading a letter from Σ or entering a
sink state. This avoids forbidden reversals between ˆ and ´. Finally, it is easy to ensure that
any nonempty accepted word ends in a letter from Σ.

In fact, there is a tight link between the visibly and the observability semantics of OCAs
provided the visibly semantics contains only valid encodings:

I Lemma 12. Let A be an OCA with alphabet Σ such that Lvis(A) ⊆ EncΣ. Then, we have
Lvis(A) = enc(Lobs(A)) and, equivalently, Lobs(A) = enc−1(Lvis(A)).

Lemmas 8 and 12 imply the following closure property, which will later be exploited to
solve the inclusion problem:

I Proposition 13. Let A1 and A2 be OCAs over Σ such that Lvis(A1) ⊆ EncΣ and Lvis(A2) ⊆
EncΣ. Then, Lobs(A1 ×A2) = Lobs(A1) ∩ Lobs(A2) (where A1 ×A2 is due to Lemma 8).

The next lemma constitutes the main ingredient of the determinization procedure. It will
eventually allow us to rely on OCAs whose visibly semantics consists only of valid encodings.

I Lemma 14. Let A be an OCA. We can compute, in polynomial time, an eOCA Aext such
that Lobs(Aext) = Lobs(A) and, for all w ∈ Lobs(Aext), we have enc(w) ∈ Lvis(Aext).

Proof. Suppose A = (Q,Σ, ι, F,m,∆) is the given OCA. We first translate a simple
“threshold constraint” into an arithmetic expression that can be used as a guard in the
eOCA Aext : Let πm = m+ 1N, and πk = k + 0N for all k ∈ {0, . . . ,m− 1}.

We define Aext = (Q,Σ, ι, f,∆′) as follows: Essentially, Aext simulates A so that it has
the same state space. However, when A allows for a shortcut (oscillation) from state p to
state q (which will be checked in terms of ϕp,q from Lemma 9) and there is a transition
(q, k, σ, q′) of A, then Aext may perform σ and go directly from p to q′, provided πk is satisfied
as well. Formally, the transition relation is given as

∆′ = {(p, ϕp,q ∧ πk, σ, q′) | p ∈ Q and (q, k, σ, q′) ∈ ∆} .

Moreover, a configuration (p, x) is “final” in Aext if the current counter value x satisfies ψp,q
for some q ∈ F (cf. Lemma 9). That is, for all p ∈ Q, we let f(p) =

∨
q∈F ψp,q. J
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20:8 One-Counter Automata with Counter Observability

To transform an eOCA back into an ordinary OCA while determinizing it and preserving
its observability semantics, we will need a dOCA that takes care of the modulo constraints:

I Lemma 15. Let Ω ⊆ Guardsmod be a nonempty finite set. Set mΩ := max{c | c+ dN is
an atomic subformula of some ϕ ∈ Ω}+ 2. There are a dOCA BΩ = (Q,Σ, ι, Q,mΩ, δ) of
exponential size and λ : Q→ 2Ω such that, for all (q, x) ∈ Conf BΩ

and all runs of BΩ ending
in (q, x), we have λ(q) = {ϕ ∈ Ω | x |= ϕ}.

Proof. We sketch the idea. For every arithmetic-progression formula c + dN that occurs
in Ω (for simplicity, let us assume d ≥ 1), we introduce a state component {0, 1, . . . , c} ×
{0, 1, . . . , d− 1}. Increasing the counter, we increment the first component until c and then
count modulo d in the second. We proceed similarly when decreasing the counter. The
current state (x, y) ∈ [c]0 × [d− 1]0 will then tell us whether c+ dN holds, namely iff x = c

and y = 0. Finally, the mapping λ evaluates a formula based on the outcome for its atomic
subformulas. Note that BΩ can be computed in exponential time. Its size is exponential in
the number of arithmetic-progression formulas that occur in Ω. J

We will now apply Lemma 15 to transform an eOCA into a dOCA (cf. also Lemma 6).

I Lemma 16. Let A be an eOCA. We can compute, in exponential time, a dOCA A′
(deterministic according to Definition 5) such that Lη(A′) = Lη(A) for all η ∈ {oca, vis, obs}.

Proof. Suppose A = (Q,Σ, ι, f,∆) is the given eOCA. Let Ω ⊆ Guardsmod be the set of
formulas that occur in ∆ or f , and let BΩ = (Q̂,Σ, ι̂, Q̂,mΩ, δ̂) be the dOCA along with the
function λ according to Lemma 15.

We build the dOCA A′ = (Q′,Σ, ι′, F ′,mΩ, δ
′) as follows. Essentially, we perform a simple

powerset construction for A. Moreover, to eliminate modulo guards, we run BΩ in parallel.
Thus, the set of states is Q′ = 2Q × Q̂, with initial state ι′ = ({ι}, ι̂) and set of final states
F ′ = {(P, q) ∈ Q′ | f(p) ∈ λ(q) for some p ∈ P}. Finally, the transition function is given by
δ′((P, q), k, σ) = (P ′, δ̂(q, k, σ)) where P ′ =

{
p′ | (p, ϕ, σ, p′) ∈ ∆∩(P ×λ(q)×{σ}×Q)

}
. J

There is a “nondeterministic version” of Lemma 16, which does not perform a power-
set construction but rather computes a nondeterministic OCA. The latter is then still of
exponential size, but only wrt. to the number of arithmetic-progression formulas in A.

With Theorem 3, it follows that nonemptiness for eOCAs can be solved in PSPACE. We
do not know if this upper bound is tight.

Let A be a dOCA with alphabet Σ and let w ∈ (Σ × N)∗. By ρA(w), we denote the
unique run of A such that vis(trace(ρA(w))) = enc(w).

By the following observation, which follows directly from Lemma 12, it is justified to call
any dOCA A with Lvis(A) ⊆ EncΣ deterministic wrt. the observability semantics:

I Lemma 17. Let A be a dOCA such that Lvis(A) ⊆ EncΣ. For every word w ∈ (Σ×N)∗,
we have w ∈ Lobs(A) iff ρA(w) is accepting.

Altogether, we obtain that OCAs are determinizable wrt. the observability semantics.

I Theorem 18 (determinizability). Let A be an OCA over Σ. We can compute, in exponential
time, an m-dOCA A′ (with m only polynomial) such that Lobs(A′) = Lobs(A) and Lvis(A′) ⊆
EncΣ.

Proof. Let A be the given OCA. We apply Lemmas 14 and 16 to obtain a dOCA Ã of
exponential size such that Lobs(Ã) = Lobs(A) and, for all w ∈ Lobs(Ã), we have enc(w) ∈
Lvis(Ã). We set A′ = Ã × Benc (cf. Lemmas 8 and 11) and obtain Lobs(A′) = Lobs(A) and
Lvis(A′) ⊆ EncΣ. J
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We conclude that OCAs are complementable wrt. the observability semantics:

I Theorem 19 (complementability). Let A be an OCA with alphabet Σ. We can compute, in
exponential time, a dOCA Ā such that Lobs(Ā) = (Σ×N)∗ \ Lobs(A).

Proof. We first transform A into the dOCA A′ = Ã × Benc according to (the proof of)
Theorem 18. Suppose Ã = (Q,Σ, ι, F,m, δ). Then, we set Ā = (Q,Σ, ι, Q \ F,m, δ) × Benc.
Note that Ā is indeed a dOCA and that Lvis(Ā) ⊆ EncΣ. For w ∈ (Σ×N)∗, we have:

w ∈ Lobs(Ā) Lem. 17⇐⇒ ρĀ(w) is accepting (∗)⇐⇒ ρA′(w) is not accepting Lem. 17⇐⇒ w 6∈ Lobs(A′)

Equivalence (∗) holds as ρĀ(w) and ρA′(w) have the same projection to the Q-component. J

Determinization and complementation of extended OCAs are a priori more expensive:
Lemmas 9 and 14 only apply to OCAs so that one has to go through Lemma 16 first.

3.3 Universality and Inclusion Problem wrt. Observability Semantics
We are now ready to solve the universality and the inclusion problem for OCAs wrt. the
observability semantics. The universality problem is defined as follows: Given an OCA A
over some alphabet Σ, do we have Lobs(A) = (Σ×N)∗ ? The inclusion problem asks whether,
given OCAs A1 and A2, we have Lobs(A1) ⊆ Lobs(A2).

I Theorem 20. The universality problem and the inclusion problem for OCAs wrt. the
observability semantics are PSPACE-complete. In both cases, PSPACE-hardness already
holds when |Σ| = 1.

Proof. To solve the universality problem for a given OCA A = (Q,Σ, ι, F,m,∆) in (non-
deterministic) polynomial space, we apply the construction from Theorem 19 (and, in partic-
ular, Theorem 18) on the fly to obtain a dOCA Ā such that Lobs(Ā) = (Σ×N)∗ \ Lobs(A).
That is, we have to keep in memory a state of the form (P, q, r), where P ⊆ Q, q is the
modulo-counting component (Lemma 15), and r is a state of Benc (Lemma 11). In addition,
we will maintain a component for the current counter value. In fact, the latter can be
supposed to be polynomially bounded (cf. [8] for a tight upper bound) in the size of Ā. The
size of Ā is exponential in the size of A, and so the required information can be stored
in polynomial space. To compute a successor state of (P, q, r), we first guess an operation
σ ∈ Σ ∪ Op. We then compute (P ′, q′) according to the proof of Lemma 16 and update r to
r′ according to the type of σ. Note that this takes polynomial time only, since the function
λ as required in Lemma 15 can be computed on the fly. Finally, the algorithm outputs
“non-universal” when we find a final state of Ā.

For the inclusion problem, we rely on Proposition 13 and perform the determinization
procedure on-the-fly for both of the given OCAs.

For the lower bound, we will restrict to the universality problem, since it is a special
case of the inclusion problem. We reduce from the universality problem for ordinary finite
automata, which is known to be PSPACE-complete [17]. If we suppose that Σ is part of the
input, then there is a straightforward reduction, which essentially takes the (ordinary) finite
automaton and adds self-looping increment/decrement transitions to each state. Assuming
|Σ| = 1, the reduction is as follows. Let A be a finite automaton over some finite alphabet
Γ = {a0, . . . , an−1}. We construct an OCA A′ over the singleton alphabet Σ such that
L(A) = Γ∗ iff L(A′) = (Σ×N)∗. The idea is to represent letter ai by (counter) value i. To
obtain A′, an ai-transition in A is replaced with a gadget that nondeterministically outputs
i or any other natural number strictly greater than n− 1. J
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Figure 3 A strong automaton over (N, +1).

4 Relation with Strong Automata

In this section, we show that OCAs with counter observability are expressively equivalent to
strong automata over (N,+1) [9]. As the latter are descriptive in spirit, OCAs can thus be
seen as their operational counterpart.

Let us first give a short account of monadic second-order (MSO) logic over (N,+1)
(see [23] for more details). We have infinite supplies of first-order variables, ranging over
N, and second-order variables, ranging over subsets of N. The atomic formulas are true,
x′ = x + 1, x′ = x, and x ∈ X where x and x′ are first-order variables and X is a second-order
variable. Those formulas have the expected meaning. Further, MSO logic includes all boolean
combinations, first-order quantification ∃xΦ, and second-order quantification ∃XΦ (with Φ an
MSO formula). The latter requires that there is a (possibly infinite) subset of N satisfying Φ.
As abbreviations, we may also employ x′ = x − 1 and formulas of the form x′ ∈ (x + c+ dN),
where c, d ∈ N. This does not change the expressive power of MSO logic.

In the following, we assume that x and x′ are two distinguished first-order variables.
We write Φ(x, x′) to indicate that the free variables of Φ are among x and x′. If Φ(x, x′)
is evaluated to true when x is interpreted as x ∈ N and x′ is interpreted as x′ ∈ N, then
we write (x, x′) |= Φ. In fact, a transition of a strong automaton is labeled with a formula
Φ(x, x′) and can only be executed if (x, x′) |= Φ where x and x′ are the natural numbers read
at the previous and the current position, respectively. Thus, two successive natural numbers
in a word can be related explicitly in terms of an MSO formula.

I Definition 21 ([9]). A strong automaton is a tuple S = (Q,Σ, ι, F,∆) where Q is the finite
set of states, Σ is a nonempty finite alphabet, ι ∈ Q is the initial state, and F ⊆ Q is the
set of final states. Further, ∆ is a finite set of transitions, which are of the form (q,Φ, a, q′)
where q, q′ ∈ Q are the source and the target state, a ∈ Σ, and Φ(x, x′) is an MSO formula.

Similarly to an OCA, S induces a relation =⇒S ⊆ ConfS × (Σ × N) × ConfS , where
ConfS = Q×N. For (q, x), (q′, x′) ∈ ConfS and (a, y) ∈ Σ×N, we have (q, x) (a,y)===⇒S (q′, x′)
if y = x′ and there is an MSO formula Φ(x, x′) such that (q,Φ, a, q′) ∈ ∆ and (x, x′) |= Φ.
A run of S on w = (a1, x1) . . . (an, xn) ∈ (Σ × N)∗ is a sequence ρ = (q0, x0) (a1,x1)=====⇒S
(q1, x1) (a2,x2)=====⇒S . . .

(an,xn)=====⇒S (qn, xn) such that q0 = ι and x0 = 0. It is accepting if qn ∈ F .
The language L(S) ⊆ (Σ ×N)∗ of S is defined as the set of words w ∈ (Σ ×N)∗ such

that there is an accepting run of S on w.

I Example 22. We refer to the OCA A from Example 2. Figure 3 depicts a strong automaton
S such that L(S) = Lobs(A) = {(req, n)(prod, n− 1)(prod, n− 2) . . . (prod, 0) | n ≥ 1}.

In fact, we can transform any OCA into an equivalent strong automaton preserving the
observability semantics, and vice versa:

I Theorem 23. Let L ⊆ (Σ×N)∗. There is an OCA A such that Lobs(A) = L iff there is
a strong automaton S such that L(S) = L.
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Proof. “=⇒”: Using the following observation, we can directly transform an OCA into a
strong automaton: For all states q and q′ of the given OCA A, there is an MSO formula
Φq,q′(x, x′) such that, for all x, x′ ∈ N, we have (x, x′) |= Φq,q′ iff (q, x)

(
=̂⇒A ∪ =́⇒A

)∗ (q′, x′).
The existence of Φq,q′ can be shown using a two-way automaton over infinite words [21],
which simulates A and can be translated into an MSO formula [21, 23].

More precisely, given q, q′, we build a two-way automaton Tq,q′ over the alphabet 2{$,$′}.
The idea is that word positions represent counter values (the first position marking 0, the
second 1, and so on), and $ and $′ represent x and x′, respectively. Thus, we are only
interested in words in which $ and $′ each occur exactly once. Clearly, this is a regular
property. At the beginning, Tq,q′ goes to the position carrying $. It then simulates A starting
in q, and it accepts if it is on the position carrying $′ and in state q′. The simulation itself
is straightforward: Counter increments and decrements of an OCA are simulated by going
one step to the left or to the right, respectively, and a zero test simply checks whether the
automaton is at the first position of the word. Note that Tq,q′ checks for the markers $ and
$′ only at the beginning and at the end of an execution, but not during the actual simulation
of A. Let w = z0z1z2 . . . ∈

(
2{$,$′}

)ω and x, x′ ∈ N be unique positions such that $ ∈ zx and
$′ ∈ zx′ . Then, w is accepted by Tq,q′ iff (q, x) (=̂⇒A ∪ =́⇒A)∗ (q′, x′).

It is well known that two-way word automata are expressively equivalent to one-way
automata (cf. [21]). Therefore, by Büchi’s theorem, the word language accepted by Tq,q′ can
be translated into a corresponding MSO formula without free variables but with subformulas
of the form “position y carries $” and “position y carries $′” [23]. We replace the latter two
by y = x and y = x′, respectively, and finally obtain Φq,q′ as required.

“⇐=”: We will transform a strong automaton S into an equivalent OCA with super transitions.
A super transition can perform counter operations of the form +ψ or −ψ where ψ ∈ Guardsmod.
Operation +ψ allows the counter value to be increased by n ∈ N provided n |= ψ. Similarly,
−ψ allows the counter value to be decreased by n if n |= ψ.

I Definition 24 (OCA with super transitions). An OCA with super transitions is a tuple
A = (Q,Σ, ι, F,∆) where Q,Σ, ι, F are like in an OCA and ∆ is the finite transition relation.
A transition is of the form (q, ϕ, op, a, ϕ′, q′) where q, q′ ∈ Q are the source and the target
state, ϕ,ϕ′ ∈ Guardsmod are guards checking the original and the modified counter value,
respectively, a ∈ Σ is the output letter, and op is of the form +ψ or −ψ where ψ ∈ Guardsmod.

We define a global transition relation =⇒A ⊆ ConfA × (Σ×N)× ConfA where, as usual,
ConfA = Q×N. For (q, x), (q′, x′) ∈ ConfA and (a, y) ∈ Σ×N, we have (q, x) (a,y)===⇒A (q′, x′)
if y = x′ and there are ϕ,ϕ′, ψ ∈ Guardsmod such that x |= ϕ, x′ |= ϕ′, and one of the
following holds:

x ≤ x′ and (q, ϕ,+ψ, a, ϕ′, q′) ∈ ∆ and x′ − x |= ψ, or
x ≥ x′ and (q, ϕ,−ψ, a, ϕ′, q′) ∈ ∆ and x− x′ |= ψ.

With this, the language L(A) ⊆ (Σ × N)∗ is defined in the expected way, like for strong
automata.

It is easily seen that A can be translated into an eOCA A′ such that Lobs(A′) = L(A): For
every ψ ∈ Guardsmod, the set {�n | n ∈ [[ψ]]} is a regular language over the unary alphabet
{�}. Thus, counter operations of the form +ψ or −ψ can be simulated by a finite-state
gadget. Essentially, we take a finite automaton for {�n | n ∈ [[ψ]]} and replace � by ˆ or,
respectively, ´. It will thus be enough to translate a strong automaton into an OCA with
super transitions.
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�
c1 $1 �

c2 $2

�
d1 �

d2

Figure 4 Finite automaton for L+
Φ(c1, d1, c2, d2).

Next, we demonstrate why super transitions are indeed useful to emulate an MSO formula
Φ(x, x′). Using Büchi’s theorem (cf. [23]), we can transform Φ into finite automata B+

Φ and
B−Φ recognizing the following regular languages over the alphabet {�, $1, $2}:

L(B+
Φ ) = {�x$1�y$2 | x, y ∈ N such that (x, x+ y) |= Φ}

L(B−Φ ) = {�x$2�y$1 | x, y ∈ N such that (x+ y, x) |= Φ}
Similarly to $ and $′ in the other proof direction, the positions of $1 and $2 in a word from
L(B+

Φ ) ∪ L(B−Φ ) encode an interpretation of the free variables x and, respectively, x′ that
makes Φ true. Note that L(B+

Φ ) can be written as a finite union of sets

L+
Φ(c1, d1, c2, d2) := {�x$1�

y$2 | x ∈ [[c1 + d1N]] and y ∈ [[c2 + d2N]]}

with c1, d1, c2, d2 ∈ N. This is achieved by determinizing B+
Φ and splitting it into components

as illustrated in Figure 4 (cf. also [26] for a polynomial transformation). Similarly, L(B−Φ ) is
the finite union of sets of the form

L−Φ(c1, d1, c2, d2) := {�x$2�
y$1 | x ∈ [[c1 + d1N]] and y ∈ [[c2 + d2N]]} .

In other words, there are finite sets D+
Φ , D

−
Φ ⊆ N4 such that

L(B+
Φ ) =

⋃
(c1,d1,c2,d2)∈D+

Φ
L+

Φ(c1, d1, c2, d2) and
L(B−Φ ) =

⋃
(c1,d1,c2,d2)∈D−Φ

L−Φ(c1, d1, c2, d2).

We now turn to the actual translation of a strong automaton S = (Q,Σ, ι, F,∆) into
an OCA with super transitions A = (Q,Σ, ι, F,∆′) such that L(A) = L(S). Note that the
only change is in the transition relation: For all (q,Φ, a, q′) ∈ ∆ and (c1, d1, c2, d2) ∈ D+

Φ ,
∆′ contains (q, c1 + d1N,+(c2 + d2N), a, true, q′). Moreover, for all (q,Φ, a, q′) ∈ ∆ and
(c1, d1, c2, d2) ∈ D−Φ , ∆′ contains (q, true,−(c2 + d2N), a, c1 + d1N, q

′). This concludes the
construction of A.

To prove L(A) = L(S), it is enough to show that, for all configurations (q, x), (q′, x′) ∈
ConfA and all a ∈ Σ, the following are equivalent:
(1) (q, x) (a,x′)====⇒S (q′, x′)
(2) (q, x) (a,x′)====⇒A (q′, x′)

Suppose (1) holds. There is an MSO formula Φ such that (q,Φ, a, q′) ∈ ∆ and (x, x′) |= Φ.
We distinguish two (not necessarily disjoint) cases:

Suppose x ≤ x′. By (x, x′) |= Φ, we have �x$1�x
′−x$2 ∈ L(B+

Φ ). Thus, there is
(c1, d1, c2, d2) ∈ D+

Φ such that �x$1�x
′−x$2 ∈ L+

Φ(c1, d1, c2, d2). The latter implies x |=
c1 +d1N and x′−x |= c2 +d2N. Since we also have (q, c1 +d1N,+(c2 +d2N), a, true, q′) ∈
∆′, (2) holds as well.
Now, suppose x ≥ x′. Then, by (x, x′) |= Φ, we have �x′$2�x−x

′$1 ∈ L(B−Φ ). Thus,
there is (c1, d1, c2, d2) ∈ D−Φ such that �x′$2�x−x

′$1 ∈ L−Φ(c1, d1, c2, d2). This implies
x′ |= c1 +d1N and x−x′ |= c2 +d2N. Moreover, (q, true,−(c2 +d2N), a, c1 +d1N, q

′) ∈ ∆′.
We conclude that (2) holds.

Towards the other direction, suppose that (2) is true. Again, we will distinguish two (not
necessarily disjoint) cases:
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Suppose x ≤ x′ and suppose there is (q, c1 + d1N,+(c2 + d2N), a, true, q′) ∈ ∆′ such
that x |= c1 + d1N and x′ − x |= c2 + d2N. There is an MSO formula Φ such that
(q,Φ, a, q′) ∈ ∆ and (c1, d1, c2, d2) ∈ D+

Φ . By x |= c1 + d1N and x′ − x |= c2 + d2N, we
have �x$1�x

′−x$2 ∈ L+
Φ(c1, d1, c2, d2) ⊆ L(B+

Φ ). Thus, (x, x′) |= Φ. We deduce that (1)
holds.
Assume x ≥ x′ and suppose there is a transition (q, true,−(c2 +d2N), a, c1 +d1N, q

′) ∈ ∆′
such that x− x′ |= c2 + d2N and x′ |= c1 + d1N. There is Φ such that (q,Φ, a, q′) ∈ ∆
and (c1, d1, c2, d2) ∈ D−Φ . Since x − x′ |= c2 + d2N and x′ |= c1 + d1N, we have
�x
′$2�x−x

′$1 ∈ L−Φ(c1, d1, c2, d2) ⊆ L(B−Φ ). This implies (x, x′) |= Φ. Thus, (1) holds.
This concludes the correctness proof of A. Finally, recall that one can easily transform A
into an OCA whose observability semantics coincides with L(A). J

5 Conclusion

The observability semantics opens several directions for follow-up work. We may carry it
over to other classes of infinite-state systems such as Petri nets. Are there infinite-state
restrictions of Petri nets other than 1-VASS whose observability semantics is robust?

A direct application of our results is that the language L ⊆ (Σ×N)∗ of an OCA with
observability semantics/strong automaton is learnable (in the sense of Angluin [4]) in terms
of a visibly one-counter automaton for enc(L) [18]. It would be worthwhile to transfer
results on visibly one-counter/pushdown automata that concern Myhill-Nerode congruences
or minimization [2, 7].

Another interesting question is to which extent we can relax the requirement that the
counter value be output with every letter a ∈ Σ. It may indeed be possible to deal with a
bounded number of Σ-transitions between any two counter outputs. Note that there have
been relaxations of the visibility condition in pushdown automata, albeit preserving closure
under boolean operations [19].

Acknowledgments. The author is grateful to C. Aiswarya, Stefan Göller, Christoph Haase,
and Arnaud Sangnier for numerous helpful discussions and pointers to the literature.
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Abstract
The purpose of this article is two fold: (a) to formally introduce a stronger version of graph
deletion problems; and (b) to study this version in the context of bipartite graphs. Given a
family of graphs F , a typical instance of parameterized graph deletion problem consists of an
undirected graph G and a positive integer k and the objective is to check whether we can delete at
most k vertices (or k edges) such that the resulting graph belongs to F . Another version that has
been recently studied is the one where the input contains two integers k and ` and the objective
is to check whether we can delete at most k vertices and ` edges such that the resulting graph
belongs to F . In this paper, we propose and initiate the study of a more general version which
we call strong deletion. In this problem, given an undirected graph G and positive integers k and
`, the objective is to check whether there exists a vertex subset S of size at most k such that each
connected component of G−S can be transformed into a graph in F by deleting at most ` edges.
In this paper we study this stronger version of deletion problems for the class of bipartite graphs.
In particular, we study Strong Bipartite Deletion, where given an undirected graph G and
positive integers k and `, the objective is to check whether there exists a vertex subset S of size at
most k such that each connected component of G−S can be made bipartite by deleting at most
` edges. While fixed-parameter tractability when parameterizing by k or ` alone is unlikely, we
show that this problem is fixed-parameter tractable (FPT) when parameterized by both k and `.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases fixed parameter tractable, bipartite-editing, recursive understanding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.21

1 Introduction

Graph-modification by either deleting vertices or deleting edges or adding edges such that
the resulting graph satisfies certain properties or becomes a member of some well-understood
graph class is one of the basic problems in graph theory and graph algorithms. However, most
of these problems are NP–complete [18, 26] and thus they are subjected to intensive study in
algorithmic paradigms that are meant for coping with NP-completeness [9, 10, 21, 22]. These
paradigms among others include applying restrictions on inputs, approximation algorithms
and parameterized complexity. The goal of this paper is to introduce a ‘stronger’ notion of
graph deletion in the realm of parameterized complexity and illustrate the difficulties that
arise when considering the family of bipartite graphs and provide an approach to obtain
fixed-parameter tractability by overcoming these difficulties.

A typical instance of parameterized graph deletion is of the following form. Let F be a
family of graphs – such as edgeless graphs, forests, cluster graphs, chordal graphs, interval
graphs, bipartite graphs, split graphs or planar graphs. The deletion problem corresponding
to F is formally stated as follows.
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Figure 1 An example showing the strength of the new parameter for editing problems.

F-Vertex (Edge) Deletion Parameters: k

Input: An undirected graph G and a non-negative integer k.
Question: Does there exist S ⊆ V (G) (or S ⊆ E(G)), such that |S| ≤ k and G− S is in
F?

In other words, given a graph G, can we delete at most k vertices or k edges such that the
resulting graph belongs to F? An algorithm for F-Vertex (Edge) Deletion that runs in
time f(k) · |V (G)|O(1) is called fixed-parameter tractable (FPT) algorithm and the problem
itself is said to be FPT.

The study of parameterized graph deletion problems together with their various restrictions
and generalizations has been an extremely active sub-area over the last few years. In fact, just
over the course of the last couple of years there have been results on parameterized algorithms
for Chordal Editing [6], Unit Vertex (Edge) Deletion [3], Interval Vertex (Edge)
Deletion [5, 4], Planar F Deletion [9, 17], Planar Vertex Deletion [14], Block
Graph Deletion [16] and Simultaneous Feedback Vertex Set [1]. Several known
parameterized algorithms for F-Edge Deletion or the version where the objective is to
delete k vertices and ` edges utilize the fact that given a yes-instance (G, k) or (G, k, `) to
the problem, there exists a vertex set S∗ of V (G) of size k∗ = k+ ` such that G−S∗ belongs
to F . Clearly, this is true for any hereditary family of graphs; that is, if G ∈ F then all its
induced subgraphs belong to F . Thus, if the corresponding F-Vertex Deletion is FPT
then we can apply this algorithm and find a vertex subset S∗ of size at most k such that
G − S∗ ∈ F . Having the set S∗ allows one to infer numerous structural properties of the
input which can then be utilized in non-trivial ways to solve the original F-Vertex (Edge)
Deletion problem. However, the existence of such a set is no longer guaranteed in the
proposed stronger version of this problem.

Let F be a polynomial-time recognizable family of graphs; that is, given a graph G, in
polynomial time we can decide whether G belongs to F . For a fixed integer `, let F + `e

denote the class of graphs that can be obtained by adding ` edges to a graph in F [2].
Furthermore, suppose that F-Edge Deletion is FPT with running time O(g(`) · nc). Here,
n = |V (G)| and c is a fixed constant. That is, for any fixed integer `, F+`e can be recognized
in time O(nc). The Strong F-Deletion problem is defined as follows.

Strong F-Deletion Parameters: k, `

Input: An undirected graph G and non-negative integers k and `.
Question: Does there exist S1 ⊆ V (G) such that |S1| ≤ k and every connected component
of G− S1 belongs to F + `e?

A close inspection easily shows that Strong F-Deletion is much stronger than F-
Deletion. For example, let F be the family of bipartite graphs and consider the graph
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G depicted in Figure 1. The graph G has n−1
3 vertex disjoint triangles and the vertex v is

adjacent to two vertices from each of the triangles. Clearly, after deleting v every connected
component can be made bipartite by deleting exactly one edge. Thus, in the traditional
sense this is a yes-instance of Bipartite Deletion with parameters (1, n−1

3 ); however this
is already a yes-instance of Strong Bipartite Deletion with parameters (1, 1). Thus,
these problems seem much harder than traditional editing problems as the parameters are
much smaller.

An alternate viewpoint is that when G has a vertex set S of size at most k such that
every connected component of G− S is in F + `e then S can be considered a modulator into
the graph class where every connected component of the graph belongs to F + `e. While
modulators to various polynomial-time recognizable graph classes have been studied in a
very systematic way [8, 9, 13], the same is not true of modulators to NP-complete graph
classes. Studying the Strong F-Deletion problem on the other hand allows us to do
precisely this. In fact, it is not even necessary that the class F is a conventional graph
class and instead can be the ‘composition’ of various graph classes. For instance F could
be defined as the set of all graphs where each connected component is either chordal or a
bipartite graph. The computation of such modulators is a problem with several algorithmic
applications. For instance, in a recent work, Ganian et al. [11] used a similar notion in order
to design algorithms for the classic Constraint Satisfaction Problem.

In this article we study the Strong F-Deletion, when F is the family of bipartite
graphs. Henceforth, F denotes the family of bipartite graphs. We call a graph G, ell-
pseudobipartite, if every connected component of G belongs to F + `e. The problem we study
is as follows.

Strong Bipartite Deletion Parameters: k, `

Input: An undirected graph G and non-negative integers k and `.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and every connected component
of G− S belongs to F + `e?

We refer to the set S as the solution for this instance. The primary reason behind the
selection of the family of bipartite graphs for our study is that the problems where we are
required to delete vertices and/or edges to obtain a bipartite graph are some of the most
basic and well studied problems in parameterized complexity and studying these problems
has led to the discovery of several new techniques and tools. These problems are called
Odd Cycle Transversal and Edge Bipartization in literature and the algorithms with
best dependence on the parameter have running time O(2.3146knO(1)) and O(1.977knO(1)),
respectively [19, 24]. We would like to add that the problem is unlikely to be FPT when
parameterized by k or ` alone, as it would imply polynomial time algorithms for Edge
Bipartization and Odd Cycle Transversal respectively. It is also important to mention
that strong deletion to the class of forests, Strong Forest Deletion, was studied in
related but different context in [23]. In that work, the authors used the concept of graph
minors and Courcelle’s theorem to show that the strong deletion problem is FPT. As is the
case with algorithms using Courcelle’s theorem, the dependence on the parameter is very
high.

Our Result and Methodology. Our main result is the following theorem.

I Theorem 1. Strong Bipartite Deletion is FPT.
The first big obstacle that needs to be overcome is the fact that the input graph can have a
minimum odd cycle transversal of unbounded size. The first part of our algorithm is devoted
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to overcoming this obstacle. We utilise the technique of iterative compression to reduce it
to a bounded number of equivalent instances each having an odd cycle transversal of size
poly(k, `). Then we use the recursive understanding technique introduced by Grohe et al. [12]
(also see [7]) to first find a small separator in the graph which separates the graph into two
parts, each of sufficiently large size and then recursively solve a ‘border’ version of the same
problem on one of the two sides. The subroutines that we use to compute the separators are
those of Chitnis et al.[7] who built upon the work of Kawarabayashi and Thorup [15]. The
border version of the problem is a generalization which also incorporates a special bounded
set of vertices, called terminals. During the course of our algorithm, we will attempt to solve
the border problem on various subgraphs of the input graph. The objective in the border
problem is to find a bounded set of vertices contained within a particular subgraph such that
any vertex in this subgraph not in the computed set is not required in any solution for the
given instance irrespective of the vertices chosen outside this subgraph.

Given the output of the border problem, the standard approach is to either delete the
remaining vertices or simply ‘bypass’ these vertices. In our case, no such simple reduction
seems likely. However, we show that by blowing up the size of the computed set by a function
of the parameter, we can use a ‘parity preserving’ bypassing operation to get rid of the
remaining vertices.

This leaves us with the base case of the recursion, that is when we are unable to find
a small separator. At this stage, we know that the graph has a bounded sized odd cycle
transversal and has a highly connected structure. Interestingly, even this seemingly significant
structural information regarding the input does not seem enough to imply a straightforward
algorithm. Instead, we compute an oct solution and design a branching rule that has as its
base case, the case when the oct is not separated by the solution. Here, we rephrase this
problem as a Mixed Multiway Cut-Uncut (MMCU) problem and invoke the result in
[25] to solve it. In the MMCU problem, the input is a multigraph G, integers k and `, a
set of terminals T ⊆ V (G), and equivalence relation R on the set T . The objective is to
output a solution X = (X,F ) such that X ⊆ (V (G) \ T ), F ⊆ E(G), |X| ≤ k, |F | ≤ ` and
for all u, v ∈ T , u and v belong to the same connected component of G− X if and only if
(u, v) ∈ R and ⊥ if no such solution exists. The structure of our presentation follows that of
Chitnis et al.[7] for the most part, except for the high connectivity phase.

Due to space constraints, many proofs of results are omitted or shortened, and will appear
in the full version of the paper.

2 Preliminaries

Notations and Definitions: For a graph G, we denote the set of vertices of the graph by
V (G) and the set of edges of the graph by E(G). We denote |V (G)| and |E(G)| by n and
m respectively, where the graph is clear from context. For a set S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S] and it is defined as the subgraph of G with vertex
set S and edge set {(u, v) ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S is
denoted as G− S. For F ⊆ E(G), by V (F ) we denote the set {v | ∃u such that (u, v) ∈ F}.
For a tuple X = (X,F ) such that X ⊆ V (G) and F ⊆ E(G), by G−X we denote the graph
G′ = (V (G) \X,E(G−X) \ F ). All vertices adjacent to a vertex v are called neighbours of
v and the set of all such vertices is called open neighbourhood of v, denoted by NG(v). For
a set of vertices S ⊆ V (G), we define NG(S) = (∪v∈SN(v)) \ S. We drop the subscript G
when the graph is clear from the context.

An oct of a graph G, is a set X ⊆ V (G) such that G − X is bipartite. Similarly, an
edge-oct of a graph G is set F ⊆ E(G) such that the graph G − F is bipartite. We call a
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graph `-pseudobipartite, if each of the connected components of G has an edge-oct of size at
most `. An `-pseudobipartite deletion set of a graph G is a set X ⊆ V (G) such that G−X is
`-pseudobipartite. It is easy to see that `-pseudobipartite graphs can be recognized in time
O(1.977knO(1)) using the algorithm for Edge Bipartization given in [24]. Now we state
the definitions of good node separations and flower separations from [7]. Then we state the
lemmas that talk about the running time to find such separations and the properties of the
graph if such separations do not exist.

I Definition 2 (C.1 in [7]). Let G be a connected graph and V∞ ⊆ V (G) be a set of
undeletable vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node
separation, if |Z| ≤ k, Z ∩ V∞ = ∅, V1 and V2 are vertex sets of two different connected
components of G− Z and |V1 \ V∞|, |V2 \ V∞| > q.

I Definition 3 (C.2 in [7]). Let G be a connected graph, V∞ ⊆ V (G) be a set of undeletable
vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)ri=1) is called a
(q, k)-flower separation in G (with regard to border terminals Tb), if the following holds:

1 ≤ |Z| ≤ k and Z ∩ V∞ = ∅; the set Z is the core of the flower separation (Z, (Vi)ri=1);
Vi are vertex sets of pairwise different connected components of G− Z, each set Vi is a
petal of the flower separation (Z, (Vi)ri=1);
V (G) \ (Z ∪

⋃r
i=1 Vi), called a stalk, contains more than q vertices of V (G) \ V∞;

for each petal Vi we have Vi ∩ Tb = ∅, |Vi \ V∞| ≤ q and NG(Vi) = Z;
|(
⋃r
i=1 Vi) \ V∞| > q.

I Lemma 4 (C.3 in [7]). Given a connected graph G with undeletable vertices V∞ ⊆ V (G)
and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 logn) time a (q, k)-good node
separation of G, or correctly conclude that no such separation exists.

I Lemma 5 (C.4 in [7]). Given a connected graph G with undeletable vertices V∞ ⊆ V (G)
and border terminals Tb ⊆ V (G) and integers q and k, one may find a (q, k)-flower separation
in G w.r.t. Tb in O(2O(min(q,k) log(q+k))n3 logn) time, or correctly conclude that no such
flower separation exists.

I Lemma 6 (C.5 in [7]). If a connected graph G with undeletable vertices V∞ ⊆ V (G) and
border terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or a (q, k)-flower
separation w.r.t. Tb then, for any Z ⊆ V (G)\V∞ of size at most k, the graph G−Z contains
at most (2q + 2)(2k − 1) + |Tb|+ 1 connected components containing a vertex of V (G) \ V∞,
out of which at most one has more than q vertices not in V∞.

3 Overview of the algorithm

To solve Strong Bipartite Deletion, we first reduce it to a slightly more general problem
where we also have a set U of undeletable vertices and we are not allowed to select vertices
in our potential solution from U . In particular the problem we will study is as follows.

Pseudobipartite Deletion Parameters: k, `

Input: A graph G, integers k and ` and a set U ⊆ V (G).
Question: Does there exist X ⊆ V (G) such that |X| ≤ k, X ∩ U = ∅ and G − X is
`-pseudobipartite?

Observe that when we set U = ∅ in Pseudobipartite Deletion, we get the Strong
Bipartite Deletion problem. In rest of the paper, we design an algorithm for Pseudobi-
partite Deletion using the method of iterative compression and recursive understanding
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technique introduced by Grohe et al. [12]. We start off by deleting the connected components
from the graph which are already `-pseudobipartite. Then using the technique of iterative
compression, in Lemma 8, we reduce an instance of Pseudobipartite Deletion to 2O(k)

many instances of the same problem such that the original instance is a Yes instance if and
only if at least one of the new instances is a Yes instance. In addition to this, we also show
that all the new instances have an oct of size bounded by a polynomial in k and `. This will
help later in the high connectivity phase of the algorithm by giving some structure to the
problem, as we will know that the graph has a reasonably small oct. Then we take care of
the case when the graph has more than one connected component. This can be easily done
by solving the problem optimally on each connected component. Then we define the border
problem, where we are additionally provided with some border terminals, say T .

Bordered-Pseudobipartite Deletion (B-PBD) Parameters: k,`
Input: A Pseudobipartite Deletion instance I = (G, k, `, U) with G being connected
and a set T ⊆ V (G) such that |T | ≤ 2k; denoted by Ib = (G, k, `, U, T ).
Output: Output one of the following three. (a) Find a special vertex v such that for each
P ∈ P(Ib), there is a minimum solution sol∗P which contains v, or (b) for each P ∈ P(Ib),
output solP = XP which is a minimum solution to (Ib,P), or (c) output solP = ⊥ if none
of the earlier two cases apply.

Here, the set P(Ib) denotes the set of ‘interactions’ of the border terminals of instance Ib with
a solution and the objective is to find a solution that corresponds to each possible interaction
or to find a special vertex which is part of a solution for each possible interaction. It can be
easily seen that for a Pseudobipartite Deletion instance I = (G, k, `, U), solving the
B-PBD instance (G, k, `, U, ∅) either gives a solution to the instance I or outputs a vertex
which is part of a minimum solution for the instance I, so in any case we make progress.

As is the case in algorithms based on the recursive understanding approach, to solve the
border problem, we proceed to check whether a good separator T ′ exists in the graph. We
use the notions of good node separations and good flower separations defined by Chitnis et
al.[7] and look for good (q, k) node separation or (q, k) flower separation. The definitions are
given in the preliminaries section. The running times required to compute such separations
(if they exist) are argued by Lemmas 4 and 5. If we succeed in finding such a separation,
then the graph gets divided into two large parts using a small separator. The definitions of
node separations and flower separation help us argue that one of the parts (containing at
most half of the border terminals) is connected. We call the smaller graph H.

Now we update the set of terminals to include the separator, and solve the border problem
I ′b recursively on the smaller graph. That is, for every behavior P ∈ P(I ′b) of the new border
terminals, we get an optimum solution. Let Z denote the set

⋃
P∈P(I′

b
) solP where solP is the

solution for the smaller graph for behavior P of the border terminals. Then in Lemma 9,
we argue that there exists a solution for the instance Ib, which intersects with the smaller
graph only in Z. At this time, we apply certain operations on the graph, such that the
total number of the vertices in the graph G reduces by a sufficient amount. The approach
of simply bypassing all the vertices not required by a solution does not quite work, as it
could conceivably create spurious odd cycles which could lead to a Yes-instance turning
into a No-instance. Hence, we make use of a ‘parity preserving’ bypassing operation to
reduce the vertices of the graph, and show in Lemma 11 that this operation results in an
equivalent instance. By proving a bound on the size of the set P(Ib) as a function of k and `,
we guarantee that after the application of the recursive step (Step 2 in the algorithm) the
number of vertices in the graph undergoes a sufficient reduction.
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We then describe the algorithm for the problem in the case when there is no good-
separation to recurse upon. Here, we need to solve the Border-Pseudobipartite Deletion
instance (G, k, `, U, T ) in the case that Step 2 is not applicable on the graph. For this, for each
P ∈ P(I ′b), we solve the instance (GP , k, `, U ′), where the graph GP encoded the interaction,
P, of the border terminals T . We argue that in the absence of a good node separation or
a flower separation of size at most k in the graph G, Lemma 6 guarantees an appropriate
type of high connectivity in the graph G. In Lemma 12, we exploit this to get a similar
high connectivity property for the graph GP . Since the graph G has an oct of bounded size
because of Lemma 8, we can show a similar bound on oct of the graph GP also. At this
stage, we use the algorithm for finding oct given in [19] to find an oct of bounded size and
get an instance of the following problem.

OCT-PBD Parameters: k,`
Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O of
G of size at most g(k, `) such that for any Z ⊆ (V (G) \U) of size at most k, in the graph
G−Z, at most one connected component containing a vertex of V (G) \U has more than
h(k, `) vertices not in U .
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ U = ∅. Output ⊥ if such a set does not exist.

Then we guess the intersection of the oct with the solution. This lets us assume that the
solution is disjoint from the oct. Formally, we branch into 2|O| instances of the following
problem which we call OCT-PBD(I). Here, the input is an instance (G, k, `, U,O) of OCT-
PBD and the objective is to compute a minimum sized `-pseudobipartite deletion set X of
G of size at most k such that X ∩ (O ∪ U) = ∅ or return ⊥ if such a set does not exist. To
solve an instance of OCT-PBD(I), we guess which vertices of the oct are going to be in the
same connected component after deleting the solution. This gives us g(k, `)g(k,`) instances of
following variant of OCT-PBD(I), which we call OCT-PBD(II). Here, the input is an instance
(G, k, `, U,O) of OCT-PBD(I) and an equivalence relation § on O with the guarantee that
there exists a minimum sized `-pseudobipartite deletion set X ⊆ V (G) \ (U ∪O) of G such
that for all u, v ∈ O, u and v belong to the same connected component of G−X if and only
if (u, v) ∈ §. The objective is to compute a minimum sized `-pseudobipartite deletion set X
of G of size at most k such that X ∩ (O ∪ U) = ∅. We output ⊥ if such a set does not exist.

To solve an instance (G, k, `, U,O, §) of OCT-PBD(II), we look at the number of
equivalence classes in §. If it is more than one, then either we solve the problem via brute
force on some connected component (of size at most h(k, `)) or we give a branching step where
we solve at most h(k, `)+1 instances OCT-PBD(II), where the size of the solution decreases
by at least one. In the other case, there is only one equivalence class in S, which means
that all the vertices of oct are going to be part of a single connected component resulting
by deleting a solution, we also guess how the oct vertices themselves will be bipartitioned
eventually upon deleting the k vertices in the solution and an arbitrary but fixed set of at
most ` edges which make the connected component containing these vertices bipartite. So
for each instance of OCT-PBD(II), we get 2|O| instances of the problem OCT-PBD(III) as
defined below.
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OCT-PBD(III) Parameters: k,`
Input: An instance (G, k, `, U,O, §) of OCT-PBD(II) such that for all u, v ∈ O, (u, v) ∈ §
and a bipartition (O1 ]O2) of O with the guarantee that there exists a minimum sized
`-pseudobipartite deletion set X ′ ⊆ V (G) \ (U ∪O) of G such that all vertices of O belong
to the same connected component of G − X ′ having vertex set C and there exists an
edge-oct F of G[C] of size at most ` and a bipartition (C1 ]C2) of C such that G[C1]−F
and G[C2]− F are independent sets and O1 ⊆ C1 and O2 ⊆ C2.
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

In Lemma 13, we argue that this branching is correct. Finally, to solve an instance I of
OCT-PBD(III), we reduce it to an instance of MMCU∗ – a special instance of MMCU
with some undeletable vertices.

MMCU∗ Parameters: k,`
Input: A graph G, integers k and `, T ⊆ V (G), an equivalence relation R on T having at
most two equivalence classes, and set of undeletable vertices U ⊆ V (G).
Output: Output a minimal solution X = (X,F ) to MMCU instance (G,T,R, k, `) such
that X ∩ U = ∅ and ⊥ if no such solution exists.

Finally, to solve MMCU∗ we show that it can be reduced to (|U |+2)|U | instances of MMCU,
which is solved using the algorithm in [25].

4 An algorithm for Pseudobipartite Deletion

In this section, we describe the FPT algorithm for Pseudobipartite Deletion. In the first
step of the algorithm, we get rid of connected components of the graph which are already
`-pseudobipartite.
I Step 1. Let (G, k, `, U) be an instance of Pseudobipartite Deletion. Let C :=
{C | G[C] is a connected component of G}. For each C ∈ C, find if the graph G[C] is `-
pseudobipartite. Let C′ = {C | C ∈ C and G[C] is `-pseudobipartite} and let C ′ =

⋃
C∈C′ C.

Pass the Pseudobipartite Deletion instance (G− C ′, k, `, U \ C ′) to the next step.
Now we use the method of iterative compression to reduce an instance of Pseudobi-

partite Deletion to at most n− k instances of PBD Compression (PBD-C) problem,
where we are given an instance (G, k, `, U) of Pseudobipartite Deletion along with an
`-pseudobipartite deletion set of G of size at most k + 1 and we are asked whether one exists
of size at most k. We prove the following lemma which helps us in bounding the size of an
oct.

I Lemma 7. Let (G, k, `, U, S) be an instance of PBD-C such that none of the connected
components of G are `-pseudobipartite. If G has an `-pseudobipartite deletion set Z disjoint
from S of size at most k, then it has an oct of size at most g′(k, `) := 2k + k`2 + 1.

The proof of the lemma follows from the argument that G−Z can have at most k+k`+ 1
connected components which are not bipartite. Now we prove the lemma which reduces a
compression instance to many instances of Pseudobipartite Deletion with a guarantee
on the size of an oct for all of them.

I Lemma 8. There is an algorithm, which given an instance (G, k, `, U, S) of PBD-C, runs
in time 2O(k`2)nO(1) and returns at most 2k+1 instances {I1, I2, . . . , Iq} of Pseudobipartite
Deletion, where Ii = (Gi, ki, `, U) and q ≤ 2k+1 such that the following holds.
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(G, k, `, U, S) is a Yes instance of PBD-C if and only if there is an 1 ≤ i ≤ q such that
(Gi, ki, `, U) is a Yes instance of Pseudobipartite Deletion.
For each 1 ≤ i ≤ q, ki ≤ k and Gi has an oct of size at most 2k + k`2 + 1.

Henceforth, we will assume that the given Pseudobipartite Deletion instance is
returned by the algorithm of Lemma 8 and hence has an oct of bounded size.

Borders and Recursive Understanding. After applying Lemma 8, we still need to solve
2k+1 Pseudobipartite Deletion instances. We give an algorithm to solve instances which
are given by Lemma 8. We first do some preprocessing to assume that the instances of
Pseudobipartite Deletion which we are going to solve are connected. Now we are ready
to define the border problem and describe the recursive phase of the algorithm.

Let I = (G, k, `, U) be a Pseudobipartite Deletion instance. The input to the border
problem consists of an instance I = (G, k, `, U) of Pseudobipartite Deletion along with
a set T of at most 2k vertices of G disjoint from U . The output to the border problem either
consists of several solutions, one for each relevant ‘behaviour’ defined on the set of terminals,
or it consists of a single special vertex, which is part of some minimum solution for every
behaviour. In what follows, we will formalize this statement.

Let I = (G, k, `, U) be an instance of Pseudobipartite Deletion and T ⊆ V (G). We
let P(Ib) denote the set of all tuples P = (XT ,R,B, L), such thatXT ⊆ T , R is an equivalence
relation on T \XT , B is a bipartition of T \XT and L = {(R1, `1), (R2, `2, ) . . . (Rq, `q)} is a
set of pairs which associates an integer `i ≤ ` with each equivalence class Ri in R. For a
tuple P = (XT ,R,B, L) with the equivalence classes of R being R1, . . . , Rq, the bipartition
induced on the class Ri by B is denoted by (Ri1 , Ri2).

For each P ∈ P(Ib), we define a super-graph GP of G with the following additional
vertices and edges.

For each equivalence class Ri of R, we add sets of vertices R′i1 and R′i2 such that
|R′i1 | = |R′i2 | = ` + 1. Then we add all the edges between vertices u and v such that
u ∈ Ri1 ∪R′i1 and v ∈ Ri2 ∪R′i2 . If (Ri, `i) ∈ L, then we pick an arbitrary vertex ui ∈ Ri
and add `i-many edge disjoint triangles which only intersect in ui. That is, we add 2`i
new vertices ui,a1 , . . . , ui,a`i

, ui,b1 , . . . , ui,b`i
and edges {(ui, ui,aj ), (ui, ui,bj ), (ui,aj , ui,bj )} for each

1 ≤ j ≤ `i.
For each vertex u ∈ XT , we add `+ 1-many edge disjoint triangles which only intersect
in u. That is, we add 2(`+ 1) new vertices ua1 , . . . , uar , ub1, . . . , ubr where r = 2`+ 2 and
edges {(u, uaj ), (u, ubj), (uaj , ubj)} for each 1 ≤ j ≤ r.

This completes the description of the graph GP . It can be seen that |V (GP) \ V (G)| ≤
2k(4`+ 1) and |E(GP) \ E(G)| ≤ 4k(2k + 3)(`+ 1). The intuition behind the newly added
vertices and edges is the following. Consider an instance of Pseudobipartite Deletion
and suppose that G is a subgraph of the input instance with the terminal set T separating
this subgraph from the rest of the input graph. The tuple P = (XT ,R,B, L) essentially
captures the interaction of the terminal set with the solution and the rest of the graph. That
is, XT denotes the intersection of the solution with T . The partition R denotes the way the
remaining vertices of T are partitioned as connected components after deleting a solution.
The bipartition B denotes the bipartition of T induced by an arbitrary bipartition of the
graph obtained from the input graph by deleting the k vertices in the solution and then
a minimum edge-oct in the rest of the graph. Finally, for each R ∈ R, if (R, x) ∈ L, it
means that after deleting the k vertices in a solution, there is a set of at most x edges in
the connected component containing R such that they are part of a minimum edge-oct of
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this component and they lie outside G. The newly added vertices essentially simulate this
interaction of the terminals with the vertices in the solution.

We denote by UP the union of the set U with the vertices in V (GP) \ V (G). Also, for
P = (XT ,R,B, L), for each Ri ∈ R, we denote by HGP(Ri) the set of vertices in V (GP)\V (G)
which are adjacent to a vertex of Ri. We drop the reference to G if it is clear from the
context.

We say that a set X ⊆ V (G)\U is a solution to (Ib,P) where P = (XT ,R,B, L) ∈ P(Ib) if
X is a solution to the Pseudobipartite Deletion instance (GP , k, `, U ′P) where U ′P = UP∪
(T \XT ). Recall that when we say that a set S is a solution to a Pseudobipartite Deletion
instance (G, k, `, U), we mean that |S| ≤ k, S ∩ U = ∅ and G− S is `-pseudobipartite.

It can be easily seen that for a Pseudobipartite Deletion instance I = (G, k, `.U),
solving the B-PBD instance (G, k, `.U, ∅) either gives a solution to the instance I or outputs
a vertex which is part of a minimum solution for the instance I, so in any case we make
progress. In what follows we will show that given a correct output for an instance of B-PBD,
there is an FPT algorithm which either computes an equivalent instance whose size is bounded
by a function of k and ` or it outputs a special vertex as described in the problem definition.

I Lemma 9. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G)\U and let C
be the vertex set of a connected component of G−T ′ such that N(C) = T ′. Let H = G[C∪T ′]
and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance
(H, k, `, (U ∩ V (H)), Q). Let Z denote the set

⋃
P∈P(I′

b
) solP . Then, for each P ∈ P(Ib), if

there is a solution for (Ib,P), then there is one whose intersection with C is in Z. Moreover,
if there exists a vertex v such that v ∈ solP′ for all P ′ ∈ P(I ′b), then for all P ∈ P(Ib), there
exists a minimum solution to (Ib,P) which contains v.

Before we state our next lemma, we need to recall the notion of parity-torso (see for
example [20]).

I Definition 10. Let G be a graph and S ⊆ V (G). We denote by PT (G,S) the graph
obtained from G − S as follows. For every pair of vertices u, v in V (G) \ S, if there is an
odd length u-v path in G whose internal vertices all lie in S then we add an edge (u, v) and
if there is an even length u-v path in G whose internal vertices all lie in S then we add a
subdivided edge (path of length 2) between u and v.

We are now ready to state our next crucial lemma which essentially gives a way to get
rid of vertices which we know will never be required in our solution.

I Lemma 11. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G)\U and let C
be the vertex set of a connected component of G−T ′ such that N(C) = T ′. Let H = G[C∪T ′]
and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance
(H, k, `, (U ∩ V (H), Q). Suppose that for every v ∈ V (H), there is a P ∈ P(I ′b) such that
v /∈ solP . Let Z denote the set

⋃
P∈P(I′

b
) solP . Then,

|Z| = 2O(k log(k+`)) and
there are functions τ, α and an algorithm that, given Ib and Z, runs in time (τ(k, `)nO(1))
and computes a set W ⊆ V (H) such that W ⊇ Q and has size at most α(k, `) such that
the instance Ib is equivalent to the instance I1

b = (G′, k, `, U, T ) where the graph G′ is
defined as PT (G,V (H) \W ). Here, α(k, `) and τ(k, `) are both 2O(k log(k+`)).

Now we describe the recursive step of the algorithm.
I Step 2. Assume we are given a B-PBD instance Ib = (G, k, `, U, T ) and let q := α(k, `) +(
α(k,`)

2
)

+ 1. Invoke first the algorithm of Lemma 4 in a search for (q, k)-good node separation
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(with V∞ = U). If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2} be such that
|Vj ∩T | ≤ k and denote T ′ = N(Vj) ⊆ Z, C = Vj . Otherwise, if it returns that no such good
node separation exists in G, invoke the algorithm of Lemma 5 in a search for (q, k)-flower
separation w.r.t. Tb (with V∞ = U again). If it returns that no such flower separation exists
in G, pass the instance Ib to the next step (high connectivity phase). Otherwise, if it returns
a flower separation (Z, (Vi)ri=1), denote C =

⋃r
i=1 Vi and T ′ = N(C) ⊆ Z. Let H = G[C∪T ′].

In the case we have obtained T ′ and C (either from Lemma 4 or Lemma 5), invoke the
algorithm recursively for the B-PBD instance I ′b defined as in the statement of Lemma 9 for
sets T ′ and set C, obtaining an output solP for each P ∈ P(I ′b). If there exists v ∈ V (H) such
that v ∈ solP for every P ∈ P(I ′b), we return v as the special vertex. Otherwise, compute
the set Z =

⋃
P∈P(I′

b
) solP . Use the algorithm of Lemma 11 on I ′b and Z to compute the set

W . Generate the graph G′ = PT (G,V (H) \W ). Let I1
b = (G′, k, `, (U ∩ V (H)),Q), where

Q = T ′ ∪ (C ∩ T ).
Restart this step on instance I1

b . If it returns a special vertex v, then return v as a special
vertex for the instance Ib. Otherwise, obtain a family of solutions (sol′P)P∈P and return this
family as output to the instance Ib.

The correctness of Step 2 follows from Lemmas 9 and 11. Now we do a running time
analysis for Step 2. Since q = O(2O(k log(k+`))), finding a good (q, k)-node separation or
flower separation takes time O(2O(min(q,k) log(q+k))n3 logn) = O(2O(k2 log(k+`))n3 logn). Let
|V (H)| = n′, and hence by definitions of good node separation and flower separation we have
that q + 1 ≤ n′ ≤ n− q − 1. The first recursive call is applied to an instance on n′ vertices.
While taking the torso operation, we have that |W | = α(k, `) = 2O(k log(k+`)) and finding the
set W takes τ(k, `)nO(1) = 2O(k log(k+`))nO(1) time.

Let H ′ = G− V (H). We know that T ′ separates H ′ from rest of the graph and T ′ ⊆W .
So, for any u, v ∈ V (G) such that u ∈ V (H ′), we do not have any path from u to v having
its internal vertices entirely in V (H) \W . So if a new vertex z is added because of an
even length path from u to v, we have that u, v ∈ V (H). As G− (V (H) \W ) has at most
n− n′ + α(k, `) vertices and none of the vertices in H ′ contribute to the torso operation, we
have that |V (G′)| ≤ n−n′+α(k, `) +

(
α(k,`)

2
)
< |V (G)|. The base case for the recursive calls

is the high connectivity phase, which we will argue takes time 2O((k+`)3(log k+`))nO(1).
Solving the resulting recurrence gives T (n) = 2O((k+`)3(log k+`))nO(1) in the worst case,

which is the running time for Step 2. We remark that we never actually introduce any new
undeletable vertices in the graph in this step.

High Connectivity phase. Assume we have a B-PBD instance Ib = (G, k, `, U, T ) where
Step 2 is not applicable. Let us fix P = (XT ,R,B, L) ∈ P(Ib) and let U ′ := U ∪ ((T \XT ) ∪
Rnew), where Rnew = V (GP) \ V (G). We iterate through all possible values of P and try
to find a minimum solution to (GP , k, `, U ′). Since |P(Ib)| = 2O(k log(k+`)), this results in a
factor of 2O(k log(k+`)) in the running time. Thus, from now onwards we focus on one such P .
Furthermore, here we only solve the instances where |U ′| ≤ O(k`), which is sufficient for our
purpose as we will argue later. We first prove the following lemma.

I Lemma 12. Let Ib = (G, k, `, U, T ) be an instance of B-PBD where Step 2 is not applicable.
Let U ′ := U ∪ ((T \XT ) ∪Rnew), where Rnew = V (GP) \ V (G). Then for every P ∈ P(Ib),
the graph GP satisfies the following.

for any Z ⊆ (V (GP) \U ′) of size at most k, the graph GP −Z contains at most f(k, `) =
(2q+2)(2k−1)+2k+1 connected components containing a vertex of V (G)\U ′, out of which
at most one has more than h(k, `) vertices not in U ′ where h(k, `) := q(4k(2k+3)(`+1)+1),
and
GP has an oct of size at most g(k, `) := 2k + k`2 + 1 + |U ′|.

FSTTCS 2016
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So, now we can generate an instance of Pseudobipartite Deletion where an oct is
also given and we have a bound on the number of vertices from V (G) \ U in all connected
components after deleting a solution except one. We recall the formal problem definition
from section 3.

OCT-PBD Parameters: k,`
Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O of
G of size at most g(k, `) such that for any Z ⊆ (V (G) \U) of size at most k, in the graph
G−Z, at most one connected component containing a vertex of V (G) \U has more than
h(k, `) vertices not in U .
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ U = ∅. Output ⊥ if such a set does not exist.

I Step 3. Find an oct O of GP of size g(k, `) using algorithm in [19]. Return an instance
(G, k, `, U,O) of OCT-PBD.

The correctness of Step 3 is immediate from Lemma 12. After doing some simple guessing
as explained in the overview section we arrive at an instance of OCT-PBD(II). Now to solve
OCT-PBD(II). We return No if k < 0. We first look at the case when the equivalence
relation § has more than one equivalence class. In this case, we know that there exists a
solution X after deleting which, at least one of the equivalence classes of § is in a connected
component containing at most h(k, `) vertices not from U .

We proceed by guessing this equivalence class Si in §. Then we arbitrarily pick a vertex v
in Si and look at a connected subgraph H of G containing v which has h(k, `)+1 vertices not
from U . We know that at least one of the vertices in V (H) has to be part of the solution X,
because after deleting X, the connected component containing v has at most h(k, `) vertices
not from U . Then we pick a vertex of V (H) and branch on it. Since each branching call
decreases solution size we are looking for by at least one, the depth of the recursion tree is
bounded by k.

If such a subgraph H does not exist, we have that the connected component containing
v has at most h(k, `) vertices not in U , and then we solve the problem on that connected
component using brute force, which takes time h(k, `)knO(1).

Now we deal with the case when § has only one equivalence class. That is, we know that
there exists a solution X ⊆ V (G) \ (U ∪ O) such that G −X is `-pseudobipartite and for
all (u, v) ∈ O, u and v belong to the same connected component of G−X. In other words,
there exists a solution X of minimum size such that all the vertices of O lie in the same
connected component of G−X. To solve this problem, we first prove the following.

I Lemma 13. Let (G, k, `, U,O, §) be an OCT-PBD(II) instance such that for all u, v ∈ O,
(u, v) ∈ §. Then there exists a bipartition (O1 ]O2) and X ′ ⊆ V (G) \ (U ∪O) such that X ′
is a minimum sized `-pseudobipartite deletion set of G, all vertices of O belong to the same
connected component of G−X ′ having vertex set C and there exists an edge-oct F of G[C]
of size at most ` and a bipartition (C1 ] C2) of C such that G[C1]− F and G[C2]− F = ∅
are independent sets and O1 ⊆ C1 and O2 ⊆ C2.

This lemma helps us reduce an instance of OCT-PBD(II) into 2|O| instances of OCT-
PBD(III). We can solve an instance of OCT-PBD(III) by appropriately casting it as an
instance of MMCU∗ problem.

A careful analysis shows that the total running time for high connectivity phase is
2O((k+`)3 log(k+`))nO(1). This finishes the description of the algorithm. Theorem 1 follows
from this algorithm and the fact that the set of undeletable vertices is initially empty, and the
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only time we actually add undeletable vertices to a graph is while solving the high connectivity
phase, in which case, we add at most 2k(4`+ 1) = O(k`) vertices to the undeletable set.

5 Conclusions

We have introduced and studied a stronger version of the classical F-Deletion problem
where F is the class of bipartite graphs and the new objective is to find a set of k vertices
and ` edges such that upon deletion of these k vertices, each component of the resulting
graph is in the class F + `e. We believe that a systematic study of this problem for various
well-understood classes F , for instance Interval Graphs, Chordal Graphs and so on, will prove
to be a fruitful research direction driving the development of new tools and techniques for
graph modification problems. We also think that the idea of combining iterative compression
with recursive understanding is quite general in its approach and can be useful in getting
similar results for other strong editing problems.
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Abstract
The classic K-Cycle problem asks if a graph G, with vertex set V (G), has a simple cycle
containing all vertices of a given set K ⊆ V (G). In terms of colored graphs, it can be rephrased
as follows: Given a graph G, a set K ⊆ V (G) and an injective coloring c : K → {1, 2, . . . , |K|},
decide if G has a simple cycle containing each color in {1, 2, . . . , |K|} (once). Another problem
widely known since the introduction of color coding is Colorful Cycle. Given a graph G and
a coloring c : V (G) → {1, 2, . . . , k} for some k ∈ N, it asks if G has a simple cycle of length k
containing each color in {1, 2, . . . , k} (once). We study a generalization of these problems: Given
a graph G, a set K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for some k∗ ∈ N and a parameter
k ∈ N, List K-Cycle asks if one can assign a color to each vertex in K so that G would have
a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors.

We design a randomized algorithm for List K-Cycle running in time 2knO(1) on an n-vertex
graph, matching the best known running times of algorithms for both K-Cycle and Colorful
Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal.
We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem,
where one specifies the size of a solution. Our results integrate three related algebraic approaches,
introduced by Björklund, Husfeldt and Taslaman (SODA’12), Björklund, Kaski and Kowalik
(STACS’13), and Björklund (FOCS’10).
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Keywords and phrases Parameterized Complexity, K-Cycle, Colorful Path, k-Path

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.22

1 Introduction

For a graph G, let V (G) and E(G) denote its vertex set and edge set respectively. The input
for the classic K-Cycle problem consists of an undirected graph G and a subset K ⊆ V (G)
of size k for some k ∈ N, and the objective is to decide whether G has a K-cycle, that is, a
simple cycle that contains all of the vertices in K. In terms of (partially) colored graphs,
it can be rephrased as follows. Given an undirected graph G, a set of vertices K ⊆ V (G)
of size k for some k ∈ N and an injective coloring c : K → {1, 2, . . . , k}, it asks whether G
has a simple cycle that contains each color in {1, 2, . . . , k} (once). Another problem widely
known since the introduction of the color coding method [1] is Colorful Cycle. Given an
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undirected graph G and a coloring c : V → {1, 2, . . . , k} for some k ∈ N, decide whether G
has a simple cycle of length k that contains each color in {1, 2, . . . , k} (once).

We study the parameterized complexity of a generalization of both K-Cycle and
Colorful Cycle, called List K-Cycle. In List K-Cycle, the input consists of an
undirected graph G, a set of vertices K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for
some k∗ ∈ N and a parameter k ∈ N. We need to decide whether one can find a function
c : K → {1, . . . , k∗} so that c(v) ∈ L(v) for all v ∈ V (G) and G would have a simple cycle
containing exactly k vertices from K and these vertices have distinct colors. In case k = k∗, it
is simply requested that the cycle contains each color in {1, 2, . . . , k} (once). If |K| = k = k∗

and for all v ∈ K, |L(v)| = 1, we obtain K-Cycle, while if K = V , k = k∗ and for all v ∈ K,
|L(v)| = 1, we obtain Colorful Cycle. We also consider a variant of List K-Cycle,
called Exact List K-Cycle. Given an undirected graph G, a set of vertices K ⊆ V (G), a
list-coloring L : K → 2{1,2,...,k∗} for some k∗ ∈ N and parameters k, ` ∈ N, it asks whether
one can assign a color to each vertex in K so that G would have a simple cycle of length `
containing exactly k vertices from K and these vertices have distinct colors. Exact List
K-Cycle generalizes the classic `-Path and Hamiltonicity problems.

We study the problem List K-Cycle in the realm of parameterized complexity. In
parameterized complexity algorithms are measured in terms of input length and a parameter,
which is expected to be small. More precisely, a problem is fixed-parameter tractable (FPT)
with respect to a parameter k if an instance of size n can be solved in time O∗(f(k)) =
O(f(k) · poly(n)) for some function f . For more details we refer to monographs [14, 11]

Related Work. As noted by Björklund et al. [4], the K-Cycle problem has been a central
topic of graph theory since the 1960’s (see [20] for some references). The special cases
where k = 1 and k = 2 can be solved by breadth-first search and finding a flow of size 2
between two vertices, respectively. The special case where k = 3 has also long been known
to be solvable in linear time [15, 24]. By the work of Robertson and Seymour on Disjoint
Paths [28], for any constant k, K-Cycle is solvable in polynomial time. Kawarabayashi [20]
showed that K-Cycle is solvable in polynomial time also when k = O((log logn)1/10), where
n = |V (G)|. The best known randomized algorithm for K-Cycle was given by Björklund
et al. [4], and runs in time O∗(2k). Recently, Wahlström [31] gave an alternative algorithm
that solves K-Cycle in time O∗(2k) and showed that the problem admits a polynomial
compression. We note that for directed graphs, K-Cycle is NP-hard already when k = 2
[18], and that other variants of K-Cycle have also been considered in the literature. For
example, Kawarabayashi et al. [21] gave an algorithm for detecting a K-cycle whose length
has a given parity, and Kobayashi et al. [33] gave an algorithm for detecting an induced
K-cycle in a planar graph.

The Colorful Cycle problem was introduced in the breakthrough work on color coding
by Alon et al. [1]. In that paper, the authors proposed an O∗(2k)-time deterministic algorithm
for Colorful Cycle. Although the problem became widely known, faster algorithms have
not been obtained. Recently, Kowalik et al. [23] explained the source of difficulty: they
showed that unless the Set Cover Conjecture [10] is false, there does not exist a constant ε > 0
such that Colorful Cycle can be solved in time O∗((2− ε)k). The conjecture states that
there does not exist a constant ε > 0 such that Set Cover can be solved in time O∗((2−ε)n),
where n is the size of the universe. Finally, we note that the `-Path problem has been
extensively studied in the field of parameterized complexity, and there has been a race towards
obtaining the fastest algorithm that solves it [25, 8, 1, 13, 19, 9, 22, 32, 2, 3, 17, 16, 30, 35].
Currently, the fastest algorithm (randomized) for `-Path runs in time O∗(1.66`) [2, 3].
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Our Contribution. Our main result is a randomized algorithm solving List K-Cycle in
time O∗(2k), matching the best known running time in which one can solve K-Cycle [4]
as well as Colorful Cycle [1]. We note that our algorithm can also be used to find
a shortest cycle among solutions. Moreover, since List K-Cycle generalizes Colorful
Cycle, we conclude that unless the Set Cover Conjecture is false, our algorithm is essentially
optimal. To complement our main result, we also show that Exact List K-Cycle is
solvable in time O∗(2k1.66`−k). Our results integrate three related algebraic approaches:
the “unlabel inessential elements” used to solve K-Cycle [4], the “double-labeling” used to
solve a problem called Graph Motif [6], and the “partitioned single-labeling” used to solve
`-Path and Hamiltonicity [2, 3]. More precisely, our main result integrates the first two
approaches, while our Exact List K-Cycle algorithm integrates the latter two.

We remark that the algebraic technique developed in [2, 3] became a standard tool to
develop parameterized algorithms (see, e.g., [11, 5, 27, 26]), yet the other two techniques
not well known. To the best of our knowledge, the specific technique of [4] has no known
additional applications, and the only additional applications of [6] are given in [7, 34].

2 Preliminaries

For q ∈ N, let [q] = {1, 2, . . . , q} and [q]0 = {0, 1, . . . , q}. For a function g : A → [q]0, let
count(g) = |{a ∈ A : g(a) 6= 0}|. For (i, j), (i′, j′) ∈ N × N, we say that (i, j) is smaller
than (i′, j′), if either (a) i < i′ or (b) i = i′ and j < j′. A fixed-point-free involution is a
permutation that is its own inverse and has no fixed points. For a function f : A→ B and
S ⊆ A, let f |S : S → B be the function such that for all s ∈ S, f |S(s) = f(s).

For a graph G, let V (G) and E(G) denote its vertex-set and edge-set, respectively. For
v ∈ V (G), let N(v) denote its neighbor-set. A walk in a graph G is a sequence of vertices
v1 . . . v` such that {vi, vi+1} ∈ E(G) for all i ∈ [`− 1]. For a graph G and e ∈ E(G), we use
G− e to denote the graph with vertex set V (G) and edge set E(G) \ {e}. For a graph G and
V ′ ⊆ V (G), we use E(V ′) to denote the set {{u, v} ∈ E(G) | u, v ∈ V ′}. For a walk W , we
use V (W ) and E(W ) to denote the set of vertices and edges, respectively, contained in W .

3 An Algorithm for List K-Cycle

In this section we show that albeit the “list” requirement, the time in which one can solve
List K-Cycle matches the best known time in which one can solve both K-Cycle and
Colorful Cycle . That is, we develop an algorithm solving List K-Cycle in time O∗(2k).

Our algorithm is based on the algebraic technique which underlies the algorithm for
K-Cycle by Björklund et al. [4], where one associates a polynomial over a finite field with
the structure that should be found. Yet, there are essential differences between our algorithm
and the one in [4]. To cancel potential solutions that “visit” vertices in V (G) \ K more
than once, Björklund et al. [4] rely on a pairing argument whose correctness is based on the
requirement that computations are performed over a field of characteristic 2 – our algorithm
also relies on this pairing argument. However, to ensure that each vertex in K is encountered
exactly once while attempting to construct a solution, Björklund et al. [4] explicitly store the
set of vertices from K that have been encountered so far. This approach cannot be taken by
our algorithm, since while constructing a solution, we would have stored each vertex in K
that has been encountered so far as well as its color. This could lead to an algorithm with
running time O∗(

(|K|
k

)(
k∗

k

)
). This solution does not even show that List K-Cycle is FPT

when parameterized by k (since |K| and k∗ could be significantly larger than k).
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An O∗(4k)-time algorithm for List K-Cycle can be obtained as follows. We mark each
color once it is visited to ensure that it is not visited again via the labeling-based approach
of Björklund et al. [2, 3] (since k∗ can be significantly larger than k) at the cost of a factor
of O∗(2k) in the running time. Here, we also use this labeling-based approach on top of the
algorithm for K-Cycle by Björklund et al. [4] to ensure that the vertices that marked colors
are not visited more than once (at the cost of a factor of O∗(2k) in the running time). The
remaining vertices in V (G) are treated in the same manner as the algorithm for K-Cycle
by Björklund et al. [4] does (at the cost of a polynomial factor). However, this is still not
sufficient, since our purpose is to match the best known running times in which one can solve
K-Cycle and Colorful Cycle. By using the double-labeling-based approach introduced
by Björklund et al. [6] to solve the Graph Motif problem, we are able to circumvent the
need to keep track of colors and vertices that mark these colors separately.

Initialization. Instead of solving List K-Cycle, we will solve the following problem: Given
an n-vertex undirected graph G, a subset K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for
some k∗ ∈ N, a parameter k ∈ N and two vertices s, t ∈ V (G), List K-Path asks whether
one can assign a color to each vertex in K so that G would have a simple path between s
and t containing exactly k vertices from K and these vertices have distinct colors.

To solve List K-Cycle in time O∗(2k), it is sufficient to show that one can solve List
K-Path in time O∗(2k). Indeed, an instance (G,K,L, k∗, k) is a Yes-instance of List
K-Cycle if and only if there is an edge e = {s, t} ∈ E(G) such that (G− e,K,L, k∗, k, s, t)
is a Yes-instance of List K-Path.

Structures. We define some notations which are essential for our algorithm. Let the input
instance of List K-Path be (G,K,L, k∗, k, s, t). For q ∈ [n] \ {1} and u, v ∈ V (G), a
function f : [q] → V (G) is called a (q, u, v)-function if f satisfies the following properties:
(i) f(1) = s, f(q − 1) = u and f(q) = v, (ii) for all i ∈ [q − 1], {f(i), f(i+ 1)} ∈ E(G), and
(iii) for all i ∈ [q − 2] such that f(i) = f(i + 2) it holds that f(i + 1) /∈ K. Observe that
the function f defines a walk in G, and that if f is injective, it defines a simple path in
G. We will use (q, u, v)-functions to construct a simple path that is a solution. We need
to consider walks rather than simple paths as during the construction, we do not want
to keep information regarding vertices that have already been visited – later we will use
pairing arguments (in Lemma 6) to cancel such incorrect constructions. To make the pairing
argument work, we will need property (iii) of f , which is also the reason why we explicitly
mention u, one vertex before the last vertex we have visited, in the definition of f .

In addition to f , to know whether we are constructing a solution, we need to know which
colors in [k∗] have been visited. For this purpose, we need the following term. For k′ ∈ [k]0,
a (q, u, v, k′)-structure is a pair (f, g) such that (a) f is a (q, u, v)-function, (b) g : [q]→ [k∗]0
is a function such that count(g) = k′, and (c) for every i ∈ [q], if f(i) ∈ K then g(i) ∈ L(f(i))
and otherwise g(i) = 0. In other words, for each occurrence of a vertex in K which we have
visited, g specifies a color, and overall, it specifies exactly k′ occurrences of colors. To simplify
the presentation, given a (q, u, v, k′)-structure (f, g), we define col(g) = {i ∈ [q] : g(i) 6= 0}.
That is, col(g) is the set of indices associated with vertices in K (which receive colors). When
v = t and k′ = k, for any u ∈ V (G), a (q, u, v, k′)-structure is also called a q-structure.

I Definition 1. A q-structure (f, g) is called good q-structure if (i) f is injective, and (ii) for
all i, j ∈ col(g), g(i) 6= g(j) (i.e, g|col(g) is injective).

I Observation 2. The input instance of List K-Path is a Yes-instance if and only if there
exists a good q-structure.
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Labels. We are now going to assign labels to some of the occurrences of vertices of a
(q, u, v, k′)-structure. Later we will use these labels to ensure that potential structures that
are not good get cancelled when computations are performed over a field of characteristic 2.
More precisely, we will swap distinct labels assigned to occurrences of vertices that obtained
the same color, an ability that will be used by one of our pairing arguments (see Lemma 6).

We use labels for each position in a walk which corresponds to a vertex from K. For a
(q, u, v, k′)-structure (f, g) and h : col(g)→ [k], we say that a triple (f, g, h) is a (q, u, v, k′)-
labeling. When (f, g) is a q-structure or a good q-structure, we say that (f, g, h) is a q-labeling
or good q-labeling, respectively. Finally, if h is bijective, we say that the entire triple (f, g, h)
is bijective. We give special consideration to bijective functions h since such functions ensure
that all good q-labelings survive and all the q-labelings which are not good cancel each other
in the polynomial we construct later.

Next, we define two sets of q-labelings. First, we let Bq
1 denote the set of all bijective

q-labelings. Now, we let Bq
2 ⊆ B

q
1 denotes the set of all bijective good q-labelings. Given a

good q-structure (f, g), we can arbitrarily order the elements in col(g), and let h assign to
each element in col(g) its location in this order. This results in a bijection h, and overall, in
a bijective q-labeling (f, g, h). Thus, by Observation 2, we get the following observation.

I Observation 3. The input instance of List K-Path is a Yes-instance if and only if there
exists q ∈ [n] \ {1} such that Bq

2 6= ∅.

Monomials. We will now associate a monomial with each (q, u, v, k′)-labeling. Towards
this, we introduce the following variables. First, for each e ∈ E(G), we introduce a variable
xe. Now, for each v ∈ K and color a ∈ L(v), we introduce a variable yv,a. Finally, for each
color a ∈ [k∗] and label i ∈ [k], we introduce a variable za,i. Let N be the total number of
variables created. Notice that N = nO(1). We are now ready to define monomial for each
(q, u, v, k′)-labeling.

I Definition 4. For a (q, u, v, k′)-labeling (f, g, h), the monomial of (f, g, h), denoted by
m(f, g, h), is defined as follows.

m(f, g, h) =

 ∏
i∈[q−1]

x{f(i),f(i+1)}

 ·
 ∏

i∈col(g)

yf(i),g(i) · zg(i),h(i)

.
On the one hand, observe that if (f, g, h) is a bijective good q-labeling, then it can be

uniquely recovered from its monomial. That is, we have the following observation.

I Observation 5. For any q ∈ [n] \ {1} and (f, g, h) ∈ Bq
2 , there does not exist (f ′, g′, h′) ∈

Bq
1 \ {(f, g, h)} such that m(f, g, h) = m(f ′, g′, h′).

When the input instance (G,K,L, k∗, k, s, t) is a No-instance of List K-Path , then we
can get a fixed-point free involution on Bq

1 with some properties:

I Lemma 6. Let (G,K,L, k∗, k, s, t) be a No-instance of List K-Path and Bq
1 is the set

of all bijective q-labeling for any q ∈ [n] \ {1}. Then there exists a fixed-point-free involution
φ : Bq

1 → Bq
1 such that for all (f, g, h) ∈ Bq

1 , m(f, g, h) = m(φ(f, g, h)).

Proof. Since (G,K,L, k∗, k, s, t) is a No-instance, by Observation 3, we have that Bq
2 = ∅.

Let (f, g, h) ∈ Bq
1 . We choose a pair (i, j) ∈ [q]× [q] and by carefully modifying f, g and h

between i and j we get a q-labeling that can be mapped to (f, g, h) by φ. We will consider
several cases and in each case, we assume that the conditions of the previous cases are
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false, define φ(f, g, h), and prove that φ(f, g, h) 6= (f, g, h), m(f, g, h) = m(φ(f, g, h)) and
φ(φ(f, g, h)) = (f, g, h). Since (f, g, h) /∈ Bq

2 , we know that either (a) there exist i, j ∈ col(g),
i < j, such that g(i) = g(j) or (b) there exist i, j ∈ [q], i < j such that f(i) = f(j).

Case 1: There exist i, j ∈ col(g), i < j, such that g(i) = g(j). Among all such pairs,
that we call bad pairs of type 1, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h)
as follows. First, we simply let f ′ = f and g′ = g. Now, we let h′(i) = h(j) and h′(j) = h(i),
and for all r ∈ col(g) \ {i, j}, we let h′(r) = h(r). Since (f ′, g′) = (f, g) is a q-structure and
h′ is bijective, we have that (f, g, h′) ∈ Bq

1 . Since h is bijective, we have that h′ 6= h, and
therefore φ(f, g, h) 6= (f, g, h). Moreover, zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i),
and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because (f, g) = (f ′, g′), the sets of bad
pairs of type 1 of (f, g, h) and (f ′, g′, h′) are same. Also, by swapping the values assigned to
i and j in h′, we obtain h, and so we have that φ(φ(f, g, h)) = (f, g, h).

Case 2: There exist two indices i, j ∈ col(g), i < j, such that f(i) = f(j). Among
all such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. Since i ∈ col(g),
f(i) ∈ K. We define (f ′, g′, h′) = φ(f, g, h) as follows. First, we simply let f ′ = f . Now, we
let g′(i) = g(j) and g′(j) = g(i), and for all r ∈ [q] \ {i, j}, we let g′(r) = g(r). Finally, we
let h′(i) = h(j), h′(j) = h(i), and for all r ∈ col(g) \ {i, j}, we let h′(r) = h(r). Again, it is
clear that φ(f, g, h) ∈ Bq

1 . Because Case 1 is false, we have that g(i) 6= g(j), and therefore
φ(f, g, h) 6= (f, g, h). Moreover, since f(i) = f(j), it holds that yf(i),g(i) = yf ′(j),g′(j) and
yf(j),g(j) = yf ′(i),g′(i), and it also holds that zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i).
Therefore, m(f, g, h) = m(φ(f, g, h)). By our definition of g′, we have that there are no bad
pairs of type 1. Moreover, our definitions of f ′ and g′ ensures that the sets of bad pairs of
type 2 of (f, g, h) and (f ′, g′, h′) are the same. Also, by swapping the values assigned to i and
j by g′ as well as h′, we get g and h respectively, and so we have that φ(φ(f, g, h)) = (f, g, h).

Case 3: Cases 1 and 2 are false. Let I = [q]. If there exists a pair (i′, j′) ∈ I × I, i′ < j′,
such that f(i′) = f(j′), then we choose such a pair with the following inductive priorities
in the order: (1) i′ is minimized and (2) j′ is maximized. If f(i′)f(i′ + 1) . . . f(j′) is not
a palindrome, then we set (i, j) = (i′, j′). Otherwise, we set I := I \ [j′] and continue the
process of choosing a pair as above from I × I. Observe that since Cases 1 and 2 are false
and yet the input instance is a No-instance, at least one pair (i′, j′) will be chosen.

First we show that we succeed in finding a pair (i, j). Towards this we first show that
for any pair (i′, j′) considered by the above process but not considered as the pair (i, j),
we have that f(i′), f(i′ + 1), . . . , f(j′) /∈ K. Suppose there is a vertex w ∈ K appearing in
the sequence f(i′)f(i′ + 1) . . . f(j′). We know that f(i′)f(i′ + 1) . . . f(j′) is a palindrome
and Case 2 is not applicable. This implies that w appears only once and it is in the middle
of the palindrome f(i′)f(i′ + 1) . . . f(j′). But then this will contradict property (iii) of the
(q, u, t)-function f (since (f, g) is a q-structure, f is a (q, u, t)-function for some u ∈ V (G)).
Let (i1, j1), . . . , (i`, j`) be the pairs considered in the above process in the given order.
Suppose (i`, j`) 6= (i, j) (that is, the process terminated before we set (i, j)). Then, f |I is
injective, where I = [q] \ (

⋃
r∈[`]{ir, ir + 1, . . . , jr}). Also we know that for i, j ∈ col(g), i < j,

g(i) 6= g(j), because Case 1 is not applicable. Then this implies that (f |I , g) is a good
q′-structure for some q′ < q, which is a contradiction because (G,K,L, k∗, k, s, t) is a No-
instance. Thus we have shown that the above process succeeds in finding (i, j) such that
f(i) · · · f(j) is not a palindrome.

We define (f ′, g′, h′) = φ(f, g, h) as follows. For every index r ∈ [q] such that r < i or
r > j, we let f ′(r) = f(r), g′(r) = g(r) and h′(r) = h(r). Next, we are going to redirect the
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subwalk from i to j to be from j to i, adjusting the values assigned by f, g and h accordingly.
Formally, for each index i ≤ r ≤ i+ b(j− i)/2c, define s(r) = j− (r− i) and s(j− (r− i)) = r.
Now, for each index i ≤ r ≤ j, let f ′(r) = f(s(r)), g′(r) = g(s(r)) and h′(t) = h(s(t)).

Because f(i)f(i+1) · · · f(j) is not a palindrome, we have that φ(f, g, h) 6= (f, g, h). Notice
that f and f ′ corresponds to two walks in the graph G. Observe that because f(i) = f(j),
redirecting the subwalk between i and j does not change the edges which the walk contains
(only the order in which we visit them changes), and since upon changing the location of an
occurrence of a vertex, we update all of the three functions f, g and h accordingly, we have
thatm(f, g, h) = m(φ(f, g, h)). We show that f ′ is a (q, u′, t)-function for some u′. Properties
(i) and (ii) of (q, u′, t)-function trivially hold. The only occurrences of vertices whose adjacent
occurrences of vertices might change are f ′(i) and f ′(j), and because f ′(i) /∈ K (since Case
2 not applicable), it is still true that for all r ∈ [q − 2] such that f ′(r) = f ′(r + 2) it holds
that f ′(r + 1) /∈ K. Hence (f ′, g′, h′) = φ(f, g, h) ∈ Bq

1 .
Finally we prove that φ(f ′, g′, h′) = (f, g, h). Notice that for (f ′, g′, h′), Cases 1 and 2

are not applicable. Looking at (f ′, g′, h′) and applying the process above in Case 3 will
result in the same pair (i, j), since the updates that are performed with respect to I only
concern indices before i (which were not change), and the only occurrences of vertices whose
location has changed lie between i and j, and therefore they do not affect the minimality
of i and maximality of j relevant to the choice of (i, j). Thus, since by redirecting the
subwalk between i and j yet again we obtain the original walk, and hence we conclude that
φ(φ(f, g, h)) = (f, g, h). J

Now, for all q ∈ [n], we define a polynomial that is evaluated over the finite field Fp,
where p = 2dlog(3(n+2k))e.

I Definition 7. P q =
∑

(f,g,h)∈Bq
1

m(f, g, h).

I Lemma 8. (G,K,L, k∗, k, s, t) is a Yes-instance of List K-Path if and only if there is
q ∈ [n] \ {1} such that P q is not identically 0.

Proof. Suppose (G,K,L, k∗, k, s, t) is a Yes-instance and n = |V (G)|. Then Observation 3,
there is a q ∈ [n] \ {1} such that Bq

2 6= ∅. Then by Observation 5 P q contains a unique
monomial corresponding to (f, g, h) where (f, g, h) ∈ Bq

2 . This implies that P q 6≡ 0.
Suppose (G,K,L, k∗, k, s, t) is a No-instance, then by Lemma 6 and the fact that Fp has

characteristic 2, we can conclude that for all q ∈ [n] \ {1}, P q ≡ 0. J

Thus, it remains to determine whether at least one polynomial P q is not identically 0.

Evaluation. Given I ⊆ [k], a (q, u, v, k′, I)-labeling (f, g, h) is a (q, u, v, k′)-labeling whose
set of assigned labels belongs to I (i.e., the image of h is a subset of I). Now, we define
polynomials whose evaluations, which will be done below, can be considered as “intermediate”
steps towards evaluating P q. To this end, we let S(q, u, v, k′, I) denote the set of all
(q, u, v, k′, I)-labelings.

I Definition 9. P q(u, v, k′, I) =
∑

(f,g,h)∈S(q,u,v,k′,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate
polynomials, has characteristic 2, we have the following observation.

I Observation 10. P q =
∑

I⊆[k]

∑
u∗∈N(t)

P q(u∗, t, k, I).
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It is easier to compute polynomials of the form P q(u∗, t, k, I) rather than the polynomial
P q since then we do not need to ensure that labels are not repeated, but only need to
ensure that certain labels are not used at all. We next show that a polynomial of the form
P q(u∗, t, k, I) can be computed in polynomial time by using a procedure based on dynamic
programming.

I Lemma 11 (?1). Let I ⊆ [k], u∗ ∈ N(t) and let {x1, . . . , xN} be the set of variables in
P q(u∗, t, k, I). Let a1, a2, . . . , aN ∈ Fp denote the chosen values for the N variables. Then,
the polynomial P q(u∗, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1).

Combining Observation 10 with Lemma 11, and since there are 2k subsets I of [k], we
have, the following result.

I Lemma 12. Given an assignment of values from Fp to the variables of P q, the polynomial
P q can be evaluated in time 2kNO(1) and in space NO(1).

The Algorithm. To calculate the number of evaluations we should perform, we rely on the
following well-known result, proved in [12, 29, 36].

I Lemma 13. Let p(x1, x2, . . . , xm) be a nonzero polynomial of n variables and total degree
at most d over the finite field F. Then, for a1, a2, . . . , an ∈ F selected independently and
uniformly at random: Pr(p(a1, a2, . . . , an) 6= 0) ≥ 1− d/|F|.

We are now ready to conclude this section with our main result.

I Theorem 14. There is a polynomial space randomized algorithm for List K-Cycle
running in time O∗(2k) with one sided constant error probability.

Proof. As explained earlier, we actually solve List K-Path. Our algorithm is defined as
follows. Let (G,K,L, k∗, k, s, t) be the input instance and n = |V (G)|. It examines every
length q ∈ [n]. Now, consider a specific length q. First, uniformly at random, it chooses N
values from Fp to be assigned to the variables of P q (recall that N is the number of variables
which is bounded by nO(1)). Then, it evaluates P q accordingly using the computation
presented in Lemma 12. Finally, if the result in not zero, it accepts. Eventually, if for every
length q the result is zero, it rejects.

By Lemma 8, if the input instance of List K-Path is a No -instance, for every length q
the result of evaluating P q is zero, and therefore the algorithm will reject. Now, suppose
that the input instance of List K-Path is a Yes-instance. By Lemma 8, there exists q ∈ [n]
such that P q is not identically zero. Observe that P q is a polynomial of total degree at most
n+ 2k. Thus, by Lemma 13, the result of evaluating P q is not zero with probability at least
2/3. Therefore, the algorithm accepts with probability at least 2/3. Clearly, the probability
of success can be increased via multiple runs, or, in a more direct manner, by choosing a
larger field (choosing a field of size p = 2dlog(c′(n+2k))e for some constant c′ will result in a
success probability of at least 1− 1/c′). J

4 An Algorithm for Exact List K-Cycle

In this section we show that Exact List K-Cycle can be solved in time O∗(2k1.66`−k). On
the one hand, Exact List K-Cycle generalizes Colorful Cycle – indeed, Colorful

1 Due to space constraints, proofs of results marked with ? are omitted.
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Cycle is the special case of Exact List K-Cycle where K = V (G), k = k∗ = ` and for all
v ∈ K it holds that |L(v)| = 1. Therefore, unless the Set Cover Conjecture is false, we cannot
obtain an algorithm that runs in time O∗((2− ε)k) even if k = `. On the other hand, Exact
List K-Cycle generalizes `-Path and Hamiltonicity (which is a special case of `-Path
where ` = |V (G)|), and there are randomized algorithms for `-Path and Hamiltonicity
running in times O∗(1.66`) and O∗(1.66|V (G)|), respectively [3, 2]. We present a multivariate
algorithm for Exact List K-Cycle that can be viewed as a compromise between the
dependency on k and the dependency on `. Our approach employes the double-labeling-based
approach of Björklund et al. [6], used to solve the Graph Motif problem, on top of the
technique underlying the `-Path algorithm of Björklund et al. [3].

Due to similarities between this algorithm and the one given in the previous section, we
present it in a more concise manner. Again, by the explanation given in Section 3, it is
sufficient to solve the following problem, called Exact List K-Path, in time O∗(2k1.66`−k).
Given an n-vertex undirected graph G, a set of vertices K ⊆ V (G), a list-coloring L : K →
2{1,2,...,k∗} for some k∗ ∈ N, parameters k, ` ∈ N and two vertices s, t ∈ V (G), and this
problem asks whether one can assign a color to each vertex in K so that G would have a
simple path of length ` between s and t containing exactly k vertices from K and these
vertices have distinct colors.

In most of this section, we will assume that we are given a partition (V1, V2) of V (G) \K,
which will be computed later. Accordingly, we define the Partitioned Exact List K-
Path (K-PEL Path) problem as the Exact List K-Path problem where one is also given
parameters `1, `2 ∈ [`], and the solution is also required to contain exactly `1 vertices from
V1 and `2 edges from E(V2).

Structures and Labels. Given q ∈ [`] \ {1}, q1 ∈ [`1]0, q2 ∈ [`2]0, vertices u, v ∈ V (G) and
k′ ∈ [k], a function f : [q] → V (G) is called a (q, q1, q2, u, v, k

′)-function if the following
properties hold:
(i) f(1) = s, f(q − 1) = u and f(q) = v,
(ii) for all i ∈ [q − 1], {f(i), f(i+ 1)} ∈ E(G),
(iii) for all i ∈ [q − 2] such that f(i) = f(i+ 2) ∈ V2 it holds that f(i+ 1) ∈ V2,
(iv) q1 = |V1(f)|, where V1(f) = {i ∈ [q] : f(i) ∈ V1},
(v) q2 = |E2(f)|, where E2(f) = {(i, i+ 1) : i ∈ [q − 1], {f(i), f(i+ 1)} ⊆ V2},
(vi) k′ = |{i ∈ [q] : f(i) ∈ K}|.

Observe that V1(f) and E2(f) are sets of indices. In addition to f , to know whether
we are constructing a solution, we need to know which colors in [k∗] have been used. For
this purpose, we need the following term. For a (q, q1, q2, u, v, k

′)-function f and a function
g : [q]→ [k∗]0, the pair (f, g) is called (q, q1, q2, u, v, k

′)-structure if the following condition
holds: for any i ∈ [q], if f(i) ∈ K then g(i) ∈ L(f(i)) and otherwise g(i) = 0. In other words,
for each occurrence of a vertex in K which we have visited, g specifies a color, and overall,
since f is a (q, q1, q2, u, v, k

′)-function, g specifies exactly k′ occurrences of colors. To simplify
the presentation, for a (q, q1, q2, u, v, k

′)-structure (f, g), we define col(g) = {i ∈ [q] : g(i) 6= 0}.
That is, col(g) is the set of indices associated with vertices in K (which receive colors). For
any vertex u ∈ V (G), a (`, `1, `2, u, t, k)-structure is also called a final structure (f-structure).
When both f and g|col(g) are also injective, we say that it is an excellent final structure
(ef-structure). By the definition of ef-structures, we have the following observation.

I Observation 15. The input instance of K-PEL Path is a Yes-instance if and only if
there exists an ef-structure.
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As before, the main idea is to use labels for specific elements in (q, q1, q2, u, v, k
′)-structures.

Here we use labels on col(g) ∪ V1(f) ∪ E2(f). For a (q, q1, q2, u, v, k
′)-structure (f, g) and

a function h : col(g) ∪ V1(f) ∪ E2(f) → [k + `1 + `2], we say that the triple (f, g, h) is
a (q, q1, q2, u, v, k

′)-labeling. When (f, g) is an f-structure or an ef-structure, we say that
(f, g, h) is an f-labeling or an ef-labeling, respectively. Moreover, if g is bijective, we say
that the triple (f, g, h) is bijective. Next, we define two sets of f-labelings. First, we let B1
denote the set of all bijective f-labelings. Now, we let B2 ⊆ B1 denote the set of all bijective
ef-labelings.

Observe that for any ef -structure (f, g) (which corresponds to a solution), | col(g) ∪
V1(f) ∪ E2(f)| = k + `1 + `2, and therefore the sizes of the domain and codomain of the
function h are equal. Thus, given an ef-structure (f, g), we can arbitrarily order the elements
in col(g)∪V1(f)∪E2(f), and let h assign to each element in col(g)∪V1(f)∪E2(f) its location
in this order. This results in a bijective function h, and overall, in a bijective ef-labeling
(f, g, h). Thus, by Observation 15, we have the following observation.

I Observation 16. The input instance of K-PEL Path is a Yes-instance if and only if
B2 6= ∅.

Monomials. Now we explain how to assign monomial for each (q, q1, q2, u, v, k
′)-labeling

and show that the polynomial which is sum of monomials corresponding to f -labeling will
give us the answer for K-PEL Path through Polynomial Identity Testing(PIT). First we
introduce the following variables. For each edge e ∈ E(G), introduce a variable xe. Now,
for each vertex v ∈ V1 and label i ∈ [k + `1 + `2], introduce a variable yv,i, and for each
edge e ∈ E(V2) and label i ∈ [k + `1 + `2], introduce a variable ye,i. For each vertex v ∈ K
and color a ∈ L(v), introduce the variable zv,a. Finally, for each color a ∈ [k∗] and label
i ∈ [k + `1 + `2], introduce the variable za,i. Let N be the total number of variables created.

Now, we associate a monomial with each (q, q1, q2, u, v, k
′)-labeling.

I Definition 17. Given a (q, q1, q2, u, v, w, k
′)-labeling (f, g, h), the monomial of (f, g, h),

denoted by m(f, g, h), is defined as follows.

m(f, g, h) =

 ∏
i∈[q−1]

x{f(i),f(i+1)}

 ∏
i∈V1(f)

yf(i),h(i)

 ∏
(i,i+1)∈E2(f)

y{f(i),f(i+1)},h((i,i+1))



·

 ∏
i∈col(g)

zf(i),g(i) · zg(i),h(i)

.
If (f, g, h) is a bijective ef-labeling, then it can be uniquely recovered from its monomial.

That is, we have the following observation.

I Observation 18. For all (f, g, h) ∈ B2, there does not exist (f ′, g′, h′) ∈ B1 \ {(f, g, h)}
such that m(f, g, h) = m(f ′, g′, h′).

For bijective f-labelings that are not ef-labelings, we have the following lemma.

I Lemma 19. Let (G,K,L, k∗, k, s, t, `, V1, V2, `1, `2) be a No-instance of K-PEL Path and
B1 is the set of all bijective f-labeling. Then there is a fixed-point-free involution φ : B1 → B1
such that for all (f, g, h) ∈ B1, m(f, g, h) = m(φ(f, g, h)).
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Proof. Since (G,K,L, k∗, k, s, t, `, V1, V2, `1, `2) is aNo-instance of K-PEL Path , by Ob-
servation 16, B2 = ∅. Let (f, g, h) ∈ B1. We will consider several cases, and in each case, we
assume that previous cases are false, define φ(f, g, h), and prove that φ(f, g, h) 6= (f, g, h),
m(f, g, h) = m(φ(f, g, h)) and φ(φ(f, g, h)) = (f, g, h). Since B2 = ∅ and (f, g, h) ∈ B1, we
have that (f, g) is a f -structure but not an ef-structure. This implies that either f is not
injective or g|col(g) is not injective. This implies that there exist i, j ∈ [`], i < j such that
either (a) f(i) = f(j) or (b) i, j ∈ col(g) and g(i) = g(j).

Case 1: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ V1. Among all such pairs,
called bad pairs of type 1, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h)
as follows. First, let f ′ = f and g′ = g. Now, let h′(i) = h(j) and h′(j) = h(i), and for
all r ∈ (col(g) ∪ V1(f) ∪ E2(f)) \ {i, j}, let h′(r) = h(r). Since h is bijective, we have that
h′ 6= h, and therefore φ(f, g, h) = (f ′, g′, h′) 6= (f, g, h). Moreover, yf(i),h(i) = yf ′(j),h′(j) and
yf(j),h(j) = yf ′(i),h′(i), and therefore m(f, g, h) = m(φ(f, g, h)). Notice that the smallest bad
pair of type 1 in (f ′, g′, h′) is (i, j). So by swapping the values assigned to i and j in h′, we
obtain h, and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 2: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ K. Among all
such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. We define
(f ′, g′, h′) = φ(f, g, h) as follows. First, let f ′ = f . Now, let g′(i) = g(j) and g′(j) = g(i),
and for all r ∈ [q] \ {i, j}, let g′(r) = g(r). Finally, let h′(i) = h(j), h′(j) = h(i), and for
all r ∈ (col(g) ∪ V1(f) ∪ E2(f)) \ {i, j}, we let h′(r) = h(r). Since h is bijective, h 6= h′

and φ(f, g, h) 6= (f, g, h). Moreover, since f(i) = f(j), it holds that zf(i),g(i) = zf ′(j),g′(j)
and zf(j),g(j) = zf ′(i),g′(i). It also holds that zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i).
Therefore, m(f, g, h) = m(φ(f, g, h)). Since there is no bad pair of type 1 in (f, g, h), there
is no bad pairs of type 1 in (f ′, g′, h′). Notice that the is the smallest bad pair of type 2 in
(f ′, g′, h′) is (i, j). By swapping the values assigned to i and j by g′ and h′ we get g and h,
and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 3: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ V2. Among all such
pairs, that we call bad pairs of type 3, let (i, j) be the smallest one. We have two sub-cases
based f(i) . . . f(j) is a palindrome or not.

Case 3(a): f(i) . . . f(j) is a palindrome. Since f(i) . . . f(j) is a walk in a simple graph
G and f(i) . . . f(j) is a palindrome, the length of the sequence f(i) . . . f(j) is odd and j− i is
even. Let r = i+ j−i

2 . Notice that r is the middle index in the sequence i, i+ 1, . . . j. Since
Cases 1 and 2 are not applicable, we have that for all r′ ∈ {i, . . . , j} \ {r} f(r′) ∈ V2. Now
consider the sequence f(r − 1)f(r)f(r + 1). We know that f(r − 1) = f(r + 1) ∈ V2. Thus
by property (iii) of (q, q1, q2, u, v, k

′)-function, we have that f(r) ∈ V2. Hence, we have that
f(i), . . . , f(j) ∈ V2.

Now, we define (f ′, g′, h′) = φ(f, g, h) as follows. First, let f ′ = f and g′ = g. Now,
let h′((i, i + 1)) = h((j − 1, j)), h′((j − 1, j)) = h((i, i + 1)) and for all r′ ∈ (col(g) ∪
V1(f) ∪ E2(f)) \ {(i, i + 1), (j − 1, j)}, let h′(r) = h(r). Since h is bijective, we have
that h′ 6= h, and therefore φ(f, g, h) 6= (f, g, h). Since {f(i), f(i + 1)} = {f(j − 1), f(j)},
we have that y{f(i),f(i+1)},h((i,i+1)) = y{f ′(j−1),f ′(j)},h′((j−1,j)) and y{f(j−1),f(j)},h((j−1,j)) =
y{f ′(i),f ′(i+1)},h′((i,i+1)), and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because f = f ′, it
still holds that there are no bad pairs of types 1 and 2 in (f ′, g′, h′), and the sets of bad pairs
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of type 3 of (f, g, h) and (f ′, g′, h′) are same. Since by swapping the values assigned to i and
j by h′, we obtain h, and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 3(b): f(i) . . . f(j) is not a palindrome. We define (f ′, g′, h′) = φ(f, g, h) as follows.
For any r ∈ [q] such that r < i or r > j, we let f ′(r) = f(r), g′(r) = g(r). For any
r ∈ col(g) ∪ V1(f), r < i or r > j, h′(r) = h(r). (In this context, recall that the domain of
h is a set of indices.) For all (i′, i′ + 1), i′ < i or i′ ≥ j such that (i′, i′ + 1) ∈ E2(f) , let
h′((i′, i′ + 1)) = h((i′, i′ + 1)). Next, we are going to redirect the subwalk from i to j to be
from j to i, adjusting f, g and h accordingly. Formally, for each index i ≤ r ≤ i+b j−i

2 c, define
s(r) = j − (r − i) and s(j − (r − i)) = r. Now, for each index i ≤ r ≤ j, let f ′(r) = f(s(r)),
g′(r) = g(s(r)) and, if r ∈ col(g) ∪ V1(f), h′(r) = h(s(r)), and if (r, r + 1) ∈ E2(f) and
r + 1 ≤ j h′((r, r + 1)) = h(s(r), s(r + 1)). Since f(i) . . . f(j) is not a palindrome, we have
that f 6= f ′ and hence, φ(f, g, h) 6= (f, g, h). Notice that f and f ′ defines two walks in
the graph G. Observe that because f(i) = f(j), redirecting the subwalk between i and
j does not change the edges which the walk contains (but only the order between them
changes), and since upon changing the location of an occurrence of a vertex, we update f, g
and h accordingly to get f ′, g′ and h′, we have that m(f, g, h) = m(f ′, g′, h′) = m(φ(f, g, h)).
Finally, (f ′, g′, h′) does not have bad pairs of types 1 and 2, and it has the same bad pairs
of type 3 as (f, g, h). Also, since by redirecting the subwalk between i and j yet again we
obtain the original walk, and so we conclude that φ(φ(f, g, h)) = (f, g, h).

We also need to show that (f ′, g′, h′) ∈ B1. Towards that it is enough to show that f ′ is
a (`, `1, `2, u, t, k)-function for some u ∈ V (G). Since f is such a function, all the properties
except the property (iii) of (`, `1, `2, u, t, k)-function hold trivially. Now we show that in fact
property (iii) also true for f ′. That is for all i′ ∈ [q − 2], f ′(i′) = f ′(i′ + 2) ∈ V2 implies that
f ′(i′ + 1) ∈ V2. Since f satisfies property (iii), it holds that for all i′ /∈ {i − 1, i, j − 1, j},
if f ′(i′) = f ′(i′ + 2) ∈ V2 implies that f ′(i′ + 1) ∈ V2. Now consider the case of i − 1 and
f ′(i− 1), f ′(i), f ′(i+ 1). Since f ′(i) ∈ V2, statement mentioned in property (iii) holds for
i − 1. Now consider the case i and f ′(i), f ′(i + 1), f ′(i + 2). Notice that f ′(i) = f(i) and
f ′(i + 2) = f(j − 2). Since (i, j) is a smallest pair with f(i) = f(j) ∈ V2, we have that
f(i) 6= f(j − 2) and hence f ′(i) 6= f ′(i + 2). Hence statement mentioned in property (iii)
holds for i. Now consider the case of j − 1 and f ′(j − 1), f ′(j), f ′(j + 1). Since f ′(j) ∈ V2,
statement mentioned in property (iii) holds for j − 1. Now consider the case of j and
f ′(j), f ′(j + 1), f ′(j + 2). Since f ′(j) = f(j), f ′(j + 1) = f(j + 1), f ′(j + 2) = f(j + 2) and
property (iii) holds for f , we have that property (iii) holds for j. Hence (f ′, g′, h′) ∈ B1.

Case 4: i, j ∈ col(g) and g(i) = g(j). Among all such pairs, that we call bad pairs
of type 4, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h) as follows. First,
let f ′ = f and g′ = g. Now, let h′(i) = h(j) and h′(j) = h(i), and for all r ∈ (col(g) ∪
V1(f) ∪ E2(f)) \ {i, j}, we let h′(r) = h(r). Since h is bijective, we have that h′ 6= h, and
therefore φ(f, g, h) 6= (f, g, h). Moreover, zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i),
and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because (f, g) = (f ′, g′), there are still no
bad pairs of types 1, 2 and 3, and the sets of bad pairs of type 4 of (f, g, h) and (f ′, g′, h′)
are same. Also, by swapping the values assigned to i and j in h′, we obtain h, and so we
have that φ(φ(f, g, h)) = (f, g, h). J

Now, we define a polynomial Q =
∑

(f,g,h)∈B1

m(f, g, h) which will be evaluated over the

finite field Fp, where p = 2dlog(3(`+`1+`2+2k))e. Since Fp has characteristic 2, by Observa-
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tions 16 and 18, and Lemma 19, we get the following lemma (its proof is identical to the
proof of Lemma 8).

I Lemma 20. The input instance of K-PEL Path is a Yes-instance if and only if P 6≡ 0.

Evaluation For I ⊆ [k+`1 +`2], a (q, q1, q2, u, v, k
′, I)-labeling (f, g, h) is a (q, q1, q2, u, v, k

′)-
labeling such that the image of h is a subset of I. Let S(q, q1, q2, u, v, k

′, I) denote the set of all
(q, q1, q2, u, v, k

′, I)-labelings. Let P (q, q1, q2, u, v, k
′, I) =

∑
(f,g,h)∈S(q,q1,q2,u,v,k′,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate
polynomials, has characteristic 2, we have the following observation.

I Observation 21. Q =
∑

I⊆[`1+`2+k]

∑
u∗∈N(t)

P (`, `1, `2, u
∗, t, k, I).

We next show that a polynomial of the form P (`, `1, `2, u
∗, t, k, I) can be evaluated at

any point in time polynomial in N using dynamic programming, where N is an upper bound
on number of variables.

I Lemma 22 (?). Let I ⊆ [k], u∗ ∈ N(t). Let x1, . . . , xN be the variables in P (`, `1, `2, u
∗, t,

k, I). Let a1, a2, . . . , aN ∈ Fp denote the chosen values for the variables. Then, the polynomial
P (`, `1, `2, u

∗, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1) using space NO(1).

Combining Observation 21 with Lemma 22, and since there are 2`1+`2+k subsets I of
[`1 + `2 + k], we have the following result.

I Lemma 23. Given an assignment of values from Fp to the variables of P , the polynomial
P can be evaluated in time 2`1+`2+kNO(1) using space polynomial in N .

The Algorithm. By Lemmata 13, 20 and 23, we get the following lemma (its proof is
identical to Theorem 14).

I Lemma 24. There is a polynomial space randomized algorithm for K-PEL Path running
in time O∗(2`1+`2+k) with one sided constant error probability.

I Lemma 25 ([3]). Let W be a simple path of length ` in a graph G. Then, for a partition
(V1, V2) of V (G) chosen uniformly at random, let p(`, `1, `2) be the probability that |V (W ) ∩
V1| = `1 and |E(W ) ∩ E(V2)| = `2. Then for any `, we can find `′1, `

′
2 ∈ N such that

`′1 + `′2 ≤ ` and 2`′1+`′2
p(`,`′1,`′2) ≤ 1.6569`|V (G)|c for some constant c.

We use Lemma 25 to prove the main theorem of the section.

I Theorem 26. There is a polynomial space randomized algorithm for Exact List K-Cycle
running in time O∗(2k1.6569`−k) with one sided constant error probability.

Proof. Let (G,K,L, k∗, k, `) be the input instance and n = |V (G)|. We describe an algorithm
A for Exact List K-Cycle . Let `′, `′2 be the integers guaranteed by the Lemma 25 and
let p(`, `′1, `′2) be the probability mentioned in Lemma 25. Now for each `1 ≤ `′1 and `2 ≤ `′2,
we randomly choose a partition (V1, V2) of V (G) \ K and run algorithm B mentioned in
Lemma 24 for K-PEL Path. Algorithm A repeats algorithm B 1

p(`,`′1,`′2) many times. If at
least once algorithm B outputs Yes, then A outputs Yes and otherwise outputs No.

Clearly if (G,K,L, k∗, k, `) is a No instance, then our algorithm will output No . Now
suppose (G,K,L, k∗, k, `) is a Yes instance. Then there is a simple path W of length `
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with required property. We know that for a partition (V ′1 , V ′2) of V (G) chosen uniformly at
random, the probability that |V (W ) ∩ V1| = `′1 and |E(W ) ∩ E(V2)| = `′2 is p(`, `′1, `′2). This
implies that there exist `1 ≤ `′1 and `2 ≤ `′2 such that for a partition (V1, V2) of V (G) \K
chosen uniformly at random, the probability that |V (W )∩V1| = `1 and |E(W )∩E(V2)| = `2
is p(`, `′1, `′2). For that choice of `1 and `2 the probability that algorithm B outputs Yes is
p(`, `′1, `′2). Since algorithm B runs 1

p(`,`′1,`′2) many times with parameters `1 and `2, algorithm
A outputs Yes with constant probability.

The running time of algorithm A is upper bounded by 2`′1+`′2+knc′

p(`,`′1,`′2) for some constant c′.

By Lemma 25, we have that 2`′1+`′2
p(`,`′1,`′2) ≤ 1.6569`nc, where c is some constant. This implies

that the running time of algorithm A is upper bounded by O∗(2k1.6569`−k). Since algorithm
B uses only polynomial space, A is a polynomial space algorithm. This completes the proof
of the theorem. J
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Abstract
We study some well-known graph contraction problems in the recently introduced framework of
lossy kernelization. In classical kernelization, given an instance (I, k) of a parameterized problem,
we are interested in obtaining (in polynomial time) an equivalent instance (I ′, k′) of the same
problem whose size is bounded by a function in k. This notion however has a major limitation.
Given an approximate solution to the instance (I ′, k′), we can say nothing about the original
instance (I, k). To handle this issue, among others, the framework of lossy kernelization was
introduced. In this framework, for a constant α, given an instance (I, k) we obtain an instance
(I ′, k′) of the same problem such that, for every c > 1, any c-approximate solution to (I ′, k′)
can be turned into a (cα)-approximate solution to the original instance (I, k) in polynomial time.
Naturally, we are interested in a polynomial time algorithm for this task, and further require that
|I ′|+k′ = kO(1). Akin to the notion of polynomial time approximation schemes in approximation
algorithms, a parameterized problem is said to admit a polynomial size approximate kernelization
scheme (PSAKS) if it admits a polynomial size α-approximate kernel for every approximation
parameter α > 1. In this work, we design PSAKSs for Tree Contraction, Star Contrac-
tion, Out-Tree Contraction and Cactus Contraction problems. These problems do not
admit polynomial kernels, and we show that each of them admit a PSAKS with running time
kf(α)|I|O(1) that returns an instance of size kg(α) where f(α) and g(α) are constants depending
on α.
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1 Introduction

Many computational problems arising from real-world problems are NP-hard, and we do
not expect any efficient algorithms for solving them optimally. Preprocessing heuristics,
or data reduction rules, are widely applied to reduce large instances of these problems
to a smaller size before attempting to solve them. Such algorithms are often extremely
effective, and provide a significant boost to the subsequent step of computing a solution
to the instance. Kernelization, under the aegis of Parameterized Complexity, has been
developed as a mathematical framework to study these algorithms and quantify their efficacy.
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23:2 Lossy Kernels for Graph Contraction Problems

In Parameterized Complexity, we consider instances (I, k) of a parameterized problem
Π ⊆ Σ∗ × N, where Σ is a finite alphabet. Typically, I is an instance of some computational
problem, and k denotes the parameter which reflects some structural property of the instance.
A common parameter is a bound on the size of an optimum solution to the problem instance.
A data reduction algorithm, formally called a Kernelization algorithm, runs in polynomial
time and reduces a given instance (I, k) of the problem to an equivalent instance (I ′, k′)
such that |I ′|+ k′ = kO(1). The instance (I ′, k′) is called a polynomial kernel, and we say
that the problem Π admits a polynomial kernelization (also called classical kernelization).
Desigining kernelization algorithms for various computational problems, and investigating
the associated lower bounds, is an active area of research in Computer Science. We refer the
reader to [6, 9, 10] for an introduction to Parameterized Complexity and Kernelization.

The notion of polynomial kernels turns out to be a bit stringent, and it has been discovered
that many problems do not admit a polynomial kernel under well-known complexity theoretic
conjectures. On the other hand this notion turns out to be too lax as the instances (I, k) and
(I ′, k′) are not as tightly-coupled as one would like. For example, it is not possible to translate
an approximate solution to the instance (I ′, k′), into an approximate solution to the original
instance (I, k). Indeed, given anything but an optimal solution (or a solution of size k′) to
(I ′, k′), it is impossible to conclude anything about the original instance (I, k). These issues,
among others, have led to the development of a framework for “approximation preserving
kernelization” or Lossy Kernelization. Informally, an α-approximate kernelization algorithm
ensures that given any c-approximate solution to the kernel (I ′, k′), it can be converted into
a c · α-approximate solution to the original instance (I, k) in polynomial time. This notion
was formally introduced, very recently, in [18] which shows that there are many problems
without classical polynomial kernels that admit lossy polynomial kernels. Furthermore, it is
likely that this notion will be very useful in practice. Many state of the art approximation
algorithms are extremely sophisticated and it is infeasible to apply them to large problem
instances. It is far more practical to reduce a large instance to a small kernel, then obtain
a good approximate solution to this kernel, and finally transform it into an approximate
solution to the original instance. In other words, lossy kernelization provides a mathematical
framework for designing and analyzing preprocessing heuristics for approximation algorithms.

Let us state these notions formally. We first define a parameterized optimization (max-
imization / minimization) problem, which is the parameterized analogue of an optimiza-
tion problem in the theory of approximation algorithms. A parameterized minimization
problem is a computable function Π : Σ∗ × N × Σ∗ 7→ R ∪ {±∞}. The instances of Π
are pairs (I, k) ∈ Σ∗ × N and a solution to (I, k) is simply a string S ∈ Σ∗ such that
|S| ≤ |I| + k. The value of a solution S is Π(I, k, S). The optimum value of (I, k) is
OPTΠ(I, k) = minS∈Σ∗, |S|≤|I|+k Π(I, k, S), and an optimum solution for (I, k) is a solution
S such that Π(I, k, S) = OPTΠ(I, k). A parameterized maximization problem is defined in a
similar way. We will omit the subscript Π in the notation for optimum value if the problem
under consideration is clear from context. Next we come to the notion of an α-approximate
polynomial-time preprocessing algorithm for a parameterized optimization problem Π. It
is defined as a pair of polynomial-time algorithms, called the reduction algorithm and the
solution lifting algorithm, that satisfy the following properties.

Given an instance (I, k) of Π, the reduction algorithm computes an instance (I ′, k′) of Π.
Given the instances (I, k) and (I ′, k′) of Π, and a solution S′ to (I ′, k′), the solution
lifting algorithm computes a solution S to (I, k) such that Π(I,k,S)

OPT(I,k) ≤ α ·
Π(I′,k′,S′)
OPT(I′,k′) .

A reduction rule is the execution of the reduction algorithm on an instance, and it is
applicable on an instance if the output instance is different from the input instance. An
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α-approximate kernelization (or α-approximate kernel) for Π is an α-approximate polynomial-
time preprocessing algorithm such that the size of the output instance is upper bounded by a
computable function g : N×N of k. In classical kernelization, often we apply reduction rules
several times to reduce the given instance. This however breaks down in lossy kernelization,
since each application of a reduction rule increases the “gap” between the approximation
quality of the solution to the kernel, and the approximation quality of solution to the original
instance that is computed by the solution lifting algorithm. To remedy this shortcoming, we
require the notion of α-strict kernelization and α-safe reduction rules. An α-approximate
kernelization is said to be strict if Π(I,k,s)

OPT(I,k) ≤ max{ Π(I′,k′,s′)
OPT(I′,k′) , α}. A reduction rule is said

to be α-safe for Π if there is a solution lifting algorithm, such that the rule together with
this algorithm constitute a strict α-approximate polynomial-time preprocessing algorithm
for Π. A reduction rule is safe if it is 1-safe, and note this this is more strict that the usual
definition of safeness in classical kernelization. A polynomial-size approximate kernelization
scheme (PSAKS) for Π is a family of α-approximate polynomial kernelization algorithms for
each α > 1. Note that, the size of an output instance of a PSAKS, when run on (I, k) with
approximation parameter α, must be upper bounded by f(α)kg(α) for some functions f and
g independent of |I| and k. And finally, let us discuss the importance of the parameter k
in this framework. In a classical kernelization, given an instance (I, k) the algorithm either
returns another instance (i.e. a kernel) or decides that given instance has no solution of value
at most k (i.e a NO instance). In lossy kernelization the output is always an instance of the
optimization problem, and we must ensure that our kernelization algorithm must be safe on
all instances. This may seem like a difficult goal, but recall that we are only interested in
solutions of value at most k, and therefore we may define our parameterized minimization
problem to reflect this fact.

Π(I, k, S) =
{

∞ if S is not a solution
min{|S|, k + 1} otherwise

This definition allows us to design the reduction rules without regard to the solutions of
value more than k. In particular, if the solution lifting algorithm is given a solution of value
k + 1 or more, it simply returns an a trivial feasible solution to the instance, and this is safe
as per the above definitions. We encourage the reader to see [18] for a more comprehensive
discussion of these ideas and definitions.

In [18], the authors exhibit lossy kernels for several problems which do not admit a
classical kernelization, such as Connected Vertex Cover, Disjoint Cycle Packing
and Disjoint Factors. They also develop a lower bound framework for lossy kernels,
by extending the lower bound framework of classical kernelization. They then show that
Longest Path does not admit a lossy kernel of polynomial size unless NP ⊆ coNP/poly. In
this paper, we investigate several other problems in the framework of lossy kernelization. In
particular, we design lossy polynomial kernels for several graph contraction problems which
do not admit classical polynomial kernels under well known complexity theoretic conjectures.
These problems are defined as follows. For a graph class G, the G-Contraction problem is
to determine if an input graph G can be contracted to some graph H ∈ G using at most k
edge contractions. These problems are well studied and G-Contraction has been proven to
be NP-complete for several classes G [1, 4, 20, 21]. They have also received a lot of attention
in Parameterized Complexity [2, 5, 12, 13, 14, 15, 16, 17, 19]. In this work, we give lossy
polynomial kernels for the following problems. In the following G/F denotes the graph
obtained from G by contracting the edges in F .
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Tree Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a tree?

Star Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a star?

Out-Tree Contraction Parameter: k

Input: A digraph D and an integer k
Question: Does there exist F ⊆ A(D) of size at most k such that D/A is an out-tree?

Cactus Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a cactus?

It can be shown that these problems do not admit polynomial kernels, via a parameter
preserving reduction from the Red Blue Dominating Set problem. Let us define these
terms formally. A polynomial-time parameter preserving reduction from a parameterized
problem Π1 to a parameterized problem Π2 is a polynomial-time function that maps an
instance (I1, k1) of Π1 to an instance (I2, k2) of Π2 such that k2 = k

O(1)
1 , and (I1, k1) is an

YES instance of Π1 if and only if (I2, k2) is an YES instance of Π2. It is known that if Π1 does
not admit a polynomial kernel, then neither does Π2 [3]. Next, let us define the Red Blue
Dominating Set problem. The input is a bipartite graph G with bipartition (A,B) and an
integer t, this problem asks if B has a subset of at most t vertices that dominates A. This
problem is NP-complete [11] and it does not have a polynomial kernel when parameterized
by |A| [8]. It was shown that Tree Contraction and Star Contraction do not admit
a polynomial kernel, by a polynomial parameter preserving reduction from this problem [16].
We build upon the reductions in [16] to show that the two remaining problems also do not
admit a polynomial kernel. The following theorem is the main result of this paper.

I Theorem 1.1. Given a graph (digraph) G on n vertices, an integer k and an approx-
imation parameter α > 1, there is an algorithm that runs in kf(α)nO(1) time and outputs
a graph (digraph) G′ on kg(α) vertices and an integer k′ such that for every c > 1, a c-
approximate (tree/star/cactus/out-tree contraction) solution for (G′, k′) can be turned into a
(cα)-approximate (tree/star/cactus/out-tree contraction) solution for (G, k) in nO(1). Here
f(α) and g(α) are constants depending on α.

2 Preliminaries

An undirected graph is a pair consisting of a set V of vertices and a set E of edges where
E ⊆ V × V . An edge is specified as an unordered pair of vertices. For a graph G, V (G)
and E(G) denote the set of vertices and edges respectively. Two vertices u, v are said to be
adjacent if there is an edge uv in the graph. The neighbourhood of a vertex v, denoted by
NG(v), is the set of vertices adjacent to v and its degree dG(v) is |NG(v)|. The subscript
in the notation for neighbourhood and degree is omitted if the graph under consideration
is clear. For a set of edges F , V (F ) denotes the set of endpoints of edges in F . For a set
S ⊆ V (G), G− S denotes the graph obtained by deleting S from G and G[S] denotes the
subgraph of G induced on set S. For graph theoretic terms and notation which are not
explicitly defined here, we refer the reader to the book by Diestel [7].
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Two non-adjacent vertices u and v are called as false twins of each other if N(u) = N(v).
A path P = (v1, . . . , vl) is a sequence of distinct vertices where every consecutive pair of
vertices is adjacent. The vertices of P is the set {v1, . . . , vl} and is denoted by V (P ). The
length of a path is |V (P )| − 1. A cycle is a sequence (v1, . . . , vl, v1) of vertices such that
(v1, . . . , vl) is a path and vlv1 is an edge. A leaf is a vertex of degree 1. A graph is called
connected if there is a path between any pair of its vertices and it is called disconnected
otherwise. A cut vertex of a connected graph G is a vertex v such that G−{v} is disconnected.
A graph that has no cut vertex is called 2-connected. A component of a disconnected graph
is a maximal connected subgraph. A set S ⊆ V (G) is called a vertex cover if for every edge
uv, either u ∈ S or v ∈ S. Further, S is called a connected vertex cover if G[S] is connected.
A set I ⊆ V (G) of pairwise non-adjacent vertices is called as an independent set. A set S of
vertices is said to dominate another set S′ of vertices if for every vertex v in S′, N(v)∩S 6= ∅.
A tree is a connected acyclic graph. A star is a tree in which there is a path of length at
most 2 between any 2 vertices. A graph is called a cactus if every edge is a part of at most
one cycle.

The contraction operation of an edge e = uv in G results in the deletion of u and
v and the addition of a new vertex w adjacent to vertices that were adjacent to either
u or v. Any parallel edges added in the process are deleted so that the graph remains
simple. The resulting graph is denoted by G/e. Formally, V (G/e) = V (G) ∪ {w}\{u, v} and
E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈ E(G)} ∪ {wx| x ∈ NG(u) ∪NG(v)}. For a set of
edges F ⊆ E(G), G/F denotes the graph obtained from G by contracting the edges in F in
an arbitrary order. It is easy to see that G/F is oblivious to the contraction sequence. A
graph G is contractible to a graph T , if T can be obtained from G by a sequence of edge
contractions. For graphs G and T with V (T ) = {t1, · · · , tl}, G is said to have a T -witness
structure W if W is a partition of V (G) into l sets and there is a bijection W : V (T ) 7→ W
such that the following properties hold.

For each ti ∈ V (T ), G[W (ti)] is connected.
For a pair ti, tj ∈ V (T ), titj ∈ E(T ) if and only if there is an edge between a vertex in
W (ti) and a vertex in W (tj) in G.

The sets W (t1), · · ·W (tl) in W are called witness sets. It is easy to observe the following
(also see [16]).

I Observation 1. G is contractible to T if and only if G has a T -witness structure.

We associate a T -witness structure W of G with a set F ⊆ E(G) whose contraction in G
results in T , by defining F to be the union of the set of edges of a spanning tree of G[W ], for
each W ∈ W . Note that there is a unique T -witness structure of G corresponding to a set F .

I Observation 2. |F | =
∑

W∈W
(|W | − 1).

We say that, G is said to be |F |-contractible to T and it is easy to verify the following. For
every W ∈ W , |W | ≤ |F |+ 1, and further, |{W ∈ W | |W | > 1}| ≤ |F |. Finally, we have the
following observation on the neighbors of vertices in W (t), when t is a leaf in T .

I Observation 3. Let t be a leaf in T and t′ be its unique neighbour. Then,
⋃
v∈W (t)NG(v) ⊆

W (t′) ∪W (t).

Proof. Consider a leaf t in T . Assume on the contrary that there exists t′ and t′′ (distinct
from t) such that N(u)∩W (t′) 6= ∅ and N(v)∩W (t′′) 6= ∅ for some u and v (not necessarily
distinct) in W (t). Then, t has degree at least 2 contradicting the fact that it is a leaf. J
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We denote the set of integers from 1 to n by [n]. We also use the bound, x+p
y+q ≤ max{xy ,

p
q }

for any positive real numbers x, y, p, q, to prove that the reduction rules we define are strict α-
approximate for some real number α. In this paper, use TC(·), OTC(·) and CC(·) to denote
the parameterized minimization version of Tree Contraction, Out-Tree Contraction
and Cactus Contraction, respectively. Recall that these functions assign a value of k + 1
to any solution of value k + 1 or more.

3 Tree Contraction

We begin with the Tree Contraction problem, which admits a 4knO(1) algorithm (where
n is the number of vertices of the input graph) by using a FPT algorithm for Connected
Vertex Cover as a subroutine, and further it does not admit a polynomial kernel unless
NP ⊆ coNP/poly [16]. This lower-bound also holds for Star Contraction. Before we
proceed to describe a PSAKS for these problems, we mention the following simplifying
assumption known from [16] which states that, the tree witness structure of a graph can be
constructed from the tree witness structures of its 2-connected components.

I Lemma 3.1 ([16]). A connected graph is k-contractible to a tree if and only if each of its
2-connected components is contractible to a tree using at most k edge contractions in total.

Observe that there can be at most k non-trivial 2-connected components in the input
graph, and we can consider each such component separately. The output of our kernelization
algorithm will be a disjoint union of the kernels for each 2-connected component. So from now
onwards we assume that the input graph is 2-connected. Next, we make some observations
on the tree witness structure of a graph.

I Lemma 3.2. Let F be a minimal set of edges of a 2-connected graph G such that G/F is
a tree T with V (T ) = {t1, t2, . . . , tl} and l ≥ 3. Let W denote the corresponding T -witness
structure of G. Then there exists a set F ′ of at most |F | edges of G such that, G/F ′ is a
tree T ′ and the corresponding T ′-witness structure W ′ of G satisfies the following property:
W ′(t′) ∈ W ′ is a singleton set, if and only if t′ is a leaf in T ′.

Proof. First, we show that every vertex t ∈ V (T ) such that |W (t)| = 1 is a leaf in T .
Suppose there is a non-leaf t in T such that W (t) = {u} for some u ∈ V (G). Then, T − {t}
has at least two non-empty subtrees, say T1 and T2. Consider U1 =

⋃
t∈V (T1)W (t) and

U2 =
⋃
t∈V (T2)W (t). As W is the corresponding T -witness structure of G, it follows that

there is no edge between a vertex in U1 and a vertex in U2 in G− {u}. This contradicts the
fact that G is 2-connected.

Now, consider a leaf ti in T such that |W (ti)| > 1. Let tj be the unique neighbour of ti,
and note that tj is not a leaf in T . As titj ∈ E(T ), there exists an edge in G between a vertex
in W (ti) and a vertex in W (tj). Therefore, G[W (ti) ∪W (tj)] is connected. We claim that
G[W (ti)∪W (tj)] has a spanning tree which has a leaf fromW (ti). Observe that as |W (ti)| > 1,
any spanning tree of G[W (ti)] has at least 2 leaves. If there is a spanning tree of G[W (ti)]
that has a leaf u which is not adjacent to any vertex in W (tj), then G[(W (ti)∪W (tj)) \ {u}]
is connected too and u is the required vertex. Otherwise, every leaf in every spanning tree of
G[W (ti)] is adjacent to some vertex inW (tj) and hence G[(W (ti)∪W (tj))\{u}] is connected
for each vertex u ∈W (ti). Therefore, as claimed, G[W (ti)∪W (tj)] has a spanning tree which
has a leaf v from W (ti). Consider the partition W ′ = (W ∪ {Wv,Wij}) \ {W (ti),W (tj)} of
G where Wv = {v} and Wij = (W (tj) ∪W (ti)) \ {v}. Then, as N(v) ⊆ W (ti) ∪W (tj) by
Observation 3, it follows that W ′ is a T ′-witness structure of G, where T ′ is a tree. Further,
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T ′ is the tree obtained from T by adding a new vertex tij adjacent to N(tj) and a new
vertex tv adjacent to tij and then deleting ti, tj . This leads to a set F ′ of at most |F | edges
of G such that T ′ = G/F ′ is a tree. Further note that, T and T ′ has the same number of
vertices. Now recall that T has at least 3 vertices and hence it has at least one non-leaf vertex.
Further, every leaf vertex is adjacent to some non-leaf vertex in T (and T ′). Therefore we
repeat the above process for every non-singleton leaf, which proves the lemma. J

Let us remark that, it is safe to assume that T has at least 3 vertices. Otherwise, we can
bound the number of vertices in G by |F |+ 2, and since we are concerned with solutions of
value k or smaller, this gives us a trivial kernel. Indeed, the main challenge lies in bounding
the set of singleton witness sets. Subsequently, we assume that all tree witness structures
have this property. Lemma 3.2 immediately leads to the following equivalence of Star
Contraction and Connected Vertex Cover.

I Lemma 3.3 (?1). G has a set F ⊆ E(G) such that G/F is a star if and only if G has a
connected vertex cover of size |F |+ 1.

As Connected Vertex Cover has a PSAKS [18], we have the following result.

I Theorem 3.4. Star Contraction parameterized by the solution size admits a PSAKS.

Lemma 3.2 also leads to the following relationship between Tree Contraction and
Connected Vertex Cover.

I Lemma 3.5. If G is k-contractible to a tree, then G has a connected vertex cover of size
at most 2k.

Proof. As G is k-contractible to a tree, there exists a (minimal) set of edges F such that
|F | ≤ k and T = G/F is a tree. LetW be the corresponding T -witness structure of G andW ′
denote the set of non-singleton sets inW . Let X denote the set of vertices of G which are in a
set inW ′. By Lemma 3.2, we can assume that every leaf of T corresponds to a singleton witness
set, and vice versa. Let L be the set of leaves of T . Then, I = {v ∈ V (G) | v ∈W (t), t ∈ L}
is an independent set in G. Thus, X is a vertex cover of G. As |F | ≤ k, we have |X| ≤ 2k as
every vertex in X has an edge incident on it that is in F . Finally, since the set of non-leaves
of a tree induces a subtree, it follows that G[X] is connected. J

Now, we move on to describe a PSAKS for Tree Contraction. We define a partition of
vertices of G into the following three parts:

H = {u ∈ V (G) | d(u) ≥ 2k + 1},
I = {v ∈ V (G) \H | N(v) ⊆ H}.
R =V (G) \ (H ∪ I).

We define the first reduction rule as follows.

I Reduction Rule 3.1. If there is a vertex v ∈ I that has at least 2k + 1 false twins, then
delete v. That is, the resultant instance is (G− {v}, k).

I Lemma 3.6. Reduction Rule 3.1 is safe.

1 Proofs of results marked ? have been omitted due to the lack of space. They will appear in the full
version of the paper.
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Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then the
solution lifting algorithm returns E(G), otherwise it returns F = F ′. We show that this
solution lifting algorithm with the reduction rule constitutes a strict 1-approximate polynomial
time preprocessing algorithm. If |F ′| ≥ k′ + 1 then TC(G, k, F ) ≤ k + 1 = TC(G′, k′, F ′).
Otherwise, |F ′| ≤ k and let T ′ be the tree G′/F ′ andW ′ denote the corresponding T ′-witness
structure of G′. Then, as v has at least 2k + 1 false twins, one of these twins, say u, is
not in V (F ′). In other words, there is a vertex t in T ′ such that W ′(t) = {u}. By Lemma
3.2, t is a leaf. Let t′ denote the unique neighbour of t in T ′. Then, from Observation 3,
NG′(u) ⊆ W ′(t′). Let T be the tree obtained from T ′ by adding a new vertex tv as a leaf
adjacent to t′. Since NG′(u) = NG(u) = NG(v), all the vertices in NG(v) are in W ′(t′).
Define the partition W of V (G) obtained from W ′ by adding a new set {v}. Then, G/F is T
and W is the corresponding T -witness structure of G. Hence, TC(G, k, F ) ≤ TC(G′, k′, F ′).

Next, consider an optimum solution F ∗ for (G, k). If |F ∗| ≥ k + 1 then OPT(G, k) =
k + 1 ≥ OPT(G′, k′). Otherwise, |F ∗| ≤ k and let T = G/F ∗. Let W∗ denote the
corresponding T -witness structure of G. If there is a leaf t in T such that W ∗(t) = {v}, then
F ∗ is also a solution for (G′, k′) and OPT(G′, k′) ≤ OPT(G, k). Otherwise, as v has at least
2k + 1 false twins, one of these twins, say u, is not in V (F ∗). That is, there is a leaf t in T
such that W ∗(t) = {u}. Define the partition W ′ of V (G) obtained from W∗ by replacing u
by v and v by u. Then, the set F ′ of edges of G obtained from F by replacing the edge xv
with the edge xu for each x is also an optimum solution for (G, k). Further, it is a solution
for (G′, k′) and therefore, OPT(G′, k′) ≤ OPT(G, k). Hence, TC(G,k,F )

OPT(G,k) ≤
TC(G′,k′,F ′)
OPT(G′,k′) . J

Given α > 1, let d be the minimum integer such that α ≥ d
d−1 . That is, d = d α

α−1e. The
second reduction rule is the following.

I Reduction Rule 3.2. If there are vertices v1, v2, . . . , v2k+1 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for each i ∈ [2k+ 1] then contract all edges in Ẽ = {v1hi | i ∈ [d]}
and reduce the parameter by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

I Lemma 3.7. Reduction Rule 3.2 is α-safe.

Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then
the solution lifting algorithm returns E(G), otherwise it returns F = F ′ ∪ Ẽ. We will
show that this solution lifting algorithm with the reduction rule constitutes a strict α-
approximate polynomial time preprocessing algorithm. First, we prove that TC(G, k, F ) ≤
TC(G′, k′, F ′) + d. If |F ′| ≥ k′ + 1 then TC(G′, k′, F ′) = k′ + 1. In this case, F = E(G)
and TC(G, k, F ) ≤ k + 1 = k′ + d = TC(G′, k′, F ′) + d − 1. Consider the case when
|F ′| ≤ k′ and let W ′ = {W ′(t1),W ′(t2), . . . ,W ′(tl)} be the corresponding G′/F ′-witness
structure of G. Let w denote the vertex in V (G′) \ V (G) obtained by contracting Ẽ.
Without loss of generality, assume that w ∈ W ′(t1). Define W = (W ′ ∪ {W1}) \ {W ′(t1)}
where W1 = (W ′(t1) ∪ {v1, h1, h2, . . . , hd}) \ {w}. Note that V (G) \ {v1, h1, h2, . . . , hd} =
V (G′) \ {w} and hence W is partition of V (G). Further, G[W1] is connected as G′[W ′(t1)]
is connected. A spanning tree of G′[W ′(t1)] along with Ẽ is a spanning tree of G[W1]. Also,
|W1| = |W ′(t1)|+ d and any vertex which is adjacent to w in G′ is adjacent to at least one
vertex in {v1, h1, h2, . . . , hd} in G. Thus, W is a G/F -witness structure of G where G/F is
a tree isomorphic to G′/F ′. Therefore, TC(G, k, F ) ≤ TC(G′, k′, F ′) + d.

We now show that OPT(G′, k′) ≤ OPT(G, k)− (d− 1). Let F ∗ be an optimum solution
for (G, k) and W be the corresponding G/F ∗-witness structure of G. Let T be G/F ∗.
If |F ∗| ≥ k + 1, then OPT(G, k) = k + 1 = k′ + d ≥ OPT(G′, k′) + d − 1. Otherwise,
|F ∗| ≤ k and there is at least one vertex, say vq in {v1, v2, . . . , v2k+1} which is not in
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V (F ∗). By Observation 3, N(vq) and hence {h1, h2, . . . , hd} are in the same witness set,
say W (ti) where ti ∈ V (T ). If v1 ∈ W (ti) then F ′ = F ∗ \ Ẽ is solution to (G′, k′) and so
OPT(G′, k′) ≤ |F ′| = |F ∗|−d = OPT(G, k)−d. Otherwise, v1 6∈W (ti) and let tj ∈ V (T ) be
the vertex such that v1 ∈W (tj). Then, ti and tj are adjacent in T . Define another partition
W ′ = W ∪ {W (tij)} \ {W (ti),W (tj)} of V (G) where W (tij) = W (ti) ∪W (tj). Clearly,
G[W (tij)] is connected. Thus, W ′ is a G/F -witness structure of G where |F | = |F ∗|+ 1 as
|W (ti)|−1+|W (tj)|−1 = (|W (tij)|−1)−1. In particular, G/F is the tree obtained from G/F ∗

by contracting the edge titj . Finally, without loss of generality Ẽ ⊆ F and thus F ′ = F \ Ẽ
is a solution to (G′, k′). Therefore, OPT(G′, k′) ≤ |F ′| = |F ∗|+ 1− d = OPT(G, k)− d+ 1.
Combining these bounds, we have TC(G,k,F )

OPT(G,k) ≤
TC(G′,k′,F ′)+d

OPT(G′,k′)+(d−1) ≤ max
{

TC(G′,k′,F ′)
OPT(G′,k′) , α

}
. J

It is easy to see that the above rule can be applied in O((2k)d · nc) time, by considering each
subset of H of cardinality d, where c is a constant independent of α and n is the number of
vertices in the graph. This leads to the following bound.

I Lemma 3.8. Suppose G is k-contractible to a tree and neither of the Reduction rules 3.1
and 3.2 are applicable on the instance (G, k). Then, |V (G)| is O((2k)d+1 + k2).

Proof. We will bound H, I and R separately in order to bound V (G). By Lemma 3.5, G
has a connected vertex cover S of size at most 2k. As H is the set of vertices of degree at
least 2k + 1, H ⊆ S and so |H| ≤ 2k. Every vertex in R has degree at most 2k. Therefore,
as S ∩ R is a vertex cover of G[R], |E(G[R])| is O(k2). Also, by the definition of I, every
vertex in R has a neighbour in R and hence there are no isolated vertices in G[R]. Thus, |R|
is O(k2). Finally, we bound the size of I. For every set H ′ ⊆ H of cardinality less than d,
there are at most 2k + 1 vertices in I which have H ′ as their neighbourhood. Otherwise,
Reduction Rule 3.1 would have been applied. Hence, there are at most (2k + 1) ·

( 2k
d−1
)

vertices in I which have degree less than d. Further, for a d-size subset H ′ of H, there are at
most 2k + 1 vertices in I which contain H ′ in their neighbourhood. Otherwise, Reduction
Rule 3.2 would have been applied. As a vertex in I of degree at least d is adjacent to all
vertices in at least one such subset of H, there are at most (2k+ 1)

(2k
d

)
vertices of I of degree

at least d. Therefore, |I| is O((2k)d+1). J

Now, we have a PSAKS for the problem.

I Theorem 3.9 (?). Tree Contraction admits a strict PSAKS with O((2k)d
α

α−1 e+2 + k3)
vertices.

4 Out-Tree Contraction

In this section, we describe a PSAKS for an analogue of Tree Contraction in directed
graphs. We first require some terminology on directed graphs. A directed graph (or digraph)
is a pair consisting of a set V of vertices and a set A of directed edges (arcs) where A ⊆ V ×V .
An arc is specified as an ordered pair of vertices uv and we say that the arc uv is directed
from u to v. Let V (D) and A(D) denote the sets of vertices and arcs of a digraph D. For a
vertex v ∈ V (D), N−(v) denotes the set {u ∈ V (D) | uv ∈ A(D)} of its in-neighbors and
N+(v) denotes the set {u ∈ V (D) | vu ∈ A(D)} of its out-neighbors. The neighborhood of a
vertex v is the set N(v) = N+(v)∪N−(v). The in-degree of a vertex v, denoted by d−(v), is
|N−(v)|. Similarly, its out-degree is |N+(v)| which is denoted by d+(v). The (total) degree
of v, denoted by d(v), is the sum of its in-degree and out-degree. A sequence P = (v1, · · · , vl)
of distinct vertices of D is called a directed path in D if v1v2, · · · , vl−1vl ∈ A(D).
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For a digraph D, its underlying undirected graph GD is the undirected graph on the
vertex set V (D) with the edge set {uv | uv ∈ A(D)}. An out-tree T is a digraph where each
vertex has in-degree at most 1 such that GT is a tree. A vertex v of an out-tree is called
a leaf if d−(v) = 1 and d+(v) = 0. The root of an out-tree is the unique vertex that has
no in-neighbor. The contraction of an arc e = uv in D results in the digraph, denoted by
D/e, on the vertex set V ′ = V (D) \ {u, v} ∪ {x} with A(D/e) = {pq | pq ∈ A(D) and p, q ∈
V ′} ∪ {xz | vz ∈ A(D)} ∪ {zx | zu ∈ A(D)} ∪ {xz | uz ∈ A(D)} ∪ {zx | zv ∈ A(D)}. The
notion of witness structures and witness sets are extended to digraphs as follows. For digraphs
D and T with V (T ) = {t1, · · · , tl}, D is said to have a T -witness structure W if W is a
partition of V (D) into l sets (called witness sets) and there is a bijection W : V (T ) 7→ W
such that the following properties hold.

For each ti ∈ V (T ), GD[W (ti)] is connected.
For a pair ti, tj ∈ V (T ), titj ∈ A(T ) if and only if there is an arc from a vertex in W (ti)
to a vertex in W (tj) in D.

Analogous to undirected graphs, we associate a T -witness structure W of G with a set
F ⊆ A(D) whose contraction in D results in T by defining F to be the set of the arcs
corresponding to the edges of a spanning tree of GD[W ] for each W ∈ W. Now, we show
that similar to Tree Contraction, Out-Tree Contraction also does not admit a
polynomial kernel. We modify the reduction known for Tree Contraction to show this
hardness.

I Lemma 4.1 (?). Out-Tree Contraction does not have a polynomial kernel unless
NP ⊆ coNP/poly.

Now, we describe a PSAKS for Out-Tree Contraction. We note that the simplifying
assumptions in Tree Contraction, such as ignoring cut vertices and requiring that the
leaves of the resultant tree correspond to singleton witness sets, do not hold anymore. Our
first reduction rule is based on the observation that the digraph obtained from an out-tree,
by adding a new vertex as an out-neighbor of any vertex, is once again an out-tree.

I Reduction Rule 4.1. If there is a vertex v ∈ V (D) with d−(v) = 1 and d+(v) = 0 then
delete v. The resulting instance is (D′, k′) where D′ = D − {v} and k′ = k.

I Lemma 4.2 (?). Reduction Rule 4.1 is safe.

The operation of subdividing an arc uv in D results in the deletion of the arc uv and the
addition of a new vertex w as an out-neighbor of u and an in-neighbor of v. The next
reduction rule is based on the observation that subdividing an arc of an out-tree results in
another out-tree. To exploit this observation, we need the following lemma.

I Lemma 4.3 (?). Suppose D has a directed path P = (v0, v1, . . . , vl, vl+1) with l > k + 1
and d−(v) = d+(v) = 1 for each v ∈ V (P ). Then, no minimal out-tree contraction solution
F of D with |F | ≤ k contains an arc incident on V (P ) \ {v0, vl+1}.

I Reduction Rule 4.2. If there is a directed path P = (v0, v1, . . . , vl, vl+1) with l > k+2 and
d−(v) = d+(v) = 1 for each v ∈ V (P ), then replace P by the path P ′ = (v0, v1, . . . , vk+2, vl+1).
Specifically, the resulting instance is (D′, k′ = k) where D′ is the digraph obtained from D

by deleting {vk+3, . . . , vl} and adding the arc vk+2vl+1.

We note that this rule can be applied in polynomial time by searching for such a path in the
subgraph induced on the vertices of degree 2.

I Lemma 4.4 (?). Reduction Rule 4.2 is safe.
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Before we describe the next reduction rule, we define the following partition of V (D):

I = {v ∈ V (D) | d+(v) = 0},
H =V (D) \ I.

Now, we apply the following reduction rule on I.

I Reduction Rule 4.3. If there are vertices v, v1, v2, . . . , v2k+1 ∈ I such that N−(v) =
N−(v1) = · · · = N−(v2k+1), then delete v. The resulting instance is (D′, k′) where D′ =
D − {v} and k′ = k.

I Lemma 4.5 (?). Reduction Rule 4.3 is safe.

Now, we describe the final reduction rule. Given α > 1, let d be the minimum integer such
that α ≥ d

d−1 .

I Reduction Rule 4.4. If there are vertices v1, v2, . . . , v2k+1 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for each i ∈ [2k + 1], then contract arcs in Ã = {(hiv1) | i ∈ [d]}
and reduce the parameter by d− 1. That is, the resulting instance is (D/Ã, k − (d− 1)).

I Lemma 4.6 (?). Reduction Rule 4.4 is α-safe.

Now, we prove that the reduction rules described lead to a lossy kernel of polynomial size.

I Lemma 4.7 (?). Suppose D is k-contractible to an out-tree and none of Reduction Rules
4.1,4.2,4.3 and 4.4 are applicable on the instance (D, k). Then, |V (D)| is O((2k)d+1 + k2).

Now, we have the following result.

I Theorem 4.8 (?). Out-Tree Contraction admits a PSAKS with O(k2d α
α−1 e+1 + k2)

vertices.

5 Cactus Contraction

As mentioned earlier, Tree Contraction has been shown not to admit a polynomial kernel
unless NP ⊆ coNP/poly by a reduction from Red Blue Dominating Set [16]. We modify
this reduction to show similar hardness for Cactus Contraction.

I Lemma 5.1 (?). Cactus Contraction does not have a polynomial kernel unless NP⊆
coNP/poly.

Next, we proceed to describe a PSAKS for Cactus Contraction. We first list the following
simplifying assumption.

I Lemma 5.2 (?). A connected graph is k-contractible to a cactus if and only if each of its
2-connected components is contractible to a cactus using at most k edge contractions in total.

So, without loss of generality, we assume that the input graph G is 2-connected. Before we
proceed to describe the reduction rules, we need to define some additional terminology. The
operation of subdividing an edge uv results in the graph obtained by deleting uv and adding
a new vertex w adjacent to both u and v. The operation of short-circuiting a degree 2 vertex
v with neighbors u and w results in the graph obtained by deleting v and then adding the
edge uw if it is not already present.
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I Observation 4. The following statements hold for a cactus T .
1. Every vertex of degree at least 3 in T is a cut vertex.
2. The graph obtained by subdividing an edge of T is a cactus.
3. The graph obtained by short-circuiting a degree 2 vertex v in T is a cactus.

Next, we will make some observations on a cactus witness structure of a graph. We define
the following terms, which are useful for the forthcoming results. For a path P in G, let
N(P ) denote the neighborhood of P , i.e. the set of vertices in V (G) \V (P ) that are adjacent
to a vertex in P .

I Definition 5.3 (Simple Path). A path P in a graph G is called simple path of G, if every
internal vertex of P has degree exactly equal to two in G. Observe that, the endpoints of
the path P are the only vertices with a neighbor in G \ P .

We say that a simple path P is neighbor to a set of vertices W disjoint from V (P ), if each
vertex in W is neighbor of at least one of the two endpoints of P . We denote the set of all
neighbors of a simple path P in G by N(P ).

I Definition 5.4 (Pendent Cycle). For a cactus T , a cycle C is called an pendent cycle if it
contains exactly one cut vertex.

Let T be a cactus obtained by contracting a set of edges in the graph G with a witness
structure W. Now, consider a pendent cycle (uPu) in cactus T where u is the cut vertex,
and for every t ∈ P , |W (t)| = 1. Then observe that P corresponds to a simple path in G,
and with a slight abuse of notation let us use P to denote the path in G as well. Observe the
set of internal vertices of any two simple paths are disjoint. We say that a simple path P in
G forms a pendent cycle in T if there is a cut vertex u in T such that uPu is a pendent cycle
in T . The following lemma establishes a few more properties of the cactus witness structure.

I Lemma 5.5 (?). Let F be a minimal set of edges of a 2-connected graph G such that G/F
is a cactus T with V (T ) = {t1, t2, . . . , tl} and l ≥ 3. Let W be the corresponding T -witness
structure of G. Then the following properties hold.
1. There exists a set F ′ of at most |F | edges of G such that G/F ′ is a cactus and the

corresponding G/F ′-witness structure W ′ of G satisfies the property that for every leaf t
in G/F ′, W ′(t) ∈ W ′ is a singleton set.

2. For any three vertices u1, u2 and u3 such that, W (t1) = {u1},W (t2) = {u2},W (t3) =
{u3}, there is a vertex t ∈ V (T ) such that (N(u1) ∩N(u2) ∩N(u3)) ⊆W (t). Similarly,
for any three simple paths P1, P2 and P3 in G, such that each of them form a pendent
cycle in T , there is a vertex t ∈ V (T ) such that NG(P1) ∩NG(P2) ∩NG(P3) ⊆W (t).

3. If t is cut vertex in T then |W (t)| > 1.
4. If |F | ≤ k and d(v) ≥ k + 3, then there is a vertex t ∈ V (T ) such that v ∈ W (t) and
|W (t)| > 1.

Let us remark that, it is safe to assume that T has at least 3 vertices, as otherwise T is
just an edge. Therefore, we can bound the number of vertices in G by |F |+ 2, and since we
are concerned with solutions of value k or smaller, this gives us a trivial kernel. Indeed, the
main challenge lies in bounding the set of singleton witness sets. Subsequently, we assume
that all cactus witness structures have these properties.

I Lemma 5.6 (?). Suppose G has a path P = (u0, u1, . . . , ul, ul+1) with l > k + 1 consisting
of vertices of degree 2. Then, no minimal cactus contraction solution F of G with |F | ≤ k
contains an edge incident on V (P ) \ {u0, ul+1}.
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Now, we are ready to state the first reduction rule.

I Reduction Rule 5.1. If G has a path P = (u0, u1, . . . , ul, ul+1) such that l > k + 2
consisting of vertices of degree 2, then replace P by the path P ′ = (u0, u1, . . . , uk+2, ul+1).
In other words, the resulting instance is (G′, k′ = k) where G′ is the graph obtained from G

by deleting {uk+3, . . . , ul} and adding the edge uk+2ul+1.

We observe that this rule can be applied in polynomial time by considering each simple path
in the graph of length more than k + 1.

I Lemma 5.7 (?). Reduction Rule 5.1 is safe.

We apply Reduction Rule 5.1 exhaustively to the graph G, and observe that any simple
path contains at most k + 4 vertices. Now, we partition V (G) into the following four parts:

H = {u ∈ V (G) | d(u) ≥ k + 3},
Iv = {v ∈ V (G) \H | NG(v) ⊆ H},
Ip = {V (P ) | P is a simple path in G and NG(P ) ⊆ H},
R =V (G) \ (H ∪ Iv ∪ Ip).

With a slight abuse of notation, we say that a path P is contained in Ip (i.e. P ∈ Ip) if
V (P ) ⊆ IP . Let us make the following observation.

I Observation 5. For any two paths P1, P2 ∈ Ip, we have V (P1) ∩ V (P2) = ∅.

I Lemma 5.8 (?). Let G is k-contractible to a cactus such that Reduction Rule 5.1 is not
applicable on (G, k). If H,R are the partitions defined above, then |H ∪R| is at most O(k4).

For our next reduction rule, we extend the notion of false twins to simple paths. We call
two paths, P1 and P2 in Ip, false twins if N(P1) = N(P2).

I Reduction Rule 5.2. If there is a vertex v ∈ Iv that has at least 2k + 3 false twins, then
delete v. That is, the resultant instance is (G− {v}, k). Similarly, if there is a path P in Ip
that has at least 2k + 3 false twins, then delete P .

I Lemma 5.9 (?). Reduction Rule 5.2 is safe.

Given α > 1, let d be d α
α−1e. For every simple path P ∈ Ip, such that N(P ) contains at

least 2d vertices of H, pick one of its endpoints, that is adjacent to at least d vertices of H,
into the set Ĩp We apply the following reduction rule to the set I = Iv ∪ Ĩp.

I Reduction Rule 5.3. If there are vertices v1, v2, . . . , v2k+3 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for all i ∈ [2k + 3] then contract all edges in Ẽ = {v1hi | i ∈ [d]}
and reduce the parameter by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

I Lemma 5.10 (?). Reduction Rule 5.3 is α-safe.

This leads to the following result.

I Lemma 5.11 (?). Suppose graph G is k-contractible to a cactus and none of the Reduction
Rules 5.1, 5.2 and 5.3 are applicable on the instance (G, k). Then, |V (G)| is O((2k)2d + k4).

I Theorem 5.12 (?). Cactus Contraction admits a strict PSAKS with O((2k)2d α
α−1 +1e+

k5) vertices.
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Abstract
A bipartite tournament is a directed graph T := (A ∪ B,E) such that every pair of vertices
(a, b), a ∈ A, b ∈ B are connected by an arc, and no arc connects two vertices of A or two
vertices of B. A feedback vertex set is a set S of vertices in T such that T − S is acyclic. In
this article we consider the Feedback Vertex Set problem in bipartite tournaments. Here
the input is a bipartite tournament T on n vertices together with an integer k, and the task is
to determine whether T has a feedback vertex set of size at most k. We give a new algorithm
for Feedback Vertex Set in Bipartite Tournaments. The running time of our algorithm
is upper-bounded by O(1.6181k + nO(1)), improving over the previously best known algorithm
with running time 2kkO(1) + nO(1) [Hsiao, ISAAC 2011]. As a by-product, we also obtain the
fastest currently known exact exponential-time algorithm for the problem, with running time
O(1.3820n).
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1 Introduction

A feedback vertex set in a graph G is a vertex set whose removal makes the graph acyclic.
The Feedback Vertex Set problem is a well-studied graph problem where input is a
graph G (directed or undirected) and the task is to find a smallest possible feedback vertex
set. Finding such an optimal feedback vertex set turns out to be NP-complete [21], indeed
the problem is one of the very first to be shown NP-complete in the influential paper of
Karp [25]. Since, polynomial time algorithms are highly unlikely, Feedback Vertex Set on
general directed and undirected graphs has been extensively studied from the perspective of
approximation algorithms [2, 14], parameterized algorithms [6, 9, 26], exact exponential-time
algorithms [28, 34] as well as graph theory [13, 29].

This paper belongs to a long line of work studying the complexity of Feedback Vertex
Set on restricted classes of graphs. On one hand Feedback Vertex Set remains NP-
complete on tournaments and bipartite tournaments [5], planar undirected graphs [21], planar
directed graphs with in-degree and out-degree at most 3 [21] as well as directed graphs with
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in-degree and out-degree at most 2 [21]. On the other hand the problem is polynomial time
solvable on undirected graphs of maximum degree 3 [32], chordal graphs [15] and weakly
chordal graphs [19], indeed on any class of graphs with polynomially many potential maximal
cliques [19]. Being a problem of fundamental importance, Feedback Vertex Set has been
approached algorithmically even on the classes of graphs where it remains NP-complete. For
example the problem admits (efficient) polynomial time approximation schemes [8, 11, 17],
sub-exponential time parameterized algorithms [10] and linear kernels [18] on classes of
graphs excluding a fixed graph H as a minor. In this paper we study the problem on bipartite
tournaments.

A tournament is a subclass of directed graphs where every pair of vertices are connected
by an arc. A bipartite tournament is a directed graph where the vertices are partitioned into
two sets A and B, there is an arc connecting every vertex in A with every vertex in B, and
there are no edges between vertices of A and vertices of B. Tournaments arise naturally from
round-robin competitions whereas bipartite tournaments model a two-team competition in
which every player in one team plays against every player of the other team. Here arcs are
drawn from the winning to the losing player, and often one seeks to rank the players from
“best” to “worst” such that players that appear higher in the ranking beat all lower ranked
players they played against. Such an absolute ranking possible only if there are no cycles in
the tournament. The size of the smallest feedback vertex set then becomes a measure of how
far the tournament is from admitting a consistent ranking. For this reason the structure of
cycles and feedback vertex sets in (bipartite) tournaments has been studied both from the
perspective of graph theory [3, 7, 20] and algorithms.

For bipartite tournaments, finding a feedback vertex set reduces to hitting all cycles of
length 4. For this reason the Feedback Vertex Set problem is more computationally
tractable on bipartite tournaments than on general directed graphs. Specifically the best
known approximation algorithm for Feedback Vertex Set on directed graphs has an
approximation factor of O(logn · log logn) [14], and the problem does not admit a constant
factor approximation assuming the Unique Games Conjecture [22]. On bipartite tournaments
it is easy to obtain a 4-approximation (see Lemma 2). Further, an improved approximation
algorithm with ratio 2 was obtained by Zuylen. [33].

Similarly, it was open for a long time whether Feedback Vertex Set on general
directed graphs admits an FPT algorithm, that is an algorithm that determines whether
there exists a solution of size at most k in time f(k)nO(1). In 2008, Chen et al. [6] gave
an algorithm with running time O(4kkO(1)k!nm), and it is an outstanding open problem
whether there exists an algorithm with running time 2O(k)nO(1). For bipartite tournaments,
the realization that it is necessary and sufficient to hit all cycles of length 4 yields a simple
4knO(1) time parameterized algorithm: recursively branch on vertices of a cycle of length
4. Truß [31] gave an improved algorithm with running time 3.12knO(1), Sasatte [30] further
improved the running time to 3knO(1), while Hsiao [24] gave an algorithm with running
time 2knO(1). Prior to this work, this was the fastest known parameterized algorithm for
Feedback Vertex Set on bipartite tournaments. Our main result is an algorithm with
running time O(1.6181k + nO(1)). Using the recent black-box reduction from parameterized
to exact exponential time algorithms of Fomin et al. [16] we also obtain an exponential-time
algorithm running in O(1.3820n) time.

Methods. Our algorithm is based on the recent parameterized algorithm with running time
O(1.6181k + nO(1)) by the authors [27] for Feedback Vertex Set in tournaments. The
main idea of this algorithm is that tournaments are very rigid. Given as input a tournament
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T , by obtaining a large set M of vertices that is disjoint from the feedback vertex set H
sought for, we can get a rough sketch of the rigid structure of T −H. This structure is then
very useful for recovering the solution H. Indeed, the only way that vertices that are “far
apart” in the approximate sketch of the structure of T −H can interact with each other
is by being “in conflict”. Out of two vertices that are in conflict, one of them has to be
deleted. Thus, dealing with conflicts can be done in a similar fashion as with edges in the
Vertex Cover problem. For any vertex v appearing in at least two conflicts, branch into
two sub-problems. In the first sub-problem v is deleted, in the second all vertices in conflict
with v are deleted. If there are no conflicts it is sufficient to solve the Feedback Vertex
Set problem “locally”. If every vertex appears in at most one conflict a divide and conquer
approach can be taken.

Because bipartite tournaments are also quite “rigid”, we expected that the same approach
would easily give an algorithm for Feedback Vertex Set on bipartite tournaments with
the same running time. Our expectations were both wrong and correct; indeed we do obtain
an algorithm for Feedback Vertex Set on bipartite tournaments with the same template
and the same running time as the algorithm for tournaments [27], yet the adaptation turned
out to be anything but easy. Specifically, in virtually every step of the algorithm, the lack of
a unique topological sort of acyclic bipartite tournaments presented significant challenges.

The fact that these challenges still could be overcome by sub-exponential time cleaning
procedures gives hope that the same template could be applicable in several situations where
one seeks a “small” set of vertices or edges to delete in order to modify the input graph to a
“rigid” structure; such as Cluster Vertex Deletion, Cograph Vertex Deletion and
Feedback Vertex Set in the more general setting when the input graph is a multi-partite
tournament [23].

Organization of the paper. In Section 2 we set up definitions and notation, and state a
few useful preliminary results. The standard graph notation and parameterized complexity
terminology is set up in the appendix. In Section 3 we define and prove some properties of
M -sequence. In Section 4 we define and give an algorithm for Constrained Feedback Vertex
Set problem.

2 Preliminaries

Preliminary Results. If a bipartite tournament is acyclic then it does not contain any
squares. It is a well-known and basic fact that the converse is also true, see e.g. [12].

I Lemma 1 ([12]). A bipartite tournament is acyclic if and only if it contains no squares.

Lemma 1 immediately gives rise to a folklore greedy 4-approximation algorithm for BTFVS:
as long as T contains a square, delete all the vertices in this square.

I Lemma 2 (folklore). There is a polynomial time algorithm that given as input a bipartite
tournament T and integer k, either correctly concludes that T has no feedback vertex set of
size at most k or outputs a feedback vertex set of size at most 4k.

In fact, BTFVS has a polynomial time factor 3.5-approximation, due to Cai et al. [4]. However,
the simpler algorithm from Lemma 2 is already suitable to our needs. The preliminary phase
of our algorithm for BTFVS is the kernel of Dom et al. [12]. We will need some additional
properties of this kernel that we state here. Essentially, Lemma 3 allows us to focus on the
case when the number of vertices in the input bipartite tournament is O(k3).
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I Lemma 3 ([12]). There is a polynomial time algorithm that given as input a bipartite
tournament T and integer k, runs in polynomial time and outputs a bipartite tournament T ′
and integer k′ such that |V (T ′)| ≤ |V (T )|, |V (T ′)| = O(k3), k′ ≤ k, and T ′ has a feedback
vertex set of size at most k′ if and only if T has a feedback vertex set of size at most k.

For any sequence σ, let |σ| denote the length of σ. For each i = 1, 2, . . . , |σ|, let Vi be the i-th
element of σ. Let T be an n-vertex acyclic bipartite tournament. The canonical sequence for
T is the sequence σ of vertex sets that can be obtained from T in O(n2) time as follows: For
each i ≥ 1, let Vi consist of the vertices without incoming edges in T \

⋃i−1
j=1 Vj .

I Lemma 4 ([24]). Let T be an n-node acyclic bipartite tournament. Let σ be the canonical
sequence for T . The following statements hold. (i) V1, V2, . . . , V|σ| form a partition of V (T ).
(ii) For each directed edge (u, v) of T , the vertex set Vi containing u precedes the vertex set
Vj containing v in the sequence (i.e. i < j). (iii) A =

⋃
i≡1 mod 2 Vi and B =

⋃
i≡0 mod 2 Vi

are the partite sets of T .

I Definition 5 (t-wise independent). A family Hn,t,q of functions from [n] to [q] is called a
t-wise independent sample space if, for every t positions 1 < i1 < i2 < · · · < it ≤ n, and every
tuple α ∈ [q]t, we have Pr(f(i1), f(i2), . . . , f(it)) = α = q−t where the function f ∈ Hn,t,q is
chosen uniformly at random.

I Theorem 6 ([1]). There exists a t-wise independent sample space Hn,t,q of size O(nt) and
it can be constructed efficiently in time linear in the output size.

3 M -Sequence

First we extend the notion of the canonical sequence to general bipartite tournaments relative
to a set M of vertices.

I Definition 7 (M -equivalent). Given a directed graph T and a subset M ⊆ V (T ), two
vertices u, v ∈ V (T ) are said to beM -equivalent ifN+(u)∩M = N+(v)∩M andN−(u)∩M =
N−(v) ∩M .

I Definition 8 ((M,X)-equivalent). Let T be a bipartite tournament and a subsetM ⊆ V (T )
such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical sequence of T [M ]. For any set
Xi in the canonical sequence of T [M ] and any vertex v ∈ V (T ), v is called (M,Xi)-equivalent
if v is M -equivalent to a vertex in Xi.

I Definition 9 ((M,X)-conflicting). Let T be a bipartite tournament and a subsetM ⊆ V (T )
such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical sequence of T [M ]. For any set
Xi in (X1, X2, . . . ) and for any vertex v ∈ V (T ), v is called (M,Xi)-conflicting if

N+(v) ∩Xi 6= ∅ and N−(v) ∩Xi 6= ∅,
for every j < i, N+(v) ∩Xj = ∅ and for every j > i, N−(v) ∩Xj = ∅.

I Definition 10 (M -consistent). Let T be a directed graph and M ⊆ V (T ). T is called
M -consistent if for every vertex v ∈ V (T ) T [M ∪ {v}] is acyclic.

As a direct consequence of the above definitions, we have the following lemma.

I Lemma 11. Let T be an M -consistent bipartite tournament for some subset M ⊆ V (T ).
Let (X1, X2, . . . , Xi, Xi+1, . . . ) be the canonical sequence of T [M ]. Let v ∈ V (T ) be a (M,Xi)-
conflicting vertex. Then, the canonical sequence of T [M∪{v}] is (X1, X2, . . . , X

′
i, {v}, X ′′i , Xi+1, . . . )

where X ′i ∪X ′′i = Xi such that X ′i, X ′′i 6= ∅.
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I Definition 12 (M -universal). Let T be a bipartite tournament and a subset M ⊆ V (T )
such that T [M ] is acyclic. Let (X1, X2, . . . ) be the canonical sequence of T [M ]. A vertex
v ∈ V (T ) is called M -universal if the following holds: (i) v is not (M,Xi)-equivalent for any
Xi, (ii) T [M ∪ {v}] is acyclic. (iii) There exists a topological sort of T [M ∪ {v}] such that v
is either the first vertex (called M−-universal) or is the last vertex (called M+-universal) in
the ordering.

I Lemma 13. Let T be an M-consistent bipartite tournament and let (X1, X2, . . . ) be the
canonical sequence of T [M ]. Then, for every vertex v ∈ V (T ), there exists a unique index i
such that v satisfies exactly one of the following properties: (i) v is (M,Xi)-equivalent, (ii) v
is (M,Xi)-conflicting, (iii) v is M -universal.

Proof. Since T is M -consistent, T [M ∪ {v}] is acyclic. By definition, v can not satisfy
more than one property. If v is M -universal, then, v is neither (M,Xi)-equivalent nor
(M,Xi)-conflicting for any set Xi.

If v is (M,Xi)-equivalent to some set Xi, then by definition, v is not M -universal. In
addition, for any set Xj , v is not (M,Xj)-conflicting as no vertex in Xi is (M,Xj)-conflicting.

Suppose that v is neither (M,Xi)-equivalent for any Xi nor M -universal. We show that
v is (M,Xi)-conflicting the first set Xi that contains an out-neighbor ui of v. Suppose
that there is an index j > i such that Xj contains an in-neighbor uj of v. Since j − i ≥ 2,
there is an index i < l < j such that Xl lies in the partite set of T different from Xi ∪Xj .
This gives us a cycle vuiulujv where ul ∈ Xl contradicting that T [M ∪ {v}] is acyclic. If
every vertex in Xi is an out-neighbor of v, then by definition of the canonical sequence, v is
(M,Xi−1)-equivalent contradicting the above assumption. Hence, Xi contains an in-neighbor
of v, thereby proving that v is (M,Xi)-conflicting. J

IDefinition 14 (M -sequence). Let T be anM -consistent bipartite tournament and (X ′1, X ′2, . . . )
be the canonical sequence of T [M ]. An M -sequence (X1, Y1, X2, Y2, . . . , Xl, Yl) of T is a
sequence of subsets V (T ) such that for every index i, Xi is the set of all vertices in V (T )
that are (M,X ′i)-equivalent and Yi is the set of vertices that are (M,X ′i)-conflicting. In
addition, Y1 contains every M−-universal vertex and Yl contains every M+-universal vertex.
For every i, the set Xi ∪ Yi is called a block, Xi is called the M -sub-block and Yi is called
the M̄ -sub-block.

I Lemma 15. If T is anM -consistent bipartite tournament, then T has a uniqueM -sequence.

Proof. The existence and the uniqueness of M -sequence follows from Lemma 13 and the
uniqueness of the canonical sequence of T [M ]. J

As a consequence of Lemma 4 and Lemma 13, we get the following lemma.

I Lemma 16. Let T := (A,B,E) be an M -consistent bipartite tournament and (X ′1, X ′2, . . . )
be the canonical sequence of T [M ]. Let (X1, Y1, X2, Y2, . . . ) be the M-sequence of T . The
following statements hold: (i) X1, Y1, X2, Y2, . . . form a partition of V (T ), (ii) for each i,
X ′i ⊆ Xi, (iii) for each i, Yi ∩M = ∅, (iv) for every odd i, Xi ⊆ A, Yi ⊆ B and for every
even i, Xi ⊆ B, Yi ⊆ A.

I Definition 17 (Refinement). A partition (V1, V2, . . . ) of U is said to be a refinement of
another partition (V ′1 , V ′2 , . . . ) if for every set Vi and V ′j , either Vi ⊆ V ′j or Vi ∩ V ′j = ∅.

I Lemma 18. Let T be an acyclic bipartite tournament. Then, for any subset M ⊆ V (T ),
the canonical sequence of T is a refinement of the M -sequence of T .

FSTTCS 2016
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Proof. Let (X ′1, X ′2, . . . ) be the canonical sequence of T [M ] and let (X1, Y1, . . . , Xl, Yl) be
the M -sequence of T . Let (V1, V2 . . . ) be the canonical sequence of T . Since each set Vi are
twins in T , if any vertex in Vi belongs to Xj , then every vertex in Vi belongs to Xj . If any
vertex in Vi is (M,X ′j)-conflicting, then every vertex in Vi is (M,X ′j)-conflicting. Hence,
Vi ⊆ Yj . If any vertex in Vi is M -universal, then every vertex in Vi is M -universal. Hence,
Vi ⊆ Y1 or Vi ⊆ Yl. The family of sets Vi that contain an M−-universal vertex lie in Y1 and
the family of sets Vi that contain an M+-universal vertex lie in Yl. J

I Lemma 19. Let T and T ∪ {v} be two M-consistent bipartite tournaments and let
(X1, Y1, . . . ) be the M -sequence of T . Then, there exists an index i, such that the M -sequence
of T ∪ {v}, is either (X1, Y1, . . . , Xi ∪ {v}, . . . ) or (X1, Y1, . . . , Yi ∪ {v}, . . . ).

Proof. The proof follows from Lemma 13. J

I Lemma 20. Let T be a bipartite tournament and H be a feedback vertex set of T .
Let M ⊆ T − H and P ⊆ H. Let (X1, Y2, . . . , Xl, Yl) be the M-sequence of T − H and
(X ′1, Y ′1 , . . . , X ′l , Y ′l ) be the M-sequence of T − P . Then, for each index i, Xi ⊆ X ′i and
Yi ⊆ Y ′i .

4 Constrained Feedback Vertex Set in Bipartite Tournaments

Given a tournament T and an integer k, in the first phase of the algorithm for feedback
vertex set in tournaments of Kumar and Lokshtanov in [27], a family of sub-exponential size
of vertex set pairs (M,P ) was obtained such that the sought solution H is disjoint from M

and contains P . The uniqueness of the topological sort of an acyclic tournament implied
that any edge going from right to left (referred as back edge) over an M -vertex becomes
a conflict edge and must be hit by H. The lack of a unique topological sort of an acyclic
bipartite tournament breaks down this step as there may be a topological sort of the bipartite
tournament such that a back edge is not a conflict edge. We notice that maintaining an
addition subset of back edges F that must be hit by H helps in circumventing this issue.
With this strategy in mind, we define the Constrained Feedback Vertex Set problem.

I Definition 21 (Constrained Feedback Vertex Set(CFVS)). Let T be a bipartite tournament
with vertex subsets M,P ⊆ V (T ), edge set F ⊆ E(T ). A feedback vertex set H of T is
called (M,P, F )-constrained if M ∩H = ∅, P ⊆ H and H is a vertex cover for F .

Constrained Feedback Vertex Set (CFVS)
Input: A bipartite tournament, vertex sets M,P ⊆ V (T ), edge set F ⊆ E(T ) and positive
integer k.
Parameter: k
Task: determine whether T has an (M,P, F )-constrained CFVS H of size at most k.

In the rest of the paper, we assume that the size of the bipartite tournament is at most
O(k3) as a bi-product of the kernelization algorithm (Lemma 3). Given a topological sort π
of an acyclic bipartite tournament T = (A,B,E), we denote πA to be the permutation of A
when π is restricted to A. Similarly, πB denotes the permutation of B when π is restricted
to B. Next, we define a property of a feedback vertex set of a bipartite tournament and
while solving for BTFVS, we will look for solutions H that have this property.

I Definition 22 (M -homogeneous). Let T be a bipartite tournament and k be a positive
integer. Let M ⊆ V (T ) be a vertex subset such that T [M ] is acyclic. A feedback vertex
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set H of size at most k of T is called M -homogeneous if there exists a topological sort π of
T −H such that every subset of 10 log3 k consecutive vertices in πA−H or πB−H contains a
vertex of M .

The algorithm for CFVS is primarily based on branching and often, given a CFVS instance,
a family of CFVS instances with addition properties will be constructed. We abstract it out
in the following definition.

I Definition 23 (γ-reduction). A γ-reduction is an algorithm that given a CFVS instance
(T,M,P, F, k) outputs in time γ a family C := {(T,M,P1, F1, k), (T,M,P1, F1, k), . . . } of
size γ of CFVS instances such that
Forward direction if (T,M,P, F, k) has an M -homogeneous (M,P, F )-solution, then there

exists an instance (T,M,Pi, Fi, k) ∈ C that has an M -homogeneous (M,Pi, Fi) solution.
Backward direction if there exists an instance (T,M,Pi, Fi, k) ∈ C that has an (M,Pi, Fi)-

CFVS solution, then (T,M,P, F, k) has an (M,P, F )-solution.
Now, we construct a family of setsM such that if (T, k) has a solution H of size at most k,
then there is a set M ∈M such that H is M -homogeneous, and hence we can restrict our
attention to looking for feedback vertex sets which are M -homogeneous for some subset M .

I Lemma 24. There exists an algorithm that given a bipartite tournament T and a positive
integer k outputs in time γ, a familyM of size γ of subsets of V (T ) for γ = 2O( k

log k ) such
that for every feedback vertex set H of size at most k of T , there exists M ∈M such that H
is M -homogeneous.

Proof. Using T and k, we construct M. Let n = |V (T )|, t = 10 log3 k, q = log2 k. As the
first step, the algorithm uses Theorem 6 to construct a family of functions Hn,t,q from [n] to
[q]. Next, the algorithm computes a family Z of t-wise independent subsets of V (T ): For
each f ∈ Hn,t,q, let Zf := {vi ∈ V (T ) | f(i) = 1}. Add Z to Z. In the next step, for every
subset Z ∈ Z, compute the family of subsetsMZ := {M := Z \ Ĥ | Ĥ ⊆ Z, |Ĥ| ≤ 2k

log2 k
}.

Finally, outputM :=
⋃
Z∈ZMZ .

To argue about the correctness of the algorithm, first, we check that the size of M
computed by the above algorithm is consistent with the claim in the lemma. Clearly,
|M| ≤ |Hn,t,q| × |MZ | = O(nt)O((k3)

2k
log2 k ) = 2O( k

log k ). We need to show that for every
feedback vertex set H of size k and for every topological sort π of T − H, there exists
a function f ∈ Hn,t,q and a set Ĥ ⊆ V (T ) such that M := Z \ Ĥ satisfies the required
properties. Fix a feedback vertex H of size k and a topological sort π of T −H. First, we
prove the following claim:

I Claim 25. If we pick f from Hn,t,q uniformly at random, then with non-zero probability,
the following two events happen: (i) for every set of 10 log3 k consecutive vertices in πA−H
or πB−H , there is a vertex in Zf , (ii) |Zf ∩H| ≤ 2k

log2 k
.

Proof. By t-wise independence of Hn,t,q, the probability that no vertex is picked from t

consecutive vertices in πA−H or πB−H is at most (1− 1
q )t. Let A1 be the event that at least

one set of t-consecutive vertices either in πA−H or in πB−H does not contain any vertex from
Z. Since there at most n sets of t-consecutive vertices, by union bound, the probability that
event A1 happens is at most n× (1− 1

q )t ≤ Ck4 × (1− 1
log2 k

)10 log3 k = Ck4 × 1
k10 ≤ 1

k5 . Let
A2 be the event that at least 2k

log2 k
vertices of H are in Z. The expected number of vertices

of H that belong to Z is k × 1
q = k

log2 k
. Therefore, by Markov’s inequality, the probability

that the event A2 occurs is at most 1
2 . By union bound the probability that at least one of
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the events A1 or A2 happen is at most 1
k5 + 1

2 . Hence, the probability that none of A1 and
A2 is at least 1− ( 1

k5 + 1
2 ) > 0, thereby implying the claim. J

Hence, the set of functions satisfying the properties in the above claim is non-empty. Let f
be such a function. Since,MZ is the collection of sets Z \ Ĥ such that |Ĥ| ≤ 2k

log2 k
, there

exists a choice Ĥ such that Ĥ = Z ∩H. Hence, M := Z \ Ĥ satisfies the required properties.
For the runtime of the algorithm, Hn,t,q can be constructed in O(nt) time. For each

function f ∈ Hn,t,q, the set Z can be obtained in O(n) time. For each Z,MZ can be obtained
in O(k

2k
log2 k ) time. Hence, the runtime of the algorithm is O(nt) ·n ·O(k

2k
log2 k ) = 2O( k

log k ). J

I Lemma 26. There exists an algorithm that given a BTFVS instance (T, k) outputs in
time γ, a family C := {(T,M1, P1, ∅, k), (T,M2, P2, ∅, k), . . . } of size γ of CFVS instances for
γ = 2O( k

log k ) such that (a) if (T, k) has a solution H of size at most k, then C has a CFVS
instance (T,M,P, ∅, k) that has an M -homogeneous solution of size at most k and (b) if C
has a (M,P, ∅)-constrained solution, then (T, k) has a feedback vertex set of size at most k.

I Definition 27 (boundary, vicinity). Let T be an acyclic bipartite tournament. Let M be
any subset of vertices and π be a topological sort of T . Let (X1, Y1, . . . ) be the M -sequence
of T . For any block Xi ∪ Yi, the set of vertices in Xi before the first M -vertex is called the
left boundary of the block and the set of vertices in Xi after the last M -vertex is called the
right boundary of the block. The vicinity of the block Xi ∪ Yi is the union of the boundaries
of Xi ∪ Yi, the right boundary of Xi−1 ∪ Yi−1, Yi and the left boundary of Xi+1 ∪ Yi+1.

I Lemma 28. Let H be an M-homogeneous solution for a bipartite tournament T . Then,
in the M-sequence (X1, Y1, X2, Y2, . . . ) of T −H, for each i, |Xi|

|Xi∩M | ≤ 20 log3 k and |Yi| ≤
10 log3 k. Further, there exists a topological sort of T −H such that the size of each boundary
of any block is at most 10 log3 k and the size of the vicinity of any block is at most 30 log3 k.

Proof. The lemma follows immediately after observing that the canonical sequence of T −H
is a refinement of M -sequence of T −H and any topological sort of T −H preserves the
canonical sequence of T −H. J

I Definition 29 (Back edge). Let T be an M -consistent bipartite tournament for some
M ⊆ V (T ) and (X1, Y1, X2, Y2 . . . ) be the M -sequence of T . An edge uiuj ∈ E(T ) is called
a back edge if ui ∈ Xi ∪ Yi, uj ∈ Xj ∪ Yj and i − j ≥ 1. Furthermore, uiuj is called short
back edge if i− j = 1 and it is called long back edge if i− j ≥ 2.

I Lemma 30. Any feedback vertex set disjoint from M must contain at least one end point
of a long back edge.

As we know that in the M -sequence of T −H, there may be back edges. Since T −H is
acyclic, these edges do not participate in any cycle. We call them simple back edges. But, in
the M -sequence of T − P , we may have back edges that form a cycle with two vertices of M
and hence at least one end-point of these edges must belong to H. We call them conflict
back edges. Hence, every back edge that is not a simple back edge is a conflict back edge.
By Lemma 30, every long back edge is a conflict back edge. The M -homogeneity of H and
Lemma 28 implies the following lemma.

I Lemma 31. Let H be an M -homogeneous solution for T . Then, there exists a permutation
of T −H such that the number of simple back edges between any consecutive blocks in the
M -sequence of T −H is at most 200 log6 k.
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Hence, if in the M -sequence of T − P , there are more than 200 log6 k back edges between
any consecutive pair of blocks, then we can branch on the choices of conflict back edges to
be hit by H. The next definition and lemma captures this intuition.

I Definition 32 (weakly-coupled). An instance (T,M,P, F, k) of CFVS is said to be weakly-
coupled if in the M -sequence of T − P , F is a subset of conflict back edges containing all
long back edges such that the matching in back edges between any pair of consecutive blocks
in T − P − F is at most 201 log8 k .

Since we can find a matching in bipartite graphs in polynomial time, it can be checked in
polynomial time whether a given CFVS instance (T,M,P, F, k) is weakly-coupled or not.

I Lemma 33. There exists a γ-reduction from a CFVS instance (T,M,P, ∅, k) to a family
C2 = {(T,M,P, F1, k), (T,M,P, F2, k) . . . } for γ = 2O( k

log k ) such that every instance in C2 is
weakly-coupled.

I Definition 34 (matched). An instance (T,M,P, F, k) of CFVS is said to be matched if
F ∩ E(T − P ) forms a matching.

Note that it can be checked in polynomial time whether a given CFVS instance (T,M,P, F, k)
is matched or not.

I Lemma 35. There exists a γ-reduction from a weakly-coupled CFVS instance (T,M,P, F, k)
to C3 := {(T,M,P1, F, k), (T,M,P2, F, k), . . . } for γ ≤ 1.6181k such that C3 is weakly-coupled
and matched. In addition, for each |Pi| = s ≤ k, C3 has at most 1.618s CFVS instances.

I Definition 36 (LowBlockDegree). An instance (T,M,P, F, k) of CFVS is said to be
LowBlockDegree if in the M -sequence (X1, Y1, X2, Y2, . . . ) of T − P , long(T,M,P ) ⊆ F and
for every set Xi ∪ Yi, at most 201 log10 k edges of F \ E(T − P ) are incident on Xi ∪ Yi.

Note that it can be checked in polynomial time whether a given CFVS instance (T,M,P, F, k)
is LowBlockDegree or not.

I Definition 37 (X-preferred vertex cover). Given a bipartite graph G a set of vertices
X ⊆ V (T ) and a set of edges Q ⊆ E(G) such that Q is a matching in G, a minimum vertex
cover C of Q is called X-vertex cover of Q if for every edge e ∈ Q such that e has exactly
one endpoint in X, C contains the endpoint of e in V (G) \X.

Let T := (A,B,E) be a bipartite tournament and let X ⊆ A. Let π := (v1, v2, . . . , vl) be a
permutation of X. A vertex v ∈ B is called inconsistent with π, if there is no index i such
that every vertex in {v1, v2, . . . , vi} is an in-neighbor of v and every vertex in {vi+1, vi+2,...,vl

}
is an out-neighbor of v. Given a CFVS instance (T,M,P, F, k), a block in the M -sequence
of T − P is said to have large conflict edge matching if the block is incident with at least
201 log10 k edges in F1 := F ∩ E(T − P ).

I Lemma 38. There exists a γ-reduction from a weakly-coupled and matched CFVS instance
(T,M,P, F, k) to C4 := {(T,M,P1, F, k), (T,M,P2, F, k), . . . } for γ = 2O( k

log k ) such that
every instance in C4 is weakly-coupled, matched and LowBlockDegree.

Proof. UsingM,P, F , we construct C4. Start with theM -sequence of T −P . Let n = |V (T )|,
t = 2k

201 log10 k
, P ′ := P and F ′ := F ∩ E(T − P ). Branch on every family B of blocks such

that |B| ≤ t. Branch on every subset M ′ of size at most t · 30 log3 k. Let X be the union
of M -sub-blocks and Y be the union of M̄ -sub-blocks in B. Add every vertex in Y \M ′
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to P ′. Add every back edge neighbor of M ′ to P ′. Branch on every permutation π of M ′.
Add every vertex of X \M ′ not consistent with the permutation π to P ′. Let E′ be the set
of back edges incident on X \M ′. Let G := (V (T ), E′). Note that G is a bipartite graph.
Branch on every minimum vertex cover of G by adding it to P ′. Add a

⋃
B-preferred cover

of conflict edges in F ′ incident on (X ∪ Y ) \ P ′ to P ′. Finally, we add a CFVS instance
(T,M,P ′, F, k) to C4 if (T,M,P ′, F, k) is LowBlockDegree.

Correctness: First we show that |C4| ≤ γ. |C4| is bounded by the product of the number
of family of blocks B, the number of sets M ′, the number of permutations of M ′ and the
number of minimum vertex cover of G. The number of family of blocks B is bounded by nt
as the number of blocks can be at most n. Similarly, the number of subsets M ′ is bounded by
nt·30 log3 k. The number of permutations is bounded by (t · 30 log3 k)!. Since, (T,M,P, F, k) is
weakly-coupled, the matching on back edges incident on any block is at most 201 log8 k. Hence,
the size of a maximum matching in G is at most t · 201 log8 k. Hence, the number of minimal
vertex cover of G is at most 2t·201 log8 k. Since, n = |V (T )| = O(k3), after little arithmetic
manipulation, we have that |C4| ≤ nt × nt·30 log3 k × (t · 30 log3 k)!× 2t·201 log8 k = 2O( k

log k ).
By the definition of the family C4 and of γ-reduction, the backward direction is immediate.

For the forward direction, let (T,M,P, F, k) be a weakly-coupled and matched CFVS instance
and let H be an M -homogeneous solution of (T,M,P, F, k). It is sufficient to show that C4
has an instance (T,M,P ′, F, k) such that P ′ ⊆ H.

Consider theM -sequence of T−P . Fix a permutation σ of T−H. Consider a permutation
σ′ of vertices in T − P whose restriction to T −H is σ. Let B be the family of blocks with
very large matching in the set of conflict edges F ′. Since |H| ≤ k, the size of B is less than
t = 2k

201 log10 k
. Since the size of vicinity of any block is at most 30 log3 k, at most t · 30 log3 k

vertices form the vicinity M ′ of blocks in B. Let X be the union of M -sub-blocks and Y
be the union of M̄ -sub-blocks in B. Then, vertices in Y \M ′ belong to H. Since, M ′ is the
vicinity of the blocks, every back edge incident on M ′ is a conflict edge. Hence, the back
edge neighbor of M ′ belongs to H. For the same reason, the set of back edges E′ incident
on X \M ′ are conflict edges and H contains a minimum cover of E′. As M ′ ∩H = ∅, any
vertex inconsistent with σM ′ also belongs to H. Now, every block in B is incident with
conflict edges belong to F only which are disjoint, we can greedily include a vertex cover
of these edges by preferring to pick the conflict edge neighbor of

⋃
B into H. This implies

that every block in B after removing P ′ is not incident with any conflict edge and hence
(T,M,P ′, F, k) is LowBlockDegree. Since P ′ includes all possibilities of the above choices,
there is an instance (T,M,P ′, F, k) in C4 that satisfies the required properties. J

I Definition 39 (Regular). An instance (T,M,P, F, k) of CFVS is said to be regular if in the
M -sequence (X1, Y1, X2, Y2, . . . ) of T − P , for every set Xi of size at least 10 log5 k, there
are at least |Xi|

10 log5 k
vertices in M and |Yi| ≤ 10 log5 k.

Note that it can be checked in polynomial time whether a given CFVS instance (T,M,P, F, k)
is regular or not. Let L be a function such that given a CFVS instance (T,M,P, F, k) outputs
the family of sets of vertices which is the union of all sets Xi and Yj in the M -sequence of
T − P such that |Xi|

mi
≥ 10 log5 k where mi = |Xi ∩M | and |Yj | ≥ 10 log5 k.

I Lemma 40. There exists a γ-reduction from a CFVS instance (T,M,P, F, k) to a family
C1 := {(T,M,P1, F, k), (T,M,P2, F, k), . . . } of CFVS instances for γ = 2O( k

log k ) such that
every instance in C1 is regular.

As noted before BTFVS instance (T, k) is equivalent to CFVS instance (T, ∅, ∅, ∅, k), we
combine the results in the above Lemmas (abusing the notation slightly).
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I Lemma 41. There is a γ-reduction from a BTFVS instance (T, k) to a CFVS family
C′ for γ ≤ 1.6181k such that every instance in C′ is regular, weakly-coupled, matched and
LowBlockDegree. In addition, for each |P2| = s ≤ k, C′ has at most 1.618s CFVS instances.

We redefine the d-Feedback Vertex Cover defined in [27] with a slight modification.
Let d, f and t be positive integers. Consider a class of mixed graphs G(d, f, t) in which
each member is a mixed multigraph T with the vertex set V (T ) partitioned into vertex sets
V1, V2, . . . , Vt and an undirected edge set E(T ) ⊆

⋃
i<j Vi × Vj such that for each i ∈ [t],

(a) T [Vi] is a bipartite tournament, (b) the size of the feedback vertex set Hi for T [Vi] is at
least f and at most 4f , and (c) degE(Vi) ≤ d.

Given a mixed multigraph T ∈ G(d, f, t), a positive integer k, determine whether there
exists a set H ⊆ V (T ) such that |H| ≤ k and T −H contains no undirected edges and is
acyclic. If E(T ) is disjoint, we call the problem as Disjoint Feedback Vertex Cover.

I Lemma 42. There exists a polynomial time algorithm that given a CFVS instance
(T,M,P2, F, k) that is regular, weakly-coupled, matched and LowBlockDegree outputs a parti-
tion (V1, V2, . . . , Vt) of V (T ) \ P such that t ≤ k

201 log12 k
and for each i ∈ [t] Vi is a union of

consecutive blocks in the M -sequence of T − P2 and at least one of these hold
the size of feedback vertex set of T [Vi] is at least f = 201 log12 k and at most 804 log12 k,
at least 200 log12 k and at most 201 log12 k edges in F ∩ E(T − P2) are incident on Vi.

Proof. Let (X1, Y1 . . . ) be the M -sequence of T − P2. Consider the sequence of blocks
(Z1, Z2 . . . ) such that for each i, Zi := Xi ∪ Yi. Obtain the sequence i1 = 1 < i2 < . . . of
indices such that Vj :=

⋃ij+1−1
i=ij Zi as follows: for each j, keep including Zi for i ≥ ij into Vj

and stop the moment at least one of the above conditions hold. To check the size of feedback
vertex set in T [Vj ] use the approximation algorithm in Lemma 2 i.e. check if Lemma 2
outputs a feedback vertex set for T [Vj ] of size less than 4f .

Since by regularity, the feedback vertex set of any block is at most 10 log5 k and since the
CFVS instance is weakly-coupled, the size of a maximum matching on back edges between
any consecutive blocks is at most 201 log8 k. Since the CFVS instance is matched and
LowBlockDegree, the size of maximum matching in conflict edges is at most 201 log10 k.
Hence, including any block into a set Vi increases the size of the feedback vertex set of T [Vi]
by at most 10 log5 k+ 201 log10 k. At the same time, the degree of Vi can increase by at most
201 log10 k. Hence, the above algorithm outputs the required partition. Note that edges in
F ∩ E(T − P2) form a matching. Hence, t ≤ k

201 log12 k
. J

I Definition 43 (decoupled). An instance (T,M,P, F, k) of CFVS is said to be decoupled if
there is a partition (V1, V2, . . . , Vt) of V (T ) \ P such that t ≤ k

201 log12 k
and for each i ∈ [t]

(a) Vi is a union of consecutive blocks in the M -sequence of T − P , (b) the size of feedback
vertex set of T [Vi] is at least f = 201 log12 k and at most 804 log12 k, or at least 200 log12 k

and at most d = 201 log12 k edges in F ∩ E(T − P ) are incident on Vi. (c) F contains short
conflict edges between any pair of sets Vi and Vj .

Note that it can be checked in polynomial time whether a given CFVS instance (T,M,P, F, k)
is decoupled or not.

I Lemma 44. There exists a γ-reduction from a regular, weakly-coupled, and matched CFVS
instance (T,M,P2, F, k) to a family C6 for γ = 2O( k

log k ) such that every instance in C6 is
regular, weakly-coupled, matched, LowBlockDegree and decoupled.

Proof. Given (T,M,P2, F, k), we construct the family C6. Using the algorithm of Lemma 42,
we construct the partition (V1, V2, . . . , Vt) of V (T ) \P2. For each Vi, let Ei be the set of back

FSTTCS 2016



24:12 Faster Exact and Parameterized Algorithm for Feedback Vertex Set in Tournaments

edges incident on Vi from V (T ) \ (P2 ∪ Vi). Let J :=
⋃
Vi
Ei be the union of such back edges.

Now, we guess the subset B of back edges that are not hit by the required feedback vertex
set. For every subset B ⊆ J of size at most 2 · t · 200 log6 k, let JB = J \B. We require that
the feedback vertex set hits at least one end point of every edge in JB . Let D be the vertex
cover of JB. For every subset C ⊆ D, define PC := C ∪NJB

(D \ C). For each PC , we add
the CFVC instance (T,M,P3, F, k) where P3 := P2 ∪PC into C6 if (T,M,P3, F, k) is regular,
weakly-coupled, matched, LowBlockDegree and decoupled.

The backward direction is trivial. For the forward direction, let H be an M -homogeneous
(M,P, F )-CFVS solution. Observe that all the above algorithm does is consider all possibilities
via which H may hit the back edges between T [Vi\P2] and T [Vi\P2] for any i, j. The number
of choices of sets B is at most (k6)2·t·200 log6 k = 2O( k

log k ). Note that in the M -sequence of
T − P2, the matching on short back edges between any pair of consecutive blocks is at most
201 log10 k. Hence, the vertex cover of these back edges is at most 201 log10 k. Since the
number of sets in the partition (V1, V2, . . . ) is at most k

f , the size of the total matching on
short back edges J is at most g = 201 log10 k × k

f . Hence, the number of choices for C is at
most 2g = 2O( k

log k ). Hence, γ = 2O( k
log k ) × 2O( k

log k ) = 2O( k
log k ). J

I Lemma 45. There is a polynomial time reduction from a CFVS instance (T,M,P2, F, k)
that is regular, weakly-coupled, matched, LowBlockDegree and decoupled to an instance of
Disjoint Feedback Vertex Cover (T , k′) for k′ = k − |P2|.

Proof. Given (T,M,P2, F, k), construct the DFVS instance with vertex set V (T ) \ (M ∪P2)
and make the edges in F \ E(T − P2) between any two sets Vi and Vj undirected. For
any solution H for (T,M,P2, F, k), H \ P2 is a feedback vertex set of T − P2 that hits
F \ E(T − P2). Hence, H \ P2 is a feedback vertex cover for (T , k′) for k′ = k − |P2|. In
the backward direction, a solution S for (T , k′) hits F \E(T − P2) and is disjoint from M .
Hence, S ∪ P2 is a solution for (T,M,P2, F, k). J

At this point, we can use the following lemma from [27] with the only difference being in the
base case as we have a bipartite tournament instead of a supertournament. We replace the
naive 3k algorithm by 4k algorithm to find a feedback vertex for each of T [Vi]. Note that
bounding the size of feedback vertex set in each of T [Vi] to O(log12 k) and the number of
Vi’s to at most O( k

log12 k
) implies that the maximum time spent in solving the base cases is

at most O( k
log12 k

) · 2O(log12 k).

I Lemma 46 ([27]). There exists an algorithm running in 1.5874s · 2O(df log k+d log s) · nO(1)

time which finds an optimal feedback vertex cover in a mixed multigraph T ∈ G(d, f, t) in
which the undirected edge set E(T ) is disjoint and |E(T )| = s.

I Theorem 47. There exists an algorithm for BTFVS running in 1.6181k + nO(1) time.

Proof. Using the algorithm of Lemma 41, construct the family C5 of CFVS instances. For
each instance (T,M,P2, F, k) ∈ C5, using the algorithm of Lemma 44 construct the family C6
of CFVS instances. Then for each CFVS instance (T,M,P, F, k) using Lemma 45, construct
the DFVC instance (T , k − |P |) which is solved using the algorithm of Lemma 46. If for any
instance, the algorithm of Lemma 46 outputs a solution set S of size at most k − |P |, then
we output yes, otherwise output no.

The correctness of the algorithm follows from the correctness of the algorithms in the

Lemma 41, 44, 45 and 46. The runtime of the algorithm is upper bounded by
k∑
s=1

1.618k−s ×

1.5874s · 2O(df log k+d log s) · nO(1) ≤ 1.6181k · 2O(d2+d log k) · nO(1). J
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I Proposition 48 ([16]). If there exists a parameterized algorithm for any vertex deletion
problem into a hereditary graph class with running time cknO(1), then there exists an exact-
exponential-time algorithm for the problem with running time (2− 1

c )n+o(n)nO(1).

The above proposition immediately implies the following theorem.

I Theorem 49. There exists an algorithm for BTFVS running in 1.3820n time.
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Abstract
We introduce a version of the probabilistic mu-calculus (PMC) built on top of a probabilistic
modal logic that allows encoding n-ary inequational conditions on transition probabilities. PMC
extends previously studied calculi and we prove that, despite its expressiveness, it enjoys a series of
good meta-properties. Firstly, we prove the decidability of satisfiability checking by establishing
the small model property. An algorithm for deciding the satisfiability problem is developed. As
a second major result, we provide a complete axiomatization for the alternation-free fragment of
PMC. The completeness proof is innovative in many aspects combining various techniques from
topology and model theory.
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1 Introduction

From the perspective of industrial practice, especially in the area of embedded and cyber-
physical systems, an essential problem is how to deal with the high complexity of the
systems, while still meeting the requirements of correctness, predictability, performance and
also non-functional properties. In this respect, for embedded systems, specification and
verification should not only consider functional properties but also non-functional properties.
Particularly, effort has been put into formalisms and logics that address stochastic aspects of
a system. The seminal work of Hansson and Jonsson [13] introduced pCTL, a probabilistic
extension of CTL. In a number of recent work results related to decidability and complexity
of model checking and satisfiability checking of (variants of) pCTL have been established
[1, 14, 4, 22, 24, 5].

In parallel, various probabilistic modal µ-calculi have been considered. Typically, one
characterizes the probabilistic bisimulation by using a probabilistic version of modal logic with
the modality indexed by a subunital positive real: e.g. 〈〉>pφ describes that the probability
of reaching a next state satisfying φ is greater than p. Whereas the resulting logic does
fully characterize probabilistic bisimulation, it is not sufficiently expressive with respect to
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decomposition of properties under static operators. To address this, in [21] an extended
n-ary next-state modality ((in-)equational modality) was introduced: e.g. [〈x〉φ1, 〈y〉φ2 :
x+ y ≤ 0.7] describes that the probabilities x and y of reaching next-states satisfying φ1 and
φ2 respectively must satisfy the constraint x+ y ≤ 0.7. This modality allows one to encode
complex linear constraints on probabilities.

In this paper we introduce a probabilistic µ-calculus (PMC) for specifying and reasoning
about the Markov processes. PMC extends with block sequences (equation systems) the
modal logic of [21]. As a first main result, we prove the decidability of satisfiability checking
by establishing a small model property for this logic. As a second main result, we provide a
sound and complete axiomatization for the alternation-free fragment of PMC.

Related Work. The satisfiability problem for the probabilistic logics with fixed points has
been a hot topic for a number of years. While this is still an open problem for pCTL and
pCTL*, various fragments have been solved. In [14, 4], it is shown that qualitative pCTL
(expressing only whether a probability is bigger than 0 or equal to 1) has no finite model
property and its satisfiability problem is ExpTime-complete. Moreover, it is proven that
satisfiability checking for pCTL against models with bounded branching degree is highly
undecidable; however, every satisfiable formula has a model with branching degree bounded
by the size of the formula. More recently, in [1], pCTL satisfiability problem for bounded-size
models is studied and proved to be decidable. In [22, 24], the qualitative fragment of pCTL*
is proved to be decidable too. In recent works [23, 6], the satisfiability problem for an
extension of the logic in [20] with fixed points is proven to be decidable. This logic only
involves probabilistic next-state operator and it cannot express the (in-)equational modalities
of [21].

The decidability of probabilistic µ-calculus of [23] also derives as a particular case of the
more general results proven in [7], where it is shown that the decidability of coalgebraic
mu-calculi parametrized by a tractable set of so-called one-step rules is in ExpTime; in
[17] such a rule set has been exhibited for probabilistic modal logic with linear inequalities.
However, all these works were done only for finite sets with discrete probability distributions.

In [26, 27, 25] probabilistic modal µ-calculus, Łukasiewicz µ-calculus, probabilistic modal
µ-calculus with independent product are studied in the context of denotational semantics
and game semantics, relying on a satisfiability relation that is not essentially boolean but
rather quantitative.

Another fixed points probabilistic logic is proposed in [8]. Its syntax is divided into a
probabilistic part (so called state formulas) and a non-probabilistic part involving fixed points
(so called fuzzy formulas). This logic can encode the probabilistic modal logic and pCTL*
and it is studied from the perspective of (finite) model checking and bisimulation checking.

Considering the axiomatization, complete axiomatizations for the qualitative fragment of
pCTL* are shown in [22], but only for bounded finite systems.

Our Work. With respect to the related work described above, our probabilistic µ-calculus
involves the equational modalities of [21], thus allowing us to encode (in-)equational conditions
on probabilities. The logic is definitely more general than that of [23]. The semantics, with
respect to the other related works such as [7, 17] is in term of general (analytical) measurable
sets and not just finite spaces with discrete sigma-algebras; it has been repeatedly proven in
literature, see e.g. [28], that going from discrete systems to continuous systems is far from
being a trivial step, and complex topological and measure theoretical arguments applied to
model theory must be invoked.
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Our logic is incomparable with pCTL and pCTL* as it cannot express modalities such
as “probabilistic Until”. The work here includes a modality extension but does not try to
add this modality to the more complicated logics of [5, 26, 27, 25]. However, our logic can
be used to approximate pCTL formulas with arbitrary precision when restricting to finite
models. This is interesting as the satisfiability problem for quantitative pCTL is still open.

We prove that this logic enjoys the finite model property and its satisfiability problem is
decidable. We develop an algorithm that checks the satisfiability of a formula and, if the
formula is satisfiable, it constructs a finite model. Being the aforementioned state of the
art in the field, these are important results presenting our logic as a good trade-off between
expressiveness and decidability. Moreover, these results generalize the ones in [23] while our
proof constructs on top of the classic tableau method [33, 15, 34].

Another key contribution of our paper is the complete axiomatization that we propose
for the alternation-free fragment of PMC. At the best of our knowledge, the problem of
axiomatizing probabilistic µ-calculus has not been previously approached at this level of
generality. The completeness proof is a non-standard extension of the filtration method
relying on topological facts such as Rasiowa-Sikorski lemma and its relation to Lindenbaum’s
lemma (following the technique developed by the first two authors in collaboration with
Dexter Kozen and Prakash Panangaden [16]). The proof also applies the technique developed
in [18] by the authors for proving the completeness of fixed points logics. These can be easily
adapted to other versions of probabilistic µ-calculus.

Due to space limit, most of the results stated here are without proofs. For a detailed
presentation with the proofs and some of the classical definitions and lemmas, the reader is
referred to http://people.cs.aau.dk/~bingt/probaMuCalc.pdf

2 Probabilistic Mu-Calculus

Probabilistic µ-Calculus (PMC) that we develop in this paper encodes properties of Markov
processes. As usual with µ-Calculus based on equation systems, the syntax is given in two
stages: we firstly introduce the basic formulas and secondly use them to define blocks. The
basic formulas are boolean formulas, constructed on top of a set A of atomic propositions
and involving the following:

recursive-variables range over the set X ; they are used to define simultaneous recursive
equations in order to express maximal and minimal fixed points, in the style of [19, 9, 10, 2];
(in-)equational modalities of type 〈x1〉φ1, . . . , 〈xn〉φn : Σni=1aixi ≥ r where x1, . . . , xn are
probability variables ranging over a set V and a1, . . . , an, r ∈ Q.

I Definition 1 (Basic formulas). The basic formulas of PMC are defined by the following
grammar, for arbitrary p ∈ A, X ∈ X , a1, . . . , an, r ∈ Q, x1, . . . , xn ∈ V:

L : φ := p | ¬φ | φ ∨ φ | 〈x1〉φ1, . . . , 〈xn〉φn : Σni=1aixi ≥ r | X .

Notation: For arbitrary x ∈ Vn, a ∈ Qn, r ∈ Q and φ ∈ Ln, instead of 〈x1〉φ1 . . . 〈xn〉φn,
we simply write 〈x〉φ and instead of Σni=1aixi≥r we write a·x≥r. This will simplify the syntax
of the equational modalities and instead of 〈x1〉φ1 . . . 〈xn〉φn : Σn

i=1aixi ≥ r, we will write
〈x〉φ : a·x≥r. In this case, n is called the length of 〈x〉φ : a·x≥r. If 〈x〉φ = 〈x1〉φ1 . . . 〈xn〉φn
and a ·x = Σni=1aixi, for k <n, let 〈x〉φ

∣∣
k

def= 〈x1〉φ1 . . . 〈xk〉φk and a ·x
∣∣
k

def= Σki=1aixi.
Observe that in the basic formulas we only allow one inequality using ≥ to specify the

constraints on x. However, we can, for instance, encode reversed inequalities since we are
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using all rationals; and we can encode a finite set of constraints by involving conjunctions of
the equational modalities.

The dual of 〈x〉φ : a ·x ≥ r can be defined as 〈x〉φ : a ·x < r; for this reason, we write
constraints freely using ≥,≤, > or <. We use both E and D to range over the set {≤,≥}
such that {E,D} = {≤,≥}. Similarly, we use C and B to range over the set {<,>} such
that {C,B} = {<,>}.

Now we introduce the equation blocks. Given φ, ψ1, . . . , ψh ∈ L and X1, . . . , Xh ∈ X ,
let φ{ψ1/X1, . . . , ψh/Xh} be the formula obtained by substituting each occurrence of
Xi in φ with ψi for i = 1, . . . , h; denoted shortly φ{ψ/X}, where ψ = (ψ1, . . . , ψh) and
X = (X1, . . . , Xh). Following [9, 10, 2], we allow sets of the maximal or minimal blocks of
mutually recursive equations in PMC.

I Definition 2 (Equation Blocks). An equation block B over the set XB = {X1, . . . , XN} ⊆ X
of pairwise distinct variables has one of two forms – min{E} or max{E}, where E is a system
of (mutually recursive) equations such that for any i, j ∈ {1, . . . , N}, φi is monotonic in Xj .

E : 〈 X1 = φ1, . . . , XN = φN 〉 .

If B = max{E} or B = min{E}, the elements of XB are called max-variables or min-
variables respectively. Given the system E of equations in the previous definition, its dual
is

Ẽ : 〈 X1 = ¬φ1{¬X1/X1, . . . ,¬XN/XN}, . . . , XN = ¬φN{¬X1/X1, . . . ,¬XN/XN} 〉 .

If B = max{E} or B = min{E}, then its dual is B̃ = min{Ẽ} or B̃ = max{Ẽ} respectively.
We say that a formula φ ∈ L depends on B if it involves variables in XB . If XB ∩XB′ = ∅,

we say that B is dependent on B′ if the right hand side formulas of the equations in B

depend on B′.

I Definition 3 (Block Sequence). A sequence B = B1, . . . , Bm of m ≥ 1 pairwise-distinct
equation blocks is a block sequence if XBi ∩ XBj = ∅ for i 6= j. A block sequence B =
B1, . . . , Bm of m ≥ 1 is called alternation-free if Bi is not dependent on Bj whenever i < j.

A formula φ ∈ L is dependent on B if it is dependent of each block in the sequence.
The semantics of our calculus is defined in terms of (probabilistic) Markov processes [28].

I Definition 4 (Markov Process). A (probabilistic) Markov process (PMP) is a tupleM =
(M,Σ, l, θ) with (M,Σ) an analytic measurable space1 of states, l : M → 2A a labeling
function associating a set of state labels (i.e., atomic propositions) to each state and θ : M →
Π(M,Σ) the transition function associating a probability measure over (M,Σ) to each state.

Given a PMPM = (M,Σ, l, θ), an environment is a function ρ : X → 2M that interprets
the recursive-variables as sets of states. We use 0 as the empty environment that associates
∅ to all recursive-variables. Given an environment ρ and S ⊆ M , let ρ[X 7→ S] be the
environment that interprets X as S and all the other recursive-variables as ρ does. Similarly,
for a pairwise-disjoint tuple X = (X1, . . . , XN ) ∈ XN and S = (S1, . . . , SN ) ⊆ MN , let
ρ[X 7→ S] be the environment that interprets Xi as Si for all i = 1, . . . , N and all the other
variables as ρ does.

1 An analytic space1 is a continuous image of a Polish space in a Polish space; a Polish space is the
topological space underlying a complete separable metric space.
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Given a PMPM = (M,Σ, l, θ) and an environment ρ, the semantics for the basic formulas
in L is defined, on top of the classic semantics for Boolean logic, inductively as follows,

M,m, ρ |= p iff p ∈ l(m);
M,m, ρ |=¬φ iffM,m, ρ 6|= φ;
M,m, ρ |=φ1 ∨ φ2 iffM,m, ρ |= φ1 orM,m, ρ |= φ2;
M,m, ρ |=X iff m ∈ ρ(X);

M,m, ρ |= 〈x〉φ : a ·x≥ r iff Σni=1aiθ(m)(JφiKMρ ) ≥ r,

where JφKMρ = {m ∈M | M,m, ρ |= φ}.
Following [19, 9, 10, 2], we extend now the semantics to include the restrictions imposed

by a sequence of blocks and obtain the so-called block-semantics.
Given a set of equations E with X = (X1, . . . , XN ), an environment ρ and Υ =

(Υ1, . . . ,ΥN ) ⊆ MN , let the function fρE : (2M )N −→ (2M )N be defined as: fρE(Υ) =
〈Jφ1Kρ[X 7→Υ], . . . , JφN Kρ[X 7→Υ]〉.

Observe that (2M )N forms a complete lattice with the ordering, join and meet operations
defined as the point-wise extensions of the set-theoretic inclusion, union and intersection,
respectively. Moreover, for any E and ρ, fρE is monotonic with respect to the order of
the lattice and therefore, it has a greatest fixed point denoted by νX.fρE and a least
fixed point denoted by µX.fρE [9]. These can be characterized as: νX.fρE =

⋃
{Υ | Υ ⊆

fρE(Υ)}, µX.fρE =
⋂
{Υ | fρE(Υ) ⊆ Υ}.

The blocks max{E} and min{E} define environments that satisfy all the equations in E;
max{E} is the greatest fixed point and min{E} is the least fixed point. The environment
defined by the block B is denoted by JBKρ. Given a block sequence B = B1, . . . , Bm and an
environment ρ0, let ρ1, . . . , ρm be defined by ρi = JBiKρi−1 for i = 1, . . . ,m. The semantics
of B is then given by

JBKρ0 = ρm.

I Definition 5 (Block-Semantics). Given a block sequence B, the B-semantics of a formula
φ ∈ L that depends on B is given for a PMP M = (M,Σ, l, θ) with m ∈ M and an
environment ρ, as follows,

M,m, ρ |=B φ iff M,m, JBKρ |= φ.

We say that a formula φ is B-satisfiable if there exists at least one PMP that satisfies
it for the block sequence B in one of its states under some environment; φ is a B-validity,
written |=B φ, if it is satisfied for B in all states of any PMP under any environment.

I Example 6. Suppose a file is divided into n blocks that are distributed among several
peers in a peer-to-peer network. When a user wants to get the complete file from the network,
he needs to download all n blocks. When the user tries to download a block, there are three
possibilities: (1) he gets the block successfully and he will try to download the next block
(with probability 0.6); (2) the block is not available anymore, in which case it is not possible
to get the complete file (with probability 0.1); (3) the peer did not response within a time
limit and the user retries (with probability 0.3). To simplify the example, we assume that
only one block can be downloaded at one time. The system (1) in Figure 1 is one of this
type.

Consider the safety property that “it will never FAIL to get the file” as shown in the
system (2) in Figure 1. In the non-probabilistic case, this can be specified by the mu-calculus
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(1) Probabilistic System
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m′1

...
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m′f
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(2) Non-probabilistic System

Figure 1 Peer-to-peer file sharing network.

formula φ:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS

∧(〈〉SUCCESS ∨ 〈〉X)

}
,

where φ is satisfied by m′0, . . . ,m′n and X is satisfied by m′0, . . . ,m′n−1.
Consider the probabilistic safety property that “at any moment, the probability of FAIL

to get the file is less than or equal to 0.1”. This requirements can be expressed in PMC as:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS∧
(〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

where φ is satisfied by m′0, . . . ,m′n and X by m′0, . . . ,m′n−1. Notice that, they still hold when
the system is infinite, i.e., n goes to +∞.

3 Decidability and finite model property

In this section, we prove that the B-satisfiability problem of PMC is decidable, i.e., it is
decidable whether a given formula φ of PMC which is closed w.r.t. a block sequence B is
satisfiable. We do this by involving the tableau construction [33, 15, 34] that will eventually
help us constructing a model for φ. We show that PMC enjoys the finite model property
and present a decision procedure. This work is done for the entire PMC and not only for the
alternation-free fragment.

Given a formula φ dependent on B, the construction of the model follows 4 steps (in brief):
1. Find the so-called co-prime formula φc for φ, which has a special format and admits the

same models as φ. Similarly, we construct a co-prime block sequence Bc. Both φc and Bc
only involve integer inequalities with co-prime coefficients in the equational modalities.

2. Construct a set of formulas which is vital in constructing the tableau for φc. In contrast
to that of the classical µ-calculus, this set not only contains the subformulas of φc and Bc
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but also it is still a finite set of formulas. This construction involves complex continuity
arguments on rationals and this makes it particularly different from any similar techniques
used previously with µ-calculi. The basic idea behind it is that every rational inequality
(system) has (at least) one rational solution.

3. Construct a tableau for φc by adapting the classical tableau method. They key here is to
use maximal sets as nodes, in order to get the probability distributions over the state
space.

4. The tableau provides a PMP, which is also a model for φc, hence also for φ.

I Definition 7 (Co-Prime). A block sequence B (a formula φ ∈ L dependent on B) is said to
be co-prime iff for any 〈x〉ψ : a ·x≥ r that appears in B (in φ or B), a1, . . . , an are co-prime
integers.

For any inequality Σn
i=1aixi ≥ r, one can divide both sides of the inequality by the

greatest common divisor of a1, . . . , an to get an inequality that has the same solution. Hence,
for any block sequence (formula), one can get its co-prime block sequence (co-prime formula)
by changing all inequalities in it by the above mentioned method.

Properties:
1. For any block sequence B, there exists a unique co-prime block sequence denoted by Bc;

for any formula φ, there exists a unique co-prime formula denoted by φc.
2. For any formula 〈x〉φ : ax≥ r, (〈x〉φ : ax≥ r)c ∈ {〈x〉φ : x ≤ r

a , 〈x〉φ : x ≥ r
a}.

I Proposition 8. For any φ ∈ L dependent on B and its co-prime formula φc, any model
satisfying one also satisfies the other, i.e., for any PMPM = (M,Σ, l, θ) with m ∈M and
any environment ρ,

M,m, ρ |=B φ iffM,m, ρ |=Bc φc.

Therefore, for solving the satisfiability problem of a formula, it is sufficient to solve the
satisfiability problem of its co-prime formula.

Consider φ ∈ L dependent on B. The set of all the recursive-variables in φ and B is
denoted X [φ,B]. Let R[φ,B] ⊆ Q be the set of all rationals in φ or B; let R∗[φ,B] ⊆ Q be
the set of all r

ai
s.t. 〈x〉ψ : (a1, .., an) ·x≥ r appears in φ or B and ai 6= 0. Obviously, R[φ,B]

and R∗[φ,B] are both finite.
The granularity of φ dependent on B, denoted by gr(φ,B), is the least common denomin-
ator of the elements of R∗[φ,B]. Let I[φ,B] be the set of all rationals of type p

gr(φ,B) in
the interval [min(R∗[φ,B]),max(R∗[φ,B])], for p ∈ Z. Notice that I[φ,B] = ∅ whenever
R∗[φ,B] = ∅.
The modal depth of φ dependent on B, denoted by md(φ,B), is defined inductively by

md(φ,B) =


0, if φ = p or φ = X

md(ψ,B), if φ = ¬ψ
max{md(ψ),md(ψ′)}, if φ = ψ ∨ ψ′
max{md(ψi) | i = 1, . . . , n}+ 1, if φ = 〈x〉ψ : a ·x≥ r

The modality length of φ dependent on B, denoted by ml(φ,B), is largest length of the
sub-formula 〈x〉ψ : a ·x≥ r that appears in φ or B.

In the following, we fix a co-prime formula φc ∈ L dependent on a co-prime block sequence
Bc and we construct a model for it. Let

(~) L[φc,Bc] = {φ ∈ L | X [φ,Bc] ⊆ X [φc,Bc], R[φ,B] ⊆ R[φc,Bc],
I[φ,B] ⊆ I[φc,Bc],md(φ,Bc) ≤ md(φc,Bc),ml(φ,Bc) ≤ ml(φc,Bc)}.
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The classical construction will take sets of formulas from the set L[φc,Bc], which are
propositional maximal as defined in the next definition. However, in our setting, the set
L[φc,Bc] does not contain enough quantitative information for constructing the model yet.
Therefore, there are two extension steps to gather all the quantitative information to get the
right candidate for the states of the model, which are quantitative maximal and quantitative
complete as defined in Definition 10 and Definition 11. This information will make sure that
we are able to find the rational solutions for all the inequalities, which will be used to define
the probabilities on the transitions.

I Definition 9 (Propositional Maximal Set). A set Λ ⊆ L[φc,Bc] is (propositional) maximal
iff:
1. if φ ∈ Λ, then ¬φ 6∈ Λ; if φ ∨ ψ ∈ Λ, then φ ∈ Λ or ψ ∈ Λ; if X ∈ Λ and X = φ ∈ Bc,

then φ ∈ Λ;
2. for all φ ∈ L[φc,Bc], 〈x〉φ : x≥ 0 ∈ Λ and 〈x〉φ : x≤ 1 ∈ Λ;
3. if 〈x〉ψ : a ·x C r ∈ Λ, then 〈x〉ψ : a ·x E r ∈ Λ.

Let Π[φc,Bc] the set of all the (propositional) maximal sets of L[φc,Bc]. Since L[φc,Bc]
is finite, Π[φc,Bc] is finite and any Λ ∈ Π[φc,Bc] is finite. As we mentioned earlier, L[φc,Bc]
is not sufficient for constructing the model, so we will extend L[φc,Bc] and Π[φc,Bc] in two
steps. Firstly, Λ∈ Π[φc,Bc] is not quantitative maximized defined as follows:

I Definition 10 (Quantitatively Maximized Set). A set A ⊆ L is quantitatively maximized
iff
1. if 〈x〉φ : x E r ∈ A, then 〈x〉¬φ : x D 1− r ∈ A;
2. if 〈x〉(φ ∧ ψ) : x E r1 ∈ A and 〈x〉(φ ∧ ¬ψ) : x E r2 ∈ A, then 〈x〉φ : x E r1 +r2 ∈ A;
3. if 〈xn〉φn : xnDrn ∈ A, 〈x〉φ : a·xEr ∈ A and an ≥ 0, then 〈x〉φ

∣∣
n−1 : a·x

∣∣
n−1Er−anrn ∈ A;

4. if 〈xn〉φn : xnDrn ∈ A, 〈x〉φ : a·xCr ∈ A and an ≥ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Cr−anrn ∈ A;

5. if 〈xn〉φn : xnErn ∈ A, 〈x〉φ : a·xEr ∈ A and an ≤ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Er−anrn ∈ A;

6. if 〈xn〉φn : xnErn ∈ A, 〈x〉φ : a·xCr ∈ A and an ≤ 0, then 〈x〉φ
∣∣
n−1 : a·x

∣∣
n−1Cr−anrn ∈ A.

The quantitative maximization extends the lower bound and upper bound of all the
rationals considered. This makes sure that all the numbers related to the given formula are
included. These numbers are needed in order to find all the solutions for the inequalities in
φc and Bc.

Extension Step I: Let pmax

gr(φc,Bc) ,
pmin

gr(φc,Bc) with pmax, pmin ∈ Z and max′,min′ ∈ Q be such
that if the conditions 1 – 4 below are satisfied, then for any Λ ∈ Π[φc,Bc], there exists
Λ′ ∈ Π′[φc,Bc] such that Λ ⊆ Λ′ and Λ′ is quantitatively maximized,
1. I ′[φc,Bc] be the set of all p

gr(φc,Bc) in the interval [ pmax

gr(φc,Bc) ,
pmin

gr(φc,Bc) ] for any p ∈ Z;
2. R′[φc,Bc] = {r ∈ Q | min′ ≤ r ≤ max′]};
3. L′[φc,Bc] ⊇ L[φc,Bc] is the set of formulas defined as (~) based on I ′[φc,Bc] and

R′[φc,Bc];
4. Π′[φc,Bc] the set of the propositional maximal sets of L′[φc,Bc].

In order to find the maximal number related to 2 in Definition 10, one can start with
adding the 〈x〉φ : xE r1 + r2 and its negation which are not in L[φc,Bc] to get L′[φc,Bc] and
continue doing the same to the new L′[φc,Bc]. Since L[φc,Bc] is finite, this procedure will
terminate. Similarly one can do the same for the others and find the numbers. It is obvious
that L′[φc,Bc] and Π′[φc,Bc] are still finite. For any Λ ∈ Π[φc,Bc], choose Λ′ ∈ Π′[φc,Bc]
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Table 1 Tableau Rules.

(∧) {φ1, φ2,∆} ⊆ Λ+

{φ1 ∧ φ2,∆} ⊆ Λ+ (∨) {φi,∆} ⊆ Λ+

{φ1 ∨ φ2,∆} ⊆ Λ+ φi ∈ Λ+, i = 1 or 2 (Reg) {φX ,∆} ⊆ Λ+

{X,∆} ⊆ Λ+ X = φX ∈ B

(Mod)
∆1 ⊆ Λ+

1 · · · ∆k ⊆ Λ+
k

∆ ⊆ Λ+ ∅ 6= ∆j ⊆
⋃

〈x〉φ : a·x≥r∈∆

{φ1, . . . , φn} ⊆
⋃

j=1,...,k
∆j

s.t. Λ ⊆ Λ′ and Λ′ is quantitatively maximized. Let the set of the chosen Λ′ be Ω′[φc,Bc],
which is finite.

In order to define the distribution on the model correctly, we need to obtain more
information about the maximal sets, which is the quantitative completeness defined as
follows.

I Definition 11 (Quantitatively Complete Set). Given any finite set L∗ ⊆ L. A propositional
maximal set Λ∗ of L∗ is called quantitatively complete iff ulφΛ∗ = urφΛ∗ for any φ ∈ L∗, where

ulφΛ∗ = max{r ∈ Q | 〈x〉φ : x≥ r ∈ Λ∗}, urφΛ∗ = min{s ∈ Q | 〈x〉φ : x≤ s ∈ Λ∗}.

The above notion captures the accuracy of the rationals, which states how precise we
can express in the logic. This makes sure that we include (at least) one rational solution for
every inequality.

I Lemma 12. For any φ ∈ L′[φc,Bc] (L[φc,Bc]) and any Λ′ ∈ Ω′[φc,Bc] (Λ ∈ Π[φc,Bc]),
1. ulφΛ′ , ur

φ
Λ′ ∈ [0, 1] ∩Q;

2. either ulφΛ′ = urφΛ′ or ul
φ
Λ′ + 1

gr(φc,Bc) = urφΛ′ .

Extension Step II: Let h ∈ N be such that if the conditions 1 – 3 below are satisfied,
then for any Λ′ ∈ Ω′[φc,Bc], there exists Λ+ ∈ Π+[φc,Bc] such that Λ′ ⊆ Λ+ and Λ+ is
quantitatively complete.
1. gr+(φc,Bc) = gr(φ,B) · 2h;
2. L+[φc,Bc] ⊇ L′[φc,Bc] is the set of formulas defined as (~) based on gr+(φc,Bc);
3. Π+[φc,Bc] the set of the propositional maximal sets of L+[φc,Bc].

Since L′[φc,Bc] is finite and all the numbers in the constraints on the quantitative variables
are rationals, there exist rational solutions for the inequality systems. Hence, we can find
such an h in finitely many steps by multiplying the granularity by 2 every time. Obviously
L+[φc,Bc] and Π+[φc,Bc] are finite. For any Λ′ ∈ Ω′[φc,Bc], choose Λ+ ∈ Π+[φc,Bc] s.t.
Λ′ ⊆ Λ+ and Λ+ is quantitatively complete. Let the set of the chosen Λ+ be Ω+[φc,Bc].

I Lemma 13. For any φ ∈ L+[φc,Bc] and any Λ+ ∈ Ω+[φc,Bc],

ulφΛ+ = urφΛ+ ∈ [0, 1] ∩Q.

In what follows, let uφΛ+ = ulφΛ+ = urφΛ+ . Now we are ready to construct a model for
φc dependent on Bc. We construct a tableau T [φc,Bc] for φc with Λ+ ⊆ Ω+[φc,Bc] as the
nodes. The reason for here, unlike in the standard construction [33, 15, 34], we consider
Λ+ as a node is because we need to derive information about probabilities from the nodes.
The tableau rules are listed in Table 1, where ∆ ⊆ Λ+ denotes Λ+ including ∆ and {φ,∆}
denotes {φ} ∪∆.

If (Mod) is applied at node t, the nodes ∆j ⊆ Λ+
j obtained from 〈x〉φ : a · x ≥ r s.t.

φi ∈ ∆j are called φi-sons of t. The tableaux may be infinite. However, because Ω+[φc,Bc]
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and any Λ+ ∈ Ω+[φc,Bc] are both finite, the nodes of the type ∆ ⊆ Λ+ appear in T [φc,Bc]
are finitely many.

As in the classic method for µ-calculus [33, 15, 34], we use max-trace, min-trace to capture
the idea of a history of the regeneration of a formula (similar to the classic definitions and
presented in the full version of the paper). We adapt the notions of markings, consistent
markings to the probability case to characterize B-satisfiability of a formula in a state of a
PMP.

I Definition 14 (Marking). For a tableau T , we define its marking with respect to a PMP
M = (M,Σ, l, θ) and state m0 ∈ M to be a relation M ⊆ M × T satisfying the following
conditions:
(i) (m0, t0) ∈M, where t0 is the root of T ;
(ii) if (m, t) ∈ M and a rule other than (Mod) was applied at t, then for the son t′ of t,

(m, t′) ∈M;
(iii) if (m, t) ∈ M with t = (∆ ⊆ Λ+) and rule (Mod) was applied at t, then for any

〈x〉φ : a ·x≥ r ∈ ∆, there exists F1, . . . , Fn ⊆M s.t. for any i = 1, . . . , n:
(a) for every φi-son t′ of t, there exists a state m′ ∈ Fi s.t. (m′, t′) ∈M, and
(b) for every state m′ ∈ Fi, there exists a φi-son t′ of t s.t. (m′, t′) ∈M, and
(c) uφi

Λ+ = θ(m)(Fi).

I Definition 15 (Consistent Marking). A marking M of T is consistent with respect to
M = (M,Σ, l, θ) and m0 ∈M , if and only if M satisfies the following conditions:

local consistency: for any node t = (∆ ⊆ Λ+) ∈ T and state m ∈M , if (m, t) ∈M then
for any ψ ∈ ∆,M,m, 0 |=B ψ;
global consistency: for every path P = t0, t1, . . . of T s.t. there exist πi with (πi, ti) ∈M

for i = 0, 1, . . ., there is no min-trace on P.

I Lemma 16. φc is satisfied at state m0 in a PMPM = (M,Σ, l, θ) if and only if there is
a consistent marking of T [φc,Bc] with respect toM and m0.

The proof of Lemma 16 relies on notion of signature, similar to that considered by Streett
and Emerson [33]. These notions come from the characterization of fixed point formulas by
means of transfinite chains of approximations, which have been extended to the setting with
fixed points defined with blocks in [9, 10]. Involving these, the previous lemma is proven
similarly to the case of classic µ-calculus [33, 15, 34]. The correctness of the cases with
probability is guaranteed by the quantitative maximatization and quantitative completeness
defined in Definition 10 and 11.

This lemma allows us to prove the finite model property for PMC, by following the classic
proof strategy of [15]; the only difference consists in managing the probability modalities.

I Theorem 17 (Finite Model Property). Let φ0 ∈ L be a formula that depends of B0. If φ0
is B0-satisfiable, then there exists a finite PMPMf = (Mf ,Σf , θf ) with mf ∈Mf and an
environment ρf such thatMf ,mf , ρf |=B0 φ0.

According to Proposition 8, Lemma 16 and Theorem 17, we can obtain an algorithm to
decide the satisfiability of a given PMC formula.

I Algorithm. Given a PMC formula φ0 ∈ L dependent on the block sequence B0, the
algorithm constructs a finite PMPMf = (Mf ,Σf , lf , θf ) and an environment ρf such that
Mf ,mf , ρ

f |=B0 φ0 in the following steps:
1. Construct the co-prime block sequence Bc0 of B0 and the co-prime formula φc0 of φ0.
2. Construct L[φc0,Bc0] and Π[φc0,Bc0], which are finite.
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m0

m1 SUCCESS

m′

FAIL
0.6

0.3 1
0.1

Figure 2 Small model Construction.

3. Construct L′[φc0,Bc0] and Ω′[φc0,Bc0] by Extension Step I. L′[φc0,Bc0] and Ω′φc0,Bc0] are
finite.

4. Construct L+[φc0,Bc0] and Ω+[φc0,Bc0] by Extension Step II. L+[φc0,Bc0] and Ω+[φc0,Bc0]
are finite.

5. Construct the tableau T [φc0,Bc0] according to the rules in Table 1.
6. ConstructMf = (Mf ,Σf , θf ) as follows:

Mf is the set of the nodes of t ∈ T [φc0,Bc0] such that either (Mod) is appiled at t or no
rules are applicable at t (t is a leaf).
Let LφiM = {Λ+

i | φi ∈ Λ+
i ∈Mf}, N = {LψM | (Mod) is applied in T [φc0,Bc0] for 〈x〉φ

n
: a·

x≥ r, ψ = φi for some i}. Then Σf = σ(N).
lf is defined as: for any t = Λ+ ∈Mf , lf (t) = {p ∈ A | p ∈ Λ+}.
For t = Λ+ ∈Mf where (Mod) is applied, let θf (t)(LφM) = uφΛ+ for any LφM ∈ N .
Let ρf (X) = {Λ+ | X ∈ Λ+} for X ∈ X . By Theorem 17Mf , t, ρf |=Bc

0
φc0 for t = Λ+

s.t. φc0 ∈ Λ+.
7. Therefore,Mf , t, ρf |=B0 φ0, by Theorem 8.

I Example 18. Consider the property in Example 6:

φ = SUCCESS ∨X

B = max
{
X = ¬FAIL ∧ ¬SUCCESS
∧ (〈x1〉SUCCESS, 〈x2〉X : x1 + x2 ≥ 0.9)

}
,

As discussed in Example 6, φ is satisfiable. We can use the above algorithm to construct a
model for it (the smallest one), as shown in Figure 2. The detailed steps of construction is
omitted here.

I Theorem 19 (Decidability of B-Satisfiability). The B-satisfiability problem for PMC is
decidable.

PMC can be used to approximate pCTL formulas with arbitrary precision when restricting
to finite models. Our approximation is based on a partition P : 0 < π1 < · · · < πk < 1 of
[0, 1]. To (under-)approximate the pCTL formula φi = P≥πi

(φ1Uφ2) in PMC, we define
recusively:

BP = min{Xu
i = φu2 ∨ (φu1 ∧ 〈xj〉Xu

j : (xj − xj+1)πj ≥ πi | i = 1 . . . k}.

Let Si be the set of states satisfying the pCTL formula φi. Then the vector 〈Si : i = 1 . . . k〉
is a fixed point to the block B above, and it follows (from minimal fixed point semantics
of B) that Xu

i ⇒ φi. Thus successful application of our finite-model property construction
to Xu

i will provide a model for φi as well. We conjecture that if there is a finite model
M satisfying φi = P≥π(φ1Uφ2), then for any ε > 0 we can find a partitioning P such that
M |=BP

Xu
i where πi ≥ π − ε. This will be an alternative to the construction for pCTL
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Table 2 Axiomatic System of PMC basic formulas.

(A1): ` 〈x〉φ : x≥ 0 ∧ 〈x〉φ : x≤ 1
(A2): ` 〈x〉φ : a ·x≥ r ∨ 〈x〉φ : a ·x≤ r
(A3): ` 〈x〉φ : a ·x≤ r → 〈x〉φ : a ·x <s, r < s

(A4): ` ¬(〈x〉φ : a ·x≥ r)↔ 〈x〉φ : a ·x <r
(A5): ` 〈x〉φ : a ·x≥ r ↔ 〈x〉¬φ : a ·x <a− r
(A6): ` 〈x1〉(φ ∧ ψ) : x1 E r1 ∧ 〈x2〉(φ ∧ ¬ψ) : x2 E r2 → 〈x〉φ : x E r1 +r2
(A7): ` 〈x〉φ : a ·x≥ r → 〈x〉φ : α ·(a ·x)≥αr, α ∈ Q≥0
(A8): ` 〈x〉φ : a ·x≥ r ∧ 〈x〉φ : b ·x≥ s→ 〈x〉φ : (a+ b) ·x≥ r + s

(A9): if an = 0, then ` 〈x〉φ : a ·x≥ r → 〈x〉φ
∣∣
n−1 : a ·x

∣∣
n−1 ≥ r

(R1): if ` φ↔ ψ, then ` 〈x〉φ : x E r ↔ 〈x〉ψ : x E r

(R2): {C[〈x〉φ : a ·x E r] | r B s} ` C[〈x〉φ : a ·x E s]

satisfiability problem in [1]. This also shows that, when restricting to finite models, even
though we could not encode pCTL in PMC (e.g., the until operator), we could use a PMC
theory (a (infinite) set of formulas) to approximate it.

4 Axiomatization for Alternation-free PMC

In this section, we propose an axiomatization for the validities of alternation-free fragment
of PMC with respect to the PMP-semantics and prove it sound and (weak-)complete.

4.1 Sound axiomatization
In order to state the axioms for PMC we need to establish some notions. Let X be a
metavariable quantifying over L and 〈x〉φ(X) = 〈x1〉φ1, . . . , 〈xi〉[X], . . . , 〈xn〉φn. For arbitrary
sequences φj = φj1 . . . φjkj and xj = xj1 . . . xjkj , j = 1, . . . , l, we construct the following
generic formula involving X:

C[X] = 〈x1〉φ1(〈x2〉φ2(· · · (〈xl〉φl(X) : al ·xl ≥ rl) · · · ) : a2 ·x2 ≥ r2) : a1 ·x1 ≥ r1.

We call C[X] a context; it can be instantiated to a PMC formula C[φ] for φ ∈ L. Also ε[X]
is a context - the empty one - and for φ ∈ L, ε[φ] = φ. Notice that the metavariable X only
appears once in the syntax of the context, i.e., we only consider contexts with one hole.

The axiomatization of PMC is given in two phases. Firstly, we provide axioms for
deriving the validities that do not depend on sequences of blocks; and secondly, we extend the
axiomatization to recursive constructs. The axioms and rules presented in Table 2 together
with the axioms and the rules of propositional logic axiomatize a classic deducibility relation
(see [12]) for the non-recursive validities of PMC denoted by `. The axioms and the rules
are stated for arbitrary φ, ψ ∈ L, r, s ∈ Q, x, y ∈ V and arbitrary context C[X], where
{E,D} = {≤,≥} and B ∈ {<,>}.

The axiom (A1) states that x is a probability. The axioms (A2)-(A3) state simple
arithmetic facts. (A4) states that the dual of the equatioanl modality is itself. (A5) and (A6)
state that the probability of reaching φ or ¬φ is 1. The axioms (A7)-(A9) show the arithmetic
transformation of inequalities. The rule (R1) states that the probabilities of reaching two
equivalent formulas are the same. (R2) is infinitary and encode the Archimedean properties
of rational numbers.
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Table 3 Axiomatic System of Maximal
Equation Blocks.

(max-R1): If `∗ φ, then `∗B φ
(max-A1): `∗B

∧
i=1,...,N

(Xi → φi)
(max-R2): If `∗B

∧
i=1,...,N

(ψi → φi{Ψ/X }),
then `∗B

∧
i=1,...,N

(ψi → Xi)

Table 4 Axiomatic System of Minumum
Equation Blocks.

(min-R1): If `∗ φ, then `∗B φ
(min-A1): `∗B

∧
i=1,...,N

(φi → Xi)
(min-R2): If `∗B

∧
i=1,...,N

(φi{Ψ/X } → ψi),
then `∗B

∧
i=1,...,N

(Xi → ψi)

I Theorem 20 (Soundness). The axiomatic system of ` is sound, i.e., for arbitrary φ ∈ L,

` φ implies |= φ.

Now we can proceed with the recursive constructs.
Given a maximal equation block B = max{X1 = φ1, . . . , XN = φN} and an arbitrary

classical deducibility relation `∗, we define the deducibility relation `∗B as the extension
of `∗ given by the axioms and rules in Table 3, which are the equation-version of the
classic fixed points axioms of µ-calculus [15, 32, 29]. These are stated for arbitrary φ ∈ L
and Ψ = (ψ1, . . . , ψN ) ∈ LN , where X = (X1, . . . , XN ). Similarly, we define a classical
deducibility relation `∗B for a minimal equation block B = min{X1 = φ1, . . . , XN = φN}
based on `∗ by using the axioms and rules in Table 4.

Given an alternation-free block sequence B = B1, . . . , Bm, we define the classical dedu-
cibility relations `0,`1, . . . ,`m as follows and consequently get `B=`m.

`0 = `; `i = `i−1
Bi

for i = 1, . . . ,m

As usual, we say that a formula φ (or a set Φ of formulas) is B-provable, denoted by `B φ
(respectively `B Φ), if it can be proven from the given axioms and rules of `B. We denote by
Ψ = {φ ∈ L | Ψ `B φ}. An induction on the structure of the alternation-free blocks shows
that all the theorems of `B are sound in the PMC-semantics.

I Theorem 21 (Extended Soundness). The axiomatic system of `B is sound, i.e., for any
φ ∈ L,

`B φ implies |=B φ.

4.2 Completeness
In the rest of this section we prove that the axiomatic system of `B is not only sound, but
also (weak-) complete, meaning that all the B-validities can be proved, as theorems, from
the proposed axioms and rules, i.e., for arbitrary φ ∈ L, |=B φ implies `B φ. To complete
this proof it is sufficient to show that any B-consistent formula has a model.

For some set S ⊆ L, Φ is (S,B)-maximally consistent if it is B-consistent and no formula
in S can be added to Φ without making it inconsistent. Φ is B-maximally-consistent if it is
(L,B)-maximally-consistent.

In the following we fix a consistent formula φ0 depending on a fixed alternation-free
sequence B0 and we construct a model. Let

(~) L[φ0,B0] = {φ ∈ L | X [φ,B0] ⊆ X [φ0,B0], R[φ,B] ⊆ R[φ0,B0],
I[φ,B] ⊆ I[φ0,B0],md(φ,B0) ≤ md(φ0,B0),ml(φ,B0) ≤ ml(φ0,B0)}

and Π[φ0,B0] be the set of all the maximal consistent sets of L[φ0,B0]. Similar to the
arguments in Section 3, L[φ0,B0] and Π[φ0,B0] are finite. Let Π be the set of the L-maximal
consistent sets.
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Different from the model construction in Section 3, we take L-maximally consistent sets
as states. However, we don’t take all the L-maximally consistent sets as the state space,
which are countably many. We will develop a finite state space as follows.

Since the set of instances of the infinitary rule in Table 2 is countable, we can use the
Rasiowa-Sikorski Lemma [30, 12] to prove Lindenbaum’s Lemma [11, 12] for PMC, following
the technique in [16]. These lemmas are presented in the full version of the paper. Suppose
that for each Λ ∈ Π[φ0,B0] we chose one Γ ∈ Π such that Λ ⊆ Γ (Lindenbaum’s Lemma); to
identify it, we denote this Γ by Λe. Let Θ = {Λe ∈ Π | Λ ∈ Π[φ0,B0]}. Since Π[φ0,B0] is
finite, Θ is obviously finite as well.

In what follows we will construct a PMPM = (Θ,Σ, l, θ) that satisfies φ0 in one of its
states. To do this, we have to properly define l, Σ and θ. l is defined as: l(Γ) = {p ∈ A | p ∈ Γ}
for any Γ ∈ Θ.

For defining Σ and θ, we firstly observe that given a B0-maximally-consistent set of
formulas, the information contained about the resource-variable for a given formula is
complete, in the sense that we can really identify its value, since any real number can be seen
as the limit of some sequences of rational numbers. This is exactly what the next lemma
states.

I Lemma 22. For arbitrary Γ ∈ Θ and φ ∈ L[φ0,B0],

sup{r ∈ Q≥0 | 〈x〉φ : x≥ r ∈ Γ} = inf{s ∈ Q | 〈x〉φ : x≤ s ∈ Γ} ∈ R ∪ [0, 1].

I Lemma 23. Let LφM = {Γ ∈ Θ | φ ∈ Γ} and N = {LφM | φ ∈ L[φo,B0]}. Then 2Θ = N.

Then let Σ = σ(N), where σ(N) is the least σ-algebra generated by N . Then the previous
lemmas allow us to define, for any Γ ∈ Θ and φ ∈ L[φ0,B0],

θ(Γ)(LφM) = sup{r ∈ Q≥0 | 〈x〉φ : x≥ r ∈ Γ}.

θ(Γ) is a set function defined on the field N . According to Theorem 11.3 of [3] 2, θ(Γ) can
be uniquely extended to a measure on Σ if it is finitely additive and countably subadditive
on LφM. Since Θ is finite, we only need to prove that θ(Γ) is finitely additive, as stated in the
following lemma. Notice also that since Θ is finite, (Θ,Σ) is an analytic space.

I Lemma 24. For any Γ ∈ Θ, the function θ(Γ) is finitely additive, i.e., for any Lφ1M and
Lφ2M s.t. Lφ1M ∩ Lφ2M = ∅, θ(Γ)(Lφ1M ∪ Lφ2M) = θ(Γ)(Lφ1M) + θ(Γ)(Lφ2M).

I Theorem 25. M = (Θ,Σ, l, θ) is a probabilistic Markov process.

Let ρ0 be the environment defined as: for any X ∈ X , by ρ0(X) = {Γ | X ∈ Γ}.
Firstly, we prove the restricted truth lemma that does not consider recursive constructs.

I Lemma 26 (Restricted Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,

M,Γ, ρ0 |= φ iff φ ∈ Γ.

On the restricted truth lemma we can base the following two results that indicate how
we can extend the results to include the recursive cases, as developed in [18].

2 If F ⊆ 2M is a field of sets and µ : F → R≥0 is finitely additive and countably subadditive, then µ
extends uniquely to a measure on σ(F)
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I Lemma 27. Let B = max{X1 = φ1, . . . , XN = φN} be an equation block in the sequence
B0 and ρ an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, .., N . For any
φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, JBKρ |= φ iff φ ∈ Γ].

Since the minimal blocks are dual of the maximal ones, we have a similar lemma for minimal
blocks.

I Lemma 28. Let B = min{X1 = φ1, . . . , XN = φN} be an equation block in the sequence
B0 and ρ an environment such that ρ(Xi) = {Γ | Xi ∈ Γ} for any i = 1, ..N . For any
φ ∈ L[φ0,B0] and Γ ∈ Θ,

if [M,Γ, ρ |= φ iff φ ∈ Γ], then [M,Γ, JBKρ |= φ iff φ ∈ Γ].

These lemmas allow us to prove the stronger version of the truth lemma.

I Theorem 29 (Extended Truth Lemma). For φ ∈ L[φ0,B0] and Γ ∈ Θ,

M,Γ, ρ0 |=B φ iff φ ∈ Γ.

A direct consequence of Theorem 29 is the completeness3 of the axiomatic system.

I Theorem 30 (Completeness). The axiomatic system of `B is complete, i.e., for arbitrary
φ ∈ L,

|=B φ implies `B φ.

5 Conclusions

In this paper we have extended the probabilistic modal logic of [21], which is a modal logic
allowing (in-)equational conditions on probabilities, with fixed point constructions in the
form of block sequences, thus obtaining the probabilistic µ-calculus (PMC).

We prove that PMC enjoys the finite model property and its satisfiability problem is
decidable. In order to do this, we involved the classic tableau construction that had to be
adapted to the more challenging probabilistic settings. These results generalize previous
results from [23] and recommend our logic as a good trade-off between expressiveness and
decidability. The second key contribution of our paper is the sound-complete axiomatization
that we propose for the alternation-free fragment of PMC. At the best of our knowledge, the
problem of axiomatizing probabilistic µ-calculus has not been previously approached. The
completeness proof is a non-standard extension of the filtration method, which can be easily
adapted to other versions of probabilistic µ-calculus.

Unlike for the standard µ-calculus, the complexity of our algorithm is not clear. This
is because for every formula, we only know that there exists the number h in Extension
Step II such that all the inequalities in the given formula have rational solutions that can
be expressed according to the accuracy defined, but we do not know how big h would be.
The complexity of the satisfiability algorithm will be studied in the future work.

One might wonder whether there exists a finite axiomatization, as the model construction
here is similar to that in Section 3 and the rules there are all finite. However, how we

3 In this context by completeness we mean the weak-completeness. Since PMC is not compact, the weak-
and strong-completeness do not coincide.
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define the probability on the transition in Section 3 is using the truth that there is always
rational solution(s) for any rational inequality. In [35], Zhou proved that there exists a
finite axiomatization for Markov Logic by involving a finitary Archimedean rule (similar to
our Rule (R2)). The idea there is similar to our satisfiability algorithm. We believe that
similar arguments for finite axiomatization can be made for our logic as well by applying the
Fourier–Motzkin elimination method [31] as in [35]. However, it is difficult to formalize this
finite axiomatization. As we discussed in the last paragraph, we cannot know how precise we
need to be in the logic in order to specify the solutions for the inequalities. Whether one can
axiomatize and if yes how to will be interesting to look into.

Moreover, axiomatization for the full logic will also be considered. In the axiomatization
here, the axioms and rules for fixed points are the same as those for the µ-calculus. Hence,
for the full PMC, we believe that the axiomatization would look the same. However, the
difficulty for proving the completeness will be at least that for the full modal µ-calculus [34].
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Abstract
Model checking is a powerful method widely explored in formal verification to check the (state-
transition) model of a system against desired properties of its behaviour. Classically, properties
are expressed by formulas of a temporal logic, such as LTL, CTL, and CTL*. These logics are
“point-wise” interpreted, as they describe how the system evolves state-by-state. On the contrary,
Halpern and Shoham’s interval temporal logic (HS) is “interval-wise” interpreted, thus allowing
one to naturally express properties of computation stretches, spanning a sequence of states, or
properties involving temporal aggregations, which are inherently “interval-based”.

In this paper, we study the expressiveness of HS in model checking, in comparison with
that of the standard logics LTL, CTL, and CTL*. To this end, we consider HS endowed with
three semantic variants: the state-based semantics, introduced by Montanari et al., which allows
branching in the past and in the future, the linear-past semantics, allowing branching only in
the future, and the linear semantics, disallowing branching. These variants are compared, as
for their expressiveness, among themselves and to standard temporal logics, getting a complete
picture. In particular, HS with linear (resp., linear-past) semantics is proved to be equivalent to
LTL (resp., finitary CTL*).
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1 Introduction

Point-based temporal logics (PTLs) provide a fundamental framework for the specification of
the behavior of reactive systems, that makes it possible to describe how the system evolves
state-by-state (“point-wise” view). PTLs have been successfully employed in model checking
(MC), which enables one to automatically verify complex finite-state systems usually modelled
as finite propositional Kripke structures. The MC methodology considers two types of PTLs
– linear and branching – which differ in the underlying model of time. In linear temporal
logics, such as LTL [23], each moment in time has a unique possible future: formulas are
interpreted over paths of a Kripke structure, and thus they refer to a single computation of
the system. In branching temporal logics, such as CTL and CTL∗ [8], each moment in time
may evolve into several possible futures: formulas are interpreted over states of the Kripke
structure, hence referring to all the possible computations of a system.
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Interval temporal logics (ITLs) have been proposed as an alternative setting for reasoning
about time [10, 22]. Unlike standard PTLs, they take intervals, rather than points, as their
primitive entities. ITLs allow one to specify relevant temporal properties that involve, for
instance, actions with duration, accomplishments, and temporal aggregations, which are
inherently “interval-based”, and thus cannot be naturally expressed by PTLs. They have been
applied in various areas of computer science, including formal verification, computational
linguistics, planning, and multi-agent systems [14, 22, 24]. Halpern and Shoham’s modal logic
of time intervals HS [10] is the most popular among ITLs. It features one modality for each of
the 13 possible ordering relations between pairs of intervals (the so-called Allen’s relations [1]),
apart from equality. Its satisfiability problem turns out to be undecidable for all interesting
(classes of) linear orders [10]; the same happens with most of its fragments [7, 13, 17].

In this paper, we focus on the model checking problem for HS. In order to check interval
properties of computations, one needs to collect information about states into computation
stretches (i.e., finite paths of the Kripke structure, tracks for short): each track is interpreted
as an interval, whose labelling is defined on the basis of the labelling of the component states.
This approach to MC has independently and simultaneously been proposed by Molinari et al.
in [18] and by Lomuscio and Michaliszyn in [14, 15, 16].

The semantics proposed in [18] is state-based, featuring intervals/tracks which are forgetful
of the history leading to the starting state of the interval itself. Since the starting state
(resp., ending state) of an interval may feature several predecessors (resp., successors), this
interpretation induces a branching reference in both future and past. The other relevant
choice in this approach concerns the labeling of intervals: a natural principle, known as the
homogeneity assumption, is adopted, according to which a proposition holds over an interval if
and only if it holds over each component state. Under this semantics, the MC problem for full
HS turns out to be decidable – it is EXPSPACE-hard, while the only known upper bound
is non-elementary. The exact complexity of almost all the meaningful syntactic fragments of
HS has been recently determined in a series of papers (e.g., [4, 6, 18, 19, 20, 21]).

The approach followed in [14, 15] is more expressive than the one in [18] since it relies on
the extension of HS with knowledge modalities typical of the epistemic logics, which allow
one to relate distinct paths of a Kripke structure. Additionally, the semantic assumptions
differ from those of [18]: the logic is interpreted over the unwinding of the Kripke structure
(computation-tree-based approach), and the interval labeling takes into account only the
endpoints of the interval itself. A more expressive definition of interval labeling, obtained by
associating each proposition with a regular expression over the set of states of the Kripke
structure, was recently proposed in [16]. The decidability status of MC for full epistemic HS
is currently unknown [14, 15].

In this paper, we study the expressiveness of HS, in the context of MC, in comparison with
that of the standard PTLs LTL, CTL, and CTL∗. The investigation is carried on enforcing
the homogeneity assumption. We prove that HS endowed with the state-based semantics
proposed in [18] (hereafter denoted as HSst) is not comparable with LTL, CTL, and CTL∗.
On the one hand, the result supports the intuition that HSst gains some expressiveness by
the ability to branch in the past. On the other hand, HSst does not feature the possibility to
force the verification of a property over an infinite path, thus implying that the formalisms
are not comparable. With the aim of having a more “effective” comparison base, we
consider two semantic variants of HS, besides the state-based semantics HSst, namely, the
computation-tree-based semantics (denoted as HSlp) and the trace-based semantics (HSlin).

The state-based and computation-tree-based approaches rely on a branching-time setting
and differ in the nature of past. In the latter approach, the past is linear: each interval
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Figure 1 Overview of the expressiveness results.

may have several possible futures, but it has a unique past. Moreover, the past is assumed
to be finite and cumulative (i.e., the history of the current situation increases with time,
and is never forgotten). The trace-based approach relies on a linear-time setting, where the
infinite paths (computations) of the given Kripke structure are the main semantic entities.
Branching is neither allowed in the past nor in the future.

The variant HSlp is a natural candidate for an expressiveness comparison with the
branching time logics CTL and CTL∗. The more interesting and technically involved result is
the characterization of HSlp, which turns out to be expressively equivalent to finitary CTL∗,
i.e., the variant of CTL∗ with quantification over finite paths. As for CTL, a non comparability
result can be stated. Conversely, HSlin is a natural candidate for an expressiveness comparison
with LTL. As a matter of fact, we prove that HSlin and LTL are equivalent (even for a small
fragment of HSlin). We complete the picture with a comparison of the three semantic variants
HSst, HSlp, and HSlin. We prove that, as expected, HSlin is not comparable with either
the branching versions, HSlp and HSst. The interesting result is that, on the other hand,
HSlp is strictly included in HSst: this supports HSst, adopted in [18, 19, 20, 21, 4, 6], as a
reasonable and adequate semantic choice. The complete picture of the expressiveness results
is reported in Figure 1 (the symbols 6=, ≡ and < denote incomparability, equivalence, and
strict expressiveness inclusion, respectively).

The paper is structured as follows. In Section 2, we introduce some preliminary notions.
In Section 3 we prove the expressiveness results. In particular, in Section 3.1 we prove the
equivalence between LTL and HSlin; in Section 3.2 we prove the equivalence between HSlp
and finitary CTL∗; finally, in Section 3.3 we compare the logics HSst, HSlp, and HSlin.

2 Preliminaries

Let (N, <) be the set of natural numbers equipped with the standard linear ordering. For all
i, j ∈ N, with i ≤ j, [i, j] denotes the set of natural numbers h such that i ≤ h ≤ j.

Let Σ be an alphabet and w be a non-empty finite or infinite word over Σ. We denote
by |w| the length of w (we set |w| = ∞ if w is infinite). For all i, j ∈ N, with i ≤ j,
w(i) denotes the i-th letter of w, while w[i, j] denotes the finite subword of w given by
w(i) · · ·w(j). If w is finite and |w| = n + 1, we define fst(w) = w(0) and lst(w) = w(n).
Pref(w) = {w[0, i] | 0 ≤ i ≤ n − 1} and Suff(w) = {w[i, n] | 1 ≤ i ≤ n} are the sets of all
proper prefixes and suffixes of w, respectively.
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s0
p

s1
q

Figure 2 The Kripke structure K .

2.1 Kripke structures and interval structures
I Definition 1 (Kripke structure). A Kripke structure over a finite set AP of proposition
letters is a tuple K = (AP , S, δ, µ, s0), where S is a set of states, δ ⊆ S × S is a left-total
transition relation, µ : S 7→ 2AP is a total labelling function assigning to each state s the set
of propositions that hold over it, and s0 ∈ S is the initial state. For (s, s′) ∈ δ, we say that s′
is a successor of s, and s is a predecessor of s′. Finally, we say that K is finite if S is finite.

Figure 2 depicts the finite Kripke structure K = ({p, q}, {s0, s1}, δ, µ, s0), where δ =
{(si, sj) | i, j = 0, 1}, µ(s0) = {p}, and µ(s1) = {q}. The initial state s0 is marked by a
double circle.

Let K = (AP , S, δ, µ, s0) be a Kripke structure. An infinite path π of K is an infinite
word over S such that (π(i), π(i + 1)) ∈ δ for all i ≥ 0. A track (or finite path) of K is a
non-empty prefix of some infinite path of K . A finite or infinite path is initial if it starts
from the initial state of K . Let TrkK be the (infinite) set of all tracks of K and Trk0

K be the
set of initial tracks of K . For a track ρ, states(ρ) denotes the set of states occurring in ρ, i.e.,
states(ρ) = {ρ(0), · · · , ρ(n)}, where |ρ| = n+ 1.

I Definition 2 (D-tree structure). For a given set D of directions, a D-tree structure (over
AP ) is a Kripke structure K = (AP , S, δ, µ, s0) such that s0 ∈ D, S is a prefix closed subset of
D+, and δ is the set of pairs (s, s′) ∈ S × S such that there exists d ∈ D for which s′ = s · d
(note that δ is completely specified by S). The states of a D-tree structure are called nodes.

A Kripke structure K = (AP , S, δ, µ, s0) induces an S-tree structure, called the computation
tree of K , denoted by C(K ), which is obtained by unwinding K from the initial state. Formally,
C(K ) = (AP ,Trk0

K , δ
′, µ′, s0), where the set of nodes is the set of initial tracks of K and for

all ρ, ρ′ ∈ Trk0
K , µ′(ρ) = µ(lst(ρ)) and (ρ, ρ′) ∈ δ′ iff ρ′ = ρ · s for some s ∈ S.

Given a strict partial ordering S = (X,<), an interval in S is an ordered pair [x, y] such
that x, y ∈ X and x ≤ y. The interval [x, y] denotes the subset of X given by the set of
points z ∈ X such that x ≤ z ≤ y. We denote by I(S) the set of intervals in S.

I Definition 3 (Interval structure). An interval structure IS over AP is a pair IS = (S, σ)
such that S = (X,<) is a strict partial ordering and σ : I(S) 7→ 2AP is a labeling function
assigning a set of proposition letters to each interval over S.

2.2 Standard temporal logics
In this subsection we recall the standard propositional temporal logics CTL∗, CTL, and
LTL [8, 23]. For a set of proposition letters AP , the formulas ϕ of CTL∗ are defined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∃ϕ,

where p ∈ AP , X and U are the “next” and “until” temporal modalities, and ∃ is the
existential path quantifier. We also use standard shorthands: ∀ϕ := ¬∃¬ϕ (“universal path
quantifier”), Fϕ := >Uϕ (“eventually”) and its dual Gϕ := ¬F¬ϕ (“always”). The logic CTL
is the fragment of CTL∗ where each temporal modality is immediately preceded by a path
quantifier, while LTL corresponds to the fragment of the formulas devoid of path quantifiers.
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Table 1 Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example
x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

Given a Kripke structure K = (AP , S, δ, µ, s0), an infinite path π of K , and a position
i ≥ 0 along π, the satisfaction relation K , π, i |= ϕ for CTL∗, written simply π, i |= ϕ when
K is clear from the context, is defined as follows (Boolean connectives are treated as usual):

π, i |= p ⇔ p ∈ µ(π(i)),
π, i |= Xϕ ⇔ π, i+ 1 |= ϕ,

π, i |= ϕ1Uϕ2 ⇔ for some j ≥ i : π, j |= ϕ2 and π, k |= ϕ1 for all i ≤ k < j,

π, i |= ∃ϕ ⇔ for some infinite path π′ starting from π(i), π′, 0 |= ϕ.

We say that K is a model of ϕ, written K |= ϕ, if for all initial infinite paths π of K , it
holds that K , π, 0 |= ϕ. We also consider a variant of CTL∗, called finitary CTL∗, where the
path quantifier ∃ of CTL∗ is replaced with the finitary path quantifier ∃f . In this setting,
path quantification ranges over the tracks (finite paths) starting from the current state. The
satisfaction relation ρ, i |= ϕ, where ρ is a track and i is a position along ρ, is similar to that
given for CTL∗ with the only difference of finiteness of paths, and the fact that for a formula
Xϕ, ρ, i |= Xϕ iff i+ 1 < |ρ| and ρ, i+ 1 |= ϕ. A Kripke structure K is a model of a finitary
CTL∗ formula if for each initial track ρ of K , it holds that K , ρ, 0 |= ϕ.

2.3 The interval temporal logic HS
An interval algebra was proposed by Allen in [1] to reason about intervals and their relative
order, while a systematic logical study of interval representation and reasoning was done
a few years later by Halpern and Shoham, who introduced the interval temporal logic HS
featuring one modality for each Allen relation, but equality [10]. Table 1 depicts 6 of the 13
Allen’s relations, together with the corresponding HS (existential) modalities. The other 7
relations are the 6 inverse relations (given a binary relation R , the inverse relation R is such
that bR a if and only if aR b) and equality.

For a set of proposition letters AP , the formulas ψ of HS are defined as follows:

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ,

where p ∈ AP and X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}. For any modality 〈X〉, the
dual universal modality [X]ψ is defined as ¬〈X〉¬ψ. For any subset of Allen’s relations
{X1, . . . , Xn}, let X1 · · ·Xn be the HS fragment featuring modalities for X1, . . . , Xn only.

We assume the non-strict semantics of HS, which admits intervals consisting of a single
point.1 Under such an assumption, all HS modalities can be expressed in terms of modalities

1 All the results we prove in the paper hold for the strict semantics as well.
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〈B〉, 〈E〉, 〈B〉, and 〈E〉 [27], e.g., modality 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as
〈A〉ϕ := ([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)). We also use the derived operator
〈G〉 of HS (and its dual [G]), which allows one to select arbitrary subintervals of the given
interval and is defined as: 〈G〉ψ := ψ ∨ 〈B〉ψ ∨ 〈E〉ψ ∨ 〈B〉 〈E〉ψ.

HS can be viewed as a multi-modal logic with 〈B〉, 〈E〉, 〈B〉, and 〈E〉 as primitive modalities
and its semantics can be defined over a multi-modal Kripke structure, called abstract interval
model, where intervals are treated as atomic objects and Allen’s relations as binary relations
over intervals.

I Definition 4 (Abstract interval model [18]). An abstract interval model over AP is a tuple
A = (AP , I, BI, EI, σ), where I is a set of worlds, BI and EI are two binary relations over I,
and σ : I 7→ 2AP is a labeling function assigning a set of proposition letters to each world.

Let A = (AP , I, BI, EI, σ) be an abstract interval model. In the interval setting, I is
interpreted as a set of intervals, and BI and EI as the Allen’s relations B (started-by) and E
(finished-by), respectively; σ assigns to each interval in I the set of proposition letters that
hold over it. Given an interval I ∈ I, the truth of an HS formula over I is inductively defined
as follows (Boolean connectives are treated as usual):

A, I |= p iff p ∈ σ(I), for any p ∈ AP ;
A, I |= 〈X〉ψ, for X ∈ {B,E}, iff there exists J ∈ I such that I XI J and A, J |= ψ;
A, I |= 〈X〉ψ, for X ∈ {B,E}, iff there exists J ∈ I such that J XI I and A, J |= ψ.

I Definition 5 (Abstract interval model induced by an interval structure). An interval structure
IS = (S, σ), with S = (X,<), induces the abstract interval model AIS = (AP , I(S), BI(S), EI(S),

σ), where [x, y]BI(S) [v, z] iff x = v and z < y, and [x, y]EI(S) [v, z] iff y = z and x < v.
For an interval I and an HS formula ψ, we write IS , I |= ψ to mean that AIS , I |= ψ.

2.4 Three variants of HS semantics for model checking
In this section, we define the three variants of HS semantics HSst (state-based semantics), HSlp
(computation-tree-based semantics), and HSlin (trace-based semantics) for model checking
HS against Kripke structures. For each such variant S , the related (finite) model checking
problem is deciding whether a finite Kripke structure is a model of an HS formula under S .

Let us start with the state-based semantics [18], where an abstract interval model is
naturally associated with a given Kripke structure K by considering the set of intervals as
the set TrkK of tracks of K .

I Definition 6 (Abstract interval model induced by a Kripke structure). The abstract interval
model induced by a Kripke structure K = (AP , S, δ, µ, s0) is AK = (AP , I, BI, EI, σ), where
I = TrkK , BI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Pref(ρ)}, EI = {(ρ, ρ′) ∈ I × I | ρ′ ∈ Suff(ρ)}, and
σ : I 7→ 2AP is such that σ(ρ) =

⋂
s∈states(ρ) µ(s), for all ρ ∈ I.

According to the definition of σ, p ∈ AP holds over ρ = v1 · · · vn if and only if it holds over
all the states v1, . . . , vn of ρ. This conforms to the homogeneity principle, according to which
a proposition letter holds over an interval if and only if it holds over all its subintervals [25].

I Definition 7 (State-based semantics). Let K be a Kripke structure and ψ be an HS formula.
A track ρ ∈ TrkK satisfies ψ under the state-based semantics, denoted as K , ρ |=st ψ, if it
holds that AK , ρ |= ψ. Moreover, K is a model of ψ under the state-based semantics, denoted
as K |=st ψ, if for all initial tracks ρ ∈ Trk0

K , it holds that K , ρ |=st ψ.
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We now introduce the computation-tree-based semantics, where we simply consider the
abstract interval model induced by the computation tree of the Kripke structure. Notice that
since each state in a computation tree has a unique predecessor (with the exception of the
initial state), this HS semantic variant induces a linear reference in the past.

I Definition 8 (Computation-tree-based semantics). A Kripke structure K is a model of an
HS formula ψ under the computation-tree-based semantics, written K |=lp ψ, if C(K ) |=st ψ.

Finally, we propose the trace-based semantics, which exploits the interval structures
induced by the infinite paths of the Kripke structure.

I Definition 9 (Interval structure induced by an infinite path). For a Kripke structure K =
(AP , S, δ, µ, s0) and an infinite path π = π(0)π(1) · · · of K , the interval structure induced by
π is IS K ,π = ((N, <), σ), where for each interval [i, j], σ([i, j]) =

⋂j
h=i µ(π(h)).

I Definition 10 (Trace-based semantics). A Kripke structure K is a model of an HS formula
ψ under the trace-based semantics, denoted as K |=lin ψ, iff for each initial infinite path π
and for each initial interval [0, i], it holds that IS K ,π, [0, i] |= ψ.

3 Expressiveness

In this section, we compare the expressive power of the logics HSst, HSlp, HSlin, LTL, CTL,
and CTL∗ when interpreted over finite Kripke structures. Given two logics L1 and L2, and
two formulas ϕ1 ∈ L1 and ϕ2 ∈ L2, we say that ϕ1 in L1 is equivalent to ϕ2 in L2 if, for
every finite Kripke structure K , K is a model of ϕ1 in L1 if and only if K is a model of ϕ2
in L2. When comparing the expressive power of two logics L1 and L2, we say that L2 is
subsumed by L1, denoted as L1 ≥ L2, if for each formula ϕ2 ∈ L2, there exists a formula
ϕ1 ∈ L1 such that ϕ1 in L1 is equivalent to ϕ2 in L2. Moreover, L1 is as expressive as L2 (or,
L1 and L2 have the same expressiveness), written L1 ≡ L2, if both L1 ≥ L2 and L2 ≥ L1.
We say that L1 is more expressive than L2 if L1 ≥ L2 and L2 6≥ L1. Finally, L1 and L2 are
expressively incomparable if both L1 6≥ L2 and L2 6≥ L1.

3.1 Equivalence between LTL and HSlin

In this section we show that HSlin is as expressive as LTL even for small syntactical fragments
of HSlin. For this purpose, we exploit the well-known equivalence between LTL and First Order
Logic (FO) over infinite words. Recall that given a countable set {x, y, z, . . .} of (position)
variables, FO formulas ϕ over a set of proposition symbols AP = {p, . . .} are defined as:

ϕ := > | p ∈ x | x ≤ y | x < y | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ .

We interpret FO formulas ϕ over infinite paths π of Kripke structures K = (AP , S, δ, µ, s0).
Given a variable valuation g, assigning to each variable a position i ≥ 0, the satisfaction
relation (π, g) |= ϕ corresponds to the standard satisfaction relation (µ(π), g) |= ϕ, where
µ(π) is the infinite word over 2AP given by µ(π(0))µ(π(1)) · · · (for the details, see [5]). We
write π |= ϕ to mean that (π, g0) |= ϕ, where g0(x) = 0 for each variable x. An FO sentence
is a formula with no free variables. The following is a well-known result [11].

I Proposition 11. Given a FO sentence ϕ over AP , one can construct an LTL formula ψ
such that for all Kripke structures K over AP and infinite paths π, it holds that π |= ϕ iff
π, 0 |= ψ.

FSTTCS 2016



26:8 Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

Given a HSlin formula ψ, we construct a FO sentence ψFO such that, for all Kripke
structures K , K |=lin ψ iff for each initial infinite path π of K , π |= ψFO. The formula ψFO is
given by ∃x((∀z.z ≥ x) ∧ ∀y.h(ψ, x, y)), where h(ψ, x, y) is a FO formula having x and y as
free variables (intuitively, representing the endpoints of the current interval) and ensuring
that for each infinite path π and interval [i, j], IS K ,π, [i, j] |= ψ iff (π, g) |= h(ψ, x, y) for any
valuation g such that g(x) = i and g(y) = j. The construction of h(ψ, x, y) is straightforward
(for the details, see the report [5]). Thus, by Proposition 11, we obtain the following result.

I Theorem 12. LTL ≥ HSlin.

Conversely, we show that LTL can be translated in linear-time into HSlin (actually, the
fragment AB, featuring only modalities for A and B, is expressive enough for the purpose).
In the following we will make use of the B formula lengthn, with n ≥ 1, characterizing the
intervals of length n, which is defined as follows: lengthn := (〈B〉 . . . 〈B〉︸ ︷︷ ︸

n−1

>) ∧ ([B] . . . [B]︸ ︷︷ ︸
n

⊥).

I Theorem 13. Given an LTL formula ϕ, one can construct in linear-time an AB formula
ψ such that ϕ in LTL is equivalent to ψ in ABlin.

Proof. Let f : LTL 7→ AB be the mapping homomorphic w. r. to the Boolean connectives,
defined as follows for each proposition p and for the temporal modalities X and U:

f(p) = p, f(Xψ) = 〈A〉(length2 ∧ 〈A〉(length1 ∧ f(ψ))),

f(ψ1Uψ2) = 〈A〉
(
〈A〉(length1 ∧ f(ψ2)) ∧ [B](〈A〉(length1 ∧ f(ψ1))

)
.

Given a Kripke structure K , an infinite path π, a position i ≥ 0, and an LTL formula
ψ, by a straightforward induction on the structure of ψ we can show that π, i |= ψ iff
IS K ,π, [i, i] |= f(ψ). Hence K |= ψ iff K |=lin length1 → f(ψ). J

I Corollary 14. HSlin and LTL have the same expressiveness.

3.2 A characterization of HSlp

In this section we show that HSlp is as expressive as finitary CTL∗. Actually, the result can be
proved to hold already for the syntactical fragment ABE (which does not feature transposed
modalities). In addition, we show that HSlp is subsumed by CTL∗.

We first show that finitary CTL∗ is subsumed by HSlp. The result is proved by exploiting
a preliminary property stating that, when interpreted over finite words, the BE fragment
of HS and LTL define the same class of finitary languages. For an LTL formula ϕ with
proposition symbols over an alphabet Σ (in our case Σ is 2AP ), Lact(ϕ) denotes the set of
non-empty finite words over Σ satisfying ϕ under the standard action-based semantics of
LTL, interpreted over finite words (see [26]). A similar notion can be given for BE formulas
ϕ with propositional symbols in Σ (considered under the homogeneity principle). Then ϕ
denotes a language, written Lact(ϕ), of non-empty finite words over Σ, inductively defined as:

Lact(a) = a+ for each a ∈ Σ;
Lact(¬ϕ) = Σ+ \ Lact(ϕ);
Lact(ϕ1 ∧ ϕ2) = Lact(ϕ1) ∩ Lact(ϕ2);
Lact(〈B〉ϕ) = {w ∈ Σ+ | Pref(w) ∩ Lact(ϕ) 6= ∅};
Lact(〈E〉ϕ) = {w ∈ Σ+ | Suff(w) ∩ Lact(ϕ) 6= ∅}.
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We prove that under the action-based semantics, BE formulas and LTL formulas define
the same class of finitary languages. By proceeding as in Section 3.1, one can easily show
that, over finite words, the class of languages defined by the fragment BE is subsumed by that
defined by LTL. To prove the converse direction we exploit an algebraic condition introduced
in [28], here called LTL-closure, which gives, for a class of finitary languages, a sufficient
condition to guarantee the inclusion of the class of LTL-definable languages.

I Definition 15 (LTL-closure). A class C of languages of finite words over finite alphabets
is LTL-closed iff the following conditions are satisfied, where Σ and ∆ are finite alphabets,
b ∈ Σ and Γ = Σ \ {b}:
1. C is closed under language complementation and language intersection.
2. If L ∈ C with L ⊆ Γ+, then Σ∗bL, Σ∗b(L + ε), LbΣ∗, (L + ε)bΣ∗ are in C.
3. Let U0 = Γ∗b, h0 : U0 → ∆ and h : U+

0 → ∆+ be defined by h(u0u1 . . . un) =
h0(u0) . . . h0(un). Assume that for each d ∈ ∆, the language Ld = {u ∈ Γ+ | h0(ub) = d}
is in C. Then for each language L ∈ C s.t. L ⊆ ∆+, the language Γ∗bh−1(L)Γ∗ is in C.

I Theorem 16 ([28]). Any LTL-closed class C of finitary languages includes the class of
LTL-definable finitary languages.

I Theorem 17. Let ϕ be an LTL formula over a finite alphabet Σ. Then there exists a BE
formula ϕHS over Σ such that Lact(ϕHS) = Lact(ϕ).

Proof. It suffices to prove that the class of finitary languages definable by BE formulas is
LTL-closed, and to apply Theorem 16 (the proof of LTL-closure is reported in [5]). J

By exploiting Theorem 17, we establish the following result.

I Theorem 18. Let ϕ be a finitary CTL∗ formula over AP . Then there is an ABE formula ϕHS
over AP s.t. for all Kripke structures K over AP and tracks ρ, K , ρ, 0 |= ϕ iff K , ρ |=st ϕHS.

Proof. The proof is by induction on the nesting depth of modality ∃f in ϕ. The base case
(ϕ is a finitary LTL formula over AP) is similar to the inductive step, thus we can focus
our attention on the latter. Let H be the non-empty set of subformulas of ϕ of the form
∃fψ which do not occur in the scope of the path quantifier ∃f . Then ϕ can be seen as an
LTL formula over the set of atomic propositions AP = AP ∪H. Let Σ = 2AP and ϕ be the
LTL formula over Σ obtained from ϕ by replacing each occurrence of p ∈ AP in ϕ with the
formula

∨
P∈Σ : p∈P P , according to the LTL action-based semantics.

Given a Kripke structure K over AP with labeling µ and a track ρ of K , we denote by ρH
the finite word over 2AP of length |ρ| defined as ρH(i) = µ(ρ(i))∪ {∃fψ ∈ H | K , ρ, i |= ∃fψ},
for all i ∈ [0, |ρ| − 1]. One can easily show by structural induction on ϕ that:
Claim 1: K , ρ, 0 |= ϕ iff ρH ∈ Lact(ϕ).

By Theorem 17, there exists a BE formula ϕHS over Σ such that Lact(ϕ) = Lact(ϕHS).
Moreover, by the induction hypothesis, for each formula ∃fψ ∈ H, there exists an ABE formula
ψHS such that for all Kripke structures K and tracks ρ of K , K , ρ, 0 |= ψ iff K , ρ |=st ψHS.
Since ρ is arbitrary, K , ρ, i |= ∃fψ iff K , ρ[i, i], 0 |= ∃fψ iff K , ρ[i, i] |=st 〈A〉ψHS, for each
i ≥ 0. Let ϕHS be the ABE formula over AP obtained from the BE formula ϕHS by replacing
each occurrence of P ∈ Σ in ϕHS with the formula

[G]
(
length1 →

∧
∃fψ∈H∩P

〈A〉ψHS ∧
∧

∃fψ∈H\P

¬ 〈A〉ψHS ∧
∧

p∈AP∩P
p ∧

∧
p∈AP\P

¬p
)
.

Since for all i ≥ 0 and ∃fψ ∈ H, K , ρ, i |= ∃fψ iff K , ρ[i, i] |=st 〈A〉ψHS, by a straightforward
induction on the structure of ϕHS, for all Kripke structures K and tracks ρ of K we have
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K , ρ |=st ϕHS iff ρH ∈ Lact(ϕHS). Therefore, since Lact(ϕ) = Lact(ϕHS), by Claim 1 K , ρ, 0 |= ϕ

iff K , ρ |=st ϕHS, for arbitrary Kripke structures K and tracks ρ of K . J

Since for the fragment ABE of HS the computation-tree-based semantics coincides with
the state-based semantics, by Theorem 18 we obtain the following corollary.

I Corollary 19. Finitary CTL∗ is subsumed by both HSst and HSlp.

Conversely, we show now that HSlp is subsumed by both CTL∗ and the finitary variant of
CTL∗. For this purpose, we first introduce a hybrid and linear-past extension of CTL∗, called
hybrid CTL∗lp, and its finitary variant, called finitary hybrid CTL∗lp. Hybrid logics (see [3]),
besides standard modalities, make use of explicit variables and quantifiers that bind them.
Variables and binders allow us to easily mark points in a path, which will be considered as
starting and ending points of intervals, thus permitting a natural encoding of HSlp. Actually,
we will show that the restricted form of use of variables and binders exploited in our encoding
does not increase the expressive power of (finitary) CTL∗ (as it happens for an unrestricted
use), thus proving the desired result. We start by defining hybrid CTL∗lp.

For a countable set {x, y, z, . . .} of (position) variables, the set of formulas ϕ of hybrid
CTL∗lp over AP is defined as follows:

ϕ ::= > | p | x | ¬ϕ | ϕ ∨ ϕ | ↓x.ϕ | Xϕ | ϕUϕ | X−ϕ | ϕU−ϕ | ∃ϕ,

where X− (“previous”) and U− (“since”) are the past counterparts of the “next” and “until”
modalities X and U, and ↓x is the downarrow binder operator [3], which binds x to the
current position along the given initial infinite path. We also use the standard shorthands
F−ϕ := >U−ϕ (“eventually in the past”) and its dual G−ϕ := ¬F−¬ϕ (“always in the past”).
As usual, a sentence is a formula with no free variables.

Let K be a Kripke structure and ϕ be a hybrid CTL∗lp formula. For an initial infinite
path π of K , a variable valuation g assigning to each variable x a position along π, and i ≥ 0,
the satisfaction relation π, g, i |= ϕ is defined as follows (we omit the clauses for the Boolean
connectives and for U and X):

π, g, i |= X−ϕ ⇔ i > 0 and π, g, i− 1 |= ϕ,

π, g, i |= ϕ1U−ϕ2 ⇔ for some j ≤ i : π, g, j |= ϕ2 and π, g, k |= ϕ1 for all j < k ≤ i,
π, g, i |= ∃ϕ ⇔ for some initial infinite path π′ s.t. π′[0, i] = π[0, i], π′, g, i |= ϕ,

π, g, i |= x ⇔ g(x) = i,

π, g, i |= ↓x.ϕ ⇔ π, g[x← i], i |= ϕ,

where g[x← i](x) = i and g[x← i](y) = g(y) for y 6= x. A Kripke structure K is a model of
a formula ϕ if for each initial infinite path π, π, g0, 0 |= ϕ, where g0 assigns 0 to each variable.
Note that path quantification is “memoryful”, i.e., it ranges over infinite paths that start
at the root and visit the current node of the computation tree. Clearly, the semantics for
the syntactical fragment CTL∗ coincides with the standard one. If we disallow the use of
variables and binder modalities, we obtain the logic CTL∗lp, a well-known linear-past and
equally expressive extension of CTL∗ [12]. We also consider the finitary variant of hybrid
CTL∗lp, where the path quantifier ∃ is replaced with the finitary path quantifier ∃f . This logic
corresponds to an extension of finitary CTL∗ and its semantics is similar to that of hybrid
CTL∗lp with the exception that path quantification ranges over the finite paths (tracks) that
start at the root and visit the current node of the computation tree.

In the following we will use the fragment of hybrid CTL∗lp consisting of well-formed
formulas, namely, formulas ϕ where: (1) each subformula ∃ψ of ϕ has at most one free
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variable; (2) each subformula ∃ψ(x) of ϕ having x as free variable occurs in ϕ in the context
(F−x) ∧ ∃ψ(x). Intuitively, for each state subformula ∃ψ, the unique free variable (if any)
refers to ancestors of the current node in the computation tree. The notion of well-formed
formula of finitary hybrid CTL∗lp is similar: the path quantifier ∃ is replaced by its finitary
version ∃f . The well-formedness constraint ensures that a formula captures only branching
regular requirements. As an example, the formula ∃F↓x.G−(¬X−> → ∀F(x ∧ p)) is not
well-formed and requires that there is a level of the computation tree such that each node
in the level satisfies p. This represents a well-known non-regular context-free branching
requirement (see, e.g., [2]).

We first show that HSlp can be translated into the well-formed fragment of hybrid CTL∗lp
(resp., well-formed fragment of finitary hybrid CTL∗lp). Then we show that this fragment is
subsumed by CTL∗ (resp., finitary CTL∗).

I Proposition 20. Given a HSlp formula ϕ, one can construct in linear-time an equivalent
well-formed sentence of hybrid CTL∗lp (resp., finitary hybrid CTL∗lp).

Proof. We focus on the translation from HSlp into the well-formed fragment of hybrid CTL∗lp.
The translation from HSlp into the well-formed fragment of finitary hybrid CTL∗lp is similar.
Let ϕ be a HSlp formula. The desired hybrid CTL∗lp sentence is given by ↓x.G f(ϕ, x), where
the mapping f(ϕ, x) is homomorphic with respect to the Boolean connectives, and is defined
for the atomic propositions and the other modalities as follows (y is a fresh variable):

f(p, x) = G−((F−x)→ p),
f(〈B〉ψ, x) = X−F−(f(ψ, x) ∧ F−x),
f(〈B〉ψ, x) = (F−x) ∧ ∃(XFf(ψ, x)),
f(〈E〉ψ, x) = ↓y.F−

(
x ∧ XF↓x.F(y ∧ f(ψ, x))

)
,

f(〈E〉ψ, x) = ↓y.F−
(
(XFx) ∧ ↓x.F(y ∧ f(ψ, x))

)
.

Clearly ↓x.G f(ϕ, x) is well-formed. Moreover, let K be a Kripke structure, [h, i] be an
interval of positions, g be a valuation assigning to the variable x the position h, and π be an
initial infinite path. By a straightforward induction on the structure of ϕ, one can show that
K , π, g, i |= f(ϕ, x) if and only if C(K ), C(π, h, i) |=st ϕ, where C(π, h, i) denotes the track of
the computation tree C(K ) starting from π[0, h] and leading to π[0, i]. Hence K is a model
of ↓x.G f(ϕ, x) if for each initial track ρ of C(K ) we have C(K ), ρ |=st ϕ. J

Let LTLp be the past extension of LTL, obtained by adding the past modalities X− and
U−. By exploiting the well-formedness requirement and the well-known separation theorem
for LTLp over finite and infinite words [9] (i.e., any LTLp formula can be effectively converted
into an equivalent Boolean combination of LTL formulas and pure past LTLp formulas), and
proceeding by induction on the nesting depth of path quantifiers, we establish the following
result (the proof can be found in [5]).

I Proposition 21. The set of well-formed sentences of hybrid CTL∗lp (resp., finitary hybrid
CTL∗lp) has the same expressiveness as CTL∗ (resp., finitary CTL∗).

By Corollary 19, and Propositions 20 and 21, we obtain the main result of Section 3.2.

I Theorem 22. CTL∗ ≥ HSlp. Moreover, HSlp is as expressive as finitary CTL∗.

3.3 Expressiveness comparison of HSlin, HSst and HSlp

We first show that HSst is not subsumed by HSlp. As a matter of fact we show that
HSst is sensitive to unwinding, allowing us to discriminate finite Kripke structures having

FSTTCS 2016
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K1: p K2: p p

Figure 3 The Kripke structures K1 and K2.

Kn:
s0 s1 s2n t

........ p

Figure 4 The Kripke structure Kn with n ≥ 1.

the same computation tree (whereas they are indistinguishable by HSlp). In particular,
let us consider the two finite Kripke structures K1 and K2 of Figure 3. Since K1 and
K2 have the same computation tree, no HS formula ϕ under the computation-tree-based
semantics can distinguish K1 and K2, i.e., K1 |=lp ϕ iff K2 |=lp ϕ. On the other hand, the
requirement “each state reachable from the initial one where p holds has a predecessor where
p holds as well” can be expressed, under the state-based semantics, by the HS formula
ψ := 〈E〉(p ∧ length1) → 〈E〉(length1 ∧ 〈A〉(p ∧ ¬length1)). Clearly K1 |=st ψ but K2 6|=st ψ.
Hence we obtain the following result.

I Proposition 23. HSlp 6≥ HSst.

Since HSlp and finitary CTL∗ have the same expressiveness (Theorem 22) and finitary
CTL∗ is subsumed by HSst (Corollary 19), by Proposition 23 we obtain the following result.

I Corollary 24. HSst is more expressive than HSlp.

Let us now consider the CTL formula ∀G∃Fp asserting that from each state reachable from
the initial one, it is possible to reach a state where p holds. It is well-known that this formula
is not LTL-expressible. Thus, by Corollary 14, there is no equivalent HS formula under the
trace-based semantics. On the other hand, the requirement ∀G∃Fp can be expressed under
the state-based (resp., computation-tree-based) semantics by the HS formula 〈B〉〈E〉p.

I Proposition 25. HSlin 6≥ HSst and HSlin 6≥ HSlp.

Next we show that HSlin 6≤ HSst and HSlin 6≤ HSlp. To this end we establish the following.

I Proposition 26. The LTL formula F p (equivalent to the CTL formula ∀F p) cannot be
expressed in either HSlp or HSst.

We prove Proposition 26 for the state-based semantics (for the computation-tree-based
semantics the proof is similar). We exhibit two families of Kripke structures (Kn)n≥1 and
(Mn)n≥1 over {p} such that for all n ≥ 1 the LTL formula F p distinguishes Kn and Mn, and
for every HS formula ψ of size at most n, ψ does not distinguish Kn and Mn under the
state-based semantics. Hence the result follows. Fix n ≥ 1. The Kripke structure Kn is
given in Figure 4. The Kripke structure Mn is obtained from Kn by setting as its initial state
s1 instead of s0. Formally, Kn = ({p}, Sn, δn, µn, s0) and Mn = ({p}, Sn, δn, µn, s1), where
Sn = {s0, s1, . . . , s2n, t}, δn = {(s0, s0), (s0, s1), . . . , (s2n−1, s2n), (s2n, t), (t, t)}, µ(si) = ∅ for
all 0 ≤ i ≤ 2n, and µ(t) = {p}. Clearly Kn 6|= Fp and Mn |= Fp.

We say that a HS formula ψ is balanced if, for each subformula 〈B〉 θ (resp., 〈B〉 θ), θ is of
the form θ1 ∧ θ2 with |θ1| = |θ2|. By using conjunctions of >, one can trivially convert a HS
formula ψ into a balanced HS formula which is equivalent to ψ under any of the considered
HS semantic variants. Lemma 27 is proved in [5]: by such a lemma and the fact that, for
each n ≥ 1, Kn 6|= Fp and Mn |= Fp, we get a proof of Proposition 26.



L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 26:13

I Lemma 27. For all n ≥ 1 and balanced HS formulas ψ s.t. |ψ| ≤ n, Kn |=st ψ iff Mn |=st ψ.

By Propositions 25–26, we obtain the following result.

I Corollary 28. HSlin and HSst (resp., HSlp) are expressively incomparable.

The proved results also allow us to establish the expressiveness relations between HSst,
HSlp and the standard branching temporal logics CTL and CTL∗.

I Corollary 29.
1. HSst and CTL∗ (resp., CTL) are expressively incomparable;
2. HSlp and finitary CTL∗ are less expressive than CTL∗;
3. HSlp and CTL are expressively incomparable.

Proof. (Point 1) By Proposition 26 and the fact that CTL∗ is not sensitive to unwinding.
(Point 2) By Theorem 22, HSlp is subsumed by CTL∗, and HSlp and finitary CTL∗ have the
same expressiveness. Hence, by Proposition 26, the result follows.
(Point 3) By Proposition 26, it suffices to show that there exists a HSlp formula which cannot
be expressed in CTL. Let us consider the CTL∗ formula ϕ := ∃

(
((p1Up2)∨ (q1Uq2))U r

)
over

the set of propositions {p1, p2, q1, q2, r}. It is shown in [8] that ϕ cannot be expressed in
CTL. Clearly if we replace the path quantifier ∃ in ϕ with the finitary path quantifier ∃f , we
obtain an equivalent formula of finitary CTL∗. Thus, since HSlp and finitary CTL∗ have the
same expressiveness (Theorem 22), the result follows. J

4 Conclusions and future work

In this paper, we have studied three semantic variants, namely, HSst, HSlp, and HSlin, of the
interval temporal logic HS, comparing their expressiveness to that of the standard temporal
logics LTL, CTL, finitary CTL∗, and CTL∗. The reported results imply the decidability of
the model checking problem for HSlp and HSlin; the related complexity issues will be studied
in the future work. Moreover, we shall investigate how the expressiveness changes when the
homogeneity assumption is relaxed.
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Abstract
Population protocols are a model for parameterized systems in which a set of identical, anony-
mous, finite-state processes interact pairwise through rendezvous synchronization. In each step,
the pair of interacting processes is chosen by a random scheduler. Angluin et al. (PODC 2004)
studied population protocols as a distributed computation model. They characterized the com-
putational power in the limit (semi-linear predicates) of a subclass of protocols (the well-specified
ones). However, the modeling power of protocols go beyond computation of semi-linear predi-
cates and they can be used to study a wide range of distributed protocols, such as asynchronous
leader election or consensus, stochastic evolutionary processes, or chemical reaction networks.
Correspondingly, one is interested in checking specifications on these protocols that go beyond
the well-specified computation of predicates.

In this paper, we characterize the decidability frontier for the model checking problem for
population protocols against probabilistic linear-time specifications. We show that the model
checking problem is decidable for qualitative objectives, but as hard as the reachability problem
for Petri nets – a well-known hard problem without known elementary algorithms. On the other
hand, model checking is undecidable for quantitative properties.
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1 Introduction

Population protocols [3, 4, 6] are a model of distributed computation by anonymous, identical,
finite-state agents interacting in pairs. Given an initial configuration – an initial distribution
of agents specifying the number of agents at each state – a random scheduler repeatedly
chooses a pair of processes and one of the interactions enabled by their current states. This
naturally assigns to each initial configuration a semantics in terms of a finite Markov Chain.
Thus, the protocol defines infinitely many finite Markov Chains.

Population protocols were originally introduced to study which predicates on an initial
configuration of agents (like, for example, “does the configuration contain more processes
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of type A than of type B”) can be computed by the agents themselves in a distributed
way. For this, Angluin et al. [3] introduced a definition of computation by consensus: a
configuration computes a value if all its agents eventually converge to that value (represented
by a particular state or set of states) with probability 1.

Population protocols have been used to model systems beyond their initial motivation in
distributed computing. In particular, they can also model trust propagation [15], evolutionary
dynamics [23], or chemical reaction systems [24, 25]. These systems do not aim at the
computation of predicates, or they do not compute in the way defined by Angluin et al. [3].
With more diverse applications of population protocols comes also new properties one would
like to reason about. For instance, Delporte-Gallet et al. [14] studied privacy in population
protocols. They proved (by hand) different properties of specific protocols, like “the system
can reach a good configuration without any interaction involving a distinguished agent p0”.
Another example is the work of Clement et al. [13] who use the probabilistic model checker
PRISM to check properties including the aforementioned convergence. However, PRISM is a
finite state model checker and therefore the verification was limited to a finite number of
individual initial configurations.

In this paper, we solve the general model checking problem for population protocols
against probabilistic linear-time (LTL) specifications. As opposed to previous work, we can
reason fully automatically starting from sets of initial configurations which can be infinite as
long as they are Presburger definable. We show that the qualitative problem (i.e., deciding if
the formula holds with probability 1) is decidable, but as hard as the reachability problem
for Petri nets (reachability hard). The quantitative problem (deciding if the property holds
with at least a given probability) is undecidable. In particular, our proof of undecidability for
quantitative LTL uses a novel simulation of counter machines by Petri nets with arbitrarily
small error. Additionally, we prove (§4) undecidability for both the qualitative problem for
broadcast protocols (a stronger model where interactions involve all processes, not just a
fixed number) and a natural variant of LTL specifications where atomic propositions are
defined on configurations rather than actions.

From the verification point of view, in this paper we study the decidability of parameterized
verification for a class of probabilistic systems. Our work can be seen as an extension of
the approach of German and Sistla [20] to probabilistic verification. Our results establish
certain decidability frontiers for parameterized verification of probabilistic programs, an area
of increasing interest [2, 10, 11, 1, 12]. The question whether all instances of a parameterized
system satisfy a property with probability 1 was also studied by Pnueli and Zuck with
different co-authors [26, 7] and also by Esparza et al. [17]. The emphasis in these papers was
on deductive proof systems, and they do not contain decidability results.

2 Definitions and Examples

A multiset on a finite non-empty set E is a mapping M : E → N. Given e ∈ E, let M(e)
denote the number of elements of type e in the multiset M . Operations on N, like addition,
subtraction, or comparison are implicitly defined on multisets by defining the operation
componentwise. The set of all multisets over E is denoted NE . Given e ∈ E, we denote
by e ∈ NE the multiset consisting of one occurrence of element e, that is, the multiset
satisfying e(e) = 1 and e(e′) = 0 for every e′ 6= e. We write {x, y, y, z} to denote the multiset
x + y + y + z. Every set S on E is also a multiset which maps E into {0, 1}. The size of a
multiset M ∈ NE , denoted |M |, is defined as

∑
e∈EM(e).

A set of multisetsM⊆ NE is said to be Presburger if it can be denoted by a formula in
Presburger arithmetic, i.e., in the first-order theory of addition FO(N,+). A population P
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on E is a multiset on E with two or more elements: P ∈ NE and |P | ≥ 2.1 The set of all
populations on E is denoted by Pop(E).

2.1 Labeled Population Protocols
A (labeled) protocol scheme A = (Q,Σ,∆) consists of a finite non-empty set Q of states, a
finite set Σ of action labels, and a set ∆ ⊆ Q2 × Σ×Q2. If (q1, q2, a, q

′
1, q
′
2) ∈ ∆, we write

(q1, q2) a7−→ (q′1, q′2) and call it an a-labeled transition. The populations of Pop(Q) are called
configurations. Intuitively, a configuration C describes a collection of identical finite-state
agents with Q as set of states, containing C(q) agents in state q for every q ∈ Q. Pairs of
agents interact using labeled transitions from ∆. Formally, given two configurations C and
C ′ and a transition (q1, q2) a7−→ (q′1, q′2), we write C a−→ C ′ and call it a step if

C ≥ (q1 + q2) holds, and C ′ = C − (q1 + q2) + (q′1 + q′2) .

We write C w−→ C ′ for a sequence w = a1 . . . ak ∈ Σ∗ of labels if there exists a sequence
C0, . . . , Ck of configurations satisfying C = C0

a1−→ C1 · · ·
ak−→ Ck = C ′. We call this sequence

a finite execution. The notation C w−→ for an infinite sequence w and the notion of an infinite
execution are defined analogously. The ω-language of A from configuration C, denoted
L(A, C), is the set {w ∈ Σω | C w−→} ⊆ Σω.

In what follows we assume every protocol scheme has its set of states Q and transitions ∆
satisfying the following condition: for every q1, q2 in Q, there exists q′1, q′2 and label a such
that (q1, q2, a, q

′
1, q
′
2) ∈ ∆. It follows that every configuration enables a transition.

The configuration graph of a protocol scheme A is the infinite labeled, directed graph
(Pop(Q),Σ,→) having the populations over Q as nodes and labeled edges (C, a,C ′) whenever
C

a−→ C ′ holds. Consider the partition {Pop(Q)i}i≥2 of Pop(Q), where Pop(Q)i = {C ∈
Pop(Q) | |C| = i}. (Note that i starts at 2 because every population contains at least
two agents.) Since interactions do not create or destroy agents, the set {→i}i≥2, where
→i=→ ∩Pop(Q)i × Σ× Pop(Q)i, is also a partition of →. Therefore (Pop(Q),→) consists
of the infinitely many disjoint and finite subgraphs {(Pop(Q)i,Σ,→i)}i≥2.

A strongly connected component (SCC) of the configuration graph is a maximal set of
mutually reachable configurations. An SCC is a bottom SCC if it is closed under reachability,
i.e., if C belongs to the SCC and C ′ is reachable from C, then C ′ also belongs to the SCC.
A configuration is a bottom configuration if it belongs to a bottom SCC of the graph.

We define a population protocol as a protocol scheme equipped with a possibly infinite
Presburger set I of initial configurations and denote it as a pair (A, I). The original
paper [3] introducing population protocols considered, instead of Presburger sets of initial
configurations, a restricted class called simple sets defined by means of input variables – a
subset of the states of the protocol scheme. Given a set S ⊆ Q of input variables, the set I
of initial configurations thereof is given by {C ∈ Pop(Q) | ∀q ∈ Q : q ∈ S ∨C(q) = 0}. When
I is definable using input variables then I is said to be simple.2

The complexity of parameterized verification can differ based on the presence or absence
of a leader, a specific agent starting in a given state. Simple sets of initial configurations are
essential to define leaderless protocols: protocols with no distinguished leader agent. (If we
want to have a distinguished leader we can design a protocol whose set of states is the disjoint

1 Since, as we will see later, the atomic semantic step of population protocols is a pairwise interaction, we
require at least two agents in every population.

2 To sum up, unless we state I is simple then it is assumed to be described by a Presburger formula.
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union of two sets Ql ∪Qa of leader and agent states, and having a distinguished initial state
q0 ∈ Ql for the leader. Sets I containing only configurations C satisfying C(q0) = 1 ensure
that there is a unique leader.)

We give a population protocol a semantics as an infinite family of finite-state Markov
Chains, one for each initial configuration. We assume that, given a configuration C, a
probabilistic scheduler picks a pair of agents of C uniformly at random, and then picks one
of the transitions they can execute according to some fixed probability distribution satisfying
two properties: the probability of a transition depends only on the current states of the
agents, and every transition has nonzero probability. This associates with each step C a−→ C ′

a probability. Since C a−→ C ′ implies |C| = |C ′|, the number of configurations reachable from
any configuration C is finite. Thus, for every C, the Markov Chain rooted at C has finitely
many states.

I Example 1. Consider a protocol with two states q1, q2 and a configuration
C = (C(q1), C(q2)) = (1, 4). The scheduler picks two agents at state q1 with probabil-
ity 0, two agents at states q1 and q2 with probability 2/5, and two agents at state q2 with
probability 3/5. If the protocol has three transitions (q1, q2) a7−→ (q2, q2), (q1, q2) a7−→ (q1, q1),
(q1, q2) b7−→ (q2, q2), each with probability 1/3, then the steps (1, 4) a−→ (0, 5), (1, 4) a−→ (2, 3)
and (1, 4) b−→ (0, 5) have probability 2/15 each. The probability of doing an a from (1, 4) is
4/15, and the probability of moving from (1, 4) to (0, 5) by means of some action is also 4/15.

Once the set of initial configurations I is fixed, we can talk about the probability of
a measurable set of infinite paths of a Markov Chain rooted at some C ∈ I. We write
Pr[A, C |= E ] to denote the probability that the stochastic process assigns to an event E for
some C ∈ I. Later, events will correspond to formulas of the linear temporal logic.

I Example 2 (Computation by consensus). Angluin et al. [3] study protocols as a computation
model. In their model, each state has an output, either 0 or 1. A protocol is well-specified if
for every initial configuration, all agents eventually output the same value b = 0, 1 and stay
committed to this value forever. Being well-specified further requires that the commitment
of a population of agents to a value exclusively depends on their initial distribution. A well-
specified protocol computes a predicate over its input variables: for each initial configuration,
the predicate has value 0 (resp. 1) iff agents commit to 0 (resp. output 1) with probability 1.

I Example 3 (Birth-death processes). A Moran process [23] is a stochastic process for
evolution in a population with N − 1 residents and a mutant. In each step, one agent is
randomly chosen for reproduction and one agent is randomly chosen for death. In the next
step, the agent who dies is replaced with a copy of the agent that reproduces, therefore
keeping the size of the population constant. In this setting, an interesting question is fixation:
whether a single mutant can eventually replace all residents.

Probability vs. fairness

Instead of the probabilistic semantics, the semantics of population protocols is usually
defined using fairness [3, 6]. An execution is fair if it is infinite and for every configuration
C appearing in it infinitely often, and for every possible labelled step C

a−→ C ′, the step
also appears infinitely often in the execution. We show later in Proposition 7 that the
fair semantics and the probability semantics are indistinguishable for the questions we are
studying: For every initial configuration C and every property ϕ expressible in LTL, some
fair execution starting at C satisfies ϕ iff the set of executions of the protocol (fair or not)
starting at C and satisfying ϕ has positive probability.
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2.2 Probabilistic Linear Temporal Logic
Let Σ be a finite set of actions labels. The formulas of linear temporal logic (LTL) are defined
by the grammar

ϕ ::= a | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕWϕ where a ∈ Σ.

The semantics of LTL formulas are given in the usual way over traces [9]: an LTL formula ϕ
defines an ω-language L(ϕ) ⊆ Σω. We define the following derived symbols: ¬a ≡

∨
σ∈Σ\{a} σ,

true ≡
∨
σ∈Σ σ, Fϕ ≡ trueUϕ and Gϕ ≡ ϕWfalse. The derived symbols can be eliminated

with at most a polynomial cost in the size of the formula.

Qualitative and quantitative model checking. Let us now introduce the probabilistic
interpretation for LTL. Given a configuration C, we say that (A, C) satisfies the LTL formula
ϕ with probability p if Pr[A, C |= ϕ] = p. The (qualitative) model checking problem consists
of, given a population protocol (A, I), and an LTL formula ϕ, deciding if Pr[A, C |= ϕ] = 1
for all C ∈ I. We often work with the complement problem (deciding if Pr[A, C |= ¬ϕ] > 0
for some C ∈ I). Abusing language, we also call it the model checking problem; the context
should determine which problem we refer to. The quantitative model checking problem has
an additional input p between 0 and 1 and asks whether Pr[A, C |= ϕ] ≥ p for all C ∈ I.

I Example 4 (Cont’d from Ex. 2). Let Σ be the set of all actions and let Σij , for i, j ∈ {0, 1},
be the set of all transitions in which the output of the first process is i and the second process
is j. Then, if the property Pr[A, C |= F(GΣ00 ∨GΣ11)] = 1 holds for all C ∈ I, we have
that from any initial configuration, an execution of the protocol stabilizes to an output (0 or
1) with probability 1. Being well-specified actually requires more: all the executions starting
at a configuration must converge to the same value with probability 1. This property can be
expressed as a LTL formula but on a modified protocol instead of the original one. Intuitively,
the modified protocol is the result of running two copies of the protocol side-by-side as we
explained in a previous work [18].

Delporte-Gallet et al. [14] study which predicates can be computed by privacy-preserving
protocols that do not reveal information on the initial configuration to a curious adversary.
They identify a sufficient condition for a protocol to be privacy preserving, expressed as the
conjunction of two properties (plus two other minor conditions). The first one is the existence
from each initial configuration of an execution leading to a given set of configurations G,
and containing no interaction involving a distinguished agent. For the cases studied in the
paper G can be expressed by an LTL-formula ϕ, and the property can be reduced to the
model-checking problem for the formula (

∨
a∈A a)Uϕ for a suitable A ⊆ Σ. The second

one, called G-imitability, requires that for every action a of the distinguished agent and
for every configuration of G there is a finite execution leading to a configuration of G and
containing exactly one occurrence of the action. This can be verified by taking G as set of
initial configurations and checking the formula

∧
a∈Σ (¬aU(a ∧X(¬aUϕ))).

I Example 5. For the Moran process, the property that a mutant takes over the population
is FGΣ0, where Σ0 is the set of actions where a mutant reproduces.

2.3 Deterministic Rabin Automata
A deterministic Rabin automaton (DRA) R = (Q,Σ, δ, q0,F) consists of a finite set Q of
states including an initial state q0, an alphabet Σ, a transition function δ : Q× Σ→ Q, and
an acceptance condition F ⊆ 2Q × 2Q.
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An input for R is an infinite string in Σω. The run of R on w = w0w1 . . . ∈ Σω is an
infinite sequence ρ = r0r1 . . . of states in Q such that r0 = q0, the initial state, and for each
i ≥ 0, we have ri+1 = δ(ri, wi). SinceR is deterministic, we can extend the transition function
δ to finite words as follows: δ∗(q, ε) = q for every q ∈ Q and δ∗(q, aw) = δ∗(δ(q, a), w). Let
Inf(ρ) be the set of states that appear infinitely often in ρ.

Let F = {〈F1, G1〉, . . . , 〈Fk, Gk〉} be the set of Rabin pairs. A run ρ is accepting if there
exists an i ∈ {1, . . . , k} such that Inf(ρ) ∩ Fi = ∅ and Inf(ρ) ∩ Gi 6= ∅; that is, no state
from Fi is seen infinitely often and some state from Gi is seen infinitely often. A word w is
accepted by R if the unique run of R on w is accepting. The language of R, written L(R),
is the set of all words accepted by R.

For each LTL formula ϕ, it is well-known that there is a DRA Rϕ of size at most doubly
exponential in the size of ϕ such that L(ϕ) = L(Rϕ).

2.4 Labeled Petri Nets
A labeled Petri net N = (P, T, F,Σ, λ) consists of a finite set P of places, a finite set T of
transitions, a flow function F : (P × T ) ∪ (T × P ) → N, an alphabet Σ of actions and a
labeling function λ : T → Σ. Abusing language, we also use λ to denote the homomorphic
extension of the labeling function to T ∗ ∪ Tω → Σ∗ ∪ Σω. Given a transition t ∈ T , the
multiset •t of input places of t is defined by •t(p) = F (p, t), and the multiset t• of output
places by t•(p) = F (t, p). A Petri net is a labeled Petri net without a labeling function and
alphabet of actions.

A marking M of a net N is a multiset of places. Given a place p, we say that M
puts M(p) tokens in p. A transition t ∈ T is enabled at a marking M , written M [t〉, if
•t ≤M . A transition t enabled at M can fire, yielding the marking M ′ = M − •t+ t•. We
write this fact as M [t〉M ′. We extend enabledness and firing to sequences of transitions
as follows. Let σ = t1 . . . tk be a finite sequence of transitions tj ∈ T . We write M [σ〉M ′
and call it a firing sequence if there exists a sequence M0, . . . ,Mk of markings such that
M = M0 [t1〉M1 · · · [tk〉Mk = M ′. In that case, we say that M ′ is reachable from M and
denote by Reach(N,M) the set of markings reachable from M . Given an infinite sequence
σ = t1t2 . . ., we write M [σ〉 if, and only if, there exists an infinite sequence M0,M1, . . . of
markings such that M = M0 and Mi [ti+1〉Mi+1 for every i ≥ 0. Finally, given w ∈ Σ∗ ∪Σω,
we write M [w〉 and M [w〉M ′ if M [σ〉 and M [σ〉M ′ for some sequence σ of transitions such
that λ(σ) = w.

3 Model-checking LTL

In Section 3.1 we first show that the qualitative model checking problem is decidable. We
then prove that it is as hard as the reachability problem for Petri nets, even for simple sets
of initial configurations (that is, for leaderless protocols) and for the formula FGa. Finally,
in Section 3.2, we show the quantitative version is undecidable.

3.1 The Model Checking Problem Is Decidable but Reachability Hard
Our solution to the model checking problem is based on a product construction that, given
a protocol scheme A = (Q,Σ,∆) and a DRA R = (Q′,Σ, δ, q′0,F) such that Q ∩ Q′ = ∅,
produces a labeled Petri net N(A,R) = (P, T, F,Σ, λ), defined as follows:

P = Q ∪Q′.
T contains a transition tδA,q for each δA = (q1, q2) a7−→ (q3, q4) ∈ ∆ and q ∈ Q′.
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For each tδA,q ∈ T with δA = (q1, q2) a7−→ (q3, q4) ∈ ∆: •(tδA,q) = {q1, q2, q} and
(tδA,q)

• = {q3, q4, δ(q, a)}. Further, λ(tδA,q) = a.

It follows immediately from the definition ofN(A,R) that (C+q′) [w〉M for some marking
M and word w ∈ Σ∗ iffM = C ′+q′′, C w−→ C ′, and δ∗(q′, w) = q′′, that is, N(A,R) captures
the action-based synchronized product of A and R.

A marking M of N(A,R) is proper if M = C+q where C is a configuration of A and q
is a state of R. In particular, every marking reachable from a proper marking is proper. The
proper reachability graph of N(A,R) contains the proper markings of N(A,R) as nodes and
the steps (C+q′) [a〉 (C ′+q′′) for a ∈ Σ as edges. We say that an SCC S of the reachability
graph of N(A,R) is accepting if there is a Rabin pair 〈F,G〉 of R such that q′ ∈ F for no
marking (C+q′) ∈ S, and q′ ∈ G for some marking (C+q′) ∈ S.

Next, Proposition 6 reduces the qualitative model checking problem to a topological
problem about the (typically infinitely many) SCCs of N(A,R).

I Proposition 6. Given a configuration C of A and a Rabin automaton Rϕ for a LTL
formula ϕ: Pr[A, C |= ϕ] > 0 iff some bottom SCC of the proper reachability graph of
N(A,Rϕ) is accepting and reachable from (C+q′0).

Proof. For simplicity, we conduct the proof for the special case in which every transition of
A is labeled with a different action. The extension to the general case is straightforward.

Observe that, since the interactions on A do not change the size of a configuration, for
every two markings (C1+q1), (C2+q2) of the proper reachability graph of N(A,Rϕ) we
have |C1| = |C2|. Since Rϕ has finitely many states, the number of markings reachable from
(C1+q1) is at most K(C1) := (n|C1|+1) ·m, where n and m are the number of states of A
and Rϕ, respectively.

We introduce the following notation. Let τ = C
a1···an−−−−→ Cn be a finite execution of A.

As usual, the cylinder Cyl(τ) denotes all the infinite executions of A starting with τ , and its
probability Pr(Cyl(τ)) is the product of the probabilities of the steps C a1−→ C1, . . . , Cn−1

an−−→
Cn. Since Rϕ is complete and deterministic, the unique state q′n = δ∗(q′0, a1 . . . an) is such
that (C+q′0) [a1 · · · an〉 (Cn+q′n) is a firing sequence of N(A,Rϕ). We call the run of Rϕ
the matching run of τ , and denote it by τ . Further, we denote the firing sequence by (τ, τ).
We extend the notation to infinite executions, runs, and firing sequences.

We first prove a preliminary claim. An infinite execution σ of A starting at a configuration
C satisfies the following property with probability 1: the infinite firing sequence (σ, σ)
of N(A,Rϕ) from the marking (C+q′0) eventually reaches a bottom SCC of the proper
reachability graph of N(A,Rϕ), and visits all its markings infinitely often.

For the first part, observe that for every finite prefix σ1 of σ there is, by definition, a
finite execution σ2 of length at most K(C) such that the marking reached by (σ1σ2, σ1σ2)
belongs to a bottom SCC of the proper reachability graph of N(A,Rϕ). Therefore, there is
a bound p(C) > 0, depending only on σ2 and in particular on C, such that the probability
that for σ ∈ Cyl(σ1) the firing sequence (σ, σ) reaches a bottom marking is at least p(C). By
elementary probability theory, the probability of the infinite execution σ such that (σ, σ)
eventually visits a bottom SCC is equal to 1. For the second part, assume that σ has a prefix
τ such that (τ, τ) leads to a bottom SCC, say S, and let (C ′+q′) be an arbitrary marking of
S. Then, for every finite execution ττ1 of A, there is τ2 of length at most K(C) such that the
firing sequence (ττ1τ2, ττ1τ2) leads to (C ′+q′). So the probability that an infinite execution
of Cyl(ττ1) eventually reaches (C ′+q′) is equal to 1. This concludes the proof of the claim.

We now proceed to prove the proposition. Assume that some bottom SCC S of the proper
reachability graph of N(A,Rϕ) is accepting for some Rabin pair 〈F,G〉, and is also reachable
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from (C+q′0). Let (σ, σ) be a firing sequence leading to some marking of S, and let (CG+qG)
be a marking of S. Because S is accepting we have qG ∈ G. For the same reason, no marking
of S is of the form (CF+qF) with qF ∈ F . By the claim, an infinite execution τ ∈ Cyl(σ)
satisfies with probability 1 that the infinite firing sequence (τ, τ) visits (CG+qG) infinitely
often and visits no marking (CF+qF) with qF ∈ F . So Pr[A, C |= ϕ] ≥ Pr(Cyl(σ)) > 0.

Assume now that no bottom SCC of the proper reachability graph of N(A,Rϕ) is
accepting. Then, for every Rabin pair 〈F,G〉 and every bottom SCC S, either S contains a
marking (C ′+q′) such that q′ ∈ F , or it contains no marking (C ′+q′) such that q′ ∈ G. By
the claim, for every infinite execution τ of A starting at C, the infinite firing sequence (τ, τ)
gets eventually trapped in a bottom SCC, say S, with probability 1. If S contains a marking
(C ′+q′) such that q′ ∈ F , then, again by the claim, (τ, τ) visits (C ′+q′) infinitely often
with probability 1, and so it is non-accepting with probability 1. If S contains no marking
(C ′+q′) such that q′ ∈ G, then with probability 1 it visits configurations (C ′+q′) such that
q′ ∈ G only finitely often, and so it is not accepting with probability 1. So C satisfies ϕ with
probability 0. J

Using this result we now proceed to prove the indistinguishability of the fair and the
probability semantics we announced in Section 2.1:

I Proposition 7. Let (A, I) be a population protocol, C ∈ I, and let ϕ be an LTL formula.
We have: Pr[A, C |= ϕ] > 0 iff some fair execution of A starting at C satisfies ϕ.

Proof. It is easy to show (see Esparza et al. [18, 19]) that every fair execution of A starting
at a configuration C gets eventually trapped in a bottom SCC of the configuration graph of
A, and crosses all its edges infinitely often. Using the same arguments as in Proposition 6, we
show that a fair execution starting at C satisfies ϕ iff its unique counterpart firing sequence
reaches an accepting bottom SCC of the proper reachability graph of N(A,Rϕ). So, by
Proposition 6, some fair executions starting at C satisfy ϕ iff Pr[A, C |= ϕ] > 0. J

We need the following fact about Petri nets from [22] to prove decidability.

I Lemma 8 ([22]). Let N be a Petri net. The set of pairs of markings (M,M ′) such that M
and M ′ are mutually reachable (i.e., M ′ is reachable from M and M is reachable from M ′)
is Presburger, and a Presburger formula MR(M, M′) denoting it can be effectively constructed.

I Theorem 9. Let (A, I) be a population protocol, and let ϕ be an LTL formula. The
problems whether there exists a configuration C ∈ I satisfying Pr[A, C |= ϕ] > 0 and
Pr[A, C |= ϕ] < 1 can be reduced to the reachability problem for Petri nets.

Proof. Let Rϕ be a DRA for ϕ. Assume for simplicity that Rϕ has only one Rabin pair
〈F,G〉 (the generalization to multiple pairs is straightforward). We first show that the set
of markings of N(A,Rϕ) that belong to accepting bottom SCCs of the proper reachability
graph is Presburger, and that a formula BA(M) denoting it can be constructed.

Let P(M) be the Presburger formula characterizing the proper markings of N(A,Rϕ).
Further, let FO(M, M′) be a Presburger formula that holds if M ′ can be reached from M by
firing one transition. Then we can take for BA(M) the formula

P(M) ∧ ∀M′, M′′ : (MR(M, M′) ∧ FO(M′, M′′))⇒ MR(M, M′′)
∧ ∀M′ : MR(M, M′)⇒

(∧
q∈F M′(q) = 0

)
∧ ∃M′ : MR(M, M′) ∧

∨
q∈G M′ ≥ q

where MR(M, M′) is obtained following Lemma 8. Similarly, we obtain a formula BR(M) for the
markings that belong to a non-accepting bottom SCCs of N(A,Rϕ). By Proposition 6, the
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problem whether some configuration C ∈ I satisfies Pr[A, C |= ϕ] > 0 reduces to deciding
whether some marking M ′ satisfying BA(M′) is reachable from some proper marking M in
the Presburger set given by {(C+q′0) | C ∈ I}. Similarly, Pr[A, C |= ϕ] < 1 reduces to
reachability of BR(M′). J

We show that the problems of Theorem 9 are reachability hard, i.e., at least as hard as
the reachability problem of Petri nets. In previous works [18, 19], we proved reachability
hardness for the well-specification problem (whether a given protocol computes a predicate).
However, the protocols given by the reduction from the reachability problem always had a
leader (formally, they always had a state such that at all initial configurations that state
was inhabited by exactly one agent, and this was crucial for the proof). When population
protocols are used to compute by consensus (see Example 2), leaderless protocols turn out
to have the same computational power as protocols with leader; the only difference is that
the latter can be faster [3, 5]. Therefore, the question arises whether verification problems
have lower complexity for the special case of leaderless protocols. A positive answer would
mean that one can trade-off efficiency for ease of verification, without losing computational
power. We now show that, unfortunately, this is not the case: the qualitative model-checking
problem for the basic liveness property FGa is reachability hard for leaderless protocols.
The same technique also proves hardness of the well-specification problem.

I Theorem 10. The reachability problem for Petri nets can be reduced in linear time to
the following problem: given a population protocol (A, I) where I is simple, decide if some
configuration C ∈ I satisfies Pr[A, C |= FGa] > 0.

Sketch of Proof. The proof constructs a sequence of reductions from the Petri net reachabil-
ity problem. Each step in the sequence transform a problem on Petri net into an equivalent
problem closer to the model of population protocols. We first use a result of Hack [21] that
reduces the reachability problem to the problem of deciding for a given Petri net N and
a marking M0 with a distinguished place p̂ if some marking M ∈ Reach(N,M0) satisfies
M(p̂) = 0. Then we introduce a “normal form” for nets: a net N = (P, T, F ) is in normal
form if F (x, y) ∈ {0, 1} for every x, y ∈ (P × T ) ∪ (T × P ), and every transition t satisfies
1 ≤ |•t| ≤ 2 and 1 ≤ |t•| ≤ 2. Transitions of Petri nets in normal form can be simulated
by transitions of population protocols, which only involve two agents. We prove that the
reachability problem reduces to: given a net N in normal form, a place p0 and a set of places
P̂ , decide if some marking M ∈ Reach(N,p0) satisfies M(P̂ ) = 0. The next step applies a
simple but key observation: for any two markings M,M ′ of a net, M ′ is reachable from M

iff M is reachable from M ′ in the reverse net obtained by reversing the arcs. This allows
to reduce the reachability problem to: given a net N in normal form, a place p0 and a set
of places P̂ , decide if p0 ∈ Reach(N,M) for some marking M satisfying M(P̂ ) = 0. The
crucial point is that this set of markings corresponds to a simple set of initial configurations
of the protocol simulating the net. So, starting from this simple set, the protocol can reach a
certain configuration iff p0 is reachable. It still remains to ensure that the protocol satisfies
Pr[A, C |= FGa] > 0 for some initial configuration iff the marking p0 is reachable. This is
achieved by adding “probing” transitions to the protocol, labeled by an action different from
b, ensuring that the protocol can always do a b as long as it has not reached p0. J

3.2 Quantitative Model Checking Is Undecidable
We prove that, contrary to the qualitative case in the previous section, the quantitative
model checking problem is undecidable. Our proof uses the simulation of deterministic two
counter machines with arbitrarily small error.
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Recall that a counter machine is a tripleM = (L,Co, In) where L is a finite set of program
labels, Co is a finite set of counters, and In is a set of program instructions, one for each label.
The program instruction for label ` is of one of the following types: ` : c := c+ 1; goto `′

(increment), ` : c := c − 1; goto `′ (decrement), ` : if c = 0 then goto `′ else goto `′′

(zero-test), or ` : halt (termination). Only one label `h has an instruction of the last
type, and there is also a distinguished initial label `0. The termination problem for counter
machines consists of deciding if a given machine, starting at `0 with all counters initially set
to 0, eventually halts, i.e., reaches `h.

I Lemma 11. Given a counter machine M , we can construct in polynomial time a protocol
scheme A with a distinguished state qh, and a set I of initial configurations such that M
halts iff some configuration C ∈ I satisfies the following property: starting at C, the protocol
eventually reaches a configuration with one agent in qh with probability at least 1/2.

Proof. It is convenient to define first the set of states of A, then the set I of initial
configurations, and then the transitions of A.
A has a state for each label and for each counter of M , three distinguished states Store,
D (for Dummy), and Stop, and two auxiliary states `1, `2 for each zero-test label `. We
set qh := `h, i.e., choose the state qh as the one corresponding to the halting label.
I contains the configurations that put one agent in the initial label `0, one agent in D,
arbitrarily many agents in Store, and no agent elsewhere.

Before defining the transitions of A we give some intuition. First, the transitions guarantee
that every reachable configuration puts one agent in exactly one of the states corresponding
to the programs labels L. This models that the next instruction executed by the machine is
the one with label `. We call this agent the control agent. The number of agents at a state c
models the current value of the counter. The transitions also guarantee that the one agent
at D never moves elsewhere (its role is only to enable some transitions).

Increasing and decreasing a counter c is modeled by transitions that transfer an agent
from Store to c, and from c to Store, respectively. Therefore, if an initial configuration puts,
say, K agents in Store, then from that configuration the protocol cannot always simulate the
complete execution of the machine, only the prefix during which the sum of the values of all
counters does not exceed K. A has the following transitions:

For each instruction ` : c := c+ 1; goto `′, a transition (`,Store) inc7−−→ (`′, c).
For each instruction ` : c := c− 1; goto `′, a transition (`, c) dec7−−→ (`′,Store).
For each instruction ` : if c = 0 then goto `′ else goto `′′, the following transitions:

(`,D) go7−→ (`1,D), (`, c) nonzero7−−−−−→ (`′′, c)
(`1,Store)

back7−−−→ (`,Store), (`1,D) zero7−−→ (`2,D)
(`2,D) zero′

7−−−→ (`′,D) and (`2, c)
game over7−−−−−−→ (Stop, c).

It is convenient to think of the go and back transitions as a loop moving an agent from ` to
`1 and back, and of the transitions zero and nonzero as the two possible exits of this loop.

Before proving the lemma, we make an observation. Assume that the control agent of a
configuration C is at the state of a zero-test label ` : if c = 0 then goto `′ else goto `′′,
and assume further C(Store) ≥ 1. We consider two cases. In the first case, C puts no agents
in counter c. Then the nonzero exit of the loop is not enabled at C. Therefore, the scheduler
will eventually move the control agent to `2 with probability 1 (after executing the “loop”
go back a number of times). Further, since the game over action is also not enabled, the
scheduler will eventually move the control agent to `′ with probability 1.
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In the second case, C puts at least one agent in c. Then both exits are enabled at C,
and the scheduler eventually chooses one of them with probabilities pz and pnz, respectively.
The key point is that these probabilities depend on the number of agents in Store and in
c. Indeed, for every value of c, increasing the number N of agents in Store also increases
pnz, since it makes it more likely that the scheduler picks agents at Store. In particular, we
have pnz → 1 when N →∞. So the scheduler eventually moves the control agent to `′′ with
probability that tends to 1 when N tends to infinity.

We prove the left-to-right direction of the lemma. Assume that M halts. We show that
there is a configuration C ∈ I from which the protocol eventually reaches a configuration
with the control agent in qh with probability at least 1/2.

Let k be the length of the halting computation of M . Clearly, during the computation no
counter ever has a value larger than k. So the probability of the protocol taking the wrong
exit when the control agent visits a zero-test label is always bounded by a value p(N) that
tends to 0 as N tends to infinity. Since the computation of M visits zero-test labels at most
k times, the probability that at all these visits the protocol chooses the right exit is at least
(1− p(N))k, which tends to 1 as N tends to infinity. So, by making N sufficiently large, we
obtain an initial configuration for which the protocol faithfully simulates the computation of
M with probability at least 1/2. Since M halts, that computation visits qh, and we are done.

We now prove the converse direction, for which we need the game over actions, which have
played no role so far. Assume that M does not halt. We prove that for every configuration
C ∈ I the probability that, starting at C, the protocol eventually reaches a configuration
with the control agent in qh is at most 1/2.

We say that the protocol “cheats” during the simulation of M if, after reaching a
configuration with the control agent at a zero-test label ` and a strictly positive number of
agents at c, the protocol moves the control agent to `′, and not to `′′, as indicated by the
instruction.

Let C be an arbitrary initial configuration and let the protocol produce an execution.
Since M does not halt, in order to move the control agent to qh the protocol must cheat at
least once. For this, the scheduler must move the control agent to `′ at a moment at which
there is at least one agent in counter c. But then exactly one pair of agents can move the
control agent to `′ – namely the agents at `2 and D – and at least one pair of agents can
move it to Stop (the agent at `2 and one of the agents at c). Since after reaching Stop the
protocol cannot reach qh anymore, the probability that after moving to `2 the control agent
eventually reaches qh is at most 1/2. So the probability of reaching qh is bounded from above
by 1/2 times the probability that an execution cheats at least once. Hence, in particular, the
probability is at most 1/2, and we are done. J

I Proposition 12. The quantitative model checking problem for population protocols is
already undecidable for specifications of the form G(

∨
a∈A a) for some set A of action labels.

Proof. We show that the problem is already undecidable for a formula of the form G(
∨
a∈A a)

for some set A of action labels, and the probability bound 1/2. We proceed by reduction
from the non-termination problem for counter machines. Given a machine M , we construct a
protocol A and a set of initial configurations I such thatM halts iff Pr[A, C |= G(

∨
a∈A a)] ≥

1/2 for every C ∈ I. Almost all the work has been done in Lemma 11. Consider the protocol
A and the set I defined there, and add a transition (qh,D) halt7−−→ (qh,D). Then, an execution
of A satisfies F halt iff it eventually moves the control agent to state qh. Applying the lemma,
we obtain that M does not halt iff Pr[A, C |= F halt] < 1/2 for every C ∈ I. Taking A as
the set of all actions of A but halt, we get: M does not halt iff Pr[A, C |= G(

∨
a∈A a)] ≥ 1/2

for every C ∈ I. J
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In fact, Lemma 11 also implies undecidability of the problem whether the probability of
a property can be made arbitrarily close to 1 by increasing the number of agents. Indeed,
a look at the proof of the lemma shows that the reduction produces a protocol satisfying
the following property: the counter machine halts iff there a bound ρ < 1 (in the lemma,
ρ = 1/2 + ε) such that Pr[A, C |= ϕ] ≤ ρ for every C ∈ I.

4 Discussion and Further Undecidability Results

We have characterized the decidability frontier for LTL model checking of population protocols:
qualitative model checking is decidable, and quantitative is undecidable. We have also shown
that, though decidable, qualitative model checking is as hard as the reachability problem for
Petri nets (for which no primitive-recursive algorithm is known) even for leaderless protocols
and for the simple formula FGa. Essentially the same proof shows that the well-specification
problem is also as hard as the Petri net reachability problem even in the leaderless case,
removing the assumption of a leader from our previous hardness proof [19].

In the rest of the section we briefly discuss other undecidability results showing that
Theorem 9 is rather close to the “decidabiliy border.”

LTL on Configurations. Note that we have defined LTL on actions. An alternate definition
could take the set of configurations as atomic propositions. Configuration-based LTL model
checking is known to be decidable for Well-Structured Transition Systems (WSTS) – a general
class which includes population protocols and much more – provided the reasoning can be
restricted to upward-closed sets. This is the key idea used by Baier et al. [8] who prove that
a state-based fragment of µ-calculus is decidable for all WSTS. It is not known whether
this result can be made more general when focusing on population protocols instead of the
whole class of WSTS. Unfortunately, the model checking problem for population protocols is
undecidable even for very simple classes of atomic propositions.

Given a state q of a protocol, let q≥1 denote the atomic proposition that holds for a
configuration C if C(q) ≥ 1. We call q≥1 a flag, since it flags that state q is inhabited.

I Proposition 13. The qualitative model checking problem for population protocols and LTL
specifications over flags is undecidable.

Proof. Instead of using the construction of Lemma 11 for zero-tests, we enable the zero-test
transition always, and use an LTL formula over configurations to catch “cheating”, i.e., the
population protocol taking a zero-test when it should not. Indeed, every zero-test instruction
` : if c = 0 then goto `′ else goto `′′ yields the formula:

G(q≥1 ∧ c≥1 ⇒ q≥1Uq′′≥1) (1)

where q, q′′ are the states modelling the locations `, `′ and c the state modelling the counter.
The final formula is the conjunction of the formulas given at (1) (one conjunct for each
zero-test) together with F(qh)≥1. If the counter machine halts, then this formula holds
with nonzero probability from an initial configuration with exactly one agent in the control
location and sufficiently many agents in the Store location. If the counter machine rejects,
then the probability of the formula is zero for every initial configuration. J

Broadcast Protocols. Adding broadcasts makes the qualitative model checking undecidable
as well. Consider an extension of population protocols with broadcast actions [16] where, in
addition to a set ∆ of transitions involving two agents, also a set ∆∗ ⊆ Q×Σ×Q× 2Q×Q of
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“broadcast” transitions is allowed. Given a broadcast transition (q, a, q′, δ) and a configuration
C satisfying C(q) > 0, if the scheduler picks an agent in state q, then the agent changes its
state to q′ and simultaneously, all other agents update their states according to the function
δ. The qualitative model checking problem for this model is undecidable, because the model
can weakly simulate counter machines by slightly modifying the proof of [16, Theorem 5.1].
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Abstract
We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL)
by temporal operators that are guarded by visibly pushdown languages over finite words. In
VLDL one can, e.g., express that a function resets a variable to its original value after its execution,
even in the presence of an unbounded number of intermediate recursive calls. We prove that
VLDL describes exactly the ω-visibly pushdown languages. Thus it is strictly more expressive
than LTL and able to express recursive properties of programs with unbounded call stacks.

The main technical contribution of this work is a translation of VLDL into ω-visibly pushdown
automata of exponential size via one-way alternating jumping automata. This translation yields
exponential-time algorithms for satisfiability, validity, and model checking. We also show that
visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time.
We prove all these problems to be complete for their respective complexity classes.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Temporal Logic, Visibly Pushdown Languages, Satisfiability, Model
Checking, Infinite Games

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.28

1 Introduction

Linear Temporal Logic (LTL) [9] is widely used for the specification of non-terminating
systems. Its popularity is owed to its simple syntax and intuitive semantics, as well as to the
exponential compilation property, i.e., for each LTL formula there exists an equivalent Büchi
automaton of exponential size. Due to the latter property, there exist algorithms for model
checking in polynomial space and for solving infinite games in doubly-exponential time.

While LTL suffices to express properties of circuits and non-recursive programs with
bounded memory, its application to real-life programs is hindered by its inability to express
recursive properties. In fact, LTL is too weak to even express all ω-regular properties.
There are several approaches to address the latter shortcoming, by augmenting LTL, for
example, with regular expressions [7, 10], finite automata on infinite words [11], and right-
linear grammars [13]. We concentrate on the approach of Linear Dynamic Logic (LDL) [10],
which guards the globally- and eventually-operators of LTL with regular expressions. While
the LTL-formula Fψ simply means “either now, or at some point in the future, ψ holds”,
the corresponding LDL operator 〈r〉ψ means “There exists an infix matching the regular
expression r starting at the current position, and ψ holds true after that infix”.
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The logic LDL captures the ω-regular languages. In spite of its greater expressive power,
LDL still enjoys the exponential compilation property, hence there exist algorithms for
model checking and solving infinite games in polynomial space and doubly-exponential time,
respectively.

While the expressive power of LDL is sufficient for many specifications, it is still not
able to reason about recursive properties of systems. In order to address this shortcoming,
we replace the regular languages guarding the temporal operators with visibly pushdown
languages (VPLs) [2]. We consider VPLs specified by visibly pushdown automata (VPAs) [2]
in this work.

A VPA is a pushdown automaton that operates over a fixed partition of the input alphabet
into calls, returns and local actions. In contrast to traditional pushdown automata, VPAs
may only push symbols onto the stack when reading calls and may only pop symbols off the
stack when reading returns. Moreover, they may not even inspect the topmost symbol of the
stack when not reading returns. Thus, the height of the stack after reading a word is known
in advance for all VPAs using the same partition of the input alphabet. Due to this, VPAs
are closed under union and intersection, as well as complementation. The class of languages
accepted by VPAs is known as visibly pushdown languages.

The class of such languages over infinite words, i.e., ω-visibly pushdown languages, are
known to allow for the specification of many important properties in program verification
such as “there are infinitely many positions at which at most two functions are active”, which
expresses repeated returns to a main-loop, or “every time the program enters a module m
while p holds true, p holds true upon exiting m” [2]. The extension of VPAs to their variant
operating on infinite words is, however, not well-suited to the specification of such properties
in practice, as Boolean operations on such automata do not preserve the logical structure
of the original automata. By guarding its temporal operators with VPAs, VLDL allows for
modular specification of recursive properties while capturing ω-VPAs.

1.1 Our contributions
We introduce VLDL and study its expressiveness and algorithmic properties.

Firstly, we provide translations from VLDL to VPAs over infinite words, so-called ω-VPAs,
and vice versa. For the direction from logic to automata we translate VLDL formulas into
one-way alternating jumping automata (1-AJA), which are known to be translatable into
ω-VPAs of exponential size due to Bozzelli [4]. For the direction from automata to logic we
use a translation of ω-VPAs into deterministic parity stair automata (PSA) by Löding et
al. [8], which we then translate into VLDL formulas.

Secondly, we prove the satisfiability problem and the validity problem for VLDL to
be ExpTime-complete. Membership in ExpTime follows from the previously mentioned
constructions, while we show ExpTime-hardness of the problems by a reduction from the
word problem for polynomially space-bounded alternating Turing machines adapting a similar
reduction by Bouajjani et al. [3].

As a third result, we show that model checking visibly pushdown systems against VLDL
specifications is ExpTime-complete as well. Membership in ExpTime follows from ExpTime-
membership of the model checking problem for 1-AJAs against visibly pushdown systems.
ExpTime-hardness follows from ExpTime-hardness of the validity problem for VLDL.

Finally, solving visibly pushdown games with VLDL winning conditions is proven to be
3ExpTime-complete. Membership in 3ExpTime follows from the exponential translation
of VLDL formulas into ω-VPAs and the membership of solving pushdown games against
ω-VPA winning conditions in 2ExpTime due to Löding et al. [8]. 3ExpTime-hardness is
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due to a reduction from solving pushdown games against LTL specifications, again due to
Löding et al. [8].

Our results show that VLDL allows for the concise specification of important properties
in a logic with intuitive semantics. In the case of satisfiability and model checking, the
complexity jumps from PSpace-completeness for LDL to ExpTime-completeness. For solving
infinite games, we gain an exponent moving from 2ExpTime-completeness to 3ExpTime-
completeness.

We choose VPAs for the specification of guards in order to simplify arguing about the
expressive power of VLDL. In order to simplify the modeling of ω-VPLs, other formalisms
that capture VPLs over finite words may be used. We discuss one such formalism in the
conclusion.

All proofs omitted due to space restrictions can be found in the full version [12].

1.2 Related Work

The need for specification languages able to express recursive properties has been identified
before and there exist other approaches to using visibly pushdown languages over infinite
words for specifications, most notably CaRet [1], and, more recently, VLTL [5]. While VLTL
captures the class of ω-visibly pushdown languages, CaRet captures only a strict subset of it.
For both logics there exist exponential translations into ω-VPAs. In this work, we provide
exponential translations from VLDL to ω-VPAs and vice versa. Hence, CaRet is strictly less
powerful than VLDL, but every CaRet formula can be translated into an equivalent VLDL
formula, albeit with a doubly-exponential blowup. Similarly, every VLTL formula can be
translated into an equivalent VLDL formula and vice versa, with doubly-exponential blowup
in both directions.

In contrast to VLTL, which introduces substitution operators to regular expressions
(replacing occurrences of local actions by well-matched words), VLDL instead extends the
concepts introduced for LTL and LDL with visibly pushdown automata. Hence, specifications
written in VLDL are modular and have an intuitive semantics, in particular for practitioners
already used to LTL.

Other logical characterizations of visibly pushdown languages include characterizations by
a fixed-point logic [4] and by monadic second order logic augmented with a binary matching
predicate (MSOµ) [2]. Even though these logics also capture the class of visibly pushdown
languages, they feature neither an intuitive syntax nor intuitive semantics and thus are less
applicable than VLDL in a practical setting.

2 Preliminaries

In this section we introduce the basic notions used in the remainder of this work. A pushdown
alphabet Σ̃ = (Σc,Σr,Σl) is a finite set Σ that is partitioned into calls Σc, returns Σr and
local actions Σl. We write w = w0 · · ·wn and α = α0α1α2 · · · for finite and infinite words,
respectively. The stack height sh(w) reached after reading w is defined inductively as
sh(ε) = 0, sh(wc) = sh(w) + 1 for c ∈ Σc, sh(wr) = max{0, sh(w) − 1} for r ∈ Σr, and
sh(wl) = sh(w) for l ∈ Σl. A call c ∈ Σc at some position k of a word w is matched if there
exists a k′ > k with wk′ ∈ Σr and sh(w0 · · ·wk) − 1 = sh(w0 · · ·wk′). The return at the
smallest such position k′ is the matching return of c. We define steps(α) := {k ∈ N | ∀k′ ≥
k. sh(α0 · · ·αk′) ≥ sh(α0 · · ·αk)} as the positions reaching a lower bound on the stack height.
Note that 0 ∈ steps(α) and that steps(α) is infinite for infinite words α.

FSTTCS 2016
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Visibly Pushdown Systems. A visibly pushdown system (VPS) S = (Q, Σ̃,Γ,∆) consists
of a finite set Q of states, a pushdown alphabet Σ̃, a stack alphabet Γ, which contains a
stack-bottom marker ⊥, and a transition relation

∆ ⊆ (Q× Σc ×Q× (Γ \ {⊥})) ∪ (Q× Σr × Γ×Q) ∪ (Q× Σl ×Q).

A configuration (q, γ) of S is a pair of a state q ∈ Q and a stack content γ ∈ Γc = (Γ\{⊥})∗ ·⊥.
The VPS S induces the configuration graphGS = (Q×Γc, E) with E ⊆ ((Q×Γc)×Σ×(Q×Γc))
and ((q, γ), a, (q′, γ′)) ∈ E if, and only if, either (i) a ∈ Σc, (q, a, q′, A) ∈ ∆, and Aγ = γ′, (ii)
a ∈ Σr, (q, a,⊥, q′) ∈ ∆, and γ = γ′ = ⊥, (iii) a ∈ Σr, (q, a,A, q′) ∈ ∆, A 6= ⊥, and γ = Aγ′,
or (iv) a ∈ Σl, (q, a, q′) ∈ ∆, and γ = γ′. For an edge e = ((q, γ), a, (q′, γ′)), a is the label
of e. A run π = (q0, γ0) · · · (qn, γn) of S on w = w0 · · ·wn−1 is a sequence of configurations
where ((qi, γi), wi, (qi+1, γi+1)) ∈ E in GS for all i ∈ [0;n− 1].

The VPS S is deterministic if for each vertex (q, γ) in GS and each a ∈ Σ there exists at
most one outgoing a-labeled edge from (q, γ). In figures, we write ↓A, ↑A and → to denote
pushing and popping A onto and off the stack, and local actions, respectively.

(Büchi) Visibly Pushdown Automata. A visibly pushdown automaton (VPA) [2] is a six-
tuple A = (Q, Σ̃,Γ,∆, I, F ), where (Q, Σ̃,Γ,∆) is a VPS and I, F ⊆ Q are sets of initial
and final states. A run (q0, γ0)(q1, γ1)(q2, γ2) · · · of A is initial if (q0, γ0) = (qI ,⊥) for some
qI ∈ I. A finite run π = (q0, γ0) · · · (qn, γn) is accepting if qn ∈ F . A Büchi VPA (BVPA) is
syntactically identical to a VPA, but we only consider runs over infinite words. An infinite
run is Büchi-accepting if it visits states in F infinitely often. A (B)VPA A accepts a word w
(an infinite word α) if there exists an initial (Büchi-)accepting run of A on w (α). The family
of languages accepted by (B)VPA is denoted by (ω-)VPL.

3 Visibly Linear Dynamic Logic

We fix a finite set P of atomic propositions and a partition Σ̃ = (Σc,Σr,Σl) of 2P throughout
this work. The syntax of VLDL is defined by the grammar

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈A〉ϕ | [A]ϕ,

where p ∈ P and A ranges over testing visibly pushdown automata (TVPA) over
Σ̃. A TVPA A = (Q, Σ̃,Γ,∆, I, F, t) consists of a VPA (Q, Σ̃,Γ,∆, I, F ) and a partial
function t mapping states to VLDL formulas over Σ̃.1 Such an automaton accepts an
infix αi · · ·αj of an infinite word α0α1α2 · · · if the embedded VPA has an initial accept-
ing run (qi, γi) · · · (qj+1, γj+1) on αi · · ·αj such that, if qi+k is marked with ϕ by t, then
αi+kαi+k+1αi+k+2 · · · satisfies ϕ.

We define the size of ϕ as the sum of the number of subformulas (including those contained
as tests in automata and their subformulas) and of the numbers of states of the automata
contained in ϕ. As shorthands, we use tt := p ∨ ¬p and ff := p ∧ ¬p for some atomic
proposition p. Even though the testing function t is defined as a partial function, we generally
assume it is total by setting t : q 7→ tt if q /∈ domain(t).

Let α = α0α1α2 · · · be an infinite word over 2P and let k ∈ N be a position in α. We
define the semantics of VLDL inductively via

1 Obviously, there are some restrictions on the nesting of tests into automata. More formally, we require
the subformula relation to be acyclic as usual.
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(α, k) |= p if, and only if, p ∈ αk,
(α, k) |= ¬ϕ if, and only if, (α, k) 6|= ϕ,
(α, k) |= ϕ0 ∧ ϕ1 if, and only if, (α, k) |= ϕ0 and (α, k) |= ϕ1, and dually for ϕ0 ∨ ϕ1,
(α, k) |= 〈A〉ϕ if, and only if, there exists l ≥ k s.t. (k, l) ∈ RA(α) and (α, l) |= ϕ,
(α, k) |= [A]ϕ if, and only if, for all l ≥ k, (k, l) ∈ RA(α) implies (α, l) |= ϕ,

where RA(α) contains all (k, l) such that A accepts αk · · ·αl−1. Formally, we define

RA(α) := {(k, l) ∈ N× N | ∃ init. acc. run (qk, σk) · · · (ql, σl) of A on αk · · ·αl−1

and ∀m ∈ {k, . . . , l}. (α,m) |= t(qm)}.

We write α |= ϕ as a shorthand for (α, 0) |= ϕ and say that α is a model of ϕ in this case.
The language of ϕ is defined as L(ϕ) := {α ∈ (2P )ω | α |= ϕ}. As usual, disjunction and
conjunction are dual, as well as the 〈A〉-operator and the [A ]-operator, which can be dualized
using De Morgan’s law and the logical identity [A ]ϕ ≡ ¬〈A〉¬ϕ, respectively. Note that the
latter identity only dualizes the temporal operator, but does not require complementation
of the automaton guarding the operator. We additionally allow the use of derived boolean
operators such as → and ↔, as they can easily be reduced to the basic operators ∧, ∨ and ¬.

The logic VLDL combines the expressive power of visibly pushdown automata with the
intuitive temporal operators of LDL. Thus, it allows for concise and intuitive specifications
of many important properties in program verification [2]. In particular, VLDL allows for the
specification of recursive properties, which makes it more expressive than both LDL [10] and
LTL [9]. In fact, we can embed LDL in VLDL in linear time.

I Lemma 1. For any LDL formula ψ over P we can effectively construct a VLDL formula ϕ
over Σ̃ := (∅, ∅, 2P ) in linear time such that L(ψ) = L(ϕ).

Proof. We define ϕ by structural induction over ψ. The only interesting case is ψ = 〈r〉ψ′,
since all other cases follow from closure properties and duality. We obtain the VLDL formula
ϕ′ over Σ̃ equivalent to ψ′ by induction and construct the finite automaton Ar from r using
the construction from [6]. The automaton Ar contains tests, but is not equipped with a
stack. Since Σ̃ = (∅, ∅, 2P ), we can interpret Ar as a TVPA without changing the language
it recognizes. We call the TVPA A′r and define ϕ = 〈A′r〉ϕ′. J

Since LTL can be in turn embedded in LDL in linear time, Lemma 1 directly implies
the embeddability of LTL in VLDL in linear time. Note that this proof motivates the use
of TVPAs instead of VPAs without tests as guards in order to obtain a concise formalism.
We later show that removing tests from these automata does not change the expressiveness
of VLDL. It is, however, open whether it is possible to translate even LTL formulas into
VLDL formulas without tests in polynomial time.

I Example 2. Assume that we have a program that may call some module m and has the
observable atomic propositions P := {c, r, p, q}, where c and r denote calls to and returns
from m, and p and q are arbitrary propositions.

We now construct a formula that describes the condition “If p holds true immediately
after entering m, it shall hold immediately after the corresponding return from m as well” [1].
For the sake of readability, we assume that the program never emits both c and r in the
same step. Moreover, we assume that the program emits at least one atomic proposition in
each step. Since we want to count the calls and returns occurring in the program using the
stack, we pick the pushdown alphabet Σ̃ = (Σc,Σr,Σl) such that P ′ ⊆ P is in Σc if c ∈ P ′,
P ′ ∈ Σr if r ∈ P ′, but c /∈ P ′, and P ′ ∈ Σl otherwise.

FSTTCS 2016



28:6 Visibly Linear Dynamic Logic

Ac
Σc, ↓A

Σr, ↑A
Σl,→

Σc, ↓A
Ar

Σc, ↓A
Σr, ↑A

Σl,→
Σr, ↑⊥

Figure 1 The automata Ac and Ar for Example 2.

Σc, ↓P
Σr, ↑P

Σc, ↓P
Σr, ↑P

Σl,→
Σpl ,→

Σpc , ↓ P̄ Σpr , ↑ P̄

Σpc , ↓P
Σpr , ↑P Σ¬pl ,→

Σ¬pc , ↓PΣ¬pr , ↑P

Σ¬pc , ↓ P̄
Σ¬pr , ↑ P̄

Figure 2 A BVPA A specifying the same language as ϕ from Example 2.

The formula ϕ := [Ac ](p→ 〈Ar〉p) then captures the condition, with Ac and Ar as shown
in Figure 1. The automaton Ac accepts all finite words ending with a call to m, whereas the
automaton Ar accepts all words ending with a single unmatched return.

Figure 2 shows a BVPA A describing the same specification as ϕ. Here, we use Σp
x =

{P ′ ∈ Σx | p ∈ P ′} and Σ¬px = {P ′ ∈ Σx | p /∈ P ′} for x ∈ {c, r, l}. In contrast to ϕ, which
uses only a single stack symbol, namely A, the BVPA A has to rely on the two stack symbols
P and P̄ to track whether or not p held true after entering the module m. Moreover, there
is no direct correlation between the logical structure of the specification and the structure of
the BVPA, which exemplifies the difficulty of maintaining specifications given as BVPAs.

In order to abstain from using automata, it would also be possible to formalize the
specification using a VLTL formula [5] that describes the same language as ϕ. One such
formula would be ψ := (α; tt)|α〉ff, where the visibly rational expression α is defined as

α := [(p ∪ q)∗c [(q�) ∪ (p�p)] r(p ∪ q)∗]	� x� (p ∪ q)∗

that uses the additional local action �. Again, the conditional nature of the specification
is lost in the translation to VLTL. Moreover, the temporal nature is not well visible in the
formal specification due to use of the non-standard future weak power operator ψ|α〉ψ.

In contrast to these two alternative formal specifications, VLDL offers a readable and
intuitive formalism that combines the well-known standard acceptors for visibly pushdown
languages with guarded versions of the widely used temporal operators of LTL and the
readability of classical logical operators.

4 VLDL Captures ω-VPL

In this section we show that VLDL characterizes ω-VPL. Recall that a language is in ω-VPL
if, and only if, there exists a BVPA recognizing it. We provide effective constructions for
transforming BVPAs into equivalent VLDL formulas and vice versa.

I Theorem 3. For any language of infinite words L ⊆ Σω there exists a BVPA A with
L(A) = L if, and only if, there exists a VLDL formula ϕ with L(ϕ) = L. There exist effective
translations for both directions.
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In Section 4.1 we show the construction of VLDL formulas from BVPAs via deterministic
parity stair automata. In Section 4.2 we construct one-way alternating jumping automata
from VLDL formulas. These automata are known to be translatable into equivalent BVPAs.
Both constructions incur an exponential blowup in size. In the construction of BVPAs from
VLDL formulas, this blowup is shown to be unavoidable. It remains open whether the blowup
can be avoided in the construction for the other direction.

4.1 From Stair Automata to VLDL
In this section we construct a VLDL formula of exponential size that is equivalent to a given
BVPA A. To this end, we first transform A into an equivalent deterministic parity stair
automaton (DPSA) [8] in order to simplify the translation. A PSA A = (Q, Σ̃,Γ,∆, I,Ω)
consists of a VPS S = (Q, Σ̃,Γ,∆), a set of initial states I, and a coloring Ω: Q→ N. The
automaton A is deterministic if S is deterministic and |I| = 1.

A run ρ of A on a word α is a run of the VPS S on α. Recall that a step is a po-
sition at which the stack height reaches a lower bound for the remainder of the word.
A stair automaton only evaluates the parity condition at the steps of the word. For-
mally, a run ρα = (q0, σ0)(q1, σ1)(q2, σ2) · · · on the word α induces a sequence of colors
Ω(ρα) := Ω(qk0)Ω(qk1)Ω(qk2) · · · , where k0 < k1 < k2 · · · is the ordered enumeration of the
steps of α. A DPSA A accepts an infinite word α if there exists an initial run ρ of A on α
such that the largest color appearing infinitely often in Ω(ρ) is even. The language L(A) of a
parity stair automaton A is the set of all words α that are accepted by A.

I Lemma 4 ([8]). For every BVPA A there exists an effectively constructible equivalent
DPSA Ast with |Ast | ∈ O(2|A|).

Since the stair automaton Ast equivalent to a BVPA A is deterministic, the acceptance
condition collapses to the requirement that the unique run of Ast on α must be accepting.
Another important observation is that every time Ast reaches a step of α, the stack may be
cleared. Since the topmost element of the stack will never be popped after reaching a step,
and since VPAs cannot inspect the top of the stack, neither this symbol, nor the ones below
it have any influence on the remainder of the run.

Thus, the formula equivalent to Ast has to specify the following constraints: There must
exist some state q of even color such that the stair automaton visits q at a step, afterwards
the automaton may never visit a higher color again at a step, and each visit to q at a step
must be followed by another visit to q at a step. All of these conditions can be specified by
VLDL formulas in a straightforward way, since Ast is deterministic and since there is only a
finite number of colors in Ast .

I Lemma 5. For each DPSA A there exists an effectively constructible equivalent VLDL
formula ϕA with |ϕA| ∈ O(|A|2).

Proof. We first construct a formula ϕst such that (α, k) |= ϕst if, and only if, k ∈ steps(α):
Let Ast be a VPA that accepts upon reading an unmatched return, constructed similarly
to Ar from Example 2. Then we can define ϕst := [Ast ]ff, i.e., we demand that the stack
height never drops below the current level by disallowing Ast to ever accept.

In the remainder of this proof, we write I′AF ′ to denote the TVPA that we obtain from
combining the VPS of A with the sets I ′ and F ′ of initial and final states. Additionally, we
require that I′AF ′ does not accept the empty word. This is trivially true if the intersection of
I ′ and F ′ is empty, and easily achieved by adding a new initial state if it is not. Furthermore,
we define Qeven := {q ∈ Q | Ω(q) is even} and Q>q := {q′ ∈ Q | Ω(q′) > Ω(q)}.
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Recall that A accepts a word α if the largest color seen infinitely often at a step during
the run of A on α is even. This is equivalent to the existence of a state q as described above.
These conditions are formalized as

ϕ1(q) := 〈IA{q}〉(ϕst ∧ [{q}AQ>q ]¬ϕst)

and

ϕ2(q) := [IA{q} ](ϕst → 〈{q}A{q}〉ϕst),

respectively. We obtain ϕA :=
∨
q∈Qeven

(ϕ1(q) ∧ ϕ2(q)).
The construction of ϕ2(q) relies heavily on the determinism of the DPSA A. If A were

not deterministic, the universal quantification over all runs ending in q at a step would also
capture eventually rejecting partial runs. Since there only exists a single run of A on the
input word, however, ϕA has the intended meaning. Furthermore, both ϕ1(q) and ϕ2(q)
use the observation that we are able to clear the stack every time that we reach a step.
Thus, although the stack contents are not carried over between the different automata, the
concatenation of the automata does not change the resulting run. Hence, we have α ∈ L(A)
if, and only if, (α, 0) |= ϕA and thus L(A) = L(ϕA). J

Combining Lemmas 4 and 5 yields that VLDL is at least as expressive as BVPA. The
construction inherits an exponential blowup from the construction of DPSAs from BVPAs.
This shows one direction of Theorem 3.

In the next section we show that each VLDL formula ϕ can be transformed into an
equivalent VPA with exponential blowup. Thus, the construction from the proof of Lemma 5
yields a normal form for VLDL formulas. In particular, formulas in this normal form only
use temporal operators up to nesting depth three.

I Proposition 6. Let ϕ be a VLDL formula. There exists an equivalent formula ϕ′ =∨n
i=1(〈Ai,1〉(ϕst∧ [Ai,2 ]¬ϕst)∧ [Ai,1 ](ϕst → 〈Ai,3〉ϕst)), for some n that is doubly-exponential

in |ϕ|, where all Ai,j share the same underlying VPS, ϕst is fixed over all ϕ, and neither
Ai,j nor ϕst contain tests.

Proposition 6 shows that tests are syntactic sugar but removing them incurs a doubly-
exponential blowup. It remains open whether this blowup can be avoided.

4.2 From VLDL to 1-AJA
We now construct, for a given VLDL formula ϕ, an equivalent BVPA Aϕ. A direct construc-
tion would incur a non-elementary blowup due to the unavoidable exponential blowup of
complementing BVPAs. Moreover, it would be difficult to handle runs of the VPAs over
finite words and their embedded tests, which run in parallel. Thus, we extend a construction
from [6], where a similar challenge was addressed using alternating automata. Instead
of alternating visibly pushdown automata, however, we use one-way alternating jumping
automata (1-AJA) [4], which can be translated into equivalent BVPAs of exponential size.

A 1-AJA A = (Q, Σ̃, δ, I,Ω) consists of a finite state set Q, a visibly pushdown alpha-
bet Σ̃, a set I ⊆ Q of initial states, a transition function δ : Q× Σ → B+(CommsQ), with
CommsQ := {→,→a} × Q × Q, where B+(CommsQ) denotes the set of positive Boolean
formulas over CommsQ, and a coloring Ω: Q→ N. We define |A| = |Q|. Intuitively, when
the automaton is in state q at position k of the word α = α0α1α2 · · · it guesses a set of
commands R ⊆ CommsQ that is a model of δ(q, αk). It then spawns one copy of itself for



A. Weinert and M. Zimmermann 28:9

c l c r r c c l r l l
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11
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q

γ

· · ·
· · ·

· · ·

Figure 3 Run of a VPA A on the word clcrrcclrll.

each command (d, q, q′) ∈ R and executes the command with that copy. If d =→a and if αk
is a matched call, the copy jumps to the position of the matching return of αk and transitions
to state q′. Otherwise the automaton advances to position k + 1 and transitions to state
q. All copies of A continue in parallel. A single copy of A is successful if the highest color
visited infinitely often is even. A 1-AJA accepts α if all of its copies are successful.

I Lemma 7 ([4]). For every 1-AJA A there exists an effectively constructible equivalent
BVPA Avp with |Avp| ∈ O(2|A|).

For a given VLDL formula ϕ we now inductively construct a 1-AJA that recognizes the
same language as ϕ. The main difficulty lies in the translation of formulas of the form 〈A〉ϕ,
since these require us to translate TVPAs over finite words into 1-AJAs over infinite words.
We do so by adapting the idea for the translation from BVPAs to 1-AJAs from [4] and by
combining it with the bottom-up translation from LDL into alternating automata in [6].

I Lemma 8. For any VLDL formula ϕ there exists an effectively constructible equivalent
1-AJA Aϕ with |Aϕ| ∈ O(|ϕ|2).

Proof. We construct the automaton inductively over the structure of ϕ. The case ϕ = p is
trivial. For Boolean operations, we obtain Aϕ by closure of 1-AJAs under these operations [4].
If ϕ = [A ]ϕ′ we use the identity [A]ϕ′ ≡ ¬〈A〉¬ϕ′ and construct A¬〈A〉¬ϕ′ instead.

We now consider ϕ = 〈A〉ϕ′, where A is some TVPA and sketch the construction of Aϕ.
By induction we obtain a 1-AJA A′ equivalent to ϕ′. Aϕ simulates a run of A on a prefix
of α and, upon acceptance, nondeterministically transitions into A′.

Consider an initial run of A on such a prefix w. Since w is finite, steps(w) is finite as well.
Hence, each stack height may only be encountered finitely often at a step. At the last visit
to a step of a given height, A either accepts, or it reads a call action. The symbol pushed
onto the stack in that case does not influence the remainder of the run. Such a run on the
word clcrrcclrll is shown in Figure 3, where c is a call, r is a return, and l is a local action.

The idea for the simulation of the run of A is to have a main copy of Aϕ that jumps
along the steps of the input word. When Aϕ encounters a call c ∈ Σc it guesses whether
or not A encounters the current stack height again. If it does, then Aϕ guesses q′, q′′ ∈ Q
and A ∈ Γ such that (q, c, q′, A) is a transition of A, it jumps to the matching return of c in
state q′′ and spawns a copy that verifies that A can go from the configuration (q′, A) to the
configuration (q′′,⊥). If A never returns to the current stack height, then Aϕ only guesses
q′ ∈ Q and A ∈ Γ such that (q, c, q′, A) is a transition of A, moves to state q′, and stores in
its state space that it may not read any returns anymore. This is repeated until the main
copy guesses that A′ accepts.

The run of such a 1-AJA corresponding to the run of A shown in Figure 3 is shown in
Figure 4. The gray line indicates the stack height, while the solid and dashed black paths
represent the run of the main automaton and of the verifying automata, respectively. Dotted
lines indicate spawning a verifying automaton. For readability, the figure does not include
copies of the automata that are spawned to verify that the tests of A hold true. States of
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Figure 4 Behavior of 1-AJA on the word clcrrcclrll.

the form (q, 0) denote the main copy of the automaton that has not yet ignored any call
actions, while states of the form (q, 1) denote copies that have done so. The states (q, q′, A)
denote verification copies that verify A’s capability to move from the configuration (q, A) to
the configuration (q′,⊥). The verification automata work similarly to the main automaton,
except that they assume that all pushed symbols to be eventually popped and reject if they
encounter an unmatched call. Details can be found in the full version [12]. J

By combining Lemmas 7 and 8 we see that BVPAs are at least as expressive as VLDL
formulas. This proves the direction from logic to automata of Theorem 3. The construction
via 1-AJAs yields automata of exponential size in the number of states. This blowup is
unavoidable, which can be shown by relying on the analogous lower bound for translating
LTL into Büchi automata, obtained by encoding an exponentially bounded counter in LTL.

I Lemma 9. There exists a pushdown alphabet Σ̃ such that for all n ∈ N there exists a
language Ln that is defined by a VLDL formula over Σ̃ of polynomial size in n, but every
BVPA over Σ̃ recognizing Ln has at least exponentially many states in n.

After having shown that VLDL has the same expressiveness as BVPAs, we now turn our
attention to several decision problems for this logic. Namely, we study the satisfiability and
the validity problem, as well as the model checking problem. Moreover, we consider the
problem of solving visibly pushdown games with VLDL winning conditions.

5 Satisfiability and Validity are ExpTime-complete

We say that a VLDL formula ϕ is satisfiable if it has a model. Dually, we say that ϕ is valid
if all words are models of ϕ. Instances of the satisfiability and validity problem consist of a
VLDL formula ϕ and ask whether ϕ is satisfiable and valid, respectively. Both problems are
decidable in exponential time. We also show both problems to be ExpTime-hard.

I Theorem 10. The satisfiability and the validity problem for VLDL are ExpTime-complete.

Proof. Due to duality, we only show ExpTime-completeness of the satisfiability problem.
Membership follows from the 1-AJA-emptiness-problem being in ExpTime [4] and Lemma 8.

We show ExpTime-hardness by a polynomial-time reduction from the word problem
for polynomially space-bounded alternating Turing machines. Our proof is based on the
reduction of this problem to the problem of model checking pushdown systems against LTL
specifications from the full version of [3]. In that reduction, a run of an alternating Turing
machine is encoded as a pair of a pushdown system, which checks the general format of the
encoding using its stack, and an LTL specification, which checks additional properties without
using a stack. We adapt this proof by checking the properties asserted by the pushdown
system with a visibly pushdown automaton. Also, we encode the specification of the general
format in a VLDL formula. Technical details can be found in the full version [12]. J
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6 Model Checking is ExpTime-complete

We now consider the model checking problem for VLDL. An instance of the model checking
problem consists of a VPS S, an initial state qI of S, and a VLDL formula ϕ and asks
whether traces(S, qI) ⊆ L(ϕ) holds true, where traces(S, qI) denotes the set obtained by
mapping each run of S starting in qI to its sequence of labels. This problem is decidable in
exponential time due to Lemma 8 and an exponential-time model checking algorithm for
1-AJAs [4]. Moreover, the problem is ExpTime-hard, as it subsumes the validity problem.

I Theorem 11. Model checking VLDL specifications against VPS’s is ExpTime-complete.

Proof. Membership in ExpTime follows from Lemma 8 and the membership of the problem
of checking visibly pushdown systems against 1-AJA specifications in ExpTime [4]. Moreover,
since the validity problem for VLDL is ExpTime-hard and since validity of ϕ is equivalent to
traces(Suniv) ⊆ ϕ, where Suniv with traces(Suniv) = Σω is effectively constructible in constant
time, the model checking problem for VLDL is ExpTime-hard as well. J

7 Solving VLDL Games is 3ExpTime-complete

In this section we investigate visibly pushdown games with winning conditions given by VLDL
formulas. We consider games with two players, called Player 0 and Player 1, respectively.

A two-player game with VLDL winning condition G = (V0, V1,Σ, E, vI , `, ϕ) consists of
two disjoint, at most countably infinite sets V0 and V1 of vertices, where we define V := V0∪V1,
a finite alphabet Σ, an initial state vI ∈ V , a set of edges E ⊆ V × V , a labeling ` : V → Σ,
and a VLDL formula ϕ over some partition of Σ, called the winning condition.

A play π = v0v1v2 · · · of G is an infinite sequence of vertices of G with (vi, vi+1) ∈ E for
all i ≥ 0. The play π is initial if v0 = vI . It is winning for Player 0 if `(v1)`(v2)`(v3) · · · 2 is
a model of ϕ. Otherwise π is winning for Player 1.

A strategy for Player i is a function σ : V ∗Vi → V , such that (v, σ(w · v)) ∈ E for all
v ∈ Vi, w ∈ V ∗. We call a play π = v0v1v2 · · · consistent with σ if σ(π′) = vn+1 for all finite
prefixes π′ = v0 · · · vn of π with vn ∈ Vi. A strategy σ is winning for Player i if all initial
plays that are consistent with σ are winning for that player. We say that Player i wins G if
she has a winning strategy. If either player wins G, we say that G is determined.

A visibly pushdown game (VPG) with a VLDL winning condition H = (S, Q0, Q1, qI , ϕ)
consists of a VPS S = (Q, Σ̃,Γ,∆), a partition of Q into Q0 and Q1, an initial state
qI ∈ Q, and a VLDL formula ϕ over Σ̃. The VPG H then defines the two-player game
GH = (V0, V1,Σ, E, vI , `, ϕ) with Vi := Qi×((Γ\{⊥})∗ ·⊥)×Σ, vI = (qI ,⊥, a) for some a ∈ Σ
(recall that the trace disregards the label of the initial vertex), ((q, γ, a), (q′, γ′, a′)) ∈ E

if there is an a′-labeled edge from (q, γ) to (q, γ′) in the configuration graph GS , and
` : (q, γ, a) 7→ a. Solving a VPG H means deciding whether Player 0 wins GH.

I Proposition 12. VPGs with VLDL winning conditions are determined.

Proof. Since each VLDL formula defines a language in ω-VPL due to Theorem 3, each VPG
with VLDL winning condition is equivalent to a VPG with an ω-VPL winning condition.
These are known to be determined [8]. J

2 Note that the sequence of labels trace omits the label of the first vertex for technical reasons.
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(i)
q q′,## q′,# q′

a, ↑A l,→ l,→

(ii)
q q′, B# q′,# q′

a, ↑A c, ↓B l,→

(iii)
q q′, BC q′, B q′

a, ↑A c, ↓C c, ↓B

Figure 5 Construction of a VPG from a pushdown game for transitions of the forms
(i) (q, a, A, q′, ε), (ii) (q, a, A, q′, B), and (iii) (q, a, A, q′, BC).

We show that solving VPGs with winning conditions specified in VLDL is harder than
solving VPGs with winning conditions specified by BVPAs, i.e., they can be solved in triply
exponential time. Moreover, they are complete for this complexity class.

I Theorem 13. Solving VPGs with VLDL winning conditions is 3ExpTime-complete.

Proof. We solve VPGs with VLDL winning conditions by constructing a BVPA Aϕ from the
winning condition ϕ and by then solving the visibly pushdown game with a BVPA winning
condition [8]. This approach takes triply-exponential time in |ϕ| and exponential time in |S|.

We show 3ExpTime-hardness of the problem by a reduction from solving pushdown
games with LTL winning conditions, which is known to be 3ExpTime-complete [8]. Instead
of, e.g., popping one symbol off the stack and pushing two others onto it, the resulting VPG
splits these operations into individual pop- and push-operations, which are then carried out
sequentially. The actions that still have to be carried out can be tracked using additional
vertices. Since each stack operation can be split into at most three individual operations,
this incurs only a linear blowup in the size of both the game and the winning condition.

A pushdown game with an LTL winning condition H = (S, VI , VO, ψ) is defined similarly
to a VPG, except for the relaxation that S may now be a traditional pushdown system
instead of a visibly pushdown system. Specifically, we have ∆ ⊆ (Q × Γ × Σ × Q × Γ≤2),
where Γ≤2 denotes the set of all words over Γ of at most two letters. Stack symbols are
popped off the stack using transitions of the form (q, A, a, q′, ε), the top of the stack can be
tested and changed with transitions of the form (q, A, a, q′, B), and pushes are realized with
transitions of the form (q, A, a, q′, BC). Additionally, the winning condition is given as an
LTL formula instead of a VLDL formula. The two-player game GH is defined analogously to
the visibly pushdown game.

Since the pushdown game admits transitions such as (q, A, a, q′, BC), which pop A off
the stack and push B and C onto it, we need to split such transitions into several transitions
in the visibly pushdown game. We modify the original game such that every transition of
the original game is modeled by three transitions in the visibly pushdown game, up to two of
which may be dummy actions that do not change the stack. As each transition may perform
at most three operations on the stack, we can keep track of the list of changes still to be
performed in the state space. We perform these actions using dummy letters c and l, which
we add to Σ and read while performing the required actions on the stack. We choose the
vertices V ′X = VX ∪ (VX × (Γ ∪ {#})≤2) and the alphabet Σ̃ = ({c},Σ, {l}).

We transform H as shown in Figure 5 and obtain the VPG H′. Moreover, we transform
the winning condition ψ of H into ψ′ by inductively replacing each occurrence of Xψ by X3ψ′

and each occurrence of ψ1Uψ2 by (ψ′1 ∨ c ∨ l)U(ψ′2 ∧ ¬c ∧ ¬l). We subsequently translate
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O(n2)

O
(1

)
[4
]
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Figure 6 Formalisms capturing (subsets of) ω-VPL and translations between them.

the resulting LTL formula ψ′ into an equivalent VLDL formula ϕ using Lemma 1. The
input player wins H′ with the winning condition ϕ if and only he wins H with the winning
condition ψ. Hence, solving VPGs with VLDL winning conditions is 3ExpTime-hard. J

8 Conclusion

We have introduced Visibly Linear Dynamic Logic (VLDL) which strengthens Linear Dynamic
Logic (LDL) by replacing the regular languages used as guards in the latter logic with visibly
pushdown languages. VLDL captures precisely the class of ω-visibly pushdown languages. We
have provided effective translations from VLDL to BVPA and vice versa with an exponential
blowup in size in both directions. From automata to logic, this blowup cannot be avoided
while it remains open whether or not it can be avoided in the other direction.

Figure 6 gives an overview over the known formalisms that capture ω-VPL and the
translations between them. Our constructions are marked by solid lines, all others by dotted
lines. All constructions are annotated with the blowup they incur.

In particular, there exist translations between VLTL and VLDL via BVPAs that incur a
doubly-exponential blowup in both directions, as shown in Figure 6. In spite of this blowup the
satisfiability problem and the model checking problem for both logics are ExpTime-complete.
It remains open whether there exist efficient translations between the two logics.

We showed the satisfiability and the emptiness problem for VLDL, as well as model
checking visibly pushdown systems against VLDL specifications, to be ExpTime-complete.
Also, we proved that solving visibly pushdown games with VLDL winning conditions is
3ExpTime-complete.

Extending VLDL by replacing the guards with a more expressive family of languages
quickly yields undecidable decision problems. In fact, using deterministic pushdown languages
as guards already renders all decision problems discussed in this work undecidable [12].

In contrast to LDL [10] and VLTL [5], VLDL uses automata to define guards instead of
regular or visibly rational expressions. We are currently investigating a variant of VLDL
where the VPAs guarding the temporal operators are replaced by visibly rational expressions
(with tests), which is closer in spirit to LDL.

Acknowledgments. The authors would like to thank Laura Bozzelli for providing the full
version of [4] and Christof Löding for pointing out the 3ExpTime-hardness of solving infinite
games for visibly pushdown games against LTL specifications.
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Abstract
In this paper we consider a problem that arises from a strategic issue in the stable matching
model (with complete preference lists) from the viewpoint of exact-exponential time algorithms.
Specifically, we study the Stable Extension of Partial Matching (SEOPM) problem,
where the input consists of the complete preference lists of men, and a partial matching. The
objective is to find (if one exists) a set of preference lists of women, such that the men-optimal
Gale Shapley algorithm outputs a perfect matching that contains the given partial matching.
Kobayashi and Matsui [Algorithmica, 2010 ] proved this problem is NP-complete. In this article,
we give an exact-exponential algorithm for SEOPM running in time 2O(n), where n denotes
the number of men/women. We complement our algorithmic finding by showing that unless
Exponential Time Hypothesis (ETH) fails, our algorithm is asymptotically optimal. That is,
unless ETH fails, there is no algorithm for SEOPM running in time 2o(n). Our algorithm is a non-
trivial combination of a parameterized algorithm for Subgraph Isomorphism, a relationship
between stable matching and finding an out-branching in an appropriate graph and enumerating
non-isomorphic out-branchings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases stable matching, Gale-Shapley algorithm, suitor graph, subgraph iso-
morphism, exact-exponential time algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.29

1 Introduction

Stable Matching together with its in numerous variants are among the most well-studied
problems in matching theory, driven by applications to economics, business, engineering, and
more recently medical sciences. In the two-sided Stable Matching problem (also called
the Stable Marriage problem), we are given two sets of agents of equal size, known as
men and women, where each person submits a ranked list of all the members of the opposite
sex. In this setting, a matching is a set of man-woman pairs (called matching partners), no
two of which share a common member. A stable matching is a matching for which there
does not exist a blocking pair : a man and a woman, who are not part of a matching pair,
but prefer each other to their respective matching partners.

Ever since the theoretical framework for Stable Matching was laid down by Gale
and Shapley [9] to study the then current heuristic used to assign medical residents to
hospitals in New England, the topic has received considerable attention from theoreticians
and practitioners alike. In particular, it is one of the foundational problems in social
choice theory, where a matching is viewed as an allocation or assignment of resources to
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relevant agents, whereby the nature of the assignment can vary greatly depending on the
scenario/marketplace they are modelling. We refer the reader to books [10, 18, 14] for an
in-depth introduction to stable matching and its variants.

Gale and Shapley [9] showed that every instance of the Stable Matching problem
admits a stable matching. In other words, given any set of preference lists of men and women
there exists at least one stable matching. In fact, they gave a polynomial time algorithm to
find a stable matching. This algorithm is widely used in both practice and theory, and it
exists in two versions: the men-optimal and the women-optimal, so named to emphasise the
fact that one side prefers one over the other. Both variants are defined analogously. As the
name suggests, the men-optimal stable matching is a stable matching that is no worse than
any other stable matching, in terms of the preferences of the men. In other words, there
does not exist a stable matching such that each man prefers his partner in that matching to
his partner in the men-optimal stable matching. The algorithm that yields the men-optimal
stable matching is called the men-proposing (resp. women-proposing) Gale-Shapley algorithm.
The men-proposing version of the algorithm works as follows. A man who is not yet matched
to a woman, proposes to the woman who is at the top of his current list, which is obtained
by removing from his original preference list, all the women who have rejected him at an
earlier step. On the woman’s side, when a woman w receives a proposal from a man m, she
accepts the proposal if it is her first proposal, or if she prefers m to her current partner. If w
prefers her current partner to m, then w rejects m. If m is rejected by w, then m removes
w from his list. This process continues until there is no unmatched man. The output of
this algorithm is the men-optimal stable matching. For more details, see [10]. It has been
customary to use the men-proposing version of the algorithm, and our analysis here will stick
to that convention. Henceforth, unless explicitly stated otherwise, any mention of a stable
matching should be interpreted by the reader as such. We will use (LM ,LW ) to denote the
set of preference lists of men and women, and the men-optimal matching with respect to
these lists is denoted by GS(LM ,LW ).

1.1 Our problem and motivation
Kobayashi and Matsui [12, 13] studied manipulation in the stable matching model, where
agents are manipulating with the goal of attaining a specific matching target. Formally
speaking, they considered the following class of problems. An input consists of two sets
M and W , (each of size n) of men and women, respectively; along with the preference list
of every man (expressed as a strict ordering on the set of women) (denoted by LM ) and a
matching on (M,W ). The said matching can either be perfect (if it contains n pairs), or
partial (possibly, fewer than n pairs). Furthermore, for a couple of problems, we are given a
set of preference lists of women, LW ′ , where W ′ ⊆W . The goal is to decide if there exists a
set of preference lists of women, LW , containing LW ′ , such that when used in conjunction
with LM with the men-optimal stable matching algorithm, yields a matching that contains
all the pairs in the stated matching. Of these problems, two are directly related to our work
in this paper. Let us consider the following two problems, and compare and contrast their
computational complexity.

Attainable Stable Matching (ASM)
Input: A set of preference lists LM of men over women W , and a perfect matching µ on
(M,W ).
Question: Does there exist a set of preference lists of women LW , such that
GS(LM ,LW ) = µ?
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Kobayashi and Matsui in [12, 13] showed that ASM is polynomial time solvable, and
exhibited an O(n2) algorithm that computes the set LW , if it exists. Or else, reports “none
exists”. The following problem is identical to the above, except in one key aspect: the target
matching need not be perfect. The authors show that this problem is NP-complete.

Stable Extension of Partial Matching (SEOPM)
Input: A set of preference lists LM of men M over women W , and a partial matching µ′
on (M,W ).
Question: Does there exist preferences of women LW , such that µ′ ⊆ GS(LM ,LW )?

These two problems and their differing computational complexities represent a dichotomy
with respect to the size of target matching. Kobayashi and Matsui solve ASM by designing
a novel combinatorial structure called the suitor graph, which encodes enough information
about the men’s preferences and the matching pairs, that it allows an efficient search of the
possible preference lists of women, which are n · n! in number. The same approach falls short
when the stated matching is partial.

Our work in this paper falls thematically within the area of strategic results relating to
the stable matching problem. There is a long history of results centred around the question
as to whether an individual agent, or a coalition of agents can misstate their true preference
lists (either by truncating, or by permuting the list), with the objective of obtaining a better
partner (assessed in terms of the true preferences of the manipulating agents) than would
otherwise be possible under the men-optimal stable matching algorithm. SEOPM is to be
viewed as a manipulation game in which a coalition of agents (in this case the subset of
women who are matched under the partial matching) have decided upon a specific partner.
These agents are colluding, with co-operation from the other women who are not matched,
to produce a perfect matching, which gives each of the manipulating agents their target
partners. There exists a strategy to attain this objective if and only if there exists a set of
preference list of women that yields a perfect matching that contains the partial matching.

Since SEOPM has been shown to be NP-complete, it is natural to study this problem
in computational paradigms that are meant to cope with NP-hardness. We attempt such a
study in the area of exact exponential time algorithms. Manipulation and strategic issues in
voting have been well-studied in the field of exact algorithms and parameterized complexity;
see the survey [3] for an overview. But one can not say the same regarding the strategic issues
in the stable matching model. These problems hold a lot of promise and remain hitherto
unexplored in the light of exact algorithms and parameterized complexity, with exceptions
that are few and far between [15, 16].

To the best of our knowledge, Cseh and Manlove [4] initiated this type of analysis by
studying an NP-hard variant of the stable marriage and stable roommate problems1, where
the input consists of each of the preference lists, as well two subsets of (not necessarily
pairwise disjoint) pairs of agents, representing the forbidden pairs and the forced pairs. The
goal is to find a matching that does not contain any of the forbidden pairs, and contains
each of the forced pairs, while simultaneously minimizing the number of blocking pairs.

1 In the stable roommate problem, the matching market consists of agents of the same type, as opposed
to the market modelled the stable marriage problem that consists of agents of two types, men and
women. Roommate assignments in college housing facilities is a real world application of the stable
roommate problem.
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1.2 Our Contributions
Throughout the article, n is used to denote n = |M | = |W |. The most basic algorithm for
SEOPM would be to guess the permutation of all women (that is, the set of preferences
of women, LW ) and check whether µ′ ⊆ GS(LM ,LW ). However, this algorithm will take
(n!)nn2 = 2O(n2 logn). One can obtain an improvement over this naïve algorithm by using the
polynomial time algorithm for ASM [13]. That is, using the algorithm for ASM, which given a
matching µ can check in polynomial time whether there exists LW such that µ = GS(LM ,LW ).
The faster algorithm for SEOPM, using the algorithm for ASM, tries all possible extensions
of the partial matching µ ⊇ µ′ and checks in polynomial time whether there exists LW such
that µ = GS(LM ,LW ). Thus, if the size of the partial matching is k, this algorithm would
have to try (n− k)! possibilities. In the worst case this can take (n!)nO(1) = 2O(n logn).

In this article we give a 2O(n) algorithm, which not only breaks the naïve bound, but also
uses an idea which connects SEOPM to the problem of Colored Subgraph Isomorphism
(given two graphs G and H, the objective is to test whether H is isomorphic to some subgraph
of G). We establish this connection by introducing a combinatorial tool, the universal suitor
graph that extends the notion of the rooted suitor graph devised by Kobayashi and Matsui
in [12, 13], to solve ASM. It is shown in [13] that an input instance (LM , µ) of ASM is a
Yes-instance if and only if the corresponding rooted suitor graph has an out-branching : a
spanning subgraph in which every vertex has at most one in-coming arc, and is reachable
from the root. The universal suitor graph satisfies the property that (LM , µ′), an instance of
SEOPM is a Yes-instance if and only if the corresponding universal suitor graph contains a
subgraph that is isomorphic to the out-branching corresponding to (LM , µ) where µ is the
perfect matching that “extends” µ′. Thus, the universal suitor graph succinctly encodes
all “possible suitor graphs” and is only polynomially larger than the size of a suitor graph.
That is, the size of universal suitor graph is O(n2). This is our main conceptual contribution
and we believe that the concept of the universal suitor graph is likely to be of independent
interests, useful in characterizing existence of strategies in other manipulation games.

Using ideas from exact exponential algorithms and parameterized complexity; in particular
by using as a subroutine the algorithm that enumerates all non-isomorphic out-branchings
in a (given) rooted directed graph [2, 17], and a parameterized algorithm for Colored
Subgraph Isomorphism [1, 7, 8], we can search for a subgraph in the universal suitor graph
that is isomorphic to an out-branching corresponding to an extension of µ′. We complement
our algorithmic finding by showing that unless Exponential Time Hypothesis (ETH) fails,
our algorithm is asymptotically optimal. That is, unless ETH fails, there is no algorithm for
SEOPM running in time 2o(n). We refer to the following books for further reading regarding
exact algorithms [6] and parameterized complexity [5].

2 Preliminaries

For a positive integer n, we will use [n] to denote the set {1, 2, . . . , n}. As introduced earlier,
M andW denote the set of men and women, respectively, and we assume that |M | = |W | = n.
Each m ∈M has a preference list, denoted by P (m), which is a total ordering of W . The
set of preference lists of all men is denoted by LM . Similarly, each w ∈W has a preference
list, denoted by P (w) which is a total ordering of M . The set of preference lists of all
women is denoted by LW . It is helpful to view (M,W ) as the bipartitions of a complete
bipartite graph, and a perfect matching in (M,W ) as a set of vertex disjoint edges that
matches every vertex in M ∪W . Similarly, a partial matching in (M,W ) can be viewed
as a set of vertex disjoint edges that does not necessarily match every vertex in M ∪W .
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Given a matching µ (perfect or partial), and a vertex v ∈M ∪W , µ(v) denotes the matched
partner of the man/woman v. We note that for a perfect matching µ: m ∈M if and only
if µ(m) ∈ W , and similarly w ∈ W if and only if µ(w) ∈ M . But, when we have a partial
matching, µ, it may be that some vertices (male or female) are not matched under it, we
denote that symbolically as µ(v) = v for any man/woman v ∈M ∪W who is not matched
in µ. A matching µ is said to be an extension of a matching µ′ if µ′ ⊆ µ, that is µ
contains the set of edges in µ′. For any matching µ, and a man m matched in µ, we define
δ+(m) = {w ∈ W |m strictly prefers w to µ(m)}, and conversely for any woman w ∈ W

(not necessarily matched in µ) we define δ−(w) = {m ∈ M |m strictly prefers w to µ(m)};
all preferences are in terms of lists in LM .

Throughout the paper, we use the standard notations about directed graphs. Given a
directed graph D, and a vertex v ∈ V (D), we use N−(v) to denote the set of vertices that
are in-neighbors of v: N−(v) = {u | (u, v) ∈ E(D)}. Similarly, we use N+(v) to denote the
set of vertices that are out-neighbors of v: N+(v) = {u | (v, u) ∈ E(D)}. Following the usual
notations, a source is a vertex v such that N−(v) = ∅ and a sink is a vertex v such that
N+(v) = ∅. An out-branching is a directed graph with a special vertex, called the root,
where each vertex is reachable from the root by exactly one directed path. Essentially, this
is a rooted tree with all arcs oriented away from the root. For any directed edge or an arc,
tail is the vertex from where the arc originates and the head is the vertex at which it ends.

3 Generalization of Suitor Graph

The main tool we use to obtain our exact exponential time algorithm is the notion of a
universal suitor graph – a generalization of the suitor graph introduced by Kobayashi and
Matsui [13]. We start the section by introducing the definition of a suitor graph, followed by
the definition of a universal suitor graph.

Suitor Graph and Rooted Suitor Graph. Given a set of preference lists LM of men over set
of women W and a partial matching µ′, G(LM , µ′) denotes a directed bipartite graph, called
a suitor graph, where V (G) = M ∪W and a set of directed arcs E(G) defined as follows,

E(G) =
{

(w, µ′(w)) ∈W ×M | w is matched in µ′
}

∪
{

(m,w) ∈M ×W | m is matched in µ′, w ∈ δ+(m)
}
.

Observe that the arcs for which a woman is the tail are the (only) arcs that correspond to
the matched pairs in µ′.

For a given suitor graph G(LM , µ′), the associated rooted suitor graph is a directed graph
G(LM , µ′) defined as follows. We introduce an artificial vertex r, called the root, to G(LM , µ′)
and add arcs (r, w) for every vertex w ∈W that has no incoming arcs in G(LM , µ′). That is,
we add arcs from r to all the vertices that are sources in G(LM , µ′). We give an example of a
suitor graph and a rooted suitor graph. Figure 1 shows the suitor graph and the rooted suitor
graph for the preference lists given in Table 1 and the partial matching {(A, 1), (B, 2), (C, 3)}.
The vertex marked as r is the root vertex.

Our main motivation for suitor graph and its generalization is the following result proved
in [13, Theorem 2].

I Proposition 1 ([13]). Let LM be a set of preference lists for M , and µ be a perfect matching
between (M,W ), then the following holds. There exists LW , a set of preference lists for
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Table 1 Example: Preference List of Men over Women.

Man Preference over women
A 3 7 6 5 1 9 8 4 2
B 1 2 4 3 9 5 8 7 6
C 2 7 6 8 3 4 9 1 5
D 2 7 6 8 3 4 9 1 5
E 3 7 6 5 1 9 8 4 2
F 1 2 4 3 9 5 8 7 6
G 3 7 6 5 1 9 8 4 2
H 1 2 4 3 9 5 8 7 6
I 2 7 6 8 3 4 9 1 5

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

(a)

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

r

(b)

Figure 1 (a) Suitor Graph, (b) Rooted Suitor Graph.

W such that GS(LM ,LW ) = µ if and only if the rooted suitor graph G
(
LM , µ

)
has an

out-branching.

There exists a polynomial time algorithm that takes as input (LM , µ) and outputs LW (if
one exists) such that GS(LM ,LW ) = µ. Otherwise, it reports “none exists”. We will be using
this as a subroutine in our algorithm which will be presented in a later section.

Universal Suitor Graph. Next we define universal suitor graph (USG). The idea is to
construct a graph that given a set of preference lists LM of men over women captures
all possible suitor graphs succinctly. Then we make use of this to solve our problem.
Formally, given a set of preference lists LM of men over women, universal suitor graph,
U(LM ), is defined as follows. We make n different copies of each man mi ∈ M , denoted
by Mi = {m1

i , . . . ,m
n
i }. Recall that for every mi ∈ M , the preference list P (mi) ∈ LM

is given. We define P (mj
i ) = P (mi), for 1 ≤ j ≤ n. Thus, the vertex set of the graph

is V (U(LM )) =
⊎n
i=1 Mi ∪ W. The arc set, E(U(LM )), is defined as follows. For every

wi ∈W , the graph contains arcs (wi,mi
j) for all 1 ≤ j ≤ n. Additionally, the graph contains

the arc (mj
i , wk) if mi prefers wk to wj in P (mi), wk, wj ∈ W . This condition is depicted

notationally as wk >mi wj . The intuition behind the construction is the following: given any
matching µ, if a man mj is matched with woman wk then we imitate that by matching wk
to the kth copy of mj . Furthermore, using other copies of mj we imitate connections with
women whom he prefers to wk. In particular, the ith copy of every man is “paired” to wi,
i.e., N+(wi) = {mi

1,m
i
2, . . . ,m

i
n}. This idea of pairing is captured by the fact that every

male vertex in USG (consider mi
k) has a unique in-neighbor (the female vertex wi).
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Figure 2 (a) Universal suitor graph, (b) Rooted universal suitor graph [described later in secion
4.2] for the partial matching µ = {(A, 1), (B, 2), (C, 3)} with sources in {4, 9} (shows edges partially).
Black edges represent the matching edges in µ, red edges represent the preferences of men matched
in µ, while the blue edges represent edges from an unmatched woman to her own copies of the
unmatched men. The green ellipse represents the set of source vertices, {4, 9}, that are connected
from the root (not shown).

Universal Suitor Graph for a Partial Matching. For a given partial matching µ on the set
(M,W ), we define the graph, U(LM , µ), as follows. A man m ∈ M is matched under µ if
and only if µ(m) ∈W , and analogously for a woman w ∈W , w is matched under µ if and
only if µ(w) ∈M . We refer to the following set of operations collectively as the pruning of
U(LM ) w.r.t.µ.
Matched Women: Let µ(wi) = mj . Then delete vertices {mi

k | 1 ≤ k ≤ n, k 6= j}, from the
graph. This ensures that every matched female vertex wi, has a unique out-going arc to
the ith copy of the man µ(wi). In other words, only the arc (wi,mi

j), where µ(wi) = mj ,
survives.

Unmatched Women: Let µ(wi) 6∈M . Then delete vertices {mi
k | 1 ≤ k ≤ n, µ(mk) ∈W}.

That is, delete the ith copy of a man who is matched under µ. This ensures that in the
subgraph, every unmatched female vertex wi has out-going arcs to the vertices in the set
{mi

k | mk is unmatched in µ}.
This completes the description of the pruning operations. Thus, to obtain the graph U(LM , µ)
we start with U(LM ) and apply the pruning operations defined above with respect to the
matching µ. Edges in U(LM ) that are not deleted during the above pruning operations,
are said to have survived pruning w.r.t.µ. We give an example of a universal suitor graph
for a partial matching. Figure 2 shows the universal suitor graph and the rooted universal
suitor graph [described later in section 4.2] for the preference lists given in Table 1, and for
the partial matching µ = {(A, 1), (B, 2), (C, 3)}. To keep the figure clear, we only show the
copies of male vertices for women 4 and 9. The edges going out of these copies of the male
vertices are omitted.
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29:8 Stable Matching Games: Manipulation via Subgraph Isomorphism

We conclude this discussion with a useful lemma that will be invoked in several arguments.

I Lemma 2. Let µ denote a partial matching. If a male vertex mi
j survives pruning w.r.t.µ,

then either µ(mj) = wi, or else both mj and wi are unmatched in µ. Furthermore, the
out-going arcs from mi

j are also not deleted during pruning operations.

Proof. We begin by noting that if wi is matched to someone other that mj , then the vertex
mi
j must be deleted during the pruning step; this is a contradiction. Suppose that wi is

unmatched, and µ(mj) = w`. Then, the arc (w`,m`
j) survives, but the vertex mi

j must be
deleted, again a contradiction. Hence, the fact that mi

j survives pruning w.r.t.µ, implies
that either µ(mj) = wi, or both mj , wi are unmatched.

Additionally, we note that if µ(mj) = wi, then mi
j is the sole member of Mj that survives

the pruning steps. Also note that regardless of whether mj is matched or unmatched, the
out-going arcs from mi

j survive the pruning process. J

4 Exact Algorithm for SEOPM

In this section we design a moderately exponential time algorithm for SEOPM. Towards
this we will combine the following three ingredients:

the notion of a universal suitor graph defined in the previous section;
a parameterized algorithm for Subgraph Isomorphism when the pattern graph has
bounded treewidth; and
the fact that the number of non-isomorphic (i.e. unlabelled) trees on n vertices is at most
2.956nnO(1).

We start this section by giving an overview of our algorithms. Towards this we first give
the relevant notions and definitions.

I Definition 3. Two digraphs G1 and G2 are said to be isomorphic if there is a function
f : V (G1)→ V (G2) that satisfies the following properties:
1. f is a bijective function, i.e., f−1 is a function from V (G2) to V (G1);
2. for every edge (u, v) ∈ E(G1), we have (f(u), f(v)) ∈ E(G2).
A function such as f is called an isomorphism function. This function can be extended to
sets of vertices analogously. That is, for all V1 ⊆ V (G1), f(V1) = {f(v) | v ∈ V1} ⊆ V (G2).
We write G1 ' G2 to denote the two graphs are isomorphic.

Now we are ready to define the Colored Subgraph Isomorphism problem. The
Colored Subgraph Isomorphism problem is formally defined as follows.

Colored Subgraph Isomorphism (Col-Sub-Iso) Parameter: |V (H)|
Input: A host graph G, a pattern graph H, and a coloring χ : V (G)→ {1, 2, . . . , |V (H)|}.
Question: Is there a subgraph G′ in G such that G′ ' H, and the vertices of G′ have
distinct colors?

We obtain the desired algorithm by making 2O(n) instances of the Col-Sub-Iso problem
where the pattern graph has size 2n+ 1 and treewidth 3, and the given instance of SEOPM
is a Yes instance if and only if one of the constructed instances is a Yes instance of the
Col-Sub-Iso problem. Our host graph will be a universal suitor graph corresponding to
an instance of SEOPM. We refer the reader to [5] for definitions of treewidth and tree
decomposition. To solve Col-Sub-Iso we will use known algorithms, in particular, the
algorithm alluded to in the following result.
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I Proposition 4 ([1]). Let G and H denote two graphs on n and q vertices, respectively such
that the treewidth of H is at most t. Furthermore, there is a coloring χ : V (G)→ [q] of G.
Then there is a deterministic algorithm for Col-Sub-Iso that runs in time 2q(nt)t+O(1),
and outputs (if there exists one) a subgraph of G that has a distinct color on every vertex,
and is isomorphic to H.

To give the desired reduction to Col-Sub-Iso we essentially enumerate all non-isomorphic
trees on 2n+ 1 vertices. In the past, mainly rooted (undirected) trees have been studied,
out-branchings not as much. However, every rooted tree can be made an out-branching by
orienting every edge away from the root and every out-branching can be transformed into a
rooted tree by disregarding all edge orientations. Thus, rooted trees and out-branchings are
equivalent, and thus, the results obtained for the former are applicable to the latter. Otter [17]
showed that the number of non-isomorphic out-branchings on n vertices is tn = 2.956nnO(1).
We can generate all non-isomorphic rooted trees on n vertices using the algorithm of Beyer
and Hedetniemi [2] of runtime O(tn). We summarize the above in the following result.

I Proposition 5 ([2, 17]). The number of non-isomorphic out-branchings on n vertices is
tn = 2.956nnO(1). Furthermore, we can enumerate all non-isomorphic rooted trees on n

vertices in time O(tn).

4.1 Universality of Universal Suitor Graph
In this section we show the “universality” of the universal suitor graph. That is, how given a
set of preference lists, LM , of men over women, universal suitor graph encodes all potential
suitor graphs. Universal suitor graph for a partial matching encodes all suitor graphs of
all potential extensions of the given partial matching. In particular, we show the following
result.

I Lemma 6. Let LM denote a set of preference lists of men over women and let µ′ denote a
partial matching on the set (M,W ). If there exists a perfect matching µ such that µ′ ⊆ µ (as
a set of edges), then U(LM , µ) is a subgraph of U(LM , µ′), and is isomorphic to the suitor
graph G

(
LM , µ

)
.

Proof. Let M ′ and W ′ denote the subset of men and women who are matched under µ′,
respectively. Let µ′ ⊆ µ, in terms of a subset of edges. We will refer to the suitor graphs
G
(
LM , µ′

)
and G

(
LM , µ

)
as simply suitor graphs for µ′ and µ, respectively.

Consider the universal suitor graph for µ, denoted by U(LM , µ), obtained from U(LM )
by pruning w.r.t.µ. Since µ′ ⊆ µ for every w ∈ W ′ (m ∈ M ′) we have µ(w) = µ′(w)
(µ(m) = µ′(m)). Thus, it is easy to see that U(LM , µ) is a subgraph of U(LM , µ′), and
can be obtained from the latter by applying the pruning operation to every female vertex
wi ∈W \W ′. The next claim completes the proof, since it leads to the conclusion that the
suitor graph G

(
LM , µ

)
is isomorphic to the universal suitor graph U(LM , µ).

I Claim 7. Suitor graph G
(
LM , µ

)
is isomorphic to U(LM , µ).

Proof. By the construction of G
(
LM , µ

)
, we know the suitor graph of µ has arcs (w, µ(w))

for every w ∈ W . Since U(LM , µ) is obtained from U(LM ) by pruning w.r.t.µ, hence we
know that U(LM , µ) contains 2 |µ| vertices⊎

wi∈W
{wi,mi

j | µ(wi) = mj}.

We use Mµ to denote the male vertices in U(LM , µ).
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Let Ψµ : M ∪W → Mµ ∪W denote a function between the vertex sets of G
(
LM , µ

)
and U(LM , µ). For every wi ∈W , we define Ψµ(wi) = wi, and for every mi ∈M , we define
Ψµ(mi) = mj

i , where µ(mi) = wj . We will prove that the map Ψµ is an isomorphism.
We begin with the observation that both graphs are bipartite, with vertex set (M,W )

and (Mµ,W ). Thus, to prove that Ψµ is an isomorphism, it is sufficient to prove that for
every w ∈ W,m ∈ M , (w,m) is an arc in G

(
LM , µ

)
if and only if (w,Ψµ(m)) is an arc in

U(LM , µ), and similarly (m,w) is an arc in G
(
LM , µ

)
if and only if (Ψµ(m), w) is an arc in

U(LM , µ).
Let (wi,mj) be an arc in G

(
LM , µ

)
. Thus, we have µ(wi) = mj , and so Ψµ(mj) = mi

j .
The construction of U(LM , µ) (that is pruning w.r.t.µ) ensures that (wi,mi

j) is an arc in
U(LM , µ). Conversely, if (wi,mi

j) is an arc in U(LM , µ) then since µ is a perfect matching,
by Lemma 2, we can conclude that µ(wi) = mj , and so (wi,mj) is an arc in G

(
LM , µ

)
. This

completes the proof of the if and only if statement about female to male arcs.
Let (mi, wk) be an arc in G

(
LM , µ

)
i.e., µ(mi) = wj . Thus, wk >mi

wj (mi prefers wk
to wj in LM ). The vertex mj

i = Ψµ(mi) and the arc (mj
i , wk) exists in the universal suitor

graph U(LM ). If we can show that mj
i exists in U(LM , µ), then by the additional condition

of Lemma 2, we know that the arc (mj
i , wk) exists in U(LM , µ). We note that mj

i must
survive the pruning of U(LM ) w.r.t.µ because (wj ,mi) is an arc in G

(
LM , µ

)
and so from

the earlier part we know that (wj ,mj
i ) is an arc in U(LM , µ). Hence, mj

i must be a vertex
in U(LM , µ), and so we conclude that (Ψµ(mi), wk) is an arc in U(LM , µ). Conversely, if
(mj

i , wk) is an arc in U(LM , µ), then the presence of mj
i in the graph allows us to invoke

Lemma 2 to conclude that µ(mi) = wj . This implies that wk >mi
wi, hence (mi, wk) must

also be an arc in G
(
LM , µ

)
. This completes the proof of the if and only if statement about

male to female arcs. Hence, our proof is complete. J

Since U(LM , µ) is a subgraph of U(LM , µ′), hence by Claim 7 the latter contains a
subgraph that is isomorphic to G

(
LM , µ

)
. This completes the proof. J

4.2 Rooted Universal Suitor Graph and Valid Subgraphs

For a given universal suitor graph U(LM , µ′) and a subset S ⊆W , we define the corresponding
rooted universal suitor graph with sources in S, as follows. For a vertex w ∈ S, if w
is a source in U(LM , µ′) (i.e. N−(w) = ∅) then we add the arc (r, w). Otherwise, we delete
all the male vertices in N−(w), and add the arc (r, w). The resulting graph is the rooted
universal suitor graph with sources in S, and is denoted by U(LM , µ′, S). We refer the reader
to Figure 2(b) for an example of a rooted universal suitor graph. The set of vertices marked
as S is the set of source vertices that are connected to the root.

Recall that in a universal suitor graph for a partial matching there may be multiple
copies of a male vertex, and that brings us to the notion of a valid subgraph. A subgraph of
U(LM , µ′) is said to be a valid subgraph if it contains every female vertex, and exactly
one copy of every male vertex. The definition can be extended to the rooted subgraphs of
U(LM , µ′, S), where S ⊆ W , and a valid rooted subgraph contains the root, every female
vertex and exactly one copy of every male vertex.

Consider a rooted tree, such that the root is considered to be in layer 0. A vertex v is
said to be in layer i in the tree, if the (unique) path from the root to v contains i arcs. A
rooted tree is called a matching tree if every vertex in an odd layer has a unique child
in the tree. If a matching tree is a valid subgraph of U(LM , µ′) then it is called a valid
matching tree. We note that a matching tree is also an out-branching.
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Given a matching tree T , we construct the triangular matching tree T4, by adding
two new vertices r1 and r2 to T and adding the arcs (r, r1), (r1, r2) and (r2, r). Similarly, for
any given rooted universal suitor graph U(LM , µ′, S), we construct the triangular rooted
universal suitor graph, U4(LM , µ′, S), by adding two new vertices r1 and r2 to T and
adding the arcs (r, r1), (r1, r2) and (r2, r).

Finally, we define the special coloring χsp used to color the vertices of a triangular rooted
universal suitor graph: χsp uses 2n+ 3 colors, giving distinct colors to r, r1, r2, w1, . . . , wn,
and using the remaining n colors such that the subset of copies of the same male vertex gets
a distinct color. That is, for each i (1 ≤ i ≤ n) the subset of {m1

i , . . . ,m
n
i } that exists in the

universal suitor graph gets the n+ 3 + ith color.

4.3 2O(n) Algorithm for SEOPM
In this section we combine all the results we have developed so far and design our algorithm.

Overview of Algorithm 4.1: Let (LM , µ′) be an input instance of SEOPM. If µ′ can be
extended to µ, then (by Lemma 6), we know that G

(
LM , µ

)
is isomorphic to a subgraph in

U(LM , µ′). If µ′ cannot be extended, then by Proposition 1 we know that for any perfect
matching µ ⊇ µ′, the graph G

(
LM , µ

)
does not contain an out-branching rooted at r. In

other words, there exists a vertex v that is not reachable from r in the graph G
(
LM , µ

)
.

Consequently, to “solve” SEOPM on (LM , µ′), it is necessary and sufficient to look for a valid
out-branching or matching tree in the universal suitor graph U(LM , µ′). If the algorithm finds
one, we can conclude that µ′ can be extended, else it answers that µ′ cannot be extended.
We implement these ideas by constructing an appropriate instance of Col-Sub-Iso.

The algorithm works as follows. Assume that we have a stable matching µ that extends
µ′. Then consider the graph G

(
LM , µ

)
and let S denote the subset of female vertices that

are sources in the graph. Our algorithm implements this by enumerating all subsets S of W
in the first loop. Furthermore, by Proposition 1 there is a matching tree, T , rooted at r in
G
(
LM , µ

)
. To “guess” the tree T , we enumerate all non-isomorphic out-branchings on 2n+ 1

vertices and first check whether it is a matching tree. If the enumerated tree is a matching
tree then we create an instance of Col-Sub-Iso, where the host graph is U4(LM , µ′, S),
with its vertices colored by χsp, and the pattern graph is T4. Finally, using an algorithm for
Col-Sub-Iso described in Proposition 4, we test whether, or not (U4(LM , µ′, S), T4, χsp) is
a Yes-instance of Col-Sub-Iso. If the algorithm returns T ∗, we can conclude that a stable
matching µ extends µ′. If the outermost for-loop terminates without finding a Yes-instance
of Col-Sub-Iso, then we return that “no valid out-branching exists” (and hence no stable
extension exists). This concludes the description of the algorithm. We refer the reader to
Algorithm 4.1 for further details. The next lemma argues the correctness of Algorithm 4.1.

I Lemma 8. Let (LM , µ′) denote an input to SEOPM. Then (LM , µ′) is a Yes-instance
of SEOPM if and only if Algorithm 4.1 returns a triangular matching tree T ∗.

Proof. Let (LM , µ′) be a Yes-instance, i.e., there exists a perfect matching µ, such that
µ′ ⊆ µ, and there exists LW such that µ = GS(LM ,LW ). By Lemma 6, G

(
LM , µ

)
is

isomorphic to a subgraph in U(LM , µ′).
By Proposition 1 G

(
LM , µ

)
has an out-branching rooted at r, denoted by T̃ . Since by

Lemma 6 G
(
LM , µ

)
is isomorphic to a subgraph in U(LM , µ′), there exists a valid matching

tree T ′ that is isomorphic to T̃ contained in U(LM , µ′, S∗), where S∗ denotes the set of
sources in G

(
LM , µ

)
. If we delete the labels on the vertices in T ′ (or T̃ ) , we get an out-

branching (in fact, a matching tree) on 2n+ 1 vertices, denoted by T . Thus, T ∈ F , and we
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Algorithm 4.1: Solves SEOPM.
Input: A set of men and women vertices (M,W ), preferences of men LM , and a

partial matching µ′
Let F ← {non-isomorphic out-branchings on 2n+ 1 vertices}
forall S ⊆W do

forall matching tree T ∈ F do
Using Proposition 4 test whether (U4(LM , µ′, S), T4, χsp) is a Yes-instance of
Col-Sub-Iso.

if the algorithm returns a subgraph T ∗ then
return T ∗

return “No valid out-branching exists”

conclude that Algorithm 4.1 will find T ∗, a valid triangular matching tree of U4(LM , µ′, S∗)
that is isomorphic to T4. Hence, the algorithm will return T ∗.

Suppose that Algorithm 4.1 outputs T ∗. Then there exists a subset S ⊆ W , and an
out-branching on 2n+ 1 vertices T , such that U4(LM , µ′, S) contains as subgraph T ∗ which
is isomorphic to the triangular matching tree T4. Observe that U4(LM , µ′, S) has a unique
triangle r, r1, r2 and thus due to the isomorphism, T ∗ contains the triangle r, r1, r2. This
implies that every vertex in T ∗ is reachable from the root of U(LM , µ′, S). Since male vertices
are only reachable from a female vertex, this means that every male vertex has an in-coming
female neighbor. Since, T ∗ \ {r1, r2} is a valid matching tree of U(LM , µ′, S), there is exactly
one copy of every male vertex and every female vertex has a unique out-neighbor. Thus,
if (wi,mi

k) is a female to male arc in T ∗, then T ∗ does not contain any other out-going
arc from wi. Thus, the female to male arcs in T ∗ denote a perfect matching µ. Note that
µ′ ⊆ µ because U(LM , µ′) contains a unique out-going arc for every matched woman in
µ′, hence those arcs must also be part of T ∗. Hence, we can conclude that T ∗ \ {r1, r2} is
an out-branching in the graph G

(
LM , µ

)
. By Proposition 1, this means that (LM , µ′) is a

Yes-instance of SEOPM. This concludes the proof. J

The next lemma gives the running time of Algorithm 4.1.

I Lemma 9. Let (LM , µ′) be an input to SEOPM, where |M | = n. Then, Algorithm 4.1
decides whether (LM , µ′) is a Yes-instance to SEOPM in time 2O(n).

Proof. The running time of the algorithm is upper bounded by the following formula

|{S ⊆W}| × |F| × Time taken by Col-Sub-Iso algorithm

By applying Proposition 5 we upper bound |F| by 2.9562n+1nO(1). It is a well-known fact
that the treewidth of a tree is one, from that it is easy to show that the treewidth of a
triangular matching tree is at most 3. (One can first find the tree-decomposition of the tree
and then add the two vertices r1, r2 to every bag and thus increasing the treewidth by at
most two. See [5, Chapter 7] for more details regarding treewidth.) Thus, when we apply
Proposition 4, we have a host graph that has at most n + n2 + 3 vertices, and a pattern
graph that has size 2n+ 3 and treewidth at most 3. Therefore, the running time for using
the subroutine for Col-Sub-Iso is 22n+3nO(1). Multiplying all these values together, gives
the overall running time to be 2n × 2.9562n+1nO(1) × 22n+3nO(1) = 2O(n). J

Combining Lemmas 8 and 9 we get the following theorem.
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I Theorem 10. There is an algorithm for SEOPM running in time 2O(n).

Proof. Given an instance (LM , µ′) to SEOPM, we first apply Algorithm 4.1. If it returns
that “No valid out-branching exists” then we return that (LM , µ′) is a No-instance of
SEOPM. Else, if the output is T ∗, we first obtain T by deleting r1, r2 and then using T
we obtain a perfect matching µ′ ⊆ µ, by pairing every woman to its unique out-neighbor.
Now we invoke Algorithm Q1 mentioned in [13, Theorem 2] with (LM , µ) and obtain the
desired LW . Correctness and running time follow from Lemmas 8 and 9. This completes the
proof. J

4.4 A Lower Bound under Exponential Time Hypothesis
In this section we show that Theorem 10 is asymptotically optimal. That is, barring an
unlikely scenario occurring in complexity theory, there cannot be a better algorithm for
SEOPM. To prove this we will invoke the Exponential Time Hypothesis (ETH), and use the
well-known NP-hardness reduction from SAT to SEOPM.

Exponential Time Hypothesis (ETH): Let τ denote the infimum of the set of con-
stants c for which there exists an algorithm solving 3-SAT in time O(2cnnO(1)). Then
it is conjectured that τ > 0.

ETH and its counterpart SETH, introduced by Impagliazzo et al. [11], have been extensively
used recently to obtain tight lower bounds for several problems. We use this here to get a
lower bound on the running time possible for SEOPM. To this end we will use the following
result stated in [5, Theorem 14.4].

I Theorem 11 ([5]). Unless ETH fails, there exists a constant c > 0 such that no algorithm
for 3-SAT can achieve running time O(2c(n+m)nO(1)). In particular, 3-SAT cannot be
solved in time 2o(n+m). Here, n and m denote the number of variables and clauses in the
input formula to 3-SAT.

Using Theorem 11 we show the next result.

I Theorem 12. Unless ETH fails, there is no algorithm for SEOPM running in time 2o(n).

Proof. Let us assume that we can find an algorithm A that solves SEOPM in time 2o(n))
where n is the number of men/ women. In [13], Kobayashi and Matsui showed that SEOPM
is NP-complete, by giving a reduction from SAT to SEOPM. In particular, given a SAT
instance with n variables and m clauses, they reduce it to an instance of SEOPM with
2m+ 3n men (and women). An easy observation is that in the reduction given by Kobayashi
and Matsui [13], we could have started with 3-SAT and reduced it to an instance of SEOPM
with 2m + 3n men (and women). Now we show how to design an algorithm for 3-SAT
running in time 2o(n+m) using algorithm A. Given an instance φ of 3-SAT, we start by
applying the polynomial time reduction given in [13] and obtain an instance of SEOPM with
2m+ 3n men and 2m+ 3n women. Now we solve this instance of SEOPM using algorithm
A in time 2o(m+n). Using the solution to an instance of SEOPM we decide in polynomial
time whether φ is satisfiable or not. Thus, we have given an algorithm for 3-SAT running in
time 2o(n+m), contradicting Theorem 11. This concludes the proof. J

5 Concluding thoughts

In this paper we designed an exact algorithm for Stable Extension of Partial Matching
running in time 2O(n). We complemented this result by showing that unless ETH fails the
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running time bound is asymptotically optimal. There are several problems in the stable
matching model that are NP-complete and have been studied from the perspective of
approximation algorithms. However, there is almost no study about these problems either
from the view point of moderately exponential time algorithms or parameterized complexity.
The area needs a thorough study in these algorithmic paradigms and is waiting to explode.
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Abstract
We study an online assignment problem where the offline servers have capacities, and the objective
is to obtain a maximum-weight assignment of requests that arrive online. The weight of edges
incident to any server can be at most the server capacity. Our problem is related to the adwords
problem, where the assignment to a server is allowed to exceed its capacity. In many applications,
however, server capacities are strict and partially-served requests are of no use, motivating the
problem we study.

While no deterministic algorithm can be competitive in general for this problem, we give an
algorithm with competitive ratio that depends on the ratio of maximum weight of any edge to
the capacity of the server it is incident to. If this ratio is 1/2, our algorithm is tight. Further, we
give a randomized algorithm that is 6-competitive in expectation for the general problem. Most
previous work on the problem and its variants assumes that the edge weights are much smaller
than server capacities. Our guarantee, in contrast, does not require any assumptions about job
weights. We also give improved lower bounds for both deterministic and randomized algorithms.
For the special case of parallel servers, we show that a load-balancing algorithm is tight and
near-optimal.
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1 Introduction

Motivated by the problem of assigning advertising slots to advertisers, the adwords problem
is a well known and intensely studied online assignment problem. A set of advertisers or
bidders has a fixed budget for buying ad slots. A search engine user enters a search query,
based on which an advertisement is to be displayed corresponding to an ad slot. Each
advertiser places a bid for the slot, and based on these bids, the slot is assigned to a winning
bidder and the bid amount is collected as revenue. The objective is to maximize the revenue
for the search engine, given the bids of the advertisers and their budgets. Since the search
queries – and hence the bids – are not known in advance, this is an online problem, and the
winning advertiser at each step must be chosen without knowing future arrivals.
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30:2 The Adwords Problem with Strict Capacity Constraints

More generally, we can replace the advertisers with budgets by servers with capacities,
advertising slots by jobs that require processing, and bids by weighted edges. The objective is
then to assign jobs to servers to maximize total server utilization, subject to server capacities.
In the adwords application, and in the papers that study the adwords problem, the capacities
are assumed to be ‘violable’ constraints. That is, a bidder’s winning bids can exceed its
budget. In this case, the revenue from a bidder is the minimum of its budget, and the sum
of the winning bids placed by it. This is clearly reasonable, since no bidder is charged more
than its budget.

However in many online assignment problems, the capacity may in fact be a ‘strict’
constraint. As an example, consider the case when advertisers are servers with capacities
that dictate how long the server can be operated, slots are jobs that need to be processed,
and bids are processing times. A partially-complete job should not contribute towards work
completed, and hence server capacities are strict constraints. As another example, server
capacities correspond to download limits on a (web- or image-) hosting site, and requests for
items hosted on these sites arrive online. A partially-downloaded item is typically of no use,
and hence again should not contribute towards quota used from the site.

The violable capacity constraints are particularly useful when the edge weights are small
in comparison to the server capacities, since in this case even if the last job assigned to a
server exceeds the server capacity, it can be removed with small loss to the objective. In
fact most work on the adwords problem focuses on the problem with this restriction (see,
e.g., [3, 4, 13]. For deterministic algorithms with violable capacity constraints, if large edge
weights are allowed, there is a simple example that shows that the competitive ratio is at
least 2, and this is achieved by a greedy algorithm [12].

We study an online maximum weight assignment problem that generalizes these problems,
with strict capacity constraints. Our goal is to maximize total utilization of capacitated
servers that are available offline. In each time step, a set of jobs arrives, that have to be
assigned instantaneously and irrevocably to the servers to maximize capacity utilization,
subject to strict capacity constraints on the servers. Further, the set of edges at each time
step must constitute a matching, hence each server at each time step can be assigned at
most one job. This thus corresponds more closely to the problem of adwords with multiple
slots [3]. We consider both small and large edge weights, and obtain both upper and lower
bounds for the problem.

1.1 Contributions
We make the following contributions in this paper.

We propose a simple greedy algorithm that is shown to be 3-competitive, whenever the
weight of any job is at most half of the corresponding server capacity. In fact, we prove
a more general result that if the weight of any job on a server is at most α times the
corresponding server capacity, the greedy algorithm is

(
1 + 1

1−α

)
-competitive. We show

via an example that our analysis of the algorithm is tight. Further, we tighten a lower
bound given for online b-matching [8] and show for large edge weights, our algorithm is
nearly tight as well.
When each server has identical capacity 1 and is parallel, that is, a job has the same
weight on every server, we give a deterministic 1 + ε-competitive algorithm, where ε is the
maximum job weight. Thus if ε→ 0, this algorithm is nearly optimal. We also show that
no deterministic algorithm obtains a better competitive ratio, even for a single server.
For the unrestricted edge weights case, we propose a randomized version of the greedy
algorithm and show that it is 6-competitive. For our algorithm, we define a job as heavy
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for a server if its weight is more than half of the server capacity, and light otherwise. Our
randomization is rather novel, where a server accepts or rejects heavy jobs depending on
a coin flip. Typically, the randomization is on the edge side, where an edge is accepted
or not depending on the coin flips (e.g., [11]). We also show a lower bound of 2 for any
randomized algorithm.
Lastly, we consider the case when jobs have finite span in addition to their weight, and
release the resources consumed at the end of their span. The server capacity is thereafter
available for other requests. If all jobs have the same span, then we show that our
algorithm is 12-competitive. If they have unequal spans, and the maximum and minimum
spans are given to the algorithm, we obtain an O(log smax

smin
)-competitive algorithm, where

smax and smin are the maximum and minimum spans respectively.

1.2 Related Work
In the adwords problem, a set of bidders with individual budgets is given offline. At each
time step, a new request arrives with weighted edges to the bidders. The objective is to
assign each request to a bidder, to maximize the total weight of edges selected. If the weight
of edges incident to a bidder exceeds its capacity, this capacity is included in the sum, rather
than the incident edges. The adwords problem was introduced by Mehta et al. [13], for
which the authors give a deterministic algorithm with competitive ratio e/(e− 1) when the
ratio of each bid to the bidder’s budget is small (and budgets are assumed to be a violable
constraint). The problem was further studied in a number of other papers (e.g., [3, 4]) that
give different algorithms and analyses, but with the same competitive ratio of e/(e− 1). In
the adwords problem with multiple slots, multiple requests arrive at each time step, and the
assignment at each time step must be a matching. This extension is studied by Buchbinder,
Jain and Naor [3], and they give an online algorithm based on primal-dual techniques where
the competitive ratio is shown to be (1− 1/c)(1−Rmax), for c = (1 +Rmax)1/Rmax and Rmax
is the ratio of the maximum bid to the minimum budget of any advertiser. As Rmax → 0,
the competitive ratio tends to e

e−1 , and this is optimal. A special case of the multiple slot
setting was earlier studied by Mehta et al. [13] as well.

A variant of the problem where edges have values as well as weights, and the capacities of
servers restrict the weight of edges incident, is called the Generalized Assignment Problem.
Note that in the adwords problem, the weights and values coincide. This problem is studied
by Feldman et al. [5]. With the earlier assumption of small edge weights, and assuming free
disposal, i.e., earlier assigned items can be discarded later, they give an e/(e− 1)-competitive
algorithm. When the job arrivals are stochastic, rather than adversarial, the e/(e− 1) ratio
can be improved upon [7]. Without the small bid-to-budget ratio assumption, greedy is
known to be 2-competitive, and this is tight [12] for deterministic algorithms.

Our problem is also closely related to the problem of online matching, where each server
has capacity 1 and each edge has weight either 1 or 0. Here a randomized e/(e−1)-competitive
algorithm, called RANKING, was given by Karp, Vazirani, and Vazirani [10], and this was
shown to be tight for randomized algorithms. The analysis of this algorithm was simplified
and extended in later papers [1, 4]. Further, even if multiple online vertices arrive together,
the lower bound of e/(e− 1) essentially holds, unless a constant fraction of the vertices arrive
together [9]. For the problem of online b-matching, a deterministic algorithm was given
with a competitive ratio of (1+1/b)b

(1+1/b)b−1 , which is 2 when b = 1/2, and tends to e/(e− 1) as b
increases.

The offline version of our problem is a special case of a separable assignment problem
(SAP) [6]. An SAP is defined by a set of n bins and a set of m items to pack in the bins,
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with value vij for assigning item j to bin i. In addition, there are separable constraints for
each bin, describing which subset of items can fit in that bin. The objective is to maximize
the total value of items packed in the bins, subject to the bin constraints. The online version
of SAP has been studied in [2] with expected competitive ratio 1

1− 1√
k

, where similar to prior
work two restrictions are made; that the weights and sizes of each item are stochastic and
each items’ size is less than a fraction 1

k of the bin capacity.

2 Problem Definition

We are given a set I of n servers, where server i has capacity Ci. We consider an online
scenario, in which at each time step t ∈ {1, . . . , T}, a set of jobs J(t) and a set of edges E(t)
from servers I to jobs J(t) is revealed1. Edges are weighted, and w(e) for e = (i, j) is the
weight of job j on server i. In particular, if job j is assigned to server i, it consumes w(e)
resources of server i out of the possible Ci. In general, a job may have different weights
on different servers, thus for distinct servers i and i′, w(i, j) 6= w(i′, j). The entire set of
jobs is J = ∪t≤TJ(t), and E = ∪t≤TE(t). For a set of edges F , define W (F ) :=

∑
e∈F w(e).

Define G(t) as the bipartite graph (I ∪ J(t), E(t)). A set of edges F is feasible if (i) F (t) is a
matching for all t ≤ T , i.e., each server and each job is connected to at most one job and one
server respectively at each t, and (ii) for each server i, the weight of edges in F incident to i
is at most Ci (this is the strict capacity constraint). We will also call a feasible set of edges
an allocation. Our objective is to maximize the weight of the allocation obtained.

An optimal allocation has maximum weight among all allocations. The competitive ratio
for an algorithm is defined as the maximum over all instances of the ratio of the weight of
the optimal allocation, to that obtained by the algorithm. For a randomized algorithm, the
competitive ratio is obtained by taking the denominator of the previous ratio as the expected
weight of the allocation obtained by the algorithm. Note that the competitive ratio is always
at least 1.

In Section 5, we consider the case where jobs have finite span. Here each edge e = (i, j)
has a tuple (w, s) associated with it, where w is the weight and s is the time steps for which
job j is active, if assigned to machine i. If job j arrives at time t and is assigned to server i,
it consumes w resources from server i in time steps τ ∈ [t, t+ s− 1]. We then say that j is
active on server i in this period. Thus a set of edges F is feasible if, for each t, (i) F (t) is a
matching, and (ii) the total weight of jobs active on each server i at time t is at most its
capacity. Our objective is now to obtain an allocation to maximize the total weight of active
jobs, summed over servers as well as time steps.

Due to space constraints, all missing proofs appear in the full version.

3 Deterministic Algorithms

We begin by giving a simple example that shows that no deterministic algorithm can be
competitive for our problem.

I Example 1. In Fig. 1, there is a single server with capacity 1. At t = 1, a job of weight
ε � 1 arrives. If the algorithm does not accept the job, the input ends; in this case, the
optimal value is ε while the the algorithm obtains value zero. If the algorithm accepts the

1 Note that while our algorithms are designed for the setting where multiple jobs arrive at a single
time-step, all our lower bounds hold for the case where a single job arrives at each time step.
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ε
t=1 t=2

1

Figure 1 Illustration for Example 1.

Algorithm 1: GREEDY(G,S)
Input :Weighted bipartite graph G, set of active servers S
Output :Matching M
begin

M ← ∅
for e = (i, j) ∈ G in descending order of weight do

if (M ∪ e is a matching) AND (i ∈ S) then M ←M ∪ e ;
return M

job, the second job with weight 1 arrives. Since the capacity is 1, the algorithm cannot
accept this job. In this case, the optimal value is 1 while the algorithm obtains ε, and hence
any deterministic algorithm has competitive ratio at least 1/ε.

If we restrict the maximum weight of a job to be 1
2 , then every server can accept at least

two jobs, and a deterministic algorithm can give a non-trivial competitive ratio even on
adversarial sequences. Under this restriction, we propose an ONLINEGREEDY algorithm that
is shown to be 3-competitive next.

In the discussion of the following algorithms, we use M(t) to denote the set of edges
selected by the algorithm in time step t, A(t) := ∪τ≤tM(τ), and Mi(t) and Ai(t) to denote
the set of edges in M(t) and A(t) incident to server i.

3.1 Deterministic Algorithm for Restricted Edge Weights
We begin with the notion of active servers.

I Definition 2. Active server: The server i is active at time step t + 1 if the sum of the
weights of edges assigned to it so far is at most half its capacity, i.e., W (Ai(t)) ≤ 1

2Ci. We
will use S to denote the set of active servers.

The deterministic algorithm GREEDY takes as inputs a weighted bipartite graph G, as
well as a set S of active servers. GREEDY greedily picks maximum weight edges from the
bipartite graph G that are incident to active servers to form a matching M .

3.1.1 OnlineGreedy
We now present a deterministic algorithm ONLINEGREEDY that is 3-competitive for the
restricted weights case, where the weight of each edge incident to a server is at most half the
server capacity, i.e., w(i, j) ≤ 1

2Ci for each server i and job j.
ONLINEGREEDY maintains a set of active servers S, along with sets Ai(t) for each server

i, where Ai(t) is the set of edges selected that are incident to server i until time t. At each
time step t, ONLINEGREEDY calls GREEDY and passes to it as input the weighted bipartite
graph G(t) along with the current set of active servers S. For each edge (i, j) ∈ M(t),
where M(t) is the matching returned by GREEDY, edge (i, j) is added to the allocation Ai(t).
ONLINEGREEDY then checks if W (Ai(t)) > 1

2Ci, in which case server i is no longer active
and is removed from the set of active servers S for next time slot. If a server i is active at
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30:6 The Adwords Problem with Strict Capacity Constraints

Algorithm 2: ONLINEGREEDY

Input : Server capacities C1, C2, ..., Cn
Weighted bipartite graphs G(t) for t ≤ T , such that w(i, j) ≤ 1

2Ci ∀i, j
Output :Feasible allocation A(T ) = ∪t≤TM(t)
begin

S ← I

Ai(0)← ∅ ∀ i ∈ I
for t← 1 to T do

M(t)←GREEDY(G(t), S), A(t)← A(t− 1) ∪M(t)
for (i, j) ∈M(t) do

if W (Ai(t)) > Ci

2 then S ← S \ {i} ;

time t, i.e., W (Ai(t − 1)) ≤ 1
2Ci, and an edge e is added to Ai(t − 1), then W (Ai(t − 1))

increases by at most 1
2Ci, and hence W (Ai(t)) ≤ Ci. Hence, assigning a job to an active

server always results in a feasible allocation. Also, since GREEDY performs a matching at
each time step, the degree constraints (one job/server is assigned to at most one server/job,
respectively) are always satisfied. The algorithm continues either until S = ∅ or t = T .
I Remark. We note that the restriction on edge weights is only used in proving the feasibility
of the allocation obtained, and not in the proof of 3-competitiveness below. In particular, if
the edge weights are unrestricted, the allocation obtained may violate the capacity constraints,
but will be 3-competitive.

I Theorem 3. ONLINEGREEDY is 3-competitive.

Proof. For each time step t, let M(t) denote the matching produced by ONLINEGREEDY,
and let M∗(t) denote the corresponding matching given by the optimal offline algorithm. Let
A∗(t) = ∪τ≤tM∗(τ), and A∗i (t) is the set of edges to server i in the optimal allocation until
time t. Also, A∗i = A∗i (T ), Ai = Ai(T ), and A = ∪i∈IAi, A∗ = ∪i∈IA∗i .

We say that an edge e = (i, j) ∈M∗(t) \M(t), has been blocked by a heavier weight edge
f ∈M(t) if w(f) ≥ w(e) and f shares a server vertex (i) or job vertex (j) with e. As f has
more weight than e, GREEDY would select it first in M(t), and hence e cannot be selected
without violating matching constraints. For each edge (i, j) ∈M∗(t) \M(t), there are three
possible reasons why the edge was not selected by ONLINEGREEDY:
1. An edge f = (i, j′) ∈M(t), j′ 6= j blocks (i, j), i.e. server i was matched to some job j′

by GREEDY, such that w(i, j′) ≥ w(i, j).
2. An edge f = (i′, j) ∈M(t), i′ 6= i blocks (i, j), i.e. job j was matched to some server i′

by GREEDY, such that w(i′, j) ≥ w(i, j).
3. The server i was inactive at time step t, i.e., i /∈ S.

Let E1(t), E2(t) and E3(t) denote the set of edges in M∗(t) \M(t) that satisfy the first,
second and third condition respectively. Clearly, E1(t)∪E2(t)∪E3(t) = M∗(t) \M(t). Note:
No edge can satisfy the first and third condition simultaneously, as a server which is inactive
at time t cannot be matched to any job at time t. Therefore, E1(t) ∩E3(t) = ∅. However, in
general, E1(t) ∩ E2(t) 6= ∅ and E2(t) ∩ E3(t) 6= ∅, as edges can satisfy conditions 1 and 2 or
2 and 3.

Let S be the set of active servers at time T + 1. For all servers i, i /∈ S, since W (A∗i ) ≤ Ci
and W (Ai) > 1

2Ci, the allocation Ai is a 1
2 approximation to A∗i , i.e.,∑

i:i/∈S

∑
e∈A∗

i

w(e) < 2
∑
i:i/∈S

∑
e∈Ai

w(e) . (1)
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Let E1 = ∪Tt=1E1(t), E2 = ∪Tt=1E2(t), E3 = ∪Ti=1E3(t). Define ES1 = {e = (i, j) ∈ E1 |
i ∈ S}, ES2 = {e = (i, j) ∈ E2 | i ∈ S}. Clearly, ES1 ∪ ES2 = ∪i:i∈S (A∗i \Ai), as no edge
e = (i, j), i ∈ S can satisfy the third condition.

The edges e ∈ ES1 ∪ ES2 were not selected in the greedy allocation as they were blocked
by edges of heavier weight from A \A∗. The edges in the set A \A∗ are of two types:
1. f = (i, j) ∈ Ai \ A∗i , i ∈ S. As all edges e = (i′, j′) ∈ ES1 ∪ ES2 are such that i′ ∈ S, e

was blocked either because e and f share a server vertex (i = i′) or they share a job
vertex (j = j′). Thus, for every edge f = (i, j) ∈ Ai \A∗i , i ∈ S, there may exist at most
two edges e1 = (i, j′), e2 = (i′, j) that are blocked by f , so that e1, e2 ∈ ES1 ∪ ES2 and
w(f) ≥ w(e1), w(f) ≥ w(e2).

2. g = (i, j) ∈ Ai \ A∗i , i /∈ S. As all edges e = (i′, j′) ∈ ES1 ∪ ES2 are such that i′ ∈ S, e
was blocked only because g and e share the same job vertex (j = j′) and g was greedily
picked first. Thus, for every edge g = (i, j) ∈ A \A∗, i /∈ S, there may exist at most one
edge e1 = (i′, j) ∈ ES1 ∪ ES2 that is blocked by g and is such that w(g) ≥ w(e1).

As f = (i, j) ∈ Ai \ A∗i , i ∈ S can block at most two edges in ES1 ∪ ES2 and g = (i, j) ∈
Ai \A∗i , i /∈ S can block at most one edge in ES1 ∪ ES2 ,∑

i:i∈S

∑
e∈A∗

i
\Ai

w(e) =
∑

e∈ES
1 ∪ES

2

w(e) ≤ 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f) +
∑
i:i/∈S

∑
g∈Ai\A∗i

w(g) . (2)

Adding (1), (2),∑
i:i/∈S

∑
e∈A∗

i

w(e) +
∑
i:i∈S

∑
e∈A∗

i
\Ai

w(e) ≤ 2
∑
i:i/∈S

∑
e∈Ai

w(e) + 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f) +

∑
i:i/∈S

∑
g∈Ai\A∗i

w(g).

Adding
∑
i:i∈S

∑
e∈Ai∩A∗i

w(e) to LHS and RHS,∑
i:i/∈S

∑
e∈A∗

i

w(e) +
∑
i:i∈S

∑
e∈A∗

i

w(e) ≤
∑
i:i∈S

∑
e∈Ai∩A∗i

w(e) + 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f)+

3
∑
i:i/∈S

∑
g∈Ai

w(g).

Simplifying, we get
∑
i∈I
∑
e∈A∗

i
w(e) ≤ 3

∑
i∈I
∑
e∈Ai

w(e), as required. J

I Remark. In the more general case, where edge weights are restricted to be at most α (≤ 1)
times the corresponding server capacities, i.e., if w(i, j) ≤ αCi ∀ i, j, the following modification
of ONLINEGREEDY makes it

(
1 + 1

1−α

)
-competitive. Instead of removing a server i from the

set of active servers S when W (Ai(t)) > 1
2Ci, if we remove it when W (Ai(t)) > (1− α)Ci,

then (1) can be changed to
∑
i:i/∈S

∑
e∈A∗

i
w(e) <

(
1

1− α

)∑
i:i/∈S

∑
e∈Ai

w(e). The rest of

the proof follows directly to give a
(

1 + 1
1−α

)
-competitive algorithm. Clearly, as α→ 1, the

competitive ratio tends to 0, and ONLINEGREEDY will fail, as expected from Example 1. To
handle the case of unrestricted job weights, in the next subsection, we present a randomized
algorithm RANDOMONLINEGREEDY which is 6−competitive.

I Example 4. This example is used to show the tightness of analysis for Theorem 3. There
are 2 servers with capacity 1. We assume for simplicity that 1/α is integral, but the example
can be modified to remove this constraint. The sequence of jobs is illustrated in Fig. 2. There
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α-ε

α α

α-ε

ε α α

t=1 t=(1/α) -1 t=1/α t=(1/α) +1 t=2/α 

Figure 2 Illustration for Example 4.

are (1/α) − 1 jobs that have weight α to the first server, and weight α − ε to the second
server. ONLINEGREEDY assigns all of these to the first server, as well as the next job, and
thus the first server now has remaining capacity α− ε. The online algorithm then cannot
assign any of the remaining jobs, and obtains weight 1− α+ ε. The optimal offline assigns
the first (1/α)− 1 jobs to the second machine, ignores the job of weight of ε, and assigns the
remaining 1/α jobs to the first machine, obtaining a total weight of 1 + (α− ε)

( 1
α − 1

)
. As

ε tends to zero, this gives a lower bound of 1 + 1
1−α .

3.2 A lower bound for deterministic algorithms
The lower bound example by Kalyanasundaram and Pruhs [8] for online b-matching holds
for our problem as well, and shows that if the maximum ratio of edge-weight to server
capacity is α, then no deterministic algorithm can obtains competitive ratio better than
(1 + 1/b)b/(1 + 1/b)b − 1, where b := d1/αe. As α goes to zero, this ratio tends to e/e− 1.

We can use the strict capacity constraint and strengthen this lower bound slightly, to
obtain a lower bound of (1+1/b)b−1

(1+1/b)b−1−1 . For α = 1/2 and 1/3, this evaluates to 3 and 2.28
respectively, while our algorithm is 3- and 2.5-competitive respectively in these cases. Thus
for α = 1/2, the competitive ratio we obtain is tight. Since the construction and proof are
similar to the earlier example in [8], we give a sketch of the proof here.

I Theorem 5. No deterministic algorithm obtains competitive ratio better than (1+1/b)b−1

(1+1/b)b−1−1
for the online max-weight assignment problem with strict capacity constraints.

Proof Sketch. Our example closely follows the lower bound for b-matching [8], deviating
only at the very beginning. Informally, the earlier example starts with (b+ 1)b servers of
capacity 1, and jobs of weight 1/b to a subset of machines. The example sends jobs in b+ 1
groups, and ensures that jobs in group i can only be assigned by the online algorithm to
servers in Si, where S1 is the set of all (b+1)b servers. Group Ri, i ≤ b, consists of bi(1+b)b−i
jobs, and group Rb+1 consists of bb+1 jobs. Further, it ensures that the last group Rb+1 of
jobs cannot be assigned to any server by the algorithm, while the offline optimal assigns all
jobs. This gives the earlier lower bound of (1 + 1/b)b/(1 + 1/b)b − 1. We modify the example
by ensuring that the last two groups cannot be assigned by any online algorithm, giving us
the improved lower bound.

If b = 1, then the lower bound from Example 1 can be used for the theorem. Otherwise,
b ≥ 2. To ensure that jobs from the penultimate group b cannot be assigned by the online
algorithm, we will start off with (b+ 1)b+1 servers, and send (b+ 1)b+1 jobs of weight ε, each
of which can only be assigned to a distinct machine. After these jobs are sent, if at most
(b+ 1)b jobs are assigned to their unique machine, then we stop. In this case, the optimal
offline algorithm assigns all the jobs, and the online algorithm has competitive ratio (b+ 1),
which is at least the bound in the theorem for b ≥ 2. If at least (b+ 1)b machines have a
job assigned to them, we select (b + 1)b of these machines, let these machines be S1, and
run the earlier lower bound example. In the example, the jobs in group Rb only have edges
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Algorithm 3: PARALLELLOADBALANCE

Input :Capacities C of servers
Jobs J(t) at each time step t ∈ {1, . . . , T}, with weight w(j) for j ∈ J(t).

Output :Feasible server allocations Ai, i ∈ {1, 2, ..., n}
begin

Ai ← ∅ ∀i ∈ {1, . . . , n} initially.
for t← 1 to T do

for j ∈ J(t), in decreasing order of weight do
Let i be the machine with highest remaining capacity C −W (Ai) that is
not assigned a job in current time step.

if W (Ai ∪ {j}) ≤ C then Ai ← Ai ∪ {j} ;
else return;

to servers in Sb, and have weight 1/b to these servers. However, with our initial step, when
the jobs in group Rb arrive, each server in Sb has remaining capacity at most (1/b)− ε, and
hence cannot serve any more jobs. Hence, jobs in both groups Rb and Rb+1 cannot now be
scheduled by any online algorithm, while the optimal offline algorithm ignores the initial
jobs of weight ε, and successfully assigns all the remaining jobs. Thus, the optimal offline
algorithm obtains total weight (b+ 1)b, while any online algorithm obtains total weight at
most (b+ 1)b − bb−1 − bb. J

3.3 Parallel Servers
Servers are parallel if Ci = Ci′ and w(i, j) = w(i′, j) for all jobs j and all servers i, i′. That
is, the servers are identical, and each job consumes the same quantity of resources on each
server. Thus instead of edge weights we now refer to the weight of each job. If servers are
parallel, each with capacity C, and each job has weight at most ε, then we show a simple
deterministic load-balancing algorithm that is 1

1− ε/C -competitive.

I Lemma 6. After any time step t, the remaining capacity of any pair of machines i, i′
differs by at most ε with the PARALLELLOADBALANCE algorithm.

Proof. The proof is by induction. Suppose the lemma is true at the end of time step t− 1,
and Ai(t− 1), Ai′(t− 1) are the set of jobs assigned by the algorithm to machines i, i′ until
time step t− 1. Assume without loss of generality that W (Ai(t− 1)) ≤W (Ai′(t− 1)). Then
by the inductive hypothesis, W (Ai(t− 1)) ≥W (Ai′(t− 1))− ε. Further if j, j′ are the jobs
assigned to i, i′ respectively in time step t, then by the algorithm ε ≥ w(j) ≥ w(j′). It
follows that |W (Ai(t))−W (Ai′(t))| ≤ ε. J

I Theorem 7. Algorithm PARALLELLOADBALANCE is 1
(1− ε/C) -competitive. Further, no

deterministic algorithm can perform better.

Proof. If the else condition in PARALLELLOADBALANCE is never encountered, then at every
time step the n jobs of largest weight are assigned, and hence the assignment obtained
is optimal. Suppose that for some time step t, job j, and server i, the else condition
is encountered. Then W (Ai(t − 1)) + w(j) > C, and in fact every server has remaining
capacity at most ε. This is obviously true of server i, since w(j) ≤ ε. To see this for
the other servers, consider any server i′ with W (Ai′(t − 1)) < W (Ai(t − 1)). Then in

FSTTCS 2016
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Algorithm 4: RANDOMONLINEGREEDY

Input : Server capacities C1, C2, ..., Cn
Weighted bipartite graph G(t) for t ≤ T , such that w(i, j) ≤ Ci ∀ i, j

Output :Random feasible allocation A = ∪i∈IAi
begin

S ← I

S1, S2, Ai(0), Bi(0)← ∅ ∀ i ∈ I
for k ← 1 to n do

vk ∼ Bernoulli( 1
2 )

if vk = 1 then S1 ← S1 ∪ {k} // accept only heavy jobs ;
else S2 ← S2 ∪ {k} // accept only light jobs ;

for t← 1 to T do
M(t)←GREEDY(G(t), S)
for e = (i, j) ∈M(t) do

Bi(t)← Bi(t− 1) ∪ {e}
if W (Bi(t)) > Ci

2 then S ← S \ {i}
;
if
(
i ∈ S1 AND w(i, j) > Ci

2
)

OR
(
i ∈ S2 AND w(i, j) ≤ Ci

2
)

then
Ai(t)← Ai(t− 1) ∪ {e}

time step t, server i′ is assigned a job j′ with weight at least w(j). Further, by Lemma 6,
W (Ai′(t− 1)) ≥W (Ai(t− 1))− ε, and hence

W (Ai′(t)) = W (Ai′(t−1))+w(j′) ≥W (Ai′(t−1))+w(j) ≥W (Ai(t−1))+w(j)−ε > C−ε .

Thus in this case, on any machine the remaining capacity is at most ε. The proof of the
upper bound immediately follows.

For the lower bound, consider a single server with capacity 1. The adversary behaves as
follows. At any time, if the total weight of requests sent is at least 1, the adversary stops.
The adversary first sends requests of size at most ε to the online algorithm, until the server
has exactly ε remaining capacity. The adversary now sends requests of size δ << ε until the
online algorithm assigns exactly one. The remaining capacity on the server is then ε− δ. It
then sends a single request of size ε. The optimal offline algorithm ignores the request of size
δ and obtains weight 1, while the online algorithm has weight at most 1− ε+ δ, giving the
lower bound for small δ. J

4 A Randomized Algorithm for Unrestricted Edge Weights

Now we present a randomized algorithm, called RANDOMONLINEGREEDY, that is
6-competitive for the general case of unrestricted edge weights.

Note that while w(i, j) can be unbounded, any edge such that w(i, j) > Ci will be ignored
as it can never be allocated to server i.

I Definition 8. An edge e = (i, j) that satisfies Ci

2 < w(i, j) ≤ Ci is called a heavy edge and
the corresponding job is called a heavy job for that server. In other words, the weight of a
heavy edge (i, j) connected to a server i is at least half the server’s initial capacity. An edge
that is not heavy is called light, and the corresponding job is called light for that server.

At the start of the algorithm RANDOMONLINEGREEDY, an unbiased coin is flipped for
each server i. If heads, then server i is added to set S1, else it is added to set S2. If server
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i ∈ S1, it can only accept jobs corresponding to heavy edges, while if i ∈ S2, it can only
accept jobs corresponding to light edges.

Similar to ONLINEGREEDY, RANDOMONLINEGREEDY maintains a set of active servers S,
along with sets A(t) and B(t). At each time step t, the weighted bipartite graph Gt and set
of active servers S are passed as input to GREEDY, which returns a matching M(t). The set
B(t) := ∪τ≤tM(τ) and Bi(t) represents the set of edges in B(t) connected to server i. The
set Ai(t) is conditioned on the coin toss for server i. If i ∈ S1, Ai(t) only contains the heavy
edges in Bi(t). Otherwise, if i ∈ S2, Ai(t) only contains the light edges in Bi(t).

At time t, if RANDOMONLINEGREEDY adds an edge e = (i, j) to B, the algorithm checks
the weight W (Bi(t)) to see if it should be active for the next time step. If W (Bi(t)) > 1

2Ci,
then server i is removed from S. The reason for maintaining two sets B and A is that it is
possible for Bi(T ) to be infeasible for some server i. However, Ai(T ) is a feasible allocation
∀ i, and E [W (Ai(T ))] = 1

2W (Bi(T )). The algorithm continues until either S = ∅ or t = T .

I Lemma 9. The allocation Ai(T ) is feasible for each machine i ∈ I.

I Example 10. This example illustrates how Bi(T ) may be an infeasible allocation, while
Ai(T ) is feasible. Consider a single server with capacity C. At each time step, one job is
presented, and T = 2. At t = 1, a job of weight C

2 − ε is presented, while at time t = 2, a job
of weight C is presented. RANDOMONLINEGREEDY will put both jobs into B(2). If the coin
showed heads, A(2) will contain the second edge. If the coin showed tails, A(2) will contain
the first edge at time t = 1, i.e., A(2) = { 1

2C − ε} or A(2) = {C}, and both allocations occur
with probability 1

2 . However, W (B(2)) =
( 3

2C − ε
)
, which is an infeasible allocation.

I Lemma 11. W (A∗(T ))
W (B(T )) ≤ 3.

Proof. As the arguments for (1), (2) hold for the sets Bi(t)∀ i, the proof for Lemma 11
follows similar to the proof for Theorem 3. J

I Lemma 12. W (B(T ))
E [W (A(T ))] = 2.

Proof. The set Bi(t) can be partitioned into two mutually exclusive subsets Xi(t) and Yi(t),
such that Xi(t) only contains heavy edges, while Yi(t) only contains light edges. Note that
|Xi(t)| ≤ 1. Let vi = 1(= 0) if server i accepts only heavy (light) jobs. As Ai(t) is a
feasible allocation ∀ t and Ai(t) = Xi(t), t ≤ T if vi = 1, and Ai(t) = Yi(t), t ≤ T if vi = 0,
Xi(t), Yi(t), t ≤ T are both feasible allocations. ThereforeBi(t) = Xi(t)∪Yi(t), Xi(t)∩Yi(t) =
∅ ∀ t, and W (Bi(t)) = W (Xi(t)) +W (Yi(t)). Hence

E [W (Ai(T ))] = P [vi = 1]W (Ai(T ) | vi = 1) + P [vi = 0]W (Ai(T ) | vi = 0),

= 1
2 (W (Xi(T )) +W (Yi(T ))) .

Therefore, E [W (Ai(T ))] = 1
2W (Bi(T )). Summing over all servers i,

∑n
i=1 E [W (Ai(T ))] =

1
2
∑n
i=1 W (Bi(T )), and E [W (A(T ))]

W (B(T )) = 1
2 . J

I Theorem 13. RANDOMONLINEGREEDY is 6−competitive.

Proof. Let W (A∗(T )) = W (∪ni=1A
∗
i (T )) be the value of the allocation made by the optimal

offline algorithm, and W (B(T )) = W (∪ni=1Bi(T )) be the value of the infeasible allocation
B(T ). Moreover, let E [W (A)] = E [W (∪ni=1Ai(T ))] be the expected value of the feasible
allocation A(T ) made by RANDOMONLINEGREEDY(denoted as A), then from Lemma 11 and
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Lemma 12, the competitive ratio of RANDOMONLINEGREEDY = max
(

W (A∗(T ))
E [W (A(T ))]

)
≤

6. J

I Example 14. Example 1 can be extended to show that a lower bound of 2 on the competitive
ratio of any randomized algorithm. Consider the randomized adversary that sends only the
job in the first step (with weight ε) with probability 1 − ε, and both jobs (with weights ε
and 1) with probability ε. Then any deterministic algorithm for this distribution gets value
at most ε while the optimal expected value is 2ε − ε2. The lower bound on randomized
algorithms follows by an application of Yao’s lemma [14].

5 Finite Span Jobs

We now generalise our model by assuming that the jobs do not consume server resources
for infinite time, i.e, along with the job weight, the adversary also announces the span over
which the job remains in the server. If a job is presented at time t′ and has span s, then
it consumes resources for t such that t′ ≤ t < t′ + s. Once an allocated job expires, the
capacity corresponding to the weight of that job is made available to the server for future
job requests.

I Example 15. For each job let (w, s) be the tuple representing the weight and span,
respectively. Let there be a single server with capacity C. Let the input sequences be
S1 = {(ε, T ), (0, 1), . . . , (0, 1)︸ ︷︷ ︸

T−1

}, and S2 = {(ε, T ),
(
C
2 , T − 1

)
,
(
C
2 /0, 1

)
, . . . ,

(
C
2 /0, 1

)︸ ︷︷ ︸
T−1

}, where

C
2 /0 means either the weight is C

2 or 0 depending on earlier matchings. If at time t = 1,
the job is not matched to the server, the competitive ratio on S1 is ∞. Otherwise, the
adversary presents the sequence S2, where if job at time t = 2 is not matched then the
weights of jobs for all further time instants are 0, and the competitive ratio is 0.5C/ε. If the
server does accept the job at t = 2, then all future jobs have weight C

2 and span 1. The
server cannot accept any jobs for t ≥ 3 due to lack of capacity, and the competitive ratio is
0.5C(T−2)

0.5C+ε ≈ T − 2. This shows that as T →∞, the competitive ratio can be made arbitrarily
bad for all deterministic algorithms, even when edge weights are restricted to be at most
half the server capacity.

5.1 Uniform Span
We first look at the case where all jobs have the same span s. For this case, we propose
algorithms UNIFORMGREEDY and RANDOMUNIFORMGREEDY, which are similar to our pre-
vious algorithms ONLINEGREEDY (if each job weight is at most half the server capacity)
and RANDOMONLINEGREEDY(for general weights), with the following modification. If the
algorithm assigns job i to server j at time t, the resources used are released at time t+ s.
The analysis is similar to ONLINEGREEDY and RANDOMONLINEGREEDY. However, a more
intricate argument is required since we can no longer argue about the jobs allocated at each
time step. Instead, our analysis considers a window of size s, and obtains bounds on the
weight of all jobs that are active within this window.

I Theorem 16. UNIFORMGREEDY is 6-competitive where all job requests to a server are at
most half the capacity of the corresponding server.

I Theorem 17. RANDOMUNIFORMGREEDY is 12-competitive.

The proof follows similar to Theorem 13, with Theorem 16 replacing Theorem 3.
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5.2 Non Uniform Span

RANDOMNONUNIFORMGREEDY is a O
(

log
(
smax

smin

))
−competitive algorithm for the case

when jobs may not have the same span. The algorithm works by dividing the jobs into
log
(
smax

smin

)
logarithmically spaced levels based on their span and accepting jobs that belong

to only one level. This level is chosen uniformly at random before execution of the algorithm.

I Theorem 18. RANDOMNONUNIFORMGREEDY is O
(

log
(
smax

smin

))
–competitive.
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Abstract
The Most Likely Voronoi Diagram is a generalization of the well known Voronoi Diagrams to
a stochastic setting, where a stochastic point is a point associated with a given probability of
existence, and the cell for such a point is the set of points which would classify the given point
as its most likely nearest neighbor. We investigate the complexity of this subdivision of space in
d dimensions. We show that in the general case, the complexity of such a subdivision is Ω(n2d)
where n is the number of points. This settles an open question raised in a recent (ISAAC 2014)
paper of Suri and Verbeek [24], which first defined the Most Likely Voronoi Diagram. We also
show that when the probabilities are assigned using a random permutation of a fixed set of values,
in expectation the complexity is only Õ

(
ndd/2e) where the Õ(·) means that logarithmic factors

are suppressed. In the worst case, this bound is tight up to polylog factors.
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1 Introduction

Voronoi diagrams are a well known data structure in Computer Science. Given a finite set of
points S, say in Euclidean d-space, the Voronoi diagram is a partition of space into cells,
one for each point of S, such that the cell for each point s ∈ S contains all points closer
to s than to any other point of S. We study this classical data structure in the presence
of uncertainty. For example, consider a situation in which a set of facilities (say car repair
shops) are modeled as points, and the probability that a particular facility can provide a
desired service (repairing your car) is known. A natural question is then, which facility is
the most likely to be the nearest facility that can provide the desired service.

While uncertainty has been modeled in several ways in different contexts, we investigate
the problem in the presence of existential uncertainty. The input in this model is a set
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P = {p1, . . . , pn} of n stochastic points, where each stochastic point pi is a tuple (si, πi)
where si is a regular point in IRd (we will call them sites, or simply points when it is clear
they are not meant as probabilistic points) and πi is its probability of existence. Consider the
product distribution induced by these individual distributions. Under this distribution, we
can compute for any query point x, its most likely nearest neighbor (MLNN). The partition
of IRd where for each pi we have the associated region of points which would classify it as
its most likely nearest neighbor, is called the Most Likely Voronoi Diagram (MLVD). This
data structure was introduced in [24], where the authors investigated its properties in the
simplest setting of d = 1 dimensions. Even in this simple setting, it was not obvious how
to bound the worst case complexity of this data structure, but it was shown to be Θ(n2).
However, the lower bound construction relied on very carefully chosen probability values and
location of the sites involved. Under certain conditions, such as the probabilities assigned to
the sites coming from a random permutation of a fixed set of values, the authors showed an
upper bound of O(n logn) on the complexity. We investigate the complexity of this data
structure in higher dimensions.

Results. Our contributions can be summarized as follows.
We show that in the worst case, the complexity of the MLVD is Ω(n2d). This settles an
open question raised in [24].
When the probabilities assigned to the stochastic points come from a random permutation
on a fixed set of n values, we show that the expected complexity of the MLVD is Õ(ndd/2e)
where the Õ(·) means that terms poly-logarithmic in n are suppressed. Note that this
includes the case when all values are independently sampled from a single distribution
(as one can first sample and then randomly permute the values). This generalizes a result
of [24]. In the worst case, this bound is tight up to polylog factors.

Related work. The work most closely related to ours is of course the paper [24] which
defined the MLVD and investigated upper and lower bounds for it in 1-d. Under the aegis
of proximity searching, there has also been work under different uncertainty models [5, 3].
These papers investigate different definitions of closeness in the presence of uncertainty, and
thereby the resulting Voronoi diagrams are different. For example the Expected Nearest
Neighbor(ENN) Voronoi diagram is defined in [5], and the nonzero Nearest Neighbor Voronoi
diagram is studied in [3]. These works focus on the 2-dimensional case, and even there tight
bounds on the complexity of the Voronoi diagrams defined are not known. More generally,
there has been a lot of work on uncertainty in several communities including databases,
machine learning, optimization, and computational geometry [7, 8, 15]. Several fundamental
problems have been studied in uncertain settings; see [5, 3] for work on nearest neighbors, [4]
for work on range searching, [2] for skylines, and [1] for work on coresets. In the existential
uncertainty model there has been a flurry of recent work on convex hulls [6], separability
[13, 25] (see also [11] for work on separability in a different model of uncertainty), containment
and evasion problems [20], arrangements [21], skylines [9] and optimization problems such as
minimum spanning trees, and closest pair problems [16, 17].

For the upper bound, we use the candidate set technique, developed by Har-Peled
and Raichel [14], and in particular the notation and background we present to use this
technique closely follows that of [14]. Their aim was to bound the expected complexity of the
multiplicative Voronoi diagram. While such diagrams differ from the MLVD, the candidate
set technique is general enough, that with some modification and generalization, it can also
be used to bound the complexity of the MLVD. We remark that while our upper bound
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proof is a significant contribution of this paper, in particular as it generalizes the bounds of
[24] to higher dimensions, the main new technical contribution is our lower bound proof.

2 Preliminaries

Notation. Let S be a set of n points in general position in IRd, which we call sites.
Throughout the paper we assume d is a constant. Let Π be a set of n values in the interval
(0, 1). The values in Π are indexed in decreasing order, π1 ≥ . . . ≥ πn.

We use T = 〈s1, . . . , sn〉 to denote a random permutation of the sites in S. Let Ti =
〈s1, . . . , si〉 denote the prefix of this permutation of length i.

When we care only about what elements appear in a permutation, T , but not their
internal ordering, we use the notation S = set(T ) to denote the associated set. As such,
Si = set(Ti) is the unordered prefix of length i of T .

We let [n] denote the set {0, 1, . . . , n− 1} for any natural number n.

Arrangements. As it will be used throughout the paper, we now define the standard
terminology of arrangements (see [23]). A set H of n hyperplanes in IRd, induces a partition
of IRd into connected cells, called the arrangement of H, and denoted A(H). Specifically,
each cell is a maximal connected region of the intersection of a (possibly empty) subset of H,
which does not intersect any hyperplane not in this subset. In particular, the d-dimensional
cells are the maximal connected subsets of IRd which do not intersect any hyperplanes in H.
The combinatorial complexity of A(S) is the total number of cells of all dimensions.

2.1 Voronoi diagrams
Let S = {s1, . . . , sn} be a set of n point sites in the IRd. For a closed set Y ⊆ IRd, and any
point x ∈ IRd, let d(x, Y ) = miny∈Y ‖x− y‖ denote the distance of x to the set Y . For
any two sites s, r ∈ S, we define their bisector β(s, r) as the set of points x ∈ IRd such
that d(x, s) = d(x, r). Clearly, β(s, r) is a hyperplane, passing through the midpoint of the
segment [s, r] and orthogonal to it.

Each s ∈ S, induces the function fs(x) = d(x, s), where x is any point in IRd. For
any subset H ⊆ S and any site s ∈ H, the Voronoi cell of s with respect to H, de-
noted Vcell(s,H), is the subset of IRd whose closest site in H is s, i.e. Vcell(s,H) ={
x ∈ IRd

∣∣∣ ∀r ∈ H fs(x) ≤ fr(x)
}
. Finally, for any subset H ⊆ S, the Voronoi diagram

of H, denoted V(H), is the partition of space into Voronoi cells induced by the minimization
diagram of the set of functions

{
fs
∣∣ s ∈ H}.

2.2 Most Likely Voronoi diagrams
We now consider a set P of n stochastic points where the ith stochastic point pi = (si, πi),
and πi > 0.

For a given query point x, let Bi(x) denote the set of sites in the open ball with center x
and radius ‖x− si‖. The probability that a site si is the nearest neighbor to a query point x
is given by the expression

Πnn(si, x) = πi
∏

sj∈Bi(x)

(1− πj) (1)

The most likely nearest neighbor of the query point x is then MLNN(x) = arg maxsi∈P
Πnn(pi, x).
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For any subset H ⊆ S and any point s ∈ H, the most likely Voronoi cell of s with
respect to H, denotedMcell(s,H), is the subset of IRd whose most likely nearest neighbor in
H is s, i.e. Mcell(s,H) =

{
x ∈ IRd

∣∣∣ ∀r ∈ H Πnn(s, x) ≥ Πnn(r, x)
}
. Finally, for any subset

H ⊆ S, the most likely Voronoi diagram (MLVD) of H, denotedM(H), is the partition
of space into Voronoi cells induced by the maximization diagram of the set of functions{

Πnn(s, ·)
∣∣ s ∈ H}. The MLVD is a polyhedral partition of space such that the cell for each

site is the union of a set of polyhedral sets, where some of these sets may possibly be open.
The cell for a given site is not necessarily a connected set. The complexity of the MLVD is
the total number of faces, over all dimensions, of this polyhedral partition.

Let g(n) denote the worst case complexity of the most likely Voronoi diagram. Consider
the arrangement of all the bisectors of the points involved. This has complexity O(n2d).
Within each cell of the arrangement, the ordering of distances is fixed and as such the
probability of each site to be a MLNN is also fixed, where we will resolve ties using a fixed
(but arbitrary ordering of the points). Therefore, within a cell the MLNN is the same for all
points. Thus, O(n2d) is an upper bound on the total complexity of the MLVD. However, the
total complexity of the MLVD can be smaller as adjacent cells can merge and the MLVD
can be a true coarsening of the arrangement.

3 Bounding the expected complexity of the MLVD

For most of this section, we follow closely the presentation in [14] to develop the relevant
machinery. Let S be a set of sites and T = 〈s1, . . . , sn〉 be a random permutation of the
sites in S. Let π1 ≥ π2 ≥ . . . ≥ πn be a fixed set of n probability values in (0, 1). Consider
the (random) set of stochastic points P where the ith stochastic point pi = (si, πi). In
this section we show that the expected value of the complexity of the MLVD of P where
the expectation is over the random permutation T , is given by Õ(ndd/2e) where the Õ(·)
suppresses factors logarithmic in n.

3.1 Candidate sets
I Definition 1. Let T = 〈s1, . . . , sn〉 be an ordered set of n sites in IRd. For any point x in
the IRd, the candidate set of x, denoted by L(x, T ), is the set of all sites si ∈ T , such that
‖x− si‖ = d(x, Ti), for i = 1, . . . , n. In words, si is in L(x, T ) if it is the closest site to x in
its prefix Ti.

Suppose we assign probabilities to the sites si such that πi is assigned to si, where recall
that π1 ≥ π2 ≥ . . . ≥ πn. A prerequisite for a site sj of S to be the most likely nearest
neighbor to x, is that sj is in the candidate set L(x, T ).

I Lemma 2. For a point x in IRd, if MLNN(x) = sj , then sj is in L(x, T ), where T is the
ordering of S by decreasing probabilities.

Proof. Let sj be the most likely nearest neighbor of x, and suppose that ‖x− sj‖ 6= d(x, Tj).
This implies there exists some i < j such that ‖x− si‖ < ‖x− sj‖. However, by the definition
of T , for i < j, we have πi ≥ πj , and so

Πnn(sj , x) = πj Πsk∈Bj(x)(1− πk) ≤ πi Πsk∈Bj(x)(1− πk)
< πi Πsk∈Bi(x)(1− πk) = Πnn(si, x),

which is a contradiction. Therefore, sj must be the closest point to x in its prefix Tj . J
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Consider a random permutation T of S, and the candidate set as a random variable. Next,
we investigate the size of this set for all points of space. We prove that with high probability,
the candidate set is logarithmic in size for all points in space. To this end, we need the
following well known fact. The expectation bound is well known from [19, 10], and the high
probability result was probably well known before as well, but see [14] for a recent written
proof.

I Lemma 3. Let Π = 〈π1, . . . , πn〉 be a random permutation of {1, . . . , n}, and let Xi be an
indicator variable which is 1 if πi is the smallest number among π1, . . . , πi, for i = 1, . . . , n.
Let Z =

∑n
i=1 Xi, then Z = O(logn), with high probability (i.e., for any constant c > 0, one

can choose the constant in the O(·) above such that the probability is at least ≥ 1− 1/nc).

I Corollary 4. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of n
points in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S. Assign the probability
πi to si, for all i. Then simultaneously for all points in IRd, their candidate set for T is of
size O(logn), with high probability.

Proof. Fix a point x ∈ IRd. Since T = 〈s1, . . . , sn〉 is a random permutation of S, the
sequence ‖x− s1‖ , . . . , ‖x− sn‖ is a random permutation of the distance values from x to
the sites in S. Therefore, by the definition of the candidate set and Lemma 3, we have
|L(x, T )| = O(logn) with high probability.

Consider the arrangement of all the bisectors of all the pairs of sites in S of complexity
O(n2d). Within each face of this arrangement, the candidate set cannot change, for any
permutation, since all points in this face have the same ordering of their distances to the sites
in S. So pick a representative point for each of the O(n2d) faces. For any such representative,
with probability ≤ 1/nc, the candidate set has > α log(n) sites, for any constant c of our
choosing (where α is a constant that depends only on c). Therefore, by choosing c to be
sufficiently large, taking the union bound on the bad events (where a bad event is that the
size of the candidate set for some face exceeds α log(n)), and then taking the complement,
the claim follows. J

3.2 Getting a compatible partition
The goal now is to find a low complexity subdivision of space, such that within each cell
of the subdivision the candidate set is fixed. As we know, the arrangement of the bisectors
already provides such a subdivision. However, the complexity of this subdivision is high. The
main insight is that by using the standard Voronoi diagram one can get such a subdivision,
which
(A) is sensitive to an ordering of the sites (thus, it can intuitively save on certain permutations

over the worst case), and,
(B) its complexity in expectation can be bounded by Õ(ndd/2e).
Let Ki denote the Voronoi cell of si in the usual Voronoi diagram of the ith prefix Si =
{s1, . . . , si}. Let A denote the arrangement formed by the overlay of the regions K1, . . . ,Kn.
The complexity of A, denoted by |A|, is the total number of these faces of all dimensions in
the arrangement.

I Lemma 5. For any face F of A = A(K1, . . . ,Kn), the candidate set is the same, for all
points in F .

Proof. Consider adding points in the order s1, . . . , sn. Initially, before any points are added,
all points in IRd have the same candidate set, namely the empty set. When the site si is
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added, the only points in IRd whose candidate set changes are those for which si is their
nearest neighbor in Si. However, these are precisely the points in the Voronoi cell of si in the
usual Voronoi diagram of Si. That is, the candidate set changes only for the points covered
by Ki.

The claim now easily follows, as A is the overlay arrangement of these regions. J

I Theorem 6. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of n points
in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S, where probability πi is assigned
to si, for all i. Let Ki = Vcell(si, Ti), for i = 1, . . . , n. Finally, let A = A(K1, . . . ,Kn) be
the arrangement formed by the overlay of all these cells.

Then, the expected complexity of the most likely Voronoi diagram is O
(

E
[
|A|
]
g(logn)

)
,

where |A| is the total complexity of A, and g(m) denotes the worst case complexity of the
most likely Voronoi diagram of m sites.

Proof. Let Z be the set of all permutations of S. For any z ∈ Z, let C(z) denote the size
of the largest candidate set of any point in IRd determined by z. We first argue that for z
sampled uniformly at random from Z, E[|A| g(C(z))] = O(E[|A|] g(logn)).

Partition Z into two sets, good and bad, such that for any z ∈ Z, z ∈ good if C(z) ≤ α logn,
and z ∈ bad otherwise, for some constant α. Using Corollary 4, we choose α large enough
such that for z sampled uniformly at random from Z, P[z ∈ bad] ≤ 1/nβ , where β = β(α) is
some sufficiently large constant to be determined shortly. We then have:

E[|A| g(C(z))]
= E[|A| g(C(z)) | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] P[z ∈ bad]
≤ E[|A| g(α logn) | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] /nβ

= g(α logn) E[|A| | z ∈ good] P[z ∈ good] + E[|A| g(C(z)) | z ∈ bad] /nβ .

Now the first term in the above sum is bounded by g(α logn) E[|A|] because of the following
equality: E[|A| | z ∈ good] P[z ∈ good] = E[|A|] − E[|A| | z ∈ bad] P[z ∈ bad] ≤ E[|A|]. To
bound the second term in the sum, observe that both |A| and g(C(z)) are in the worst
case bounded by O(n2d), as both the MLVD and |A| are coarsenings of the arrangement
of all bisectors of the sites, which itself has complexity O(n2d). Hence by choosing β > 4d
we can bound the second term of the above expectation as: E[|A| g(C(z)) | z ∈ bad] /nβ =
O(n4d/nβ) = O(1). Combining the bounds on each term of the sum we get:

E[|A| g(C(z))] ≤ g(α logn) E[|A|] +O(1) = O(E[|A|] g(logn)).

We now argue that for any fixed z ∈ Z, the corresponding complexity of M(S) is
O(|A| g(C(z))), which combined with the above bound on the expectation will complete the
proof. First decompose all faces (of all dimensions) of A into constant complexity simplices.
(Note that the simplices are constant complexity since d is constant). This can be done by
computing a bottom vertex triangulation (see for example [22]). Again since d is assumed to
be constant, this triangulation has the same asymptotic complexity as |A|.

Now we have a partition of space into O(|A|) constant complexity simplices, and by
Lemma 5 within each such simplex the candidate set is fixed. So consider such a simplex
∆, and let L be its candidate set. Lemma 2 implies that the only sites whose most likely
Voronoi cells can have non-zero area in ∆ are the sites in L. That is, the most likely Voronoi
diagram restricted to ∆ is the intersection of ∆ with the most likely Voronoi diagram of some
subset of L. Now the most likely Voronoi diagram of ≤ |L| points has worst case complexity
g(|L|). Since ∆ is a constant complexity region this implies that the complexity of the most
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p0 p1 pn−1 p′0 p′1 p′3

α0 α1 αn−1 ε ε ε

m(n−1)0 m01 m11

p1 is MLNN

Figure 1 The lower bound example in 1-d with Ω(n2) complexity.

likely Voronoi diagram in ∆ is O(g(|L|)). By definition, no candidate set has size more than
C(z), and hence for any simplex ∆, O(g(|L|)) = O(g(C(z))). Hence the total complexity over
all simplices is O(|A| g(C(z))). J

A naive bound on the worst case complexity is g(m) = O(m2d). Kaplan et al. [18] showed
that for a random permutation of n points (as is the case here) the expected total complexity
of A is O(ndd/2e logn) when d is even, and O(ndd/2e) when d is odd. We therefore readily
have the following result.

I Theorem 7. Let π1 ≥ . . . ≥ πn be a set of n probabilities in (0, 1). Let S be a set of n
points in IRd, and let T = 〈s1, . . . , sn〉 be a random permutation of S, where probability πi is
assigned to si, for all i.

Then the expected complexity of the most likely Voronoi diagram is O(ndd/2e log2d+1 n)
when d is even, and O(ndd/2e log2d n) when d is odd.

I Corollary 8. Let S be a set of n points in IRd, where independently for each site s we
sample a probability value from a single fixed distribution over (0, 1). Then the expected
complexity of the most likely Voronoi diagram is O(ndd/2e log2d+1 n) when d is even, and
O(ndd/2e log2d n) when d is odd.

Proof. The distribution induced by choosing the πi from a fixed distribution over (0, 1) is
the same as would be induced by first choosing π1 then, choosing π2 ≤ π1 and so on, and
then permuting them randomly. Under every random permutation for any fixed choice of
the πi the complexity of the most likely Voronoi diagram is bounded by Theorem 7, and this
expression is independent of the choice of the πi. As such in expectation over the πi we have
the same bound. J

Notice that the regular Voronoi diagram of any set of sites is a special case of the MLVD
since if all the probabilities are equal, the MLNN is always the nearest neighbor. Our bound
above holds for any set of sites and a random assignment of probability values from an
arbitrary set, while it is known that the worst case complexity of the regular Voronoi diagram
is Ω(ndd/2e) [12], hence it follows that the bound we establish is tight up to polylog factors
in the worst case.

4 Worst-case lower bound

In this section we show that g(n) = Ω(n2d). Since the construction is a generalization and
uses part of the construction for the lower bound in d = 1 dimensions from [24], we briefly
recall it here.

The construction of [24] uses two groups of stochastic points each with n points. In
the first group S the stochastic points are pi = ((i + 1)/n, αi) for i = 0, 1, . . . , n − 1,
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where in [24] they choose αi = 1/(i + 1), but as we show different sets of values also
work. In the second group T the stochastic points are p′i = (2 + j, ε) for ε sufficiently
small, for j = 0, 1, . . . , n − 1. They also follow the convention that if two points have
the same minimum probability of being the MLNN at a point the one with the smaller
index is designated as the MLNN. With this convention they basically show that the
MLNN changes across each of the bisector points of S and T . The Ω(n2) bisection points
mij are mij = i/(2n) + j/2 + (1 + 1/(2n)) and these are ordered as per the sequence
m00,m10, . . . ,m(n−1)0,m01,m11, . . . ,m(n−1)1, . . . ,m0(n−1),m1(n−1), . . . ,m(n−1)(n−1), i.e. in
lexicographical order first by j and then by i, see Figure 1 for an illustration. They choose
ε so small that a probabilistic point in T can never be the MLNN. For their choice of the
αi = 1/(i+ 1), it turns out it is sufficient to have ε be so small as to satisfy (1− ε)n/n > ε

which is achieved for ε ≤ 1/n2. Next, observe that, for the choice αi = 1/(i+ 1), at a point
infinitesimally to the left of mij the probability of pk being the MLNN is precisely (1− ε)j/n
for k ≥ i and it is (1− ε)j+1/n for 0 ≤ k < i. Thus, to the left of midpoint mij the MLNN
is pi and therefore it assumes n values before j increments by 1 at which point it cycles
through all of pi again for i = 0, . . . , n− 1.

We need a small modification of the above construction for our proof. Notice that the
probabilities for being the MLNN are always of the form (1−ε)j

n . However, as we show for any
p sufficiently small (depending on a function of n) we can choose probabilities for the points
in S and T so that the probabilities of the MLNN are always of the form (1− ε)jp. This can
be seen from the following lemma, and by choosing ε small enough, so that a probabilistic
point in T is never the MLNN. Intuitively, we can use the αi for the probabilities of the sites
in S in the construction outlined above.

I Lemma 9. For any n ≥ 1 and 0 < α0 ≤ 1/n, there exist numbers α1, . . . , αn−1 ∈ (0, 1]
such that

α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).

Proof. Given α0 ∈ (0, 1/n] we can define α1 = α0/(1− α0) and then continue inductively
by αi = αi−1/(1− αi−1). This ensures that,

α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).

It can be verified that, αi = α0/(1− iα0) and clearly α0 ≤ α1 ≤ . . . ≤ αn−1. The condition
αn−1 ≤ 1 implies α0 ≤ 1/n, and moreover, any such α0 leads to a valid sequence. J

We need another lemma for the proof below.

I Lemma 10. For any δ small enough, there exist numbers π0, . . . , πn−1 and α0, . . . , αn−1
all in (0, 1), such that for any ε small enough the following are satisfied:
(A) α0 = α1(1− α0) = α2(1− α1)(1− α0) = . . . = αn−1(1− αn−2) . . . (1− α0).
(B) π0 = π1(1 − π0)(1 − δ) = π2(1 − π1)(1 − π0)(1 − δ)2 = . . . = πn−1(1 − πn−2) . . . (1 −

π0)(1− δ)n−1.
(C) ε < (1−ε)nα0, δ < π0(1−δ), π0 > α0, and π0(1−δ) < (1−ε)nα0, i.e., [(1−ε)nα0, α0] ⊆

((1− δ)π0, π0).

Proof. Start with a symbolic δ and π0 and compute π1, . . . , πn−1 iteratively by πi =
πi−1

(1−πi−1)(1−δ) for i = 1, . . . , n − 1. This recursive definition guarantees that π0 = π1(1 −
π0)(1− δ) = π2(1− π1)(1− π0)(1− δ)2 = . . . = πn−1(1− πn−2) . . . (1− π0)(1− δ)n−1. It can
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Figure 2 The grid of lines Ai, Bj , Ck.

be verified that,

πi = π0

(1− π0)(1− δ)i −
(
π0
∑i−1
j=1(1− δ)j

) .
It can be seen that π0 < π1 < . . . < πn−1. The constraint πn−1 ≤ 1 gives us,

π0 ≤
(1− δ)n−1

1 + (1− δ) + . . .+ (1− δ)n−1 .

When δ → 0 the upper bound for π0 goes to 1/n and when δ increases the upper bound
decreases. By choosing a very small δ and π0 to be the upper bound we get for it, we
can ensure 1/n > π0(1− δ) > δ. The first condition can be satisfied for any small enough
α0 ≤ 1/n by Lemma 9. In particular we choose α0 such that α0 lies in ((1− δ)π0, π0) and
then choose ε small enough so that π0(1− δ) < α0(1− ε)n as well as ε < (1− ε)nα0. Thus,
all the desired conditions can be satisfied, and moreover they are satisfied for every small
enough ε. Also, any starting choice of δ which is small enough will work. J

I Theorem 11. There is a set of (3d − 1)n probabilistic points in IRd whose MLVD has
complexity at least Ω(n2d).

Proof. The proof is an inductive argument. The base case, the result for d = 1 was already
shown in [24], and is sketched above. We show how the induction step works for d = 2
dimensions; the general case is similar and we sketch the details later.

We consider four sets of sites P,Q,Ql, and Qr, where |P | = 2n and |Q| = |Ql| = |Qr| = n.
We first explain how we place the sites in Ql ∪ Qr ∪ Q. To understand how the sites are
placed we need to understand how the distance to them varies from a point (x, 0) on the
x-axis. Since it is equivalent to consider squared distance functions we will work with them
instead. Consider the function f(a,b)(x) which is the square of the distance function of point
(a, b) to point (x, 0) on the x-axis. We have f(a,b)(x) = (a − x)2 + b2. The graph of each
such function is a parabola but when x is small the graph is approximately a straight line.
In order to define the placement of sites in Ql ∪Qr ∪Q we will choose sites such that the
graphs of the corresponding distance functions are approximately the lines of the grid we
define below. We let Ql = {(a0, b0), . . . , (an−1, bn−1)}, Qr = {(c0, d0), . . . , (cn−1, dn−1)}, Q =
{(e0, f0), . . . , (en−1, fn−1)} and let the corresponding distance functions be Fi, Gj , Hk i.e.,
Fi(x) = f(ai,bi)(x), Gj(x) = f(cj ,dj)(x), Hk(x) = f(ek,fk)(x) for i, j, k ∈ [n]. It will be clear
towards the end of the proof what the values of the coordinates are.
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Ai

Bj

C ′i+j

xlij xhij
xij

Figure 3 The grid with Ck pushed down to C′
k. In [xl

ij , x
h
ij ] the line C′

k where k = i + j lies
above k of the Ai, Bj otherwise, not near an intersection point it lies strictly above k + 1 of them.

To define the grid, consider the lines Ai, Bj , Ck for i, j, k ∈ {0, . . . , n − 1}, where Ai
has the equation: y = x + ci/n + ci/n2 + M where c > 0 is a number depending on n

we define later, and M > 0 is some constant we fix later. The line Bj has the equation
y = −x+ cj/n+M . Notice that the lines A0, . . . , An−1 are parallel and equally spaced; so
are the lines Bj , though they have a different spacing. The intersection point of Ai, Bj is
the point (xij , yij) where,

xij = c(j − i)
2n − ci

2n2 , yij = c(j + i)
2n + ci

2n2 +M.

All of the xij lie within [−c, c]. Moreover, all the xij are distinct. We can number the point
(xij , yij) by (i, j) (see Figure 2). The points (xij , yij) for a fixed value of j − i lie on a line
with large negative slope.

It turns out that the points for the same value of (i+ j) for 0 ≤ i+ j ≤ n− 1 also lie on
lines with small negative slope. These are defined by lines Ck for k = 0, 1, . . . , n− 1 where
Ck is defined by the equation: y = −1

2n+1x+ kc n+1
n(2n+1) +M . It can be verified easily that Ck

passes through all the intersection points (xij , yij) with i+ j = k. See Figure 2.
We now slightly push down the lines Ck to C ′k where C ′k is defined by the equation

y = −1
2n+1x+ kc n+1

n(2n+1) +M − c′ where c′ = O(c/n3). Notice that for each intersection point
(i, j) there is an interval on the line C ′k cut off by the lines Ai, Bj - this interval is also of
length O(c/n3). Consider the projection of this interval onto the x-axis and denote it by
[xlij , xhij ]. This interval contains xij , see Figure 3. It can be verified that the xij are all
separated by at least c/2n2, as such the intervals corresponding to all the xij are disjoint if
c′ is chosen O(c/n3). This property is crucial to us. This grid structure defined by the lines
Ai, Bj , C

′
k is what we need for the remainder of the proof, and the crucial properties are the

following:
(i) the intervals for each xij where 0 ≤ i+ j ≤ n− 1, i.e., [xlij , xhij ] are all disjoint, and,
(ii) for x ∈ [xlij , xhij ] there are k lines strictly below C ′k where k = i+ j, while if x is not in

such an interval then there are at least k + 1 lines among the Ai, Bj strictly below C ′k.
We want the following correspondence between the distance functions Fi, Gj , Hk and

the set of lines Ai, Bj , C ′k: Fi ↔ Ai, Gj ↔ Bj , Hk ↔ C ′k. Intuitively we assume that the
distance functions look like the lines as per the correspondence. The rest of the proof uses
precisely the above two properties of the lines, and so we continue the proof assuming these
two properties of the distance functions. Unfortunately, distance functions are parabolas
and we cannot assume that they will behave like the lines. Fortunately, we can show that if
c is small enough, within the interval [−c, c] the distance functions can be made to behave
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Figure 4 The main construction of the 2d worst case example.

precisely like the lines as desired. Since this issue is somewhat of a technicality we defer the
formal demonstration of it to the end of the proof. Thus, in what follows, we assume that
the distance functions Fi, Gj , Hk for the points of Ql ∪Qr ∪Q behave like the grid of lines
Ai, Bj , C

′
k and have the properties as desired. We continue calling the intersection points of

Fi, Gj as xij and the intervals around them as [xlij , xhij ], where 0 ≤ i+ j ≤ n− 1.
Recall that as we move from −c to c on the x-axis the graphs of Fi, Gj , Hk indicate the

square of distances from sites of Ql ∪Qr ∪Q to (x, 0). We will now describe how to place the
sites of P – this depends on having the sites of Ql ∪Qr ∪Q placed as described. Consider
the x-coordinates of all intersections among Fi, Gj , Hk for x ∈ [−c, c] – this includes all the
xij , x

l
ij , x

h
ij , for 0 ≤ i+ j ≤ n− 1. Call this set I. By the properties above of the distance

functions in [−c, c] all of these points are distinct. We now want that from a point (x, y)
where x ∈ [−c, c] the ordering of distances to sites among Ql ∪Qr ∪Q is the same as that
for (x, 0). Intuitively, this should be true if y is small enough, but at intersection points of
the distance functions it may not be true. So, consider a number ζ much smaller than (say
it is 1/10 of) the minimum distance between any two of these points in I. Consider the
points of the x-axis between [−c, c] but at least ζ away from all these intersection points 1.
We call this set of points X. Notice that each of [xlij , xhij ] ∩X is still non-empty. For any
such point (x, 0) ∈ X we have the following important property: if (x, 0) /∈ X ∩ [xlij ∩ xhij ]
where i+ j = k then at least k + 1 among the Ql ∪Qr lie strictly closer to it than (ek, fk),
otherwise, if (x, 0) ∈ X ∩ [xlij , xhij ] then only k of them are strictly closer. Moreover, there
is a number ζ ′ depending on ζ such that if we move to a point (x, y) where x ∈ X, and,
−ζ ′ ≤ y ≤ ζ ′ this property is still true. This number ζ ′ > 0 will be used below for placement
of the sites in P .

The sites of P are arranged according to the lower bound example for d = 1 on a vertical
line parallel to the y-axis to the left of the origin, such that the sites in Ql ∪ Qr ∪ Q are
closer for x ∈ [−c, c], see Figure 4 for what the placement of sites looks like. (The assigned
x-coordinates in Figure 4 are derived later on, when we discuss how the grid lines are
approximated by distance functions.) However, they have been “squished” to all lie very close
to the x-axis; the 1-d lower bound construction works for any squishing. In particular, the
squishing ensures all points lie within the strip of width ζ ′ around the x-axis. All bisectors

1 The number ζ is not really significant for this proof, rather a technicality. If we are ζ away from the
intersection points, the distance functions have some gap amongst themselves. Then, as we move away
from the x-axis to (x, y) for small y, the relative ordering of distances to sites in Ql ∪Qr ∪Q from (x, y)
remains same as that for (x, 0).
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of the points among P , which are now lines parallel to the x-axis, lie within the strip as well
(these bisector lines are important to the 1-d construction, being the places where the MLNN
among the sites of P changes).

We now indicate the probabilities assigned to the sites. Consider ε, δ, π0, . . . , πn−1, and,
α0, . . . , αn−1 from Lemma 10. We let all sites in Ql ∪ Qr have associated probability δ.
With the site (ek, fk) ∈ Q we associate πk, for k ∈ [n], and to the sites in P we assign the
probabilities αi and ε, for i ∈ [n], see the 1-d construction above. We fix our attention on
x ∈ X. We have the property that if x is within X ∩ [xlij , xhij ], there are k sites among
Ql ∪Qr closer to (x, 0) than (ek, fk) for k = i+ j, otherwise there are at least k + 1 of them
closer than (ek, fk). By the properties of the numbers from Lemma 10, and the properties
of distances to sites in Ql ∪ Qr ∪ Q we have the following: If x ∈ X ∩ [xlij , xhij ], then the
probability of (ek, fk) being a MLNN where k = i+ j is precisely π0 > α0. Otherwise, the
probability of (ek, fk) being a MLNN is at most π0(1− δ). Moreover, for a site in Ql ∪Qr
the probability is δ < π0(1− δ). Recall from the 1-d construction that the probabilities of
the MLNN are of the form α0(1 − ε)j for 0 ≤ j < n. Therefore, when x ∈ X ∩ [xlij , xhij ]
then (ek, fk) is the MLNN where k = i+ j since π0 > α0. If x ∈ X but not within any of
the intervals [xlij , xhij ] then the MLNN will be a site in P , since π0(1− δ) < α0(1− ε)n and
α0(1− ε)n is a lower bound on the minimum possible probability for a site in P to be the
MLNN.

We now analyze the complexity of the resulting MLVD. Note that P has n2 bisectors at
which the MLNN in P changes. Furthermore, a site (ek, fk) ∈ Q becomes the MLNN briefly
at k + 1 different “intervals” X ∩ [xlij , xhij ] (we will call this a pseudo-interval, since this set
is not actually an interval but lies within [xlij , xhij ] and all such pseudo-intervals are disjoint
from each other by construction), where i + j = k as argued above. Therefore the most
likely nearest neighbor is in Q for n(n+ 1)/2 different pseudo-intervals, corresponding to the
intersection points from the lower half of the grid, see Figure 2. Moreover, between any two
of the pseudo-intervals the MLNN lies in P . Since there are n2 bisectors of P , and each of
these bisectors causes a vertex of the MLVD for each of the n(n+ 1)/2 pseudo-intervals, the
total complexity of the MLVD is Ω(n4).

For d > 2, consider the same construction, but now with P replaced by the lower bound
construction for d − 1. The sites in Ql ∪ Qr ∪ Q can be placed in the x1x2 plane and we
reason with the [−c, c] interval on the x1-axis now. In this case, the strips corresponding to
the MLVD for the sites in P , will be replaced by tubes (or higher dimensional versions of it),
which may lie all “around” the x1-axis. However, moving to a point close to x1-axis in any
direction orthogonal to it, will still preserve the ordering of distances as before to sites in Q
(away from intersection points as before), i.e., if we are within a ζ ′ tube of the x1 axis within
the set X then we are in a similar situation as in the 2-d case. We will need a more general
version of Lemma 10, but the crucial point to observe is that the possible probability values
for a site in P to be MLNN will lie in a very small interval depending on δ, and then one
can choose a π0 and δ such that (π0(1− δ), π0) entirely contains this interval. The rest of
the construction details are tedious but work similar to the 2-d case. This leads to a total
complexity of Ω(n2d) for the MLVD, as by assumption the complexity of the MLVD of P
was Ω(n2d−2). The number of points involved in the construction increase by 3n for each
dimension and start with 2n, thus only (3d− 1)n points are involved.

In order to finish the proof we still need to show how to approximate the lines by
actual distance functions. Consider a line y = Px + Q where Q ≥ P 2/4. Consider the
point (β, γ) = (−P/2,

√
Q− P 2/4). It can be verified that the distance function f(β,γ) is

x2 + Px+Q. As such if x ∈ [−c, c] we have that 0 ≤ f(β,γ)(x)− (Px+Q) ≤ c2 and if c is
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c2

Figure 5 Grid of strips each of width c2. The dotted lines show the actual distance functions
trapped in the strip within [−c, c]. The lower strip line in each case is the earlier Ai, Bj or C′

k.

“small” the parabolas are approximately lines. In particular, consider the grid of Figure 2. As
we noticed the important intersection points are (xij , yij) for 0 ≤ i+ j ≤ n−1. Moreover, the
x-coordinates of any two intersection points are separated by Ω(c/n2). The intervals [xlij , xhij ]
are of length O(c/n3). Consider replacing the lines of the grid by thin strips of width c2. If
c = O(1/n4), then c2 � c/n2, c/n3 and the picture looks like the modified picture of the grid,
see Figure 5. As the distance functions lie inside the corresponding strips, the intersection
points lie inside the “diamonds” that occur at the intersection of the strips. Interestingly,
the x coordinates of the intersection points do not change, as can be verified. Moreover
because the width of these strips is O(c2) the intersection points will be still distinct and the
corresponding intervals will be disjoint as well. The distance functions otherwise behave like
lines (i.e., they are continuous and intersect at most once), moreover all the Fi are “parallel”
and equally spaced, as are the Gj and the Hk, as such the grid induced by them looks like
and has the essential properties of the grid of lines Ai, Bj , C ′k of Figure 2 and will suffice for
the proof. To fix the coordinates, notice that we can choose the constant M large enough so
that Q > P 2/4 for each of the lines involved; in particular M = 1 works. The corresponding
points can be computed by the formulas for β, γ above and it can be easily seen that the x
coordinates of all points in Ql is −1/2, in Qr it is 1/2 and it is 1/(4n+ 2) for each point of
Q, as shown in Figure 4. This completes the proof. J
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Abstract
Frèchet distance is an important geometric measure that captures the distance between two curves
or more generally point sets. In this paper, we consider a natural variant of Fréchet distance
problem with multiple choice, provide an approximation algorithm and address its parameterized
and kernelization complexity. A multiple choice problem consists of a set of color classes Q =
{Q1, Q2, . . . , Qn}, where each class Qi consists of a pair of points Qi = {qi, q̄i}. We call a subset
A ⊂ {qi, q̄i : 1 ≤ i ≤ n} conflict free if A contains at most one point from each color class. The
standard objective in multiple choice problem is to select a conflict free subset that optimizes a
given function.

Given a line segment ` and set Q of a pair of points in R2, our objective is to find a conflict
free subset that minimizes the Fréchet distance between ` and the point set, where the minimum
is taken over all possible conflict free subsets. We first show that this problem is NP-hard, and
provide a 3-approximation algorithm. Then we develop a simple randomized FPT algorithm which
is later derandomized using universal family of sets. We believe that this technique can be of
independent interest, and can be used to solve other parameterized multiple choice problems. The
randomized algorithm runs in O(2kn log2 n) time, and the derandomized deterministic algorithm
runs in O(2kkO(log k)n log2 n) time, where k, the parameter, is the number of elements in the
conflict free subset solution. Finally we present a simple branching algorithm for the problem
running in O(2kn2 logn) time. We also show that the problem is unlikely to have a polynomial
sized kernel under standard complexity theoretic assumption.
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1 Introduction

The Fréchet distance measures similarity between two curves by considering an ordering of
the points along the two curves. An intuitive definition of the Fréchet distance is to imagine
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that a dog and its handler are walking on their respective curves. Both can control their
speed but can only go forward. The Fréchet distance of these two curves is the minimum
length of any leash necessary for the handler and the dog to move from the starting points
of the two curves to their respective endpoints [6].

Eiter and Mannila [14] introduced discrete Fréchet distance. Intuitively, the discrete
Fréchet distance replaces the dog and its owner by a pair of frogs that can only reside
on any of the n and m specific pebbles on the curves A and B respectively. These frogs
hop from a pebble to the next without backtracking. Formally let A = {a1, a2, . . . an} and
B = {b1, b2, . . . bm} be a sequence of points. For any r ∈ R we define the graph Gr with
vertices A × B and there exists an edge between (ai, bj) and (ai+1, bj) if d(ai+1, bj) < r

and there exists an edge between (ai, bj) and (ai, bj+1) if d(ai, bj+1) < r. Discrete Fréchet
distance between A and B is the infimum value of r such that in Gr there is a path between
(a1, b1) and (an, bm).

In this paper we introduce a semi-discrete Fréchet distance which is, given a continuous
curve S and a set of points P , the minimum length of a leash that simultaneously allows
the owner to walk on S continuously and the frog to have discrete jumps from one point to
another in P without backtracking. Hence the leash is allowed to switch discretely when
frog jumps from one point to another. We assume that S is a line segment. Our main point
of consideration is the multiple choice problem in this setting. Here instead of a set of points
P , we are given a set of pair of points Q in R2 such that at most one point is selected from
each pair so that the length of leash needed is minimized.

These problems are motivated by 2D curve fitting and object construction from noisy
data which can further be used in computer vision for data comparison and biomolecules
structure comparison. Here the “resemblance” corresponds to minimizing the semi-discrete
Fréchet distance. For example, given a noisy data with/without multiple choice constraints,
we may construct a curve/object resembling the standard curve/object and may find the
resemblance parameter (specified by semi-discrete Fréchet distance).

Related Work. Fréchet distance problem has been extensively studied in the literature. Alt
et al. [3] presented an algorithm to compute the Fréchet distance between two polygonal
curves of n and m vertices in time O(nm log2(nm)). The discrete Fréchet distance can be
computed in O(mn) time by a straightforward dynamic programming algorithm. Agarwal
et al. [1] presented a sub-quadratic algorithm for computing the discrete Fréchet distance
between two sequences of points in the plane.

The following problem has been recently addressed by Shahbaz [19]. Given a point set S
and a polygonal curve P in Rd(d > 2), find a polygonal curve Q, with its vertices chosen
from S, such that the Fréchet distance between P and Q is minimum with the relaxation
that not all points in S need to be chosen, and a point in S can appear more than once as a
vertex in Q. They show that a curve minimizing the Fréchet distance can be computed in
O(nk2 log(nk)) time where n and k represent the sizes of P and S respectively. In a recent
paper [9] Consuegra and Narasimhan introduce the concept of Avatar problems that deal with
situations where each entity has multiple copies or “avatars” and the solutions are constrained
to use exactly one of the avatars. Further study of the problems of same flavor can be found
in [5, 4]. An Avatar problem consists of a set of color classes Q = {Q1, Q2, . . . , Qn}, where
each color class Qi consists of a pair of points Qi = {qi, q̄i} (in general k ≥ 2 points can be
in each class). We call a subset A ⊂ {qi, q̄i : 1 ≤ i ≤ n} conflict free if A contains at most
one point from each color class.
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Problems we address. We formally define the problems considered in this paper starting
with the Semi-discrete Fréchet Distance problem.

Semi-discrete Fréchet Distance
Input: A set of points P = {p1, p2, . . . , pn} and a line segment ` in R2.
Question: Find a sequence of points λ∗ = {q1, q2 . . . qk} where qi ∈ P , which minimizes
Fréchet distance with ` where the minimum is taken over all the sequence of points in P .
We denote the minimum distance by dF (P, `).

Next we consider the following problems involving choices.

Conflict-free Fréchet Distance
Input: A set Q of pairs of points, and a line segment ` in R2.
Question: Find a conflict free subset of points P ∗ ⊂

n⋃
i=1

Qi which minimizes dF (P ∗, `)

The natural decision version of this problem is as follows.

Conflict-free Fréchet Distance (Decision Version)
Input: A set Q of pairs of points, a line segment ` in R2, and d ∈ R.
Question: Is there a conflict free set of points P ∗ ⊂

n⋃
i=1

Qi such that dF (P ∗, `) ≤ d.

The natural parameterized version of the problem is

Parameterized Conflict-free Fréchet Distance Parameter: k

Input: A set Q of pairs of points, a line segment ` in R2, d ∈ R, and k ∈ N ∪ {0}.
Question: Is there a conflict free subset of points P ∗ of cardinality at most k such that
dF (P ∗, `) ≤ d.

We also consider parameterized version of “minimum maxGap” introduced in [9]. Here given
a set of points x1, . . . , xn on a line, maxGap is the largest gap between consecutive points in
the sorted order. The problem is as follows.

Parameterized Minimum maxGap Parameter: k

Input: A set Q of pairs of points on a line L, two points ps and pe on L, d ∈ R, and
k ∈ N ∪ {0}.
Question: Is there a conflict free subset of points P ∗ of cardinality at most k between ps

and pe such that the minimum maxGap of P ∗ ∪ {ps, pe} is at most d.

Our Results and the organization of the paper. In Section 2 we prove that Conflict-
free Fréchet Distance (Decision Version) is NP-Complete. In Section 3 we show that
Semi-discrete Fréchet Distance is solvable in O(n logn) time. In Section 4 we provide
a constant factor approximation algorithm for Conflict-free Fréchet Distance. In
Section 5 we consider the parameterized complexity of the problem, i.e, Parameterized
Conflict-free Fréchet Distance. In parameterized complexity, algorithm runtimes are
measured in terms of input length and a parameter, which is expected to be small. More
precisely, a parameterized problem is fixed-parameter tractable (FPT) if an instance (I, k)
can be solved in time f(k) · |I|O(1) for some function f . Another major research field in
parameterized complexity is kernelization. A parameterized problem is said to admit a
polynomial kernel if any instance (I, k) can be reduced to an equivalent instance (I ′, k′), in
polynomial time, with |I ′| and k′ bounded by a polynomial in k. There is also a lower bound
framework for kernelization which allows us to rule out the existence of polynomial kernels
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for some problems under standard complexity-theoretic assumptions [8, 11, 15] . For more
details about parameterized complexity we refer to monographs [12, 10].

We begin with a simple randomized FPT algorithm and provide a method to derandomize
the algorithm using universal sets. In Section 5.2 we give another FPT algorithm using
branching. Finally in Section 5.3 we show that the problem is unlikely to have a polynomial
sized kernel using OR-composition.

2 Hardness of Conflict-free Fréchet distance Problem

In this section we show that Conflict-free Fréchet Distance (Decision Version)
is NP-complete by giving a reduction from Rainbow covering problem mentioned in [4].
Suppose we are given a set P = {P1, P2, . . . , Pn} where each Pi contains a pair of intervals
{Ii, Ii} such that each interval is a finite continuous subset of the x-axis. A set of intervals
Q ⊆

⋃n
i=1 Pi is a rainbow, if it contains at most one interval from each interval pair. An

interval is said to cover a point if the point lies inside the interval. The formal definition of
Rainbow covering problem is as follows.

Rainbow Covering
Input: A set of pairs of intervals P and a set of points S = {s1, s2, . . . , sn} on x-axis.
Question: Does there exist a rainbow Q such that each point in S is covered by at least
one interval in Q.

Rainbow Covering is known to be NP-complete [4]. We introduce an intermediate problem
called Rainbow Line Cover and show it NP-complete using a reduction from Rainbow
Covering. Then we give a reduction from Rainbow Line Cover to Conflict-free
Fréchet Distance (Decision Version).

Rainbow Line Cover
Input: Set P ′ = {P ′1, P ′2, . . . , P ′m} where each P ′i contains a pair of left open intervals
{Ii, Ii} and a line segment on x-axis, `in = [x1, x2].
Question: Is there a rainbow Qin such that it covers line segment `in.

I Lemma 1. Rainbow Line Cover is NP-hard.

Proof. The proof is by a polynomial time reduction from Rainbow Covering. Let (P, S)
be an instance of Rainbow Covering. Without loss of generality, let s1, s2, . . . , sn be the
arrangement of points from S in increasing order on x-axis according to their x-coordinates
and each interval from P covers at least one point in S. We will create an instance (P ′, `in)
of Rainbow Line Cover as follows. Each interval in P will be extended and the pairing in
the new set P ′ is same as the old one. Now for each interval Ij = [aj , bj ] covering s1, i.e,
the first point in S, consider the interval formed via extending it by a small distance δ ∈ R
on left such that it is open at the extended point. Denote it as Iin

j = (aj − δ, bj ]. For each
remaining intervals Ii = [ai, bi], consider the point s in S such that s is strictly to the left of
ai and is closest to it. Extend Ii to the left such that it is open ended at that point to make
Iin

i . For example, if s = (c, 0) then Iin
i = (c, bi]. Now suppose s1 = (a1, 0) and sn = (an, 0),

then `in is the line segment on x-axis is [a1, an].

I Claim 2. There exists a rainbow from P of size d, covering S, if and only if there exists a
rainbow from P ′ of size d covering `in.

Proof. Let Q be a rainbow from P covering S. Let Qin be the set of intervals constructed
from Q in the reduction. We claim that Qin is a rainbow covering `in. Since Q is a rainbow,
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Figure 1 Reduction from Rainbow line cover problem.

Qin is also also a rainbow. Since all all the points in S is covered by Q and each interval
of Q is extended left by non-zero distance, S is covered by Qin. Let q /∈ S be a point in
`in. Let s be the point in S to the right of q and closest to q. By construction any interval
covering s, also covers q. Hence Qin covers `in.

Similarly if there is rainbow Qin covering `in then there exists a rainbow Q such that it
covers S. Here Q will be the set of intervals that were used to construct intervals in Qin.
Since Qin is a rainbow, Q is also a rainbow. Since Qin covers S ⊆ `in and the intervals in
Qin are obtained by extending openly to nearest left point from S, Q covers S. J

This completes the proof. J

I Theorem 3. Conflict-free Fréchet Distance (Decision Version) is NP-complete.

Proof. Given a sequence of at most n points as witness, we can check in polynomial time
whether the the points in the sequence is conflict free and Fréchet distance is at most d, thus
the problem is in NP.

To prove NP-hardness we give a polynomial time reduction from Rainbow Line Cover.
Let (P ′, `) be an instance of Rainbow Line Cover, where |P ′| = n. From P ′ we create a
set of pairs of points Q. For each pair Pi ∈ P ′ we create a pair of points Qi ∈ Q. To do this,
for each interval I = (a, b] ∈ Pi (similarly I) we create a point p (similarly p) as follows. If
a < x1, then prune the interval such that a = x1. Similarly if b > x2 then make b = x2. Let
the length of an interval Ii = (ai, bi] be bi−ai and len be the largest length among the length
of all the intervals in P ′. Define d = len+ 1. Now for each interval I = (a, b] ∈

⋃
P∈P′ P , we

create a point p. Consider two disks D(a) and D(b) of radius d centred at (a, 0) and (b, 0)
respectively. Let p be the intersection point above x-axis between D(a) and D(b).

The set Q is the set of pairs of points created as above, one for each P ∈ P ′. The pair
(Q, `) is the output of the reduction. Clearly, the reduction takes polynomial time.

I Claim 4. There is a rainbow covering for (P ′, `) if and only if the conflict free Fréchet
distance between Q and ` is at most d.

Proof. Consider a rainbow covering R for (P ′, `). Now consider the set S constructed from
intervals in rainbow R. Since R is a rainbow, S is conflict free. Also as the intervals were
covering `, each point on ` has a point in S which is at maximum distance of d. Hence the
Fréchet distance between Q and ` is at most d.

For the reverse direction, assume the Fréchet distance between Q and ` is d. That is,
there exists a sequence T = (p1, p2, . . . , pk) of conflict free points from Q, which should be
traversed in order to attain Fréchet distance d. Here pi is point in Q for all 1 ≤ i ≤ k.
Assume ` = [x1, x2] and yi = [ai, ai+1] be the interval on ` nearest to point pi for all points
pi ∈ T . We have a1 = x1 and ak+1 = x2. Also for all points z ∈ yi, d(z, pi) ≤ d where
1 ≤ i ≤ k. Thus by construction, corresponding to each yi, we have an interval Ii ∈ P ′ such
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that yi ⊆ Ii. Let the set of such intervals be R. Since T is conflict free, R is a rainbow.
Also as Fréchet distance is d, ` =

⋃k
i=1 yi. Hence R also covers `. Therefore R is a rainbow

covering of `. J

This completes the proof of the theorem. J

3 Polynomial Algorithm for Semi-discrete Fréchet distance problem

In this section we first prove that Semi-discrete Fréchet Distance problem can be
solved in O(n logn) time. Without loss of generality, assume that the line segment ` coincides
with the X-axis and has end points (x1,0) and (x2,0). Take any point pi ∈ P where
pi = (ai, bi) and let x be a variable depicting the position of a point on line segment ` with
x1 ≤ x ≤ x2. Then the function fi(x) representing the distance between the point pi and x
is fpi

(x) =
√

(x− ai)2 + bi
2.

For each point pi ∈ P we can find out the function fi(x), where each such function
represents one sided hyperbola lying above the X-axis and in interval between x1 and x2.
Let the lower envelop of such functions defined in the domain [x1, x2] be Γ(P ). Let d∗ be
the maximum perpendicular distance between Γ(P ) and `. Then we can see that

I Observation 5. d∗ is the minimum Fréchet distance between ` and P .

Note that two hyperbolas will intersect at at most one point. To see this, note that
solving the two equations fpi

(x) =
√

(x− ai)2 + bi
2 and fpj

(x) =
√

(x− aj)2 + bj
2 gives

only one solution. Thus each hyperbola can appear in the lower envelop at most once.
Before proceeding further let us have a look at Davenport–Schinzel sequence. Daven-

port–Schinzel sequences were introduced by H. Davenport and A. Schinzel in the 1960s.

I Definition 6. For two positive integers n and s, a finite sequence U =< u1, u2, u3, . . . , um >

is said to be a Davenport–Schinzel sequence of order s (denoted as DS(n, s)-sequence) if it
satisfies the following properties:
1. 1 ≤ ui ≤ n for each i ≤ m.
2. ui 6= ui+1for each i < m.
3. If x and y are two distinct values in the sequence U , then U does not contain a subsequence

. . . x . . . y . . . x . . . y . . . consisting of s+ 2 values alternating between x and y.

I Theorem 7 ([17, 7, 2]). The lower envelope of a set F of n continuous, totally defined,
univariate functions, each pair of whose graphs intersects in at most s points, can be
constructed in an appropriate model of computation, in O(λs(n) logn) time where λs(n)
is the Davenport–Schinzel sequence of order s including n distinct values.

Since λ1(n) = n, by substituting s = 1 in Theorem 7, we get,

I Theorem 8. Semi-discrete Fréchet Distance problem can be solved in O(n logn)
time.

4 Approximation algorithm for Conflict-free Fréchet distance problem

In this section we present an approximation algorithm for Conflict-free Fréchet Dis-
tance. Let us first define some terminology. As before, assume that the line segment `
coincides with the X-axis and has end points (x1,0) and (x2,0). For any point set A, denote
Semi-discrete Fréchet distance between A and line-segment ` by dF (A, `). Also let Γ(A) be
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Figure 2 Creating the bipartite graph from the lower envelope.

the lower envelope of the functions fpi
(x) =

√
(x− a)2 + b2 for all pi = (a, b) ∈ A where

x1 ≤ x ≤ x2. Now let us start our discussion with the following observation about the
Semi-discrete Fréchet distance.

I Observation 9. For any set of points A and B where A ⊆ B, dF (A, `) ≥ dF (B, `).

Proof. Let C ⊆ A be the set of points that achieves dF (A, `) = d. Since A ⊆ B, we have
that C ⊂ B and hence dF (B, `) ≤ d. J

Let (Q = {Q1, Q2 . . . Qn}, `) be the input instance of Conflict-free Fréchet Dis-
tance, where Qi = {qi, qi}. Let Q =

n⋃
i=1

Qi. By Theorem 7 we can find dF (Q, `) in O(n logn)

time. Among all conflict free subsets of Q, assume P opt is a subset that minimizes the
Semi-discrete Fréchet distance and let dopt = dF (P opt, `). If Γ(Q) contains at most one of
fqi

or fqi
for each Qi = {qi, qi} , then dopt = dF (Q, `). As P opt ⊆ Q, from Observation 9 we

have following lemma.

I Lemma 10. dopt ≥ dF (Q, `).

Suppose the set of points for which the corresponding fqi
(x) are in Γ(Q) be P ′ . Observe

that if P ′ does not contain points from the same pair, then dF (P ′ , `) is the conflict free
Semi-discrete Fréchet distance and we have dopt = dF (Q, `) = dF (P ′ , `). If not, then our
objective is to choose a conflict free subset P ′′ of P ′ such that dF (P ′′ , `) ≤ 3dF (P ′ , `). First,
for all the points qi ∈ P

′ such that qi /∈ P
′ , we include qi in P

′′ . For the rest of the points,
let Ppair = {p1, p2, . . . p2k} be the sorted order of points along x-axis where each pi = qj or
qj for some j. Now from Ppair , we create bags B1, B2, . . . , Bk where Bi = {p2i−1, p2i}. We
construct a bipartite graph G = (U, V,E) where U = {B1, B2, . . . , Bk} and V is set of all k
pairs Qi = {qi, qi} such that both qi and qi are in Ppair. We add an edge eij = (Bi, Qj), if
Bi ∩Qj 6= ∅. For an example, see Figure 2.

Now we have the following lemma.

I Lemma 11. G = (U, V,E) contains a perfect matching M .

Proof. Each vertex in U and V has degree at least 1 and at most 2. Also if vertex Bi in U
has degree one, then the vertex Qj to which it is connected in V also has degree one (as it
implies that both Bi = Qj = {qi, qi}). Thus every subset W of U has a set of neighbours
NG(W ) such that |W | ≤ |NG(W )| (here the neighbours of W is the set of vertices in V to
which vertices in W are connected). Hence by Hall’s marriage theorem [16], G has a perfect
matching M . J

Let M be a perfect matching in G. Now for each edge (Bi, Qj) selected in matching
M , if |Bi ∩Qj | = 1 then include |Bi ∩Qj | in P

′′ , else if |Bi ∩Qj | = 2 then we include one
arbitrary point of Bi ∩Qj in P ′′ . Observe that from each pair of points in Ppair, only one
point is selected. Thus P ′′ is conflict free. Now we have following lemma.
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I Lemma 12. dF (P ′′ , `) ≤ 3dF (Q, `).

Proof. Since dF (Q, `) = dF (P ′ , `), it is enough to show that dF (P ′′ , `) ≤ 3dF (P ′ , `). Let π
be the sorted order of points in P ′ along x-axis. We first prove the follwing claim.

I Claim 13. For any point s ∈ P
′ , at least one among s, its predecessor in π and its

successor in π, is in P ′′.

Proof. We claim that (i) no three consecutive points from π can be in P ′ \P ′′. For any three
consecutive points q1, q2, q3, either one of them does not belong to Ppair and thus belongs to
P ′′ or one among {q1, q2} and {q2, q3} belongs to Ppair. From the construction of P ′′, we
include one among q1, q2, q3, in P ′′. Now we claim that (ii) at least one among the first two
points in π is in P ′′. Let s1 and s2 be the first two points in π. If {s1, s2} 6⊆ Ppair, then
P ′′ ∩ {s1, s2} 6= ∅. Otherwise B1 = {s1, s2} and by the construction of P ′′, we have that
P ′′ ∩ {s1, s2} 6= ∅. Similarly we can prove that (iii) at least one among the last two points in
π is in P ′′.

The claim follows from the statements (i),(ii) and (iii). J

Let d = dF (P ′ , `). Now we prove that dF (P ′′ , `) ≤ 3d. Towards that it is enough to
prove that for any point on `, there is a point in P ′′ , which is at a distance at most 3d. For
any two points x, y, we use d(x, y) to denote the distance between x and y. Let z be a point
in `. Since d = dF (P ′ , `), there is a point s in P ′ such that d(z, s) ≤ d. Now we show that
there is a point s′ ∈ P ′′ such that d(z, s′) ≤ 3d. If s ∈ P ′′, then we set s′ = s. Otherwise, by
Claim 13, either its successor or its predecessor in π belongs to P ′′. Let s′ be a point in P ′′
which is either successor of s or predecessor of s. Since the d = dF (P ′ , `), there is a point
t on ` such that d(t, s) ≤ d and d(t, s′) ≤ d. Now we have that d(z, s) ≤ d, d(s, t) ≤ d and
d(t, s′) ≤ d. Hence by triangular inequality, we get d(z, s′) ≤ 3d. This completes the proof of
the lemma. J

I Theorem 14. There is a 3-approximation algorithm for Conflict-free Fréchet Dis-
tance.

5 Fixed Parameter Tractable Algorithms

Here we give two FPT algorithms for Parameterized Conflict-free Fréchet distance Problem.
The first algorithm is based on randomization and the second is based on branching.

5.1 Randomized algorithm
We give a randomized FPT algorithm which succeeds with a constant success probability.
It uses the following problem for which there is a simple greedy algorithm running in time
O(n logn); the algorithm is very similar to that of the Interval Point Cover [13].

Interval Line Cover
Input: A line segment ` and a set Q of n intervals on `.
Question: Find a minimum cardinality subset Q′ ⊆ Q such that the intervals in Q′ cover
all the points in the line segment `.

I Theorem 15. There is a randomized algorithm for Parameterized Conflict-free
Fréchet Distance running in time O(2kn logn) which outputs No for all No-instances
and outputs Yes for all Yes-instances with constant probability.
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Proof. Let |Q| = n. The algorithm work as follows. It creates a set S of n points through
the following random process. For each {qi, qi} ∈ Q, it uniformly at random picks one point
from {qi, qi} and adds to the set S. Then for each point p ∈ S, the algorithm then computes
an interval on ` as follows. Draw a circle Cp of radius d with p as the centre. The interval
[ap, bp] on ` is the interval on ` covered by the circle Cp. Now run the O(n logn) algorithm for
Interval Line Cover on instance (`, {[ap, bp] | p ∈ S}). for the problem If this algorithm
returns a solution of size at most k, then our algorithm outputs Yes.

Now we show that if the input instance is an Yes instance, then our algorithm outputs
Yes with probability 1

2k . Let P ∗ be a conflict free subset of points of cardinality k such that
dF (P ∗, `) ≤ d. Notice that for each pi ∈ P ∗, there is point pi /∈ P ∗ such that {pi, pi} ∈ Q
and with probability 1/2 we have added pi to S. This implies that Pr(S = P ∗) = 1

2k . Since
each point on ` is at a distance at most d to some point P ∗, when S = P ∗, the algorithm
of Interval Line Cover outputs Yes Since Pr(S = P ∗) = 1

2k our algorithm output Yes
with probability at least 1

2k . Suppose input is a No-instance. Then for each conflict free
point set P ∗ of size at most k, dF (P ∗, `) > d. Also note that the set S we constructed is a
conflict free set. Since dF (P ∗, `) > d, we need more than k intervals from {[ap, bp] | p ∈ S}
to cover `. This implies that the algorithm of Interval Line Cover will return a set of
size more than k, and so our algorithm will output No.

We can boost the success probability to a constant by running our algorithm 2k times.
For an Yes instance the algorithm will fail in all 2k run is at most (1− 1

2k )2k ≤ 1
e . Since we

are running the algorithm of Interval Line Cover 2k time, the running time mentioned
in the theorem follows. J

Derandomization

Here, we define matching universal sets. Then we give a derandomization of algorithm for
the problem. First we define some notations. For n ∈ N, let [n] = {1, . . . , n}. For a set U ,(

U
k

)
denotes the family of subsets of U , where each subset is of size exactly k.

Matching universal sets for a family of disjoint pairs. Here we define a restricted version
of universal sets (defined below) which we call matching universal sets and it is defined for
a family of disjoint pairs. We give an efficient construction of these objects by reducing to
universal sets. We use it to derandomize our algorithm given in the section. We believe
that these objects will add to the list of tools used to derandomize algorithms and will be of
independent interest.

I Definition 16 ((n, k)-universal sets [18]). Let U be a set of size n. A family of subsets F of
A is called (n, k)-universal sets for U , if for any A,B ⊆ U such that A ∩B = ∅, |A ∪B| = k,
there is a set F ∈ F such that A ⊆ F and F ∩B = ∅

I Lemma 17 ([18]). There is a deterministic algorithm which constructs an (n, k)-universal
family of sets of cardinality 2kkO(log k) logn in time 2kkO(log k)n logn.

I Definition 18. Let U = {ai, bi | i ∈ [n]} be a 2n sized set and S = {{ai, bi} | i ∈ [n]} be
a family of pairwise disjoint subsets of U . A family of subsets F of U is called an (n, k)-
matching universal family for S, if for each I ∈

([n]
k

)
, and S ∈

(
U
k

)
such that |S ∩{aj , bj}| = 1

for all j ∈ I, we have a set F ∈ F such that S ⊆ F and F ∩ ({aj , bj | j ∈ I} \ S) = ∅.

Now we use Lemma 17, to get an efficient construction of (n, k)-matching universal sets.
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I Theorem 19. Given a 2n sized set U = {ai, bi | i ∈ [n]} and a family S = {{ai, bi} | i ∈ [n]}
of pairwise disjoint subsets of U , there is a deterministic algorithm which constructs an
(n, k)-matching universal family of cardinality 2kkO(log k) logn in time 2kkO(log k)n logn.

Proof. Let U ′ = {e1, . . . , en} be a set of size n, where each ei represents the set {ai, bi}. Now
our algorithm first constructs an (n, k)-universal family F ′ for the set U ′ using Lemma 17.
Now the algorithm constructs an (n, k)-matching universal sets F for S from the family F ′
as follows. For each set F ′ ∈ F ′, it creates a set F ⊆ U of size n and adds to F : for each
ei ∈ U ′, if ei ∈ F ′, then it adds ai to F , otherwise it adds bi to F .

Notice that |F| = |F ′|, and hence the cardinality of (n, k)-matching universal family
mentioned in the theorem follows. Since the algorithm mentioned in Lemma 17 takes time
2kkO(log k)n logn and construction of F from F ′ takes time O(n), the running time of our
algorithm is 2kkO(log k)n logn.

Now we show that F is indeed an (n, k)-matching universal family for S. Consider a set
I ∈

([n]
k

)
and S ∈

(
U
k

)
such that |S ∩ {aj , bj}| = 1 for all j ∈ I. Let A′ = S ∩ {aj | j ∈ I},

B′ = {aj | j ∈ I} \ A′ and C = {bj | aj ∈ B′}. Notice that S = A′ ∪ C, A′ ∩ B′ = ∅ and
since |I| = k, we have that |A′ ∪ B′| = k. Let A = {ej | aj ∈ A′} and B = {ej | aj ∈ B′}.
Since A′ ∩ B′ = ∅ and |A′ ∪ B′| = k we have that A ∩ B = ∅ and |A ∪ B| = k. By the
definition of (n, k)-universal family, we know that there is a set F ′ ∈ F ′ such that A ⊆ F ′
and F ′ ∩B = ∅. Now consider the set F created corresponding to F ′. Since for each ej ∈ A,
ej ∈ F ′, we have that aj ∈ F . Since for each ej′ ∈ B, ej′ /∈ F ′, we have that bj′ ∈ F . This
implies that A′ ⊆ F and C ⊆ F , and hence A ∪ C = S ⊆ F . Since |F ∩ {ai, bj}| = 1 for all
i ∈ [n] and S ⊆ F , we have that F ∩ ({aj , bj | j ∈ I} \ S) = ∅. This completes the proof of
the lemma. J

Instead of creating the set S by the random process, we can use (n, k)-matching universal
family F for Q to get a deterministic algorithm. That is for each S ∈ F , run the algorithm for
Interval Line Cover on the input created using ` and S as above, and output Yes, if at
least once the algorithm for Interval Line Cover returns a solution of size at most k. The
correctness of the algorithm follows from the definition of (n, k)-matching universal family. By
Theorem 19, the running time to construct F is 2kkO(log k)n logn and |F| = 2kkO(log k) logn.
Hence our deterministic algorithm will run in time 2kkO(log k)n log2 n. This gives us the
following theorem.

I Theorem 20. There is a deterministic algorithm for Parameterized Conflict-free
Fréchet Distance running in time O(2kkO(log k)n log2 n).

Note: This technique is especially interesting because the same technique can be used to
provide FPT algorithms for similar class of problems. Consider a generalized multiple choice
problem P(Q, c) where we are given a set Q with n color classes where each color class
contains c objects. The objective is to select minimum number of objects taken at most one
from each color class to satisfy certain conditions. If there exists a polynomial time algorithm
for P(Q, 1) then the same technique gives a randomized ck algorithm.

5.2 Branching algorithm

For this algorithm, we will consider the more general problem which is the parameterized
version of Rainbow Covering.
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Parameterized Rainbow Covering Parameter: k

Input: A set of n pairs of intervals P and a set of points S on X-axis, and k ∈ N ∪ {0}.
Question: Is there a rainbow Q of cardinality at most k such that each point in S is
covered by at least one interval in Q.

We now give an algorithm based on branching for this problem. The algorithm can be
modified to solve Parameterized Conflict-free Fréchet Distance.

Let S = {s1, s2, . . . , sn}. Without loss of generality, assume that s1, s2, . . . , sn are sorted
in ascending order of their x-coordinates. Now for each interval Ii ∈ Pi where Pi ∈ P,
assume that the interval is starting not before s1 and ending not beyond sn. If not, trim
such intervals such that they satisfy above criteria. Also initialize an integer variable k′ = k.

In the first step, consider the intervals covering s1. Let the sorted order of these intervals
according to their length in descending order be Ic1 = (I1, I2, . . . , Iq) (here the length of
interval I = [a, b] is calculated as b− a where we have b > a). Let si ∈ S be the first point
right to I1. If q = 1, then choose I1 in solution, delete I1,Ī1 ,s1, I2, . . . , Iq and all points
covered by I1. Else if q > 1 then we have the following lemma.

I Lemma 21. There exists an optimal solution that contains I1 or Ī1.

Proof. Suppose the lemma is false. Then we have some other Ij covering s1. But Ij ⊆ I1 and
also Ī1 is not in solution. So we can choose I1 and delete Ij in our new optimal solution. J

Thus we can either choose I1 in optimal solution or may choose Ī1 in it. If I1 is chosen then
delete I1, Ī1, s1, I2, . . . , Iq and all points covered by I1. If I1 is not chosen then put Ī1 in
solution, and delete I1,Ī1, all intervals Ii such that Ii ⊆ Ī1 and all points covered by Ī1. At
the end of the first step, put k′ = k′ − 1. For the second step, start with si if I1 is chosen in
the previous step. Else consider s1 again with branching on I2. Repeat the same procedure
till either all points are covered or k′ = 0. Now if atleast one branch of these O(2k) choices
covers all the points then accept else reject. The time complexity of this algorithm will be
O(2kn2 logn). Hence we have following theorem.

I Theorem 22. There is branching algorithm for Parameterized Rainbow Covering
running in time O(2kn2 logn). Similarly, there is a branching algorithm for Parameterized
Conflict-free Fréchet Distance with runtime O(2kn2 logn).

We observe that the branching algorithm can be used to obtain FPT algorithm for the
Parameterized Minimum maxGap. Outline of algorithm is as follows. Start from the
first point ps. Take the farthest point from ps having distance less than d. Let the point
chosen be pi. Then we claim that there exists an optimal solution which contains either pi

or p̄i. So branch on pi.

5.3 Kernel Lower bound
In this subsection we show that Parametrized Rainbow Covering does not admit a
polynomial kernel unless co-NP ⊆ NP/poly. Towards that we first explain one of the tools to
prove such a lower bound– called composition.

I Definition 23 (Composition [8]). A composition algorithm (also called OR-composition
algorithm) for a parameterized problem Π ⊆ Σ∗ × N is an algorithm that receives as input a
sequence ((x1, k), ..., (xt, k)), with (xi, k) ∈ Σ∗ × N for each 1 ≤ i ≤ t, uses time polynomial
in
∑t

i=1 |xi|+ k, and outputs (y, k′) ∈ Σ∗ × N with (a) (y, k′) ∈ Π⇐⇒ (xi, k) ∈ Π for some
1 ≤ i ≤ t and (b) k′ is polynomial in k. A parameterized problem is compositional (or
OR-compositional) if there is a composition algorithm for it.
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It is unlikely that an NP-complete problem has both a composition algorithm and a
polynomial kernel as suggested by the following theorem.

I Theorem 24 ([8, 15]). Let Π be a compositional parameterized problem whose unparamet-
erized version Π̃ is NP-complete. Then, if Π has a polynomial kernel then co-NP ⊆ NP/poly.

Towards getting a composition for Parametrized Rainbow Covering, we first show
how we can compose two instances and then we use this to get a composition algorithm.
Next we have the following lemma.

I Lemma 25. There is a polynomial time algorithm which takes two instances ((P1, S1), k)
and ((P2, S2), k) of Parametrized Rainbow Covering as input and outputs an instance
((P, S), k + 1) such that ((P, S), k + 1) is an Yes-instance of Parametrized Rainbow
Covering if and only if at least one among ((P1, S1), k) and ((P2, S2), k) is a Yes-instance
of Parametrized Rainbow Covering.

Proof. Let S1 = {s1, . . . , sn}, and S2 = {s′1, . . . , s′n}. Without loss of generality assume that
s1 < s2 < . . . < sn and s′1 < s′2 < . . . < s′n. Without loss of generality we can assume that for
any interval J which is part of any pair in P1 and for any interval J ′ which is part of any pair
in P2, J is contained in [s1, sn] and J ′ is contained in [s′1, s′n]. Now we create a set of points
S′ = {sn + 1 + s′i | i ∈ [n]}, and a pair of intervals (I, I) = ([s1, sn], [sn + 1 + s′1, sn + 1 + s′n]).
Now we shift each interval of the instance ((P2, S2), k) by sn + 1. For any interval J = [a, b]
and c ∈ R we use c + J to denote the interval [c + a, c + b]. Let S = S1 ∪ S′ and
P = P1 ∪ {(sn + 1 + J, sn + 1 + J) | (J, J) ∈ P2} ∪ {(I, I)}. Our algorithm will output
((P, S), k + 1).

Now we need to show the correctness of the algorithm. Suppose ((P, S), k + 1) is a
Yes-instance of Parametrized Rainbow Covering and let I be a solution of size k + 1.
We know that at most one of I and I belong to I. Hence, if I /∈ I, then I \ {I} covers all
the points in S1. From the construction of P , we have that all the intervals which intersects
[s1, sn] are from {J, J | (J, J) ∈ P1}. This implies that I ∩ {J, J | (J, J) ∈ P1} covers all the
points in S1 and I ∩{J, J | (J, J) ∈ P1} is a set of conflict free intervals from P1. This implies
that ((P1, S1), k) is a Yes-instance of Parametrized Rainbow Covering. When I /∈ I,
by similar arguments we can show that ((P2, S2), k) is a Yes-instance of Parametrized
Rainbow Covering.

Suppose one among ((P1, S1), k) and ((P2, S2), k) is a Yes-instance of Parametrized
Rainbow Covering. Assume ((P1, S1), k) is a Yes-instance and let I be a solution of size
k for it. Then I ∪ {I} is a set of conflict free intervals and these intervals cover all the points
in S. The case when ((P2, S2), k) is a Yes-instance can be proved by similar arguments. J

I Lemma 26. Parametrized Rainbow Covering is compositional.

Proof. Let ((P1, S1), k), . . . , (Pt, St), k) be the input of the composition algorithm. If t > 2k,
then the composition algorithm solves each instance separately using Theorem 22 and outputs
a trivial Yes instance if at least one of the given instances is a Yes instance and outputs a
trivial No instance otherwise. In this case the running time of the algorithm is bounded by
t2nO(1) and hence it is a polynomial time algorithm.

So now we can assume that t ≤ 2k. Without loss of generality assume that t = 2`, where
` ≤ k. If t is not a power of 2, we can add dummy No instances to make the total number
of instances a power of 2. Now we design a recursive algorithm to get a desired output. The
pseudocode is mentioned in Algorithm 1.

By induction on ` we show that the parameter in the output instance is k + `. The base
case is when ` = 1, and the statement is true by Lemma 25. Now consider the induction
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Algorithm 1: Composition algorithm with inputs ((P1, S1), k), . . . , ((P2` , S2`), k)
1 if ` = 1 then
2 Run the algorithm mentioned in Lemma 25 and return the result
3 ((P ′1, S′1), k′) := Algorithm 1( ((P1, S1), k), . . . , ((P2`−1 , S2`−1), k) )
4 ((P ′2, S′2), k′) := Algorithm 1( (P2`−1 , S2`−1), k), . . . , ((P2` , S2`), k) )
5 Run algorithm mentioned in Lemma 25 on ((P ′1, S′1), k′) and ((P ′1, S′1), k′), and return

the result

step. For the two instances created by recursively calling Algorithm 1 on 2`−1 instances, the
parameters are k + `− 1 each, by induction hypothesis. Hence, in Step 5, by Lemma 25, the
parameter in the output instance is k + `. This implies that the parameter in the output
instance is k + ` ≤ 2k.

Again by induction on `, we can show that the output instance of Algorithm 1 is a Yes
instance if and only if at least one of the input instances is a Yes instance. For the base case
when ` = 1, the statement is true by Lemma 25. Now consider the induction step. Suppose
that there is a Yes instance in the input. Then by induction hypothesis, at least one the
instances created in Step 3 or Step 4 is a Yes instance. Then, by Lemma 25, in Step 5,
Algorithm 1 will output a Yes instance. Now suppose Algorithm 1 output a Yes instance.
Then, by Lemma 25, one of the instances created in Step 3 or Step 4 is a Yes instance.
Hence, by induction hypothesis, at least one of the input instances is a Yes instance. J

By Theorem 24 and Lemma 26, we get the following theorem.

I Theorem 27. Parametrized Rainbow Covering does not admit a polynomial kernel
unless co-NP ⊆ NP/poly.
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Abstract
Large real-world networks typically follow a power-law degree distribution. To study such net-
works, numerous random graph models have been proposed. However, real-world networks are
not drawn at random. In fact, the behavior of real-world networks and random graph models
can be the complete opposite of one another, depending on the considered property. Brach, Cy-
gan, Lacki, and Sankowski [SODA 2016] introduced two natural deterministic conditions: (1) a
power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods,
that is, the degree distribution of neighbors of each vertex is also upper bounded by a power
law (PLB-N). They showed that many real-world networks satisfy both deterministic properties
and exploit them to design faster algorithms for a number of classical graph problems like tran-
sitive closure, maximum matching, determinant, PageRank, matrix inverse, counting triangles
and maximum clique.

We complement the work of Brach et al. by showing that some well-studied random graph
models exhibit both the mentioned PLB properties and additionally also a power-law lower
bound on the degree distribution (PLB-L). All three properties hold with high probability for
Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely
for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high
probability for Chung-Lu Random Graphs and Geometric Inhomogeneous Random Graphs and
almost surely for Hyperbolic Random Graphs.

In the second part of this work we study three classical NP-hard combinatorial optimization
problems on PLB networks. It is known that on general graphs, a greedy algorithm, which chooses
nodes in the order of their degree, only achieves an approximation factor of asymptotically at
least logarithmic in the maximum degree for Minimum Vertex Cover and Minimum Dominating
Set, and an approximation factor of asymptotically at least the maximum degree for Maximum
Independent Set. We prove that the PLB-U property suffices such that the greedy approach
achieves a constant-factor approximation for all three problems. We also show that all three
combinatorial optimization problems are APX-complete, even if all PLB-properties hold. Hence,
a PTAS cannot be expected, unless P=NP.
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1 Introduction

A wide range of real-world networks, like Internet topologies [18], the Web [27, 8], social
networks [1], power grids [32], and many other networks [29, 5, 30], exhibit a power-law
degree distribution. Power-law degree distribution means that the number of nodes of degree
k is proportional to k−β , where β > 1 is the power-law exponent, a constant intrinsic to the
network. Networks with a power-law degree distribution are also called scale-free networks
and have been widely studied.

To capture the degree distribution and other properties of scale-free networks, a mul-
titude of random graph models have been proposed. These models include Preferential
Attachment [8], the Configuration Model [2], Chung-Lu Random Graphs [15] and Hyperbolic
Random Graphs [26]. Despite the multitude of random models, none of the models truly has
the same set of properties as real-world networks.

This shortcoming of random graph models motivates studying deterministic properties of
scale-free models, which can be verified on real-world networks. To describe the properties of
scale-free networks without the use of random graphs, Aiello et al. [4] define (α, β)-Power
Law Graphs. The problem of this model is that it essentially demands a perfect power-law
degree distribution, whereas the degree distributions of real networks normally exhibit slight
deviations from power laws. Therefore, (α, β)-Power Law Graphs are too constrained and do
not capture most real networks.

To allow for those deviations in the degree distribution Brach et al. [10] define buckets
containing nodes of degrees

[
2i, 2i+1). If the number of nodes in each bucket is at most

as high as for a power-law degree sequence, a network is said to be power-law bounded,
which we denote as a network with property PLB-U. They also define the property of PLB
neighborhoods: A network has PLB neighborhoods if every node of degree k has at most
as many neighbors of degree at least k, as if those neighbors were picked independently
at random with probability proportional to their degree. This property we abbreviate as
PLB-N. A formal definition of both properties can be found in Section 3. Brach et al. [10]
show that various classical graph problems can be solved more efficiently in networks with
properties PLB-(U,N). The graph problems addressed are transitive closure, maximum
matching, determinant, PageRank, matrix inverse, counting triangles and maximum clique.
Brach et al. [10] also showed experimentally that PLB-(U,N) properties hold for many
real-world networks, which implies that the mentioned graph problems can be solved faster
on these real-world networks than worst-case lower bounds for general graphs suggest.

1.1 Motivation and Results

PLB properties in power-law random graph models

The PLB-(U,N) properties are designed to describe power-law graphs in a way that allows
analyzing algorithms deterministically. As already mentioned, there is a mutitude of random
graph models [2, 15, 8, 26], which can be used to generate power-law graphs. Brach et al. [10]
proved that the Erased Configuration Model [2] follows PLB-U and w. h. p. also PLB-N.
Since the Erased Configuration Model has a fixed degree sequence, it is relatively easy to
prove the PLB-U property, but it is quite technical to prove the PLB-N property. There are
other power-law random graph models, which are based on the expected degree sequence, e.g.
Chung-Lu Random Graphs [15]. Brach et al. argued that for showing the PLB-U property
on these models, a typical concentration statement does not work, as it accumulates the
additive error for each bucket. They leave it as a challenging open question, whether other
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random graph models also produce graphs with PLB-(U,N) properties with high probability1.
In section 4 we address this question and extend the list of random graph models with

the PLB-U and PLB-N property. We prove that Chung-Lu Random Graphs and Geometric
Inhomogeneous Random Graphs are PLB-(U,N) graphs with high probability and that
Hyperbolic Random Graphs are PLB-(U,N) graphs almost surely.

Algorithmic Results

The above results imply that all results of Brach et al. [10] also hold w. h. p. for Chung-Lu
Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for
Hyperbolic Random Graphs. Therefore the problems transitive closure, maximum matching,
determinant, PageRank, matrix inverse, counting triangles and maximum clique have faster
algorithms on Chung-Lu and Geometric Inhomogeneous Random Graphs w. h. p. and on
Hyperbolic Random Graphs almost surely.

In this work we additionally consider the three classical NP-complete problems Minimum
Dominating Set(MDS), Maximum Independent Set(MIS) and Minimum Vertex
Cover(MVC) on PLB-U networks. For the first two problems, positive results are already
known for (α, β)-Power Law Graphs, which are a special case of graphs with the PLB-(U,L)
properties. Note that this deterministic graph class is much more restrictive and does not
cover typical real-world graphs. On the contrary, our positive results only assume the PLB-U
property. Our algorithmic results can therefore be applied to real-world networks after
measuring the respective constants of the PLB-model. In section 5 we prove our main
lemma, Lemma 5.2 (the potential volume lemma). Using the potential volume lemma, we
prove lower bounds for MDS, MIS and MVC in the order of Θ(n) on PLB-U networks with
exponent β > 2. This essentially means, even taking all nodes as a solution gives a constant
factor approximation. Furthermore, in Theorem 5.5 we prove that the greedy algorithm
actually achieves a better constant approximation ratio. These positive results also hold for
(α, β)-Power Law Graphs.

In section 6, we consider the mentioned NP-Complete problems and prove that these
problems are APX-hard even for PLB-(U,L,N) networks with β > 2. As a side product
we also get a lower-bound on the approximability of the respective problems under some
complexity theoretical assumptions. Since the negative results for (α, β)-Power Law Graphs
imply the same non-approximability on graphs with PLB-(U,L), we only consider graphs
with PLB-(U,L,N) in Section 6.

Technical Ideas

The intuition behind our positive results is simple: In a power law graph with exponent
β > 2, any set of o(n) vertices has a volume of at most o(n). The potential volume lemma
gives upper bounds on

∑
x∈S h(deg(x)) in terms of |S|, where S is any set with a certain

minimum volume. This is done by upper-bounding the density
∑
x∈S h(deg(x))/|S| by the

highest possible density of a set of size |S| in a PLB-U graph. The lemma does not only
enable us to prove the stated intuition formally, but also allows us to give upper bounds on
the approximation ratios of some greedy algorithms.

Our negative results rely on the graph embedding technique introduced by Shen et al. [33]
for (α, β)-Power Law Graphs.

1 We say that an event E holds w. h. p., if there exists an δ > 0 such that Pr[E] > 1−O(n−δ), and almost
surely if it holds with probability Pr[E] > 1− o(1).

FSTTCS 2016
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Table 1 Comparison of the approximation ratios achieved by greedy algorithms on networks
with an upper bound on the power-law degree distribution (PLB-U) and β > 2, and on general
graphs. While on general graphs, greedy achieves only a logarithmic or polynomial approximation,
greedy achieves a constant-factor-approximation on graphs with PLB-U and β > 2.

Problem General Graph Graphs with PLB-U

Minimum Dominating Set O(ln ∆) [25] Θn(1) [Theorem 5.5]
Minimum Vertex Cover O(ln ∆) [34] Θn(1) [Theorem 5.8]
Maximum Independent Set O(∆) [17] Θn(1) [Theorem 5.7]

2 Related Work

MDS, MVC and MIS are well studied NP-complete problems. It is know that MDS can-
not be approximated within a factor of (1 − ε) ln |V | for any ε > 0 [19] unless NP ⊆
DTIME(|V |log log |V |) and not to within a factor of ln ∆− c ln ln ∆ for some c > 0 [14] unless
P = NP, although a simple greedy algorithm achieves an approximation ratio of 1 + ln ∆ [25].
Even for sparse graphs, MDS cannot be approximated within a factor of o(ln(n)), since we
could have a graph with a star of n −

√
n nodes to which an arbitrary graph of the

√
n

remaining nodes is attached [28].
MIS cannot be approximated within a factor of ∆ε for some ε > 0 unless P = NP [7],

although a simple greedy algorithm achieves an approximation factor of ∆+2
3 [23]. We also

know from Turán’s theorem that every graph with an average degree of d̄ has a maximum
independent set of size at least n

d̄+1 . This lower bound can already be achieved by the same
greedy algorithm [23, Theorem 1].

MVC cannot be approximated within a factor of 10
√

5 − 21 ≈ 1.36 unless P=NP,
whereas the simple algorithm which greedily constructs a maximal matching achieves an
approximation ratio of 2 [31]. The greedy algorithm based on node degrees only achieves an
approximation factor of ln ∆.

All three problems have already been studied in the context of (α, β)-Power Law Graphs.
Ferrante et al. [21] showed that these problems remains NP-hard for β > 0. Shen et al. [33]
proved that there is no

(
1 + 1

3120ζ(β)3β

)
-approximation for MDS and no

(
1 + 1

1120ζ(β)3β − ε
)
-

approximation for MIS when β > 1 unless P = NP, showing that in this case the problem is
APX-hard. For MVC, Schen et al. [33] proved that there is no PTAS when β > 1 under the
Unique Games Conjecture. They also showed that the greedy algorithm achieves a constant
approximation factor for β > 2. Gast et al. [22] also proved a logarithmic lower bound on the
approximation factor when β 6 2 for MDS. Hauptmann et al. [24] gave the first non-constant
bound on the approximation ratio for MIS when β 6 1. In contrast to (α, β)-Power Law
Graphs the PLB-U property captures a wide range of real networks, making it possible to
transfer our results to them.

3 Preliminaries and Notation

We generally consider undirected multigraphs G = (V,E) without loops, where V denotes
the set of vertices and E the multiset of edges. If we consider simple graphs, we state so
specifically. Throughout the paper we use deg(v) to denote the degree of node v, di for the
set of nodes of degree i , d>i for the set of nodes of degree greater than or equal to i. We will
also let bi denote the set of nodes v ∈ V with deg(v) ∈ [2i, 2i+1) and for v ∈ V we let N+(v)
denote the inclusive neighborhood of v in G. We also use dmin and ∆ to denote the minimum
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Table 2 Comparison of the approximation lower bounds for polynomial-time algorithms (assuming
P 6= NP) on networks with an upper (PLB-U) and lower (PLB-L) bound on the power-law degree
distribution and with PLB neighborhoods (PLB-N) with the approximation lower bounds on general
graphs. Even with the additional properties of PLB-L and PLB-N the problems on graphs with
PLB-U remain APX-hard, i.e. these problems cannot admit a PTAS. Better lower bounds for each
problem are in respective theorem, Ω(1) hides the PLB-L parameters β, t and constant c2.

Problem General Graph Graph with PLB-(U,L,N)

Minimum Dominating Set (MDS) Ω(ln ∆) [14] 1 + Ω(1) [Theorem 6.9]
Minimum Vertex Cover (MVC) > 1.3606 [16] 1 + Ω(1) [Theorem 6.10]
Maximum Independent Set (MIS) Ω(poly(∆)) [7] 1 + Ω(1) [Theorem 6.11]

and maximum degree of the graph respectively. For a set of nodes S ⊆ V , the volume of S,
denoted by vol(S) is the sum of degrees of vertices in S, vol(S) =

∑
v∈S deg(v). We denote

the optimal value of an objective function f on input x by optf (x). If not stated otherwise
log denotes the logarithm of base 2.

Now we give a formal definition of the PLB properties for (multi-)graphs.

I Definition 3.1 (PLB-U [10]). Let G be an undirected n-vertex graph and c1 > 0 be a
universal constant. We say that G is power law bounded (PLB-U) for some parameters
1 < β = O(1) and t > 0 if for every integer d > 0, the number of vertices v, such that
deg(v) ∈

[
2d, 2d+1) is at most

c1n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

I Definition 3.2 (PLB-L). Let G be an undirected n-vertex graph and c2 > 0 be a universal
constant. We say that G is power law bounded PLB-L for some parameters 1 < β = O(1)
and t > 0 if for every integer blog dminc 6 d 6 blog ∆c, the number of vertices v, such that
deg(v) ∈

[
2d, 2d+1) is at least

c2n(t+ 1)β−1
2d+1−1∑
i=2d

(i+ t)−β .

Since the PLB-U property alone can capture a much broader class of networks, for example
empty graphs and rings, this lower-bound is important to restrict networks to those with
an actual (approximate) power-law degree distribution. In the definition of PLB-L dmin is
necessary because in real-world power law-networks the minimum degree is not always 1.

I Definition 3.3 (PLB-N [10]). Let G be a PLB (multi-)graph with parameters β > 2 and
t > 0, and let c2 > 0 be a universal constant. We say that G has PLB neighborhoods
(PLB-N) if for every vertex v of degree k, the number of neighbors of v of degree at least k
is at most c3 max

(
logn, (t+ 1)β−2k

∑n−1
i=k i(i+ t)−β

)
.

Note that throughout the paper we assume the parameters, ci, β, and t, of the above
definitions to be constants.

I Definition 3.4 (Graphical degree sequence). A graphical sequence is a sequence of numbers
which can be the degree sequence of some graph.

FSTTCS 2016
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4 Power-Law Random Graphs and the PLB properties

In this section we consider some well known power law random graph models and prove
that w. h. p. or almost surely graphs generated by these models have PLB-U and PLB-N
properties. We chose Chung-Lu Random Graphs, Geometric Inhomogeneous Random Graphs,
and Hyperbolic Random Graphs, because they are common models and rather easy to analyze.
Furthermore, they assume independence or some geometrically implied sparseness of edges,
which is important for establishing the PLB-N property.

4.1 (α, β)-Power Law Graphs
I Definition 4.1 ((α, β)-Power Law Graph [3]). An (α, β)-Power Law Graph is an undirected
multigraph with the following degree distribution depending on two given values α and β.
For 1 6 i 6 ∆ =

⌊
eα/β

⌋
there are yi =

⌊
eα

iβ

⌋
nodes of degree i.

I Theorem 4.2. The (α, β)-Power Law Graph with β > 1 has the PLB-U property with
c1 = 1

ζ(β) , t = 0, and exponent β and the PLB-L property with c2 = 1
2ζ(β) , t = 0, and

exponent β.

Proof. The number of nodes of degree i is exactly
⌊
eα

iβ

⌋
. It holds that the number of nodes

of degree between 2d and 2d+1 − 1 is at most

eα
2d+1−1∑
i=2d

i−β = n
ζ(β)

2d+1−1∑
i=2d

i−β

due to the definition of the degree distribution and the fact that n = ζ(β)eα for β > 1.
Furthermore, since i 6

⌊
eα/β

⌋
,
⌊
eα

iβ

⌋
is at least one. Therefore

⌊
eα

iβ

⌋
> 1

2
eα

iβ
. It now holds

that the number of nodes of degree between 2d and 2d+1 − 1 is at least

eα

2

2d+1−1∑
i=2d

i−β = n
2ζ(β)

2d+1−1∑
i=2d

i−β . J

I Corollary 4.3. A random (α, β)-Power Law Graph with β > 1 created with the Erased
Configuration Model has the PLB-U and PLB-N properties with high probability.

4.2 Geometric Inhomogeneous Random Graphs
I Definition 4.4 (Geometric Inhomogeneous Random Graphs (GIRGs) [11]). For n ∈ N let
w = (w1, · · · , wn) be a sequence of positive weights. Let W =

∑n
i=1 wi be the total weight.

For any vertex v, draw a point xv ∈ Td uniformly and independently at random. We connect
vertices u 6= v independently with probability puv = puv(r), which now depends not only
on the weights wu, wv but also on the positions xu, xv, more precisely, on the distance
r = ‖xu − xv‖. We require for some constant α > 1 the following edge probability condition

puv = Θ
(
min

{ 1
||xu − xv||αd

(wuwv
W

)α
, 1
})

.

I Definition 4.5 (General Power-law [11]). A weight sequence ~w is said to follow a general
power-law with exponent β > 2 if wmin := min {wv | v ∈ V } = Ω(1) and if there is a
w̄ = w̄(n) > nω(1/ log logn) such that for all constants η > 0 there are c1, c2 > 0 with

c1
n

wβ−1+η 6 |{v ∈ V | wv > w}| 6 c2
n

wβ−1−η ,

where the first inequality holds for all wmin 6 w 6 w̄ and the second holds for all w > wmin.
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To prove that GIRGs fulfill PLB-U and PLB-N we need the following theorem and some
auxiliary lemmas by Bringmann et al. [12]. For the sake of brevity these lemmas as well as
the remaining proofs of this section can be found in the full version of the paper [13].

I Theorem 4.6 ([12]). Let G be a GIRG with a weight sequence that follows a general
power-law with exponent β and average degree Θ(1). Then, with high probability the degree
sequence of G follows a power law with exponent β and average degree Θ(1), i.e there exist
constants c3, c4 > 0 such that w. h. p.

c3
n

kβ−1+η 6 |{v ∈ V |deg(v) > k}| 6 c4
n

kβ−1−η ,

where the first inequality holds for all 1 6 d 6 w̄ and the second holds for all d > 1.

I Theorem 4.7. Let G be a GIRG whose weight sequence ~w follows a general power-law
with exponent β′ > 2 and an η with β′ − η > 2. Then, w. h. p. G fulfills PLB-U and PLB-N
with β = β′ − η, t = 0 and some constants c1 and c2.

4.3 Hyperbolic Random Graphs

I Definition 4.8. (Hyperbolic Random Graph [26]) Let αH > 0, CH ∈ R, TH > 0, n ∈ N
and R = 2 logn+ CH . Then the Hyperbolic Random Graph GαH ,CH ,TH (n) is a graph with
vertex set V=[n] and the following properties:

Every vertex v ∈ [n] draws coordinates (rv, φv) independently at random, where the
angle πv is chosen uniformly at random in [0, 2π) and the radius rv ∈ [0, R] is random
according to density f(r) = αH sinh(αHr)

cosh(αHR)−1 .

Every potential edge e = {u, v} ∈
([n]

2
)
is present independently with probability

pH(d(u, v)) =
(

1 + e
d(u,v)−R

2TH

)−1
.

I Lemma 4.9 ([11]). Hyperbolic random graphs are a special case of GIRGs.

This lemma directly leads to the following consequence.

I Theorem 4.10. Let G be a hyperbolic random graph with αH > 1
2 . Then, almost surely G

fulfills PLB-U and PLB-N with β = 2αH + 1− η, t = 0, constant η > 0 and some constants
c1 and c2.

4.4 Chung-Lu Random Graphs

Chung-Lu Random Graphs [15] assume a sequence of expected degrees w1, w2, . . . , wn
and each edge (i, j) exists independently at random with probability min(1, wi·wjW ), where
W =

∑n
i=1 wi. Using exactly the same techniques as for Theorem 4.6 we can prove the

theorem below.

I Theorem 4.11. Let G be a Chung-Lu random graph whose weight sequence ~w follows a
general power-law with exponent β′ > 2 and an η with β′ − η > 2. Then w. h. p. G fulfills
PLB-U and PLB-N with β = β′ − η, t = 0 and some constants c1 and c2.
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5 Greedy Algorithms

In this section we try to understand why simple greedy algorithms work efficiently in practice.

I Definition 5.1. An algorithm is an α-approximation for problem P if it produces a solution
set S with α > |S|

|opt| if P is a minimization problem and with α > |opt|
|S| if P is a maximization

problem.

Greedy Algorithm on PLB-U Networks

In this section we state our main lemma, Lemma 5.2, and use it to derive bounds on the
solution size and approximation ratio of covering problems.

I Lemma 5.2 (Potential Volume Lemma). Let G be a (multi-)graph with the PLB-U property
for some β > 2, some constant c1 > 0 and some constant t > 0. Let S be a solution set for
which we can define a function g : R+ → R continuously differentiable and h(x) := g(x) + C

for some constant C such that
1. g non-decreasing,
2. g(2x) 6 c · g(x) for all x > 2 and some constant c > 0,
3. g′(x) 6 g(x)

x ,
then it holds that

∑
x∈S h(deg(x)) is at mostc

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 g

((
c1
β−1
β−2

n
M · 2

β−1 · (t+ 1)β−1
) 1
β−2
)

+ C

 · |S|,
where M(n) > 1 is chosen such that

∑
x∈S deg(x) >M .

For the proof one can refer to the full version of the paper [13].
All our bounds are in terms of the following two constants, which stem from the Potential

Volume Lemma and which we will define for the sake of brevity:

aβ,t :=

1 + β − 1
β − 2

1

1−
(
t+2
t+1

)1−β

 and bc1,β,t :=
(
c1
β−1
β−2 · 2

β · (t+ 1)β−1
) 1
β−2

.

5.1 Minimum Dominating Set

The idea for lower-bounding the size of a dominating set is essentially the same as the one
by Shen et al. [33] and by Gast et al. [22] in the context of (α, β)-Power-Law Graphs: Every
set of o(n) nodes in a power-law graph can dominate only o(n) many nodes. For graphs with
PLB-U this is implied by our Potential Volume Lemma. Finally, we will show that

I Theorem 5.3. For a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the minimum dominating set is of size at
least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).
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5.1.1 The Greedy Algorithm
Theorem 5.3 implies that taking all nodes already gives a constant approximation factor, but
now we want to show that using the classical greedy algorithm actually guarantees an even
better approximation factor.

The proof of the following theorem is an adaptation of the proof for the greedy Set
Cover algorithm to the case of unweighted Dominating Set.

I Theorem 5.4 ([25]). Let S the solution of the greedy algorithm and opt an optimal
solution for Dominating Set. Then it holds that

|C| 6
∑
x∈opt

Hdeg(x)+1,

where Hk is the k-th harmonic number.

The interested reader can find the proof of the above theorem in the full version [13] of
the paper. By using the inequality from Theorem 5.4 together with the Potential Volume
Lemma 5.2, we can derive the following approximation factor for the greedy algorithm.

I Theorem 5.5. For a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the classical greedy algorithm for Minimum
Dominating Set (cf. [17]) has an approximation factor of at most

log3(5) · aβ,t · ln (bc1,β,t + 1) + 1 = Θ(1).

Proof. From the analysis of the greedy algorithm we know that for its solution C and an
optimal solution opt it holds that

|C| 6
∑
x∈opt

Hdeg(x)+1 6
∑
x∈opt

ln(deg(x) + 1) + 1,

where Hk denotes the k-th harmonic number. We can now choose h(x) = g(x) + 1 with
g(x) = ln(x+ 1). g(x) satisfies (i), (ii) with c = log3(5) and (iii). As we assume there to be
no nodes of degree 0, it holds that∑

x∈opt
deg(x) > n

2 =: M,

since all nodes have to be covered. We can now use Lemma 5.2 with S = opt to derive that

|C| 6 (log3(5) · aβ,t · ln (bc1,β,t + 1) + 1) |opt|. J

Note that in PLB networks the maximum degree can be ∆ = Θ(n
1

β−1 ). That means the simple
bound for the greedy algorithm gives us only an approximation ratio of ln(∆ + 1) = Θ(logn).

5.2 Maximum Independent Set
For networks with the PLB-L property only, we can already derive the following lower bound
on the size of an optimal solution.

I Lemma 5.6. A graph with the PLB-L property with parameters β > 2, c2 > 0 and t > 0,
has an independent set of size at least c2(t+1)β−1

(t+dmin)β(dmin+1) · n or of size at least c2
(t+1) · n if we

assume G to be connected and dmin = 1.
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We can even go a step further and show that all maximal independent sets have to be
quite big, even if we only have the PLB-U property. Since the PLB-U property with β > 2
induces a constant average degree, this already gives us a constant approximation factor
for Maximum Independent Set on networks with this property due to Turán’s theorem.
Although we can not give better bounds for the maximum independent set, Theorem 5.3
immediately implies a lower bound for the size of all maximal independent sets:

I Theorem 5.7. In a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, every maximal independent set is of size
at least

(2 · aβ,t · bc1,β,t + 1)−1
n = Θ(n).

Especially, it holds that computing any maximal independent set gives an approximation
factor of at most 2 ·aβ,t ·bc1,β,t+1. The above theorem holds since every maximal independent
set is also a dominating set. It is easy to see that these lower bounds do not hold in sparse
graphs in general, since in a star the center node also constitutes a maximal independent set.

5.3 Vertex Cover
From the results we know about Dominating Set, we can also derive some results about
Vertex Cover in graphs without isolated vertices.

I Theorem 5.8. In a multigraph without loops and isolated vertices and with the PLB-U
property with parameters β > 2, c1 > 0 and t > 0, the minimum vertex cover is of size at
least

(2 · aβ,t · bc1,β,t + 1)−1
n.

The above theorem follows because every vertex cover in a graph without isolated vertices is
also a dominating set. Again, the theorem immediately implies an approximation factor of
at most 2 · aβ,t · bc1,β,t + 1.

6 Approximation Hardness for Simple Graphs

To show the actual non-approximability and APX hardness, we use the embedding framework
by Shen et al. [33].

I Definition 6.1 (Embedded-Approximation-Preserving Reduction [33]). Given an optimal
substructure problem O, a reduction from an instance on graph G = (V,E) to another
instance on a (power law) graph G′ = (V ′, E′) is called embedded approximation-preserving
if it satisfies the following properties:
1. G is a subset of maximal connected components of G′;
2. The optimal solution of O on G′, opt(G′), is upper bounded by C·opt(G) where C is a

constant correspondent to the growth of the optimal solution.

I Theorem 6.2 ([6]). Minimum vertex cover, Maximum independent set and Mini-
mum dominating set are APX-complete for cubic simple graphs.

Having shown an embedded-approximation-preserving reduction, we can use the following
lemma to show hardness of approximation.
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I Lemma 6.3 ([33]). Given an optimal substructure problem O, if there exists an embedded-
approximation-preserving reduction from a graph G to another graph G′ and if O is ε-
inapproximable on G, then O is δ-inapproximable on G′, where δ is lower bounded by

εC
(C−1)ε+1 if O is a maximization problem and by ε+C−1

C if O is a minimization problem.

I Theorem 6.4 ([6, 14]). In 3-bounded simple graphs it is NP-hard to approximate MDS
within a factor of 391

390 .

I Theorem 6.5 ([6, 9]). In 3-bounded simple graphs it is NP-hard to approximate MIS within
a factor of 140

139 − γ for any γ > 0.

I Theorem 6.6 ([16, 20]). In regular simple graphs MVC is hard to approximate within a
factor of 10

√
5 − 21 ≈ 1.3606 unless P = NP.

We will use this framework as follows: First, we show how to embed cubic graphs into
simple graphs with PLB-U, PLB-L and PLB-N. Then, we derive the value of C as in
Definition 6.1 for each problem we consider. Last, we use Lemma 6.3 together with the
known inapproximability results for the considered problems on cubic graphs to derive the
approximation hardness on graphs with PLB-U, PLB-L and PLB-N.

We start by showing the embedding of cubic simple graphs into simple graphs with
PLB-U, PLB-L and PLB-N. To this end we use stars as the gadgets for our embeddings.
The following is a simple observation and is therefore stated without a formal proof.

I Lemma 6.7. A star of size n has a minimum dominating set and a minimum vertex
cover of size 1 and maximum independent set of size n− 1. Also, these can be computed in
polynomial time.

I Lemma 6.8. Any cubic simple graph G can be embedded into a simple graph GPLB having
the PLB-U, PLB-L and PLB-N properties for any β > 2 and any t > 0.

Proof. Suppose we are given β and t. Again, we want to determine c1 and c2 of PLB-U
and PLB-L respectively. Let n be the number of nodes in graph G and let N = cn be the
number of nodes in GPLB for some constant c to be determined. Like in Lemma 6.3 we have
to ensure a number of conditions to get a graphical degree sequence. To hide a cubic graph
in the respective bucket of GPLB , we need

c1N(t+ 1)β−1
3∑
i=2

(i+ t)−β = c1N(t+ 1)β−1
(

1
(2 + t)β + 1

(3 + t)β

)
> n.

As we will see, we can choose the constant c1 arbitrarily large, so the former condition is no
real restriction. Then we choose the maximum degree ∆ such that

dmax(GPLB) = (cn)
1

β−1 .

In our embedding we just fill each bucket i > 2 with the number of stars of size 2i + 1 it
needs to reach its lower bound. Bucket 1 can get up to n nodes, since we hide the graph G in
it and bucket 0 gets all the degree-one nodes of our star gadgets. By filling a bucket (other
than buckets 0 and 1) we might deviate by at most one from the lower bound of that bucket.
Then, we add additional stars within the bounds of our buckets until we have exactly N
nodes. If we only need one more node, we just add it and connect it to an arbitrary star.
This does not change the properties of the star or the degree of its center enough to make it
change its bucket.
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In order for this to be possible we need to ensure that after filling all buckets to their
lower bound, there is still some slack until we reach N . This is the case if the following
inequality holds true

n+
blog ∆c∑
i=0

(2i + 1)

1 + c2N(t+ 1)β−1
2i+1−1∑
j=2i

(j + t)−β


6
N

c
+ logN

1
β−1 + c2

(t+ 1)N + c2
β − 1N + 2∆ + c2N + c2

β − 2N(t+ 1)

6 N

(
1
c

+ η + c2
t+ 1 + c2

β − 1 + η + c2 + c2
β − 2(t+ 1)

)
6 N,

where in the second line we used the inequalities

blog ∆c∑
i=0

1 + c2N(t+ 1)β−1
2i+1−1∑
j=2i

(j + t)−β
 6 logN

1
β−1 + c2

(t+ 1)N + c2
β − 1N,

blog ∆c∑
i=0

2i
1 + c2N(t+ 1)β−1

2i+1−1∑
j=2i

(j + t)−β
 6 2∆ + c2N + c2

β − 2N(t+ 1)

and choose a constant η > 0 arbitrarily small.
From this last condition we can derive

c > 1 +
η′ + c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

)
1− η′ − c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) ,
since η and therefore η′ can be arbitrarily small. We choose η′ = c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

)
to get

c = 1 +
2c2
(

1
t+1 + 1

β−1 + t+1
β−2 + 1

)
1− 2c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) = 1
1− 2c2

(
1
t+1 + 1

β−1 + t+1
β−2 + 1

) .
The use of star gadgets means we also have to guarantee that c1 is big enough for all
degree-one nodes to fit into bucket 0. Since c1 can be arbitrarily large, this is no problem.

Now we can essentially choose c1 arbitrarily large and c2 arbitrarily small, guaranteeing
c > 1 and a large enough gap to have a graphical degree sequence. At the same time our
choice of c guarantees that we can fill the graph with exactly N nodes. Furthermore, since
every node has a constant number of neighbors of equal or higher degree, GPLB also fulfills
PLB-N, which always allows us at least c3 logN many neighbors. J

6.1 Dominating Set

I Theorem 6.9. For every β > 2 and every t > 0 Minimum Dominating Set cannot be

approximated to within a factor of 1 +
(

130 ·
(

4 1− c2
t+1

1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1) + 1

))−1
on simple

graphs with PLB-U, PLB-L and PLB-N unless P = NP.
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Proof. Lemma 6.8 gives us an L-reduction from a cubic graph G to a simple graph GPLB
with the PLB-U, PLB-L and PLB-N properties. The L-reduction from a cubic graph G

to a simple graph GPLB together with Theorem 6.2 implies that MDS is APX hard for
simple graphs with PLB-(U,L,N). Let opt(G) and opt(GPLB) denote the size of a minimum
dominating set for G and GPLB respectively. Let bi be the set of nodes in PLB bucket i, i.e.
the set of nodes v ∈ V with deg(v) ∈

[
2i, 2i+1 − 1

]
. We know that opt(G) > n

4 and from
Lemma 6.7 we can derive opt (GPLB\G) = N − n− |b0|. It now holds that

opt(GPLB) = opt(G) + opt(GPLB\G)
= opt(G) +N − n− |b0|

6 opt(G) +N − n− c2
t+ 1N

= opt(G) +
(
c− 1− c c2

t+ 1

)
n

6 opt(G) +
(
c− 1− c c2

t+ 1

)
4opt(G)

=
(

4c
(

1− c2
t+ 1

)
− 3
)

opt(G).

In the context of Definition 6.1 and Lemma 6.3 this means C = 4c
(

1− c2
t+1

)
− 3. Due

to Theorem 6.4 it also holds that ε = 391
390 in the context of Lemma 6.3. This gives us an

approximation hardness of

1 + ε− 1
C

= 1 + 3
390 · (4c

(
1− c2

t+1

)
− 3)

= 1 + 3

390 ·
(

4 1− c2
t+1

1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1) + 1

)

= 1 +

130 ·

4
1− c2

t+1

1− 2c2
(

1
t+1 + 1

β−1 + t+1
β−2 + 1

) + 1

−1

due to our choice of c in Lemma 6.8. J

By using similar arguments as for Theorem 6.9 we can prove Theorem 6.10 and Theorem 6.11.

I Theorem 6.10. For every β > 2 and every t > 0 Minimum Vertex Cover cannot be
approximated to within a factor of 1 + (1−2c2( 1

t+1 + 1
β−1 + t+1

β−2 +1))(10
√

5−22)
2c2( 1

β−1 + t+1
β−2 +1)+1

on simple graphs
with PLB-U, PLB-L and PLB-N unless P = NP.

I Theorem 6.11. For every β > 2 and every t > 0 Maximum Independent Set cannot
be approximated to within a factor of 1 + ( 1

139−γ)((t+1)(1−2c2( 1
t+1 + 1

β−1 + t+1
β−2 +1)))

4c1( 140
139−γ)+(t+1)(1−2c2( 1

t+1 + 1
β−1 + t+1

β−2 +1)) for any
γ > 0 on simple graphs with PLB-U, PLB-L and PLB-N unless P = NP.
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Abstract
Traditionally, reconfiguration problems ask the question whether a given solution of an optimiza-
tion problem can be transformed to a target solution in a sequence of small steps that preserve
feasibility of the intermediate solutions. In this paper, rather than asking this question from
an algorithmic perspective, we analyze the combinatorial structure behind it. We consider the
problem of reconfiguring one independent set into another, using two different processes: (1) ex-
changing exactly k vertices in each step, or (2) removing or adding one vertex in each step while
ensuring the intermediate sets contain at most k fewer vertices than the initial solution. We are
interested in determining the minimum value of k for which this reconfiguration is possible, and
bound these threshold values in terms of several structural graph parameters. For hereditary
graph classes we identify structures that cause the reconfiguration threshold to be large.
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1 Introduction

Over the past decade, reconfiguration problems have drawn a lot of attention of researchers
in algorithms and combinatorics [4, 5, 9, 13, 15, 16, 18, 22, 24]. In this framework, one asks
the following question: Given two solutions I, J of a fixed optimization problem, can I be
transformed into J by a sequence of small steps that maintain feasibility for all intermediate
solutions? Such problems are practically motivated by the fact it may be impossible to adapt
a new production strategy instantaneously if it differs too much from the strategy that is
currently in use; changes have to be made in small steps, but production has to keep running
throughout. From a theoretical perspective, the study of reconfiguration problems provides
deep insights into the structure of the solution space. One of the well-studied examples is
when the solution space consists of all the independent sets of a graph (optionally all having
a prescribed size). In this case, three types of reconfiguration rules have been considered.
These are naturally explained using tokens on vertices of the graph. In Token Addition
Removal (TAR) [16, 22], there is a token on every vertex of the initial independent set, and
there is a buffer of tokens, initially empty. A step consists of removing a token from a vertex
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(a) A pumpkin of size 18. (b) A graph of treewidth two with a complete binary tree T

of depth two as a bipartite topological double minor.

Figure 1 The bipartite structures responsible for large MTJ and TAR reconfiguration thresholds,
respectively. A pumpkin consists of odd-length vertex-disjoint paths between two vertices. The
special form of topological minor represents each vertex of the tree T by an edge or even cycle in G,
and each edge of T by two odd-length paths connecting vertices in opposite partite sets in G.

and placing it in the buffer, or placing a buffer token onto a vertex of the graph. The set
of vertices with tokens must form an independent set at all times, and the goal is to move
the tokens from the initial to the target independent set while ensuring the buffer size never
exceeds a given threshold. In Token Sliding (TS) [18, 15], a step consists of replacing one
vertex v in the independent set by a neighbor of v (the token slides along an edge). In Token
Jumping (TJ) [18] a step also consists of replacing a single vertex, but the newly added
vertex need not have any neighboring relation with the replaced vertex (the token jumps).
Token jumping reconfiguration is equivalent to TAR reconfiguration with a buffer of size one.

These models have been analyzed in detail in the recent literature on algorithms [4, 5,
9, 13, 14, 21], complexity theory [15, 16, 18, 22], combinatorics [6, 12], and even statistical
physics [17, 19, 23]. It is known that the reconfiguration problem under all the above three
rules is PSPACE-complete for general graphs, perfect graphs, and planar graphs [15, 18,
16]. The TJ and TAR reconfiguration problems are PSPACE-complete even for bounded
bandwidth graphs [24]. Further analyses on the complexity can be found in [4, 5, 9, 13, 21].
The constrained token-moving problems are related to pebbling games that have been studied
in the literature, with applications to robot motion planning [1, 6, 12, 14].

As mentioned, the goal in reconfiguring independent sets is to go from one given inde-
pendent I to another one J by a sequence of small steps. In the TS and TJ models, a step
involves moving a single token. This is ideal, but unfortunately reconfiguration is often
impossible in the TS or TJ model. Reconfiguration in the TAR model is always possible
if one makes the buffer size sufficiently large. However, a large buffer size is undesirable.
We are interested in determining the minimum buffer size that is sufficient to ensure any
independent set in a given graph G can be reconfigured to any target independent set of
the same size. We call this minimum the TAR reconfiguration threshold (precise definitions
in Section 2). Our aim is to bound the threshold in terms of properties of the graph, and
to identify the structures contained in hereditary graph classes that cause large thresholds.
We also generalize the TJ model to Multiple Token Jumping (MTJ), where in each step a
prescribed number of tokens may be moved simultaneously. In the MTJ model, the question
becomes: What is the minimum number of simultaneously jumping tokens needed to ensure
any reconfiguration is possible? This quantity is called the MTJ reconfiguration threshold.

Our contribution. We provide upper and lower bounds on the MTJ and TAR reconfiguration
thresholds in terms of several graph parameters. Our bounds apply to the reconfiguration
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thresholds of hereditary graph classes. The threshold of a graph class is the supremum of
the threshold values of the graphs in that class: it is the smallest value k such that for any
graph G in the class, any source independent set I in G can be reconfigured into any target
independent set J using steps of size k (for MTJ) or a buffer of size k (for TAR).

The MTJ reconfiguration threshold of graphs that are structurally very simple, may
nevertheless be very large. For example, an even cycle with 2n vertices can be partitioned into
two independent sets I and J of size n each. Any MTJ reconfiguration of I into J requires a
jump of n vertices, and this is trivially sufficient. Since a cycle has a feedback vertex set
(FVS, see Section 2) of size one, the MTJ threshold cannot be bounded in terms of the size
of a minimum feedback vertex set. However, we prove that the threshold is upper-bounded
by the size of a minimum vertex cover of G. Although this bound is tight in the worst case,
there are many graph classes with a small MTJ threshold even though they require a large
vertex cover. Trees for example have MTJ threshold at most one. We therefore introduce
the notion of pumpkin, which consists of two nodes connected by at least two vertex-disjoint
paths of odd length (Figure 1a). The size of a pumpkin is its total number of vertices. We
characterize the MTJ reconfiguration threshold of a hereditary graph class Π in terms of the
size of the largest pumpkin it contains: the MTJ reconfiguration threshold is upper- and
lower-bounded in terms of the largest pumpkin contained in a bipartite graph in Π.

TAR reconfiguration is more versatile than MTJ reconfiguration. In the concrete example
of a 2n-cycle discussed above, its MTJ threshold is n while any pair of independent sets can
be reconfigured in the TAR model using a buffer of size two. Moreover, we show that any
graph that has a feedback vertex set of size k has TAR reconfiguration threshold at most
k + 1, and reconfiguring one side of the complete bipartite graph Kn,n to the other side
shows that this is tight. Our main result concerning TAR reconfiguration states that the
TAR reconfiguration threshold of any graph is upper-bounded by its pathwidth. Somewhat
surprisingly, there are graphs of constant treewidth (treewidth 2 suffices) for which the TAR
reconfiguration threshold is arbitrarily large. We also introduce the concept of bipartite
topological double minor (BTD-minor), see Figure 1b, and show using an isoperimetric
inequality that any hereditary graph class containing a graph having a complete binary tree
of depth d as a BTD-minor, has TAR reconfiguration threshold Ω(d). We conjecture that the
TAR reconfiguration threshold can also be upper-bounded in terms of the depth of the largest
complete binary tree BTD-minor, but we have not been able to prove this (see Section 6).

Applications. The MTJ and TAR reconfiguration thresholds play an important role in
statistical physics and wireless communication networks. To understand the importance
of the TAR reconfiguration threshold, consider the following process: In a graph G, nodes
are trying to become active (transmit information) at some rate, independently of each
other in a distributed manner. When a potential activation occurs at a node, it can only
become active if none of its neighboring nodes are active at that moment (otherwise the
transmissions would interfere). An active node deactivates at some rate independent of
the other processes. At any point in time, the set of active nodes in this process forms
an independent set of the graph. In statistical physics, this process is known as Glauber
dynamics with hard-core interaction. This activity process on graphs has applications in
various fields of study. Loosely speaking, when the activation rate is large, in the long run
the above process always tries to stay in a maximum independent set. For graphs with more
than one maximum independent set, it is interesting to study the time this process takes
to reach a target independent set, starting from some specific independent set. This time
depends crucially upon what we call the TAR reconfiguration threshold of the underlying
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graph [23]. In particular, the mixing time of the Glauber dynamics on a graph increases
exponentially with its TAR reconfiguration threshold, and hence the Glauber dynamics on
the graph is fast mixing if and only if the TAR reconfiguration threshold is small.

2 Preliminaries

In this section we give the most important graph-theoretic definitions. Notions not defined
here can be found in standard textbooks [7, 10]. Due to space restriction, proofs of statements
marked (F) have been omitted; they can be found in the full version of the paper [8].

A graph is a pair G = (V,E), where V is the set of vertices, and E is the set of edges.
We also use V (G) and E(G) to refer to the vertex and edge set of G, when convenient. All
graphs we consider are finite, simple, and undirected. For U ⊆ V we denote by G− U the
graph obtained from G by removing the vertices in U and their incident edges. A set U ⊆ V
is an independent set of G if {u, v} /∈ E for any u, v ∈ U . The symmetric difference of two
sets U and U ′ is U∆U ′ := (U1 \ U2) ∪ (U2 \ U1). A set U ⊆ V is a vertex cover of G if every
edge in E is incident with a vertex in U . The minimum cardinality of a vertex cover of G is
denoted by vc(G). A set U ⊆ V is a feedback vertex set if G− U is acyclic (a forest). The
minimum cardinality of a feedback vertex set of G is denoted fvs(G). For a vertex v, denote
by NG(v) the set of its neighbors (excluding v itself). The neighborhood of a set U ⊆ V

is NG(U) :=
⋃

s∈U NG(s) \ U . We omit the subscript when it is clear from the context. A
graph G′ = (V ′, E′) is said to be a subgraph of G, if V ′ ⊆ V , and E′ ⊆ E. It is an induced
subgraph of G if V ′ ⊆ V and for any u, v ∈ V ′ we have {u, v} ∈ E if and only if {u, v} ∈ E′.
The subgraph of G induced by U ⊆ V is denoted G[U ]. A graph class is a (possibly infinite)
collection of graphs. A graph class Π is said to be hereditary if given any graph G ∈ Π, any
induced subgraph of G belongs to the class Π as well. A graph is bipartite if its vertex set
can be partitioned into two independent sets I and J , which are also called the partite sets.
We sometimes denote such a bipartite graph by G = (I ∪ J,E). A bipartite graph is balanced
if |I| = |J |. A matching is a set of edges that do not share any endpoints. A matching is
perfect if it spans the entire vertex set. A vertex v is a cutvertex in graph G if the removal
of v increases the number of connected components. A biconnected component of G is a
maximal connected subgraph of G that does not contain a cutvertex: removal of a single
vertex from a biconnected component leaves the component connected.

We use the definitions of (nice) path decompositions as given in [7, §7.2]. For any
path decomposition P = (X1, X2, . . . , Xr) of G = (V,E), and any vertex v ∈ V , define
lP(v) = min{i : v ∈ Xi} and rP(v) = max{i : v ∈ Xi}, that is, lP(v) and rP(v) respectively
denote the index of the first and last bag containing v. Note that if P is nice, then lP(·) and
rP(·) are injective maps over the set of vertices.

3 Definitions and Basic Facts for Reconfiguration

Multiple Token Jump (MTJ). Given any two independent sets I and J , with |I| = |J |, we
say that I can be k-MTJ reconfigured to J , if there exists a finite sequence of independent sets
(I = W0,W1,W2, . . . ,Wn,Wn+1 = J) for some n ≥ 0, such that for all i ∈ {0, . . . , n+ 1} the
setWi is an independent set, |Wi| = |I| = |J |, and |Wi+1\Wi| ≤ k. A stepWi →Wi+1 in the
reconfiguration process with |Wi\Wi+1| = k is called a k-TJ move. Given a graph G = (V,E),
define mtj(G, s) as the minimum value of k such that any two independent sets of size s
in G can be k-MTJ reconfigured to each other. Now define mtj(G) := max1≤s≤|V |mtj(G, s).
Our goal is to characterize the value of mtj(G) in terms of certain parameters of the graph G.
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We call mtj(G) the MTJ reconfiguration threshold of the graph G. The MTJ reconfiguration
threshold of a graph class Π is defined as mtj(Π) := supG∈Π mtj(G).

Token Addition Removal (TAR). Given any two independent sets I and J , with |I| = |J |,
we say that I can be k-TAR reconfigured to J , if there exists a finite sequence of independent
sets (I = W0,W1,W2, . . . ,Wn,Wn+1 = J) for some n ≥ 0, such that Wi is an independent
set, |I| − |Wi| ≤ k, and |Wi−1∆Wi| ≤ 1 for all i ∈ {0, . . . , n+ 1}. We refer to the quantity
Bi := |I| − |Wi| as the buffer size at step i: the tokens that were on the initial independent
set and are not on the current independent set Wi, are placed in the buffer. Define tar(G, s)
to be the smallest buffer size k such that any two independent sets of size s can be k-TAR
reconfigured to each other. Define tar(G) := max1≤s≤|V | tar(G, s). As before, we call
tar(G) the TAR reconfiguration threshold of the graph G, and extend the terminology to
graph classes Π by defining tar(Π) := supG∈Π tar(G).

Facts on Reconfiguration. Observe that for any graph G, it holds that mtj(G) = 1 if and
only if tar(G) = 1. In general, the TAR reconfiguration threshold is at most the MTJ
reconfiguration threshold. Indeed, each k-TJ move can be thought of as a sequence of 2k
steps with maximum buffer size k. First, sequentially remove the tokens of the k vertices
from which we are jumping, placing their tokens in the buffer; then sequentially place the
buffer tokens on the k new vertices in the independent set.

I Proposition 1 (F). Let G be a graph with independent sets I and J of equal size. If I \ J
can be k-TAR reconfigured (resp. k-MTJ reconfigured) to J \ I in the graph G[I∆J ], then I
can be k-TAR reconfigured (resp. k-MTJ reconfigured) to J in G.

Proposition 1 shows that to upper-bound the TAR or MTJ reconfiguration threshold,
it suffices to do so in balanced bipartite graphs where the source and target configurations
are disjoint; note that G[I∆J ] is balanced bipartite and I \ J and J \ I are disjoint. We
will frequently exploit this in our proofs. For any graph class Π, let Πbip denote the set of
bipartite graphs in Π. The following proposition shows that the reconfiguration threshold of
a hereditary graph class is determined by the behavior of the bipartite graphs in the class.
Note that for hereditary classes Π, the class Πbip is hereditary as well.

I Proposition 2 (F). For any hereditary graph class Π, we have mtj(Π) = mtj(Πbip) and
tar(Π) = tar(Πbip).

4 Thresholds for Multiple Token Jump Reconfiguration

We start our discussion of token jump reconfiguration by recalling the following known result.

I Theorem 3 ([18, Theorem 7]). Let the graph G = (V,E) be a forest. Then mtj(G) ≤ 1.

The intuition behind this result is that since a forest does not contain any cycle, one can
start reconfiguring from the leaf nodes or the isolated vertices, each of which has at most
one neighbor from the target configuration. For arbitrary graphs, the above procedure does
not work since there may not be any leaves or isolated vertices. But if a graph G has a small
vertex cover, then its MTJ reconfiguration threshold is again small.

I Theorem 4 (F). Let G = (V,E) be a graph. Then mtj(G) ≤ max(vc(G), 1).
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An even cycle of length 2n has MTJ reconfiguration threshold n. Since its vertex cover
number is n, Theorem 4 is best-possible. Long cycles are not the only graphs whose MTJ
reconfiguration threshold equals half the size of the vertex set. Bistable graphs (introduced
below), of which the pumpkin structure defined in the introduction is a special case, also
have this property. We bound the MTJ reconfiguration threshold of any graph G, in terms
of the size of the largest induced bistable subgraph. The resulting bounds on the MTJ
reconfiguration threshold are tight, but can be hard to apply to specific graph classes: it may
be difficult to estimate the size of the largest induced bistable graph, or even to determine
whether a given graph is bistable or not. We will therefore relate the size of the largest induced
bistable subgraph to the size of the largest pumpkin subgraph. This will result in upper-
and lower bounds on the MTJ reconfiguration threshold in terms of the largest pumpkin
structure contained in the graph (class), which is arguably a more insightful parameter. The
resulting bound will not be best-possible, however.

I Definition 5 (Bistable graphs). A graph is called bistable if it is connected, bipartite, and
has exactly two distinct maximum independent sets formed by the two partite sets in its
unique bipartition. The rank of a bistable graph is defined as the size of its maximum
independent sets.

Let bi(G) denote the rank of the largest induced bistable subgraph of G. If G contains no
induced bistable subgraphs (which can only occur if G has no edges), then we define bi(G)
to be one. For a graph class Π we define bi(Π) := supG∈Π bi(G).

The pumpkin shown in Figure 1a forms an example of a bistable graph. Lemma 6 connects
bistable graphs to independent-set reconfiguration. Consider the task of reconfiguring the
J-partite set to the I-partite set in a balanced bipartite graph G = (I ∪ J,E). If we have a
set S ⊆ I such that |S| ≥ |N(S)|, then one way to make progress in the reconfiguration is to
select |S| vertices from N(S) ⊆ J and jump their tokens onto the vertices in S, resulting in
a new independent set of the same size. The following lemma shows that when we consider
a set S that is minimal with respect to being at least as large as its neighborhood, then
the induced subgraph G[N [S]] is bistable. Hence the cost of such a jump of |S| vertices is
bounded by bi(G), which will allow us to bound the MTJ reconfiguration threshold.

I Lemma 6 (F). Let G = (I ∪ J,E) be a balanced bipartite graph without isolated vertices
and let S ⊆ I be inclusion-wise minimal with the properties that |S| ≥ |N(S)| and S is not
empty. Then G[N [S]] is bistable.

The next lemma states two key properties of bistable graphs. They will later be useful to
relate the quantities pum(G) and bi(G).

I Lemma 7 (F). Let G = (I ∪ J,E) be a bistable graph. Then the following holds:
1. G has a perfect matching covering I (and hence J).
2. G is biconnected.

I Theorem 8 (F). For any graph G it holds that mtj(G) ≤ bi(G). Moreover, if G 6= K1,
then there exists an induced subgraph G′ of G with mtj(G′) ≥ bi(G) ≥ bi(G′).

The proof for the lower bound is straightforward, since by definition any induced bistable
subgraph contains exactly two maximum independent sets. The upper bound follows by
induction on the number of vertices in G, where in the induction step we make use of
Lemma 6, and reconfigure the subgraph induced by the set N [S].

The following corollary characterizes the MTJ reconfiguration threshold of hereditary
graph classes. It follows easily from Theorem 8.
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(a) DFS tree of a biconnected bipar-
tite graph.

(b) Grid-like balanced bipartite graph with large
treewidth and small TAR reconfiguration threshold.

Figure 2 (2a) Depth-first search tree of a bipartite biconnected graph. Tree-edges are drawn
solid, while the remaining edges of G are drawn with dotted lines. The three children u1, u2, u3 of v

induce subtrees of types A, B, and C, respectively. (2b) Template for constructing graphs of large
treewidth that can be TAR reconfigured with a buffer of size two. The treewidth is large due to the
presence of a large grid minor.

I Corollary 9 (F). For any hereditary graph class Π 6= {K1} it holds that mtj(Π) = bi(Π).

We now formally introduce the pumpkin structure described in the introduction.

I Definition 10 (Pumpkin). A pumpkin is a graph consisting of two terminal vertices u
and v linked by two or more vertex-disjoint paths with an odd number of edges, having no
edges or vertices other than those on the paths. A path can consist of the single edge {u, v}.
The size of the pumpkin is the total number of vertices.

For a graph G we denote by pum(G) the size of the largest (not necessarily induced)
subgraph isomorphic to a pumpkin that is contained in G, or zero if G contains no pumpkin.
For a graph class Π we define pum(Π) := supG∈Π pum(G).

The next theorem shows that the rank of the largest bistable induced subgraph of G can be
upper-bounded in terms of the size of G’s largest pumpkin subgraph.

I Theorem 11 (F). For any bistable graph G we have bi(G) ≤ f(pum(G)), where the
function f is defined as f(k) = (k3 + k2)k2+1 + 1.

Proof sketch. A bistable graph G is biconnected (Lemma 7). Biconnected graphs with a
path of length more than L2 have a cycle of length more than L [11], which forms a pumpkin
since G is bipartite. So if we set L := pum(G), graph G cannot have a path of length more
than L2. Consequently, if we build a DFS tree T rooted at an arbitrary vertex, its depth will
be at most L2. Next we claim that each vertex v in T has at most L3 + L2 children, which
in conjunction with the above bound on depth, yields the theorem. To prove the claim, we
classify each child u of v into one of three types (Figure 2a) and prove that no type occurs
often.

Type A: Some vertex in the subtree Tu rooted at u, has an edge in G to an ancestor w of v
that does not belong to v’s partite set. Through each such subtree, we obtain an odd-length
path from v to w. If there are more than L such paths from v to w then they form a pumpkin
of size more than L, which gives a contradiction. Hence each ancestor of v receives an edge
from less than L type-A child trees. There are ≤ L2 ancestors, hence ≤ L3 type-A children.

Type B: Vertex u is not of type A and the vertices in the subtree Tu are not evenly balanced
over the two partite sets. Then any perfect matching in G (which exists by Lemma 7) matches
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a vertex in Tu to an ancestor of v. Since the depth is at most L2, while matching partners
are all distinct, there are at most L2 type-B children.

Type C: Vertex u is not of type A and the vertices in the subtree Tu are evenly balanced
over the two partite sets. If such a child exists, then we can build a maximum independent
set that is not equal to either partite set in G: take the partite set that does not contain v,
but replace its contents within Tu by the vertices from Tu in the other partite set. The case
distinction ensures the result is a maximum independent set, contradicting bistability of G.

As this bounds the number of children of a vertex by L3 + L2, the theorem follows. J

The following theorem is our main result on the MTJ reconfiguration threshold. It bounds
the MTJ reconfiguration threshold of a hereditary graph class Π in terms of the maximum
size of a pumpkin subgraph of a graph in Πbip, by combining Theorems 8 and 11. Recall
that Πbip contains the bipartite graphs in Π.

I Theorem 12 (F). For any hereditary graph class Π, the following holds:

g1(pum(Πbip)) ≤ mtj(Π) ≤ g2(pum(Πbip)), (1)

where g1, g2 : N → N are positive non-decreasing functions defined as g1(k) = k/2
and g2(k) = (k3 + k2)k2+1 + 1. Moreover, for every graph G we have mtj(G) ≤ g2(pum(G)).

While the upper bound of Theorem 12 has room for improvement, the following proposition
shows that the exponential dependency on the pumpkin size in the upper bound is unavoidable.

I Proposition 13 (F). Let Πpum(k) := {G : pum(G) ≤ k} be the class of all graphs G whose
largest pumpkin subgraph has size at most k. Then mtj(Πpum(k)) = 2Ω(k).

5 Thresholds for Token Addition Removal Reconfiguration

In this section we study the model of token addition removal. First observe that when G is
a forest, we have mtj(G) ≤ 1 and therefore tar(G) ≤ 1 as well. Also, from Theorem 4 we
get tar(G) ≤ max(vc(G), 1). But the inequality tar(G) ≤ mtj(G) tells us nothing about
the behavior of the TAR reconfiguration threshold when the MTJ reconfiguration threshold
is large. The next simple proposition immediately points towards this direction. Indeed, a
large pumpkin (which has large MTJ reconfiguration threshold) can have a small feedback
vertex set; this happens for even cycles, for example.

I Proposition 14 (F). Let G = (V,E) be a graph. Then tar(G) ≤ fvs(G) + 1.

The proof is fairly straightforward by noting that for any graph G, if the size of the minimum
feedback vertex set is k, then by definition, deletion of k vertices leaves an acyclic subgraph.
Hence, we can essentially apply Theorem 3. One can see that the above bound is tight,
by considering the TAR reconfiguration threshold of a complete balanced bipartite graph.
Indeed, for Kn,n the minimum size of a feedback vertex set is n− 1, and one can see that in
order to include any one of the vertices of the target independent set, the reconfiguration must
pass through the empty set. This shows that the TAR reconfiguration threshold is also n.
As the main result of this section, we will show that the TAR reconfiguration threshold of a
graph is also bounded in terms of its pathwidth. Before proving that statement, we present a
structural lemma about path decompositions that will be useful in the proof.

I Lemma 15 (F). Let G = (I∪J,E) be a bipartite graph with a nice path decomposition P =
(X1, . . . , Xr) of width k. Let S ⊆ J such that |N(S)| ≤ |S| while no non-empty subset of S
has this property. If we order the vertices in S as i1, . . . , it such that rP(i1) < rP(i2) < . . . <

rP(it), then |N({i1, . . . , it′})| < t′ + k for all 1 ≤ t′ ≤ t.
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Intuitively, the lemma says the following. Suppose a set S ⊆ J is inclusion-wise minimal with
respect to being no smaller than its neighborhood. Then ordering S according to the right
endpoints of the intervals representing S in the path decomposition, we are guaranteed that
every prefix of S has a fairly small neighborhood compared to its size: the neighborhood
size exceeds the size of the prefix by less than the pathwidth. Note that since the lemma
deals with bipartite graphs only, no vertex of S can belong to the neighborhood of any prefix
of S. The ordering of the vertices is uniquely defined since the path decomposition is nice.
The bound of Lemma 15 is best-possible. Consider a complete bipartite graph Kn,n, with
pathwidth n. In any optimal path decomposition, for t′ = 1 the first vertex in the ordering
has a neighborhood of size n and so n < t′ + n = 1 + n, but a better bound is not possible.
Using Lemma 15 we bound the TAR reconfiguration threshold in terms of pathwidth.

I Theorem 16. Let G = (V,E) be a graph. Then tar(G) ≤ max(pw(G), 1).

Proof. We prove this theorem using induction on the number of vertices. By Proposition 1,
it is enough to consider G = (V,E) and assume that the initial independent set I and target
independent set J are such that |I| = |J |, and I ∪ J = V and I ∩ J = ∅. We will show
that pw(G) ≤ k implies that tar(G) ≤ k, using induction on the number of vertices n.
For n = 1, the statement is trivially true. Now fix any k ≥ 1, and assume the induction
hypothesis that any graph G with n vertices satisfying pw(G) ≤ k has tar(G) ≤ k.

Now let G be a graph of n+ 1 vertices having pathwidth at most k. Let S be an inclusion-
minimal subset of J for which |S| ≥ |N(S)|. Such a set exists since |J | = |I| ≥ |N(J)|. We
will show that if we reconfigure the set S in a suitable order by moving tokens from N(S)
onto S, then the buffer size will not grow beyond k. There are enough vertices in S to
accommodate all tokens on N(S), and afterward we will invoke induction.

We first deal with a special case. If S = {v} is a singleton set, then it has degree
at most one since |S| ≥ |N(S)|. Move the token from the neighbor u of v (or from an
arbitrary vertex u, if v has no neighbors) into the buffer, and then onto v. By induction
there exists a TAR reconfiguration from I \ {u} to J \ {v} in G−{u, v} using a buffer of size
at most max(pw(G− {u, v}), 1) ≤ max(pw(G), 1). When inserting the token move from u

onto v at the beginning of this sequence, we get a TAR reconfiguration from I to J with
the desired buffer size. In the remainder of the proof we can therefore assume |S| ≥ 2. This
implies that |S| = |N(S)|: if |S| > |N(S)| and |S| ≥ 2, then we can remove a vertex v from S

to obtain |S \ {v}| ≥ |N(S \ {v})| for the nonempty set S \ {v}, contradicting minimality.
Let P = (X1, X2, . . . , Xr) be a nice path decomposition of width at most k. If G has

no edges, then S is a singleton set containing an isolated vertex. Since we already covered
that case, we know G has at least one edge, so any path decomposition has width k ≥ 1.
Enumerate the vertices of S as i1, . . . , im such that rP(i1) < . . . < rP(im). In other words,
the vertices are ordered by increasing rightmost endpoint of the interval of bags containing it.

In order to describe the reconfiguration procedure we suitably group several TAR recon-
figuration steps together as one step in the algorithm. In particular, one reconfiguration
step in the algorithm described below will consist of a run of successive removals of nodes,
followed by a single node addition.

We use the notion of a buffer set Bt at the tth step of the reconfiguration, such that |Bt|
will correspond to the number of tokens in the buffer at any particular time, and maxt |Bt|+1
will correspond to the maximum buffer size of the corresponding TAR reconfiguration
sequence. The buffer set is a subset of vertices, showing where the tokens in the buffer
came from. At time step t = 0, define W0 = I to be the independent set of vertices with a
token, and let the buffer set B0 be empty. We will define intermediate independent sets Wi

and buffer sets Bi representing the grouped reconfiguration steps. The algorithm stops

FSTTCS 2016



34:10 Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes

when Wm contains all vertices in S; we will then invoke the induction hypothesis to finish
the sequence. From the sequence (W0,W1, . . . ,Wm) one obtains a formal reconfiguration
sequence as defined in Section 3 by inserting “transitioning independent sets” in between Wi

and Wi+1 for all i. From Wi, repeatedly remove one vertex until arriving at Wi+1 \Wi, and
then add the single vertex of Wi+1 \Wi to the resulting set.

For t ≥ 1, the transition from t − 1 to t is obtained as follows. Let ut be an arbitrary
vertex from Bt−1 ∪ (N(it) ∩Wt−1). Intuitively, at step t we take the token from ut (in the
buffer set or on a neighbor of it) and move it onto vertex it, causing ut to disappear from
the buffer and adding it to the independent set. To ensure the resulting set is independent,
tokens on neighbors of it are moved into the buffer beforehand. Observe that the above step
is valid only if Bt−1 ∪ (N(it) ∩Wt−1) is nonempty. Below in Claim 17 we show that due to
the choice of S, this is indeed the case for all t ≤ m. Formally, we obtain the following:

I Algorithm (Reconfiguring graphs with small pathwidth). Initialize with B0 = ∅ and W0 = I.
We now recursively define Bt and Wt for t ≥ 1.
1. The neighbors of it that have tokens (that is, the neighbors that are in the current

independent set) are removed from the previous independent set Wt−1, making room to
add it to the new independent set: Wt = (Wt−1 \N(it)) ∪ {it}.

2. The neighbors of it belonging to the previous independent set Wt move to the buffer,
while ut is removed from the buffer since its token has moved onto it:

Bt = (Bt−1 ∪ (N(it) ∩Wt−1)) \ {ut}. (2)

As mentioned earlier, a step from Wt to Wt+1 can be thought as a sequence of successive
removals of the nodes in N(it+1) ∩Wt, and then addition of the node it+1. During this
successive TAR reconfiguration sequence corresponding to the stepWt toWt+1, the maximum
buffer size is given by |Bt+1|+ 1, since the buffer size will be |Bt−1 ∪ (N(it) ∩Wt−1)| just
before the buffer token from ut is moved onto it. Therefore, the maximum buffer size in
the entire TAR reconfiguration sequence starting from W0 and ending at Wm is given by
max0≤t≤m |Bt|+ 1. Also, at the end of the algorithm, all vertices from the set S will be in
the independent set and no vertex in the buffer set. This can be seen as follows. Initially all
tokens were on the vertices belonging to the set N(S) ⊆ I, since S ⊆ J . At each step of the
algorithm, essentially one token is selected from N(S) as long as the number of such tokens
is positive, and it is placed on some vertex in S. Now since |S| ≥ |N(S)|, all the tokens in
N(S) must eventually exhaust before the algorithm terminates placing one token at each
vertex of S. For the validity of the above algorithm we claim the following, which in turn
also characterizes the size of the buffer set at all intermediate time steps.

I Claim 17. For all 1 ≤ t ≤ m we have that Bt−1 ∪ (N(it) ∩Wt−1) is nonempty, and that
|Bt| = |N({i1, . . . , it})| − t.

Proof. Suppose for a contradiction that there exists t′ ≤ m, such that Bt′−1∪(N(it′)∩Wt′−1)
is empty for the first time. If t′ = 1, then Bt′−1 ∪ (N(it′) ∩ Wt′−1) is empty, and in
particular N(it′) = ∅, so that it′ = i1 is an isolated vertex. But since |S| ≥ 2 by our
argument above, it follows that S′ = {i1} is a nonempty strict subset with |S′| ≥ |N(S′)|;
a contradiction. So in the remainder we consider t′ > 1. We show that, for all t < t′,
|Bt| = |N({i1, . . . , it})| − t. Using this, we prove that 2 ≤ t′ ≤ m leads to a contradiction.

Observe that for any t < t′, after the tth step of the algorithm, the total number of distinct
vertices that have been added to the buffer set is given by |N({i1, . . . , it})|. Furthermore, for
all t′′ ≤ t < t′, the set Bt′′−1 ∪ (N(it′′) ∩Wt′′−1) has always been nonempty. This implies
that at each step, precisely one token has been removed from the buffer, thus reducing the
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size of the buffer set by moving a buffer token onto a vertex that is added to the independent
set. Therefore, in total t times the size of the buffer set reduces by one. Since initially the
buffer set was empty, for any t < t′ we have |Bt| = |N({i1, . . . , it})| − t.

Since we have assumed that Bt′−1 ∪ (N(it′) ∩Wt′−1) is empty, we know Bt′−1 is empty,
and therefore from the above argument |Bt′−1| = |N({i1, . . . , it′−1})| − (t′ − 1) = 0.

Defining S′ := {i1, . . . , it′−1} ( S, we have |N(S′)| ≤ |S′|. Since t′ ≥ 2 the set S′ is
nonempty, contradicting the minimality of S. This proves the first part of the claim. Since
the buffer does not become empty until after step t, the given argument then also proves the
second part of the claim. J

Note that in particular |Bm| = |N({i1, . . . , im})| − m = |N(S)| − |S| = 0; the buffer
empties for the first time only after reconfiguring the whole set.

It remains to show that throughout the process the buffer size will not grow beyond k,
i.e. |Bt| ≤ k − 1, for all t ≤ m. Claim 17 (ii) implies that maxt≤m |Bt| ≥ k if and only if
there is a t, with t ≤ m, such that |N({i1, . . . , it})| − t ≥ k. But this is not possible due to
Lemma 15. Hence, throughout the algorithm the buffer size will never exceed k.

Since the buffer set empties out after reconfiguring the set S, after the execution of the
algorithm we haveWm∩J = S andWm∩I ⊂ V \(S∪N(S)). Now define G′ := G−(S∪N(S)),
and I ′ := I ∩ Wm and J ′ := J \ S. Observe that G′ has pathwidth at most k, and
|I ′| = |I ∩Wm| = |I| − |S| = |J ′|. Furthermore, since S is non-empty, |V (G′)| ≤ n. By the
induction hypothesis, there exists a TAR reconfiguration sequence from I ′ to J ′ in G′ using
a buffer of size at most k. Since N(S) is not in G′, any independent set in G′ remains to
be an independent set in G when augmented with the set S. Therefore we can first apply
the given reconfiguration from N(S) to S, followed by the reconfiguration from I ′ to J ′, to
reconfigure I to J with a buffer of size at most k. J

Observe by considering a complete balanced bipartite graph on 2n vertices Kn,n, that in
general the above bound is tight. Indeed, Kn,n has pathwidth equal to n [3], and as explained
earlier, the TAR reconfiguration threshold is also n. Having proved Theorem 16, it is natural
to ask whether pathwidth in some sense characterizes the TAR reconfiguration threshold:
does large pathwidth of a graph imply that its TAR reconfiguration threshold is large? This
is not the case: the pathwidth of a complete binary tree is proportional to its depth [20], but
its reconfiguration threshold is 1 by Theorem 3. We now identify a graph structure which
forces the TAR reconfiguration threshold to be large. First we formally introduce the special
type of minor, illustrated in Figure 1b.

I Definition 18 (Bipartite topological double minor). Let G = (I ∪ J,E) be a bipartite graph
and let H be an arbitrary graph. Then H is a bipartite topological double minor of G, if one
can assign to every v ∈ V (H) a subgraph ϕ(v) of G, which is either an edge or an even cycle
in G, and one can assign to each edge e = {u, v} ∈ E(H) a pair of odd-length paths ψ1(e),
ψ2(e) in G, such that the following holds:

For any u, v ∈ V (H) with u 6= v the subgraphs ϕ(u) and ϕ(v) are vertex-disjoint.
For any v ∈ V (H) no vertex of ϕ(v) occurs as an interior vertex of a path ψ1(e) or ψ2(e),
for any e ∈ E(H).
For any e, e′ ∈ E(H) the paths ψ1(e) and ψ2(e′) are internally vertex-disjoint.
For any e = {u, v} ∈ E(H) the paths ψ1(e) and ψ2(e) both have one endpoint in ϕ(v)
and one endpoint in ϕ(u).
For any v ∈ V (H) and edge {u, v} ∈ E(H), the attachment points of ψ1(e) and ψ2(e)
in ϕ(v) belong to different partite sets.

FSTTCS 2016



34:12 Independent-Set Reconfiguration Thresholds of Hereditary Graph Classes

The triple (ϕ,ψ1, ψ2) is a BTD-minor model of H in G. For an edge e ∈ E(H) we define
ψ′1(e), ψ′2(e) ⊆ V (G) as the interior vertices of the paths ψ1(e) and ψ2(e). Note that we can
have ψ′1(e) = ∅ (and, similarly, ψ′2(e) = ∅) when ψ1(e) (resp. ψ2(e)) consists of a single edge.

Intuitively, H occurs as a bipartite topological double minor (or BTD-minor) if each
vertex of H can be realized by an edge or even cycle, and every edge of H can be realized by
two odd-length paths that connect an I-vertex of ϕ(v) to a J-vertex of ϕ(u) and the other
way around, in such a way that these structures are vertex-disjoint except for the attachment
of paths to cycles. The definition easily extends to bipartite graphs whose bipartition is not
given, since a BTD-minor is contained within a single connected component of the graph,
which has a unique bipartition.

I Proposition 19 (F). Let G = (I ∪ J,E) be a bipartite graph having a connected graph H
as a BTD-minor model (ϕ,ψ1, ψ2), such that each vertex of G is in the image of ϕ, ψ1,
or ψ2. Then G has a perfect matching with |I| = |J | edges, and for any independent set W
in G:
1. For each vertex v of H we have |W ∩ ϕ(v)| ≤ |ϕ(v)|/2.
2. For each edge e of H and i ∈ {1, 2} we have |W ∩ ψ′i(e)| ≤ |ψ′i(e)|/2.
For a maximum independent set W , equality holds in all cases.

For a bipartite graph G, let treeminor(G) denote the largest integer k for which G

contains a complete binary tree of depth k as a BTD-minor. For a class Π of bipartite graphs
we define treeminor(Π) := supG∈Π treeminor(G).

I Theorem 20. There exists a real constant c > 0 such that any hereditary graph class Π
satisfies tar(Π) ≥ c · treeminor(Πbip).

Proof. As before, we consider a balanced bipartite graph G ∈ Πbip with bipartition V (G) =
I ∪ J that has a complete binary tree T of depth d as a BTD-minor. Since the graph
class is hereditary, for the lower bound we consider only the subgraph of G induced by⋃

v∈V (T ){ϕ(v)} ∪
(⋃

e∈E(T ){ψ1(e) ∪ ψ2(e)}
)
. With a slight abuse of notation we denote this

subgraph by G from now on.

I Fact 21 ([2]). There is a universal constant c1 > 0 such that if T is a complete binary
tree of depth d, then max

1≤i≤|V (T )|
min

S⊆V (T );|S|=i
|NT (S)| ≥ c1 · d.

The above implies that there exists i0 ≤ |V (T )|, such that any size-i0 subset of V (T ) has
a neighborhood of size at least c1 · d. Let I ∪ J be the unique bipartition of the connected
graph G, and consider an arbitrary TAR reconfiguration sequence from I and J . In this
sequence (I = W0,W1, . . . ,Wt = J) of independent sets in G, look at the reconfiguration
step when for the first time there exists S ⊆ V (T ) with |S| = i0, such that the intermediate
independent set W at that step contains

⋃
v∈S(ϕ(v) ∩ J), and for all v /∈ S it satisfies

(ϕ(v) ∩W ∩ J) ( (ϕ(v) ∩ J). We will prove that |J | − |W | ≥ c1 · d, implying that from the
initial independent set of |I| = |J | tokens, at least c1 · d tokens must reside in the buffer.

To prove the theorem, consider the intermediate independent set W , and the set S ⊆
V (T ) with |S| = i0 satisfying the above criteria. The following claim shows that for each
vertex in NT (S), the independent set W uses at least one vertex fewer than the maximum
independent set J does.

I Claim 22. Consider an edge e = {u, v} ∈ E(T ) with u ∈ S and v /∈ S, and let Qe,v ⊆ V (G)
denote the vertices in ϕ(v) ∪ ψ′1(e) ∪ ψ′2(e). The following holds:

|W ∩Qe,v| < |J ∩Qe,v| =
|Qe,v|

2 . (3)
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Proof. By Proposition 19, the maximum independent set J contains exactly half the vertices
of Qe,v. If |W ∩ ψ′i(e)| < |ψ′i(e)|/2 for some i ∈ {1, 2}, then we are done: by Proposition 19
the set W contains fewer vertices from ψ′i(e) that the maximum independent set J does, and
this cannot be compensated within the other parts of the structure since J contains half
the vertices there and no independent set contains more. In the remainder, we can assume
that W contains exactly half the vertices from ψ′1(e) and ψ′2(e). Then the following are
true:
(i) All J-nodes of ϕ(u) are in W (by our choice of W and since u ∈ S).
(ii) Some J-node of ϕ(v) is not in W (by our choice of W and since v 6∈ S).
(iii) Some I-node of ϕ(v) is not in W . To see this, let i ∈ {1, 2} such that ψi(e) is an odd-

length path from a J-node in ϕ(u) to an I-node in ϕ(v), which exists by Definition 18,
and orient it in that direction. Since the first vertex on the path is a J-node in ϕ(u),
it is contained in W as shown above. Hence the second vertex on the path, the first
interior vertex, is not in W . Since exactly half the interior vertices from ψi(e) belong
to W , every other interior vertex from ψi(e) is in W . Since the path has an even number
of interior vertices and the first interior vertex is not in W , the last interior vertex must
be in W . But this prevents its I-node neighbor in ϕ(v) from being in W .

Therefore, since ϕ(v) is either an edge or an even cycle, we have |W ∩ ϕ(v)| < |ϕ(v)|/2
by observing the following: the only independent sets in ϕ(v) of size |ϕ(v)|/2 are ϕ(v) ∩ I
and ϕ(v)∩J , but ϕ(v)∩W is not equal to either of these sets since it avoids a J-node and an
I-node. Hence |W ∩ϕ(v)| < |ϕ(v)|/2 = |J ∩ϕ(v)|, and Proposition 19 shows that this cannot
be compensated in other parts of the minor model, implying |W ∩Qe,v| < |J ∩Qe,v|. J

Using Claim 22 we now finish the proof of Theorem 20. For each v ∈ NT (S), pick an
edge e = {u, v} such that u ∈ S. By Claim 22 the set W contains less than half the vertices
of Qe,v, while the maximum independent set J contains exactly half. Note that the sets Qe,v

considered for different vertices v ∈ NT (S) are disjoint, while Proposition 19 shows that from
the other pieces of the minor model W cannot use more vertices than J does. It follows
that |W | ≤ |J | − |NT (S)| ≤ |J | − c1 · d. Hence the buffer contains at least c1 · d tokens. J

6 Conclusion

We considered two types of reconfiguration rules for independent set, involving simultaneously
jumping tokens and reconfiguration with a buffer. For both models, we derived tight bounds
on their reconfiguration thresholds in terms of several graph parameters like the minimum
vertex cover size, the minimum feedback vertex set size, and the pathwidth. Many results in
the literature concerning the parameter pathwidth can be extended to hold for the parameter
treewidth as well. This is not the case here; the upper bound on the TAR reconfiguration
threshold in terms of pathwidth (Theorem 16) cannot be strengthened to treewidth, since
one can make arbitrarily deep complete binary trees as BTD-minors in bipartite graphs of
treewidth only two (see Figure 1b). On the other hand, there are bipartite graphs of large
treewidth with TAR reconfiguration threshold two (Figure 2b). To characterize the TAR
reconfiguration threshold one therefore needs to combine graph connectivity (as measured
by the width parameters) with notions that constrain the parity of the connections in the
graph. This is precisely why we introduced BTD-minors. We conjecture that the converse
of Theorem 20 holds, in the sense that any hereditary graph class having a large TAR
reconfiguration threshold must contain a graph having a complete binary tree of large depth
as a BTD-minor. Our belief is based partially on the fact that a BTD-minor model of a deep
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complete binary tree is arguably the simplest graph of large pathwidth and feedback vertex
number. Resolving this conjecture is our main open problem.
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LZ77 Factorisation of Trees∗
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Abstract
We generalise the fundamental concept of LZ77 factorisation from strings to trees. A tree is
represented as a collection of edge-disjoint fragments that either consist of one node or has already
occurred earlier (in the BFS order). Similarly as for strings, such a collection uniquely determines
the tree, so by minimising the number of fragments we obtain a compressed representation of
the tree. We show that our generalisation has several useful properties of the standard LZ77
factorisation: it can be computed in polynomial time and its simpler variant in linear time; its
size is not larger than the smallest grammar for a tree; it can be transformed (in linear time)
into a tree grammar of size O(rg log(n/(rg))), where n is the size of the tree, g the size of the
smallest grammar for this tree and r the maximal arity of the nodes in the tree, which matches
a recent bound of Jeż and Lohrey [STACS 2014], but with a simpler and more modular proof.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.2.2 Nonnu-
merical Algorithms and Problems, E.4 Data compaction and compression
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1 Introduction

Many popular compression text methods are based on the concept of block compression,
where the input text is divided into blocks, each block being either a single letter or a longer
block defined using the already compressed prefix (e.g. its arbitrary substring). Examples
of such methods include LZ77, LZ78 and LZW algorithms. Another closely connected and
particularly clean method is grammar compression, where we represent the input text as a
CFG deriving exactly one word. Such a grammar is usually called a straight-line program
(SLP). It is known that grammar compression captures most if not all block compression
methods with small or no overhead in the size of the representation, yet it is much easier
to operate on. This makes it particularly attractive given that the compressed data is
often not only stored, but also accessed and processed on demand, and decompressing it
defeats the purpose of having a small compressed representation in the first place. Thus,
a recent trend is a design of algorithms working directly on a compressed representation
of the data. Because grammar compression has an inductive definition, it is well-suited for
such processing. In fact, similar algorithms for block compression routinely transform the
the compressed representation into an equivalent SLP and only afterwards process it. The
connection between grammar and block compression is used also in the other direction, for
instance: computing a smallest SLP is NP-hard [8, 29, 7], but one can transform the LZ77
representation into an SLP, in this way we obtain an approximation algorithm with currently
best known approximation ratio [25, 8, 19].
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35:2 LZ77 Factorisation of Trees

However, often the data has a more complex structure than a one-dimensional text.
In particular, it is often the case that it has a natural hierarchical structure, which can
be represented as a tree. Such a tree can be of course flattened and then treated as the
input text, but this disregards the structure of the original data and hence might make
processing the compressed representation (provably) difficult [10]. Hence it is desirable to
design compression methods that retain the tree structure.

The folklore tree compression preserving the tree structure are directed acyclic graphs
(DAGs), in which identical subtrees are shared. They yield up to exponential compression,
processing DAGs is usually easy. The sharing mechanism of DAGs is limited, and it does
not generalise the SLP: text an, when treated as a tree, is incompressible using DAGs. Tree
SLP (TSLP) are a generalisation of SLP to the case of trees, which allow sharing of more
general substructures. Moreover, DAG are subclass of TSLP and TSLP can be exponentially
smaller than DAG. As in the case of SLP [8, 29], determining the size of the smallest TSLP
is NP-hard, but there are approximation algorithms for this problem [17, 20] as well as
heuristical ones [23, 5, 6].

TSLP became a de facto standard of tree compression in computer science, as several
types of queries can be computed on TSLP in polynomial time [24] and there are various
applications of TSLPs in other subfields. Most notably, they were used in problems related
to context unification [13, 14, 15, 21], culminating in the recent proof that context unification
is in PSPACE [18]. Moreover, studying matching problems for TSLP became an area on its
own [11, 12, 27]. Other applications of TSLP (and SLP) can be found in a recent survey [22].

There are other approaches at tree grammar compression: Akutsu [2] generalised SLP to
trees in a different (and incomparable) way. Bille et al. [3] proposed top trees, which are a
variant of TSLP for unranked and unlabelled trees. Bojańczyk and Walukiewicz [4] proposed
the model of forest algebras, which is designed specifically to handle unranked trees (while
their model does not mention grammars but rather expressions, it can be easily trimmed to
yield an TSLP-like formalism).

There were attempts at defining a variant of block compression designed for trees, but
none of them became standard nor did they have ties to tree grammar compression. In
particular, so far exploiting the connection between the grammar and block compression, so
popular in text compression, did not occur for trees.

Our contribution. We propose a model of block compression for trees, inspired by both the
notion of LZ77 and TSLPs. Similarly to LZ77, it represents the tree as a collection of trees
(with “holes” that are placeholders for another trees), called fragments; each fragment is
either an individual node or has already appeared earlier (in the BFS order) in the tree. Such
factorisation can be compactly represented: each fragment is encoded by the BFS-addresses of
the root and all the holes of its earlier occurrence. We give an O(n3) algorithm constructing
the smallest such representation for the general case, and a specialised linear algorithm for
the case when fragments have at most one hole. Such factorisations are related to TSLPs
in a similar way as LZ77 are related to SLPs: it is not difficult to see each TSLP can be
transformed into a factorisation without size increase. We prove that a factorisation can be
transformed into a TSLP defining the same tree yielding an approximation algorithm for the
smallest TSLP problem, the approximation ratio matches the best known [20].

2 Notions, definitions, basic results

Trees. We consider Σ-labeled rooted trees: The children of every node are ordered (by
the usual left-to-right order) and each node is labeled with a letter from a fixed ranked
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A → f(f(y1, c), y2)
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Figure 1 A tree f(c, A(a(f(c, c)), f(a(c), c))) and the result of applying a rule A(y1, y2) →
f(f(y1, c), y2).

alphabet Σ, i.e. every a ∈ Σ has arity ar(a). The label of a node u is denoted by label(u) and
determines its number of children ar(label(u)). By children(u) we denote the children of u,
and by parent(u) its parent. We assume integer alphabet, that is, Σ = {1, 2, . . . , n}, where n

is the size of the tree; thus, node labels can be sorted in O(n) time using RadixSort. By r we
denote the maximal arity of nodes in the tree. We often employ a BFS-order on the nodes
of the tree, denoted by ≤BF S or ≤, when this causes no confusion; it is a linear order. By
BFS-addresses (or addresses) we denote the BFS-order numbers.

We consider also trees with holes that represent missing subtrees. The holes are represented
by labels y, y1, y2, . . . from Y that is disjoint with Σ. For the purposes of building trees holes
have arity 0. Labels of different holes are different. As holes represent missing trees, we
can substitute trees (or with trees with holes) for them: we delete the appropriate hole and
replace it with the appropriate tree.

LZ77. As we model our tree factorisation on the LZ77 factorisations, let us recall the notion
of LZ77 for strings: An LZ77 factorisation of a word w is a representation w = f1f2 · · · f`,
where each fi (called phrase) is either a single letter or it already occurred in the text,
formally: fi = w[j . . j + |fi| − 1] for some j ≤ |f1 · · · fi−1|. If for some fi as in the latter
case it holds that j + |fi| > |f1 · · · fi−1| (informally, the whole phrase occurred earlier),
this factorisation is called self-referencing; it is called non-self-referencing otherwise. The
self-referencing factorisations are in some cases more succinct than the non-self referencing
ones, with the trivial example being string ak. Each fi can be represented as a single letter or
as a pair (j, |fi|), where j is as in the explanation above, yielding a compressed representation
of a LZ77 factorisation. The (compressed) size of a factorisation f1f2 · · · f` is `. Smallest
LZ77 factorisation of a given text can be computed in linear time.

Tree grammars. Tree grammars extend CFG to trees: they have nonterminals (finite set
N), terminals (ranked alphabet Σ), rules (P ) and a starting symbol (S). Nonterminals
generate trees with holes: each nonterminal A has an arity ar(A) and it generates a tree
with ar(A) holes. Thus in the rules we treat A as ar(A)-ary function symbol and in the rule
A→ t the tree t has ar(A) holes, labeled with y1, . . . , yar(A). To stress the dependence on
holes, we sometimes write the rule as A(y1, . . . , yar(A))→ t.

We apply a rule A→ t as follows: given a tree s we can rewrite its subtree A(t1, . . . , tar(A))
by t with each yi replaced by ti. Intuitively, we replace an A-labeled node by t(y1, . . . , yar(A))
and identify the j-th child of A with the unique yj-labeled node of t, see Fig. 1.

The size of a rule A(y1, . . . , yar(A))→ t is |t| − ar(A), i.e. the number of non-holes nodes
in t. This makes sense, as we can assume that BFS order of holes’ labels in t is y1, . . . , yar(A)
and all of them occur in t, so we do not have to list them when describing t. The size of a
tree grammar is the sum of sizes of its rules.

FSTTCS 2016



35:4 LZ77 Factorisation of Trees

Figure 2 BFS-factorisation: for simplicity, the node labels were suppressed, only one label of
each arity is used. The fragments are enclosed in blobs, the holes are represented as full dots, other
nodes are free. Note that nodes 7, 11, 14 are free nodes and holes in their fragments. The dashed
arrows are definitions.

In Tree SLP (or TSLP for short) we additionally insist that for A ∈ N there is exactly
one production A→ t and that nonterminals are linearly ordered such that S is the smallest
nonterminal and if A→ t and B occurs in t then B > A. So, TSLP produces a unique tree.

Factorisations of trees. A fragment F is a connected subtree of a tree T in which each
node either has the same label a as in T (and then has ar(a) children) or is labeled with
some y ∈ Y, in which case it is a leaf (in F ) and it is called a hole. The arity of a fragment
is its total amount of holes, a fragment of arity k is called a k-fragment. We require that
a fragment has at least 2 non-hole nodes. A free node is defined similarly as a fragment, but
it has exactly one non-hole node, i.e. it has a non-hole root and all its children are holes.
When referring to a free node rooted in v we call it simply v.

A factorisation F of a tree T , denoted by (T,F), is a collection of edge-disjoint fragments
and free nodes, such that each node of T is either a non-hole node in some fragment or a
free node. Such a factorisation is a BFS-factorisation if for each fragment F ∈ F , which is
rooted in v ∈ T , there is an isomorphic fragment F ′ of T , called the definition of F , rooted
in v′ <BF S v; note that F ′ is not necessarily in F and that F and F ′ may overlap. See
Fig. 2 for an example. Neither a factorisation, nor the BFS-factorisation of a tree is unique,
similarly to the LZ77 factorisation of a string.

For v ∈ F the corresponding v′ ∈ F ′ is the definition of v, denoted by def [v], a link
to this node is a definition link. The arity of a factorisation is the maximal arity of the
fragments in it. An `-factorisation is a factorisation of arity at most `.

Note that nodes are shared, but in such a case in the “lower” fragment (or free node)
this node is a root and in the “upper” a hole. In this way nodes in the tree can have two
definitions: one as a definition of a hole and one as a definition of a root. We store only the
latter but use a term “definition of a hole”, as it is useful in description and analysis.

We use the BFS order because the condition def [v] < v required for the root of the
fragment is inherited by other nodes in this fragment. Thus, given a fragment, we can extend
it by a node above the root (at the hole) as long as the labels are the same.

I Lemma 1. Let F be a fragment in a BFS-factorisation of a tree, D a definition of F and
u, v be two nodes in F . Then def [u] < u if and only if def [v] < v.

In case of TSLP, the maximal arity of nonterminals in a grammar usually multiplicatively
affects the running time and in general makes the reasoning about TSLP harder. Luckily, it
is known that any TSLP can be converted to a one that uses only nonterminals of arity 0
and 1, with a polynomial size increase [24]. Similar result can be also obtained for the tree
factorisations: a factorisation can be converted to a 1-factorisation, with a polynomial size
increase:
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2, 11

1, 7, 14

Figure 3 Compressed BFS-factorisation of the tree from Fig. 2. The fragments are depicted by
square boxes, the addresses of their definitions and holes are beneath the boxes.

I Lemma 2. In any factorisation an `-fragment can be (effectively) replaced with at most
(`−1)(r−2) 0-fragments, `−1 free nodes and (2`−1) 1-fragments. If the original factorisation
was a BFS one, also the obtained one is.

Compressed representation. The compressed BFS-factorisation for a BFS-factorisation
(T,F) is given by a tree: each fragment and free node is represented as a single node; an
edge between two fragments or free nodes means that they share a node in T (in other words:
a hole in one of them is a root in the other). Each fragment-node stores addresses (in T )
of its root and holes. See Fig. 3.

A compressed BFS-factorisation is valid if it corresponds to some BFS-factorisation of
a tree; not every compressed BFS-factorisation is valid, as it may use undefined addresses.
Still, a valid compressed BFS-factorisation defines a unique tree, which can be computed by
iteratively adding the nodes in the BFS order.

I Lemma 3. A valid compressed BFS-factorisation corresponds to exactly one BFS-factori-
sation of a tree, which can be computed in O(|T |) time, where T is the resulting tree.

For the purpose of storing the compressed factorisation, we count the storage size of
the factorisation in terms of memory cells rather than bits and assume that we can fit one
address in O(1) memory cells. Note that this is also the assumption for LZ77.

I Lemma 4. The compressed BFS-factorisation of (T,F) uses O(|F|) memory cells.

In the full version of this paper, we consider also weighted size of factorisations: the
weight of an i-fragment is wi and of a free node is 1; we assume 1 ≤ w0 ≤ w1 ≤ . . . . The
(weighted) size of the factorisation is the sum of weights of its fragments. To streamline the
presentation we do not consider the weights, though our algorithms work also in weighted
case.

Comparison with the text model. A text can be seen as a tree using only nodes of arity 1,
and the compressed BFS-factorisation of such a tree corresponds with a compressed LZ77
factorisation of this text: each LZ77 phrase can be extended to the right with an extra hole
added at the end. The sizes and the descriptions of two such factorisations are similar.

In case of text we can distinguish between self-referencing and non-self-referencing
factorisation. In case of trees we use only the self-referencing variant, as a clear and useful
definition of a non-self-referencing one is elusive.

Comparison with tree grammars. In case of strings, the size of the LZ77 is a lower bound
for the size of the grammar generating the same string [25, 8]; the same holds for trees; this
observation is the first step in the approximation algorithm for the smallest tree grammar
problem, presented in Section 4.

FSTTCS 2016
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I Lemma 5. The size of the smallest compressed BFS-factorisation for a tree T is not larger
than the size of the smallest TSLP for T .

3 Computing BFS-factorisations

In this section we first present a polynomial time dynamic programming algorithm Simple-
Factors, which computes an optimal BFS-factorisation (of unbounded arity). Then, we show
how to modify it, so that it computes optimal k-BFS-factorisations. Finally, using additional
insight, we give a specialised algorithm for 1-BFS-factorisations that runs in linear time. We
focus on describing how to calculate the number of fragments in an optimal BFS-factorisation,
reconstructing the corresponding factorisation is straightforward.

Unbounded arity. Let Tu denote the tree rooted in u and opt(u) the number of fragments
in an optimal factorisation of Tu into fragments occurring earlier in the whole tree T (so not
necessarily in Tu). To compute opt(u) SimpleFactors constructs a table T [u, v], which stores
the smallest size of a factorisation of Tu, such that v is the definition of u (or T [u, v] = +∞,
if label(u) 6= label(v)). We fill T [u, v] in a reversed BFS order, thus when calculating T [u, v]
the T [u′, v′] and opt(u′) are known for every u′ ∈ children(u) and v′ < u′.

Let children(u) = (u1, u2, . . . , ud) and children(v) = (v1, v2, . . . , vd). Then T [u, v] is 1
plus the number of fragments in subtrees rooted in ui, for each i. If ui is a hole this is
opt(ui); otherwise this is T [ui, vi]− 1 (the ‘−1’ is for the fragment rooted in ui in T [ui, vi],
which is not counted in T [u, v]). We take the minimum of those two numbers separately
for each i. Thus T [u, v] = 1 +

∑d
i=1 min(T [ui, vi]− 1, opt(ui)). Similarly, opt(u) = min(1 +∑d

i=1 opt(ui), minv<u T [u, v]), where the (outer) minimum represents the two possibilities:
there is a free node or a fragment rooted in u.

I Theorem 6. SimpleFactors computes the size of the smallest BFS-factorisation (of un-
bounded arity) using quadratic time and space.

Bounded arity. We modify SimpleFactors into BoundedFactors, which computes smallest
k-BFS-factorisation, by introducing another parameter. In particular, we again allow factor-
isations of Tu into fragments that occur earlier in T , not necessarily in Tu.

Let T [u, v, h] be the size of an optimal k-factorisation for Tu such that v < u is a
definition of u and the fragment rooted in u has h holes. Let children(u) = (u1, u2, . . . , ud)
and children(v) = (v1, v2, . . . , vd). Any factorisation of Tu, when restricted to Tui , is either a
free node with some fragments attached or an optimal factorisation of Tui

of a cost T [ui, vi, hi];
moreover, the sum of hi over all children is h, i.e. h1 + h2 + · · ·+ hd = h, where hi = 1 if ui

is a hole. Thus BoundedFactors fills the table T [u, v, h] similarly as SimpleFactors the T [u, v]
but computes an appropriate min-plus product of T [ui, vi, hi]− 1 instead of taking a simple
minimum; then opt(u) is computed from T [u, v, h] as previously. A careful analysis yields
O(n2 min(k2, n)) bound on the running time.

I Theorem 7. BoundedFactors computes the size of the smallest k-BFS-factorisation and
runs in O(n2 min(k2, n)) time and O(n2k) space, where n is the size of the tree and k the
maximal arity of fragments in the k-BFS-factorisation.

1-BFS-factorisations
BoundedFactors runs in quadratic time in case of 1-BFS-factorisations. We now present
a specialised version of BoundedFactors, called 1-Factors, which achieves linear time.
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I Theorem 8. The algorithm 1-Factors runs in linear time and computes the size of the
smallest 1-BFS-factorisation.

Outline. Each factorisation of Tu has one of the following types: (F1) it is a single 0-
fragment; (F2) the root u is a free node; (F3) there is a 1-fragment rooted in u such that its
hole is a leaf. 1-Factors processes the nodes in a BFS-reversed order and for each node u

computes for Tu the optimal factorisation of each type and takes the smallest among them.
Computing the F1 factorisations of all trees boils down to grouping the subtrees {Tu}u∈T

into isomorphism classes, which is explained in detail later on. F2 factorisation is easy to
calculate, as we already know the optimal factorisation trees rooted in children of u. Lastly,
we need to compute F3 factorisations only for nodes that do not have an F1 factorisation, as
it is always smaller than F3.

I Lemma 9. For every u, the size of F1 factorisations of Tu (if feasible) is at most the size
of F3 factorisation of Tu.

Call the nodes that have an F1 factorisation or are leaves bottom part and the remaining
nodes the top part.

I Lemma 10. Top part of the tree is a subtree rooted in the root of T ; it can be computed in
linear time.

Now, for F3 factorisations, we would like to also group 1-fragments into isomorphism
classes, but there are O(n2) of them. Thus we limit their amount: we show that it is enough
to consider maximal (in an appropriate sense) 1-fragments and prove that there are O(n) of
them. Furthermore, using additional insight we can compute in linear time a superset of all
1-factors used in an optimal 1-factorisation. Then it remains to calculate their actual cost,
to see whether they should be used in the 1-factorisation. It turns out that those candidates
are in some sense consecutive and we can process them in amortised constant time.

F1 factorisations. Two trees Tu and Tv are isomorphic, denoted by Tu ≡ Tv, if label(u) =
label(v) and the subtrees rooted at the corresponding children of u and v are also isomorphic.
Grouping subtrees of T into isomorphism classes in linear time is already folklore [1].

I Lemma 11. Given a tree T we can calculate in total time O(|T |) for every node u:
(1) a number id(u) ∈ {1, 2, . . . , |T |}, such that Tu ≡ Tv ⇐⇒ id(u) = id(v) (2) a node v < u

such that id(u) = id(v), whenever such v exists.

F3 factorisations. If F ′ is a definition of a fragment F then trees rooted in a node and its
definition are mostly isomorphic: define for every node u a number siblings-id(u), such that
siblings-id(u) = siblings-id(v) if and only if the following conditions hold: (1) label(parent(u))
= label(parent(v)); (2) u is the k-th child of parent(u) and v is the k-th child of parent(v);
(3) for every i ∈ {1, . . . , ar(parent(u))} \ {k}, the trees rooted in i-th child of parent(u) and
the i-th child of parent(v) are isomorphic. These can be efficiently computed, by appropriate
grouping of nodes and its siblings by RadixSort.

I Lemma 12. Given a tree T we can calculate in total O(|T |) time for every node u its
number siblings-id(u) ∈ {1, 2, . . . , |T |}.

Consider a 1-fragment F rooted at u1 and a hole at uk+1: the path from u1 to uk+1,
denoted as u1, . . . , uk+1, is the spine of F ; a spine is earlier than other if its hole is earlier.

FSTTCS 2016
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Given a path u1, . . . , uk+1 we call it a spine without explicitly mentioning the 1-fragment.
The length of the spine u1, . . . , uk+1 is k. A spine u1, . . . , uk+1 is isomorphic to a spine
v1, . . . , vk+1 if and only if siblings-id(ui) = siblings-id(vi) for i = 2, . . . , k + 1. Then 1-
fragments are isomorphic if and only if their spines are. This characterisation is used to find
isomorphism classes of 1-fragments. Given such classes, we can easily determine, whether
a fragment F can be used in a BFS-factorisation (i.e. whether it has an earlier definition).

I Lemma 13. 1-fragments are isomorphic if and only if their spines are. In particular,
a 1-fragment F can be used in a 1-BFS-factorisation if and only if there is an earlier spine
isomorphic to the spine of F .

A subsequence of a spine is also a spine, thus we extend the spines up as far as possible:
a spine u1, . . . , uk+1 is up-maximal if and only if it has an earlier isomorphic spine and
parent(u1), u1, · · · , uk+1 does not. A 1-fragment is up-maximal when its spine is and 1-
factorisation is up-maximal if each of its 1-fragment is. Any optimal 1-BFS-factorisation
can be converted into an up-maximal one without increasing its size; thus we consider only
up-maximal 1-factorisations.

Up-maximal spines can be compactly represented: for every node v let spine(v) be its
highest ancestor such that the path starting at spine(v) and ending at v is an up-maximal
spine; if there is no such an ancestor then spine(v) = v. All spine(v) and the lengths of the
corresponding spines can be calculated in linear-time using a suffix tree of a tree [28].

I Lemma 14. Given a tree T , we can find in O(|T |) total time for every node v its spine(v)
as well as the length of the spine beginning at spine(v) and a hole at v.

Now, F3 factorisation are computed as follows: we process the tree in the reversed
BFS order. When we are in a non-leaf node u we activate it, a node u is deactivated
when we processed spine(u). When we are in node u from a top part, we choose from its
active descendent v with minimal opt(v), if such v exists. We call such a query a minad
(minimal active descendent) query, and denote by minad(u). Then the cost of the smallest F3
factorisation of Tu is 1 + opt(minad(u)), or undefined, if minad(u) is not defined. Note that
opt(minad(u)) is already known, as minad(u) is processed. The data structure presented
below answers minad queries in amortised O(1) time.

Data structure for minad queries. We exploit the structure of spines in the top part of
the tree. Firstly, the top part can be represented as union of vertex disjoint paths: A snake
originates in a node from a top part; if u is on a snake and it has a unique son u′ that is not
in a bottom part then u′ is also on a snake; each snake is maximal: it cannot be extended
neither up nor down. A spine of a node in a top part is contained in a single snake, perhaps
except the hole.

I Lemma 15. Snakes are vertex-disjoint paths, all snakes can be constructed in linear time.
Let u be in a top part and let Tu have an F4 factorisation. Then there are: an optimal

up-maximal F4 factorisation of Tu and a snake u1, u2, . . . , us such that u = ui and the hole
of fragment rooted in u is either at some uj, where j > i, or at a child of us.

For a snake u1, . . . , us we ask queries minad(us), minad(us−1), . . . , minad(u1) in this order.
Our data structures are constructed for a snake and updated when we process consecutive
nodes of a snake. These data structures are called S1 and S2 later on, the former stores the
active children of us and the other the active nodes from the snake. A node v is represented
in these data structures as a pair (i, opt(v)), where spine(v) = ui. These data structures
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support three operations (on a set of elements S): insert(x′, y′) inserts a new pair (x′, y′)
into S such that x′ ≤ x for all (x, y) ∈ S; remove(x′) removes from S all pairs (x, y) such
that x ≥ x′; min returns the pair (x, y) ∈ S with the smallest value of y. A data structure
supporting those operations is standard.

I Lemma 16. A set S of pairs (x, y) can be maintained in linear space, so that insert,
remove, min operations take amortised constant time.

This data structure is used in our setting as follows: when we begin to process a snake
u1, . . . , us, we insert into S1 each child u of us, whenever spine(u) 6= u (so spine(u) = uj

for some j); this can be done in linear time using RadixSort. We also initialize S2 as empty.
After processing ui we create a pair (j, opt(ui)), where spine(ui) = uj , insert it into S2 and
remove from S1, S2 elements with first coordinate less or equal to i. To calculate minad(ui)
we take minima from S1, S2 and return the minimum of their second coordinates.

Note that insert(x′, y′) assumes x′ ≤ x for all (x, y) ∈ S. This is guaranteed for S1 as we
sort the pairs by their first coordinate before inserting, for S2 this requires a simple proof.

4 Application: approximation of the smallest TSLP

In the string case, the algorithm transforming the LZ77 representation into a grammar [25,
8, 26, 19] (with a O(log(n/`)) size increase, where ` is the size of the LZ77 representation
and n the length of the text) has profound implications. On one hand, this is still the
best approximation algorithms for the smallest SLP construction, in particular it returns
a grammar at most quadratic in size of the smallest one, which is for instance usually good
enough for computational complexity considerations. On the other hand, this algorithm is
used as a first step in algorithms processing LZ77 compressed text, see for instance [16].

In this section we show a similar result for our factorisations of trees: We give an algorithm
that transform a tree factorisation of size ` into a TSLP of size O(`r + `r log(n/`g)), where
r is the maximal arity on nodes in the tree and n the size of the tree. In particular, the
approximation ratio is O(rg log(n/(rg))), which matches a recent best known bound [20]; we
call our algorithm FactToG. This algorithm generalises the approach of [19] from the string
case to tree case.

I Theorem 17. FactToG runs in linear time and returns a TSLP of size O(rg+rg log(n/rg)),
where n is the size of the input tree T , g the size of the smallest TSLP for T and r the
maximal arity of nodes in T .

4.1 Idea
FactToG repeatedly applies two operations: leaf compression and unary nodes compression.
Given a tree T leaf compression deletes all leaves in T and relabels their parents in a consistent
way: the new label f ′ of the node v uniquely determines the previous label of v (say f), on
which positions v had leaf-children (say i1, i2, . . . , i`) and what were their labels (say c1, . . . ,
c`). The “reverse” of leaf compression corresponds to a TSLP rule of a form

f ′(y1, . . . , yi1−1, yi1+1, . . . , yi2−1, yi2+1, . . . , yi`−1, yi`+1, . . .)→
f(y1, . . . , yi1−1, c1, yi1+1, . . . , yi2−1, c2, yi2+1, . . . , yi`−1, c`, yi`+1, . . .) . (1a)

Unary nodes compression chooses some neighbouring unary nodes (say labelled with a, b)
deletes the lower of them and relabels the remaining one (say with c); the new label uniquely
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determines the original labels. The corresponding TSLP rule is

c(y)→ a(b(y)) . (1b)

These operations are iterated until a single-node tree is obtained.
We want to perform several unary nodes compression in parallel. As pairs of unary

nodes may overlap, we choose a set of non-overlapping pairs. For appropriate choice the leaf
compression followed by (parallel) unary nodes compression reduces the size of the tree by a
constant factor. We call this a phase of FactToG. One phase can be implemented in linear
time, assuming that RadixSort for grouping nodes; this yields a total linear running time.

As we end FactToG when the tree is reduced to a single node, the TSLP rules produced
on the way yield an TSLP generating the input tree. It remains to bound its size in terms
of the smallest TSLP for the input tree, thus yielding a bound on the approximation ratio.
To this end we use the 1-BFS-factorisations: firstly, we show that the size of the smallest
1-BFS-factorisation is O(rg), where r is the maximal arity of nodes in the input tree and g

the size of the smallest TSLP for it. Then we show that if T has a 1-factorisation of size m

then rules introduced during one phase of FactToG have size O(m) and that the resulting
tree also has a 1-factorisation of size m. As there are O(log n) phases, this yields O(rg log n)
bound on the size of the TSLP, better estimations yield the actual bound in Theorem 17.

The bound on the size of the produced rules is rather straightforward, but the construction
of a 1-factorisation of the resulting tree is involved. To this end ensure that when we perform
a compression operation on a fragment, we perform the same operation also on its definition.
In particular, each compression operation should be performed wholly within or wholly
outside a fragment (or definition of a fragment). As a result, way the factorisation of the
resulting tree is “inherited” from the original tree.

To guarantee this property on one hand we choose the pairs of unary nodes to compress
with the help of the factorisation, and on the other we modify the factorisation by “popping”
the nodes that are compressed with nodes outside the fragments: we remove such a node
from the fragment and make it a free node. This sometimes introduces new fragments, but
they are of specific form and are under control. We call the (restrictions of) fragments that
were present in the input original fragments and the created ones the introduced fragments.

Due to compression operations we cannot guarantee that we keep a BFS-factorisation.
Instead, we store an order “<” on the nodes and require that def [v] < v (as well as some
other technical conditions). The actual order is obtained in a natural way: it is the original
BFS order restricted to the nodes in the current tree.

4.2 Representation and basic operations
Factorisation. The factorisation depends on an order <, we refer to the factorisation as
(T,F , <) and call it a proper factorisation if (1) def [v] < v; (2) parent[v] < v and (3) a hole
of a fragment is not a root of the same fragment. The first condition ensures that a proper
factorisation is a generalisation of a BFS-factorisation, second ensures that the order on the
vertices is meaningful and the third that there are no useless fragments. Initially < is the
BFS order on the input tree and clearly for BFS-order the 1-BFS-factorisation is proper. We
often process the tree by considering nodes in the stored order, then we say that we traverse
the tree.

Each node v in a fragment (except for the hole), has a definition link def [v] to its definition.
We also store bitflags telling whether a node is a root or a hole of a fragment. A (T,F , <)
stores the order <.
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Popping nodes. During the algorithm we modify the factorisation by popping nodes:
Popping a unary node up. When a root v of a fragment is a unary node, we make v a free
node and its unique child a new root.
Popping a unary node down. When a parent v of a hole is a unary node, we perform
symmetrical operations: we make v a free node and make it a hole of this fragment.
Popping a nullary node. When a whole 0-fragment consist of a single nullary node v, we
turn it into a free node.
Popping a node down. When v is a parent of a hole we remove the current hole from the
fragment, make v a new hole, make v a free node and create new 0-fragments rooted in
each child of v, except the ex-hole. This generalises the popping of a unary node down.

When the variant is clear from the context, we simply refer to popping a node v. A simple
case inspection shows that popping nodes turns a proper factorisation into a proper one.

I Lemma 18. Popping a node in a proper factorisation results in a proper factorisation.

4.3 Compression operations and the algorithm
When we perform the compression operations, both the fragment and its definition should
be modified in the same way. We now explain how to ensure this.

Leaf compression Both affected nodes (the deleted leaf and its parent) should either be
both within a fragment or both outside it, the same applies to the definition of the fragment.
The following conditions ensure this:
(L1) A leaf is neither a hole nor a definition of a hole.
(L2) A leaf is not a whole fragment.
Ensuring (L1–L2) is done by PairLeaves: if a leaf is a root of a fragment (so it violates (L2)),
we turn it into a free node (so pop it). To ensure (L1) we look at each hole, if it violates (L1)
then we pop its parent from the fragment; in this way we may create 0-fragments violating
(L2), we pop nodes from such fragments as well.

I Lemma 19. PairLeaves applied to a proper factorisation returns a proper factorisation
satisfying (L1–L2). It introduces at most r free nodes per 1-fragment and 1 per 0-fragment.

Then we perform the compression CompLeaves: traverse the tree, if the node v has a leaf
child, then change its label: If this node is within a fragment, copy the label from the
definition; if it is a free node then assign it a new label. If the read node is a leaf then delete
it. The new order is a restriction of the order to the nodes that were not deleted.

I Lemma 20. CompLeaves applied to a proper factorisation satisfying (L1–L2) returns
a proper factorisation. The size of created rules is twice the number of removed free leaves.

Unary nodes compression. Since we replace pairs of nodes with new ones, this compression
boils down to pairing (of unary nodes): for each node we should determine, whether it is
a top (top) or bottom one (bottom) in a pair or perhaps that it is unpaired (none). We
construct a pairing satisfying the following properties, which are a slight modifications of
conditions for a similar algorithm for in the string case [19]:
(P1) There are no two neighbouring unary nodes that are both unpaired.
(P2) If a root of a fragment is unary then it is not paired with its parent, if a node above

the hole is unary then it is paired with its parent;
(P3) v and def [v] are paired in the same way (so either both are unpaired, both are top-nodes

in a pair or both bottom nodes in a pair).

FSTTCS 2016



35:12 LZ77 Factorisation of Trees

(P1) guarantees that compression of chosen pairs decreases the length of each sequence of
unary nodes by a constant factor, (P3) says that the fragment is paired exactly in the same
way as its definition and (P2) ensures that pairing for a fragment is done within this fragment,
in particular that we can inherit the factorisation after the compression.

The computation of the pairing is technical and it is deferred to Section 4.4, let us first
give the procedure CompUnary that uses this pairing: We traverse the tree. If the read node
v is top and within a fragment then we replace its label with the label of its definition; if it
is top and a free node then we assign it a fresh label. If the read node v is a bottom node,
then let u be its unique child: we change father of u to current father of v and delete v.

I Lemma 21. CompUnary applied to a proper factorisation satisfying (P1)–(P3) returns
a proper factorisation. The size of introduced rules is at most twice the number of free unary
nodes removed from the tree.

FactToG first computes an optimal 1-factorisation. Then it transforms this factorisation
into a TSLP in phases, until the tree is reduced into a single node. In each phase it first
computes the pairing for the unary nodes and replaces those pairs and then modifies the
factorisation so that the leaves compression can be applied and applies the leaves compression.

4.4 Pairing unary nodes
Removing circular references. Imagine a unary root of a fragment v has def [v] = parent[v].
Then no pairing satisfying (P1–P3) can be devised, as all nodes in this fragment should be
paired in the same way (i.e. all as top or all as bottom nodes). However, all nodes in this
fragment are labeled with the same (unary) label, thus we can pop the root and change the
definition of this fragment: each node has the definition two nodes up, instead of one.

Such circular reference can be more complex: it could be that def `[v] = parent[v] for
some ` > 1, which again makes the pairing impossible. Thus, in some sense, there are many
sequences of nodes involved in this circular reference. The solution is in the same spirit as
above: we isolate (in some fragment) the unary nodes with such a circular reference and
create a new 1-fragment from them. Then we change their definition so that it goes two
nodes up. The details of the procedure and the actual properties guaranteed after it are left
for the full version.

I Lemma 22. UnaryPreproc runs in linear time and pops O(1) nodes per fragment.

Pairing of unary nodes. For the pairing, we first pair the free nodes, so that if a fragment
has a unary root then the two free nodes above are paired and if the parent of its hole is
unary then the two nodes below are paired. Then we traverse the tree: for a node v we copy
the pairing from its definition, with some exceptions: If v is a root and its definition is paired
as bottom then we pop v and set its status as none, similarly, when v is father of a hole and
its definition is top then we pop it and set its pairing as none. In this way we may violate
(P1) (as neighbour of v is also paired as none), by case inspection and O(1) additional pops
we can find appropriate pairing.

I Lemma 23. PairUnary applied to a proper factorisation returns a proper factorisation and
a pairing satisfying (P1)–(P3). It introduces O(1) new free nodes per fragment.

4.5 Analysis
Size of the factorisation. Using Lemma 5 and known properties of the TSLP we can show
that the smallest 1-factorisation for T has O(g) 1-fragments and O(rg) 0-fragments and free
nodes, where r is the maximal arity of nodes in T .
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Size of the tree. One phase of FactToG reduces the size of the tree by a constant factor: if
there are no unary nodes in the tree then we remove all leaves and so halve the size. If there
are only unary nodes, then by (P1) there are no two consecutive unpaired ones, so the size
of the tree also drops by 1/4. The general argument is a mix of the two above.

I Lemma 24. FactToG applied to a tree T returns a tree of size at most 3|T |
4 .

Running time. The construction of the 1-BFS-factorisation takes linear time. All sub-
procedures run in linear time, combined with Lemma 24 this yields a total linear running
time.

Size of rules and popped letters. The size of new rules is covered by the number of removed
free nodes, see Lemma 20, 21, so it is enough to count the number of introduced free nodes.
From Lemmata 19 and 22 this is O(r) per 1-fragment and O(1) per 0-fragment per phase.

Introduced fragments. We now bound the number of letters popped from introduced
fragments. On one hand we bound the number of introduced 0-fragments and on the other
we give an amortised analysis for introduced 1-fragments.

When we introduce a 0-fragment, we associate it with the 1-fragment of which it used
to be part of. It can be shown that introduced 1-fragments have no associated 0-fragments,
furthermore, when new 0-fragment are associated with an original 1-fragment F then F has
no fragments associated with it. Thus at any point there are O(rg) introduced 0-fragments.

We also associate introduced 1-fragments with original 1-fragments; this association is
involved and described in the full version. We can amortise the number of nodes they pop.

I Lemma 25. At any point there are O(rg) introduced 0-fragments. Introduced 1-fragments
pop in total amortised O(g) nodes per phase.

Size of the constructed TSLP. Combining the lemmata above we get an upper bound
of O(rg + rg log(n)) on the size of the constructed TSLP. In a more detailed analysis we
separately consider the computation before and after the moment in which the current tree
has size rg. We apply the above analysis to the first part: there are only O(log(n/(rg)))
phases and so the size of constructed part of SLP is O(rg log(n/rg)). In the second step we
use a simple fact [20] that any reasonable grammar for a tree of size rg has size O(rg), which
yields the total size O(rg + rg log(n/rg)) and so also the claimed approximation ratio.

5 Open problems/Future work

String LZ77 can be constructed in LOGSPACE and is used for instance in approximation of
the construction of the smallest SLP in the streaming model [9]. Can a similar construction
be performed also for the LZ77 for trees?

In case of strings, the LZ77 compressed representation can be directly translated into
an SLP [8, 25], yielding an approximation algorithm for SLP construction. Can a similar
construction be carried out also for the tree variant of LZ77? This would allow to translate
several known algorithms for TSLP to the case of tree factorisations.
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Abstract
Grammar-based compression, where one replaces a long string by a small context-free grammar
that generates the string, is a simple and powerful paradigm that captures many popular com-
pression schemes. Given a grammar, the random access problem is to compactly represent the
grammar while supporting random access, that is, given a position in the original uncompressed
string report the character at that position. In this paper we study the random access problem
with the finger search property, that is, the time for a random access query should depend on
the distance between a specified index f , called the finger, and the query index i. We consider
both a static variant, where we first place a finger and subsequently access indices near the finger
efficiently, and a dynamic variant where also moving the finger such that the time depends on
the distance moved is supported.

Let n be the size the grammar, and let N be the size of the string. For the static variant
we give a linear space representation that supports placing the finger in O(logN) time and
subsequently accessing in O(logD) time, where D is the distance between the finger and the
accessed index. For the dynamic variant we give a linear space representation that supports
placing the finger in O(logN) time and accessing and moving the finger in O(logD + log logN)
time. Compared to the best linear space solution to random access, we improve a O(logN) query
bound to O(logD) for the static variant and to O(logD + log logN) for the dynamic variant,
while maintaining linear space. As an application of our results we obtain an improved solution
to the longest common extension problem in grammar compressed strings. To obtain our results,
we introduce several new techniques of independent interest, including a novel van Emde Boas
style decomposition of grammars.
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1 Introduction

Grammar-based compression, where one replaces a long string by a small context-free
grammar that generates the string, is a simple and powerful paradigm that captures many
popular compression schemes including the Lempel-Ziv family [49, 48, 46], Sequitur [35],
Run-Length Encoding, Re-Pair [32], and many more [40, 20, 29, 30, 47, 4, 2, 3, 26]. All of
these are or can be transformed into equivalent grammar-based compression schemes with
little expansion [38, 14].
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Given a grammar S representing a string S, the random access problem is to compactly
represent S while supporting fast access queries, that is, given an index i in S to report S[i].
The random access problem is one of the most basic primitives for computation on grammar
compressed strings, and solutions to the problem are a key component in a wide range of
algorithms and data structures for grammar compressed strings [9, 10, 21, 22, 23, 8, 28, 42,
43, 6].

In this paper we study the random access problem with the finger search property, that
is, the time for a random access query should depend on the distance between a specified
index f , called the finger, and the query index i. We consider two variants of the problem.
The first variant is static finger search, where we can place a finger with a setfinger operation
and subsequently access positions near the finger efficiently. The finger can only be moved
by a new setfinger operation, and the time for setfinger is independent of the distance to the
previous position of the finger. The second variant is dynamic finger search, where we also
support a movefinger operation that updates the finger such that the update time depends
on the distance the finger is moved.

Our main result is efficient solutions to both finger search problems. To state the bounds,
let n be the size the grammar S, and let N be the size of the string S. For the static finger
search problem, we give an O(n) space representation that supports setfinger in O(logN)
time and access in O(logD) time, where D is the distance between the finger and the accessed
index. For the dynamic finger search problem, we give an O(n) space representation that
supports setfinger in O(logN) time and movefinger and access in O(logD + log logN) time.
The best linear space solution for the random access problem uses O(logN) time for access.
Hence, compared to our result we improve the O(logN) bound to O(logD) for the static
version and to O(logD + log logN) for the dynamic version, while maintaining linear space.
These are the first non-trivial bounds for the finger search problems.

As an application of our results we also give a new solution to the longest common
extension problem on grammar compressed strings [9, 28, 36]. Here, the goal is to compactly
represent S while supporting fast lce queries, that is, given a pair of indices i, j to compute
the length of the longest common prefix of S[i,N ] and S[j,N ]. We give an O(n) space
representation that answers queries in O(logN + log2 `), where ` is the length of the longest
common prefix. The best O(n) space solution for this problem uses O(logN log `) time, and
hence our new bound is always at least as good and better whenever ` = o(Nε).

1.1 Related Work
We briefly review the related work on the random access problem and finger search.

Random Access in Grammar Compressed Strings. First note that naively we can store S
explicitly using O(N) space and report any character in constant time. Alternatively, we can
compute and store the sizes of the strings derived by each grammar symbol in S and use this
to simulate a top-down search on the grammars derivation tree in constant time per node.
This leads to an O(n) space representation using O(h) time, where h is the height of the
grammar [25]. Improved succinct space representation of this solution are also known [15].
Bille et al. [10] gave a solution using O(n) and O(logN) time, thus achieving a query
time independent of the height of the grammar. Verbin and Yu [45] gave a near matching
lower bound by showing that any solution using O(n logO(1) N) space must use Ω(log1−εN)
time. Hence, we cannot hope to obtain significantly faster query times within O(n) space.
Finally, Belazzougui et al. [6] very recently showed that with superlinear space slightly faster
query times are possible. Specifically, they gave a solution using O(nτ logτ N/n) space and
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O(logτ N) time, where τ is a trade-off parameter. For τ = logεN this is O(n logεN) space
and O(logN/ log logN) time. Practical solutions to this problem have been considered in
[5, 34, 24].

The above solutions all generalize to support decompression of an arbitrary substring
of length D in time O(taccess + D), where taccess is the time for access (and even faster
for small alphabets [6]). We can extend this to a simple solution to finger search (static
and dynamic). The key idea is to implement setfinger as a random access and access and
movefinger by decompressing or traversing, respectively, the part of the grammar in-between
the two positions. This leads to a solution that uses O(taccess) time for setfinger and O(D)
time for access and movefinger.

Another closely related problem is the bookmarking problem, where a set of positions,
called bookmarks, are given at preprocessing time and the goal is to support fast substring
decompression from any bookmark in constant or near-constant time per decompressed
character [16, 21]. In other words, bookmarking allows us to decompress a substring of
length D in time O(D) if the substring crosses a bookmark. Hence, with bookmarking we
can improve the O(taccess +D) time solution for substring decompression to O(D) whenever
we know the positions of the substrings we want to decompress at preprocessing time. A
key component in the current solutions to bookmarking is to trade-off the Ω(D) time we
need to pay to decompress and output the substring. Our goal is to support access without
decompressing in o(D) time and hence this idea does not immediately apply to finger search.

Finger Search. Finger search is a classic and well-studied concept in data structures, see
e.g., [7, 11, 13, 39, 17, 19, 27, 33, 31, 37, 41] and the survey [12]. In this setting, the goal is
to maintain a dynamic dictionary data structure such that searches have the finger search
property. Classic textbook examples of efficient finger search dictionaries include splay trees,
skip lists, and level linked trees. Given a comparison based dictionary with n elements, we
can support optimal searching in O(logn) time and finger searching in O(log d) time, where
d is the rank distance between the finger and the query [12]. Note the similarity to our
compressed results that reduce an O(logN) bound to O(logD).

1.2 Our results
We now formally state our results. Let S be a string of length N compressed into a grammar
S of length n. Our goal is to support the following operations on S.

access(i): return the character S[i]
setfinger(f): set the finger at position f in S.
movefinger(f): move the finger to position f in S.

The static finger problem is to support access and setfinger, and the dynamic finger search
problem is to support all three operations. We obtain the following bounds for the finger
search problems.

I Theorem 1. Let S be a grammar of size n representing a string S of length N . Let f be
the current position of the finger, and let D = |f − i| for some i. Using O(n) space we can
support either:
(i) setfinger(f) in O(logN) time and access(i) in O(logD) time.
(ii) setfinger(f) in O(logN) time, movefinger(i) and access(i) both in O(logD + log logN)

time.
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Compared to the previous best linear space solution, we improve the O(logN) bound
to O(logD) for the static variant and to O(logD + log logN) for the dynamic variant,
while maintaining linear space. These are the first non-trivial solutions to the finger search
problems. Moreover, the logarithmic bound in terms of D may be viewed as a natural
grammar compressed analogue of the classic uncompressed finger search solutions. We note
that Theorem 1 is straightforward to generalize to multiple fingers. Each additional finger
can be set in O(logN) time, uses O(logN) additional space, and given any finger f , we can
support access(i) in O(logDf ) time, where Df = |f − i|.

1.3 Technical Overview

To obtain Theorem 1 we introduce several new techniques of independent interest. First, we
consider a variant of the random access problem, which we call the fringe access problem.
Here, the goal is to support fast access close to the beginning or end (the fringe) of a substring
derived by a grammar symbol. We present an O(n) space representation that supports fringe
access from any grammar symbol v in time O(logDv + log logN), where Dv is the distance
from the fringe in the string S(v) derived by v to the queried position.

The main component in our solution to this problem is a new recursive decomposition.
The decomposition resembles the classic van Emde Boas data structure [44], in the sense
that we recursively partition the grammar into a hierarchy of depth O(log logN) consisting
of subgrammars generating strings of lengths N1/2, N1/4, N1/8, . . .. We then show how to
implement fringe access via predecessor queries on special paths produced by the decomposi-
tion. We cannot afford to explicitly store a predecessor data structure for each special path,
however, using a technique due to Bille et al. [10], we can represent all the special paths
compactly in a tree and instead implement the predecessor queries as weighted ancestor
queries on the tree. This leads to an O(n) space solution with O(logDv + (log logN)2) query
time. Whenever Dv ≥ 2(log logN)2 this matches our desired bound of O(logDv + log logN).
To handle the case when Dv ≤ 2(log logN)2 we use an additional decomposition of the grammar
and further reduce the problem to weighted ancestor queries on trees of small weighted
height. Finally, we give an efficient solution to weighted ancestor for this specialized case
that leads to our final result for fringe access.

Next, we use our fringe access result to obtain our solution to the static finger search
problem. The key idea is to decompose the grammar into heavy paths as done by Bille
et al. [10], which has the property that any root-to-leaf path in the directed acyclic graph
representing the grammar consists of at most O(logN) heavy paths. We then use this to
compactly represent the finger as a sequence of the heavy paths. To implement access, we
binary search the heavy paths in the finger to find an exit point on the finger, which we then
use to find an appropriate node to apply our solution to fringe access on. Together with a
few additional tricks this gives us Theorem 1(i).

Unfortunately, the above approach for the static finger search problem does not extend
to the dynamic setting. The key issue is that even a tiny local change in the position of the
finger can change Θ(logN) heavy paths in the representation of the finger, hence requiring
at least Ω(logN) work to implement movefinger. To avoid this we give a new compact
representation of the finger based on both heavy path and the special paths obtained from
our van Emde Boas decomposition used in our fringe access data structure. We show how to
efficiently maintain this representation during local changes of the finger, ultimately leading
Theorem 1(ii).
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1.4 Longest Common Extensions
As application of Theorem 1, we give an improved solution to longest common extension
problem in grammar compressed strings. The first solution to this problem is due to Bille
et al. [9]. They showed how to extend random access queries to compute Karp-Rabin
fingerprints. Combined with an exponential search this leads to a linear space solution to the
longest common extension problem using O(logN log `) time, where ` is the length of the
longest common extension. We note that we can plug in any of the above mentioned random
access solution. More recently, Nishimoto et al. [36] used a completely different approach to
get O(logN + log ` log∗ N) query time while using superlinear O(n logN log∗ N) space. We
obtain:

I Theorem 2. Let S be a grammar of size n representing a string S of length N . We can
solve the longest common extension problem in O(logN + log2 `) time and O(n) space where
` is the length of the longest common extension.

Note that we need to verify the Karp-Rabin fingerprints during preprocessing in order to
obtain a worst-case query time. Using the result from Bille et al. [10] this gives a randomized
expected preprocessing time of O(N logN). Theorem 2 improves the O(logN log `) solution
to O(logN + log2 `). The new bound is always at least as good and asymptotically better
whenever ` = o(N ε) where ε is a constant. The new result follows by extending Theorem 1
to compute Karp-Rabin fingerprints and use these to perform the exponential search from [9].
Due to lack of space the proof of Theorem 2 is deferred to the full version.

2 Preliminaries

Strings and Trees. Let S = S[1, |S|] be a string of length |S|. Denote by S[i] the character
in S at index i and let S[i, j] be the substring of S of length j − i+ 1 from index i ≥ 1 to
|S| ≥ j ≥ i, both indices included. Given a rooted tree T , we denote by T (v) the subtree
rooted in a node v and the left and right child of a node v by left(v) and right(v) if the tree
is binary. The nearest common ancestor nca(v, u) of two nodes v and u is the deepest node
that is an ancestor of both v and u. A weighted tree has weights on its edges. A weighted
ancestor query for node v and weight d returns the highest node w such that the sum of
weights on the path from the root to w is at least d.

Grammars and Straight Line Programs. Grammar-based compression replaces a long
string by a small context-free grammar (CFG). We assume without loss of generality that
the grammars are in fact straight-line programs (SLPs). The lefthand side of a grammar rule
in an SLP has exactly one variable, and the forighthand side has either exactly two variables
or one terminal symbol. In addition, SLPs are unambigous and acyclic. We view SLPs as a
directed acyclic graph (DAG) where each rule correspond to a node with outgoing ordered
edges to its variables. Let S be an SLP. As with trees, we denote the left and right child of
an internal node v by left(v) and right(v). The unique string S(v) of length Nv is produced
by a depth-first left-to-right traversal of v in S and consist of the characters on the leafs in
the order they are visited. The corresponding parse tree for v is denoted T (v). We will use
the following results, that provides efficient random access from any node v in S.

I Lemma 3 ([10]). Let S be a string of length N compressed into a SLP S of size n. Given
a node v ∈ S, we can support random access in S(v) in O(logNv) time, and at the same time
reporting the sequence of heavy paths and their entry- and exit points in the corresponding
depth-first traversal of S(v). The number of heavy paths visited is O(logNv).

FSTTCS 2016
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3 Fringe Access

In this section we consider the fringe access problem. Here the goal is to compactly represent
the SLP, such that for any node v, we can efficiently access locations in the string S(v) close
to the start or the end of the substring. The fringe access problem is the key component in
our finger search data structures. A straightforward solution to the fringe access problem
is to apply a solution to the random access problem. For instance if we apply the random
access solution from Bille et al. [10] stated in Lemma 3 we immediately obtain a linear space
solution with O(logNv) access time, i.e., the access time is independent of the distance to
the start or the end of the string. This is an immediate consequence of the central grammar
decomposition technique of [10], and does not extend to solve fringe access efficiently. Our
main contribution in this section is a new approach that bypasses this obstacle. We show
the following result.

I Lemma 4. Let S be an SLP of size n representing a string of length N . Using O(n) space,
we can support access to position i of any node v, in time O(log(min(i,Nv − i)) + log logN).

The key idea in this result is a van Emde Boas style decomposition of S combined with a
predecessor data structure on selected paths in the decomposition. To achieve linear space
we reduce the predecessor queries on these paths to a weighted ancestor query. We first give
a data structure with query time O((log logN)2 + log(min(i,Nv − i))). We then show how to
reduce the query time to O(log logN + log(min(i,Nv − i))) by reducing the query time for
small i. To do so we introduce an additional decomposition and give a new data structure
that supports fast weighted ancestor queries on trees of small weighted height.

For simplicity and without loss of generality we assume that the access point i is closest
to the start of S(v), i.e., the goal is to obtain O(log(i) + log logN) time. By symmetry we
can obtain the corresponding result for access points close to the end of S(v).

3.1 van Emde Boas Decomposition for Grammars
We first define the vEB decomposition on the parse tree T and then extend it to the SLP S.
In the decomposition we use the ART decompostion by Alstrup et al. [1].

ART Decomposition. The ART decomposition introduced by Alstrup et al. [1] decomposes
a tree into a single top tree and a number of bottom trees. Each bottom tree is a subtree
rooted in a node of minimal depth such that the subtree contains no more than x leaves
and the top tree is all nodes not in a bottom tree. The decomposition has the following key
property.

I Lemma 5 ([1]). The ART decomposition with parameter x for a rooted tree T with N
leaves produces a top tree with at most N

x+1 leaves.

The van Emde Boas Decomposition. We define the van Emde Boas Decomposition of a
tree T as follows. The van Emde Boas (vEB) decomposition of T is obtained by recursively
applying an ART decomposition: Let v = root(T ) and x =

√
N . If N = O(1), stop.

Otherwise, construct an ART decomposition of T (v) with parameter x. For each bottom
tree T (u) recursively construct a vEB decomposition with v = u and x =

√
x.

Define the level of a node v in T as level(v) = blog logN − log logNvc (this corresponds
to the depth of the recursion when v is included in its top tree).
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Figure 1 Example of the ART-decomposition and a leftmost top path. In the top, the nodes
forming the top tree are drawn. In the bottom, triangles representing the bottom trees with a
number that is the size of the bottom tree. v’s leftmost top path is shown as well, and the two trees
hanging to the left of this path l1 and l2.

Note that except for the nodes on the lowest level – which are not in any top tree – all
nodes belong to exactly one top tree. For any node v ∈ T not in the last level, let Ttop(v) be
the top tree v belongs to. The leftmost top path of v is the path from v to the leftmost leaf
of Ttop(v). See Figure 1.

Intuitively, the vEB decomposition of T defines a nested hierarchy of subtrees that
decrease by at least the square root of the size at each step.

The van Emde Boas Decomposition of Grammars. Our definition of the vEB decompos-
ition of trees can be extended to SLPs as follows. Since the vEB decomposition is based
only on the length of the string Nv generated by each node v, the definition of the vEB
decomposition is also well-defined on SLPs. As in the tree, all nodes belong to at most one
top DAG. We can therefore reuse the terminology from the definition for trees on SLPs as
well.

To compute the vEB decomposition first determine the level of each node and then
remove all edges between nodes on different levels. This can be done in O(n) time.

3.2 Data Structure
We first present a data structure that achieves O((log logN)2 + log(i)) time. In the next
section we then show how to improve the running time to the desired O(log log(N) + log(i))
bound.
Our data structure contains the following information for each node v ∈ S. Let l1, l2, . . . , lk
be the nodes hanging to the left of v’s leftmost top path (excluding nodes hanging from the
bottom node).

The length Nv of S(v).
The sum of the sizes of nodes hanging to the left of v’s leftmost top path sv = |l1|+ |l2|+
. . .+ |lk|.
A pointer bv to the bottom node on v’s leftmost top path.
A predecessor data structure over the sequence 1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,

∑k−1
i=1 |li|+ 1.

We will later show how to represent this data structure.

In addition we also build the data structure from Lemma 3 that given any node v supports
random access to S(v) in O(logNv) time using O(n) space.

FSTTCS 2016
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Query. To perform an access query we proceed as follows. Suppose that we have reached
some node v and we want to compute S(v)[i]. We consider the following five cases (when
multiple cases apply take the first):
1. If Nv = O(1). Decompress S(v) and return the i’th character.
2. If i ≤ sv. Find the predecessor p of i in v’s predecessor structure and let u be the

corresponding node. Recursively find S(u)[i− p].
3. If i ≤ sv +Nleft(bv). Recursively find S(left(bv))[i− sv].
4. If i ≤ sv +Nbv

. Recursively find S(right(bv))[i− sv −Nleft(bv)].
5. In all other cases, perform a random access for i in S(v) using Lemma 3.

To see correctness, first note that case (1) and (5) are correct by definition. Case (2) is
correct since when i ≤ sv we know the i’th leaf must be in one of the trees hanging to the
left of the leftmost top path, and the predecessor query ensures we recurse into the correct
one of these bottom trees. In case (3) and (4) we check if the i’th leaf is either in the left or
right subtree of bv and if it is, we recurse into the correct one of these.

Compact Predecessor Data Structures. We now describe how to represent the predecessor
data structure. Simply storing a predecessor structure in every single node would use O(n2)
space. We can reduce the space to O(n) using ideas similar to the construction of the "heavy
path suffix forest" in [10].

Let L denote the leftmost top path forest. The nodes of L are the nodes of S. A node u is
the parent of v in L iff u is a child of v in S and u is on v’s leftmost top path. Thus, a leftmost
top path v1, . . . , vk in S is a sequence of ancestors from v1 in L. The weight of an edge (u, v)
in L is 0 if u is a left child of v in S and otherwise Nleft(v). Several leftmost top paths in S
can share the same suffix, but the leftmost top path of a node in S is uniquely defined and
thus L is a forest. A leftmost path ends in a leaf in the top DAG, and therefore L consists of
O(n) trees each rooted at a unique leaf of a top dag. A predecessor query on the sequence
1, |l1|+ 1, |l1|+ |l2|+ 1, . . . ,

∑k−1
i=1 |li|+ 1 now corresponds to a weighted ancestor query in L.

We plug in the weighted ancestor data structure from Farach-Colton and Muthukrishnan [18],
which supports weighted ancestor queries in a forest in O(log logn+ log logU)) time with
O(n) preprocessing and space, where U is the maximum weight of a root-to-leaf path and n
the number of leaves. We have U = N and hence the time for queries becomes O(log logN).

Space and Preprocessing Time. For each node in S we store a constant number of values,
which takes O(n) space. Both the predecessor data structure and the data structure for
supporting random access from Lemma 3 take O(n) space, so the overall space usage is O(n).
The vEB decomposition can be computed in O(n log logN) time. The leftmost top paths
and the information saved in each node can be computed in linear time. The predecessor
data structure uses linear preprocessing time, and thus the total preprocessing time is
O(n log logN).

Query Time. Consider each case of the recursion. The time for case (1), (3) and (4) is
trivially O(1). Case (2) is O(log logN) since we perform exactly one predececssor query in
the predecessor data structure.

In case (5) we make a random access query in a node of size Nv. From Lemma 3 we have
that the query time is O(logNv). We know level(v) = level(bv) since they are on the same
leftmost top path. From the definition of the level it follows for any pair of nodes u and w
with the same level that Nu ≥

√
Nw and thus Nbv

≥
√
Nv. From the conditions we have
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i > sv + Nbv ≥ Nbv ≥
√
Nv. Since

√
Nv < i ⇔ logNv < 2 log i we have logNv = O(log i)

and thus the running time for case (5) is O(logNv) = O(log i).
Case (1) and (5) terminate the algorithm and can thus not happen more than once.

Case (2), (3) and (4) are repeated at most O(log logN) times since the level of the node we
recurse on increments by at least one in each recursive call, and the level of a node is at most
O(log logN). The overall running time is therefore O((log logN)2 + log i).

In summary, we have the following result.

I Lemma 6. Let S be an SLP of size n representing a string of length N . Using O(n) space,
we can support access to position i of any node v, in time O(log i+ (log logN)2).

3.3 Improving the Query Time for Small Indices
The above algorithm obtains the running time O(log i) for i ≥ 2(log logN)2 . We will now
improve the running time to O(log logN + log i) by improving the running time in the case
when i < 2(log logN)2 .

In addition to the data structure from above, we add another copy of the data structure
with a few changes. When answering a query, we first check if i ≥ 2(log logN)2 . If i ≥
2(log logN)2 we use the original data structure, otherwise we use the new copy.

The new copy of the data structure is implemented as follows. In the first level of the ART-
decomposition let x = 2(log logN)2 instead of

√
N . For the rest of the levels use

√
x as before.

Furthermore, we split the resulting new leftmost top path forest L into two disjoint parts: L1
consisting of all nodes with level 1 and L≥2 consisting of all nodes with level at least 2. For
L1 we use the weighted ancestor data structure by Farach-Colton and Muthukrishnan [18]
as in the previous section using O(log logn + log logN)) = O(log logN) time. However,
if we apply this solution for L≥2 we end up with a query time of O(log logn + log log x)),
which does not lead to an improved solution. Instead, we present a new data structure that
supports queries in O(log log x) time.

I Lemma 7 (see full version). Given a tree T with n leaves where the sum of edge weights
on any root-to-leaf path is at most x and the height is at most x, we can support weighted
ancestor queries in O(log log x) time using O(n) space and preprocessing time.

We reduce the query time for queries with i < 2(log logN)2 using the new data struc-
ture. The level of any node in the new structure is at most O(1 + log log 2(log logN)2) =
O(log log logN). A weighted ancestor query in L1 takes time O(log logN). For weighted
ancestor queries in L≥2, we know any node v has height at most 2(log logN)2 and on any
root-to-leaf path the sum of the weights is at most 2(log logN)2 . Hence, by Lemma 7 we
support queries in O(log log 2(log logN)2) = O(log log logN) time for nodes in L≥2.

We make at most one weighted ancestor query in L1, the remaining ones are made in L≥2,
and thus the overall running time is O(log logN+(log log logN)2+log i) = O(log logN+log i).

In summary, this completes the proof of Lemma 4.

4 Static Finger Search

We now show how to apply our solution to the fringe access to a obtain a simple data
structure for the static finger search problem. This solution will be the starting point for
solving the dynamic case in the next section, and we will use it as a key component in our
result for longest common extension problem.

Similar to the fringe search problem we assume without loss of generality that the access
point i is to the right of the finger.
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h3

h2=hs

h1

f i

r1
r2 r3

u

v(hs)

a i ‐ f ‐ a

right(u)

Figure 2 Illustration of the data structure for a finger pointing at f and an access query at location
i. h1, h2, h3 are the heavy paths visited when finding the finger. u corresponds to NCA(vf , vi)
in the parse tree and hs is the heavy path on which u lies, which we use to find u. a is a value
calculated during the access query.

Data Structure. We store the random access data structure from [10] used in Lemma 3
and the fringe search data structures from above. Also from [10] we store the data structure
that for any heavy path h starting in a node v and an index i of a leaf in T (v) gives the
exit-node from h when searching for i in O(log logN) time and uses O(n) space.

To represent a finger the key idea is store a compact data structure for the corresponding
root-to-leaf path in the grammar that allows us to navigate it efficiently. Specifically, let f
be the position of the current finger and let p = v1 . . . vk denote the path in S from the root
to vf (v1 = root and vk = vf ). Decompose p into the O(logN) heavy paths it intersects,
and call these hj = v1 . . . vi1 , hj−1 = vi1+1 . . . vi2 , · · · , h1 = vij−1+1 . . . vk. Let v(hi) be the
topmost node on hi (v(hj) = v1, v(hj−1) = vi1 , . . . ). Let lj be the index of f in S(v(hj))
and rj = Nv(hj) − lj . For the finger we store:
1. The sequence r1, r2, . . . , rj (note r1 ≤ r2 ≤ · · · ≤ rj).
2. The sequence v(h1), v(h2), . . . , v(hj).
3. The string FT = S[f + 1, f + logN ].

Analysis. The random access and fringe search data structures both require O(n) space.
Each of the 3 bullets above require O(logN) space and thus the finger takes up O(logN)
space. The total space usage is O(n).

Setfinger. We implement setfinger(f) as follows. First, we apply Lemma 3 to make random
access to position f . This gives us the sequence of visited heavy paths which exactly
corresponds to hj , hj−1, . . . , h1 including the corresponding li values from which we can
calculate the ri values. So we update the ri sequence accordingly. Finally, decompress and
save the string FT = S[f + 1, f + logN ].

The random access to position f takes O(logN) time. In addition to this we perform a
constant number of operations for each heavy path hi, which in total takes O(logN) time.
Decompressing a string of logN characters can be done in O(logN) time (using [10]). In
total, we use O(logN) time.

Access. To perform access(i) (i > f), there are two cases. If D = i − f ≤ logN we
simply return the stored character FT [D] in constant time. Otherwise, we compute the node
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u = nca(vf , vi) in the parse tree T as follows. First find the index s of the successor to D in
the ri sequence using binary search. Now we know that u is on the heavy path hs. Find the
exit-nodes from hs when searching for respectively i and f using the data structure from
[10] - the topmost of these two is u. See Fig. 2. Finally, we compute a as the index of f
in T (left(u)) from the right and use the data structure for fringe search from Lemma 4 to
compute S(right(u))[i− f − a].

For D ≤ logN , the operation takes constant time. For D > logN , the binary search
over a sequence of O(logN) elements takes O(log logN) time, finding the exit-nodes takes
O(log logN) time, and the fringe search takes O(log(i− f − a)) = O(logD) time. Hence, in
total O(log logN + logD) = O(logD) time.

5 Dynamic Finger Search

In this section we show how to extend the solution from Section 4 to handle dynamic finger
search. The target is to support the movefinger operation that will move the current finger,
where the time it takes is dependent on how far the finger is moved. Obviously, it should be
faster than simply using the setfinger operation. The key difference from the static finger is
a new decomposition of a root-to-leaf path into paths. The new decomposition is based on
a combination of heavy paths and leftmost top paths, which we will show first. Then we
show how to change the data structure to use this decomposition, and how to modify the
operations accordingly. Finally we shortly describe how to generalize the solution to work
when movefinger/access might both be to the left and right of the current finger.

Before we start, let us see why the data structure for the static finger cannot directly
be used for dynamic finger. Suppose we have a finger pointing at f described by Θ(logN)
heavy paths. It might be the case that after a movefinger(f + 1) operation, it is Θ(logN)
completely different heavy paths that describes the finger. In this case we must do Θ(logN)
work to keep our finger data structure updated. This can for instance happen when the
current finger is pointing at the right-most leaf in the left subtree of the root.

Furthermore, in the solution to the static problem, we store the substring S[f+1, f+logN ]
decompressed in our data structure. If we perform a movefinger(f + logN) operation nothing
of this substring can be reused. To decompress logN characters takes Ω(logN) time, thus
we cannot do this in the movefinger operation and still get something faster than Θ(logN).

5.1 Left Heavy Path Decomposition of a Path
Let p = v1 . . . vk be a root-to-leaf path in S. A subpath pi = va . . . vb of p is a maximal heavy
subpath if va . . . vb is part of a heavy path and vb+1 is not on the same heavy path. Similarly,
a subpath pi = va . . . vb of p is a maximal leftmost top subpath if va . . . vb is part of a leftmost
top path and level(vb) 6= level(vb+1).

A left heavy path decomposition is a decomposition of a root-to-leaf path p into an
arbitrary sequence p1 . . . pj of maximal heavy subpaths, maximal leftmost top subpaths and
(non-maximal) leftmost top subpaths immediately followed by maximal heavy subpaths.

Define v(pi) as the topmost node on the subpath pi. Let lj be the index of the finger f
in S(v(pj)) and rj = Nv(pj) − lj . Let t(pi) be the type of pi; either heavy subpath (HP ) or
leftmost top subpath (LTP ).

A left heavy path decomposition of a root-to-leaf path p is not unique. The heavy path
decomposition of p is always a valid left heavy path decomposition as well. The visited heavy
paths and leftmost top paths during fringe search are always maximal and thus is always a
valid left heavy path decomposition.
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I Lemma 8. The number of paths in a left heavy path decomposition is O(logN).

Proof. There are at most O(logN) heavy paths that intersects with a root-to-leaf path
(Lemma 3). Each of these can at most be used once because of the maximality. So there can
at most be O(logN) maximal heavy paths. Each time there is a maximal leftmost top path,
the level of the following node on p increases. This can happen at most O(log logN) times.
Each non-maximal leftmost top path is followed by a maximal heavy path, and since there
are only O(logN) of these, this can happen at most O(logN) times. Therefore the sequence
of paths has length O(logN + log logN + logN) = O(logN). J

5.2 Data Structure
We use the data structures from [10] as in the static variant and the fringe access data
structure with an extension. In the fringe access data structure there is a predecessor data
structure for all the nodes hanging to the left of a leftmost top path. To support access and
movefinger we need to find a node hanging to the left or right of a leftmost top path. We can
do this by storing an identical predecessor structure for the accumulated sizes of the nodes
hanging to the right of each leftmost top path. Again, the space usage for this predecessor
structure can be reduced to O(n) by turning it into a weighted ancestor problem.

To represent a finger the idea is again to have a compact data structure representing the
root-to-leaf path corresponding to the finger. This time we will base it on a left heavy path
decomposition instead of a heavy path decomposition. Let f be the current position of the
finger. For the root-to-leaf path to vf we maintain a left heavy path decomposition, and
store the following for a finger:
1. The sequence r1, r2, . . . , rj (r1 ≤ r2 ≤ · · · ≤ rj) on a stack with the last element on top.
2. The sequence v(p1), v(p2), . . . , v(pj) on a stack with the last element on top.
3. The sequence t(p1), t(p2), . . . , t(pj) on a stack with the last element on top.

Analysis. The fringe access data structure takes up O(n) space. For each path in the left
heavy path decomposition we use constant space. Using Lemma 8 we have the space usage
of this is O(logN) = O(n).

Setfinger. Use fringe access (Lemma 4) to access position f . This gives us a sequence of
leftmost top paths and heavy paths visited during the fringe access which is a valid left heavy
path decomposition. Calculate ri for each of these and store the three sequences of ri, v(pi)
and t(pi) on stacks.

The fringe access takes O(log f + log logN) time. The number of subpaths visited during
the fringe access cannot be more than O(log f + log logN) and we only perform constant
extra work for each of these.

Access. To implement access(i) for i > f we have to find u = nca(vi, vf ) in T . Find the
index s of the successor to D = i−f in r1, r2, . . . , rj using binary search. We know nca(vi, vf )
lies on ps, and vi is in a subtree that hangs of ps. The exit-nodes from ps to vf and vi are
now found - the topmost of these two is nca(vi, vf ). If t(ps) = HP then we can use the
same data structure as in the static case, otherwise we perform the predecessor query on
the extra predecessor data structure for the nodes hanging of the leftmost top path. Finally,
we compute a as the index of f in S(left(u)) from the right and use the data structure for
fringe access from Lemma 4 to compute S(right(u))[i− f − a].
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The binary search on r1, r2, . . . , rj takes O(log logN) time. Finding the exit-nodes from ps
takes O(log logN) in either case. Finally the fringe access takes O(log(i−f−a)+log logN) =
O(logD+ log logN). Overall it takes O(logD+ log logN). Note the extra O(log logN) time
usage because we have not decompressed the first logN characters following the finger.

Movefinger. To move the finger we combine the access and setfinger operations. Find the
index s of the successor to D = i − f in r1, r2, . . . , rj using binary search. Now we know
u = nca(vi, vf ) must lie on ps. Find u in the same way as when performing access. From
all of the stacks pop all elements above index s. Compute a as the index of f in S(left(u))
from the right. The finger should be moved to index i− f − a in right(u). First look at the
heavy path right(u) lies on and find the proper exit-node w using the data structure from
[10]. Then continue with fringe searh from the proper child of w. This gives a heavy path
followed by a sequence of maximal leftmost top paths and heavy paths needed to reach vi
from right(u), push the rj , v(pj), and t(pj) values for these on top of the respective stacks.

We now verify the sequence of paths we maintain is still a valid left heavy path de-
composition. Since fringe search gives a sequence of paths that is a valid left heavy path
decomposition, the only problem might be ps is no longer maximal. If ps is a heavy path it
will still be maximal, but if ps is a leftmost top path then level(u) and level(right(u)) might
be equal. But this possibly non-maximal leftmost top path is always followed by a heavy
path. Thus the overall sequence of paths remains a left heavy path decomposition.

The successor query in r1, r2, . . . , rj takes O(log logN) time. Finding u on pi takes
O(log logN) time, and so does finding the exit-node on the following heavy path. Popping a
number of elements from the top of the stacks can be done in O(1) time. Finally the fringe
access takes O(log(i− f − a) + log logN) = O(logD + log logn) including pushing the right
elements on the stacks. Overall the running time is therefore O(logD + log logn).

6 Moving/Access to the Left of the Dynamic Finger

Previously we have assumed i > f , we will now show how this assumption can be removed.
It is easy to see we can mirror all data structures and we will have a solution that works for
i < f instead. Unfortunately, we cannot just use a copy of each independently, since one of
them only supports moving the finger to the left and the other only supports moving to the
right. We would like to support moving the finger left and right arbitrarily. This was not a
problem with the static finger since we could just make setfinger in both the mirrored and
non-mirrored data structures in O(logN) time.

Instead we extend our finger data structure. First we extend the left heavy path
decomposition to a left right heavy path decomposition by adding another type of paths to
it, namely rightmost top paths (the mirrorred version of leftmost top paths). Thus a left
right heavy path decomposition is a decomposition of a root-to-leaf path p into an arbitrary
sequence p1 . . . pj of maximal heavy subpaths, maximal leftmost/rightmost top subpaths and
(non-maximal) leftmost/rightmost top subpaths immediately followed by maximal heavy
subpaths. Now t(pi) = HP |LTP |RTP . Furthermore, we save the sequence l1, l2, . . . , lj (lj
being the left index of f in T (v(pi))) on a stack like the r1, r2, . . . , rj values, etc.

When we do access and movefinger where i < f , the subpath ps where nca(vf , vi) lies can
be found by binary search on the lj values instead of the rj values. Note the lj values are
sorted on the stack, just like the rj values. The following heavy path lookup/fringe access
should now be performed on left(u) instead of right(u). The remaining operations can just
be performed in the same way as before.
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Abstract
We study projective dimension, a graph parameter (denoted by pd(G) for a graph G), introduced
by Pudlák and Rödl (1992). For a Boolean function f(on n bits), Pudlák and Rödl associated a
bipartite graph Gf and showed that size of the optimal branching program computing f (denoted
by bpsize(f)) is at least pd(Gf ) (also denoted by pd(f)). Hence, proving lower bounds for pd(f)
imply lower bounds for bpsize(f). Despite several attempts (Pudlák and Rödl (1992), Rónyai
et.al, (2000)), proving super-linear lower bounds for projective dimension of explicit families of
graphs has remained elusive.

We observe that there exist a Boolean function f for which the gap between the pd(f) and
bpsize(f)) is 2Ω(n). Motivated by the argument in Pudlák and Rödl (1992), we define two variants
of projective dimension – projective dimension with intersection dimension 1 (denoted by upd(f))
and bitwise decomposable projective dimension (denoted by bpdim(f)). We show the following
results:
(a) We observe that there exist a Boolean function f for which the gap between upd(f) and

bpsize(f) is 2Ω(n). In contrast, we also show that the bitwise decomposable projective
dimension characterizes size of the branching program up to a polynomial factor. That is,
there exists a large constant c > 0 and for any function f ,

bpdim(f)/6 ≤ bpsize(f) ≤ (bpdim(f))c .

(b) We introduce a new candidate function family f for showing super-polynomial lower bounds
for bpdim(f). As our main result, we demonstrate gaps between pd(f) and the above two
new measures for f :

pd(f) = O(
√
n) upd(f) = Ω(n) bpdim(f) = Ω

(
n1.5

logn

)
.

(c) Although not related to branching program lower bounds, we derive exponential lower
bounds for two restricted variants of pd(f) and upd(f) respectively by observing that they
are exactly equal to well-studied graph parameters – bipartite clique cover number and
bipartite partition number respectively.
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37:2 Lower Bounds for Projective Dimension of Graphs

by deterministic Turing machines with logarithmic space bound. A stronger version of the
problem asks if P is separate from L/poly (deterministic logarithmic space given polynomial
sized advice). The latter, recast in the language of circuit complexity theory, asks if there
exists an explicit family of functions (f : {0, 1}n → {0, 1}) computable in polynomial time (in
terms of n), such that any family of deterministic branching programs computing them has to
be of size 2Ω(n). However, the best known non-trivial size lower bound against deterministic
branching programs, due to Nechiporuk [11] in 1970s, is Ω( n2

log2 n
).

Pudlák and Rödl [12] described a linear algebraic approach to show size lower bounds
against deterministic branching programs. They introduced a linear algebraic parameter
called projective dimension (denoted by pdF(f), over a field F) defined on a natural graph
associated with the Boolean function f . For a Boolean function f : {0, 1}2n → {0, 1}, fix a
partition of the input bits into two parts of size n each, and consider the bipartite graph
Gf (U, V,E) defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if
f(uv) = 1. We call Gf as the bipartite realization of f . For a bipartite graph G(U, V,E),
the projective dimension of G over a field F, denoted by pdF(G), is defined as the smallest
d for which there is a vector space W of dimension d (over F) and a function φ mapping
vertices in U, V to linear subspaces of W such that for all (u, v) ∈ U × V , (u, v) ∈ E if and
only if φ(u) ∩ φ(v) 6= {0}. We say that φ realizes the graph G.

Pudlák and Rödl [12] showed that if f can be computed by a deterministic branching
program of size s, then pdF(f) ≤ s over any field F. Thus, in order to establish size lower
bounds against branching programs, it suffices to prove lower bounds for projective dimension
of explicit family of Boolean functions.

By a counting argument, Pudlák and Rödl in [12] showed that for most Boolean functions
f : {0, 1}n×{0, 1}n → {0, 1}, pdR(f) is Ω(

√
2n
n ). In a subsequent work, the same authors [13]

also established an upper bound pdR(f) = O( 2n
n ) for all functions. More recently, Rónyai,

Babai and Ganapathy [15] established the same lower bound over all fields. Over finite
fields F, Pudlák and Rödl [12] also showed (by a counting argument) that there exists a
Boolean function f : {0, 1}n × {0, 1}n → {0, 1} such that pdF(f) is Ω(

√
2n). However, till

date, obtaining an explicit family of Boolean functions (equivalently graphs) achieving such
lower bounds remain elusive. The best lower bound for projective dimension for an explicit
family of functions is for the inequality function (on 2n bits, the graph is the bipartite
complement of the perfect matching) where a lower bound of εn for an absolute constant
ε > 0 is known [12] over R. For a survey on projective dimension and related linear algebraic
techniques, refer [13, 9]. However, the best known size lower bound that was achieved using
this framework is only Ω(n) which is not better than trivial lower bounds.

Our Results: Our starting point is the observation that projective assignment appearing in
the proof of [12] also has the property that the dimension of the intersection of two subspaces
assigned to the vertices is exactly 1, whenever they intersect (See Proposition 2.2(2)). We
denote, for a function f , the variant of projective dimension defined by this property as
upd(f) (see Section 4). From the above discussion, for any Boolean function f , pd(f) ≤
upd(f) ≤ bpsize(f). A natural question is whether this restriction helps in proving better
lower bounds for the branching programs. By observing properties about the measure of
projective dimension, choosing a new candidate function1, we demonstrate that the above
restriction can help by proving the following quadratic gap between the two measures.

1 The candidate function is in NC2 but unlikely to be in NL.
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I Theorem 1.1. For any d ≥ 0, for the function SId (on 2d2 variables, see Definition 2.3),
the projective dimension is exactly equal to d, while the projective dimension with intersection
dimension 1 is Ω(d2).

However, this does not directly improve the known branching program size lower bound for
SId, since it leads to only a linear lower bound on upd(SId). We demonstrate the weakness
of this measure by showing the existence of a function (although not explicit) for which
there is an exponential gap between upd over any partition and the branching program
size (Proposition 5.1). This motivates us to look for variants of projective dimension of graphs,
which is closer to the optimal branching program size of the corresponding Boolean function.
We observe more properties (see Proposition 2.2) about the subspace assignment from the
proof of the upper bound from [12]. We call the projective assignments with these properties
bitwise decomposable projective assignment and denote the corresponding dimension2 as
bitpdim(f) (See Definition 5.2). Thus, for any Boolean function f , pd(f) ≤ bitpdim(f). We
also show that bitpdim(f) ≤ 6 · bpsize(f) (Lemma 5.3). To demonstrate the tightness of the
definition, we first argue a converse with respect to this new parameter.

I Theorem 1.2. There is an absolute constant c > 0 such that if bitpdim(fn) ≤ d(n) for a
function family {fn}n≥0 on 2n bits, then there is a deterministic branching program of size
(d(n))c computing it.

Thus, super-polynomial size lower bounds for branching programs imply super-polynomial
lower bounds for bitpdim(f). The function SId (on 2d2 input bits – see Definition 2.3) is a
natural candidate for proving bitpdim lower bounds as the corresponding language is hard3
for the complexity class C=L under logspace Turing reductions.

However, the best known lower bound for branching program size for an explicit family
of functions is Ω

(
n2

log2 n

)
by Nechiporuk [11] which uses a counting argument on the number

of sub-functions. By Theorem 1.2 , bitpdim(f) (for the same explicit function) is at least
Ω
(

n2/c

log2/c n

)
. The constant c is large4 and hence implies only weak lower bounds for bitpdim.

Despite this weak connection, by combining the counting strategy with the linear algebraic
structure of bitpdim, we show a super-linear lower bound for SId matching the branching
program size lower bound5.

I Theorem 1.3 (Main Result). For any d > 0, bitpdim(SId) is at least Ω
(

d3

log d

)
.

Theorems 1.1 and 1.3 demonstrate gaps between the pd and the new measures considered.
In particular, for n = d2, pd(SId) = O(

√
n), upd(SId) = Ω(n), and bitpdim(SId) = Ω

(
n1.5

logn

)
.

We remark that Theorem 1.3 implies a size lower bound of Ω( n
1.5

logn ) for branching programs
computing the function SId (where n = d2). However, note that this can also be derived
from Nechiporuk’s method. For the Element Distinctness function, the above linear algebraic
adaptation of Nechiporuk’s method for bitpdim gives Ω( n2

log2 n
) lower bounds (for bitpdim and

hence for bpsize) which matches with the best lower bound that Nechiporuk’s method can
derive. This shows that our modification of approach in [12] can also achieve the best known
lower bounds for branching program size.

2 We do not use the property that intersection dimension is 1 and hence is incomparable with upd.
3 Assuming C=L 6⊆ L/poly, SId cannot be computed by deterministic branching programs of size poly(d).
4 However, the value of c can be shown to be at most 5. See proof of Theorem 1.2 in Section 5.1.
5 A lower bound of Ω

(
d3

log d

)
for the branching program size can also be obtained using Nechiporuk’s

method.
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Continuing the quest for better lower bounds for projective dimension, we study two
further restrictions. In these variants of pd and upd, the subspaces assigned to the vertices
must be spanned by standard basis vectors. We denote the corresponding dimensions as
spd(f) and uspd(f) respectively. It is easy to see that for any 2n-bit function, both of these
dimensions are upper bounded by 2n.

We connect these variants to some of the well-studied graph parameters. The bipartite
clique cover number (denoted by bc(G)) is the smallest collection of complete bipartite
subgraphs of G such that every edge in G is present in some graph in the collection. If
we insist that the bipartite graphs in the collection be edge-disjoint, the measure is called
bipartite partition number denoted by bp(G). By definition, bc(G) ≤ bp(G). These graph
parameters are closely connected to communication complexity as well. More precisely,
log(bc(Gf )) is exactly the non-deterministic communication complexity of the function f ,
and log(bp(Gf )) is a lower bound on the deterministic communication complexity of f (see
[6]). In this context, we show the following:

I Theorem 1.4. For any Boolean function f , spd(f) = bc(Gf ) and uspd(f) = bp(Gf ).

Thus, if for a function family, the non-deterministic communication complexity is Ω(n), then
we will have spd(f) = 2Ω(n). Thus, both spd(DISJ) and uspd(DISJ) are 2Ω(n).

2 Preliminaries

In this section, we introduce the notations used in the paper. For definitions of basic
complexity classes and computational models, we refer the reader to standard textbooks [6,
16].

Unless otherwise stated we work over the field F2. We remark that our arguments do
generalize to any finite field. All subspaces that we talk about in this work are linear
subspaces. Also ~0 and {0} denote the zero vector, and zero-dimensional space respectively.
For a subspace U ⊆ Fn, we call the ambient dimension of U as n. We denote ei ∈ Fn as the
ith standard basis vector with ith entry being 1 and rest of the entires being zero.

For a graph G(U, V,E), recall the definition of projective dimension of G over a field
F(pdF(G)), defined in the introduction. For a Boolean function f : {0, 1}2n → {0, 1}, fix a
partition of the input bits into two parts of size n each, and consider the bipartite graph Gf
defined on vertex sets U = {0, 1}n and V = {0, 1}n, as (u, v) ∈ E if and only if f(uv) = 1. A
φ is said to realize the function f if it realizes Gf . Unless otherwise mentioned, the partition
is the one specified in the definition of the function. We denote by bpsize(f) the number of
vertices (including accept and reject nodes) in the optimal branching program computing f .

I Theorem 2.1 (Pudlák-Rödl Theorem [12]). For a Boolean function f computed by a
deterministic branching program of size s and F being any field, pdF(Gf ) ≤ s.

The proof of this result proceeds by producing a subspace assignment for vertices of Gf from
a branching program computing f . We derive the following proposition by a careful analysis
of the aforementioned proof in [12].

I Proposition 2.2. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} computed by a
deterministic branching program of size s, there is a collection of subspaces of Fs denoted
C = {Uai }i∈[n],a∈{0,1} and D = {V bj }j∈[n],b∈{0,1}, where we associate the subspace Uai with
a bit assignment xi = a and V bj with yj = b such that if we define the map φ assigning
subspaces from Fs to vertices of Gf (U, V,E) as φ(x) = span

1≤i≤n
{Uxii }, φ(y) = span

1≤j≤n
{V yjj }, for

x ∈ X, y ∈ Y then the following holds true. Let S = {ei − ej | i, j ∈ [s], i 6= j}.
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1. for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if f(u, v) = 1.
2. for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.
3. For any W ∈ C ∪ D, ∃S′ ⊆ S such that W = span {S′}.

We define the following family of functions and family of graphs based on subspaces of a
vector space and their intersections.

I Definition 2.3 (SId, Pd). Let F be a finite field. Denote by SId, the Boolean function
defined on Fd×d × Fd×d → {0, 1} as for any A,B ∈ Fd×d SId(A,B) = 1 if and only if
rowspan(A) ∩ rowspan(B) 6= {0}. Note that the row span is over the field F (which, in our
case, is F2). Denote by Pd, the bipartite graph (U, V,E) where U and V are the set of all
subspaces of Fd. And for any (I, J) ∈ U × V , (I, J) ∈ E ⇐⇒ I ∩ J 6= {0}

We collect the definitions of Boolean functions which we deal with in this work. For
(x, y) ∈ {0, 1}n × {0, 1}n, IPn(x, y) =

∑n
i=1 xiyi mod 2, EQn(x, y) is 1 if ∀i ∈ [n] xi = yi

and is 0 otherwise, INEQn(x, y) = ¬EQn(x, y) and DISJn(x, y) = 1 if ∀i ∈ [n] xi ∧ yi = 0 and
is 0 otherwise. Note that all the functions discussed so far has branching programs of size
O(n) computing them and hence have projective dimension O(n) by Theorem 2.1.

Let m ∈ N and n = 2m logm. The Boolean function, Element Distinctness, denoted EDn
is defined on 2m blocks of 2 logm bits, x1, . . . , xm and y1, . . . , ym bits and it evaluates to 1 if
and only if all the xis and yis take distinct values when interpreted as integers in [m2]. Let
q be a power of prime congruent to 1 modulo 4. Identify elements in {0, 1}n with elements
of F∗q . For x, y ∈ F∗q , the Paley function PALqn(x, y) = 1 if x− y is a quadratic residue in F∗q
and 0 otherwise.

We observe for any induced subgraph H of G, if G is realized in a space of dimension
d, then H can also be realized in a space of dimension d. For any d ∈ N, Pd appears as an
induced subgraph of the bipartite realization of SId. Hence, pd(SId) ≥ pd(Pd).

3 Properties of Projective Dimension

In this section, we observe properties about projective dimension as a measure of graphs and
Boolean functions. We start by proving closure properties of projective dimension under
Boolean operations ∧ and ∨.

I Lemma 3.1. Let F be an arbitrary field. For any two functions f1 : {0, 1}2n → {0, 1}, f2 :
{0, 1}2n → {0, 1}, pdF (f1 ∨ f2) ≤ pdF (f1) + pdF (f2) and pdF (f1 ∧ f2) ≤ pdF (f1) · pdF (f2)

The proof is based on direct sum and tensor product of vector spaces. The ∨ part of the
above lemma was also observed (without proof) in [13]. We remark that the construction
for ∨ is tight up to constant factors. Assume n is a multiple of 4. Consider the functions
f(x1, . . . , xn4 , x

n
2 +1, . . . , x 3n

4
) and g(xn

4 +1, . . . , xn2 , x 3n
4 +1, . . . , xn) each of which performs

inequality check on the first n
4 and the second n

4 variables. It is easy to see that f ∨ g is
the inequality function on n

2 variables x1, . . . , xn2 and the next n
2 variables xn

2 +1, . . . , xn.
By the fact that they are computed by n size branching programs and using Theorem 2.1
(Pudlák-Rödl theorem) we get that pd(f) ≤ n and pd(g) ≤ n. Hence by Lemma 3.1,
pd(f ∨ g) ≤ pd(f) + pd(g) ≤ 2n. Lower bound on projective dimension of inequality function
comes from [12, Theorem 4], giving pd(f ∨ g) ≥ ε.n2 for an absolute constant ε. This shows
that pd(f ∨ g) = Θ(n). We also cannot expect a general relation connecting pdR(f) and
pdR(¬f) since it is known [12] that pdR(INEQn) is Ω(n) while pdR(EQn) = 2.

We now observe a characterization of bipartite graphs having projective dimension at
most d over F.
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37:6 Lower Bounds for Projective Dimension of Graphs

I Lemma 3.2 (Characterization). Let G be a bipartite graph with no two vertices having
same neighborhood, pd(G) ≤ d if and only if G is an induced subgraph of Pd.

It follows that pd(Pd) ≤ d. Observe that, in any projective assignment, the vertices with
different neighborhoods should be assigned different subspaces. For pd(Pd), all vertices on
either partitions have distinct neighborhoods. The number of subspaces of a vector space of
dimension d− 1 is strictly smaller than the number of vertices in Pd. Thus, we conclude the
following theorem.

I Theorem 3.3. For any d ∈ N, pd(Pd) = pd(SId) = d.

For an N vertex graph G, the number of vertices of distinct neighborhood can at most be N .
Thus, the observation that we used to show the lower bound for the graph pd(Pd) cannot be
used to obtain more than a

√
logN lower bound for pd(G). Also, for many functions, the

number of vertices of distinct neighborhood can be smaller.
We observe that by incurring an additive factor of 2 logN , any graph G on N vertices can

be transformed into a graph G′ on 2N vertices such that all the neighborhoods of vertices in
one partition are all distinct. Let f : {0, 1}2n → {0, 1} be such that the neighborhoods of
Gf are not necessarily distinct. We consider a new function f ′ whose bipartite realization
will have two copies of Gf namely G1(A1, B1, E1) and G2(A2, B2, E2) where A1, A2, B1, B2
are disjoint and a matching connecting vertices in A1 to B2 and A2 to B1 respectively. Since
the matching edges associated with every vertex is unique, the neighborhoods of all vertices
are bound to be distinct. Applying Lemma 3.1 and observing that matching (i.e, equality
function) has projective dimension at most n, pd(f ′) ≤ 2pd(f) + 2n. This shows that to
show super-linear lower bounds on projective dimension for f where the neighborhoods may
not be distinct, it suffices to show a super-linear lower bound for f ′.

4 Projective Dimension with Intersection Dimension 1

Motivated by the proof of Theorem 2.1, we make the following definition.

I Definition 4.1 (Projective Dimension with Intersection Dimension 1). A Boolean function
f : {0, 1}n × {0, 1}n → {0, 1} with the corresponding bipartite graph G(U, V,E) is said to
have projective dimension with intersection dimension 1 (denoted by upd(f)) d over field F,
if d is the smallest possible dimension for which there exists a vector space K of dimension d
over F with a map φ assigning subspaces of K to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.
for all (u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1.

By the properties observed in Proposition 2.2,

I Theorem 4.2. For a Boolean function f computed by a deterministic branching program
of size s, updF(f) ≤ s for any field F.

Thus, it suffices to prove lower bounds for upd(f) in order to obtain branching program
size lower bounds. We now proceed to show lower bounds on upd. Our approaches use the
fact that the adjacency matrix of Pd has high rank.

I Lemma 4.3. Let M be the bipartite adjacency matrix of Pd, then rank (M) ≥
[
d
d/2
]
q
≥ q d

2
4

Proof. For 0 ≤ i ≤ k ≤ d, and subspace I,K ⊆s Fdq with dim(I) = i, dim(K) = k, define
matrix Wik over R as Wik(I,K) = 1 if I ∩ K = {0} and 0 otherwise. This matrix has
dimension

[
d
i

]
q
×
[
d
k

]
q
.
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Consider the submatrix Mi of M with rows and columns indexed by subspaces of
dimension exactly i. Observe that Wii = J −Mi where J is an all ones matrix of appropriate
order. These matrices are well-studied (see [5]). Closed form expressions for eigenvalues are
computed in [3, 10] and the eigenvalues are known to be non-zero. Hence for 0 ≤ i ≤ d/2
the matrix Wii has rank

[
d
i

]
q
. Since Wii = J − Mi, rank (Mi) ≥ rank

(
Wii

)
− 1. This

shows that rank (M) ≥ rank (Mi) =
[
d
i

]
q
for all i such that 2i ≤ d. Choosing i = d/2 gives

rank (M) ≥
[
d
d/2
]
q
− 1 ≥ q d

2
4 − 1. J

We now present two approaches for showing lower bounds on upd(f) – one using intersec-
tion families of vector spaces and the other using rectangle arguments on Mf .

Lower Bound for upd(Pd) using intersecting families of vector spaces: To prove a lower
bound on upd(Pd) we define a matrix N from a projective assignment with intersection
dimension 1 for Pd, such that it is equal to (q − 1)M . Let D = upd(Pd). We first show
that rank (N) is at most 1 +

[
D
1
]
q
. Then by Lemma 4.3 we get that rank (N) is at least q d

2
4 .

Let G = {G1, . . . , Gm}, H = {H1, . . . ,Hm} be the subspace assignment with intersection
dimension 1 realizing Pd with dimension D.

I Lemma 4.4. For any polynomial p in qx of degree s, with matrix N of order |G| × |H|
defined as N [Gr, Ht] = p(dim(Gr ∩Ht)) with Gr ∈ G, Ht ∈ H, then rank (N) ≤

∑s
i=0
[
D
i

]
q

Proof. This proof is inspired by the proof in [4] of a similar claim where a non-bipartite
version of this lemma is proved. To begin with, note that p is a degree s polynomial in qx,
and hence can be written as a linear combination of polynomials pi =

[
x
i

]
q
, 0 ≤ i ≤ s. Let the

linear combination be given by p(x) =
∑s
i=0 αipi(x). For 0 ≤ i ≤ s define a matrix Ni with

rows and columns indexed respectively by G, H defined as Ni[Gr, Hs] = pi(dimGr ∩Hs). By
definition of Ni, N =

∑
i∈[s] αiNi.

To bound the rank of Ni’s we introduce the following families of inclusion matrices.
For any j ∈ [D], consider two matrices Γj corresponding to G and ∆j corresponding to
H defined as Γj(G, I) = 1 if dim(I) = j,G ∈ G, I ⊆s G and 0 otherwise. ∆j(H, I) = 1 if
dim(I) = j,H ∈ H, I ⊆s H and 0 otherwise. Note that rank of the these matrices are upper
bounded by the number of columns which is

[
D
j

]
q
. We claim that for any i ∈ {0, 1, . . . , s},

rank (Ni) ≤
[
D
i

]
q
. This completes the proof since N =

∑
i∈[s] αiNi.

To prove the claim, let Fi denote the set of all i dimensional subspace of FDq . We show that
Ni = Γi∆T

i . Hence rank (Ni) ≤ min {rank (Γi) , rank (∆i)} ≤
[
D
i

]
q
. For (Gr, Ht) ∈ G × H,

Γi∆T
i (Gr, Ht) =

∑
I∈Fi Γi(Gr, I)∆T

i (I,Ht) =
∑
I∈Fi Γi(Gr, I)∆i(Ht, I) =

∑
I∈Fi [I ⊆s

Gr] ∧ [I ⊆s Ht] =
∑
I∈Fi [I ⊆s Gr ∩Ht] =

[dim(Gr∩Ht)
i

]
q

= Ni(Gr, Ht) J

We apply Lemma 4.4 on N defined via p(x) = qx − 1 with s = 1, to get qd2/4 ≤
[
d
d/2
]
q
≤

1 +
[
D
1
]
q

= 1 + (qD − 1)/(q − 1). By definition, rank (N) = rank (M). This gives that
D = Ω(d2) and proves Theorem 1.1.

Lower Bound for upd(Pd) from Rectangle Arguments: We now give an alternate proof
of for Theorem 1.1 using combinatorial rectangle arguments.

I Lemma 4.5. For f : {0, 1}n × {0, 1}n → {0, 1} with Mf denoting the bipartite adjacency
matrix of Gf , rankR(Mf ) ≤ qO(updF(f)) where F is a finite field of size q.

FSTTCS 2016



37:8 Lower Bounds for Projective Dimension of Graphs

Proof. Let φ be a subspace assignment realizing f of dimension d with intersection dimension
1. Let S(v) for v ∈ Fdq denote {(a, b) ∈ {0, 1}n × {0, 1}n | φ(a) ∩ φ(b) = span {v}}. Also let
Mv denote the matrix representation of S(v). That is, Mv(a, b) = 1 ⇐⇒ (a, b) ∈ S(v).
Consider all 1 dimensional subspaces which appear as intersection space for some input
(x, y). Fix a basis vector for each space and let T denote the collection of basis vectors of
all the intersection spaces. Note that for any (x, y) ∈ f−1(1), there is a unique v ∈ Fdq (up
to scalar multiples) such that (x, y) ∈ S(v) for otherwise intersection dimension exceeds
1. Then Mf =

∑
v∈T Mv. Now, rank(Mf ) ≤

∑
v∈T rank(Mv). Since rank(Mv) = 1,

rank(Mf ) ≤ |T |. The fact that the number of 1 dimensional spaces in Fd can be at most
qd−1
q−1 completes the proof. Note that the rank of Mf can be over any field (we choose R). J

We get an immediate corollary. Any function f , such that the adjacency matrix of Mf of the
bipartite graph Gf is of full rank 2n over some field must have upd(f) = Ω(n). There are
several Boolean functions with this property, well-studied in the context of communication
complexity (see textbook [8]). Hence, we have for f ∈ {IPn,EQn, INEQn,DISJn,PALqn},
updF(f) is Ω(n) for any finite field F.

For arguing about PALqn, it can be observed that the graph is strongly regular (as q ≡ 1
mod 4) and hence the adjacency matrix has full rank over R [2]. Except for PALqn, all the
above functions have O(n) sized deterministic branching programs computing them and
hence the Pudlák-Rödl theorem (Theorem 2.1) gives that upd for these functions (except
PALqn) are O(n) and hence the above lower bound is indeed tight.

From Lemma 4.3, it follows that the function SId also has rank 2Ω(d2). To see this, it
suffices to observe that Pd appears as an induced subgraph in the bipartite realization of
SId. Thus, upd(SId) is Ω(d2). We proved in Theorem 3.3 that pd(SId) = d. This establishes
a quadratic gap between the two parameters. This completes the proof of Theorem 1.1.

Let D(f) denote the deterministic communication complexity of the Boolean function
f . We observe that the rectangle argument used in the proof of Lemma 4.5 is similar to
the matrix rank based lower bound arguments for communication complexity. This yields
the Proposition 4.6. If upd(f) ≤ D, the assignment also gives a partitioning of the 1s in
Mf into at most qD−1

q−1 1-rectangles. However, it is unclear whether this immediately gives a
similar partition of 0s into 0-rectangles as well. Notice that if D(f) ≤ d, there are at most
2d monochromatic rectangles (counting both 0-rectangles and 1-rectangles) that cover the
entire matrix. However, our proof does not exploit this difference.

I Proposition 4.6. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and a finite field
F, updF(f) ≤ 2D(f) and D(f) ≤ (pdF(f))2 log |F|

Proof. We give a proof of the first inequality. Any deterministic communication protocol
computing f of cost D(f), partitions Mf into k rectangles where k ≤ 2D(f) rectangles.
Define fi : {0, 1}n × {0, 1}n → {0, 1} for each rectangle Ri i ∈ [k], such that fi(x, y) = 1 iff
(x, y) ∈ Ri. Note that updF(fi) = 1 and f = ∨ki=1fi. For any (x, y) ∈ {0, 1}n × {0, 1}n if
f(x, y) = 1, there is exactly one i ∈ [k] where fi(x, y) = 1. Hence for each j ∈ [k], j 6= i, the
intersection vector corresponding to the edge (x, y) in the assignment of fj is trivial. Hence the
assignment obtained by applying Lemma 3.1, to f1,∨f2∨ . . . fk will have the property that for
any (x, y) with f(x, y) = 1, the intersection dimension is 1. Hence updF(f) ≤ k ≤ 2D(f). To
prove the second inequality, consider the protocol where Alice sends the subspace associated
with her input as a pdF(f)× pdF(f) matrix. J

Note that the first inequality is tight, up to constant factors in the exponent. To see this,
consider the function f : {0, 1}n × {0, 1}n → {0, 1} whose pdF(f) = Ω(2n/2) [12, Proposition
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1] and note that D(f) for any f is at most n. Tightness of second inequality is witnessed by
SId since by Lemma 4.3 D(SId) = Ω(d2) while pd(SId) = d.

5 Bitwise Decomposable Projective Dimension

The restriction of intersection dimension being 1, although potentially useful for lower bounds
for branching program size, does not capture the branching program size exactly. We start
the section by demonstrating a function where the gap is exponential. We show the existence
of a Boolean function f such that the size of the optimal branching program computing it is
very high but has a very small projective assignment with intersection dimension 1 for any
balanced partition of the input.

I Proposition 5.1 (Implicit in Remark 1.30 of [6]). There exist a function f : {0, 1}n×{0, 1}n

that requires size Ω( 2n
n ) for any branching program computing f but the upd(f) ≤ O(n) for

any balanced partitioning of the input into two parts.

The above proposition can be shown by adapting the counting argument presented in
Remark 1.30 of [6].

5.1 A Characterization for Branching Program Size
Motivated by strong properties observed in Proposition 2.2, we make the following definition.

I Definition 5.2 (Bitwise Decomposable Projective Dimension). Let f be a Boolean function
on 2n bits and Gf be its bipartite realization. The bipartite graph Gf (X,Y,E) is said to
have bit projective dimension, bitpdim(G) ≤ d, if there exists a collection of subspaces of Fd2
denoted C = {Uai }i∈[n],a∈{0,1} and D = {V bj }j∈[n],b∈{0,1} where a projective assignment φ
is obtained by associating subspace Uai with a bit assignment xi = a and V bj with yj = b

satisfying the conditions listed below.
1. for all (x, y) ∈ {0, 1}n×{0, 1}n, φ(x) = span

1≤i≤n
{Uxii }, φ(y) = span

1≤j≤n
{V yjj } and f is realized

by φ.
2. Let S = {ei−ej | i, j ∈ [d], i 6= j}. For any W ∈ C∪D, ∃S′ ⊆ S such that W = span {S′}.
3. for any S1, S2 ⊆ ([n]× {0, 1}) such that S1 ∩ S2 = φ, span

(i,a)∈S1

{Uai } ∩ span
(j,b)∈S2

{U bj } = {0}.

Same property must hold for subspaces in D.

We show that the new parameter bitwise decomposable projective dimension (bitpdim)
tightly characterizes the branching program size, up to constants in the exponent.

I Lemma 5.3. Suppose f : {0, 1}n × {0, 1}n → {0, 1} has deterministic branching program
of size s then bitpdim(f) ≤ 6s

We show that given a bitpdim assignment for a function f , we can construct a branching
program computing f .

I Theorem 5.4 (Theorem 1.2 restated). For a Boolean function f : {0, 1}n×{0, 1}n → {0, 1}
with bitpdim(f) ≤ d, there exists a deterministic branching program computing f of size dc
for some absolute constant c.

Proof. Consider the subspace associated with the variables C,D of the bitpdim assignment
as the advice string. These can be specified by a list of n basis matrices each of size d2. Since
d = bitpdim(f) = poly(n), the advice string is poly(n) sized and depends only on n.
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37:10 Lower Bounds for Projective Dimension of Graphs

We construct a deterministic branching program computing f as follows. On input x, y,
from the basis matrices in C,D, construct an undirected graph6 G∗ with all standard basis
vectors in C,D as vertices and add an edge between two vertices u, v if eu − ev ∈ Uxii or
eu − ev ∈ V

yj
j for i, j ∈ [n]. For input x, y, f(x, y) = 1 iff G∗ has a cycle. To see this, let

C = C1 ∪ C2 be a cycle in G∗ where C1 consists of edges from basis matrices in C and
C2 contain edges from basis matrices in D. Note that if one of C1 or C2 is empty then
there is a cycle consisting only of vectors from C which implies a linear dependence among
vectors in C. But this contradicts Property 3 of bitpdim assignment. Hence both C1 and C2
are non-empty. Then, it must be that

∑
(u,v)∈C1

eu − ev +
∑

(w,z)∈C2
ew − ez = 0. Hence∑

(u,v)∈C1
eu − ev = −

∑
(w,z)∈C2

ew − ez. Hence we get a vector in the intersection which
gives f(x, y) = 1. Note that if f(x, y) = 1, then clearly there is a non-zero intersection vector.
If we express this vector in terms of basis, we get a cycle in G∗.

Hence, to check if f evaluates to 1, it suffices check if there is a cycle in G∗ which is
solvable in L using Reingold’s algorithm [14]. The log-space algorithm can also be converted
to an equivalent branching program of size nc for a constant7 c. J

Assuming C=L 6⊆ L/poly, the function SId (a language which is hard for C=L under Turing
reductions) cannot be computed by deterministic branching programs of polynomial size.
Thus, using Theorem 1.2, we conclude that the function SId is a candidate function (under
standard complexity theoretic assumptions) for super-polynomial bitpdim lower bounds.

5.2 Lower Bounds for Bitwise Decomposable Projective dimension

From the results of the previous section, it follows that size lower bounds for branching
programs do imply lower bounds for bitwise decomposable projective dimension as well.
As mentioned in the introduction, the lower bounds that Theorem 1.2 can give for bitwise
decomposable projective dimension are only known to be sub-linear.

To prove super-linear lower bounds for bitwise decomposable projective dimension, we
show that Nechiporuk’s method [11] can be adapted to our linear algebraic framework (thus
proving Theorem 1.3 from the introduction). The overall idea is the following: given a
function f and a bitpdim assignment φ, consider the restriction of f denoted fρ where ρ
fixes all variables except the ones in Ti to 0 or 1 where Ti is some subset of variables in the
left partition. For different restrictions ρ, we are guaranteed to get at least ci(f) different
functions. We show that for each restriction ρ, we can obtain an assignment from φ realizing
fρ. Hence the number of different bitpdim assignments for ρ restricted to Ti is at least the
number of sub functions of f which is at least ci(f). Let di be the ambient dimension of the
assignment when restricted to Ti. By using the structure of bitpdim assignment, we count
the number of assignments possible and use this relation to get a lower bound on di. Now
repeating the argument with disjoint Ti, and by observing that the subspaces associated
with Tis are disjoint, we get a lower bound on d as d =

∑
i di.

I Theorem 5.5. For a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} on 2n variables,
let T1, . . . , Tm are partition of variables to m blocks of size ri on the first n variables. Let
ci(f) be the number of distinct sub functions of f when restricted to Ti, then bitpdim(f) ≥∑m
i=1

log ci(f)
log(log ci(f))

6 Note that this is not a deterministic branching program.
7 Using more space efficient methods than [14], the constant c can be estimated to be at most 5.
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Proof. Let (x, y) denote the 2n input variables of f and ρ : {x1, . . . , xn, y1, . . . , yn} →
{0, 1, ∗} be a map that leaves only variables in Ti unfixed. Let φ be a bitpdim assignment realiz-
ing f and let Gf (X,Y, Z) denote the bipartite realization of f . Let C = {Uai }i∈[n],a∈{0,1} ,D =
{V bj }j∈[n],b∈{0,1} be the associated collection of subspaces. Let ρ be a restriction that does
not make fρ a constant and (x, y) ∈ {0, 1}n × {0, 1}n which agrees with ρ. We use x, y to
denote both variables as well as assignment. From now on, we fix an i and a partition Ti.

Define L = span
i∈[n],ρ(i)6=∗

{Uρ(i)i } and R = span
j∈[n]
{V ρ(n+j)

j }. For any x ∈ {0, 1}n that agrees

with ρ on the first n bits, define Zx = span
j∈Ti
{Uxij } Note that for any (x, y), which agrees with

ρ, has φ(x) = L + Zx and φ(y) = R. For any fρ1 6≡ fρ2 , Gfρ1
6= Gfρ2

. Hence the number
of bitpdim assignments is at least the number of different sub functions. We need to give
a bitpdim assignment for Gfρ(V1, V2, E) where V1 = {x | x agrees with ρ}, V2 = {y} where
y = ρ[n+1,...,2n] and E = {(x, y)|x ∈ V1, y ∈ V2, f(x, y) = 1}. We use the following property
to come up with such an assignment.

I Property 5.6. Let ρ be a restriction which does not make the function f constant and
which fixes all the variables y1, . . . , yn. For all such ρ and ∀x, y ∈ {0, 1}n which agrees with
ρ, any non-zero w ∈ φ(x)∩φ(y), where w = u+ v with u ∈ L and v ∈ Zx must satisfy v 6= ~0.

Proof. Let there exists an intersection vector w ∈ (L+ Zx) ∩R with w = u+ v, u ∈ L and
v ∈ Zx and v = ~0. Since ~0 ∈ Z x̂ for any x̂, w = u+~0 is in L+Z x̂ and R. Thus the function
after restriction ρ is a constant. This contradicts the choice of ρ. J

The assignment ψρ for Gfρ defined as: ψρ(x) = Zx and ψρ(y) = span
x∈V1

{ΠZx (R ∩ (L+ Zx))}

Note that for (x, y) ∈ V1 × V2, fρ(x) = f(x, y). Following claim shows that ψρ realize fρ.

I Claim 5.7. For any (x, y) ∈ V1 × V2, f(x, y) = 1 if and only if ψρ(x) ∩ ψρ(y) 6= {0}.

Proof. For any (x, y) ∈ X×Y , φ(x)∩φ(y) 6= {0} if and only if f(x, y) = 1. Since V1 ⊆ X and
V2 ⊆ Y , it suffices to prove: ∀(x, y) ∈ V1 × V2, ψρ(x) ∩ ψρ(y) 6= {0} ⇐⇒ φ(x) ∩ φ(y) 6= {0}.

We first prove that ψρ(x) ∩ ψρ(y) 6= {0} implies φ(x) ∩ φ(y) 6= {0}. Let v be a non-zero
vector in ψρ(x)∩ψρ(y). By definition of ψρ(x), v ∈ Zx. By definition of ψρ(y), there exists a
non-empty J ⊆ V1 such that v =

∑
x̂∈J vx̂ where vx̂ ∈ Z x̂. Also for every x̂ ∈ J , there exists

a ux̂ ∈ L such that wx̂ = ux̂ + vx̂ and wx̂ ∈ R. Define u to be
∑
x̂∈J ux̂. Since each ux̂ is in

L, u is also in L. Hence w = u+ v is in L+ Zx. Substituting u with
∑
x̂∈J ux̂ and v with∑

x̂∈J vx̂ we get that w =
∑
x̂∈J ux̂ + vx̂ =

∑
x̂∈J wx̂. Since each wx̂ ∈ R, w ∈ R. Hence

w ∈ R ∩ (L+ Zx) and w is non-zero as J is non-empty.
Now we prove that φ(x) ∩ φ(y) 6= {0} implies ψρ(x) ∩ ψρ(y) 6= {0}. Let w be non zero

vector in φ(x) ∩ φ(y) with w = u + v where u ∈ L and v ∈ Zx. By Property 5.6 we have
v 6= ~0. By definition v ∈ ψρ(y). Along with v ∈ Zx, we get ψρ(x) ∩ ψρ(y) 6= {0}. J

Let Z = span
j∈Ti
{U0

j + U1
j }. We now prove that subspace assignment on the only vertex in the

right partition of Gρ which is span
x∈V1

{ΠZx(R)} is indeed ΠZ(R).

I Claim 5.8. ΠZ(R) = span
x∈V1

{ΠZx(R)}.

Proof. We show span
x∈V1

{ΠZx(R)} ⊆ ΠZ(R). Note that span
x∈V1

{ΠZx(R)} = span
x∈V1,w∈R

{ΠZx(w)}.

For an arbitrary x ∈ V1 and w ∈ R, let v = ΠZx(w). By definition of Zx and the fact that
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{
U bi
}
i∈[n],b∈{0,1} are disjoint, ΠZx(w) = +i∈[n],ρ(i)=∗ΠU

xi
i

(w). As Z = span
j∈Ti
{U0

j +U1
j }, every

ΠU
xi
i

(w) ∈ ΠZ(R). Hence the span is also in ΠZ(R).
Now we show that ΠZ(R) ⊆ span

x∈V1

{ΠZx(R)}. Let Ti = {i1, . . . , ik}. For 1 ≤ j ≤ k define

xj to be x+ej where x ∈ {0, 1}n agrees with ρ and for any index i ∈ [n] with ρ(i) = ∗, xi = 0
and ej ∈ {0, 1}n is 0 at every index other than ij . Note that for any j1 6= j2, j1, j2 ∈ Ti,
Zx

j1 ∩Zxj2 = {0} by Property 3 of Definition 5.2) Also note that span
j∈Ti
{Zxj} = span

j∈Ti
{Uxjj } =

Z. Hence, ΠZ(R) = span
j∈Ti
{ΠZx

j (R)}. But span
j∈Ti
{ΠZx

j (R)} ⊆ span
x∈V1

{ΠZx(R)}. J

For any ρ, which fixes all variables outside Ti, Z is the same. And since there is only one
vertex on the right partition, for different ρ, ρ′, ΠZ(Rρ) = ΠZ(Rρ′) implies ψρ = ψρ′ . Hence
to count the number of different ψρ’s for different fρ’s it is enough to count the number of
different ΠZ(R). To do so, we claim the following property on ΠZ(R).

I Property 5.9. Let S = {eu − ev|eu − ev ∈ Z}. Then there exists a subset S′ of S such
that all the vectors in S′ are linearly independent and ΠZ(R) = span {S′}.

Proof. By the property of the bitpdim assignment, ∀i ∈ [n] and ∀b ∈ {0, 1}, V bi = span
{
F bi
}

where F bi is a collection of difference of standard basis vectors. Recall that R = span
j∈[n]
{V ρ(n+j)

j }.

Let F =
{

(eu − ev) | eu − ev ∈ F ρ(n+j)
j , j ∈ [n]

}
. Since projections are linear maps and the

fact that F ρ(n+j)
j spans V ρ(n+j)

j we get that, ΠZ(R) = span
w∈F
{ΠZ(w)}. Since Z is also a span

of difference of standard basis vectors, ΠZ(eu − ev) is one of ~0, eu − ew or ew − ev where ew
is some standard basis vector in Z. Let S′′ = ∪eu−ev∈FΠZ(eu − ev). Hence S′′ ⊆ S. Clearly,

span
eu−ev∈S′′

{eu − ev} = ΠZ(R). Choose S′ as a linear independent subset of S′′. J

Property 5.9 along with the fact that ΠZ(R) is a subspace of Z, gives us that the number of
different ΠZ(R) is upper bounded by number of different subsets S′ of S such that |S′| = di
where di = dim(Z). As S′ is a set of difference of standard basis vectors from Z, |S′| ≤

(
di
2
)
.

Thus the number of different such S′ are at most
∑di
k=0

(
d2
i
k

)
= 2O(di log di).

Hence the number of restrictions ρ (that leaves Ti unfixed) and leading to different
fρ is at most 2O(di log di). But the number of such restrictions ρ is at least ci(f). Hence
2O(di log di) ≥ ci(f) giving di = Ω

(
log ci(f)

log(log ci(f))

)
. Using d =

∑
i di completes the proof. J

Theorem 5.5 gives a super linear lower bound for Element Distinctness function. From a
manuscript by Beame et.al, ([1], See also [6], Chapter 1), we have ci(EDn) ≥ 2n/2/n. Hence
applying this count to Theorem 5.5, we get that d ≥ Ω

(
n

logn ·
n

logn

)
= Ω

(
n2

(logn)2

)
.

Now we apply this to our context. To get a lower bound using framework described above
it is enough to count the number of sub-functions of SId.

I Lemma 5.10. For any i ∈ [d], there are 2Ω(d2) different restrictions ρ of SId which fixes
all entries other than ith row of the d× d matrix in the left partition.

Proof. Fix any i ∈ [d]. Let S be a subspace of Fd2. Define ρS to be SId(A, B) where B is a
matrix whose rowspace is S. And A is the matrix whose all but ith row is 0’s and ith row
consists of variables (xi1 , . . . , xin). Thus for any v ∈ {0, 1}d, rowspace of A(x) is span {v}.

We claim that for any S, S′ ⊆S Fd2 where S 6= S′, (SId)ρS 6≡ (SId)ρ′
S
. By definition

(SId)ρS ≡ SId(A, B) and (SId)ρ′
S
≡ SId(A, B′) where B and B′ are matrices whose rowspaces
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are S and S′ respectively. Since S 6= S′ there is at least one vector v ∈ Fd2 such that it belongs
to only one of S, S′. Without loss of generality let that subspace be S. Then SId(A(v), B) = 1
as v ∈ S where as SId(A(v), B′) = 0 as v 6∈ S′. Hence the number of different restrictions is
at least number of different subspaces of Fd2 which is 2Ω(d2). Hence the proof. J

This completes the proof of Theorem 1.3 from the introduction. This implies that for SId, the
branching program size lower bound is Ω

(
d2

log d × d
)

= Ω
(

d3

log d

)
= Ω

(
n1.5

logn

)
where n = 2d2

is the number of input bits of SId.

6 Standard Variants of Projective Dimension

In this section, we study two stringent variants of projective dimension for which exponential
lower bounds and exact characterizations can be derived. Although these measure do not
correspond to restrictions on branching programs, they illuminate essential nature of the
general measure. We define the measures and show their characterizations in terms of
well-studied graph theoretic parameters.

I Definition 6.1 (Standard Projective Dimension). A Boolean function f : {0, 1}n×{0, 1}n →
{0, 1} with the corresponding bipartite graph G(U, V,E) is said to have standard projective
dimension (denoted by spd(f)) d over field F, if d is the smallest possible dimension for which
there exists a vector space K of dimension d over F with a map φ assigning subspaces of K
to U ∪ V such that

for all (u, v) ∈ U × V , φ(u) ∩ φ(v) 6= {0} if and only if (u, v) ∈ E.
u ∈ U ∪ V , φ(u) is spanned by a subset of standard basis vectors in K.

In addition to the above constraints, if the assignment satisfies the property that for all
(u, v) ∈ U × V , dim (φ(u) ∩ φ(v)) ≤ 1, we say that the standard projective dimension is with
intersection dimension 1, denoted by uspd(f).

For N ×N bipartite graph G with m edges, consider the assignment of standard basis
vectors to each of the edges and for any u ∈ U ∪ V , φ(u) is the span of the basis vectors
assigned to the edges incident on u. Moreover, the intersection dimension in this case
is 1. Hence for any G , spd(G) ≤ uspd(G) ≤ m. We show that bc(Gf ) = spd(Gf ) and
uspd(Gf ) = bp(Gf ). We refer the reader to the full version [7] for the details of the proof.

Even though pd(G) ≤ spd(G), there are graphs for which the gap is exponential. For
example, consider the bipartite realization G of EQn with N = 2n. We know pd(G) = θ(logN)
but spd(G) ≥ N since each of the vertices associated with the matched edges cannot share
any basis vector with vertices in other matched edges. Hence dimension must be at least N .
We show that standard projective dimension of bipartite G is equal to biclique cover number.

7 Discussion & Conclusion

In this paper we studied variants of projective dimension of graphs with improved connection
to branching programs. We showed lower bounds for these measures indicating the weakness
and of each of the variants.

An immediate question that arises from our work is whether Ω(d2) lower bound on
upd(Pd) is tight. In this direction, since we have established a gap between upd(Pd) and
pd(Pd), it is natural to study how pd and upd behave under composition of functions, in
order to amplify this gap.

The subspace counting based lower bounds for bitpdim that we proved are tight for
functions like EDn. However, observe that under standard complexity theoretic assumptions
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37:14 Lower Bounds for Projective Dimension of Graphs

the bitpdim assignment for Pd is not tight. Hence it might be possible to use the specific
linear algebraic properties of Pd to improve the bitpdim lower bound we obtained for Pd.
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Abstract
In this paper, we show that there is a family of polynomials {Pn}, where Pn is a polynomial in
n variables of degree at most d = O(log2 n), such that

Pn can be computed by linear sized homogeneous depth-5 circuits.
Pn can be computed by poly(n) sized non-homogeneous depth-3 circuits.
Any homogeneous depth-4 circuit computing Pn must have size at least nΩ(

√
d).

This shows that the parameters for the depth reduction results of [1, 11, 20] are tight for
extremely restricted classes of arithmetic circuits, for instance homogeneous depth-5 circuits and
non-homogeneous depth-3 circuits, and over an appropriate range of parameters, qualitatively
improve a result of Kumar and Saraf [14], which showed that the parameters of depth reductions
are optimal for algebraic branching programs.
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1 Introduction

An arithmetic circuit over a field F and variables x = {x1, x2, . . . , xn} is a directed acyclic
graph with nodes labelled by + and × operations over F and leaves (nodes of in-degree 0)
labelled by elements of F and x. The circuit computes an n variate polynomial in F[x] in
the natural way. Arithmetic circuits are natural and intuitive models of computation in the
algebraic setting as they allow us to represent multivariate polynomials succinctly. For an
introduction to the area of arithmetic circuit complexity, we refer the interested reader to
the excellent survey of Shpilka and Yehudayoff [19].

Bounded depth arithmetic circuits

Most of the recent research in the area of arithmetic circuit complexity is centered around
the question of proving strong lower bounds for structured bounded depth arithmetic circuits,
in particular homogeneous depth-4 arithmetic circuits [5, 9, 14]. The focus on such circuits
is due to a result of Agrawal and Vinay [1] and subsequent strengthening by Koiran [11]
and Tavenas [20], which show that strong enough lower bounds for such structured bounded
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38:2 Finer Separations Between Shallow Arithmetic Circuits

depth circuits suffice for general arithmetic circuit lower bounds. For an outline of most of
the recent results related to lower bounds for homogeneous depth-4 arithmetic circuits, we
refer the reader to a survey of Saptharishi [17].

These set of structural results, collectively referred to as depth reductions, show that any
homogeneous polynomial in n variables of degree d = poly(n) which can be computed by an
arithmetic circuit of size poly(n) can also be computed by a homogeneous depth-4 arithmetic
circuit of size nO(

√
d). A natural question here is to try and understand if the parameters

in the above result are asymptotically tight. This direction has previously been explored,
and Kumar and Saraf [14] showed a lower bound of nΩ(

√
d) for a polynomial that has a

poly(n)-sized arithmetic circuit. This implies that, in general, the size bound of nO(
√
d) can

not be improved to no(
√
d) for poly(n)-sized arithmetic circuits. However, as far as we know,

it was not known if such improved depth reductions are conceivable for slightly restricted
classes of arithmetic circuits, for instance, arithmetic formulas or constant depth arithmetic
circuits. In this paper, we study this problem and show that at least for the case when
d = O(log2 n), one cannot hope to prove such improved depth reduction results, for even
extremely restricted classes of arithmetic circuits such as linear size homogeneous depth-5
arithmetic circuits, or polynomial sized non-homogeneous depth-3 arithmetic circuits.

We now state our results, and elaborate on how they compare to the known results.

1.1 Our results
We prove the following theorems.

I Theorem 1.1. Let F be any field. There is a family of polynomials {Pn} over F, where Pn
is of degree d = O(log2 n) on n variables such that Pn can be computed by a homogeneous
depth-5 circuit of size O(n) whereas any homogeneous depth-4 circuit computing Pn requires
size nΩ(

√
d).

I Theorem 1.2. Let F be any field of characteristic zero. There is a family of polynomials
{Pn} over F, where Pn is of degree d = O(log2 n) on n variables such that Pn can be computed
by a (non-homogeneous) depth-3 circuit of size poly(n) whereas any homogeneous depth-4
circuit computing Pn requires size nΩ(

√
d).

1.2 Comparison to earlier results
An nΩ(

√
d) lower bound for homogeneous depth-4 circuits was proved for an explicit polynomial

of degree d in n variables in VNP by Kayal, Limaye, Saha and Srinivasan [9] and for the
iterated matrix product (IMM) by Kumar and Saraf [14]. Improvements on this can happen
on three fronts – (1) by improving the bound from nΩ(

√
d) to nω(

√
d), or (2) by making the

lower bound work for a class more general than homogeneous depth-4 circuits, or (3) by
proving the lower bound for a polynomial “simpler” than IMM. This work is of the last
category where the polynomial is computed by linear sized homogeneous depth-5 circuits or
polynomial sized depth-3 circuits.

We elaborate more on this now.

Depth reduction to depth-4 as a springboard for stronger lower bounds

Let C be a class of arithmetic circuits. If we had a depth reduction result that showed that all
homogeneous polynomials of degree d in n variables that can be computed by an arithmetic
circuit C ∈ C of size s(n) can also be computed by a homogeneous depth-4 arithmetic circuit
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of size so(
√
d), then it follows from the results in [9, 14] that there is an explicit polynomial

in VP (or VNP) that cannot be computed by polynomial size arithmetic circuits in C. In
this sense, the efficient reductions to homogeneous depth-4 circuits is a springboard to prove
lower bounds for many potentially stronger classes of circuits.

The lower bound for IMM in [14] rules out this strategy when C is the class of algebraic
branching programs, since it shows polynomial families (namely IMM) that have linear
size ABPs but require homogeneous depth-4 circuits of size nΩ(

√
d). However the strategy

could still, in principle, work for other interesting classes of arithmetic circuits such as
arithmetic formulas, constant depth arithmetic circuits or, possibly the simplest of them all,
the class of homogeneous depth-5 arithmetic circuits. Another simple class of circuits for
which this strategy could be tried is the class of non-homogeneous depth-3 circuits, where
superpolynomial lower bounds are not known when the size of the underlying field is large.
Theorem 1.1 and Theorem 1.2 show that the above mentioned classes of arithmetic circuits
cannot be reduced to homogeneous depth-4 arithmetic circuits of size no(

√
d), albeit for an

appropriate range of parameters. So, even though quantitatively we do not prove improved
lower bounds, qualitatively, we show near optimal separations between complexity classes
which are much closer to each other that was earlier known. Unfortunately, we are only able
to show such separations when the degree d = O(log2 n).

Non-homogeneous depth-3 circuits

Theorem 1.2 shows a separation between non-homogeneous depth-3 circuits and homogeneous
depth-4 circuits, in a low degree regime. Intuitively, to prove such a separation, we need a
candidate family of hard polynomials which have polynomial sized non-homogeneous depth-3
circuits and are believed to require homogeneous depth-4 circuits of size nΩ(

√
d). At first glance,

it seems unclear what this polynomial should be. The elementary symmetric polynomial of
degree d is not a good candidate1 as it can indeed be computed by a homogeneous depth four
circuit of size 2O(

√
d) [7]. However, a generic affine projection of the elementary symmetric

polynomial, as studied by Shpilka [18], is a natural candidate and is almost complete for this
model.

In this paper, however, we do not directly work with this polynomial but it can be
easily inferred that the lower bound applies to a generic affine projection of the elementary
symmetric polynomial as well.

Depth hierarchy theorems for arithmetic circuits

Depth hierarchy theorems, which show an exponential, (and near optimal) separation between
depth h and depth h+ 1 circuits [6, 16] constitute some of the most celebrated results in
the theory of lower bounds for bounded depth boolean circuits. It is natural to ask if such
separations can be shown for arithmetic circuits. Unfortunately, superpolynomial lower
bounds are not known in general when the depth of the arithmetic circuits is more than
four 2. So, at this point, we can only hope to show such separations between homogeneous
depth-5 and homogeneous depth-4 arithmetic circuits. Due to the depth reduction results,
the best such separation one can hope to prove for an n variate degree d polynomial would
be nΩ(

√
d). We prove a matching lower bound, as long as the degree d is at most O(log2 n).

In the arithmetic circuit literature, the question of depth hierarchy theorems has previously
been studied by Raz and Yehudayoff [15], where they show superpolynomial separation

1 Indeed, for low enough degrees, they are known to have fairly high shifted partials complexity [3].
2 For homogeneous depth-5 circuits, such lower bounds are known only over small finite fields.
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separation between multilinear circuits of product depth d and product depth d + 1, for
d = O(1). In the non-multilinear world, to the best of our knowledge this is the first such
attempt. Even in the context of constant depth multilinear circuits, the separation in [15] is
between depth-4 and depth-6 circuits, and not between depth-4 and depth-5 circuits.

The complexity measure

The proof of Kayal et al. [9] and Kumar and Saraf [14] rely on the notion of projected shifted
partials of a polynomial as a measure of its complexity. This measure can be thought of as a
variant of shifted partials which tries to take advantage of the fact that the hard polynomial
is multilinear. The measure in this paper takes advantage of set-multilinearity instead of
just multilinearity, and such a variant was essentially used in [10], where they showed an
nO(logn) lower bound for iterated matrix multiplication and the determinant. Our proofs
rely on a slightly different interpretation of the measure, which makes the proofs much
more transparent. Intuitively, this measure tries to take advantage of the fact that the hard
polynomial (Nisan-Wigderson design polynomials or the IMM) is not just multilinear, but
in fact set-multilinear. In the regime where d� n, set multilinearity is a much more rigid
restriction on a polynomial when compared to multilinearity, and in some sense our gain
comes from this observation. Our hard polynomial for Theorem 1.1 is also a simple generic
balanced depth-5 circuit.

One might wonder if the results in this paper could have been shown by using the dimension
of the projected shifted partial derivatives as the complexity measure. In particular, can we
show that the projected shifted partials complexity of a generic depth-5 circuit is sufficiently
close to the largest possible value? This would suffice for Theorem 1.1. Although we do not
have enough evidence to conjecture one way or the other, intuitively this problem seems
tricky since so far the known analyses of the projected shifted partials of a polynomial seems
to rely on pairwise distance between the monomials of the hard polynomial, either in the
worst case (Nisan-Wigderson polynomial [9, 14]), or in the average case (IMM [14]). Clearly,
the monomials in a generic depth-5 circuit do not have good distance in the worst case,
and to the best of our understanding, the guarantees about distance in the average case
seem a bit weaker than what would suffice to simulate the proof in [14] for a generic depth-5
circuit. However, this problem of proving lower bounds on the dimension of projected shifted
partials of homogeneous depth-5 circuits is of independent interest, since even if the answer
is negative and homogeneous depth-5 circuits do not have large enough projected shifted
partials complexity, then we could use this as a measure to prove lower bounds for such
circuits. So far, such lower bounds are only known over small finite fields [12].

2 Preliminaries

2.1 Notations
Throughout the paper, we use bold-face letters such as x to denote a sets of variables.
Most of the times, the size of this set would be clear from context. We use xe to refer to
the monomial xe11 · · ·xenn .
We use the short-hand ∂xe(P ) to denote

∂e1

∂xe11

(
∂e2

∂xe22
(· · · (P ) · · ·)

)
.

For a set of polynomials P use ∂=kP to denote the set of all k-th order partial derivatives
of polynomials in P, and ∂≤kP similarly.
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Also, x=`P refer to the set of polynomials of the form xe · P where Deg(xe) = ` and
P ∈ P. Similarly x≤`P.
For an integer m > 0, we use [m] to denote the set {1, . . . ,m}.
For a set of vectors (or polynomials) V , their span over F will be denoted by Span(V )
and their dimension by Dim(V ).
For a subset y of variables and a polynomial P ∈ F[x,y], by Multy[P ], we denote the
polynomial P ′ ∈ F[x,y] which is obtained by projecting P only to its monomials which
are multilinear in y.
Similarly, for a set S of polynomials, Multy[S] denotes the set of polynomials obtained by
projecting every polynomial in S to the monomials which are multilinear in y.

2.2 The hard polynomial
The hard function for the lower bounds will be a generic balanced ΠΣΠΣ circuit with
appropriate parameters. We define the polynomial Pm,d as

Pm,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1

m∑
j′=1

xiji′j′ .

The polynomial Pm,d depends on m2d variables. It would be useful to have Liji′ =
∑
j′ xiji′j′

so that Pm,d =
∏
i

∑
j

∏
i′ Liji′ .

Observe that the polynomial Pm,d is a set multilinear polynomial for the partition of
variables into {xi∗i′∗ : i, i′ ∈ [

√
d]}, where xi∗i′∗ = {xiji′j′ : j, j′ ∈ [m]}. There are d such

sets and each is of size m2.
The range of parameters we will be working with in this paper when d = δ log2 n for

a small enough constant δ. For such small d, it follows from observations in [4] that the
polynomial Pm,d is computable by a polynomial sized non-homogeneous depth-3 circuit.
More formally, the proof relies on the following lemma which is implicit in [4].

I Lemma 2.1 ([4]). Let C be a homogeneous ΣΠ[a]ΣΠ[b]Σ circuit of size s over C, the field
of complex numbers, which computes an n-variate polynomial P . Then there is an equivalent
ΣΠΣ circuit C ′ of size s′ = poly(2a, 2b, n, s) which computes P .

Using this observation, we have the following lemma which shows that there is a small
depth-3 circuit for Pm,d.

I Lemma 2.2. Let P be an n variate polynomial of degree d = O(log2 n) which is computed
by a homogeneous ΣΠ[

√
d]ΣΠ[

√
d]Σ circuit C of size s. Then, P is computable by a ΣΠΣ

circuit of size poly(n). J

Thus, to prove Theorem 1.1 and Theorem 1.2, it suffices to show an nΩ(
√
d) lower bound

on the size of homogeneous ΣΠΣΠ arithmetic circuits computing Pm,d.

2.3 Some useful approximations
I Lemma 2.3 ([5]). Let n, a, b satisfy a+ b = o(n). Then,

(n+ a)!
(n− b)! = na+b · exp(O((a+ b)2/n)).

In particular, if a+ b = o(
√
n), then the right hand side is (1 + o(1)) · na+b.

I Lemma 2.4. For all x, y > 0,

exy ≥ (1 + x)y ≥ e
xy
x+1 .

FSTTCS 2016
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3 Proof of Theorem 1.1

The first step in previous lower bounds for homogeneous depth-4 circuits is using a random
restriction to set each variable independently to zero with a certain probability. We shall
first analyze the random restriction process on a homogeneous depth-4 circuit and also on
the polynomial Pm,d.

3.1 The effect of a random restriction
Our restrictions Rp will be defined by setting every variable to zero with a probability 1− p
and keeping it alive with a probability p.

I Lemma 3.1. Let ε > 0 be any fixed constant and let p = 1
nε . Let C be a ΣΠΣΠ circuit of

size n ε
2
2
√
d. Then with a probability at least 1− o(1) over π ← Rp, every product gate at the

lowest level of C (closest to the leaves) that depends on more than ε
√
d distinct variables is

set to zero in π(C).

Proof. Consider any product gate of support at least ε
√
d present at the bottom level of C.

The probability that this gate is not set to zero in π(C) is at most 1
nε2
√
d
. So, by a union

bound over all the product gates in C, the probability that some gate of support at least
ε
√
d survives in π(C) is at most n ε

2
2
√
d · 1

nε2
√
d
which is o(1). J

We now analyse the effect of random restrictions on our candidate hard function.

I Lemma 3.2. Let ε be a small enough constant and let p = 1
nε , and let Pm,d be the

polynomial as defined in subsection 2.2. Then, with probability at least 1− o(1) over π ← Rp,
the polynomial π(Pm,d) is of the form

π(Pm,d) =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
L′iji′

where each L′iji′ is a non-zero linear form.

Proof. From our choice of parameters, observe that n = m2d, and since d = O(log2 n),
m > n1/4. Now, for any fixed linear form Liji′ , the probability that π(Liji′) equals zero is
equal to (1 − p)m = (1 − 1/nε)m which is less than (1 − 1/nε)n2ε = 1

ω(n) . Therefore, the
probability that there exists a linear form Liji′ such that π(Liji′) ≡ 0 is o(1), and the lemma
follows. J

At this point, we will deterministically set all but one alive variable in each L′iji′ in the
above lemma to zero, and obtain the following corollary upto a relabelling of variables.

I Corollary 3.3. Let ε be a fixed constant and p = 1
nε , and let Pm,d be the polynomial as

defined in subsection 2.2. Then, with probability at least 1− o(1) over π ← Rp, there is a 0, 1
projection of π(Pm,d) which is of the form

P ′m,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
xiji′ ,

where each xiji′ is a distinct variable.
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Observe that Theorem 3.1 continues to hold under this additional deterministic restriction,
as the bottom support of a depth-4 circuit does not increase under 0, 1 projections. Clearly
P ′m,d is computable by a homogeneous depth-4 circuit of bottom fan-in

√
d.

In order to complete the proof, it suffices to show that any homogeneous depth-4 circuit
of bottom support bounded by

√
d/10 that computes P ′m,d must have size nΩ(

√
d). In fact,

Kumar and Saraf [13] have shown that any homogeneous depth-4 circuit of bottom fan-in
at most

√
d/10 computing P ′m,d must require size nΩ(

√
d) using the measure of dimension

of shifted partial derivatives. Thus we need to find a way to lift this lower bound to the
class of homogeneous depth-4 circuit of bottom support bounded by

√
d/10. To do this, we

modify the measure of dimension of shifted partials in order to address small bottom support
instead of small bottom fan-in.

3.2 The complexity measure
The measure is again the dimension of an appropriate linear space of polynomials.

I Definition 3.4 (The complexity measure). Let x = x1t· · ·txd be a partition of the variables
into d sets. For any polynomial P ∈ F[x], define P ′ ∈ F[x1,x2, . . . ,xd, y1, y2, . . . , yd] be the
the polynomial derived from P by replacing every occurence of the variable xij ∈ xi by
yi · xij . Then, the complexity measure

Γk,`(P ) := DimF
{(

x=` ·Multy[∂=k(P ′)]
)}
.

We remark that all the derivatives and shifts in the definition of Γk,` are taken with
respect to the variables in x. However, the multilinearization is done with respect to the y
variables. As mentioned earlier, this measure was used in [10] where it was called dimension
of shifted projected partial derivatives.

As is clear from the definition, the measure is subadditive, i.e for every pair of polynomials
P and Q and for every pair of field constants α and β, the inequality Γk,`(αP + βQ) ≤
Γk,`(P ) + Γk,`(Q) holds for every choice of k and `.

Throughout this paper, we will be using very simple connections between the measure
Γk,` and the well known notion of shifted partial derivatives of polynomials (first defined
in [8]), defined as

I Definition 3.5 (Shifted partial derivatives). Define P ∈ F[x1,x2, . . . ,xd] be a polynomial.
Then, the dimension of shifted partial derivatives is defined as

DimF
{(

x=` · ∂=k(P )
)}
.

Observe that if a polynomial P is set-multilinear with respect to the partition of the
variables in x into x1,x2, . . . ,xd, then multilinearization with respect to the y variables does
not kill any of the monomials in the partial derivatives. In particular, for a set multilinear
polynomial P , and for every choice of k, `, the quantitity Γk,`(P ) is exactly equal to the
dimension of shifted partial derivatives of the polynomial P where we take derivatives of
order k and shifts are of degree `. This observation will be useful for us in the proof and is
summarised below.

I Observation 3.6. Let P be a set multilinear polynomial of degree d. Then for every choice
of parameters k and `,

Γk,`(P ) = Dim
(
x=` · ∂=k(P )

)
.

FSTTCS 2016
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Since Pm,d is set multilinear with respect to the partition

x =
⊔

i,i′≤
√
d

xi∗i′∗

we use this partition for in the definition of Γk,`. To complete the proof, we use this measure
to show that P ′m,d cannot be computed by small homogeneous depth-4 circuit of bottom
support bounded by

√
d/10.

3.3 Upper bound for a small bottom-support depth-4 circuit
I Lemma 3.7. Let C be a homogeneous ΣΠΣΠ circuit with bottom support at most s which
computes a degree d polynomial in F[x1,x2, . . . ,xd]. Then, for every k and `,

Γk,`(C) ≤ Size(C) · 22d ·
(
d

k

)
·
(
n+ `+ ks

n

)
.

Proof. Since the measure Γk,` is subadditive, we will prove an upper bound on Γk,` for one
product term in C. So, let T = Q1 ·Q2 · · ·Qt, where each Qi has support at most s. Without
loss of generality, we can assume that t ≤ d since the circuit C is homogeneous to start with.

Recall that in the first step, we replace every variable xij by yi · xij . This transforms
T = Q1 · · ·Qt into T = Q′1 · Q′2 · · ·Q′t. Every monomial xα in the x variables will be
transformed to a monomial yα′ · xα by this transformation. The key points are that yα′ is
only over d variables, and if xα is non-multilinear then so is yα′ .

Let us now consider the derivative of T with respect to a monomial xα of order k.

∂xα(T ′) ∈ Span
{
∂xα(Q′A) ·Q′

A
: A ⊆ [t], |A| ≤ k

}
,

where Q′A is a shorthand for
∏
i∈AQ

′
i.

Multy [∂xα(T ′)] ∈ Span
{

Multy

[
∂xα(Q′A) ·Q′

A

]
: A ⊆ [t], |A| ≤ k

}
.

Since we are interested in the multilinear component, it suffices to only focus on multilinear
(in y) monomials in both ∂xα(Q′A) and Q′

A
. Since Q′A is a product of at most k polynomials,

each of support-size bounded by s, the only monomials xβ that can contribute a multilinear
y-part can have degree at most ks. Therefore,

Multy [∂xα(Q′A)] ∈ Span
{

yβ · xγ : Deg(xγ) ≤ ks , yβ multilinear
}

MultyQ
′
A

=
∑
β′

yβ
′
·Q′

A,β′

=⇒ Multy

[
∂xα(Q′A) ·Q′

A

]
∈ Span

{
yβyβ

′
· xγ ·Q′

A,β′
: Deg(xγ) ≤ ks , yβyβ

′
multilinear

}
.

Taking the union over all shifts and all derivatives, we get

x=` ·Multy[∂=k(T ′)] ⊆ Span
{

yβyβ
′
· xγ ·Q′

A,β′
: A ⊆ [t] , |A| ≤ k ,

degree (xγ) ≤ `+ ks , yβyβ
′
is multilinear

}
.

For any k, `, it follows that

Γk,`(T ′) ≤ 22d ·
(
d

k

)
·
(
n+ `+ ks

n

)
.

Using subadditivity, we obtain the lemma. J
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3.4 Lower bound for the measure on P ′
m,d

The final technical ingredient of our proof will be a lower bound on the dimension of shifted
partials of the polynomial P ′m,d. The bound follows from the calculations in [13], but we
provide the calculation here for completeness.

I Lemma 3.8. Recall the polynomial

P ′m,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
xiji′

where each xiji′ is a distinct variable. For k =
√
d and any `, we have

Dim
(
x=` · ∂=k(P )

)
≥ 1

4 ·
(
n+ `

`

) 1
2 ·(d−

√
d)
·
(
n+ `− 1

n

)
.

Proof. To show that the shifted partials complexity of P is large, we will follow the outline
in [13]. We consider the following subset S of monomials of degree equal to k =

√
d:

S = {x1a11 · x2a21 · · ·xkak1 : a1, a2, . . . , ak ∈ [m]}.

Firstly, note that for any monomial xα = x1a11 · · ·xkak1 ∈ S, the derivative ∂xα(P ) is just
the monomial

(x1a12 · · ·x1a1k) · · · (xkak2 · · ·xkakk) .

Thus, it suffices to get a lower bound of distinct monomials obtained as shifts of such
derivatives. To assist this calculation, we pick a subset S ′ of the set S such that the distance
between any two monomials in S ′ is ‘large’, and the size of S ′ is also ‘large’. This can be done
by picking the monomials which correspond to a good code of length k over the alphabet
Σ = {1, 2, . . . ,m}. To this end, we pick a Reed-Somolon code of relative distance 1/2 and
rate 1/2. This can be done as long as m is a prime power and

√
d ≤ m. Let S ′ be a such set

of size mk/2 where any pair of monomials in S ′ differ on at least
√
d/2 locations.

When we take derivatives of P with respect to monomials in the set S ′, two monomials
obtained from distinct elements of S ′ have distance at least ∆ =

√
d(
√
d− 1)/2 = (d−

√
d)/2.

So, each of the shifted partial derivatives obtained by shifting the derivatives of P by
monomials of degree ` is just a monomial, and a lower bound on the number of distinct
monomials obtained in this way gives us a lower bound on Dim

(
x=` · ∂=k(P )

)
. In fact, we

shall choose an even smaller set S ′′ to ensure the following bounds work out.
By the inclusion-exclusion approach of Chillara and Mukhopadhyay [2], for any set

S ′′ ⊂ S ′ we get the following:

Dim
(
x=` · ∂=k(P )

)
≥ |S ′′| ·

(
n+ `− 1

n

)
− |S

′′|2

2 ·
(
n+ `−∆− 1

n

)
.

If we pick our parameters, such that the first term above is at least twice the second term,
then we would be done. For this, we need

|S ′′| ≤
(
n+`−1
n

)(
n+`−∆−1

n

) .

FSTTCS 2016
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For our choice of parameters, `, n� d2, the ratio (n+`−1
n )

(n+`−∆−1
n ) can be approximated by

(
n+`
`

)∆
within a factor 1± o(1) by Theorem 2.3. So, it suffices if our choice of parameters satisfies
(omitting floors)

|S ′′| = 1
2 ·
(
n+ `

`

)∆
.

Plugging in ∆ and the size of S ′′ in the inclusion-exclusion bound, we get

Dim
(
x=` · ∂=k(P )

)
≥ 1

4 ·
(
n+ `

`

)(d−
√
d)/2
·
(
n+ `− 1

n

)
. J

3.5 Putting it together
I Theorem 3.9 (Theorem 1.1 restated). Let C be a homogeneous depth-4 arithmetic circuit
which computes the polynomial Pm,d for d = 0.0001 log2 n. Then, the size of C is at least
exp(Ω(

√
d logn)).

Proof. Assume on the contrary that the polynomial Pm,d can be computed by C, a homo-
geneous depth-4 circuit of size at most exp(0.001

√
d logn). If we apply a random restriction

that sets every variable to zero independently with probability 1/n0.1, by Theorem 3.1 (with
ε = 0.1), the circuit reduces to C ′, a homogeneous depth-4 circuit with bottom support
bounded by

√
d/10 with probability 1− o(1).

On the other hand by Theorem 3.3, the polynomial Pm,d under such a random restriction
still retains P ′m,d as a projection with high probability. Fix a restriction that satisfies both
these properties and we now have a homogeneous depth-4 circuit C ′′ with bottom support
bounded by

√
d/10 and size at most exp(0.001

√
d logn) that computes P ′m,d.

Let k =
√
d and ` = n

√
d

logn . By Theorem 3.7, we have

Γk,`(C ′′) ≤ Size(C ′′) · 22d ·
(
n+ `+ (0.1)d

n

)
.

On the other hand, by Theorem 3.8 and Theorem 3.6,

Γk,`(P ′m,d) ≥ 1
4 ·
(
n+ `

`

)(d−
√
d)/2

.

(
n+ `− 1

n

)
.

Together, this implies that

Size(C ′′) ≥ 1
4 ·
(
n+`−1
n

)
·
(
n+`
`

)(d−√d)/2

22d ·
(
n+`+(0.1)d

n

) .

For our regime of parameters,
√
d = 0.01 logn and hence 22d = n0.02

√
d = exp(0.02

√
d logn).

Simplifying the ratio of binomial coefficients using (Theorem 2.3), and using d−
√
d

2 > d
3 , we

get

Size(C ′′) ≥ 1
exp(0.02

√
d logn)

·
(

1 + n

`

)d/3
≥ 1

exp(0.02
√
d logn)

· exp
(

(nd/3`)
(n/`) + 1

)
(By Theorem 2.4)

> exp
(

0.1
√
d logn

)
,

which contradicts the assumption on the size of C. Hence Size(C) ≥ exp(0.001
√
d logn). J
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4 Open questions

We end with some open questions.
One question of great interest to us would be to show the lower bounds in this paper
when the degree is larger. The other proofs of lower bounds for homogeneous depth-4
circuits [9, 14] tolerate degrees as high as n1/2. We conjecture that the results in this
paper are true even when the degree d and the number of variables n are polynomially
related.
Is the dimension of projected shifted partials of a generic homogeneous depth-5 circuit
close to the largest possible value? This could offer one approach to resolving the first
open problem.
If the answer to the second problem above is negative, then we might be able to use
projected shifted partials as a complexity measure to prove new lower bounds for homo-
geneous depth-5 arithmetic circuits. Hence, even proving non-trivial upper bounds on
the projected shifted partials complexity of homogeneous depth-5 circuits would be very
interesting.

Acknowledgements. Part of this work was done while the authors were visiting Microsoft
Research, Bangalore in Summer 2014. We are grateful to Neeraj Kayal for many insightful
discussions.
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Abstract
We study limitations of polynomials computed by depth two circuits built over read-once formulas
(ROFs). In particular,
1. We prove an exponential lower bound for the sum of ROFs computing the 2n-variate polyno-

mial in VP defined by Raz and Yehudayoff [CC,2009].
2. We obtain an exponential lower bound on the size of arithmetic circuits computing sum of

products of restricted ROFs of unbounded depth computing the permanent of an n by n
matrix. The restriction is on the number of variables with + gates as a parent in a proper
sub formula of the ROF to be bounded by sqrt(n). Additionally, we restrict the product fan
in to be bounded by a sub linear function. This proves an exponential lower bound for a
subclass of possibly non-multilinear formulas of unbounded depth computing the permanent
polynomial.

3. We also show an exponential lower bound for the above model against a polynomial in VP.
4. Finally we observe that the techniques developed yield an exponential lower bound on the

size of sums of products of syntactically multilinear arithmetic circuits computing a product
of variable disjoint linear forms where the bottom sum gate and product gates at the second
level have fan in bounded by a sub linear function.

Our proof techniques are built on the measure developed by Kumar et. al.[ICALP 2013] and
are based on a non-trivial analysis of ROFs under random partitions. Further, our results exhibit
strengths and provide more insight into the lower bound techniques introduced by Raz [STOC
2004].
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Keywords and phrases Arithmetic Circuits, Permanent, Computational Complexity, Algebraic
Complexity Theory
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1 Introduction

More than three decades ago, Valiant [26] developed the theory of Algebraic Complexity
classes based on arithmetic circuits as the model of algebraic computation. Valiant considered
the permanent polynomial permn defined over an n×n matrix X = (xi,j)1≤i,j≤n of variables:

permn(X) =
∑
π∈Sn

n∏
i=1

xi,π(i)

where Sn is the set of all permutations on [n].
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Valiant [26] showed that the polynomial family (permn)n≥0 is complete for the complexity
class VNP. Further, Valiant [26] conjectured that (permn)n≥0 does not have polynomial
size arithmetic circuits (i.e. VP 6= VNP). Since then, obtaining super-polynomial size lower
bounds for arithmetic circuits computing permn has been a pivotal problem in Algebraic
Complexity Theory. However, for general classes of arithmetic circuits, the best known
size bound is an Ω(n log d) lower bound due to Baur and Strassen for an n-variate degree
d polynomial [2]. In fact, this is the only super linear lower bound we know for general
arithmetic circuits. While the challenge of proving lower bounds for general classes of circuits
still seem to be afar, naturally the focus has been on proving lower bounds for restricted
classes of circuits computing permn.

Recent research has focused on proving lower bounds for low depth circuits. Nisan and
Wigderson [17] used partial derivatives to obtain exponential lower bounds against special
cases of Depth-3 ΣΠΣ circuits and set multilinear formulas. Later, Grigoriev and Karpinski [6]
proved an exponential size lower bound for depth three circuits over finite fields. In 2001,
Shpilka and Wigderson [23] proved a quadratic lower bound for ΣΠΣ circuits over infinite
fields computing detn(or permn) which has been improved recently to an almost cubic lower
bound in [11]. Explaining the lack of progress in proving lower bounds even for ΣΠΣ circuits,
Agrawal and Vinay [1] showed that proving exponential lower bounds against depth four
arithmetic circuits is enough to resolve Valiant’s conjecture. This was improved subsequently
in [24, 12]. From then on, depth-4 circuits have been in the limelight. Recently, Gupta et.
al. [7] obtained 2Ω(

√
n) top fan-in lower bound for ΣΠ[O(

√
n)]ΣΠ[

√
n] circuits computing detn

or permn. The techniques introduced in [7, 8] have been generalized and applied to prove
lower bounds against several classes of constant depth arithmetic circuits, regular arithmetic
formulas and homogeneous arithmetic formulas. (See e.g., [9, 14, 10].)

Apart from constant depth circuits, there has been significant interest in proving lower
bounds for unbounded depth circuits with additional structural restrictions such as multilin-
earity, restricted read etc. A seminal work of Raz [19] showed that multilinear formulas (i.e.,
every gate in the formula computes a multilinear polynomial) computing detn or permn must
have size nΩ(logn). In [19] Raz used rank of the partial derivative matrix as a complexity
measure. Using the same complexity measure as [19], Raz and Yehudayoff [21] proved
exponential lower bounds against constant depth multilinear formulas. Subsequently, several
generalizations of Raz’s measure were introduced. Kumar et al. [13] extended the techniques
developed in [19] to prove lower bounds against non-multilinear circuits and formulas of
constant depth using the rank of the polynomial coefficient matrix as a measure. (See
Definition 8). In [5], Forbes and Shpilka used evaluation dimension of polynomials as a
complexity measure to prove exponential lower bounds against Read-Once oblivious algebraic
branching programs. Further, in [10] Kayal and Saha used the evaluation dimension to
obtain exponential lower bound against depth three multi-k-ic circuits. Over large fields,
the evaluation dimension with respect to a partition of the set of variables in a polynomial
and rank of the partial derivative matrix with respect to that partition are the same (see
Chapter 4 in [4]). However, the evaluation perspective sometimes comes handy in proving
lower bounds against non-multilinear circuits.

Motivation: While one direction of research proceeds in proving lower bounds for shallow
arithmetic circuits (motivated by the depth reduction results in [1, 24]), the other direction
has been on proving lower bounds for unbounded depth circuits with additional structural
restrictions.

Despite a large number of lower bound results in the directions mentioned above, the
techniques for proving lower bounds presently available to us are very limited, owing to
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difficulty in coming up with complexity measures that are sub-additive and sub-multiplicative.
In this context, it is important to understand the strength and limitations of existing
complexity measures for arithmetic circuits to see their applicability to general classes of
arithmetic formulae/circuits. We explore classes of arithmetic formulas where the techniques
developed in [19, 13] can be extended and applied. In particular, we consider models that
serve as a bridge between shallow arithmetic formulas (e.g., depth two and three formulas)
and restricted class of unbounded depth formulas (e.g. multilinear formulas).

Models and Results: Focus of the paper will be on shallow formulas built over restricted
formulas of unbounded depth, i.e., a hybrid between bounded depth formulas and restricted
formulas of possibly unbounded depth. To begin with we consider the simplest possible
restricted formulas of unbounded depth:

I Definition 1 (Read-Once Formula). A formula is said to be a read-once formula (ROF) if
every variable labels at most one leaf in the formula. A polynomial computed by a read-once
formula is called a read-once polynomial (ROP).

Observe that not all multilinear polynomials are read once. For instance, using the character-
ization of ROPs in [27] we can show that detn and permn are not read-once polynomial. Given
that ROFs cannot compute all multilinear polynomials, it is natural to look for generalizations
of ROFs that can compute all multilinear polynomials. As a first step, we consider the class
Σ · ROF: a polynomial g ∈ F[x1, . . . , xn] is in Σ · ROF if there exists ROFs f1, f2, . . . , fs
such that g =

∑s
i=1 fi. Observe that Σ · ROF is a subclass of multilinear unbounded depth

formulas. Moreover, since each multilinear monomial is an ROP, any multilinear polynomial
in F[x1, . . . , xn] is in Σ · ROF, thus making the model universal. It can be seen that the
elementary symmetric polynomial in n variables of degree d denoted by Symn,d can be
computed by linear size Σ ·ROF [25]. While the model Σ ·ROF is powerful enough to compute
elementary symmetric polynomials, we study its limitations. We show:

I Theorem 2. There is an explicit O(n) variate polynomial g ∈ VP such that for any ROFs
f1, . . . , fs, if

∑s
i=1 fi = g, then s = exp (Ω(n/ logn)).

Shpilka and Volkovich [22] obtained a deterministic quasi polynomial time identity testing
algorithm for the sum of a constant number of ROPs. An essential ingredient in their
result was a linear lower bound for a special class of ROPs computing x1 · · ·xn. We note
that Theorem 2 is an exponential lower bound against the same model as in [22] against a
polynomial in VP defined by Raz-Yehudayoff [20].

I Remark. It should be noted that the result in Raz [19] immediately implies a lower bound
of nΩ(logn) for the sum of ROFs computing detn or permn. We exhibit a polynomial in VP
that requires a sum of exponential many ROFs to compute it.

Having looked at a subclass of multilinear unbounded depth formulas it is natural to look
for non-multilinear unbounded depth formulas. We now introduce our main computational
model: ΣΠ formulas built over ROFs (ΣΠ · ROF for short).

I Definition 3 (Sum of Products of Read-Once Formula). A polynomial g ∈ F[x1, . . . , xn] is
in ΣΠ · ROF if there exists ROFs Qij , i ∈ [s], j ∈ [t] such that g =

∑s
i=1
∏t
j=1Qij .

Since linear forms are computable by ROFs, ΣΠ · ROF is a natural generalization of ΣΠΣ
formulas. As every variable is trivially computed by ROF, any polynomial in F[x1, . . . , xn]
can be computed by ΣΠ · ROF. Also, ΣΠ · ROF is a subclass of non-multilinear unbounded

FSTTCS 2016



39:4 Sum of Products of Read-Once Formulas

depth formulas and it contains possibly non-homogeneous and non-multilinear polynomials
built using the simplest possible multilinear formulas viz. ROFs. We observe that there is a
simple ROF which computes a product of variable disjoint linear forms such that rank of
the partial derivative matrix under a random partition is close to the maximum possible
value with high probability (see Lemma 34). This necessitates further restrictions on ROFs
that could lead to exponential lower bound against ΣΠ · ROF using the rank of the partial
derivative matrix as the measure of complexity.

Let F be an ROF and for a gate v in F , let sum-fan-in(v) be the number of variables in
the sub-formula rooted at v whose parents are labelled as +. Then s(F ) is the maximum
value of sum-fan-in(v), where the maximum is taken over all + gates v in F of product height
at least 1. For an ROP f , define s(f) as the smallest s(F ) among all ROFs F computing f .
Observe that the construction in [25] shows that Symn,d ∈

∑
i

∏
j Qij where each Qij is an

ROF and s(Qij) = 1. Our main result is the following :

I Theorem 4. Let C be the class of N-variate ROFs F with s(F ) ≤ N1/4. For N = n2, if
permn =

∑s
i=1
∏[N1/30] C then s = exp(Ω(N ε)) for some ε > 0.

As far as we know, in the commutative setting, this is the first exponential lower bound
for a sub-class of non-multilinear formulas of unbounded depth. In the non-commutative
setting, Nisan [16] showed that detn and permn require 2Ω(n) size non-commutative arithmetic
formula. It can be noted that our result above does not depend on the depth of the ROFs.
Having proved an exponential lower bound against permanent which is in the class VNP, it
is natural to ask if there are polynomials in VP that are hard to be computed by the model.
We show the following :

I Theorem 5. Let C be the class of N-variate ROFs F with s(F ) ≤ N1/4. Let N = n2.
Then there is an explicit family of polynomials plin such that if plin =

∑s
i=1
∏[N1/30] C then

s = exp(Ω(N ε)), for some ε > 0.

Since multilinear ΣΠΣ circuits can be viewed as sum of depth two ROPs, we have the
following corollary of Theorem 5,

I Corollary 6. Let C be the class of N-variate polynomials computed by multilinear depth
three

∑[r]∏∑[N1/4] formulas. Then there is an explicit family of polynomials plin such that
if plin =

∑s
i=1
∏[N1/30] C then s · r = exp(Ω(N ε)), for some ε > 0.

Related Results: In [15], Mahajan and Tawari obtain a tight linear lower bound for number
of ROPs required to sum-represent elementary symmetric polynomials. That is, they show
that the elementary symmetric polynomial Symn−1

n can be written as a sum of dn/2e ROPs
but cannot be written as a sum of k ROPs for any k < dn/2e. Though the model in [15] is
the same as the one in this paper, our lower bound shows that there is an explicit polynomial
g that requires exponentially many ROPs to sum represent g. Kayal [8] showed that at least
2n/d many polynomials of degree d are required to represent the polynomial x1 . . . xn as sum
of powers. Our model is significantly different from the one in [8] since our model includes
high degree monomials, though the powers are restricted to be sub-linear, whereas Kayal’s
argument works against arbitrary powers.

Our Techniques: Our techniques are broadly based on the rank of polynomial coefficient
matrix introduced by Kumar et. al. [13] as an extension of the partial derivative matrix
introduced in [19]. It can be noted that the lower bounds obtained in [19] are super polynomial
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and not exponential. Though Raz-Yehudayoff [21] proved exponential lower bounds, their
argument works only against bounded depth multilinear circuits. Further, the arguments
in [19, 21] do not work for the case of non-multilinear circuits, and fail even in the case
of products of two multilinear formulas. This is because rank of the partial derivative
matrix, a complexity measure used in [19, 21] (see Section 2 for a definition) is defined only
for multilinear polynomials. Even though this issue can be overcome by a generalization
introduced by Kumar et. al. [13], the limitation lies in the fact that the upper bound of
2n−nε for an n2 or 2n variate polynomial, obtained in [19] or [21] on the measure for the
underlying arithmetic formula model is insufficient to handle products of two ROPs.

Our approach to prove Theorems 4 and 5 lie in obtaining exponentially stronger upper
bounds (see Lemma 33) on the rank of the partial derivative matrix of an ROP F on N

variables where s(F ) ≤ N1/4. Our proof is a technically involved analysis of the structure of
ROPs under random partitions of the variables. Even though the restriction on s(F ) might
look un-natural, in Lemma 34, we show that a simple product of variable disjoint linear forms
in N -variables, with s(F ) ≥ N2/3 achieves exponential rank with probability 1− 2−Ω(N1/3).
Thus our results highlight the strength and limitations of the techniques developed in [21, 13]
in the case of non-multilinear formulas.

The rest of the paper is organized as follows. Section 2 provides essential definitions used
in the paper. Section 3 proves Theorem 2. Sections 4 proves the remaining results. Proofs
omitted due to space constraints can be found in the full version of the paper [18].

2 Preliminaries

In this section we recall some basic definitions and introduce notations used in this article.

I Definition 7 (Arithmetic Circuits). Let F be a field and X = {x1, . . . , xN} be a set of
variables. An arithmetic circuit C over F is a directed acyclic graph with vertices of in-degree
0 or 2 and exactly one vertex of out-degree 0 called the output gate. The vertices of in-degree
0 are called input gates and are labeled by elements from X ∪ F. The vertices of in-degree 2
are labeled by either + or ×. Thus every gate of the circuit naturally computes a polynomial.
The polynomial f computed by C is the polynomial computed by the output gate of the
circuit. The size of an arithmetic circuit is the number of gates in C. The depth of C is the
length of the longest path from an input gate to the output gate in C. An arithmetic circuit
is called an arithmetic formula if the underlying undirected graph is a tree.

The product height of a gate v in C is the maximum number of × gates along any path from
v to the root gate in C. For g any gate in a circuit C, var(g) denote the set of variables that
appear as leaf labels in the sub-circuit rooted at g. Abusing the notation, if g is a polynomial,
then var(g) denotes the set of variables that g is dependent on. We now review the polynomial
coefficient matrix introduced in [13]. Let F be a field and X = {x1, . . . , xN},Y = {y1, . . . , ym}
and Z = {z1, . . . , zm} be disjoint sets of variables.

I Definition 8 (Polynomial Coefficient Matrix). Let f ∈ F[Y, Z] be a polynomial. The
polynomial coefficient matrix of f(denoted byMf ) is a 2m×2m matrix defined as : For monic
multilinear monomials p and q in variables Y and Z respectively, the entry Mf [p, q] = A

if and only if f can be uniquely expressed as f = pq · A + B where A,B ∈ F[Y,Z] such
that (1) var(A) ⊆ var(p) ∪ var(q) and (2) for every monomial m ∈ B, either pq - m or
var(m) ( var(p) ∪ var(q).

I Observation 9. For a multilinear polynomial f ∈ F[Y,Z], the polynomial coefficient
matrix [13] and the partial derivative matrix [19] are the same.
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The matrixMf has entries in F[Y,Z]. Therefore rank(Mf ) is defined only under a substitution
function. For S : Y ∪Z → F, let Mf |S be the matrix obtained by substituting every variable
w ∈ Y ∪ Z to S(w) at each entry of Mf .

maxrank(Mf ) , max
S:Y ∪Z→F

{rank(Mf |S)}

It is known that maxrank(Mf ) satisfies sub-additivity and sub-multiplicativity. The
proofs of Lemma 10 and 11 follow directly from [13].

I Lemma 10 (Sub-additivity, [13]). Let f, g ∈ F[Y, Z]. Then, we have that maxrank(Mf+g) ≤
maxrank(Mf ) + maxrank(Mg).

I Lemma 11 (Sub-multiplicativity, [13]). Let Y1, Y2 ⊆ Y and Z1, Z2 ⊆ Z. Then for any poly-
nomials f ∈ F[Y1, Z1], g ∈ F[Y2, Z2], we have maxrank(Mfg) ≤ maxrank(Mf )·maxrank(Mg).
Also, when Y1 ∩ Y2 = ∅ and Z1 ∩ Z2 = ∅ we have maxrank(Mfg) = maxrank(Mf ) ·
maxrank(Mg).

I Observation 12. For any multilinear polynomial f ∈ F[Y,Z], the entries of Mf are
constants from F. Therefore maxrank(Mf ) = rank(Mf ).

I Definition 13 (Partition function). A partition of X is a function ϕ : X → Y ∪ Z ∪ {0, 1}
such that ϕ is an injection when restricted to Y ∪ Z, i.e., ∀x 6= x′ ∈ X, if ϕ(x) ∈ Y ∪ Z and
ϕ(x′) ∈ Y ∪ Z then ϕ(x) 6= ϕ(x′).

Let F be a formula with leaves labelled by elements in X ∪F and ϕ : X → Y ∪Z ∪ {0, 1}
be a partition function as in Definition 13. Denote by Fϕ to be the formula obtained by
replacing every variable x that appears as a leaf in F by ϕ(x). Denote by fϕ the polynomial
computed by Fϕ. Then fϕ , f(ϕ(X)) ∈ F[Y,Z].

Consider a formula F all of whose leaves are labelled by constants. Then F computes a
constant say α. Observe that in this case for any partition function ϕ : X → Y ∪ Z ∪ {0, 1},
we have rank(Mαϕ) = 1. However, Lemmas 10 and 11 we may get rank(Mαϕ) as large as
exponential in size of F . Hence we need a notion of formulas that use constants from F in a
minimal fashion :

I Definition 14 (Constant-Minimal Formula). An arithmetic formula F is said to be constant-
minimal if no gate u in F has both its children as constants from F.

Observe that for any arithmetic formula F , if there exists a gate u in F such that
u = a op b, a, b ∈ F then we can replace u in F by the constant a op b, where op ∈ {+,×}.
Thus we assume without loss of generality that any arithmetic formula F is constant-minimal.

We state some observations on formulas that compute natural numbers. An arithmetic
formula F is said to be monotone if no leaf in F is labelled by negative constants. Let G be a
monotone arithmetic formula where the leaves are labelled numbers in N. Then for any gate
v in G, the value of v (denoted by value(v)) is defined as : If u is a leaf then value(u) = a

where a ∈ N is the label of u. If u = u1 op u2 then value(u) = value(u1) op value(u2), where
op ∈ {+,×}. Finally, value(G) is the value of the output gate of G.

I Lemma 15. Let G be a binary monotone arithmetic formula with t leaves. If every leaf in
G takes a value at most N > 1, then value(G) ≤ N t.

I Definition 16 ((rank-(1, 2)-separator)). Let G be a monotone arithmetic formula with
leaves labelled by either 1 or 2. A node u in G at product height at least 1 is called a
rank-(1, 2)-separator if u is a leaf and value(u) = 2 or u is a sum gate(u = u1 + u2) with
value(u) ≥ 2 and value(u1), value(u2) < 2.
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I Lemma 17. Let F be a binary monotone arithmetic formula with leaves labelled by either 1
or 2. Suppose value(F ) > 2r then there are at least d r

logN e gates that are
rank-(1, 2)-separators, where N is the sum of labels of leaves in F .

Finally, we state the following variants of the well known Chernoff-Hoeffding bounds.

I Theorem 18 (Chernoff-Hoeffding bound, [3]). Let X1, X2, . . . , Xn be independent random
variables. Let X = X1 +X2 + · · ·+Xn and µ = E[X]. Then for any δ > 0,
1. Pr[X ≥ (1 + δ)µ] ≤ e

−δ2µ
3 when 0 < δ < 1; and

2. Pr[X ≤ (1− δ)µ] ≤ e
−δ2µ

2 when 0 < δ < 1; and
3. Pr[X ≥ (1 + δ)µ] ≤ e

−δµ
3 when δ > 1

3 Hardness of representation for Sum of ROPs

Let X = {x1, . . . , x2n}, Y = {y1, . . . , y2n}, Z = {z1, . . . , z2n}. Define D′ as a distribution on
the functions ϕ : X → Y ∪ Z as follows : For 1 ≤ i ≤ 2n,

ϕ(xi) ∈
{
Y with prob. 1

2

Z with prob. 1
2

Observe that |ϕ(X) ∩ Y | = |ϕ(X) ∩ Z| is not necessarily true. Let F be a binary arithmetic
formula computing a polynomial f on the variables X = {x1, . . . , x2n}. Note that any gate
with at least one variable as a child can be classified as:
1. type-A gates: sum gates both of whose children are variables; and
2. type-B gates: product gates both of whose children are variables; and
3. type-C gates: sum gates exactly one child of which is a variable; and
4. type-D gates: product gates exactly one child of which is a variable.
Given any ROF F , let there be a type-A gates, b type-B, c type-C and d type-D gates in F .
Note that 2a+ 2b+ c+ d ≤ 2n.

I Observation 19. Let F be a binary arithmetic formula. Then there is a formula F ′

computing the same polynomial as F such that no root to leaf path in F ′ has two consecutive
type-C gates. Therefore, for any binary formula F , without the loss of generality we have
c ≤ a+ b+ d.

We say a gate G computing a polynomial g achieves rank-1 under ϕ if rank(Mgϕ) = 1 and
we say the gate G achieves rank-2 under ϕ if rank(Mgϕ) = 2. Let ϕ ∼ D′. Let there be a′
gates of type-A that achieve rank-1 under ϕ and let a′′ gates of type-A that achieve rank-2
under ϕ. Then, a = a′ + a′′. The following lemma bounds the rank of Mfϕ .

I Lemma 20. Let F be an ROF computing an ROP f and ϕ : X → Y ∪ Z. Then,
rank(Mfϕ) ≤ 2a′′+ a′

2 + 2b
3 + c

2 , where a′′, a′, b and c are as defined above.

I Lemma 21. Let F be a ROF. Let there be a type-A gates in F and a′ be the number type-A
gates in F that achieve rank-1 under ϕ ∼ D. Then, Prϕ∼D′

[ 2
5a ≤ a

′ ≤ 3
5a
]

= 1− 2−a/100.

Proof. Let v be a type-A gate in F . Then fv = xi + xj for some i, j ∈ [N ]. Then
Pr[rank(Mfϕv ) = 1] = Pr[(ϕ(xi), ϕ(xj) ∈ Z) ∨ (ϕ(xi), ϕ(xj) ∈ Y )] = 1

2 . Therefore, µ =
E[a′] = a/2. Applying Theorem 18 (2) and (3) with δ = 1/5, we get the required bounds. J

I Lemma 22. Let f be an ROP on 2n variables and ϕ ∼ D′. Then with probability at least
1− 2−Ω( n

logn ), rank(Mfϕ) ≤ 2n−
n

15 logn .

Proof. Let F be an ROF computing f , and a, b, c, d, a′ and a′′ be as in the discussion
preceding Lemma 20. We have two cases:
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Case 1: a + c ≥ 2n
log n

. Then either a ≥ n
logn or c ≥ n

logn .
(i) Suppose a ≥ n

logn , then by Lemma 20, we have rank(Mfϕ) ≤ 2a′′+a′/2+2b/3+c/2 ≤
2a′′+a′/2+b+c/2. Since 2a′′ + 2a′ + 2b+ c+ d ≤ 2n, a′′ + a′/2 + b+ c/2 ≤ n− a′/2. By
Lemma 21, a′ ≥ 2a

5 ≥
2n

5 logn with probability 1− 2−Ω( n
logn ). Therefore, rank(Mfϕ) ≤

2a′′+a′/2+b+c/2 ≤ 2n−a′/2 ≤ 2n−
n

5 logn .
(ii) Suppose c ≥ n

logn . By Observation 19, a+ b+ d ≥ c ≥ n
logn , then either a ≥ n

3 logn or
b ≥ n

3 logn or d ≥ n
3 logn .

If a ≥ n
3 logn , similar to (i) we have rank(Mfϕ) ≤ 2n−

n
15 logn with probability 1 −

2−Ω( n
logn ).

If b ≥ n
3 logn by Lemma 20, rank(Mfϕ) ≤ 2a+2b/3+c/2. Since 2a+ 2b+ c+ d ≤ 2n, we

have a+ c
2 ≤ n− b. Therefore rank(Mfϕ) ≤ 2n− b3 ≤ 2n−

n
9 logn ≤ 2n−

n
15 logn .

If d ≥ n
3 logn , since 2a+ 2b+ c+ d ≤ 2n, a+ b+ c

2 ≤ n−
d
2 . Therefore by Lemma 20

rank(Mfϕ) ≤ 2a′′+a′/2+2b/3+c/2 ≤ 2a+b+c/2 ≤ 2n− d2 ≤ 2n−
n

6 logn ≤ 2n−
n

15 logn .

Case 2: a + c < 2n
log n

. Observe that b ≤ n. By Lemma 20, rank(Mfϕ) ≤ 2a+2b/3+c ≤
22n/3+2n/ logn ≤ 2n−n/15 logn for large enough n. J

The following polynomial was introduced by Raz and Yehudayoff [20].

I Definition 23. Let n ∈ N be an integer. Let X = {x1, . . . , x2n} and W = {wi,k,j}i,k,j∈[2n].
For any two integers i, j ∈ N, we define an interval [i, j] = {k ∈ N, i ≤ k ≤ j}. Let |[i, j]| be the
length of the interval [i, j]. Let Xi,j = {xp | p ∈ [i, j]} and Wi,j = {wi′,k,j′ | i′, k, j′ ∈ [i, j]}.
Let G = F(W), the rational function field. For every [i, j] such that |[i, j]| is even we
define a polynomial gi,j ∈ G[X] as gi,j = 1 when |[i, j]| = 0 and if |[i, j]| > 0 then,
gi,j , (1+xixj)gi+1,j−1+

∑
k wi,k,jgi,kgk+1,j . where xk, wi,k,j are distinct variables, 1 ≤ k ≤ j

and the summation is over k ∈ [i+ 1, j − 2] such that |[i, k]| is even. Let g , g1,2n.

The following lemma builds on Lemma 4.3 in [20].

I Lemma 24. Let Let X = {x1, . . . , x2n}, Y = {y1, . . . , y2n}, Z = {z1, . . . , z2n} and W =
{wi,k,j}i,k,j∈[2n] be sets of variables. Suppose ϕ ∼ D′ such that ||ϕ(X)∩Y |− |ϕ(X)∩Z|| = `.
Then for the polynomial g as in Definition 23 we have, rank(Mgϕ) ≥ 2n−`/2.

I Lemma 25. For Q ∈ {Y, Z}, Prϕ∼D′ [n− n2/3 ≤ |ϕ(X) ∩Q| ≤ n+ n2/3] ≥ 1− 2−Ω(n1/3).

Proof. Proof is a simple application of Chernoff’s bound (Theorem 18) with δ = 1/n1/3. J

I Corollary 26. Prϕ∼D′ [rank(Mgϕ) ≥ 2n−n2/3 ] ≥ 1− 2−Ω(n1/3).

Proof. Apply Lemma 24 with ` = 2n/n1/3 = 2n2/3 and apply Lemma 25. J

Proof of Theorem 2

Proof. Suppose s < exp(o(n/ logn)). Then by Lemma 22 and union bound, probability
that there is an i such that rank(Mfϕ

i
) ≥ exp(n − n/15 logn) is s exp(−Ω (n/logn)) =

exp(−Ω (n/ logn)) and hence by Lemma 10, rank(Mgϕ) ≤ s exp(n− n/15 logn) ≤ exp(n−
n/20 logn) with probability 1 − exp(−Ω(n/ logn)) for large enough n. However, by Co-
rollary 26, rank(Mgϕ) ≥ exp(n − n2/3) > exp(n − n/20 logn) with probability at least
1− exp(−Ω(n1/3)), a contradiction. Therefore, s = exp(Ω(n/ logn)). J



Ramya C. and B. V. R. Rao 39:9

4 Sum of Products of ROPs

4.1 ROPs under random partition
Throughout the section, let m , N1/3, N , n2 and κ , 20 logn. Let X = {x11, . . . , xnn} be
a set of n2 variables and D denote the distribution on the functions ϕ : X → Y ∪ Z ∪ {0, 1}
defined as follows

ϕ(xij) ∈


Y with prob. m

N

Z with prob. m
N

1 with prob. κn
N

0 with prob. 1−
( 2m+κn

N

)
The following Lemmas show that bottom × gates do not contribute much to the rank.

I Lemma 27. Let F be a ROF and ϕ ∼ D. Let X be a random variable that denotes the num-
ber of non-zero multiplication gates at depth 1. Then Prϕ∼D

[
X > (N1/4)

]
≤ exp(−Ω(N1/4)).

I Lemma 28. Let F be an ROF computing an ROP f and ϕ ∼ D. Then there exists
an ROF F ′ such that every gate in F ′ at depth-1 is an addition gate, and rank(MFϕ) ≤
rank(MF ′ϕ) · exp(O(N1/4)) with probability atleast 1− exp(−Ω(N1/4)).

Recall that an arithmetic formula F over Z is said to be monotone if it does not have
any node labelled by a negative constant. We have:

I Lemma 29. Let F be an ROF, and ϕ ∼ D. Then there exists a monotone formula G such
that rank(MFϕ) ≤ value(G).

I Observation 30. Let F be an ROF and ϕ ∼ D. By Lemma 29, we have, Pr[rank(MFϕ) >
2r] ≤ Pr[value(G) > 2r].

Let F be an ROF and ϕ ∼ D. Then by Lemma 17 we have the following corollary,

I Corollary 31.

Pr[rank(MFϕ) > 2r] ≤ Pr[∃ u1, . . . , u r
logN

∈ Fϕ s.t. ∀ i ui is a rank-(1, 2)-separator].

Now all we need to do is to estimate the probability that a given set of nodes u1, . . . , ut
where t > r

logN are a set of rank-(1, 2)-separators.

I Lemma 32. F be an ROF and let u1, . . . , ut be a set of + gates in F that have product
height at least 1 and are not descendants of each other. Suppose s(F ) ≤ N1/4. Then
Prϕ[

∧t
i=1 ui is a rank-(1, 2)-separator] ≤ ctN−5t/6, for some constant c > 0.

Proof. Note that for 1 ≤ i ≤ t rank(Muϕ
i

) = 2 only if |var(uϕi )∩Y | ≥ 1 and |var(uϕi )∩Z| ≥ 1.
Therefore Pr[ui is a (1, 2) separator] ≤ Pr[|var(uϕi ) ∩ Y | ≥ 1 and |var(uϕi ) ∩ Z| ≥ 1] ≤
Pr[|var(uϕi ) ∩ (Y ∪ Z)| ≥ 2]. Let `i1 , . . . , `iri be the addition gates at depth-1 in the sub-
formula rooted at ui. For 0 ≤ i ≤ t, we define Si , var(`i1) ∪ · · · ∪ var(`iri ). Then for
0 ≤ i ≤ t, Pr[ ui is a (1, 2) separator] ≤ Pr[|Si ∩ (Y ∪ Z)| ≥ 2]. Since |var(ui)| ≤ s(F ), we
have |Si| ≤ s(F ) ≤ N1/4. Since (1− 2m/N)|Si|−2 ≤ 1, |Si| ≤ N1/4 and m = N1/3, we have

Pr[|Si ∩ (Y ∪ Z)| = 2] =
(
|Si|
2

)(
2m
N

)2
(1− 2m/N)|Si|−2 ≤

(
|Si|
2

)(
2m
N

)2

≤ 22s(F )2N−4/3 = O(N−5/6).
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Similarly, Pr[|Si ∩ (Y ∪ Z)| = 3] ≤ O)(N−5/4). By union bound Pr[|Si ∩ (Y ∪ Z)| ≥ 3] ≤
|Y ∪ Z|Pr [|Si ∩ (Y ∪ Z)| = 3] ≤ N−11/12 ≤ O(N−5/6). Then for some constant c > 0

Pr
ϕ

[
t∧
i=1

ui is a (1, 2) separator
]
≤

t∏
i=1

Pr[|Si ∩ (Y ∪ Z)| ≥ 2] ≤
t∏
i=1
O(N− 5

6 ) = ctN−
5t
6 J

I Lemma 33. Let f be an ROPon N variables computed by an ROF F , with s(F ) ≤ N1/4.
Then, Prϕ∼D[rank(Mfϕ) ≥ 2N4/15 ] ≤ 2−Ω(N1/4).

Proof. By Lemma 28, note that × gates in F with at least two variables as their input
contribute a multiplicative factor of 2N1/4 to rank(Mfϕ) with probability at least 1−2−Ω(N1/4).
Thus, without loss of generality we can assume that F has no × gate with at more than two
variables as its input. By Corollary 31 we have

Pr[rank(Mfϕ) ≥ 2N
4/15

] ≤ Pr[∃ rank-(1, 2)-separators u1, . . . , uN4/15
logN

]

≤ Pr[∃ rank-(1, 2)-separators u1, . . . , uN1/4 ]

≤
(

N

N1/4

)
cN

1/4
N−

5
6N

1/4

≤ cN
1/4
eN

1/4
N (3/4)N1/4−(5/6)N1/4

≤ N−Ω(N1/4).

The penultimate inequality follows by Lemma 32 and union bound. For the last inequality,
we use the fact that

(
n
k

)
≤ (ne/k)k, where e is the base of natural logarithm. J

4.2 Polynomials with High Rank
In this section, we prove rank lower bounds for two polynomials under a random partition
ϕ ∼ D. The first one is in VP and the other one is in VNP.

I Lemma 34. Let plin = `1 · · · `m′ where `j =
(∑jN/2m

i=(j−1)(N/2m)+1 xi

)
+ 1, where m′ = 2m.

Then, rank(Mplinϕ) = exp(Ω(m)) with probability 1− exp(−Ω(m)).

Proof. Let plin = `1 · · · `m′ where `j =
(∑jN/2m

i=(j−1)(N/2m)+1 xi

)
+ 1 and m′ = 2m.

Define indicator random variables ρ1, ρ2, . . . , ρm′ , where ρi = 1 if rank(M`ϕ
i
) = 2 and 0

otherwise. Observe that for any 1 ≤ i ≤ m′, rank(M`ϕ
i
) = 2 iff `ϕi ∩ Y 6= ∅ and `

ϕ
i ∩ Z 6= ∅.

Therefore, Pr[rank(M`ϕ
i

) = 2] = Pr[`ϕi ∩Y 6= ∅ and `
ϕ
i ∩Z 6= ∅]. For any 1 ≤ j ≤ m′, Pr[`ϕj ∩

Y 6= ∅ and `ϕj ∩ Z 6= ∅] ≥ N
2m
(
N
2m − 1

) (
m
N

)2 (1− m
N

) N
2m−2 ≥ 1/16 for large enough N . Let

ρ =
∑m′

i=1 ρi. Then by linearity of expectation, µ , E[ρ] =
∑m′

i=1 E[ρi] ≥ m
8 . Since µ ≥ m/8,

we have Pr[ρ < (1− δ)m/8] ≤ Pr[ρ < (1− δ)µ] = exp(−Ω(m)) by Theorem 18 with δ = 1/4,
since rank(Mpϕ

lin
) = exp(ρ). J

Throughout the section let ϕ denote a function of the form ϕ : X → Y ∪ Z ∪ {0, 1}. Let
Xϕ denote the matrix (ϕ(xij))1≤i,j≤n. If and when ϕ involved in a probability argument,
we assume that ϕ is distributed according to D.

I Definition 35. Let 1 ≤ i, j ≤ n. (i, j) is said to be a Y-special (respectively Z-special)
if ϕ(xij) ∈ Y (respectively ϕ(xij) ∈ Z), ∀i′ ∈ [n], i′ 6= i ϕ(xi′j) ∈ {0, 1} and ∀j′ ∈ [n], j′ 6=
j ϕ(xij′) ∈ {0, 1}.

I Lemma 36. Let Q ∈ {Y,Z}, ϕ as above and χ = |ϕ(X)∩Q| where ϕ(X) = {ϕ(xij)}i,j∈[n].
Then, Prϕ∼D [3m/4 < χ < 5m/4] = 1− exp(−Ω(m)).
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Let C1, . . . , Cn denote the columns of Xϕ and R1, . . . , Rn denote the rows of Xϕ.

I Definition 37. Let Q ∈ {Y,Z}. A column Cj , 1 ≤ j ≤ n is said to be Q-good if
∃i ∈ [n], ϕ(xij) ∈ Q; and ∀i′ ∈ [n], i′ 6= i ϕ(xi′j) ∈ {0, 1}. Q-good rows are defined
analogously.

I Observation 38. Let Ci be a Y-good column in Xϕ. Let i, i′ ∈ [n], R be the event that
ϕ(xij) ∈ Y and T be the event that ϕ(xi′j) ∈ Y . The events R and T are mutually exclusive.

By Observation 38 and union bound we have:

I Lemma 39. For 1 ≤ i ≤ n, let Ci be a column in Xϕ. Then for any Q ∈ {Y, Z},
Prϕ∼D[Ci is Q-good] = n · mN

(
1− 2m

N

)n−1
.

For Q ∈ {Y,Z} let ηQ , |{Ci | Ci is Q-good}| and ζQ , |{Rj | Rj is Q-good}.

I Lemma 40. With notations as above, ∀Q ∈ {Y,Z}, Prϕ∼D[ηQ ≥ 2m
3 ] = 1− exp(−Ω(m));

and Prϕ∼D[ζQ ≥ 2m
3 ] = 1− exp(−Ω(m)).

I Lemma 41. For Q ∈ {Y, Z}, let γQ denote the number of Q-special positions in Xϕ. Then
∀Q ∈ {Y,Z}, Prϕ∼D

[
γQ ≥ m

12
]

= 1− exp(−Ω(m)).

Proof. We argue for Q = Y , the proof is analogous when Q = Z. Let ϕ be distributed
according to D. Consider the following events on Xϕ. E1 : 2m/3 ≤ |Xϕ ∩ Y | ≤ 5m/4;
E2 : The number of Y -good columns and Y -good rows is at least r , 2m/3. By Lemmas 36
and 40, Xϕ satisfies the events E1 and E2 with probability 1− exp(−Ω(m)). Henceforth we
assume that Xϕ satisfies the events E1 and E2.

Without loss of generality, let R1, . . . , Rr be the first r Y -good rows in Xϕ. For every
Y -good row Ri, 1 ≤ i ≤ r there exists a corresponding witness column Cj , j ∈ [n] such that
ϕ(xij) ∈ Y . Without loss of generality, assume C1, . . . , Cr be columns that are witnesses for
R1, . . . , Rr being Y -good. Further, let Xϕ(Cj) denote the set of values along the column Cj .
Each of the column Cj has at least one variable from Y and hence the columns C1, . . . , Ct
contain at least t distinct variables from Y . By event E2, there are at least 2m

3 Y -good
columns that are distinct from C1, . . . , Ct, each containing exactly one distinct variable from
Y . Since the total number of variables from Y in Xϕ is at most 5m/4 (by E1) we have,
t ≤ 5m/4− 2m/3 ≤ 7m/12. That is, at most 7m/12 of the columns among C1, . . . , Cr are
not Y -good. Therefore, at least r − t of the columns among C1, . . . , Cr are Y good and
hence the number of Y -special positions in Xϕ is atleast r− t ≥ (2/3− 7/12)m = m/12. We
conclude, Prϕ∼D [γY ≥ m/12] = 1− exp(−Ω(m)). J

A row R in the matrix A ∈ (Y ∪Z ∪ {0, 1})n×n said to be 1-good if there is at least one 1
in R in a column other than Y -special and Z-special positions. The following is immediate :

I Observation 42. Let ϕ be distributed according to D. Then for any row (column) R:
Pr
ϕ∼D

[R is 1-good] ≥ (1− 1/n3).

Finally, we are ready to show that perm has high rank under a random ϕ ∼ D.

I Theorem 43. Pr[rank(Mpermϕn ) ≥ 2m/12] ≥ (1−O(1/n2))/2.

We need a few notations and Lemmas before proving Theorem 43. Consider a ϕ : X →
Y ∪Z∪{0, 1} and let the number of Y -special positions and the number of Z-special positions
in Xϕ are both be at least γ. Let (i1, j1), (i2, j2), . . . , (iγ , jγ) be a set of distinct Y - special
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A =




2γ columns︷ ︸︸ ︷
B1 ∗ · · · ∗ ∗

n− 2γ columns︷ ︸︸ ︷
∗ ∗ · · · ∗ ∗

∗ B2 ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ B3 · · · ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ · · · Bγ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗








2γ rows





(n− 2γ) rows

A′

A′′

1

Figure 1 The matrix A after permuting the rows and columns. ∗ denotes unspecified entries.

positions that do not share any row or column and (k1, `1), (k2, `2), . . . , (kγ , `γ) be a set of
distinct Z - special positions in Xϕ that do not share any row or column.

Without loss of generality, suppose i1 < i2 < · · · < iγ and k1 < k2 < · · · < kγ . LetM be
the perfect matching ((i1, j1), (k1, `1)), . . . , ((iγ , jγ), (kγ , `γ)). For an edge {(ip, jp), (kp, `p)} ∈
M, 1 ≤ p ≤ γ consider the 2× 2 matrix :

Bp =
(
Xϕ[ip, jp] Xϕ[ip, `p]
Xϕ[kp, jp] Xϕ[kp, `p]

)
.

There exists a partition ϕ : X → Y ∪ Z ∪ {0, 1} such that rank(MBϕp ) = 2. Let A be the
matrix obtained by permuting the rows and columns in Xϕ such that A can be written as in
the Figure 1.

Since (ip, jp) is a Y -special position, (kp, `p) is a Z-special position we have Xϕ[ip, jp] ∈ Y ,
Xϕ[kp, `p] ∈ Z. Also Xϕ[ip, `p] ∈ {0, 1} and Xϕ[kp, jp] ∈ {0, 1}. Further, rank(Mperm(Bp)) =
2 if and only ifXϕ[kp, jp] = Xϕ[ip, `p] = 1. Consider the following events: F1: γ ≥ m/12; and
F2: Rows i1, . . . , iγ , k1 . . . , kγ are 1-good. The following lemma estimates the probability of
perm(A′′) 6= 0.

I Lemma 44. Let A′′ be matrix as in Figure 1. Then Prϕ[perm(A′′) 6= 0 | F1, F2] ≥ 1− 1
n2 .

Let F3 denote the event “perm(A′′) 6= 0”. Define sets of matrices:

A 4=
{
Xϕ |

Xϕ ∈ F1 ∩ F2 ∩ F3 and ∃i ≤
γ, rank(Mperm(Bi)) = 1

}
; B 4=

{
Xϕ |

Xϕ ∈ F1 ∩ F2 ∩ F3 and ∀i ≤
γ, rank(Mperm(Bi)) = 2.

}
I Observation 45. ∀A ∈ A, rank(Mperm(A′)) < 2γ and ∀B ∈ B, rank(Mperm(B)) ≥ 2γ .

I Lemma 46. Let A and B as defined above. Then
(a) Prϕ∼D[rank(Mperm(Xϕ)) ≥ 2γ)] ≥ D(B); and
(b) D(B) ≥ D(A), where D(S) = Prϕ∼D[Xϕ ∈ S] for S ∈ {A,B}.

Proof. (a) follows from Observation 45. For (b), we establish a one-one mapping π :
A → B defined as follows. Let ϕ be such that Xϕ ∈ A. Consider 1 ≤ p ≤ γ such that
rank(Mperm(Bp)) = 1. Then either Xϕ[kp, jp] = 0 or Xϕ[ip, `p] = 0 or both. If Xϕ[kp, jp] = 0,
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then set Xϕ′ [kp, jp] = 1, and Xϕ′ [kp, ιp] = 0 where ιp ∈ [n] \ {j1 . . . , jγ , `1 . . . , `γ} is the first
index from left such that Xϕ[kp, ιp] = 1. Similarly, if Xϕ[ip, `p] = 0, then set Xϕ′ [ip, `p] = 1,
and Xϕ′ [ip, λp] = 0 where λp ∈ [n]\{j1 . . . , jγ , `1 . . . , `γ} is the first index from left such that
Xϕ[kp, λp] = 1. Let ϕ′ be the partition obtained from ϕ by applying the above mentioned
swap operation for every 1 ≤ p ≤ γ with rank(Mperm(Bp)) = 1, keeping other values of ϕ
untouched. Clearly Xϕ′ ∈ B. Set π(Xϕ) 7→ Xϕ′ . It can be seen that π is an one-one map.
Further, for any fixed A ∈ A, Prϕ[Xϕ = A] = Prϕ[Xϕ = π(A)] since ϕ is independently and
identically distributed for any position in the matrix. Thus we have D(A) ≤ D(B). J

Proof of Theorem 43. It is enough to argue that Prϕ∼D[Xϕ ∈ A∪B] = 1−O( 1
n2 ), asA∩B =

∅ . Now, Prϕ∼D[Xϕ ∈ A∪B] = Prϕ∼D[F1∩F2∩F3]. By Lemma 41, Prϕ∼D[F1] = 1−2−Ω(m).
From Observation 42 and the union bound we have Prϕ∼D[F2] ≥ 1− γ/n3. By Lemma 44,
Prϕ∼D[F3|F1, F2] ≥ 1 − 2/n2. Thus we conclude Prϕ∼D[F1 ∩ F2 ∩ F3] = 1 − O( 1

n2 ). As
D(B∪A) = D(A)+D(B), by Lemma 46, Prϕ∼D[rank(Mperm(Xϕ)) ≥ 2γ ] ≥ 1/2(1−O( 1

n2 )). J

4.3 Putting them all together

Proof of Corollary 6

Proof. Suppose plin =
∑s
i=1
∏t
j=1 fi,j where fi,j are syntactically multilinear ΣΠΣ formula,

with s < exp(N1/4), Let fi,j =
∑s′

k=1 Ti,j,k, and Ti,j,k are products of variable disjoint linear
forms, and hence ROPs. Further, since the bottom fan-in of each fi,j is bounded by N1/4, we
have sTi,j,k ≤ exp(N1/4). Then by Lemma 33 and union bound there is an i, j, k such that
rank(MTϕ

i,j,k
) ≥ exp(N4/15) with probability at most sts′ exp(−Ω(N1/4)). By Lemma 10

and 11, we have maxrank(Mpϕ
lin

) ≤ 2N4/15 with probability 1− o(1). However by Lemma 34,
maxrank(Mpϕ

lin
) = rank(Mpϕ

lin
) = exp(Ω(m)) with probability at least 1 − exp(−Ω(m)), a

contradiction. Hence ss′ = exp(Ω(N1/4)). J

Proof of Theorem 5

Proof. Suppose s = exp(o(N1/4)). Then by Lemma 33, the probability that there is an fi,j
with rank(Mfϕ

i,j
) ≥ exp(N4/15) is at most exp(−Ω(N1/4))s = o(1). By Lemma 10 and 11

and since maxrank(Mfϕ
i,j

) = rank(Mfϕ
i,j

), we have maxrank(Mpϕ
lin

) ≤ (s ·exp(N4/15)N1/30) =
exp(o(N1/3)) with probability 1−o(1). However by Lemma 34, maxrank(Mpϕ

lin
) = exp(Ω(m))

with probability 1− exp(−Ω(m)), a contradiction. Hence s = exp(Ω(N1/4)). J

Proof of Theorem 4

Proof. Suppose s = exp(o(N1/4)). Then by Lemma 33, Probability that there is an fi,j with
rank(Mfϕ

i,j
) ≥ exp(N4/15) is at most exp(−Ω(N1/4))s = o(1). Then, by Lemma 10 and 11,

we have maxrank(Mmathitpermϕn) ≤ s · (exp(N4/15))N1/30 = exp(o(N1/3)) with probability
1−o(1). However, by Theorem 43, maxrank(Mmathitpermϕn ) = rank(Mmathitpermϕn ) exp(Ω(m))
with probability (1− 1/n2)/2, a contradiction. Hence s = exp(Ω(N1/4)). J

Acknowledgements. We thank anonymous reviewers of an earlier version of the paper for
suggestions which improved the presentation. Further, we thank one of the anonymous
reviewers for pointing an observation that lead to Lemma 20.

FSTTCS 2016



39:14 Sum of Products of Read-Once Formulas

References
1 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,

pages 67–75, 2008. doi:10.1109/FOCS.
2 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput.

Sci., 22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.
3 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis

of Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1st edition,
2009.

4 Michael Forbes. Polynomial identity testing of read-once oblivious algebraic branching
programs. PhD thesis, Massachusetts Institute of Technology, 2014.

5 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berke-
ley, CA, USA, pages 243–252, 2013.

6 Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arithmetic
circuits. In STOC, pages 577–582, 1998. doi:10.1145/276698.276872.

7 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the chasm at depth four. J. ACM, 61(6):33:1–33:16, 2014. doi:10.1145/2629541.

8 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.

9 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. Super-polynomial
lower bounds for depth-4 homogeneous arithmetic formulas. In STOC, pages 119–127, 2014.
doi:10.1145/2591796.2591823.

10 Neeraj Kayal and Chandan Saha. Multi-k-ic depth three circuit lower bound. In STACS,
pages 527–539, 2015. doi:10.4230/LIPIcs.STACS.2015.527.

11 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound
for depth three arithmetic circuits. Electronic Colloquium on Computational Complexity
(ECCC), 23:6, 2016. Accepted at ICALP 2016. URL: http://eccc.hpi-web.de/report/
2016/006.

12 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput.
Sci., 448:56–65, 2012. doi:10.1016/j.tcs.2012.03.041.

13 Mrinal Kumar, Gaurav Maheshwari, and Jayalal Sarma. Arithmetic circuit lower bounds
via maximum-rank of partial derivative matrices. TOCT, 8(3):8, 2016. doi:10.1145/
2898437.

14 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic
circuits. In FOCS, pages 364–373, 2014. doi:10.1109/FOCS.2014.46.

15 Meena Mahajan and Anuj Tawari. Sums of read-once formulas: How many summands
suffice? In Computer Science – Theory and Applications – 11th International Computer
Science Symposium in Russia, CSR 2016, St. Petersburg, Russia, June 9-13, 2016, Pro-
ceedings, pages 266–279, 2016. doi:10.1007/978-3-319-34171-2_19.

16 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

17 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. doi:10.1007/BF01294256.

18 C. Ramya and B.V. Raghavendra Rao. Limitations of sum of products of read-once poly-
nomials. CoRR, abs/1512.03607, 2015. URL: https://arxiv.org/abs/1512.03607.

19 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), 2009. doi:10.1145/1502793.1502797.

http://dx.doi.org/10.1109/FOCS.
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1145/276698.276872
http://dx.doi.org/10.1145/2629541
http://dx.doi.org/10.1145/2591796.2591823
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.527
http://eccc.hpi-web.de/report/2016/006
http://eccc.hpi-web.de/report/2016/006
http://dx.doi.org/10.1016/j.tcs.2012.03.041
http://dx.doi.org/10.1145/2898437
http://dx.doi.org/10.1145/2898437
http://dx.doi.org/10.1109/FOCS.2014.46
http://dx.doi.org/10.1007/978-3-319-34171-2_19
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1007/BF01294256
https://arxiv.org/abs/1512.03607
http://dx.doi.org/10.1145/1502793.1502797


Ramya C. and B. V. R. Rao 39:15

20 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits.
Computational Complexity, 17(4):515–535, 2008.

21 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009. doi:10.1007/
s00037-009-0270-8.

22 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Computational
Complexity, 24(3):477–532, 2015. doi:10.1007/s00037-015-0105-8.

23 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10(1):1–27, 2001. doi:10.1007/PL00001609.

24 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. doi:10.1016/j.ic.2014.09.004.

25 Iddo Tzameret. Studies in algebraic and propositional proof complexity. Ph.D Thesis,
page 33, 2008. URL: http://www.cs.rhul.ac.uk/home/tzameret/Iddo-PhD-thesis.
pdf.

26 Leslie G. Valiant. Completeness classes in algebra. In STOC, pages 249–261, 1979. doi:
10.1145/800135.804419.

27 Ilya Volkovich. Characterizing arithmetic read-once formulae. TOCT, 8(1):2, 2016. doi:
10.1145/2858783.

FSTTCS 2016

http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/s00037-015-0105-8
http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/10.1016/j.ic.2014.09.004
http://www.cs.rhul.ac.uk/home/tzameret/Iddo-PhD-thesis.pdf
http://www.cs.rhul.ac.uk/home/tzameret/Iddo-PhD-thesis.pdf
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1145/2858783
http://dx.doi.org/10.1145/2858783




Understanding Cutting Planes for QBFs∗

Olaf Beyersdorff1, Leroy Chew2, Meena Mahajan3, and
Anil Shukla4

1 School of Computing, University of Leeds, United Kingdom
2 School of Computing, University of Leeds, United Kingdom
3 The Institute of Mathematical Sciences, HBNI, Chennai, India
4 The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract
We define a cutting planes system CP+∀red for quantified Boolean formulas (QBF) and analyse
the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes
is of intermediate strength between resolution and Frege, our findings here show that the situation
in QBF is slightly more complex: while CP+∀red is again weaker than QBF Frege and stronger
than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable
to even the weakest expansion-based QBF resolution system ∀Exp+Res.

Technically, our results establish the effectiveness of two lower bound techniques for CP+∀red:
via strategy extraction and via monotone feasible interpolation.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Complexity
of Proof Procedures

Keywords and phrases proof complexity, QBF, cutting planes, resolution, simulations

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.40

1 Introduction

The main problem of proof complexity is to understand the minimal size of proofs for natural
classes of formulas in important proof systems. Proof complexity deeply connects to a number
of other areas, most notably computational complexity, circuit complexity, first-order logic,
and practical solving. Recently the connection to practical solving has been a main driver
for the field. Modern SAT solvers routinely solve huge industrial instances of the NP-hard
SAT problem with even millions of variables. Because runs of the solver on unsatisfiable
formulas can be interpreted as proofs for unsatisfiability in a system corresponding to the
solver, proof complexity provides the main theoretical tool for an understanding of the power
and limitations of these algorithms.

During the last decade there has been great interest and research activity to extend the
success of SAT solvers to the more expressive quantified Boolean formulas (QBF). Due to
its PSPACE completeness (even for restricted versions [2]), QBF is far more expressive than
SAT and thus applies to further fields such as formal verification or planning [34, 5, 21].

Triggered by this exciting development in QBF solving, QBF proof complexity has seen a
stormy development in past years. A number of resolution-based systems have been designed
with the aim to capture ideas in QBF solving. Broadly, these systems can be classified into
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two types corresponding to two principal approaches in QBF solving: proof systems modelling
conflict driven clause learning (CDCL): Q-resolution Q-Res [29, 7], universal resolution QU-
Res [38], long-distance resolution [3], and their extensions [4]; and proof systems modelling
expansion solving: ∀Exp+Res [28] and their extensions [7]. Proof complexity research of these
systems resulted in a complete understanding of the relative complexity of QBF resolution
systems [8, 4], and the transfer of classical techniques to QBF systems was thoroughly
assessed [9, 10, 11]. In addition, stronger QBF Frege and Gentzen systems were defined and
investigated [20, 6, 12].

Most SAT and QBF solvers use resolution as their underlying proof system. Resolution is
a weak proof systems for which a wealth of lower bounds and in fact lower bound techniques
are known (cf. [37, 16]). This raises the question – often controversially discussed within
the proof complexity and solving communities – whether it would be advantageous to build
solvers on top of more powerful proof systems. While Frege systems appear too strong
and proof search is hindered by non-automatisability results [31, 14], a natural system of
intermediate strength is Cutting Planes first defined in [19].

Using ideas from integer linear programming [25, 17], Cutting Planes works with linear
inequalities, allowing addition of inequalities as well as multiplication and division by positive
integers as rules. Translating propositional clauses into inequalities, Cutting Planes derives
the contradiction 0 ≥ 1, thereby demonstrating that the original set of inequalities (and
hence the corresponding clause set) has no solution. As mentioned, Cutting Planes is a proof
system of intermediate strength: it simulates resolution, but allows short proofs for the
famous pigeonhole formulas hard for resolution [27], while it is simulated by and strictly
weaker than Frege [24, 33].

Our contributions
For QBFs a similar Cutting Planes system based on integer linear programming has been
missing. It is the aim of this paper to define a natural Cutting Planes system for QBF and
give a comprehensive analysis of its proof complexity.

1. Cutting Planes for QBF. We introduce a complete and sound QBF proof system
CP+∀red that works with quantified linear inequalities, where each variable is either quantified
existentially or universally in a quantifier prefix. The system CP+∀red extends the classical
Cutting Planes system with one single ∀-reduction rule allowing manipulation of universally
quantified variables. The definition of the system thus naturally aligns with the QBF
resolution systems Q-Res [29] and QU-Res [38] and the stronger QBF Frege systems [6] that
likewise add universal reduction to their classical base systems.

Inspired by the recent work on semantic Cutting Planes [23] we also define a stronger
system semCP+∀red where in addition to universal reduction all semantically valid inferences
between inequalities are allowed (Section 7).

2. Lower bound techniques for CP+∀red. We establish two lower bound methods for
CP+∀red: strategy extraction (Section 4) and feasible interpolation (Section 5).

Strategy extraction as a lower bound technique was first devised for Q-Res [8] and
subsequently extended to QBF Frege systems [6, 12]. The technique applies to calculi that
allow to efficiently extract winning strategies for the universal player from a refutation (or
alternatively Skolem functions for the existential variables from a proof of a true QBF). Here
we show that CP+∀red admits strategy extraction in TC0, thus establishing an appealing link
between CP+∀red proofs (which can count) and the counting circuit class TC0 (Theorem 8).



O. Beyersdorff, L. Chew, M. Mahajan, and A. Shukla 40:3

For each function f ∈ PSPACE/poly we construct false QBFs Qqbf-fn where each winning
strategy forces the universal player to compute f . Thus assuming the existence of f ∈
PSPACE/poly \ TC0 we obtain lower bounds for Qqbf-fn in CP+∀red (Corollary 9) and even
semCP+∀red (Corollary 21).

Feasible interpolation is another classical technique transferring circuit lower bounds to
proof size lower bounds; however, here we import lower bounds for monotone arithmetic
circuits [33] and hence the connection between the circuits and the lines in the proof system is
less direct than in strategy extraction. Feasible interpolation holds for classical resolution [30]
and Cutting Planes [33], and indeed was shown to be effective for all QBF resolution systems
[9]. Following the approach of [33] we establish this technique for CP+∀red (Theorem 12)
and in fact for the stronger semCP+∀red (Theorem 22).

It is interesting to note that while feasible interpolation is the only technique known
for classical Cutting Planes, we have two conceptually different lower bound methods – and
hence more (conditionally) hard formulas in QBF. This is in line with recent findings in
[12] showing that lower bounds for QBF Frege either stem from circuit lower bounds (for
NC1) or from classical Frege lower bounds. Our results here illustrate the same paradigm for
CP+∀red: lower bounds arise either from TC0 lower bounds (via strategy extraction) or via
classical lower bound methods for Cutting Planes (feasible interpolation).

3. Relations to other QBF proof systems. We compare our new system CP+∀red with
previous QBF resolution and Frege systems. In contrast to the classical setting, the emerging
picture is somewhat more complex: while CP+∀red is strong enough to simulate the core
CDCL QBF resolution systems Q-Res and QU-Res and indeed is exponentially stronger than
these systems (Theorem 17), CP+∀red is incomparable (under a natural circuit complexity
assumption) to even the base system ∀Exp+Res of the expansion resolution systems (The-
orem 18). Conceptually, this means that in contrast to the SAT case, QBF solvers based on
linear programming and corresponding to CP+∀red will not encompass the full strength of
current resolution-based QBF solving techniques.

On the other hand, CP+∀red turns out to be simulated by Frege+∀red, and Frege+∀red
is exponentially more powerful than CP+∀red (Theorem 19). While this separation could
be achieved by lifting the classical separation [33] to QBF by considering purely existen-
tially quantified formulas, we highlight that our separation also holds for natural QBFs
expressing the clique-co-clique principle, which is not known to have a succinct propositional
representation.

2 Notation and preliminaries

Quantified Boolean Formulas. A literal is a Boolean variable or its negation. We say a
literal x is complementary to the literal ¬x and vice versa. A clause is a disjunction of
literals and a term is a conjunction of literals. The empty clause is denoted by �, and is
semantically equivalent to false, denoted ⊥. A formula in conjunctive normal form (CNF)
is a conjunction of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C. Let α be any partial assignment. For a clause C, we
write C|α for the clause obtained after applying the partial assignment α to C.

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean quantifiers
with the standard semantics that ∀x.F is satisfied by the same truth assignments as F |x=0 ∧
F |x=1 and ∃x.F as F |x=0 ∨ F |x=1. We assume that QBFs are in closed prenex form with
a CNF matrix, i.e., we consider the form Q1x1 · · · Qnxn .φ where each Qi is either ∃ or ∀,
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40:4 Understanding Cutting Planes for QBFs

and φ is a quantifier-free CNF formula, called the matrix, in the variables x1, . . . , xn. Any
QBF can be efficiently (in polynomial time) converted to an equivalent QBF in this form
(using PSPACE-completeness of such QBFs). We denote such formulas succinctly as Q .φ.
The index ind(y) of a variable y is its position in the prefix Q; for each i ∈ [n], ind(xi) = i.
If ind(x) < ind(y), we say that x occurs before y, or to the left of y. The quantification
level lv(y) of a variable y in Q .φ is the number of alternations of quantifiers to the left of
y in the quantifier prefix of Q .φ. For instance, in the QBF ∃x1∀x2∀x3∃x4φ, lv(x1) = 1,
lv(x2) = lv(x3) = 2, and lv(x4) = 3.

Often it is useful to think of a QBF Q1x1 · · · Qnxn .φ as a game between two players:
universal (∀) and existential (∃). In the i-th step of the game, the player Qi assigns a value
to the variable xi. The existential player wins if φ evaluates to 1 under the assignment
constructed in the game. The universal player wins if φ evaluates to 0. A strategy for xi is
a function from all variables of index < i to {0, 1}. A strategy for the universal player is a
collection of strategies, one for each universally quantified variable. Similarly, a strategy for
the existential player is a collection of strategies, one for each existentially quantified variable.
A strategy for the universal player is a winning strategy if using this strategy to assign values
to variables, the universal player wins any possible game, irrespective of the strategy used by
the existential player. Winning strategies for the existential player are similarly defined. For
any QBF, exactly one of the two players has a winning strategy. A QBF is false if and only
if there exists a winning strategy for the universal player ([26],[1, Sec. 4.2.2],[32, Chap. 19]).

Proof systems. Following notation from [18], a proof system for a language L is a polynomial-
time onto function f : {0, 1}∗ → L. Each string φ ∈ L is a theorem, and if f(π) = φ, then
π is a proof of φ in f . Given a polynomial-time function f : {0, 1}∗ → {0, 1}∗ the fact
that f({0, 1}∗) ⊆ L is the soundness property for f and the fact that f({0, 1}∗) ⊇ L is the
completeness property for f .

Proof systems for the language of propositional unsatisfiable formulas (UNSAT) are
called propositional proof systems and proof systems for the language of false QBFs are
called QBF proof systems. These are refutational proof systems. Equivalently, propositional
proof systems and QBF proof systems can be defined respectively for the languages of true
propositional formulas (TAUT) and of true QBFs. Since any QBF Q .φ can be converted in
polynomial time to another QBF Q′ .φ′ such that exactly one of Q .φ and Q′ .φ′ is true, it
suffices to consider only refutational QBF proof systems.

Given two proof systems f1 and f2 for the same language L, we say that f1 simulates f2, if
there exists a function g and a polynomial p such that f1(g(w)) = f2(w) and |g(w)| ≤ p(|w|)
for all w. Thus g translates a proof w of x ∈ L in the system f2 into a proof g(w) of x ∈ L
in the system f1, with at most polynomial blow-up in proof-size. If there is such a g that is
also polynomial-time computable, then we say that f1 p-simulates f2.

QBF resolution calculi. Resolution (Res), introduced by Blake [13] and Robinson [36], is a
refutational proof system for formulas in CNF form. The lines in the Res proofs are clauses.
The only inference (resolution) rule is C ∨ x D ∨ ¬x

C ∪D where C,D denote clauses and x
is a variable. A Res refutation derives the empty clause �.

Q-resolution (Q-Res) [29] is a resolution-like calculus operating on QBFs in prenex form
with a CNF matrix. The lines in the Q-Res proofs are clauses. It uses the propositional
resolution rule above with the side conditions that variable x is existential, and if z ∈ C,
then ¬z /∈ D. (Unlike in the propositional case, dropping this latter condition that C ∪D is
not a tautology can lead to unsoundness.) In addition Q-Res has the universal reduction rule
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C ∨ u
C

and C ∨ ¬u (∀-Red),
C

where variable u is universal and every existential variable
x ∈ C has lv(x) < lv(u). If resolution is also permitted with universal variable x (as long as
tautologies are not created), then we get the calculus QU-Res [38].

Expansion-based calculi are another type of resolution systems significantly different from
Q-Res. In this paper, we will briefly refer to one such calculus, the ∀Exp+Res from [28].
In ∀Exp+Res, one expands the formula on universal variables, creating multiple annotated
copies of existential variables, and then uses classical resolution. For details, see [28].

Frege systems. Frege proof systems are the ‘textbook’ proof systems for propositional logic
based on axioms and rules [18]. A Frege system comprises a finite set of axiom schemes and
rules. A Frege proof is a sequence of formulas (using ∧, ∨, ¬) where each formula is either
a substitution instance of an axiom, or can be inferred from previous formulas by a valid
inference rule. Frege systems are required to be sound and implicationally complete.

A refutation of a false QBF Q .φ in the system Frege+∀red [6] is sequence of lines
L1, . . . , L` where each line is a formula, L1 = φ, L` = ⊥ and each Li is inferred from
previous lines Lj , j < i, using the inference rules of Frege or using the universal reduction

rule
Lj (∀Red),

Lj [u/B]
where u is a universal variable and is the rightmost (highest index)

variable among the variables of Lj , B is a formula containing only variables left of u, and
Lj [u/B] is the formula obtained from Lj by replacing each occurrence of u in Lj by B.

Circuit classes. We recall the definitions of some standard circuit classes (cf. [39]). The
class TC0 contains all languages recognisable by polynomial-size circuits using ¬, ∨, ∧ and
threshold gates with constant depth and unbounded fan-in. Stronger classes are obtained by
using NC1 circuits of polynomial size and logarithmic depth with bounded fan-in ¬, ∨, ∧
gates, and by P/poly circuits of polynomial size. We use non-uniform classes throughout.

Decision lists [35]. A decision list is a list L of pairs (t1, v1), . . . , (tr, vr), where each ti is
a term and vi is a value in {0, 1}, and the last term tr is the constant term true (i.e., the
empty term). A decision list L defines a Boolean function as follows: for any assignment
α, L(α) is defined to be equal to vj where j is the least index such that tj |α = 1. (Such an
item always exists, since the last term always evaluates to 1). In [6], this definition has been
generalised to C-decision lists (for some circuit class C), where instead of terms one can use
circuits from C. A C-decision list yields the circuit f(x) = ∨ri=1 (vi ∧ Ci(x) ∧ ∧j<i¬Cj(x)).
Thus a polynomial-sized TC0-decision list yields a TC0 circuit.

3 The CP+∀red proof system

In this section we define a QBF analogue of the classical Cutting Planes proof system by
augmenting it with a reduction rule for universal variables. We denote this system by
CP+∀red. Consider a false quantified set of inequalities F ≡ Q1x1 . . .Qnxn. F , where F is
a set of linear inequalities of the form

∑
xiai ≥ A for integers ai and A, and F includes

the set of inequalities B = {xi ≥ 0,−xi ≥ −1 | i ∈ [n]}. The inequalities in B are called
the Boolean axioms, because they force any integer-valued assignment ā to the variables,
satisfying F , to take only 0, 1-values. We point out that classical Cutting Planes proof systems
(only existential variables) can refute any inconsistent set of linear inequalities over integers.
However, once universal quantification is allowed, dealing with an unbounded domain is more
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messy. Since our primary goal in defining this proof system is to refute false QBFs, and since
QBFs have only Boolean variables, we only consider sets of inequalities that contain B.

I Definition 1 (CP+∀red proofs for inequalities). Consider a set of quantified inequalities
F ≡ Q1x1 . . .Qnxn. F , where F also contains the Boolean axioms. A CP+∀red refutation
π of F is a quantified sequence of linear inequalities Q1x1 . . .Qnxn.[I1, I2, . . . , Il] where the
quantifier prefix is the same as in F , Il is an inequality of the form 0 ≥ C for some positive
integer C, and for every j ∈ {1, . . . , l}, either Ij ∈ F , or Ij is derived from earlier inequalities
in the sequence via one of the following inference rules:
1. Addition: From

∑
k

ckxk ≥ C and
∑
k

dkxk ≥ D, derive
∑
k

(ck + dk)xk ≥ C +D.

2. Multiplication: From
∑
k

ckxk ≥ C, derive
∑
k

dckxk ≥ dC, where d ∈ Z+.

3. Division: From
∑
k

ckxk ≥ C, derive
∑
k

ck
d
xk ≥

⌈
C

d

⌉
, where d ∈ Z+ divides each ck.

4. ∀-red: From
∑

k∈[n]\{i}

ckxk + hxi ≥ C, derive


∑

k∈[n]\{i}

ckxk ≥ C if h > 0;∑
k∈[n]\{i}

ckxk ≥ C − h if h < 0.

This rule can be used provided variable xi is universal, and provided all existential variables
with nonzero coefficients in the hypothesis are to the left of xi in the quantification prefix.
(That is, if xj is existential, then j > i ⇒ cj = 0.) Observe that when h > 0, we are
replacing xi by 0, and when h < 0, we are replacing xi by 1. We say that the universal
variable xi has been reduced.

Each inequality Ij is a line in the proof π. Note that proof lines are always of the form∑
k ckxk ≥ C for integer-valued ck, C. The length of π (denoted |π|) is the number of lines

in it, and the size of π (denoted size(π)) is the bit-size of a representation of the proof (this
depends on the number of lines and the binary length of the numbers in the proof).

In order to use CP+∀red as a refutational system for QBFs in prenex form with CNF
matrix, we must translate QBFs into quantified sets of inequalities.

I Definition 2 (Encoding QBFs as inequalities). We first describe how to encode a CNF
formula F over variables x1, . . . , xn as a set of linear inequalities. Define R(x) = x, R(x̄) =
1 − x. A clause C ≡ (l1 ∨ · · · ∨ lk) is translated into the inequality R(C) ≡

∑k
i=1R(li) ≥

1. A CNF formula φ = C1 ∧ · · · ∧ Cm is represented as the set of inequalities Fφ =
{R(C1), R(C2), . . . , R(Cm)} ∪B, where B is the set of Boolean axioms x ≥ 0,−x ≥ −1 for
each variable x. We call this the standard encoding. For a QBF Q1x1 . . .Qnxn. φ with a
CNF matrix φ, the encoding is the quantified set of linear inequalities Q1x1 . . .Qnxn. Fφ.

We say that a 0, 1-assignment α satisfies the inequality I ≡
∑n
i=1 aixi ≥ b (i.e., I|α = 1),

if
∑n
i=1 aiαi ≥ b. For any clause C, an assignment satisfies C if and only if it satisfies R(C).

Since the standard encoding includes all Boolean axioms, we obtain the following:

I Proposition 3. Let Q .φ be a QBF in closed prenex CNF, and let F = Q. Fφ be its
encoding as a quantified set of linear inequalities. Then Q .φ is false if and only if F is false.

As for QBFs, we can play the 2-player game on the encoding F of a QBF. Players choose 0-1
values for their variables in the order defined in the prefix. The ∀ player wins if the assignment
so constructed violates some inequality in F . As before, when F is false, the universal player
has a winning strategy; otherwise the existential player has a winning strategy.
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I Definition 4 (CP+∀red proofs for QBFs). Let Q .φ = Q1x1 · · · Qnxn .φ be a false QBF in
prenex CNF, and let F be its encoding as a quantified set of linear inequalities. A CP+∀red
(refutation) proof of Q .φ is a CP+∀red proof of F as defined in Definition 1.

It is worth noting that a CP+∀red proof for inequalities, as in Definition 1, can start with
encodings of QBFs, but can also start with quantified sets of inequalities that contain the
Boolean axioms but do not correspond to any QBF, since the initial non-Boolean inequalities
can have arbitrary integer coefficients.

Observe that in the ∀-red step of CP+∀red, if u is the universal variable being reduced,
then u need not be the rightmost variable with a non-zero coefficient. There may be universal
variables to the right of u with non-zero coefficients. This is analogous to the conditions
in QU-Res, where we require only that every existential variable x in C has lv(x) < lv(u).
However, in the Frege+∀red proof system defined in [6], the variable being reduced from a
formula is required to be the rightmost in the formula; that is, ind(x) < ind(u) for every
variable other than x in C. We show below that imposing such a condition in CP+∀red
does not affect the strength of the proof system. That is, if we call a proof where the
∀-red steps are applied only to the rightmost universal variables with non-zero coefficients a
normal-form proof, then any CP+∀red proof can be efficiently converted to one in normal
form. In later sections we often assume this normal form.

I Lemma 5. Any CP+∀red proof can be converted into normal form in polynomial time.

Proof Sketch. To reduce a variable u, first reduce all universal variables to the right of u,
then reduce u, then re-introduce the previously reduced variables using Boolean axioms. The
constant on the right-hand-side may change along the way but finally reverts to its original
value. J

Now we show that CP+∀red is a complete and sound proof system for false QBFs.

I Theorem 6. CP+∀red is a complete and sound proof system for false QBFs. That is, if
ϕ is a false QBF, then there exists a CP+∀red refutation of ϕ (completeness), and if there
exists a CP+∀red refutation of ϕ, then ϕ is false (soundness).

Proof Sketch. Completeness: We show that CP+∀red p-simulates QU-Res; given a QU-Res
proof π, for each C ∈ π we can derive R(C) in CP+∀red. (The resolution rule is simulated
by the CP part as in the classicial case, and the ∀-Red rule of QU-Res is also present in
CP+∀red.) Since QU-Res is known to be complete, it follows that CP+∀red is complete.

Soundness: Let F = Q. F be the standard encoding of ϕ, and let π = Q.[I1, I2, . . . , Il]
be a normal form CP+∀red refutation of F . We show that the following is valid for each
j ∈ [l]: Q. [F ∧ I1 ∧ · · · ∧ Ij−1] =⇒ Q. [F ∧ I1 ∧ · · · ∧ Ij−1 ∧ Ij ]. Thus if F = Q.F is true,
then so is Q. [F ∧ I1 ∧ · · · ∧ Il−1 ∧ Il]. However, Il is not satisfied by any assignment, so this
statement is false. Hence F is false, and by Proposition 3, ϕ is also false. J

Note that for false quantified inequalities, the soundness of CP+∀red follows from the same
proof, but completeness will require an additional argument.

Since we will refer to the p-simulation of QU-Res by CP+∀red later, we state it as a
separate lemma; the proof is in the completeness part of the proof of Theorem 6.

I Lemma 7. CP+∀red p-simulates QU-Res.
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4 Strategy extraction for CP+∀red

Strategy extraction is an important paradigm in QBF, also very desirable in practice (cf.
[26, 3, 22, 7]). Winning strategies for the universal player can be very complex. But a QBF
proof system has the strategy extraction property for a particular class of circuits C whenever
we can efficiently extract, from every refutation π of a false QBF ϕ, a winning strategy for
the universal player where the strategies for individual universal variables are computable in
circuit class C.

In this section we show how to extract, from a refutation in CP+∀red, winning strategies
computable by bounded depth circuits with threshold gates.

I Theorem 8 (Strategy Extraction Theorem). Given a false QBF ϕ = Q. φ, with n variables,
and a CP+∀red refutation π of ϕ of size m, it is possible to extract from π a winning strategy
where for each universal variable u ∈ ϕ, the strategy σu can be computed by Boolean circuits
of (m+ n)O(1) size, constant depth, with unbounded fanin AND, OR, NOT gates as well as
threshold gates. In particular, if ϕ can be refuted in CP+∀red in nO(1) size, then the winning
strategies can be computed in TC0.

Proof Sketch. We adapt the technique from [6]. Let Q. F be the standard encoding of ϕ,
and let π = Q. [I1, . . . , Il] be a normal-form CP+∀red proof of Q. F of length l and size
m ≥ l. For j ∈ {0, 1, . . . , l}, define πj = Q. [Ij+1, . . . , Il] and Fj = F ∪ {I1, . . . , Ij}. By
downward induction on j, from πj we show how to compute, for each universal variable u, a
Boolean function σju that maps each assignment to the variables quantified before u to a bit
{0, 1}. These functions satisfy the property that in a 2-player game played on the formula
Q. Fj , if the universal player uses strategy σju for each universal variable u, then finally some
inequality in Fj is falsified. We describe the functions σju by decision lists of size O(l), where
each condition is checkable by a constant-depth polynomial-in-m sized threshold circuit.

Since all axioms are included in F , we can skip the axiom steps in the proof.
The strategy is as follows: σlu = 0 for all u. For j ≤ l, if Ij is obtained by a classical rule,

then σj−1
u = σju for every universal variable u. If Ij is derived using a ∀-red rule; that is

Ij = Ik|u=bj
for some k < j, then for all u′ 6= u, σj−1

u′ = σju′ . For u, if Ik|u=bj
(~a) = 0, then

σj−1
u (~a) = bj , else σj−1

u (~a) = σju(~a). (The value Ik|u=bj
(~a) can be determined since variables

to the right of u have zero coefficient in Ik.) It is easy to see that these functions so defined
have the desired property. J

Theorem 8 yields the following conditional lower bound for CP+∀red proof size.

I Corollary 9. If PSPACE/poly 6⊆ TC0, then there exists a family of false QBFs Qqbf-fn that
requires super-polynomial size proofs in CP+∀red.

Proof. Let fn ∈ PSPACE/poly \ TC0. Consider the following false sentence based on fn:

∃x1 . . . xn∀z.
[
f(~x) 6= z

]
.

Since fn is in PSPACE/poly and QBF is PSPACE-complete, the value of fn can be
compactly expressed by a QBF. That is, fn(~x) ≡ Q1y1 . . .Qryr.ψn(~x, ~y) where r is polynomial
in n and ψn(~x, ~y) is in P/poly. Thus we have the false sentence

∃x1 . . . xn∀z.
[
(

fn(~x)︷ ︸︸ ︷
Q1y1 . . .Qryr.ψn(~x, ~y))↔ ¬z

]
.
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We now choose circuits Cn computing ψn and use additional variables ~s and ~t to represent
the gate values in the P/poly circuits Cn and ¬Cn, respectively. We obtain the QBF

∃x1 . . . xn∀zQ1y1 . . .QryrQ̄1w1 . . . Q̄rwr∃~s,~t.
[
(Cn(~x, ~y,~s) ∨ z) ∧

(
¬Cn(~x, ~w,~t) ∨ ¬z

)]
where Q̄ = ∃ if Q = ∀ and vice versa. We call this formula Qqbf -fn and remark that it is a
false prenex QBF with CNF matrix. (Cn can be expressed as a CNF; then adding the literal
z to each clause expresses Cn ∨ z. Similarly for ¬Cn ∨ ¬z.)

In the two-player game on Qqbf -fn or on its standard encoding, the only winning strategy
for the universal variable z is the function fn(~x) itself. Therefore if there exists a polynomial
size CP+∀red proof for Qqbf -fn, then from Theorem 8, fn ∈ TC0, a contradiction. J

5 Feasible (monotone) interpolation for CP+∀red

In this section we show that CP+∀red admits feasible monotone interpolation. We adapt the
technique first used by Pudlák [33] to re-prove and generalise the result of Krajíček [30].

Consider a false QBF of the form

ϕ = ∃~pQ~qQ~r.
[
A′(~p, ~q) ∧B′(~p, ~r)

]
where ~p, ~q, and ~r are mutually disjoint sets of propositional variables, A′(~p, ~q) is a set of
clauses using only the ~p and ~q variables, and B′(~p, ~r) is a set of clauses using only the ~p and
~r variables. Thus ~p are the common variables between them. The ~q and ~r variables can
be quantified arbitrarily, with any number of quantification levels. Since ϕ is false, on any
assignment ~a to the variables in ~p, either ϕ~a,0 = Q~q. A′(~a, ~q) or ϕ~a,1 = Q~r. B′(~a,~r) (or both)
must be false. An interpolant for ϕ is a Boolean function that, given ~a, indicates which of
ϕ~a,0, ϕ~a,1 is false. As defined in [9], a QBF proof system S admits feasible interpolation
if from an S-proof π of such a QBF ϕ, we can extract a Boolean circuit Cπ computing
an interpolant for ϕ, such that, the size of Cπ is polynomially related to the size of π. If,
whenever the ~p variables occur only positively in A′ or only negatively in B′, the polynomial
sized (with respect to the size of π) interpolating circuit for ϕ is monotone, then we say that
S admits monotone feasible interpolation.

Cutting Planes naturally gives rise to arithmetic rather than Boolean circuits, as in the
classical case in [33]. Generalising this to the case of QBFs, we have the following definitions.

I Definition 10 ([33]). A monotone real circuit is a circuit which computes with real numbers
and uses arbitrary non-decreasing real unary and binary functions as gates.

We say that a monotone real circuit computes a Boolean function (uniquely determined
by the circuit), if for all inputs of 0’s and 1’s the circuit outputs 0 or 1.

I Definition 11. A QBF proof system S admits monotone real feasible interpolation if for
any false QBF ϕ of the form ∃~pQ~qQ~r.

[
A′(~p, ~q) ∧B′(~p, ~r)

]
where the ~p variables occur only

positively in A′ or only negatively in B′, and for any S-proof π of ϕ, we can extract from
π a monotone real circuit C of size polynomial in the length of π and the number n of ~p
variables, such that C computes a Boolean function, and on every 0, 1 assignment ~a for ~p,

C(~a) = 0 =⇒ Q~q.A′(~a, ~q) is false, and
C(~a) = 1 =⇒ Q~r.B′(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for ϕ.

We prove that the CP+∀red proof system for false QBFs has this property:
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I Theorem 12. CP+∀red for false QBFs admits monotone real feasible interpolation.

To prove this, we will actually prove a stronger theorem, about interpolants for all false
quantified sets of inequalities (not just those arising from false QBFs).

I Theorem 13. CP+∀red for inequalities admits monotone real feasible interpolation. That
is, let F be any false quantified set of inequalities of the form ∃~pQ~qQ~r.

[
A(~p, ~q) ∧ B(~p, ~r)

]
where A ∪ B includes all Boolean axioms, and where the coefficients of ~p are either all
non-negative in A or are all non-positive in B. If F has a CP+∀red-proof π, of length l,
then we can extract a monotone real circuit C of size polynomial in l and the number n of ~p
variables in F , such that C computes a Boolean function, and on any 0, 1 assignment ~a to ~p,

C(~a) = 0 =⇒ Q~q.A(~a, ~q) is false, and
C(~a) = 1 =⇒ Q~r.B(~a,~r) is false.

Such a C is called a monotone real interpolating circuit for F .

Proof Sketch. Let π = ∃~pQ~qQ~r. [I1, . . . , Il] be a CP+∀red refutation of F . The idea, as in
[33], is to associate with each inequality

I ≡
∑
k

ekpk +
∑
i

fiqi +
∑
j

gjrj ≥ D

in π, two inequalities

I0 ≡
∑
i

fiqi ≥ D0, I1 ≡
∑
j

gjrj ≥ D1

depending on the Boolean assignment ~a to the ~p variables, in such a way that
I0 and I1 together imply I|~a. (It suffices to ensure D0 +D1 ≥ D −

∑
k

ekak.)

I0 can be derived solely from the Q~q.A(~a, ~q) part in CP+∀red.
I1 can be derived solely from the Q~r.B(~a,~r) part in CP+∀red.

Then the inequalities corresponding to the last step of the proof, Il, are 0 ≥ D0 and 0 ≥ D1,
with D0 +D1 ≥ 1. Hence D0 > 0 =⇒ ~Q~q.A(~a, ~q) is false, and D1 > 0 =⇒ ~Q~r.B(~a,~r) is
false. Note that we only need to compute one of the values D0, D1 to identify a false part of
F . Furthermore, we will show that if all the coefficients ek in B(~p, ~r) are non-positive, then
D1 can be computed by a real monotone circuit of size O(nl). If all the coefficients ek in
A(~p, ~q) are non-negative, then we will show that −D0 can be computed by a real monotone
circuit of size O(nl). (The inputs to the circuit are an assignment ~a to the ~p variables.)
Applying the unary non-decreasing threshold function D1 > 0? or −D0 ≥ 0? to its output
will then give a monotone real interpolating circuit for F . J

Using monotone interpolation (Theorem 12), we now prove an unconditional lower bound
for the CP+∀red proof system, which is based on the false clique-co-clique formulas from [9].

I Definition 14. Fix positive integers k, n with k ≤ n. CliqueCoCliquen,k is the class of
QBFs of the form ∃~pQ~qQ~r. [An,k(~p, ~q) ∧Bn,k(~p, ~r)] where

~p is the set of variables {puv | 1 ≤ u < v ≤ n}. An assignment to ~p picks a set of edges,
and thus an n-vertex graph that we denote G~p.
Q~q. An,k(~p, ~q) is a QBF expressing the property that G~p has a clique of size k.
Q~r. Bn,k(~p, ~r) is a QBF expressing the property that G~p has no clique of size k.
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Any QBF in CliqueCoCliquen,k expresses the clique-co-clique principle (there is a graph
both containing and not containing a k-clique) and is obviously false. In [9], a particular
QBF ϕn ∈ CliqueCoCliquen,n/2 of size polynomial in n is described. It can be easily
generalised to QBFs ϕn,k ∈ CliqueCoCliquen,k of size polynomial in n.

Let Φn,k be any QBF in CliqueCoClique, and suppose that it has a CP+∀red proof of
length l. From Theorem 12, we obtain a monotone real circuit C of size O(l+n2) computing
a Boolean function, such that for every 0, 1 input vector ~a of length

(
n
2
)
encoding a graph G,

C(~a) = 1 ⇐⇒ G has a k clique.
In [33], Pudlák showed the following exponential lower bound on the size of real monotone

circuits interpolating the famous “clique-color” encodings.

I Theorem 15 ([33]). Suppose that the inputs for a monotone real circuit C are 0, 1 vectors
of length

(
n
2
)
encoding in the natural way graphs on an n-element set. Suppose that C

outputs 1 on all cliques of size k and outputs 0 on all complete (k − 1)-partite graphs, where
k = b 1

8 (n/ logn)2/3c. Then the size of the circuit is at least 2Ω((n/ logn)1/3).

(In some earlier literature, clique-color has been referred to as clique-co-clique. However,
this is misleading because the clique-color encoding is weaker than Φn,k in the following
sense. The clique-color encoding says that there exists a graph which has a k-clique and is
complete (k − 1)-partite (maximal (k − 1)-colorable). A graph may neither have a k-clique
nor be complete (k − 1)-partite, so both parts of the clique-color formula may be false. Our
clique-co-clique formulas, on the other hand, always have exactly one true part.)

Since complete (k − 1)-partite graphs have no k-clique, the real monotone interpolating
circuit C we obtain from a CP+∀red proof of Φn,k also satisfies the premise of Theorem 15.
Hence, C must have size exponential in n. But C’s size is polynomially related to the length
of the CP+∀red proof of Φn,k. We have thus obtained the following:

I Corollary 16. For k = b 1
8 (n/ logn)2/3c, any false QBF Φn,k ∈ CliqueCoCliquen,k

requires proofs of length exponential in n in the CP+∀red proof system. In particular, the
QBF ϕn,k from Definition 14 requires proofs of length exponential in |ϕn,k| in CP+∀red.

6 Relative power of CP+∀red and other QBF proof systems

In this section we relate the power of CP+∀red with other well known QBF proof systems.

I Theorem 17. CP+∀red is exponentially stronger than Q-Res and QU-Res.

Proof. By Lemma 7, CP+∀red p-simulates QU-Res (and hence Q-Res), and is thus at least as
strong as them. From classical proof complexity we know that false CNF formulas based on
the pigeonhole principle are easy for Cutting Planes proof system [19] but hard for resolution
[27]. Therefore CP+∀red is exponentially more powerful than any QBF proof system based
on resolution (Q-Res, QU-Res, etc.); these systems cannot simulate CP+∀red. J

I Remark. Note that the separating QBFs have only existential quantification. However,
there are also separating QBFs using universal quantifiers.

This means that CP+∀red is stronger than the classical CDCL proof systems. However,
as we show next, it is weaker than even the base system of expansion solving.

I Theorem 18. CP+∀red and ∀Exp+Res are incomparable unless P/poly = TC0, i.e.,
∀Exp+Res cannot simulate CP+∀red.
If P/poly 6⊆ TC0 then CP+∀red cannot simulate ∀Exp+Res.

FSTTCS 2016
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Proof. In [28], Janota and Marques-Silva show that there exists a family of false QBFs
which are hard for ∀Exp+Res but easy to refute in Q-Res. As CP+∀red p-simulates Q-Res
(Lemma 7), we conclude that ∀Exp+Res cannot simulate CP+∀red.

For the second claim, let fn ∈ P/poly \ TC0 be computed by circuit family Cn of size
l(n) ∈ nO(1). We use Cn to express the obviously false sentence ∃x1 · · ·xn∀z.f(~x) 6= z.
Associate a variable ti with each gate gi in Cn, and consider the QBF

Q-fn ≡ ∃x1 · · ·xn∀z∃t1 · · · tl.(tl 6= z) ∧
l∧
i=1

(ti is consistent with the inputs to gate i).

The inner formula can be written as an O(l)-sized CNF, so Q-fn has size nO(1). Note that
Q-fn has a single universal variable z, and the (only) winning strategy for the universal
player is z = f(~x). If Q-fn has a proof of size polynomial in n, then by Theorem 8, this
strategy, and hence fn, are in TC0, a contradiction. On the other hand, from [8, Proposition
28], we know that the formula Q-fn can be refuted in ∀Exp+Res in O(n+ l) steps. (Here,
expand on both polarities of the single universal variable z, creating two copies t0i and t1i of
each variable ti. Inductively derive that for each b ∈ {0, 1}, tbi is consistent with the inputs
to gate i with the same polarity b, and with the circuit inputs xj which do not have any
polarity. Hence derive t0l = t1l . Since the clauses expressing tl 6= z on expansion give the unit
clauses ¬t1l and t0l , we obtain a contradiction.) J

I Theorem 19. Frege+∀red is exponentially stronger than CP+∀red:
Frege+∀red p-simulates CP+∀red, whereas CP+∀red does not simulate Frege+∀red.

Proof Sketch. In the classical (propositional) setting, Cook, Coullard and Turán [19] first
showed that Extended Frege p-simulates Cutting Planes. Then Goerdt [24] showed that even
Frege p-simulates Cutting Planes. Using techniques from [15], [19], and [24], we show that
the same simulation goes through with minor modifications for QBFs.

Since Frege is exponentially more powerful than Cutting Planes over propositional formulas
(as witnessed by the clique-colour formulas [33], see also Section 5), the converse simulation
fails, and CP+∀red and Frege+∀red are exponentially separated. J

There are also separating examples with non-trivial universal quantifiers. In Section 5, we
described a class of QBF formulas expressing the clique-co-clique principle. By Corollary 16,
none of them have short proofs in CP+∀red. We show that a particular member of this class
(i.e., a particular way of encoding clique-co-clique) has short proofs in Frege+∀red.

I Theorem 20. There is a Φn,k ∈ CliqueCoCliquen,k of size polynomial in n, with a
Frege+∀red proof of size polynomial in n.

7 Semantic cutting planes for QBFs

The classical Cutting Planes proof system can be extended to the semantic Cutting Planes
proof system by allowing the following semantic inference rule: from inequalities I ′, I ′′, we
can infer I in one step if every Boolean assignment satisfying both I ′ and I ′′ also satisfies I.
In [23], it is shown that semantic Cutting Planes is exponentially more powerful than Cutting
Planes. We now augment the system semantic Cutting Planes with the ∀-reduction rule as
defined for CP+∀red, to obtain a QBF version denoted semCP+∀red. In fact, in this system
we need only two rules, semantic inference and ∀-reduction, since the addition, multiplication
and division rules of Cutting Planes are also semantic inferences, and the Boolean axioms
can be semantically inferred from any inequality.
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It is clear that semCP+∀red is sound and complete. However it is not possible to verify
the semantic rule efficiently (unless P= NP).

As in CP+∀red, we call a semCP+∀red proof π a normal-form proof if ∀-red is applied
only to the rightmost universal variable. Since one can use Boolean axioms in semCP+∀red;
Lemma 5 is valid in semCP+∀red as well. That is one can convert any semCP+∀red proof π
into a normal form in polynomial time.

Clearly, SemCP+∀red is at least as powerful as CP+∀red. From classical proof complexity
we known that semantic Cutting Planes is exponentially more powerful than Cutting Planes [23].
That is, in [23, Theorem 2], it has been shown that for every n, there exists a CNF formula
Fn which has a short semantic Cutting Planes refutation but needs 2nΩ(1) lines to refute in
Cutting Planes. Thus semCP+∀red is also exponentially more powerful than CP+∀red, as
witnessed by these purely existentially quantified formulas.

In Theorem 8, we established strategy extraction from CP+∀red proofs. These results
hold for semCP+∀red proofs as well; if Ij is obtained by semantic inference, we do not
change the strategy functions and let σj−1

u = σju for every universal variable u. Thus all the
conditional lower bounds on CP+∀red (Corollary 9, Theorem 18) continue to hold:

I Corollary 21.
1. If PSPACE 6⊆ TC0, then for any fn ∈ PSPACE \ TC0, the false QBFs Qqbf-fn require

super-polynomial size proofs in semCP+∀red.
2. If P/poly 6⊆ TC0, then semCP+∀red cannot simulate ∀Exp+Res. For any fn ∈ P/poly\TC0,

the false QBFs Q-fn require super-polynomial size proofs in semCP+∀red.

For obtaining unconditional lower bounds, we need an analogue of real monotone interpol-
ation (Theorems 12, 13). For this, we adapt the corresponding proof technique used in the
classical case from [23]. Using their technique for semantic inference, and handling axioms
and ∀-reduction rules as in the proof of Theorem 13, everything goes through as desired.

I Theorem 22. SemCP+∀red admits monotone real feasible interpolation for false QBFs.

Using Theorem 22, we obtain an unconditional exponential lower bound for semCP+∀red,
analogous to Corollary 16.

I Corollary 23. For k = b 1
8 (n/ logn)2/3c, any false QBF Φn,k ∈ CliqueCoCliquen,k

requires proofs of length exponential in n in the semCP+∀red proof system. In particular, the
QBFs ϕn,k from Definition 14 require proofs of length exponential in |ϕn,k| in semCP+∀red.
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Abstract
We study two-player games played on the infinite graph of sentential forms induced by a context-
free grammar (that comes with an ownership partitioning of the non-terminals). The winning
condition is inclusion of the derived terminal word in the language of a finite automaton. Our
contribution is a new algorithm to decide the winning player and to compute her strategy. It is
based on a novel representation of all plays starting in a non-terminal. The representation uses the
domain of Boolean formulas over the transition monoid of the target automaton. The elements
of the monoid are essentially procedure summaries, and our approach can be seen as the first
summary-based algorithm for the synthesis of recursive programs. We show that our algorithm
has optimal (doubly exponential) time complexity, that it is compatible with recent antichain
optimizations, and that it admits a lazy evaluation strategy. Our preliminary experiments indeed
show encouraging results, indicating a speed up of three orders of magnitude over a competitor.
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1 Introduction

The motivation of our work is to generalize the language-theoretic approach to verification
of recursive programs [24, 29] to synthesis. Central to verification are queries L(G) ⊆ L(A),
where G is a context-free grammar representing the control-flow of a recursive program
and A is a finite automaton representing the specification. When moving to synthesis, we
replace the inclusion query by a strategy synthesis for an inclusion game. This means G
comes with an ownership partitioning of the non-terminals. It induces a game arena defined
by the sentential forms and the left-derivation relation (replace the leftmost non-terminal,
corresponds to executing the recursive program). The winning condition is inclusion in a
regular language given by a finite automaton A. To be precise, player prover tries to meet
the inclusion by deriving terminal words from the language or enforcing infinite derivations.
The goal of refuter is to disprove the inclusion by deriving a word outside L(A).

For the verification of recursive programs, the two major paradigms are summarization
[37, 33] and saturation [9, 18]. Procedure summaries compute the effect of a procedure in
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the form of an input-output relation. Saturation techniques compute the pre∗-image over the
configurations of a pushdown system (including the stack). Both were extensively studied,
optimized, and implemented [35, 41, 6, 7]. What speaks for summaries is that they seem to
be used more often, as witnessed by the vast majority of verification tools participating in
the software verification competition [6, 7]. The reason, besides simpler implementability,
may be that the stack maintained by the pre∗-construction increases the search space.

Saturation has been lifted to games and synthesis in [13, 22], from which closest to our
setting is the work of Cachat [13], where the game arena is defined by a pushdown system
and the winning condition is given by a regular set of goal configurations, and the work
of Muscholl, Schwentick, and Segoufin [30], where a problem similar to ours is solved by a
reduction to [13]. In this paper1, we fill in the empty spot in the picture and propose a solver
and synthesis method for context-free inclusion games based on summaries.

Problem \ Method Saturation Summarization
Verification [9, 18] [37, 33]
Synthesis [13, 30, 22]

Overview of Our Method. Our main contribution is a novel representation of inclusion
games that combines well with efficient methods from algorithmic verification (see below).
The basic data structure are the elements of the transition monoid of the automaton A,
called boxes. Boxes are relations over the states of A that capture the state changes on A
induced by terminal words [12]. As such, they correspond to procedure summaries. The
set of all plays starting in a non-terminal yields a (typically infinite) tree. We show how to
represent this tree by a (finite) negation-free Boolean formula over the transition monoid,
where conjunction and disjunction represent the behavior of the players on the inner nodes.

To compute the representation, we employ a fixed-point iteration on a system of equations
that reflects closely the rules of the grammar (and hence the shape of the tree). Indeed, we
simultaneously compute the formulas for all non-terminals. In the fixed-point computation, a
strategy of prover to enforce an infinite play naturally yields a formula equivalent to false. For
the domain to be finite, we work modulo logical equivalence. The order is implication. Key
to the fixed-point computations is the following compositionality: The formula describing the
plays from a sentential form αβ can be obtained by appropriately composing the formulas
for α and β. Indeed, since we consider left-derivations, each play starting in αβ will have a
prefix that coincides with a maximal play starting in α, followed by a suffix that essentially
is a play from β. Composition is monotonic wrt. implication.

Having a finite representation for the set of plays starting in each non-terminal has several
applications. With compositionality, we can construct the formulas for all sentential forms.
This allows us to decide whether a sentential form is in the winning region of a player: We
compute the formula and check whether it is rejecting in the sense that refuter can enforce
the derivation of a word rejected by the automaton. The latter amounts to evaluating the
formula under the assignment that sets to true the rejecting boxes. When a sentential form
is found to belong to the winning region of a player, we show how to compute a winning
strategy, explained here for refuter. We transform the formula to conjunctive normal form
(CNF). On CNFs, we define so-called choice functions that select a box from each clause.
We define a strategy such that all conforming plays end in a terminal word represented by a

1 The full version is available as technical report [25].
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chosen box. Instantiating the strategy for a choice function that only picks rejecting boxes
(always possible if the initial formula is rejecting) yields a winning strategy for refuter.

Complexity and Efficiency. We show that our algorithm is in 2EXPTIME, which is tight
by [30]. Cachat’s algorithm is singly exponential and our input instances can be reduced to
his with an exponential blow-up, which together also gives a doubly exponential procedure.
The complexity of the reduction comes from that it must determinize the automaton A [30].

Our domain is compatible with algorithmic techniques that have proven efficient in
a number of applications (see Section 8). We show how to adapt two heuristics to our
fixed-point computation over formulas over boxes, namely antichains from [19, 3, 4] and lazy
evaluation inspired by [17]. We also discuss the compatibility of our technique with recent
algorithms for the analysis of well-structured systems. It is not immediate how to use the
same heuristics for Cachat’s domain of automata. Moreover, the determinization within the
reduction to Cachat’s method does not offer much opportunities for optimization, which
means there is one level of exponential complexity that is hardly amenable to heuristics.

In preliminary experiments, we have compared an implementation of Cachat’s saturation-
based algorithm with our new summary-based algorithm. The benchmarks were generated
according to the Tabakov-Vardi random automata model [40] that we adapted to grammars.
The running times of our algorithm were consistently better by three orders of magnitude
(without the aforementioned optimizations). This supports our conjecture that keeping the
stack has a negative impact on search procedures, and summaries should be preferable.

2 Inclusion Games on Context-Free Grammars

A context-free grammar (CFG) is a tuple G = (N,T, P ), where N is a finite set of non-
terminals, T is a finite set of terminals with N ∩ T = ∅, and P ⊆ N × ϑ is a finite set of
production rules. Here, ϑ = (N ∪ T )∗ denotes the set of sentential forms. We write X → η

if (X, η) ∈ P . We assume that every non-terminal is the left-hand side of some rule. The
left-derivation relation⇒L replaces the leftmost non-terminal X in α by the right-hand side of
a rule. Formally, α⇒L β if α = wXγ with w ∈ T ∗, β = wηγ, and there is a rule X → η ∈ P .
We use w to refer to terminal words (so that a following non-terminal is understood to be
leftmost). We consider CFGs that come with an ownership partitioning N = N© ·∪N� of the
set of non-terminals. We say that the non-terminals in N FF are owned by player FF ∈ {©,�}.
The ownership partitioning is lifted to the sentential forms (ϑ = ϑ© ·∪ϑ�) as follows: α ∈ ϑ�
if the leftmost non-terminal in α is owned by �, and ϑ© = ϑ \ ϑ�. In particular, © owns all
terminal words. Combined with the left-derivation relation, this yields a game arena.

I Definition 1. Let G = (N© ·∪N�, T, P ) be a CFG with ownership partitioning. The arena
induced by G is the directed graph (ϑ© ·∪ϑ�,⇒L).

A play p = p0p1 . . . is a finite or infinite path in the arena. Being a path means pi ⇒L pi+1 for
all positions. If it is finite, the path ends in a vertex denoted plast ∈ ϑ. A path corresponds
to a sequence of left-derivations, where for each leftmost non-terminal the owning player
selects the rule that should be applied. A play is maximal if it has infinite length or if the
last position is a terminal word.

The winning condition of the game is defined by inclusion or non-inclusion in a regular
language (depending on who is the player) for the terminal words derived in maximal plays.
If the maximal play is infinite, it does not derive a terminal word and satisfies inclusion. The
regular language is given by a (non-deterministic) finite automaton A = (T,Q, q0, QF ,→).
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Here, T is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, QF ⊆ Q is
the set of final states, and → ⊆ Q×T ×Q is the transition relation. Instead of (q, a, q′) ∈ →,
we write q a→ q′ and extend the relation to words: q w→ q′ means there is a sequence of states
starting in q and ending in q′ labeled by w. The language L(A) consists of all words w ∈ T ∗
with q0

w→ qf for some qf ∈ QF . We write L(A) = T ∗ \ L(A) for the complement language.
From now on, we use A = (T,Q, q0, QF ,→) for finite automata and G = (N© ·∪N�, T, P )

for grammars with ownership. Note that both use the terminal symbols T .

I Definition 2. The inclusion game and the non-inclusion game wrt. A on the arena induced
by G are defined by the following winning conditions. A maximal play p satisfies the inclusion
winning condition if it is either infinite or we have plast ∈ L(A). A maximal play satisfies the
non-inclusion winning condition if it is finite and plast ∈ L(A).

The two games are complementary: For every maximal play, exactly one of the winning
conditions is satisfied. We will fix player © as the refuter, the player wanting plays to satisfy
non-inclusion, which is a reachability condition. The opponent � is the prover, wanting plays
to satisfy inclusion, which is a safety condition. Since refuter has a single goal to achieve and
has to enforce termination, we will always explain our constructions from refuter’s point of
view. To win, prover just has to ensure that she stays in her winning region. She does not
need to care about termination.

A strategy for player FF ∈ {©,�} is a function that takes a non-maximal play p with
plast ∈ ϑ FF (it is FF ’s turn) and returns a successor of this last position. A play conforms
to a strategy if whenever it is the turn of FF , her next move coincides with the position
returned by the strategy. A strategy is winning from a position p0 if every play starting in p0
that is conform to the strategy eventually satisfies the winning condition of the game. The
winning region for a player is the set of all positions from which the player has a winning
strategy.

I Example 3. Consider the grammar Gex = ({X,Y }, {a, b}, {X → aY,X → ε, Y → bX}) .
The automaton Aex is given in Figure 1 and accepts (ab)∗. If refuter owns X and prover
owns Y , then prover has a winning strategy for the inclusion game from position X. Indeed,
finite plays only derive words in (ab)∗. Moreover, if refuter enforces an infinite derivation,
prover wins inclusion as no terminal word is being derived. Refuter can win non-inclusion
starting from Y . After prover has chosen Y → bX, refuter selects X → ε to derive b 6∈ (ab)∗.

Our contribution is an algorithm to compute (a representation of) both, the winning region
of the non-inclusion game for © and the winning region of the inclusion game for �.

3 From Inclusion Games to Fixed Points

We give a summary-based representation of the set of all plays from each non-terminal and a
fixed-point analysis to compute it. We lift the information to the sentential forms.

Domain. The idea of the analysis domain is to use Boolean formulas over words. To obtain
a finite set of propositions, we consider words equivalent that induce the same state changes
on A, denoted by ∼A. The winning condition is insensitive to the choice of ∼A-equivalent
words. This means it is sufficient to take formulas over ∼A-equivalence classes.

To finitely represent the ∼A-equivalence classes, we rely on the transition monoid of A,
defined as MA = (P(Q×Q), ; , id). We refer to the elements ρ, τ ∈ MA as boxes. Since
boxes are relations over the states of A, their relational composition is defined as usual,



L. Holík, R. Meyer, and S. Muskalla 41:5

q0 q1

a

b

id = ρε
ρa ρb ρab ρba ρaa = ρbb

Figure 1 The automaton Aex accepting (ab)∗ and all its boxes with non-empty language. The
first dash on each side of a box represents state q0, the second dash represents q1.

ρ; τ = {(q, q′′) | ∃q′ ∈ Q : (q, q′) ∈ ρ and (q′, q′′) ∈ τ}. Relational composition is associative.
The identity box id = {(q, q) | q ∈ Q} is the neutral element wrt. relational composition.

A box ρ represents the language L(ρ) = {w ∈ L(ρ) | ∀q, q′ ∈ Q : q w−→ q′ iff (q, q′) ∈ ρ}.
That is, the words induce the state changes specified by the box. Hence, L(ρ) is an equivalence
class of ∼A, finitely represented by ρ. The function ρ− : T ∗ → MA maps w to the unique
box ρw representing the word, w ∈ L(ρw) . More explicitly, ρε = id, ρa = {(q, q′) | q a→ q′}
for all a ∈ T , and ρuv = ρu; ρv. The image ρT∗ contains exactly the boxes ρ with L(ρ) 6= ∅.
Figure 1 illustrates the representation of words as boxes.

The terminal words generated by maximal plays are represented by boxes, disjunction
gives the alternatives of refuter, and conjunction expresses the options for prover. The
set of plays from a given position is thus represented by a formula F from the set BFA of
negation-free Boolean formulas over the transition monoid (propositions are boxes). This
set includes the unsatisfiable formula false. We use the rules false ∧ F = F ∧ false = false
and false ∨ F = F ∨ false = F to evaluate conjunctions and disjunctions involving false on
the syntactical level. As a consequence, false is the only syntactic representation of the
unsatisfiable formula. This will simplify the definition of relational composition. From now
on and without further mentioning, F and G will refer to formulas from BFA.

Our goal is to decide whether refuter can force the plays from an initial position to end
in a terminal word rejected by A. To mimic this, we define a formula to be rejecting if it is
satisfied under the assignment ν : MA → {true, false} such that ν(ρ) = true if and only if ρ
does not contain a pair (q0, qf ) with qf ∈ QF .

To use formulas in a Kleene iteration, we have to define a partial ordering on them.
Intuitively, F should be smaller than G if G makes it easier for refuter to win. Taking the
logical perspective, it is easier for refuter to win if F implies G. Implication on BFA is not
antisymmetric. To factor out the symmetries, we reason modulo logical equivalence, BF/⇔.
Every formula is understood as a representative of the class of logically equivalent formulas
of BFA. Extending ⇒ to BF/⇔ by comparing representatives then yields a partial order.
The least element of the partial order is the equivalence class of false.

Operations. We combine formulas by conjunction, disjunction, and by an operation of
relational composition that lifts ; from the transition monoid to formulas over boxes. To
explain the definition of relational composition, note that every finite maximal play from αβ

proceeds in two phases. It starts with a maximal play turning α into a terminal word, say w,
followed by a play from wβ. Since there are no more derivations for w, the play from wβ

coincides with a play from β, except that all sentential forms have a prefix w.
Let F and G represent all plays starting in α and β, respectively. In F , terminal words

like w are represented by boxes ρ. We append the plays from β by replacing ρ with ρ;G. To
take into account all plays from α, we do this replacement for all boxes in F . It remains to
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41:6 Summaries for Context-Free Games

add the prefix w to the sentential forms in the plays from β. In ρ;G, every box τ in G is
replaced by ρ; τ . The so-defined formula F ;G will represent all plays from αβ.

I Example 4. Let F = ρa ∨ ρb and G = ρc ∧ ρd. We have (ρa ∨ ρb); (ρc ∧ ρd) = ρa; (ρc ∧
ρd) ∨ ρb; (ρc ∧ ρd) = (ρa; ρc ∧ ρa; ρd) ∨ (ρb; ρc ∧ ρb; ρd) . The first equality replaces ρa and
ρb by ρa;G and ρb;G, respectively. The second equality prefixes ρc and ρd in G by the
corresponding box ρa or ρb.

I Definition 5. Relational composition over BFA is defined by F ; false = false;G = false
and for composite formulas (? ∈ {∧,∨}, ρ ∈ MA) by

(F1 ? F2);G = F1;G ? F2;G and ρ; (G1 ? G2) = ρ;G1 ? ρ;G2 .

Note that the composition of two non-false formulas is not false. Therefore, the result of a
relational composition is false if and only if at least one of the arguments was false.

Relational composition equips the set of formulas with a monoid structure. In particular,
relational composition is associative. For a fixed-point iteration, the operations also have to
be monotonic wrt. ⇒. For conjunction and disjunction, monotonicity obviously holds.

I Lemma 6. If F ⇒ F ′ and G⇒ G′, then F ;G⇒ F ′;G′.

We lift the three operations to⇔-equivalence classes by applying them to arbitrary representa-
tives. Since implication is transitive, monotonicity of the operations ensures well-definedness.
Moreover, the operations still behave monotonically on BF/⇔. From now on, we can thus
identify formulas with the classes they represent.

System of Equations. We introduce one variable ∆X for each non-terminal X ∈ N .
Terminals a ∈ T yield boxes, and we write ∆a for ρa. We lift the notation ∆− to sentential
forms: ∆ε = id and ∆αβ = ∆α; ∆β . This means concatenation in rules is replaced by
relational composition. All rules for the same non-terminal are combined into one equation
using disjunction or conjunction, depending on who is the owner of the non-terminal.

I Definition 7. The system of equations (over BF/⇔) induced by G and A has one equation
for each non-terminal X ∈ N FF with FF ∈ {©,�}. If X → η1, . . . , X → ηk are all rules
with X as their left-hand side, the equation is ∆X = ∆η1 ∧ · · · ∧ ∆ηk if X ∈ N� and
∆X = ∆η1 ∨ · · · ∨∆ηk if X ∈ N©.

With Lemma 6, for each non-terminal X we can understand the right-hand side of the
associated equation as a monotonic function fX : (BF/⇔)N → BF/⇔. It takes as input a
vector of formulas (one for each non-terminal) and computes a new formula for ∆X . We
combine the functions for each non-terminal to a single function f : (BF/⇔)N → (BF/⇔)N .
It is monotonic on the product domain wrt. the product order ⇒N .

Since BF/⇔ with ⇒ is a finite bottomed partial order, there is a unique least solution σ
for the equation ∆ = f(∆), namely σ =

⊔
i∈N f

i(⊥) [15]. The least element of the product
domain is the vector with the ⇔-equivalence class of false in every component. Note that the
solution is computed by iteratively applying f until a fixed point is reached. This procedure
terminates since the chain ⊥ ⇒N f(⊥)⇒N f(f(⊥))⇒N . . . stabilizes on a finite domain.

The solution σ : N → BF/⇔ yields a value σX for each non-terminal X ∈ N . We lift the
notation to sentential forms by σε = id, σa = ρa for all a ∈ T , and σαβ = σα;σβ . From now
on, σ will always be the least solution to a system of equations. The system will be clear
from the context (either G, A from the development or Gex , Aex from the running example).
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I Example 8. For Gex and Aex from Example 3, the system of equations consists of
∆X = ∆a; ∆Y ∨∆ε = ρa; ∆Y ∨ id and ∆Y = ∆b; ∆X = ρb; ∆X . Its least solution is σX =
id∨ρab and σY = ρb. To terminate the iteration, use ρbab = ρb.

The main result in this section states that the fixed point σα is equivalent to the tree Tα of
all plays starting in α. To be precise, we understand the tree as a (typically infinite) formula
where inner nodes owned by refuter yield disjunctions, prover’s nodes are conjunctions, and
terminal words are boxes. For the proof (see [25]), we develop machinery for infinite formulas.

I Theorem 9. Tα ⇔ σα.

4 Winning Regions and Strategy Synthesis

Define the set of sentential forms W⊆L(A) = {α ∈ ϑ | σα is not rejecting } and denote the
complement by W 6⊆L(A) = ϑ \W⊆L(A) = {α ∈ ϑ | σα is rejecting }. Our goal is to prove the
following result in a constructive way, by synthesizing strategies guided by the fixed-point
solution to the system of equations.

I Theorem 10. Inclusion games are determined: ϑ = W⊆L(A) ∪· W 6⊆L(A), where W⊆L(A) is
the winning region of prover and W 6⊆L(A) is the winning region of refuter.

As a consequence, it is decidable whether a given sentential form α is winning for a player:
Compute the formula σα and evaluate it under ν to check whether it is rejecting.

It has been shown in [36] that for all games on pushdown systems with ω-regular winning
conditions, the winning regions are regular. Indeed, the winning region of the non-inclusion
game can be accepted by a deterministic automaton. The set of equivalence classes of
formulas forms its set of control states, the equivalence class of id is the initial state and
rejecting formulas are final states. If the automaton in state F reads symbol x ∈ N ∪ T , it
switches to the state F ;σx.

Representing sentential forms by formulas is too imprecise to do strategy synthesis.
(In fact, the leftmost non-terminal is not even encoded in the formula.) Since relational
composition is associative, we can represent the set of all sentential forms α = wXβ by a set
of triples (σw, X, σβ), where σw and σβ are taken from a finite set of formulas (up to logical
equivalence) and X is a non-terminal from a finite set. This finite representation will be
sufficient for the strategy synthesis. Our synthesis operates on normalized formulas in CNF.

Conjunctive Normal Form. A formula in CNF is a conjunction of clauses, each clause being
a disjunction of boxes. We use set notation and write clauses as sets of boxes and formulas
as sets of clauses. The set of CNF-formulas over MA is thus CNFA = P(P(MA)). Identify
true = {} and false = {{}}. In this section, all formulas will stem from CNFA.

When computing a disjunction, we have to apply distributivity to obtain a CNF.

I Lemma 11. F ∨G⇔ {K ∪H | K ∈ F,H ∈ G} and F ∧G⇔ F ∪G.

As the result of the relational composition F ;G of CNF-formulas, we obtain a formula with
three alternations between conjunction and disjunction. We apply distributivity to normalize
F ;G. Lemma 13 gives a closed-form representation of the result. To understand the idea,
consider the composition of one clause with a CNF.

I Example 12. Consider F ;G = (ρa ∨ ρb); (ρc ∧ ρd) = (ρa; ρc ∧ ρa; ρd) ∨ (ρb; ρc ∧ ρb; ρd).
Distributivity yields (ρa; ρc ∨ ρb; ρc) ∧ (ρa; ρc ∨ ρb; ρd) ∧ (ρa; ρd ∨ ρb; ρc) ∧ (ρa; ρd ∨ ρb; ρd).
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To turn F ;G to CNF, we normalize the compositionK;G for every clauseK ∈ F . The formula
K;G is an alternation of disjunction (not in the example), conjunction, and disjunction.
Distributivity, when applied to the topmost two operations, selects for every box ρ ∈ K a
clause H ∈ G to compose ρ with. This justifies the following set-theoretic characterization.

I Lemma 13. F ;G⇔
⋃
K∈F

⋃
z:K→G

{⋃
ρ∈K ρ; z(ρ)

}
.

Inclusion (for Prover). Prover wins on infinite plays, and therefore does not have to care
about termination. This yields a simple positional winning strategy. We focus on the more
complex case of refuter.

I Theorem 14. The strategy s⊆L(A) that applies a rule such that the formula for the resulting
position is not rejecting (if possible) is a winning strategy for prover for the inclusion game
from all positions in W⊆L(A).

Non-Inclusion (for Refuter). A CNF-formula is rejecting iff for each clause chosen by prover,
refuter can select a rejecting box in this clause. We formalize the selection process using
the notion of choice functions. A choice function on F ∈ CNFA is a function c : F → MA

selecting a box from each clause, c(K) ∈ K for all K ∈ F . We show that there is a strategy
for refuter to derive a terminal word from one of the chosen boxes. In particular, the strategy
will only generate finite plays. Note that a choice function can only exist if F does not
contain the empty clause. Otherwise, the formula is equivalent to false, and refuter cannot
enforce termination of the derivation process.

We show that by appropriately selecting the moves of refuter, we can refine the choice
function along each play, independent on the choices of prover. Given a choice function c on
a CNF-formula F , a choice function c′ on G refines c if {c′(H) | H ∈ G} ⊆ {c(K) | K ∈ F},
denoted by c′(G) ⊆ c(F ). Given equivalent CNF-formulas, a choice function on the one can
be refined to a choice function on the other formula. Hence, we can deal with representative
formulas in the following development.

I Lemma 15. Consider F ⇒ G. For any choice function c on F , there is a choice function
c′ on G that refines it.

The strategy for refuter has to enforce termination. To this end, we consider formulas
obtained from Kleene approximants. When composing the formulas for the non-terminals
to obtain a formula for a sentential form, we use an intermediary solution of the Kleene
iteration instead of the fixed-point solution. Define a sequence of levels lvl associated to a
sentential form α to be a sequence of natural numbers of the same length as α. The formula
σlvl
α corresponding to α and lvl is defined by σia = {{ρa}} for all a ∈ T ∪{ε}, σiX the solution

to X from the ith Kleene iteration, and σlvl.lvl′
α.β = σlvl

α ;σlvl′
β . A choice function for α and lvl is

a choice function on σlvl
α . Note that σia is independent of i for terminals a. Moreover, there

is an i0 so that σi0X = σX for all non-terminals X. This means a choice function on σα can
be understood as a choice function on σi0α . Here, we use a single number i0 to represent a
sequence lvl = i0 . . . i0 of the appropriate length.

By definition, σ0
X is false for all non-terminals, and false propagates through relational

composition by definition. We combine this observation with the fact that choice functions
do not exist on formulas that are equivalent to false.

I Lemma 16. If there is a choice function for α and lvl, then lvl does not assign zero to
any non-terminal X in α.
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The lemma has an important consequence. Consider a sentential form α with an associated
sequence lvl ∈ 0∗ and a choice function c for α and lvl. Then α has to be a terminal word,
α = w ∈ T ∗, σlvl

α = {{ρw}}, and the choice function has to select ρw. In particular, w itself
forms a maximal play from this position on, and indeed the play ends in a word whose box
is contained in the image of the choice function.

Consider now α = wXβ and lvl an associated sequence of levels. Assume lvl assigns a
positive value to all non-terminals. Let j be the position of X in α and let i = lvlj be the
corresponding entry of lvl. We split lvl = lvl ′.i.lvl ′′ into the prefix for w, the entry i for X,
and the suffix for β. For each rule X → η, we define lvlη = lvl ′.(i− 1) . . . (i− 1).lvl ′′ to be
the sequence associated to wηβ. It coincides with lvl on w and β and has entry i− 1 for all
symbols in η. Note that for a terminal word, the formula is independent of the associated
level, so we have σlvl′.i

wX = σiwX and σlvl′.(i−1)...(i−1)
wη = σi−1

wη .
We show that we can (1) always refine a choice function c on σlvl

α along the moves of
prover and (2) whenever it is refuter’s turn, pick a specific move to refine c.

I Lemma 17. Let c be a choice function for α = wXβ and lvl.
(1) If X ∈ N�, for all X → η there is a choice function cη for wηβ and lvlη that refines c.
(2) If X ∈ N©, there is X → η and a choice function cη for wηβ and lvlη that refines c.

Proof. We prove (2). We show that there is a rule X → η and a choice function cη on σlvlη
wηβ

refining c. Towards a contradiction, assume this is not the case. Then for each rule X → η,
there is at least one clause K ′′η of σlvlη

wηβ that does not contain a box in the image of c. By
Lemma 13, this clause is defined by a clause ρw;K ′η of σi−1

wη and a function zη mapping the
boxes from this clause to σlvl′′

β .
We have σiX =

∨
X→η σ

i−1
η . A clause of σiwX is thus (Lemma 11) of the form

K = ρw; (
⋃
X→ηKη) =

⋃
X→η ρw;Kη, where each Kη is a clause of σi−1

η . We construct
the clause K ′ = ρw; (

⋃
X→ηK

′
η) of σiwX using the K ′η from above. On this clause, we define

the map z′ =
⋃
X→η zη that takes a box ρw; ρ ∈ ρw;K ′η and returns zη(ρw; ρ). (If a box ρw; ρ

is contained in ρw;K ′η for several η, pick an arbitrary η among these.) By Lemma 13, K ′
and z′ define a clause of σlvl

α . The choice function c selects a box ρw; ρ; τ out of this clause,
where there is a rule X → η such that ρ ∈ K ′η and τ ∈ z′(ρw; ρ) = zη(ρw; ρ). This box is also
contained in K ′′η . A contradiction to the assumption that no box from K ′′η is in the image
of c. J

Notice that the sequence lvlη is smaller than lvl in the following ordering ≺ on N∗. Given
v, w ∈ N∗, we define v ≺ w if there are decompositions v = xyz and w = xiz so that i > 0 is
a positive number and y ∈ N∗ is a sequence of numbers that are all strictly smaller than i.
Note that requiring i to be positive will prevent the sequence xz from being smaller than
x0z, since we are not allowed to replace zeros by ε.

The next lemma states that ≺ is well founded. Consequently, the number of derivations
wXβ ⇒ wηβ following the strategy that refines an initial choice function will be finite.

I Lemma 18. ≺ on N∗ is well founded with minimal elements 0∗.

Lemma 18 is used in the main technical result of this section. Proposition 19 in particular
says that all maximal plays that conform to sα,c are finite. If σα is rejecting, there is a choice
function on σα that only selects rejecting boxes. The desired theorem is then immediate.

I Proposition 19. Let c be a choice function on σα. There is a strategy sα,c such that all
maximal plays starting in α that conform to sα,c end in a terminal word w with ρw ∈ c(σα).
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Proof. We show the following stronger claim: Given any triple consisting of a sentential
form α, an associated sequence of levels lvl, and a choice function c for α and lvl, there is a
strategy sα,c such that all maximal plays conform to it and starting in α end in a terminal
word w with ρw ∈ {c(K) | K ∈ σα} . This proves the proposition by choosing α and c as
given and lvl = i0...i0, where i0 ∈ N is a number such that σ = σi0 .

To show the claim, note that ≺ on N∗ is well founded and the minimal elements are
exactly 0∗ by Lemma 18, and lvlη ≺ lvl. This means we can combine Lemma 16 and
Lemma 17 (for the step case) into a Noetherian induction. The latter lemma does not state
that lvlη assigns a positive value to each non-terminal, which was a requirement on lvl. This
follows from Lemma 16 and the fact that cη is a choice function. The strategy sα,c for refuter
always selects the rule that affords a refinement of the initial choice function c. J

I Theorem 20. Let α ∈W 6⊆L(A) and let c select a rejecting box in each clause of σα. Then
sα,c is a winning strategy for refuter for the non-inclusion game played from α.

There are several ways of implementing a winning strategy for refuter. First, the strategy sα,c
from Proposition 19 can be implemented using bounded memory, but one then needs linear
time to decide which move to pick. Alternatively, it can be implemented using a pushdown,
which then only needs constant time to pick moves. Second, sα,c is not positional, but one
can obtain a position strategy by a breadth-first search in the tree of all plays from α.

I Example 21. In the running example, formula σY = {{ρb}} is rejecting. In fact, refuter
can win the non-inclusion game played from Y . The initial choice function on σY has to be
c({ρb}) = ρb. In the first step, prover has no alternative but Y → bX. Position bX has the
formula σbX = {{ρb}}; {{id, ρab}} = {{ρb, ρbab}} = {{ρb}}. Pick the same choice function
as before. The rule X → ε causes id to enter σX in the first Kleene step. This causes ρb to
enter σbX also in the first step. Indeed, by choosing X → ε refuter wins non-inclusion.

5 Complexity

We show that deciding whether refuter has a winning strategy for non-inclusion from a
given position is a 2EXPTIME-complete problem. Moreover, the algorithm presented in the
previous sections achieves this optimal time complexity. Our proof of the lower bound follows
the proof of the analogue result for the games considered in [30].

I Theorem 22. Given a non-inclusion game and an initial position, deciding whether refuter
has a winning strategy from the specified position is 2EXPTIME-hard.

The following algorithm implements the fixed-point iteration discussed in Section 3, executed
on formulas in CNF (see the paragraph on CNF of Section 4).

I Algorithm 23. Given a non-inclusion game and an initial position α, the following algorithm
computes whether refuter has a winning strategy from the given position.
1. Set σ0

X = false for all X ∈ N . Set i = 0.
2. Do until σiX ⇔ σi−1

X for all X ∈ N : i = i+ 1; σi = f(σi−1).
3. Compute σα, and return true iff σα is rejecting.
Here, f is the function combining the right-hand sides of the equations as in Definition 7.

I Theorem 24. Given a non-inclusion game and an initial position, Algorithm 23
computes whether refuter has a winning strategy from the given position in time
O
(
|G|2 · 22|Q|

c1
+ |α| · 22|Q|

c2
)
for some constants c1, c2 ∈ N.
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The following corollary is an immediate consequence of Theorem 22 and Theorem 24.

I Corollary 25. Deciding whether refuter has a winning strategy for a given non-inclusion
game and an initial position is 2EXPTIME-complete.

One should note that the running time of the algorithm is only exponential in the size of the
automaton. If the automaton is assumed to be fixed, the running time of the algorithm is
polynomial in the size of the grammar and in the length l of the initial position. Namely, it
can be executed in O

(
|G|2 + l

)
steps.

Furthermore, the algorithm can solve games on the game arena induced by a grammar
not only in the case of the non-inclusion winning condition, but also in a more general setting,
e.g. if the winning condition is deriving a word in the regular target language after finitely
many steps.

6 Experiments

We have implemented our algorithm in C++ [1] and compared it to an implementation of
Cachat’s algorithm [13] for games on pushdown systems. Cachat’s input instances consist of
a pushdown system P with an ownership partitioning on the control states and an alternating
finite automaton over the stack alphabet of P (P -AFA). The first player wins by enforcing a
run into a configuration accepted by the P -AFA. Cachat’s algorithm constructs the winning
region of the first player by saturating the automaton.

To convert instances of our game to that of Cachat, we construct a pushdown system
P that encodes both the grammar G and the target automaton A. A sentential form wXβ

(where X is the leftmost non-terminal) will be represented in P by a configuration (Q,Xβ),
where Q is the set of states A can be in after processing w. The translation thus embeds a
determinized version of A in P . This may cause an exponential blow-up in the size of the
input instance, which reflects the worst case complexity: Our problem is 2EXPTIME-complete
while Cachat’s algorithm is exponential.

For the experiments, we generated random automata using the Tabakov-Vardi model [40].
The generator is parameterized in the number of letters and control states, the percentage of
final states, and the number of transitions per letter (given as a fraction of the number of
states). We adapt the model to generate also grammars with rules of the form X → aY b,
with parameters being the number of rules and non-terminals for each player, and the chances
of a, Y , and b to be present. Since sparse automata and grammars are likely to yield simpler
instances, we focus on dense examples.

For the parameters |Q|, |T |, |N©| and |N�|, we tried out several combinations. The entry
x/y/z in the table below stands for |Q| = x, |T | = y, |N©| = |N�| = z. For each combination,
we generated 50 random automata and grammars, applied three algorithms to them, and
measured how many instances could be solved within 10 seconds and how much time was
consumed for the instances that could be solved on average.

We compared: (1) Our algorithm with a naive Kleene iteration, i.e. all components of
the current solution are updated in each step. (2) Our algorithm with chaotic iteration
implemented using a worklist, i.e. only components whose dependencies have been updated
are modified. This is the common way of implementing a Kleene iteration. (3) Cachat’s
algorithm applied to our problem as described above. To improve the runtime, the target
automaton has been determinized and minimized before creating the pushdown system.

We ran our experiments on an Intel i7-6700K, 4GHz. The durations are milliseconds.
Already the naive implementation of Kleene iteration outperforms Cachat’s algorithm,

which was not able to solve any instance with parameters greater than 10/15/15. The

FSTTCS 2016



41:12 Summaries for Context-Free Games

worklist implementation is substantially faster, by three orders of magnitude on average.
This confirms our hypothesis: The stack content is more information than needed for safety
verification, and getting rid of it by moving to the summary domain speeds up the analysis.

One can also implement Cachat’s algorithm using a worklist, but due to the shape of the
instances resulting from the reduction (deterministic automata), this is not helpful. In our
experiments, the worklist variant was slower by at least one order of magnitude, even on
small examples.

naive Kleene worklist Kleene Cachat
avg %t/o avg %t/o avg %t/o

5/ 5/ 5 65.2 2 0.8 0 94.7 0
5/ 5/10 5.4 4 7.4 0 701.7 0
5/10/ 5 13.9 0 0.3 0 375.7 0
5/ 5/15 6.0 0 1.1 0 1618.6 0
5/10/10 32.0 2 122.1 0 2214.4 0
5/15/ 5 44.5 0 0.2 0 620.7 0
5/ 5/20 3.4 0 1.4 0 3434.6 4
5/10/15 217.7 0 7.4 0 5263.0 16

10/ 5/ 5 8.8 2 0.6 0 2737.8 2
10/ 5/10 9.0 6 69.8 0 6484.9 66
15/ 5/ 5 30.7 0 0.2 0 5442.4 52
10/10/ 5 9.7 0 0.2 0 7702.1 92
10/15/15 252.3 0 1.9 0 n/a 100
10/15/20 12.9 0 1.8 0 n/a 100

7 Algorithmic Considerations

We discuss how to further speed-up the worklist implementation by two heuristics prominent
in verification: Lazy evaluation [17] and antichains [19, 3, 4]. The heuristics are not meant to
be a contribution of the paper and they are not yet implemented. The point is to demonstrate
that the proposed summary domain combines well with algorithmic techniques. For both
heuristics, it is not clear to us how to apply them to the domain of alternating automata.

The idea of lazy evaluation is to keep composed formulas (F ∨ F ′);M symbolic, i.e.
we store them as a term rather than computing the resulting formula. When having to
evaluate the formula represented by the term, we only compute up to the point where the
value influences the overall answer. Consider the test whether (F ∨ F ′);M is rejecting. If
already F ;M is rejecting, the whole formula represented by the term will be rejecting and
the evaluation of F ′;M can be skipped.

The idea of the antichain optimization is to identify representative elements in the search
space that allow us to draw conclusions about all other elements. Here, the search space
consists of formulas (representing the intermediate steps of the fixed-point computation).
By Lemma 6, it is sufficient to reason modulo logical equivalence. This allows us to remove
redundant disjuncts and conjuncts, in particular, if F ⇒ G we can prune F from F ∨G and
G from F ∧G. When reasoning over CNFs, this removes from a formula all clauses that are
subsumed by other clauses. It is thus enough to store the CNFs in the form of antichains of
⊆-minimal clauses. The antichain approach benefits from a weaker notion of implication.

In Boolean satisfiability, the antichain optimization corresponds to the subsumption rule,
and it is known to have a limited impact on the performance of solvers. The setting we
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consider, however, is different. Our formulas are enriched during the computation by new
clauses (that are not derived from others as in SAT). The antichain optimization can therefore
be expected to yield better results for inclusion games and, in fact, has been successfully
implemented for automata models [19, 3, 4].

8 Related Work

We already discussed the relation with Cachat’s work [13]. Walukiewicz [42] studies games
given by a pushdown automaton with a parity function on the states. Similar to our case,
the derived strategies are implementable using a stack. The problem [42] is concerned with
is different from ours in several respects. The game aspect is given by the specification (a
µ-calculus formula), not by the system as in our case. Moreover, (infinite) parity games are
generally harder than safety: [42] is exponential both in the system and in the specification,
while our construction is exponential only in the specification. Piterman and Vardi [31]
study a similar variant of the problem and come up with a solution originating in the
automata-theoretic approach [28].

Walukiewicz reduces solving parity games on the infinite computation tree of a pushdown
system to solving parity games on a finite graph. To do so, instead of the full stack, only the
topmost stack symbol is stored. Whenever a push should be executed, one player guesses
the behavior of the game until the corresponding pop, i.e. she proposes a set of control
states. The other player can decide to skip the subgame between push and pop by selecting
a control state from the set, and the game continues. Alternatively, she can decide to verify
the subgame. In this case, the new symbol becomes top-of-stack, and the game continues
until it is popped. After the pop, the game ends, and which player wins is dependent on
whether the current control state is in the proposed set of states.

This approach can be applied to a context-free game to reduce it to a reachability game
on a doubly-exponentially-sized graph. Before applying a rule to the leftmost non-terminal
X, we let refuter propose a set of boxes that describes the effect of terminal words derivable
from X. Prover can either accept the proposal and select one of the boxes, or she verifies
the proposal. In the latter case, the rest of the sentential form can be dropped. A winning
strategy for refuter in the finite game has to guess the effect of each non-terminal, while our
method deterministically computes it: The guessed effects that will not lead to refuter losing
the subgame are exactly the sets of boxes occurring as the image of a choice function.

The work [30] considers active context-free games where in each turn, player A picks
the position of a non-terminal in the current sentential form and player B picks the rule
that is applied to the non-terminal. It is shown to be undecidable whether player A can
enforce the derivation of a word in a regular language. If one limits the moves of player A to
left-to-right strategies (skipped non-terminals cannot be touched again, the regular target
language may contain non-terminals), one obtains a game that is closely related to our
setting. In fact, the authors show that allowing player A to pick the rules for some of the
non-terminals does not increase the expressive power. Therefore, there are polynomial-time
reductions of our type of game to their type of game and vice versa. In [30], the focus lies on
establishing the lower bounds for the time complexity of various type of active context-free
games. The authors show that deciding the existence of a left-to-right winning strategy is
2EXPTIME-complete, like the problem considered in this paper (Section 5). The upper bound
is shown by using an exponential-time reduction to Walukiewicz [42], and they also present
an optimal algorithm that uses Cachat’s algorithm for pushdown systems. Our algorithm
also has optimal time complexity, but contrary to [30], it is based on procedure summaries
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rather than on saturation. The lower bound is shown by encoding an alternating Turing
machine with exponential space as a grammar game, and we adapted their proof to show
Theorem 22 in [25]. [30] was further elaborated on and generalized in [8, 34].

Methods for solving variants of pushdown games, related mostly to saturation (see [14] for
a survey on saturation-based methods), are implemented in several tools. [10] targets higher-
order pushdown systems, related to it is [11], [39] implements an optimized saturation-based
method, [23] solves the full case of parity games. [32] implements a type directed algorithm
not based on saturation. None of the tools implements procedure summaries, but some can
be used to solve instances of our problem. We plan to carry out a thorough comparison with
these implementations in the future.

Antichain heuristics, discussed in Section 7, were developed in the context of finite
automata and games [43, 44], and generalized to Büchi automata [19, 3, 4] with a fixed point
over sets of boxes. Our lazy evaluation is inspired by [17]. Our framework is compatible
with techniques for reachability in well-structured transition systems (WSTS) that proceed
backwards [2]. We believe that techniques like [27, 20, 26, 5, 21] can be adapted to our
setting. To instantiate general WSTS reachability algorithms, the ordering of configurations
would be based on implication among formulas, the target set would be the upward closure
of the assignment σ where σS is the conjunction of all rejecting boxes and σX = false for
every other X ∈ N , and the initial state would be the assignment ⊥. Another interesting
possibility would be to adapt Newton iteration [16].

The transition monoid can be traced back at least to Büchi [12], and was prominently
used e.g. in [38].
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Abstract
Admissibility has been studied for games of infinite duration with Boolean objectives. We extend
here this study to games of infinite duration with quantitative objectives. First, we show that, un-
der the assumption that optimal worst-case and cooperative strategies exist, admissible strategies
are guaranteed to exist. Second, we give a characterization of admissible strategies using the no-
tion of adversarial and cooperative values of a history, and we characterize the set of outcomes
that are compatible with admissible strategies. Finally, we show how these characterizations can
be used to design algorithms to decide relevant verification and synthesis problems.
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1 Introduction

Two-player zero-sum graph games are the most studied mathematical model to formalize
the reactive synthesis problem [15, 16]. Unfortunately, this mathematical model is often an
abstraction that is too coarse. Realistic systems are usually made up of several components,
all of them with their own objectives. These objectives are not necessarily antagonistic.
Hence, the setting of non-zero sum graph games is now investigated in order to unleash the
full potential of automatic synthesis algorithms for reactive systems, see e.g. [9, 2, 5, 6, 14, 12].

For a player with objective ϕ, a strategy σ is said to be dominated by a strategy σ′ if σ′
does as well as σ with respect to ϕ against all the strategies of the other players and strictly
better for some of them. A strategy σ is admissible for a player if it is not dominated by
any other of his strategies. Clearly, playing a strategy which is not admissible is sub-optimal
and a rational player should only play admissible strategies. The elimination of dominated
strategies can be iterated if one assumes that each player knows the other players know that
only admissible strategies are played, and so on.

While admissibility is a classical notion for finite games in normal form, see e.g. [13] and
pointers therein, its generalization to infinite duration games is challenging and was only
considered more recently. In 2007, Berwanger was the first to show [2] that admissibility, i.e.
the avoidance of dominated strategies, is well-behaved in infinite duration n-player non-zero
sum turn-based games with perfect information and Boolean outcomes (two possible payoffs:
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win or lose). This framework encompasses games with omega-regular objectives. The main
contributions of Berwanger were to show that
(i) in all n-player game structures, for all objectives, players have admissible strategies,

(Berwanger even shows the existence of strategies that survive the iterated elimination
of strategies)

(ii) every strategy that is dominated by a strategy is dominated by an admissible strategy,
and

(iii) for finite game structures, the set of admissible strategies forms a regular set.
While the iterated admissibility formalizes a strong notion of rationality [1], it has been

shown recently that the non-iterated version is strong enough to synthesize relevant strategies
for non-zero sum games of infinite duration modelling reactive systems. In [11], Faella
considers games played on finite graphs and focuses on the states from which one designated
player cannot force a win. He compares several criteria for establishing what is the preferable
behavior of this player from those states, eventually settling on the notion of admissible
strategy. In [4], starting from the notion of admissible strategy, we have defined a novel
rule for the compositional synthesis of reactive systems, applicable to systems made of n
components which have each their own objective. We have shown that this synthesis rule
leads to solutions which are robust and resilient.

Here, we study the notion of admissible strategy in infinite horizon n-player turn-based
quantitative games played on a finite game structure. We give a comprehensive picture of the
properties related to the existence of such strategies and to their characterization. Contrary
to the Boolean case, the number of payoffs in our setting is potentially infinite making the
characterization challenging. As in [2], we assume all players have perfect information.

Main contributions. First, contrary to the Boolean case, we show that in the quantitative
setting, there are dominated strategies that are not dominated by any admissible strategy
(Example 9). Second, we show that the existence of worst-case optimal and cooperatively
optimal strategies for all players is a sufficient condition for the existence of admissible
strategies (Thm. 4). Additionally, we show that there are games without worst-case optimal
or without cooperative optimal strategies that do not have admissible strategies (Lem. 3).
Third, we provide a characterization of admissible strategies in terms of antagonistic and
cooperative values – that are classical values defined for quantitative games – (Thm. 11)
and a characterization of the outcomes compatible with admissible strategies (Thm. 13).
While the first characterization allows one to precisely describe admissible strategies, the
characterization of the set of outcomes is given in linear temporal logic, and is a useful tool
to reason about the outcomes that can be generated by such strategies. Finally, we show how
to use the aforementioned characterizations to obtain algorithms to solve relevant decision
problems for games with classical quantitative measures such as Inf, Sup, LimInf, LimSup
and mean-payoff (Thms. 17, 18, and 19).

Example. Let us consider the game from Fig. 1 to illustrate several notions and decision
problems introduced and solved in this paper. The game is played by two players: Player 1,
who owns the square vertices, and Player 2, owner of the round vertices. The measure that
we consider here is the mean-payoff. (But note that, the arguments we will develop in this
example are applicable to the limit inferior and limit superior measures as well.)

First, we note that the (best) worst-case value (or, the antagonistic value) that Player 1
can force is equal to 1, while the antagonistic value for Player 2 is equal to 0. The latter values
are meaningful under the hypothesis that the other player is playing fully antagonistically
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v1 v3v2v4

(1, 0)

(1, 0)(1, 0)

(1, 0)

(2, 2)

(2, 2)

Figure 1 Player 1 controls the square vertices, and Player 2 the round vertices. The payoff of
Player i is the mean-payoff of the dimension i of the weights seen along the run.

and not pursuing their own objective. Now, if we account for the fact that Player 2 aims at
maximizing his own payoff and so plays only admissible strategies towards this goal, then we
conclude that he will never play the edge (v2, v1). This is because, from vertex v2, Player 2
has a strategy to enforce value 2 and taking edge (v2, v1) is unreasonable because, in the
worst case, from v1 he will only obtain 0. As we show in Sec. 6, this kind of reasoning can
be made formal and automated. We will show that, for games with classical quantitative
measures, it can indeed be decided algorithmically if a finite memory strategy given, for
instance, as a finite state Moore machine, is admissible or not.

Second, a similar but more subtle reasoning to the one presented above allows us to
conclude that Player 1 will eventually play the edge (v1, v2). Indeed, from vertex v1, Player
1 can force a payoff equal to 1 by either taking edge (v1, v3) or (v1, v2). Nevertheless, it is
not reasonable for him to play edge (v1, v3) because, while this choice enforces a worst-case
payoff equal to 1 (the antagonistic value), playing edge (v1, v2) is better because it ensures
the same worst-case payoff and additionally leaves a possibility for Player 2 to help him by
taking the cycle v2–v4, giving him a payoff of 2. If we take into account that the adversary
is playing admissible strategies, then, in the words of [4], we can solve the assume-admissible
synthesis problem. In this example, we conclude that Player 1 has a strategy to enforce a
payoff of 2 against all admissible strategies of Player 2. A strategy which eventually chooses
edge (v1, v2) ensures this payoff. The formalization of this reasoning and elements necessary
for its automation are presented in Sec. 6.

Structure of the paper. Sec. 2 contains definitions. In Sec. 3, we study conditions under
which the existence of admissible strategies is guaranteed. In Sec. 4, we give a characterization
of admissible strategies, and in Sec. 5, a description of the set of outcomes compatible with
admissible strategies. In Sec. 6, we apply our results to solve relevant decision problems on
games with classical quantitative measures.

2 Preliminaries

We denote by R the set of real numbers, Q the set of rational numbers, N the set of natural
numbers, and N>0 the set of positive integers.

A game is a tuple G = 〈P, (Vi)i∈P , vinit, E, (payoffi)i∈P 〉 where:
(i) P is the non-empty and finite set of players.
(ii) V def=

⊎
i∈P Vi where for every i ∈ P , Vi is the finite set of player i’s vertices, and vinit ∈ V

is the initial vertex.
(iii) E ⊆ V × V is the set of edges (it is assumed, w.l.o.g., that each vertex in V has at least

one outgoing edge.)
(iv) For every i in P , payoffi is a payoff function from infinite paths in the digraph 〈V,E〉 to

R that, intuitively, player i will attempt to maximize.
An outcome ρ is an infinite path in the digraph 〈V,E〉, i.e. an infinite sequence of vertices

(ρj)j∈N>0 such that (ρj , ρj+1) ∈ E, for all j ∈ N>0. A finite prefix of an outcome is called a
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history. The length |h| of a history h = (ρj)1≤j≤n is n. Given an outcome ρ = (ρj)j∈N>0 and
an integer k, we write ρ≤k for the history (ρj)1≤j≤k, that is, the prefix of length k of ρ. For
a history h and a history or outcome ρ, we write h ⊆pref ρ if h is a prefix of ρ. If h ⊆pref ρ,
we write h−1 · ρ for the unique history (resp. outcome) that satisfies ρ = h · (h−1 · ρ). The
first (resp. last) vertex of a history h is first(h) = h1 (resp. last(h) def= h|h|). The longest
common prefix of two outcomes or histories ρ, ρ′ is denoted lcp(ρ, ρ′). Given vertex v from G,
let us denote the set of successors of v by Ev

def= {v′ ∈ V | (v, v′) ∈ E}.
A strategy of player i is a function σi that maps any history h such that last(h) ∈ Vi to a

vertex from Elast(h). A strategy profile for the set of players P ′ ⊆ P is a tuple of strategies,
one for each player of P ′.

Let Σi(G) be the set of all strategies of player i in G. We write Σ(G) def=
∏
i∈P Σi(G) for

the set of all strategy profiles for P in G, and Σ−i(G) for the set of strategy profiles for
all players but i in G. We omit G when it is clear from the context. Given σi ∈ Σi and
σ−i = (σj)j∈P\{i} ∈ Σ−i, we write (σi, σ−i) for (σj)j∈P .

A strategy profile σP ∈ Σ defines a unique outcome from any given history h. Formally,
Outh(G, σP ) is the outcome ρ = (ρj)j∈N>0 such that ρ≤|h| = h and for j > |h|, if ρj ∈ Vi,
then ρj+1 = σi(ρ≤j). Notice that when h is a vertex, then this corresponds to starting the
game at that vertex. When G is clear from the context we shall omit it and write simply
Outh(σP ). If Si is a set of strategies for player i, we write Outh(Si) for {ρ | ∃σi ∈ Si, σ−i ∈
Σ−i : Outh(σi, σ−i) = ρ}. Here, Outh(Si) is the set of outcomes that are compatible with Si.
All notations for outcomes are lifted to histories in the obvious way. For a strategy profile
σP ∈ Σ, we write Histh(σP ) for the set {ρ≤j | ρ ∈ Outh(σP ), j ≥ |h|}.

Consider two strategies σ and τ for player i, and a history h. We denote by σ [h← τ ]
the strategy that follows strategy σ and shifts to τ at history h.

Formally, given a history h′ such that last(h′) ∈ Vi:

σ [h← τ ] (h′) def=
{
τ(h−1 · h′) if h ⊆pref h

′

σ(h′) otherwise;

We now formally define dominance and admissibility. We recall the intuition: a player’s
strategy σ is dominated by another strategy σ′ of his if σ′ yields a payoff which is as good as
that of σ against all strategies for the other players, and is strictly better against some of
them. A strategy is admissible if no other strategy dominates it. More formally, we have:

Dominance. A strategy σi ∈ Σi very weakly dominates strategy σ′i ∈ Σi, written σi <
σ′i, if ∀σ−i ∈ Σ−i, payoffi

(
Outvinit(σ′i, σ−i)

)
≤ payoffi

(
Outvinit(σi, σ−i)

)
. Strategy σi weakly

dominates strategy σ′i, written σ � σ′, if σ < σ′ and ¬(σ′ < σ). A strategy σ ∈ Σi is weakly
dominated if there exists σ′ ∈ Σi such that σ′ � σ. A strategy that is not weakly dominated
is admissible. We denote by Ai(G) the set of all admissible strategies for player i in G.

Our characterizations and algorithms are based on the notions of cooperative and antagon-
istic values of a history. The antagonistic value, denoted aVali(G, h), is the maximum payoff
that player i can secure from h in the worst case, i.e. against all strategies of other players.
The cooperative value, denoted cVali(G, h), is the best value player i can achieve from h with
the help of other players. We also define a third type of value: the antagonistic-cooperative
value, denoted acVali(G, h), which is the maximum value player i can achieve in G with
the help of other players while guaranteeing the antagonistic value of the current history h.
Formal definitions follow.
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Figure 2 Example game where local conditions
fail to capture admissibility.

s1 s21 20

Figure 3 Example game with an infinite
dominance chain and no admissible strategy
as witness of their being dominated.

Antagonistic & Cooperative Values. The antagonistic value of a strategy and the cooper-
ative value of a strategy σi of player i in G, for a history h are

aVali(G, h, σi)
def= inf
τ∈Σ−i

payoffi
(
Outh(σi, τ)

)
;

cVali(G, h, σi)
def= sup
τ∈Σ−i

payoffi
(
Outh(σi, τ)

)
.

The antagonistic value of a history h for player i, and the cooperative value of a his-
tory h for player i are defined as aVali(G, h) def= supσi∈Σi

aVali(G, h, σi), and cVali(G, h) def=
supσi∈Σi

cVali(G, h, σi), respectively. Finally, the antagonistic-cooperative value of a his-
tory h for player i is

acVali(G, h) def= sup{cVali(G, h, σi) | σi ∈ Σi,aVali(G, h, σi) ≥ aVali(G, h)}.

We omit G when it is clear from the context.
Observe that aVali(h) of a history is the value of a zero-sum two-player game where

player i is playing against players −i; while cVali(h) is the value in a one-player game,
when all players play together. acVali(h) is a new notion which is the supremum of the
values player i can obtain when he plays worst-case optimal strategies. A strategy σi ∈ Σi is
said to be worst-case optimal for player i at history h if aVali(h, σi) = aVali(h); it is said
to be cooperatively optimal for him at history h if cVali(h, σi) = cVali(h). Observe that
acVali(h) = −∞ if there are no worst-case optimal strategies from h.

I Example 1 (Local conditions are not sufficient). The game in Fig. 2 shows that admissibility
requires one to consider the values of the histories both in the past and in the future of
the current history. This shows that a local condition cannot capture admissibility. In
fact, consider strategy σ1 of player 1 (who controls all square vertices) that takes the
edges (s1, s2), (s4, s6). If the game starts at s2, σ1 is admissible, since the choice (s4, s5)
could yield a payoff of 2 which is worse than any payoff from s6. Indeed, we have that
aVal1(s5) < aVal1(s6). However, when the game starts at s1, σ1 is weakly dominated
by the strategy that chooses (s1, s3) since the worst payoff in the latter case is 5. In fact,
when a strategy takes the edge (s1, s2), the antagonistic value decreases from aVal1(s1) = 5
to aVal1(s2) = 3; so to be admissible, it should have a better cooperative value than 5, which
is not the case if (s4, s6) is taken. The strategy taking (s1, s2), (s4, s5) is admissible. Indeed,
in one outcome, the payoff is 9, which is greater than 5 as required. Thus, an admissible
strategy from s1 either goes to s3, or goes to s2 but commits to taking (s4, s5) later.

We use temporal logic to describe sets of outcomes. We consider an extension of standard
LTL with inequality conditions on payoffs for each player as in [3]. The logic, denoted
LTLpayoff, extends LTL, and its syntax is defined as follows.

ϕ ::= Q | ¬ϕ | Xϕ | Gϕ | Fϕ | ϕ1 U ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | payoffi ./ v,
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s1s3 a

Game A.

s1s3 s2

a

Game G.

Figure 4 Two games in which Player 1 has no admissible strategy.

where Q ∈ AP is a set of atomic propositions on edges, G and F are the standard LTL
modalities, ./∈ {≤,≥, <,>}, and v ∈ Q. A formula is interpreted over an outcome ρ at
index k as follows. We have, for instance, (ρ, k) |= Q if, and only if, (ρk, ρk+1) is labelled
with Q. For convenience, we write ρ |= ϕ instead of (ρ, 1) |= ϕ. Note that we define our
predicates on edges rather than vertices; this simplifies our presentation. The semantics
of the LTL modalities are standard; we refer to e.g. [3]. For payoff conditions, we have
(ρ, k) |= payoffi ./ v

def⇐⇒ payoffi(ρ≥k) ./ v.

Residual Games. Given game G, and history h, let us define Gh as the residual game
of G from h by modifying the initial state to last(h), and the payoff functions to payoffi′

defined as follows. For all outcomes ρ that start in last(h), payoffi′(ρ) = payoffi(haρ), where
haρ = h≤|h|−1 · ρ. Notice that the strategy sets of G and Gh are identical, and that for
any σP ∈ ΣP , we have Out(Gh, σP ) = Outlast(h)(G, σP ).

I Lemma 2. For all h′ ∈ Histlast(h)(G), it holds that aVali(Gh, h′) = aVali(G, hah′),
acVali(Gh, h′) = acVali(G, hah′), and cVali(Gh, h′) = cVali(G, hah′).

3 Existence of Admissible Strategies

We start this section with two examples of quantitative games with no admissible strategies
(for player 1). Then we identify a large and natural class of games for which the existence of
admissible strategies is guaranteed.

Consider the games A and G in Fig. 4. Starting at s1, the payoff of player 1, in the
two games is defined as follows: an outcome that does not visit s3 has a payoff equal to 0,
otherwise, the payoff is equal to the number of times vertex a appears in the outcome. The
lemma below states that player 1 does not have admissible strategies in those two games.
We sketch the proof idea.

Consider first the one-player game A. The antagonistic value at vertex s1 is ∞. Any
strategy which never visits s3 is weakly dominated by strategies that visit a at least once
(i.e. with outcome (s1as1)+sω3 ). Furthermore, a strategy which does visit s3 and k times a is
weakly dominated by any strategy that visits a at least k + 1 times and then goes to s3.

The idea is similar for G where the cooperative value at s1 is ∞. Every strategy which
does not allow outcomes visiting s3 are weakly dominated by those that attempt to visit a
by visiting s2 at least once (as from s2, the other player can cooperate and visit a), and then
go to s3. Moreover, it is always possible to attempt to visit a once more before going to s3,
thus any strategy which eventually goes to s3 is also weakly dominated.

I Lemma 3. Player 1 does not have admissible strategies in games G and A.

In the two examples above, either the aVal or the cVal (which are both equal to ∞)
are not achievable. This is not a coincidence. We now show that all the games that admit
witnessing strategies for those values are guaranteed to have admissible strategies.
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Games with strategies witnessing aVal and cVal. A game is well-formed whenever it
admits witnessing strategies for aVal and cVal, i.e. it satisfies:
1. For all i ∈ P , and h ∈ Histvinit(G), ∃σi ∈ Σi,aVali(h, σi) = aVali(h).
2. For all i ∈ P , and h ∈ Histvinit(G), ∃σi ∈ Σi, cVali(h, σi) = cVali(h).

These conditions will also be referred as Assumption 1 and 2.
We now establish the existence of admissible strategies for all well-formed games.

I Theorem 4. In all well-formed games all players have admissible strategies.

The result follows from Lemmas. 6 and 7 below: the proof consists in showing that a particular
type of admissible strategies, called strongly cooperative-optimal, always exists. Usually,
those strategies are only a strict subset of the admissible strategies available to a player.
Nevertheless, they are peculiar as they are guaranteed to exist.

I Definition 5. A strategy σi is strongly cooperative-optimal (SCO) if for all h ∈ Histvinit(σi),
if cVali(h) > aVali(h) then cVali(h, σi) = cVali(h), and if aVali(h) = cVali(h) then
aVali(h, σi) = aVali(h).

Strongly cooperative-optimal strategies are admissible because their cooperative values are
always maximal, and moreover, if a payoff better than the antagonistic value cannot be
achieved (aVali(h) = cVali(h)), then they are worst-case optimal. Any strategy which
obtains a better payoff than a SCO strategy against some adversary will obtain a worse
payoff against another one.

I Lemma 6. All strongly cooperative-optimal strategies are admissible.

Proof. Let σi be a strongly cooperative-optimal strategy for player i. Assume towards a
contradiction that some σ′i weakly dominates σi. Let h be any minimal history compatible
with σi such that σi(h) 6= σ′i(h).

If aVali(h) < cVali(h), then since last(h) is controlled by player i, aVali(hσ′i(h)) ≤
aVali(h) < cVali(h), and since σi is strongly cooperative optimal cVali(hσi(h), σi) =
cVali(h). Therefore, as the histories hσi(h) and hσ′i(h) are distinct, there is a strategy τ ∈
Σ−i such that payoffi(Outhσi(h)(σi, τ)) = cVali(h) > aVali(h) ≥ payoffi(Outhσ′

i
(h)(σ′i, τ)).

This contradicts that σ′i weakly dominates σi.
Otherwise aVali(h) = cVali(h), then since σi is strongly cooperative optimal, for

all τ ∈ Σ−i, payoffi(Outh(σi, τ)) = cVali(h) and payoffi(Outh(σ′i, τ)) ≤ cVali(h). It follows
that no outcome of σ′i obtains a better payoff than σi. We thus obtain a contradiction. J

By Lem. 6, to prove the existence of admissible strategies, it suffices to prove the existence
of strongly cooperative-optimal strategies. We actually give a constructive proof.

I Lemma 7. In all well-formed games all players have SCO strategies.

Let us describe the idea of the construction. Consider any player i. We define the strategy σ
of player i as follows. For any history h, if aVali(h) = cVali(h), then σ plays a worst-case
optimal strategy from h, say σwcoh . Otherwise, we define σ starting from an outcome ρh
with payoffi = cVali(h), and we define σ is such a way that it follows ρh. In this case,
whenever another player deviates from ρh, say, at history h′, we reevaluate how to play
according to whether aVali(h′) < cVali(h′) or aVali(h′) = cVali(h′). Here, the existence
of σwcoh and that of ρh are guaranteed by the fact that the game is well-formed.

In subsequent sections, we consider SCO strategies in residual games Gh, so let us note
that these games satisfy the required assumptions if G does, which follows from Lem. 2.
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I Lemma 8. For any well-formed game G, for all histories h ∈ Histvinit , the residual game
Gh is also well-formed.

We end this section with an interesting observation: an infinite weak dominance chain is
not necessarily dominated by an admissible strategy, as shown in the next example. The
reader should contrast the example with the fact that in the Boolean case all dominated
strategies are dominated by an admissible strategy [2, Thm. 11].

I Example 9 (Non-dominated weak dominance chains). There are quantitative games that
have infinite dominance chains and no “maximal” admissible strategy weakly dominating
them. Consider the game depicted in Fig. 3. Denote by σk the strategy of player 1 (controlling
square vertices) which consists in moving from s1 to s2 exactly k times, and then going left
(unless payoff of 2 was reached in the meantime). Then for all k ∈ N, σk is weakly dominated
by σk+1 because if the adversary decides to move right from s2 at the (k + 1)-th step, σk+1

performs better than σk, and otherwise they yield identical outcomes. It follows that all
strategies σk for k ≥ 0, are dominated. Here, the only admissible strategy σ∞ consists in
looping in the cycle forever, which does not dominate any σk since if the adversary always
moves left from s2, then σ∞ yields less than σk.

I Remark. Above, we have defined strongly cooperative-optimal strategies that favour
cooperation whenever it can have an added value. We have established that those strategies
are always admissible. There are other classes of strategies that are always admissible, and
we define another interesting class here. A strategy σi is a worst-case cooperative optimal
strategy, if for all h ∈ Histvinit(σi): aVali(h, σi) = aVali(h), and cVali(h, σi) = acVali(h).

So those strategies ensure the worst-case value at all times and leave open the best cooperation
possible under that worst-case guarantee.

I Lemma 10. All worst-case cooperative optimal strategies strategies are admissible.

However, some well-formed games do not have worst-case cooperative optimal strategies.

4 Value-based Characterization of Admissible Strategies

We present our main result, which is, a value-based characterization of admissible strategies.
For any game G, and player i, let us define the following property, denoted ?(h, σ), for a

given strategy σ ∈ Σi(G) and history h:

cVali(h, σ) > aVali(h) (1)
∨ aVali(h, σ) = cVali(h, σ) = aVali(h) = acVali(h), (2)

Intuitively, we will show that a strategy is admissible if at all histories, either the strategy
promises a cooperative value greater than the antagonistic value at the current vertex, or a
higher cooperative value cannot be obtained without risking a lower antagonistic value (i.e.
aVali(h) = acVali(h)) and the strategy is worst-case optimal.

It turns out that requiring this property at all histories ending in a player’s vertices
characterize admissible strategies. We state our result in the following theorem.

I Theorem 11. Under Assumption 1, for any game G, player i, and σi ∈ Σi(G), σi is
admissible if, and only if, for all h ∈ Histvinit(G, σi) with last(h) ∈ Vi, ?(h, σi) holds.

It will be useful to consider the negation of ?(h, σ), which we simplify as follows:
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I Lemma 12. For all histories h and strategy σ, the negation of ?(h, σ) is equivalent to

cVali(h, σ) ≤ aVali(h) ∧ aVali(h, σ) < aVali(h) (3)
∨ cVali(h, σ) = aVali(h, σ) = aVali(h) ∧ acVali(h) > aVali(h). (4)

Proof of Thm. 11. ⇒ We prove the contrapositive. Assume that ∃h ∈ Histvinit(G, σi),
last(h) ∈ Vi and ¬ ? (h, σi). Then by Lem. 12, either (3) or (4) holds for (h, σi).

Assume (3) holds for (h, σi). By Assumption 1, there exists a worst-case optimal strategy
σwcoh from h, with aVali(h, σwcoh ) = aVali(h). Define σ′i

def= σi[h ← σwcoh ]. We claim that σ′i
weakly dominates σi. In fact, for any σ−i ∈ Σ−i(G) with h 6∈ Histvinit(G, σ−i), we have
Outvinit(G, σi, σ−i) = Outvinit(G, σ′i, σ−i). For any σ−i ∈ Σ−i(G) compatible with h, both
outcomes go through h. By definition of σ′i, Outvinit(G, σ′i, σ−i) = h≤|h|−1 ·Outh(G, σwcoh , σ−i).
Therefore, we have that payoffi(Outvinit(G, σ′i, σ−i)) ≥ aVali(h) by definition of σwcoh . The
latter is greater than cVali(h, σi) from (3), so greater than payoffi(Outvinit(G, σi, σ−i))
by definition of cVali(·). Thus, σ′i very weakly dominates σi. Since by assumption,
aVali(h, σi) < aVali(h), and h is compatible with σi, there is a strategy σ−i ∈ Σ−i
such that h ⊆pref Outvinit(G, σi, σ−i) and payoffi(Outvinit(G, σi, σ−i)) < aVali(h). As shown
before, aVali(h) ≤ payoffi(Outvinit(G, σ′i, σ−i)). Hence, σ′i weakly dominates σi.

Assume now that (4) holds. Consider ε > 0 small enough so that acVali(h) > aVali(h)+ε.
By definition of acVali(h), there exists a strategy τi ∈ Σi such that cVali(h, τi) ≥ aVali(h)+
ε, and moreover aVali(h, τi) ≥ aVali(h). Consider τ−i ∈ Σ−i compatible with h such
that payoffi(Outh(G, h, (τi, τ−i))) ≥ cVali(h, τi) − ε

2 ≥ aVali(h) + ε
2 > aVali(h). Note

that such a τ−i exists by definition of cVali(h, τi). It follows that σi[h ← τi] weakly
dominates σi. In fact, the outcomes are identical for any outcome not compatible with h. For
any σ−i compatible with h, we have payoffi(Outvinit(G, σi, σ−i)) = aVali(h) by (4). Moreover,
payoffi(Outvinit(G, σ′i, σ−i)) ≥ aVali(h) since at h we have that aVali(h, τi) ≥ aVali(h); thus
aVali(h, σ′i) ≥ aVali(h). Furthermore, we have payoffi(Outvinit(G, σ′i, τ−i)) > aVali(h) ≥
payoffi(Outvinit(G, σi, τ−i)).
⇐ Assume that for all h ∈ Histvinit(G, σi) with last(h) ∈ Vi, we have ?(h, σi), and that

σi is weakly dominated by some strategy σ′i. We will show a contradiction.
Let σ−i be a strategy in Σ−i(G) and ρ = Outvinit(G, σi, σ−i) and ρ′ = Outvinit(G, σ′i, σ−i).

If ρ = ρ′ then payoffi(ρ′) ≤ payoffi(ρ) and otherwise let j be the first index where they differ,
and h = ρ≤j−1 = ρ′≤j−1. We have that h is compatible with both strategies, last(h) ∈ Vi
and σi(h) 6= σ′i(h).

If (1) holds, that is, cVali(h, σi) > aVali(h), consider ε > 0 such that cVali(h, σi) >
aVali(h) + ε, and a strategy σ′−i ∈ Σ−i which ensures that payoffi(Outhσi(h)(G, σi, σ′−i)) ≥
cVali(h, σi) − ε

2 , and payoffi(Outhσ′
i
(h)(G, σ′i, σ′−i)) ≤ aVali(h, σ′i) + ε

2 . Such a strategy
profile σ′−i exists since hσ′i(h) and hσi(h) are distinct, and since last(h) ∈ Vi. The latter also
implies that aVali(h) ≥ aVali(h, σ′i). It thus follows that

payoffi(Outvinit(G, σi, σ−i[h← σ′−i])) > payoffi(Outvinit(G, σ′i, σ−i[h← σ′−i]))

contradicting the fact that σ′i weakly dominates σi.
Therefore (2) must hold, and acVali(h) = aVali(h). If there exists j ≥ |h| such that

aVali(ρ′≤j) < aVali(h), then there exists ε > 0 and a strategy profile σ′−i ∈ Σ−i compatible
with h which ensures that payoffi(Outvinit(G, σ′i, σ′−i)) ≤ aVali(ρ′≤j) + ε < aVali(h) ≤
payoffi(Outvinit(G, σi, σ′−i)). This contradicts σ′ weakly dominating σ. Hence for all j ≥ |h|,
aVali(ρ′≤j) ≥ aVali(h). Now, observe that payoffi(ρ′) ≤ acVali(h). In fact, one can
construct a strategy τ , which, from h follows ρ′, and in case another player does not respect ρ,
switches to a worst-case optimal strategy ensuring aVali(ρ′≤j) ≥ aVali(h). It follows
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that payoffi(ρ′) ≤ cVali(h, τ) ≤ acVali(h). Furthermore, by (2), payoffi(ρ) ≥ acVali(h) =
aVali(h, σi), so payoffi(ρ′) ≤ payoffi(ρ). This being true for all strategies of Σ−i proves
that σi very weakly dominates σ′i and contradicts that σ′i weakly dominates σi. J

5 Characterization of the Outcomes of Admissible Strategies

Observe that the characterization of Thm. 11 does not immediately yield an effective
representation of the set of admissible strategies. In order to reason about the possible
behaviors observable in a game under admissible strategies we are interested in describing
the set of outcomes that can be observed when all players play admissible strategies. In this
section, for each player, we give a linear temporal logic description of the outcomes that are
each compatible with at least one admissible strategy.

Note that our main goal is to obtain such a characterization in full generality, for all
well-formed games so we defer computability considerations to the next section. We will
then see how the three types of values can be computed at all histories.

Let us fix a game G, and player i. We present the intuition of the characterization.
If an outcome ρ is compatible with an admissible strategy, say σi, then all prefixes h
with last(h) ∈ Vi must satisfy (1) or (2). Given h, if (1) holds, then two things can
happen. Either payoffi(ρ) > aVali(h), and thus ρ witnesses cVali(h, σi) > aVali(h), or
this is not the case but there is another outcome ρ′ – compatible with σi – extending h
with payoffi(ρ′) > aVali(h). Notice how the longest common prefix of ρ and ρ′ ends always
with a vertex in V−i since both outcomes are compatible with σi. If (2) holds at h, then,
in particular, payoffi(ρ) = aVali(h) and, moreover, aVali remains constant at all prefixes
of ρ extending h. The last observation simply follows from aVali(h, σi) = aVali(h) which is
implied by (2).

Extended LTLpayoff. Let aValuesi = {aVali(h) | h is a history} be the set of antagonistic
values of player i. We will now define atomic propositions attached to edges of a game.
Formally, we have a labelling function λ : E → P(AP) which assigns to every edge a set of
propositions from AP. The set AP includes the proposition Vi whose truth value, for every
edge e = (u, v), is determined as follows: Vi ∈ λ(u, v) def⇐⇒ u ∈ Vi.

We consider LTLpayoff with atomic propositions as defined above and additional propos-
itions aValiq, acValiq, and gAltiq defined for all q ∈ aValuesi. The semantics of these are
straightforward: for an outcome ρ and k ∈ N>0 we have

(ρ, k) |= aValiq
def⇐⇒ aVali(ρ≤k) = q,

(ρ, k) |= acValiq
def⇐⇒ acVali(ρ≤k) = q, and

(ρ, k) |= gAltiq
def⇐⇒ ρk ∈ V−i ∧ ∃v′ 6= ρk : (ρk, v′) ∈ E ∧ cVali(ρ≤k · v′) > q,

with the convention that, when k is omitted, we assume it is 1.
As mentioned earlier, we consider two cases depending on whether (1) or (2) hold. Thus,

let us define the corresponding two sub-formulas:

ϕ1
def=
∨
q∈aValuesi

(
aValiq ∧

(
payoffi > q ∨ F(gAltiq)

))
, and

ϕ2
def=
∨
q∈aValuesi

(
aValiq ∧ acValiq ∧ payoffi = q ∧ G

(
aValiq

))
.

We define the following formula which will be shown to capture the outcomes of admissible
strategies: Φiadm

def= G (¬Vi ∨ ϕ1 ∨ ϕ2) .
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I Theorem 13. For any well-formed game G, outcome ρ satisfies Φiadm if, and only if, it is
compatible with an admissible strategy for player i.

We give the idea of the proof. For any outcome ρ compatible with an admissible strategy σi
for player i. We show that for any prefix h of ρ with last(h) ∈ Vi, (ρ, |h|) satisfies either ϕ1
or ϕ2. In fact, by Thm. 11, either (1) or (2) hold, and we show that these correspond to ϕ1
and ϕ2.

Conversely, for any ρ satisfying Φiadm, we construct an admissible strategy σi for player i
compatible with ρ. The strategy follows ρ, and in case of deviation, it switches immediately
either to an SCO – which is guaranteed to exist – or to a worst-case optimal strategy,
depending on whether ϕ1 or ϕ2 holds at the current history. The resulting strategy is proven
to be admissible.

Assuming prefix-independence. Before concluding this section, let us consider the con-
sequences of further assuming that our payoff function is prefix-independent.
3. For all i ∈ P , for all outcomes ρ, it holds that ∀j ∈ N, payoffi((ρk)k≥j) = payoffi(ρ).

Observe that, under Assumption 3, the set aValuesi can be equivalently defined as
{aVali(v) | v ∈ V } and is thus finite. One can also extend the labelling λ and set of atomic
propositions AP such that, for every edge e = (u, v) and q ∈ aValuesi:

aValiq ∈ λ(u, v) def⇐⇒ aVali(u) = q,

acValiq ∈ λ(u, v) def⇐⇒ acVali(u) = q, and

gAltiq ∈ λ(u, v) def⇐⇒ u ∈ V−i ∧ ∃v′ 6= v : (u, v′) ∈ E ∧ cVali(v′) > q.

It immediately follows that:

I Lemma 14. Under Assumption 3, for all i ∈ P , Φiadm is expressible in LTLpayoff.

6 Applications and Future Works

In this section, we show how to apply Theorem 11 (value-based characterization of admissible
strategies) and Theorem 13 (characterization of the set of outcomes of admissible strategies)
to solve relevant verification and synthesis problems.

Classical payoff functions. So far, we have assumed that games were equipped for each
player i ∈ P with a payoff function. To define payoff functions, we proceed as usual by first
assigning weights to edges of the game graph using weight functions wi : E → Q, one for each
player i ∈ P . With the weight function wi, we associate to each outcome ρ = ρ1ρ2 . . . ρn . . . ,
an infinite sequence of rational values wi(ρ) = wi(ρ1ρ2)wi(ρ2ρ3) . . . wi(ρnρn+1) . . . , and we
aggregate this sequence of values with measures such as Inf, Sup, LimInf, LimSup, and mean
payoff (MP and MP). It is well known, see e.g. [7] and [18], that all the payoff functions
defined above satisfy Assumptions 1-2. By Theorem 4, we get the following.

I Lemma 15. In games with payoff functions from Inf, Sup, LimInf, LimSup, MP, and MP,
all players have admissible strategies.

It is also known that, in games defined with the payoff functions considered here, the
antagonistic and cooperative values (cVal and aVal) are computable. One can also show
that acVal is computable for prefix-independent payoff functions. Indeed, this value of a
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vertex coincides with the cVal inside the sub-graph induced by the vertices with the optimal
antagonistic value. Furthermore, using a classical transformation on the game structure, we
can guarantee that all payoff functions We thus obtain the following result, by Lemma 14.

I Lemma 16. In games with payoff functions from Inf, Sup, LimInf, LimSup, MP, and MP,
the formulas Φiadm for all i ∈ P are effectively computable, finite, and expressible in LTLpayoff.

We will now consider several problems of interest which can be solved using the charac-
terizations that we have developed in the previous sections. All the results are applicable to
the measures concerned by Lemmas 15 and 16.

Deciding the admissibility of a finite memory strategy. As a first example, we consider
the problem of deciding, given a game structure G, and a (finite memory) strategy σi for
player i ∈ P described as a finite state transducer Mi, if σi is admissible in G.

To solve this problem, we rely on Theorem 11 and proceed as follows. First, we compute
for each vertex v of the game G, the values aVali(G, v), cVali(G, v), and acVali(G, v).
Second, we construct the synchronized product between the transducer Mi that defines the
strategy σi and the game G. States in this product are of the form (v,m) where v is a vertex
of G and m is a (memory) state of the transducer Mi. Third, we compute for each state
(v,m) the values aVali(G, (v,m), σi), cVali(G, (v,m), σi), and acVali(G, (v,m), σi). Finally,
we verify that there is no reachable vertex (v,m) in the product where condition (1) or
condition (2) are falsified. We then obtain the following theorem:

I Theorem 17. Given a game G and a finite memory strategy σi for player i ∈ P specified
as a finite state transducer Mi, we can decide if σi is an admissible strategy for player i in
PTime for measures Inf, Sup, LimInf, LimSup; in NP ∩ coNP for MP, and MP.

Model-checking under admissibility. We now turn to the following problem. Given a game
structure G and a LTLpayoff formula ϕ, decide if all outcomes of the game that are compatible
with the admissible strategies of all players satisfy ϕ, i.e. if

⋂
i∈P Out(G,Ai(G)) |= ϕ. This

problem was introduced in the Boolean setting in [5] and allows one to check that a property
is induced by the rationality of the players in a game.

I Theorem 18. For all measures Inf, Sup, LimInf, LimSup, MP, MP, one can decide, given
game G and LTLpayoff formula ϕ, whether

⋂
i∈P Out(G,Ai(G)) |= ϕ.

Proof Sketch. For each player i ∈ P , consider the formula Φi
adm from Theorem 13, which

describes the set Out(G,Ai(G)). The formula is finite and constructible by Lemma 16. The
problem now amounts to verifying if G satisfies the specification

(∧
i∈P Φiadm

)
=⇒ ϕ. For all

payoff functions, except mean-payoff, this can be reduced to model checking an LTL formula
(since the measures are regular). For MP and MP, the result follows from [3] which shows
that the model checking problem against LTLpayoff is decidable. J

Quantitative assume-admissible synthesis. In [4], a new rule for reactive synthesis in non-
zero sum n-player games was proposed. The setting there is similar to the setting considered
here but it is Boolean: each player i ∈ P has his own omega-regular objective Oi ⊆ V ω. The
synthesis rule asks if player i ∈ P has a strategy to enforce its own objective Oi against
admissible strategies of the other players. In other words, the rule asks for the existence of
worst-case optimal strategies against rational adversaries.
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The quantitative extension of this problem asks given a game G, a player i ∈ P , and a
LTLpayoff formula ϕ, ∃σ ∈ Ai,∀τ ∈ A−i, ϕ. Using Theorem 13, we can reduce this query to a
plain two-player zero-sum game on the game structure G with objective:

∃σ ∈ Σi,∀τ ∈ Σ−i,Φiadm ∧
((∧

j∈P\{i}Φjadm

)
=⇒ ϕ

)
Since for Inf, Sup, LimInf, LimSup, Φi

adm and ϕ are omega-regular, the problem reduces
to deciding the winner in a two-player zero-sum game with omega-regular objectives. As a
consequence, we obtain the following theorem:

I Theorem 19. The quantitative assume-admissible synthesis problem for player i ∈ P is
decidable for measures Inf, Sup, LimInf, LimSup.

For the measures MP, MP, we obtain objectives in which mean-payoff constraints and
omega-regular constraints are mixed. On the one hand, those objectives are outside known
decidable classes of objectives treated in [8] and in [10]. On the other hand, the undecidability
results obtained in [17] do not apply to them. This motivates further research on zero-sum
two player games with a mix of mean-payoff and omega-regular objectives.

Towards iterative elimination. Once we have computed the admissible strategies for each
player, we restrict each player to these strategies, and repeat the computation of the admissible
strategies in the restricted game. This can be iterated several times and gives a process that
is called iterative elimination of dominated strategies, and well known in game theory. This
process is difficult to analyze for mean-payoff, because objectives of different players interfere
in non-trivial ways and games with Boolean combinations of mean-payoff objectives are
undecidable [17]. However it seems feasible for regular payoffs, such as Inf, Sup, LimInf and
LimSup, for which we can construct parity automata recognizing outcomes with payoffi > q.
Given i ≥ 0, we can actually compute a parity automaton accepting the set of outcomes of
Si which is the set of strategies that remain after i steps of elimination. We summarize here
the ingredients but leave the details for future work. Assume we have a parity automaton
representing the outcomes of Si. Note that for i = 0 this is simply all outcomes. If the payoffs
are regular, then we can compute values cVali(h,Si), aVali(h,Si) and acVali(h,Si), which
correspond to cooperative, antagonistic, and antagonist-cooperative values when players only
play strategies from Si. We can then use these values as atomic propositions for a LTLpayoff
formulas similar to Φiadm of Section 5, which characterizes outcomes of strategies of Si+1. In
the case of regular payoffs this yields a parity automaton which represents the outcomes of
Si+1. This procedure can then be repeated to compute outcomes that are possible under
iterative elimination.
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Abstract
Delay games are two-player games of infinite duration in which one player may delay her moves
to obtain a lookahead on her opponent’s moves. Recently, such games with quantitative winning
conditions in weak MSO with the unbounding quantifier were studied, but their properties turned
out to be unsatisfactory. In particular, unbounded lookahead is in general necessary.

Here, we study delay games with winning conditions given by Prompt-LTL, Linear Temporal
Logic equipped with a parameterized eventually operator whose scope is bounded. Our main
result shows that solving Prompt-LTL delay games is complete for triply-exponential time.
Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the
scope of the parameterized eventually operator. Thus, we identify Prompt-LTL as the first
known class of well-behaved quantitative winning conditions for delay games.

Finally, we show that applying our techniques to delay games with ω-regular winning con-
ditions answers open questions in the cases where the winning conditions are given by non-
deterministic, universal, or alternating automata.
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Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.43

1 Introduction

The synthesis of reactive systems concerns the automatic construction of an implementation
satisfying a given specification against every behavior of its possibly antagonistic environment.
A prominent specification language is Linear Temporal Logic (LTL), describing the temporal
behavior of an implementation [21]. The LTL synthesis problem has been intensively studied
since the seminal work of Pnueli and Rosner [22, 23], theoretical foundations have been
established [2, 19], and several tools have been developed [4, 7, 8].

However, LTL is not able to express quantitative properties. As an example, consider the
classical request-response condition [13], where every request q has to be answered eventually
by some response r. This property is expressible in LTL via the formula G (q → F r), but the
property cannot guarantee any bound on the waiting times between a request and its earliest
response. To specify such a behaviour, parameterized logics have been introduced [1, 6, 18, 26],
which extend LTL by quantitative operators.

The simplest of these logics is Prompt-LTL [18], which extends LTL by the prompt
eventually operator FP. The scope of this operator is bounded by some arbitrary but
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fixed number k. With this extension, we can express the aforementioned property by the
Prompt-LTL formula G (q → FP r), expressing that every request is answered within k steps.
To show that the Prompt-LTL synthesis problem is as hard as the LTL synthesis problem,
i.e., 2ExpTime-complete, Kupferman et al. introduced the alternating-color technique to
reduce the former problem to the latter [18]. Additionally, similar reductions have been
proven to exist in other settings too, where Prompt-LTL can be reduced to LTL using the
alternating-color technique, e.g., for (assume-guarantee) model-checking [18]. Finally, the
technique is also applicable to more expressive extensions of LTL, e.g., parametric LTL [25],
parametric LDL [6], and their variants with costs [26].

Nevertheless, all these considerations assume that the specified implementation immedi-
ately reacts to inputs of the environment. However, this assumption might be too restrictive,
e.g., in a buffered network, where the implementation may delay its outputs by several
time steps. Delay games have been introduced by Hosch and Landweber [14] to overcome
this restriction. In the setting of infinite games, the synthesis problem is viewed as a game
between two players, the input player “Player I”, representing the environment, and the
output player “Player O”, representing the implementation. The goal of Player O is to
satisfy the specification, while Player I tries to violate it. Usually, the players move in strict
alternation. On the contrary, in a delay game, Player O can delay her moves to obtain
a lookahead on her opponent’s moves. This way, she gains additional information on her
opponent’s strategy, which she can use to achieve her goal. Hence, many specifications are
realizable, when allowing lookahead, which are unrealizable otherwise.

For delay games with ω-regular winning conditions (given by deterministic parity au-
tomata) exponential lookahead is always sufficient and in general necessary, and determining
the winner is ExpTime-complete [16]. As LTL formulas can be translated into equivalent de-
terministic parity automata of doubly-exponential size, these results imply a triply-exponential
upper bound on the necessary lookahead in delay games with LTL winning condition and
yield an algorithm solving such games with triply-exponential running time. However, no
matching lower bounds are known.

Recently, based on the techniques developed for the ω-regular case, the investigation
of delay games with quantitative winning conditions was initiated by studying games with
winning conditions specified in weak monadic second order logic with the unbounding
quantifier (WMSO+U) [3]. This logic extends the weak variant of monadic second order logic
(WMSO), where only quantification over finite sets is allowed, with an additional unbounding
quantifier that allows to express (un)boundedness properties. The resulting logic subsumes
all parameterized logics mentioned above. The winner of a WMSO+U delay game with
respect to bounded lookahead is effectively computable [27]. However, in general, Player O
needs unbounded lookahead to win such games and the decidability of such games with
respect to arbitrary lookahead remains an open problem. In the former aspect, delay games
with WMSO+U winning conditions behave worse than those with ω-regular ones.

Our Contribution. The results on WMSO+U delay games show the relevance of exploring
more restricted classes of quantitative winning conditions which are better-behaved. In
particular, bounded lookahead should always suffice and the winner should be effectively
computable. To this end, we investigate delay games with Prompt-LTL winning conditions.
Formally, we consider the following synthesis problem: given some Prompt-LTL formula ϕ,
does there exist some lookahead and some bound k such that Player O has a strategy
producing only outcomes that satisfy ϕ with respect to the bound k (and, if yes, compute
such a strategy)?



F. Klein and M. Zimmermann 43:3

We present the first results for delay games with Prompt-LTL winning conditions.
First, we show that the synthesis problem is in 3ExpTime by tailoring the alternating-color
technique to delay games and integrating it into the algorithm developed for the ω-regular
case. In the end, we obtain a reduction from delay games with Prompt-LTL winning
conditions to delay-free parity games of triply-exponential size.

Second, from this construction, we derive triply-exponential upper bounds on the necessary
lookahead for Player O, i.e., bounded lookahead always suffices, as well as a triply-exponential
upper bound on the necessary scope of the prompt eventually operator. Thus, we obtain the
same upper bounds as for LTL.

Third, we complement all three upper bounds by matching lower bounds, e.g., the problem
is 3ExpTime-complete and there are triply-exponential lower bounds on the necessary
lookahead and on the scope of the prompt eventually operator. The former two lower bounds
already hold for the special case of LTL delay games. Thereby, we settle the case of delay
games with LTL winning conditions as well as the case of delay games with Prompt-LTL
winning conditions and show that they are of equal complexity and that the same bounds
on the necessary lookahead hold. Thus, we prove that delay games with Prompt-LTL
winning conditions are not harder than those with LTL winning conditions. The complexity
of solving LTL games increases exponentially when adding lookahead, which is in line with
the results in the ω-regular case [16], where one also observes an exponential blowup.

Fourth, our proofs are all applicable to the stronger extensions of LTL like parametric
LTL [25], parametric LDL [6], and their variants with costs [26], as the alternating-color
technique is applicable to them as well and as their formulas can be compiled into equivalent
exponential Büchi automata.

Fifth, we show that our lower bounds also answer open questions in the ω-regular case
mentioned in [16], e.g., on the influence of the branching mode of the specification automaton
on the complexity. Recall that the tight exponential bounds on the complexity and the
necessary lookahead for ω-regular delay games were shown for winning conditions given
by deterministic automata. Our lower bounds proven here can be adapted to show that
both these bounds are doubly-exponential for non-deterministic and universal automata
and triply-exponential for alternating automata. Hence, the lower bounds match the trivial
upper bounds obtained by determinizing the automata and applying the results from [16].
Thus, we complete the picture in the ω-regular case with regard to the branching mode of
the specification automaton.

Related Work. Delay games with ω-regular winning conditions have been introduced
by Hosch and Landweber, who proved that the winner w.r.t. bounded lookahead can be
determined effectively [14]. Later, they were revisited by Holtmann et al. who showed
that bounded lookahead is always sufficient and who gave a streamlined algorithm with
doubly-exponential running time and a doubly-exponential upper bound on the necessary
lookahead [12]. Recently, the tight exponential bounds on the running time and on the
lookahead mentioned above were proven [16]. Delay games with context-free winning
conditions turned out to be undecidable for very small fragments [9]. The results of going
beyond the ω-regular case by considering WMSO+U winning conditions are mentioned above.
Furthermore, all delay games with Borel winning conditions are determined [15]. Finally,
from a more theoretical point of view, Holtman et al. also showed that delay games are a
suitable representation of uniformization problems for relations by continuous functions [12].

All proofs omitted due to space constraints can be found in the full version [17].
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2 Preliminaries

The set of non-negative (positive) integers is denoted by N (N+). An alphabet Σ is a non-
empty finite set of letters, Σ∗ is the set of finite words over Σ, Σi the set of words of length i,
and Σω the set of infinite words. The empty word is denoted by ε and the length of a finite
word w by |w|. For w ∈ Σ∗ ∪ Σω we write w(i) for the i-th letter of w. Given two infinite
words α ∈ Σω

I and β ∈ Σω
O we write

(
α
β

)
for the word

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · ∈ (ΣI × ΣO)ω.

Analogously, we write
(
x
y

)
for finite words x and y, provided they are of equal length.

Parity Games. An arena A is a tuple (V, VI , VO, E), where (V,E) is a finite directed graph
without terminal vertices and {VI , VO} is a partition of V into the positions of Player I
and Player O. A parity game G = (A,Ω) consists of an arena A with vertex set V and of
a priority function Ω: V → N. A play ρ is an infinite sequence v0v1v2 · · · of vertices such
that (vi, vi+1) ∈ E for all i. A strategy for Player O is a map σ : V ∗VO → V such that
(vi, σ(v0 · · · vi)) ∈ E for all vi ∈ VO. The strategy σ is positional, if σ(wv) = σ(v) for all
wv ∈ V ∗VO. Hence, we denote it as mapping from VO to V. A play v0v1v2 · · · is consistent
with σ, if vi+1 = σ(v0 · · · vi) for every i with vi ∈ VO. The strategy σ is winning from a
vertex v ∈ V , if every play v0v1v2 · · · with v0 = v that is consistent with σ satisfies the parity
condition, i.e., the maximal priority appearing infinitely often in Ω(v0)Ω(v1)Ω(v2) · · · is even.
The definition of (winning) strategies for Player I is dual. Parity games are positionally
determined [5, 20], i.e., from every vertex one of the players has a positional winning strategy.

Delay Games. A delay function is a mapping f : N→ N+, which is said to be constant, if
f(i) = 1 for every i > 0. Given a winning condition L ⊆ (ΣI × ΣO)ω and a delay function f ,
the game Γf (L) is played by two players, Player I and Player O, in rounds i = 0, 1, 2, . . . as
follows: in round i, Player I picks a word ui ∈ Σf(i)

I , then Player O picks one letter vi ∈ ΣO.
We refer to the sequence (u0, v0), (u1, v1), (u2, v2), . . . as a play of Γf (L). Player O wins the
play if the outcome

(
u0u1u2···
v0v1v2···

)
is in L, otherwise Player I wins.

Given a delay function f , a strategy for Player I is a mapping τI : Σ∗O → Σ∗I where
|τI(w)| = f(|w|), and a strategy for Player O is a mapping τO : Σ∗I → ΣO. Consider a play
(u0, v0), (u1, v1), (u2, v2), . . . of Γf (L). Such a play is consistent with τI , if ui = τI(v0 · · · vi−1)
for every i ∈ N. It is consistent with τO, if vi = τO(u0 · · ·ui) for every i ∈ N. A strategy τ for
Player P ∈ {I,O} is winning, if every play that is consistent with τ is winning for Player P .
We say that a player wins Γf (L), if she has a winning strategy.

Prompt LTL. Fix a set AP of atomic propositions. Prompt-LTL formulas are given by

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ | FP ϕ,

where p ∈ AP. We use ϕ→ ψ as shorthand for ¬ϕ ∨ ψ, where we require ϕ to be a FP -free
formula (for which the negation can be pushed to the atomic propositions using the dualities
of the classical temporal operators). The size |ϕ| of ϕ is the number of subformulas of ϕ.

The satisfaction relation is defined for an ω-word w ∈
(
2AP)ω, a position i of w, a bound k

for the prompt eventually operators, and a Prompt-LTL formula. The definition is standard
for the classical operators and defined as follows for the prompt eventually:

(w, i, k) |= FP ϕ if, and only if, there exists a j with 0 ≤ j ≤ k such that (w, i+ j, k) |= ϕ.

For the sake of brevity, we write (w, k) |= ϕ instead of (w, 0, k) |= ϕ. Note that ϕ is an LTL
formula [21], if it does not contain the prompt eventually operator. Then, we write w |= ϕ.
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The Alternating-color Technique. Let p /∈ AP be a fixed fresh proposition. An ω-word w′ ∈(
2AP∪{p})ω is a p-coloring of w ∈

(
2AP)ω if w′(i) ∩AP = w(i) for all i.

A position i of a word in
(
2AP∪{p})ω is a change point, if i = 0 or if the truth value of p

at positions i− 1 and i differs. A p-block is an infix w′(i) · · ·w′(i+ j) of w′ such that i and
i+ j+ 1 are adjacent change points. Let k ≥ 1: we say that w′ is k-spaced, if w has infinitely
many changepoints and each p-block has length at least k; we say that w′ is k-bounded, if
each p-block has length at most k (which implies that w′ has infinitely many change points).

Given a Prompt-LTL formula ϕ, let rel′(ϕ) denote the formula obtained by inductively
replacing every subformula FP ψ by

(p→ (pU (¬pU rel′(ψ)))) ∧ (¬p→ (¬pU (pU rel′(ψ))))

and let rel(ϕ) = rel′(ϕ)∧G F p∧G F¬p, i.e., we additionally require infinitely many change
points. Intuitively, instead of requiring ψ to be satisfied within a bounded number of steps,
rel(ϕ) requires it to be satisfied within at most one change point. The relativization rel(ϕ) is
an LTL formula of size O(|ϕ|). Kupferman et al. showed that ϕ and rel(ϕ) are “equivalent”
on ω-words which are bounded and spaced.

I Lemma 1 ([18]). Let ϕ be a Prompt-LTL formula and k ∈ N.
1. If (w, k) |= ϕ, then w′ |= rel(ϕ) for every k-spaced p-coloring w′ of w.
2. If w′ is a k-bounded p-coloring of w such that w′ |= rel(ϕ), then (w, 2k) |= ϕ.

3 Delay Games with Prompt-LTL Winning Conditions

In this section, we study delay games with Prompt-LTL winning conditions. Player O’s
goal in such games is to satisfy the winning condition ϕ with respect to a bound k which is
uniform among all plays consistent with the strategy. We show that such games are reducible
to delay games with LTL winning conditions by tailoring the alternating-color technique to
delay games and integrating it into the algorithm for solving ω-regular delay games [16].

Throughout this section, we fix a partition AP = I ∪O of the set of atomic propositions
into input propositions I under Player I ′s control and output propositions O under Player O’s
control. Let ΣI = 2I and ΣO = 2O. Given

(
α
β

)
∈ (ΣI × ΣO)ω, we write (

(
α
β

)
, k) |= ϕ for

((α(0) ∪ β(0)) (α(1) ∪ β(1)) (α(2) ∪ β(2)) · · · , k) |= ϕ. Given ϕ and a bound k, we define
L(ϕ, k) = {

(
α
β

)
∈ (ΣI × ΣO)ω | (

(
α
β

)
, k) |= ϕ}. If ϕ is an LTL formula, then this language is

independent of k and will be denoted by L(ϕ).
A Prompt-LTL delay game Γf (ϕ) consists of a delay function f and a Prompt-LTL

formula ϕ. We say that Player P ∈ {I,O} wins Γf (ϕ) for the bound k, if she wins Γf (L(ϕ, k)).
If we are not interested in the bound itself, but only in the existence of some bound, then we
also say that Player O wins Γf (ϕ), if there is some k such that she wins Γf (ϕ) for k. If ϕ is
an LTL formula, then we call Γf (ϕ) an LTL delay game. The winning condition L(ϕ) of
such a game is ω-regular and independent of k.

In this section, we solve the following decision problem: given a Prompt-LTL formula ϕ,
does Player O win Γf (ϕ) for some delay function f? Furthermore, we obtain upper bounds
on the necessary lookahead and the necessary bound k, which are complemented by matching
lower bounds in the next section.

With all definitions at hand, we state our main theorem of this section.

I Theorem 2. The following problem is in 3ExpTime: given a Prompt-LTL formula ϕ,
does Player O win Γf (ϕ) for some delay function f?
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Proof. We reduce Prompt-LTL to LTL delay games using the alternating-color technique.
To this end, we add the proposition p, which induces the coloring, to O, i.e., in a game with
winning condition rel(ϕ) Player O’s alphabet is 2O∪{p}. In Lemma 4, we prove that Player O
wins Γf (ϕ) for some delay function f if, and only if, Player O wins Γf (rel(ϕ)) for some delay
function f . This equivalence proves our claim: Determining whether Player O wins a delay
game (for some f) whose winning condition is given by a deterministic parity automaton is
ExpTime-complete [16]. We obtain an algorithm with triply-exponential running time by
constructing a doubly-exponential deterministic parity automaton recognizing L(rel(ϕ)) and
then running the exponential-time algorithm on it. J

Thus, it remains to prove the equivalence between the delay games with winning con-
ditions ϕ and rel(ϕ). The harder implication is the one from the LTL delay game to the
Prompt-LTL delay game. There is a straightforward extension of the solution to the
delay-free case. There, one proves that a finite-state strategy for the LTL game with winning
condition rel(ϕ) (which always exists, if Player O wins the game) only produces k-bounded
outcomes, for some k that only depends on the size of the strategy. Hence, by projecting
away the additional proposition p inducing the coloring, we obtain a winning strategy for
the Prompt-LTL game with winning condition ϕ with bound 2k by applying Lemma 1.2.

Now, consider the case with lookahead: if Player O wins Γf (rel(ϕ)), which has an ω-
regular winning condition, then also Γf ′(rel(ϕ)) for some triply-exponential constant f ′ [16].
We can model Γf ′(rel(ϕ)) as a delay-free parity game of quadruply-exponential size by storing
the lookahead explicitly in the state space of the parity game. A positional winning strategy
in this parity game only produces k-bounded plays, where k is the size of the delay-free
game, as the color has to change infinitely often. Hence, such a strategy can be turned into a
winning strategy for Player O in Γf ′(ϕ) with respect to some quadruply-exponential bound k.
However, this naive approach is not optimal: we present a more involved construction that
achieves a triply-exponential bound k. The problem with the aforementioned approach is that
the decision to produce a change point depends on the complete lookahead. We show how to
base this decision on an exponentially smaller abstraction of the lookaheads, which yields an
asymptotically optimal bound k. To this end, we extend the construction underlying the
algorithm for ω-regular delay games [16] by integrating the alternating-color technique.

Intuitively, we assign to each w ∈ Σ∗I , i.e., to each potential additional information
Player O has access to due to the lookahead, the behavior w induces in a deterministic
automaton A accepting L(rel(ϕ)), namely the state changes induced by w and the most
important color on these runs. We construct A such that it keeps track of change points in its
state space, which implies that they are part of the behavior of w. Then, we construct a parity
game in which Player I picks such behaviors instead of concrete words over ΣI and Player O
constructs a run on suitable representatives. The resulting game is of triply-exponential size
and a positional winning strategy for this game can be turned back into a winning strategy
for Γf (ϕ) satisfying asymptotically optimal bounds on the initial lookahead and the bound k.
Thus, we save one exponent by not explicitly considering the lookahead, but only its effects.

We first extend the construction of a delay-free parity game G that has the same winner as
Γf (rel(ϕ)) from [16]. The extension is necessary to obtain a “small” bound k when applying
the alternating-color technique, which turns a positional winning strategy for G into a winning
strategy for Player O in Γf ′(ϕ) for some f ′.

To this end, let A = (Q,ΣI × ΣO, qI , δ,Ω) be a deterministic max-parity automaton1

1 Recall that Ω: Q→ N is a coloring of the states and a run q0q1q2 · · · is accepting, if the maximal color
occurring infinitely often in Ω(q0)Ω(q1)Ω(q2) · · · is even. See, e.g., [11] for details.
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recognizing L(rel(ϕ)). First, as in the original construction, we add a deterministic monitoring
automaton to keep track of certain information of runs. In the ω-regular case [16], this
information is the maximal priority encountered during a run. Here, we additionally need to
remember whether the input word contains a change point. Let T0 = 2{p} and T = T0×{0, 1}.
Furthermore, for (t, s) ∈ T and t′ ∈ T0, we define the update upd((t, s), t′) ∈ T of (t, s) by t′
to be (t′, s′), where s′ = 0 if, and only if, s = 0 and t = t′. Intuitively, the first component of
a tuple in T stores the last truth value of p and the second component is equal to one if, and
only if, there was a change point.

Now, we define the deterministic parity automaton T = (QT ,ΣI × ΣO, qTI , δT ,ΩT ) with
QT = Q× Ω(Q)× T , qTI = (qI ,Ω(qI), (t′, 0)) for some arbitrary t′ ∈ T0, Ω(q,m, t) = m, and
δT ((q,m, t),

(
a
b

)
) = (q′,max{m,Ω(q′)},upd(t, b ∩ {p})) with q′ = δ(q,

(
a
b

)
).

First, let us note that T does indeed keep track of the information described above.
I Remark 3. Let w ∈ (ΣI × ΣO)+ and let (q0,m0, t0) · · · (q|w|,m|w|, t|w|) be the run of T
on w starting in (q0,m0, t0) such that m0 = Ω(q0) and t0 = (t′0, 0) for some t′0 ∈ T0. Then,
q0q1 · · · q|w| is the run of A on w starting in q0, m|w| = max{Ω(qj) | 0 ≤ j ≤ |w|}, and
t|w| = (t′|w|, s|w|) such that t′|w| is the color of the last letter of w, and such that s|w| = 0 if,
and only if, all letters of w have color t′0. In particular, if w is preceded by a word whose last
letter has color t′0, then there is a change point in w if, and only if, s|w| = 1.

Next, we classify possible moves w ∈ Σ∗I according to the behavior they induce on T .
Let δP : 2QT × ΣI → 2QT denote the transition function of the power set automaton of the
projection of T to ΣI , i.e., δP(S, a) = {δT (q,

(
a
b

)
) | q ∈ S and b ∈ ΣO}. As usual, we define

δ∗P : 2QT × Σ∗I → 2QT inductively via δ∗P(S, ε) = S and δ∗P(S,wa) = δP(δ∗P(S,w), a).
Let D ⊆ QT be non-empty and let w ∈ Σ+

I . We define the function rDw : D → 2QT via

rDw (q,m, (t, s)) = δ∗P({ (q,Ω(q), (t, 0)) }, w)

for every (q,m, (t, s)) ∈ D. Note that we use Ω(q) and (t, 0) as the second and third
component in the input for δ∗P , not m and (t, s) from the input to rDw . This resets the
tracking components of T . If we have (q′,m′, (t′, s′)) ∈ rDw (q,m, (t, s)), then there is a
word w′ over ΣI ×ΣO whose projection to ΣI is w and such that the run of A processing w′
from q has the maximal priority m′, t′ is the color of the last letter of w, and s′ encodes the
existence of change points in w′, as explained in Remark 3. Thus, this function captures the
behavior induced by w on T . We allow to restrict the domain of such a function, as we do
not have to consider every possible state, only those that are reachable by the play prefix
constructed thus far.

Let r : QT → 2QT be a partial function. We say that w is a witness for r, if rdom(r)
w = r.

Thus, we can assign a language Wr ⊆ Σ∗I of witnesses to each such r. Let R denote the set
of such functions r with infinite witness language Wr. If w is a witness of r ∈ R, then r
encodes the state transformations induced by w in the projection of A to ΣI as well as the
maximal color occurring on these runs and the existence of change points on these. The
latter is determined by the letters projected away, but still stored explicitly in the state space
of the automaton. Furthermore, as we require r ∈ R to have infinitely many witnesses, there
are arbitrarily long words with the same behavior. On the other hand, the language Wr of
witnesses of r is recognizable by a DFA of size 2n2 [16], where n is the size of T . Hence,
every r also has a witness of length at most 2n2 . This allows to replace long words w ∈ Σ∗I
by equivalent ones that are bounded exponentially in n.

Next, we define a delay-free parity game in which Player I picks functions ri ∈ R while
Player O picks states qi such that there is a word w′i in (ΣI × ΣO)∗ whose projection to ΣI
is a witness of ri and such that w′i leads T from qi to qi+1. By construction, this property is
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independent of the choice of the witness. Furthermore, to account for the delay, Player I
is always two moves ahead. Thus, instead of picking explicit words over their respective
alphabets, the players pick abstractions, Player I explicitly and Player O implicitly by
constructing the run.

Formally we define the parity game G = ((V, VO, VI , E),Ω′) where V = VI ∪ VO, VI =
{vI} ∪R×QT with the designated initial vertex vI of the game, and VO = R. Further, E is
the union of the following sets of edges: initial moves {(vI , r) | dom(r) = {qTI }} for Player I,
regular moves {((r, q), r′) | dom(r′) = r(q)} for Player I, and moves {(r, (r, q)) | q ∈ dom(r)}
for Player O. Finally, Ω′(v) = m, if v = (r, (q,m, s)) ∈ R×QT , and zero otherwise.

This finishes the construction of the game G. The following lemma states the relation
between G and the delay games with winning conditions ϕ and rel(ϕ) and implies the
equivalence of the delay games with winning conditions ϕ and rel(ϕ).

I Lemma 4. Let n = |QT |, where QT is the set of states of T as defined above.
1. If Player O wins Γf (ϕ) for some delay function f , then also Γf (rel(ϕ)) for the same f .
2. If Player O wins Γf (rel(ϕ)) for some delay function f , then also G.
3. If Player O wins G, then also Γf (ϕ) for the constant delay function f with f(0) = 2n2+1

and some bound k ≤ 22n2+2.

The automaton A recognizing L(rel(ϕ)) can be constructed such that |A| ∈ 22O(|ϕ|) ,
which implies n ∈ 22O(|ϕ|) , using a standard construction for translating LTL into non-
deterministic Büchi automata and then Schewe’s determinization construction [24]. Applying
all implications of Lemma 4 yields upper bounds on the neccessary constant lookahead and
on the neccessary bound k on the scope of the prompt eventually operator.

I Corollary 5. If Player O wins Γf (ϕ) for some delay function f and some k, then also for
some constant delay function f with f(0) ∈ 222O(|ϕ|)

and some k ∈ 222O(|ϕ|)

simultaneously.

4 Lower Bounds for LTL and Prompt-LTL Delay Games

We complement the upper bounds on the complexity of solving Prompt-LTL delay games,
on the necessary lookahead, and on the necessary bound k by proving tight lower bounds in
all three cases. The former two bounds already hold for LTL.

All proofs share some similarities which we discuss first. In particular, they all rely on
standard encodings of doubly-exponentially large numbers using small LTL formulas and the
interaction between the players. Assume AP contains the propositions b0, . . . , bn−1, bI , bO
and let w ∈ (2AP)ω and i ∈ N. We interpret w(i) ∩ {b0, . . . , bn−1} as binary encoding of a
number in [0, 2n−1], which we refer to as the address of position i. There is a formula ψinc of
quadratic size in n such that (w, i) |= ψinc if, and only if, m+ 1 mod 2n = m′, where m is the
address of position i and m′ is the address of position i+ 1. Now, let ψ0 =

∧n−1
j=0 ¬bj ∧Gψinc.

If w |= ψ0, then the bj form a cyclic addressing of the positions starting at zero, i.e., the
address of position i is i mod 2n. If this is the case, we define a block of w to be an infix that
starts at a position with address zero and ends at the next position with address 2n − 1. We
interpret the 2n bits bI of a block as a number x in R = [0, 22n − 1]. Similarly, we interpret
the 2n bits bO of a block as a number y from the same range R. Furthermore, there are
small formulas that are satisfied at the start of the i-th block if, and only if, xi = yi (xi < yi,
respectively). However, we cannot compare numbers from different blocks for equality with
small formulas. Nevertheless, if xi is unequal to xi′ , then there is a single bit that witnesses
this, i.e., the bit is one in xi if, and only if, it is zero in xi′ . We will check this by letting
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one of the players specify the address of such a witness (but not the witness itself). The
correctness of this claim is then verifiable by a small formula.

4.1 Lower Bounds on Lookahead
Our first result concerns a triply-exponential lower bound on the necessary lookahead in LTL
delay games, which matches the upper bound proven in the previous section. The exponential
lower bound 2n on the necessary lookahead for ω-regular delay games is witnessed by winning
conditions over the alphabet 1, . . . , n. These conditions require to remember letters and to
compare them for equality and order [16]. Here, we show how to adapt the winning condition
to the alphabet R, which yields a triply-exponential lower bound 2|R|. The main difficulty of
the proof is the inability of small LTL formulas to compare letters from R. To overcome
this, we exploit the interaction between the players of the game.

I Theorem 6. For every n > 0, there is an LTL formula ϕn of size O(n2) such that
Player O wins Γf (ϕn) for some delay function f , but
Player I wins Γf (ϕn) for every delay function f with f(0) ≤ 222n

.

Proof. Fix some n > 0. In the following, we measure all formula sizes in n. Furthermore,
let I = {b0, . . . , bn−1, bI ,#} and O = {bO,Ü, Ü}. Assume

(
α
β

)
∈ (ΣI ×ΣO)ω satisfies ψ0 from

above. Then, α induces a sequence x0x1x2 · · · ∈ Rω of numbers encoded by the bits bI in
each block. Similarly, β induces a sequence y0y1y2 · · · ∈ Rω.

The winning condition is intuitively described as follows: xi and xi′ with i < i′ constitute
a bad j-pair, if xi = xi′ = j and xi′′ < j for all i < i′′ < i′. Every sequence x0x1x2 · · ·
contains a bad j-pair, e.g., pick j to be the maximal number occurring infinitely often. In
order to win, Player O has to pick y0 such that x0x1x2 · · · contains a bad y0-pair. It is
known that this winning condition requires lookahead of length 2m for Player O to win,
where m is the largest number that can be picked [16].

To specify this condition with a small LTL formula, we have to require Player O to copy
y0 ad infinitum, i.e., to pick yi = y0 for all i, and to mark the two positions constituting the
bad y0-pair. Furthermore, the winning condition allows Player I to mark one copy error
introduced by Player O by specifying its address by a # (which may appear anywhere in α).
This forces Player O to implement the copying correctly and thus allows a small formula to
check that Player O indeed marks a bad y0-pair. Consider the following properties:

1. # holds at most once. Player I uses # to specify the address where he claims an error.
2. Ü holds at exactly one position, which has to be the start of a block. Furthermore, we

require the two numbers encoded by the propositions bI and bO within this block to be
equal. Player O uses Ü to denote the first component of a claimed bad j-pair.

3. Üholds at exactly one position, which has to be the start of a block and has to appear at
a later position than Ü. Again, we require the two numbers encoded by this block to be
equal. Player O uses Üto denote the second component of the claimed bad j-pair.

4. For every block between the two marked blocks, we require the number encoded by the
bI to be strictly smaller than the number encoded by the bO.

5. If there is a position i# marked by #, then there are no two different positions i 6= i′ such
that the following two conditions are satisfied: the addresses of i, i′, and i# are equal and
bO holds at i if, and only if, bO does not hold at i′. Such positions witness an error in
the copying process by Player O, which manifests itself in a single bit, whose address is
marked by Player I at any time in the future.
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Each of these properties i ∈ {1, 2, 3, 4, 5} can be specified by an LTL formula ψi of at most
quadratic size. Now, let ϕn = (ψ0 ∧ψ1)→ (ψ2 ∧ψ3 ∧ψ4 ∧ψ5). We show that Player O wins
Γf (ϕn) for some triply-exponential constant delay function, but not for any smaller one.

Fix n′ = 22n . We begin by showing that Player O wins Γf (ϕn) for the constant delay
function with f(0) = 2n · 2n′ . A simple induction shows that every word w ∈ R∗ of length
2n′ contains a bad j-pair for some j ∈ R. Thus, a move Σf(0)

I made by Player I in round 0
interpreted as sequence x0x1 · · ·x2n′−1 ∈ R∗ contains a bad j-pair for some fixed j. Hence,
Player O’s strategy τO produces the sequence jω and additionally marks the corresponding
bad j-pair with Ü and Ü. Every outcome of a play that is consistent with τO and satisfies ψ0
also satisfies ψ2∧ψ3∧ψ4∧ψ5, as Player O correctly marks a bad j-pair and never introduces
a copy-error. Hence, τO is a winning strategy for Player O.

It remains to show that Player I wins Γf (ϕn), if f(0) ≤ 2n · (2n′ − 2) ≥ 2n′ = 222n

. Let
wn′ ∈ R∗ be recursively defined via w0 = 0 and wj = wj−1 j wj−1. A simple induction shows
that wn′ does not contain a bad j-pair, for every j ∈ R, and that |wn′ | = 2n′ − 1.

Consider the following strategy τI for Player I in Γf (ϕn): τ ensures that ψ0 is satisfied
by the bj , which fixes them uniquely to implement a cyclic addressing starting at zero.
Furthermore, he picks the bI ’s so that the sequence of numbers x0x1 · · ·x` he generates
during the first 2n rounds is a prefix of wn′ . This is possible, as each xi is encoded by 2n bits
and by the choice of f(0). As a response during the first 2n rounds, Player O determines
some number y ∈ R. During the next rounds, Player I finishes wn′ and then picks some
fixed x 6= y ad infinitum (while still implementing the cyclic addressing). In case Player O
picks both markings Ü and Üin way that is consistent with properties 2, 3, and 4 as above,
let y0y1 · · · , yi be the sequence of numbers picked by her up to and including the number
marked by Ü. If they are not all equal, then there is an address that witnesses the difference
between two of these numbers. Player I then marks exactly one position with the same
address using #. If this is not the case, he never marks a position with #.

Consider an outcome of a play that is consistent with τI and let x0x1x2 · · · ∈ Rω and
y0y1y2 · · · ∈ Rω be the sequences of numbers induced by the outcome. By definition of τI ,
the antecedent ψ0 ∧ ψ1 of ϕn is satisfied and x0x1x2 · · · = wn′ · xω for some x 6= y0.

If Player O never uses her markers Ü and Üin a way that satisfies ψ2 ∧ ψ3 ∧ ψ4, then
Player I wins the play, as it satisfies the antecedent of ϕn, but not the consequent. Thus, it
remains to consider the case where the outcome satisfies ψ2 ∧ ψ3 ∧ ψ4. Let y0y1 · · · yi be the
sequence of numbers picked by her up to and including the number marked by Ü. Assume
we have y0 = y1 = · · · = yi. Then, Ü and Üspecify a bad y0-pair, as implied by ψ2 ∧ψ3 ∧ψ4
and the equality of the yj . As wn′ does not contain a bad y0-pair, we conclude y0 = x.
However, τI ensures y0 6= x. Hence, our assumption is false, i.e., the yj are not all equal. In
this situation, τI marks a position whose address witnesses this difference. This implies that
ψ5 is not satisfied, i.e., the play is winning for Player I. Hence, τI is winning for him. J

4.2 Lower Bounds on the Bound k

Our next result is a lower bound on the necessary bound k in a Prompt-LTL delay game,
which is proven by a small adaption of the game constructed in the previous proof. The
winning condition additionally requires Player O to use the mark Üat least once and k

measures the number of rounds before Player O does so. It turns out Player I can enforce a
triply-exponential k, which again matches the upper bound proven in the previous section.

I Theorem 7. For every n > 0, there is a Prompt LTL formula ϕ′n of size O(n2) such that
Player O wins Γf (ϕ′n) for some delay function f and some k, but
Player I wins Γf (ϕ′n) for every delay function f and every k ≤ 222n

.
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Proof. Let ϕ′n = (ψ0 ∧ ψ1) → (ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5 ∧ FP Ü), where the alphabets and the
formulas ψi are as in the proof of Theorem 6.

Let k = f(0) = 2n · 2n′ with n′ = 22n as above. Then, the strategy τO for Player O
described in the proof of Theorem 6 is winning for Γf (ϕn) with bound k: it places both
markers within the first f(0) = k positions, as it specifies a bad j-pair within this range.

Now, assume we have k < 2n · 2n′ , consider the strategy τI for Player I as defined in the
proof of Theorem 6, and recall that every outcome that is consistent with τI starts with
the sequence wn′ in the first component. Satisfying ψ2 ∧ ψ3 ∧ ψ4 ∧ ψ5 against τI requires
Player O to mark a bad j-pair and to produce the sequence jω. However, Player I does not
produce a bad j-pair in the first k positions, i.e., the conjunct FP Üis not satisfied with
respect to k. Hence, τI is winning for Player I in Γf (ϕn) with bound k. J

4.3 Lower Bounds on Complexity
Our final result settles the complexity of solving Prompt-LTL delay games. The triply-
exponential algorithm presented in the previous section is complemented by proving the
problem to be 3ExpTime-complete, which even holds for LTL. The proof is a combination of
techniques developed for the lower bound on the lookahead presented above and of techniques
from the ExpTime-hardness proof for solving delay games whose winning conditions are
given by deterministic safety automata [16] and is presented in the full version [17].

I Theorem 8. The following problem is 3ExpTime-complete: given an LTL formula ϕ,
does Player O win Γf (ϕ) for some delay function f?

5 Delay Games on Non-deterministic, Universal, and Alternating
Automata

Finally, we argue that the lower bounds just proven for LTL delay games can be modified
to solve open problems about ω-regular delay games whose winning conditions are given
by non-deterministic, universal, and alternating automata (note that non-determinism and
universality are not dual here, as delay games are asymmetric).

Recall that solving delay games with winning conditions given by deterministic parity
automata is ExpTime-complete and that exponential constant lookahead is sufficient and
in general necessary. These upper bounds yield doubly-exponential upper bounds on both
complexity and lookahead for non-deterministic and universal parity automata via deter-
minization, which incurs an exponential blowup. Similarly, we obtain triply-exponential upper
bounds on both complexity and lookahead for alternating parity automata, as determinization
incurs a doubly-exponential blowup in this case.

For alternating automata, these upper bounds are tight, as LTL can be translated into
linearly-sized alternating automata (even with very weak acceptance conditions). Hence, the
triply-exponential lower bounds proven in the previous section hold here as well.

To prove doubly-exponential lower bounds for the case of non-deterministic and universal
automata, one has to modify the constructions presented in the previous section. Let us first
consider the case of non-deterministic automata: to obtain a matching doubly-exponential
lower bound on the necessary lookahead, we require Player I to produce an input sequence
in {0, 1}ω, where we interpret every block of n bits as the binary encoding of a number in
{0, 1, . . . , 2n − 1}. In order to win, Player O also has to pick an encoding of a number j
with her first n moves such that the sequence of numbers picked by Player I contains a bad
j-pair. To allow the automaton to check the correctness of this pick, we require Player O to
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Automaton type complexity lookahead

deterministic parity ExpTime-complete exponential
non-deterministic parity 2ExpTime-complete doubly-exponential
universal parity 2ExpTime-complete doubly-exponential
alternating parity 3ExpTime-complete triply-exponential

Figure 1 Overview of results for the ω-regular case.

repeat the encoding of the number ad infinitum. Then, the automaton can guess and verify
the two positions comprising the bad j-pair. Finally, to prevent Player O from incorrectly
copying the encoding of j (which manifests itself in a single bit), we use the same marking
construction as in the previous section: Player I can mark one position i by a # to claim
an error in some bit at position i mod n. The automaton can guess the value i mod n and
verify that there is no such error (and that the guess was correct). Using similar ideas one
can encode an alternating exponential space Turing machine proving the 2ExpTime lower
bound on the complexity for non-deterministic automata.

For universal automata, the constructions are even simpler, since we do not need the
marking of Player I. Instead, we use the universality to check that Player O copies her pick j
correctly. Altogether, we obtain the results presented in Figure 1, where careful analysis
shows that the lower bounds already hold for weaker acceptance conditions than parity, e.g.,
safety and weak parity (the case of reachability acceptance is exceptional, as such games are
PSpace-complete for non-deterministic automata [16]).

6 Conclusion

We identified Prompt-LTL as the first quantitative winning condition for delay games that
retains the desirable qualities of ω-regular delay games: in particular, bounded lookahead
is sufficient to win Prompt-LTL delay games and to determine the winner of such games
is 3ExpTime-complete. This complexity should be contrasted to that of delay-free LTL
and Prompt-LTL games, which are already 2ExpTime-complete. We complemented the
complexity result by giving tight triply-exponential bounds on the necessary lookahead and
on the necessary bound k for the prompt eventually operator.

All our lower bounds already hold for LTL and therefore also for (very-weak) alternating
Büchi automata, since LTL can be translated into such automata of linear size [10]. On the
other hand, we obtained tight matching upper bounds: solving delay games on alternating
automata is 3ExpTime-complete and triply-exponential lookahead is in general necessary and
always sufficient. Furthermore, our lower bounds can be modified to complete the picture in
the ω-regular case with regard to the branching mode of the specification automaton: solving
delay games with winning conditions given by non-deterministic or universal automata is
2ExpTime-complete and doubly-exponential lookahead is sufficient and in general necessary.

Finally, as usual for results based on the alternating-color technique, our results on
Prompt-LTL hold for the stronger logics PLTL [1], PLDL [6], and their variants with
costs [26] as well.
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Abstract
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations
of priced timed automata between two players – Player Min and Player Max – by moving a token
along the states of the graph to form an infinite run. The goal of Player Min is to minimize
the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier,
Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff
games are undecidable for timed automata with five or more clocks. We refine this result by
proving the undecidability of mean-payoff games with three clocks. On a positive side, we show
the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A
key contribution of this paper is the application of dynamic programming based proof techniques
applied in the context of average reward optimization on an uncountable state and action space.
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1 Introduction

The classical mean-payoff games [24, 13, 16, 4] are two-player zero-sum games that are played
on weighted finite graphs, where two players – Max and Min – take turn to move a token
along the edges of the graph to jointly construct an infinite play. The objectives of the
players Max and Min are to respectively maximize and minimize the limit average reward
associated with the play. Mean-payoff games are well-studied in the context of optimal
controller synthesis in the framework of Ramadge-Wonham [22], where the goal of the game
is to find a control strategy that maximises the average reward earned during the evolution
of the system. Mean-payoff games enjoy a special status in verification, since µ-calculus
model checking and parity games can be reduced in polynomial-time to solving mean-payoff
games. Mean-payoff objectives can also be considered as quantitative extensions [17] of
classical Büchi objectives, where we are interested in the limit-average share of occurrences of
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accepting states rather than merely in whether or not infinitely many accepting states occur.
For a broader discussion on quantitative verification, in general, and the transition from
the classical qualitative to the modern quantitative interpretation of deterministic Büchi
automata, we refer the reader to Henzinger’s excellent survey [17].

We study mean-payoff games played on an infinite configuration graph of timed automata.
Asarin and Maler [3] were the first to study games on timed automata and they gave an
algorithm to solve timed games with reachability time objective. Their work was later
generalized and improved upon by Alur et al. [1] and Bouyer et al. [8]. Bouyer et al. [7, 5]
also studied the more difficult average payoffs, but only in the context of scheduling, which in
game-theoretic terminology corresponds to 1-player games. However, they left the problem
of proving decidability of 2-player average reward games on priced timed automata open.
Jurdziński and Trivedi [20] proved the decidability of the special case of average time games
where all locations have unit costs. More recently, mean-payoff games on timed automata
have been studied by Brenguier, Cassez and Raskin [10] where they consider average payoff
per time-unit. Using the undecidability of energy games [9], they showed undecidability
of mean-payoff games on weighted timed games with five or more clocks. They also gave
a semi-algorithm to solve cycle-forming games on timed automata and characterized the
conditions under which a solution of these games gives a solution for mean-payoff games.

On the positive side, we characterize general conditions under which dynamic programming
based techniques can be used to solve the mean-payoff games on timed automata. As a
proof-of-concept, we consider one-clock binary-priced timed games, and prove the decidability
of mean-payoff games for this subclass. Our decidability result can be considered as the
average-payoff analog of the decidability result by Brihaye et al. [11] for reachability-price
games on timed automata. We strengthen the known undecidability results for mean-payoff
games on timed automata in three ways: (i) we show that the mean-payoff games over
priced timed games is undecidable for timed games with only three clocks; (ii) secondly,
we show that undecidability can be achieved with binary price-rates; and finally, (iii) our
undecidability results are applicable for problems where the average payoff is considered per
move as well as for problems when it is defined per time-unit.

Howard [18, 21] introduced gain and bias optimality equations to characterize optimal
average on one-player finite game arenas. Gain and bias optimality equations based charac-
terization has been extended to two-player game arenas [14] as well as many subclasses of
uncountable state and action spaces [12, 6]. The work of Bouyer et al. [6] is perhaps the
closest to our approach – they extended optimality equations approach to solve games on
hybrid automata with certain strong reset assumption that requires all continuous variables
to be reset at each transition, which in the case of timed automata is akin to requiring all
clocks to be reset at each transition. To the best of our knowledge, the exact decidability for
timed games does not immediately follow from any previously known results.

Howard’s Optimality equations requires two variable per state: the gain of the state and
the bias of the state. Informally speaking, the gain of a state corresponds to the optimal
mean-payoff for games starting from that state, while the bias corresponds to the limit of
transient sum of step-wise deviations from the optimal average. Hence, intuitively at a
given point in a game, both players would prefer to first optimize the gain, and then choose
to optimize bias among choices with equal gains. We give general conditions under which
a solution of gain-bias equations for a finitary abstraction of timed games can provide a
solution of gain-bias equations for the original timed game. For this purpose, we exploit a
region-graph like abstraction of timed automata [19] called the boundary region abstraction
(BRA). Our key contribution is the theorem that states that every solution of gain-bias
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optimality equations for boundary region abstraction carries over to the original timed game,
as long as for every region, the gain values are constant and the bias values are affine.

The paper is organized in the following manner. In Section 2 we describe mean-payoff
games and introduce the notions of gain and bias optimality equations. This section also
introduces mean-payoff games over timed automata and states the key results of the paper.
Section 3 introduces the boundary region abstraction for timed automata and characterizes the
conditions under which the solution of a game played over the boundary region abstraction
can be lifted to a solution of mean payoff game over priced timed automata. In Section 4 we
present the strategy improvement algorithm to solve optimality equations for mean-payoff
games played over boundary region abstraction and connect them to solution of optimality
equations over corresponding timed automata. Finally, Section 5 sketches the undecidability
of mean-payoff games for binary-priced timed automata with three clocks.

2 Mean-Payoff Games on Timed Automata

We begin this section by introducing mean-payoff games on graphs with uncountably infinite
vertices and edges, and show how, and under what conditions, gain-bias optimality equations
characterize the value of mean-payoff games. We then set-up mean-payoff games for timed
automata and state our key contributions.

2.1 Mean-Payoff Games
I Definition 1 (Turn-Based Game Arena). A game arena Γ is a tuple (S, SMin, SMax, A, T, π)
where S is a (potentially uncountable) set of states partitioned between sets SMin and
SMax of states controlled by Player Min and Player Max, respectively; A is a (potentially
uncountable) set of actions; T : S×A→ S is a partial function called the transition function;
and π : S ×A→ R is a partial function called the price function.

We say that a game arena is finite if both S and A are finite. For any state s ∈ S, we
let A(s) denote the set of actions available in s, i.e., the actions a ∈ A for which T (s, a)
and π(s, a) are defined. A transition of a game arena is a tuple (s, a, s′) ∈ S×A×S such
that s′ = T (s, a) and we write s a−→ s′. A finite play starting at a state s0 is a sequence
of transitions 〈s0, a1, s1, a2, . . . , sn〉 ∈ S×(A×S)∗ such that for all 0 6 i < n we have that
si

ai+1−−−→ si+1 is a transition. For a finite play ρ = 〈s0, a1, . . . , sn〉 we write Last(ρ) for the
final state of ρ, here Last(ρ) = sn. The concept of an infinite play 〈s0, a1, s1, . . .〉 is defined
in an analogous way. We write Runs(s) and Runsfin(s) for the set of plays and the set of
finite plays starting at s ∈ S respectively.

A strategy of Player Min is a function µ : Runsfin → A such that µ(ρ) ∈ A(Last(ρ)) for all
finite plays ρ ∈ Runsfin, i.e. for any finite play, a strategy of Min returns an action available
to Min in the last state of the play. A strategy χ of Max is defined analogously and we
let ΣMin and ΣMax denote the sets of strategies of Min and Max, respectively. A strategy
σ is positional if Last(ρ)=Last(ρ′) implies σ(ρ)=σ(ρ′) for all ρ, ρ′ ∈ Runsfin. This allows
us to represent a positional strategy as a function in [S → A]. Let ΠMin and ΠMax denote
the set of positional strategies of Min and Max, respectively. For any state s and strategy
pair (µ, χ) ∈ ΣMin×ΣMax, let Run(s, µ, χ) denote the unique infinite play 〈s0, a1, s1, . . .〉 in
which Min and Max play according to µ and χ, respectively, i.e. for all i > 0 we have that
si ∈ SMin implies ai+1 = µ(〈s0, a1, . . . , si〉) and si ∈ SMax implies ai+1 = χ(〈s0, a1, . . . , si〉).

In a mean-payoff game on a game arena, players Min and Max move a token along the
transitions indefinitely thus forming an infinite play ρ = 〈s0, a1, s1, . . .〉 in the game graph.
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The goal of player Min is to minimize AMin(ρ) = lim supn→∞ 1
n ·

∑n−1
i=0 π(si, ai+1) and the

goal of player Max is to maximize AMax(ρ) = lim infn→∞ 1
n ·

∑n−1
i=0 π(si, ai+1). The upper

value Val∗(s) and the lower value Val∗(s) of a state s ∈ S are defined as:

Val∗(s) = inf
µ∈ΣMin

sup
χ∈ΣMax

AMin(Run(s, µ, χ)) and Val∗(s) = sup
χ∈ΣMax

inf
µ∈ΣMin

AMax(Run(s, µ, χ))

respectively. It is always the case that Val∗(s) 6 Val∗(s). A mean-payoff game is called
determined if for every state s ∈ S we have that Val∗(s) = Val∗(s). Then, we write Val(s) for
this number and we call it the value of the mean-payoff game at state s. We say that a game
is positionally-determined if for every ε > 0 we have strategies µε ∈ ΠMin and χε ∈ ΠMax
such that for every initial state s ∈ S, we have that

Val∗(s)−ε 6 inf
µ′∈ΣMin

AMax(Run(s, µ′, χε)) and Val∗(s)+ε > sup
χ′∈ΣMax

AMin(Run(s, µε, χ′)).

For a given ε we call each such strategy an ε-optimal strategy for the respective player.
Given two functions G : S → R (gain) and B : S → R (bias), we say that (G,B) is a

solution to the optimality equations for mean-payoff game on Γ = (S, SMin, SMax, A, T, π),
denoted (G,B) |= Opt(Γ) if

G(s) =
{

supa∈A(s){G(s′) : s a−→ s′} if s ∈ SMax

infa∈A(s){G(s′) : s a−→ s′} if s ∈ SMin.

B(s) =
{

supa∈A(s){π(s, a)−G(s) +B(s′) : s a−→ s′ and G(s) = G(s′)} if s ∈ SMax

infa∈A(s){π(s, a)−G(s) +B(s′) : s a−→ s′ and G(s) = G(s′)} if s ∈ SMin.

We prove the following theorem connecting a solution of the optimality equations with
mean-payoff games. We exploit this theorem to solve mean-payoff games on timed automata.

I Theorem 2. If there exists a function G : S → R with finite image and a function
B : S → R with bounded image such that (G,B) |= Opt(Γ) then for every state s ∈ S, we
have that G(s) = Val(s) and for every ε > 0 both players have positional ε-optimal strategies.

Proof. Assume that we are given the functions G : S → R with finite image and B : S → R
with bounded image such that (G,B) |= Opt(Γ). In order to prove the result we show, for
every ε > 0, the existence of positional strategies µε and χε such that

G(s)− ε 6 inf
µ′∈ΣMin

AMax(Run(s, µ′, χε)) and G(s) + ε > sup
χ′∈ΣMax

AMin(Run(s, µε, χ′)).

The proof is in two parts.
Given ε > 0 we compute the positional strategy µε ∈ ΠMin satisfying the following
conditions: µε(s) = a if

G(s) = G(s′) (1)
B(s) > π(s, a)−G(s) +B(s′)− ε, (2)

where s a−→ s′. Notice that it is always possible to find such strategy since (G,B) satisfies
optimality equations and G is finite image.
Now consider an arbitrary strategy χ ∈ ΣMax and consider the run Run(s, µε, χ) =
〈s0, a1, s1, . . . , sn, . . .〉. Notice that for every i > 0 we have that G(si) > G(si+1) if
si ∈ SMax and G(si) = G(si+1) if si ∈ SMin. Hence G(s0), G(s1), . . . is a non-increasing
sequence. Since G is finite image, the sequence eventually becomes constant. Assume
that for i > N we have that G(si) = g. Now notice that for all i > N we have that
B(si) > π(si, ai+1)− g +B(si+1) if si ∈ SMax and B(si) > π(si, ai+1)− g +B(si+1)− ε
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if si ∈ SMin. Summing these equations sidewise from i = N to N + k we have that
B(sN ) >

∑N+k
i=N π(si, ai+1)− (k + 1) · g +B(sN+k+1)− (k + 1) · ε. Rearranging, we get

g >
1

k + 1

N+k∑
i=N

π(si, ai+1) + 1
k + 1(B(sN+k+1)−B(sN ))− ε.

Hence

g > lim sup
k→∞

1
k + 1

N+k∑
i=N

π(si, ai+1) + lim sup
k→∞

1
k + 1(B(sN+k+1)−B(sN ))− ε

= lim sup
k→∞

1
k

k∑
i=0

π(si, ai+1)− ε .

Hence G(s) + ε > AMin(Run(s, µε, χ)). Since χ is an arbitrary strategy in ΣMax, we have
G(s) + ε > supχ′∈ΣMax

AMin(Run(s, µε, χ′)).
This part is analogous to the first part of the proof and is omitted.

The proof is now complete. J

2.2 Timed Automata
Priced Timed Game Arenas (PTGAs) extend classical timed automata [2] with a partition of
the actions between two players Min and Max. Before we present the syntax and semantics
of PTGAs, we need to introduce the concept of clock variables and related notions.

Clocks. Let X be a finite set of clocks. A clock valuation on X is a function ν : X→R>0 and
we write V (X ) (or just V when X is clear from the context) for the set of clock valuations.
Abusing notation, we also treat a valuation ν as a point in (R>0)|X |. Let 0 denote the clock
valuation that assigns 0 to all clocks. If ν ∈ V and t ∈ R>0 then we write ν+t for the clock
valuation defined by (ν+t)(c) = ν(c)+t for all c ∈ X . For C ⊆ X , we write ν[C := 0] for the
valuation where ν[C := 0](c) equals 0 if c ∈ C and ν(c) otherwise. For X ⊆ V (X ), we write
X for the smallest closed set in V containing X. Although clocks are usually allowed to take
arbitrary non-negative values, for notational convenience we assume that there is a K ∈ N
such that for every c ∈ X we have ν(c) 6 K.

Clock Constraints. A clock constraint over X with upper bound K ∈ N is a conjunction
of simple constraints of the form c ./ i or c−c′ ./ i, where c, c′ ∈ X , i ∈ N, i6K, and
./ ∈ {<,>,=,6,>}. For ν ∈ V (X ) and K ∈ N, let CC(ν,K) be the set of clock constraints
with upper bound K which hold in ν, i.e. those constraints that resolve to true after
substituting each occurrence of a clock x with ν(x).

Regions and Zones. Every clock region is an equivalence class of the indistinguishability-
by-clock-constraints relation. For a given set of clocks X and upper bound K ∈ N on clock
constraints, a clock region is a maximal set ζ⊆V (X ) such that CC(ν,K)=CC(ν′,K) for all
ν, ν′ ∈ ζ. For the set of clocks X and upper bound K we write R(X ,K) for the corresponding
finite set of clock regions. We write [ν] for the clock region of ν. A clock zone is a convex set
of clock valuations that satisfies constraints of the form γ ::= c1 ./ k | c1 − c2 ./ k | γ ∧ γ,
k ∈ N, c1, c2 ∈ X and ./ ∈ {≤, <,=, >,≥}. We write Z(X ,K) for the set of clock zones
over the set of clocks X and upper bound K. When X and K are clear from the context we
write R and Z for the set of regions and zones. In this paper we fix a positive integer K,
and work with K-bounded clocks and clock constraints.
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2.3 Priced Timed Game Arena: Syntax and Semantics
I Definition 3. A priced timed game arena is a tuple T=(LMin, LMax,Act,X , Inv, E, ρ, δ, p)
where LMin and LMax are sets of locations controlled by Player Min and Player Max and we
write L = LMin ∪ LMax; Act is a finite set of actions; X is a finite set of clocks; Inv : L→ Z
is an invariant condition; E : L×Act → Z is an action enabledness function; ρ : Act → 2C is
a clock reset function; δ : L×Act → L is a transition function; and p : L ∪ L×Act → R is a
price information function. A PTGA is binary-priced when p(`) ∈ {0, 1} for all ` ∈ L.

When we consider a PTGA as an input of an algorithm, its size is understood as the sum of
the sizes of encodings of L, X , Inv, Act, E, ρ, δ and p. We draw the states of Min players as
circles, while states of Max player as boxes.

Let T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) be a PTGA. A configuration of a PTGA is
a pair (`, ν), where ` is a location and ν a clock valuation such that ν ∈ Inv(`). For any
t ∈ R>0, we let (`, ν)+t equal the configuration (`, ν+t). In a configuration (`, ν), a timed
action (time-action pair) (t, a) is available if and only if the invariant condition Inv(`) is
continuously satisfied while t time units elapse, and a is enabled (i.e. the enabling condition
E(`, a) is satisfied) after t time units have elapsed. Furthermore, if the timed action (t, a) is
performed, then the next configuration is determined by the transition relation δ and the
reset function ρ, i.e. the clocks in ρ(a) are reset and we move to the location δ(`, a).

A game on a PTGA starts in an initial configuration (`, ν) ∈ L × V and players Min
and Max construct an infinite play by taking turns to choose available timed actions (t, a)
whenever the current location is controlled by them and the price p(`) · t+ p(`, a) is paid to
the Max by player Min. Formally, PTGA semantics is given as a game arena.

I Definition 4 (PTGA Semantics). Let T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) be a PTGA.
The semantics of T is given by game arena [[T]]=(S, SMin, SMax, A, T, π) where

S ⊆ L×V is the set of states such that (`, ν) ∈ S if and only if ν ∈ Inv(`);
(`, ν) ∈ SMin (or (`, ν) ∈ SMax) if (`, ν) ∈ S and ` ∈ LMin (or ` ∈ LMax, respectively).
A = R>0×Act is the set of timed actions;
T : S ×A→ S is the transition function such that for (`, ν) ∈ S and (t, a) ∈ A, we have
T ((`, ν), (t, a)) = (`′, ν′) if and only if
ν+t′ ∈ Inv(`) for all t′ ∈ [0, t]; ν+t ∈ E(`, a); (`′, ν′) ∈ S, δ(`, a) = `′, (ν + t)[ρ(a) :=
0] = ν′.

π : S×A→R is the reward function where π((`, ν), (t, a))=p(`) · t+ p(`, a).

We are interested in the mean-payoff decision problem for timed automata T that asks to
decide whether the value of the mean-payoff game for a given state is below a given budget.
For a PTGA T and budget r ∈ R, we write MPG(T, r) for the r-mean payoff decision problem
that asks whether the value of the game at the state (`,0) is smaller than r. The following
theorem summarizes the key contribution of this paper.

I Theorem 5. The decision problem MPG(T, r) for binary-priced timed automata T is
undecidable for automata with three clocks, and decidable for automata with one clock.

3 Boundary Region Graph Abstraction

In this section we introduce an abstraction of priced timed games called the boundary
region abstraction (that generalizes classical corner-point abstraction [7]), and characterize
conditions under which a solution of optimality equations for the boundary region abstraction
can be lifted to a solution of optimality equations for timed automata. Observe that in order
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to keep our result as general as possible, we present the abstraction and corresponding results
for timed automata with an arbitrary number of clocks. In the following section, we show
that the required conditions hold for the case of one-clock binary-priced timed automata.

Timed Successor Regions. Recall that R is the set of clock regions. For ζ, ζ ′ ∈ R, we say
that ζ ′ is in the future of ζ, denoted ζ ∗−→ ζ ′, if there exist ν ∈ ζ, ν′ ∈ ζ ′ and t ∈ R>0 such
that ν′ = ν+t and say ζ ′ is the time successor of ζ if ν+t′ ∈ ζ ∪ ζ ′ for all t′ 6 t and write
ζ → ζ ′, or equivalently ζ ′ ← ζ, to denote this fact. For regions ζ, ζ ′ ∈ R such that ζ ∗−→ ζ ′

we write [ζ, ζ ′] for the zone
⋃
{ζ ′′ | ζ ∗−→ ζ ′′ ∧ ζ ′′ ∗−→ ζ ′}.

Thin and Thick Regions. We say that a region ζ is thin if [ν]6=[ν+ε] for every ν ∈ ζ and
ε>0 and thick otherwise. We write RThin and RThick for the sets of thin and thick regions,
respectively. Observe that if ζ ∈ RThick then, for any ν ∈ ζ, there exists ε>0, such that
[ν]=[ν+ε] and the time successor of a thin region is thick, and vice versa.

Intuition for the Boundary Region Graph (BRG). Recall that K is an upper bound on
clock values and let JKKN = {0, 1, . . . ,K}. For any ν ∈ V , b ∈ JKKN and c ∈ X , we define
time(ν, (b, c))def=b−ν(c) if ν(c)6b, and time(ν, (b, c))def=0 if ν(c)>b. Intuitively, time(ν, (b, c))
returns the amount of time that must elapse in ν before the clock c reaches the integer value
b. Observe that, for any ζ ′ ∈ RThin, there exists b ∈ JKKN and c ∈ X , such that ν ∈ ζ
implies (ν+(b−ν(c)) ∈ ζ ′ for all ζ ∈ R in the past of ζ ′ and write ζ →b,c ζ

′. The boundary
region abstraction is motivated by the following. Consider a ∈ Act, (`, ν) and ζ ∗−→ ζ ′ such
that ν ∈ ζ, [ζ, ζ ′] ⊆ Inv(`) and ν′ ∈ E(`, a). (For illustration, see Figure 2 in the appendix
in [15]).

If ζ ′ ∈ RThick, then there are infinitely many t ∈ R>0 such that ν+t ∈ ζ ′. However,
amongst all such t’s, for one of the boundaries of ζ ′, the closer ν+t is to this boundary,
the ‘better’ the timed action (t, a) becomes for a player’s objective. However, since ζ ′ is a
thick region, the set {t ∈ R>0 | ν+t ∈ ζ ′} is an open interval, and hence does not contain
its boundary values. Let the closest boundary of ζ ′ from ν be defined by the hyperplane
c = binf and the farthest boundary of ζ ′ from ν be defined by the hyperplane c = bsup.
binf, bsup ∈ N are such that binf − ν(c) (bsup−ν(c)) is the infimum (supremum) of the time
spent to reach the lower (upper) boundary of region ζ ′. Let the zones that correspond
to these boundaries be denoted by ζ ′inf and ζ ′sup respectively. Then ζ →binf,c ζ

′
inf → ζ ′ and

ζ →bsup,c ζ
′
sup ← ζ ′. In the boundary region abstraction we include these ‘best’ timed

actions through (binf, c, a, ζ
′) and (bsup, c, a, ζ

′).
If ζ ′ ∈ RThin, then there exists a unique t ∈ R>0 such that ν+t ∈ ζ ′. Moreover since ζ ′
is a thin region, there exists a clock c ∈ C and a number b ∈ N such that ζ →b,c ζ

′ and
t = b−ν(c). In the boundary region abstraction we summarise this ‘best’ timed action
from region ζ via region ζ ′ through the action (b, c, a, ζ ′).

Based on this intuition above the boundary region abstraction (BRA) is defined as follows.

I Definition 6. For a priced timed game arena T = (LMin, LMax,Act,X , Inv, E, ρ, δ, p) the
boundary region abstraction of T is given by the game arena T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂)

Ŝ ⊆ L×V×R is the set of states such that (`, ν, ζ) ∈ Ŝ if and only if ζ ⊆ Inv(`) and
ν ∈ ζ (recall that ζ denotes the closure of ζ);
(`, ν, ζ) ∈ ŜMin (or (`, ν, ζ) ∈ ŜMax) if (`, ν, ζ) ∈ Ŝ and ` ∈ LMin (or ` ∈ LMax, resp.).
Â = (JKKN×X×Act×R) is the set of actions;
For ŝ=(`, ν, ζ)∈Ŝ and α=(bα, cα, aα, ζα)∈Â, function T̂ (ŝ, α) is defined if [ζ, ζα]⊆Inv(`)
and ζα ⊆ E(`, aα) and it equals (`′, ν′, ζ ′) ∈ Ŝ where δ(`, aα) = `′, να[C:=0] = ν′ and
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44:8 Mean-Payoff Games on Timed Automata

ζα[C:=0] = ζ ′ with να = ν+time(ν, (bα, cα)) and one of the following conditions holds:
ζ →bα,cα ζα; ζ →bα,cα ζinf → ζα for some ζinf ∈ R; ζ →bα,cα ζsup ← ζα for some ζsup ∈ R;
for (`, ν, ζ) ∈ Ŝ and (bα, cα, aα, ζα) ∈ Â the reward function π̂ is given by:
π̂((`, ν, ζ), (bα, cα, aα, ζα)) = p(`, aα) + p(`) · (bα−ν(cα))

Although the boundary region abstraction is not a finite game arena, every state has only
finitely many time successors (the boundaries of the regions) and for a fixed initial state we
can restrict attention to a finite game arena due to the following observation.

I Lemma 7 ([23]). Let T be a priced timed game arena and T̂ the corresponding BRA. For
any state of T̂, its reachable sub-graph is finite and can be constructed in time exponential in
the size of T when T has more than one clock. For one clock T, the reachable sub-graph of T̂
can be constructed in time polynomial in the size of T. Moreover, the reachable sub-graph
from the initial location and clock valuation is precisely the corner-point abstraction.

3.1 Reduction to Boundary Region Abstraction
In what follows, unless specified otherwise, we fix a PTGA T = (LMin, LMax,Act,X , Inv, E, ρ,
δ, p) with semantics [[T]]=(S, SMin, SMax, A, T, π) and BRA T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂). Let
G : Ŝ → R and B : Ŝ → R be such that (G,B) |= Opt(T̂), i.e. for every ŝ ∈ Ŝ we have that

G(ŝ) =

max
α∈Â(ŝ){G(ŝ′) : ŝ α−→ ŝ′} if ŝ ∈ ŜMax

min
α∈Â(ŝ){G(ŝ′) : ŝ α−→ ŝ′} if ŝ ∈ ŜMin.

B(ŝ) =

max
α∈Â(ŝ){π(ŝ, α)−G(ŝ) +B(ŝ′) : ŝ α−→ ŝ′ and G(ŝ) = G(ŝ′)} if ŝ ∈ ŜMax

min
α∈Â(ŝ){π(ŝ, α)−G(ŝ) +B(ŝ′) : ŝ α−→ ŝ′ and G(ŝ) = G(ŝ′)} if ŝ ∈ ŜMin.

For a function F : Ŝ → R we define a function F� : S → R as (`, ν) 7→ F (`, ν, [ν]). In this
section we show under what conditions we can lift a solution (G,B) of optimality equations
of BRA to (G�, B�) for priced timed game arena. Given a set of valuations X⊆V , a function
f : X → R>0 is affine if for any valuations νx, νy ∈ X we have that for all λ ∈ [0, 1],
f(λνx+(1−λ)νy) = λf(νx)+(1−λ)f(νy). We say that a function f : Ŝ → R>0 is regionally
affine if f(`, ·, ζ) is affine over a region for all ` ∈ L and ζ ∈ R, and f is regionally constant if
f(`, ·, ζ) is constant over a region for all ` ∈ L and ζ ∈ R. Some properties of affine functions
that are useful in the proof of the key lemma are given in Lemma 8.

I Lemma 8. Let X ⊆ V and Y ⊆ R>0 be convex sets. Let f : X → R and w : X × Y → R
be affine functions. Then for C ⊆ X we have that φC(ν, t) = w(ν, t) + f((ν + t)[C:=0]) is
also an affine function, and inft1<t<t2 φC(ν, t) = min{φC(ν, t1), φC(ν, t2)} and
supt1<t<t2 φC(ν, t) = max{φC(ν, t1), φC(ν, t2)}, φ is the unique continuous closure of φ.

I Theorem 9. Let G : Ŝ → R and B : Ŝ → R are such that (G,B) |= Opt(T̂) and G is
regionally constant and B is regionally affine, then (G�, B�) |= Opt(T).

Proof. We need to show that (G�, B�) |= Opt(T), i.e. for every

G�(s) =


sup

(t,a)∈A(s)
{G�(s′) : s (t,a)−−−→ s′} if s ∈ SMax

inf
(t,a)∈A(s)

{G�(s′) : s (t,a)−−−→ s′} if s ∈ SMin.

B�(s) =


sup

(t,a)∈A(s)
{π(s, (t, a))−G�(s)+B�(s′) : s (t,a)−−−→ s′ and G�(s) = G�(s′)} if s ∈ SMax

inf
(t,a)∈A(s)

{π(s, (t, a))−G�(s)+B�(s′) : s (t,a)−−−→ s′ and G�(s) = G�(s′)} if s ∈ SMin.
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Consider the case when s = (`, ν) ∈ SMin and consider the right side of the gain equations.

inf
(t,a)∈A(s)

{G�(s′) : s (t,a)−−−→ s′}

= min
ζ′′:[ν]→∗ζ′′

[ζ,ζ′′]∈Inv(`)

min
a∈Act

inf
t :

ν+t∈ζ′′
{G(δ(`, a), (ν+t)[ρ(a):=0], [(ν+t)][ρ(a):=0])}

= min
α∈Â(`,ν,[ν])

{G(`′, ν′, ζ ′) : (`, ν, ζ) α−→ (`′, ν′, ζ ′)} = G(`, ν, [ν]) = G�(`, ν).

The first equality holds since (G,B) |= Opt(T̂). The second equality follows since G is
regionally constant and hence it suffices to consider the delay time(ν, (b, c)) that corresponds
to either left or right boundary of the region ζ ′′, i.e. for fixed ν, ζ ′′ and a ∈ Act we have that
inf t :

ν+t∈ζ′′
{G(`′, (ν + t)[ρ(a):=0], ζ ′)} = G(`′, να[C:=0], ζ ′) where να = ν+time(ν, (bα, cα)),

ζ ′′[C:=0] = ζ ′ with ζ →bα,cα ζ
′′ if ζ ′′ is thin, and ζ →bα,cα ζinf → ζ ′′ for some ζinf ∈ R if ζ ′′ is

thick. Similarly, for the bias equations, we need to show:

inf
t :

ν+t∈ζ′′
{π((`, ν), (t, a))−G(`, ν) +B(`′, (ν + t)[ρ(a):=0], ζ ′)}

= π((`, ν, [ν]), (time(ν, (bα, cα))))−G(`, ν, [ν]) +B(`′, να[C:=0], ζ ′)

where να = ν+time(ν, (bα, cα)), ζ ′′[C:=0] = ζ ′ with ζ →bα,cα ζ
′′ if ζ ′′ is thin; and ζ →bα,cα

ζinf → ζ ′′ for some ζinf ∈ R or ζ →bα,cα ζsup → ζ ′′ for some ζsup ∈ R if ζ ′′ is thick. Given B
is regionally affine (and hence linear in t) and the price function is linear in t, the whole
expression π((`, ν), (t, a))−G(`, ν)+B(`′, (ν+t)[ρ(a):=0], ζ ′) is linear in t and from Lemma 8
it attains its infimum or supremum on either boundary of the region. J

4 Decidability for One Clock Binary-priced PTGA

Given the undecidability with 3 or more clocks, we focus on one clock PTGA. We provide
a strategy improvement algorithm to compute a solution G : Ŝ → R and B : Ŝ → R of
the optimality equations, i.e. (G,B) |= Opt(T̂) for the BRA T̂ = (Ŝ, ŜMin, ŜMax, Â, T̂ , π̂) of
one-clock binary-priced PTGAs with certain “integral payoff” restriction. Further, we show
that for one clock binary-priced integral-payoff PTGA, the solution of optimality equations
of corresponding BRG is such that the gains are regionally constant and biases are regionally
affine. Hence by Theorem 9, the algorithm can be applied to solve mean-payoff games for
one-clock binary-priced integral-payoff PTGAs. We also show how to lift the integral-payoff
restriction to recover decidability for one-clock binary-priced PTGA.

Regionally constant positional strategies. Standard strategy improvement algorithms
iterate over a finite set of strategies such that the value of the subgame at each iteration
gets strictly improved. However, since there are infinitely many positional strategies in a
boundary region abstraction, we focus on “regionally constant” positional strategies (RCPSs).
We say that a positional strategy µ : Ŝ → Â of player Min is regionally-constant if for
all (`, ν, ζ), (`, ν′, ζ) ∈ ŜMin we have that [ν]=[ν′] implies that µ(`, ν, ζ) = µ(`, ν′, ζ). We
similarly define RCPSs for player Max. In other words, in an RCPS a player chooses the
same boundary action for every valuation of a region – as a side-result we show that optimal
strategies for both players have this form. Observe that there are finitely many RCPSs for
both players. We write Π̂Min and Π̂Max for the set of RCPSs for player Min and player
Max, respectively. For a BRA T̂, χ ∈ Π̂Max, and µ ∈ Π̂Min we write T̂(χ) and T̂(µ) for the
“one-player” game on the sub-graph of BRAs where the strategies of player Max and Min
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Algorithm 1: ComputeValueZeroPlayer(T, µ, χ)
1 Consider T̂(µ, χ) as a (single successor) weighted graph G = (V,E,w) where

V = L×R×R (with an order �) and E ⊆ V × Â× V
(v1, α, v2) ∈ E if v1 = (`1, ζ1, ζ ′1), v2 = (`2, ζ2, ζ ′2), and µ(`1, ν1, ζ

′
1) = α (or

χ(`1, ν1, ζ
′
1) = α) for all ν1 ∈ ζ1 and (`1, ν1, ζ

′
1) α−→ (`2, ν2, ζ

′
2) for some ν2 ∈ ζ2.

w(v1, α, v2) is the expression ν 7→ bα − ν(cα);
for every cycle C of G do

Let Reach(C) be set of vertices that reach C;
Let γ be the average weight of the cycle (w is constant on cycles);
For every vertex V in Reach(C) set G(V ) = γ and B(V ) = ⊥;
For the smallest �-vertex V∗ in C. Set B(V∗) = 0;
while there is V ′ ∈ Reach(C) with B(V ′) = ⊥ do

Let (V ′, α, V ′′) ∈ E with B(V ′′) 6= ⊥;
B(V ′) := ν 7→ (w(V ′, α, V ′′)(ν)−G+B(V ′′));

return (G,B);

have been fixed to RCPSs χ and µ, respectively. Similarly we define the zero-player game
T̂(µ, χ) where strategies of both players are fixed to RCPSs µ and χ.

Let T̂(χ, µ) be a zero-player game on the subgraph where strategies of player Max (and
Min) are fixed to RCPSs χ (and µ). Observe that for T̂(µ, χ) the unique runs originating from
states ŝ0 = (`, ν, ζ) and ŝ′0 = (`, ν′, ζ) with [ν] = [ν′] follow the same “lasso” after one step,
i.e. the unique runs ŝ0

α1−→ ŝ1 · · · ŝk( αk+1−−−→ · · · ŝk+N−1
αk+N−−−−→ ŝk)∗ and ŝ′0

α1−→ ŝ′1 · · · ŝ′k( αk+1−−−→
· · · ŝ′k+N−1

αk+N−−−−→ ŝ′k)∗ are such that for ŝi = (`i, νi, ζi) and ŝ′i = (`′i, ν′i, ζ ′i) we have that
`i = `′i, ζi = ζ ′i and νi = ν′i for all i ∈ [1, k+N−1]. This is so because for one-clock timed
automata the successors of the states ŝ0 = (`, ν, ζ) and ŝ′0 = (`, ν′, ζ) for action α1 = (b, c, a, ζ ′)
is the same (`′′, ν′′, ζ ′′) where ν′′(c) = ν(c) + (b− ν(c)) = b = ν′(c) + (b− ν′(c)) if c 6∈ ρ(a)
and ν′′(c) = 0 otherwise. Consider the optimality equations (See Appendix C.3 in [15]) for
the lasso. Observe that the gain for the states ŝ0, . . . , ŝk+N−1 is the same, and let’s call it g.
If we add the bias equations side-wise for the cycle, we get g = 1

N

∑N−1
i=0 π(ŝk+i, αk+i+1). It

follows from the previous observation that the gains are regionally constant.

Integral Payoff PTGA. The gain in a zero-player game, T̂(χ, µ), although regionally-
constant, may not be a whole number. We say that a PTGA is integral-payoff if for every
pair (µ, χ) ∈ Π̂Min × Π̂Max of RCPSs the gain as defined above is a whole number. Observe
that the denominator in the gains correspond to the number of edges in a simple cycle of the
BRA T̂. If there are N simple cycles in the region graph of length n1, n2 . . . , nN , then let
L be the least-common multiple of n1, n2 . . . , nN . We multiply the constants appearing in
the guards and invariants of the original PTGA T by L to obtain a PTGA ΥT. It is easy
to observe that mean-payoff of any state in T is the mean-payoff in ΥT divided by L. For
notational convenience, we assume that the given PTGA is an integral-payoff PTGA and
hence for RCPS strategy profile (µ, χ) the gain is regionally constant and integral.

4.1 Strategy Improvement Algorithm for Binary-Priced PTGA
Let T be a one-clock integral-payoff binary-priced PTGA T and T̂ be its boundary region
graph. For a given RCPS profile (µ, χ) ∈ Π̂Min× Π̂Max, Algorithm 1 computes the solution for
the optimality equations Opt(T(µ, χ)). This algorithm considers T̂(µ, χ) as a graph whose
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Algorithm 2: ComputeValueTwoPlayer(T)
1 Choose an arbitrary regionally constant positional strategy χ′ ∈ ΠMax;
2 repeat
3 χ := χ′;
4 Choose an arbitrary regionally constant positional strategy µ′ ∈ ΠMin;
5 repeat
6 µ := µ′;
7 (G,B) := ComputeValueZeroPlayer(T, µ, χ) ;
8 µ′ := ImproveMinStrategy(T, µ,G,B) ;
9 until µ = µ′;

10 χ′ := ImproveMaxStrategy(T, χ,G,B) ;
11 until χ = χ′;
12 return (G,B);

vertices are “regions” (`, [ν], ζ) corresponding to state (`, ν, ζ) ∈ Ŝ of the boundary region
graph, edges are boundary actions between them determined by the regionally constant
strategy profile, and weight of an edge is the time function associated with the boundary
action. Observe that every cycle in this graph will have constant weight on the edges since
taking boundary actions in a loop will require going from an integral valuation to another
integral valuation, and the average cost of such a cycle can be easily computed.

Also observe that, not unlike standard convention [21], our algorithm chooses a vertex
in a cycle arbitrarily and fixes the bias of all of the states in that vertex to 0. This is
possible since optimality equations over a cycle are underdetermined, and we exploit this
flexibility to achieve solution to biases in a particularly “simple” structure. We say that
a function f : Ŝ → R>0 is regionally simple [3] if for all ` ∈ L, ζ, ζ ′ ∈ R either i) there
exists a d ∈ N such that f(`, ν, ζ ′) = d for all ν ∈ ζ; or ii) there exists d ∈ N and c ∈ X
such that f(`, ν, ζ ′) = d− ν(c) for all ν ∈ ζ. Key properties of regionally simple functions
(Lemma 20 in Appendix C.2 in [15] include that they are also regionally affine, closed under
minimum and maximum, and if B : Ŝ → R is a regionally simple function and G : ŝ→ N is
a regionally constant function, then ŝ 7→ π(ŝ, α)−G(ŝ) +B(ŝ′), with ŝ α−→ ŝ′, is a regionally
simple function. Using these properties and induction on the distance to �-minimal element
in the reachable cycle, we prove the correctness and following property of Algorithm 1.

I Lemma 10. Algorithm 1 computes solution of optimality equations (G,B) |= Opt(T̂(µ, χ))
for µ ∈ Π̂Min and χ ∈ Π̂Max. Moreover, G is regionally constant and B is regionally simple.

The strategy improvement algorithm to solve optimality equations is given as Algorithm 2.
It begins by choosing an arbitrary regionally constant positional strategy χ′ and at every
iteration of the loop (2–11) the algorithm computes (5–9) the value (G,B) of the current
RCPS χ and based on the value, the function ImproveMaxStrategy returns an improved
strategy by picking boundary action that lexicographically maximizes gain and bias respecting
the policy that switches a decision only for a strict improvement. We formally define the
function ImproveMaxStrategy as follows: for χ∈Σ̂Max, G : Ŝ→R, and B : Ŝ→R we let
strategy ImproveMaxStrategy(T, χ,G,B) be such that for all ŝ ∈ ŜMax we have

ImproveMaxStrategy(T, χ,G,B)(ŝ) =
{
χ(ŝ) if χ(ŝ) ∈M∗(ŝ, G,B)
Choose(M∗(ŝ, G,B)) Otherwise.

where M∗(ŝ, G,B) = argmaxlex
α∈Â{(G(ŝ′), π(ŝ, α)−G(ŝ) + B(ŝ′)) : ŝ α−→ ŝ′} and Choose

picks an arbitrary element from a set. ImproveMaxStrategy satisfies the following.
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I Lemma 11. If χ ∈ Π̂Max, G is regionally constant, and B is regionally simple, then function
ImproveMaxStrategy(T, χ,G,B) returns a regionally constant positional strategy.

The lines (5–9) compute the value of the strategy χ of Player Max via a strategy improve-
ment algorithm. This sub-algorithm works by starting with an arbitrary strategy of Player
Min and computing the value (G,B) of the zero-player PTGA T̂(µ, χ). Based on the value,
the function ImproveMinStrategy returns an improved strategy of Min. The function
ImproveMinStrategy is defined as a dual of the function ImproveMaxStrategy where
χ is replaced by µ and argmax by argmin. ImproveMinStrategy satisfies the following.

I Lemma 12. If µ ∈ Π̂Min, G is regionally constant, and B is regionally simple, then function
ImproveMinStrategy(T, µ,G,B) returns a regionally constant positional strategy.

It follows from Lemma 11 and Lemma 12 that at every iteration of the strategy improvement
the strategies µ and χ are RCPSs. Together with finiteness of the set of RCPSs and strict
improvement at every step (see Lemmas 21 and 22 in [15] for the formal statements), we get
following result.

I Theorem 13. Algorithm 2 computes solution of optimality equations (G,B) |= Opt(T̂) for
integral payoff PTGA T. Moreover, G is regionally constant and B is regionally affine.

This theorem – together with Theorem 9 and Theorem 2 – gives a proof of decidability for
mean-payoff games for integral-payoff binary-priced one-clock timed automata.

5 Undecidability Results

I Theorem 14. The mean-payoff problem MPG(T, r) is undecidable for PTGA T with 3
clocks having location-wise price-rates π(`) ∈ {0, 1,−1} for all ` ∈ L and r = 0. Moreover, it
is undecidable for binary-priced T with 3 clocks and r > 0.

Proof. We first show the undecidability result of the mean-payoff problem MPG(T, 0) with
location prices {1, 0,−1} and no edge prices. We prove the result by reducing the non-halting
problem of 2 counter machines. Our reduction uses a PTGA with 3 clocks x1, x2, x3, location
prices {1, 0,−1}, and no edge prices. Each counter machine instruction (increment, decrement,
zero check) is specified using a PTGA module. The main invariant in our reduction is that on
entry into any module, we have x1 = 1

5c1 7c2 , x2 = 0 and x3 = 0, where c1, c2 are the values
of counters C1, C2. We outline the construction for the decrement instruction of counter
C1 in Figure 2. For conciseness, we present here modules using arbitrary location prices.
However, we can redraw these with extra locations and edges using only the location prices
from {1, 0,−1} as shown for WD1

1 in Figure 1.
The role of the Min player is to faithfully simulate the two counter machine, by choosing

appropriate delays to adjust the clocks to reflect changes in counter values. Player Max will
have the opportunity to verify that player Min did not cheat while simulating the machine.

We enter location `k with x1 = 1
5c1 7c2 , x2 = 0 and x3 = 0. Let’s denote by xold the value

1
5c1 7c2 . To correctly decrement C1, player Min should choose a delay of 4xold at location `k.
At location Check, there is no time elapse and player Max has three possibilities : (i) to go
to `k+1 and continue the simulation, or (ii) to enter the widget WD1

1, or (iii) to enter the
widget WD1

2. If player Min makes an error, and delays 4xold + ε or 4xold − ε at `k (ε > 0),
then player Max can enter one of the widgets and punish player Min. Player Max enters
widget WD1

1 if the error made by player Min is of the form 4xold + ε at `k and enters widget
WD1

2 if the error made by player Min is of the form 4xold − ε at `k.
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Figure 1 WD1
1 redrawn with location prices from {1, 0,−1}. Every location has a self loop with

the guard x2, x3 = 1, reset x2, x3, which is not shown here for conciseness. The curly edge from B

to C is shown below. The mean-payoff incurred in one transit from A to A via E is ε
14 . If Min

makes no error, this is 0.
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Figure 2 Simulation to decrement counter C1, mean cost is ε for error ε. The widget WD1
2 has

exactly the same structure and guards on all transitions as WD1
1, but the price signs are reversed.

Let us examine the widget WD1
1. When we enter WD1

1 for the first time, we have
x1 = xold + 4xold + ε, x2 = 4xold + ε and x3 = 0. In WD1

1, the cost of going once from
location A to E is 5ε. Also, when we get back to A after going through the loop once, the
clock values with which we entered WD1

1 are restored; thus, each time, we come back to A,
we restore the starting values with which we enter WD1

1. The third clock is really useful for
this purpose only. It can be seen that the mean cost of transiting from A to A through E is
ε. In a similar way, it can be checked that the mean cost of transiting from A to A through
E in widget WD1

2 is ε when player Min chooses a delay 4xold − ε at `k. Thus, if player Min
makes a simulation error, player Max can always choose to goto one of the widgets, and
ensure that the mean pay-off is not 6 0. Note that when ε = 0, then player Min will achieve
his objective: the mean pay-off will be 0. Details of other gadgets are in Appendix D in [15].

For the MPG(T, r) problem (r > 0) we reduce the non-halting problem by constructing a
PTGA with 3 clocks and location prices in {0, 1} such that the meanpayoff is 6 1

3 iff Min
does a faithful simulation. Again, details can be found in Appendix D in [15]. J

In Appendix D.2 in [15], we show how this undecidability results extends (with the
same parameters) if one defines mean payoff per time unit instead of per step. This way of
averaging across time spent was considered in [10], where the authors show the undecidability
of MPG(T, 0) with 5 clocks. We improve this result to show undecidability already in 3
clocks.
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Abstract
We investigate testing of properties of 2-dimensional figures that consist of a black object on a
white background. Given a parameter ε ∈ (0, 1/2), a tester for a specified property has to accept
with probability at least 2/3 if the input figure satisfies the property and reject with probability
at least 2/3 if it does not. In general, property testers can query the color of any point in the
input figure.

We study the power of testers that get access only to uniform samples from the input figure.
We show that for the property of being a half-plane, the uniform testers are as powerful as general
testers: they require only O(1/ε) samples. In contrast, we prove that convexity can be tested
with O(1/ε) queries by testers that can make queries of their choice while uniform testers for this
property require Ω(1/ε5/4) samples. Previously, the fastest known tester for convexity needed
Θ(1/ε4/3) queries.
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1 Introduction

We investigate testing of properties of 2-dimensional figures that consist of a black object
and a white background. Sometimes the correctness of an algorithm depends on whether
its input satisfies a certain property, e.g., it is a half-plane or a convex set. However, for
a very large set, it is infeasable to determine whether it is indeed a half-plane or convex.
How quickly is it possible to determine whether the input approximately satisfies the desired
property? What access to the input is sufficient for this task?

Property testing [24, 14] studies algorithms that quickly determine whether the input
has the desired property or it is far from having it. Many types of objects have been
investigated in the property testing framework, including graphs [14, 12, 1], functions [7, 13,
10], distributions [3, 28], and geometric objects [9, 8]. In this work, we study properties of
2-dimensional figures.

A figure (U,C) consists of a compact convex universe U ⊆ R2 and a measurable subset
C ⊆ U . The set C can be thought of as a black object on a white background U \ C. A
figure (U,C) is a half-plane if there is a line separating C from U \ C. A figure (U,C) is
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convex iff C is convex. The relative distance between two figures (U,C) and (U,C ′) over
the same universe is the probability of the symmetric difference between them under the
uniform distribution on U . A figure (U,C) is ε-far from a property (e.g., being a half-plane)
if the relative distance from (U,C) to every figure (U,C ′) with the property over the same
universe is at least ε.

I Definition 1.1. Given a proximity parameter ε ∈ (0, 1/2) and error probability δ ∈ (0, 1),
an ε-tester for a given property accepts with probability at least 1− δ if the figure has the
desired property and rejects with probability at least 1 − δ if the figure is ε-far from the
desired property1. A tester has 1-sided error if it always accepts inputs with the property.
(Otherwise, it has 2-sided error). A tester is nonadaptive if it makes all of its queries in
advance, before seeing any of the input. A tester is uniform if it accesses its input only
via uniform and independent samples from U , each labeled with a bit indicating whether it
belongs to C.

In particular, a uniform tester is nonadaptive. In general, a tester can query the input at an
arbitrary location. Such a strong assumption about the access model is not always realistic.
Uniform testers, in contrast, rely only on uniform samples from the input. One advantage of
using uniform testers is that they are universal in the following sense: we can collect uniform
samples from the data in advance, before we know what property of the data needs to be
tested.

Uniform testers were first considered by Goldreich, Goldwasser, and Ron [14] and system-
atically studied by Goldreich and Ron [15]. In particular, [15] shows that certain types of
query-based testers yield uniform testers with sublinear (but dependent on size of the input)
sample complexity.

In the context of property testing and sublinear algorithms, visual properties of 2-
dimensional figures and discretized images have been studied in [21, 20, 23, 16, 17, 18, 6, 4, 5].
In [21], adaptive ε-testers for the half-plane property and convexity were obtained. For the
half-plane property, the query complexity2 is O(1/ε) and for convexity the query complexity
is O(1/ε2). Currently, the best ε-tester known for convexity takes O(ε−4/3) samples and is
uniform [4]. This tester has 1-sided error, and every uniform 1-sided error tester for convexity
needs Ω(ε−4/3) samples [4].

This motivates the following question: What is the power of uniform samples? Specifically,
can we test the half-plane property with O(1/ε) uniform samples? Can the best complexity
for testing convexity be achieved by a uniform tester?

Our results. We show that for the property of being a half-plane, the uniform testers are
as powerful as general testers: they require only O(1/ε) samples. This is not the case for
convexity. We prove that convexity can be tested with O(1/ε) queries by testers that can
make queries of their choice, improving the bound of O(ε−4/3) in [4]. We also show that
uniform testers for convexity, even with 2-sided error, require Ω(ε−5/4) samples.

Connection to learning. An upper bound O( 1
ε log 1

ε ) on the number of uniform samples
for testing the half-plane property can be obtained from a connection between (proper)

1 If δ is not specified, it is assumed to be 1/3. By standard arguments, the error probability can be
reduced from 1/3 to an arbitrarily small δ by running the tester O(log 1/δ) times.

2 For any nontrivial property, including being a half-plane, Ω(1/ε) is an easy lower bound on the complexity
of an ε-tester.
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PAC-learning and property testing, described in [14]. This bound follows from the fact that
the VC dimension of the half-plane property is constant. Even though our tester has only
slightly better sample complexity, its complexity is tight. Moreover, the running time of our
tester is also optimal. (The running time cannot be obtained from the VC-dimension bound.)
For convexity, PAC-learning under the uniform distribution requires Θ(ε−3/2) samples, as
shown by Schmeltz [25]. (VC dimension of convexity is unbounded, so this result is specific
to the uniform distribution.) For this property, however, as shown in [4], testing requires
significantly fewer samples than learning when the object is accessed via uniform samples.
Our tester for convexity can be viewed as an adaptive learner for the property, followed by a
check that the learned convex object corresponds to the input.

Our techniques. Our tester for the half-plane property is the natural one: it checks whether
the convex hull of sampled black points intersects the convex hull of sampled white points and
rejects if it is the case. In other words, it rejects only if it finds a violation of the half-plane
property. To analyze the tester, we use the notion of black-central and white-central points
defined in terms of the Ham Sandwich cut of black (respectively, white) points. (These central
points are related to the well studied centerpoints [11] and Tukey medians [27]. The guarantee
for a centerpoint is that every line that passes through it creates a relatively balanced cut.)
Such cuts have been studied extensively (see, e.g., [11, p. 356] and [19]), for example, in
the context of range queries. Specifically, a black-central (respectively, white-central) point
is the intersection of two lines that partition the figure into four regions, each with black
(respectively, white) area3 at least ε/4. Black-central points were defined in [4] in order to
analyze a tester of convexity of figures. A black-central (respectively, white-central) point is
overwhelmingly likely to end up in the convex hull of sampled black (respectively, white)
points. We show that if the figure is ε-far from being a half-plane, the convex hull of its
black-central points intersects the convex hull of its white-central points. A point in the
intersection, even though is not likely to be sampled, is likely to be in the intersection of the
convex hull of the black samples and the convex hull of the white samples. Thus, there is
likely to be the intersection, and the tester is likely to reject.

Our tester for convexity samples points uniformly at random and constructs a rectangle
R that with high probability contains nearly the entire black area and whose sides include
sampled black points. Then it adaptively queries points of R in order to partition it into the
candidate black and white regions, leaving only a small region unclassified. After completing
this learning stage, it samples points in the classified regions and rejects iff it finds a mistake.

To prove our lower bound, we construct hard instances, for which every uniform tester
needs to get a 2-point witness, with points coming from different specified regions, in order to
distinguish between our hard instances that are convex from hard instances that are far from
convex. The challenge here is to construct a figure with regions that can be manipulated
independently to either keep convexity or to violate it.

2 The Uniform Tester for the Half-Plane Property

In this section, we give a uniform tester for the half-plane property.

3 For the two properties we consider (being a half-plane and convexity), we assume w.l.o.g. that the input
figure U has unit area. If it is not the case, U can be rescaled. Thus, the area of a region corresponds
to the probability of sampling from it under the uniform distribution.
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Algorithm 1: Uniform tester for the half-plane property.
input : parameter ε ∈ (0, 1/2);

access to uniform and independent samples from (U,C).

1 Set s← 18
ε . Sample s points from U uniformly and independently at random.

2 Set U is contained in a rectangle R whose area is at most twice the area of U . Orient
U , so that R is axis-aligned.

3 Bucket sort sampled black pixels by the x-coordinate into s bins to obtain list SB .
Similarly, compute SW for the sampled white pixels.

// Check if the convex hull of SB contains a pixel from SW .
4 Use Andrew’s monotone chain convex hull algorithm [2] to compute UH(SB) and

LH(SB), the upper and the lower hulls of SB , respectively, sorted by the x-coordinate.
5 Merge sorted lists SW ,UH(SB) and LH(SB) to determine for each point w in SW its

left and right neighbors in UH(SB) and LH(SB). If w lies between the corresponding
line segments of the upper and lower hulls, reject.

// Check if the convex hull of SW contains a point from SB.
6 Repeat Steps 4–5 with the roles of SB and SW reversed.

7 Accept.

I Theorem 2.1. There is a uniform (1-sided error) ε-tester for the half-plane property of
figures with sample and time complexity O(1/ε).

Proof. Our uniform tester for the half-plane property is Algorithm 1. It takes O(1/ε) uniform
samples and checks if the sampled black and white points are linearly separable. We will
show that the expected running time of Algorithm 1 is O(1/ε) and its error probability is
0.3. A tester with worst case running time O(1/ε) and error probability 1/3 can be obtained
from Algorithm 1 by standard arguments.

Consider a half-plane figure (U,C). Let SB and SW be the two lists obtained by
Algorithm 1 in Step 3. It is easy to see that Hull(SB) and Hull(SW ) do not intersect, i.e,
they are linearly separable. Thus, the algorithm accepts the figure.

Now assume that (U,C) is ε-far from being a half-plane. We prove that the algorithm
rejects the figure with probability at least 2/3. We consider two sets of points in U : black-
central and white-central. We show that if the figure is ε-far from being a half-plane, then
the convex hulls of the two sets intersect. In this case, the tester will detect this intersection,
with probability at least 2/3, by only looking at the convex hull of sampled black points and
the convex hull of sampled white points.

Next, we define white-central and black-central points. Black-central points were used
in [4] to analyze a tester for convexity. In that work, they were called central points.

I Definition 2.2 (White-central and black-central points). A point in the figure is white-central
(respectively, black-central) if it is the intersection of two lines such that each of the quadrants
formed by these lines has white (respectively, black) area at least ε/4.

I Lemma 2.3. There is no line that separates white-central points from black-central points
in a figure that is ε-far from being a half-plane.

Proof. Let (U,C) be a figure that is ε-far from being a half-plane. For the sake of contra-
diction, suppose there is a line ` that separates white-central and black-central points in
(U,C), i.e., it partitions the figure into two regions, W` and B` , such that W` contains only
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ℓ

white-central points

𝑊ℓ
black-central points

𝐵ℓ

Figure 1 An illustration of black-central and
white-central points separated by a line.

𝑊ℓ

𝐵ℓ

ℓℓ′

Figure 2 An illustration of the line `′ and a
white-central point on it.

white-central points and B` contains only black-central points (see Figure 1). The sum of
the black area in W` and the white area in B` is at least ε since the figure is ε-far from being
a half-plane. W.l.o.g. assume that the black area in W` is at least ε/2. Consider the line
`′ that is parallel to ` and such that the black area in one of the two half-planes defined
by `′ is equal to ε/2. (See Figure 2. Note that the black area in the other half-plane is at
least ε/2.) Clearly, `′ lies in W`. Next, we show that there is a black-central point on `′,
i.e., in W`, thus arriving at a contradiction. Consider the two sets of black points, on either
side of `′. We have argued that each of them has area at least ε/2. By the Ham Sandwich
Theorem, applied to the two sets, there is a line `′′ that bisects the two sets simultaneously,
forming four sets black points of area at least ε/4 each. The intersection point of `′ and
`′′ is black-central and lies in W`. This is a contradiction, since ` is a line that separates
white-central and black-central points. J

Consider a white-central point w which is the intersection of two lines `1 and `2, as
shown in Figure 3. If four white pixels from four different quadrants determined by `1 and
`2 are sampled by Algorithm 1, we say that the tester captures w. (The tester captures
a black-central point analogously.) By Lemma 2.3, the convex hull of all white-central
points and the convex hull of all black-central points intersect. Thus, there is a point v that
lies in both convex hulls (see Figure 4). Moreover, there exists a set PW of at most three
white-central points such that point v lies in the convex hull of the points in PW . Analogously,
there exists a set PB of at most three black-central points such that point v lies in the convex
hull of the points in PB . If all points in PW ∪ PB are captured then v simultaneously lies in
the convex hull of black samples and in the convex hull of white samples, i.e., the convex hull
of black samples and the convex hull of white samples intersect, and the tester will reject the
figure. The probability that the tester fails to capture a specific point in PW ∪ PB is, by the
union bound, at most 4 · (1− ε/4)18/ε ≤ 4 · e−18/4. The probability that the tester fails to
capture at least one point in PW ∪ PB is at most 6 · 4 · e−18/4 < 0.3. Therefore, the failure
probability of the tester is at most 0.3.

Sample and time complexity. Algorithm 1 samples s = O(ε−1) points.
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𝑤
ℓ1

ℓ2

Figure 3 An illustration of a captured white
central point.

𝒗

Figure 4 An illustration of the point v in
the intersection of two convex hulls.

Next, we analyze its running time. Conduct the following mental experiment: Suppose
we sample points from the rectangle R (defined in Algorithm 1) uniformly and independently
at random until we collect s points from U ; then we bucket sort sampled points by their
x-coordinate into s bins. Let q be the number of points we sample. Then E[q] ≤ 2s. Since the
x-coordinates of the sampled q points are distributed uniformly in the interval corresponding
to the length of the rectangle R, they can be sorted in expected time O(q) by subdividing
this interval into s subintervals of equal length, and using them as buckets in the bucket sort.
Thus, the expected running time of this algorithm is O(s).

Observe that Algorithm 1 has the same distribution on the s points sampled from U as
the algorithm in the mental experiment. It sorts two (disjoint) subsets of the points sampled
in the mental experiment. Thus, the expected running time of Step 3 of Algorithm 1 is
O(s). Andrew’s monotone chain algorithm finds the convex hull of a set of s sorted points
in time O(s). Merging also takes O(s) time. Overall, Algorithm 1 runs in expected time
O(s) = O(ε−1). By standard arguments, we get a uniform algorithm with the worst case
running time O(ε−1) and with a slightly larger error probability δ than in Algorithm 1,
specifically, with δ = 1/3. J

3 The Adaptive Tester for Convexity

I Theorem 3.1. Given ε ∈ (0, 1/2), convexity of figure (U,C) can be ε-tested (adaptively)
with 1-sided error in time O(ε−1).

Proof. In [4], it was shown that testing convexity of figures (U,C) can be reduced to the
special case when the universe U is an axis-aligned rectangle of unit area. Therefore, we can
assume w.l.o.g. that U is an axis-aligned rectangle of unit area.

Our ε-tester for convexity (Algorithm 2) samples points uniformly at random and con-
structs a rectangle R that with high probability contains nearly the entire black area and
whose sides include sampled black points. (See Figure 5.) Then it adaptively queries points
of R in order to partition it into regions B, W and F . (See Figure 6.) The “fence” region
F has a small area. If the image is convex, B is entirely black and W is entirely white.
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Algorithm 2: ε-tester for convexity.
input : parameter ε ∈ (0, 1/2); access to a figure (U,C).

1 Query 64
ε points uniformly at random. If all sampled points are white, accept.

2 Let R be the minimum axis-parallel rectangle that contains all sampled black points.
Let p0 (respectively, p1, p2, p3) be a sampled black point on the top (respectively, left,
bottom, right) side of R.

3 for i← 0 to 3 do
4 Let (x, y)← pi and Pi ← ∅.// Investigate the upper right corner of R.
5 while (x, y) is in R do
6 if (x, y) is black or below the line through pi and p(i+3) mod 4 then

x← x+ ε/12. // Move right.
7 else

Pi ← Pi ∪ {(x, y)}; y ← y − ε/12. // Move down.
8 Let Wi ← {(u, v) inside R | ∃(x, y) ∈ Pi such that u ≥ x, v ≥ y with respect to

the rotated coordinates}. Rotate R clockwise by 90 degrees.
// We rotate R to reuse lines 4-8 of the pseudocode for investigating

all four corners.
9 Let B be the convex hull of all black points discovered after Step 3, and W ← ∪3

i=0Wi.
10 Query 8

ε points in B ∪W uniformly and independently. If a white point in B or a
black point in W is detected, reject; otherwise, accept.

The algorithm queries a small number of random points in B ∪W and rejects if it finds a
misclassified point (i.e., a white point in B or a black point in W ); otherwise, it accepts.

Since the black area outside R and the area of F are small, if the figure is ε-far from
convexity then there will be enough misclassified points in B ∪W , and the algorithm will
detect at least one of them with high probability.

We prove that Algorithm 2 satisfies Theorem 3.1. First, we argue that Algorithm 2 always
accepts if its input is a convex figure. If (U,C) has no black points (i.e., C = ∅), Step 1
always accepts. Otherwise, all points in B are black, by convexity of (U,C). We will show
that all points in W are white. For the sake of contradiction, suppose there is a black point
b = (u, v) in W0. By definition of W0, there is a white point w = (x, y) in P0 such that u ≥ x
and v ≥ y. Thus, white point w is inside the triangle p0bp3, formed by three black points,
contradicting convexity of (U,C). Thus, there are no black points in W0. Analogously, there
are no black points in W1,W2 and W3. Since there are no white points in B and no black
points in W = ∪3

i=0Wi, Step 10 of Algorithm 2 always accepts (U,C).
Now assume that (U,C) is ε-far from convexity.

I Lemma 3.2. The probability that the black area outside R is greater than ε
4 after Step 2

of Algorithm 2 is at most 1/9.

Proof. Let L be a horizontal line with the largest y-coordinate such that the black area of
the figure above L is at least ε

16 . The probability that no black points above L are sampled in
Step 1 of Algorithm 2 (and, consequently R lies below L) is at most (1− ε

16 )64/ε ≤ e−4 < 1/36.
Thus, with probability at most 1/36, the black area in the half-plane above R is greater
than ε

16 . The same bound holds for the half-planes to the left, to the right and below R. By
a union bound, the probability that the black area outside R is greater than ε

4 is at most
(1/36) · 4 = 1/9. J
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𝑝3

𝑅

Figure 5 An illustration to Step 2 of Al-
gorithm 2.

fence squares𝑝0

𝑝1

𝑝2

𝐵
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𝐹

𝐹 𝐹

𝜀/12 

𝑊0
𝑊1

𝑊3
𝑊2

`

𝑝3

Figure 6 An illustration to Steps 3–9 of
Algorithm 2.

I Lemma 3.3. Let F = R− (B ∪W ). Then the area of F is at most ε
2 .

Proof. Letm = ε/12 and (xi, yi) be pi (as defined in Step 2 of Algorithm 2) for i ∈ {0, 1, 2, 3}.
Call every region that consists of points (x, y) + [0,m]2 a square, where x−xi

m , y−yim ∈ N. Call
squares that contain points from F fence squares. Let r = (x3, y0) and let T = 4p0p3r.
We will find an upper bound on the number of fence squares inside T . Each point that
Algorithm 2 queries in Step 5 results in at most one (new) fence square in T . The algorithm
queries at most x3−x0+y0−y3

ε/12 + 2 points in the triangle (thus, it discovers at most that many
fence squares), since, in every iteration, it either increases the x-coordinate or decreases
the y-coordinate of the queried point. Therefore, there are at most x3−x0+y0−y3

ε/12 + 2 fence
squares in this triangle. Similarly, we can find an upper bound on the number of discovered
fence squares in the remaining triangles. Since the perimeter of R is at most 4, the sum of
the upper bounds is at most 4

ε/12 + 8 = 48
ε + 8 ≤ 56

ε . The area of a single fence square is
( ε

12 )2 = ε2

144 and thus the total area of F is at most ε2

144 ·
56
ε ≤

ε
2 . J

We call a point misclassified if it is black and is in W or if it is white and in B. (The area
that the set of misclassified points cover is called a misclassified area.) If we make all area in
B black and all area outside of B white, we obtain a convex figure. Thus, by Lemma 3.3,
the misclassified area in B ∪W is at least ε

4 if the black area outside of R is at most ε
4 . If

the latter is the case, the probability that the algorithm will not detect a misclassified point
is at most (1− ε

4 ) 8
ε < e−2 < 2/9. By Lemma 3.2, the probability that the misclassified area

in B ∪W is less than ε
4 is at most 1/9. Therefore, the probability that Algorithm 2 accepts

is at most 2/9 + 1/9 = 1/3, as desired.

Query complexity. The algorithm queries points in Steps 1, 6 and 10. In Steps 1 and 10,
the algorithm makes O( 1

ε ) queries. In Step 6, over all iterations, the algorithm also queries
O( 1

ε ) points. Thus, the overall query complexity of the algorithm is O( 1
ε ).

Running time. The running time of the algorithm in Steps 1 through 9 is O( 1
ε ). Starting

from the uppermost horizontal side of R consider a partition of R into horizontal strips with
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width ε/12. Note that there are O( 1
ε ) such strips. Moreover, for each strip, there are at

most 2 vertical lines that define the boundary of W (not the lines that define the sides of R)
and at most 2 lines that define the boundary of B (see Figure 6). Thus, for each horizontal
strip in the partition of R, we can store at most 4 lines that define the boundary of B or
the boundary of W . Given a sampled point p from Step 10, in O(1) time we identify the
horizontal strip that point p belongs to. For each line ` stored for this strip, in time O(1) we
identify the half-plane (defined by `) that contains point p. Thus, in time O(1) we determine
whether p is in B ∪W . Since we sample O( 1

ε ) points in Step 10 its running time is O( 1
ε ).

Therefore, the running time of the algorithm is O( 1
ε ), as claimed. J

4 The Lower Bound for Nonadaptive Convexity Testers

4.1 Preliminaries on Poissonization
The proof of our lower bound uses a technique called Poissonization [26], in which one
modifies a probabilistic experiment to replace a fixed quantity (e.g., the number of samples)
with a variable one that follows a Poisson distribution. This breaks up dependencies between
different events and makes the analysis tractable. The Poisson distribution with parameter
λ ≥ 0, denoted Po(λ), takes each value x ∈ N with probability e−λλx

x! . The expectation and
variance of a random variable distributed according to Po(λ) are both λ.

I Definition 4.1. A Poisson-s tester is a uniform tester that takes a random number of
samples distributed as Po(s).

I Lemma 4.2 (Poissonization Lemma [22, Lemma 5.3] and [4]).
(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every uniform

tester A for property P that uses at most s samples and has error probability δ, there is
a Poisson-2s tester A′ for P with error probability at most δ + 4/s. Moreover,

(b) Let Ω be a sample space from which a Poisson-s algorithm makes uniform draws. Suppose
we partition Ω into sets Ω1, . . . ,Ωk (e.g., these sets can correspond to disjoint areas
of the figure from which points are sampled), where each outcome is in set Ωi with
probability pi for i ∈ [k]. Let Xi be the total number of samples in Ωi seen by the
algorithm. Then Xi is distributed as Po(pi · s). Moreover, random variables Xi are
mutually independent for all i ∈ [k].

4.2 The Lower Bound
I Theorem 4.3. Every 2-sided error uniform ε-tester for convexity needs Ω(ε−5/4) samples.

Proof. By the Poissonization Lemma (Lemma 4.2), it is enough to prove the lower bound
for Poisson algorithms. For sufficiently small ε, we define distributions P and N on figures,
where P is supported only on convex figures whereas N is supported only on figures which
are ε-far from convexity. We show that every uniform Poisson-s tester, where s = o(ε−5/4),
fails to distinguish P from N with sufficient probability.

Let k = d 1
2 · ε

−1/2e and the universe U = [0, 1]2. Consider two regular convex k-gons G1
and G2, centered at (1/2, 1/2), such that G1 has side length sin(πk ) and the vertices of G2
are the midpoints of the sides of G1 (see Figure 7). Call triangular regions inside G1 but
outside G2 teeth (one such triangular region is a tooth). Let T be a tooth and b be its vertex
which is also a vertex of G1. Let the other two vertices of T be d and d′ and let b0 be a
point on dd′ such that bb0 is the height of T from b to its base dd′. Call 4bb0d and 4bb0d

′

half-teeth (see Figure 8). Distributions P and N are defined next.
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Tooth

𝑈

𝐺1
𝑏

𝑑

𝑑′

𝐺2

Figure 7 A figure from P for k = 6.

𝑈

Half-
Tooth

𝑏

𝑑

𝑏0
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𝑑′

Figure 8 A figure from N for k = 6.

𝑏

𝑏′
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𝑏2

𝑑2

𝑏1
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Figure 9 An illustration of a block.

1. For all figures from both distributions, points outside G1 are white and points in G2 are
black.

2. For a figure in P , every tooth is independently colored white or black, each with probability
1/2, as shown in Figure 7.

3. For a figure in N , every tooth is independently colored as follows: one half-tooth is colored
black or white, each with probability 1/2, and the other half-tooth gets the opposite
color, as shown in Figure 8.

Note that every figure in the support of P is convex.

I Lemma 4.4. For all ε ≤ 3 · 10−3, every figure in the support of N is ε-far from convexity.

Proof. Let A4 denote the area of a tooth. Consider a figure (U,C) in the support of N .
Let 4bdd′ be a tooth of (U,C). Consider point b′ that is symmetric to b with respect to the
line dd′, as shown in Figure 8. Call the quadrilateral bb′dd′ a block. Observe that there are k
disjoint blocks. Let (U,C ′) be a convex figure that is closest to (U,C).

I Claim 4.5. In every block of C, area at least A4
16 must be modified to obtain C ′ from C.

Proof. For a region R, let A(R) denote the area of R.
Consider the block bdb′d′ illustrated in Figure 9. Let b1 and d1 be the midpoints of bb0

and db0, respectively. Let the line b1d1 intersect bb′ and dd′ at b2 and d2, respectively.
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Consider the white triangle 4b1b0d1 and the three black triangles 4dd1d2,4bb1b2, and
4b0b

′d′. If there is a point in each of these four triangles that has not changed color, then
we have a white point in the convex hull of three black points, i.e., the figure is not convex.
Therefore, in at least one of these four triangles, all points must change color in order to
make the figure convex. Since the areas of the triangles are

A(4b0b
′d′) = A4

2 , A(4b1b0d1) = A4
8 , A(4dd1d2) = A(4bb1b2) = A4

16 ,

the claim holds. J

I Claim 4.6. 5.6 · 1
k3 < A4 ≤ 8 · 1

k3 .

Proof. By simple geometric reasoning,

A4 = 1
2 ·

1
4 · sin

2
(π
k

)
· sin

(
2π
k

)
.

Since 0.9x ≤ sin x ≤ x for x ∈ [0, 0.78], we obtain that, for sufficiently large k (i.e., for
ε ≤ 3 · 10−3),

A4 ≥
1
8 ·

(
0.9 · π

k

)2
·
(

0.9 · 2π
k

)
> 5.6 · 1

k3 ;

A4 ≤
(

1
8

)
·
(π
k

)2
·
(

2π
k

)
≤ 8
k3 . J

There are k blocks and by Claim 4.5 at least

k · A416 > k · 5.6
16 ·

1
k3 = 7

20 ·
1
k2 ≥ ε

area needs to be modified to make C convex. (Recall that k = d 1
2 · ε

−1/2e.) J

Consider a Poisson-s algorithm A with s = c0 · ε−5/4. We will show that when c0 is
sufficiently small then A fails on P or N with probability greater than 1/3.

I Definition 4.7. A pair of points (p1, p2) is called a red-flag pair if p1 and p2 belong to
different half-teeth of the same tooth.

Let BAD denote the event that no red-flag pair is sampled by the algorithm A.

I Claim 4.8. If c0 is sufficiently small, Pr[BAD] < 1/10.

Proof. Let LT and RT be the random variables that count the number of points sampled by
the tester in the left half-tooth and in the right half-tooth of a tooth T , respectively. Let XT

and X be the random variables that count the number of sampled red-flag pairs in a tooth
T and in all teeth, respectively. By the Poissonization Lemma (Lemma 4.2), LT and RT are
independent Poisson random variables with expectation (A4/2) · s. Note that XT = LT ·RT
and, therefore,

E[XT ] = E[LT ] · E[RT ] = (A4/2)2 · s2 ≤ 16s2

k6 ,

by Claim 4.6. Since all teeth are disjoint, then for sufficiently small c0,

E[X] = k · E[XT ] ≤ k · 16s2

k6 ≤ 512 · c2
0 < 1/10.

By Markov’s inequality, Pr[BAD] = Pr[X ≥ 1] ≤ E[X] < 1/10. J

FSTTCS 2016



45:12 The Power and Limitations of Uniform Samples in Testing Properties of Figures

Conditioned on BAD, the distribution on the answers to the queries made by A is the
same whether the input is sampled from P or N . Therefore,

Pr
x∼P

[A accepts x | BAD] = Pr
x∼N

[A accepts x | BAD] = 1− Pr
x∼N

[A rejects x | BAD].

Consequently,

min( Pr
x∼P

[A accepts x | BAD], Pr
x∼N

[A rejects x | BAD]) ≤ 1/2.

Assume w.l.o.g. that Prx∼P [A accepts x | BAD] ≤ 1/2. Then,

Pr
x∼P

[A accepts x]

= Pr
x∼P

[A accepts x | BAD] · Pr[BAD] + Pr
x∼P

[A accepts x | BAD] · Pr[BAD]

< 1 · 1
10 + Pr

x∼P
[A accepts x | BAD] · 1

≤ 1
10 + 1

2 <
2
3 .

Thus, a uniform algorithm needs Ω(ε−5/4) samples to test convexity with error probability
at most 1/3. J

5 Conclusion and Open Problems

We showed that uniform testers are as powerful as adaptive testers in the case of the half-plane
property. Specifically, our uniform half-plane tester has 1-sided error and optimal running
time. For convexity, the best previously known tester was uniform. However, we designed an
adaptive tester with better (optimal) query complexity and showed that every uniform tester
must have a significantly larger query complexity than our adaptive tester.

One remaining open problem is to resolve the sample complexity of an optimal (2-sided
error) uniform tester for convexity. Our lower bound on this quantity is Ω(ε−5/4), while the
best upper bound is O(ε−4/3) [4]. Another direction for research is to investigate the power of
uniform samples in the context of tolerant property testing. Tolerant testing of 2-dimensional
figures was investigated in [5]. The tolerant testers for half-plane and convexity in that work
are uniform and have nearly optimal query complexity (as compared to any, even adaptive
testers). However, it is open whether uniform samples are sufficient for achieving the optimal
running time for tolerantly testing these properties. It is interesting to investigate the power
of other restricted classes of testers, such as nonadaptive testers, in the context of testing
of properties of geometric figures. Finally, this work only looks at 2-dimensional figures.
Generalizing this study to higher dimensions is an intriguing open question.
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Abstract
Testing membership in lattices is of practical relevance, with applications to integer programming,
error detection in lattice-based communication and cryptography. In this work, we initiate a
systematic study of local testing for membership in lattices, complementing and building upon
the extensive body of work on locally testable codes. In particular, we formally define the notion
of local tests for lattices and present the following:
1. We show that in order to achieve low query complexity, it is sufficient to design one-sided

non-adaptive canonical tests. This result is akin to, and based on an analogous result for
error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing, 35(1):1–21).

2. We demonstrate upper and lower bounds on the query complexity of local testing for member-
ship in code formula lattices. We instantiate our results for code formula lattices constructed
from Reed-Muller codes to obtain nearly-matching upper and lower bounds on the query
complexity of testing such lattices.

3. We contrast lattice testing from code testing by showing lower bounds on the query com-
plexity of testing low-dimensional lattices. This illustrates large lower bounds on the query
complexity of testing membership in knapsack lattices. On the other hand, we show that
knapsack lattices with bounded coefficients have low-query testers if the inputs are promised
to lie in the span of the lattice.
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1 Introduction

Local testing for properties of combinatorial and algebraic objects have widespread applica-
tions and have been intensely investigated in the past few decades. The main underlying
goal in Local Property Testing is to distinguish objects that satisfy a given property from
objects that are far from satisfying the property, using a small number of observations of the
input object. Starting with the seminal works of [7, 13, 33], significant focus in the area has
been devoted to locally testable error-correcting codes, called Locally Testable Codes (LTCs)
[15]. LTCs are the key ingredients in several fundamental results in complexity theory, most
notably in the PCP theorem [2, 3].
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46:2 Local Testing for Membership in Lattices

In this work we initiate the study of local testability for membership in point lattices,
a class of infinite algebraic objects that form discrete subgroups of Rn. Lattices are well-
studied in mathematics, physics and computer science due to their rich algebraic structure [9].
Algorithms for various lattice problems have directly influenced the ability to solve integer
programs [10, 23, 17]. Recently, lattices have found applications in modern cryptography
due to attractive properties that enable efficient computations and security guarantees
[28, 26, 31, 32]. Lattices are also used in practical communication settings to encode data in
a redundant manner in order to protect it from channel noise during transmission [12].

A point lattice L ⊂ Rn of rank k and dimension n is specified by a set of linearly
independent vectors b1, . . . , bk ∈ Rn known as a basis, for some k ≤ n. If k = n the lattice is
said to have full rank. The set L is defined to be the set of all vectors in Rn that are integer
linear combinations of the basis vectors, i.e., L := {

∑k
i=1 αibi | αi ∈ Z ∀ i ∈ [k]}. Lattices are

the analogues over Z of linear error-correcting codes over a finite field F, which are generated
as F-linear combinations of a linearly independent set of basis vectors b1, . . . , bk ∈ Fn.

Given a basis for a lattice L, we are interested in testing if a given input t ∈ Rn belongs
to L, or is far from all points in L by querying a small number of coordinates of t. We
emphasize that this setting does not limit the computational space or time in pre-processing
the lattice as well as the queried coordinates. The main goal is to design a tester that queries
only a small number of coordinates of the input.

1.1 Motivation
Integer Programming. Lattices are the fundamental structures underlying integer program-
ming problems. An integer programming problem (IP) is specified by a constraint matrix
A ∈ Rn×m, a vector b ∈ Rn. The goal is to verify if there exists an integer solution to the
system Ax = b, x ≥ 0. Although IP is NP-complete [18], its instances are solved routinely in
practice using cutting planes and branch-and-cut techniques [35]. The relaxed problem of
verifying integer feasibility of the system Ax = b is equivalent to verifying whether b lies in
the lattice generated by the columns of A. Thus, the relaxation problem is the membership
testing problem in a lattice. It is solvable efficiently and is a natural pre-processing step to
solving IPs. Furthermore, if the number of constraints n in the problem is very large, then it
would be helpful to run a tester that reads only a partial set of coordinates of the input b to
verify if b could lie in the lattice generated by the columns of A or is far from it. If the test
rejects, then this saves on the computational effort to search for a non-negative solution.

Cryptography. In cryptographic applications, it is imperative to understand which lattices
are difficult to test in order to ensure security of lattice-based cryptosystems. In some
cryptanalytic attacks on lattice-based cryptosystems, one needs to distinguish target vectors
that are close to lattice vectors from those that are far from all lattice vectors, a problem
commonly known as the gap version of the Closest Vector Problem (GapCVP). An approach
to address GapCVP is to use expensive distance estimation algorithms inspired by Aharonov
and Regev [1] and Liu et al. [24]. Local testing of lattices is closely related to both distance
estimation [30] and GapCVP, and hence progress in the proposed testing model could lead
to new insights in cryptanalytic attacks.

Complexity theory. Lattices can be seen as coding theoretic objects naturally bringing
features of error-correcting codes from the finite field domain to the real domain. As such, a
study of local testing (and correction) procedures for lattices naturally extends the classical
notions of Locally Testable Codes (LTCs) and Locally Decodable Codes (LDCs), which
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are in turn of significance to computational complexity theory (for example in construct-
ing probabilistically checkable proofs and hardness amplification, among numerous other
applications). Characterizing local testability, explicitly initiated by Kaufman and Sudan
[19], has been an intensely investigated direction in the study of LTCs. We believe that an
analogous investigation of lattices is likely to bring new insights and new connections in
property testing.

Lattice-based communication. Lattices are a major technical tool in communication sys-
tems as the analogue of error-correcting codes over reals, for applications such as wireless
communication and transmission over analog lines. In lattice-coding, the message m is
mapped to a point c in a chosen lattice L. The codeword c is transmitted over an analog
channel. If the encoded message gets corrupted by the channel, then the channel output may
not be a lattice point, thus enabling transmission error detection. In order to correct errors,
computationally expensive decoding algorithms are employed. Instead, the receiver may
perform a local test for membership in the lattice beforehand, allowing the costly decoding
computation to run only when there is a reasonably high chance of correct decoding.

We now give an informal description of our testing model motivated by its application in
lattice-coding. The transmission of each coordinate of a lattice-codeword over the analog
channel consumes power that is proportional to the square of the transmitted value. Thus
the power consumption for transmitting the lattice-codeword c ∈ L ⊂ Rn is proportional to
its squared `2 norm. The power consumption for transmitting a codeword over the channel
is usually constrained by a power budget. The noise vector is also subject to a bound
on its power. The power budget for transmission is typically formulated by considering
the lattice-code C(L) defined by the set of lattice points c ∈ L that satisfy

∑n
i=1 c

2
i ≤ σn

for some constant power budget σ > 0. In order to ensure that the receiver can tolerate
adversarial noise budget δ per channel use, the shortest nonzero vector v ∈ L should be
such that

∑n
i=1 v

2
i ≥ δn. Thus, the relative distance of the lattice-code C(L) is defined to

be
∑n
i=1 v

2
i /n, where v ∈ L is a shortest nonzero lattice vector. The rate of a lattice-code

C(L) is defined to be (1/n) log |C(L)| (note that this quantity could be larger than 1). An
asymptotically good family of lattices, in this work, is one that achieves rate and relative
distance that are both lower bounded by a positive constant. Such families are ideal for use
in noisy communication channels.

We define a notion of a tester that will be useful as a pre-processor for decoding, and
is similar to the established notion of code testing: An `2-tester of a lattice L for a given
distance parameter ε > 0 is a probabilistic procedure that given an input t ∈ Rn, queries
at most q coordinates of t, accepts with probability at least 2/3 if t ∈ L, and rejects with
probability at least 2/3 if

∑n
i=1(ti − wi)2 ≥ εn for every w ∈ L.

For the purposes of lattice-coding, the central lattice testing problem is whether there
exists an asymptotically good family of lattices that can be tested for membership with query
complexity q = O(1).

1.2 Testing model

In the above application, we focused on `2 distances. We now formalize the notion of
testing lattices for `p distances. We consider `p distances since these are natural notions for
real-valued inputs [5]. The `p distance between x, y ∈ Rn is defined as dp(x, y) := ‖x− y‖p =
(
∑
i∈[n] |xi − yi|p)1/p. The distance from v ∈ Rn to L is dp(v, L) := minu∈L dp(v, u). Denote

the `p norm of the real vector 1n by ‖1n‖p. For a lattice L, we denote the subspace of the
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46:4 Local Testing for Membership in Lattices

lattice by span(L). We focus on integral lattices, which are sub-lattices of Zn, as these are
the most commonly encountered lattices in applications1.

I Definition 1 (Local test for lattices). An `p-tester T (ε, c, s, q) for a lattice L ⊆ Zn is a
probabilistic algorithm that queries q coordinates of the input t ∈ Rn, and

(completeness) accepts with probability at least 1− c if t ∈ L,
(soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε · ‖1n‖p (we call such a
vector t to be ε-far from L).

If T always accepts inputs t that are in the lattice L then it is called 1-sided, otherwise it is
2-sided. If the queries performed by T depend on the answers to the previous queries, then
T is called adaptive, otherwise it is called non-adaptive.

A test T (ε, 0, 0, q) is a test with perfect completeness and perfect soundness. 1-sided testers
(i.e., testers with perfect completeness) are useful as a pre-processing step, as mentioned
earlier. An asymptotically good family of lattices L(n) for `p distances is one that has
`p-relative distance lower bounded by a constant (i.e., minv∈L(n) ‖v‖pp/n = Ω(1)) and has
2Ω(n) lattice points in the origin-centered `p-ball of radius n1/p. Similar to the application
in lattice-coding and locally testable codes, a main question in `p-testing of lattices is the
following:

I Question 2. Is there an asymptotically good family of lattices that can be tested for
membership with constant number of queries?

Motivated by the applications in IP and cryptography, we identify another fundamental
question in `p-testing of lattices:

I Question 3. What properties of a given lattice enable the design of `p-testers with constant
query complexity?

Tolerant Testing. Many applications can tolerate a small amount of noise in the input.
Parnas et al. [30] introduced the notion of tolerant testing to account for a small amount of
noise in the input. Tolerant testing has been studied in the context of codes (e.g. [16, 20]),
and in the context of properties of real-valued data in the `p norm (e.g. [5]). We extend the
tolerant testing model to lattices as follows.

I Definition 4 (Tolerant local test for lattices). An `p-tolerant-tester T (ε1, ε2, c, s, q) for a
lattice L ⊆ Zn is a probabilistic algorithm that queries q coordinates of the input t ∈ Rn,
and

(completeness) accepts with probability at least 1− c if dp(t, L) ≤ ε1 · ‖1n‖p,
(soundness) rejects with probability at least 1− s if dp(t, L) ≥ ε2 · ‖1n‖p.

Tolerant testing with parameter ε1 = 0 corresponds to the notion of testing given in
Definition 1. Tolerant testing and distance approximation are closely related notions. In fact,
in the Hamming space, the ability to perform tolerant testing for every choice of ε1 < ε2 can
be exploited to approximate distances (using a binary search) [30].

1 Arbitrary lattices can be approximated by rational lattices and rational lattices can be scaled to integral
lattices.
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Analogy with code testers. A common notion of testing for membership in error-correcting
codes requires that inputs at Hamming distance at least εn from the code be rejected. (This
notion is only relevant when the covering radius of the code is larger than εn.) We include the
common definition here, and note that stronger versions of testing have also been considered
in the literature [15, 16].

I Definition 5 (Local test for codes). A tester T (ε, c, s, q) for an error-correcting code C ⊆ Fn
is a probabilistic algorithm that makes q queries to the input t ∈ Fn, and

(completeness) accepts with probability at least 1− c if t ∈ C, and
(soundness) rejects with probability at least 1− s if dH(t, C) ≥ ε · n, where dH(u, v) :=
|{i ∈ [n] : u(i) 6= v(i)}| denotes the Hamming distance between u and v, and dH(t, C) :=
minc∈C dH(t, c) (we call such a vector t to be ε-far from C).

1.3 Our contributions
We initiate the study of membership testing in point lattices from the perspective of sublinear
algorithms aiming to lay the ground work for further advances towards resolving Question 2
and Question 3. Our contributions draw on connections between lattices and codes, and on
well-known techniques in property testing.

1.3.1 Upper and lower bounds for testing specific lattice families
Motivated by applications in lattice-based communication, we focus on an asymptotically
good family of sets constructed from linear codes, via the so-called “code formula” [12]. We
show upper and lower bounds on the query complexity of `1-testers for code formulas, as a
function of the query complexity of the constituent code testers.

Code formula lattices. For simplicity, in what follows we will slightly abuse notation and
use binary code C ⊆ {0, 1}n to denote both the code viewed over the field F2 = {0, 1} and
the code embedded into Rn via the trivial embedding 0 7→ 0 and 1 7→ 1. All the arithmetic
operations in the code formula refer to operations in Rn. For two sets A and B of vectors we
define A+B := {a+ b | a ∈ A, b ∈ B}.

I Definition 6 (Code Formula). Let C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ Cm = Fn2 be a family of
nested binary linear codes. Then the code formula constructed from the family is defined as

C0 + 2C1 + · · ·+ 2m−1Cm−1 + 2mZn.

Here, m is the height of the code-formula.
If the family satisfies the Schur product condition, namely, c1 ∗ c2 ∈ Ci+1 for all codewords

c1, c2 ∈ Ci, where the ‘*’ operator is the coordinate-wise (Schur) product c1 ∗ c2 = 〈(c1)i ·
(c2)i〉i∈[n], then the code-formula forms a lattice (see [21]) and we denote it by L(〈Ci〉m−1

i=0 ).

Significance of code formula lattices. Code formula lattices with height one already have
constant rate if the constituent code C0 has minimum Hamming distance Ω(n). Unfortunately,
these lattices have tiny relative minimum distance (since 2Zn has constant length vectors).
However, code formulas of larger height achieve much better relative distance. In particular,
it is easy to see that code formula lattices of height m ≥ logn in which each of the constituent
codes Ci has minimum Hamming distance Ω(n) give asymptotically good families of lattices
[14, 9]. The code formula lattice constructed from a family of codes that satisfies the Schur-
product condition is equivalent to the lattice constructed from the same family of codes by
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46:6 Local Testing for Membership in Lattices

Construction D [22, 9, 21]. Construction-D lattices are primarily used in communication
settings, e.g. see Forney [12].

In this work we design a tester for code formula lattices using testers for the constituent
codes.

I Theorem 7. Let 0 < ε, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of binary
linear codes satisfying the Schur product condition. Suppose every Ci has a 1-sided tester
Ti(ε/m2i+1, 0, s, qi). Then, there exists an `1-tester T (ε, 0, s, q) for the lattice L(〈Ci〉m−1

i=0 )
with query complexity

q = O

(
1
ε

log 1
s

)
+
m−1∑
i=1

qi.

Next, we show a lower bound on the query complexity for testing membership in code
formula lattices, using lower bounds for testing membership in the constituent codes.

I Theorem 8. Let 0 < ε, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of
binary linear codes satisfying the Schur product condition. Let qi = qi(ε, c, s) be such that
any (possibly adaptive, 2-sided) `1-tester Ti(ε, c, s, q′) for Ci satisfies q′ = Ω(qi), for every
i = 0, 1, . . . ,m−1. Then every (possibly adaptive, 2-sided) `1-tester T (ε, c, s, q) for the lattice
L(〈Ci〉m−1

i=0 ) has query complexity

q = Ω
(

max
{

1
ε

log 1
s
, max
i=0,1,...,m−1

qi

})
.

Code formula lattices from Reed-Muller codes. We instantiate the upper and lower bounds on
the query complexity for a common family of code formula lattices constructed using Reed-
Muller codes [12] to obtain nearly matching upper and lower bounds. We recall Reed-Muller
codes below.

I Definition 9 (Reed Muller Codes). Each codeword of a binary Reed-Muller code RM(k, r) ⊆
F2r

2 corresponds to a polynomial p(x) ∈ F2[x] in r variables of degree at most k evaluated at
all 2r possible inputs x ∈ Fr2.

For the family of Reed-Muller codes in F2r

2 , it is well-known that RM(0, r) ⊆ RM(1, r) ⊆
RM(2, r) ⊆ RM(3, r) ⊆ · · · ⊆ RM(r − 1, r) ⊆ RM(r, r) = F2r

2 . A particular family of RM
codes that leads to code formula lattices is 〈RM(ki, r)〉log r

i=0 , with ki = 2i. Indeed, it can
be easily verified that this family satisfies the Schur product condition since Reed-Muller
codewords are evaluation tables of multivariate polynomials over the binary field and product
of two degree k polynomials is a degree 2k polynomial. Hence for height m ≤ log r the
construction 〈RM(2i, r)〉m−1

i=0 gives rise to a lattice. We note these lattices have small relative
minimum distance and are not asymptotically good families of lattices.

I Corollary 10. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of
Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product
condition. Let 0 < ε, s < 1 and L be the lattice obtained from this family of codes using the
code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r

.

Then, there exists an `1-tester T (ε, 0, s, q) for L with query complexity

q(ε, s) = O

(
2km−1 · 1

ε
log 1

s

)
.



K. Chandrasekaran, M. Cheraghchi, V. Gandikota, and E. Grigorescu 46:7

In particular, when the height m and the degrees are constant, the query complexity of the
tester is a constant.

For the lower bound, we obtain the following corollary using known lower bounds for
testing Reed-Muller codes.

I Corollary 11. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of
Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product
condition. Let 0 < ε, c, s < 1 be constants and L be the lattice obtained from this family of
codes using the code formula construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r

.

Then, every (possibly 2-sided, adaptive) `1-tester T (ε, c, s, q) for L has query complexity

q = Ω(2km−1).

We note that for code formula lattices obtained from Reed-Muller codes, Corollaries 10
and 11 show matching bounds (up to a constant factor depending on ε, s).

Random lattices. There exists a distribution of random lattices which are impossible to
test with small number of queries. This follows from Theorem 8 and considering random
codes, which typically need at least a linear number of queries to test. We illustrate a
concrete example by considering the following distribution of random lattices [11, 4]: For
constants b < a, let m = nb/a and let H ∈ Fm×n2 be a random matrix such that each
row and column has exactly a and b non-zeroes respectively. Consider the linear code
Ca,b := {x ∈ Fn2 : Hx = 0(mod 2)} and the code formula lattice L(Ca,b) associated with the
linear code Ca,b.

I Theorem 12. There exist constants a, b, ε, c, s such that every (possibly 2-sided, adaptive)
`1-tester T (ε, c, s, q) for L(Ca,b) has query complexity q = Ω(n).

The above theorem follows as an immediate corollary of Theorem 8 and Theorem 3.7
of [4].

1.3.2 Tolerant testing code formulas
We also obtain upper bounds for tolerantly testing code formula lattices.

I Theorem 13. Let 0 < ε1, ε2, c, s < 1 and C0 ⊆ C1 ⊆ · · · ⊆ Cm−1 ⊆ {0, 1}n be a family of
binary linear codes satisfying the Schur product condition. Suppose every Ci has a tolerant
tester Ti(2ε1, ε2

m2i+1 ,
c

m+1 , s, qi). Let γ = min{c/(m+1), s}, ε2 > m2m+1ε1. Then there exists
an `1-tolerant-tester T (ε1, ε2, c, s, q) for the lattice L(〈Ci〉m−1

i=0 ) with query complexity

q = O

(
1

(ε2 − 2ε1)2 log
(

1
γ

))
+
m−1∑
i=0

qi.

I Theorem 14. Let 0 ≤ k0 < k1 < · · · < km−1 < r be integers such that the family of
Reed-Muller codes RM(k0, r) ⊆ RM(k1, r) ⊆ · · · ⊆ RM(km−1, r) satisfies the Schur product
condition. Let L be the lattice obtained from this family of codes using the code formula
construction:

L = RM(k0, r) + 2RM(k1, r) + · · ·+ 2m−1RM(km−1, r) + 2mZ2r

.

Then there exists a `1-tolerant-tester T (ε1, ε2, 1/3, 1/3, q) for L for all ε1 ≤ c′1
2km−1 , ε2 ≥

c′2m

2k0−1

(for some constants c′1 and c′2) with query complexity q = O(2km−1 · logm).
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46:8 Local Testing for Membership in Lattices

1.3.3 A canonical/linear test for lattices
We show a reduction from any given arbitrary test to a canonical linear test, thus suggesting
that it is sufficient to design canonical linear tests for achieving low query complexity. In
order to describe the intuition behind a canonical linear test, we first illustrate how to solve
the membership testing problem when all coordinates of the input are known. For a given
lattice L, its dual lattice is defined as

L⊥ := {u ∈ span(L) | 〈u, v〉 ∈ Z, for all v ∈ L}.

It is easy to verify that (L⊥)⊥ = L. Furthermore, a vector v ∈ L if and only if for all u ∈ L⊥,
we have 〈u, v〉 ∈ Z. Thus, to test membership of t in L in the classical decision sense, it is
sufficient to verify whether t has integer inner products with a set of basis vectors of the
dual lattice L⊥. Inspired by this observation, we define a canonical linear test for lattices as
follows. For a lattice L ⊆ Rn and J ⊆ [n], let L⊥J := {x ∈ L⊥ | supp(x) ⊆ J}, where supp(x)
is the set of non-zero indices of the vector x.

I Definition 15 (Linear Tester). A linear tester for a lattice L ⊆ Zn is a probabilistic
algorithm which queries a subset J = {j1, . . . , jq} ⊆ [n] of coordinates of the input t ∈ Rn
and accepts t if and only if 〈t, x〉 ∈ Z for all x ∈ L⊥J .2

I Remark. By definition, the probabilistic choices of a linear tester are only over the set of
coordinates to be queried: upon fixing the coordinate queries, the choice of the algorithm to
accept or reject is fully determined. Furthermore, a linear tester is 1-sided since if the input
t is a lattice vector, then for every dual vector u ∈ L⊥, the inner product 〈u, t〉 is integral,
and so it will be accepted with probability 1.

We show that non-adaptive linear tests are nearly as powerful as 2-sided adaptive tests
for a full-rank lattice. We reduce any (possibly 2-sided, and adaptive) test for a full-rank
lattice to a non-adaptive linear test for the same distance parameter ε, with a small increase
in the query complexity and the soundness error.

I Theorem 16. Let L ⊆ Zn be a lattice with rank(L) = n. If there exists an adaptive 2-sided
`p-tester T (ε, c, s, q) with query complexity q = qT (ε, c, s), then there exists a non-adaptive
linear `p-tester T ′(ε, 0, c+ s, q′) with query complexity q′ = qT (ε/2, c, s) +O((1/εp) log (1/s)).

Furthermore, if we are guaranteed that the inputs are in Zn, then the query complexity
of the test T ′ above can be improved to be identical to that of T (up to a constant factor in
the ε parameter). The increase in the query complexity comes from an extra step used to
verify the integrality of the input.

Theorem 16 suggests that, for the purposes of designing a tester with small query
complexity, it is sufficient to design a non-adaptive linear tester, i.e., it suffices to only
identify the probability distribution for the coordinates that are queried. Moreover, this
theorem makes progress towards Question 3, since it shows that a lower bound on the query
complexity of non-adaptive linear tests for a particular lattice implies a lower bound on the
query complexity of all tests for that lattice. Thus in order to understand the existence of
low query complexity tester for a particular lattice, it is sufficient to examine the existence
of low query complexity non-adaptive linear tester for that lattice.

We note that Theorem 16 is the analogue of the result of [4] for linear error-correcting
codes. In section 2, we comment on the comparison between our proof and that in [4].

2 Verifying whether 〈t, x〉 ∈ Z for all x ∈ L⊥
J can be performed efficiently by checking inner products with

a set of basis vectors of the lattice L⊥
J .
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1.3.4 Testing membership of inputs outside the span of the lattice
We also observe a stark difference between the membership testing problem for a linear code,
and the membership testing problem for a lattice. In the membership testing problem for a
linear code C ⊆ Fn defined over a finite field that is specified by a basis, the input is assumed
to be a vector in Fn and the goal is to verify whether the input lies in the span of the basis
(see definition 5). As opposed to codes, for a lattice L ⊆ Rn, the input is an arbitrary real
vector, and the goal is to verify whether the input is a member of L, and not to verify
whether the input is a member of the span of the lattice. Thus, the inputs to the lattice
membership testing problem could lie either in span(L), or outside span(L). Interestingly,
for some lattices it is easy to show strong lower bounds on the query complexity if the inputs
are allowed to lie outside span(L), thus suggesting that such inputs are hard to test.

I Theorem 17. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors
in span(L)⊥. Let 0 < ε, c, s < 1. Every non-adaptive `p-tester T (ε, c, s, q) for L for inputs in
Rn has query complexity

q = Ω(|P |).

On the other hand, testers for inputs in the span(L) can be lifted to obtain testers for all
inputs (including inputs that could possibly lie outside span(L)).

I Theorem 18. Let L ⊆ Zn be a lattice of rank k. Let P ⊆ [n] be the support of the vectors
in span(L)⊥. Let 0 < ε, c, s < 1, and suppose L has an `p-tester T (ε, c, s, q) for inputs
t ∈ span(L). Then L has a tester T ′(2ε, c, s, q′) for inputs in Rn with query complexity

q′ ≤ q + |P |.

Theorem 18 implies that for lattices L of rank at most n− 1, if the membership testing
problem for inputs that lie in span(L) is solvable using a small number of queries and if
span(L)⊥ is supported on few coordinates, then the membership testing problem for all
inputs (including those that do not lie in span(L)) is solvable using a small number of queries.

Knapsack Lattices. Theorem 17 implies a linear lower bound for non-adaptively testing a
well-known family of lattices, known as knapsack lattices, which have been investigated in
the quest towards lattice-based cryptosystems [25, 34, 29]. We recall that a knapsack lattice
is generated by a set of basis vectors B = {b1, . . . , bn−1}, bi ∈ Rn that are of the form

b1 = (1, 0, . . . , 0, a1)
b2 = (0, 1, . . . , 0, a2)
...

bn−1 = (0, 0, . . . , 1, an−1)

where a1, . . . , an are integers. We denote such a knapsack lattice by La1,...,an−1 .

I Corollary 19. Let a1, . . . , an be integers and 0 < ε, c, s < 1. Every non-adaptive `p-tester
T (ε, c, s, q) for La1,...,an has query complexity

q = Ω(n).

However, knapsack lattices with bounded coefficients are testable with a constant number
of queries if the inputs are promised to lie in span(L).
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I Theorem 20. Let a1, . . . , an be integers with M = maxi∈[n] |ai|p and 0 < ε, s < 1.
There exists a non-adaptive `p-tester T (ε, 0, s, q) for La1,...,an

with query complexity q =
O
(
M
εp · log 1

s

)
, if the inputs are guaranteed to lie in span(L).

Theorem 20 indicates that the large lower bound suggested by Theorem 17 could be
circumvented for certain lattices if we are promised that the inputs lie in span(L). The
assumption that the input lies in span(L) is natural in decoding problems for lattices.

2 Overview of the proofs

2.1 Upper and lower bounds for testing general code formula lattices
The constructions of a tester for Theorem 7 and a tolerant tester for Theorem 13 follow
the natural intuition that in order to test the lattice one can test the underlying codes
individually. The proof relies on a triangle inequality that can be derived for such lattices.
The application to code-formula lattices constructed from Reed-Muller codes follows from
the tight analysis of Reed-Muller code testing from [6], which guarantees constant rejection
probability of inputs that are at distance proportional to the minimum distance of the code.
We note that the time complexity of the code-formula tester is given by the sum of the
run-times of the component code testers. Since the component code testers can be assumed
to be linear, and hence efficient, the code-formula lattice tester is also efficient.

While the tester that we construct from code testers for the purposes of proving Theorem 7
is an adaptive linear test, there is a simple variant that is a non-adaptive linear test with at
least as good correctness and soundness. (see Remark 5.16 in full version [8] for a formal
description).

The lower bound (Theorem 8) relies on the fact that if an input t is far from the code Ck
in the code formula construction, then the vector 2kt is far from the lattice. Moreover, if
t ∈ Ck then 2kt belongs to the lattice. Therefore a test for the lattice can be turned into a
test for the constituent codes.

2.2 From general tests to canonical tests
We briefly outline our reduction for Theorem 16. Suppose T (ε, c, s, q) is a 2-sided, adaptive
tester with query complexity q = qT (ε, c, s) for a full rank integral lattice L. Such a tester
handles all real-valued inputs. We first restrict T to a test that processes only integral inputs
in the bounded set Zd = {0, 1, . . . , d− 1} (for some carefully chosen d), and so the restricted
test inherits all the parameters of T . We remark that Zd ⊂ Z is a subset of integers, and it
should not be confused with Zd, the ring of integers modulo d.

A key ingredient in our reduction is choosing the appropriate value of d in order to enable
the same guarantees as that of codes. We choose d such that dZn ⊆ L. Such a d always exists
[27]. This choice of d allows us to add any vector in V = L mod d (embedded in Rn) to any
vector x ∈ Rn without changing the distance of x to L in any `p-norm (see Proposition 22).

Since our inputs are now integral and bounded, any adaptive test can be viewed as a
distribution over deterministic tests, which themselves can be viewed as decision trees. This
allows us to proceed along the same lines as in the reduction for codes over finite fields of [4].

We exploit the property that adding any vector in V to any vector x ∈ Rn does not
change the distance to L. In the first step of our reduction we add a random vector in V
to the input and perform a probabilistic linear test. The idea is that one can relabel the
decision tree of any test according to the decision tree of a linear test, such that the error
shifts from the positive (yes) instances to the negative (no) instances (see Lemma 23). A
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simple property of lattices used in this reduction is that if the set of queries I and answers aI
do not have a local witness for non-membership in the lattice (in the form of a dual lattice
vector v supported on I such that 〈wI , vI〉 6∈ Z), then there exists w ∈ L that extends aI to
the remaining set of coordinates (i.e., aI = wI).

In the next step we remove the adaptive aspect of the test to obtain a non-adaptive linear
test for inputs in Znd (see Lemma 24). We obtain this tester by performing the adaptive
queries on a randomly chosen vector in V (and not on the input itself) and rejecting/accepting
according to whether there exists a local witness for the non-membership of the input queried
on the same coordinates.

We then lift this test to a non-adaptive linear test for inputs in Zn, by simulating the
test over Znd on the same queried coordinates but using the answers obtained after taking
modulo d. Owing to the choice of d, this does not change the distance of the input to the
lattice (see Lemma 25).

Finally, we extend this test to a non-adaptive linear test for inputs in Rn by performing
some additional queries to rule out inputs that are not in Zn. For this, we design a tester for
the integer lattice Zn with query complexity O((1/εp) log (1/s)). This final step of testing
integrality increases the overall query complexity to qT (ε/2, c, s) +O((1/εp) log (1/s)) (see
Lemma 26).

Organization. We present the formal lemmas needed to prove Theorem 16 in Section 3.
We refer the reader to the full version [8] for all the missing proofs.

3 Reducing an arbitrary test to a non-adaptive linear test

In this section we sketch the proof of Theorem 16. Throughout this section, we focus on
full-rank integral lattices. Given a 2-sided adaptive `p-tester T (ε, c, s, q), with q = qT (ε, c, s)
for an integral lattice L, we construct a non-adaptive linear `p-tester T ′(ε, 0, c+ s, q) with
query complexity q′ = qT (ε/2, c, s) +O((1/εp) log (1/s)). We reduce the inputs to a bounded
set using the following property of integral lattices.

I Fact 21 ([27]). Given any full rank integral lattice L, there exists d ∈ Z such that d·Zn ⊆ L.
In particular |det(L)| · Zn ⊆ L for any lattice (where det(L) denotes the determinant of a
lattice, a parameter that can be computed given a basis of the lattice). For instance, we can
take d = 2m for the lattices of height m obtained using the code formula construction.

Let V = L mod d embedded in Zn (i.e., we treat V as a set of vectors in Zn each of
which is obtained by taking coordinate-wise modulo d of some lattice vector). Thus, V ⊆ Znd .
We will need the following properties of V .

I Proposition 22. Let L ⊆ Zn be a full-rank lattice, d ∈ Z+ such that dZn ⊆ L, and let
V = L mod d ⊆ Zn. Then V satisfies the following properties:
1. v ∈ L if and only if v mod d ∈ V .
2. V = L ∩ Znd .
3. (v + V ) mod d ⊆ V if and only if v ∈ L.
4. For any v ∈ Zn, dp(v, L) = dp(v mod d, L).

Theorem 16 will immediately follow by combining Lemmas 23, 24, 25, and 26.

I Lemma 23. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive
2-sided `p-tester T (ε, c, s, q) for inputs from the domain Znd . Then L has an adaptive linear
`p-tester T ′(ε, 0, c+ s, q) for inputs from the domain Znd .
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I Lemma 24. Suppose a full-rank lattice L ⊆ Zn with dZn ⊆ L for d ∈ Z+ has an adaptive
linear `p-tester T (ε, 0, s, q) for inputs from the domain Znd . Then L has a non-adaptive linear
`p-tester T ′(ε, 0, s, q) for inputs from the domain Znd .

I Lemma 25. Let L ⊆ Zn be a full-rank lattice with dZn ⊆ L for d ∈ Z+. Then, L has a
non-adaptive linear `p-tester T (ε, 0, s, q) for inputs from the domain Znd if and only if L has
a non-adaptive linear `p-tester T ′(ε, 0, s, q) for inputs from the domain Zn.

I Lemma 26. Suppose a full-rank lattice L ⊆ Zn has a non-adaptive `p-tester T (ε, c, s, q)
for inputs from the domain Zn. Then there exists a non-adaptive `p-tester T ′(ε, c, s, q′) for
inputs in Rn with query complexity q′ = q(ε/2, c, s) +O((1/εp) log (1/s)). Moreover, if T is
a linear tester, then so is T ′.

The proof of Lemma 26 uses the following tester for integer lattices which is based on
querying a random collection of coordinates and verifying whether all of them are integral.

I Lemma 27. For every 0 < ε ≤ 1 and every 0 < s ≤ 1, there exists a non-adaptive linear
`p-tester Tp(ε, 0, s, qZ) for Zn with query complexity

qZ = O

(
1
εp

log 1
s

)
.

4 Discussion

In this paper we defined a notion of local testing for a new family of objects: point lattices.
Our results demonstrate connections between lattice testing and the ripe theory of locally
testable codes, and brings up numerous avenues for further research (particularly, Questions
2 and 3).

We remark that the notion of being ‘ε-far’ from the lattice may be defined differently
than in Definition 1, depending on the application of interest. In particular, in applications
like IP and cryptography, it is natural to ask for a notion of tester that ensures that scaling
the lattice does not change the query complexity. An alternate definition of ε-far based on
the covering radius of the lattice could be helpful to achieve this property. The covering
radius of a lattice L ⊆ Rn (similar to codes) is the largest distance of any vector in Rn to
the lattice. It is trivial to design a tester to verify if a point is in the lattice or at distance
more than the covering radius from the lattice (simply accept all inputs). In order to have
a tester notion where scaling preserves query complexity, we may define a vector as being
ε-far from the lattice, if the distance of the vector to every lattice point is at least ε times
the covering radius of the lattice. We note that the covering radius of any integral lattice is
Ω(‖1n‖p). Indeed, the densest possible integral lattice, namely the integer lattice Zn, has
covering radius (1/2)‖1n‖p, as exhibited by the point v = (1/2, . . . , 1/2) ∈ Rn. Thus, by
asking the tester to reject points at distance more than ε‖1n‖p in Definition 1, we have settled
upon a strong notion of being ε-far from the lattice (i.e., the definition would in particular
imply that vectors that are farther than ε times the covering radius would be rejected by the
tester). This definition is essentially equivalent to the current Definition 1 if the covering
radius of the lattice is Θ(n). With the modified definition of local testers using covering
radius as described above, the equivalent Question 1 is to identify a family of lattices that
can be tested using a constant number of queries, achieves constant rate and whose ratio of
minimum distance to covering radius is also at least a constant.

Acknowledgments. We thank Chris Peikert for mentioning to us about the potential
application to cryptanalysis, and anonymous reviewers for helpful comments and pointers.



K. Chandrasekaran, M. Cheraghchi, V. Gandikota, and E. Grigorescu 46:13

References

1 Dorit Aharonov and Oded Regev. Lattice problems in NP ∩coNP . J. ACM, 52(5):749–765,
2005.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP. J. ACM, 45(1):70–122, 1998.

4 E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. Some 3CNF properties are hard to test.
SIAM Journal on Computing, 35(1):1–21, 2005. Earlier version in STOC’03.

5 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June 03, 2014,
pages 164–173, 2014.

6 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of Reed-Muller codes. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 488–497, 2010.

7 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549–595, 1993.

8 Karthekeyan Chandrasekaran, Mahdi Cheraghchi, Venkata Gandikota, and Elena Grigor-
escu. Local testing for membership in lattices. arXiv preprint arXiv:1608.00180, 2016.

9 J. Conway, N. J.A. Sloane, and E. Bannai. Sphere Packings, Lattices and Groups. A series
of comprehensive studies in mathematics. Springer, 1999.

10 Friedrich Eisenbrand. Fast integer programming in fixed dimension. In Algorithms – ESA
2003, 11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003, Pro-
ceedings, pages 196–207, 2003.

11 Uri Erez, Simon Litsyn, and Ram Zamir. Lattices which are good for (almost) everything.
IEEE Transactions on Information Theory, 51(10):3401–3416, 2005.

12 G.D. Forney. Coset codes-I: Introduction and geometrical classification. IEEE Transactions
on Information Theory, 34(5):1123–1151, 1988.

13 K. Friedl and M. Sudan. Some improvements to low-degree tests. In Proceedings of the 3rd
Annual Israel Symposium on Theory and Computing Systems, 1995.

14 Philippe Gaborit and Gilles Zémor. On the construction of dense lattices with a given
automorphisms group. Annales de l’institut Fourier, 57(4):1051–1062, 2007.

15 Oded Goldreich. Short locally testable codes and proofs: A survey in two parts. In Property
Testing – Current Research and Surveys, pages 65–104, 2010.

16 Venkatesan Guruswami and Atri Rudra. Tolerant locally testable codes. In Proceedings of
RANDOM/APPROX 2005, pages 306–317, 2005.

17 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.
Res., 12(3):415–440, August 1987.

18 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, pages 85–103, 1972.

19 T. Kaufman and M. Sudan. Algebraic property testing: The role of invariance. In STOC,
pages 403–412, 2008.

20 Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable
codes. In Proceedings of RANDOM, pages 601–614, 2009.

21 Wittawat Kositwattanarerk and Frédérique E. Oggier. Connections between construction
D and related constructions of lattices. Des. Codes Cryptography, 73(2):441–455, 2014.

22 John Leech and N. J.A. Sloane. Sphere packings and error-correcting codes. Canad. J.
Math, 23(4):718–745, 1971.

FSTTCS 2016



46:14 Local Testing for Membership in Lattices

23 H.W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

24 Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance decoding
for general lattices. In Proceedings of RANDOM, pages 450–461, 2006.

25 Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor
knapsacks. IEEE Transactions on Information Theory, 24(5):525–530, 1978.

26 Daniele Micciancio. The LLL Algorithm: Survey and Applications, chapter Cryptographic
functions from worst-case complexity assumptions, pages 427–452. Information Security
and Cryptography. Springer, December 2009. Prelim. version in Proc. of LLL25, 2007.

27 Daniele Micciancio. Lecture notes on lattice algorithms and applications, Winter 2012,
Lecture 2, 2012.

28 Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, Massachusetts, March 2002.

29 Andrew M. Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and compu-
tational number theory, 42:75–88, 1990.

30 M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approxima-
tion. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

31 Oded Regev. Lattice-based cryptography. In Advances in Cryptology – CRYPTO 2006,
26th Annual International Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2006, Proceedings, pages 131–141, 2006.

32 Oded Regev. The learning with errors problem (invited survey). In IEEE Conference on
Computational Complexity, pages 191–204, 2010.

33 R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25:252–271, 1996.

34 Adi Shamir. A polynomial time algorithm for breaking the basic merkle-hellman cryptosys-
tem. In Advances in Cryptology, pages 279–288. Springer, 1983.

35 Laurence A. Wolsey and George L. Nemhauser. Integer and combinatorial optimization.
John Wiley & Sons, 2014.



Super-Fast MST Algorithms in the Congested
Clique Using o(m) Messages∗

Sriram V. Pemmaraju1 and Vivek B. Sardeshmukh2

1 Department of Computer Science, University of Iowa, Iowa City, USA
sriram-pemmaraju@uiowa.edu

2 Department of Computer Science, University of Iowa, Iowa City, USA
vivek-sardeshmukh@uiowa.edu

Abstract
In a sequence of recent results (PODC 2015 and PODC 2016), the running time of the fastest
algorithm for the minimum spanning tree (MST) problem in the Congested Clique model was first
improved to O(log log logn) from O(log logn) (Hegeman et al., PODC 2015) and then to O(log∗ n)
(Ghaffari and Parter, PODC 2016). All of these algorithms use Θ(n2) messages independent of
the number of edges in the input graph.

This paper positively answers a question raised in Hegeman et al., and presents the first “super-
fast” MST algorithm with o(m) message complexity for input graphs with m edges. Specifically,
we present an algorithm running in O(log∗ n) rounds, with message complexity Õ(

√
m · n) and

then build on this algorithm to derive a family of algorithms, containing for any ε, 0 < ε ≤ 1, an
algorithm running in O(log∗ n/ε) rounds, using Õ(n1+ε/ε) messages. Setting ε = log logn/ logn
leads to the first sub-logarithmic round Congested Clique MST algorithm that uses only Õ(n)
messages.

Our primary tools in achieving these results are
(i) a component-wise bound on the number of candidates for MST edges, extending the sampling

lemma of Karger, Klein, and Tarjan (Karger, Klein, and Tarjan, JACM 1995) and
(ii) Θ(logn)-wise-independent linear graph sketches (Cormode and Firmani, Dist. Par. Databases,

2014) for generating MST candidate edges.

1998 ACM Subject Classification F.2.0 [Analysis of Algorithms and Problem Complexity] Gen-
eral, C.2.4 [Computer-Communication Networks] Distributed Systems

Keywords and phrases Congested Clique, Minimum Spanning Tree, Linear Graph Sketches,
Message Complexity, Sampling

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.47

1 Introduction

The Congested Clique is a synchronous, message-passing model of distributed computing
in which the underlying network is a clique and in each round, a message of size O(logn)
bits can be sent in each direction across each communication link. The Congested Clique
is a simple, clean model for studying the obstacles imposed by congestion – all relevant
information is nearby in the network (at most 1 hop away), but may not be able to travel
to an intended node due to the O(logn)-bit bandwidth restriction on the communication
links. There has been a lot of recent work in studying various fundamental problems in the
Congested Clique model, including facility location [9, 3], minimum spanning tree (MST)
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[23, 13, 11, 10], shortest paths and distances [4, 14, 26], triangle finding [7, 6], subgraph
detection [7], ruling sets [3, 13], sorting [28, 22], and routing [22]. The modeling assumption
in solving these problems is that the input graph G = (V,E) is “embedded” in the Congested
Clique – each node of G is uniquely mapped to a machine and the edges of G are naturally
mapped to the links between the corresponding machines (see Section 1.1).

The earliest non-trivial example of a Congested Clique algorithm is the deterministic
MST algorithm that runs in O(log logn) rounds due to Lotker et al. [23]. Using linear
sketching [1, 2, 15, 24, 5] and the sampling technique due to Karger, Klein, and Tarjan [16],
Hegeman et al. [11] were able to design a substantially faster, randomized Congested Clique
MST algorithm, running in O(log log logn) rounds. Soon afterwards, Ghaffari and Parter
[10] designed an O(log∗ n)-round algorithm, using the techniques in Hegeman et al., but
supplemented with the use of sparsity-sensitive sketching, which is useful for sparse graphs
and random edge sampling, which is useful for dense graphs.

Our Contributions. All of the MST algorithms mentioned above, essentially use the entire
bandwidth of the Congested Clique model, i.e., they use Θ(n2) messages. From these
examples, one might (incorrectly!) conclude that “super-fast” Congested Clique algorithms
are only possible when the entire bandwidth of the model is used. In this paper, we focus
on the design of MST algorithms in the Congested Clique model that have low message
complexity, while still remaining “super-fast.” Message complexity refers to the number
of messages sent and received by all machines over the course of an algorithm; in many
applications, this is the dominant cost as it plays a major role in determining the running
time and auxiliary resources (e.g., energy) consumed by the algorithm. In our main result,
we present an O(log∗ n)-round algorithm that uses Õ(

√
m · n) 1 messages for an n-node,

m-edge input graph. Two points are worth noting about this message complexity upper
bound: (i) it is bounded above by Õ(n1.5) for all values of m and is thus substantially
sub-quadratic, independent of m and (ii) it is bounded above by o(m) for all values of m that
are super-linear in n, i.e., when m = ω(n poly(logn)). We then extend this result to design
a family of algorithms parameterized by ε, 0 < ε ≤ 1, and running in O(log∗ n/ε) rounds
and using Õ(n1+ε/ε) messages. If we set ε = log logn/ logn, we get an algorithm running
in O(log∗ n · logn/ log logn) rounds and using Õ(n) messages. Thus we demonstrate the
existence of a sub-logarithmic round MST algorithm using only O(n · poly(logn)) messages,
positively answering a question posed in Hegeman et al. [11]. We note that Hegeman et
al. present an algorithm using Õ(n) messages that runs in O(log5 n) rounds. All of the
round and message complexity bounds mentioned above hold with high probability (w.h.p.),
i.e., with probability at least 1− 1

n . Our results indicate that the power of the Congested
Clique model lies not so much in its Θ(n2) bandwidth as in the flexibility it provides – any
communication link that is needed is present in the network, though most communication
links may eventually not be needed.

Applications. Optimizing message complexity as well as time complexity for Congested
Clique algorithms has direct applications to the performance of distributed algorithms in
other models such as the Big Data (k-machine) model [18], which was recently introduced to
study distributed computation on large-scale graphs. Via a Conversion Theorem in [18] one
can obtain fast algorithms in the Big Data model from Congested Clique algorithms that

1 The notation Õ hides poly(log n) factors.
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have low time complexity and message complexity. Another related motivation comes from
the connection between the Congested Clique model and the MapReduce model. In [12] it is
shown that if a Congested Clique algorithm runs in T rounds and, in addition, has moderate
message complexity then it can be simulated in the MapReduce model in O(T ) rounds.

1.1 Technical Preliminaries
Congested Clique model. The Congested Clique is a set of n computing entities (nodes)
connected through a complete network that provides point-to-point communication. Each
node in the network has a distinct identifier of O(logn) bits. At the beginning of the
computation, each node knows the identities of all n nodes in the network and the part of the
input assigned to it. The computation proceeds in synchronous rounds. In each round each
node can perform some local computation and send a (possibly different) message of O(logn)
bits to each of its n− 1 neighbors. It is assumed that both the computing entities and the
communication links are fault-free. The Congested Clique model is therefore specifically
geared towards understanding the role of the limited bandwidth as a fundamental obstacle
in distributed computing, in contrast to other classical models for distributed computing
that instead focus, e.g., on the effects of latency (the Local model) or on the effects of both
latency and limited bandwidth (the Congest model).

The input graph is assumed to be a spanning subgraph of the underlying communication
network. Before the algorithm starts, each node knows the edges of the input graph incident
on it and their (respective) weights. We assume that every edge weight can be represented
with O(logn) bits. For ease of exposition, we assume that edge weights are distinct; otherwise,
without loss of generality (WLOG) we can “pad” each edge weight with the IDs of the
two end points of the edge so as to distinguish the edges by weight while respecting their
weight-based ordering. We require that when the algorithm ends, each node knows which of
its incident edges belong to the output MST.

Linear Sketches. A key tool used by our algorithm is linear sketches [1, 2, 24]. Let av
denote a vector whose non-zero entries represent edges incident on v. A linear sketch of av is a
low-dimensional random vector sv, typically of size O(poly(logn)), with two properties:
(i) sampling from the sketch sv returns a non-zero entry of av with uniform probability

(over all non-zero entries in av) and
(ii) when nodes in a connected component are merged, the sketch of the new “super node”

is obtained by coordination-wise addition of the sketches of the nodes in the component.
The first property is referred to as `0-sampling in the streaming literature [5, 24, 15] and the
second property is linearity. The graph sketches used in [1, 2, 24] rely on the `0-sampling
algorithm by Jowhari et al. [15]. Sketches constructed using the Jowhari et al. [15] approach
use Θ(log2 n) bits per sketch, but require polynomially many mutually independent random
bits to be shared among all nodes in the network. Sharing this volume of information is not
feasible; it takes too many rounds and too many messages. So instead, we appeal to the
`0-sampling algorithm of Cormode and Firmani [5] which requires a family of Θ(logn)-wise
independent hash functions, as opposed to hash functions with full-independence. Hegeman et
al. [11] provide details of how the Cormode-Firmani approach can be used in the Congested
Clique model to construct graph sketches. We summarize their result in the following
theorem.

I Theorem 1.1 (Hegeman et al. [11]). Given an input graph G = (V,E), n = |V |, there is a
Congested Clique algorithm running in O(1) rounds and using O(n · poly(logn)) messages,
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at the end of which every node v ∈ V has computed a linear sketch sv of av. The size of
the computed sketch of a node is O(log4 n) bits. The `0-sampling algorithm on sketch sv
succeeds with probability at least 1− n−2 and, conditioned on success, returns an edge in av
with probability in the range [1/Lv − n−2, 1/Lv + n−2], where Lv is the number of non-zero
entries in av.

Concentration Bounds for sums of k-wise-independent random variables. The use of
k-wise-independent random variables, for k = Θ(logn), plays a key role in keeping the time
and message complexity of our algorithms low. The use of Θ(logn)-wise independent hash
functions in the construction of linear sketches has been mentioned above. In the next
subsection, we discuss the use of Θ(logn)-wise-independent edge sampling as a substitute for
the fully-independent edge sampling of Karger, Klein, and Tarjan. For our analysis we use
the following concentration bound on the sum of k-wise independent random variables, due
to Schmidt et al. [33] and slightly simplified by Pettie and Ramachandran [31].

I Theorem 1.2 (Schmidt et al. [33]). Let X1, X2, . . . , Xn be a sequence of random k-wise
independent 0-1 random variables with X =

∑n
i=1 Xi. If k ≥ 2 is even and C ≥ E[X] then:

Pr(|X −E[X]| ≥ T ) ≤
[√

2 cosh
(√

k3/36C
)]
·
(
kC

eT 2

)k/2
.

We use the above theorem for k = Θ(logn) and C = T = E[X]. Furthermore, in all instances
in which we use this bound, E[X] > k3 and therefore the contribution of the cosh(·) term is
O(1), whereas the contribution of the second term on the right hand side is smaller than
1/nc for any constant c.

MST with Linear Message Complexity. The “super-fast” MST algorithms mentioned so
far [23, 11, 10] use Θ(n2) messages, independent of the number of edges in the input graph.
One reason for this is that these algorithms rely on deterministic constant-round Congested
Clique algorithms for routing and sorting due to Lenzen [22]. Lenzen’s algorithms do not
attempt to explicitly conserve messages and need Ω(n1.5) messages independent of the number
of messages being routed or the number of keys being sorted. However, the above-mentioned
MST algorithms do not need the full power of Lenzen’s algorithms. We design sorting and
routing protocols that work in slightly restricted settings, but use only a linear number of
messages (i.e., linear in the total number messages to be routed or keys to be sorted). Details
of these protocols appear in the full version of the paper [30]. We use these protocols (instead
of Lenzen’s protocols) as subroutines in the Ghaffari-Parter MST algorithm [10] to derive a
version that uses only linear (up to a polylogarithmic factor) number of messages.

I Theorem 1.3 (LinearMessages-MST). There exists a Congested Clique MST algorithm
running in O(log∗ n) rounds using Õ(m) messages w.h.p. on an input graph with n nodes
and m edges.

1.2 Algorithmic Overview
The high-level structure of our algorithm is simple. Suppose that the input is an n-node,
m-edge graph G = (V,E). We start by sparsifying G by sampling each edge with probability
p and compute a maximal minimum weight spanning forest F of the resulting sparse subgraph
H. Thus H contains O(m · p) edges w.h.p. Now consider an edge {u, v} in G and add it
to F ; if F + {u, v} contains a cycle and {u, v} is the heaviest edge in this cycle, then by
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Tarjan’s “red rule” [34] the MST of G does not contain edge {u, v}. Ignoring all such edges
leaves a set of edges that are candidates for being in the MST. We appeal to the well-known
sampling lemma due to Karger, Klein, and Tarjan [16] (KKT sampling) that provides an
estimate of the size of this set of candidates.

I Definition 1.4 (F -light edge [16]). Let F be a forest in a graph G and let F (u, v) denote
the path (if any) connecting u and v in F . Let wF (u, v) denote the maximum weight of an
edge on F (u, v) (if there is no path then wF (u, v) =∞). We call an edge {u, v} F -heavy if
w(u, v) > wF (u, v), and F -light otherwise.

I Lemma 1.5 (KKT Sampling Lemma [16]). Let H be a subgraph obtained from G by
including each edge independently2 with probability p and let F be the maximal minimum
weight spanning forest of H. The number of F -light edges in G is at most n/p, w.h.p.

As our next step we compute the set of F -light edges and in our final step, we compute an
MST of the subgraph induced by the F -light edges. Thus, at a high level, our algorithm
consists of two calls to an MST subroutine on sparse graphs, one with O(m · p) edges and
the other with O(n/p) edges. In between, these two calls is the computation of F -light
edges. This overall algorithmic structure is clearly visible in Lines 5–7 in the pseudocode in
Algorithm 1 MST-v1.

There are several obstacles to realizing this high-level idea in the Congested Clique model
in order to obtain an algorithm that is “super-fast” and yet has low message complexity. The
reason for sparsifying G and appealing to the KKT Sampling Lemma is the expectation that
we would need to use fewer messages to compute an MST on a sparser input graph. However,
as mentioned earlier, all of the existing “super-fast” MST algorithms use Θ(n2) messages and
are insensitive to the number of edges in the input graph. In our first contribution, we develop
a collection of simple, low-message-complexity distributed routing and sorting subroutines
that we can use in the Ghaffari-Parter MST algorithm, allowing us to complete the two calls
to the MST subroutine in O(log∗ n) rounds using max{O(m · p), O(n/p)} messages. Setting
the sampling probability p in our algorithm to

√
n
m balances the two terms in the max(·, ·)

and yields a message complexity of O(
√
m · n). Due to space restrictions, this contribution is

briefly mentioned in Section 1.1 and is described in detail in the full version of our paper [30].
Our second and main contribution (Section 3) is to show that the computation of F -light

can be completed in O(1) rounds, while still using Õ(
√
m · n) messages. To explain the

challenge of this computation we present two simple algorithmic scenarios:
Suppose that we want each node u to perform a local computation to determine which of
its incident edges from G are F -light. To do this, node u needs to know wF (u, v) for all
neighbors v. Thus u needs degreeG(u) pieces of information and overall this approach
seems to require the movement of Ω(m) pieces of information, i.e., Ω(m) messages.
Alternately, we might want each node that knows F to be responsible for determining
which edges in G are F -light. In this case, the obvious approach is to send queries of the
type “Is edge {u, v} F -light?” to nodes that know F . This approach also requires Ω(m)
messages.

Various combinations of and more sophisticated versions of these ideas also require Ω(m)
messages. So the fundamental question is how do we determine the status (i.e., F -light or

2 For reasons that will become clear later, our goal of keeping the message complexity low, does not allow
us to assume full independence in this sampling. Instead we use Θ(log n)-wise independent sampling and
show that a slightly weaker version of the KKT Sampling Lemma holds even with limited independence
sampling.
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F -heavy) of m edges while exchanging far fewer than m messages? Below we outline two
techniques we have developed in order to answer this question.
Component-wise bound on number of F -light edges. As mentioned above, the KKT Sam-

pling Lemma upper bounds the total number of F -light edges by O(n/p), which is
O(
√
m · n) for p =

√
n/m. We show (in Corollary 3.5) that a slightly weaker bound

(weaker by a logarithmic factor) holds even if the edge-sampling is done using an Θ(logn)-
wise-independent sampler. If we could ensure that the total volume of communication is
proportional to the number of F -light edges, we would achieve our goal of o(m) message
complexity. To achieve this goal we show that the set of F -light edges has additional
structure; they are “evenly distributed” over the components of F . To understand this
imagine that F is constructed from H using Borŭvka’s algorithm. Let Ci = {Ci1, Ci2, . . .}
be the set of components at the beginning of a phase i of the algorithm. For each
component Cij ∈ Ci, the algorithm picks a minimum weight outgoing edge (MWOE) eij
from F . Components are merged using edges eij , j = 1, 2, . . . and we get a new set of
components Ci+1. Let Lij be the set of edges in G leaving component Cij with weight at
most w(eij). We show in Lemma 3.4 that the set of all F -light edges is just the union of
the Lij ’s, over all phases i and components j within Phase i. Furthermore, we show in
Lemma 3.2 that the size of Lij for any i, j is is bounded by Õ(1/p) w.h.p. This “even
distribution” of F -light edges suggests that we could make each component Cij responsible
for identifying the Lij-edges. Note that we don’t use distributed Borŭvka’s algorithm
to compute F because that would take Θ(logn) rounds. We compute F in O(log∗ n)
rounds using LinearMessages-MST, the modified Ghaffari-Parter MST algorithm (see
Theorem 1.3.). F is then gathered at each of a small number of nodes and each node
who knows F completely simulates Borŭvka’s algorithm locally on F , thus identifying
the components Cij and their MWOE’s eij .)

Component-wise generation of F -light edges using linear sketches. Linear sketches play
a key role in helping nodes in each component Cij collectively compute all edges in Lij . For
any node v and number x, let Nx(v) denote the set of neighbors of v that are connected
to v via edges of weight less than x. Each node v ∈ Cij computes a w(eij)-restricted sketch
sv, i.e., a sketch of its neighborhood Nw(ei

j
), and sends it to the component leader of

Cij who aggregates these sketches to compute a single component sketch. Sampling this
sketch yields a single edge in Lij . Since Lij has Õ(1/p) edges, each node v ∈ Cij can send
Õ(1/p) separate w(eij)-restricted sketches to the component leader of Cij and the Coupon
Collector argument ensures that this volume of sketches is enough to generate all edges
incident in Lij w.h.p.

I Remark. The sampling approach of Karger, Klein, and Tarjan is used in a somewhat
minor way in earlier Congested Clique MST algorithms [10, 11] and in fact in [19] it is
shown that this sampling approach can be replaced by a simple, deterministic sparsification.
However, KKT sampling and specifically its Θ(logn)-wise independent version that we use
in the current algorithm seems crucial for ensuring low message complexity, while keeping
the algorithms fast.

1.3 Related Work
It is important to point out that our algorithms are designed for the so-called KT1 [29]
model, where every node initially knows the IDs of all its neighbors, in addition to its own ID.
(In the Congested Clique model, this means that each node knows the IDs of all n nodes in
the network.) If we drop this assumption and work in the so-called KT0 model [29], in which
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nodes are unaware of IDs of neighbors, then it has been shown in [11] that Ω(m) messages
are needed by any Congested Clique MST algorithm (including randomized Monte Carlo
algorithms, and regardless of the number of rounds) on an m-edge input graph. In fact, this
lower bound is shown for the simpler graph connectivity problem.

There have also been some recent developments on simultaneously optimizing message
complexity and round complexity for the MST problem in the Congest model. For example,
in [27] it is shown that there exists a randomized (Las Vegas) algorithm that runs in
Õ(
√
n + diameter(G)) rounds and uses Õ(m) messages (both w.h.p.). This improves the

message complexity of the well-known Kutten-Peleg algorithm [21], without sacrificing
round complexity (up to polylogarithmic factors). The Kutten-Peleg algorithm runs in
O(
√
n log∗ n + diameter(G)) rounds, while using O(m + n1.5) messages. Note that the

algorithm in [27] simultaneously matches the round complexity lower bound [8, 32] and the
message complexity lower bound [20] for the MST problem.

The above-mentioned upper and lower bound results assume the KT0 model. In the
KT1 model, the message complexity lower bound of Kutten et al. [20] does not hold and
King et al. [17] were able to design an MST algorithm in the KT1 Congest model that
uses Õ(n) messages, though this algorithm has significantly higher round complexity than
Õ(
√
n+ diameter(G)) rounds.

As mentioned earlier, Hegeman et al. [11] present a Congested Clique MST algorithm
using Õ(n) messages, but running in O(log5 n) rounds. One can make a few changes to the
King et al. [17] Congest-model algorithm to implement it in the Congested Clique model,
requiring Õ(n) messages, but running in O(log2 n/ log logn) rounds.

2 MST Algorithms

In this section we describe two “super-fast” MST algorithms, the first runs in O(log∗ n)
rounds, using Õ(

√
m · n) messages and the second algorithm running in O(log∗ n/ε) rounds,

using Õ(n1+ε/ε) messages, for any 0 < ε ≤ 1.

2.1 A super-fast algorithm using Õ(
√

mn) messages
Our first algorithm MST-v1, shown in Algorithm 1 has already been outlined in Sec-
tion 1.2. The correctness, time complexity, and message complexity of this algorithm
depends mainly on two subroutines: LinearMessages-MST(·) and Compute-F-Light(·).
Recall that LinearMessages-MST(H) computes an MST on an n-node m-edge input
graph H in O(log∗ n) rounds using Õ(m) messages (Theorem 1.3). We also show that
Compute-F-Light(G,F, p) terminates in O(1) rounds using Õ(n/p) messages w.h.p. This
is the main result in our paper and is shown in Section 3.

I Lemma 2.1. For some constants c1, c2 > 1, (i) Pr(|E(H)| > c1 ·
√
mn) < 1

n and
(ii) Pr(|E`| > c2 ·

√
mn poly(logn)) < 1

n .

Proof. For 0 < i ≤ m, let Xi = 1 if edge i is sampled. Hence |E(H)| =
∑
iXi and

E[|E(H)|] =
√
mn. Note that Xi’s are Θ(logn)-wise independent. Therefore, by Theorem 1.2

we have, Pr(|E(H)| > c1
√
mn) < 1

n for some suitable constant c1 > 1. Claim (ii) follows
from Corollary 3.5. J

The following theorem summarizes the properties of Algorithm MST-v1. The running time
and message complexity bounds follow from Table 1.
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Algorithm 1 MST-v1

Input: An edge-weighted n-node, m-edge graph G = (V,E,w).
. Each node knows weights and end-points of incident edges. Every weight can be
represented using O(logn) bits.

Output: An MST T of G.
. Each node in V knows which of its incident edges are part of T .

. Let v∗ denote the node with lowest ID in V , known to all nodes.
1: v∗ generates a sequence π of Θ(log2 n) bits independently and uniformly at random and

shares with all nodes in V .
2: p←

√
n
m

3: Each node constructs an Θ(logn)-wise-independent sampler from π and uses this to
sample each incident edge in G with probability p

4: H ← the spanning subgraph of G induced by the sampled edges
5: F ← LinearMessages-MST(H)
6: E` ← Compute-F-Light(G,F, p)
7: T ← LinearMessages-MST((V,E`, w))
8: return T

Table 1 Time and message complexity for steps in Algorithm 1 MST-v1.

Step Time Messages Analysis
1 O(1) Õ(n) Full paper
2–4 – – Local computation
5 O(log∗ n) Õ(|E(H)|) Theorem 1.3
6 O(1) Õ

(√
mn
)

Theorem 3.6 with p =
√

n
m

7 O(log∗ n) Õ(|E`|) Theorem 1.3

I Theorem 2.2. Algorithm MST-v1 computes an MST of an edge-weighted n-node, m-
edge graph G when it terminates. Moreover, it terminates in O(log∗ n) rounds and requires
Õ(
√
mn) messages w.h.p.

2.2 Trading messages and time
The MST-v2 algorithm (shown in Algorithm 2) is a recursive version of MST-v1 algorithm
yielding a time-message trade-off. The algorithm recurses until the number of edges in the
subproblem becomes “low” enough to solve it via a call to the LinearMessages-MST
subroutine. Specifically, we treat a n-node graph with m = O(n1+ε) edges as a base case.
For graphs with more edges we use a sampling probability of p = 1/nε, leading to a sparse
graph H with O(m/nε) edges w.h.p., which is recursively processed. The use of limited
independence sampling is critical here. One simple approach to sampling an edge would be
to let the endpoint with higher ID sample the edge and inform the other endpoint if the
outcome is positive. Unfortunately, this would lead to the use of Õ(m/nε) messages w.h.p.,
exceeding our target of Õ(n1+ε) messages when m is large3. Using Θ(logn)-wise-independent
sampling allows us to complete the sampling step using Õ(n) messages.

3 This approach would have worked fine for MST-v1, but to keep the two algorithms consistent to the
extent possible, we use the Θ(log n)-wise independent sampler there as well.
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Algorithm 2 MST-v2

Input: An edge-weighted n-node, m-edge graph G = (V,E,w)
. Each node knows weights and end-points of incident edges in G. Every weight can

be represented using O(logn) bits. There is a parameter 0 < ε ≤ 1, known to all
nodes.

Output: An MST T of G.
. Each node in V knows which of its incident edges are part of T .

. Let v∗ denote the node with lowest ID in V and c ≥ 1 is a constant.
1: if m < c · n1+ε then
2: T ← LinearMessages-MST(G)
3: return T
4: else
5: v∗ generates a sequence π of Θ(log2 n) bits independently and uniformly at random

and shares with all nodes in V
6: p← 1/nε
7: Each node constructs an Θ(logn)-wise-independent sampler from π and uses this to

sample each incident edge in G with probability p
8: H ← the spanning subgraph of G induced by the sampled edges
9: F ←MST-v2(H)
10: E` ← Compute-F-Light(G,F, p)
11: T ← LinearMessages-MST((V,E`, w))
12: return T

I Theorem 2.3. Algorithm MST-v2 outputs an MST of an edge-weighted n-node, m-edge
graph when terminates. Moreover, for any ε > 0, it terminates after O (log∗ n/ε) rounds and
uses Õ

(
n1+ε/ε

)
messages, w.h.p.

Proof. If m = O(n1+ε) then the claim follows from Theorem 1.3. Let T (m) denote the
time required for Algorithm 2 to compute an MST of a n-node, m-edge graph. Since
Compute-F-Light(·) runs in O(1) time and LinearMessages-MST(·) runs in O(log∗ n)
time, we see that, T (m) = T (m/nε) + O(log∗ n), for all large m. The first quantity is the
result of a recursive call on the sampled graph H, where each edge is sampled with probability
p = 1/nε. Solving this recursion with base case m = O(n1+ε), we get T (m) = O(log∗ n/ε).
The message complexity bound is obtained by similar arguments. J

Setting ε = log logn/ logn, we get the following result.

I Corollary 2.4. There exists an algorithm that computes an MST of an n-node, m-edge
input graph and w.h.p. terminates in O(logn · log∗ n/ log logn) rounds and Õ(n) messages.

3 Efficient Computation of F -light Edges

In this section we describe the Compute-F-Light algorithm and prove its correctness and
analyze its time and message complexity. The inputs to this algorithm are the graph G,
a spanning forest F of G, and a probability p. Recall that F is the maximal minimum
weight spanning forest of the subgraph H obtained by sampling edges in G with probability
p, using a Θ(logn)-wise-independent sampler. The main ideas in Compute-F-Light have
been informally described in Section 1.2. The Compute-F-Light algorithm is described
below in Algorithm 3.
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Algorithm 3 Compute-F-Light

Input: (i) An edge-weighted n-node, m-edge graph G = (V,E,w), (ii) A spanning forest F
of G, and (iii) a number p, 0 < p < 1.
. F is a maximal minimum weight spanning forest of a subgraph H of G, where H

is a spanning subgraph of G obtained by sampling each edge in G with probability
p using a Θ(logn)-wise-independent sampler. Each node knows weights and
end-points of incident edges from G and F . Every weight can be represented
using O(logn) bits.

Output: F -light edges of G.
. Each node in V knows which of its incident edges from G are F -light.

1: Let {v1, v2, . . . , vc} be set of commander nodes (or in short, commanders) where c =
Θ(logn). Gather F at each of these commanders.

2: Each commander simulates Borŭvka’s algorithm locally on input graph F . Let Ci =
{Ci1, Ci2, . . .} be the set of components at the beginning of Phase i. The node with
smallest ID in a component Cij is the leader of component Cij and the ID of the
leader serves as the label of each component. For each component Cij ∈ Ci, the
algorithm picks a MWOE eij from F . Components are merged and we get a new
set of components Ci+1. If there is no incident edge on a component Cij in F then
commander sets eij = ⊥ with the understanding that w(⊥) =∞.

3: For each component Cij , commander vi sends the following 3-tuple to each node in Cij :
(a) Phase number i, (b) label of Cij , and (c) w(eij).

4: A node v having received a 3-tuple (i, `, w′) associated with component Cij for some i
and j computes Θ

(
log5 n
p

)
different graph sketches with respect to its w′-restricted

neighborhood Nw′(v).
5: The component leader of Cij for each i and j, gathers Θ

(
log5 n
p

)
w(eij)-restricted sketches

from all the nodes in Cij and computes w(eij)-restricted sketches of Cij . Then it samples
an edge from each sketch computed and notifies the end-points of all sampled edges.

6: return Union of sampled edges over all i over all j.

3.1 Analysis
Let Ci = {Ci1, Ci2, . . .} be the set of components at the beginning of Phase i of Borŭvka’s
algorithm being locally simulated on F . Consider the set of edges from G with exactly one
endpoint in Cij with weight at most w(eij): Lij = {e = {u, v} ∈ E | u ∈ Cij , v /∈ Cij and w(e) ≤
w(eij)}. For example, see Figure 1.

Our first task is to bound the size of Lij and for this we appeal to the following lemma
from Pettie and Ramachandran [31] on sampling from an ordered set.

I Lemma 3.1 (Pettie & Ramachandran [31]). Let χ be a set of n totally ordered elements
and χp be a subset of χ, derived by sampling each element with probability p using a k-wise-
independent sampler. Let Z be the number of unsampled elements less than the smallest
element in χp. Then E[Z] ≤ p−1(8(π/e)2 + 1) for k ≥ 4.

Observe that a straight-forward application of the above lemma gives us E[|Lij |] = O(1/p).
In the next lemma, we modify the proof of Lemma 3.1 in Pettie & Ramachandran [31] to
obtain a bound on size of Lij that holds w.h.p.

I Lemma 3.2. Pr
(
There exist i and j: |Lij | > c · log3 n/p

)
< 1

n for some constant c > 1.
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Ci = {A,B,C,D,Z}
ei1 = {a2, b1}
ei2 = {b5, c1}
ei3 = {c1, b5}
ei4 = {d1, z3}
ei5 = {z3, d1}
Li
1 = {{a2, b1}, {a1, c3}, {a3, b2}, {a5, z1}}

Li
2 = {{b5, c1}}

Li
3 = {{c1, b5}}

Li
4 = {{d1, z3}, {d3, c4}}

Li
5 = {{z3, d1}, {z1, a5}}

Figure 1 Illustration of notation and terminology used in Algorithm 3 Compute-F-Light. At
the beginning of Phase i of Borŭvka’s algorithm, there are 5 components {A, B, C, D, Z}. Each
component’s MWOE in F is shown as thick directed arc. Solid arcs show edges in G that are in
respective Li

j ’s and hence identified as being F -light. Dashed arcs (e.g., a4b3) represent edges that
the algorithm ignores; these edge are not F -light. Dotted arcs (e.g., b4z2, c2d2) represent edges in
G whose status has not yet been resolved by the algorithm. After the merging of components is
completed, we end up with two components {ABC, DZ}.

Proof. Fix a Phase i and a component Cij in that phase. Let X be the set of all edges
from G having exactly one endpoint in Cij . Let Xt be an indicator random variable defined
as Xt = 1 if the tth smallest edge in X is sampled, and 0 otherwise. For any integer `,
1 ≤ ` ≤ |X|, let S` =

∑`
t=1 Xt count the number of ones in X1, . . . , X`. Note that Lij ⊆ X

is a set of all edges with weight at most eij , the MWOE from Cij in F . This implies that the
lightest edge in X that is sampled is eij , otherwise Borŭvka’s algorithm would have chosen a
different MWOE. In other words, Xk = 0 for all k ≤ ` if the rank of eij in the ordered set X
is `+ 1 or more. Therefore, Pr

(
|Lij | > `

)
= Pr(S` = 0).

Observe that, S` is a sum of 0-1 random variables which are Θ(logn)-wise-independent and
E[S`] = p`. By Theorem 1.2, we have Pr(S` = 0) < 1

n3 for ` > c · log3 n/p for some constant
c > 1. The lemma follows by applying union bound over all phases and components. J

I Lemma 3.3. For any Phase i and any component-MWOE pair (Cij , eij), w.h.p. O
(
log5 n/p

)
w(eij)-restricted sketches of Cij are sufficient to find all edges in Lij.

Proof. Consider an oracle which when queried returns an edge in Lij independently and
uniformly at random. Let Ts denote the number of the oracle queries required to obtain
s = |Lij | distinct edges (i.e., all edges in Lij). Then by the Coupon Collector argument [25],
Pr(Ts > βs log s) < s−β+1 for any β > 1. Also, if the oracle is not uniform, but is “almost
uniform,” returning an edge in Lij with probability 1

s ± s
−α for a constant α > 2, then we

get Pr(Ts > βs log s+ o(1)) < s−β+1.
Now, to simulate a tth oracle query (t ∈ [1, Ts]) mentioned above, we sample an unused

sketch of Cij until we get an edge. Since sampling from a sketch fails with probability at
most n−2, w.h.p., O(1) sketches are sufficient to simulate one oracle query. Hence w.h.p.,
O(Ts) sketches are sufficient to simulate Ts oracle queries. Therefore, with probability at
least 1− s−β+1, O(βs log s) sketches are sufficient to get s distinct edges from Lij .
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By Lemma 3.2, we have w.h.p., s = |Lij | = O
(
log3 n/p

)
. Therefore by letting s =

Θ
(
log3 n/p

)
and β = O(logn) in the above argument, w.h.p., O

(
log5 n/p

)
sketches are

sufficient to find all edges in Lij . J

I Lemma 3.4. Let E` be the set of F -light edges in G. Let L = ∪i ∪j Lij. Then, E` = L.

Proof. We first show that L ⊆ E`. Consider a Phase i and a component-MWOE pair
(Cij , eij). Consider any edge e = {u, v} ∈ Lij with u ∈ Cij , v /∈ Cij . Since eij is the MWOE
from Cij and u ∈ Cij , any path in F connecting u to any node x /∈ Cij has to go through edge
eij . Therefore, for any x /∈ Cij , wF (u, x) ≥ w(eij). Since v /∈ Cij we have wF (u, v) ≥ w(eij).
Moreover, since e ∈ Lij , we have w(e) ≤ w(eij) implies w(e) ≤ wF (u, v). Hence, e is F -light.
Since this is true for any e ∈ Lij , we have Lij ⊆ E`. Hence, L ⊆ E`.

Now, we show that E` ⊆ L. For any node u ∈ V , let Cq(u) denote the component
containing u just before Phase q of Borŭvka’s algorithm (Step 2 in Algorithm Compute-F-
Light). For the sake of contradiction, let there be an edge e = {u, v} ∈ E` \ L. Let i be the
index of the phase in which component of u and component of v is merged together4 (that is,
for any q < i+ 1, Cq(u) 6= Cq(v) and Ci+1(u) = Ci+1(v)). Consider the path F (u, v) and
note that since Ci+1(u) = Ci+1(v), the entire path F (u, v) is in Ci+1(u). Now consider the
Phase i components Ci1, . . . , Cit , t ≥ 2 along this path F (u, v) (see Figure 2). WLOG, let
u ∈ Ci1 and v ∈ Cit and suppose that the path F (u, v) visits the components in the order
u ∈ Ci1, Ci2, . . . , Cit−1, v ∈ Cit . For example, in Figure 2 the path F (u, v) starts in Ci1 then
goes through Ci2, then to Ci3, and finally to Ci4. Let F ′(u, v) denote the subset of edges in
F (u, v) that have endpoints in two distinct Phase i components.

Now consider the MWOE’s of these components: eij is the MWOE for Cij for j = 1, 2, . . . , t.
There are three cases depending on how the MWOEs eij relate to the path F (u, v).

eij connects Cij to Cij+1 for j = 1, 2, . . . , t − 1. Since e has exactly one endpoint in Ci1
and e /∈ Li1 (since e /∈ L), we have w(e) > w(ei1). Furthermore, due to the structure of
the MWOEs: w(ei1) > w(ei2) > · · · > w(eit−1). This implies that w(e) is larger than the
weights of all edges in F ′(u, v).
eij connects Cij to Cij−1 for j = 2, . . . , t. Since e has exactly one endpoint in Cit and e /∈ Lit
(since e /∈ L), we have w(e) > w(eit). Furthermore, due to the structure of the MWOEs:
w(eit) > w(eit−1) > · · · > w(ei2). This implies that w(e) is larger than the weights of all
edges in F ′(u, v).
There is some `, 1 ≤ ` < t such that eij connects Cij to Cij+1 for j = 1, 2, . . . , ` and eij
connects Cij to Cij−1 for j = `+ 1, . . . , t. This case is illustrated in Figure 2 with ` = 2.
In this case, w(e) > w(ei1) and w(e) > w(eit) for reasons mentioned in the previous two
cases. Furthermore, due to the structure of the MWOEs: w(ei1) > w(ei2) > · · · > w(ei`)
and w(eit) > w(eit−1) > · · · > w(ei`+1). This implies that w(e) is larger than the weights
of all edges in F ′(u, v).

Thus in all three cases, w(e) is larger than the weights of all edges in F ′(u, v). Now let
eF = {u′, v′} ∈ F be the maximum weight edge in F (u, v). Since e is F -light, we have
w(e) < w(eF ). This inequality combined with the fact that w(e) is larger than the weights
of all edges in F ′(u, v) implies that u′ and v′ belong to the same Phase i component, i.e.,
Ci(u′) = Ci(v′). For example, in Figure 2, u′ and v′ are in Ci2.

Let Ci(u′) = Ci(v′) = Ci` for some ` ≤ t. Let F (u, v) = F (u, u′) ∪ {u′, v′} ∪ F (v′, v).
Since eF is the heaviest edge in F (u, v), all the edges in F (u, u′) are lighter than eF . Hence

4 If u and v are never merged into one component, i.e., they are in different components in F then
{u, v} ∈ Li

j where i is the phase in which u’s component becomes maximal with respect to F and j is
such that u belongs to Ci

j . This follows from the fact that ei
j = ⊥ and w(ei

j) = ∞.
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u v
e

ei1

ei2
ei3

ei4

eF

C i
2 C i

3

C i
4C i

1

u′ v′

Figure 2 Illustration of proof of Lemma 3.4. After Phase i, components Ci
1, Ci

2, Ci
3, Ci

4 are merged
together using edges ei

1, ei
2, ei

3, ei
4 in F . Dashed curves represent paths in F between the respective

end-points. e is an F -light edge. eF is the heaviest edge on path from u to v in F .

Table 2 Time and message complexity for steps in Algorithm 3 Compute-F-Light.

Step Time Messages Analysis
1 O(1) Õ(n) Full paper
2 – – Local computation
3 O(1) Õ(n) Trivial direct communication
4 O(1) Õ(n/p) Theorem 1.1
5 O(1) Õ(n/p) Full paper

at any Phase i′ < i, Borŭvka’s algorithm considers edges in F (u, u′) for component Ci′(u′)
and edges in F (v′, v) for component Ci′(v′) before considering eF . The implication of this
is, Ci(u) = Ci(u′) and Ci(v) = Ci(v′). But, Ci(u) 6= Ci(v) therefore, Ci(u′) 6= Ci(v′) – a
contradiction. J

From Lemma 3.2 and Lemma 3.4 we get the following bound on the number of F -light
edges in G.

I Corollary 3.5. W.h.p., the number of F -light edges in G is Õ (n/p).

Table 2 summarizes the time and message complexity of each step of Algorithm Compute-
F-Light. A naive implementation of Step 5 may require super-constant number of rounds
because of receiver-side bottlenecks, but a more sophisticated implementation that appears
in the full version of the paper [30] shows how to implement this step in O(1) rounds, using
Õ(n/p) messages.

From Lemma 3.4 and Table 2 we get the following result.

I Theorem 3.6. Algorithm Compute-F-Light computes all F -light edges for given graph
G and a minimum spanning forest F of H where H is obtained by sampling each edge in
G with probability p using a Θ(logn)-wise-independent sampler. Moreover, the computation
takes O(1) rounds and uses Õ (n/p) messages w.h.p.
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Abstract
The liveness problem for timed automata asks if a given automaton has a run passing infinitely
often through an accepting state. We show that unless P=NP, the liveness problem is more
difficult than the reachability problem; more precisely, we exhibit a family of automata for which
solving the reachability problem with the standard algorithm is in P but solving the liveness
problem is NP-hard. This leads us to revisit the algorithmics for the liveness problem. We
propose a notion of a witness for the fact that a timed automaton violates a liveness property.
We give an algorithm for computing such a witness and compare it with the existing solutions.
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1 Introduction

Timed automata [1] are one of the standard models of timed systems. There has been an
extensive body of work on the verification of reachability/safety properties of timed automata.
In contrast, advances on verification of liveness properties are much less spectacular. For
verification of liveness properties expressed in a logic like Linear Temporal Logic, it is best
to consider a slightly more general problem of verification of Büchi properties. This means
verifying if in a given timed automaton there is an infinite path passing through an accepting
state infinitely often.

Testing Büchi properties of timed systems can be surprisingly useful. We give an example
in Section 6 where we describe how with a simple liveness test one can discover a typo
in the benchmark CSMA/CD model. This typo removes practically all the interesting
behaviors from the model. Yet the CSMA/CD benchmark has been extensively used for
evaluating verification tools, and nothing unusual has been observed. Therefore, even if one
is interested solely in verification of safety properties, it is important to “test” the model
under consideration, and for this Büchi properties are indispensable.

Verification of reachability properties of timed automata is possible in practice thanks to
zones and their abstractions [4, 3, 9]. Roughly, the standard approach used nowadays for
safety properties performs a breadth first search (BFS) over the set of pairs (state, zone)
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reachable in the automaton, storing only pairs with the maximal abstracted zones (with
respect to inclusion). In jargon: the algorithm constructs a zone graph with subsumption.

In this paper we give a strong evidence that verification of Büchi properties is inherently
more difficult than verification of reachability properties. For a long time it has been
understood that for liveness, there is a problem with the approach outlined above as
it is no longer sound to keep only maximal zones with respect to inclusion (i.e. to use
subsumption) [11, 13]. It is possible to use the zone graph without subsumption, but this
one is almost always too big to handle. One could hope though that some modification
of the notion of zone graph with subsumption can give an algorithm for Büchi properties
that is provably not much more costly than that for safety properties. We show that this is
impossible. We present a family of examples where reachability is much easier to decide than
verification of Büchi properties. This proves that unless P=NP, there is no hope to obtain
an algorithm for Büchi properties that has provably similar complexity to the standard
reachability algorithm (which constructs zone graph with subsumption).

Our goal in this paper is to rethink the foundations of verification of Büchi properties
for timed automata, and propose some algorithmic solutions. The first question we address
is this: what can be a witness to the fact that an automaton has no Büchi accepting run?
As we have mentioned above, for safety properties such a witness is a zone graph with
subsumption. We propose a similar notion of a witness for Büchi properties that allows
only “safe” subsumptions. As the next contribution, we give an algorithm for computing
such a witness. Due to the hardness result mentioned above, we cannot hope to have as
efficient an algorithm as for reachability. We propose an algorithm that will iteratively
apply the reachability algorithm. It will first construct the zone graph with subsumption,
stopping if it finds a Büchi run. If all subsumptions in this graph are safe according to our
definition then this graph forms a witness for non-existence of a Büchi run. Otherwise the
algorithm recursively refines strongly connected components of the zone graph with unsafe
subsumptions. This algorithm computes the zone graph without subsumption in the worst
case - this as we show is anyway necessary in some cases. The expected advantage is that in
many cases our algorithm can stop sooner. We have implemented our algorithm and run
it on a set of benchmarks from [11]. On these examples indeed the algorithm mostly stops
after the first iteration, and constructs witnesses of size very close to those for safety. To
complete the picture we also give a set of particularly hard examples for our algorithm.

Related work: Verification of liveness properties is decidable thanks to the region construc-
tion [1]. The use of zones and (certain) abstractions for this problem was developed in [13].
Later Li [12] has shown that existence of a Büchi run is preserved by every abstraction based
on simulation. In particular, this is the case for the a4LU

abstraction [3] that is the coarsest
abstraction depending only on lower and upper bounds in clock guards (LU-bounds) [7].
Thanks to these results the liveness checking can be done on an abstract zone graph using
a4LU

abstraction (but without subsumption). The question of whether subsumption can
be used to improve the liveness verification was raised in [13]. Laarman et al. [11] recently
proposed a nested DFS based algorithm for checking Büchi properties of timed automata.
They study in depth when it is sound to use subsumption in the nested dfs algorithm.
Our conditions on the use of subsumption are expressed in terms of zone graphs and are
independent of a particular algorithm. This allows us to focus on the task of finding a witness
graph efficiently, in particular we can use BFS based algorithms for the task. We give a more
detailed comparison of the two algorithms in Section 6.
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Organization of the paper: In the next section we present the basic definitions, as well as
the algorithms for constructing the abstract zone graph, and the abstract zone graph with
subsumption. We also describe the nested DFS algorithm from [11]. In Section 3 we give
our notion of a witness for non-existence of a Büchi run in a given automaton. Section 4
presents a theorem implying the above stated algorithmic difference between verification of
liveness and reachability properties. In Section 5 we propose an algorithm for finding such
witnesses and prove its correctness. Section 6 reports some experimental results.

2 Preliminaries

In this section we present the basic definitions. In particular, we define abstract zone graphs,
and the use of subsumption. We also present the standard algorithm for constructing an
abstract zone graph with subsumption. This can be used to answer reachability properties.
We finish this section with the nested DFS algorithm for liveness properties from [11].

Let R≥0 denote the set of non-negative reals. A clock is a variable that ranges over R≥0.
Let X = {x1, . . . , xn} be a set of clocks. A valuation is a function v : X → R≥0. The set
of all clock valuations is denoted by RX≥0. We denote by 0 the valuation that associates 0
to every clock in X. A clock constraint φ is a conjunction of constraints of the form x ∼ c
where x ∈ X, ∼∈ {<,≤,=,≥, >} and c ∈ N. Let Φ(X) denote the set of clock constraints
over the set of clocks X. A valuation v is said to satisfy a constraint φ, written as v |= φ,
when every constraint in φ holds after replacing every x by v(x). For δ ∈ R≥0, let v + δ be
the valuation that associates v(x) + δ to every clock x. For R ⊆ X, let [R]v be the valuation
that sets x to 0 if x ∈ R, and that sets x to v(x) otherwise.

I Definition 1 (Timed Büchi Automata [1]). A Timed Büchi Automaton (TBA in short) is a
tuple A = (Q, q0, X, T, F ) in which Q is a finite set of states, q0 is the initial state, X is a
finite set of clocks, F ⊆ Q is a set of accepting states, and T ⊆ Q × Φ(X) × 2X ×Q is a
finite set of transitions of the form (q, g, R, q′) where g is a clock constraint called the guard,
and R is a set of clocks that are reset on the transition from q to q′.

The semantics of a TBA A = (Q, q0, X, T, F ) is given by a transition system of its
configurations. A configuration of A is a pair (q, v) ∈ Q× RX≥0, with (q0,0) being the initial
configuration. There are two kinds of transitions:

delay: (q, v)→δ (q, v + δ) for δ ∈ R≥0;
action: (q, v)→t (q′, v′) for t = (q, g, R, q′) ∈ T such that v |= g and v′ = [R]v.

A run of A is a (finite or infinite) sequence of transitions starting from the initial configuration:
(q0,0) δ0,t0−−−→ (q1, v1) δ1,t1−−−→ · · · , where (q, v) δ,t−→ (q′, v′) denotes a delay δ followed by action
t starting from (q, v + δ). A configuration (q, v) is said to be accepting if q ∈ F . An infinite
run satisfies the Büchi condition if it visits accepting configurations infinitely often. The run
is Zeno if its accumulated duration is finite, i.e.,

∑
i≥0 δi ≤ c for some c ∈ R≥0. Else it is

non-Zeno. The problem we are interested is termed the Büchi non-emptiness problem.

I Definition 2. The Büchi non-emptiness problem for TBA is to decide if a given TBA A
has a non-Zeno run satisfying the Büchi condition.

The Büchi non-emptiness problem is known to be Pspace-complete [1]. Standard
solutions to this problem construct an untimed Büchi automaton and check for its emptiness.
There are various methods to handle the non-Zeno requirement [15, 8]. In this paper, we will
assume that the automata are strongly non-Zeno [13], that is, every infinite accepting run is
non-Zeno. The strongly non-Zeno construction could lead to an exponential blowup [8, 6] to
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the abstract zone graph (which is defined below), but we prefer to employ this commonly
used assumption in order not to divert from the main subject. We will now describe a
translation which reduces the Büchi non-emptiness problem to checking non-emptiness of an
untimed Büchi automaton.

Abstract zone graphs: As the semantics of a TBA is an infinite transition system, al-
gorithms for TBA consider special sets of valuations called zones. A zone is a set of
valuations described by a conjunction of two kinds of constraints: either xi ∼ c or xi−xj ∼ c
where xi, xj ∈ X, c ∈ Z and ∼∈ {<,≤,=, >,≥}. For example (x1 > 3 ∧ x2 − x1 ≤ −4) is a
zone. Zones can be efficiently represented by Difference Bound Matrices (DBMs) [5].

The zone graph ZG(A) has as nodes pairs (q, Z) consisting of a state of the TBA and a
zone. The initial node is (q0, Z0) where Z0 = {0+δ | δ ∈ R≥0}. For every t = (q, g, R, q′) ∈ T ,
and every set of valuationsW , we define the transition⇒t as: (q,W )⇒t (q′,W ′) where W ′ =
{v′ | ∃v ∈ W, ∃δ ∈ R≥0 : (q, v) t−→ δ−→ (q′, v′)}. If W is a zone, then so is W ′. In the zone
graph, from every node (q, Z) there is a transition (q, Z) ⇒t (q′, Z ′) corresponding to the
transitions t from q. The transition relation ⇒ is the union of ⇒t over all t ∈ T .

Although the zone graph ZG(A) groups together valuations, the number of zones is still
infinite [4]. For effectiveness, zones are further abstracted. An abstraction operator is a
function a : P(R|X|≥0 )→ P(R|X|≥0 ) such that W ⊆ a(W ) and a(a(W )) = a(W ) for every set of
valuations W ∈ P(R|X|≥0 ). The abstraction is finite if a has a finite range. An abstraction
operator defines an abstract symbolic semantics: (q,W ) ⇒t

a (q′, a(W ′)) when a(W ) = W

and (q,W )⇒t (q′,W ′). We define a transition relation ⇒a to be the union of ⇒t
a over all

transitions t. For a finite abstraction operator a, the abstract zone graph ZGa(A) consists as
nodes pairs (q,W ) of the form W = a(W ). The initial node is (q0, a(Z0)) where (q0, Z0) is
the initial node of ZG(A). Transitions are given by the ⇒a relation. Such a graph ZGa(A)
can be seen as a Büchi automaton with the accepting states (q,W ) for q ∈ F .

Abstractions for timed automata are parameterized by the maximum constants appearing
in the guards of the automaton. The structure of the automaton determines two functions
L : X 7→ N and U : X 7→ N. For a clock x, the value L(x) denotes the maximum constant
occurring in guards of the form x ≥ c or x > c; and the value U(x) denotes the maximum
constant occurring in guards x ≤ c or x < c. This can be further refined by considering LU
bounds for each state of the automaton [2]. In this paper we will use the abstraction operator
a4LU

[3] and the abstract zone graph ZGa4LU (A) induced by it. It was shown in [7] that the
a4LU

abstraction induces the smallest zone graphs, for a given bound function LU . Moreover,
we know from [12] that ZGa4LU (A) is sound and complete for Büchi non-emptiness: TBA A
has a run satisfying the Büchi condition iff ZGa4LU (A) has one. This gives an algorithm for
the Büchi non-emptiness problem: given a TBA A, compute the (finite) Büchi automaton
ZGa4LU (A) and check for its emptiness.

There is a challenge due to the use of the a4LU
abstraction. There are zones Z for which

a4LU
(Z) is non-convex and hence it is better to avoid storing a4LU

(Z). Therefore, the
solution to compute ZGa4LU (A) works with a graph consisting of (state, zone) pairs and
uses the a4LU

abstraction indirectly [7]. The algorithm for computing ZGa4LU (A) is shown
in Figure 1. Since we consider only ZGa4LU (A) in the rest of the paper, we will denote
the transition relation ⇒a4LU

by →, as shown in Figure 1, for convenience. For a node
n ∈ ZGa4LU (A) we write n.q and n.Z for the state and zone present in node n respectively.

Using subsumption to compute smaller graphs: Although ZGa4LU (A) is the smallest
abstract zone graph for a given LU , its size could be (and usually is) exponential in the size
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1 procedure abstract_zone_graph(A)
2 V := {(q0, Z0)}, Waiting := {(q0, Z0)}
3 → := ∅ // edge relation
4 while (Waiting 6= ∅)
5 take and remove (q, Z) from Waiting
6 for each t = (q, g, R, q′) ∈ A
7 compute (q, Z)⇒t (q′, Z′)
8 if ∃(q′, Z1) ∈ V s.t a4LU

(Z′) = a4LU
(Z1)

9 add (q, Z)→ (q′, Z1)
10 else
11 add (q′, Z′) to V and Waiting
12 add (q, Z)→ (q′, Z′)
13 return (V , →)
14

15 procedure subsumption_graph(A)

16 V := {(q0, Z0)}, Waiting := {(q0, Z0)}
17 → := ∅ // edge relation
18  := ∅ // subsumption relation
19 while (Waiting 6= ∅)
20 take and remove (q, Z) from Waiting
21 for each t = (q, g, R, q′) ∈ A
22 compute (q, Z)⇒t (q′, Z′)
23 if ∃(q′, Z1) ∈ V s.t a4LU

(Z′) = a4LU
(Z1)

24 add (q, Z)→ (q′, Z1)
25 else if ∃(q′, Z1) ∈ V s.t. Z′ ⊆ a4LU

(Z1)
26 add (q′, Z′) to V
27 add (q, Z)→ (q′, Z′) (q′, Z1)
28 else
29 add (q′, Z′) to V and Waiting
30 add (q, Z)→ (q′, Z′)
31 return (V , →,  )

Figure 1 Algorithm on the left computes ZGa4LU (A). The algorithm on the right uses subsump-
tion. Methods for testing Z′ ⊆ a4LU (Z1) and a4LU (Z′) = a4LU (Z1) are given in [7].

1 procedure ndfs()
2 Cyan := Blue := Red := ∅
3 dfsBlue(s0)
4 report no cycle
5

6 procedure dfsRed(s)
7 Red := Red ∪ {s}
8 for all s→ t do
9 if (Cyan v t) then report cycle

10 if (t 6v Red) then dfsRed(t)

11

12 procedure dfsBlue(s)
13 Cyan := Cyan ∪ {s}
14 for all s→ t do
15 if (t /∈ Blue ∪ Cyan and t 6v Red)
16 then dfsBlue(t)
17 if (s ∈ F ) then
18 dfsRed(s)
19 Blue := Blue ∪ {s}
20 Cyan := Cyan \{s}

Figure 2 Nested DFS algorithm with subsumption [11] to compute a subgraph of ZGa4LU (A).

of A. An essential optimization that makes analysis of timed automata feasible is the use
of subsumption. For two nodes t and s of ZGa4LU (A) we say t is subsumed by s, written
as t v s, if t.q = s.q and t.Z ⊆ a4LU

(s.Z). The node s simulates t. Hence, at least for
testing reachability, it is enough to keep in the graph only the maximal nodes with respect
to subsumption. The algorithm incorporating subsumption is shown in Figure 1.

Subsumption optimization is known to give substantial gains for the reachability prob-
lem [10]. However, subsumption is not a priori correct for liveness, and the question of how
it can be used for liveness was raised in [13]. An algorithm proposed in [11] (illustrated in
Figure 2) gives a restricted way of using subsumption in a nested dfs algorithm for detecting
accepting cycles. If we know that from a node s there is no reachable accepting cycle, then
no node t v s needs to be explored. The red nodes in the nested dfs algorithm play the role
of node s (cf. Lines 10 and 15 in algorithm). Another optimization occurs in Line 9 - if there
is a path from a node t to node s subsuming it, then a cycle can be concluded.

The goal of this paper is to find subsumption graphs of ZGa4LU (A) that are sound and
complete for liveness, and to design efficient algorithms to compute them.
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3 Liveness compatible subsumptions

In this section, we are interested in understanding generic conditions as to when subsumption
can be used correctly for liveness analysis. We start with an example. Consider the TBA A
and ZGa4LU (A) illustrated in Figure 3. The zone graph has an accepting cycle on the node
(1, 101 ≤ y−x). For each of the states 1, 2 and 3 of the TBA, there are at least 100 nodes in the
zone graph. Note that (1, 1 ≤ y−x) v (1, 0 ≤ y−x) and (2, 1 ≤ y−x ≤ 101) v (2, 0 ≤ y−x).
If we allow the luxury to use subsumptions freely, we would get the graph consisting only
of the green nodes in the figure. However, in this graph there is no accepting cycle made
uniquely of → edges. There are cycles containing subsumption edges but, as we will see later,
it is not sound to take such cycles as witnesses for the existence of an accepting computation.
Hence the green graph is not complete for liveness: to detect an accepting computation we
should not use subsumption on (1, 1 ≤ y − x). Observe that using subsumption on the node
(2, 1 ≤ y − x ≤ 101) would do no harm, as further exploration would not lead to accepting
cycles anyway. This subsumption gives already a significant gain. In fact, the zone graph
restricted to the green and grey nodes, along with the subsumption edge on the right is a
liveness complete graph according to the definition below. Algorithm in Figure 2 does not
detect this possibility and explores the whole graph.

Our goal is to make use of subsumption as much as possible, subject to the restriction
that the resulting graph contains an accepting cycle of → edges iff ZGa4LU (A) contains one.
Including the subsumption edges as part of a cycle is not sound in general - for instance in
Figure 3, the subsumption edge on state 2 forms a cycle, whereas there is no cycle containing
2 in ZGa4LU (A). In this paper, we do not include the subsumption edges as part of cycles.
Hence in the graphs that we construct, cycles are actual cycles in ZGa4LU (A) - so every such
cycle with an accepting state gives an accepting computation. The challenge is to decide
what are the subsumptions that are safe and can be left in the graph. We first make precise
the notion of a zone graph with subsumptions, and then follow up with a condition that
makes a zone graph with subsumption complete for liveness.

I Definition 3 (Subsumption graph). Let G be a graph consisting of a subset of nodes and
edges of ZGa4LU (A) together with new edges called subsumption edges. Each node is labeled
either covered or uncovered. Such a graph is called a subsumption graph if it satisfies the
following conditions:
C1 the initial node of ZGa4LU (A) belongs to G and is labeled uncovered,
C2 for every uncovered node s, all its successor transitions s −→ s′ occurring in ZGa4LU (A)

should be present in G,
C3 for every covered node t ∈ G there is an uncovered node s ∈ G such that t v s; moreover

there is an explicit subsumption edge t s in G,
C4 there is a path of −→ edges from the initial node to every other node.

A path in a subsumption graph is made of both → and  edges. We write s1 99K∗ s2 to
denote that there is a path from s1 to s2 in the subsumption graph. We now describe the
relation between paths in a zone graph and in a subsumption graph.

I Lemma 4. For every (finite or infinite) path s0 → s1 → s2 → · · · in ZGa4LU (A) there is
a path s′0 99K∗ s′1 99K∗ s′2 99K∗ · · · in G such that for each i, si v s′i and s′i is uncovered.

Lemma 4 along with condition C4 says that if there is a path s0 →∗ s in ZGa4LU (A), there
is a path s0 →∗ s′ with s v s′ in the subsumption graph G. This shows that subsumption
graphs are complete for reachability. However, these conditions are not sufficient for liveness



F. Herbreteau, B. Srivathsan, T. T. Tran, and I. Walukiewicz 48:7

0

1 2

3

{x} {x}

x ≥ 1
{x}

y ≤ 100x ≥ 1
{x}

(0, x = y ≥ 0)

(1, 0 ≤ y − x)

(1, 1 ≤ y − x)

(1, 2 ≤ y − x)

(1, 100 ≤ y − x)

(1, 101 ≤ y − x)

(2, 0 ≤ y − x)

(3, 0 ≤ y − x ≤ 100)

(2, 1 ≤ y − x ≤ 101)

(3, 1 ≤ y − x ≤ 100)

(3, y − x = 100)

(2, y − x = 101)

...
...

Figure 3 On the left is a TBA A; on the right the graph without the dashed edges is ZGa4LU (A).
Assume that L = U = 100 at every state - this can be achieved by adding more transitions on each
state (which are not shown for clarity). Dashed edges show subsumption. The part of ZGa4LU (A)
restricted to green nodes and dashed edges is the zone graph with subsumption. In this green
graph there is no accepting cycle consisting of → edges. Removing the dashed edge on the node
(1, 1 ≤ y − x) and adding the grey nodes identifies the accepting cycle.

– for a cycle of → edges in the zone graph, we may not get a corresponding cycle of → edges
in the subsumption graph (cf. Figure 3). We now give an extra criterion.

I Definition 5 (Liveness compatible subsumption graph). A subsumption graph G is said to
be liveness compatible if it additionally satisfies the following condition:
C5 there is no cycle containing both an accepting node and a subsumption edge.

In Figure 3, the zone graph restricted to green nodes and the dashed edges is not liveness
compatible. There is a cycle containing an accepting node (1, 1 ≤ y − x) and a subsumption
edge from this node. However, removing this subsumption edge and adding the grey nodes
makes it liveness compatible. The only subsumption edge is from (2, 1 ≤ y − x ≤ 101) and it
is not part of a cycle containing an accepting node. Intuitively, when we add a subsumption
edge t s, we know that paths in ZGa4LU (A) starting from t can be simulated from s in
the subsumption graph. But if there is a cycle containing t s in the subsumption graph,
this would mean that the simulation from s can bring us back to t. Hence some accepting
runs from t in ZGa4LU (A) could be lost in the subsumption graph. We show that condition
C5 above makes such a situation impossible.

I Theorem 6. ZGa4LU (A) has an infinite accepting path iff a liveness compatible subsump-
tion graph has an infinite accepting path consisting of → edges.

Proof. Let G be a liveness compatible subsumption graph. Since all the −→ edges in G

come from the zone graph, a cycle of −→ edges in G implies such a cycle in the zone graph.
This shows the direction from right to left. Suppose ZGa4LU (A) has an accepting run ρ:
s0 −→ s1 −→ · · · . From Lemma 4, we have a path ρ′ in G of the form:s′0 99K∗ s′1 99K∗ s′2 99K∗
· · · such that each si v s′i . Since ρ is an accepting run, some accepting node s repeats
infinitely often in ρ. Corresponding positions in ρ′ contain nodes which subsume s. Since
there are finitely many nodes in G, there should be some accepting node s′ which occurs
infinitely often in ρ′. Therefore there is a cycle containing s′ in G. By liveness compatibility
criterion C5 this cycle should be made of only −→ edges. From condition C4, there should
be a path consisting of −→ edges from the initial node of G to s′. This gives an infinite path
in G made of → edges that visits an accepting node s′ infinitely often. J
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q0 q1 q2 q3 r0 r1 r2

t0

{x1}

{x1}

{x2}

{x2}

{x3}

{x3}

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

x1 ≤ 0

x2 ≤ 0

x3 ≤ 0

{y}(y ≥ 1)

Figure 4 Automaton for φ = (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3).

4 Liveness is more difficult than reachability

Theorem 6 says that to solve the Büchi non-emptiness problem, one can compute a liveness
compatible subsumption graph and check for cycles containing an accepting node and no
subsumption edge. In general, liveness compatible subsumption graphs are smaller than
the zone graph, but bigger than the usual subsumption graphs computed for reachability
(cf. Figure 3). A natural question now is to ask if one can quantify this overhead created
due to the liveness compatibility. In this section, we show that deciding liveness from a
(reachability compatible) subsumption graph is NP-hard. Therefore, unless P=NP, one
needs an object exponentially bigger than subsumption graphs to decide liveness. The proof
of the following theorem uses the same kind of gadget as in [6].

I Theorem 7. Given a strongly non-Zeno TBA and its subsumption graph, deciding Büchi
non-emptiness is NP-hard.

Proof. We give a reduction from 3SAT. Let P = {p1, . . . , pk} be a set of propositional
variables and let φ = C1 ∧ · · · ∧ Cn be a 3CNF formula with n clauses. We will construct an
automaton Bφ such that φ has a satisfying assignment iff Bφ has an infinite run satisfying
the Büchi condition. Moreover, we give a subsumption graph with the same number of nodes
as the number of states in Bφ.

The timed automaton Bφ is defined as follows. For each propositional variable pi, there
are two clocks, xi and xi, which encode the value of pi when the value of one of the two
clocks is 0 and the other is not. In addition, there is a clock y. In all, the set of clocks X
is {x1, x1, . . . , xk, xk, y}. For a literal λ, let cl(λ) denote the clock xi when λ = pi and the
clock xi when λ = ¬pi. The set of states of Bφ is {q0, . . . , qk, r0, . . . , rn, t0} with q0 being the
initial and the accepting state. The transitions are as follows: for each propositional variable
pi we have transitions qi−1

{xi}−−−→ qi and qi−1
{xi}−−−→ qi; for each clause Cm = λm1 ∨ λm2 ∨ λm3 ,

m = 1, . . . , n, there are three transitions rm−1
cl(λ)≤0−−−−−→ rm for λ ∈ {λm1 , λm2 , λm3 }; a transition

qk −→ r0 with no guards and no resets; transitions rn
{y}−−→ t0 and t0

y≥1−−→ q0.
Figure 4 shows the automaton for the formula (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p2 ∨ p3). A path

from q0 to q3 encodes an assignment with the following convention: a reset of xi represents
pi 7→ true and a reset of xi means pi 7→ false. Then, from r0 to r2 we check if the formula
is satisfied by this guessed assignment (clearly there is no point to let the time pass in this
process). The additional parts are the transitions from r2 −→ t0 and t0 −→ q0. Note that this
makes the automaton strongly non-Zeno: between two consecutive visits to q0, at least 1
time unit should elapse.

If φ has a satisfying assignment, then for every pi the path that resets xi if pi is true and
resets xi if pi is false can be extended to a run reaching t0. For instance, the formula from
Figure 4 is satisfied by every assignment that maps p3 to true. The path corresponding to
such an assignment passes through the transition q2

{x3}−−−→ q3. Then, it has the possibility
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to follow transitions r0
x3≤0−−−→ r1 and r1

x3≤0−−−→ r2. Note that this is possible independently
on the amount of time elapsed at q0. In particular, after the first iteration from q0 → q0
the values of all clocks become bigger than 1. By following the path corresponding to the
satisfying assignment each time, q0 can be visited infinitely often. Conversely, suppose Bφ
has an infinite run that visits q0 infinitely often. Since after one iteration q0 → q0 the value
of all clocks are above 1, the only way to take transitions r0 → r1 · · · → rn is by resetting
clocks appropriately so that at least one guard is satisfied at every ri. One such sequence of
resets would then give a satisfying assignment for φ.

We now give an idea of the subsumption graph Gφ for Bφ as computed by the algorithm in
the right hand side of Figure 1. It turns out that for every state q0, . . . , qn and r0, . . . , rn there
is a single node with the zone a4LU

(Z0), where Z0 is the initial zone, consisting of the time
successors of v0 (the valuation mapping every clock to 0). This is because a4LU

abstraction
does not remember the order of resets. If it had, there would be exponentially many nodes
at rn. It can be checked that transitions rn → t0 → q0 yield a node (q0, a4LU

(Z ′0)) where
a4LU

(Z ′0) is strictly included in a4LU
(Z0). J

The graph Gφ in the previous proof is not a liveness compatible subsumption graph. An
algorithm for liveness would explore further from (q0, a4LU

(Z ′0)) till a complete graph is
obtained. Theorem 7, says that this process essentially leads to SAT solving. The above
theorem holds even if the less coarse abstraction Extra+

LU [3] is used instead of a4LU
.

5 An algorithm

We now consider the algorithmic problem of computing a liveness compatible subsumption
graph for a given automaton. The objective is of course to compute a small graph, as
otherwise we could just compute the entire abstract zone graph without subsumption using
the algorithm from the left of Figure 1. A better solution is the nested DFS algorithm in
Figure 2 - indeed the final graph computed by it is a liveness compatible subsumption graph.
In this section, we present a different algorithm, and compare its performance with the
nested DFS approach. Our algorithm iterates between a reachability computation and an
SCC analysis of the computed graph to find cycles violating condition C5 in Definition 5.
Figure 5 illustrates the idea. The picture on the left shows the situation after the first
reachability-SCC analysis. At this point, each violating subsumption edge is removed and a
subsumption graph computation is started from the corresponding covered node (nodes a
and e in the figure). During this exploration, the use of subsumption is restricted in order to
avoid falling repeatedly into the same bad cycle: as a is covered by b then i must be covered
by c, but this covering edge will form a bad cycle anyway, so there is no point of introducing
it. To achieve this behavior, a level field is added to each node and subsumption is allowed
only to nodes of a higher level (subsumption j  k and the subsumption on node l, assuming
nodes in the white part get level ∞). The iteration between reachability and cycle detection
phases continues till the computed graph does not have violating cycles.

The problem with this approach is that the same edges will be considered in an unbounded
number of SCC analyses. To avoid this, each SCC analysis phase is restricted to the nodes
and edges of the current level. This however could miss out certain violations that span
across levels (like the one caused by the edge o→ f). The following algorithm handles this
issue by considering all such exit edges as potential causes of violation.
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Figure 5 On the left is an illustration of a subsumption graph. An SCC decomposition of this
graph gives the nodes that are part of violating cycles, and those that cannot reach violating cycles.
On the right, is a re-exploration from bad subsumptions. In the re-exploration, subsumption is
restricted to nodes of same level, or nodes that are known not to reach violating cycles.

Iterative SCC based algorithm with subsumption:

Phase 0 Let K = 1 and let Sinit and S be the sets containing the initial (state,zone) pair.
Phase 1 Construct a subsumption graph from nodes in Sinit. Set the level field of all nodes

in Sinit to K and let Sinit be the pool of nodes to be explored. Every node added in
this phase will have level field set to K. Repeatedly, take a node (q, Z) from the pool.
For every edge (q, Z) ⇒ (q′, Z ′), add node (q′, Z ′) to S and to the pool unless there is
already (q′, Z1) ∈ S s.t., either:
1.1 a4LU

(Z ′) = a4LU
(Z1), or

1.2 a4LU
(Z ′) ⊂ a4LU

(Z1), state q′ is non-accepting, node (q′, Z1) is uncovered and has
a level K or ∞.

In the first case, add the edge (q, Z)→ (q′, Z1) to S. In the second case, add the node
(q′, Z ′) to S and the edges (q, Z)→ (q′, Z ′), (q′, Z ′) (q′, Z1) to S. By the end of this
phase, graph S will be extended with some nodes of level K.

Phase 2 Consider the subgraph GK of S induced by nodes of level K, and containing all the
→ and  edges between these nodes. Decompose GK into maximal SCCs by considering
both → and  as the same kind of edges. Mark a maximal SCC as bad if:
2.1 either it contains an accepting node and a subsumption edge (both nodes adjacent

to the  edge must be in the SCC), or
2.2 it has a node s with a successor edge s→ s′ to a node s′ of level strictly less than K.

Note that node s is in GK , but s′ is not.
For every node in GK : set the flag of the node to ∞ if it cannot reach a bad SCC.

Phase 3 Let Sinit be all covered nodes in GK which still have level K. Remove the corres-
ponding subsumption edges. Set K := K + 1.

Repeat If Sinit is non-empty, restart from Phase 1.
Final If Sinit is empty, perform an SCC decomposition of S. If there is an accepting cycle of
→ edges, return non-empty, else return empty.

In the above algorithm, Phase 1 is a reachability computation and Phases 2 and 3 are
SCC-analysis. The final phase is a usual cycle detection algorithm.

I Theorem 8. A strongly non-Zeno TBA A is non-empty iff the iterative SCC based
algorithm with subsumption returns non-empty.

Although the iterative algorithm performs an unbounded number of calls to an SCC
decomposition, each edge is visited in only two SCC decompositions - one in the Phase 2 of
the iteration corresponding to the level of the source node when it appeared, and the second
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Table 1 Comparison of the size of liveness invariants generated by nested DFS algorithm, nested
DFS algorithm with subsumption [11] and our Iterative algorithm running a Topological Search (see
[10]) on the benchmark from [11]. We used a Linux station with an Intel i7-2600 3.40GHz processor
and 8Gb of memory.

Prop Sat Nested DFS NDFS subsumption Iterative TS UPPAAL TS
# nodes sec. # nodes sec. # nodes K sec. # nodes

Fi1
√

26 651 0.2 26 651 0.2 7 737 1 0.3 7 737
Fi2

√
132 808 1.4 132 808 1.3 38 238 1 1.0 38 238

Fi3 26 679 0.4 26 679 0.4 20 768 1 0.8 20 768
FD1

√
19 858 0.3 18 246 0.2 705 1 0.1 705

CC1
√

1 786 399 31.6 1 786 399 32.7 15 837 1 1.3 15 837
CC2

√
22 070 0.4 22 070 0.4 12 898 1 0.3 12 898

one during the final phase. This gives a constant upper bound on the number of times an
edge is visited, irrespective of the number of iterations needed for stabilization. Therefore
the time spent by the algorithm is linear in the size of the final graph computed, similar
to the algorithm in Figure 2 which visits each edge twice. Moreover the result is always
included in an abstract zone graph (without subsumption).

Let us now compare this approach with the nested DFS algorithm from Figure 2. The
advantages of our algorithm are clearly visible on a (quite pathological) case of an automaton
having no reachable accepting state. In this case, nested DFS does not use subsumption at
all as there are no red nodes. On the other hand, the iterative algorithm computes just a
reachability subsumption graph. After the first iteration, there would be no bad SCCs, and
hence the entire graph would be marked ∞. Another important class of automata for which
we get a significant gain is weak timed Büchi automata (every cycle in a weak TBA consists
entirely of accepting nodes or non-accepting nodes). As there can be no SCCs containing
both accepting and non-accepting nodes, the iterative algorithm stabilizes after 1 iteration.
The automaton of Figure 3 is a weak Büchi automaton. The nested DFS algorithm computes
the entire zone graph - no subsumption will be allowed. The iterative algorithm would
allow subsumption on the non-accepting part. It computes the graph consisting of the green
and grey nodes. There are examples where the nested DFS approach can outperform the
iterative algorithm. Modify the automaton in Figure 3 as follows: make all states accepting;
add another clock w and an edge 0 w≥5−−−→ 2. Note that the iterative algorithm cannot use
subsumption at all since all nodes are accepting. Moreover this additional edge leads to
n1 : (2, 0 ≤ y− x∧w ≥ 5) which starts a long thread of zones due to the transitions between
2 and 3. Note that n : (2, 0 ≤ y − x ∧ w ≥ 5) is subsumed by (2, 0 ≤ y − x). If the NDFS
chooses a good order and finishes exploring the latter zone first, it allows subsumption
n1  n, and avoids computing the subtree below n1.

6 Experiments

We have implemented our algorithm in our tool TChecker. Our implementation includes
various optimizations that are not presented in this paper (the algorithm stops after Phase 1
when no accepting state is reachable, covered nodes are not kept in the liveness invariants,
etc.). We have compared our algorithm with our own implementation of the nested DFS
algorithm with subsumption from [11]. We have conducted experiments on the classical
benchmarks for Timed Automata, that we describe below. We verify properties given by
Büchi automata on these standard models. To do this, we take the product of the model
with a property automaton, and check for Büchi non-emptiness on this product.
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Table 2 Comparison of the nested DFS algorithm with subsumption[11] and our Iterative
algorithm running a Topological Search (see[10]) on properties with timed constraints. We used a
Linux station with an Intel i7-2600 3.40GHz processor and 8Gb of memory.

Prop Sat NDFS subsumption Iterative TS UPPAAL TS
# visited # nodes # visited # nodes K # nodes

Fig 4 58 50 116 50 3 8
(CC3) 8 16 165 16 164 219 561 205 656 1 205 656
(CC4) 3

√
44 873 35 787 449 724 150 078 282 367

(CC5) 3
√

240 111 237 548 606 421 201 740 60 772
(Fi4) 8

√
466 572 382 936 154 854 77 427 1 77 427

(Fi5) 4
√

48 299 24 979 88 430 29 677 17 704

As a first experiment, we considered the models and properties in [11]. Fischer’s protocol
is a mutual-exclusion protocol based on real-time constraints. Let c denote the number
of processes in critical section. We checked properties (Fi1) G(c ≤ 1) mutual exclusion;
(Fi2) GF(c = 0)∧GF(c = 1) non-blocking from [12]; and (Fi3) G(req1 =⇒ Fcs1) every request
of process 1 is eventually satisfied. FDDI is a token ring protocol where the communication
can be synchronous or asynchronous. We checked property (FD1) FG(async1) process 1
eventually communicates asynchronously. Finally, CSMA/CD is a protocol to detect and
solve message collisions that is used for communications over Ethernet networks. We checked
two properties (CC1) G(collision =⇒ Factive) after a collision, the network becomes active
again; and (CC2) FG(collision =⇒ G¬sent) after some collisions, no message can ever be
sent. We consider instances of the 3 models with 7 processes and standard parameter values
from the literature.

Table 1 shows a comparison between the standard nested DFS algorithm, nested DFS
algorithm with subsumption [11] and our Iterative algorithm. The first column corresponds
to the property checked as described above. A tick in the second column indicates that
the property holds: the Büchi automaton for the complement has no accepting run. For
every algorithm, we report the size of the liveness invariant (# nodes) and the running
time (sec.). We also report the maximum level (K) for the Iterative algorithm. The last
column gives the size of the reachability invariant as computed by our implementation of
UPPAAL’s algorithm [16]. This is a lower bound on the size of the liveness invariant. Both
our Iterative algorithm and UPPAAL’s algorithm explore the state-space of the automata
using a topological search [10].

The results show that our Iterative algorithm computes liveness invariants that are
significantly smaller that those computed by both nested-DFS algorithms. Indeed, for all
these examples, the reachability invariants are liveness compatible as shown by the comparison
to UPPAAL’s algorithm. Our algorithm also visits significantly less nodes than nested-DFS
algorithms. It stops immediately after Phase 1 for (Fi1) and (CC2) that have no reachable
accepting state. Models (Fi2), (FD1) and (CC1) have reachable accepting states, but no bad
SCC. As a result, the Iterative algorithm stops after Phase 2 and skips Phase 3 and the final
phase. Finally, (Fi3) has an accepting run that is found during Phase 2.

We have also compared the algorithms on examples that are particularly difficult for
Iterative algorithm. The results are shown in Table 2. We report for each model the number
of visited nodes (# visited) and the size of the liveness invariants (# nodes). We also compare
to the size of reachability invariants generated by UPPAAL’s algorithm. The first example
corresponds to the automaton in Figure 4. Since it is built from a formula that is satisfiable,
the automaton has an accepting run. However, the accepting cycle spans over two levels. As
a result, our Iterative algorithm required 2 refinements (K = 3), and it had to run all phases
to detect the accepting run. The nested-DFS algorithm explores significantly less nodes.
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Figure 6 Model of CSMA/CD: station (left) and bus (middle); property (CC3) (right).

The other examples are built from the CSMA/CD model (CC) and the Fischer model
(Fi) described above. We consider timed specifications with timed constraints that make
covering harder. Property (CC3) is depicted in Figure 6 (right). The automaton checks that
station 1 tries to transmit fast enough, and that it often achieves successful transmissions.
Property (CC4) is a variation of (CC3) where cycles can be iterated only a bounded number
of times. This is achieved by adding a new clock t4 that is never reset, and an invariant
t4 ≤ K to the accepting state. Property (CC5) checks that if collisions are infrequent and
station 1 tries infinitely often to send, then it effectively sends messages infinitely often.
Property (Fi4) expresses that if process 1 can infinitely often access the critical section for K
time units, then it enters the critical section infinitely often. Finally, property (Fi5) checks
that process 1 requests access to the critical section frequently, but is only granted access
in a certain time window. As for (CC4) the cycles in (Fi5) can be iterated only a bounded
number of times.

Property (CC3) has accepting runs, thus the nested-DFS algorithm with subsumption
performs significantly better than our Iterative algorithm. Indeed, the Iterative algorithm
first computes a reachability invariant in Phase 1 before being able to detect the accepting
run in Phase 2. Properties (CC4) and (Fi5) with bounded iterations of cycles are difficult
for our Iterative algorithm. These two automata generate many bad SCCs, hence many
refinements. At each refinement step, our algorithm needs to generate many new nodes as
covering is restricted to nodes within the same level (or nodes with level ∞). This results in
bigger liveness invariants than those computed by nested-DFS algorithm with subsumption.
On the examples (CC5) and (Fi4), on the contrary, our algorithm generates smaller invariants
than nested-DFS with subsumption. Notice that in most examples, the liveness invariants
computed by both algorithms are huge w.r.t. reachability invariants computed by UPPAAL’s
algorithm.

Finally, the case of CSMA/CD gives an interesting motivation for testing Büchi properties.
Indeed property (CC2) holds for the CSMA/CD model. As a result, the model is not correct
since communications should be enabled after a collision. It turns out that a transition is
missing in the widely used model [14, 17]. In consequence, once some process enters in a
collision, no process can send a message afterwards. The model can be fixed by allowing the
busy action in state RETRY as shown in Figure 6. This example confirms once more that
timed models are compact descriptions of complicated behaviors due to both parallelism and
interaction between clocks. Büchi properties can be extremely useful in making sure that a
model works as intended.
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7 Conclusions

As we show in this paper, the liveness problem for timed automata is substantially more
difficult algorithmically than the reachability problem. We have defined a notion of an
invariant for liveness properties: a graph proving that the property does not hold. We
have also proposed a high-level algorithm for constructing such an invariant. Finally, we
have reported on some experiments with a preliminary implementation of this algorithm.
Further work will be required to understand the relation between sizes of liveness and safety
invariants, as well as to develop better algorithms for constructing liveness invariants.
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Abstract
This paper presents a machine-verified analysis of a number of classical algorithms for the list
update problem: 2-competitiveness of move-to-front, the lower bound of 2 for the competitive-
ness of deterministic list update algorithms and 1.6-competitiveness of the randomized COMB
algorithm, the best randomized list update algorithm known to date. The analysis is verified
with help of the theorem prover Isabelle; some low-level proofs could be automated.
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1 Introduction

Interactive theorem provers have been applied to deep theorems in mathematics [9, 10] or
fundamental software components [20, 22] but hardly to quantitative algorithm analysis.
This paper demonstrates that nontrivial results from that area are amenable to verification
(which for us always means “interactive”) by analyzing the best known deterministic and
randomized online algorithms for the list update problem with the help of the theorem
prover Isabelle/HOL [25, 26]. Essentially, this paper formalizes the main results of the
first two chapters of the classic text by Borodin and El-Yaniv [6]: 2-competitiveness of
move-to-front (MTF), the lower bound of 2 for the competitiveness of all deterministic list
update algorithms and 1.6-competitiveness of COMB [2], the best randomized online list
update algorithm known to date. For reasons of space we are forced to refer the reader to
the online formalization [12] (15600 lines) for many of the definitions and all of the formal
proofs.

The list update problem is a simple model to study the competitive analysis of online
algorithms (where requests arrive one by one) compared to offline algorithms (where the
whole sequence of requests is known upfront). In the simplest form of the problem we are
given a list of elements that can only be searched sequentially from the front and each request
asks if some element is in that list. In addition to searching for the element the algorithm
may rearrange the list by swapping any number of adjacent elements to improve the response
time for future requests. One is usually not interested in the offline algorithm (the problem
is NP-hard [3]) but merely uses it as a benchmark to compare online algorithms against.

This paper advocates to extend verification of algorithms from functional correctness
to quantitative analysis. There are a number of examples of such verifications for classical
algorithms, but this is the first verified analysis of any online algorithm. Our verified proof
of the 1.6-competitiveness of COMB appears to be one of the most complex verified analyses
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of a randomized algorithm to date. Our paper should be read as a contribution to the
formalization of computer science foundations, here quantitative algorithm analysis.

It should be noted that although our verification is interactive, some tedious low-level
proofs could be automated (see the verification of algorithm BIT in Section 4.6).

The paper is structured as follows: Section 2 explains our notation. Sections 3 and 4
roughly follow chapters 1 and 2 of [6], with some omissions: Section 3 formalizes deterministic
list update algorithms, analyzes MTF and proves a lower bound. Section 4 formalizes
randomized list update algorithms, proves two analysis techniques (list factoring and phase
partioning), and analyzes the algorithms BIT, TS and finally COMB.

1.1 Related Work
This work grew out of an Isabelle-based framework for verified amortized analysis applied to
classical data structures like splay trees [24]. Charguéraud and Pottier [7] verified the almost-
linear amortized complexity of Union-Find in Coq. The verification of randomized algorithms
was pioneered by Hurd et al. [15, 16, 17] who verified the Miller-Rabin probabilistic primality
test and part of Rabin’s probabilistic mutual exclusion algorithm. Barthe et al. (e.g. [5])
verify probabilistic security properties of cryptographic constructions.

An orthogonal line of research is the automatic resource bound analysis of deterministic
functional or imperative programs, e.g., [13].

The list update problem is still an active area of research [23]; for a survey see [19].

2 Notation

Isabelle’s higher-order logic is a simply typed λ-calculus: function application is written f x
and g x y rather than f (x) and g(x,y); binary functions usually have type A → B → C
instead of A × B → C, and analogously for nary functions; λx. t is the function that maps
argument x to result t. The notation t :: τ means that term t has type τ .

The type of lists over a type α is α list. The empty list is [], prepending an element x in
front of a list xs is written x · xs and appending two lists is written xs @ ys. The length of
xs is |xs|. Function set converts a list into a set. The predicate distinct xs expresses that
there are no duplicates in xs. The ith element of xs (starting at 0) is xsi. By index xs x we
denote the index (starting at 0) of the first occurrence of x in xs; if x does not occur in xs
then index xs x = |xs|. If x occurs before y in xs we write x < y in xs:

x < y in xs ←→ index xs x < index xs y ∧ y ∈ set xs

The condition x ∈ set xs is implied by the right-hand-side.
Given two lists xs and ys, we call a pair (x, y) an inversion if x occurs before y in xs but

y occurs before x in ys. The set of inversions is defined like this:

Inv xs ys = {(x, y) | x < y in xs ∧ y < x in ys}

Given a list xs and two elements x and y, let xsxy denote the projection of xs on x and y,
i.e., the result of deleting from xs all elements other than x and y.

Note that the LATEX presentations of definitions and theorems in this paper are generated
by Isabelle from the actual definitions and theorems. To increase readability we employed
Isabelle’s pretty-printing facilities to emulate the notation in [6]. This has to be taken into
account when comparing formulas in the paper with the actual Isabelle text [12].
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2.1 Probability Mass Functions
Type α pmf of probability mass functions [14, §4] represent distributions of discrete random
variables on a type α. Function setpmf D denotes the support set of the distribution D and
pmf D e denotes the probability of element e in the distribution D.

I Example 1. Our background theory defines the Bernoulli distribution bernoullipmf, a pmf
on the type bool which satisfies (amongst others) the following properties:

setpmf (bernoullipmf p) ⊆ {True, False}
pmf (bernoullipmf (1/2)) x = 1/2
0 ≤ p ∧ p ≤ 1 =⇒ pmf (bernoullipmf p) True = p

Furthermore the monadic operators bindpmf :: α pmf → (α → β pmf ) → β pmf and
returnpmf :: α → α pmf, as well as the operator mappmf :: (α → β) → α pmf → β pmf
are defined. With the help of these functions more complex pmf s can be synthesized from
simpler ones. To demonstrate how to work with pmf, we define bv n the uniform distribution
over bit vectors of length n recursively.

I Example 2. This is an example of probabilistic functional programming [8] with the help
of Haskell’s do-notation (which is just syntax for the bind operator).

bv 0 = returnpmf []
bv (n + 1) = do {
x ← bernoullipmf (1/2);
xs ← bv n;
returnpmf (x · xs)
}

The base case bv 0 is defined as the distribution that assigns probability 1 to the empty
list. In the step case, we draw x from the Bernoulli distribution and a sample xs from the
distribution bv n and return x · xs.

We further define the simple function flip i b that flips the ith bit of the bit vector b.
When we apply flip i to every element of the probability distribution bv n we obtain again
the same probability distribution: mappmf (flip i) (bv n) = bv n.

3 List Update: Deterministic Algorithms

3.1 Online and Offline Algorithms
We need to define formally what online and offline algorithms are. Our formalization is
similar to request-answer systems [6] but we clarify the role of the initial state and replace a
history-based formalization with an equivalent state-based one. Everything is parameterized
by a type of requests R, a type of answers A, a type of states S, a type of internal states I,
and by the following three functions: step :: S → R → A → S, t :: S → R → A → IN and
wf :: S → R list → bool. Answers describe how the system state changes in reaction to a
request: step s r a is the new state after r has been answered by a and t s r a is the time
or cost of that step. The predicate wf defines the well-formed request sequences depending
on the initial state. An offline algorithm is a function of type S → R list → A list that
computes a list of answers from a start state and a list of requests. An online algorithm is a
pair (ι, δ) of an initialization function ι :: S → I that yields the initial internal state, and a
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transition function δ :: S × I → R → A × I that yields the answer and the new internal
state. In the sequel assume A = (ι, δ).

Note that we separate the problem specific states S and step function step from the
algorithm specific internal states I and transition function δ to obtain a modular framework.
Elements of type S × I are called configurations.

In this context we define the following functions:
Step A (s, i) r = (let (a, i ′) = δ (s, i) r in (step s r a, i ′))
transforms one configuration into the next by composing δ and step.
T s rs as is the time it takes to process a request list rs and corresponding answer list as
(of the same length) starting from state s via a sequence of steps.
OPT [s;rs] = Inf {T s rs as | |as| = |rs|} where Inf is the infimum, is the time of the
optimal offline algorithm servicing rs starting from state s. Note that the infimum is
taken over the times of all answer lists with appropriate length.
A[s;rs] is the time an online algorithm A takes to process a request list rs via a sequence
of Steps starting from configuration (s, ι s).
Algorithm A is deemed c-competitive if its cost is at most c times OPT. Formally:
compet A c S ←→ (∀ s∈S . ∃ b≥0. ∀ rs. wf s rs −→ A[s;rs] ≤ c ∗ OPT [s;rs] + b)
It expresses that the online algorithm A is c-competitive on the set of initial states S and
well-formed request sequences.

3.2 On/Offline Algorithms for List Update
The list update problem consists of maintaining an unsorted list of elements while the cost of
servicing a sequence of requests has to be minimized. Each request asks to search an element
sequentially from the front of the list. A penalty equal to the position of the requested
element has to be paid. In order to minimize the cost of future requests the requested element
can be moved further to the front of the list by a free exchange. Any other swap of two
consecutive elements in the list costs one unit and is called a paid exchange.

We instantiate our generic model as follows. Given a type of elements α, states are
of type α list, requests of type α, and answers are of type IN × IN list. An answer (n,
[n1,. . . ,nk]) means that the requested element is moved n positions to the front at no cost
(free exchange) after swapping the elements at index ni and ni + 1 (i = k,. . . ,1) at the cost
of 1 per exchange (paid exchanges). Based on two functions mtf 2 :: IN → α → α list → α list
and swaps :: IN list → α list → α list we define step s r (k, ks) = mtf 2 k r (swaps ks s) and
t s r (k, ks) = index (swaps ks s) r + 1 + |ks|. There is no need for paid exchanges after
the move to front because they can be performed at the beginning of the next step. Corner
cases: mtf 2 k x xs does nothing if x /∈ set xs and moves x to the front if x ∈ set xs and
index xs x < k; swaps [n1,. . . ,nk] xs ignores indices ni such that |xs| ≤ ni + 1. We focus on
the static list model by instantiating the well-formedness predicate wf by the predicate static
defined by static s rs ←→ set rs ⊆ set s.

Sleator and Tarjan [30], who introduced the list update problem, claimed (their Theorem 3)
that offline algorithms do not need paid exchanges. Later Reingold and Westbrook [28]
refuted this and proved the opposite: offline algorithms need only paid exchanges. This may
also be considered as an argument in favour of verification.

3.3 Move to Front
The archetypal online algorithm is move to front (MTF): when an element is requested, it is
moved to the front of the list, without any paid exchanges. MTF needs no internal state
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and thus we identify I with the unit type that contains only the dummy element (). The
pair MTF = (λ_. (), λ(s, i) r . ((|s| − 1, []), ())) is an online algorithm in the sense of our
above model.

Now we verify Sleator and Tarjan’s result [30] that MTF is at most 2-competitive, i.e., at
most twice as slow as any offline algorithm. We are given an initial state s of distinct elements,
a request sequence rs and an answer sequence as computed by some offline algorithm such
that |as| = |rs|. The state of MTF after servicing the requests rs0, . . . , rsn − 1 is denoted
by smtf n, the cost of executing step n is denoted by tmtf n. The state after answering the
requests rs0, . . . , rsn − 1 with the answers as0, . . . , asn − 1 is denoted by soff n, the cost
toff n of executing asn is broken up as follows: coff n is the cost of finding the requested
element rsn and poff n (foff n) is the number of the paid (free) exchanges. Following [30]
we define the potential as the number of inversions that separates MTF from the offline
algorithm (Φ n = |Inv (soff n) (smtf n)|) and prove the key lemma

I Lemma 3. tmtf n + Φ (n + 1) − Φ n ≤ 2 ∗ coff n − 1 + poff n − foff n

Its proof is a little bit tricky and requires a number of lemmas about inversions that formalize
what is often given as a pictorial argument. By telescoping and defining Tmtf n = (

∑
i<n

tmtf i) we obtain Sleator and Tarjan’s Theorem 1:

I Theorem 4. Tmtf n ≤ (
∑

i<n 2 ∗ coff i + poff i − foff i) − n[[6, Theorem 1.1]]

It follows that Tmtf n ≤ (2 − 1/|s|) ∗ Toff n, where Toff n = (
∑

i<n toff i), provided s 6= []
and ∀ i<n. rsi ∈ set s. By definition of OPT we obtain the following corollary [6]:

I Corollary 5. s 6= [] ∧ distinct s ∧ set rs ⊆ set s =⇒ MTF [s;rs] ≤ (2 − 1/|s|) ∗ OPT [s;rs]

Because compet is defined relative to wf and we have instantiated wf with the static list
model (which implies set rs ⊆ set s), we obtain the following compact corollary:

I Corollary 6. compet MTF 2 {s | distinct s}

The assumption s 6= [] has disappeared because we no longer divide by |s|.

3.4 A Lower Bound
The following lower bound for the competitiveness of any online algorithm is due to Karp
and Raghavan [18]:

I Theorem 7. compet A c {xs | |xs| = l} ∧ l 6= 0 ∧ 0 ≤ c =⇒ 2 ∗ l/(l + 1) ≤ c

The corresponding Theorem 1.2 in [6] is incorrect because it asserts that every online
algorithm is c-competitive for some constant c, but this is not necessarily the case if the
algorithm uses paid exchanges. In the proof it is implicitly assumed there are no paid
exchanges when claiming “The total cost incurred by the online algorithm is clearly l ∗ n”.

Our proof roughly follows the original sketch [18, p. 302]. Let A = (ι, δ) be an online
algorithm. We define a cruel request sequence that always requests the last element in the
state of A, given a start configuration and length:

cruel A c 0 = []
cruel A (s, i) (n + 1) = last s · cruel A (Step A (s, i) (last s)) n
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We also define a cruel offline adversary for A that first sorts the state in decreasing order
of access frequency in the cruel sequence and does nothing afterwards:

adv A s rs =
(if rs = [] then []
else let crs = cruel A (Step A (s, ι s) (last s)) (|rs| − 1)

in (0, sort_sws (λx. |rs| − 1 − count_list crs x) s) ·
replicate (|rs| − 1) (0, []))

For the first step sort_sws computes the necessary paid exchanges according to the frequency
count computed by count_list from the cruel sequence crs; the remaining steps are do-nothing
answers (0, []).

For the analysis let A[s;n] (resp. C [s;n]) be the time A (resp. the adversary adv A)
requires to answer the cruel request sequence of length n + 1 starting in state s. Assume
l 6= 0. First we prove C [s;n] ≤ a + (l+1)∗n div 2 where a = l2 + l + 1. The cost of
the first step of the cruel adversary (searching and sorting) is at most a, and the cost of
searching for n requested items is at most (l + 1) ∗ n div 2. We obtain the latter bound
by writing the cost as a sum of terms i ∗ f i where f i is the number of requests of the ith
item in the sorted list, i = 0,. . . ,l−1. Because the f i decrease with increasing i, the result
follows by Tchebychef’s inequality [11, 2.17] that the mean of the product is at most the
product of the means. The cost A[s;n] is (n + 1) ∗ l if there are no paid exchanges and thus
(n+1)∗l ≤ A[s;n]. Combining this with the upper bound for C [s;n] we obtain 2∗l/(l+1) ≤
A[s;n]/(C [s;n]−a) for all large enough n. From c-competitiveness of A we obtain a constant
b such that (A[s;n]−b)/C [s;n] ≤ c. The additive constants are typically (and incorrectly)
ignored, in which case 2∗l/(l+1) ≤ c is immediate; otherwise it takes a bit of limit reasoning.

4 List Update: Randomized Algorithms

4.1 Randomized Online Algorithms
Now we generalize our model of online algorithms of §3.1 to randomized online algorithms.
We view a randomized algorithm not as a distribution of deterministic algorithms, but an
algorithm working on a distribution of configurations. The monad described in §2.1 suggests
this view and enables us to formulate randomized algorithms concisely. Furthermore we
expect that proofs can be mechanized more easily that way.

The initialization function now not only yields one initial internal state but a distribution
over the type of internal states: S → I pmf. Similarly the transition function of randomized
online algorithms has the type (S × I) pmf → R → (A × I) pmf. We now generalize a
number of functions from the deterministic to the randomized setting. We overload the
names because the deterministic versions are special cases of the randomized ones. Whether
A = (ι, δ) is a randomized or deterministic online algorithm will be clear from the context.

A compound Step on configurations consists of two steps: first the online algorithm will
produce a distribution of answer and new internal states, then the problem (step) will
process the answer and yield a new configuration distribution:
Step A r (s, i) = do {

(a, is ′) ← δ (s, i) r ;
returnpmf (step s r a, is ′)
}
config A s rs formalizes the execution of A by denoting the distribution of configurations
after servicing the request sequence rs starting in state s.
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A[s;rs] denotes the expected time A takes to process a request list rs via a sequence of
Steps starting from the distribution of configurations obtained by combining s with ι s.
compet A c S ←→ (∀ s∈S . ∃ b≥0. ∀ rs. wf s rs −→ A[s;rs] ≤ c ∗ OPT [s;rs] + b) expresses
that A is c-competitive against an oblivious adversary on the set of initial states S.

Function embed (ι, δ) = (λs. returnpmf (ι s), λs r . returnpmf (δ s r)) turns a deterministic into
a randomized algorithm. It preserves the above notions. For example, for any deterministic
algorithm A it holds that compet A c S0 ←→ compet (embed A) c S0.

4.2 BIT
In this section we study a simple randomized algorithm for the list update problem called BIT
due to Reingold and Westbrook [28]. BIT breaks the 2-competitive barrier for deterministic
online algorithms (Theorem 7): we will prove that BIT is 1.75-competitive.

BIT keeps for every element x in the list a bit b(x). The b(x) are initialized randomly,
independently and uniformly. When some x is requested, its bit b(x) is complemented; then,
if b(x), x is moved to the front. Formally, the internal state is a pair (b, s0) :: bool list ×
α list where s0 is the initial list and |b| = |s0|. The informal b(x) becomes bindex s0 x.

I Definition 8 (BIT). BIT = (ιBIT, δBIT) where ιBIT s0 = mappmf (λb. (b, s0)) (bv |s0|)
δBIT (s, b, s0) x = returnpmf ((if bindex s0 x then 0 else |s|, []), flip (index s0 x) b, s0)

Function ιBIT generates a random bit vector (for bv see §2.1) of length |s0| and pairs it
with s0. Function δBIT is given a configuration (s, b, s0) and a request x, flips x’s bit in b,
and if it was set, the answer is move-to-front, otherwise it is do-nothing. BIT is a barely
random algorithm: only the initialization function is randomized, the transition function is
deterministic.

I Theorem 9 ([6, Theorem 2.1]). compet BIT (7/4) {init | init 6= [] ∧ distinct init}

The proof of this theorem is similar to the proof that MTF is 2-competitive: the potential
function involves weighted inversions. Therefore we do not discuss the details (see [12]). We
now introduce an alternative to the potential function method, which allows us to analyze
BIT again and move on to more advanced algorithms.

4.3 List Factoring
The list factoring method enables us to reduce competitive analysis of list update algorithms
to lists of size two. The main idea is to modify the cost measure. The cost of accessing some
element will be the number of elements that precede it. We attribute a “blocking cost” of
1 to every element that precedes the requested element. For the requested element and all
following the blocking cost is 0. In summary, the cost of accessing the ith item is no longer i
+ 1 but i. This is called the partial cost model, in contrast to the full cost model. Costs
in the partial cost model are marked with an asterisk; for example, t∗ s r a = t s r a − 1.
Upper bounds on the competitive ratio in the partial cost model are also upper bounds on
the competitive ratio in the full cost model [6, Lemma 1.3].

Let A∗[s;rs](x;i) denote the expected blocking cost of element x in the ith step of the
execution of algorithm A on the request sequence rs starting from state s. The notations∑

x∈Mx. mx and
∑

x | Px. mx denote summations over a set or restricted by a predicate.
We will need a set of all pairs (x, y) ∈ M × M of distinct elements where only one of the
two pairs (x, y) and (y, x) is included. For simplicity we assume M is linearly ordered and
define Diff 2 M = {(x, y) | x ∈ M ∧ y ∈ M ∧ x < y}.
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Now consider the cost incurred by an online algorithm without paid exchanges:

A∗[s;rs] =
∑

i<|rs|

∑
x∈set s. A∗[s;rs](x;i)

=
∑

x∈set s.
∑

i<|rs| A
∗[s;rs](x;i)

=
∑

x∈set s.
∑

y∈set s.
∑

i | i < |rs| ∧ rsi = y. A∗[s;rs](x;i)
=

∑
(x, y)∈{(x, y) | x ∈ set s ∧ y ∈ set s ∧ x 6= y}.∑
i | i < |rs| ∧ rsi = y. A∗[s;rs](x;i)

=
∑

(x, y)∈Diff 2 (set s).∑
i | i < |rs| ∧ (rsi = y ∨ rsi = x).

A∗[s;rs](y;i) + A∗[s;rs](x;i)

The inner summation of the last expression is abbreviated by A∗xy[s;rs] and interpreted as the
expected cost generated by x blocking y or vice versa. We can condense the above derivation:

I Lemma 10 ([6, Equation (1.4)]). A∗[s;rs] = (
∑

(x, y)∈Diff 2 (set s). A∗xy[s;rs])

As the value of any summand on the right hand side only depends on the relative order of x
and y during the execution and the relative order may only change when x or y are requested
(as we disallowed paid exchanges for now) one might think that this is exactly the same as
the cost incurred by the algorithm when run on the projected request list rsxy starting from
the projected initial state sxy. While this is not the case in general, this equality yields a
good characterization of a subset of all list update algorithms and is thus referred to as the
pairwise property. Most of the list update algorithms studied in the literature share this
property, including MTF, BIT, TS and COMB (see Table 1 in [19] where “projective” means
“pairwise”).

I Definition 11 (pairwise property). Algorithm A satisfies the pairwise property if
distinct s ∧ set rs ⊆ set s ∧ (x, y) ∈ Diff 2 (set s) =⇒ A∗[sxy;rsxy] = A∗xy[s;rs]

With a similar development as for Lemma 10 we can split the costs of OPT∗ into the
costs that are incurred by each pair of elements: first the costs incurred by blocking each
other and second the number of paid exchanges that change the elements’ relative order:

I Theorem 12 ([6, Equation (1.8)]).
OPT∗[s;rs] = (

∑
(x, y)∈Diff 2 (set s). OPT∗xy[s;rs] + OPT∗P ;xy[s;rs])

If we consider the summand for a specific pair (x,y), we see that it gives rise to an (not
necessarily optimal) algorithm servicing the projected request sequence rsxy. Thus this
term is an upper bound for the optimal cost for servicing rsxy. This fact is established by
constructing this projected algorithm and showing that its cost is equal to the right-hand
side of the inequality:

I Lemma 13 ([6, Equation (1.7)]). OPT∗[sxy;rsxy] ≤ OPT∗xy[s;rs] + OPT∗P ;xy[s;rs]

Now we are in the position to describe the list factoring technique:

I Theorem 14 ([6, Lemma 1.2]). Let A be an algorithm that does not use paid exchanges,
satisfies the pairwise property and is c-competitive for lists of length 2. Then A is c-competitive
for arbitrary lists.
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Proof. A∗[s;rs] Lemma 10=
∑

(x, y)∈Diff 2 (set s). A∗xy[s;rs]
pairwise=

∑
(x, y)∈Diff 2 (set s). A∗[sxy;rsxy]

c-compet.
≤

∑
(x, y)∈Diff 2 (set s). c ∗ OPT∗[sxy;rsxy] + b

Lemma 13
≤ c ∗

(
∑

(x, y)∈Diff 2 (set s). OPT∗xy[s;rs] + OPT∗P ;xy[s;rs]) +
b ∗ (|s| ∗ (|s| − 1))/2

Lemma 12= c ∗ OPT∗[s;rs] + b ∗ (|s| ∗ (|s| − 1))/2 J

For showing that algorithm A has the pairwise property it suffices to show that the
probability that x precedes y during the service of the projected request sequence is equal to
the probability when servicing the original request sequence.

I Lemma 15 ([6, ⇒ of Lemma 1.1]). For an online algorithm A without paid exchanges,
let sxy

A;rsxy and sA;rs denote the configuration distribution after servicing the projected
respectively full request list rs starting from s. Then
mappmf (λ(s,is). x < y in s) sxy

A;rsxy = mappmf (λ(s,is). x < y in s) sA;rs =⇒ pairwise A

4.4 OPT 2: an Optimal Algorithm for Lists of Length 2
We formalize OPT2, an optimal offline algorithm for lists of length 2 due to Reingold and
Westbrook [29], verify its optimality, and determine the cost of OPT2 on different specific
request sequences. The informal definition of OPT2 is as follows [29]:

I Definition 16 (OPT2 informally). After each request, move the requested item to the front
via free swaps if the next request is also to that item. Otherwise do nothing.

Observe that this algorithm only needs knowledge of the current and next request. Thus it
is almost an online algorithm, except that it needs a lookahead of 1.

Function OPT2 rs [x, y] that takes a request sequence rs and a state [x, y] and returns
an answer sequence is defined easily by recursion on rs.

I Theorem 17 (Optimality of OPT2).
set rs ⊆ {x, y} ∧ x 6= y =⇒ T∗ [x, y] rs (OPT2 rs [x, y]) = OPT∗[[x, y];rs]

The proof is by induction on rs followed by a “simple case analysis” [29] the formalization of
which is quite lengthy.

In an execution of OPT2, after two consecutive requests to the same element that element
will be at the front. This enables us to partition the request sequence into phases and restart
OPT2 after each phase:

I Lemma 18. If x 6= y ∧ s ∈ {[x, y], [y, x]} ∧ set us ⊆ {x, y} ∧ set vs ⊆ {x, y} then
OPT2 (us @ [x, x] @ vs) s = OPT2 (us @ [x, x]) s @ OPT2 vs [x, y].

Thus we can partition a request sequence into phases ending with two consecutive requests
to the same element and we know the state of OPT2 at the end of each phase. Such a phase
can have one of four forms, for any of these we have “calculated” the cost of OPT2 (see
Table 1). This involves inductive proofs in the case of the Kleene star.

In the following two subsections the phase partitioning technique is described in more
detail and is then used to prove that BIT is 7/4-competitive.
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4.5 Phase Partitioning
In the following we will partition all request sequences into complete phases that end with
two consecutive requests to the same element and possibly a trailing incomplete phase. The
set of all request sequences can be described by (x+y)∗, the complete phases by ϕxy =
(x?(yx)∗yy+y?(xy)∗xx) and the incomplete phases (that do not contain two consecutive
occurrences of the same element) by ϕxy = (x?(yx)∗y+y?(xy)∗x). The regular expression
r? is short for r + ε. In order to prove identities like L (ϕxy

∗ϕxy
?) = L ((x+y)∗) we use a

regular expression equivalence checker available in Isabelle/HOL [21], which we extend to
regular expressions with variables. This prevents us from overlooking corner cases, such as
the missing D case in Table 1 (see the end of 4.6).

We now want to compare costs of an online algorithm A and OPT2 on a complete phase
rs and lift results to arbitrary request sequences σ containing two different elements. This
lifting requires us to show (by an invariant proof), that at the end of each complete phase A
and OPT2 are in sync again.

Recall that OPT2 will have element rs|rs| − 1 in front of the state after servicing rs. Let
SA be a configuration distribution of A, then SA;rs denotes the configuration distribution
after the service of rs by A starting from SA and A∗[SA;rs] denotes its cost. Let invA SA x
s be a predicate on a configuration distribution of A, a request and a state. Suppose for any
SA, x and s that (i) invA SA x s =⇒ A∗[SA;rs] ≤ c ∗ T∗ [x, y] rs (OPT2 rs [x, y]) and (ii)
invA SA x s =⇒ invA SA;rs (rs|rs| − 1) s. Then we can conclude A∗[SA;σ] ≤ c ∗ T∗ [x, y]
σ (OPT2 σ [x, y]) + c if the predicate invA SA x [x, y] holds initially.

This fact follows by well-founded induction on the length of σ. If we additionally verify
that the invariant invA SA x [x, y] holds for SA being the configuration distribution after
initializing algorithm A from state [x, y] we can finally conclude A∗[[x,y], σ] ≤ c ∗ T∗ [x, y]
σ (OPT2 σ [x, y]) + c = c ∗ OPT∗[[x, y];σ] + c.

Note that invA SA x s must imply that all states in the configuration distribution SA

have x in front. If this is not the case and the state [y, x] has nonzero probability, for the
complete phase rs = [x, x], A has nonzero costs whereas OPT2 pays nothing. This makes
showing property (i) impossible. Consequently not all pairwise algorithms can be analyzed
with this technique (e.g. RMTF [6]).

To further facilitate the analysis, all complete phases can be classified into four forms,
described by the regular expressions found in the first column of Table 1. Together with
the list factoring technique, the proof of an algorithm being c-competitive is reduced to
determining the costs on request sequences of these forms. This kind of analysis is conducted
in the next section for BIT.

4.6 Analysis of BIT
We now show that BIT is 7/4-competitive using both the list factoring method and the phase
partitioning technique.

With the help of Lemma 15 we proved that BIT has the pairwise property. The result can
be established by induction on the original request sequence and a case distinction whether
the requested element is one of x and y or not, the rest is laborious bookkeeping. We refer
the reader to [12] for the details.

I Lemma 19. pairwise BIT

Let us turn to showing that BIT is 7/4-competitive on lists of length 2. To that end
we analyze BIT on the different forms of complete phases as explained above. At the end
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Table 1 Costs of BIT, OPT2 and TS for request sequence of the four phase forms; x is the first
element in the state; k is the number of iterations of the Kleene star expression.

σ BIT OPT2 TS

A x?yy 1.5 1 2
B x?yx(yx)∗yy 1.5 ∗ (k + 1) + 1 (k + 1) + 1 2 ∗ (k + 1)
C x?yx(yx)∗x 1.5 ∗ (k + 1) + 0.25 (k + 1) 2 ∗ (k + 1)− 1
D xx 0 0 0

of each complete phase, BIT will have the last request in front of the state (because the
element was requested twice and one of the two requests moved it). BIT and OPT2 thus are
synchronized before and after each phase. BIT’s invariant invBIT S x s (in the sense of the
previous subsection) is defined as saying that in every configuration in the distribution S,
element x is in front of the state and the second component of the internal state is s.

Table 1 shows the costs of BIT for the four respective forms. We now verify both
the preservation of invBIT and the cost incurred by BIT for a phase rs of form B, i.e.,
rs ∈ L (x?yx(yx)∗yy).

We start with the configuration distribution S satisfying invBIT S x s (see above). First
we observe that serving an optional request x does not alter the configuration distribution
nor add any cost. Now serving the request y moves y to the front for two out of four
configurations and in every case adds cost 1. In one of the former two configurations the next
request to element x brings x to the front again. Consequently the state after serving yx is
[y, x] iff y’s bit is set and x’s bit is not set. This distribution of configurations is preserved
by any number of further requests yx. Serving the first request to yx costs 1 + 1/2 as well as
any further request to yx has cost 3/4 + 3/4. Let σ be the part of rs with the Kleene star,
by induction on the Kleene star in σ the cost for serving σ is 3/4 ∗ |σ|. The trailing request
to yy then costs 3/4 + 1/4 and y is moved to the front in all configurations. Thus finally the
invariant invBIT S ′ y s is satisfied, where S ′ is the configuration distribution after serving rs.
Note that here the order of y and x have changed. In the analysis of the next phase, x and y
take the swapped positions. But as they are interchangeable in all the theorems this does no
harm.

Determining the costs in Table 1 is usually presented in the style of the last paragraph
([6, §2.4] and [2, Lemma 3]). While these calculations are tedious for humans, the proof
assistant is able to carry them out almost automatically: with the help of some lemmas about
how BIT transforms the configuration distribution on single requests, the costs of complete
phases can be calculated and proved mechanically.

Note that in contrast to Table 1.1 in [6, §1.6.1] we define the phase forms differently.
They allow more than one initial x in forms A, B and C, we only allow zero or one. Our
forms precisely capture the idea of splitting the request sequence into phases that end with
two consecutive requests to the same element. Moreover, form D is missing from their table.

The results for the other phase forms follows in a similar way and finally we prove BIT∗[[x,
y];σ] ≤ 7/4 ∗ OPT∗[[x, y];σ] + 7/4. Together with the pairwise property of BIT and the list
factoring method we can lift the result to lists of arbitrary length and obtain another proof
of Theorem 9.

Actually the ratio between costs of BIT and OPT2 tends to 3/2 for long phases, only
the poor performance of short phases of form C leads to the competitive ratio of 7/4. This
observation does not follow from the combinatorial proof of Section 4.2.
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4.7 TS to the Rescue
The deterministic online algorithm TS due to Albers [1] performs well in the cases where
BIT performs badly. We now present the analysis of TS and in the following subsection will
show how the two algorithms can be combined. TS does the following:

I Definition 20 (TS informally). After each request, the accessed item x is inserted immedi-
ately in front of the first item y that precedes x in the list and was requested at most once
since the last request to x. If there is no such item y or if x is requested for the first time,
then the position of x remains unchanged.

This algorithm has an internal state of type α list, the history of requests already processed.
The transition function δTS is formalized as follows:

I Definition 21.
δTS (s, is) r =

(let V r = {x | x < r in s ∧ count_list (take (index is r) is) x ≤ 1}
in ((if index is r < |is| ∧ V r 6= ∅

then index s r − Min (index s ‘ V r) else 0,
[]),
r · is))

Note that take n xs returns the length n prefix of xs; because the history is stored in reverse
order, take (index is r) is is the part of the history since the last request to element r.

For the analysis of TS we employ the proof methods developed in the preceding subsections.
We first examine the costs of the four phase forms by simulation and induction. Then, by
the phase partitioning method, we extend the result to any request sequence. The invariant
needed for TS essentially says is = [] ∨ (∃ x s ′ hs. s = x · s ′ ∧ is = x · x · hs): either TS has
just been initialized or the last two requests were to the first element in the state. Intuitively
this invariant implies that for the next request to y, the element would not be moved to the
front of x. The last column of Table 1 shows the costs of TS for the four respective phase
forms. TS performs better than BIT for short phases of forms B and C.

To lift this result to arbitrary initial lists, it remains to show that TS satisfies the pairwise
property. With Lemma 15 and because we are in the deterministic domain it suffices to show
that the relative order of x and y is equal both in the service of the projected as well as
the original request sequence. This fact is not as obvious as for MTF or BIT; for showing
this equality at any point in time during the service of TS, we do a case distinction on the
history and look at most at the last three accesses to x and y. For most cases it is quite
easy to determine the current relative order both in the projected as well as the full request
sequence. For example, after two requests to the same element x, x must be before y in both
cases. The only tricky case is when the last requests were xxy: then a proof involving infinite
descent is used along the lines of Lemma 2 in [2].

Finally we obtain the fact pairwise TS and hence

I Theorem 22 ([6, Theorem 1.4]). compet TS 2 {s | distinct s ∧ s 6= []}

4.8 COMB
Our development finally peaks in the formalization of the 8/5-competitive online algorithm
COMB due to Albers et al. [2] that chooses with probability 4/5 between executing BIT and
TS. COMB’s internal state type is the sum type of the internal state types of BIT and TS,
function ιCOMB initializes like BIT and TS with respective probabilities and function δCOMB
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applies δBIT or δTS depending on the type of the internal state it receives. As COMB is a
combination of BIT and TS, several properties carry over directly: COMB is barely random,
does not use paid exchanges and pairwise COMB holds.

Table 1 shows that BIT outperforms TS for long phases. TS is cheaper only for short
phases of forms B and C. The combination of the two algorithms yields an improved
competitive ratio of 8/5. The result is established by analyzing the combined cost for the
different phase forms and then use the phase partitioning and list factoring method. This
does not involve any combinatorial tricks, but only combining certain lemmas about BIT
and TS.

I Theorem 23 ([6, Theorem 2.2]). compet COMB (8/5) {x | distinct x ∧ x 6= []}

It can also be shown (we did not verify this) that the probability for choosing between BIT
and TS is optimal and that COMB attains the best competitive ratio possible for pairwise
algorithms in the partial cost model [4].

5 Conclusion

This paper has demonstrated that state of the art randomized list update algorithms can
be analyzed with a theorem prover. In the process we found mistakes and omissions in the
published literature (for example, Theorem 7 and Table 1).

The field of programming languages is full of verified material (e.g., [25, 27]) which has
lead to achievements like Leroy’s verified C compiler [22]. We believe that eventually both
functional correctness and performance of critical software components will be verified. Such
verifications will require verified algorithm analyses such as presented in this paper.
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Abstract
In various areas of computer science, the problem of dealing with a set of constraints arises. If the
set of constraints is unsatisfiable, one may ask for a minimal description of the reason for this
unsatisifiability. Minimal unsatisfiable subsets (MUSes) and maximal satisfiable subsets (MSSes)
are two kinds of such minimal descriptions. The goal of this work is the enumeration of MUSes
and MSSes for a given constraint system. As such full enumeration may be intractable in general,
we focus on building an online algorithm, which produces MUSes/MSSes in an on-the-fly manner
as soon as they are discovered. The problem has been studied before even in its online version.
However, our algorithm uses a novel approach that is able to outperform the current state-of-the
art algorithms for online MUS/MSS enumeration. Moreover, the performance of our algorithm
can be adjusted using tunable parameters. We evaluate the algorithm on a set of benchmarks.
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1 Introduction

In various areas of computer science, such as constraint processing, requirements analysis,
and model checking, the following problem often arises. We are given a set of constraints
and are asked whether the set of constraints is feasible, i.e. whether all the constraints are
satisfiable together. In requirements analysis, the constraints represent the requirements on
a given system, usually described as formulae of a suitable logic, and the feasibility question
is in fact the question whether all the requirements can actually be implemented at once.
In some model checking systems, such as those using the counterexample-guided abstraction
refinement (CEGAR) workflow, an infeasible constraint system may arise as a result of the
abstraction’s overapproximation. In such cases where the set of constraints is infeasible,
we might want to explore the reasons of infeasibility. There are basically two approaches
that can be used here. One is to try to extract a single piece of information explaining the
infeasibility, such as a minimal unsatisfiable subset (MUS) or dually a maximal satisfiable
subset (MSS) of the constraints. The other option is to try to enumerate all, or at least as
many as possible, of these sets. In this work, we focus on the second approach. Enumerating
multiple MUSes is sometimes desirable: in requirements analysis, this gives better insight
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into the inconsistencies among requirements; in CEGAR-based model checking more MUSes
lead to a better refinement that can reduce the complexity of the whole procedure [1].

The enumeration of all MUSes or MSSes is generally intractable due to the potentially
exponential number of results. It thus makes sense to study algorithms that are able to
provide at least some of those within a given time limit. An even better option is to have
an algorithm that produces MUSes or MSSes in an on-the-fly manner as soon as they are
discovered. It is the goal of this paper to describe such an algorithm.

1.1 Related Work
The list of existing work that focuses on enumerating multiple MUSes is short as most
of the related work only deals with an extraction of a single MUS or even a non-minimal
unsatisfiable subset. For example all of [6, 17, 19] use information from a satisfiability solver
to obtain an unsatisfiable subset but they do not guarantee its minimality. Moreover, the
majority of the algorithms which enumerate all MUSes have been developed for specific
constraint domains, mainly for Boolean satisfiability problems.

Explicit Checking. The first algorithm for enumerating all MUSes we are aware of was
developed by Hou [10] in the field of diagnosis and is built on explicit enumeration of
every subset of the unsatisfiable constraint system. It checks every subset for satisfiability,
starting from the complete constraint set and branching in a tree-like structure. The authors
presented some pruning rules to skip irrelevant branches and avoid unnecessary work. Further
improvements to this approach were made by Han and Lee [9] and by de la Banda et. al. [7].

CAMUS. A state-of-the-art algorithm for enumerating all MUSes called CAMUS by Liffiton
and Sakallah [15] is based on the relationship between MUSes and the so-called minimal
correction sets (MCSes), which was independently pointed out by [2, 5, 13]. This relationship
states that M ⊆ C is a MUS of C if and only if it is an irreducible hitting set of MCS(C).
CAMUS works in two phases, first it computes all MCSes of the given constraint set, and
then it finds all MUSes by computing all the irreducible hitting sets of these MCSes.

A significant shortcoming of CAMUS is that the first phase can be intractable as the
number of MCSes may be exponential in the size of the instance and all MCSes must be
enumerated before any MUS can be produced. This makes CAMUS unsuitable for many
applications which require only a few MUSes but want to get them quickly. Note that
CAMUS is able to enumerate MSSes, as they are simply the complements of MCSes.

MARCO. The desire to enumerate at least some MUSes even in the generally intractable
cases led to the development of two independent but nearly identical algorithms: MARCO [12]
and eMUS [18]. Both algorithms were later joined and presented in [14] under the name of
MARCO. MARCO is able to produce individual MUSes during its execution and it does
it in a relatively steady rate. To obtain each single MUS, MARCO first finds a subset U

whose satisfiability is not known yet, checks it for satisfiability and if it is unsatisfiable, it
is “shrunk” to a MUS. In the case that U is satisfiable, it is in a dual manner expanded
into an MSS. The algorithm can be supplied with any appropriate shrink and expansion
procedures; this makes MARCO applicable to any constraint satisfaction domain in general.

CAMUS and MARCO were experimentally compared in [14] and the former has shown
to be faster in enumerating all MUSes in the tractable cases. However, in the intractable
cases, MARCO was able to provide at least some MUSes while CAMUS often provided none.
One another algorithm, the Dualize and Advance (DAA) by Bailey and Stuckey [2] was also
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evaluated in these experiments. DAA is also based on the relationship between MCSes and
MUSes and can produce both MUSes and MSSes during its execution; however, it has shown
to be substantially slower than CAMUS in the case of complete MUSes enumeration and
also slower than MARCO in the partial enumeration.

1.2 Our Contribution
In this paper, we present our own algorithm for online enumeration of MUSes and MSSes
in general constraint satisfaction domains, dubbed TOME (Tunable Online MUS/MSS
Enumeration), that is able to outperform the current state-of-the-art MARCO algorithm.
The core of TOME is based on a novel concept of local MUSes/MSSes. To find these we use
a binary-search-based approach. Similarly to MARCO, TOME is able to directly employ
arbitrary shrinking and expanding procedures. Moreover, TOME contains certain parameters
that govern in which cases the shrinking and expanding procedures are to be used. We
evaluate TOME on a variety of benchmarks that show that it indeed outperforms MARCO.

This paper builds on our previous work [3] where we focused on finding boundary elements
in partially ordered sets represented by explicit acyclic graphs. Here we focus on the specific
case of powersets represented symbolically. Another difference is that we perform online
enumeration here.

Note that there is a constraint solving approach QuickXplain [11] which uses binary
search, however it solves a different problem. It uses a linear priority ordering on constraints
and extracts a single maximal consistent subset w.r.t. this priority.

Outline of The Paper. In Section 2 we state the problem we are solving in a formal way,
defining all the necessary notions. In Section 3 we describe TOME in an incremental way,
starting with the basic schema of MUS/MSS computation and gradually explaining the
main ideas of our algorithm. Section 4 provides an experimental evaluation on a variety of
benchmarks, comparing TOME against MARCO. The paper is concluded in Section 5.

2 Preliminaries

Our goal is to deal with arbitrary constraint satisfaction systems. The input is given as
a finite set of constraints C = {c1, c2, . . . , cn} with the property that each subset of C is either
satisfiable or unsatisfiable. The definition of satisfiability may vary in different constraint
domains, we only assume that if X ⊆ C is satisfiable, then all subsets of X are also satisfiable.
The subsets of interest are defined in the following.

I Definition 1 (MSS, MUS). Let C be a finite set of constraints and let N ⊆ C. N is
a maximal satisfiable subset (MSS) of C if N is satisfiable and ∀c ∈ C \ N : N ∪ {c} is
unsatisfiable. N is a minimal unsatisfiable subset (MUS) of C if N is unsatisfiable and
∀c ∈ N : N \ {c} is satisfiable.

Note that the maximality concept used here is set maximality, not maximum cardinality as
in the MaxSAT problem. This means there can be multiple MSSes with different cardinality.
We use MUS(C) and MSS(C) to denote the set of all MUSes and MSSes of C, respectively.
The formulation of our problem is the following: Given a finite set of constraints C, enumerate
(all or at least as many as possible) members of MUS(C) and MSS(C).

To describe the ideas of TOME and illustrate its usage, we shall use Boolean satisfiability
constraints in the following. In the examples, each of the constraints ci is going to be a clause
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(a disjunction of literals). The whole set of constraints can be then seen as a Boolean formula
in conjunctive normal form.

I Example 2. We illustrate the concepts on a small example. Assume that we are given
a set C of four Boolean satisfiability constraints c1 = a, c2 = ¬a, c3 = b, and c4 = ¬a ∨ ¬b.
Clearly, the whole set is unsatisfiable as the first two constraints are negations of each other.
There are two MUSes: {c1, c2}, {c1, c3, c4} and three MSSes: {c1, c4}, {c1, c3}, {c2, c3, c4}.

The powerset of C, i.e. the set of all its subsets, forms a lattice ordered via subset inclusion
and denoted by P(C). In our algorithm we are going to deal with the so-called chains of the
powerset and deal with local MUSes and MSSes, defined as follows.

I Definition 3. Let C be a finite set of constraints. The sequence K = 〈N1, . . . Ni〉 is a chain
in P(C) if ∀j : Nj ∈ P(C) and N1 ⊂ N2 ⊂ · · · ⊂ Ni. We say that Nk is a local MUS of K if
Nk is unsatisfiable and ∀j < k : Nj is satisfiable. Similarly, we say that Nk is a local MSS
of K if Nk is satisfiable and ∀j > k : Nj is unsatisfiable.

Note that there is no local MUS if all subsets on the chain are satisfiable, and there is no
local MSS if all subsets on the chain are unsatisfiable.

3 Algorithm

In this section, we gradually present an online MUS/MSS enumeration algorithm, dubbed
TOME. Consider first a naive enumeration algorithm that would explicitly check each
subset of C for satisfiability, split the subsets of C into satisfiable and unsatisfiable subsets,
and choose the maximal and minimal subsets of the two groups, respectively. The main
disadvantage of this approach is the large number of satisfiability checks. Checking a given
subset of C for satisfiability is usually an expensive task and the naive solution makes an
exponential number of these checks which makes it unusable.

Note that the problem of MUS enumeration contains the solution to the problem of
satisfiability of all subsets of C as each unsatisfiable subset of C is a superset of some MUS.
This means that every algorithm that solves the problem of MUS enumeration has to make
several satisfiability checks during its execution. These checks are usually done employing an
external satisfiability solver. Clearly, the number of such external calls corresponds with the
efficiency of the algorithm. Therefore, we want to minimise the number of calls to the solver.

3.1 Basic Schema
Recall that the elements of P(C) are partially ordered via subset inclusion and each element is
either satisfiable or unsatisfiable. The key assumption on the constraint domain, as declared
above, is that the partial ordering of subsets is preserved by the satisfiability of these subsets.
If we thus find an unsatisfiable subset Nu of C then all supersets of Nu are also unsatisfiable;
dually, if we find a satisfiable subset Ns of C then all subsets of Ns are also satisfiable.
Moreover, none of the supersets of Nu can be a MUS and none of the subsets of Ns can be
an MSS. In the following text we refer to this property as to the monotonicity of P(C) and
to the elements of P(C) as to nodes.

The basic schema of TOME is shown as Algorithm 1. The schema consists of two
phases. In the first phase it determines the satisfiability of all nodes and extracts from
P(C) a set of MSS candidates MSScan and a set of MUS candidates MUScan ensuring that
MSS(C) ⊆ MSScan and MUS(C) ⊆ MUScan. In the second phase it reduces MSScan to
MSS(C) and MUScan to MUS(C).
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Algorithm 1: The basic schema of TOME algorithm
1 Unex ← P(C)
2 MSScan, MUScan ← ∅
3 while Unex is not empty do
4 Nodes ← some unexplored nodes
5 for each N ∈ Nodes do
6 if N is satisfiable then
7 MSScan ← MSScan ∪ {N}
8 Unex ← Unex \ Sub(N)
9 else

10 MUScan ← MUScan ∪ {N}
11 Unex ← Unex \ Sup(N)

12 extract MSSes from MSScan
13 extract MUSes from MUScan

During the execution of the first phase the algorithm maintains a classification of nodes;
each node can be either unexplored or explored and some of the explored nodes can belong
to MSScan or to MUScan. The explored nodes are those whose satisfiability the algorithm
already knows and the unexplored nodes are the remaining ones. The algorithm stores the
unexplored nodes in the set Unex which initially contains all nodes from P(C). The first phase
is iterative; the algorithm in each iteration selects some unexplored nodes Nodes, determines
their satisfiability using an external satisfiability solver, and exploits the monotonicity of
P(C) to deduce satisfiability of some other unexplored nodes. At the end of each iteration
the algorithm updates the set Unex by removing from it the nodes whose satisfiability was
decided in this iteration. Based on its satisfiability, every node from the set Nodes is added
either into MSScan or MUScan.

In the pseudocode, we use Sup(N) to denote the set of all unexplored supersets of N

including N and Sub(N) to denote the the set of all unexplored subsets of N including N .
Clearly, the schema converges as the set of unexplored nodes decreases its size in every

iteration. The schema also ensures that after the last iteration it holds that MUS(C) ⊆
MUScan and MSS(C) ⊆ MSScan. This is directly implied by the monotonicity of P(C)
as no node whose satisfiability was deduced can be an MSS and dually no node whose
unsatisfiability was deduced can be a MUS.

In the second phase TOME extracts all MUSes and MSSes from MUScan and MSScan.
Both these extractions can be done by any algorithm that extracts the highest and the
lowest elements from any partially ordered set. A trivial algorithm can just test each pair of
elements for the subset inclusion and remove the undesirable elements, which can be done in
time polynomial to the number of constraints in C and the size of the sets of candidates. We
assume that this part of our algorithm is not as expensive as the rest of it, especially when
each check for a satisfiability of a set of constraints may require solving an NP-hard problem.
We therefore omit the discussion of the second phase in the following and focus solely on the
way the set Nodes is chosen in each iteration and the way the unexplored nodes are managed.

3.2 Symbolic Representation of Nodes

TOME highly depends on an efficient management of nodes. In particular it needs to
reclassify some nodes from unexplored to explored and build chains from the unexplored
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nodes. Probably the simplest way of managing nodes would be their explicit enumeration;
however, there are exponentially many subsets of C = {c1, · · · , cn} and their explicit
enumeration is thus intractable for large instances. We thus use a symbolic representation of
nodes instead.

We exploit the well-known isomorphism between finite powersets and Boolean algebras.
That is, we encode the set of constraints C = {c1, . . . , cn} using a set of Boolean variables
X = {x1, . . . , xn}. Each subset of C (i.e. each node in our algorithm) is then represented by
a valuation of the variables of X. This allows us to represent sets of nodes using Boolean
formulae over X. We use f(Nodes) to denote the Boolean formula representing the set Nodes
in the following.

As an example, consider a set of constraints C = {c1, c2, c3} and let Nodes = {{c1},
{c1, c2}, {c1, c3}} be a set of three nodes. Using the Boolean variables representation of C,
we can encode the set Nodes using the Boolean formula f(Nodes) = x1 ∧ (¬x2 ∨ ¬x3).

The advantage of this representation is that we can efficiently perform set operations over
sets of nodes. The union of two sets of nodes NodesA, NodesB is carried out as a disjunction
and their intersection as a conjunction. To get an arbitrary node from a given set, say
Unex, we use an external SAT solver (more details in the next subsection). Note that this
means that TOME employs two external solvers: One is the constraint satisfaction solver
that decides satisfiability of the nodes, one is the SAT solver that works with our Boolean
description of the constraint set and is employed to produce unexplored nodes. To clearly
distinguish between these two we shall in the following use the phrases “constraint solver”
and “SAT solver” rigorously.

3.3 Unexplored Nodes Selection

Let us henceforth denote one specific call to the constraint solver as a check. We now clarify
which nodes TOME chooses in each of its iterations to be checked and which nodes it adds
into the sets of candidates on MUSes and MSSes. We also extend the basic schema which was
presented as Algorithm 1. We want to minimise the ratio of performed checks to the number
of nodes in P(C). Every algorithm for solving the problem of MUSes enumeration has to
perform at least as many checks as there are MUSes, so this ratio can never be zero. Also, it
is impossible to achieve the ratio with a minimal value without knowing which nodes are
satisfiable and which are not and this information is not a part of the input of our algorithm.
Instead of minimising this overall ratio, TOME tends to minimise this ratio locally in each
of its iterations.

In order to select the nodes which are checked in one specific iteration, TOME at first
constructs an unexplored chain. An unexplored chain is a chain K = 〈N1, . . . , Nk〉 that
contains only unexplored nodes and that cannot be extended by adding another unexplored
nodes to its ends, i.e. N1 has no unexplored subset and Nk has no unexplored superset. The
monotonicity of P(C) implies that either (i) all nodes of K are satisfiable, (ii) all nodes of K

are unsatisfiable, or (iii) K has a local MSS and a local MUS, i.e. there is some j such that
∀0 ≤ i ≤ j : Ni is satisfiable and ∀k ≥ l > j : Nl is unsatisfiable. This allows us to employ
binary search to find such j performing only logarithmically many checks in the length of
the chain. Let us analyse the three possible cases:
(i) all nodes of K are satisfiable, hence TOME deduces that all proper subsets of Nk are

satisfiable and none of them can be an MSS, and it marks Nk as an MSS candidate;
(ii) all nodes of K are unsatisfiable, hence TOME deduces that all proper supersets of N1

are unsatisfiable and none of them can be a MUS, and it marks N1 as a MUS candidate;
or
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Algorithm 2: The modification of the basic schema of TOME
2 . . .

3 while Unex is not empty do
4 K ← some unexplored chain // this line is added
5 Nodes← processChain(K) // this line is modified
6 for each N ∈ Nodes do
7 . . .

(iii) Nj is the local MSS of K and Nj+1 is its local MUS, hence TOME deduces that all
proper subsets of Nj are satisfiable, all proper supersets of Nj+1 are unsatisfiable, and
it marks Nj as an MSS candidate and Nj+1 as a MUS candidate.

Algorithm 2 shows the modification of the basic schema of TOME (see Algorithm 1) which
incorporates the above method for choosing nodes to be checked. At the beginning of each
iteration the algorithm finds an unexplored chain K which is subsequently processed by the
processChain method. This method finds the local MUS and local MSS of K (possibly only
one of those) using binary search and returns them.

To construct an unexplored chain, TOME first finds a pair of unexplored nodes (N1, Nk)
such that N1 ⊆ Nk and then builds a chain 〈N1, N2, . . . , Nk−1, Nk〉 by connecting these
two nodes. The intermediate nodes N2, . . . , Nk−1 are obtained by adding one by one the
constraints from Nk \N1 to the node N1. We refer to each such pair of unexplored nodes
(N1, Nk) that are the end nodes of some unexplored chain as to an unexplored couple.

In order to find an unexplored couple TOME asks for a member of Unex by employing
the SAT solver (by asking for a model of the formula f(Unex)). Besides the capability
of finding an arbitrary member of Unex, we require the following capability: For a given
member Np ∈ Unex, the SAT solver should be able to produce a minimal Nq ∈ Unex such
that Nq ⊆ Np, where minimal means that there is no other Nr with Nr ⊂ Nq. Similarly, we
require the SAT solver to be able to produce maximal such Nq. One of the SAT solvers that
satisfies our requirements is miniSAT [8] that allows the user to fix values of some variables
and to select a default polarity of variables at decision points during solving. To obtain a
minimal Nq which is a subset of Np, we set the default polarity of variables to False and fix
the truth assignment to the variables that have been assigned False in Np. Similarly for the
maximal case.

We now describe two approaches of obtaining unexplored couples, assuming that we
employ a SAT solver satisfying the above requirements.

Basic approach. The Basic approach consists of two calls to the SAT solver. The first call
asks the SAT solver for an arbitrary minimal member of Unex. If nothing is returned then
there are no more unexplored nodes. Otherwise we obtain a node Nk which is minimal in
Unex . We then ask the SAT solver for a maximal node Nl ∈ Unex such that Nl is a superset
of Nk. The pair (Nk, Nl) is then the new unexplored couple.

Pivot based approach. Supposing that the SAT solver works deterministically, a series
of calls for maximal (minimal) nodes of Unex may return nodes from some local part of
the search space that may lead to construction of unnecessarily short chains. Therefore, we
propose to first choose a pivot Np, an unexplored node which may be neither maximal nor
minimal and which should be chosen somehow randomly. As the next step this approach
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Algorithm 3: processChain(C, K = 〈N1, . . . , Nk〉)
1 find local MSS Ns and MUS Nu of K using binary search
2 if u < S(|K|) then
3 Nu ← shrink(Nu)
4 yieldMUS(Nu) // Output MUS

5 if s > |K| −G(|K|) then
6 Ns ← grow(Ns)
7 yieldMSS(Ns) // Output MSS

8 return {Nu, Ns} // Note that Nu or Ns may not exist

asks the SAT solver for a minimal node Nk such that Nk ⊆ Np and for a maximal node
Nl such that Np ⊆ Nl. The new unexplored couple is then (Nk, Nl). The randomness in
choosing the node Np is expected to ensure that we hit a part of Unex with large chains.

To get the pivot, we can set the SAT to assign a random polarity to variables at the
decision points during solving.

3.4 Online MUS/MSS Enumeration
TOME as presented until now is only able to provide MUSes and MSSes in the second phase,
after it finishes exploring all the nodes. We now describe the last piece of TOME, namely
the way of producing MUSes and MSSes during the execution of the first phase. To do so,
we need to employ two procedures: The shrink procedure is an arbitrary method that can
turn an unsatisfiable node Nu into a MUS. Dually, the grow procedure is a method that can
turn a satisfiable node Ns into MSS. A simple shrink (grow) method iteratively attempts to
remove (add) constraints from Nu (Ns), checking each new set for satisfiability and keeping
any changes that leave the set unsatisfiable (satisfiable). These simple variants serve just as
illustrations, there are known efficient implementations of both shrink and grow for specific
constraint domains; as an example see MUSer2 [4] which implements the shrink method for
Boolean constraints systems.

Recall that as a result of processing a single chain K, TOME finds either a local MUS Nu,
or a local MSS Ns, or both of them. To get a MUS (MSS) we propose to employ the shrink
(grow) method on this local MUS (MSS). However, performing shrink (grow) on each local
MUS (MSS) can be quite expensive and can significantly slow down TOME. The amount of
time needed for performing one specific shrink (grow) of Nu (Ns) correlates with the position
of Nu (Ns) on K; the closer Nu (Ns) is to the start (end) of K the bigger amount of time
needed for the shrink (grow) can be expected.

Therefore, we propose to shrink (grow) only some of the local MUSes (MSSes) based on
their position on K. Let |K| be the length of K, u the index of Nu in K, and S : N→ N be
an arbitrary user defined function. TOME shrinks Nu into a MUS if and only if u < S(|K|).
As an example, consider S(x) = x

2 ; in such case Nu is shrunk only if it is contained in the
first half of K. Similarly, let s be the index of local MSS Ns of chain K and G : N→ N. The
local MSS Ns is grown only if s > |K| −G(|K|), which for example for G(x) = x

2 means that
Ns is grown only if it is contained in the second half of K. The complexity of performing
shrinks also depends on the type of constrained system that is being processed, therefore the
concrete choice of S and G is left as a parameter of our algorithm. Algorithm 3 shows an
extended version of the method processChain which is able to produces MUSes and MSSes
during its execution based on the above mechanism.
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I. iteration
– Unex. couple 〈0000, 1111〉
– Unex. chain 〈0000, 1000, 1100, 1110, 1111〉
– Local MSS 1000 and local MUS 1100 are found and
grown/shrunk to MSS 1010 and MUS 1100
– MSScan = ∅ is updated to {1010}
– MUScan = ∅ is updated to {1100}
– f(Unex) is set to (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

II. iteration
– Unexplored couple 〈0001, 1011〉
– Unexplored chain 〈0001, 1001, 1011〉
– Local MSS 1001 is grown to the MSS 1001
– local MUS 1011 is shrunk to the MUS 1011
– MSScan ← MSScan ∪ {1001}
– MUScan ← MUScan ∪ {1011}
– f(Unex) ≡ (x2∨x4)∧ (x2∨x3)∧ (¬x1∨¬x2)∧ (¬x1∨
¬x3 ∨ ¬x4) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

III. iteration
– Unexplored couple 〈0011, 0111〉
– Unexplored chain 〈0011, 0111〉
– Local MSS 0111 is grown to the MSS 0111
– local MUS undefined

– MSScan ← MSScan ∪ {0111}
– f(Unex) ≡ (x2 ∨x4)∧ (x2 ∨x3)∧ (x1)∧ (¬x1 ∨¬x2)∧
(¬x1 ∨ ¬x3 ∨ ¬x4) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 1 An example execution of TOME.

3.5 Example Execution of TOME
The following example explains the execution of TOME on a simple set of constraints. The
example is illustrated in Fig. 1. Let C = {c1 = a, c2 = ¬a, c3 = b, c4 = ¬a ∨ ¬b}, S(x) = x

and G(x) = x.
Initially MSScan = ∅, MUScan = ∅ and all nodes are unexplored, i.e. f(Unex) = True.

Figure 1 shows the values of control variables in each iteration and also illustrates the current
states of P(C). In order to save space we encode nodes as bitvectors, for example the node
{c1, c3, c4} is written as 1011.

After the last iteration of the first phase of TOME there is no model of f(Unex) (this
means that Unex is empty), MSScan = {1010, 1001, 0111} and MUScan = {1100, 1011}.
Because functions S and G were stated in this example as S(x) = x, G(x) = x, each
candidate on MUS or MSS has been already shrunk or grown to MUS or MSS, respectively,
therefore MSS(C) = MSScan, MUS(C) = MUScan and the second phase of TOME can be
omitted.

Note that in the first iteration the node 1010 was found to be a MSS, which means that
all its supersets are unsatisfiable. One could use this fact to mark all supersets of 1010
as explored, however our algorithm does not do this because some of these subsets can be
MUSes (1011 in this example). If we were interested only in MSS enumeration we could
mark all supersets of each MSS as explored; dually in the case of only MUS enumeration.

FSTTCS 2016
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Table 1 The number of instances in which the algorithms output at least one MSS (the first
number in each cell) or MUS (the second number).

G(x)
S(x)

x 0.8x 0.6x 0.4x 0.2x 0x

B
as
ic

ap
pr
oa
ch

x 56 | 56 151 | 40 150 | 33 144 | 12 149 | 16 151 | 0
0.8x 56 | 60 149 | 44 151 | 37 144 | 16 150 | 20 152 | 0
0.6x 56 | 60 149 | 44 144 | 35 144 | 18 151 | 22 151 | 0
0.4x 54 | 60 149 | 45 140 | 36 143 | 32 150 | 30 151 | 0
0.2x 53 | 60 148 | 45 138 | 43 138 | 40 144 | 35 145 | 0
0x 0 | 60 0 | 47 0 | 46 0 | 44 0 | 37 0 | 0

P
iv
ot

ba
se
d
ap

p. x 56 | 56 151 | 40 151 | 32 151 | 14 151 | 12 144 | 0
0.8x 56 | 60 151 | 43 151 | 36 150 | 18 149 | 16 145 | 0
0.6x 56 | 60 151 | 43 151 | 35 151 | 18 152 | 16 144 | 0
0.4x 54 | 60 150 | 43 147 | 35 151 | 14 150 | 13 144 | 0
0.2x 51 | 60 146 | 45 145 | 31 148 | 12 148 | 12 143 | 0

0 0 | 61 0 | 33 0 | 22 0 | 11 0 | 9 0 | 0

MARCO 51 | 51

4 Experimental Results

We now demonstrate the performance of several variants of TOME on a variety of Boolean
CNF benchmarks. In particular, we implemented in C++ both the Basic and the Pivot
Based approach for constructing chains and we evaluated both these approaches using
several variants of the functions S and G. We also give a comparison with the MARCO
algorithm [14].

The MARCO algorithm was presented by its authors in two variants, the basic variant
and the optimised variant which is tailored for MUS enumeration. Both variants are iterative.
The basic variant finds in each iteration an unexplored node, checks its satisfiability and
based on the result the node is either shrunk into a MUS or grown into an MSS. Subsequently,
MARCO uses the monotonicity of P(C) to deduce satisfiability of other nodes in the same
way TOME does. The optimised variant differs from the basic variant in the selection of the
unexplored node; it always selects a maximal unexplored node. If the node is unsatisfiable
it is shrunk into a MUS, otherwise it is guaranteed to be an MSS. We used the optimised
variant in our experiments. The pseudocodes of both variants can be found in [14]. The key
difference between TOME and MARCO is the usage of local MUSes and MSSes which
are much easier to find and can be used to prune the powerset in the same way as global
MUSes/MSSes.

Note that both compared algorithms (MARCO and TOME) employ several external tools
during their execution, namely a SAT solver for finding the unexplored nodes, a constraint
solver to decide the satisfiability of constraint sets, and the two procedures shrink and grow
mentioned above. The list of external tools coincides for both algorithms. Therefore, we reim-
plemented MARCO in C++ to ensure that the two algorithms use the same implementations
of the shrink and grow methods and the same solvers. As both the SAT solver and constraint
solver we used the miniSAT tool [8] and we used the simple implementation of the shrink
and grow methods as described earlier. Note that there are some efficient implementations of
the shrink and grow methods for Boolean constraints, however, in general there might be no
effective implementation of these methods. That is why we used the simple implementations.

As experimental data we used a collection of 294 unsatisfiable Boolean CNF Benchmarks
that were taken from the MUS track of the 2011 SAT competition [16]. The benchmarks
range in their size from 70 to 16 million constraints and from 26 to 4.4 million variables
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Table 2 The 5% trimmed sum of outputted MSSes and MUSes (summed over all 294 instances).
The first number in each cell is the number of outputted MSSes, the second is the number of
outputted MUSes.

G(x)
S(x)

x 0.8x 0.6x 0.4x 0.2x 0x

B
as
ic

ap
pr
oa
ch

x 1744 | 339 9798 | 212 9936 | 87 6942 | 0 9726 | 2 10216 | 0
0.8x 1741 | 344 9908 | 217 9756 | 94 6787 | 2 9684 | 6 9378 | 0
0.6x 1740 | 348 9859 | 224 6969 | 40 6999 | 4 9696 | 8 9436 | 0
0.4x 1877 | 436 10013 | 252 7218 | 67 7694 | 50 10420 | 39 10114 | 0
0.2x 1757 | 635 10161 | 527 7925 | 262 8196 | 101 10853 | 66 10111 | 0

0 0 | 632 0 | 554 0 | 356 0 | 107 0 | 68 0 | 0

P
iv
ot

ba
se
d
ap

p. x 2535 | 349 8330 | 208 7775 | 71 6705 | 0 6725 | 0 5089 | 0
0.8x 2660 | 492 8336 | 255 7680 | 85 6961 | 4 6889 | 2 5061 | 0
0.6x 2771 | 567 8481 | 290 7779 | 92 7066 | 4 6830 | 2 5067 | 0
0.4x 2814 | 597 8418 | 388 7975 | 145 6814 | 0 6950 | 0 5302 | 0
0.2x 2763 | 837 8633 | 697 7220 | 41 6563 | 0 6409 | 0 4910 | 0

0 0 | 839 0 | 404 0 | 10 0 | 0 0 | 0 0 | 0

MARCO 749 | 215

and were drawn from a variety of domains and applications. All experiments were run with
a time limit of 60 seconds.

Due to the potentially exponentially many MUSes and/or MSSes in each instance, the
complete MUS and MSS enumeration is generally intractable. Moreover, even outputting
a single MUS/MSS can be intractable for larger instances as it naturally includes solving
the satisfiability problem, which is for Boolean instances NP-complete. Table 1 shows in
how many instances the variants of TOME were able to output at least one MUS or MSS.
MARCO was able to output at least one MUS and one MSS in 51 instances whereas several
variants of TOME were able to output some MSSes in about 150 instances and some MUSes
in up to 60 instances. Some of the 296 instances are just intractable for the solver which is
not able to perform even a single consistency check within the used time limit. The other
significant factor that affected the results is the complexity of the shrink method. MARCO
in every iteration either “hits” a satisfiable node and directly outputs it as an MSS or waits
till the shrink method shrinks the unsatisfiable node into a MUS. Therefore, each call of the
shrink method can suspend the execution for a nontrivial time.

One can see that TOME also suffers from the possibly very expensive shrink calls and
performs very poorly when the S function is set to S(x) = x. On the other hand, the variants
that perform only the “easier” shrinks by setting S to be S(x) < x achieved better results.
The grow method is generally cheaper to perform than the shrink method as checking whether
an addition of a constraint to a satisfiable set of constraints makes this set unsatisfiable is
usually cheaper than the dual task. No significant difference between the Basic and the Pivot
based approach was captured in this comparison.

Another comparison can be found in Table 2 that shows the 5% trimmed sums of outputted
MSSes and MUSes (summed over all of the 294 instances), i.e. 5% of the instances with the
least outputted MSSes (MSSes) and 5% of the instances with the most outputted MSSes
(MSSes) were discarded. The trimmed sum is based on a trimmed median which is useful
estimator in statistics because it discards the most extreme observations.

All variants of TOME were noticeably better in MSS enumeration than MARCO. In
the case of MUS enumeration MARCO outperformed these variants of TOME that shrink
only some of the local MUSes, i.e. variants where S(x) = 0.6x and S(x) = 0.4x. However,
the variants with S(x) = x and S(x) = 0.8x performed better, especially the variant with
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Table 3 The results of the experiments with a time limit of 1800 seconds.

MSS enumeration MUS enumeration
at least one MSS 5% trimmed sum at least one MUS 5% trimmed sum

MARCO 112 50855 112 7337
BA S(x) = 0.2x, G(x) = 0.2x 167 80921 52 159
BA S(x) = x, G(x) = 0.2x 106 61010 114 19059
PBA S(x) = 0.8x, G(x) = 0.2x 170 118151 76 14565
PBA S(x) = x, G(x) = 0.2x 104 61537 112 19030

G(x) = 0.2x, S(x) = x outputted about three times more MUSes than MARCO. As the
Pivot based approach is randomised its performance may vary if it is run repeatedly on the
same instances; the result of a single run may be misleading. Therefore, we ran all tests of
the Pivot based approach repeatedly and the tables show the average values.

The time limit of 60 seconds is quite short and the results of such experiments may be
misleading. Therefore, we also evaluated MARCO and both the Basic approach (BA) and
the Pivot based approach (PBA) on the same set of benchmarks with a time limit of 1800
seconds. The results of these experiments are shown in Table 3. We used two different
settings for BA and two different settings for PBA which were chosen based on the results of
the experiments with the time limit of 60 seconds. MARCO was able to output at least one
MSS in 112 instances whereas PBA with S(x) = 0.8x and G(x) = 0.2x was able to output at
least one MSS in 170 instances. Also, the 5% trimmed sum of outputted MSSes by PBA is
more than 2 times higher the 5% trimmed sum of outputted MSSes by MARCO.

In the case of MUS enumeration the number of instances in which MARCO was able to
output at least one MUS is almost the same as the number achieved by BA and PBA with
S(x) = x, G(x) = 0.2x. However, the 5% trimmed sum of outputted MUSes by MARCO is
significantly lower. We believe that this is caused by the relative complexity of performing
shrinks. TOME performs easier shrinks because it shrinks local MUSes which are usually
“closer” to (global) MUSes whereas MARCO shrinks random nodes. Therefore, MARCO
may be able to perform some shrinks within the given time limit but it is able to perform
significantly fewer shrinks than TOME.

5 Conclusion

In this paper, we have presented a novel algorithm for online enumeration of MUSes and
MSSes, dubbed TOME, which is applicable to any type of constraint system. The core of
the algorithm is based on a novel approach utilising the so-called local MUSes/MSSes found
using binary search. This approach allows the algorithm to efficiently explore the space of
all subsets of a given set of constraints. We have made an experimental comparison with
MARCO, the state-of-the-art algorithm for online MUS and MSS enumeration. The results
show that TOME outperforms MARCO. TOME can be built on top of any consistency solver
and can employ any implementation of the shrink and grow methods, therefore any future
advance in this areas can be reflected in the performance of TOME.

One direction of future research is to aim at parallel processing of the search space in
order to improve the performance of our approach; there are usually many disjoint unexplored
chains that can be processed concurrently. Another possible direction is to focus on some
specific types of constraint systems and customise TOME to be more efficient for these
systems.
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