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Preface

The 36th TARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2016), organized annually by the Indian Association for Research
in Computing Science (IARCS), was held at the Chennai Mathematical Institute, Chennai,
from December 13 to December 15, 2016.

The program consisted of 6 invited talks and 44 contributed papers. This proceedings
volume contains the contributed papers and abstracts of invited talks presented at the
conference. The proceedings of FSTTCS 2016 is published as a volume in the LIPIcs series
under a Creative Commons license, with free online access to all, and with authors retaining
rights over their contributions.

The 44 contributed papers were selected from a total of 112 submissions. We thank the
program committee for its efforts in carefully evaluating and making these selections. We
thank all those who submitted their papers to FSTTCS 2016. We also thank the external
reviewers for sending their informative and timely reviews.

We are particularly grateful to the invited speakers: Tevfik Bultan (University of Califor-
nia, Santa Barbara), Fedor V. Fomin (University of Bergen), Holger Hermanns (Saarland
University), Aleksander Madry (Massachusetts Institute of Technology), Mooly Sagiv (Tel
Aviv University), and Mikkel Thorup (University of Copenhagen) who readily accepted our
invitation to speak at the conference.

There was one pre-conference workshop, Rangoli of Algorithms (RoA) and one post-
conference workshop, Algorithmic Verification of Real-Time Systems (AVeRTS). We thank
Fedor V. Fomin (University of Bergen), Krishna S. (IIT Bombay), Saket Saurabh (IMSc &
University of Bergen), Roohani Sharma (IMSc), Ashutosh Trivedi (University of Colorado,
Boulder), and Meirav Zehavi (University of Bergen), for organizing these workshops.

On the administrative side, we thank the entire Computer Science Group, Chennai
Mathematical Institute (CMI), who put in many months of effort in ensuring excellent
conference and workshop arrangements at the Chennai Mathematical Institute.

We would also like to thank G. Ramalingam, Madhavan Mukund, S.P. Suresh, Supratik
Chakraborty and Venkatesh Raman for promptly responding to our numerous questions and
requests relating to the organization of the conference.

We also thank the Easychair team whose software has made it very convenient to do many
conference related tasks. Finally, we thank the Dagstuhl LIPIcs staff for their coordination
in the production of this proceedings, particularly Marc Herbstritt who was very prompt
and helpful in answering our questions.

Akash Lal, S. Akshay, Saket Saurabh and Sandeep Sen
December 2016
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Fast and Powerful Hashing Using Tabulation®

Mikkel Thorup

University of Copenhagen, Dept. of Computer Science, Copenhagen, Denmark
mikkel2thorup@gmail.com

—— Abstract

Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed
to yield the desired probabilistic guarantees are often too complicated to be practical. Here we
survey recent results on how simple hashing schemes based on tabulation provide unexpectedly
strong guarantees.

Simple tabulation hashing dates back to Zobrist [1970]. Keys are viewed as consisting of ¢
characters and we have precomputed character tables hq, ..., h; mapping characters to random
hash values. A key x = (z1,...,x.) is hashed to hy[x1] @ ha[xa]..... ® he[zc]. This schemes is very
fast with character tables in cache. While simple tabulation is not even 4-independent, it does
provide many of the guarantees that are normally obtained via higher independence, e.g., linear
probing and Cuckoo hashing.

Next we consider twisted tabulation where one character is "twisted" with some simple oper-
ations. The resulting hash function has powerful distributional properties: Chernoff-Hoeffding
type tail bounds and a very small bias for min-wise hashing.

Finally, we consider double tabulation where we compose two simple tabulation functions,
applying one to the output of the other, and show that this yields very high independence in
the classic framework of Carter and Wegman [1977]. In fact, w.h.p., for a given set of size
proportional to that of the space consumed, double tabulation gives fully-random hashing.

While these tabulation schemes are all easy to implement and use, their analysis is not.

This invited talk surveys results from the papers in the reference list. The reader is refered
to [8] for more details.

1998 ACM Subject Classification E.1 [Data Structures] Tables, E.2 [Data Storage Representa-
tions] Hash Table Representations, F.2.2 [Nonnumerical Algorithms and Problems] Sorting and
Searching, H.3 [Information Search and Retrieval] Search Process

Keywords and phrases Hashing, Randomized Algorithms

Digital Object ldentifier 10.4230/LIPIcs. FSTTCS.2016.1

Category Invited Talk

—— References

1 Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From independence to expansion and
back again. In Proceedings of the 47th ACM Symposium on Theory of Computing (STOC),
pages 813-820, 2015.

2 Sgren Dahlgaard, Mathias Back Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. The
power of two choices with simple tabulation. In Proceedings of the 27th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1631-1642, 2016.

* Research is partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research.
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Simple Invariants for Proving the Safety of
Distributed Protocols
Mooly Sagiv

Tel Aviv University, Tel Aviv, Israel
mooly.sagiv@gmail.com

—— Abstract

Safety of a distributed protocol means that the protocol never reaches a bad state, e.g., a state
where two nodes become leaders in a leader-election protocol. Proving safety is obviously unde-
cidable since such protocols are run by an unbounded number of nodes, and their safety needs
to be established for any number of nodes. I will describe a deductive approach for proving
safety, based on the concept of universally quantified inductive invariants — an adaptation of
the mathematical concept of induction to the domain of programs. In the deductive approach,
the programmer specifies a candidate inductive invariant and the system automatically checks if
it is inductive. By restricting the invariants to be universally quantified, this approach can be
effectively implemented with a SAT solver.

This is a joint work with Ken McMillan (Microsoft Research), Oded Padon (Tel Aviv Univer-
sity), Aurojit Panda (UC Berkeley), and Sharon Shoham (Tel Aviv University) and was integrated
into the IVY system!. The work is inspired by Shachar Itzhaky’s thesis?.

1998 ACM Subject Classification D.2.4 Software/Program Verification, Formal Methods
Keywords and phrases Program verification, Distributed protocols, Deductive reasoning
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.2

Category Invited Talk

! http://microsoft.github.io/ivy/
2 http://people.csail.mit.edu/shachari
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My O Is Bigger Than Yours®

Holger Hermanns

Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
hermanns@cs.uni-saarland.de

—— Abstract

This invited talk starts off with a review of probabilistic safety assessment (PSA) methods cur-
rently exercised across the nuclear power plant domain worldwide. It then elaborates on crucial
aspects of the Fukushima Dai-ichi accident which are not considered properly in contemporary
PSA studies [6, 8, 7]. New kinds of PSA are needed so as to take into account external hazards,
dynamic aspects of accident progression, and partial information. All of these come with obvious
increases in algorithmic analysis complexity. This motivates our ongoing work to gradually tackle
the resulting modelling and analysis problems. They revolve around static and dynamic fault
trees [5, 1], open interpretations of compositional Markov models [2, 4] and advances in their
effective numerical analysis [3].
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Continuous Optimization: The “Right” Language
for Graph Algorithms?*

Aleksander Madry

MIT, Cambridge, MA, USA
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—— Abstract

Traditionally, we view graphs as purely combinatorial objects and tend to design our graph
algorithms to be combinatorial as well. In fact, in the context of algorithms, “combinatorial”
became a synonym of “fast”.

Recent work, however, shows that a number of such “inherently combinatorial” graph prob-
lems can be solved much faster using methods that are very “non-combinatorial”. Specifically,
by approaching these problems with tools and notions borrowed from linear algebra and, more
broadly, from continuous optimization. A notable examples here are the recent lines of work on
the maximum flow problem [5, 1, 4, 6, 9, 3, 8, 7, 2], the bipartite matching problem [6, 7, 2], and
the shortest path problem in graphs with negative-length arcs [2].

This raises an intriguing question: Is continuous optimization a more suitable and principled
optics for fast graph algorithms than the classic combinatorial view? In this talk, I will discuss
this question as well as the developments that motivated it.
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Graph Decompositions and Algorithms
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—— Abstract

We overview the recent progress in solving intractable optimization problems on planar graphs
as well as other classes of sparse graphs. In particular, we discuss how tools from Graph Minors
theory can be used to obtain

subexponential parameterized algorithms

approximation algorithms, and

preprocessing and kernelization algorithms
on these classes of graphs.
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Side Channel Analysis Using a Model Counting
Constraint Solver and Symbolic Execution®
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—— Abstract

A crucial problem in software security is the detection of side-channels [5, 2, 7]. Information
gained by observing non-functional properties of program executions (such as execution time or
memory usage) can enable attackers to infer secret information (such as a password). In this
talk, I will discuss how symbolic execution, combined with a model counting constraint solver,
can be used for quantifying side-channel leakage in Java programs. In addition to computing
information leakage for a single run of a program, I will also discuss computation of information
leakage for multiple runs for a type of side channels called segmented oracles [3]. In segmented
oracles, the attacker is able to explore each segment of a secret (for example each character of a
password) independently. For segmented oracles, it is possible to compute information leakage
for multiple runs using only the path constraints generated from a single run symbolic execution.
These results have been implemented as an extension to the symbolic execution tool Symbolic
Path Finder (SPF) [8] using the SMT solver Z3 [4] and two model counting constraint solvers
LattE [6] and ABC [1].
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—— Abstract

In the mixed-criticality job model, each job is characterized by two execution time parameters,
representing a smaller (less conservative) estimate and a larger (more conservative) estimate on
its actual, unknown, execution time. Each job is further classified as being either less critical or
more critical. The desired execution semantics are that all jobs should execute correctly provided
all jobs complete upon being allowed to execute for up to the smaller of their execution time
estimates, whereas if some jobs need to execute beyond their smaller execution time estimates
(but not beyond their larger execution time estimates), then only the jobs classified as being more
critical are required to execute correctly. The scheduling of collections of such mixed-criticality
jobs upon identical multiprocessor platforms in order to minimize the makespan is considered
here.
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1 Introduction and motivation

The problem studied in this paper has its genesis in a collaborative project between our
universities-based research group and a major US defense contractor. The defense contractor
is developing fleets of unmanned aerial vehicles (UAVs) that are capable of coordinating
with one another autonomously in order to accomplish goals that are broadly specified at

a relatively high level. The embedded computer control systems on board such UAVs are

responsible for two general classes of functions:

1. safety-critical functions relating to the safe flight of the UAV — these functions are
expected to be subject to mandatory certification by the US Federal Aviation Authority
(FAA); and

2. mission-critical functions that enable the UAV to actually accomplish its stated mission.
The mission-critical functions are not subject to certification (although our collaborator —

* Work supported by NSF grants CNS 1115284, CNS 1218693, CNS 1409175, and CPS 1446631, AFOSR
grant FA9550-14-1-0161, ARO grant W911NF-14-1-0499, a grant from General Motors Corp., and a
Tier-2 grant (ARC9/14) from the Ministry of Education, Singapore.
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the defense contractor manufacturing the UAV — will subject them to analysis using their

own correctness criteria).
Systems such as this are mized-criticality systems; in mixed criticality (MC) systems,
functionalities of different degrees of importance (or criticalities) are implemented upon a
common platform. As stated above, the more critical functionalities may be required to have
their correctness validated to a higher level of assurance than less critical functionalities.
This difference in correctness criteria may be expressed by different Worst-Case Execution
Time (WCET) estimates for the execution of a piece of real-time code. For validating the
timing correctness of critical functionalities it is desirable to use WCET estimates that
are obtained using extremely conservative tools (for example, some certification standards
require that particular “certified" tools based on static code-analysis be used for determining
WCET of highly safety-critical code), while less critical functionalities are often validated
using (less conservative) measurement-based WCET tools. Vestal [11, page 239] articulated
the practical implication of such practices in this manner: “the more confidence one needs
in a task execution time bound [...] the larger and more conservative that bound tends
to become.” He proposed that each piece of code therefore be characterized by multiple
WCET parameters, which are obtained by analyzing the (same) piece of code using different
WCET-analysis tools and methodologies. Different sets of WCET estimates are then used
to validate different correctness properties. We illustrate the essence of Vestal’s idea via a
simple (contrived) example.

» Example 1. Consider two jobs J; and Jy executing upon a shared processor, with job Jy
being more critical than J;. Both jobs are released at time 0, and share a common deadline
at time 10. Let us suppose that the WCET of J;, as determined by a more conservative
WCET tool, is equal to 5, while the WCET of J;, as determined using a less conservative
WCET tool (since Jz is less critical), is equal to 6. Since the sum of these WCETSs exceeds the
duration between the jobs’ common release time and their deadline, conventional scheduling
techniques cannot schedule both jobs to guarantee completion by their deadlines. However,
Vestal observed in [11] that

with regards to validating the more critical functionality (e.g., from the perspective of a

certification process), it may be irrelevant whether the less critical job Jy completes on

time or not; and

assigning Ji’s WCET parameter the value of 5 may be deemed too conservative for

validating less critical functionalities.
Let us suppose that the WCET of J; is estimated once again, this time using the less
conservative WCET-determination tool; Ji’s WCET is determined by this tool to be equal
to 3 (rather than 5). If we were now to schedule the jobs by assigning .J; greater priority
than Js,

In validating the more critical functionalities, we would determine that .J; completes by

time-instant 5 and hence meets its deadline.

The validation process for less critical functionalities concludes that J; completes by
time-instant 3, and Jo by time-instant 9. Hence they both complete by the deadline.
We thus see that the system is deemed as being correct in both analyses, despite our initial
observation that the sum of the relevant WCETs (5 for Jy; 6 for Jo) exceeds the duration

between the jobs’ common release time and deadline.

The idea exposed in Example 1 — that the same system, represented using more and
less conservative models, may be demonstrated to satisfy different correctness criteria for
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functionalities of different criticalities — has been widely explored since first proposed by
Vestal [11]; there is a nice review of the current state of the art in [3].

This research. Much of the prior study on mixed-criticality scheduling has focused upon
the scheduling of mixed-criticality workloads that are executed upon a single processor. A
few pieces of work (e.g., [2, 9, 8, 7]) have considered multiprocessor scheduling, but they have
all dealt with a very different workload model: systems of recurrent (periodic or sporadic)
tasks that need to meet deadlines, rather than collections of independent jobs. In this paper,
we seek to initiate the study of mixed-criticality scheduling of collections of independent jobs
upon multiprocessor platforms, by considering a simple multiprocessor scheduling problem
for such workloads — that of scheduling a given collection of mixed-criticality jobs (each of the
kind described in Example 1 above) upon a specified number of identical processors in order to
minimize the makespan of the resulting schedule. Makespan minimization is one of the basic
and fundamental problems studied in multiprocessor scheduling, and we are optimistic that
obtaining a better understanding of this fundamental problem will facilitate the development
of a more comprehensive theory of multiprocessor mixed-criticality scheduling. Although this
specific mixed-criticality problem is a highly simplified version of the motivating application
problem — it was obtained by applying a large number of simplifying assumptions to the
actual application system under analysis — it is hoped that exposing this problem domain to
the FST&TCS community will motivate further work upon less simple, but more realistic,
variants.

Our results. We derive algorithms for both non-preemptive scheduling (in which a job, once
it begins execution, is allowed to execute through to completion upon the same processor
on which it started to execute), and preemptive scheduling (in which an executing job may
be preempted during execution, and its execution resumed later upon any processor) of
collections of mixed-criticality jobs to minimize makespan upon identical multiprocessor
platforms. The non-preemptive problem is NP-hard, but can be solved approximately in
polynomial time to any desired degree of accuracy by a polynomial-time approximation
scheme. We do not yet know whether or not the preemptive version of the problem is solvable
in polynomial time; we derive here a polynomial-time %’rds—approximation algorithm for
solving it. To our knowledge, the precise computational complexity of determining the
minimum makespan under preemptive scheduling remains open.

2 System model

In this section we formally define the semantics of the mixed-criticality model and specify the
problem that we are seeking to solve. An instance I of the scheduling problem we consider is
specified as follows.
1. A collection J of n mixed-criticality jobs Jy, Jo,...,J,. Each job J; is characterized
by the parameters (x;,cl, ), with y; € {Lo,H1} and cF
denotes the criticality of job J;; a job J; with x; = LO is called a LO-criticality job,
and one with ; = HI is called a Hi-criticality job. The parameters c* and ¢ are the
LO-criticality WCET estimate and the HI-criticality WCET estimate of job J;; since the
Lo-criticality WCET estimates are assumed to be made using a less conservative tool
than the Hi-criticality WCET estimates, we require that ¢ < ¢ for all J; € J. (For

LO-criticality jobs, we assume that ¢ = ¢f1.)

< c¢H. The y; parameter

2. A number m of unit-speed processors upon which the jobs in J are to to be executed.

7:3
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Some additional notation: let Jy C J denote the collection of all the jobs J; € J for which
x; = HI, and J;, C J denote the collection of all the jobs J; € J for which y; = LO.

System behavior. Our mixed-criticality model has the following semantics. Fach job
J; is released at time 0, and needs to execute for a total duration ;. This execution
must be sequential, meaning J; is not allowed to simultaneously execute on more than one
processor. The value of v; is not known prior to running time; it can only be discovered by
actually allowing J; to execute until it signals that it has completed execution. These values
(71,72, .-+ ,7n) upon a particular execution of the collection of jobs J together define the
kind of behavior exhibited by J during that execution.
If v < cf for each 7 (i.e., each J; signals completion without exceeding cf units of
execution), J is said to have exhibited LO-criticality behavior.
If ¢& < ~; < ¢l for any i (i.e., some job J; only signals completion upon executing for
more than ¢Z but no more than ¢ units of execution), J is said to have exhibited
HI-criticality behavior.
If ¢ff < ~; for any i (i.e., some job J; does not signal completion despite having executed

for clH units), J is said to have exhibited erroneous behavior.

Correctness criteria. We define an algorithm for scheduling mixed-criticality instances to be
correct if it is able to schedule any instance in such a manner that (i) during all LO-criticality
behaviors of the instance, all jobs receive enough execution to be able to signal completion;
and (ii) during all Hi-criticality behaviors of the instance, all Hi-criticality jobs receive enough
execution to be able to signal completion. This is formally stated in the following definition:

» Definition 2 (MC-correct). A scheduling algorithm for mixed-criticality instances is MC-
correct if it ensures that:
during any execution of an instance in which it exhibits LO-criticality behavior, all jobs
signal completion; and
during any execution of an instance in which it exhibits Hi-criticality behavior, all
HI-criticality jobs signal completion (although LoO-criticality jobs may fail to do so).

We point out that upon some job failing to signal completion despite having executed
for up to its Lo-criticality WCET, (i) an MC-correct scheduling algorithm may immediately
discard all Lo-criticality jobs; and (ii) only those HI-criticality jobs that have not already
signaled completion may need to execute for up to their Hi-criticality WCETs — those that
have already signaled completion (upon executing for < their Lo-criticality WCET) do not
now need further execution.

Problem statement. Given an instance I comprising a collection J of n mixed-criticality
jobs to be scheduled upon m unit-speed processors, obtain an MC-correct scheduling algorithm
that minimizes the makespan of the resulting schedule.

Since the instance I may generate arbitrarily many different behaviors (the values of the
actual running times (1,72, ...,7n)) during different executions, we clarify what we mean
by minimizing makespan: we desire that the maximum makespan over all non-erroneous
behaviors of the instance be minimized.
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3 MC-correct scheduling algorithms that minimize makespan

Observe that the maximum amount of execution that could be required in any LO-criticality
behavior is equal to (3, c;¢f), while in any Hi-criticality behavior in which each HI-
criticality job executes to its HI-criticality WCET, the amount of execution that must occur
is at least equal to (Y, c 7, ¢f). Tt is therefore evident that upon an m-processor platform,

L H
max {300 ¢ Lnegn G )
m
is a lower bound on this desired makespan. An obvious upper bound on the makespan is
given by

E H
C; .

PASNS

If we had a procedure for validating whether mixed-criticality instance I could be scheduled
by some MC-correct scheduling algorithm with a makespan no larger than some specified
constant, we could use bisection search (“binary search") between the upper and lower
makespan bounds obtained above, in order to determine the minimum makespan to any
desired degree of accuracy. In the remainder of this section, we will therefore attempt to
design MC-correct scheduling algorithms that generate schedules with makespan no greater
than some specified constant D.

3.1 Non-preemptive scheduling

The non-preemptive version of this problem is easily seen to be solved by transforming it to
a two-dimensional vector scheduling problem [12], for which a PTAS is known [4, 5]. The
transformation is fairly straightforward: given an instance I of the mixed-criticality scheduling
problem comprising the n jobs J to be scheduled upon m processors with a makespan < D,
we seek to partition J into the sub-sets [J1, Jo, . .. Jm satisfying the constraints that for each
J,1<j<m,

(ZciLSD) and( Z c{ng).
Ji€J; Ji€JjAxi=HI
If such a partitioning is found, then during run-time we would execute the HI-criticality jobs
in J; upon the j’th processor first for each j, 1 < j < m. If each job J; completes within ck
units of execution, then we execute the LO-criticality jobs in J; next upon the j'th processor
for each j, while if some .J; does not complete within ¢ units of execution we simply discard
the LO-criticality jobs and execute the HiI-criticality jobs each to completion.

Observe that obtaining such a partitioning is equivalent to

1. First representing each job J; by a 2-dimensional vector of size ¢ along the first dimension,
and size along the second dimension depending upon the value of x;: if x; = HI then
the size along this dimension is set equal to ¢/ while if x; = LO then the size along this
dimension is set equal to zero.

2. Next, partitioning the n vectors so obtained into m sub-sets, such that each partition
sums to < D along each of the two dimensions — this is exactly the 2-dimensional vector
scheduling problem of [12].

The non-preemptive version of our scheduling problem, which is easily seen to be NP-hard
(since the specialization of the problem to “regular” — non mixed-criticality — scheduling, in
which all the jobs in J are of the same criticality, is already known to be NP-hard), is thus
solvable in polynomial time to any desired degree of accuracy by a PTAS.
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Each J; is initially executed at a constant rate ¢

If some J; does not signal completion despite having received ¢ units of execution, then
All LoO-criticality jobs are immediately discarded, and
Each HI-criticality job henceforth executes at a constant rate ¢ until completion

Figure 1 Our preemptive run-time scheduling algorithm.

3.2 Preemptive scheduling

In contrast to the regular (i.e., not mixed-criticality) case, where preemptive scheduling of
independent jobs to minimize makespan is easily seen to be solvable optimally in polynomial
time using McNaughton’s rule [10], this problem turns out to be surprisingly challenging
for mixed-criticality instances. Indeed, we have not yet been able to determine whether the
problem is solvable in polynomial time or not; what we have instead is a polynomial-time
approximation algorithm with approximation factor 4/3 for solving this problem?!.

Given instance I and a desired makespan D, our strategy, which is based upon an
algorithm called MC-Fluid [8, 1] for scheduling mixed-criticality sporadic tasks in order to
meet all deadlines, is as follows. We will seek to determine a schedule for the jobs in J upon
the m unit-speed processors under a fluid scheduling model, which allows for schedules in
which individual jobs may be assigned a fraction < 1 of a processor (rather than an entire
processor, or none) at each instant in time, subject to the constraint that the sum of the
fractions assigned to all the jobs do not exceed m at any instant. That is, we will determine
execution rates ¢F and ¢I! for each task 7; such that the scheduling algorithm depicted in
Figure 1 constitutes an MC-correct scheduling strategy for the jobs in J upon m processors.
(Standard techniques are known for converting such a fluid schedule to schedules in which
there is no processor-sharing; see, e.g., [6, page 116] for details.)

We will now describe how the values for the ¢F and ¢ parameters are determined. We
start out defining some additional notation:

For each job J; € J, let flow rates f£ and fI be defined as follows:

fro= /D
= D
Intuitively, a fluid schedule in which J; is executed at a constant rate fZ (f#, respectively),

over the interval [0, D] will complete at or before time-instant D in any LO-criticality
behavior (HI-criticality behavior, resp.) of the instance. It should be evident that it is
necessary that f& be <1 for each job J;, and that ff be <1 for each HI-criticality job
J;, if we are to be able to guarantee a makespan D.

Various cumulative flow requirements are defined for [ as follows — here, F£ denotes the
cumulative LO-criticality flow rates of all LO-criticality jobs; F5 denotes the cumulative LO-
criticality flow rates of all HI-criticality jobs; and F g denotes the cumulative HI-criticality

LA trivial algorithm with approximation factor 2 can be obtained using McNaughton’s rule as follows.
First schedule the HI-criticality jobs based on their Hi-criticality WCET estimates in the time interval
[0, D], and then schedule the Lo-criticality jobs based on their Lo-criticality WCET estimates in the
time interval [D,2D].
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1. Define a scaling factor p as follows:

p o man{ (L), (%), e 1) f

2. If p > 1 then declare failure; else assign values to the execution-rate variables as follows:

o« (fH/p) for all J; € Ti (2)

L
WX@H’ if Ji € Jn

6 ¥
L else (i.e., if J; € J)
3. If
Y dr<m (4)
JieJ

then declare success else declare failure

Figure 2 Computing execution rates.

flow rates of all HI-criticality jobs:

oY g

JieJL
L def L
Fg = Z fi
Ji€JTu
H  def H
Fg = Z fi
Ji€JTu

The following observation directly follows from the definitions of F£, FL and FH:

» Observation 3. [t is necessary that (Ff + FL) <m, and F}I <m, if we are to be able to
guarantee a makespan D for J upon m processors.

As stated in Figure 1, our run-time scheduling algorithm requires that values be assigned
to the execution-rate variables {¢X} e 7 U{#}j,c7, pPrior to run-time. In Figure 2 we
describe, in pseudo-code form, the algorithm for computing the values of these execution-rate
variables. Before proving the correctness of this algorithm (in Section 3.3), we first illustrate
its application via an example.

An example. Consider the following collection of 4 mixed-criticality jobs, to be scheduled
preemptively upon a 2-processor platform with a target makespan D < 10.

xi | e | el
Ji | HI 3 8
Jo | HI 4 7
Js | HI 1 1
Js | LO | B 5

77
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The flow rates for the jobs are obtained by dividing the corresponding WCET parameters by
10 (the value of D); the cumulative flow requirements are then computed as follows:

Ff = ff=05
FL = fEyfl 4 fL—03+04+01=08
FH — fH fH | ¢H_08107+01=16

The scaling factor p is therefore

5 ,7,max{0.8,0.770.1}

max{1.3/2,1.6/2,0.8}
= 08

p max{0'5+0'8 1.6 }

The HiI-criticality jobs Ji, Js, and J3, are assigned qbf{ values as follows:

0.8

H = = =10
o1 0.8
0.7

H

= —— =0.87
%2 0.8
0.1

doll = == =0.125
and ¢; 08

All the jobs are assigned ¢F values as follows:

1.0x0.3
L
= = —06
%1 1.0 — (0.8 — 0.3)
0.875 x 0.4 14
L
= = <061
%2 0.875 — (0.7 —0.4) 23
0.125 x 0.1
L
& 0.125 — (0.1 — 0.1)

and ¢f = 0.5

Since Z?zl ¢F < (0.6 +0.61 + 0.1 +0.5) = 1.81, which is < 2 (the number of processors),
our algorithm declares success.

3.3 Preemptive scheduling — proof of correctness

We will now show that the preemptive scheduling algorithm described above is correct: if
the execution rates are computed as specified in Figure 2 without declaring failure for a
given instance I, then the schedule resulting from using these execution rates in the manner
described in Figure 1 does indeed constitute an MC-correct scheduling algorithm that always
generates schedules of makespan < D upon all non-erroneous behaviors. Our proof proceeds
in several steps.

1. We first prove, in Lemma 4 below, that the rate-assignment in Figure 2 is correct, by
showing that the sum of the LO-criticality and the HI-criticality execution rates assigned
to the jobs in Figure 2 do not exceed m, the number of available processors.

2. Next, we show in Lemma 5 that each execution rate is assigned a valid value in Figure 2:
a non-negative real number that is no larger than one.

3. We then prove, in Lemma 6, correctness upon all LO-criticality behaviors, by showing
that the ¢ values assigned in Figure 2 are no smaller than the corresponding f{ values.
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4. Finally, we prove correctness upon all HI-criticality behaviors by examining the actions of
the scheduling algorithm in the event that some job does not signal completion despite
having executed for up to its Lo-criticality WCET (which indicates that the instance is
exhibiting a HiI-criticality behavior rather than a LO-criticality one).

» Lemma 4. The sum of the LO-criticality execution rates assigned to all the jobs, and the
sum of the Hi-criticality rates assigned to all the Hi-criticality jobs (i.e., the jobs in Jg),
each does not exceed the number of processors m.

Proof. It follows from Condition 4 of Figure 2 that our algorithm declares success only if
the assigned LoO-criticality execution rates sum to < m.

To show that the assigned HiI-criticality rates also sum to no more than m, observe that

H
/ 1
E o = E fi (By Eqn 2) = ~F# (By definition of F}I)
Ji€TH Ji€Tu P

By Equation 1, p > (F& /m); hence

1 m
—FH < (= FH =
o1 = (g )i =m
and the lemma is proved. <

» Lemma 5. Each ¢F and ¢! is assigned a value < 1 in the algorithm of Figure 2.

Proof. Observe that Line 1 of Figure 2 assigns p a value > f# for all J; € Jy. Since Line 2
of Figure 2 assigns each ¢/ a value ff?/p, it follows that each such ¢ has a value < 1, as
required.

With regards to the ¢F’s, the value assigned to ¢F for each J; € J, is equal to fF (and
hence < 1).

For each J; € Ju, we will now show that ¢F < ¢. It follows from the assignment of
values to ¢F (Equation 3 in Figure 2) that this will hold provided (Removed the justification
in the last derivation step.)

fiL <1
QS{_I - (sz - sz) N

H H
< fi <o

which follows from the requirement that p be < 1 (else, the algorithm in Figure 2 would
declare failure in Step 2).
We have thus shown that ¢X < ¢ for each J; € Jy (i.e., the execution rate guaranteed

to each Hi-criticality job does not decrease upon identification of Hi-criticality behavior).

Since we saw above that all such ¢ values are < 1, it follows that the ¢F variables are also
assigned values < 1. |

» Lemma 6. The instance is scheduled with a makespan < D in all LO-criticality behaviors.
Proof. We will first prove that for each J; € J
of > fF (5)

Let us separately consider jobs in J;, and Jg. Observe that by the definition of qbiL
(Equation 3),

7:9
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1. For each J; € Jp, , ¢oF = fL.
2. For each J; € Jx,

oF = fEx O
’ ’ QS{_I - ( 1'H - sz)
> g 2 Since (77— £1) 2 0)
= fk l

These two cases together establish that ¢pF > fl for all J; € J; it hence immediately follows
that ¢f - D, the amount of execution that would be received by J; if it were allowed to
execute at a rate ¢ over the entire duration [0, D) in any LoO-criticality behavior of 7, is
> ¢l From this we conclude that the makespan in any Lo-criticality behavior is < D. <

» Lemma 7. The instance is scheduled with a makespan < D in all Hi-criticality behaviors.

Proof. Consider any HI-criticality behavior of the instance, and let ¢, denote the first
time-instant at which some job does not signal completion despite having executed for its
Lo-criticality WCET. We will prove below that any HI-criticality job that is active (i.e., that
has not yet completed execution) at time-instant t, receives an amount of execution no
smaller than its HI-criticality WCET by time-instant D.

Suppose that HI-criticality job J; is active at time-instant t,. Over the interval [0,¢,),
this job will have received an amount of execution equal to ¢¥ x t,; since the job is still
active, it must be the case that

to < ¢’ /6] (6)

Henceforth job J; will execute at a rate ¢f. Hence for it to complete within a makespan D,
it is sufficient that

todl + (D —to)p > cF

& Dol —t,(¢F —¢F) > cF

L
< Dol — (o — ¢F) > ! (By Inequality 6)

=

i = L \Pi i i
cbglt
& Do > o —cp+cf
b pef b
& Dzop+ (7& )
fE fH — fL
& 1> qb% + (%) (Dividing by D, and applying definitions of f£, f#) (7)
i i
Also by Equation 3, for each J; € Jy we have
L frel!

K
H _ (fH _ fL
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H _ L L
11— (7"2 ¢Hf1 ) = qfﬁ
L H _ L
O YRS
thereby establishing Condition 7 and completing the proof of the lemma. <

3.4 Preemptive scheduling — A 4/3’rds approximation Bound

We now prove that MC-correct scheduling algorithm described in Section 3.2 is a 4/3’rds
approximate algorithm for preemptive scheduling to minimize makespan. Our approach
towards showing this is as follows. A straightforward generalization of Observation 3 leads us
to conclude that for mixed-criticality instance J to be schedulable with makespan s x D upon
m processors, it is necessary that (F¥ + Fk) and Ff for the instance both be < m x s, and
that in addition fZH < s for each J; € Jy and fiL < s for each J; € Jr. It therefore follows
that the scaling factor p that is computed in Expression 1 of the algorithm of Figure 2 for
such a system is < s. We will show below, in Lemma 9, that if p < 3/4 and the ¢, ¢ values
are computed as specified in Expressions 2-3 of Figure 2, then the ¢f’s so computed are
guaranteed to sum to < m and therefore satisfy Condition 4 of Figure 2 (which in turn means
that the system is scheduled with makespan < D upon m processors). The approximation
ratio follows, by observing that 4/3 is the multiplicative inverse of 3/4.

First, a technical lemma.
» Lemma 8. Let ¢ denote any positive constant. The function

4y T(C— )
S+

f(x)

is < § for all values of x € [0, c].

Proof. (This lemma is easily proved rigorously using standard techniques from the calculus;
we skip the details here in favor of a high-level outline.) Taking the derivative of f(z) with
respect to z, we see that the only value of x € [0,c] where this derivative equals zero is
x < ¢/3. We therefore conclude that f(x) takes on its maximum value over [0, ¢] for one
of the values of z € {0,¢/3, c}. Explicit computation of f(z) at each of these values reveals
that the value is maximized at @ = ¢/3, where it takes on the value ¢/3. <

» Lemma 9. If p < 3/4 and ¢F, ¢F values are computed as specified in Ezpressions 2-3 of
Figure 2, then the ¢F values so computed satisfy Condition 4.

Proof. Let us first rewrite Condition 4 to an equivalent form expressed in Condition 8 below.

> or<m

JieT
S Y e+ Y df<m

Ji€JL Ji€JTu

®Ff+z H fiLdZH o Sm
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(fF - fF)
& Ff + fE 1+ 7 <m
3 (i g 3 )
A — 5
@FL+ZfL+Z HlLSm
J. €T ‘nEJH f _fl)

f,L(f.H_f.L)
<:>FL+FL+ 2 7 7
t f J;H d)fl B (sz - sz)

<m

(8)

We will show, in the remainder of this proof, that if p < 3/4 then Condition 8 is satisfied;

this will serve to establish the correctness of Lemma 9.

Let us assume henceforth that p < 3/4. From the definition of p (Expression 1), it follows

that
L L 3
3
3
vhiedn fI <

Additionally, since ¢ < fH /p, it must hold that

Lol

V€ Tu ¢ > fH

Let us use Inequalities 9-12 to further simplify Condition 8.

= 1)
Ff+Fh+ L - <m
Lo P PR VA F

5 fL(fH 1)
e Sm4

(D

§ fL fH L)
R KDV oy 17

3 FE( fH f
& 4 m + Z )<m
Ji€JTu
- fL(fH fL)S
Ji€Tu

< m (By Ineq. 9)

< m (By Ineq. 12)

m
4

H
= Z J; < Z (By Lemma 8)

1
3
= (g M < Z) (By Inequality 10)

and Lemma 9 is thereby proved.

(12)
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4 Summary and conclusions

Mixed-criticality scheduling is emerging as an increasingly important topic in the design,
analysis, and implementation of safety-critical embedded systems. Most prior work on this
topic has been restricted to uniprocessor scheduling; what little work has been done on
multiprocessor scheduling has primarily focused upon recurrent (periodic and sporadic)
workload models that are very different from the one we consider in this paper. We have
adapted ideas from some such prior work, and have applied them to our problem of scheduling
collections of independent jobs in order to minimize makespan. We have designed algorithms
for both preemptive and non-preemptive scheduling of such workloads, but have not yet
been able to classify the computational complexity of preemptive scheduling to minimize
makespan — we leave this as an open problem.

We reiterate a point we had made earlier in this manuscript — although the particular
problem we have presented here was obtained by applying a large number of simplifying
assumptions to the actual application system under analysis, we hope that exposing this
very interesting and important problem domain to the FST&TCS community will encourage
members of this community to work upon more realistic, and more complex, variations.
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——— Abstract

We study the capacitated k-center problem with vertex weights. It is a generalization of the
well known k-center problem. In this variant each vertex has a weight and a capacity. The
assignment cost of a vertex to a center is given by the product of the weight of the vertex and its

distance to the center. The distances are assumed to form a metric. Each center can only serve
1—e¢

as many vertices as its capacity. We show an n"~“-approximation hardness for this problem, for
any € > 0, where n is the number of vertices in the input. Both the capacitated and the weighted
versions of the k-center problem individually can be approximated within a constant factor. Yet
the common extension of both the generalizations cannot be approximated efficiently within a
constant factor, unless P = NP. This problem, to the best of our knowledge, is the first facility
location problem with metric distances known to have a super-constant inapproximability result.
The hardness result easily generalizes to versions of the problem that consider the p-norm of the
assignment costs (weighted distances) as the objective function. We give n'~/P~¢-approximation
hardness for this problem, for p > 1.

We complement the hardness result by showing a simple n-approximation algorithm for this
problem. We also give a bi-criteria constant factor approximation algorithm, for the case of
uniform capacities, which opens at most 2k centers.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity
Keywords and phrases approximation hardness, k-center, gadget reduction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.8

1 Introduction

Resource location problems are a class of problems in which one is required to find a set
of locations to open centers in order to serve clients (demands) placed in a metric space.
The objective is to reduce the cost of opening the centers and/or the cost incurred to assign
the clients to the centers. Various notions of distance/cost are used in different applications.
The k-center problem is a very well known resource location problem in which a metric
on n vertices is given. The objective is to open k centers and assign vertices (clients) to
these centers such that the maximum distance between a vertex and its assigned center is
minimized. This problem is NP-hard. It also has a (2 — €)-approximation hardness. [14]
2-approximation algorithms were given by Gonzalez [12] and Hochbaum and Shmoys [13].

Motivated by practical scenarios where each center has a limitation on the number of
clients that it can serve, a generalization of this problem is the capacitated k-center problem.
In this problem, each vertex has a capacity and a center opened at a vertex cannot serve more
number of vertices than its capacity. Khuller and Sussmann [16] gave 5 and 6-approximation
algorithms for uniform soft and hard capacities respectively. For non-uniform capacities,
Cygan et al. [10] and An et al. [1] provide constant factor approximation algorithms using
LP rounding.
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Another generalization of the k-center problem is one where vertices have weights. The
assignment cost of a vertex to a center is given by the product of the weight of the vertex
and its distance (weighted distance) to the center. This variant is motivated from scenarios
where the clients are not treated equally. Some clients are more important than others and
need to be kept closer to an open center. Weights can also be used to model the likelihood
of clients demanding services. Wang and Cheng [20] provide a 2-approximation for the
k-center problem with vertex weights. This is best possible as the k-center problem has
(2 — €)-approximation hardness.

A common extension of the above two generalizations is the capacitated k-center with
vertex weights. In this variant each vertex has a capacity and a weight. Each center can
serve no more vertices than its capacity. The assignment cost of a vertex to a center is
given by its weighted distance to the center. In this paper we study the approximability of

this problem. We show an n'~¢

-approximation hardness and provide an n-approximation
algorithm. The hardness result easily generalizes to variants of the problem that consider
the p-norm of the assignment costs (weighted distances) as the objective function. We give
nlf%fﬁ-approximation hardness for the general p-norm, for p > 1. This immediately shows
that for p > 1, the problem is hard to approximate within a constant factor. Although
this generalization does not immediately provide an inapproximability result for the 1-norm
which is the corresponding variant of the k-median problem, it provides insights into the
capacitated (unweighted) version of the problem. The capacitated k-median problem is
interesting as not much is known about its approximability. Constant factor approximation
algorithms by either violating the capacity constraints or the cardinality constraints up to a
constant factor are studied in [9], [4], [18], [5].

A vast body of work is available on various facility location problems. A variety of
techniques like local search [17], [2], [6], LP rounding [7] and primal-dual method [15] have
been studied. The capacitated facility location problem is well studied in [17], [19], [8], [3]

and constant factor approximations are known.

Our results and techniques

The main result of this paper is the approximation hardness of the capacitated k-center
problem with vertex weights. We show that this problem cannot be efficiently approximated
within a factor of n'~¢, unless P = NP, for any € > 0, where n is the number of vertices in the
input. We give a reduction from the ExAcT COVER BY 3-SETS, which is an NP-complete
problem. It requires one to find a set cover from a family of sets, where each set has exactly
three elements, such that each element of the universe is in exactly one of the sets in the set
cover. This set cover variant was used by Cygan et al. in [10] to show a (3 — €)-approximation
hardness for the capacitated k-center problem. The set gadget used in the reduction in [10] is
designed for the unweighted case and does not generalize for the weighted case. In this paper,
we introduce a novel set gadget that allows to create an polynomial factor gap between the
solution cost of the yes and the no instances. It achieves this by allowing the vertices in a set
gadget to be assigned to centers inside the gadget with small costs and making assignments
to centers outside the gadget incur a large cost. Similarly, the vertices in an element gadget
can only be assigned to centers in set gadgets corresponding to sets that it belongs to, with a
small cost. Our reduction generates instances where the capacities are uniform and constant,
showing that even this special case is hard to approximate within a constant factor.

i . . 1 . .
An immediate consequence of the hardness result is an n'~» ~“-approximation hardness
for the case where the objective function is a general p-norm of the assignment costs, for

p > 1. The k-center problem is a special case where the objective function is the co-norm of
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the assignment costs. This shows that interesting variants of the problem which consider a
p-norm for p > 1 are hard to approximate within a constant factor.

We complement the hardness result by showing a simple n-approximation algorithm. For
this algorithm, we use the standard thresholding technique modified to handle weights. We
create threshold graphs corresponding to each distinct weight in decreasing order and open
as many centers, in decreasing order of capacities, in each connected component as required
to cover all the vertices in it.

Next, we relax the cardinality constraint on the set of centers. We consider the variant
with uniform capacities where we show that if we are allowed to open twice the number of
centers then we can output a solution with cost within a constant factor of the optimum
cost. This simply modifies the 2-approximation by Wang and Cheng [20] by opening as many
capacitated centers required in place of each uncapacitated center to serve all the vertices
assigned to it.

2 Problem statement

The input for the capacitated k-center problem with vertex weights (CkCW) is a set of vertices
V, a metric distance d : V x V' — R> on V, an integer k, a capacity function L : V' — Zxg
and a weight function W : V' — R>(. The output is a set S C V of k vertices called centers
and an assignment map h : V — S such that [{j € V | h(j) = i}| < L(4),Vi € S. The
assignment cost of a vertex j € V to a center ¢ € S is given by W(5)d(i, 7). The goal is to
minimize the maximum assignment cost of a vertex to its assigned center. Formally, the cost
of the solution is given by max;cyv W (j)d(h(j), ). Let |V|=n.
The metric distance d satisfies the following properties for i, j,u € V:

Lol o A
o

B
\'N

3 Hardness of approximation

In this section we show that the above problem cannot be approximated within a constant
factor. We give a reduction from the ExacT COVER BY 3-SETS (EC3S), which is an NP-
complete problem. This problem is used in [10] to show a (3 — €)-approximation hardness for
the k-center problem (unweighted) with non-uniform capacities. The input of the problem
is a set system (F,U), where each set in F has exactly 3 elements. The goal is to decide
whether there exists a subset F' C F, such that each element of U belongs to exactly one set
in F'. For such a set cover to exist, || must be a multiple of three.

An instance of the EC3S problem can be viewed as a bipartite graph (F UU, E) where
the edge set £ encodes the membership of the elements of U in the elements of F. In our
reduction, we encode this bipartite graph into an instance Z of CkCW, with each vertex
having a uniform capacity of L. We replace each vertex of F with the corresponding set
gadget and that of U with the corresponding element gadget.

Figure 1 illustrates these gadgets. The set gadget consists of three long arms, one for each
of the three elements in the set, joined together with a clique at the top. Each arm is divided
into integral levels 0, 1, ..., t and fractional levels 0.5, 1.5, ... t 4+ 0.5, where ¢ is an odd
integer which we will fix later in this construction. An integral level [ consists of a vertex of
weight W;. A fractional level [ + 0.5 contains % vertices of weight W; if [ is odd and % -2
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Figure 1 Gadgets for reduction.
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vertices of weight W, if [ is even. The two vertices in levels [ and [ + 1 are connected to each
other and to the vertices in level [ + 0.5 by edges off length R;. The % vertices in level t 4+ 0.5
(the highest level) from each of the arms are all connected to each other by edges of length
Ry, forming a clique of size L. The element gadget is a collection of % vertices of unit weight
connected to the level 0 vertex of the corresponding arm of the set gadget of each of the sets
that it belongs to. The length of each of these connecting edges is Sp.

Let S; denote the shortest distance of a level | vertex from the vertices in the element
gadget connected to the corresponding arm (refer to Figure 1). Then we have the following
relation:

S =Ri_1+S-1 (1)

We would like to set the parameters of the construction in such a way that any solution
with cost < w? must assign the vertices in a set gadget to centers in the same gadget. It
must also assign the vertices of an element gadget to centers in set gadgets corresponding to
the sets it belongs to. So, we want the following relations to hold:

Wo =w (2)
VV[R[ =w (3)
VVlSl = w2 (4)

where w is some parameter. From equations 1, 3 and 4 we get:

1
S =51 < + 1>
w

! 1
1 1
=5, (w + 1) =w (w + 1) (from equations 2 and 4)

We fix ¢ such that:

1 t

St=w<—|—1> > w?
w

log(w)

> 227 < 2wl
_log(l—l-i) = swlosw

We set t to be an odd integer just greater than 2wlogw and k to be 3 (%) |F| + % The
distance metric d is given by the shortest distance metric.

» Lemma 1. If there exists a solution to the EC3S instance, then there exists a solution to
the instance Z with cost w.

Proof. Let F/ C F be the solution of the EC3S instance. Note that, |F'| = % For a
sets A € F’ place a center on each of the three vertices at even levels 0, 2, ..., t-1 in the
corresponding set gadget and one center on a vertex at level ¢ + 0.5. Assign the vertices of
the element gadget corresponding to the elements in A and the vertices in levels 0, 0.5 and
1 to the centers at level 0. For a level | € {2,4,...,t — 1}, assign all the vertices at levels
1—0.5,1,140.5 and I +1 to the centers at level [. Assign all the vertices in the clique at level

t + 0.5 to the center opened at this level. For all sets not in F’, place centers similarly at odd

levels 1,3, ..., t. For a level I € {1,3,...,t}, assign all the vertices at levels | — 1,1 — 0.5, [

and [ + 0.5 to the centers at level [. This is an assignment with cost w. The total number of
. u

centers opened is 3 ez (3 (F51) +1) + X g 3 (1) =3 (51 | FI + U, <
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Now consider a solution S to the instance Z with maximum assignment cost < w?. Note
that each center must serve L vertices as |V| = 3 (1£2) |F|L + |U|% = kL.

» Lemma 2. S does not have a center in any of the element gadgets.

Proof. Consider the vertex set g, of the element gadget for an element a € Y. From the
construction of the gadget we can say that any j ¢ g, and i € go, W (j)d(i, j) > w?. Therefore,
only the vertices in g, can be assigned to a center in g,. But, |g,| = % < L. |

» Lemma 3. Fach set gadget in S has at least 3 (%) and at most 3 (%) + 1 open centers
in .

Proof. Consider the vertex set g4 of the set gadget for a set A € F. For any j € g4 and
i ¢ ga,W(5)d(i,j) > w?. Thus, all the vertices in g4 must be assigned to centers in g4.
Therefore, the number of centers in g4 > [|ga|/L] = 3 (52).

Assume, for contradiction, that the number of centers in g4 > 3 (%51) + 1. Let a,b and ¢
be the elements of set A and let g, g, and g. be the vertex sets of their respective gadgets.
For any j & gaUgaUgyUge and i € ga, W(5)d(i,§) > w?. Thus the number of vertices that
the centers in ga can serve < [ga| + [ga| + |g5] + |gc| = (3 (£52) + 1) L. Therefore, at least
one of the centers in g4 must be serving less than L vertices. |

» Lemma 4. In S, gadgets corresponding to any two sets in F sharing a common element
cannot have 3 (%) + 1 open centers in each one of them.

Proof. Assume, for contradiction, that there exist two sets A, B € F having at least one
element in common such that the vertex sets g4 and gp of the corresponding gadgets each
have 3 (%) + 1 centers. As shown in the proof of Lemma 3, the vertices that can be assigned
to a center in the gadget of a set C' = {d, ¢, f} are only those in gc U gq U ge U gy. Thus, the
number of vertices that can be assigned to centers in g4 and gg < 2 X (3 (%) + 1) L— é
(since at least one element is common in A and B). Therefore, at least one of the centers in
ga or gp must be serving less than L vertices. |

» Lemma 5. If there exists a weighted k-center solution with cost R < w?, then there exists
a solution to the EC3S instance.

Proof. From Lemmas 2, 3 and 4, there are % set gadgets each of which have 3 (%) +1
centers and the corresponding sets are all disjoint. These |3ﬂ sets form the solution set
F'. <

» Theorem 6. The weighted k-center solution cannot be approximated within a factor of
n't=¢ for any € > 0, unless P = NP.

Proof. From Lemmas 1 and 5, an a-approximation is not possible for & < w, unless P = NP.
Now, we show a lower bound on w in terms of n. In the construction, the number of
vertices is given by:

. t+1 |
n—kL—(3< 5 >|F|+ 3>L

< constant x w log w|F| (|F) > %,t ~ 2wlogw and L is constant)

< constant x w' s log w (setting w = | F|9,q > 0)
< constant x w“'%

1
+

w > constant x n'*a > n'=e (for sufficiently large n and g > %)

<
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» Remark. The capacity L of each vertex does not depend on the input of the reduction.

Thus, L can be fixed to be a sufficiently large constant. In Appendix A, we show that the
known hardness results of (3 — €) for the {0, L} capacitated version [10] and (2 — €) for the
uniform L capacitated version (which follows from the (2 — €)-approximation hardness of the
uncapacitated problem [14]) of k-center problem hold even when L is a constant. Note, that
for L = 1 the problem can be solved trivially.

Generalizing to other cost functions

In the k-center problem the goal is to minimize the maximum assignment cost, that is, to
minimize the infinity norm of the assignment costs. Now we generalize the hardness result
for any p-norm as the objective function. The objective function is given by:

P
> _(W()d(h(5). 5))
jev
Consider the instance Z generated by the reduction. If there exists a solution to the EC3S

instance, there exists a solution to the instance Z with cost at most nrw and if there is no
solution to the EC3S instance then any solution to Z must have a cost at least w?. Thus an
approximation factor of w/ nw or, n'~% "¢ cannot be achieved, unless P = NP. This gives a
super-constant inapproximability result for, p > 1.

4 n-approximation algorithm

In this section, we present a simple n-approximation algorithm for the capacitated k-center
problem with vertex weights. It guesses through all possible values R of the optimal solution
cost in increasing order. The number of possible values can be at most |V|? as each value
must be equal to W (j)d(i, j) for some i,j € V. For each R, consider the distinct values of
the weights wy > wy > -+ > w,, in decreasing order, where m is the number of distinct
weights. For each distinct weight w;, it creates the undirected graph G,, = (V, E;,) where
V is the input set of vertices and E,, = {(¢,7) | d(i,5) < r; = R/w;}. Note that if R is the
optimal solution cost then the optimal solution cannot assign a vertex j to a center ¢ such
that d(i,j) > R/W(j). Let T'; be the set of connected components of G, which have at least
one vertex of weight at least w;. For a component v € I';, let H] = {v € v | W(v) > w;}
be the set of heavy vertices and P, be the set of open centers in . P, for v € I';, initially
consists of the centers opened at vertices in v up till iteration ¢ — 1. We say a center in P, is
unsaturated if the number of vertices assigned to it is less than its capacity. The algorithm, in
iteration ¢, assigns vertices from ] for each component v to unsaturated centers in P, till
their capacities are exhausted and then adds new centers to serve all the remaining vertices
in H]. After m iterations, if the number of open centers is at most & it returns the set as
the solution. Algorithm 1 illustrates this procedure.

» Lemma 7. The assignment cost of each vertex is at most nR.

Proof. Note that in each iteration ¢, the algorithm assigns all the vertices of weight w;
to some center. Also, each vertex in a component is assigned to some center in the same
component. Thus the assignment cost is at most w;nr; = w;nR/w; = nR. |

Consider an optimal solution S*. Let R* be the optimal solution cost. For a center u in
the optimal solution, let o(u) be the number of vertices assigned to it. Now consider the
iteration of Algorithm 1 when R = R*.
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Algorithm 1 n-approximation algorithm

for each guess R of the optimal solution cost in increasing order do
Order the weights wy > wg > -+ > wy,
for each w;,i € {1,2,...,m} do
Construct G,
Construct the set I'; for G,
for each component v € I'; do
Construct P,
while 3 unassigned vertex v € H; do
if 3 unsaturated center u € P, then
assign v to u
else
P, — PyU{u}, where u € y\'P,, such that L(u) = max{L(v) | v € v\ Py}
end if
end while
end for
end for
if [U, er,, Pyl < k then
return set of open centers and vertex assignment map
end if
end for

» Lemma 8. For a component v € I'; of any G, there exists a set of centers x~ opened by

S* in component v with the following properties:

L |xyl =Pyl = 5y

2. Order the elements u; of x~ in decreasing order of the value of o(u;) and the elements p;
of Py in decreasing order of their capacities L(p;). Fori € {1,2,...,ky},0(u;) < L(p;).

Proof. We prove this by induction on i. The lemma holds for I'; since the algorithm opens
centers in decreasing order of capacities in each of the components. Assume it holds for IT';
for some 7. Note that, from the construction of a component in I';, we can say that each
component in I'; is disjoint from other components in I'; and is a subset of some component
in I';4;. Now consider a component v € I';11. Let v1,72,...,7. be the components in
T"; which are subsets of 7. As long as there is an unsaturated center from iteration i, the
algorithm assigns vertices to that center. If all the vertices in 7 are assigned to some center
from iteration 4, then the lemma holds for I';;;. The corresponding P, and x, would be
Py, UPy, U---UP,, and x4, U Xy, U---Ux,, respectively.

Now consider the case when all the centers from iteration i are saturated. P, =
Py UPy, U---UP, and Xy = Xy, UXy, U---UX,, satisfy the conditions of the lemma.
Arrange all the vertices in 7 in decreasing order of capacities. Let g be the smallest index in
this ordering such that the algorithm has not opened a center at the ¢'" vertex. Replace
the first ¢ — 1 centers in x, with the highest ¢ — 1 centers opened in v by §*, according to
the number of vertices served. The new ., and P, also satisfy both the conditions of the
lemma. Now, if there are unassigned vertices even after all centers in P, are saturated, the
algorithm opens center at the vertex at index ¢ and adds it to P,. The optimum solution
must also have an open center u ¢ x. as the centers in x. do not serve all the vertices in
7. o(u) can be at most the number of vertices served by the ¢** maximum center in the
optimum solution which is at most the capacity of the newly opened center. We compute ¢
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again and replace the ¢ — 1 centers in . as previously. This shows that both the conditions
of the lemma hold when each new center is added by the algorithm. Hence, the lemma holds
for Fi+1 . <

» Theorem 9. Algorithm 1 is an n-approrimation algorithm for the capacitated k-center
problem with vertex weights.

Proof. When R = R*, consider P, for v € I, after the algorithm has iterated through all the
distinct weights. At this point, each vertex is assigned to some open center. From Lemma 8,

there exists a set of centers x, opened by S* in component v such that |x,| = |Py| = K,.

Since all the components are disjoint, the number of centers opened by the algorithm is
doer,, [Pyl = > er,, X4 < k. Also, from Lemma 7, each assignment cost is at most
nR*. |

5 Relaxing the number of centers

In this section we present a greedy (2,2)-approximation algorithm?! for the uniform soft
capacitated k-center problem with vertex weights. In the soft capacitated version, the
solution is allowed to have multiple centers at a vertex. All vertices have equal capacities of
L. The algorithm uses the greedy clustering technique used by Wang and Cheng in [20] to
produce a solution for the uncapacitated version of the problem. It then replaces the open
uncapacitated centers with the required number of capacitated ones.

For an input instance Z and a solution cost R, we can construct a digraph Gg = (V, ERr),
where V is the set of vertices in Z and Er = {(j,4) | W(j)d(i,j) < R} is the set of edges
that a solution with cost R can potentially use to assign vertices to centers. Thus, a directed
edge (j,17) € ER if j can be assigned to ¢ within cost R. It is easy to verify that there exists
a solution to Z with cost R if and only if there exists a set S C V| |S| = k and an assignment
map h : V — S assigning vertices to centers respecting the capacity constraint and using
only the edges in Eg, that is, h(j) =i = (j,i) € Eg.

Given an instance Z of the problem, the algorithm goes through all possible values R
(which can be at most |V|?) of the optimal solution cost, in increasing order. It constructs
the graph Gi and for each vertex v € V, computes its neighbourhood N(v) as:

N(v) = {v}U{u| (v,v) € Er} U{u| 3z €V, (v, ), (u,z) € Er}

It then select a set of vertices S greedily according to weight and clusters (C,) the vertices in
the neighbourhood of each vertex v € S. It opens sufficient number centers at the vertices in
S (with multiple centers at a vertex if required) such that all the vertices can be assigned to
some center with cost at most 2R, respecting the capacity constraint. Algorithm 2 formally
defines this greedy procedure.

» Lemma 10. For any verter in a cluster C,,Yv € S, its cost of assignment to an open
center at v is at most 2R. Formally,

d(v, )W (j) < 2R,Vj € C, .

Proof. The lemma holds trivially for v. All other vertices j € C,, are of the following two
types:

L An (o, B)-approximation algorithm outputs a solution with cost at most aR by opening at most Sk
centers
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Algorithm 2 Greedy algorithm

for each guess R of the solution cost in increasing order do
Construct Gg.
for each v € V do
Construct N(v)
end for
X<V
S ¢
while & is not empty do
select v € X such that W(v) = max{W(v) | v € X'}
S+ Su{v}
Assign X N N(v) to cluster C,
Open [|Cy|/L] centers at v
X+ X\ N(v)
end while
if number of open centers < 2k then
return set of open centers
end if
end for

Type 1: (j,v) € Eg. In this case, by definition of Er we have:
W (j)d(v,j) < R < 2R.

Type 2: 3z € V, (v, ), (j,x) € Er. Algorithm 2 in its while loop selects the maximum weight
vertex v from the set X’ in a given iteration. Since, C,, C X, therefore, W(j) < W(v).

W(j)d(v,j) < W(j) (d(v,x) + d(z, 7)) (using triangle inequality)
<W0) (g + o)) ((v,7) € B)

W) (g + o)) W () < W)

<SR+ W(j)d(x,j) < 2R (=) € Er)

<

Let R* be the optimal solution cost. Now consider the iteration of Algorithm 2 when
R =R".

» Lemma 11. Algorithm 2 opens at most 2k centers and every vertex in cluster C, can be
assigned to some open center at v.

Proof. Algorithm 2 opens [|C,|/L] centers at vertex v in cluster C, which is sufficient to
serve all vertices in C,,. Also, no two vertices in S can be served by the same center in the
optimal solution, otherwise one of them must be in the neighbourhood of the other. Thus,
k > |S|. The total number of centers k' opened by Algorithm 2 follows,

K = ZHCUVL] =S|+ ZHCQ,\/LJ <|S|+ [IVI/L] <2k (all clusters are disjoint)
veES veS

<



A. Kumar

» Theorem 12. Algorithm 2 is a (2,2)-approzimation algorithm for the uniform soft capa-
citated k-center problem with verter weights.

Proof. Follows from Lemmas 10 and 11. <

» Remark. Algorithm 2 can be modified to a (4,2)-approximation for the uniform hard
capacitated k-center problem with vertex weights. In the hard capacitated version, multiple
centers are not allowed to be opened at the same location. So, instead of opening all the
centers in a cluster at one vertex we open one center at each of the top [|C,|/L] vertices in
C, in decreasing order of weight. The cost of assigning a vertex with a lower weight to a
center with higher weight is at most 4R.

6 Conclusion and open problems

In this paper we make progress towards showing approximation hardness for capacitated
facility location problems with vertex weights. To the best of our knowledge, this is the
first facility location problem known to be hard to approximate within a constant factor.
This provides insight into other variants, for many of which not much is known about their
approximabilities. It would be interesting to extend our result for the k-median problem.

Other directions for future work would be to reduce the gap between the lower bound of
n'~¢ and the upper bound of n presented in this paper and to design algorithms that achieve
a constant factor on the solution cost by relaxing the cardinality or capacity constraints up
to a constant smaller than 2.
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O(|F]). A different version of the EC3S problem in which each element of U can belong to
at most three sets in F is also NP-complete [11] [12]. We use the same reduction as in [10].
Figure 2 illustrates the gadgets used in the reduction. Each vertex has a uniform capacity of
L and k = |F|+ % All edges are of unit length.

» Lemma 13. If there exists a solution to the EC3S instance, then there exist a capacitated
k-center solution with cost < 1.

Proof. Let 7' C F be the solution of the EC3S instance. Note that, |F'| = % For each set
A € F, place a center at the vertex x4 in the corresponding set gadget. For each set A € F,
place a center at the vertex A in the corresponding set gadget. Thus, the vertices in each
set gadget g4 is served by the center at vertex x4 and the vertices in the element gadget of
the elements in a set A € F’ are served by the center at A. The number of centers used is
\F|+|F| = |F| + 4l = k. <

Now consider a solution S of the capacitated k-center instance with cost < 2. Note that
each center must serve L vertices as |V| = kL.

» Lemma 14. S does not have a center in any of the element gadgets.

Proof. Consider an element a € U. The vertices with distance < 2 to a vertex in the element
gadget g, are the vertex itself and the vertices x4 for each set A € F that it belongs to.
Since, each element can belong to at most three sets in F, the number of vertices that can
be assigned to a center in an element gadget is bounded by a constant. For sufficiently large
but constant L, the center will not be able to serve L vertices. <

» Lemma 15. FEach set gadget in S has at least one and at most two open centers in it.

Proof. Consider the vertex set g4 of the set gadget for a set A € F. The L — 2 pendant
vertices in g, cannot be served by a center outside g,. Thus, g4 has at least one center in it.

Assume, for contradiction, that the number of centers in g4 > 2. Let a,b and ¢ be the
elements in set A and let g,, g, and g. be the vertex sets of their respective gadgets. The
vertices that are at a distance < 2 from some vertex g4 are the ones in g4, ga, g», g Thus,
the number of vertices that the centers in g4 can serve < |gal| + |ga| + 95| + |9c| = 2L.
Therefore, at least one of the centers in g4 must be serving less than L vertices. |

» Lemma 16. In S, gadgets corresponding to any two sets in F sharing a common element
cannot have two open centers in each one of them.

Proof. Assume, for contradiction, that there exist two sets A, B € F having at least one
element in common such that the vertex sets g4 and gp of the corresponding gadgets each
have 2 centers. As shown in the proof of Lemma 15, the vertices that can be assigned to a
center in the gadget of a set C' = {d, e, f} are those in gc U gqUge Ugys. Thus, the number of
vertices that can be assigned to centers in g4 and gp < 4L — % (since at least one element is
common in A and B). Therefore, at least one of the centers in g4 or gp must be serving less
than L vertices. <

» Lemma 17. If there exists a capacitated k-center solution with cost R < 2, then there
exists a solution to the EC3S instance.

Proof. From Lemmas 14, 15 and 16, there are % set gadgets each of which have 2 centers
and the corresponding sets are all disjoint. These % sets form the solution set F’. |
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Figure 2 Gadgets for reduction (for the capacitated k-center problem).

» Theorem 18. An «-approzimation is not possible for the uniform capacitated k-center
problem for a < 2, unless P = NP.

Proof. Follows from Lemmas 13 and 17. |

» Remark. Using the same reduction and allowing capacities of L at vertices z4 and A in
ga for each set A € F and a capacity of zero at every other vertex, it can be shown that the
{0, L}-capacitated k-center problem is hard to approximate within a factor of (3 — ¢) for a
constant L.
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—— Abstract

We study the strip packing problem, a classical packing problem which generalizes both bin
packing and makespan minimization. Here we are given a set of axis-parallel rectangles in the
two-dimensional plane and the goal is to pack them in a vertical strip of fixed width such that
the height of the obtained packing is minimized. The packing must be non-overlapping and the

rectangles cannot be rotated.

A reduction from the partition problem shows that no approximation better than 3/2 is
possible for strip packing in polynomial time (assuming P#NP). Nadiradze and Wiese [SODA16]
overcame this barrier by presenting a (% +¢€)-approximation algorithm in pseudo-polynomial-time
(PPT). As the problem is strongly NP-hard, it does not admit an exact PPT algorithm (though
a PPT approximation scheme might exist).

In this paper we make further progress on the PPT approximability of strip packing, by
presenting a (% + €)-approximation algorithm. Our result is based on a non-trivial repacking of
some rectangles in the empty space left by the construction by Nadiradze and Wiese, and in some
sense pushes their approach to its limit.

Our PPT algorithm can be adapted to the case where we are allowed to rotate the rectangles
by 90°, achieving the same approximation factor and breaking the polynomial-time approxima-
tion barrier of 3/2 for the case with rotations as well.
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1 Introduction

In this paper, we consider the strip packing problem, a well-studied classical two-dimensional
packing problem [6, 14, 28]. Here we are given a collection of rectangles, and an infinite
vertical strip of width W in the two dimensional (2-D) plane. We need to find an axis-parallel
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embedding of the rectangles without rotations inside the strip so that no two rectangles
overlap (feasible packing). Our goal is to minimize the total height of this packing.

More formally, we are given a parameter W € N and a set R = {R1,..., R} of rectangles,
each one characterized by a width w; € N, w; < W, and a height h; € N. A packing of R is a
pair (z;,y;) € NxN for each R;, with 0 < z; < W — w;, meaning that the left-bottom corner
of R; is placed in position (z;,y;) and its right-top corner in position (z; + w;,y; + h;). This
packing is feasible if the interior of rectangles is disjoint in this embedding (or equivalently
rectangles are allowed to overlap on their boundary only). Our goal is to find a feasible
packing of minimum height max;{y; + h;}.

Strip packing is a natural generalization of one-dimensional bin packing [13] (when all the
rectangles have the same height) and makespan minimization [12] (when all the rectangles
have the same width). The problem has lots of applications in industrial engineering and
computer science, specially in cutting stock, logistics and scheduling [28, 20]. Recently, there
have been a lot of applications of strip packing in electricity allocation and peak demand
reductions in smart-grids [36, 27, 32].

A simple reduction from the partition problem shows that the problem cannot be
% — ¢ for any € > 0 in polynomial-time unless P=NP. This
reduction relies on exponentially large (in n) rectangle widths.

Let OPT = OPT(R) denote the optimal height for the considered strip packing instance
(R, W), and hmax = hmax(R) (resp. Wmax = Wmax(R)) be the largest height (resp. width)
of any rectangle in R. Observe that trivially OPT > hpax. W.l.o.g. we can assume

approximated within a factor

that W < nwpq,. The first non-trivial approximation algorithm for strip packing, with
approximation ratio 3, was given by Baker, Coffman and Rivest [6]. The First-Fit-Decreasing-
Height algorithm (FFDH) by Coffman et al. [14] gives a 2.7 approximation. Sleator [34]
gave an algorithm that generates packing of height 20PT + h*"%, hence achieving a 2.5
approximation. Afterwards, Steinberg [35] and Schiermeyer [33] independently improved the
approximation ratio to 2. Harren and van Stee [21] first broke the barrier of 2 with their
1.9396 approximation. The present best (% + e)-approximation is due to Harren et al. [20].

Nadiradze and Wiese [31] overcame the %—inapproximability barrier by presenting a
(% + e)-approximation algorithm running in pseudo-polynomial-time (PPT). More specifically,
the running time of their algorithm is O((Nn)°M), where N = max{wmaz, hmaz } - As strip
packing is strongly NP-hard [17], it does not admit an exact PPT algorithm. However, the
existence of a PPT approximation scheme is currently not excluded.

1.1 Our contribution and techniques

In this paper, we make progress on the PPT approximability of strip packing, by presenting
an improved (% + ¢) approximation. Our approach refines the technique of Nadiradze and
Wiese [31], that modulo several technical details works as follows. Let « € [1/3,1/2) be
a proper constant parameter, and define a rectangle R; to be tall if h; > a - OPT. They
prove that the optimal packing can be structured into a constant number of axis-aligned
rectangular regions (bozes), that occupy a total height of OPT" < (1 + ¢)OPT inside the
vertical strip. Some rectangles are not fully contained into one box (they are cut by some box).
Among them, tall rectangles remain in their original position. All the other cut rectangles
are repacked on top of the boxes: part of them in a horizontal box of size W x O(e)OPT,

1 For the case without rotations, the polynomial dependence on h,q. can indeed be removed with
standard techniques.
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Figure 1 Comparison of final solutions.

and the remaining ones in a vertical box of size O(eW) x a OPT (that we next imagine as
placed on the top-left of the packing under construction).

Some of these boxes contain only relatively high rectangles (including tall ones) of
relatively small width. The next step is a rearrangement of the rectangles inside one such
vertical box B (see Figure 3a), say of size w x h: they first slice non-tall rectangles into
unit width rectangles (this slicing can be finally avoided with standard techniques). Then
they shift tall rectangles to the top/bottom of B, shifting sliced rectangles consequently (see
Figure 3b). Now they discard all the (sliced) rectangles completely contained in a central
horizontal region of size w x (14— 2a)ﬁ, and they nicely rearrange the remaining rectangles
into a constant number of sub-boxes (excluding possibly a few more non-tall rectangles, that
can be placed in the additional vertical box).

These discarded rectangles can be packed into 2 extra boxes of size % x (1+¢—2a)h
(see Figure 3d). In turn, the latter boxes can be packed into two discarded boxes of size
% X (1 +¢e—2a)OPT’, that we can imagine as placed, one on top of the other, on the
top-right of the packing. See Figure la for an illustration of the final packing. This leads
to a total height of (1 + max{«,2(1 — 2a)} + O(e)) - OPT, which is minimized by choosing

2

a:g.

Our main technical contribution is a repacking lemma that allows one to repack a
small fraction of the discarded rectangles of a given box inside the free space left by the
corresponding sub-boxes (while still having O, (1) many sub-boxes in total). This is illustrated
in Figure 3e. This way we can pack all the discarded rectangles into a single discarded box
of size (1 — )W x (1 + & — 2a)OPT’, where v is a small constant depending on ¢, that we

FSTTCS 2016
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can place on the top-right of the packing. The vertical box where the remaining rectangles
are packed still fits to the top-left of the packing, next to the discarded box. See Figure 1b
for an illustration. Choosing « = 1/3 gives the claimed approximation factor.

We remark that the basic approach by Nadiradze and Wiese strictly requires that at
most 2 tall rectangles can be packed one on top of the other in the optimal packing, hence
imposing « > 1/3. Thus in some sense we pushed their approach to its limit.

The algorithm by Nadiradze and Wiese [31] is not directly applicable to the case when
90° rotations are allowed. In particular, they use a linear program to pack some rectangles.
When rotations are allowed, it is unclear how to decide which rectangles are packed by
the linear program. We use a combinatorial container-based approach to circumvent this
limitation, which allows us to pack all the rectangles using dynamic programming. This way
we achieve a PPT (4/3 + ¢)-approximation for strip packing with rotations, breaking the
polynomial-time approximation barrier of 3/2 for that variant as well.

1.2 Related work

For packing problems, many pathological lower bound instances occur when OPT is small.
Thus it is often insightful to consider the asymptotic approximation ratio. Coffman et
al. [14] described two level-oriented algorithms, Next-Fit-Decreasing-Height (NFDH) and
First-Fit-Decreasing-Height (FFDH), that achieve asymptotic approximations of 2 and 1.7,
respectively. After a sequence of improvements [18, 5], the seminal work of Kenyon and
Rémila [28] provided an asymptotic polynomial-time approximation scheme (APTAS) with
an additive term O (h?%) The latter additive term was subsequently improved to hA.,,q. by
Jansen and Solis-Oba [24].

In the variant of strip packing with rotations, we are allowed to rotate the input rectangles
by 90° (in other terms, we are free to swap the width and height of an input rectangle). The
case with rotations is much less studied in the literature. It seems that most techniques that
work for the case without rotations can be extended to the case with rotations, however this
is not always a trivial task. In particular, it is not hard to achieve a 2 + ¢ approximation, and
the 3/2 hardness of approximation extends to this case as well [24]. In terms of asymptotic
approximation, Miyazawa and Wakabayashi [30] gave an algorithm with asymptotic perfor-
mance ratio of 1.613. Later, Epstein and van Stee [16] gave a % asymptotic approximation.
Finally, Jansen and van Stee [25] achieved an APTAS for the case with rotations.

Strip packing has also been well studied for higher dimensions. The present best asymp-
totic approximation for 3-D strip packing is due to Jansen and Préadel [23] who gave
1.5-approximation extending techniques from 2-D bin packing.

There are many other related geometric packing problems. For example, in the independent
set of rectangles problems we are given a collection of axis-parallel rectangles embedded in
the plane, and we need to find a maximum cardinality /weight subset of non-overlapping
rectangles [1, 10, 11]. Interesting connections between this problems and unsplittable flow on
a path were recently discovered [3, 4, 7, 9, 19]. In the geometric knapsack problem we wish
to pack a maximum cardinality /profit subset of the rectangles in a given square knapsack
[2, 26]. One can also consider a natural geometric version of bin packing, where one needs to
pack a given set of rectangles in the smallest possible number of square bins [8]. We refer
the readers to [29] for a survey on geometric packing problems.
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1.3 Organization of the paper

First, we discuss some preliminaries and notations in Section 2. Section 3 contains our main
technical contribution, our repacking lemma. There we also discuss a refined structural result
leading to a packing into O¢(1) many containers. In Section 4, we describe our algorithm to
pack the rectangles. Then in Section 5, we extend our algorithm to the case with rotations.
Finally, in Section 6, we conclude with some observations.

Due to space constraints, some proofs are omitted from this extended abstract and will
appear in the full version of the paper.

2 Preliminaries and notations

Throughout the present work, we will follow the notation from [31], which will be explained
as it is needed.

Recall that OPT € N denotes the height of the optimal packing for instance R. By trying
all the pseudo-polynomially many possibilities, we can assume that OPT is known to the
algorithm. Given a set M C R of rectangles, a(M) will denote the total area of rectangles
in M, ie., a(M) =3 5 crghi - wi, and hyax (M) (resp. wimax(M)) denotes the maximum
height (resp. width) of rectangles in M. Throughout this work, a boz of size a X b means an
axis-aligned rectangular region of width a and height b.

In order to lighten the notation, we sometimes interpret a rectangle/box as the corre-
sponding region inside the strip according to some given embedding. The latter embedding
will not be specified when clear from the context. Similarly, we sometimes describe an
embedding of some rectangles inside a box, and then embed the box inside the strip: the
embedding of the considered rectangles is shifted consequently in that case.

A vertical (resp. horizontal) container is an axis-aligned rectangular region where we
implicitly assume that rectangles are packed one next to the other from left to right (resp.,
bottom to top), i.e., any vertical (resp. horizontal) line intersects only one packed rectangle
(see Figure 2b). Container-like packings will turn out to be particularly useful since they
naturally induce a (one-dimensional) knapsack instance.

2.1 Classification of rectangles

Let 0 < € < «, and assume for simplicity that é € N. We first classify the input rectangles
into six groups according to parameters 6, 6y, fin, by Satisfying € > §, > pp > 0 and
€ > 0y > gy > 0, whose values will be chosen later (see also Figure 2a). A rectangle R; is

Large if h; > 6,OPT and w; > §,W.

Tall if h; > aOPT and w; < 6,W.

Vertical if h; € [0,bOPT,cOPT] and w; < p,, W,

Horizontal if h; < upOPT and w; > §,W,

Small if h; < pp,OPT and w; < p, W3

Medium in all the remaining cases, i.e., if h; € (upyOPT, §,OPT), or w; € (W, 6 W)

and h; < aOPT.
Weuse L, T, V, H, S, and M to denote large, tall, vertical, horizontal, small, and medium
rectangles, respectively. We remark that, differently from [31], we need to allow dp, # d,, and
L # py due to some additional constraints in our construction (see Section 4).

Notice that according to this classification, every vertical line across the optimal packing
intersects at most two tall rectangles. The following lemma allows us to choose 6y, by, tin

9:5
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Figure 2 Illustration of some of the definitions used in this paper.

and fi,, in such a way that dp, and pp, (8, and p,,, respectively) differ by a large factor, and
medium rectangles have small total area.

» Lemma 1. Given a polynomial-time computable function f : (0,1) — (0,1), with f(x) < z,
any constant € € (0,1), and any positive integer k, we can compute in polynomial time a set
A of T = 2(%)’6 many positive real numbers upper bounded by €, such that there is at least

one number 8, € A so that a(M) < ¥ - OPT - W by choosing p, = f(0n), pw = %, and
b = .

Function f and constant k& will be chosen later. From now on, assume that 0y, 6., up and
1y are chosen according to Lemma 1.

2.2 Overview of the algorithm

We next overview some of the basic results in [31] that are needed in our result. We define
the constant v := %7 and w.l.o.g. assume - OPT € N.

Let us forget for a moment small rectangles S. We will pack all the remaining rectangles
LUHUTUV UM into a sufficiently small number of boxes embedded into the strip. By
standard techniques, as in [31], it is then possible to pack S (essentially using NFDH in
a proper grid defined by the above boxes) while increasing the total height at most by
O(e)OPT. See Section 4.1 for more details on packing of small rectangles.

The following lemma from [31] allows one to round the heights and positions of rectangles
of large enough height, without increasing much the height of the packing.

» Lemma 2 ([31]). There exists a feasible packing of height OPT' < (1 +¢)OPT where: (1)
the height of each rectangles in L UT UV is rounded up to the closest integer multiple of
v - OPT and (2) their x-coordinates are as in the optimal solution and their y-coordinates
are integer multiples of v - OPT.

We next focus on rounded rectangle heights (i.e., implicitly replace LUT UV by their rounded
version) and on this slightly suboptimal solution of height OPT".
The following lemma helps us to pack rectangles in M.
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» Lemma 3. If k in Lemma 1 is chosen sufficiently large, all the rectangles in M can be
packed in polynomial time into a box Bshor of size W x O(e)OPT and a box By yer of size
(3W) x («OPT). Furthermore, there is one such packing using % vertical containers in
Barhor and 3%” horizontal containers in Bas yer-

We say that a rectangle R; is cut by a box B if both R; \ B and B\ R; are non-empty
(considering both R; and B as open regions with an implicit embedding on the plane). We
say that a rectangle R; € H (resp. R; € TUV) is nicely cut by a box B if R; is cut by B
and their intersection is a rectangular region of width w; (resp. height h;). Intuitively, this
means that an edge of B cuts R; along its longest side (see Figure 2c).

Now it remains to pack LU H UT UV: The following lemma, taken from [31] modulo
minor technical adaptations, describes an almost optimal packing of those rectangles.

» Lemma 4. There is an integer Kp = (%)(5%)0(1) such that, assuming pp, < i?—g, there is
a partition of the region Bopr := [0, W] x [0, OPT'] into a set B of at most Kg bozes and
a packing of the rectangles in LUT UV U H such that:

each boz has size equal to the size of some R; € L (large box), or has height at most

0,OPT' (horizontal box), or has width at most §,,W (vertical box);
each R; € L is contained into a large box of the same size;

each R; € H is contained into a horizontal box or is cut by some box. Furthermore, the
total area of horizontal cut rectangles is at most W - O(e)OPT’;

each R; € T UV is contained into a vertical box or is nicely cut by some vertical boz.

We denote the sets of vertical, horizontal, and large boxes by By, By and Bp, respectively.
Observe that B can be guessed in PPT. We next use T,,; C T and V.,; C V to denote tall
and vertical cut rectangles in the above lemma, respectively. Let us also define Tpor = T\ Teut
and Vipr =V \ Veur.

Using standard techniques (see e.g. [31]), we can pack all the rectangles excluding the
ones contained in vertical boxes in a convenient manner. This is summarized in the following
lemma.

» Lemma 5. Given B as in Lemma 4 and assuming p, < there exists a packing

of LUHUT UV such that:

1. all the rectangles in L are packed in Br;

2. all the rectangles in H are packed in By plus an additional box By cur of size W x
O(e)OPT;

3. all the rectangles in Teyy U Thor U Voo are packed as in Lemma 4;

Yon
6Kp(l+e)’

4. all the rectangles in Vet are packed in an additional vertical box By,cut of size (3W) x

(a«OPT).

We will pack all the rectangles (essentially) as in [31], with the exception of Thor U Vios
where we exploit a refined approach. This is the technical heart of this paper, and it is
discussed in the next section.

3 A repacking lemma

We next describe how to pack rectangles in Ty, U Vpor. In order to highlight our contribution,
we first describe how the approach by Nadiradze and Wiese [31] works.

9:7
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It is convenient to assume that all the rectangles in Vi, are sliced vertically into sub-
rectangles of width 1 each?. Let Vijiceq be such sliced rectangles. We will show how to pack
all the rectangles in Tpop U Vijieeq into a constant number of sub-boxes. Using standard
techniques it is then possible to pack V., into the space occupied by Vyiceq plus an additional
box By, round of size (3W) x aOPT.

We next focus on a specific vertical box B, say of size W x h (see Figure 3a). Let Tyt
be the tall rectangles cut by B. Observe that there are at most 4 such rectangles (2 on the
left /right side of B). The rectangles in T, are packed as in Lemma 5. Let also T and V be
the tall rectangles and sliced vertical rectangles, respectively, originally packed completely
inside B.

They show that it is possible to pack T UV into a constant size set S of sub-boxes
contained inside B — T, plus an additional box D of size W x (1 +¢& — 2a)h. Here B —T oy
denotes the region inside B not contained in T',;. In more detail, they start by considering
each rectangle R; € T. Since a > % by assumption, one of the regions above or below R;
cannot contain another tall rectangle in T, say the first case applies (the other one being
symmetric). Then we move R; up so that its top side overlaps with the top side of B. The
sliced rectangles in V that are covered this way are shifted right below R (note that there is
enough free space by construction). At the end of the process all the rectangles in T' touch
at least one of the top and bottom side of B (see Figure 3b). Note that no rectangle is
discarded up to this point.

Next, we partition the space inside B — (T UT ;) into maximal height unit-width vertical
stripes. We call each such stripe a free rectangle if both its top and bottom side overlap
with the top or bottom side of some rectangle in T U T',;, and otherwise a pseudo rectangle
(see Figure 3c). We define the i-th free rectangle to be the free rectangle contained in stripe
[i —1,4] x [0, hl.

Note that all the free rectangles are contained in a horizontal region of width w and
height at most h — 200PT < h — 20[% <h(l- f—fg) < h(1 + € — 2a) contained in the
central part of B. Let V g5 be the set of (sliced vertical) rectangles contained in the free
rectangles. Rectangles in V g can be obviously packed inside D. For each corner @ of
the box B, we consider the maximal rectangular region that has @ as a corner and only
contains pseudo rectangles whose top/bottom side overlaps with the bottom/top side of
a rectangle in T.,;; there are at most 4 such non-empty regions, and for each of them we
define a corner sub-box, and we call the set of such sub-boxes B, (see Figure 3c). The
final step of the algorithm is to rearrange horizontally the pseudo/tall rectangles so that
pseudo/tall rectangles of the same height are grouped together as much as possible (modulo
some technical details). The rectangles in By, are not moved. The sub-bozes are induced
by maximal consecutive subsets of pseudo/tall rectangles of the same height touching the
top (resp., bottom) side of B (see Figure 3d). We crucially remark that, by construction, the
height of each sub-box (and of B) is a multiple of yOPT.

By splitting each discarded box D into two halves Edisc,mp and Edisc,bot, and replicating
the packing of boxes inside Bop7, it is possible to pack all the discarded boxes into two
boxes Bgise,top and Baise,bot, both of size % X (1+e&—2a)OPT".

A feasible packing of boxes (and hence of the associated rectangles) of height (1 +
max{a, 2(1 —2a)} + O(e))OPT is then obtained as follows. We first pack Bopr+ at the base
of the strip, and then on top of it we pack Bas por, two additional boxes By round and B cut
(which will be used to repack the horizontal items), and a box Bg (which will be used to pack

2 For technical reasons, slices have width 1/2 in [31]. For our algorithm, slices of width 1 suffice.
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some of the small items). The latter 4 boxes all have width W and height O(¢OPT’). On
the top right of this packing we place Byisc,top and Byisc,bot, One on top of the other. Finally,
we pack Basyer; Bv,cut and By round On the top left, one next to the other. See Figure 1a for
an illustration. The height is minimized for o = 2, leading to a 7/5 4+ O(e) approximation.

The main technical contribution of this paper is to show how it is possible to repack
a subset of Vg, into the free space inside Bey; := B — T,y not occupied by sub-boxes,
so that the residual sliced rectangles can be packed into a single discarded box Bg;s. of
size (1 — )W x (1 + ¢ — 2a)h (repacking lemma). See Figure 3e. This apparently minor
saving is indeed crucial: with the same approach as above all the discarded sub-boxes
Bise can be packed into a single discarded box Bgis. of size (1 —~)W x (1 +¢& —2a)OPT".
Therefore, we can pack all the previous boxes as before, and By;s. on the top right. Indeed,
the total width of Bas yer, Bv,cut and By rouna is at most YW for a proper choice of the
parameters. See Figure 1b for an illustration. Altogether the resulting packing has height
(1 + max{a,1 — 2a} + O(¢))OPT. This is minimized for o = %, leading to the claimed
4/3 4+ O(e) approximation.

It remains to prove our repacking lemma.

» Lemma 6 (Repacking Lemma). Consider a partition of D into W unit-width vertical stripes.
There is a subset of at least yw such stripes so that the corresponding sliced vertical rectangles
Vrepack can be repacked inside Beyy = B — Teys in the space not occupied by sub-boxes.

Proof. Let f(i) denote the height of the i-th free rectangle, where for notational convenience
we introduce a degenerate free rectangle of height f(i) = 0 whenever the stripe [i —1,4] x [0, h]
inside B does not contain any free rectangle. This way we have precisely W free rectangles.
We remark that free rectangles are defined before the horizontal rearrangement of tall/pseudo
rectangles, and the consequent definition of sub-boxes.

Recall that sub-boxes contain tall and pseudo rectangles. Now consider the area in B,
not occupied by sub-boxes. Note that this area is contained in the central region of height
h(1 - f—f‘e) Partition this area into maximal-height unit-width vertical stripes as before
(newly free rectangles). Let g(i) be the height of the i-th newly free rectangle, where again
we let g(i) = 0 if the stripe [i — 1,4] x [0, h] does not contain any (positive area) free region.
Note that, since tall and pseudo rectangles are only shifted horizontally in the rearrangement,

it must be the case that:

Let G be the (good) indexes where g(i) > f(i), and G = {1,...,%w} — G be the bad indexes
with g(i) < f(i). Observe that for each i € G, it is possible to pack the i-th free rectangle

inside the i-th newly free rectangle, therefore freeing a unit-width vertical strip inside D.

Thus it is sufficient to show that |G| > ~w.

Observe that, for i € G, f(i) — g(i) > yOPT > fyligz indeed, both f(i) and g(¢) must be

multiples of YOPT since they correspond to the height of B minus the height of one or two
tall/pseudo rectangles. On the other hand, for any index i, g(i) — f(i) < g(i) < (1 — 22%)h,

1+
by the definition of g. Altogether
(- 2200161 > Se) - £0) = S0 - g = @ = 2w o)
1+€ _‘ gt 1 = ~ 1 gt _1+5 71—"—5 w .
ieG i€G
We conclude that |G| > mw The claim follows since by assumption o > ¢ >v. <«
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(a) Original packing in a vertical (b) Rectangles in T are shifted (c) We define pseudo rectangles

box B after removing V,y:. Gray vertically so that and free space in B — (T U
rectangles correspond to T, dark they touch either the top Teut). Crosshatched stripes corre-
gray rectangles to Teys and light or the bottom of box B, shifting spond to pseudo rectangles, empty
gray rectangles to V. also slices in V' accordingly. stripes to free rectangles, and

dashed regions correspond to cor-
ner sub-boxes.

(14¢—2a)h

(I+e—2a)h

77777

[RRRENA

>y
good indexes

(d) Rearrangement of pseudo and tall rectangles (e) Our refined repacking of V 4;s. according to
to get O (1) sub-boxes, and additional packing Lemma 6: some vertical slices are repacked in the
of Vgise as in [31]. free space.

Figure 3 Creation of pseudo rectangles, how to get constant number of sub-boxes and repacking
of vertical slices in a vertical box B.

The original algorithm in [31] use standard LP-based techniques, as in [28], to pack the
horizontal rectangles. We can avoid that via a refined structural lemma: here boxes and
sub-boxes are further partitioned into vertical (resp., horizontal) containers. Rectangles are
then packed into such containers as mentioned earlier: one next to the other from left to right
(resp., bottom to top). Containers define a multiple knapsack instance, that can be solved
optimally in PPT via dynamic programming. This approach has two main advantages:
= It leads to a simpler algorithm.
= It can be easily adapted to the case with rotations, as discussed in Section 5.

We omit the proof of the following Lemma.

O(1/(dwe))
» Lemma 7. By choosing o = 1/3, there is an integer Kp < E(% such that,
assuming pin, < & and p, < 57—, there is a packing of R\ S in the region [0, W] x [0, (4/3 +

O(g))OPT'] with the following properties:
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All the rectangles in R\ S are contained in Krorar, = O:(1) horizontal or vertical
containers, such that each of these containers is either contained in or disjoint from
Bopr;

At most K containers are contained in Bopr:, and their total area is at most a(R \ S).

4 A refined algorithm

First of all, we find pp, On, fiw, 0 as required by Lemma 1; this way, we can find the set S of
small rectangles. Consider the packing of Lemma 7: all the non-small rectangles are packed
into Krorar = O:(1) containers, and only Kp of them are contained in Bppy. Since their
position (z,y) and their size (w, h) are w.l.o.g. contained in {0,..., W} x{0,...,nhmaz}, we
can enumerate in PPT over all the possible feasible such packings of k < K701 41, containers,
and one of those will coincide with the packing defined by Lemma 7.

Containers naturally induce a multiple knapsack problem: for each horizontal container
Cj of size wg; X hg;, we create a (one-dimensional) knapsack j of size h¢c,. Furthermore,

we define the size b(i, j) of rectangle R; w.r.t. knapsack j as h; if h; < he,; and w; < wg;.

Otherwise b(i, j) = +oo (meaning that R; does not fit in C;). The construction for vertical
containers is symmetric. This multiple knapsack problem can be easily solved optimally
(hence packing all the rectangles) in PPT via dynamic programming.

Note that unlike [31], we do not use linear programming to pack horizontal rectangles,
which will be crucial when we extend our approach to the case with rotations.

4.1 Packing the small rectangles

It remains to pack the small rectangles S. We will pack them in the free space left by
containers inside [0, W] x [0, OPT"] plus an additional box Bg of small height as the following
lemma states. By placing box Bg on top of the remaining packed rectangles, the final height
of the solution increases only by e - OPT".

» Lemma 8. Assuming pup, < ﬁ, it is possible to pack in polynomial time all the rectangles
F

in S into the area [0, W] x [0, OPT'] not occupied by containers plus an additional box Bg of
size W x eOPT".

Proof. We first extend the sides of the containers inside [0, W] x [0, OPT’] in order to
define a grid. This procedure partitions the free space in [0, W] x [0, OPT’] into a constant
number of rectangular regions (at most (2Kp + 1) < 5K% many) whose total area is at
least a(S) thanks to Lemma 7. Let Bgnau be the set of such rectangular regions with width
at least p,,WW and height at least p, OPT (notice that the total area of rectangular regions
not in Bgyqey is at most 5K%uwuh - W - OPT). We now use NFDH to pack a subset of S
into the regions in Bg,q- By standard properties of NFDH, since each region in Bgpan
has size at most W x OPT’ and each item in S has width at most p,, W and height at
most pup,OPT, the total area of the unpacked rectangles from S can be bounded above by
K2 - (uwthOPT + upOPT - W + po W - OPT') < 15K2u;, - OPT' - W. Therefore we
can pack the latter small rectangles with NFDH in an additional box Bg of width W and
height u,OPT + 30K2u,OPT’ < - OPT’ provided that yuj < ﬁ? <

The (rather technical) details on how to choose f and k (and consequently the actual
values of up, 0y, and ) will be discussed in the full version of this paper. We next
summarize the constraints that arise from the analysis:

9:11
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h __ &0p [
pw = & and 8, = S (Lemma 1), tw < Vgrptirs (Lemma 5),
V= % (Lemma 2), pw < 37— (Lemma 7),
6c* < 2 (Lemma 3) pn < g% (Lemma 7),
pn < 32 (Lemma 4), in < 5rtez (Lemma 8)

It is not difficult to see that all the constraints are satisfied by choosing f(z) = (ex)/ ()

for a large enough constant C' and k = ﬂog6 (37—6)] Finally we achieve the claimed result.

» Theorem 9. There is a PPT (% + &)-approzimation algorithm for strip packing.

5 Extension to the case with rotations

In this section, we briefly explain the changes needed in the above algorithm for the case
with rotations.

We first observe that, by considering the rotation of rectangles as in the optimum solution,
Lemma 7 still applies (for a proper choice of the parameters, that can be guessed). Therefore
we can define a multiple knapsack instance, where knapsack sizes are defined as before. Some
extra care is needed to define the size b(7,j) of rectangle R; into a container C; of size
wg; X he,. Assume Cj is horizontal, the other case being symmetric. If rectangle R; fits in
C; both rotated and non-rotated, then we set b(4, j) = min{w;, h;} (this dominates the size
occupied in the knapsack by the optimal rotation of R;). If R; fits in C; only non-rotated
(resp., rotated), we set b(i,j) = h; (resp., b(4,j) = w;). Otherwise we set b(i,j) = +00.

There is a final difficulty that we need to address: we can not say a priori whether a
rectangle is small (and therefore should be packed in the final stage). To circumvent this
difficulty, we define one extra knapsack k' whose size is the total area in Bopr not occupied
by the containers. The size b(i, k) of R; in this knapsack is the area a(R;) = w; - h; of R;
provided that R; or its rotation by 90° is small w.r.t. the current choice of the parameters
(Ons i Oy ey ). Otherwise b(i, k') = +oo.

By construction, the above multiple knapsack instance admits a feasible solution that
packs all the rectangles. This immediately implies a packing of all the rectangles, excluding
the (small) ones in the extra knapsack. Those rectangles can be packed using NFDH as in
the proof of Lemma 8 (here however we must choose a rotation such that the considered
rectangle is small). Altogether we achieve:

» Theorem 10. There is a PPT (% + €)-approzimation algorithm for strip packing with
rotations.

6 Conclusions

In this paper we obtained a PPT 4/3 + ¢ approximation for strip packing (with and without
rotations). Our approach refines and, in some sense, pushes to its limit the basic approach in
previous work by Nadiradze and Wiese [31]. Indeed, the rearrangement of rectangles inside
a box crucially exploits the fact that there are at most 2 tall rectangles packed on top of
each other in the optimal packing, hence requiring o > 1/3. We believe that any further
improvement requires substantially new algorithmic ideas.

A PPT approximation scheme for strip packing is not excluded by the current inapprox-
imability results (essentially, only strong NP-hardness). Note that, like bin packing, strip
packing admits an asymptotic polynomial-time approximation scheme (APTAS), and bin
packing admits a PPT approximation scheme [22, 15]. It is an interesting open problem to
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find a PPT approximation scheme for this problem, or to prove some stronger hardness of
approximation result in PPT.
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—— Abstract

Goemans showed that any n points 1, ...z, in d-dimensions satisfying £3 triangle inequalities
can be embedded into ¢;, with worst-case distortion at most v/d. We consider an extension of
this theorem to the case when the points are approximately low-dimensional as opposed to ex-
actly low-dimensional, and prove the following analogous theorem, albeit with average distortion
guarantees: There exists an £3-to-f; embedding with average distortion at most the stable rank,
sr(M), of the matrix M consisting of columns {z; —z;},<;. Average distortion embedding suffices
for applications such as the SPARSEST CUT problem. Our embedding gives an approximation
algorithm for the SPARSEST CUT problem on low threshold-rank graphs, where earlier work was
inspired by Lasserre SDP hierarchy, and improves on a previous result of the first and third au-
thor [Deshpande and Venkat, In Proc. 17th APPROX, 2014]. Our ideas give a new perspective
on £2 metric, an alternate proof of Goemans’ theorem, and a simpler proof for average distortion

V.
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Metric Embeddings, Sparsest Cut, Negative type metrics, Approximation
Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.10

1 Introduction

A finite metric space consists of a pair (X,d), where X is a finite set of points, and
d: X x X = R is a distance function on pairs of points in X. Finite metric spaces arise
naturally in combinatorial optimization (e.g., the ¢; space in cut problems), and in practice
(e.g., edit-distance between strings over some alphabet ). Since the input space may not
be amenable to efficient optimization, or may not admit efficient algorithms, one looks for
embeddings from these input spaces to easier spaces, while minimizing the distortion incurred.
Given its importance, various aspects of such embeddings have been investigated such as
dimension, distortion, efficient algorithms, and hardness results (refer to surveys [10, 16, 14]
and references therein). In this paper, we provide better distortion guarantees for embedding
approzimately low-dimensional points in the ¢3-metric into ¢1, and give applications to the
SPARSEST CUT problem.

In the SPARSEST CUT problem, we are given graphs C, D on the same vertex set V', with
|V | = n, called the cost and demand graphs, respectively. They are specified by non-negative
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edge weights ¢;;,d;; > 0, for i < j € [n] and the (non-uniform) sparsest cut problem,
henceforth referred to as SPARSEST CuT, asks for a subset S C V that minimizes

>icj Cij s (i) — Is(j)]

D iy dij [Is(i) — Ls(5)]

where Ig(7) is the indicator function giving 1, if ¢ € S, and 0, otherwise. We denote the
optimum by ®* := mingcy ®(S5). When the demand graph is a complete graph on n vertices

O(9) :=

with uniform edge weights, the problem is then commonly referred to as the UNIFORM
SPARSEST CUT problem.

The best known (unconditional) approximation guarantee for the UNIFORM SPARSEST
CuT problem is O(y/Iogn), due to Arora, Rao and Vazirani [3] (henceforth referred to as
the ARV algorithm). Building on techniques in this work, Arora, Lee and Naor [2] give a
O(+/lognloglogn) algorithm for non-uniform SPARSEST CUT. These results come from a
semi-definite programming (SDP) relaxation to produce solutions in the fs-squared metric
space, i.e., a set of vectors {z;};cy in some high dimensional space that satisfy triangle
inequality constraints on the squared distances in the following sense.

i = ajlly + llzs —@ls = llzs — el Vg k€ [n].

Since the ¢; metric lies in the non-negative cone of cut (semi-)metrics, ARV [3] and Arora-
Lee-Naor[2] round their solutions via low-distortion embeddings of the above £2 solution into
{1 metric. Embeddings with low average-distortion suffice for applications to the SPARSEST
CurT problem.

Any n points satisfying 3 triangle inequalities make only acute angles among themselves,
and therefore must lie in Q(logn) dimensions (Chapter 15, [1]). However, for low threshold-
rank graphs, or more generally, when the r-th smallest generalized eigenvalue of the cost
and demand graphs satisfies \.(C, D) > ®gpp, the above SDP solution is known to be
approzimately low-dimensional, that is, the span of its top r eigenvectors contains nearly all
of its total eigenmass (implicit in [9]). Moreover, it can be embedded into ¢; using solutions
of higher-levels of the Lasserre SDP hierarchy to obtain a PTAS-like approximation guarantee
[9]. This motivates the quest for finding more efficient embeddings of low-dimensional or
approzimately low-dimensional 2 metrics into £;.

Goemans (unpublished, appears in [15]) showed that if the points satisfying ¢3 triangle
inequalities lie in d dimensions, then they can be embedded into ¢5 (and hence into ¢;, since
there is an isometry from £, < ¢; [16]) with v/d distortion.

» Theorem 1.1 (Goemans [15, Appendix B]). Let x1,za,..., 2, € R? be n points satisfying
03 triangle inequalities. Then there exists an (3 — ly embedding z; — f(x;) with distortion

Vd, that is,

—ajlly < 1f (@) = f(@5)lly < llwi = ll3, VijeV.

|

|

Vd
Comparison of Goemans and ARV

Since n points satisfying ¢3 triangle inequalities must lie in d = Q(logn) dimensions (Chapter
15, [1]), the ARV algorithm [3] implies an ¢3 < ¢; embedding with average distortion O(v/d),
and Arora-Lee-Naor [2] improve it to O(v/d) worst-case distortion. In the other direction,
is it possible to extend Theorem 1.1 to give ARV-like guarantees? Here are two immediate
ideas that come to mind.
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Combine Theorem 1.1 with a dimension reduction to O(logn) dimensions for £3 metrics,
similar to the Johnson-Lindenstrauss lemma for ¢5. Such a dimension reduction for
/3 that approximately preserves all pairwise (3 distances is ruled out by Magen and
Moharrami [15], although their proof does not rule out dimension reduction for average
distortion.

Extend Theorem 1.1 to work with approximate £3 triangle inequalities, and then combine it
with the Johnson-Lindenstrauss lemma. The Johnson-Lindenstrauss lemma, when applied
to points satisfying ¢2 triangle inequalities, preserves their £3 triangle inequalities only
approximately. That is, the points after the Johnson-Lindenstrauss random projection
satisfy

2 2 2 .
[z = xjlly + g —aplly = (1= O(€) i —2xlly Vi, gk € [n].

We note that a generalization of Theorem 1.1 that accommodates approximate 3 triangle
inequalities (in the additive sense not multiplicative as above) does hold, but its only
proof (due to Trevisan [personal communication]) that we are aware of uses the technical
core of the analysis of the ARV algorithm.

Here we seek a robust generalization of Goemans’ theorem that avoids the above caveats.
Our version of Goemans’ theorem uses average distortion instead of worst-case. It is robust
in the sense that it works with approzimate dimension instead of the actual dimension.
Such a robust version opens up another possible approach to the general SPARSEST CUT
problem: reduce the approximate dimension while preserving the pairwise distances on
average, and then apply the robust version of Goemans’ theorem. Moreover, our definition
of the approximate dimension is spectral, and our results can be easily compared to those
of Guruswami-Sinop [9] on Lasserre SDP hierarchies and Kwok et al. [13] on higher order
Cheeger inequalities (see Sections 1.1 and 1.2 for comparisons).

1.1 Our Results

We consider a robust version of Goemans’ theorem, when the points x1, o, ..., z, are only
approximately low-dimensional. We quantify this approximate dimension by the stable rank of
the difference matrix M € R () having columns {x; — z;};<;. Stable rank of the difference
matrix is a natural choice because (a) stable rank is a continuous proxy for rank or dimension
arising naturally in many applications [5, 17], (b) the difference matrix M is invariant under
any shift of origin, and (c) the difference matrix of the SDP solution for the SPARSEST CUT

problem on low threshold-rank graphs indeed has low stable rank (implicit in [9]).

» Definition 1.2 (Stable Rank). Given zy,...,z, € R let M € R (%) be the matrix with
columns {x; — x; }i<;. The stable rank of the points is defined as the stable rank of M, given
by sr(M):= ||M||?D / ||M||§7 where || M| and ||M||, are the Frobenius and spectral norm
of M respectively.

Note that sr (M) < rank (M) < d, when the points 1, s, ..., 2, € R%. Our robust version
of Goemans’ theorem is as follows.

» Theorem 1.3 (Embedding almost low-dimensional vectors). Let x1,x3,...,2, € R? be n
points satisfying (3 triangle inequalities. Then there exists an (3 — ly embedding x; — h(x;)
with average distortion bounded by the stable rank of M, that is,

h(z) = b)), < lloi = z5l5, Vij eV,
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and

ﬁ Z i — IJH; < Z |h(zs) — h(x;)l], -

i<j

We note that the above theorem is not a strict generalization of Goemans’ theorem to
the approximate dimension case. To obtain a truly robust version of Goemans’ theorem
quantitatively, one might ask if the dependence on sr (M) in the above theorem can be
improved from sr (M) to /st (M).

Our proof technique gives a new perspective on /2 metric, an alternate proof of Goemans
theorem, and a simpler algorithmic proof for average distortion v/d based on a squared-length
distribution (see Section 4, and the remark following the proof of Theorem 4.1). Also,
the result can be quantitatively compared to guarantees given by higher-order Cheeger
inequalities [13]; we discuss this in more detail at the end of this section. While most known
embeddings from /3 to ¢; are Frechet embeddings, our embedding is projective (similar in
spirit to [9, 7]).

Theorem 1.3 immediately implies an sr (M )-approximation to the UNIFORM SPARSEST
CuT problem. In fact, with a slight modification, we obtain a similar result for the general
SPARSEST CUT problem (see theorem below).

)

» Theorem 1.4. There is an r/§-approzimation algorithm for SPARSEST CUT instances
C, D satisfying A(C,D) > ®spp/(1 — §), where A.(C, D) is the r-th smallest generalized
eigenvalue (see Section 2) of the Laplacians of the cost and demand graphs.

The precondition on A.(C, D) is the same as in previous works [9, 7], and we improve the
O(r/&?)-approximation of [7] by a factor of 1/§. Our proof follows from the robust version
of Goemans’ embedding into ¢ whereas these previous works gave embeddings directly into
£; by either using higher levels of Lasserre explicitly [9] or using only the basic SDP solution
but inspired by the properties of Lasserre vectors [7]. We can infer the following corollary
almost immediately:

» Corollary 1.5. For any € > 0 and a d-reqular cost graph C' satisfying A\.(C) > ed, there is
a max {O(T), ﬁ} approximation to UNIFORM SPARSEST CUT.

Proof. The implicit demand graph here is K,,, the complete graph on n vertices, and thus
the generalized eigenvalues are \.(C, K,,) = A./n. Consider two cases: If ®gpp < ed/100n
then A./n > 100®spp yielding an O(r) approximation by Theorem 1.4. Otherwise, if
®spp > €d/100n, then running a basic Cheeger rounding and analysis on (one co-ordinate
of) the SDP solution would itself give a cut of sparsity O(dv/e/n) < ®spp/+/e. Thus, using
the minimum of these gives a cut within a factor max {O(r),1/1/e} of the optimum. <

1.2 Related work

We recall that the best known upper bound for the worst-case distortion of embedding
03 < ¢y is O(y/Togn - loglogn) [3, 2], while the best known lower bound is (logn)®®) for
worst-case distortion [6], and exp(Q2(y/Ioglogn)) for average distortion [11]. Guarantees to
SPARSEST CUT on low threshold-rank graphs were obtained using higher levels of the Lasserre
hierarchy for SDPs [4, 9]. In contrast, a previous work of the first and third author [7] showed
weaker guarantees, but using just the basic SDP relaxation. Oveis Gharan and Trevisan [8]
also give a rounding algorithm for the basic SDP relaxation on low-threshold rank graphs,
but require a stricter pre-condition on the eigenvalues (X, > log?® r - ®(G)), and leverage it



A. Deshpande, P. Harsha, and R. Venkat

to give a stronger O(+/logr)-approximation guarantee. Their improvement comes from a
new structure theorem on the SDP solutions of low threshold-rank graphs being clustered,
and using the techniques in ARV for analysis.

Kwok et al. [13] showed that a better analysis of Cheeger’s inequality gives a O(r-/d/A;)
approximation to UNIFORM SPARSEST CUT on d-regular graphs. In particular, when
A (G) > ed, this gives a O(r/+/€) approximation for the UNIFORM SPARSEST CUT problem.
Note that Corollary 1.5 gives a slightly better approximation in this setting.

Further, while the Kwok et al. result is tight with respect to the spectral solution, our
approach allows for an improvement in terms of the dependence on r to +/r, since it uses the
SDP relaxation rather than a spectral solution.

2 Preliminaries and Notation

Sets, Matrices, Vectors

We use [n] = {1,...,n}. For a matrix X € R¥? we say X = 0 or X is positive-semidefinite
(psd) if yT Xy > 0 for all y € RY. The Gram-matrix of a matrix M € R%*92 is the matrix
MT M, which is psd.

Every matrix M has a singular value decomposition M = Y o;u;0f = UDVT. Here,
the matrices U,V are Unitary, and D is the diagonal matrix of the singular values o; >
09 > ... > 0,, in non-increasing order. When not clear from context, we denote the singular

values of M by o;(M).

The Frobenius norm of M is given by |[|[M||, := />, 02(M) = \/Zie[dl},je[dg] M(i,7)2.

In our analysis, we will sometimes view a matrix M as a collection of its columns viewed
as vectors; M = (m;);c[d,)- In this case, | M]3 = > ||mj||§ The spectral norm of M is
[M]] := o1

Generalized Eigenvalues

Given two symmetric matrices X,Y € R? x d with Y = 0, and for i < rank(Y'), we define
their i-th smallest generalized eigenvalue as the following:

. wl Xw
A = max min —
rank(Z)<i—1 wlZ;w#0 wiYw

Rank and Stable Rank

The rank of the matrix M (denoted by rank (M)) is the number of non-zero singular

values. Recall that the stable rank of the matrix M, sr (M) = al‘lj\(iv”;?? Note that sr (M) =

srank(M) 52(0r) /o2 (M) < rank (M).

i=1 %

Metric spaces and embeddings

For our purposes, a (semi-)metric space (X,d) consists of a finite set of points X =
{z1,22,...,2,} and a distance function d : X x X — Rx( satisfying the following three
conditions:

1. d(z,z) =0,Vx € X.

2. d(z,y) =d(y, z).

3. (Triangle inequality) d(z,y) + d(y, z) > d(z, z).

10:5
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An embedding from a metric space (X, d) to a metric space (), d’) is a mapping f: X = ).
The embedding is called a contraction, if

dl(f(xl)af(x])) < d(-fi,-fj), Vﬂﬁi,ﬂﬁj e X.

For convenience, we will only deal with contractive mappings in this paper. A contractive
mapping is said to have (worst-case) distortion A, if

su d(l’i,.’ﬂj)
P T ) fay) =

It is said to have average distortion g, if

Zz’<j d(z;, ;)
S AU, f) =

Note that a mapping with worst-case distortion A also has average distortion A, but not

necessarily vice-versa.

The ¢3 space

A set of points {1, 7a,...,7,} € R are said to satisfy £2 triangle inequality constraints, or
said to be in £3 space, if it holds that

2 2 2 .
i = x5 + lzg — wrlly = llws —anlly Vi g,k € [n].

These satisfy the triangle inequalities on the squares of their £5 distances. The corresponding

metric space is (X, d), where d(3,j) := ||x; — x]||§

Graphs and Laplacians

All graphs will be defined on a vertex set V' of size n. The vertices will usually be referred
to by indices 4, j, k,l € [n]. Given a graph with weights on pairs W : (‘2/) — RT, the graph
Laplacian matrix is defined as:

~W (i, 5) if i # j
S W(ink)  ifi=j.

Note that Ly = 0. We will denote the eigenvalues of (the Laplacian of) G by 0 = A\ <
Ao ... < Ay, in increasing order.

Sparsest Cut SDP

The SDP we use for SPARSEST CUT on the vertex set V with costs and demands ¢;;,di; > 0
and corresponding cost and demand graphs C': (‘g) — RT and D : (‘2/) — R, is effectively
the following;:

SDP: q)SDP = mianij ||l‘l - !EJH§
i<j
2 2 2 .o
l#: = 2jlly + o — 2xlly 2 llwe —xlly, Vi g,k € [n].

subject to 9
Yk i Tk —2ll; = 1.

Note that the solution to the above SDP is in /3 space.
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£, embeddings and cuts

Since ¢; metrics are exactly the cone of cut-metrics, it follows from the previous discussion
on embeddings, that producing an embedding of the SDP solutions X = {zy,....z,} in

3 space to {1 space with distortion o would give an a-approximation to SPARSEST CUT.

Producing one with average distortion o would give an a-approximation to UNIFORM
SPARSEST CUT. Furthermore, since /5 embeds isometrically (distortion 1) into ¢1, it suffices
to show embeddings into ¢y for the above purposes.

Key Lemma

The following lemma about £3 spaces was observed by Deshpande and Venkat [7]. We will
reuse this in the rest of the paper.

» Lemma 2.1 ([7, Proposition 1.3]). Let x1,23,...,2, be n points satisfying (3 triangle

inequalities. Then

2

T — Xy ..

v — e ——— ) < @ — g ok — o) < v — a3, Vi klEV.
[k — @1l

An immediate consequence of this lemma is that we can show that a large class of naturally
defined K% — {5 embeddings are contractions.

» Lemma 2.2 (Contraction). Let x1,2a,...,T, ben points satisfying (3 triangle inequalities.

For any probability distribution {pgi}r<i, let P be the symmetric psd matriz defined as
Pi=3 " om (o —2)(T) — x)T. Then the (3 — Ly embedding given by x; — PY/2x; is a
contraction, that is,

P2 @i = )| < Nz =51, Vije V.

Proof. The following holds for all i, j:

= ((zi — ;)" P(x; — xj))1/2

1/2
2
= (Zpkl <CE2 —Tj, Tk — $l> )

P22

k<l
1/2
< (Zpkl |z — $]||3> [By Lemma 2.1]
k<l
= [jz; — 33]||§ [Since Zpkl =1]

k<l

3 Embedding almost low-dimensional vectors

We now prove the robust version of Goemans’ theorem in terms of stable rank. We give two
proofs, and show an application to round solutions to SPARSEST CUT on low-threshold-rank
graphs. As before, given a set of points z1,...,z, in R? define their difference matrix

n

M € R(3) as the matrix with columns as {zi —x;}icy.
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Proof of Theorem 1.3. Let w and v be the top left and right singular vector of M, respect-
ively, and 01 < 09 < ... < 04 be the singular values of M. Then Mv = oyu, or in other
words, o1u = ), vki(2r — 21). Now consider the embedding x; — h(z;) = P2z, where
the probability distribution py; o< |vg|, that is

P=Y 1 )

2ol

This embedding is a contraction by Lemma 2.2. Now let’s bound its average distortion.
> i) = bl = Y0 || P2 = )]
i<j i<j

= 3" (2 — )" P(ai — ;) '*

i<j
1/2
\Ukl| 2
=> (> I[o]] = T, Tk — 1)
i<j \k<l 1

> Z Z ‘vkl| ; — L, Tk — 21| [By Jensen’s inequality]
il ||1

1
=Dy

i<j

=Tl ||1 2 Ifes =z, 0nu)

1<j

= Zal |vij |

|U||1 i<j

5 IMI%
— T (M)

<xi —xj, Z v (T — xl)>‘ [By triangle inequality]

k<l

2
_ijz-

3.1 An alternative proof

We can alternatively get the same guarantee as in Theorem thm:stable-rank, by giving a
one-dimensional /5 embedding (and hence also ¢; embedding without any extra effort) along
the top singular vector of the difference matrix M. This gives an interesting “spectral”
algorithm that uses spectral information about the point set, akin to spectral algorithms in
graphs that use the spectrum of the graph Laplacian.

» Theorem 3.1. Let 1,23, ...,2, € R? be n points satisfying (3 triangle inequalities with
M as their difference matriz. Let u € R? and v € R() pe its top left and right singular
vectors, respectively. Then x; — Hgillll (x;,u) is an €3 — ly embedding with average distortion
bounded by the stable rank of M.

Proof. We have Mv = oyu, or equivalently, oyu =}, _; vxi(zx — 7). Our embedding is a
contraction since
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01 1
(@i —z5,u)| = W
1

<CU¢ - $j7zvkl($k - xl)>‘

k<l

1
< HUTZ il (i — 25, 2 — 1)
1

k<l
1
< WZ‘M & — ;2 [By Lemma 2.1]
1 k<l
2
= [lz; — 25ll5 -

Now let’s bound the average distortion.

Z L [z, —x;,u)| = Z S |o1vi5] [Since u” M = o107
2Tl 2Tl
2
L
L sr (M)

S s — a2
st (M) oy

3.2 Application to Sparsest Cut on low-threshold rank graphs

We first state a property of SDP solutions on low threshold-rank graphs, proved by Guruswami
and Sinop [9] using the Von-Neumann inequality.

» Proposition 3.2 (Von-Neumann inequality [9, Theorem 3.3]). Let 0 < \; < ... < A, be the
generalized eigenvalues of the Laplacian matrices of the cost and demand graphs. Let o1 >
o9 > ... > 0y >0 be the singular vectors of the matriz M with columns {+/di;(x; — ;) }icj.
Then

Zt2r+1 0'32' Dspp
Z:tl:l 032‘ T A1
In particular, note that on graphs where A\, > ®spp/(1 —46), > ., 07 > 6>, 07. This
implies that sr (M) =3, 0?/0% <1 - 3,02/ di<r o <r/s.
We can now modify the proof of Theorem 3.1 to prove Theorem 1.4.

Proof of Theorem 1.4. Let z1,...,x, be the SDP solution on given instance C, D. We now
let M be the matrix with columns {v/dy;(zx — ;) }x<i, and u, v, o1 to be the top left singular
vector, top right singular vector, and the maximum singular value respectively of M. By the
preceding remark, sr (M) < r/§. The mapping we use is as follows

1
T —=——— (T, u) .
Y Vv
The proofs to show contraction and bound the distortion follow exactly as in the proof of
Theorem 3.1. Note that while looking at the distortion, we need to lower bound the quantity

3055 dij lg(xi) — g()]l,- <

As in Deshpande and Venkat [7], the above algorithm is a fixed polynomial time algorithm
and does not grow with the threshold rank unlike the algorithm of Guruswami and Sinop [9]
where they use r-levels of the Lasserre SDP hierarchy to secure the guarantee. Furthermore,
the above analysis improves the guarantee of Deshpande and Venkat [7] by a factor of O(1/4).
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4 Embedding low-dimensional vectors a la Goemans

In this section, we first view the proof of Goemans’ theorem in the framework of Lemma 2.2
by giving a probability distribution using the minimum volume enclosing elliposid of the
difference vectors (z; — x;)’s. We then give a simpler proof, albeit for the average distortion
case, based on a probability distribution arising from a squared-length distribution. Via
a well-known duality statement, this technique recovers Goemans’ theorem for worst-case
distortion for embeddings into ¢, although non-constructively.

4.1 An alternate proof of Goemans’ theorem

Here is an adaptation of the proof from [15] re-stated in our framework. The following proof
is arguably simpler and more straightforward as it works with the difference vectors instead
of the original vectors and their negations.

» Theorem 1.1 (restated — Goemans [15, Appendix B])). Let x1,z2,...,z, € R? be n points
satisfying ¢3 triangle inequalities. Then there exists an (3 < ¢, embedding z; — f(x;) with
distortion v/d, that is,

1 2 2 .

7 o=l < UG = Fa)ly < o=yl Yig eV,

Proof. Consider all the difference vectors (z; —x;)’s, and let their minimum volume enclosing
ellipsoid be given by E := {z : z7Qx < 1}, for some psd matrix Q € R¥?. By John’s
theorem (or Lagrangian duality for the corresponding convex program), we have Q=1 =
D kel Kl (g, — ) (2 — )T, with all gy > 0. Moreover, ag; # 0 iff (zx —2)T Q2 — ;) = 1.
Notice that d = Tr (Iy) = Tr (Ql/QQ_lQl/Z) = > ke Okt- We define the embedding as

f(.’L’Z) = %Q_l/?l'i.

This embedding is a contraction by Lemma 2.2. We now bound the distortion:

1 @) = f@ll, = —= [|@ 2@ — )],

i — 113 : .
> [By Cauchy-Schwarz inequality]
QY2 (i — )],
> |lx; — 33]||§ . [Since (z; — ;)T Q(z; — x;) < 1, for all 4, j]

- gl- sl

<

4.2 A simpler proof for average distortion embedding

We now give an average distortion version of Goemans’ theorem using a simple squared-length
distribution on the difference vectors (x; — x;)’s in the Lemma 2.2. Interestingly, this can be
modified to weighted averages and gives yet another proof of Goemans’ worst-case distortion
result, although non-constructively.

» Theorem 4.1. Let 21,3, ...,2, € R? be points satisfying (3 triangle inequalities. Then
there exists an (3-to-ly embedding x; — g(x;) with average distortion Vd, that is,

2 .
lg(a:) = g(zj)lly < llws —5lly,  for alli, j,

1 2
and ﬁ Z ||111 - l“j||2 < Z ||9($z) - 9(%‘)”2

i<j i<j
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Proof. Let {pgi}r<; define a probability distribution with pg; o ||z — xl||§ Given this
distribution, let P be the symmetric psd matrix defined as P := 3", _; pri (x —21) (2 —-x)T €
R?*4. Consider the embedding that maps x; to g(z;) := P1/2g;. The embedding is a
contraction by Lemma 2.2.

Now let’s bound the average distortion. First, note that:

i — 251l
1P =),

lgtws) = g(a)lly = ||PM2(@i — )| >

where the inequality follows from the Cauchy-Schwarz inequality.
Summing over all pairs ¢, 7 and using the definition of p;; we have

. Dij
ZHQ( i ||2 (Z I l|2> Z JCj)TP_l(wi—xj)

i<j k<l i<j

—1/2

Y

(ZH%—WHZ) > i (@i —x) P (i — ay)

k<l i<j

[by Jensen’s inequality]

(Z [l — wzli) (Tr (P—1/2PP—1/2>_1/2)
{

k<l

Dl - wll%) Tr (Ig) /2

k<l

Z ll; — x]Hz

i<J

We note that if P is not invertible then the same proof can be carried out using pseudo-inverse
of P instead. |

» Remark. Although an enclosing ellipsoid of approximately optimal volume can be computed
by a convex program [12], the proof of Theorem 1.1 requires a stronger, spectral approximation
to the quadratic form of the minimum enclosing ellipsoid. We are not aware of any efficient
algorithms for this. On the other hand, sampling (i, j) with probability o ||z; — x; H; can
be done in O(nd) time as follows. First we compute the mean p = >""" , z;/n, and all the
marginals for (4,.) using

n n

2 2 2
Dol —willy = ey — ully +nlln— il
j=1

=1

Now we can first sample ¢ from the marginals, and then sample j with probability o« ||z; — z; ||§

This takes O(nd) time in total.

Theorem 4.1 immediately gives an efficient v/d approximation algorithm for UNIFORM
SPARSEST CUT when the SDP optimum solution resides in R%. Furthermore, as we point
out next, the same proof can be tweaked to yield a similar result for the general SPARSEST
CuT problem.

» Theorem 4.2 (SPARSEST CuT SDP rounding in dimension d). A SPARSEST CUT instance
C, D with SDP optimum solution in R® has an integrality gap of at most \/d.
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Proof. Let x1,...x, be the optimum solution in R? to the SPARSEST CuUT SDP. We slightly
modify the embedding given in the proof of Theorem 4.1, by choosing the p;;’s based
on the demand graph D. Let P = >, _;pu (xr — 21)(zr — )T € R¥X4. where py’s
define a probability distribution with pg; o< di; ||zr — :vl||§ We define the embedding as
x; = g(x;) = P2z, Lemma 2.2 shows that it is a contraction. We now need to show
Yicidiglg(@i) —g(zy)l, = % Dicjdigllzi — xJHg It is easy to check that the same proof
goes through without any major changes. |

By a well-known duality (cf. [16, Proposition 15.5.2 and Exercise 4]), Theorem 4.2 also
implies Goemans’ worst-case distortion result (Theorem 1.1), although non-constructively.

Acknowledgements. We thank Luca Trevisan for helpful discussions and suggestions,
in particular, for bringing to our attention that Goemans’ Theorem was true even with
approximate triangle inequalities.
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—— Abstract

Relational properties arise in many settings: relating two versions of a program that use dif-
ferent data representations, noninterference properties for security, etc. The main ingredient of
relational verification, relating aligned pairs of intermediate steps, has been used in numerous
guises, but existing relational program logics are narrow in scope. This paper introduces a logic
based on novel syntax that weaves together product programs to express alignment of control
flow points at which relational formulas are asserted. Correctness judgments feature hypotheses
with relational specifications, discharged by a rule for the linking of procedure implementations.
The logic supports reasoning about program-pairs containing both similar and dissimilar control
and data structures. Reasoning about dynamically allocated objects is supported by a frame rule
based on frame conditions amenable to SMT provers. We prove soundness and sketch how the
logic can be used for data abstraction, loop optimizations, and secure information flow.
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1 Introduction

Relational properties are ubiquitous. Compiler optimizations, changes of data representation,
and refactoring involve two different programs. Non-interference (secure information flow)
is a non-functional property of a single program; it says the program preserves a “low
indistinguishability” relation [44]. Many recent works deal with one or more of these
applications, using relational logic and/or some form of product construction that reduces
the problem to partial correctness, though mostly for simple imperative programs. This
paper advances extant work by providing a relational logic for local reasoning about heap
data structures and programs with procedures.
To set the stage, first consider the two simple imperative programs:

C=z:=1; whiley>0dox:=zxy; y:=y—1od

C'=xz:=1,y:=y—1; whiley>0doz:=xxy+z; y:=y—1od
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Both C and C’ change x to be the factorial of the initial value of ¥, or to 1 if y is initially
negative. For a context where y is known to be positive and its final value is not used, we
could reason that they are interchangeable by showing both

C: y=zAy>0~ =2 and C': y=2Ay>0 ~ z=2! (1)

This is our notation for partial correctness judgments, with evident pre- and postconditions,
for C and C’. It is not always easy to express and prove functional correctness, which
motivates a less well developed approach to showing interchangeability of the examples. The
two programs have a relational property which we write as

(C|C") : Bly>0)Ay=y ~> z=u (2)

This relational correctness judgment says that a pair of terminating executions of C' and C’,
from a pair of states which both satisfy y > 0 and which agree on the value of y, yields a
pair of final states that agree on the value of z. The relational formula z = x says that the
value of z in the left state is the same as its value in the right state.

Property (2) is a consequence of functional correctness (1), but there is a direct way to
prove it. Any pair of runs, from states that agree on y, can be aligned in such a way that
both = = x and y = y 4+ 1 hold at the aligned pairs of intermediate states. The alignment is
almost but not quite step by step, owing to the additional assignment in C’. The relational
property is more complicated than partial correctness, in that it involves pairs of runs. On
the other hand the requisite intermediate assertions are much simpler; they do not involve !
which is recursively defined. Prior work showed such assertions are amenable to automated
inference (see Section 7).

Despite the ubiquity of relational properties and recent logic-based or product-based
approaches to reasoning with them (see Section 7), simple heap-manipulating examples like
the following remain out of reach:

C" = xp :=new Int(1); whiley > 0 do xp.set(zp.get() xy); y:=y — 1 od; = := xp.get()

This Java-like program uses get/set procedures acting on an object that stores an integer
value, and (C|C") satisfies the same relational specification as (2). This code poses significant
new challenges. It is not amenable to product reductions that rely on renaming of identifiers
to encode two states as a single state: encoding of two heaps in one can be done, but at
the cost of significant complexity [35] or exposing an underlying heap model below the level
of abstraction of the programming language. Code like C” also needs to be linked with
implementations of the procedures it calls. For reasoning about two versions of a module or
library, relational hypotheses are needed, and calls need to be aligned to enable use of such
hypotheses.

Floyd [22] articulates the fundamental method of inductive assertions for partial correct-
ness: establish that certain conditions hold at certain intermediate steps of computation,
designating those conditions/steps by associating formulas with control flow points. For
relational reasoning, pairs of steps need to be aligned and it is again natural to designate
those in terms of points in control flow. Alignment of steps has appeared in many guises in
prior work, often implicit in simulation proofs but explicit in a few works [47, 8, 28].

First contribution: In this paper we embody the alignment principle in a formal system
at the level of abstraction of the programming language — as Hoare logic does for the
inductive assertion method — with sufficient generality to encompass many uses of relational
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properties for programs including procedures and dynamically allocated mutable objects.

Our logic (Section 6) manifests the reasoning principle directly, in structured syntax. It also
embodies other reasoning principles, such as frame rules, case analysis, and hypothetical
specifications for procedures. The rules encompass relations between both similarly- and
differently-structured programs, and handle partially and fully aligned iterations. This
achievement brings together ideas from many recent works (Section 7), together with two
ingredients we highlight as contributions in their own right.

Second contribution: Our relational assertion language (Section 4) can describe agreement
between unbounded pointer structures, allowing for differences in object allocation, as is
needed to specify noninterference [4] and for simulation relations [3] in languages like Java
and ML where references are abstract. Such agreements are expressed without the need
for recursively defined predicates, and the assertion language has a direct translation to
SMT-friendly encodings of the heap. (For lack of space we do not dwell on such encodings in
this paper, which has a foundational focus, but see [40, 7].)

Third contribution: We introduce a novel form of “biprogram” (Section 5) that makes
explicit the reasoner’s choice of alignments. A biprogram run models an aligned pair of
executions of the underlying programs. The semantics of biprograms involves a number of
subtleties: To provide a foundation for extending the logic with encapsulation (based on [5]),
we need to use small-step semantics — which makes it difficult to prove soundness of linking,
even in the unary case [5]. For this to work we need to keep the semantics deterministic and
to deal with semantics of hypotheses in judgments.

Section 2 provides background and Section 3 is an overview of the logic using examples. We
have chosen to use the available space to explain fundamental intuitions. An accompanying
technical report includes worked proofs of the examples, additional examples like a loop
tiling transformation, details of semantics, and the soundness theorem.

2 Background: synopsis of region logic

For reasoning about the heap, separation logic is very effective, with modal operators that
implicitly describe heap regions. But for relations on unbounded heap structures at the
Java/ML level of abstraction we need explicit means to refer to heap regions, as in the
dependency logic of Amtoft et al. [2]. Our relational logic is based on an underlying unary
logic dubbed “region logic” (RL), developed in a series of papers [10, 5, 7] to which we refer
for rationale and omitted details. RL is a Hoare logic augmented with some side conditions
(first order verification conditions) which facilitate local reasoning about frame conditions [10]
in the manner of dynamic frames [27, 31]. In the logic such reasoning hinges on a frame rule.
In a verifier, framing can be done by the VC-generator, optionally guided by annotation [40].
Stateful frame conditions also support an approach to encapsulation that validates a second
order frame rule (at the cost of needing to use small-step semantics) [5]. Read effects enable
the use of pure method calls in assertions and in frame conditions [7] and are useful for
proving some equivalences, like commuting assignments, that hold in virtue of disjointness of
effects [15].

The logic is formalized for imperative programs with first order procedures and dynamically
allocated mutable objects (records), see Fig. 1. As in Java and ML, references are distinct
from integers; they can be tested for equality but there is no pointer arithmetic. Typing
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m € ProcName z,y,7 € VarName f,g € FieldName K € DeclaredClassNames

Commands) C ==Al|letm=CinC |if E then C else C | while Edo C|C;C
Biprograms)  CC := (C|C) | |A] |let m=(C|C) in CC | CC;CC
| if E|E then CC else CC | while E|E o P|P do CC

(Types) T :==int|bool |rgn| K

(Program Expr.) E :=x |c|null| E®E wherecisinZ and @ in {=,4, —, %, >,A,—,...}
(Region Expr.) G :u=z|@|{E}|G'f|G® G where ® is in {U,N,\}

(Expressions) F :=FE|G

(Atomic comm.) A u=skip|m() |z:=F |z:=new K |z :=a.f |z.f =2z

(

(

Figure 1 Programs and biprograms. Assume each class type K has a declared list of fields, f : T
Biprograms are explained in Section 3.

of programs is standard. In specifications we use ghost variables and fields of type rgn. A
region is a set of object references, which may include the improper null reference.

A specification P ~ @ [¢] is comprised of precondition P, postcondition @, and frame
condition €. Frame conditions include both read and write effects:

en=rdx |rdG'f |wrz | wrG'f | e, e | (empty)

The form rd G¢f means the program may read locations o.f where o is a reference in the
region denoted by expression G. We write rwx to abbreviate the composite effect rd z, wr x,
and omit repeated tags: rd z,y abbreviates rd z,rd y. Predicate formulas P include standard
first order logic with equality, region subset (G C G), and the “points-to” relation z.f = F,
which says z is non-null and the value of field f equals E. A correctness judgment has
the form ® F C : P ~ Q [¢] where the hypothesis context ® maps procedure names to
specifications. In C there may be enwvironment calls to procedures bound by let inside C,
and also context calls to procedures in ®. The form G*f is termed an image expression.
For an example of image expressions, consider this command which sums the elements of a
singly-linked null-terminated list, ignoring nodes for which a deletion flag, del, has been set.

C1 = s := 0;while p # null do if —p.del then s := s + p.val fi; p := p.nxt od

For its specification we use ghost variable r : rgn to contain the nodes. Its being closed under
nxt is expressed by r‘nxzt C r in this specification:

pErArtnzt Cr ~ s=sum(listnd(old(p))) [rws, p, rdr, rtval, r*nat, rédel]

The r-value of the image expression r*nxzt is the set of values of nzt fields of the objects in 7.
In frame conditions, expressions are used for their I-values. In this case, the frame condition
uses image expressions to say that for any object o in r, locations o.val, 0.nxt, o.del may be
read. The frame condition also says that variables s and p may be both read and written.
Let function listnd give the mathematical list of non-deleted values.

Some proof rules in RL have side conditions which are first order formulas on one or two
states. One kind of side condition, dubbed the “frames judgment”, delimits the part of state
on which a formula depends (its read effect). RL’s use of stateful frame conditions provides
for a useful frame rule, and even second order frame rule [37, 5], but there is a price to be paid.
Frame conditions involving state dependent region expressions are themselves susceptible
to interference by commands. That necessitates side conditions, termed “immunity” and
“read-framed”, in the proof rules for sequence and iteration [5, 7]. The frame rule allows
to infer from ® - C': P ~» @ [¢] the conclusion ® - C': P A R~ Q A R [¢] provided that
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R is framed by read effects n (written n frm R) for locations disjoint from those writable
according to £ (written 7 -/. ).

In keeping with our goal to develop a comprehensive deductive system, our unary and
relational logics include a rule for discharging hypotheses, expressed in terms of the linking
construct. Here is the special case of a single non-recursive procedure.

m: R~ShkFC: P~Qle]-B: R~ S[n)
Fletm=BinC: P~ Q]

LINK

3 Overview of the relational logic

This section sketches highlights of relational reasoning about a number of illustrative examples,
introducing features of the logic incrementally. Some details are glossed over.

We write (C|C") : Q > R to express that a pair of programs C, C’ satisfies the relational
contract with precondition @ and postcondition R, leaving aside frame conditions for now.
The judgment constrains executions of C' and C’ from pairs of states related by Q. (For
the grammar of relational formulas, see (7) in Section 4.) It says neither execution faults
(e.g., due to null dereference), and if both terminate then the final states are related by R.
Moreover no context procedure is called outside its precondition. (We call this property the
WV form, for contrast with refinement properties of V3 form.)

Assume f, g are pure functions. The programs

Co = w:=f(2)iy:=9(z) Cy = y:=g(z);2:=f(2)
are equivalent. Focusing on relevant variables, the equivalence can be specified as
(ColCy): z=zr>ax=aAy=y (3)

which can be proved as follows. Both Cy and Cj satisfy true ~ x = f(z) Ay = g(z), which

directly entails that (Cy | Cf) : Btrue ~> B(z = f(2) Ay = g(2)) by an embedding rule.

The general form of embedding combines two different unary judgments, with different
specifications, using relational formulas that assert a predicate on just the left (<) or right (>)
state. So BP is short for <P A>P. Since z is not written by Cy or Cy, we can introduce z = z

using the relational frame rule, to obtain (Cy | C}) : z = za> B(x = f(2) Ay =g(2)) Az = 2.

This yields (3) using the relational rule of consequence with the two valid relational assertion
schemas u = v Ad(u=v) Ar(u =v') = v =v" and z = 2 = f(2) = f(2).

For the factorial example (C|C’) in Section 1, we would like to align the loops and use the
simple relational invariant = z Ay = y + 1. We consider the form (C|C") as a biprogram
which can be rewritten to equivalent forms using the weawving relation which preserves the
underlying programs but aligns control points together so that relational assertions can be
used. (A minor difference from most other forms of product program is that we do not
need to rename apart the variables on the left and right.) The weaving relation is given in
Section 5. In this case we weave to the form

(z:=1lz:=Ly:=y—1);whiley >0 |y >0do(z:=xxy|z:=z*xy+a);|ly:=y— 1]

This enables us to assert the relational invariant at the beginning and end of the loop bodies.

Indeed, we can also assert it just before the last assignments to y. The rule for this form of
loop requires the invariant to imply equivalence of the two loops’ guard conditions, which
itdoes: x =z Ay=y+1= (y>0=y>0). For a biprogram of the split form (C|C"),
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the primary reasoning principle is the lifting of unary judgments about C' and C’. For an
atomic command A, the sync notation | A| is an alternative to (A|A) that indicates its left
and right transition are considered together. This enables the use of relational specifications
for procedures, and a relational principle for object allocation. For an ordinary assignment,
sync merely serves to abbreviate, as in |y :=y — 1| above.

The next example involves the heap and it also involves a loop that is “dissonant” in the
sense that we do not want to align all iterations — that is, alignment is ultimately about traces,
not program texts. Imagine the command C from Section 2 is run on a list from which secret
values have been deleted. To specify that no secrets are leaked, we use the relational judgment
(C1]Ch) : listnd(p) = listnd(p) ~> s = s which says: Starting from any two states containing
the same non-deleted values, terminating computations agree on the sums. The judgment
can be proved by showing the functional property that s ends up as sum(listnd(old(p))).
But we can avoid reasoning about list sums and prove this relational property by aligning
some of the loop iterations in such a way that listnd(p) = listnd(p) A s = s holds at every
aligned pair, that is, it is a relational invariant. Not every pair of loop iterations should be
aligned: When p.del holds for the left state but not the right, a left-only iteration maintains
the invariant, and mutatis mutandis when p.del holds only on the right. To handle such
non-aligned iterations we use a novel syntactic annotation dubbed alignment guards. The
idea is that the loop conditions are in agreement, and thus the iterations are synchronized,
unless one of the alignment guards hold — and then that iteration is unsynchronized but the
relational invariant must still be preserved. We weave (C1|C1) to the form

|s:=0]; while p # null | p # null e < (p.del) | >(p.del) (4)
do if —p.del | —p.del then |s := s + p.val| fi; |p := p.nat]| od

with alignment guards <p.del and >p.del. The rule for the while biprogram has three premises
for the loop body: for executions on the left (resp. right) under alignment guard <p.del (resp.
>p.del) and for simultaneous executions when neither of the alignment guards hold. Each
premise requires the invariant to be preserved.

The final example is a change of data representation. It illustrates dynamic allocation
and frame conditions, as well as procedures and linking. A substantive example of this sort
would be quite lengthy, so we contrive a toy example to provide hints of the issues that
motivate various elements of our formal development. Our goal is to prove a conditional
equivalence between these programs, whose components are defined in due course.

Cy = let push(x :int)=Bin Cli ~ C = let push(x : int) = B' in Cli

These differ only in the implementations B, B’ of the stack interface (here stripped down to
a single procedure), to which the client program Cli is linked. For modular reasoning, the
unary contract for push should not expose details of the data representation. We also want to
avoid reliance on strong functional specifications — the goal is equivalence of the two versions,
not functional correctness of the client. The client, however, should respect encapsulation of
the stack representation, to which end frame conditions are crucial. A simple pattern is for
contracts to expose a ghost variable rep (of type rgn) for the set of objects considered to be
owned by a program module. Here is the specification for push, with parts named for later
reference. Let size and rep be spec-public, i.e., they can be used in public contracts but
not in client code [30].

push(z :int) : R~ S[n] where R = size < 100 (5)
S = size = old(size) + 1
1 = rwrep, size, rep‘any
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Variables rep and size can be read and written (keyword rw) by push. This needs to be
explicit, even though client code cannot access them, because reasoning about client code
involves them. The notation rep‘any designates all fields of objects in rep; these too may be
read and written. The specification makes clear that calls to push affect the encapsulated
state, while not exposing details. Here is one implementation of push(z).

B = top := new Node(top, x); rep :=repU {top}; size++

Variable top is considered internal to the stack module, so it need not appear in the
frame condition. The alternate implementation of push replaces top by module variables
free :int; slots : Stringl];.

B’ = if slots = null then slots := new String[100]; rep := rep U {slots}; free:=0 fi;
slots[free++] := x; size++

Correctness of the two versions is proved using module invariants
I = (top =null A size =0) V (top € rep A rep*nxt C rep A size = length(list(top)))
I' = (slots = null A size = 0) V (slots € rep A size = free)

Here list(top) is the mathematical list of values reached from top. Recall that in an assertion
the expression rep‘nxt is the image of set rep under the nzt field, i.e., the set of values of

nat fields of objects in rep. The condition rep‘nxt C rep says that rep is closed under nxt.

This form is convenient in using ghost code to express shapes of data structures without
recourse to reachability or other inductive predicates [10, 40].

As a specific Cli, we consider one that allocates and updates a node of the same type as
used by the list implementation; this gets assigned to a global variable p.

Cli = push(1l); p := new Node(null,2); p.val := 3; push(4)

Having completed the definitions of Cy, C) we can ask: In what sense are Cy, C} equivalent?
A possible specification for (C4|C}) requires agreement on size and ensures agreement
on size and on p and p.val. However, the latter agreements cannot be literal equality:
following the call push(1), one implementation has allocated a Node whereas the array
implementation has not. Depending on the allocator, different references may be assigned
to p in the two executions. The appropriate relation is “equivalence modulo renaming of
references” [2, 3, 4, 16, 17]. For region expression G and field name f, we write AG*f for
the agreement relation that says there is a partial bijection on references between the two
states, that is total on the region G, and for which corresponding f-fields are equal. The
notation AG*any means agreement on all fields. In the present example, we only need the
singleton region {p} containing the reference denoted by p.

To prove a relational judgment for (C4|C}) we need suitable relational judgments for
(B|B’) for the implementations of push. It is standard [26] that they should preserve a
“coupling relation” that connects the two data representations and also includes the data
invariants for each representation. For the example, the connection is that the sequence of
elements reached from top, written list(top), is the same as the reversed sequence of elements
in slots[0..free — 1]. Writing rev for reversal, we define the coupling and specification

L=l AT ANLER LtR = list(top) = rev({) if slots = null else slots[0.. free — 1])

(C4|CY) : B(size =0) AL ~> p=pA size = size NA{p}‘any A L (6)
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We now proceed to sketch a proof of (6). First, we weave (C4|C}) to let push(x : int) =
(B|B') in ||Cli]]. Here ||Cli|| abbreviates the fully aligned biprogram |push(1)];|p :=
new Node(null,2)]; |p.val := 3]; |push(4)]. This biprogram simultaneously links the proced-
ure bodies on left and right, and aligns the client. Using |p := new Node(null,2)]| enables
use of a relational postcondition that says the objects are in agreement. Using |push(4)]
enables use of push’s relational specification.

Like in unary RL, the proof rule for linking has two premises: one says the bodies (B|B’)
satisfy their specification, the other says ||Cli|| satisfies the overall specification under the
hypothesis that push satisfies its spec (see RLINK in Fig. 2). This hypothesis context gives
push a relational specification, using Az as sugar for x = x:

® = push(z): BRAAsize NAz AL ~> BS A Asize A L [, rwtop | n, rw slots, free]

Here 7 is the effect rwrep, size, rep*any in the original specification (5) of push.

The specification in ® is not simply a relational lift of push’s public specification (5).
Invariants I and I’ on internal data structures should not appear in push’s API: they should
be hidden, because the client should not touch the internal state on which they depend.
Effects on module variables (like top) should also be hidden. This kind of reasoning is the
gist of second order framing [37, 5]. The relational counterpart is a relational second order
frame rule which says that any client that respects encapsulation will preserve £. Hiding is
the topic of another paper, for which this one is laying the groundwork (see Section 8).

4 Relational formulas

The relational assertion language is essentially syntax for a first order structure comprised of
the variables and heaps of two states, together with a refperm connecting the states.

Pu= F=F|AG'f|oP|<P|bP|PAP|P=P|Vz|z': K.P (7)

A refperm is a type-respecting partial bijection from references allocated in one state to
references allocated in the other state. For use with SMT provers, a refperm can be encoded
by a pair of maps with universal formulas stating they are inverse [7]. The syntax for relations
caters for dynamic allocation by providing primitives such as F' = F” that says the value of
F in the left state equals that of F” in the right state, modulo the refperm. In case of integer
expressions, this is ordinary equality. For reference expressions, it means the two values are
related by the refperm. For region expressions, G = G’ means the refperm forms a bijection
between the reference set denoted by G in the left state and G’ in the right state (ignoring
null). The agreement formula AG*f says, of a pair of states, that the refperm is total on the
set denoted by G in the left state, and moreover the f-field of each object in that set has the
same value, modulo refperm, as the f-field of its corresponding object in the right state.

For commands that allocate, the postcondition needs to allow the refperm to be extended,
which is expressed by the modal operator ¢ (read “later”): oP holds if there is an extension
of the refperm with zero or more pairs of references for which P holds. For example, after the
assignment to p in the stack example, the relational rule for allocation yields postcondition
o(p = p A A{p}any). Aside from the left and right embeddings of unary predicates (<P and
>P), the only other constructs are the logical ones (conjunction, implication, quantification
over values).

Let OP = = o —P. Validity of P = OP is equivalent to P being monotonic, i.e., not
falsified by extension of the refperm. Here are some valid schemas: P = oP, oo P = oP,
and o(P A Q) = oP A oQ. The converse of the latter is not valid. For framing, a key
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property is that oP A Q = o(P A Q) is valid if Q is monotonic. In practice, ¢ is only needed
in postconditions, and only at the top level. Owing to ¢ ¢ P = ¢P, this works fine with
sequenced commands. Many useful formulas are monotonic, including AG*f and F = F”,
but not =(F = F’).

5 Biprograms

A biprogram CC (Fig. 1) represents a pair of commands, which are given by syntactic
projections defined by clauses including the following: (C|C’) = C, (C|C") = C’, |A] = A,
if E|E’ then BB else CC' = if E then BB else FC, and let m = (C|C") in CC = let m =

C in CC. The weaving relation has clauses including the following.

(AJA) — |A] (for atomic commands A)

(C:D| '3 DY) = (CICY); (DID)

(if E then C else D | if E’ then C' else D') < if E|E’ then (C|C") else (D|D’)
(while E do C'| while E' do C") < while E|E’ o« P|P’ do (C|C") (for any P, P’)

Additional clauses are needed for congruence, e.g., CC' < DD implies BB;CC — BB; DD.
The loop weaving introduces chosen alignment guards. The full alignment of a command
C is written ||C|| and defined by ||A|| = 4], [[C; D] = [ICl; D], |Lif E then C else D] =
if E|E then [[C] else ||D], [[while E do C|| = while E|E e false|false do || C]], etc. Note that
(C1C) —=* || C] for any C.

Commands are deterministic (modulo allocation), so termination-insensitive noninterfer-
ence and equivalence properties can be expressed in a simple VV form described at the start of
Section 3, rather than the V3 form needed for refinement and for possibilistic noninterference
(“for all runs .. .there exists a run ...”). The transition rules for biprograms must ensure
that the behavior is compatible with the underlying unary semantics, while enforcing the
intended alignment. That would still allow some degree of nondeterminacy in biprogram
transitions. However, we make biprograms deterministic (modulo allocation), because it
greatly simplifies the soundness proofs. Rather than determinize by means of a scheduling
oracle or other artifacts that would clutter the semantics, we build determinacy into the
transition semantics. Whereas the syntax aligns points of interest in control flow, biprogram
traces explicitly represent aligned pairs of executions. We make the arbitrary choice of
left-then-right semantics for the split form. In a trace of (C|C”), every step taken by C' is
effectively aligned with the initial state for C’. This is followed by the steps of C’, each
aligned with the final state of C. To illustrate the idea, here is a sketch of the trace of a split
biprogram (center column) and its alignment with left and right unary traces.

(x:=0; y:=0) ---- ((x:=0; y:=0 | x:=0; y:=0)) ---- (x:=0; y:=0)

(y:=0) ~---nmm--- ((y:=0 | x:=0; y:=0)) -==" .-~
(skip) oo ((skip | x:=0; y:=0)) =~~~
DT ((skip | y:=0)) ------------~- (y:=0)
BREREEE (|skip]) ----------------- (skip)

This pattern is also typical for “high conditionals” in noninterference proofs, where different
branches may be taken (cf. rule RIF4). Here is the sync’d version in action.

(x:=0; y:=0) ---- {|x:=0]; |y:=0]) ---- {x:=0; y:=0)
e i - (y:=0)
(skip) ---------- (TS R— (skip)
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m: Ra>SnF|C]: P> Qe F(B|B'): R~ S|n]
Flet m=(B|B")in|C]: P~ Qe

RLINK

O (C|C"): PAMEABE => Qele']  @F (C|D): PA<SE A>-E ~=> Q [e|¢/]
O+ (D|C"): PAEAGE ~> Qlele’] @+ (D|D'): PA<~E As—E' > Q [e|¢]

Ir4
e ® - (if E then C else D|if E' then C' else D) : P ~> Q [e, ftpt(E)|, ftpt(E")]
P=FE=FE
I O CC: PAAEADE => Q [ele] O+ DD: PA<EAP-E 2> Q [ele]
F
t O F if E|E then CC else DD : P ~> Q |z, ftpt(E)|<, ftpt(E')]
O+ DD : P> Qlele]
CC < DD unaryOnly(®) terminates(P,DD) terminates(P,DD)
RWEAVE

D CC: P> Qleld]

Figure 2 Selected relational proof rules.

The relational correctness judgment has the form ® F CC' : P a> QJele’]. The hypothesis
context ® maps some procedure names to their specifications: ®(m) may be a unary
specification as before or else a relational one of the form R ~> S [¢|¢’]. Frame conditions
retain their meaning, separately for the left and the right side. In case ¢ is the same as ¢/,
the judgment or specification is abbreviated as P ~> Q [¢].

The semantics of biprograms uses small steps, which makes alignments explicit. A
configuration is comprised of a biprogram, two states, and two environments for procedures.
The transition relation depends on a semantic interpretation for each procedure in the
hypothesis context ®. Context calls, i.e., calls to procedures in the context, take a single
step in accord with the interpretation. For the sake of determinacy, this is formalized in the
semantics of relational correctness by quantifying over deterministic “interpretations” of the
specifications (as in [7]), rather than a single nondeterministic transition rule (as in [5, 37]).

Let us sketch the semantic consistency theorem, which confirms that executions of
a biprogram from a pair of states correspond to pairs of executions of the underlying
commands, so that judgments about biprograms represent relational properties of the
underlying commands. Suppose ® F (C|C") : P a> Q [¢g|¢/] is valid and ® has only
unary specifications. Consider any states o, o’ that are related by P (modulo some refperm).
Suppose C and C’, when executed from o, ¢/, reach final states 7, 7. (In the formal semantics,
transitions are defined in terms of interpretations ¢ that satisfy the specifications @, so this
is written (C, o) —* (skip, 7) and (C”, ') —>+* (skip, 7/).) Then 7,7’ satisfy Q.

6 Relational region logic

Selected proof rules appear in Fig. 2.

For linking a procedure with its implementation, rule RLINK caters for a client program
C related to itself, in such a way that its executions can be aligned to use the same pattern
of calls. The procedure implementations may differ, as in the stack example, Section 3. The
rule shown here is for the special case of a single procedure, and the judgment for (B|B’)
has empty hypothesis context, to disallow recursion. We see no difficulty to add mutually
recursive procedures, as done for the unary logic in [5], but have not yet included that in a



A. Banerjee, D. A. Naumann, and M. Nikouei

detailed soundness proof. The soundness proof is basically an induction on steps as in [5]
but with the construction of an interpretation as in the proof of the linking rule in [7]. The
general rule also provides for un-discharged hypotheses for ambient libraries used in the
client and in the procedure implementations [5].

Rule RIF4 is the obvious rule that considers all paths for a conditional not aligned
with itself (e.g., for “high branches”), whereas RIF leverages the alignment designated by
the biprogram form. The disjunction rule — ie., from ® - CC : Py ~> Q [e]¢/] and
OFCC: Py ~> Qlele] infer @ CC: Py V Pr ~> Q[ele’] — serves to split cases on the
initial states, allowing different weavings to be used for different circumstances, which is
why there is no notion like alignment guards for the biprogram conditional. The obvious
conjunction rule is sound. It is useful for deriving other rules. For example, we have this
simple axiom for allocation: F [z := new K| : true > o(x = z) [wrz,rwalloc]. Using
conjunction, embedding, and framing, one can add postconditions like A{z}¢f and freshness
of x.

A consequence of our design decisions is “one-sided divergence” of biprograms, which comes
into play with weaving. For example, assuming loop diverges, (y := 0;z.f := 0 | loop; z := 0)
assigns z.f before diverging. But it weaves to (y := 0|loop); (z.f := 0]z := 0) which never
assigns z.f. This biprogram’s executions do not cover all executions of the underlying unary

programs. The phenomenon becomes a problem for code that can fault (e.g., if z is null).

Were the correctness judgments to assert termination, this shortcoming would not be an
issue, but in this paper we choose the simplicity of partial correctness. Rule RWEAVE needs
to be restricted to prevent one-sided divergence of the premise biprogram DD from states
where CC' in the conclusion terminates. For simplicity in this paper we assume given a
termination check: terminates(P,C') means that C faults or terminates normally, from any
initial state satisfying P, This is about unary programs, so the condition can be discharged
by standard means.

The relational frame rule is a straightforward extension of the unary frame rule. From a
judgment ® - CC : P a> Q[ele’] it infers @+ CC: P AR > QAR [¢]e’] provided that R

is framed by read effects (on the left and right) that are disjoint from the write effects in e|e’.

To prove a judgment ® F while E|E’ ¢ P[P’ do CC : Q ~> Q [e, ftpt(E)|e’, ftpt(E’)],
the rule has three main premises: ®  (CC|skip) : Q AP A<E => Q [¢]] for left-only

execution of the body, ® F (skip|CT’) : QAP ABE 2> Q[|¢'] for right-only, and ® - CC :
QNP AP AEABE' 2> Q [e|¢'] for aligned execution. A side condition requires that

the invariant Q implies these cases are exhaustive: Q@ = E = E'V (P A<E) V (P’ A>E').
Additional side conditions require the effects to be self-immune, just as in unary RL [10, 7].

Finally, the formulas ¢P = P and ¢P’ = P’ must be valid; this says the alignment guards
are refperm-independent, which is needed because refperms are part of the semantics of
judgments but are not part of the semantics of biprograms.

The above rule is compatible with weaving a loop body, as in (4). The left and right

projections C/’_C' and C'_C\’ undo the weaving and take care of unaligned iterations.

There are many other valid and useful rules. Explicit frame conditions are convenient,
both in tools and in a logic, in part because they compose in simple ways. This may lose
precision, but that can be overcome using postconditions to express, e.g., that =z := =
does not observably write x. This is addressed, in unary RL, by a rule to “mask” write
effects [10]. Similarly, the relational logic supports a rule to mask read effects. There is
a rule of transitivity along these lines: from (B|C): P a> Q and (C|D) : R a> S infer
(BID) : P;R ~> Q;S where (;) denotes composition of relations. A special case is where
the pre-relations (resp. post-relations) are the same, transitive, relation. The rule needs to
take care about termination of C.
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7 Related work

Benton [15] introduced relational Hoare logic, around the same time that Yang was developing
relational separation logic [45]. Benton’s logic does not encompass the heap. Yang’s does;
it features separating conjunction and a frame rule. Pointers are treated concretely in [45];
agreement means identical addresses, which suffices for some low level C code. Neither work
includes procedures. Beringer [18] reduces relational verification to unary verification via
specifications and uses that technique to derive rules of a relational Hoare logic for programs
including the heap (but not procedures). Whereas the logics of Benton, Yang, and others
provide only rules for synchronized alignment of loops, Beringer derives a rule that allows for
unsynchronized (“dissonant”) iterations; our alignment guards are similar to side conditions
of that rule. RHTT [34] implements a relational program logic in dependent type theory
(Coq). The work focuses on applications to information flow. It handles dynamically allocated
mutable state and procedures, and both similar and dissimilar control structures. Like the
other relational logics it does not feature frame conditions. RHTT is the only prior relational
logic to include both the heap and procedures, and the only one to have a procedure linking
rule. It is also the only one to address any form of encapsulation; it does so using abstract
predicates, as opposed to hiding [5, 37].

Several works investigate construction of product programs that encode nontrivial choices
of alignment [38, 42, 46, 11, 12, 13]. In particular, our weaving relation was inspired by [11, 13]
which address programs that differ in structure. In contrast to the 2-safety properties for
deterministic programs considered in this paper and most prior work, Barthe et al. [12] handle
properties of the form “for all traces ...there exists a trace ...” which are harder to work
with but which encompass notions of refinement and continuity. Relational specifications
of procedures are used in a series of papers by Barthe et al. (e.g.,[14]) for computer-aided
cryptographic proofs. Sousa and Dillig [41] implement a logic that encompasses k-ary
relations, e.g., the 3-safety property that a binary method is computing a transitive relation;
their verification algorithm is based on an implicit product construction. None of these works
address the heap or the linking of procedure implementations. Several works show that
syntactic heuristics can often find good weavings in the case of similarly-structured programs
not involving the heap [28, 32, 41]. Mueller et al. [32] use a form of product program and a
relational logic to prove correctness of a static analysis for dependency, including procedures
but no heap.

Works on translation validation and conditional equivalence checking use verification
conditions (VCs) with implicit or explicit product constructions [46, 47]. Godlin and
Strichman formulate and prove soundness of rules for proving equivalence of programs with
similar control structure [23]. They use one of the rules to devise an algorithm for VCs
using uninterpreted functions to encode equivalence of called procedures, which has been
implemented in two prototype tools for equivalence checking [24]. (Pointer structures are
limited to trees, i.e., no sharing.) Hawblitzel et al. [25] and Lahiri et al. [29] use relational
procedure summaries for intra- and inter-procedural reasoning about program transformations.
The heap is modeled by maps. These and related works report good experimental results
using SMT or SAT solvers to discharge VCs. Felsing et al. [21] use Horn constraint solving
to infer coupling relations and relational procedure summaries, which works well for similarly
structured programs; they do not deal with the heap. The purpose of our logic is not to
supplant VC-based tools approaches but rather to provide a foundation for them. Our
biprograms and relational assertions are easily translated to SMT-based back ends like
Boogie and Why3.
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Amtoft et al. [2] introduce a logic for information flow in object-based programs, using
abstract locations to specify agreements in the heap. It was proposed in [8] to extend this
approach to more general relational specifications, for fine-grained declassification policies.
Banerjee et al. [9] showed how region-based reasoning including a frame rule can be encoded,
using ghost code, with standard FOL assertions instead of an ancillary notion of abstract
region. This evolved to the logic in Section 6.

Relational properties have been considered in the context of separation logic: [19] and [43]
both give relational interpretations of unary separation logic that account for representation
independence, using second order framing [19] or abstract predicates [43]. Extension of this
work to a relational logic seems possible, but the semantics does not validate the rule of
conjunction so it may not be a good basis for verification tools. Tools often rely heavily on
splitting conjunctions in postconditions.

Ahmed et al. [1] address representation independence for higher order code and code
pointers, using a step-indexed relational model, and prove challenging instances of contextual
equivalence. Based on that work, Dreyer et al. [20] formulate a relational modal logic for
proving contextual equivalence for a language that has general recursive types and general
ML-style references atop System F. The logic serves to abstract from details of semantics
in ways likely to facilitate interactive proofs of interesting contextual equivalences, but it
includes intensional atomic propositions about steps in the transition semantics of terms.
Whereas contextual equivalence means equivalent in all contexts, general relational logics can
express equivalences conditioned on the initial state. For example, the assignments x := y. f
and z.f := w do not commute, in general, because their effects can overlap. But they do
commute under the precondition y # z. We can easily prove equivalence judgments such

as (x:=y.fiz.fi=w|z.fi=wz:=y.f) :Bly# 2) A\AM{y}fAw=wa>x=xAA{z}f.

By contrast with [1, 34], we do not rely on embedding in higher-order logic.

8 Conclusion

We provide a general relational logic that encompasses the heap and includes procedures. It
handles both similarly- and differently-structured programs. We use small-step semantics with
the goal to leverage, in future work, our prior work on SMT-friendly heap encapsulation [40,
5, 7] for representation independence, which is not addressed in prior relational logics.!

As articulated long ago by Hoare [26] but never fully formalized in a logic of programs,
reasoning about change of data representation is based on simulation relations on encapsulated
state, which are necessarily preserved by client code in virtue of encapsulation. For functional
correctness this corresponds to “hiding” of invariants on encapsulated data, i.e., not including
the invariant in the specification used by a client. O’Hearn et al. [37] formalize this as a
hypothetical or second order framing rule (which has been adapted to RL [5]). In ongoing
work, the logic presented here has been extended to address encapsulation and provides

a relational second order frame rule which embodies Reynolds’ abstraction theorem [39].

Whereas framing of invariants relies on write effects, framing of encapsulated relations also
relies on read effects. Our ongoing work also addresses observational purity, which is known
to be closely related to representation independence [26, 36].

Although we can prove equivalence for loop tiling, some array-oriented loop optimizations
seem to be out of reach of the logic as currently formulated. Loop interchange changes

! With the partial exception of [1], see Section 7. Although there has been some work on observational
equivalence for higher order programs, we are not aware of work dealing with general relational judgments
for higher order programs.
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matrix row to column order, reordering unboundedly many atomic assignments, as does loop
fusion/distribution. Most prior work does not handle these examples; [47] does handle them,
with a non-syntactic proof rule that involves permutations on transition steps, cf. [33].
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—— Abstract

The theory of regular and aperiodic transformations of finite strings has recently received a lot
of interest. These classes can be equivalently defined using logic (Monadic second-order logic
and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers),
and one-way register machines (regular streaming string and aperiodic streaming string trans-
ducers). These classes are known to be closed under operations such as sequential composition
and regular (star-free) choice; and problems such as functional equivalence and type checking, are
decidable for these classes. On the other hand, for infinite strings these results are only known
for regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings
and introduced an extension of streaming string transducers over infinte strings and showed that
they capture monadic second-order definable transformations for infinite strings. In this paper
we extend their work to recover connection for infinite strings among first-order logic definable
transformations, aperiodic two-way transducers, and aperiodic streaming string transducers.
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1 Introduction

The beautiful theory of regular languages is the cornerstone of theoretical computer science
and formal language theory. The perfect harmony among the languages of finite words
definable using abstract machines (deterministic finite automata, nondeterministic finite
automata, and two-way automata), algebra (regular expressions and finite monoids), and
logic (monadic second-order logic (MSO) [7]) set the stage for the generalizations of the
theory to not only for the theory of regular languages of infinite words [8, 17], trees [4],
partial orders [23], but more recently for the theory of regular transformations of the finite
strings [6], infinite strings [3, 1], and trees [2]. For the theory of regular transformations
it has been shown that abstract machines (two-way transducers [13] and streaming string
transducers [6]) precisely capture the transformations definable via monadic second-order
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Figure 1 Transformation f1 given as (a) two-way transducers with look-ahead (b) streaming string
transducers with F({2}) = zz is the output associated with Muller set {2}, and (c) FO-definable
transformation for the string abbb#ba#{a,b}*. Here symbol a stands for both symbols a and b,
and the predicate reachy is the lookahead that checks whether string contains a # in future.

logic transformations [10]. For a detailed exposition on the regular theory of languages and
transformations, we refer to the surveys by Thomas [23, 24] and Filiot [14], respectively.

There is an equally appealing and rich theory for first-order logic (FO) definable subclasses
of regular languages. McNaughton and Papert [18] observed the equivalence between
FO-definability and star-free regular expressions for finite words, while Ladner [16] and
Thomas [22] extended this connection to infinite words. The equivalence of star-free regular
expressions and languages defined via aperiodic monoids is due to Schiitzenberger [20] and
corresponding extension to infinite words is due to Perrin [19]. For a detailed introduction
to FO-definable language we refer the reader to Diekert and Gastin [12].

The results for the theory of FO-definable transformations are relatively recent. While
Courcelle’s definition of logic based transformations [10] provides a natural basis for FO-
definable transformations of finite as well as infinite words, [15] observed that over finite
words, streaming string transducers [6] with an appropriate notion of aperiodicity precisely
capture the same class of transformations. Carton and Dartois [9] introduced aperiodic
two-way transducers for finite words and showed that it precisely captures the notion of
FO-definability. We consider transformations of infinite strings and generalize these results
by showing that appropriate aperiodic restrictions on two-way transducers and streaming
string transducers on infinite strings capture the essence of FO-definable transformations.
Let us study an example to see how the following w-transformation can be represented using
logic, two-way transducers, and streaming string transducers.

» Example 1 (Example Transformation). Let ¥ = {a,b, #}. Consider an w-transformation
f1: X% — X¥ such that it replaces any maximal #-free finite string v by wu, where @ is
the reverse of u. Moreover f; is defined only for strings with finitely many #’s, e.g. for all
w=uiFus# ... upF#v s.t u; € {a,b}* and v € {a,b}¥, we have fi(w)=urur# ... #Fupun#v.

Logic based transformations. Logical descriptions of transformations of structures — as
introduced by Courcelle [10] — work by introducing a fixed number of copies of the vertices of
the input graph; and the domain, the labels and the edges of the output graph are defined by
MSO formulae with zero, one or two free variables, respectively, interpreted over the input
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graph. Figure 1(c) shows a way to express transformation f; using three copies of the input
with a) logical formula ¢gom expressing the domain of the transformation, b) logical formulae
@5, (i) (with one free variable) for every copy ¢ € {1,2} and letter « € {a,b} expressing the
label of a position i for copy ¢, and c) logical formulae ¢ (i, j) with two free variables

expressing the edge from position i of copy ¢ to position j of copy d. The formulae ¢qom,

C
a’

and ¢©¢ are interpreted over input structure (in this paper always an infinite string),
and it is easy to see that these formulae for our example can easily be expressed in MSO. In
this paper we study logical transformations expressible with FO and to cover a larger class
of transformations, we use natural order relation < for positions instead of the successor
relation. We will later show that the transformation f; indeed can be expressed using FO.

Two-Way Transducers. For finite string transformations, Engelfriet and Hoogeboom [13]
showed that the finite-state transducers when equipped with a two-way input tape have the
same expressive power as MSO transducers, and Carton and Dartois [9] recovered this result
for FO transducers and two-way transducers with aperiodicity restriction. A crucial property
of two-way finite-state transducers exploited in these proofs [13, 9] is the fact that transitions
capable of regular (star-free) look-ahead (i.e., transitions that test the whole input string
against a regular property) do not increase the expressiveness of regular (aperiodic) two-way
transducers. However, this property does not hold in case of w-strings. In Figure 1(a),
we show a two-way transducer characterizing transformation f;. The transducer uses the
lookahead reachy to check if the remaining part of the string contains a # in future. A
transition labeled < ¢, |3, 41 > of the two-way transducer should be read as: if the current
position on the string satisfies the look-ahead ¢ and the current symbol is o then output
symbol 8 and move the input tape head to the right. This transducer works by first checking
if the string contains a # in the future of the current position, if so it moves its head all the
way to the position before # and starts outputting the symbols in reverse, and when it sees
the end-marker or a # it prints the string before the #; however, if there is no # in future,
then the transducer outputs the rest of the string. It is straightforward to verify that this
transducer characterizes the transformation f;. However, in the absence of the look-ahead a
two-way transducer can not express this transformation.

Streaming String Transducers. Alur and Cerny [6, 5] proposed a one-way finite-state
transducer model, called the streaming string transducers (SST), that manipulates a finite set
of string variables to compute its output, and showed that they have same expressive power
as MSO transducers. SST, instead of appending symbols to the output tape, concurrently
update all string variables using a concatenation of string variables and output symbols
in a copyless fashion, i.e. no variable occurs more than once in each concurrent variable
update. The transformation of a string is then defined using an output (partial) function F'
that associates states with a copyless concatenation of string variables, s.t. if the state ¢ is
reached after reading the string and F(¢)=xy, then the output string is the final valuation
of x concatenated with that of y. [3] generalized this by introducing a Muller acceptance
condition to give an SST to characterize w-transitions. Figure 1(b) shows a streaming string
transducer accepting the transformation f;. It uses three string variables and concurrently
prepends and/or appends these variables in a copyless fashion to construct the output. The
acceptance set and the output is characterized by a Muller set (here {2} and its output zz),
such that if the infinitely visiting states set is {2} then the output is limit of the values
of the concatenation xzz. Again, it is easy to verify that SST in Figure 1(b) captures the
transformation fi.
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Contributions and Challenges. Our main contributions include the definition of aperiodic
streaming string transducers and aperiodic two-way transducers, and the proof of the following
key theorem connecting FO and transducers for transformations of infinite strings.

» Theorem 2. Let F : 3¥“ — T'“. Then the following assertions are equivalent:

1. F is first-order definable.

2. F is definable by some aperiodic two-way transducer with star-free look-around.
3. F is definable by some aperiodic streaming string transducers.

We introduce the notion of transition monoids for automata, 2WST, and SST with
the Muller acceptance condition; and recover the classical result proving aperiodicity of a
language using the aperiodicity of the transition monoid of its underlying automaton. The
equivalence between FOT and 2WST with star-free look-around (Section 4), crucially uses
the transition monoid with Muller acceptance, which is necessary to show aperiodicity of the
underlying language of the 2WST. On the other hand, while going from aperiodic SST to
FOT (Section 5), the main difficulty is the construction of the FOT using the aperiodicity of
the SST, and while going from 2WST with star-free look-around to SST (Section 6), the hard
part is to establish the aperiodicity of the SST. Due to space limitation, we only provide key
definitions and sketches of our results — complete proofs and related supplementary material
can be found in longer version of this paper [11].

2 Preliminaries

A finite (infinite) string over alphabet X is a finite (infinite) sequence of letters from X. We
denote by € the empty string. We write X* for the set of finite strings, ¥X“ for the set of
w-strings over 3, and X*° = X* U X for the set of finite and w-strings. A language L over
an alphabet ¥ is defined as a set of strings, i.e. L C X*°.

For a string s € X*° we write |s| for its length; note that |s| = oo for an w-string s. Let
dom(s) = {1,2,3,...,} be the set of positions in s. For all : € dom(s) we write s[i] for the
i-th letter of the string s. For two w-strings s, s’ € X, we define the distance d(s,s’) as
2 where j=min{k | s[k] # s'[k]}. We say that a string s € £ is the limit of a sequence
51,82,... of w-strings s; € 3¢ if for every ¢ > 0, there is an index n. € N such that for
all i > ne, we have that d(s,s;) < e. Such a limit, if exists, is unique and is denoted as

s = lim;_, o ;. For example, b* = lim;_, . b"c”.

2.1 Aperiodic Monoids for w-String Languages

A monoid M is an algebraic structure (M, -, e) with a non-empty set M, a binary operation -,
and an identity element e € M such that for all z,y, 2 € M we have that (z-(y-2))=((z-y)-2),
and z-e=e-x for all x € M. We say that a monoid (M, -, e) is finite if the set M is finite.
A monoid that we will use in this paper is the free monoid, (X*, -, €), which has a set of finite
strings over some alphabet X with the empty string € as the identity.

We define the notion of acceptance of a language via monoids. A morphism (or ho-
momorphism) between two monoids M = (M,-,e) and M’ = (M’, x,¢€’) is a mapping
h: M — M’ such that h(e) = ¢’ and h(x-y) = h(z) x h(y). Let h: ¥* — M, be a morphism
from free monoid (X*, -, €) to a finite monoid (M, -, e). Two strings u,v € £* are said to be
similar with respect to h denoted u ~j, v, if for some n € NU {oc}, we can factorize u, v as
U= ULUs - .. Uy and v = V102 . .. v, With u;, v; € BT and h(u;) = h(v;) for all i. Two w-strings
are h-similar if we can find factorizations ujus ... and v1ve ... such that h(u;) = h(v;) for
all 7. Let = be the transitive closure of ~j. = is an equivalence relation. Note that since
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M is finite, the equivalence relation 2 is of finite index. For w € £*° we define [w];, as the
set {u | u = w}. We say that a morphism h accepts a language L C ¥ if w € L implies
[w]p, C L for all w € 3.

We say that a monoid (M, .,e) is aperiodic [21] if there exists n € N such that for all
x € M, 2™ = z"*!. Note that for finite monoids, it is equivalent to require that for all
x € M, there exists n € N such that 2 = z"*!. A language L C ¥ is said to be aperiodic
iff it is recognized by some morphism to a finite and aperiodic monoid [11].

2.2 First-Order Logic for w-String Languages

A string s € ¢ can be represented as a relational structure Zs=(dom(s), <%, (L )qex), called
the string model of s, where dom(s) = {1,2,...} is the set of positions in s, <* is a binary
relation over the positions in s characterizing the natural order, i.e. (z,y) €=<®if x <y; Lg,
for all a € X, are the unary predicates that hold for the positions in s labeled with the letter
a, i.e., L3 (i) iff s[i] = a, for all i € dom(s). When it is clear from context we will drop the
superscript s from the relations <* and LJ.

Properties of string models over the alphabet ¥ can be formalized by first-order logic
denoted by FO(X). Formulas of FO(X) are built up from variables z,y, ... ranging over
positions of string models along with atomic formulae of the form x=y, =<y, and L,(x) for
all @ € ¥ where formula xr=y states that variables = and y point to the same position, the
formula = =< y states that position corresponding to variable x is not larger than that of
y, and the formula L, (z) states that position = has the label a € X. Atomic formulae are
connected with propositional connectives =, A, V, —, and quantifiers ¥V and 3 that range
over node variables and we use usual semantics for them. We say that a variable is free in a
formula if it does not occur in the scope of some quantifier. A sentence is a formula with
no free variables. We write ¢(x1,x2,...,2x) to denote that at most the variables x1, ...,z
occur free in ¢. For a string s € X* and for positions ny,ns,...,n; € dom(s) we say that
s with valuation v = (n1,na,...,ni) satisfies the formula ¢(x1,x2,...,2x) and we write
(s,v) E o(x1,29,...,2) O s |E d(n1,n2,...,n;) if formula ¢ with n; as the interpretation
of x; is satisfied in the string model =;. The language defined by an FO sentence ¢ is
L(¢) = {se€ X : B, |= ¢}. We say that a language L is FO-definable if there is an FO
sentence ¢ such that L = L(¢). The following is a well known result.

» Theorem 3 ([18, 20]). A language L C ¥* is FO-definable iff it is aperiodic.

2.3 Aperiodic Muller Automata for w-String Languages

A deterministic Muller automaton (DMA) is a tuple A = (Q, qo, 2, d, F') where @ is a finite
set of states, gop € @ is the initial state, ¥ is an input alphabet, § : Q@ x ¥ — @ is a transition
function, and F C 29 are the accepting (Muller) sets. For states ¢,¢' € Q and letter a € ¥ we
say that (¢, a,¢’) is a transition of the automaton A if §(¢,a) = ¢’ and we write ¢ = ¢’. We say
that there is a run of A over a finite string s = ajas . ..a, € X* from state p to state ¢ if there
is a finite sequence of transitions ((po,a1,p1), (P1,02,p2), .-y (Pn-1,n,Pn)) € (Q X L x Q)*
with p = po and g = p,. We write L, , for the set of finite strings w such that there is a run
of A over w from p to q. We say that there is a run of A over an w-string s = ajas ... € X if
there is a sequence of transitions ((qo, a1, 1), (¢1, a2,¢2),...) € (Q x X x @Q)“. For an infinite
run r, we denote by Q(r) the set of states that occur infinitely often in r. We say that an
w-string w is accepted by a Muller automaton A if the run of A on w is such that Q(r) € F
and we write L(A) for the set of all w-strings accepted by .A.

A Muller automaton A is aperiodic iff there exists some m>1 s.t. u™€L, , iff v™T€L, ,
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for all u € ¥* and p,q € Q. Another equivalent way to define aperiodicity is using the
transition monoid, which, to the best of our knowledge, has not been defined in the literature
for Muller automata. Given a DMA A=(Q, qo, 2, A, {F1,..., F,}), we define the transition
monoid M 4=(My, x,1) of A as follows: M4 is a set of |Q| X |Q| square matrices over
({0,1} U 29)" U {L}. Matrix multiplication x is defined for matrices in M4 with identity
element 1 € M4, where 1 is the matrix whose diagonal entries are (,9,...,0) and non-
diagonal entries are all L’s. Formally, M ={M, : s € ¥*} is defined using matrices M;
for strings s € ¥* s.t. M,[p][g]=L if there is no run from p to ¢ over s in A. Otherwise,
let P be the set of states (excluding p and ¢) witnessed in the unique run from p to gq.
Then M[pllq] = (z1,...,2,) € ({0,1} U29)" where (1) z; = 0 iff 3t € PU {p,q}, t & F;
(2) z; =1iff PU{p,q} = F;, and (3) z; = PU{p, q} iff PU{p,q} C F;. Tt is easy to see that
M. = 1, since € takes a state to itself and nowhere else. The operator x is simply matrix
multiplication for matrices in M 4, however we need to define addition & and multiplication
® for elements ({0,1} U29)™ U {L} of the matrices. We have oy ® ap = L if a; = L or

as =1, and if ag = (21,...,2,) and as = (y1,...,ys) then a1 © ag = (21,..., 2,) s.t.:
0 ifx;=0o0ry; =0
1 if (x; =y;=1) orif (x;,y; C F; and z; Uy; = F;) )
Z; =
1 if (z; =1and y; C F;) or (y; =1 and x; C F;)

Due to determinism, we have that for every matrix My and every state p there is at most
one state ¢ such that M[p][¢g] # L and hence the only addition rule we need to introduce
isa® Ll =1®da=a. Itis easy to see that (M4, X,1) is a monoid (a proof is deferred
to the [11]). It is straightforward to see that a Muller automaton is aperiodic if and only
if its transition monoid is aperiodic. [11] gives a proof showing that a language L C ¥ is
aperiodic iff there is an aperiodic DMA accepting it.

3 Aperiodic Transformations

In this section we formally introduce three models to express FO-transformations, and
prepare the machinery required to prove their expressive equivalence in the rest of the paper.

3.1 First-Order Logic Definable Transformations

Courcelle [10] initiated the study of structure transformations using MSO logic. His main
idea was to define a transformation (w,w’) € R by defining the string model of w’ using
a finite number of copies of positions of the string model of w. The existence of positions,
various edges, and position labels are then given as MSO(X) formulas. We study a restriction
of his formalism to use first-order logic to express string transformations.

» Definition 4. An FO string transducer is a tuple T=(3,T, ¢aom, C, dpos, p<) Where:
Y. and T" are finite input and output alphabets;
@dom 1s a closed FO(X) formula characterizing the domain of the transformation;
C={1,2,...,n} is a finite index set;
Ppos={@%(x) : c € C and v € T'} is a set of FO(X) formulae with a free variable ;
p<= {cz)id(x, y):edé€ C} is a set of FO(X) formulae with two free variables  and y.
The transformation [77] defined by T is as follows. A string s with =5 = (dom(s), =, (L4)aes)
is in the domain of [T] if s = ddom and the output string w with structure
M = (D, =M (L") er) is such that
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D = {v° : v €dom(s),c € C and ¢°(v)} is the set of positions where

¢°(v) = Vyer ¢5(v);
<M CDxD is the ordering relation between positions and it is such that for v, u € dom(s)
and ¢,d € C we have that v¢ <M u? if w = qb%d(v,u); and
for all v° € D we have that L (v°) iff ¢<(v).

Observe that the output is unique and therefore FO transducers implement functions. A
string s € ¥* can be represented by its string-graph with dom(s) = {i € N}, <= {(4,7) | i <
j} and Ly (7) iff s[i] = a for all . From now on, we denote the string-graph of s as s only. We
say that an FO transducer is a string-to-string transducer if its domain is restricted to string
graphs and the output is also a string graph. We say that a string-to-string transformation
is FO-definable if there exists an FO transducer implementing the transformation. We write
FOT for the set of FO-definable string-to-string w-transformations.

» Example 5. Figure 1(c) shows a transformation for an FOT that implements the trans-
formation f; : X*#{a,b}* — ¢, where ¥ = {a,b,#}, by replacing every maximal #
free string w with wu. Let is_string, be an FO formula that defines a string that
contains a #, and let reachy(z) be an FO formula that is true at a position which
has a # at a later position. To define the FOT formally, we have ¢g4om = is_stringy,
¢4 (x) = ¢2(x) = Ly(2) A= Ly(x) Areachy (x), since we only keep the non # symbols that can
“reach” a # in the input string in the first two copies. ¢2(x) = Ly (2)V(-Ly(x)A-reachy(z)),
since we only keep the #’s, and the infinite suffix from where there are no #’s. The full list
of formulae ¢/ can be seen in [11].

3.2 Two-way Transducers (2WST)

A 2WST is a tuple T = (Q, X, T, qo, 0, F') where X, T are respectively the input and output
alphabet, g is the initial state, § is the transition function and F' C 2 is the acceptance
set. The transition function is given by 6 : @ x ¥ — @ x I'* x {1,0,—1}. A configuration

of the 2WST is a pair (q,7) where ¢ € @ and i € N is the current position of the input

. . di
string. A run r of a 2WST on a string s € X¢ is a sequence of transitions (qg, i0=0) —>a1/cl il

(di ; : : i
) M (q2,1i2) - -+ where a; € X is the input letter read and ¢; € T'* is the output

(q1,01
string produced during a transition and i;s are the positions updated during a transition
for all j € dom(s). dir is the direction, {1,0,—1}. W.l.o.g. we can consider the outputs to
be over I' U {e}. The output out(r) of a run r is simply a concatenation of the individual
outputs, i.e. cico--- € I'™. We say that the transducer reads the whole string s when
sup {in | 0 <n < |r|} =oco. The output of s, denoted T'(s) is defined as out(r) only if Q(r) € F'

and r reads the whole string s. We write [T7] for the transformation captured by T

Transition Monoid. The transition monoid of a 2WST T = (Q, %, T, qo, 6, {F1,..., Fr}) is
the transition monoid of its underlying automaton. However, since the 2WST can read their
input in both directions, the transition monoid definition must allow for reading the string
starting from left side and leaving at the left (left-left) and similar other behaviors (left-right,
right-left and right-right). Following [9], we define the behaviors By, (w) of a string w for
x,y € {{,r}. Be(w) is a set consisting of pairs (p, q) of states such that starting in state p
in the left side of w the transducer leaves w in right side in state ¢. In the example in figure
1(a), we have By.(ab#) = {(t,t), (p, t), (¢, t)} and B, (ab#) = {(q, 1), (t, 1), (p,q)}. Two words
w1, ws are “equivalent” if their left-left, left-right, right-left and right-right behaviors are same.

12:7

FSTTCS 2016



12:8

FO-Definable Transformations of Infinite Strings

That is, Byy(w1) = Byy(ws) for x,y € {¢,r}. The transition monoid of T is the conjunction
of the 4 behaviors, which also keeps track, in addition, the set of states witnessed in the run,
as shown for the deterministic Muller automata earlier. For each string w € ¥*, z,y € {{,r},
and states p, ¢, the entries of the matrix M*¥[p][q] are of the form L, if there is no run from
p to ¢ on word u, starting from the side x of u and leaving it in side y, and is (z1,...2,)
otherwise, where z; is defined exactly as in section 2.3. For equivalent words w1, us, we have
M3Y[plla] = MY [pllq] for all z,y € {¢,r} and states p,q. Addition and multiplication of
matrices are defined as in the case of Muller automata. See [11] for more details. Note that
behavioral composition is quite complex, due to left-right movements. In particular, it can
be seen from the example that By, (ab#a#) = Ber(ab#)Bue(a#)Brr(ab#)Ber(a#). Since we
assume that the 2WST T is deterministic and completely reads the input string a € %%, we
can find a unique factorization a = [ag . .. ap,][@p 41 - - - Qp,] - .. such that the run of A on
each a-block progresses from left to right, and each a-block will be processed completely.
That is, one can find a unique sequence of states gy, , ¢p,, . .. such that the 2WST starting in
initial state go at the left of the block oy ... a,, leaves it at the right in state g, , starts the
next block ap, 41 ... ap, from the left in state g,, and leaves it at the right in state g,, and
SO on.

We consider the languages LY for z,y € {¢,r}, where £, r respectively stand for left and
right. Lffl stands for all strings w such that, starting at state p at the left of w, one leaves
the left of w in state g. Similarly, L;g stands for all strings w such that starting at the right
of w in state p, one leaves the left of w in state ¢q. In figure 1(a), note that starting on the
right of ab# in state ¢, we leave it on the right in state ¢, while we leave it on the left in state
p. So ab# € LI{,L%. Also, ab# € L.

A 2WST is said to be aperiodic iff for all strings u € ¥*, all states p,q and z,y € {l,r},
there exists some m > 1 such that u™ € Lg}; iff ymtl e quy.

Star-Free Lookaround. We wish to introduce aperiodic 2WST that are capable of capturing
FO-definable transformations. However, as we discussed earlier (see page 3 in the paragraph
on two-way transducers) 2WST without look-ahead are strictly less expressive than MSO
transducers. To remedy this we study aperiodic 2WSTs enriched with star-free look-ahead
(star-free look-back can be assumed for free).

An aperiodic 2WST with star-free look-around (2WST,) is a tuple (T, A, B) where A is
an aperiodic Muller look-ahead automaton and B is an aperiodic look-behind automaton,
resp., and T = (X,T,Q, qo, 9, F) is an aperiodic 2WST as defined earlier except that the
transition function § : @ x Qg x L x Q4 — Q xI' x {—1,0,+1} may consult look-ahead and
look-behind automata to make its decisions. Let s € 3¢ be an input string, and L(A, p) be
the set of infinite strings accepted by A starting in state p. Similarly, let L(B,r) be the set
of finite strings accepted by B starting in state r. We assume that 2WST,y are deterministic
i.e. for every string s € X* and every input position i < |s|, there is exactly one state p € Q4
and one state r € Qp such that s(i)s(i +1)... € L(A,p) and s(0)s(1)...s(i — 1) € L(B,r).
If the current configuration is (g¢,4) and 6(q,r, s(i),p) = (¢, z,d) is a transition, such that
the string s(i)s(¢ + 1) ... € L(A,p) and s(0)s(1)...s(¢ — 1) € L(B,r), then 2WST,; writes
z € T on the output tape and updates its configuration to (¢’,i 4+ d). Figure 1(a) shows a
2WST with star-free look-ahead reachy(z) capturing the transformation f; (details in [11]).

3.3 Streaming w-String Transducers (SST)

Streaming string transducers(SSTs) manipulate a finite set of string variables to compute
their output. In this section we introduce aperiodic SSTs for infinite strings. Let X
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be a finite set of variables and I" be a finite alphabet. A substitution ¢ is defined as a
mapping o : X — (TUX)*. A valuation is defined as a substitution ¢ : X — T'*. Let
Sx.r be the set of all substitutions [X¥ — (I' U X')*]. Any substitution o can be extended

~

to 6 : (TUX)" - (TUAX)* in a straightforward manner. The composition o109 of

two substitutions o7 and o9 is defined as the standard function composition djos, i.e.

Froa(x) = F1(o2(x)) for all z € X. We say that a string v € (IT'U X)* is copyless (or linear)
if each & € X occurs at most once in u. A substitution o is copyless if §(u) is copyless, for
all linear v € (T U X)* .

» Definition 6. A streaming w-string transducer (SST) is a tuple T' = (£, T, @, 0,0, X, p, F')

Y and I' are finite input and output alphabets;

( is a finite set of states with initial state qo;

0:@Q XX — Q is a transition function and X is a finite set of variables;

p:(Q x X) — Sy r is a variable update function to copyless substitutions such that any

variable x occurs at most once on the right hand side of a simultaneous substitution;

F : 29 — X* is an output function such that for all P € dom(F) the string F(P) is

copyless of form x; ...x,, and for ¢,¢' € P and a € ¥ s.t. ¢’ = 6(¢q,a) we have

p(q,a)(z;) = z; for all i < n and p(q, a)(zy) = zyu for some v € (I'U X)*.
The concept of a run of an SST is defined in an analogous manner to that of a Muller
automaton. The sequence (0;)o<i<|r Of substitutions induced by a run r = qo La
g2 ... is defined inductively as the following: o, ;=0 ;—1p(qi—1,a;) for 0 < i < |r| and
oro = € X — . The output T'(r) of an infinite run r of T is defined only if F(r) is
defined and equals T'(r) = lim; o (0, ;(F(r))), when the limit exists. If not, we pad L“ to
the obtained finite string to get lim; o, (0 ;(F(r))L*) as the infinite output string.

The assumptions on the output function F' in the definition of an SST ensure that this
limit exists whenever F(r) is defined. Indeed, when a run r reaches a point from where it
visits only states in P, these assumptions enforce the successive valuations of F'(P) to be an
increasing sequence of strings by the prefix relation. The padding by unique letter L ensures
that the output is always an w-string. The output T'(s) of a string s is then defined as the
output T'(r) of its unique run r. The transformation [T7] defined by an SST T is the partial
function {(s,T(s)) : T(s) is defined}. See [11] for an example. We remark that for every
SSTT =(%,T,Q,q0,9, X, p, F), its domain is always an w-regular language defined by the
Muller automaton (X, @, qo, d, dom(F')), which can be constructed in linear time. However,
the range of an SST may not be w-regular. For instance, the range of the SST-definable
transformation a"#“ +— a™b"#“ (n > 0) is not w-regular.

Aperiodic Streaming String Transducers. We define the notion of aperiodic SSTs by
introducing an appropriate notion of transition monoid for transducers. The transition
monoid of an SST T is based on the effect of a string s on the states as well as on the
variables. The effect on variables is characterized by, what we call, flow information that is
given as a relation that describes the number of copies of the content of a given variable that
contribute to another variable after reading a string s.

Let T = (3,T,Q,qo,6,X,p, F) be an SST. Let s be a string in ¥* and suppose that
there exists a run r of 7" on s. Recall that this run induces a substitution o, that maps
each variable X € X to a string u € (I' U X)*. For string variables X,Y € X, states
p,q € @, and n € N we say that n copies of Y flow to X from p to ¢ if there exists a
run 7 on s € X* from p to ¢, and Y occurs n times in 0,.(X). We extend the notion of
transition monoid for the Muller automata as defined in Section 2 for the transition monoid
for SSTs to equip it with variables. Formally, the transition monoid Mp=(Mr, x,1) of an
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SSTT = (2,T,Q,q,0,X,p,{F1,...,F,}) is such that Mr is a set of |Q x X| X |Q x X|
square matrices over (N x ({0,1} U2%)") U {L} along with matrix multiplication x defined
for matrices in Mp and identity element 1 € My is the matrix whose diagonal entries are
(1,(0,0,...,0)) and non-diagonal entries are all L’s. Formally Mr={M; : s € ¥*} is defined
using matrices M for strings s € ¥* s.t. M;[(p, X)][(¢,Y)]=L if there is no run from state p
to state ¢ over s in T, otherwise M[(p, X)][(¢,Y)] = (k, (z1,...,2,)) € (N x ({0,1} U29)")
where z; is defined exactly as in section 2.3, and k copies of variable X flow to variable Y
from state p to state ¢ after reading s.

We write (p, X) ~% (¢q,Y) for M,[(p, X)][(¢,Y)] = .

It is easy to see that M. = 1. The operator X is simply matrix multiplication for
matrices in M7, however we need to define addition @& and multiplication ® for elements
({0,1} U29)™ U { L} of the matrices. We have oy ® az = L if ay = L or ag = L, and if
) = (k‘l, (xl, ... ,l‘n)) and ag = (kg, (Z/h ... 7yn)) then oy © ag = (k‘l X ks, (2’1, Cey Zn)) s.t.
for all 1 <4 < n z; are defined as in (x) from Section 2.3. Note that due to determinism of the
SSTs we have that for every matrix M, and every state p there is at most one state g such that
M;[p]lg] # L and hence the only addition rules we need to introduce is a® L = L & a = a,
000=0,1®1=1and kB k =k for Kk C Q. It is easy to see that (M, x,1) is a monoid
and we give a proof in [11]. We say that the transition monoid My of an SST T is 1-bounded
if in all entries (j, (z1,...,z,)) of the matrices of Mp, j < 1. A streaming string transducer
is aperiodic if its transition monoid is aperiodic.

4 FOTs = Aperiodic 2WST

» Theorem 7. A transformation f : X% — I'Y is FOT-definable if and only if it is definable
using an aperiodic two way transducer with star-free look-around.

Proof (Sketch). This proof is in two parts.

Aperiodic 2WST,¢ C FOT. We first show that given an aperiodic 2WST,; A, we can
effectively construct an FOT that captures the same transduction as A over infinite words.
Let A= (Q,%,T,qo,9, F) be an aperiodic 2WST ¢, where each transition outputs at most
one letter. Note that this is without loss of generality, since we can output any longer string
by having some extra states. Given A, we construct the FOT T' = (£, T, ¢gom, C, Ppos; $<)
that realizes the transduction of A. The formula ¢g,m is the conjunction of formulae
is_string and ¢ where ¢ is a FO formula that captures the set of accepted strings of
A (obtained by proving L(A) is aperiodic [11]) and is_string is a FO formula that
specifies that the input graph is a string (see [11]). The copies of the FOT are the states
of A. For any two positions z,y of the input string, and any two copies ¢, ¢’, we need to
define gbqf/. This is simply describing the behaviour of A on the substring from position
x to position y of the input string u, assuming at position x, we are in state ¢, and reach
state ¢’ at position y. The following lemma (proof in [11]) gives an FO formula g ¢ (x,y)
describing this.

» Lemma 8. Let A be an aperiodic 2WST s with the Muller acceptance condition. Then for
all pairs of states q,q, there exists an FO formula 4.4 (z,y) such that for all strings s € ¥
and a pair of positions x,y of s, s = Yq.q (z,y) iff there is a run from state q starting at
position T of s that reaches position y of s in state q'.

An edge exists between position z of copy ¢ and position y of copy ¢’ iff the input string
u = Yq,¢(7,y). The formulae ¢2(x) for each copy g specifies the output at position z in
state ¢g. We have to capture that position x is reached from the initial position in state g,
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and also the possible outputs produced while in state g at . The transition function ¢
gives us these symbols. The formula \/5(q,a):(q’,dir,'y) L. (z) captures the possible output
symbols. To state that we reach ¢ at position x, we say Jy[first(y) A g, .q4(y, z)]. The
conjunction of these two formulae gives ¢2/(33) This completes the FOT T'.
FOT C Aperiodic 2WST,¢. Given an FOT, we show that we can construct an aperiodic
2WST with star-free look-around capturing the same transduction over w-words. For this,
we first show that given an FOT, we can construct 2WST enriched with FO instructions
that captures the same transduction as the FOT. The idea of the proof follows [13], where
one first defines an intermediate model of aperiodic 2WST with FO instructions instead
of look-around. Then we show FOT C 2WST ¢, C 2WST,, to complete the proof.

The omitted details can be found in [11]. <

5 Aperiodic SST C FOT
» Lemma 9. A transformation is FO-definable if it is aperiodic-SST definable.

We show that every aperiodic 1-bounded SST definable transformation is definable using
FO-transducers. A crucial component in the proof of this lemma is to show that the variable
flow in the aperiodic 1-bounded SST is FO-definable ([11]). To construct the FOT, we make
use of the output structure for SST. It is an intermediate representation of the output, and
the transformation of any input string into its SST-output structure will be shown to be
FO-definable. For any SST T and string s € dom(7"), the SST-output structure of s is a
relational structure G (s) obtained by taking, for each variable X € X', two copies of dom(s),
respectively denoted by X and X°“!. For notational convenience we assume that these
structures are labeled on the edges. A pair (X, 1) is useful if the content of variable X before
reading s[i] will be part of the output after reading the whole string s. This structure satisfies
the following invariants: for all i € dom(s), (1) the nodes (X", i) and (X°%,4) exist only if
(X, i) is useful, and (2) there is a directed path from (X, i) to (X°“,4) whose labels are
same as variable X computed by T after reading s[i].

X = aXb X = ¢ X =X X = X X = X X = XY
Y = aaa Y =Y Y = eYf Y =Y Y = Ybe Y = b
run 90 > 1 > 12 > 03 > (1 > 5 > s
, € € € €
xin o€ — ——— - - — < < < <
N )
Xt eemoob__ - = - = a >
4
< ¢ < € < ¢ < ¢
Y ' l‘ < < < :
el aaa . | be
\ € / € be \

We define SST-output structures formally in [11], however, the illustration above shows an
SST-output structure. We show only the variable updates. Dashed arrows represent variable
updates for useless variables, and therefore does not belong the SST-output structure. The
path from (X, 6) to (X°%,6) gives the contents of X (ceaaafbc) after 6 steps. We write
Or for the set of strings appearing in right-hand side of variable updates.

We next show that the transformation that maps an w-string s into its output structure
is FO-definable, whenever the SST is 1-bounded and aperiodic. Using the fact that variable
flow is FO-definable, we show that for any two variables X, Y, we can capture in FO, a path
from (X9,4) to (Y®,7) for d,e € {in,out} in G(s) and all positions i, j.
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» Lemma 10. Let T be an aperiodic,1-bounded SST T. For all XY € X and all
d,d’ € {in,out}, there exists an FO[S]-formula pathy y 4 4 (%, y) with two free variables such
that for all strings s € dom(T') and all positions i,j € dom(s), s |= pathy y 4 4 (i, ) iff there
exists a path from (X,4) to (Y, 7) in Gr(s).

The proof of Lemma 10 is in longer version [11]. As seen in [11] (in Proposition 4) one can
write a formula ¢,(z) (to capture the state ¢ reached) and formula £ (to capture the
recurrence of a Muller set P) in an accepting run after reading a prefix. For each variable
X € X, we have two copies X" and X°“! that serve as the copy set of the FOT. As given by
the SST output-structure, for each step 4, state ¢ and symbol a, a copy is connected to copies
in the previous step based on the updates p(q,a). The full details of the FOT construction

handling the Muller acceptance condition of the SST are in [11].

6 Aperiodic 2WST,; C Aperiodic SST

We show that given an aperiodic 2WST A = (X,T, @, qo, 0, F') with star-free look around
over w-words, we can construct an aperiodic SST 7T that realizes the same transformation.

» Lemma 11. For every transformation definable with an aperiodic 2WST with star-free
look around, there exists an equivalent aperiodic 1-bounded SST.

Proof. While the idea of the construction is similar to [3], the main challenge is to eliminate
the star-free look-around for infinite strings from the SST, preserving aperiodicity. As an
intermediate model we introduce streaming w-string transducers with star-free look-around
SST,s that can make transitions based on some star-free property of the input string. We
first show that for every aperiodic 2WST s one can obtain an aperiodic SST,f, and then
prove that the star-free look arounds can be eliminated from the SST,;.
(2WST,; C SST,f). One of the key observations in the construction is that a 2WST,
can move in either direction, while SST,; cannot. Since we start with a deterministic
2WST,, that reads the entire input string, it is clear that if a cell 7 is visited in a state
q, then we never come back to that cell in the same state. We keep track in each cell ¢,
with current state g, the state f(g) the 2WST,; will be in, when it moves into cell ¢ + 1
for the first time. The SST,; will move from state ¢ in cell i to state f(g) in cell i + 1,
keeping track of the output produced in the interim time; that is, the output produced
between ¢ in cell ¢ and f(g) in cell ¢ + 1 must be produced by the SST,; during the
move. This output is stored in a variable X,. The state of the SST,; at each point of
time thus comprises of a pair (g, f) where ¢ is the current state of the 2WST,, and f
is the function which computes the state that g will evolve into, when moving to the
right, the first time. In each cell 4, the state of the SST will coincide with the state
the 2WST,; is in, when reading cell ¢ for the first time. In particular, in the SST,
we define 6'((q, f),7,a,p) = (f'(q), f') where f'(q) = f'(f(t)) if in the 2WST,; we have
d(g,r a,p) = (t,v,—1). f'(q) gives the state in which the 2WST,; will move to the right
of the current cell, but clearly this depends on f(t), the state in which the 2WST,; will
move to the right from the previous cell. The variables of the SST,; are of the form
Xg, where ¢ is the current state of the SST,;. Update of X, depends on whether the
2WST,; moves left, right or stays in state ¢. For example, X, is updated as X;p(Xy«))
if in the 2WST, 6(q,r,a,p) = (t,7,—1) and f(t) is defined. The definition is recursive,
and X; handles the output produced from state ¢ in cell # — 1. We allow all subsets of @
as Muller sets of the SST,¢, and keep any checks on these, as part of the look-ahead.
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A special variable O is used to define the output of the Muller sets, by simply updating
it as O := Op(X,) corresponding to the current state ¢ of the 2WST,¢ (and (g, f) is the
state of the SST,¢). The details of the correctness of construction are in [11].
(SSTs¢ C SST). An aperiodic SST with star-free lookaround is a tuple (7, B, A) where
A = (Pa,X, 04, Py) is an aperiodic, deterministic Muller automaton called a look-ahead
automaton, B = (Pp, X, dp) is an aperiodic automaton called the look-behind automaton,
and T is a tuple (X, T, Q, qo,9, X, p, F) where &, T, Q, qo, X, p, and F are defined in the
same fashion as for w-SSTs, and § : @ X Pg x ¥ X P4 — @ is the transition function. On
a string ajas . .., while processing symbol a;, we have in the SST,¢, 6((¢, pB,pa), a;) = ¢,
(and the next transition is d((¢’,p’z,P/4), @i+1)) if (i) the prefix araz...a; € L(pa), (ii)
the suffix a;41a,42--+ € L(pp), where L(pa) (L(pp)) denotes the language accepted
starting in state p4 (pp). We further assume that the look-aheads are mutually exclusive,
i.e. for all symbols a € X, all states ¢ € @, and all transitions ¢’ = §(q,7,a,p) and
q¢" = (q,r',a,p’), we have that L(A,) N L(A,) = @ and L(B,) N L(B,) = @. In [11], we
show that for any input string, there is atmost one useful, accepting run in the SSTy,
while in Lemma 29 in [11], we show that adding (aperiodic) look-arounds to SST does
not increase their expressiveness.

The proof sketch is now complete. <

7 Conclusion

We extended the notion of aperiodicity from finite string transformations to that on infinite
strings. We have shown a way to generalize transition monoids for deterministic Muller
automata to streaming string transducers and two-way finite state transducers that capture
the FO definable global transformations. An interesting and natural next step is to investigate
LTL-definable transformations, their connection with FO-definable transformations, and
their practical applications in verification and synthesis.
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—— Abstract

It is known that a language of finite words is definable in monadic second-order logic — MSO —
(vesp. first-order logic — FO —) iff it is recognized by some finite automaton (resp. some aperiodic
finite automaton). Deciding whether an automaton A is equivalent to an aperiodic one is known
to be PSPACE-complete. This problem has an important application in logic: it allows one to
decide whether a given MSO formula is equivalent to some FO formula. In this paper, we address

the aperiodicity problem for functions from finite words to finite words (transductions), defined by
finite transducers, or equivalently by bimachines, a transducer model studied by Schiitzenberger
and Reutenauer. Precisely, we show that the problem of deciding whether a given bimachine is
equivalent to some aperiodic one is PSPACE-complete.
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1 Introduction

Rational languages and the aperiodicity problem

The theory of rational languages (of finite words) is robust, due to many characterizations
coming from different domains, such as computation, logic and algebra. For instance, it
is well-known that a language is rational iff it is recognized by some finite automaton,
iff it is definable in monadic second-order logic with one successor (MSO), iff its right
syntactic congruence (also known as Myhill-Nerode congruence) has finite index. The latter
algebraic characterization is closely related to the existence of a unique minimal deterministic
automaton for every rational language, the states of which are the classes of the right syntactic
congruence. Connections between computation, logic and algebra have been established for
subclasses of rational languages. Perhaps the most important example, based on seminal
works by Schiitzenberger [21], McNaughton and Papert [16], is the class of aperiodic languages,
characterized by aperiodic automata, first-order logic (FO), and aperiodic right syntactic
congruences. See also [23] for other classes.

Thanks to the (effective) logic-automata connections, results in logic can be obtained from
results in automata, which are well-suited for algorithmic analysis. An important example
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which motivates this paper is the FO in MSO definability problem: given an MSO formula,
is it equivalent to some FO formula, over finite strings? In automata-theoretic terms, this
amounts to decide whether a given automaton A is equivalent to an aperiodic one. We
illustrate this problem on an example, by considering the following deterministic automata
which both recognize a* (all states are final, and all states but ¢ are initial):

a

2O-FB OO

a

Roughly, an automaton is aperiodic if for some n, for all words u, u™ and u™*! behave the
same with respect to their effect on states. For instance, in the left automaton, any word has
one of the two following behaviours: either sending gg to go and ¢; to ¢1, or g to ¢; and ¢
to go. This automaton is not aperiodic because a™ and a”*! have necessarily two different
behaviours, for all n > 0. However, this left automaton is equivalent to the right one, which
is aperiodic. In general, it is not easy to see whether some automaton A is equivalent to an
aperiodic one, and this problem is known to be PSPACE-complete when A is deterministic
To decide it, the connection between automata and algebra plays an important role. Indeed,
since aperiodic automata and aperiodic right congruences both characterize the same class
of languages, it suffices to (1) minimize A4 into the unique minimal automaton A, (which is
an effective representation of the right syntactic congruence of L(A)) and (2) decide whether
Ay, is aperiodic. It is well-known that step (1) is in PTIME since A is deterministic, and
step (2) is known to be in PSPACE [22], and this is optimal [5]. In this paper, our goal is to
extend this decidability result to functions of finite words, called transductions.

Rational transductions and the aperiodicity problem

A transduction is a function of finite words. Rational transductions are the transductions
realized by finite automata with outputs, called transducers [2]. As an example, consider the
three following transducers:

The left one maps any word of the form a™ to ™. The middle one realizes the same
transduction, and the right one maps any word of the form a?" to (ab)", and any a*"*!
to (ab)™a. Aperiodic rational transductions are the transductions realized by transducers
with aperiodic underlying input automata. E.g., the transducer on the left is not aperiodic,
but is equivalent to the middle one, which is aperiodic. Hence both transducers realize an
aperiodic rational transduction. However, the transducer on the right is not aperiodic, and
is not equivalent to any aperiodic transducer. The left and right transducers are almost the
same, but one realizes an aperiodic rational transduction while the other does not. It shows
that to decide whether a transducer is equivalent to an aperiodic one, outputs must be taken
into account as well, reasoning only on the underlying input automata is not sufficient.
The aperiodicity problem asks, given some effective representation of a rational trans-
duction, whether this transduction is aperiodic. It has been shown in [11] that two-way
transducers (resp. aperiodic two-way transducers [14, 4]) are expressively equivalent to
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MSOT (resp. FOT), a formalism introduced by Courcelle in the general context of graph
transductions [7]. This equivalence carries over to the subclass of rational functions (resp.
aperiodic rational functions) by considering MSOT (resp. FOT) with the natural restriction
of order-preserving [3, 12]. As for languages, solving the aperiodicity problem also solves the
logic definability problem FOT in MSOT (resp. order-preserving FOT in order-preserving
MSOT). As we have seen, for rational languages, the aperiodicity checking procedure heavily
relies on the existence of a unique minimal deterministic automaton. However in the setting
of transductions, determinism is not sufficient to capture all rational transductions. In
transducer theory, the notion of determinism is called sequentiality, a transducer being
sequential if its underlying input automaton is deterministic. Consider the transduction swap
that swaps the first and last letter of a word, i.e. maps any word of the form ocwg, where
o, B are symbols and w is a word, to Swo. If the alphabet has more than one symbol, the
transduction swap cannot be realized by a sequential transducer, although it can be easily
shown that it is rational. The reason is that any transducer realizing it should guess in
advance the last symbol 3, by using non-determinism.

To overcome this issue, it has been shown that any rational transduction is the composition
of a (left) sequential and a right sequential transduction [10]. In other words, any rational
transduction can be realized by composing a sequential transducer that reads input words
from right to left, and a sequential transducer that reads words from left to right. This
idea has been captured in a single deterministic device called bimachine, introduced by
Schiitzenberger [20] and studied by Eilenberg [9], and Reutenauer and Schiitzenberger [17].
Intuitively, a bimachine is made of two deterministic automata £ and R, and some output
function w, and works as follows: R processes an input word w from right to left and
annotates it with its states. Symmetrically, £ processes w from left to right and annotates it
with its states. Finally, the output function w is applied to any triple (r, o,1) of the annotated
word, where 7 is a state of R, ¢ is an input symbol of w, and [ is a state of £. For example,
consider again the transduction swap on the alphabet {a,b}. It is realized by the following
bimachine with a left deterministic automaton that remembers whether the prefix read so
far is empty (state lg), starts with a (state l,) or starts with b (state ). Symmetrically, the
deterministic right automaton remembers information about suffixes. Finally, the output
function w maps any triple of the form (ly,0,75) or (Ig,0,79) to 8, and any other triple
(l,0,7) to o, for o, € {a,b}. An execution on aabd is illustrated on the next figure:

Right automaton

Contributions

A bimachine is aperiodic if its two left and right automata are aperiodic. Aperiodic bimachines
define exactly aperiodic rational transductions [18]. In this paper, our main result is to
provide optimal complexity (PSPACE-complete) of the aperiodicity problem for rational
transductions represented by bimachines.

We detail our contributions more precisely. In language theory, solving the aperiodicity
problem relies on the existence of a unique deterministic automaton. For transductions,
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there is no unique minimal (deterministic) bimachine in general, but a canonical bimachine
attached to every rational transduction has been defined by Reutenauer and Schiitzenberger
[17], and this machine can be effectively constructed from a transducer or a bimachine
realizing the transduction. As a first contribution, we show that a rational transduction is
aperiodic iff its canonical bimachine is aperiodic. As a consequence, this gives an algorithm to
solve the aperiodicity problem: (1) construct the canonical bimachine and (2) check whether
its left and right automata are aperiodic, using the algorithm of [5].

Unfortunately, step (1) cannot be done in PTIME and this is unavoidable: the canonical
bimachine may be exponentially bigger than the initial bimachine. Instead of constructing
the canonical bimachine, we show that it is sufficient to construct another minimal bimachine
of polynomial size, which is aperiodic iff the function it realizes is aperiodic rational. This
other bimachine is constructed via a PTIME generalization of a minimization procedure for
automata to bimachines. This yields in the end a PSPACE algorithm, whose correctness is
proved based on the aperiodicity of the canonical bimachine. The lower bound is immediate
as it is already the case of deterministic automata.

Comparison with [13]

The aperiodicity problem was already shown to be decidable in [13], however with a more
general procedure working for any (decidable) variety of congruences (e.g. the class of
commutative congruences). More precisely, it is shown in [13] that the following problem is
decidable: given a transducer, is it equivalent to some transducer whose transition congruence
belongs to some decidable variety V. It is shown that a transduction is in V iff one the
minimal bimachines is in V, and hence decidability comes as follows: construct the set of
all minimal bimachines (shown to be finite) and test whether one of them belongs to V.
Instantiated by the variety of aperiodic congruences, this solves the aperiodicity problem,
however with non-optimal complexity (several exponentials). Moreover, it is shown in [13]
that the canonical bimachine of Reutenauer and Schiitzenberger does not necessarily preserve
the equalities of a variety in general. In this paper, we show instead that for aperiodic
congruences, the canonical bimachine is necessarily aperiodic if the transduction is, a result
which is crucial to obtain an optimal procedure.

A last improvement compared to [13] is the following: in [13], we defined a rational
transduction to be aperiodic (and more generally in a variety V) if it is realized by an
unambiguous aperiodic transducer (or an unambiguous V-transducer). This definition was
motivated by the fact that unambiguous transducers already capture all rational functions.
For a general variety V, this left open the problem of whether any transduction realized
by a V-transducer is realizable by an unambiguous V-transducer. In this paper, we close
this problem for the case of aperiodicity: as we show, a transduction is realized by some
aperiodic transducer (not necessarily unambiguous) iff its canonical bimachine is aperiodic,
and any aperiodic bimachine can be turned into an aperiodic unambiguous transducer.

2 Rational languages and transductions

Words and languages

An alphabet X is a finite set of symbols, and a word over ¥ is an element of the free monoid
* whose neutral element is denoted by e. For w € ¥*, we write |w| for its length and in
particular, |¢] = 0. For a non-empty word w and i € {1,..., |w|}, we denote by wli] the ith
symbol of w. For u,v € ¥* we write u =< v is u is a prefix of v and in this case we denote by
u~1v the unique word v’ such that v = uv’.
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By u A v we denote the longest common prefiz of any two words u and v, and by ||u, v||
the value |u|+ |v] —2|u Av|. Tt is well-known that ||., .|| defines a distance. Finally, a language
L C ¥* is a set of words.

Finite automata

A finite automaton (or just automaton for short) over an alphabet ¥ is a tuple A = (Q, I, F, A)
where @) is a finite set of states, I C @ (resp. F' C @) is a set of initial (resp. final) states,
and A C Q x ¥ x @ is a transition relation. A run r of an automaton A = (Q, I, F,A) on a
word w € ¥* of length n is a word r = qq . . . g, over @ such that (¢;, w[i + 1], ;1) € A for
all i € {0,...,n—1}. The run r is accepting if go € I and ¢, € F. A word is accepted by A
if there exists an accepting run of A over it. The language recognized by A is the set [A] of
words accepted by A. We write p — 4 ¢ (or simply p e q) whenever there exists a run r on
w such that r[1] = p and r[|r|]] = ¢. An automaton A is deterministic if |I| = 1 and for any
two rules (p,o,q1), (p,0,q2) € A, it holds that ¢; = ¢2. It is unambiguous if for any word
there exists at most one accepting run of A on it. It is complete if for every state p € @) and
symbol o € X, (p,0,q) € A for some g € Q.

Congruences and recognizability

Equivalently, rational languages can be defined as the languages recognized by congruences
of finite index. We present these notions. Let ¥ be an alphabet and let ~ be an equivalence
relation on ¥*. We say that ~ is a right congruence (resp. left congruence) if it satisfies
u~v=uo ~vo (resp. u~ v = ou~ ov) for all u,v € ¥*, 0 € X. A congruence is both
a left and right congruence. For u € ¥*, the equivalence class of u is denoted by [u]~.. (or
[u] if ~ is clear from the context), and ¥*/. = {[u]~ | © € ¥*} is called the quotient of ¥*
by ~. We say that ~ has finite index if ¥* /. is finite. Concatenation naturally extends to
congruence classes as follows: for all u,v € ¥*, [u][v]~ = [uv]~. Since ~ is a congruence,
the latter is well-defined. With this operation, ¥*/. forms a monoid whose neutral element
is [€]~.

» Example 1. We will extensively use the following examples of congruences in this paper:
the syntactic congruence =y, of a language L, the transition congruence =~ 4 of an automaton
A with set of states @ and if A is deterministic with initial state qg, the right transition
congruence ~_4. They are defined as follows, for any two words u,v € ¥*

u = v & (VeyyeXl*, zuyel < zvy€l)

u =g v & (q€Q, poaqg S Poaq)
u v

u ~yq4 v & (Vgeaq, Qo —aq & q—AQ)

In particular, if A is deterministic and complete, then [u]~. , can be identified with the state
of A reached by wu from the initial state. In this paper, we often make this identification,
implicitly assuming that A is complete!, and rather denote [u] 4 instead of [u]~ .

A language L C ¥* is recognized by a congruence ~ if it is equal to the union of some
equivalence classes of ¥*/., i.e. L ={u € ¥* | [u] € P} for some P C ¥*/.. E.g., L is
recognized by =, by taking P = L/=,, and any language L is rational iff it is recognized by
a congruence of finite index (see for instance [23]).

1" Any automaton can be made complete in polynomial-time.
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Equivalence relations can be compared with respect to their granularity: if ~q,~9 are
two equivalence relations on ¥*, we say that ~q is finer than ~y (or ~g is coarser than ~1),
if for all u,v € ¥* such that u ~q v, it holds u ~5 v. We write ~; C ~o to mean that ~q is
finer than ~5. E.g., =, is the coarsest congruence recognizing L, for any language L. In this
paper, we also compare deterministic automata Ay, As with respect to their right transition
congruence, by saying that A; is finer than Ay if ~4, C ~_4,. We write A; C Ay when A4,
is finer than As. For example, the minimal deterministic automaton recognizing a language
L is the coarsest deterministic automaton recognizing L with respect to C.

Rational transductions and finite transducers

A transduction f over a finite alphabet ¥ is a partial function from >* to %*, whose domain
is denoted by dom(f). We are interested in the class of rational transductions, defined by
finite transducers. A finite transducer 2 (or just transducer for short) over an alphabet %
is a tuple T = (A, 0,4, ¢) where A = (Q,I,F,A) is a finite automaton, o : A — X* is the
output function, i : I — ¥* is the initial function and t : F' — X* is the final function. The

transducer T realizes a binary relation [T] C ¥* x X* defined as follows. Let r = qg ... qn be

a run of A on some word u. We write qq L‘UAT gr, (or simply qo ilv% gr) whenever ¢ XA Gn

and v = o(qo, u[0],q1) . . . o(gn—1,u[n],g,). If r is an accepting run and w = i(qo)vt(q,) then
we say that (u,w) is realized by T, call u an input word and w an oulput word. The relation
realized by T is the set [T] = {(u,w) | (u,w) is realized by T }.

A transducer T = (A, o,i,t) is functional if it realizes a transduction (a function).
This property is decidable in PTIME (see [1] for instance). T is called unambiguous (resp.
sequential) if A is unambiguous (resp. deterministic). In both cases [7] is a transduction and
we denote (u,w) € [T] by [T](u) = w. The class of rational transductions (resp. sequential
transductions) is defined as the class of transductions realized by finite transducers (resp.
sequential transducers). It is also known (see [2]) that a transduction is rational iff it is
realized by some unambiguous transducer.

Aperiodicity

We define the notion of aperiodicity for congruences, automata, transducers and rational
transductions. First, a congruence ~ on ¥* is aperiodic if for some n > 0 and all words
w € ¥*, we have w" ~ w"t!. Aperiodicity is stable by taking coarser congruences, i.e. if
~1 £ ~9 and ~q is aperiodic, then so is ~5. A deterministic automaton A is aperiodic
if ~ 4 is aperiodic. In other words, A is aperiodic if for some n > 0, for all words w and

states p, ¢, we have p wr, q iff p Lﬂ> q. Deciding whether a deterministic automaton is
aperiodic is PSPACE-complete [5]. Since the minimal deterministic automaton Ay, recognizing
a language L is the coarsest automaton recognizing L, and aperiodicity is stable by taking
coarser congruences, Ay is aperiodic iff there is some aperiodic deterministic automaton
recognizing L. Therefore, deciding whether a deterministic automaton is equivalent to some
aperiodic one is also PSPACE-complete, because minimizing a deterministic automaton can
be done in PTIME. Finally, a transducer T = (A, o, 1, ¢) is aperiodic if A is aperiodic, and
a transduction f is aperiodic rational (resp. aperiodic sequential) if it is realized by some
aperiodic transducer (resp. aperiodic sequential transducer).

2 This type of transducer is sometimes called real-time transducer [19]. In the general case, a transition
of a transducer may be labelled by any word, even empty. However such a transducer is equivalent to a
real-time one if it realizes a function.
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3 Bimachines and minimization

In this section we define bimachines, and associated operators Left and Right. Then we define
canonical bimachines, that will be used in Section 4 to prove that the minimal bimachine
Left(Right(B)) is aperiodic iff the transduction realized by the bimachine B is.

3.1 Bimachines

A bimachine is a model of computation, as expressive as (functional) transducers, introduced
by Schiitzenberger in [20]. It is composed of two automata, an automaton reading words
deterministically backwards, called a right automaton, and a classical deterministic automaton
called here a left automaton. The right automaton acts as a deterministic look-ahead. An
output function produces words based on the current symbol, and the states of the left and
right automata.

More precisely, a right automaton R = (Q, I, F,A) is an automaton such that I is a
singleton, and transitions are backward deterministic: for any transitions (py, o, q),(p2, 7, q)
€ A it holds that p; = ps. The only difference with a (classical) automaton lies in the
notion of accepting runs (and therefore in the notion of recognized language): a run r is
accepting if r[1] is final and r[|r|] is initial. Therefore, a right automaton can be thought
of as an automaton reading words backwards. We write sy ¢—% s; instead of sy —g s
(with the same meaning) to emphasize that R is a right automaton, and graphically any
transition (g, o,p) € A is depicted with an arrow from p to ¢. For instance, the accepting
run on ba of the right automaton of the bimachine depicted in Section 1 is rp7prg. The left
transition congruence ~g of R is defined by u ~g v & (Vr € R,r Erroger & ro)-
Implicitly assuming that R is complete, we identify [u]., (also just denoted by [u]g) with
the state r € R such that r <~ 9. We say that R is finer than a right automaton R’
(written R C R’) if ~g C ~gs. A left automaton is a deterministic automaton, called ’left’
to emphasize its role in the context of bimachines.

A bimachine over an alphabet ¥ is a tuple B = (£, R,w, A, p) where £ = (L, {lo}, Fr,Ar)
is a left automaton, R = (R, {ro}, Fr, Ar) is a right automaton, w : L x ¥ X R — ¥* is the
output function, A : Fr — X* is the left final function and p : Fr — ¥* is the right final
function. Both automata £ and R must recognize the same language, i.e. [L] = [R].

We now define the transduction [B] realized by B. First, we extend the function w to
L x ¥* x R as follows: for all states r € Randl € L, allu € ¥* and 0 € 3, w(l,¢6,7) = ¢,
and w(l,uo,r) = w(l,u,”)w(l’,o,r) where I %, I’ and ' << r. Now, the domain dom(B)
of Bis [£] = [R]. For all u € [£], if lo = I for some | € F and r «— 7o for some r € Fg,
the image of u by B is defined by [B](u) = A(r)w(lg, u, m9)p(1).

3.2 Left and right bimachine minimization

Sequential transducers can be minimized by producing the outputs as early as possible [6]. No
such procedure exist for transducers in general. For bimachines, however, a similar procedure
is proposed in [17]. This one applies the “as early as possible” principle, but parameterized by
the look-ahead information of the right automaton. We describe this minimization, exhibit
some useful properties, and provide a PTIME minimization algorithm.

Let f be a rational transduction realized by a bimachine B whose right automaton
is R. Our goal here is to construct a bimachine Left;(B) = (Left;(R),R,w, A, p), which
realizes f and has the minimal left automaton among bimachines realizing f with R as
its right automaton. We first give the construction of a minimal (wrt R) left automaton
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Left;(R) (or simply Left(R) when it is clear from context). For simplicity, we will write
[w]r instead of [w]., for any word w € ¥*. For any two words w and u, we define 3
Fuaje (@) = A{f () | v € [l N u~'dom(f)}.

This word is the longest possible output upon reading v, knowing that the suffix is in
[w]r. The states of Left;(R) will be the classes of the right congruence ~, defined by u ~p, v
if for any letter o, any w, z € ¥* we have:

uz € dom(f) < vz € dom(f)

st]n(uz)*lf(gz) = f[E]R(vz/Z*lf(vz), ~ if uz, vz € dom(f)

f[o.w]R(uz)_lf[w]R(uza) = f[gw]R(vz)_lf[w]R(vza)

Intuitively, the second condition ensures that after reading uz and vz, Left;(R) outputs
the same word by the final output function, and the third condition ensures that the
output produced on o is the same after reading uz and vz. From ~p we define the
automaton Left;(R) = (X*/~,,{[e]~,}, F,A) where F' = {[w]., | w € dom(f)} and
A ={([w]~p,0,[wo]~,) | 0 €%, we X"} Finally, the output functions are defined by:
w([u]’vaav [U]R) = f[ov]n(u)ilf[v]n(uo-)’ )‘([U}’R) = f[’U]R(E) and p([u]NL) = f[e]R(u)ilf(u)

Symmetrically one can define Right (L) (and hence Right ;(B)).

The correctness of these constructions was shown in [17], i.e. Left(B) and Right(B) both
realize f. The following proposition shows that Left(R) and Right(L) are minimal automata
for which the bimachines (with fixed R and £ respectively) realize f.%

» Proposition 2. If B = (L,R,w, A, p) is a bimachine, then L T Left(R) and R T Right(L).

One contribution of this paper is to show that the left automaton can be minimized in
PTIME (for a fixed right automaton), and symmetrically for the right automaton.

» Theorem 3. Let B be a bimachine. One can compute Left(B) (and Right(B)) in PTIME.

Proof. Let B = (£, R,w, A, p) be a bimachine realizing a function f with automata £ =
(Qcylo, Fr,Ar)and R = (Qr,ro, Fr, Ar). W.lo.g. we assume that £ is complete (otherwise
we complete it in polynomial time). The algorithm works in two steps: (i) make the output
production earliest, (ii) run state minimization on the left automaton.

Step 1: making the bimachine earliest. We construct B’ = (£, R,w’, N, p') a bimachine
realizing f with the same automata, but with the earliest leftmost possible outputs:

W ([, 0, [0R) = Fiooir (W) froge (o) 0/ ([ul) = frgn (W) f () N ([lR) = fium (6).

These functions are well-defined as they do not depend on the choice of the representatives u
(see the proof of Proposition 2). We have to show that these output values can be computed
in polynomial time. The algorithm is very close to the ones described in [6], for sequential
functions, which is why we only give the main ideas. We first remark, as in the proof of
Proposition 2, that for any words u, v, f\[v]ﬁ(u) = M[wv]r)w([e]z, u, [v]r)B([u]z, [v]r) with:
Blule, [vlr) = A{w | Fz € [vlr Nu~'dom(f),w([ulz, . [€]r)p([uz]c) = w}
As in [6], to compute the values B([u]z, [v]r) we can take the directed graph of the automaton
L x R with the outputs of w labelling the edges. In order to account for the functions A
and p we add two vertices, a source s pointing to the initial states with the edges labelled

3 As a convention, the longest common prefix of an empty set of words is the empty word, that is: A0 = e.
4 Tt was already shown in [17] for total functions, we extend it with a similar proof to our setting, that is,
when the function is not total, and the automata of the bimachine both recognize dom(f).
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accordingly by the values of the initial function, and a target vertex ¢ with edges pointing to
it from the final states with the edges labelled by the final function. The value of S([u]., [v]r)
can be seen as the longest common prefix of the labels of all the paths starting in ([u]., [v]r)
and ending in the target vertex t. These values can be computed in polynomial time [6].

Step 2: minimizing the left automaton. Now we describe a minimization algorithm
inspired by Moore’s minimization algorithm for DFA. It consists in computing successively
finer equivalence relations ~q, ~1, ... over the states of £. The only difference is in the initial
partition, for which we have to make sure that outputs are compatible. More precisely, for
all I € Qg and i > 0, we let:

Il i leFpel eFe, p())=p('), and Vr,0, '(l,0,7) =’ l',0,7)
l ~it1 l/ if ~g ll and VO’, l.o ~; l’.O’

where [.0 denotes the state reached by L after reading the letter o from I. We extend this
notation to words in the natural way: l.u is the state such that | —, lL.u (it is unique as L is
deterministic and complete).

Since ~;41 E ~; for all ¢ > 0, this sequence converges after at most |Q.| steps to an
equivalence relation that we denote by ~,. Moreover, ~q can be computed in PTIME from
B’, and each ~; can be computed in PTIME from ~;_1, for i > 0.

We extend the relations ~; to X* as follows: u ~; v if lg.u ~; lg.v. We show in the long
version of this paper that ~,=~ (remind that ~, is the right congruence associated with
R and used to define Left(R)). To give an idea of the proof, we first show by induction
on i > 0 that for all u,v € £*, u ~; v iff for all z € X%, all w € ¥* and all ¢ € &, we
have (i) uz € dom(f) iff vz € dom(f), (i) p'([uz]z) = p'([vz]z) (if uz,vz € dom(f)), and
(iil) w'([uz]z, 0, [wW]r) = W' ([vZ]z, 0, [w]r). This implies that u ~, v iff the properties (i)—(iii)
holds for all z € ¥*. Finally, we conclude by noticing that p'([uz]z) = ﬁE]R(uz)_lf(uz), and
w/([uz]£7 o, [w}'R) = f[ow]R (uz)ilf[w]n (UZO')

Clearly, if | ~, I’, then for all 0 € X, l.o ~, l'.0c. Moreover, if | € F, then since
~y C ~p, we also get I’ € Fz, and conversely. Therefore one can define the left automaton
L/, =Qrs/~.,Fr/~.,[lo]~.,0) where §([l]~,,0) = [l.0]~,, and we have [L.. ] = [£].

Finally, ~,=~p, implies that the bimachine Left,(B) is isomorphic to the bimachine

(L)~ Ry, X p") where w"([u]~,, 0, [v]r) = W'([ulz,0,[v]r) and p"([u]~,) = p'([ulc).

Note that these output functions are well-defined since, by definition, ~, is compatible with
the output functions ', w’, p’. Moreover, £/, can be computed in PTIME since ~, can be
computed in PTIME, and the output functions w”, p” can as well be computed in PTIME,
which concludes the proof. A last remark is that a Hopcroft-like minimization algorithm
[15], initialized with ~¢ as well, would be more efficient, but with a more involved proof. <

3.3 A minimal and canonical bimachine

For a given function f and two bimachines B; and Bs realizing it, we say that By is finer
than By, denoted again by By C Bs, if we have both £1 C L5 and Ry C Rs, with £; and R;
being the left and the right automata of bimachine B;, respectively. We say that a bimachine
is minimal if there is no coarser bimachine realizing the same transduction. There is no
unique minimal bimachine in general [17]. In this section, we explain the construction of a
minimal and canonical bimachine associated with a rational transduction, the main result
of [17]. It relies on (a) a canonical right automaton, that we detail hereafter, and (b) the

construction of a minimal left automaton from a right automaton, as described in Section 3.2.
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The construction of a canonical right automaton is based on a left congruence associated
with a function that measures the effect of suffixes on the translation of prefixes. The left
congruence of a transduction f on ¥ is defined Yu,v € ¥* by u~—v if:

Yw € ¥*, wu € dom(f) < wv € dom(f) and

sup{ £ (wu), f(wv)| | wu, wo € dom(f)} < o0
This congruence has finite index if f is rational [17]. The converse does not hold but if
additionally f~' preserves language rationality, then f is rational. For the rest of this

section [w] denotes the class of w in ¥*/._ .. The canonical right automaton for fis Ry =
X%/, {le]}, F, A) where F = {[w] | w € dom(f)} and A = {([ow],0,[w]) | c€X, we¥*}.

» Remark. We can define symmetrically the right congruence of f by u —; v if Vuw,
uw € dom(f) < vw € dom(f) and sup{|| f(uw), f(vw)|| | ww,vw € dom(f)} < oo and
based on this right congruence, define the canonical left automaton Ly.

The automata Ry and L are coarser than any right (resp. left) automaton of a bimachine
realizing f. This was shown in [13] but only for the case of total functions. The proof is
similar in the general case and we give it in the long version of this paper for completeness.

» Proposition 4. Let f be a transduction, and let B = (L, R,w, A, p) be a bimachine realizing
f.- Then LE Ly and RE Ry .

The canonical bimachine [17] associated with a rational transduction f is the bimachine
Bp = (Left;(Ry), Ry, wy, Ay, py) where:

wf([u]~L7U’ [U]Rf> = ﬁUU]Rf (u)_lf[v]Rf (UU)
Ar(lvlry) = for, ()
pi(ll~y) = flgr, (@)~'f(u)

By its definition, the bimachine By is canonical, i.e. does not depend on any description of
f. It is also minimal: indeed, suppose that f is realized by a bimachine B = (£, R,w, A, p)
such that By C B, i.e. Left(Ry) C £ and Ry C R. Then w (and similarly A, p) can be
restricted to w'([u]z, 0, [vlr,) = w([u]z, 0, [v]r ), which is well-defined since Ry C R, so that
the bimachine (£, Ry¢,w’, N, p’) realizes f. By Proposition 2 we get £ T Left(Ry). Moreover,
by Proposition 4, we also have R & Ry.

Finally, By is computable when f is given by a bimachine or a transducer [17].

4 Characterization of aperiodic transductions

In this section we show that to decide if a transduction given by a bimachine B is aperiodic,
one only needs to minimize B, i.e. to construct Left(Right(B)), which yields a minimal
bimachine, and check its aperiodicity (Section 4.2). To prove the correctness of this procedure,
we rely on the following characterization proved in Section 4.1: a transduction f is aperiodic
if and only if the canonical bimachine By is aperiodic. This is in contrast with other varieties
for which the canonical bimachine does not preserve membership in general [13]. The latter
characterization does not yield an optimal algorithm since the canonical bimachine may be
exponentially larger than the initial bimachine.

4.1 Characterization through canonical bimachine

In this section, given a rational transduction f over some alphabet ¥, we show that it is
aperiodic iff the canonical bimachine B associated with f, defined in the previous section,
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is aperiodic. It relies on two important facts: (i) the left congruence < of an aperiodic
transduction is aperiodic (Proposition 5), (ii) any aperiodic rational transduction f can
be decomposed into f = £ o labelr, such that ¢ is realized by some aperiodic sequential
transducer, and labelr , annotates every input position i with the class of the suffix from i
by < (Proposition 6). From this decomposition, one can construct an aperiodic bimachine
whenever f is aperiodic. First, one shows that R is aperiodic when f is too:

» Proposition 5. Let f be a transduction realizable by an aperiodic transducer then the
congruence ¢, and so the automaton R¢, are aperiodic.

A right-sequential transducer is a transducer whose underlying input automaton is a right
automaton. A right-sequential transduction is a function realized by a right-sequential
transducer. A bimachine can be seen as the composition of a right-sequential transduction
annotating the word with states of the right automaton, and a (left-) sequential transduction
obtained from the left automaton and the output function w. We show that any aperiodic
rational transduction f can be decomposed into £ o labelr, such that £ can be realized by a
sequential aperiodic transducer, and labelr , annotates the input word with states of R;.

More precisely, let R be a right automaton over ¥ with set of states @, and let Xz = {0y |
o € X,q € Q}. We define the rational transduction labelg : 3* — 3%, called the labelling
function of R, which labels words in ¥* by states of R. It is defined by the right-sequential
transducer 7 = (R, o, €, €) where € denotes the constant function which maps any element to
€, and with o(p, 0, q) = ogq.

» Proposition 6. Let f be an aperiodic rational transduction. There exists a transduction ¢
such that f = £ o labelg, and { is realized by a sequential aperiodic transducer.

Proof. We first show that there exists a sequential transduction ¢ such that f = o labelr,.
This sequential transduction is realized by the left automaton of the canonical bimachine
By combined with the output function wy. Then, we show that ¢ is aperiodic rational, by
constructing an aperiodic transducer realizing it, obtained by taking the product of any
aperiodic transducer realizing f (which exists by assumption) and Ry, and by ensuring
that the information [u] occurring on symbols oy, is consistent with the information [u]
occurring on the states of the product, for all words u. Finally, any aperiodic and sequential
transduction can be realized by a transducer which is both sequential and aperiodic (i.e.
sequentialization preserves aperiodicity [13]). Details can be found in the long version. <

We can now show our characterization of aperiodic rational transductions:
» Theorem 7. A rational function f is aperiodic iff its canonical bimachine is aperiodic.

Proof. It is known that any bimachine can be transformed into an equivalent (unambiguous)
transducer whose underlying automaton is the product of the left and the right automata
[13, 17]. Roughly, the transducer has to guess the state of the right automaton, and
unambiguity is implied by the fact that the transitions of the right automaton are backward
deterministic. The product of two aperiodic automata being aperiodic, this shows the ’if’
direction.

We now show the ’only if” direction. By Proposition 5, f can be decomposed into f = {o
label , such that £ is realized by some aperiodic sequential transducer 7, = (A, 0m), iy tim)-
Based on this decomposition we construct an aperiodic bimachine B = (D, Ry, w, A, p)
realizing f. This will allow to conclude. Indeed, by Proposition 2 we have D T Left(Ry),
and since D is aperiodic, so is Left(R). Since Ry is aperiodic as well by Proposition 5, it
implies that By is aperiodic. Let us now construct D, w, A and p.

13:11
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Recall that the input alphabet of 7, (and A,,) is ¥q where Q = ¥*/._ . To construct B,
it is tempting to think that it suffices to take the projection of A,, on X as left automaton,
Ry as right automaton, and to define the output function w by w(p, o, [u]) = w where

P M q is the transition of 7, on oy, with output w. The problem is that the projection

of A,, on ¥ is not a deterministic automaton in general, and by determinizing it, one loses
the information of which transition of 7,, should be applied. We propose a solution that
overcomes this issue, by integrating the information of R in the state of the left automaton.
Let us detail this construction. We take 7, and project input letters to their ¥ component,
hence we obtain a transducer realizing f which is unambiguous, since Ry has backward
deterministic transitions. Let 7,, denote the obtained transducer, and A,, its underlying
(unambiguous) automaton. We let D be the automaton obtained by determinization, by
subset construction, of the product automaton A, x R ¢. States of D are therefore of the
form 29m**"/=;  The output function w is defined by:

w({(pla [ul])v s (pm [unD} 0, ['U]) = Um(piao')

such that [ov] = [u;]. The state p; is unique since Ty, is unambiguous. Indeed, let us
assume by contradiction that there are two distinct such states p;, p;. This would mean that
[u;] = [u;] and since Ry has backward deterministic transitions, for a word w which reaches
both p; and p; in A,,, we have a labelled word z such that z[k] = w[k]. for k € {1,..., |w|}
and c the class of the word w[k + 1] ... w[|w[]u;. Thus we obtain gy =4, p; and go —>4,, P;
which is in contradiction with the deterministic nature of A,,. We define the final output
functions naturally: A([u]) = in(go,m) and p({(p1, [u1l])- .-, (Dn, [un])}) = t(p;) such that
[u;] = [€] (again, it is unique by unambiguity of Ty,).

It remains to show that B is aperiodic. Aperiodicity of R is obtained by Proposition 5.
Aperiodicity of D is shown in the long version of this paper, as a consequence of the
aperiodicity of T,,, R and the fact that subset construction preserves aperiodicity. |

» Remark. This theorem gives an algorithm to decide aperiodicity of a rational function:
computing the canonical bimachine and checking that it is aperiodic. However, computing
the left automaton Left(R ;) may cause an exponential blow-up. Consider for example, the
transduction f : 3* — ¥* defined for w € ¥*, w, € ¥" by f(ww,) = w, and for |w| < n by
f(w) = w. Since the distance between the image of two words is bounded by 2n, the left
congruence of f is trivial, so the canonical bimachine of f is just a sequential transducer
and needs O(X™) states to remember the last n letters of an input word. However this
transduction can be realized by a right-sequential transducer with only n states, but one
could define a symmetrical example (f(w,w) = w,,) where the bimachine obtained from the
canonical left automaton £ witnesses an exponential blow-up.

Another consequence is that any aperiodic transduction admits an aperiodic unambiguous
transducer realizing it. This problem is open for arbitrary varieties.

» Corollary 8. Fvery aperiodic transduction can be realized by an unambiguous aperiodic
transducer.

Proof. As explained in the proof of the ‘if’ direction of Theorem 7, from any bimachine one
can construct an equivalent unambiguous transducer by taking the product of the left and
right automata of the bimachine, which is aperiodic if the bimachine is aperiodic too. <
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4.2 Characterization through bimachine minimization and main result

In this section, we prove the main result of this paper, i.e. that aperiodicity is PSPACE-
complete for functions realized by bimachines. We show that for a bimachine B it suffices
to construct Left(Right(B)) (or Right(Left(B))) and to check aperiodicity of the resulting
bimachine. The first step can be done in PTIME and the second step in PSPACE. The
operations Left(Right(B)) and Right(Left(B)) are called bimachine minimization, as they
indeed yield minimal bimachines, as shown by the following proposition:

» Proposition 9. Let B be a bimachine realizing a transduction f. Then Left(Right(B)) and
Right(Left(B)) are minimal bimachines realizing f.

Proof. Based on successive applications of Proposition 2 and given in the long version. <«

The following result is a key towards the main contribution:

» Proposition 10. Let f be a transduction realized by a bimachine B = (L, R,w, A, p). Then
f is aperiodic iff Left(Right(B)) is aperiodic iff Right(Left(B)) is aperiodic.

Proof. First, we start by some observation: if there are two bimachines realizing f with
A; C A as right automata, then Leftf(Ag) C Left, (A1). Indeed, if A; provides more (i.e.
finer) information than As on suffixes, then the two equalities of the definition of the right
congruence used to define Left (A1) (see Section 3.2) are “easier” to satisfy since the set
of suffixes v taken into account in the definition of f[w} 4, is included in the set of suffixes
used in the definition of f[w] 4, for all words w. Symmetrically, if there are two bimachines
realizing f with A; C Ay as left automata, then Right;(Az2) T Right ;(Ay).

By Proposition 4 we have L C £y and R C Ry, but also Right(£) T Ry since Pro-
position 4 holds for any bimachine realizing f, and there is a bimachine realizing f with
Right(L) as right automaton (the bimachine Right(B)). Therefore by the observation, we
get Right(L;) C Right(L) and Left(Rf) T Left(Right(L)).

By Theorem 7, if f is aperiodic, then By = (Left(R¢), Rs,w, A, p) is aperiodic. Therefore,
Left(Right(L)) is aperiodic. Symmetrically, exactly as shown in Theorem 7, it can be shown
that £ and Right(Ly) are aperiodic if f is aperiodic, which implies that Right(L) is aperiodic.
In conclusion, Left(Right(B)) is aperiodic. <

We can now prove the main result of this paper:

» Theorem 11. The problem of deciding whether a bimachine B realizes an aperiodic rational
transduction is PSPACE-complete.

Proof. To get the upper-bound, by Proposition 10, it suffices to (i) construct Right(B),
(ii) construct Left(Right(B)), and (iii) test whether the left and right automata of the
bimachine Left(Right(B)) are aperiodic.

By Theorem 3, steps (i) and (ii) can be done in PTIME, while step (iii) can be done in
PSPACE by [5].

The lower bound is obtained from the problem of deciding whether the transition
congruence of a minimal deterministic finite automaton is aperiodic, which is PSPACE-hard
[5]. The details can be found in the long version of this paper. <
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5

Perspectives

In [8] it is proved that deciding whether a regular language given by a non-deterministic

automaton is aperiodic is also PSPACE-complete. As a future work, we want to obtain tight

complexity for the following problem: given a (non-deterministic) transducer, does it define

an aperiodic transduction? Based on the techniques of this paper, the latter problem could

be shown to be in 2EXPTIME, since obtaining the canonical bimachine causes two exponential

blow-ups: one for the canonical right automaton and one for the determinization of the

transducer over the enriched alphabet. It is however yet unclear whether the techniques of

[8] can be combined with the ones of this paper to lower this upper bound.
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—— Abstract

We investigate several variants of the homomorphism problem: given two relational structures,

is there a homomorphism from one to the other? The input structures are possibly infinite, but
definable by first-order interpretations in a fixed structure. Their signatures can be either finite or
infinite but definable. The homomorphisms can be either arbitrary, or definable with parameters,
or definable without parameters. For each of these variants, we determine its decidability status.
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1 Introduction

First-order definable sets, although usually infinite, can be finitely described and are therefore
amenable to algorithmic manipulation. Definable sets (we drop the qualifier first-order in
what follows) are parametrized by a fixed underlying relational structure A whose elements
are called atoms. We shall assume that the first-order theory of A is decidable. To simplify
the presentation, unless stated otherwise, let A be a countable set {1,2,3,...} equipped with
the equality relation only; we shall call this the pure set.

» Example 1. Let

V={{a,b}|a,be Aa#b},
E={({a,b},{c,d})|a,b,c,de A,a#bANa#chaFdANbFcANb#dNc#d}.

Both V and E are definable sets (over \A), as they are constructed from .4 using (possibly
nested) set-builder expressions with first-order guards ranging over A. In general, we
allow finite unions in the definitions, and finite tuples (as above) are allowed for notational
convenience. Precise definitions are given in Section 2. The pair G = (V, E) is also a definable
set, in fact, a definable graph. It is an infinite Kneser graph (a generalization of the famous
Petersen graph): its vertices are all two-element subsets of A, and two such subsets are
adjacent iff they are disjoint.
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The graph G is ()-definable: its definition does not refer to any particular elements of A.
In general, one may refer to a finite set of parameters S C A to describe an S-definable set.
For instance, the set {a]a € A,a #1Aa# 2} is {1,2}-definable. Definable sets are those
which are S-definable for some finite S C A.

Although definable relational structures correspond (up to isomorphism) to first-order
interpretations well-known from logic and model theory [19], we prefer to use a different
definition since standard set-theoretic notions directly translate into this setting. For example,
a definable function f : X — Y is simply a function whose domain X, codomain Y, and
graph I'(f) C X X Y are definable sets. A relational structure is definable if its universe,
signature, and interpretation function that maps each relation symbol to a relation on the
universe, are definable. Finally, a definable homomorphism between definable structures over
the same signature is a definable mapping between their universes that is a homomorphism,
i.e., preserves every relation in the signature. All hereditarily finite sets (finite sets, whose
elements are finite, and so on, recursively) are definable, and every finite relational structure
over a finite signature is (isomorphic to) a definable one.

The classical homomorphism problem is the problem of determining whether there exists
a homomorphism from a given finite source structure A to a given finite target structure
B. This is also known as the Constraint Satisfaction Problem, and is clearly decidable (and
NP-complete). The precise computational complexity has been thoroughly studied in the
literature in many variants. The case when the target structure is fixed (and is called a
template) is of particular interest, as it expresses many natural computational problems (such
as k-colorability, 3-SAT, or solving systems of linear equations over a finite field). The famous
Feder-Vardi conjecture states that for every fixed template B, the corresponding constraint
satisfaction problem CSP(B) is either solvable in polynomial time or NP-complete [18].

In this paper, we consider the homomorphism problem for definable structures: given
two definable structures A, B, does there exist a homomorphism from A to B? Note that
definable structures can be meaningfully considered as instances of a computational problem
since they are finitely described with the set-builder notation and first-order formulas in the
language of A.

We remark that in the pure set A with equality, every first-order formula is effectively
equivalent to a quantifier-free formula. Thus, as long as complexity issues are ignored and
decidability is the only concern, we can safely restrict to quantifier-free formulas.

» Example 2. The graph G from Example 1 does not map homomorphically to a clique of 3
vertices, which is another way of saying that GG is not 3-colorable. In fact, G does not map
homomorphically to any finite clique (the finite subgraph of G using only atoms 1,...,2n has
chromatic number at least n, as it contains an n-clique). However, G maps homomorphically
to the (easily definable) infinite clique on the set A, by any injective mapping from V to A.
No such homomorphism is definable, as there is no definable injective function from V to A,
even with parameters.

We consider several variants of the homomorphism problem:
Finite vs. infinite signature. In the most general form, we allow the signature of both
input structures to be infinite, but definable. In a restricted variant, the signature is
required to be finite.
Finite vs. infinite structures. In general, both input structures can be infinite, definable.
In a restricted variant, one of the two input structures may be assumed to be finite.
Definability of homomorphisms. In the general setting, we ask the question whether there
exists an arbitrary homomorphism between the input structures. In other variants, the
homomorphism is required to be definable, or to be (-definable.
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Restrictions on homomorphisms. Most often we ask about any homomorphism, but
one may also ask about existence of a homomorphism that is injective, strong, or an
embedding.

Fizing one structure. In the uniform variant, both the source and the target structures
are given on input. We also consider non-uniform variants, when one of the two structures
is fixed.

Structured atoms. In the basic setting, the underlying structure A is the pure set, i.e.,
has no structure other than equality. One can also consider sets definable over other
structures. For instance, if the underlying structure is (Q, <), the definitions of definable
sets can refer to the relation <.

Contribution. For most combinations of these choices we determine the decidability status
of the homomorphism problem. The decidability border turns out to be quite subtle and
sometimes counterintuitive. The following theorem samples some of the opposing results
proved in this paper:

» Theorem 3. Let A be the pure set. Given two definable structures A;B over a finite

signature,

1. it is decidable whether there is a (-definable homomorphism from A to B,

2. it is undecidable (but semidecidable) whether there is a definable homomorphism from A
to B,

3. it is decidable whether there is a homomorphism from A to B,

4. it is undecidable (but co-semidecidable) whether a given (-definable partial mapping
between the universes of A and B extends to a homomorphism.

In a previous paper [21], the constraint satisfaction problem is considered for source
structures definable over the pure set, or more generally over (Q, <). We denote this problem
by CSPger(B). The results from [21], together with the polynomial time reduction to the
finite-template CSP which we provide here, imply complexity results for different variants of
the constraint satisfaction problem:

» Theorem 4. For any definable template B over a finite signature:
1. the problem CSP(B) is in NP,
2. the problem CSP4et(B) is in NEXPTIME.

Related work. Some of the variants considered in this paper are closely related to previous
work.

Bodirsky, Pinsker and coauthors [2, 8, 10] consider fixed infinite templates over finite
signatures, and finite source structures given on input. They usually consider the template B
to be a reduct of a fixed structure A with good properties, in particular, with a decidable
first-order theory. Reducts are special cases of definable structures: a structure B is a reduct
of A if B is ()-definable over A and both have the same domains. In general, if the template
B is definable over a structure A with decidable first-order theory, then B itself has decidable
first-order theory. It follows that the existence of a homomorphism from a given finite
source structure A is trivially decidable, as it can be expressed as an existential formula
evaluated in B. In this case, the interesting problem is to analyse precise complexity bounds.
Templates for which a complete complexity classification was obtained (modulo the Feder-
Vardi conjecture) include all reducts of countably infinite homogeneous graphs [3, 9, 12, 6],
of (Q, <) [4], and of the integers with the successor function (Z, +1) [5]. One of the key tools
used in these results is the notion of a canonical mapping. The construction of a canonical
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mapping relies on Ramsey theory, most conveniently applied through the use of the result of
Kechris, Pestov, and Todorcevic concerning extremely amenable groups [20].

For finite templates, it is shown in [21] that the complexity analysis of CSPgcr(B)
can be reduced (with an exponential blowup) to the case of finite input structures. For
example, 3-colorability of definable graphs is decidable and NEXPTIME-complete, because
3-colorability of finite graphs is NP-complete. A more general decidability result concerns
locally finite templates, i.e., definable, possibly infinite templates (over definable, possibly
infinite signatures) where every relation contains only finitely many tuples. The decidability
proof also employs Ramsey theory, applied through the use of Pestov’s theorem concerning
the topological dynamics of the group Aut(Q, <), which is a special case of the Kechris-
Pestov-Todorcevic result. As we shall demonstrate here, for infinite signatures the local
finiteness restriction is crucial and adding even a single infinite definable relation may lead
to undecidability.

This paper, as well as [21], is part of a programme aimed at generalizing classical
decision problems and computation models such as automata [15], Turing machines [16] and
programming languages [14, 13, 22, 24], to sets with atoms. For other applications of sets
with atoms (called there nominal sets) in computing, see [26].

Motivation. Testing existence of homomorphisms is at the core of many decision problems in
combinatorics and logic. As shown in [11], decidability of pp-definability of a definable relation
R in a definable structure A can be reduced to deciding the existence of homomorphisms
between definable structures. Another application is 0-1 laws, and deciding whether a
sentence ¢ of the form IR.3*V*¢ is satisfied with high probability in a finite random graph.
In [23], after showing that the problem is equivalent to testing if ¢ holds in the infinite
random graph, the authors give a complex Ramsey argument based on [25] to prove the
decidability of the latter. The second step can be alternatively achieved by reducing to
several instances of the homomorphism problem from structures definable over the ordered
random graph (which is a Ramsey structure by [25], see Section 5) to finite target structures.
Finally, in [21] the homomorphism problem for locally finite definable templates is used to test
whether the logic IFP captures PTime over a certain class of finite structures, generalizing
the Cai-Fiirer-Immerman construction [17].

2 Preliminaries

Throughout this section, fix a countable relational structure A of atoms. We assume that
the signature of A is finite. We shall now introduce definable sets, following [21].

Definable sets. An expression is either a variable from some fixed infinite set, or a formal
finite union (including the empty union §)) of set-builder ezpressions of the form

{ela,...,an € A0}, (1)

where e is an expression, a1, ..., a, are (bound) variables, and ¢ is a first-order formula over
the signature of A and over the set of variables. Free variables in (1) are those free variables
of e and of ¢ which are not among aq,...,a,.

For an expression e with free variables V', any valuation val : V' — A defines in an obvious
way a value X = e[val], which is either an atom or a set, formally defined by induction on
the structure of e. We then say that X is a definable set with atoms, and that it is defined
by e with val. Note that one set X can be defined by many different expressions. When we
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want to emphasize those atoms that are in the image of the valuation val : V — A, we say
that the finite set S = val(V)) C A supports X, or that X is S-definable.

As syntactic sugar, we allow atoms to occur directly in set expressions. For example, what
we write as the {1}-definable set {a | a € A,a # 1} is formally defined by the expression
{a | a € A, a # b}, together with a valuation mapping b to 1. Similarly, the set {1,2} is
{1,2}-definable as a union of two singleton sets.

» Remark. To improve readability, it will be convenient to use standard set-theoretic encodings
to allow a more flexible syntax. In particular, ordered pairs and tuples can be encoded e.g. by
Kuratowski pairs, (z,y) = {{z,y}, {z}}. We will also consider as definable infinite families
of symbols, such as {R, : x € X}, where R is a symbol and X is a definable set. Formally,
such a family can be encoded as the set of ordered pairs {R} x X, where the symbol R is
represented by some (-definable set, e.g. ) or {(}}, etc. Here we use the fact that definable
sets are closed under Cartesian products.

Closure properties. The following lemma is proved routinely by induction on the nesting
of set-builder expressions.

» Lemma 5. Definable sets are effectively closed under:
Boolean combinations N,U, — and Cartesian products,
images and inverse images under definable functions,
quotients under definable equivalence relations,
intersections and unions of definable families,
the operations (below, x € y and x C y are interpreted as false if y is an atom):
VW= {(v,w)|veV,weWvew},
VW= {(v,w)|lveViweWoCw}.

This implies that the set-builder notation (1) may be safely generalized by allowing bound
variables to range not only over 4 but also over other definable sets, and allowing in ¢
quantifiers of the form JveV or VveV, for V a definable set presented by an expression. One
may also use binary predicates =, €, C and binary operations U, N, —, xX. The resulting sets
will still be definable. As an example, if V and W are definable sets, then so is

{(v,w)lveViwe WivCwAJac ATbe A(a,b)ev}.

Suppose that the first-order theory of A is decidable (this applies in particular to the pure
set). Then it is straightforward to prove that the validity of first-order sentences generalized
as above, such as Vv € V Jw € W v C w where V and W are definable sets presented by
expressions, is also decidable. This demonstrates that definable sets are suitable for effectively
performing set-theoretic manipulations and tests.

Definable relational structures. For any object in the set-theoretic universe (a relation, a
function, a logical structure, etc.), it makes sense to ask whether it is definable. For example,
a definable relation on X,Y is a relation R C X x Y which is a definable set of pairs, and
a definable function X — Y is a function whose graph is definable. Along the same lines,
a definable relational signature is a definable set of symbols 3, together with a partition

Y=Y WX W... WY, into definable subsets, for [ € N. We say that ¢ has arity v if o € X,..

For a signature 3, a definable ¥-structure A consists of a definable universe A and a
definable interpretation function which assings a relation o® C A" to each relation symbol
o € X of arity . (We denote structures using blackboard font, and their universes using
the corresponding symbol in italics). More explicitly, such a structure can be represented
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by the tuple A = (A, I,...,I;) where I, = {(0,a1,...,a,) | 0 € %, (a1,...,a,) €c*}isa
definable set for r = 1,...,1 (where [ is the maximal arity in ¥).

» Remark. A definable Y-structure A = (A, I, ..., I;), for ¥ finite or infinite, can be seen
as a definable structure over a finite signature, denoted Ay and defined as follows. The
universe of Ay; is AW X, and its relations are Iy, ..., I;, of arity 2,...,l+1, respectively. The
signature is finite, with just [ symbols. Then homomorphisms between Y-structures A and B
correspond to those homomorphisms between Ay, and By, that are the identity on X.

» Example 6. The graph G from Example 1 can be seen as a structure over a signature with
a single binary relation symbol E. To give an example of an infinite, definable signature,
extend G to a structure A by infinitely many unary predicates representing the neighborhoods
of each vertex of G. To this end, define the signature ¥ = {E} U{ N, |v € V' }, where V is
the vertex set of G and N is a symbol (cf. Remark 2). The interpretation of N, is specified by
the set Iy = { (Ny,w) | (v,w) € E} (where E is defined by the expression from Example 1),
which is definable by Lemma 5.

» Lemma 7. For every S-definable set X there is an S-definable surjective function f:Y —
X, where Y is an S-definable subset of A*, for some k € N. Moreover, f and Y can be
computed from X.

» Remark. By Lemma 7, definable structures over finite signatures coincide, up to definable
isomorphism, with structures that admit a first-order interpretation with parameters in A, in
the sense of model theory [19].

Representing the input. Definable relational structures can be input to algorithms, as
they are finitely presented by expressions defining the signature, the universe, and the
interpretation function. If the input is an S-definable set X, defined by an expression e with
valuation val : V' — S with V = {vy,...,v,} the free variables of e, then we also need to
represent the tuple val(vy), ..., val(v,) of elements of S. For the pure set A, these elements
can be represented as 1,2,....

3 Homomorphism problems

To simplify the presentation, we now drop some of the generality of the previous section. In
this section let A be the pure set. In Section 5 we shall discuss generalizations of our results
to underlying structures other than the pure set.

3.1 (-definable homomorphism problem
Let’s start with the following warm-up decision problem:

Problem: (}-DEFINABLE HOMOMORPHISM

Input: (-definable structures A and B over a (-definable signature 2.
Decide: Is there an (-definable homomorphism from A to B?

It is not hard to prove the following theorem, which gives (1) of Theorem 3:

» Theorem 8 ([21]). (-DEFINABLE HOMOMORPHISM is decidable.

We sketch a proof here in order to illustrate the good algorithmic properties of definable sets,
and to emphasize the contrast with later undecidability results.
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Proof sketch. Our aim is to decide if two given (-definable X-structures A = (A, I,...,I;)
and B = (B, Ji,...,J;) admit an (-definable homomorphism. The signature ¥ is assumed to
be part of the input (also, it can be computed from A or from B).

We will use the following facts that hold for the pure set A, but also for many other
structures with decidable first-order theories.

» Lemma 9. For each number n € N, there are finitely (doubly exponentially) many first-
order formulas with n free variables, up to equivalence in A. Moreover, they can be computed
from n.

The following lemma is a consequence.

» Lemma 10. An (-definable set X has only finitely many O-definable subsets, and expressions
defining these subsets can be enumerated from an expression defining X .

Indeed, for each definable set X represented by a single set-builder expression of the form (1),
replace ¢ by each (up to equivalence) quantifier-free formula ¢ with the same free variables,
such that ¢ — ¢.

To verify existence of an (-definable homomorphism from A to B, apply Lemma 10 to
X = A x B and for every (-definable subset R C A x B, test the validity of the first-order
formula

Va € A3Jb e B R(a,b)
ensuring that R is a graph of a function; and, for i = 1...[, test the validity of the formula

Val,...,aieA Vby,...,b;€B VPEZZ /\ R(aj,bj) /\Ii(p,al,...,ai) — Jl(p7b1,,bz)

1< <i
ensuring that the function is a homomorphism. <

In a similar vein one can decide the existence of homomorphisms that are injective, strong,
or are embeddings (i.e. injective and strong), as all these properties are first-order definable.

The assumption that the structures A and B are (-definable is inessential in Theorem 8§;
the crucial assumption is that a homomorphism we ask for is required to be (-definable. In
fact, a similar argument as above works even if the two given structures are definable instead
of P-definable, and a homomorphism is allowed to be definable with n parameters, for a
number n € N given on input.

3.2 (Definable) homomorphism problem

In more relaxed versions of the homomorphism problem, we ask for a homomorphism that is
definable without any bound on the number of parameters:

Problem: DEFINABLE HOMOMORPHISM
Input: Definable structures A and B over a definable signature 3.
Decide: Is there a definable homomorphism from A to B?

Or we may make no restriction on a homomorphism at all:

Problem: HOMOMORPHISM
Input: Definable structures A and B over a definable signature 3.
Decide: Is there a homomorphism from A to B?

FSTTCS 2016
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These problems appear similar, but they are of rather different nature. On one hand,
DEFINABLE HOMOMORPHISM is recursively enumerable, by an argument similar to the proof
sketch of Theorem 8: if a definable homomorphism exists then one can find it by searching
for homomorphisms definable with n parameters, for increasing values of n. On the other
hand HOMOMORPHISM is co-recursively enumerable, by a compactness argument: if A does
not map homomorphically to B then some finite substructure of A does not map to B either,
and one can detect this by enumerating all finite substructures of A and using Theorem 11
below.

» Remark. We might also consider natural variants of (DEFINABLE) HOMOMORPHISM, where
one asks about existence of an injective homomorphism, or a strong homomorphism, or an
embedding. Theorems 11-16, stated below, apply to all these variants as well.

Below we show that both DEFINABLE HOMOMORPHISM and HOMOMORPHISM are un-
decidable in general. However, when one of the input structures has finite universe, both
problems are decidable:

» Theorem 11. DEFINABLE HOMOMORPHISM and HOMOMORPHISM are decidable if one of
the input structures has a finite universe.

On the other hand, the general version of the homomorphism problem is undecidable:
» Theorem 12. HOMOMORPHISM is undecidable, even if one of the input structures is fized.

The fixed input structure is understood existentially; in particular, there exists a definable
structure B such that it is undecidable, for a given definable structure A over the same
signature, whether there is a homomorphism A — B.

Theorem 12 is proved by a reduction from a classical quarter-plane tiling problem [1].
The following example illustrates a phenomenon used in the proof: a homomorphism can
determine an infinite ordered sequence of atoms, and thus to enumerate coordinates within
the quarter-plane.

» Example 13. Consider a signature with a single binary relation symbol R. For a chosen
atom ag € A, define structures A and B over this signature as follows:

A=A R'=# B=A—{a} R°=+#

Note that A is (-definable and B is {ag}-definable. Considered as graphs, A and B are
isomorphic to the countably infinite clique. However, no homomorphism h : A — B is
definable. To see this, suppose towards contradiction that an S-definable homomorphism
h actually exists for some finite S. We will exploit the fact that the S-definition of A is
necessarily invariant under every bijection 7 of atoms such that 7w(a) = a for all a € S.

Since A is a clique and B has no self-loops, h must be injective. Pick the atom a; = h(ayp).
Clearly ay # ao, since ag & B. This means that a; € S; indeed, if a; ¢ S then the S-definition
of (the graph of) h would be invariant under a renaming 7 of atoms with m(ag) = ap and
m(a1) # a1, which cannot be since h is a function. Now consider as = h(a1). Again, as # ag.
Moreover we have as # ay, since a; # ag and h is injective. Moreover, as € S by the same
argument as for a;. This proceeds by induction, showing that infinitely many distinct atoms
must belong to S, which contradicts the finiteness of .S.

More importantly, each homomorphism h : A — B determines an infinite sequence of
distinct atoms ag, ay, as,. .. such that h(a;) = a;41 for each i € N.

As it turns out, DEFINABLE HOMOMORPHISM is even harder to decide than HOMOMORPHISM:
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» Theorem 14. DEFINABLE HOMOMORPHISM is undecidable even if
(i) a source structure A over a finite signature is fized; or
(ii) a target structure B is fized.

Theorem 14 yields (2) of Theorem 3, and is proved by reduction from periodic and ultimately
periodic variants of the tiling problem.

Example 13 shows a situation where definable homomorphisms do not exist, but non-
definable ones do, and each of them induces an infinite sequence of atoms. In the following
example definable homomorphisms do exist, and each of them determines a finite cycle of
atoms. This observation is the core of the proof of Theorem 14, much as Example 13 is the
core of Theorem 12.

» Example 15. Consider a signature with a single binary relation symbol R. Define structures
A and B over this signature as follows (for readability we write ab to denote an ordered pair

(a,b)):
A=A B={abla,be A,a#b}
RN = R® = {(ab,cd)|a,b,c,d € A,a#b,c#dya#c}

Note that there are many non-definable homomorphisms from A to B. For example, for any
enumeration ag, a1, as, ... of all atoms, one may put h(a,) = ana,+1 for each n € N.

However, definable homomorphisms h : A — B also exist. For example, there is an
S-definable one for S ={1,2,3}:

ha)=al  R1)=12 A2 =23  h(3) =31

where x € S. Note how the values of h on S encode a cycle of atoms of length 3. This is
a general phenomenon. Indeed, consider any S-definable homomorphism h : A — B, for
some finite S = {ay,...,a,} € A. Denote e¢; = h(a;) for i = 1..n. Each e; is of the form
ajay for some 1 < j # k < n. Indeed, if some e; = bc (or e; = cb) for some b & S, then
the S-definition of (the graph of) h would be invariant under a renaming 7 of atoms with
m(a;) = a; and 7(b) # b, which cannot be since h is a function.

One may view the e; as edges of a directed graph with nodes {ay,...,a,}. This graph
has n nodes, n edges, no self-loops, and, looking at the definition of R®, no two distinct edges
have the same source. In other words, the graph is the graph of a function without fixpoints
on {ai,...,an}, therefore it contains a cycle of length at least 2. In other words, there is a
subset of S of size at least 2 that is mapped to a set of the form {a;a;,a;ak,...,ama;}.

The two negative results in Theorems 12 and 14 are complemented by a positive one:
» Theorem 16. HOMOMORPHISM is decidable for finite signatures.

This gives (3) of Theorem 3. Theorem 16 is implicit in the work of Bodirsky, Pinsker and
Tsankov [11], where it is proved in a special case when A = B", for n > 1, and B is a
reduct of a finitely bounded Ramsey structure A (cf. Section 5). Our self-contained proof of
Theorem 16, given in Section 4, instead of using the machinery of canonical mappings goes
by a direct reduction to the case when the target structure is finite, which is decidable as
shown in [21]. Our reduction slightly generalizes a reduction due to Bodirsky and Mottet [7]
in the special case of the target structure being a reduct of A (both reductions need A to be
a finitely bounded homogeneous structure).

Theorems 8-16 settle the decidability landscape for the homomorphism problem almost en-
tirely. One remaining open problem is the decidability status of DEFINABLE HOMOMORPHISM
for a fixed target structure B over a finite signature.
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3.3 Homomorphism extension problem

Theorem 16 may be a little surprising in light of Theorem 12. Indeed, Remark 2 allows one
to view an arbitrary definable X-structure as a definable structure Ay, over a finite signature.
Homomorphisms A — B correspond to those homomorphisms Ay, — By, that are the identity
on the subset ¥ of the universe of Ay;. Thus by Theorem 12 we obtain undecidability, even
for finite signatures, of the following slight generalization of HOMOMORPHISM:

Problem: HOMOMORPHISM EXTENSION
Input: Definable structures A and B over ¥ and a definable partial mapping f: A — B.
Decide: Is there a homomorphism from A to B extending f?

The above remark proves (4) of Theorem 3:

» Theorem 17. HOMOMORPHISM EXTENSION is undecidable for finite signatures.

4 Homomorphism problem for finite signatures

Throughout this section, we assume that ¥ is a finite signature. For simplicity, assume that
A is the pure set; in Section 5 we discuss how the results generalize to other underlying
structures. We consider the homomorphism problem for structures over ¥ which are definable
over A. For simplicity, we assume that the input structures A and B are (-definable — the
proof easily generalizes to arbitrary definable structures over a finite signature.

Here is the main result of this section:

» Theorem 18. Given a ()-definable structure B over a finite signature, one can compute a
finite structure B’ such that:

CSP(B) is polynomial-time reducible to CSP(B'),

CSPact(B) is polynomial-time reducible to CSPqee(B’).

Note that Theorem 18 implies Theorem 16, as finite structures B’ are a special case of
locally finite ones, and decidability of the homomorphism problem for locally finite target
structures has been shown in [21]. Moreover, Theorem 18 implies Theorem 4, since as shown
in [21], for every finite template B’, the complexity of CSPq.¢(B’) is exponentially larger than
the complexity of CSP(B').

Theorem 18 is a slight extension of results implicit in the work of Bodirsky, Pinsker and
Tsankov [11] that provided a decision procedure for testing the existence of a homomorphism
from A = B"™ to B, where B is assumed to be a reduct of A (with further assumptions about
A, which apply also in our case, as discussed in Section 5). Instead, we allow both A and B
to be arbitrary definable structures over A (in particular, they need not be reducts). Our
reduction in Theorem 18 is based on a reduction due to Bodirsky and Mottet [7], generalized
to the case of definable structures rather than reducts (recall from Remark 2 that according
to our definition, definable structures correspond to structures which interpret in A via
first-order interpretations).

Proof of Theorem 18. The remaining part of this section is devoted to demonstrating
Theorem 18. In the sequel we fix a (-definable structure B over the signature > (assumed
to be finite). We show how to effectively construct a finite structure B’ as described in the
theorem.

First we observe that without loss of generality we may assume that the universe B of B
is a subset of A*, for some k. To see this, apply Lemma 7 to obtain B C A* and a surjection
g : B — B, both definable and computable from B. Then compute a definable structure B



B. Klin, S. Lasota, J. Ochremiak, and S. Torunczyk

with universe B over the same signature as B, where every relation symbol is interpreted
in B as the inverse image under g of its interpretation in B. Finally, observe that there is
a homomorphism from A to B if, and only if there is a homomorphism from A to B. Thus
from now on we assume that B C Ak, for some k.

We now define some notation. For n € N, denote {1,...,n} by [n]. For a set C, numbers
m,n € N and an injective, monotone function i : [m] — [n], consider a projection mapping
m; : C™ — C™ onto m coordinates induced by ¢ in the obvious way, i.e., m;(c1,...,¢n) =
(Ci(1)s -+ »Citm))- Let C be a structure with universe C' and let 7 > 2 be an integer at least
as large as the maximal arity of the relations in C. We define a structure C=" with universe
CS"=CUC?U---UCT, as follows. If R is a relation symbol of arity k in the signature of
C, then the signature of C=" contains a unary symbol Ug. If S C C* is the interpretation of
R in C, then the interpretation of Ur in C=" is the set S C C* C C<", treated as a unary
relation. Moreover, for m < n < r and each monotone injection i : [m] — [n], there is a
binary projection relation II; C C™ x C™ in C=" which is the graph of the projection ;.

We use standard notions of group actions and orbits. The group Aut(.A) acts on A*,
where an automorphism of A acts coordinatewisely on elements of A*. Note that this
action preserves B C A*, since B is (-definable. For the same reason, automorphisms
of Aut(A) preserve the relations of B. Reassuming, Aut(A) acts on the structure B by
automorphisms. Similarly, Aut(A) acts on the structure B<", inducing a quotient relational
structure B="/Aut(A) over the same signature. The elements of BS"/Aut(A) are orbits of
B=" under the action of Aut(.A); in other words, elements of B<"/Aut(.A) are atomic types
of k-tuples of atoms (an atomic type of a tuple of elements (a1,...,ax) € AF specifies all
equalities among the elements a1, ...,ax). Relation symbols are interpreted in B<"/Aut(.A)
existentially, as expected. A crucial but obvious observation is that the quotient structure
B="/Aut(A) is finite, by the following lemma.

» Lemma 19. The group Aut(A) acts oligomorphically on B, i.e., the action splits B™ into
finitely many orbits, for everyn > 1.

We now define the structure B’ promised in Theorem 18 as B<"/ Aut(A), where r > 3
is a fixed number at least as large as the maximal arity of the relations in X. As required,
the structure B’ is finite. It remains to prove the two items of Theorem 18. Both reductions
are shown in the same way. Let A be given, where A is either finite or ()-definable. Define
A’ as AS". Note that if A is (-definable, then so is A’. Moreover, (the definition of) A’ is
computable from A in polynomial time, for a fixed signature . To complete the reductions,
it remains to prove the following:

» Claim 20. There is a homomorphism A — B if, and only if, there is a homomorphism
A —B.

The “only if” direction is immediate; from a given homomorphism h : A — B, a
homomorphism A’ : A’ — B’ is obtained by taking the pointwise extension h<" : AS™ — BS"
of h (also a homomorphism), and then post-composing h<" with the quotient homomorphism
from B<" to B<"/Aut(A).

We now prove the “if” direction. Fix a homomorphism f : AS™ — B<"/Aut(A). Recall
that B C A*. Consider the set D = (A x {1,...,k})/~, where the equivalence relation ~
is defined as follows. Take (ay,...,a,) € A", for n < r. Then f(ay,...,a,) € B"/Aut(A)
corresponds to an atomic type of (n - k)-tuples of atoms. In particular for n = 2, the atomic
type concerns tuples (z1,...,2% 21, ... 2%) and for each 1 < 4,7 < kand 1 < I,m < 2,
specifies a relation z} = xJ, or x} # xJ,. Put (a1,1) ~ (az2,j) in Ax{1,... k}if (a1,i) = (a2, j)

14:11
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or the atomic type specifies the relation xi = xé This defines an equivalence relation on
A x{1,...,k}, where r > 3 is essential for transitivity; it is also important here that f is a
homomorphism and hence preserves projections. Since the set D is at most countable, there
is an injective function e : D — A. We define a function h : A — A*, by composing the
abstraction function [_]. : A x {1,...,k} — D with the function e:

ha) = (e([(a; D)]~), -, e([(a; F)]~))-

Note that h(a) € B for every a € A. It follows by construction that the function h: A — B
is a homomorphism from A to B. |

5 Concluding remarks

We investigated the homomorphism problem for definable relational structures. Our contri-
bution is a detailed decidability border in the landscape of different variants of the problem.

Most of our proofs work, or can be easily adapted to the variant of the problem where
one asks about the existence of an injective homomorphism, or a strong homomorphism, or
an embedding. The only exceptions are Theorems 12 and 14 for the case where the target
structure B is fixed. Our proofs there work for the case of injective homomorphisms, but not
for strong homomorphisms or embeddings, and the decidability of these cases remain open.

Underlying structure .A. We briefly describe the assumptions on the structure A for which
the results presented in this paper still hold.

The definitions and lemmas in Section 2 hold for an arbitrary structure A. However,
one needs to specify how inputs are represented, specifically, the parameters involved in the
input. To represent all definable sets over A, we should assume that there is an effective
enumeration of its universe. Furthermore, to effectively perform tests on definable sets one
needs to assume that the structure is decidable: given any first-order formula ¢ over the
signature of A with n free variables, and an n tuple a of elements of A, it must be decidable
if ¢,a = A. For simplicity we assume that the signature of A is finite, to avoid questions
concerning the encoding of relation symbols.

Theorems 12, 14 and 17 hold for every infinite structure .A. For Theorems 12 and 17 this
is clear, as every structure definable over the pure set is also definable over arbitrary infinite
A, and existence of a homomorphism does not depend on A. For Theorem 14 this is less
clear, since the existence of definable homomorphisms depends on A. However, an inspection
of the proof shows that the result holds for arbitrary .A.

The @-definable homomorphism problem considered in Theorem 8 is decidable (with the
same proof) as long as the following conditions hold:

A is w-categorical, i.e., it is the only countable model of its first-order theory. An

equivalent condition, due to the Ryll-Nardzewski-Engeler-Svenonius theorem [19], is that

A is countable and Aut(A) acts oligomorphically on .A.

The number of orbits of A™ under the action of Aut(A) is computable from a given

n € N.

We call such structures effectively w-categorical. Any effectively w-categorical structure is
(isomorphic to) a decidable structure, so every definable set can be represented. Theorem 8
can be easily generalized so that arbitrary definable structures A, B are given on input, as
well as a finite set S C A, and the algorithm determines whether there exists an S-definable
homomorphism from A to B.
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Regarding Theorem 11, in the case when the source structure A is assumed to be finite,
it is sufficient that A is a decidable structure. In the case when the target structure B is
finite, and arbitrary homomorphisms are considered, the assumptions under which the proof
from [21] works are that Aut(.A) is extremely amenable or, equivalently, that A is a Ramsey
structure [20]. Examples of Ramsey structures include (Q, <) and the ordered random graph,
by [25].

We do not know how to generalize to other atoms the case where only definable homo-
morphisms to a finite B are considered.

Regarding Theorems 4, 16 and 18, the proofs presented in Section 4 work under the
following assumptions:

The structure A is definable over a decidable Ramsey structure A. For the second item

of Theorem 4, we need some additional mild complexity assumptions about A4, e.g. that

its first-order theory is decidable in NEXPTIME (for most reasonable structures it is
in PSPACE). It is shown in [11] that if A is a Ramsey structure, then extending A by
finitely many constants still yields a Ramsey structure. Clearly, this preserves decidability
of the structure. From this it follows that the assumption made in Section 4 that the

relations of A and B are ()-definable is not relevant, since if they are S-definable over A

for some finite S C A, then they are (-definable over A extended by elements of S as

constants.

The structure B is definable over a structure B which is homogeneous and finitely bounded.

We say that a structure B over a signature I' is finitely bounded if there is a finite set

F of finite I'-structures such that for every finite I'-structure A, A embeds into B iff

no structure from F embeds into A. For example, the pure set is finitely bounded, as

witnessed by an empty family F. This property is crucial for the proof of Claim 20. It
is straightforward to generalize this claim to a finitely bounded homogeneous structure

(see [11]). Any finitely bounded homogeneous structure is effectively w-categorical, and

thus decidable. Moreover, any expansion of a finitely bounded homogeneous structure by

a constant is homogeneous and finitely bounded [7].

We do not know whether the finite boundedness condition can be dropped, while assuming

that B is effectively w-categorical.

Open problems. Perhaps the most significant open question that remains is the decidability
of the isomorphism problem: decide whether two definable structures A,B (say, over the
pure set) are isomorphic, or whether there is a definable isomorphism between them. An
equivalent formulation of the former question is the orbit problem: given a definable structure
A and two elements z,y € A, decide whether there is an automorphism of A which maps x
to y.

This is related to an open problem from [11]: decide whether a given relation R is
first-order definable in a given structure A. Indeed, a unary predicate R C A is first-order
definable in A iff it is preserved by all automorphisms of A, iff no x € R and y € A — R lie in
the same orbit of Aut(A).

Acknowledgments. We are grateful to Albert Atserias, Manuel Bodirsky and Michael
Pinsker for useful discussions.
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—— Abstract

The sensitivity conjecture of Nisan and Szegedy [CC’94] asks whether for any Boolean function f,
the maximum sensitivity s(f), is polynomially related to its block sensitivity bs(f), and hence to
other major complexity measures. Despite major advances in the analysis of Boolean functions
over the last decade, the problem remains widely open.

In this paper, we consider a restriction on the class of Boolean functions through a model
of computation (DNF), and refer to the functions adhering to this restriction as admitting the
Normalized Block property. We prove that for any function f admitting the Normalized Block
property, bs(f) < 4s(f)2. We note that (almost) all the functions mentioned in literature that
achieve a quadratic separation between sensitivity and block sensitivity admit the Normalized
Block property.

Recently, Gopalan et al. [[TCS’16] showed that every Boolean function f is uniquely specified
by its values on a Hamming ball of radius at most 2s(f). We extend this result and also construct
examples of Boolean functions which provide the matching lower bounds.
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1 Introduction

Sensitivity and block sensitivity are complexity measures that are commonly used for Boolean
functions. Both these measures were originally introduced for studying the time complexity
of CRAW-PRAM’s [7, 8, 15]. Block sensitivity is polynomially related to a number of other
complexity measures, such as the decision-tree complexity, the certificate complexity, the
polynomial degree, and the quantum query complexity [5]. A longstanding open problem is
the relation between sensitivity and block sensitivity. From the definitions of sensitivity and
block sensitivity, it immediately follows that s(f) < bs(f), where s(f) and bs(f) denote
the sensitivity and the block sensitivity of a Boolean function f. Nisan and Szegedy [16]
conjectured that sensitivity is also polynomially related to block sensitivity:

» Conjecture 1 (Sensitivity Conjecture [16]). There exist constants §,¢ > 0 such that for

every Boolean function f we have that bs(f) < c- (s(f))°.
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This conjecture is still widely open and the best known upper bound on block sensitivity
is exponential in terms of sensitivity [1]. On the other hand, the best known separation
(through an example of a Boolean function) between sensitivity and block sensitivity is
quadratic [3]; more background and discussion about the sensitivity conjecture can be found
in the survey of Hatami et al. [12].

Over the last decade, in the majority of the works concerning the sensitivity conjecture,
the focus has been on addressing the conjecture for restricted classes of Boolean functions,
where the restriction is imposed by some notion of symmetry [6, 18, 9]. The reason behind
pursuing this direction is that nonconstant Boolean functions with a high degree of symmetry
must have high complexity according to various measures. Accordingly, all the results in this
direction [6, 18, 9] show that the sensitivity of the corresponding functions is large (in terms
of the number of variables), and deduce that the sensitivity is close to block sensitivity. While
we feel that proving the sensitivity conjecture for a restricted class of Boolean functions
is a step in the right direction, we would like to argue that these specific restrictions are
limited in their potential to explicitly promote the understanding of the relationship between
sensitivity and block sensitivity.

In this paper, we prove the sensitivity conjecture for a restricted class of Boolean functions,
where the restriction is imposed on a DNF representation of the function. This is one of the
first time[s] since Nisan [15] that the sensitivity conjecture is proved for a restriction based
on a model of computation (recently, Lin and Zhang [14] proved the sensitivity conjecture for
functions admitting circuits with a small number of negation gates, and in a simultaneous
work [4], the authors prove the sensitivity conjecture in the case of regular read-k formulas
of constant depth with k constant). Informally, the restriction we impose on the DNF can
be described as follows. We assume that the maximal block sensitivity is reached on the all
zeroes input and that the function outputs a zero on this input, and notice that for each
clause in the DNF, the set of positive literals in the clause corresponds to a sensitive block.
Based on the fact that the block sensitivity counts the number of disjoint sensitive blocks,
we consider the natural restriction where the set of positive literals of each of the clauses are
also disjoint. We say that any function adhering to this restriction admits the normalized
block property, and we show that for any Boolean function f admitting the normalized block
property, bs(f) < 4s(f)>.

As the other side of the same coin, this result provides a barrier to building Boolean
functions with super-quadratic separation between sensitivity and block sensitivity. Currently,
the best known separation is given by an example of Ambainis and Sun [3] who built a
function f with bs(f) = 2s(f)? — #s(f). Ambainis and Sun additionally showed that their
example gives the best possible separation (up to an additive factor) between sensitivity and
block sensitivity for all functions that are an OR of functions whose zero-sensitivity equals 1.
We build a framework (of restrictions) over DNFs and identify where the result of Ambainis
and Sun lies within this framework, and our result that the sensitivity conjecture is true
for Boolean functions admitting normalized block property is shown to be an extension of
the result of Ambainis and Sun. Additionally, Kenyon-Kutin [13], showed that if the block
sensitivity is attained on some input which has blocks of size at most two then, bs < e - s2.
More generally,

» Theorem 2 (Kenyon and Kutin[13]). For every Boolean function f on n wvariables, and
every £ € {2,...,s(f)}, we have:
e

bs.(f) < gy ()"

where bsg(f) is the block sensitivity of f when each block is restricted to be of size at most £.



Karthik C.S. and S. Tavenas

Therefore, to construct examples of Boolean function with super-quadratic separation
between sensitivity and block sensitivity we now have two barriers. Moreover, we extend the
notion of block property to t-block property, and prove a lower bound on the sensitivity of
Boolean functions admitting the ¢-block property in terms of ¢, and the width and size of
the DNF.

Recently, Gopalan et al. [11] investigated the computational complexity of low sensitivity
functions and provided interesting upper bounds on their circuit complexity. This was
indicated to be a promising alternative approach to the sensitivity conjecture as opposed
to getting improved bounds on specific low level measures like block sensitivity or decision
tree depth [13, 1, 3]. In particular, they showed that every Boolean function f is uniquely
specified by its values on a Hamming ball of radius at most 2s(f), and showed various
applications of this result. We extend this result by showing that if two Boolean functions f
and ¢ coincide on a ball of radius s(f) + s(g) then, f = g. Furthermore, for every p,q > 1,
we construct examples of Boolean functions f and g such that s(f) = p, s(g) = ¢, and f and
g coincide on a ball of radius s(f) + s(g) — 1 but f # g, showing that the above result is
tight.

Finally, we propose a computational problem motivated by the sensitivity conjecture,
and the existing work and results therein. Assuming the sensitivity conjecture to be true, we
note that this problem is in TFNP, and wonder if resolving the sensitivity conjecture would
yield an efficient algorithm to this computational problem.

This paper is organized as follows. In Section 2, we provide the basic definitions of
complexity measures, structures, and objects that will be used in the rest of the paper. In
Section 3, we define a few restrictions (such as the block property) on DNFs representing
Boolean functions and prove the sensitivity conjecture for the class of functions admitting
(some of) these structural restrictions. In Section 4, we investigate a structural result of low
sensitivity functions. In Section 5, we propose a new computational problem motivated by
the sensitivity conjecture. Finally, in Section 6, we conclude with a promising open question
on proving the sensitivity conjecture for functions admitting the ¢-block property.

The missing proofs can be found in the full version of the paper.

2 Preliminaries

We use the notation [n] = {1,...,n}. Let f:{0,1}" — {0,1}, be a Boolean function. Let
x € {0,1}". For i € [n], we denote by 2° the input in {0,1}" which is obtained by flipping
the i'h bit of 2. Also for any B C [n], we denote by ¥ the input in {0, 1}" which is obtained
by flipping the bits of x in all coordinates in B. We will now define two complexity measures
on Boolean functions which are of great interest.

» Definition 3. The sensitivity of a Boolean function f at input « € {0,1}", written s(f, ),
is the number of coordinates i € [n] such that f(x) # f(x%). The sensitivity of f, written
s(f), is defined as s(f) = maxge(o,13» s(f,2). We define si(f) = maxy)—1 s(f,z) and
so(f) = maxy(z)—o s(f, x).

» Definition 4. The block sensitivity of a Boolean function f at input z € {0,1}", for k
disjoint subsets By, . .., By of [n] (called blocks), written bs(f, x, B1, ..., Bg), is the number of
blocks i € [k] such that f(z) # f(25). The block sensitivity of a Boolean function f at input
x € {0,1}™, written as bs(f, ), is the maximum of bs(f, z, By,..., Bx) over all k disjoint
subsets Bi,..., By of [n] for all k € [n]. The block sensitivity of f, written bs(f), is defined

as bs(f) = Ier?(%c}nbs(f, x). We define bsy(f) = fr(r;;)iiclbs(f, x) and bso(f) = fr(r;z)iicobs(f, x).
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We will now introduce a model of representation of Boolean functions.

» Definition 5. A DNF (disjunctive normal form) formula ® over Boolean variables z1, ..., z,
is defined to be a logical OR of terms, each of which is a logical AND of literals. A literal is
either a variable x; or its logical negation x;. We insist that we can assume that no term
contains both a variable and its negation (otherwise we can remove this term). We often
identify a DNF formula ® with the Boolean function f : {0,1}" — {0,1} it computes.

We note here that for every Boolean function f, there exists at least one (it is not unique)
DNF formula @y that computes it.

3 Block Property

In the following, we will often use the notation V (respectively A) for denoting the Boolean
operation OR (respectively AND). Let f be a Boolean function and ®; be one of its DNF
formulas. Let X = {x1,...,2,} be the set of variables. Let dy be the fan-in of the V-gate
which is usually called the size of the DNF. We label the d\, A-gates as: A1,...,Aq,. Let da,
be the fan-in of A;. Let dy = max d, be the width of the DNF. For every i € [dy], let A; be

K3
the set of variables amongst the literals connected to A; appearing without a negation and
let A; be the set of variables amongst the literals connected to A; appearing with a negation.
An assignment of the variables is a function o : X — {0,1}. For every A;, we define S; as
follows:

S ={o | nilo) =1},

where A;(0) is the evaluation of A; when the assignment to the variables is given by o.

By negating some variables and/or negating the output of the function, we can always
assume that the maximum block sensitivity is the maximum 0-block sensitivity (i.e., bsg)
and is reached on the all zeros input. Moreover, given a DNF representation of our function,
we can assume that this representation is minimal (i.e., any subformula of the given formula
computes a distinct function).

» Definition 6. A Boolean function f represented by a DNF formula ®; is said to be
represented in compact form if the following holds:
(a) f(0") =0,
(b) The maximum 0-block sensitivity is attained on the all zeroes input, i.e., bso(f) =
bs(/,0),

(c) and Vi € [dy], we have that S; \ U, S; # 0.

Moreover the representation is called normalized if the maximal block sensitivity is also
attained on the all zeroes input, i.e., bs(f) = bs(f,0).

The condition (c) means that for each ¢ there exist a o such that o makes only A; true.
» Lemma 7. For every f : {0,1}" — {0,1}, there exists f' : {0,1}" — {0,1} such that
s(f") = s(f), bs(f") = bs(f) = bs(f',0"), and [ admits a normalized compact form
representation.
Proof. We claim that for any Boolean function f, there exists another Boolean function f’
such that s(f) = s(f’), bs(f) = bs(f’), f/(0") = 0 and such that f’ attains its maximal

block sensitivity at the all zeroes input. This is because, if f attains its maximum block
sensitivity at a € {0,1}" then, we define f'(z) = f(a) ® f(x & a)!, and the claim follows.

! The operator @ denotes the usual XOR function.
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Let us fix a DNF formula for f’. If there is i € [dy] such that S; C |J;, Sj, then we do
not change the function by removing A;. Thus any such AND gates can be assumed to have
been removed. <

In fact, we can remark that only the condition f(0™) = 0 from Definition 6 may need a
larger DNF (since, it could need to compute the negation of the original function), other
constraints can be achieved without increasing the size of the formula.

We will now describe a structural result about Boolean functions that admit compact
form representation. For every i € [dy], we define T'; as follows:

Dy ={i| 44| + |40 A =1}

Informally, T'; is the set of AND gates which contradict on A; on exactly one variable.
Let I' = max |I';|. We bound s; using I as follows:

» Lemma 8. Any Boolean function f represented in the compact form admits the following
bound on s1: da —I' < s1 <dn.

Proof. First, we prove that s; < ds. Let a € {0,1}" be the input for which the maximum
s1 is attained. By definition of s1, we have that f(a) = 1. Let A; be an AND gate such that
Ai(a) = 1. Suppose s1 > d, then there exists z; € X \ (A; U A;) such that f(a?) = 0. But,
as A\; does not depend on x;, A;(a?) =1 and so f(a’) still equals 1, which is a contradiction.

We will now prove that s; > dx —I'. Let ig = argmax ;da,. Let b € S;; \ U,;, S (from
Definition 6¢ such a selection is possible). We have that A;,(b) = 1 and for all j € [dyv]\ {io},
A;(b) = 0. Tt is sufficient to lower bound the cardinality of C' C [n] such that for all i € C,
we have that f(b') = 0. Fix some x;, € (A;, U A;,). We observe that f(b*) = 1 implies that
there is an AND gate A; such that (A;, N'A;) U (A4;, N A;) = {x}. There are exactly |I';,|
such k’s. The lower bound follows. <

Nisan [15] showed that for all monotone functions the block sensitivity and sensitivity
are equal. This was the first time that the sensitivity conjecture was proven for a class of
functions captured by a restriction on the model of computation for Boolean functions. In
our setting, Nisan’s result would be written as follows:

» Theorem 9 (Nisan [15]). Let f be a Boolean function and ®; be a compact form represen-
tation of f. In @y if for every i € dy, we had that A; = 0 then, bs(f) = s(f).

In this paper, we look at Boolean functions through weaker restrictions on their DNF
representation. In this regard, we will now see three kinds of structural impositions on
Boolean functions in compact form representation. Later, we will prove the sensitivity
conjecture for the class of functions admitting (some of) these structural impositions.

» Property 10 (Block property). A Boolean function is said to admit the block property if
under a compact form representation Vi, j € [dy] such that i # j, we have that A; N A; = 0.
Moreover, if there exists such a compact form representation which is also normalized, we
will say that the function admits the normalized block property.

» Property 11 (Mixing property). A Boolean function is said to admit the {-mizing property
if under a compact form representation Vi,j € [dy] with i # j, such that if (Ai Uﬁi) N
(A; UA;) #0 we have, |(Az- NA;) U (4 ﬂZi)} > 4.

» Property 12 (Transitive property). A Boolean function is said to admit the transitive
property if under a compact form representation Vi, j, k € [dy], we have that if (A; U A;) N
(A; UA;) #0 and if (A; UA;) N (A U Ag) # 0 then, (A; U A;) N (A U Ag) # 0.
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First, we see that if a Boolean function admits the Mixing property then we can improve
the bound obtained in Lemma 8.

» Lemma 13. Let ¢ > 1. Any Boolean function admitting the £-mizing property has T' = 0.

Proof. Fix i € [dy]. Since the function admits ¢-mixing property, we know that for ev-
ery j € [dy], either (Ai Uﬂi) N (Aj qu) = () in which case we have that j ¢ T, or
|(Ai ij) U (Aj ﬂZi)| > (¢ in which case we again conclude that j ¢ T'; because of the
following:

where the last equality holds because in the definition of DNF formula we insisted that no
term contains both a variable and its negation. Therefore, we have that I'; = (). |

Consequently, we have that s; = dn, for all Boolean functions admitting the ¢-mixing
property with ¢ > 1.

Ambainis and Sun had previously shown in Theorem 2 of [3] that their construction gave
the (almost) best possible separation between block sensitivity and sensitivity for a family
of Boolean functions. Let us consider the Boolean functions f which can be written as a
variables-disjoint union:

=\ 9@, ..., zim). (1)

=

i=1

Then (see for example Lemma 1 in [3] or Proposition 31 in [10]) s1(f) = s1(9), so(f) = nso(g),
and bsg(f) = nbsg(g). So if we can find a lower bound for the sensitivity of g with respect
to bsp(g), we get the best gap for f by choosing n = s1(g)/s0(9g)-

» Theorem 14 (Ambainis and Sun [3]). If g is a Boolean function such that so(g) =1 and
bs(g) = bso(g), then 2s1(g) > 3(bs(g) — 1).

In fact, we can notice that these functions belong to our framework (this claim is implicit
in their proof of Theorem 14, but we give a proof in the full version:

» Claim 15. Let g be as in Theorem 14. Let f be the OR of several copies of g, where each
copy takes its input from a different set of variables, as in Eq. (1). Then, there exists f’
with same block sensitivity and at most same 1-sensitivity which admits the normalized block
property, the transitive property, and the 3-mixing property.

Ambainis and Sun [3] present an explicit Boolean function f such that bs = 252 — %s.

3
The function is a variables-disjoint union

3n+2

f= \/ 9(Ti15 - Tijant2)-

i=1

The function g outputs one if the 4n + 2 corresponding variables satisfy the pattern
Pambainissun Or if it is the case after an even-length cyclic rotation of the variables. The
pattern starts with 2n Os which are followed by a block of two ones and it finishes by n copies
of the block 0__ (the underscore means the variable can be 0 or 1):
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As we only admit the even-length rotations, we can easily see that the normalized block
property is ensured. The patterns in g pairwise intersect, so we also get the transitive
property. Finally, if we consider two rotations R; and Rs of the pattern, we can assume that
the 11-block in R; intersects a 0_-block in Ry (otherwise, we switch R; and Ry and get it).
Then the 11-block in Ry will intersect a 00-block in R;. The two rotations of the pattern
disagree on at least three variables (and in fact exactly three). Hence the 3-mixing property

is also verified.

We show in the full version that other functions in literature achieving a quadratic gap
(e.g. Rubinstein [17], Virza [19], Chakraborthy [6]) fall in our framework.

We ended up proving a result which supersedes the one mentioned in Theorem 14 both in
the lower bound and for a more general family. The above lower bound is exactly matched
by the Boolean function constructed by Ambainis and Sun [3]. This implies that there cannot
exist a Boolean function admitting the normalized block property, the transitive property and
the 2-mixing property which has a better separation between block sensitivity and sensitivity
than the function constructed by Ambainis and Sun [3].

» Theorem 16. Any Boolean function admitting the normalized block property, the transitive
property, the 2-mizing property and which depends on at least two variables has 3bs < 2s? —s.

The proof of the above theorem is in the full version. In a previous version of this paper, we
Prusis and Andris Ambainis pointed out to us, there was a small error in the proof and indeed
the univariate function f(x) = = does not satisfy this inequality (s = bs = 1). Moreover,
they noticed that, as the 2-mixing property implies s; = dy = C; (cf. Lemma 13 and the
following remark), their result [2] directly implies that any Boolean function admitting the
2-mixing property satisfies 3bs < 2s? + s.

Our main result is to get rid of the dependence on the transitive property and the mixing
property. Imposing only the normalized block property on DNFs is a weak restriction as there
is no constraint on A;. Further, given the DNF in compact form representation admitting the
normalized block property is a natural way to represent the function through its (maximal)
block sensitivity complexity. We show the following theorem concerning Boolean functions
admitting block property:

» Theorem 17. Any Boolean function admitting the block property has bsy < 4s2. In
particular, if the representation is normalized, bs < 4s2.

The importance of the result is that the block property seems to be a quite natural
restriction for studying the relations between the sensitivity and the block sensitivity. In
fact, by assuming that the block sensitivity is maximized, by the blocks B;, on the all zeros
inputs with f(0™) = 0 (which is always possible), the block property intuitively asserts the
output is one if from the all zeros input, we can get an input in f~!(1) only by flipping at
least one of the blocks B;. If it is not the case, it would mean there are other non-disjoint
blocks which are present just for diminishing the sensitivity.

Before presenting the proof, we prove three lemmas, after which the above result follows
immediately.

» Lemma 18. Any Boolean function f admitting the block property has bsg = d .

Proof. From Definition 6a, we have that f(0") = 0 and thus we have that every A; is
non-empty. Now, it is easy to see that bsg > bs(f,0™) > dy — choose each A; as a block.
Any two blocks are disjoint because of the block property and by flipping any of the blocks,
one of the AND gates will evaluate to 1.

15:7
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From Definition 6b, we know that the maximum 0-block sensitivity is attained on 0™. Let
the sensitive blocks for which it attains maximum 0-block sensitivity be By,..., Bx. Thus
when some B; is flipped to all 1s, at least one of the AND gates evaluates to 1. Since the
blocks are disjoint, we can associate a distinct AND gate to each sensitive block. Therefore
the number of sensitive blocks is at most the number of AND gates, i.e., bsg =k < dy. <=

d
» Lemma 19. Any Boolean function admitting the block property has s > {Qd Al 1-‘ .

=
The previous lemma is easily seen as optimal by a multiplicative factor two by considering
the OR function.

Proof. Let E be a subset of AND gates such that for any two A;, A; € E, we have A;NA; = ()
and A;NA; =0. Let P= |J P;, where P, is an arbitrarily chosen subset of A; of size |A;|—1
AEE

(note that |A;] > 1 as otherwise we would have f(0™) = 1, contradicting Definition 6a).
Consider a € {0,1}", where a; = 1 if and only if x; € P. We observe that for all A; € E,
Ai(a) = 0. Also, for all A; ¢ E, we have that A; N P = ) from the block property, and
therefore A;(a) = 0. In short, f(a) = 0. Now for any A; € E, let 2, € A; \ P;. Since
Ai(a?®) =1, we have that so(f,a) > |E|.

Now, we will prove that there is a set F such that |E| > {ﬁ—‘. Let G be a directed

q(i

graph on d,, vertices where the i*"" vertex corresponds to A;. We have a directed edge from
vertex i to vertex j if A; N A; # (0. Let U(G) be G with orientation on the edges removed.
Consider the following procedure for constructing E:
(1) Include to E, the AND gate corresponding to the vertex with the smallest degree in
U(G).

(2) Remove the vertex picked in (1) and all its in-neighbors and out-neighbors from G.
(3) Repeat (1) if G is not empty.

From block property, we have that the out-degree of vertex ¢ in G is at most |ZZ| Thus
the total number of edges in G is at most > |A4;] < dy(ds —1). This implies that the sum

i€ldy

of the degree of all vertices in U(G) is at m([)st] 2dy(ds — 1). Therefore, there exists a vertex
in U(G) of degree at most 2d, — 2. By including the corresponding AND gate into F, the
number of vertices in G reduces by at most 2d, — 1. In order for G to be empty, there should

be at least {%1 iterations of the above procedure, and since cardinality of F grows by 1
N

after each iteration, we have that |E| > {20&7{1—‘.

Therefore, we have s > so(f,a) > |E| > [Qd‘iv_l—‘. <

d
» Lemma 20. Any Boolean function admitting the block property has s > {2/\-‘ .

Proof. If s1 > [%-‘, we are done. Therefore, we can assume s; < (%] Let * =
argmax; da,. Consider a € {0,1}" with a; = 1 if and only if z; € A;~. We note that
Ai»(a) =1 and |a| (Hamming weight of a) is nonzero since A;+ is nonempty from Definition 6a.
Let z; € A;». We claim that f(a?) = 0. The proof is by contradiction. Suppose, f(a/) = 1.
It is clear that A;:(a?) = 0 as #; € A;«. Thus, there must exist some k # i*, such that
Ax(a?) = 1. From block property, we know that A;« N Ay = @, but all variables assigned to 1
in a/ are in A;+. This implies Ay = (). Therefore A(0") = 1, contradicting Definition 6a.
Now we would like to claim that for any z; € A;+, we have so(f,a’) > 1+ L%J We
first note that s1(f,a) < [%] and since for any x; € A;«, we have f(a’) = 0, we have
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that [A;| < [Y522]. Let D = {x, € A;+ | f(aP) = 1}. Since, s1(f,a) < [1522], this implies

[Ai+| — |D| + |As| < [H2] or equivalently, |D| > [%] — 1. Fix 2, € D and x; € A.

2 2
Since f(a?) =1, we know there exists some k # ¢*, such that Ag(a?) = 1. By block property,

we know that z; ¢ Ay, and this implies f(at?}) = 1. Thus, we have that for any fixed

zj € Air, so(f,a?) > |D| + 1 as for every z,, € D, we have f(at/?}) = 1 and also f(a) = 1.

Therefore, for every x; € A;+ we have so(f,a’) > |D|+1>1+ [%] —1=[%].
Therefore, we have that either s or sg is at least (%A] |

Proof of Theorem 17. From Lemma 19 and Lemma 20, we have that for any Boolean
function admitting the block property s? > ({TV. Combining this with Lemma 18, we have
that 4s2 > bsy. <

We can notice that Lemma 20 is optimal, i.e., we give an example of a Boolean
function admitting the block property with s = s; = [dr/2]. The set of variables is
X ={x1,...,22n4+1}. We describe the example by its A-gates A1, ..., Apt1: for all i € [n],
A = {l‘gi}, Zz = @, An+1 = {Igi_l | 1€ [n —+ 1]} and Zl = {foL' | 1€ [n]}

Finally, we conclude with an absolute lower bound on the sensitivity of functions admitting
block property.

» Corollary 21. Let f be a Boolean function which depends on n variables. If f admits the
block property, then 2s(f) > n'/3.

Proof. The number of variables which appear in the DNF is at most d\ dx, and so dyda > n.

By Lemma 19 and Lemma 20,

s > v d—A2>dVdA>
— \ 2dx 2 - 8 =

3.1 t-Block Property

. <

®| 3

In this subsection, we extend the notion of block property to t-block property as follows.

» Property 22 (t-Block property). A Boolean function is said to admit the t-block property
if under a compact form representation Vo € X, we have |{A;|lx € A;}| < t.

We have that 1-block property is exactly the same as block property discussed in the
previous subsection. Let us notice that the notion of ¢-block property is far more general
than the one of read-t DNF presented in [4] since, here only the number of times where the
variables appear positively is bounded.

First, we show an upper bound on Boolean functions admitting the t-block property in
terms of the size of the DNF. The proof is very similar to the one for Lemma 18 and can be
found in the full paper.

» Lemma 23. Any Boolean function f admitting the t-block property has bsg < dy.

Next, we prove a lower bound on Boolean functions admitting the ¢-block property in
terms of t, the width of the DNF, and the size of the DNF.

d
» Lemma 24. If f admits the t-block property, then s > [3tdA - Qtv_ i J )

Proof. Let I be a subset of AND gates such that for any two A;, A; € E, we have (4; U

A)NA; =0. Let A= |J A; (note that any |A;| > 1 as otherwise we would have f(0") =1,
NEE
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contradicting Definition 6a). Consider A the set of 0-vectors with support in A. More
formally, A = {a € {0,1}" | f(a) =0 and Vi,a; =1 = z; € A}.

First notice that 0™ € A, so this set is not empty. Let a be an element of A with maximal
Hamming weight. For any A; € E, the gate A; does not depend on the variables in (A4 \ 4;)
by definition of E and A. So, f(a) = 0 implies that there exists a variable x;, € A; such that
@, = 0. Then, by maximality of Hamming weight of @, f(a!") = 1 and so a is O-sensitive on
l;. Finally, for all 4, j € E the indices /; and [; are distinct since A; N A; = 0. Consequently,
we have that so(f,a) > |E|.

Now, we will prove that there is a set E such that |E| > [m—‘. Let G be a

directed graph on d, vertices where the i*" vertex corresponds to A;. We have a directed
edge from vertex i to vertex j if A; N A; # 0. Let U(G) be G with orientation on the edges
removed. Consider the following procedure for constructing E:
(1) Add to E, the AND gate corresponding to the vertex with the smallest degree in U(G).
(2) Remove the vertex picked in (1) and all its in-neighbors and out-neighbors from G.
(3) Remove any vertex from G associated with a gate A; with A; N A; # 0.
(4) Repeat from (1) if G is not empty.

From t¢-block property, we have that the out-degree of vertex 7 in G is at most ¢ |ZZ-’.
Thus the total number of edges in G is at most Y t|A;| < tdy(ds — 1). This implies that

i€[dv

the sum of the degree of all vertices in U(G) is at r[no]st 2tdy (dn — 1). Therefore, there exists
a vertex in U(G) of degree at most 2td, — 2¢t. By including the corresponding AND gate
into F, the number of vertices in G reduces by at most 2td, — 2t + 1 at step (2). Moreover,
at step (3), by the ¢-block property, there are at most (¢t — 1)|4;| < tdx — da gates A; such
that A; N A; # 0 and j # i. Consequently at most 3td, — 2t — d + 1 gates are removed at

each step. In order for G to be empty, there should be at least [m

the above procedure, and since cardinality of F grows by 1 after each iteration, we have that
Bl > |

—‘ iterations of

dy
3tdA72t7dA+1—‘ :
Therefore, we have s > so(f,a) > |E| > [m]. <
As a corollary, we obtain the following.

» Corollary 25. Let f be a Boolean function ?dmz’tting the t-block property, with t < dyd 1~¢,
for some € > 0. Then, bso(f) <t (3s(f))' 7% .

Proof. Since t < dydy'™¢, we have that d, < (dTV)l/(HE). Substituting in Theorem 24, we

dv 1+
have that S(f) 2 W € Z

(dv)¢. We substitute Lemma 23, and simplify to obtain ¢ (3s(f))1+% > bso(f). <

After rearranging and simplifying, we get ¢¢ (3s(f))

4 Low Sensitivity Boolean functions

Gopalan et al. [11] show that functions with low sensitivity have concise descriptions, so
consequently the number of such functions is small. Indeed, they show that knowing the
values on a Hamming ball of radius 2s + 1 suffices. More precisely,

» Theorem 26 (Gopalan et al. [11]). Let f be a Boolean function of sensitivity s. Then, it
is uniquely specified by its values on any ball of radius 2s.

We extend their observation to a more general one:
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» Theorem 27. Let f and g be two Boolean functions. If f and g coincide on a ball of
radius s(f) + s(g) then, f =g.

Before we prove Theorem 27, we note the following handy lemma:

» Lemma 28. Let f and g be two Boolean functions. We have s(f @ g) < s(f) + s(g) and
bs(f @ g) < bs(f) +bs(g) %

Proof. For any = € {0,1}" and i € [n], if (f ® g)(x) # (f ® g)(z") then we have that
either f(z) # f(x') or g(z) # g(z*). This implies, for every z € {0,1}", s(f @ g,x) <
s(f,x) + s(g,z). Similarly, for any = € {0,1}" and B C [n], if (f ® g9)(z) # (f @ g9)(zP)
then we have that either f(z) # f(2?) or g(z) # g(z?). This implies, for every = € {0,1}",
bs(f @ g,z) < bs(f,z) + bs(g,x). <

Proof of Theorem 27. The proof is by contradiction. Suppose there exists a € {0,1}"
such that for every r € {0,1}" of hamming weight at most s(f) + s(g), we have that
fla®r) = gla®r). This implies that for every r € {0,1}™ with ||r|| < s(f) + s(g), we
have (f @ g)(a ®r) = 0. Consider x € {0,1}™ of the smallest hamming distance from a such
that (f @ g)(x) = 1. If such a x does not exist then it implies that f @ ¢ is the constant
zero function. In that case we have that f = g, a contradiction. Therefore, let us suppose
that x exists as described above. Let d be the hamming distance between z and a. We
know that d > s(f) + s(g). Additionally, we know that there are exactly d neighbors of = at
hamming distance d — 1 from a. Since, x was the input with the smallest distance from a
such that (f @ g)(z) = 1, we know that the d neighbors of z at hamming distance d — 1 from
a all evaluate to 0 on (f @ g). This means that s(f @ g,x) > d > s(f) + s(g), which is a
contradiction following Lemma 28. |

Next, we explore the tightness of Theorem 27.

» Proposition 29. For every p,q € N, greater than 1, there exists Boolean functions f and
g such that s(f) =p, s(g) = ¢, and f and g coincide on a ball of radius s(f) + s(g) — 1.

Proof. Without loss of generality we will assume that p < ¢g. Fix p and q. We will build two
function f and g on p + ¢ variables. Let a € {0,1}P*? be a special input defined as follows:
Vielp+q],a;=1ifand only if i =1, or ¢ > 2p, or ¢ # 2p is even. Now we define f and g

as follows:

2p

0 if Y zi<p
’L'2:pl

fl@1, . Tpyq) = 1 if in>p _Jo ifx=a

i=1 g(x) = .
2p f(z) otherwise.

ijod? if Zwi:p

r;=1, i=1

J<2p

coordinates. If 327 z; < p—1or Y27 &; > p+ 1 then s(f,z) = 0. If 3277, 2; = p then
s(f,z)=p. If Zfﬁl x; = p—1 then s(f,x) < p. This is because for any subset of [2p] of size
p—+1 there is both an odd number and an even number in the subset (by pigeonhole principle),
and thus amongst its p + 1 neighbors of hamming weight p (in the first 2p coordinates) there

? Vo e {0,1}", (f @ g)(x) = f(z) ® g().
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must be a neighbor which is not sensitive w.r.t. z. Similarly, we have that if Zfﬁ 1T, =p+1
then s(f,z) <p.

Next, we will show that s(g) = ¢. Fix z € {0,1}PT9. If z is not in the hamming ball of
radius 1 centered at a then, s(g,x) = s(f,2) < p < q. If z = a then, it is sensitive on all
the last ¢ — p coordinates and has p sensitive neighbors in the first 2p coordinates. Thus,
s(g,a) = ¢q. If x is a neighbor of a through one of the last ¢ — p coordinates (i.e., assuming
q—p > 0) then s(g,2) = p+ 1 < ¢. If x is a neighbor of a through one of the first 2p
coordinates then, we can assume g(x) = 1. This means hamming weight of z in first 2p
coordinates is p + 1 and we know that it is not sensitive on the last ¢ — p coordinates. From
the definition of a, we know that there is at least one neighbor of  of hamming weight p in
the first 2p coordinates such that its value on g is the same as g(z). Therefore s(g,z) < p < gq.

Finally, we claim that f and g coincide on the ball of radius p + ¢ — 1 centered at
(a <) f) (follows from the construction of g). This completes the proof as f and g are distinct
(f(a) # g(a)) and to distinguish between them by a ball centered at (a ® f), we need to
consider a ball of radius p + gq. <

In the case of monotone Boolean functions, we can improve upon the results in Theorem 26
and Theorem 27 as follows: any monotone Boolean function f is uniquely specified by its
values on the ball of radius s centered at 0. This is because, for any input = of hamming
weight greater than s(f), f(z) is equal to 1 if at least one of its neighbors of hamming weight
|z| — 1 is evaluated to 1 on f. In other words,

f@y= "\ f).
y=xde;
lyl=lx|—-1
Furthermore, this result is tight because Wegener’s monotone Boolean function [20] f of
sensitivity % logn + i loglogn + O(1) is identical to the constant zero function on the ball of
radius s(f) — 1 centered at 0™.

5 The Sensitivity Conjecture: A Computational Perspective

We would like to briefly discuss in this section a new perspective on the sensitivity conjecture.
Consider a strong version of the sensitivity conjecture which was suggested by Nisan and
Szegedy [16]: for every Boolean function f, we have bs(f) < c¢-s(f)?, for some constant c. Let
us assume that the above conjecture is true. We note here that there is no evidence or reason
to refute this strong version of the sensitivity conjecture. Now consider a computational
problem called the sensitivity problem defined based on this assumption.

» Definition 30 (Sensitivity Problem). Given a circuit C : {0,1}" — {0,1}, = € {0,1}",
and blocks By, ..., By, the sensitivity problem is to find y € {0,1}" such that s(C,y) >
\/bs(C,x, By, ...,By)/c.

A solution to the sensitivity problem is guaranteed to exist and a solution can be verified
in poly(n) time, thus the problem is in TFNP. We wonder if the proof of the sensitivity
conjecture would give us an efficient algorithm to solve this problem in P?

We investigated the proofs of the sensitivity conjecture for restricted classes of Boolean
functions that exist in literature. In each of these proofs we indeed find an efficient algorithm
to solve the above problem in P. For instance, consider the class of Boolean functions
admitting the normalized block property. In this case, the computational problem would
be that given a DNF &, © € {0,1}", and blocks By,..., By, find y € {0,1}" such that
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s(®,y) > \/bs(¢,, By, ..., By)/2 or find two clauses in ® which violate ® admitting the
block property. This problem like the sensitivity problem is in TFINP. However, the proof
of Lemma 19 gives us an efficient algorithm to find an input a; with sensitivity {%—‘ and
the proof of Lemma 20 gives us an efficient algorithm to find an input as with sensitivity
[%ﬂ Since, bs(¢, x, By, ..., By) < bs(®) = dy, either a1 or as is a solution to our problem
(assuming there is no violation to the block property of ®). Thus the computational problem
in the case of functions admitting the block property is in P.

Similarly, for every monotone function f, and every input = we have s(f,z) = bs(f,x)
[15]. Therefore, for the computational version of the sensitivity problem adapted to the
monotone restriction, the input z will be a trivial solution and thus the computational
problem would be in P. Finally, even for the case of min-term transitive functions, we have
an efficient algorithm implicit in the proof of Chakraborthy [6] who showed that for any
min-term transitive function f, bs(f) < 2s(f)2.

Returning to ponder on the existence of efficient algorithms for the sensitivity problem,
while it is related to the sensitivity conjecture, it is possible that the sensitivity conjecture is
true but there is no efficient algorithm for the sensitivity problem. Similarly, it is possible that
an efficient algorithm for the sensitivity problem is found without resolving the sensitivity
conjecture (in this case the sensitivity problem should be considered to be in NP and not
in TFNP). However, our progress on the sensitivity conjecture under various restricted
settings seem to be by finding a vertex of high sensitivity by starting from a given input with
high block sensitivity. Therefore, studying various restrictions on models of computations for
Boolean functions seems to be the right direction to pursue, in order to make progress on
the sensitivity conjecture.

6 Conclusion

In this paper, we motivate the study of the sensitivity conjecture through restrictions on
a model of computation. In this regard, we introduced a structural restriction on DNFs
representing Boolean functions called the normalized block property. We showed that the
examples of Boolean functions that are popular in literature for having a quadratic separation
between sensitivity and block sensitivity admit this property. More importantly, we showed
that the sensitivity conjecture is true for the class of Boolean functions admitting the
normalized block property. Furthermore, we extended a result of Gopalan et al. [11] and also
provided matching lower bounds for our results. Finally, we motivated a new computational
problem about finding an input with (relatively) high sensitivity, with respect to the block
sensitivity for a given input.
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—— Abstract

The pointer function of Go6os, Pitassi and Watson and its variants have recently been used to
prove separation results among various measures of complexity such as deterministic, randomized
and quantum query complexity, exact and approximate polynomial degree, etc. In particular,
Ambainis et al. (STOC 2016) obtained the widest possible (quadratic) separations between
deterministic and zero-error randomized query complexity, as well as between bounded-error and
zero-error randomized query complexity by considering variants of this pointer function.

However, as Ambainis et al. pointed out in their work, the precise zero-error complexity of
the original pointer function was not known. We show a lower bound of ﬁ(n3/ 4) on the zero-error
randomized query complexity of the pointer function on ©(nlogn) bits; since an 5(713/ 4) upper
bound was already shown by Mukhopadhyay and Sanyal (FSTTCS 2015), our lower bound is
optimal up to polylog factors. We, in fact, consider a generalization of the original function and
obtain lower bounds for it that are optimal up to polylog factors.

1998 ACM Subject Classification F.1.1 [Models of Computation] Relations between models,
F.1.2 [Modes of Computation] Probabilistic computation

Keywords and phrases Deterministic Decision Tree, Randomized Decision Tree, Query Com-
plexity, Models of Computation

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2016.16

1 Introduction

Understanding the relative power of various models of computation is a central goal in
complexity theory. In this paper, we focus on one of the simplest models for computing
Boolean functions — the query model or the decision tree model. In this model, the algorithm
is required to determine the value of a Boolean function by querying individual bits of the
input, possibly adaptively. The computational resource we seek to minimize is the number
of queries for the worst-case input. That is, the algorithm is charged each time it queries an
input bit, but not for its internal computation.

There are several variants of the query model, depending on whether randomization
is allowed, and on whether error is acceptable. Let D(f) denote the deterministic query
complexity of f, that is, the maximum number of queries made by the algorithm for the worst-
case input; let R(f) denote the maximum number of queries made by the best randomized
algorithm that errs with probability at most 1/3 (say) on the worst-case input. Let Ry(f)
be the zero-error randomized query complexity of f, that is, the expected number of queries
made for the worst-case input by the best randomized algorithm for f that answers correctly
on every input.
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The relationships between these query complexity measures have been extensively studied
in the literature. That randomization can lead to significant savings has been known for a
long time. Snir [10] showed a O(n'°#13) randomized linear query algorithm (a more powerful
model than what we discussed) for complete binary NAND tree function for which the
deterministic linear query complexity is €(n). Later on Saks and Wigderson [9] determined
the zero-error randomized query complexity of the complete binary NAND tree function to
be ©(n%736-+). They also presented a result of Ravi Boppana which states that the uniform
rooted ternary majority tree function has randomized zero-error query complexity O(n?-893--)
and deterministic query complexity n. All these examples showed that randomized query
complexity can be substantially lower than its deterministic counterpart. On the other
hand, Nisan showed that the R(f) = Q(D(f)'/?) [8]. Blum and Impagliazzo [3], Tardos [11],
Hartmanis and Hemachandra [6] independently showed that Ro(f) = Q(D(f)/?). Thus, the
question of the largest separation between deterministic and randomized complexity remained
open. Indeed, Saks and Wigderson conjectured that the complete binary NAND tree function
exhibits the widest separation possible between these two measures of complexity.

» Conjecture 1 ([9]). For any boolean function f on n variables, Ro(f) = Q(D(f)%-753).

This conjecture was recently refuted independently by Ambainis et al. [2] and Mukho-
padhyay and Sanyal [7]. Both works based their result on the pointer function introduced
by Go66s, Pitassi and Watson [5], who used this function to show a separation between
deterministic decision tree complexity and unambiguous non-deterministic decision tree
complexity. In Section 2, we present the formal definition of the function GPW"*®, which is
a Boolean function on ©(rs) bits.

Mukhopadhyay and Sanyal [7] used GPW?*** to obtain the following refutation of Conjec-
ture 1: Ro(GPW***) = O(s'®) while D(GPW***) = (s?). While this shows that GPW***
witnesses a wider separation between deterministic and zero-error randomized query com-
plexities than conjectured, the separation shown is not the widest possible for a Boolean
function. Independently, Ambainis et al. modified GPW*** in subtle ways, to establish the
widest possible (near-quadratic) separation between deterministic and zero-error randomized
query complexity, and between zero-error randomized and bounded-error randomized query
complexities.

Ambainis et al. [2] pointed out, however, that the precise zero-error randomized query
complexity (i.e. Ro(GPW®*®)) was not known. One could ask if the optimal separation
demonstrated by Ambainis et al. is also witnessed by GPW*®*® itself. In this work, we prove a
near-optimal lower bound on the zero-error randomized query complexity of GPW™*®  which
is slightly more general than the GPW**® considered in earlier works.

» Theorem 2 (Main theorem). Ro(GPW"™*®) = Q(r + /rs).

Such a result essentially claims that randomized algorithms cannot efficiently locate certificates
for the function. This would be true, for example, if the function could be shown to require
large certificates, since the certificate complexity of a function is clearly a lower bound on
its zero-error randomized complexity. This straightforward approach does not yield our
lower bound, as the certificate complexity of GPW"™** is 5(7“ + s). In our proof, we set up a
special distribution on inputs, and by analyzing the expansion properties of the pointers,
show that a certificate will evade a randomized algorithm that makes only a small number
of queries. In fact, the distribution we devise is almost entirely supported on inputs X for
which GPW"**(X) = 0. This is not an accident: a randomized algorithm can quickly find a
certificate for inputs X if GPW"**(X) =1 (see Theorem 5 below).
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It follows from Theorem 2 that the algorithm of Mukhopadhyay and Sanyal [7] is optimal
up to polylog factors.

» Corollary 3. Ro(GPW***) = Q(s1).

In addition to nearly determining the zero-error complexity of the original GPW?®**
function, our result has two interesting consequences.

(a) The above mentioned result of Mukhopadhyay and Sanyal [7] showed that Ro(GPW®**)
= O(D(GPW***)0-75) " Our main theorem shows that GPW*** cannot be used to show
a significantly better separation between the deterministic and randomized zero-error
complexities (ignoring polylog factors). However, the function GPW*"** allows us to
derive a better separation!: Ro(GPW* **) = O(D(GPW* **)2/3). Our main theorem
shows that this is essentially the best separation that can be derived from GPW"**
by varying r relative to s, so this method cannot match the near-quadratic separation
between these measures, which was shown by Ambainis et al. [2] by considering a variant
of the GPW?**® function.

(b) GPW?®*® exposes a non-trivial polynomial separation between the bounded-error and
zero-error randomized query complexities: R(GPW**®) = O(Ro(GPW?***)2/3). This
falls short of the near-quadratic separation shown by Ambainis et al. [2], but note that
before that result no separation between these measures was known.

2 The GPW function

The input X to the pointer function, GPW"*?, is arranged in an array with r rows and s
columns. The cell X[i, j] of the array contains two pieces of data, a bit b;; € {0,1} and a
pointer ptr;; € ([r] x [s]) U{L}.

Let A denote the set of all such arrays. The function GPW"™** : A — {0,1} is defined as
follows: GPW™**(X) = 1 if and only if the following three conditions are satisfied.
1. There is a unique column j* such that for all rows ¢ € [r], we have b;;» = 1.
2. In this column j*, there is a unique row * such that ptr;. .. # L.

3. Now, consider the sequence of locations (px : k =0,1,...,s — 1), defined as follows: let
po = (i*,5%), and for k = 0,1,...,5 — 2, let prt1 = ptr,, . Then, po,p1,...,ps—1 lie in
distinct columns of X, and b,, = 0 for k =1,2,...,s — 1. In other words, there is a

chain of pointers, which starts from the unique location in column j* with a non-null
pointer, visits all other columns in exactly s — 1 steps, and finds a 0 in each location it
visits (except the first).

Note that GPW"*® can be thought of as a Boolean function on ©(rslogrs) bits.

Upper Bound

The pointer function GPW"™*?, as defined above, is parameterized by two parameters, r and
s. Goos, Pitassi and Watson [5] focus on the special case where r = s. Mukhopadhyay
and Sanyal [7] also state their zero-error randomized algorithm with O(s!-®) queries for this
special case; however, it is straightforward to extend their algorithm so that it applies to the
function GPW™*® and yields the following upper bound.

» Theorem 4. Ry(GPW™**) = O(r + /7s).

! Tn [1], a similar separation between R(GPWSZXS) and D(GPWSZXS) is mentioned.
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L 1 1 L
1 0 0 1 0

Figure 1 Input to GPW™*® for r = 5,5 = 5.

Mukhopadhyay and Sanyal also gave a one-sided error randomized query algorithm that

makes O(s) queries on average but never errs on inputs X, where GPW***(X) = 1. Again a
straightforward extension yields the following.

» Theorem 5. There is a randomized query algorithm that makes 5(7“ + s) queries on each
input, computes GPW™® correctly on each input with probability at least 1/3, and in addition
never errs on inputs X where GPW™*(X) = 1.

Theorem 2, thus, completely determines the deterministic and all randomized query com-
plexities of a more general function GPW"**.

2.1 The distribution

To show our lower bound, we will set up a distribution on inputs in A. Let V' be the locations
in the first s/2 columns, i.e., V = [r] x [s/2]; let W be the locations in the last s/2 columns,
ie., W = [r] x ([s]\ [s/2]). In order to describe the random input X, we will need the
following definitions.

Pointer chain

For an input in A, we say that a sequence of locations p = (€, ¢1,%s, ..., ) is a pointer
chain, if for 1 = 0,1, ...,k —1, ptry, = £;11; the location £y is the head of the p and is denoted
by head(p); similarly, . is the tail of p and is denoted by tail(p). Note that ptr,, is not
specified as part of the definition of pointer chain p; in particular, it is allowed to be L.

Random pointer chain

To build our random input X, we will assign the pointer values of the various cells of X
randomly so that they form appropriate pointer chains. For a set of locations S we build
a random pointer chain on S as follows. First, we uniformly pick a permutation of S, say
(€o,€1,..., ). Then, we set ptr,, = £;y; (fori =0,1,...,k—1). We will make such random
assignments for sets S consisting of consecutive locations in some row of W. We call the
special (deterministic) chain that starts at the first (leftmost) location of S, visits the next,
and so on, until the last (rightmost) location, a path. Given two pointer chains p; and ps on
disjoint sets of locations S; and Sz, we may set ptry;,,) = head(pz2), and obtain a single
pointer chain on S; U Sy, whose head is head(p;) and tail is tail(ps). We will refer to this
operation as the concatenation of py and ps.
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s/2
log s—3loglog s

width (w;) = s/(20-27 - 2K)
—

[

r \H/_/

Segment

Figure 2 Bands and segments inside block W;.

We are now ready to define the random input X. We will assume that r >> log s, because
otherwise \/rs = 5(3), and Theorem 2 follows from the certificate complexity lower bound of
Q(r + s) on Ro(GPW™**) (see the sentence following Assumption 6 below). First, consider
W. For all £ € W, we set by = 0. To describe the pointers corresponding to W, we partition
the columns of W into K :=logs — 3loglog s blocks, W1, ..., Wg, where W consists of the

first s/(2K) columns of W, then W5 consists of the next s/(2K) columns, and so on.

%4 Wy Wy Wk

The block W, will be further divided into bands; however, the number of bands in different
W; will be different. There will be 2027 bands in W}, each consisting of w; := s/(20-27 - 2K)
contiguously chosen columns (note that w; > log s by our choice of K). See Figure 2.

Each such band will have r rows; the locations in a single row of a band will be called a
segment; we will divide each segment into two equal parts, left and right, each with w;/2
columns.

We are now ready to specify the pointers in each segment of W;. In the first half of each
segment we place a random (uniformly chosen) pointer chain; in the right half we place a
path starting at its leftmost cell and leading to its rightmost cell. See Figure 3. Once all
pointer chains in all the segments in a given row are in place, we concatenate them from left
to right. All pointers in the last column of W are set to L. In the resulting input, each row
of W is a single pointer chain with head in the leftmost segment of W and tail in the last
column of W. This completes the description of X for the locations in W.

Next, we consider locations in V. Let ¢ := 500log s//r. Notice that by our assumption,
q < 1. Independently, for each location £ € V:

with probability ¢, set by = 0 and ptr, to be a random location that is in the left half of
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7 7
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random pointer chain path

Figure 3 A segment consists of a random pointer chain concatenated with a path.

some segment in W (that is, among all locations that fall in the left half of some segment,
pick one at random and set ptr, to that location);
with probability 1 — ¢, set by = 1 and ptr, = L.

This completes the description of the random input X.

3  The lower bound for GPW"**

We will consider algorithms that are given query access to the input bits of GPW"™**. A
location ¢ € [r] x [s] of an input X € A is said to be queried if either by is queried, or some
bit in the encoding of ptr, is queried. By number of queries, we will always mean the number
of locations queried. A lower bound on the number of locations queried is clearly a lower
bound on the number of bits queried.

It can be shown that the certificate complexity of GPW™*® is Q(r+ s); hence Ro(GPW"**)
= Q(r + s). It remains to show that any zero-error randomized query algorithm for GPW"**
must make Q(y/rs/polylog(s)) queries in expectation. We will assume that there is a
significantly more efficient algorithm and derive a contradiction.

» Assumption 6. There is a zero-error randomized algorithm that makes at most v/rs/(log s)°
queries in expectation (taken over the algorithm’s coin tosses) on every input X .

If r < (logs)® (say), then this assumption immediately leads to a contradiction because
Ro(GPW™**) = Q(s). So, we will assume that r > (log s)3.

Consider inputs X drawn according to the distribution described in the previous section.
Since with probability 1 — o(1) every column of X has at least one zero (see Lemma 10 (a)),
GPW™?(X) = 0 with probability 1 — o(1); thus, the algorithm returns the answer 0 with
probability 1 — o(1). Taking expectation over inputs X and the algorithm’s coin tosses, the
expected number of queries made by the algorithm is at most /rs/(log s)>. Using Markov’s
inequality, with probability 1 — o(1), the algorithm stops after making at most /rs/(log s)*
queries. By truncating the long runs and fixing the random coin tosses of the algorithm, we
obtain a deterministic algorithm. Hence we have the following.

» Proposition 7. If Assumption 6 holds, then there is a deterministic algorithm that (i)
queries at most \/rs/(log s)* locations, (i) never returns a wrong answer (it might give no
answer on some inputs), and (#i) returns the answer 0 with probability 1 — o(1) for the
random input X.
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Fix such a deterministic query algorithm Q. In the next section, we formally establish the
following.

» Lemma 8 (Stitching lemma). With probability 1 — o(1) over the choices of X, there is an

input X' € A that differs from X only in locations not probed by Q such that GPW"™**(X") = 1.

Thus, with high probability, Q(X’) = Q(X) = 0. This contradicts Proposition 7 (ii). This
immediately implies Theorem 2.

4 The approach

In this section, we will work with the algorithm Q that is guaranteed to exist by Proposition 7.

For an input X € A to GPW™® let Gx = (V/,W’, E) be a bipartite graph, where V' is the
set of columns of V' and W' is the set of all bands in all blocks of W. The edge set E(Gx) is
obtained as follows. Recall that pointers from V lead to segments in W. Each such segment
contains a pointer chain. For a location £ in such a chain, let pred(¢) denote the location ¢
that precedes ¢ in the chain (if £ is the head, then pred(¢) is undefined); thus, ptr,, = ¢. We
include the edge (j, 8) (connecting column j € V' to band 8 € W') in E(Gx) if the following
holds:

There is a location v in column j and a segment p in some row of band 3 such that

(cl) ptr, € p, that is, ptr, is non-null and points to a location in the left half of segment p
(notice that this implies that b, = 0);

(c2) pred(ptr,) is well defined and is not probed by Q;

(c3) Q makes fewer than |p|/4 probes in segment p. (Note that this implies that there is a
location in the right half of p that is left unprobed by Q and that is not the last location
of the segment.)

In the next section, we will show the following.

» Lemma 9 (Matching lemma). With probability 1 — o(1) over the choice of X, for every
subset R C V' of at most s/(/r(logs)?) columns, there is a matching in Gx that saturates
R.

In this section, we will show how Lemma 9 enables us to modify the input X to obtain an
input X’ for which GPW"*?(X’) = 1, thereby establishing Lemma 8 (the stitching lemma).

» Lemma 10.
(a) With probability 1 — o(1), each column j of the input X has a location £ such that by = 0.

(b) With probability 1 — o(1), there is a column j € [s/2] such that Q does not read any
location £ in column j with by = 0.

Proof.

(a) All the bits in the columns in [s] \ [s/2] are 0. We show that with high probability, each
column in V’ has a 0. The probability that a particular column in V’ does not have any
0is (1 —500logs/v/r)" < s~V") . Thus the probability that there is a column j € V”
which does not have any 0 is at most (s/2) - s~ (V") = o(1).

(b) By Proposition 7, Q makes t < s1/7/(log s)* queries. For i = 1,2,...,t, let R; be the
indicator variable for the event that in the i-th query, Q reads a 0 from V. Then, the
expected number of 0’s read by Q in V is (we assume that Q does not read the same
location twice)

t
D E[R;] <t-500logs//r < 500/ (log 5)°.

=1
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By Markov’s inequality, with probability 1 — o(1), the number number of 0’s read by Q
is less than s/2. It follows, that there is a column in V in which Q has read no 0. <

Proof of Lemma 8. Assume that the high probability events of Lemmas 9 and 10 hold.
This happens with probability 1 — o(1). We will now describe a sequence of modifications
to the input X at locations not queried by Q to transform it into an input X’ such that
GPW"™*(X’) = 1. Let j* € V' be the column in V guaranteed by Lemma 10 (b). Define
Ag = {coly,...,coly} C V'\{j*} to be the set of columns in V'\ {j*} that are not completely
read by Q (i.e. each column in Ay has a location unread by Q). Let ¢; be a location in the
column col; that is unread by Q. We first make the following changes to X, with the aim of
starting a pointer chain at column j* that passes through coly, cols, ..., coly.
(i) For each unread location ¢ in the column j*, set by to 1. From the definition of j*, the
bits of the read locations are already 1.
(ii) Let £* be the first unread location of j* (i.e. the location with the least row index). Set
ptry. to ¢;.
(iii) For each unread location ¢ # £* in column j*, set ptr, to L. From the definition of j*,
the pointers of the read locations are already L.
(iv) Fori=1,...,N —1, set by, to 0 and ptr,, to £;;1.
(v) Set by to 0.
Clearly, the locations modified are not probed by Q. Notice that the current input has the
pointer chain pg = (¢*,¢1,...,¢n) and the head ¢* of the chain lies in the all-ones column
j*. Furthermore, all locations on the chain except ¢* have 0 as their bit. We now show how
to further modify our input and extend p and visit the remaining columns through locations
with 0’s. The columns in W are already neatly arranged in pointer chains. The difficulty is in
ensuring that we also visit the set of columns in V' that are completely read by Q, for we are
not allowed to make any modifications there. Let A; denote these completely read columns
in V’. Since Q makes at most /7s/(logs)* queries, we have that |A;| < s/(y/r(logs)?*).
Lemma 9 implies that there exists a matching M in Gx that saturates A;. Order the
elements of A as dy,...,dy in such a way that forall i =1,..., L — 1, M(d;) < M(d;11)
(where we order the bands in W from left to right), that is, the band that is matched with
d; lies to the left of the band that is matched to d; 1.

We will now proceed as follows. For ¢ = 1,..., L, we modify the input (at locations not
read by Q) appropriately to induce a pointer chain p;. This pointer chain in addition to
visiting a contiguous set of columns in W, will visit column d;. By concatenating these
pointer chains in order with the initial pointer chain py we obtain the promised input X’ for
which GPW"™*(X") = 1.

To implement this strategy, recall that there is an edge in G x between the column d;
and the band M(d;). From the definition of G, it follows that there is a location ¢; in d;
and a segment S; in band M(d;) such that
(s1) ptr,, leads to the left half of S;;

(s2) pred(ptr,,) is not probed by Q;

(s3) Q makes fewer than |S;|/4 queries in segment S;.

First, let us describe how p; is constructed. Let a; = ptr,, and by = pred(a1) (by (s2) by
is not probed by Q); let ¢; be a location in the second half of S; that is not probed by Q
and that is not the last location of Sy (by (s3) there is such a location). Now, we modify
the input X by setting ptr,, = q;. Then, p; is the pointer chain that starts at the head of
the leftmost segment of W; in the same row as S; and continues until location ¢;. That
is, starting from its head, it follows the pointers of the input until b;. Then it follows the



J. Radhakrishnan and S. Sanyal

column k;_1

l

Ci—1

z -

b; a; Ci

column d; ‘\”\P >’\”._> ] ' g

left half right half

Figure 4 Construction of pointer chain p;.

pointer leading out of b; into g1, thereby visiting column d;. After that, it follows the pointer
out of g1 and comes to a;, and keeps following the pointers until c;.

In general, suppose p1, P2, ..., Pi—1 have been constructed. Suppose tail(p;—1) appears
in column k;_1. Then, p; is obtained as follows. Let a; = ptry, and b; = pred(a;); let ¢; be a
location in the second half of .S; that is not probed by Q and that is not the last location of
S;. We modify the input by setting ptr, = ¢;. Then p; is the pointer chain with its head in
the same row as a; and in column k;_; + 1 (note that since tail(p;—1) is not in last column
of segment S;_1, column k;_q + 1 is still in the same band as S;_1); the pointer chain p;
terminates at location ¢;. See Figure 4. Note that p; entirely keeps to one row (the row of
Si), except for the diversion from b; to ¢;, when it visits column d; and returns to a;. When
i = L, we let the pointer chain continue until the last column of W.

In obtaining the pointer chains p1, po, ..., pr, we modified X at location by, bo, ..., br.

Finally, we concatenate the pointer chains pg, p1,- .-, Pr; this requires us to modify X at
locations £y = tail(pg), ¢1, ¢, - .., cr—1, which were left unprobed by Q. The resulting input
after these modifications is X'.

The pointer chain obtained by this concatenation visits each column other than j* exactly
once, and the bit at every location on it, other than its head, is 0. Hence, GPW™**(X’) =
1. <

5 Proof of the matching lemma

We will show that every subset R C V' of at most s/(y/7(log s)*) columns has at least |R|
neighbors in W’. Then, the claim will follow from Hall’s theorem.

Observe that with high probability every column in V' has Q(1/r log s) pointers leaving
it. We expect these pointers to be uniformly distributed among the at most log s blocks in
W in particular, we should expect that every column in V’/ sends Q(+/r) pointers into each
block. We now formally establish this.

» Claim 11. Let V; be the j-th column of V' and Wj: the j'-th block of W ; then,

Pr[vj, 5« |ptr(V;) N W;:| < 4004/r] = o(1).

16:9
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Proof. Fix a location in ¢ € Vj. Let x, be the indicator variable for the event ptr, € Wj.
Then, the number of pointers from V; into Wj: is precisely Zeevj X¢- Since

P = — = -
I'[X( ]— \/; XlOgS \/F’

the expected number of pointers from column V; into Wy is at least 500y/r. Our claim
follows from the Chernoff bound and the union bound (over choices of j and j'). Here, we
use the following version of the Chernoff bound (see Dubhashi and Panconesi [4], page 6): for
the sum of r independent 0-1 random variables Zy, each taking the value 1 with probability
at least «,

0> 5001og s 1 500

Pr[zz: X< (1-¢g)ar] < exp(—%ar).

Since we assume 7 = Q((log s)®)), in our application ar > /7 > log s. <

Suppose j is such that 2/ < |R| < 27t Then, we will show that R has the required
number of neighbors among the bands of the block W;.

» Claim 12. For a set R C V' and a block W;, consider the set of bands of W; into which
at least 2\/r pointers from R fall, that is, B;(R) := {b € W; : |ptr(R) N b| > 2y/r}. Then,
for j=1,...,K and for all R such that 27 < |R| < 29*1, we have

Pr[|B;(R)| < 2|R|] = o(1).

Proof. We will use the union bound over the choices of j and R. Fix the set R. We may,
using Claim 11, condition on the event that there are at least 400/r|R| pointers from R to
W;. Fix 400/7|R| of these pointers. Now, the number of pointers that fall outside B;(R) is
at most 20 - 27 - 24/r < 1004/7|R|. That is, if | Bj(R)| < 2|R|, then there is a set T of 2|R|
bands into which more than 400+/r|R| — 100y/r|R| = 300+/r|R| pointers from R fall. We will
show that it is unlikely for such a set T to exist. For a fixed T, the probability of this event
is at most

400[RIVFY ( 2R\ o
300(R|/r) \ 2027 = '

Using the union bound to account for all choices of R and the (220“%']) choices of T', and
using the fact that /7 > log s, we conclude that the probability that B;(R) fails to be large

enough is at most

log s—3loglog s 20+l _1

> X (7)o «

=0 m=2J

In order to show that with high probability the set R has the required number of neighbors,
we will condition on the high probability event of Claim 12, that is, |B;(R)| > 2|R|. Let B
be the set of such bands b that receive at least 2./r pointers. For each b € B, let P(b) be a
set of 24/r locations in the columns in R whose pointers land in b. If in at least |R| of the
2| R| such bands b, there is a pointer from P(b) satisfying the conditions (c1)—(c3), then we
will have obtained the required expansion. Fix a pointer out of P(b) (which by definition of
P(b) lands in band b), and consider the following events.
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&1: The pointer leads to the same segment as a previous pointer (assume the locations in
P(b) are totally ordered in some way).
&zt The pointer leads to the first entry of the pointer chain in its segment (so, that location
has no predecessor).
E3: At least w;/8 entries of the segment that the pointer lands in are probed by Q.
&4: The predecessor of the location where the pointer lands is probed by Q.
Consider the pointers that emanate from P(b) and land in some band b € B. Let n; be the
number of those pointers for whom &; holds; let no be the number of those pointers for whom
&> holds; let ng be the number of those pointers for whom &3 holds but & does not hold; let
n4 be the number of those pointers for whom &, holds but &£, &> and £3 do not hold.
If the claim of our lemma does not hold, then it must be that in at least |R| of the 2|R|
bands of B, all pointers that fall there fail to satisfy at least one of the conditions (c1)—(c3);
that is, one of &1,. .., &, holds for all 24/7 of them. This implies that

n1 4+ n2 4+ n3 4+ na > 24/7|R|. (1)

To prove our claim, we will show that with high probability each n; on the left is less than
Vr|R|/2. In the following, we fix a set R and separately estimate the probability that one
of the quantities on the left is large. To establish the claim for all R, we will use the union
bound over R. In the proof, we use the following version of the Chernoff-Hoeffding bound,
which can be found in Dubhashi and Panconesi ([4], page 7).

» Lemma 13 (Chernoff-Hoeffding bound). Let X := 3", X; where X;,i € [n] are inde-
pendently distributed in [0,1]. Let t > 2eE[X]. Then

PX >t <27
» Claim 14. Pr[n; > /r|R|/2] < 27 "IEI/2,

Proof. The probability that a pointer from P(b) falls on a segment of a previous pointer is
at most 2/r/r. Thus, the expected value of n; is at most 8| R|. We may invoke lemma 13
and conclude that

Pr[ny > /r|R|/2] < 27 V7IEI/2, <

Recall that the number of blocks is K = log s — 3loglog s and the width of each band in the
Jj-th block is w; = s/(20 - 27 - 2K).

» Claim 15. Prlny > /r|R|/2] < 27 V"IHI/2,

Proof. A pointer falls on head of random pointer chain in a segment with probability at
most 2/w;. Thus,

Efns] < ( )4f|R|<3?1(2)|;S|)\f.

Again, our claim follows by a routine application of Lemma 13. <
» Claim 16. Pr[n3 > \/r|R|/2] = 0.
Proof. If ng > \/r|R|/2, then the total number of locations read by Q is at least

. . J
g s (VIIRL w72 s > VTS
8 2 8 2 8202/ log s 3201log s

This contradicts our assumption that Q makes at most /7s/(log s)* queries. <

16:11
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» Claim 17. Pr[n, > /7| R|/2] < 27"IEI/2,

Proof. Let us first sketch informally why we do not expect n4 to be large. Recall that in
our random input we place a random pointer chain in the left half of each segment. Once a
pointer has landed at a location in this segment, its predecessor is equally likely to be any of
the other locations in the segment. So the first probe into that segment has probability about
one in w;/2 — 1 of landing on the predecessor, the second probe has probability about one in
w;/2—2 of landing on the predecessor, and so on. Since we assume €3 Q makes at most w; /8
probes in this segment. So, conditioned on the previous probes being unsuccessful, there are
still w;/2 —w; /8 — 1 possibilities for the location of the predecessor; so the probability of the
probe landing on the predecessor is at most 1/(w;/2 —w;/8 — 1). This implies that in order
for ny4 to be at least /7| R|/2 the query algorithm © must make Q(w;+/r|R|/2) queries; but
this is more than the number of probes Q is permitted.

In order to formalize this intuition, fix (condition on) a choice of pointers from V. Let
us assume that the algorithm makes ¢ probes. For i = 1,2,...,t, define indicator random
variables x; as follows: y; = 1 iff the following conditions hold.

Suppose the i-th probe is made to a segment p in band b € B . Let ¢ be the location

where the first pointer (among the pointers from P(b) to p) lands. Then, the i-th probe

of Q is made to the predecessor of ¢ in the random pointer chain in b.

Fewer than w;/8 of the previous probes were made to this segment.

Observe that if more than one pointer land on p, then except for the first amongst them
(according to the ordering on the locations in P(b)), event £ does not hold for the remaining
pointers, and hence by definition event £; does not hold either.

Define Z = Zzzl xi- Note that Z is an upper bound on n4, and we wish to estimate
the probability that Z > /r|R|/2. The key observation is that for every choice o of
X1, X25- - -5 Xi—1, We have

1 4
< —m < —
_Swj/S—l_wj

(2)

Pr[Xi =1 ‘ X1, X2+ Xi—1 = U]

Thus,

B[Z] < (4) < (j) (logs) /s < (log 5) 2R,

Wy

J

The variables x; are not independent, but it follows from (2) that Lemma 13 is still applicable
in this setting. We conclude that

Pr[Z > \/7|R|/2) < 27 VTIEI/2,
Since, the above bound holds for each choice of pointers from V', it holds in general. |

Finally, to establish the required expansion for all sets R, we use the union bound over
all R. The probability that some set R has fewer than |R| neighbors is at most

S
4> ( L )2‘”’“2 < ) sFamVIRZ < N TR = o(1),

k=1 E>1 k>1

where we used our assumption that r > (log s)2. This completes the proof of the matching
lemma.
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—— Abstract

We consider the following multiplication-based tests to check if a given function f : Fy — F, is

the evaluation of a degree-d polynomial over I, for ¢ prime.

Test, : Pick P,..., P, independent random degree-e polynomials and accept iff the function

fPy--- Py is the evaluation of a degree-(d + ek) polynomial.

We prove the robust soundness of the above tests for large values of e, answering a question of
Dinur and Guruswami (FOCS 2013). Previous soundness analyses of these tests were known only
for the case when either e = 1 or £ = 1. Even for the case Kk = 1 and e > 1, earlier soundness
analyses were not robust.

We also analyze a derandomized version of this test, where (for example) the polynomials
Py, ..., P, can be the same random polynomial P. This generalizes a result of Guruswami et al.
(STOC 2014).

One of the key ingredients that go into the proof of this robust soundness is an extension of
the standard Schwartz-Zippel lemma over general finite fields F,, which may be of independent
interest.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Polynomials over finite fields, Schwartz-Zippel lemma, Low degree test-
ing, Low degree long code

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.17

1 Introduction

We consider the problem of testing if a function f : Fy' — F, is close to a degree-d multivariate
polynomial (over IF,, the finite field of ¢ elements). This problem, in its local testing version,
was first studied by Alon, Kaufman, Krivilevich, Litsyn and Ron [1], who proposed and
analyzed a natural 29 1-query test for this problem for the case when ¢ = 2. Subsequent to
this work, improved analyses and generalizations to larger fields were discovered [3, 6]. These
tests and their analyses led to several applications, especially in hardness of approximation,
which in turn spurred other Reed-Muller testing results (which were not necessarily local
tests) [4, 5]. In this work, we give a robust version of one of these latter multiplication
based tests due to Dinur and Guruswami [4]. Below we describe this variation of the testing
problem, its context, and our results.

1.1 Local Reed-Muller tests

Given a field F, of size g, let Fy(n) := {f | f : Fj; — F,}. The Reed-Muller code P,(n,d),
parametrized by two parameters n and d, is the subset of F,(n) that corresponds to those
© Prahladh Harsha and Srikanth Srinivasan;
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functions which are evaluations of polynomials of degree at most d. If n, d and ¢ are clear
from context, r := (¢ — 1)n — d.

The proximity of two functions f,g € F,(n) is measured by the Hamming distance.
Specifically, we let A(f,g) denote the absolute Hamming distance between f and g, i.e.,
A(f,g) :==#{z € F} | f(z) # g(z)}. For a family of functions G C F,(n), we let A(f,G) :=
min{A(f,g) | g € G}. We say that f is A-close to G if A(f,G) < A and A-far otherwise.

The following natural local test to check membership of a function f in Pa(n,d) was
proposed by Alon et al. [1] for the case when ¢ = 2.

AKKLR Test: Input f: Fy — Fy

Pick a random d + 1-dimensional affine space A.
Accept iff f|a € P2(d+1,d).

Here, f|a refers to the restriction of the function f to the affine space A. Bhat-
tacharyya et al. [3] showed the following optimal analysis of this test.

» Theorem 1.1 ([1, 3]). There exists an absolute constant o > 0 such that the following
holds. If f € Fa(n) is A-far from Pa(n,d) for A € N, then

1?4r[f|A Z P2(d+ 1,d)] > min{A/2", a}.

Subsequent to this result, Haramaty, Shpilka and Sudan [6] extended this result to all
constant sized fields IF;. These optimal analyses then led to the discovery of the so-called
“short code” (aka the low degree long code) due to Barak et al. [2] which has played an
important role in several improved hardness of approximation results [4, 5, 9, 10, 7].

1.2 Multiplication based tests

We now consider the following type of multiplication-based tests to check membership in
Py(n,d), parametrized by two numbers e, k € N.
Teste x: Input f: Fy — F,
Pick Pi,..., Py €r Py(n,e).
Accept iff fPy--- Py € Py(n,d + ek).

This tests computes the point-wise product of f with k£ random degree-e polynomials
Py, ..., Py respectively and checks that the resulting product function fP;--- Py is the
evaluation of a degree-(d 4+ ek) polynomial. Unlike the previous test, this test is not
necessarily a local test.

The key lemma due to Bhattacharyya et al. [3] that led to the optimal analysis in
Theorem 1.1 is the following robust analysis of Test; ;.

» Lemma 1.2 ([3]). Let f € Fa(n) be A-far from Pa(n,d) for A =27 /100. For randomly
picked £ € Pa(n, 1), we have

1
PZr[A(f 4, Pa(n,d+1)) < BA] =0 <2T> ,
for some absolute constant > 0.
Observe that the AKKLR test is equivalent to Test; ,_; for 7 = n — d. This observation
coupled with a simple inductive argument using the above lemma implies Theorem 1.1.

Motivated by questions related to hardness of coloring hypergraphs, Dinur and Guruswami
studied the Teste ; for e = r/4 and proved the following result.
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» Lemma 1.3 ([4]). Let f € Fa(n) be A-far from Pa(n,d) for A = 27/100 and let e =
(n—d)/4. For randomly picked P € Pa(n,e), we have

1
Prlf - P € Pa(n.d+e)] < oy

Note that the Teste 1 is not a local test (as is the case with multiplication based tests
of the form Test, ;). Furthermore, the above lemma does not give a robust analysis unlike
Lemma 1.2. More precisely, the lemma only bounds the probability that the product function
f+Pisin Py(n,d+e), but does not say anything about the probability of f- P being close to
Pa(n,d+e) as in Lemma 1.2. Despite this, this lemma has had several applications, especially
towards proving improved inapproximability results for hypergraph colouring [4, 5, 9, 10, 7].

1.3 Our results

Our work is motivated by the question raised at the end of the previous section: can
the analysis of the Dinur-Guruswami Lemma be strengthened to yield a robust version of
Lemma 1.37 Such a robust version, besides being interesting of its own right, would yield
a soundness analysis of the Test j for £ > 1 (wherein the input function f is multiplied
by k degree-e polynomials). This is similar to how Lemma 1.2 was instrumental in proving
Theorem 1.1.

We begin by first showing this latter result (ie., the soundness analysis of the Teste ).

» Theorem 1.4. Let g,k € N be constants with q prime and €,0 € (0,1) be arbitrary
constants. Let n,d,7,A,e € N be such that 7 = q(n — 1) —d, ¢¢" < A < ¢"/*a=D)=2_qnd
dr < e <r/d4k. Then, given any f € Fy(n) that is A-far from Py(n,d) and for Pi,..., Py
chosen independently and uniformly at random from Py(n,e), we have

1
Pl,.P,.I;Pk[fPLPQ Pk S Pq(n,d‘i’ek)} S W

where the Q(-) above hides a constant depending on k, q,0,¢.

Surprisingly, we show that the above theorem (which we had observed is a simple
consequence of a robust version of Lemma 1.3), can in fact, be used to prove the following
robust version of Lemma 1.3, answering an open question of Dinur and Guruswami [4].

» Lemma 1.5. Let ¢ € N be a constant with g prime and €,6 € (0,1) be arbitrary constants.
Let n,d,r, A, A e € N be such that r = q(n — 1) —d, ¢o" < A < ¢"/Ha=D=2 gnd or <
e < r/4k where k := 1+ [log,,,_1)(2A")]. Then, given any f € Fy(n) that is A-far from
Py(n,d) and for P chosen uniformly at random from Py(n,e), we have

2

qqﬂ(r)

Pr[A(f - P,Py(n.d+e)) < A <

where the Q(-) above hides a constant depending on q,0,¢.

Equipped with such multiplication-based tests, we can ask if one can prove the soundness
analysis of other related multiplication-based tests. For instance, consider the following test
which tests correlation of the function f with the square of a random degree-e polynomial.

Corr-Square,: Input f : Fy — Fs

Pick P €r Ps(n,e).
Accept iff f- P? € P3(n,d + 2e).
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This test was used by Guruswami et al. [5] to prove the hardness of approximately coloring
3-colorable 3-uniform hypergraphs. However, their analysis was restricted to the squares of
random polynomials. Our next result shows that this can be extended to any low-degree
polynomial of random polynomials. More precisely, let h € P,y(n, k) be a polynomial of
degree exactly k for some k < ¢. Consider the following test.

Corr-he: Input f: Fy — F,

Pick P €p 7Dq(’I’L7 6).
Accept iff f - h(P) € Py(n,d + ek).

We show that an easy corollary of Theorem 1.4 proves the following soundness claim
about the test Corr-h.

» Corollary 1.6. Let g,k € N be constants with q prime, k < q', and let £,6 € (0,1) be
arbitrary constants. Let n,d,r, A, e € N be such that r = q(n—1) —d, ¢¢" < A < ¢"/Ha=1=2
and ér < e < r/4dk. Let h € P,(1,k) be a univariate polynomial of degree exactly k. Then,
gwven any f € Fq(n) that is A-far from Py(n,d) and for P chosen uniformly at random from
Py(n,e), we have

1

where the Q(-) above hides a constant depending on k, q,0,¢.

A generalization of the Schwartz-Zippel lemma over F,.

A special case of Theorem 1.4 is already quite interesting. This case corresponds to when
the function f is a polynomial of degree d’ slightly larger than d. (It is quite easy to see
by the Schwartz-Zippel lemma over F, — which guarantees that a non-zero polynomial of
low degree is non-zero at many points — that this f is far from P, (n,d).) In this case, we
would expect, when we multiply f with k random polynomials P, ..., P, € Py(n,e), that
the product fP; --- P is a polynomial of degree d’ + ek with high probability.

We are able to prove a tight version of this statement (Lemma 3.3). For every degree d’,
we find a polynomial f of degree d’ that maximizes the probability that fP - - - P, has degree
< d' + s for any parameter s < e. This polynomial turns out to be the same polynomial for
which the Schwartz-Zippel lemma over F, is tight. This is not a coincidence: it turns out
that our lemma, viewed suitably, is a generalization of the Schwartz-Zippel lemma over F,
(see Section 3.1 and the full version for more details).

Given the utility of the Schwartz-Zippel lemma in Theoretical Computer Science, we feel
that this statement will be of independent interest.

1.4 Proof ideas

The basic outline of the proof of Theorem 1.4 is similar to the proof of Lemma 1.3 from the
work of Dinur and Guruswami [4] which corresponds to Theorem 1.4 in the case that ¢ = 2
and k = 1. The argument is essentially an induction on the parameters e, = n — d, and A.
We describe this argument in some detail so that we can highlight the variations in our work.

t The assumption k < ¢ is necessary here is since otherwise h(P) could be P? — P, which is always 0.
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As long as r is a sufficiently large constant, Lemma 1.2 can be used to show that for any
f € Fa(n) that is A-far from Py (n, d), there is a variable X such that for each a € {0,1} = Fa,
the restricted function f|x—q is A’ = Q(A)-far from Py(n —1,d).*

Now, to argue by induction, we write

f=Xg+hand P, =XQ1+ Ry (1)

where g, h, @1, R; depend on n — 1 variables, ()1 is a random polynomial of degree < e — 1
and R; is a random polynomial of degree < e. Using the fact that X2 = X over Fy, we get
fPL=X((9+h)Q1+gR1)+ hRy.

Since f|x—q is A’-far from Pa(n — 1,d), we see that both h and g + h are A’-far from
Pa(n—1,d). To apply induction, we note that fP; € Pa(n,d+e) iff ARy € Po(n—1,d+e) —
call this event & —and (g + h)@Q1 + hRy € Po(n —1,d + e — 1), which we call £&. We bound
the overall probability by Pr[&;] - Pr[€2 | R;] (note that & depends only on R;).

We first observe that Pr[&] can be immediately bounded using the induction hypothesis
since h is A’-far from P,(n — 1,d +e) and R; is uniform over Py(n — 1,¢e). The second term
Pr[€; | R1] can also be bounded by the induction hypothesis with an additional argument.
We argue that (for any fixed Ry) the probability that (g + h)Q1 +gRy € Po(n —1,d+e—1)
is bounded by the probability that (g + h)Q1 € Pa(n — 1,d + e — 1): this follows from
the fact that the number of solutions to any system of linear equations is bounded by the
number of solutions of the corresponding homogeneous system (obtained by setting the
constant term in each equation to 0). Hence, it suffices to bound the probability that
(g+h)Q1 € Po(n—1,d+ e — 1), which can be bounded by the induction hypothesis since
(g + h) is A’-far from Py(n — 1,d) and @, is uniform over P2(n — 1,e — 1) and we are done.

Though our proofs follow the above template, we need to deviate from the proof above in
some important ways which we elaborate below.

The first is the decomposition of f and P; from (1) obtained above, which yields two
events & and &, the first of which depends only on R; and the second on both @7 and R;.
For g > 2, the standard monomial decomposition of polynomials does not yield such a nice
“upper triangular” sequence of events. So we work with a different polynomial basis to achieve
this. This choice of basis is closely related to the polynomials for which the Schwartz-Zippel
lemma over IFy is tight. While such a basis was used in the special case of ¢ = 3 in the work
of Guruswami et al. [5] (co-authored by the authors of this work), it was done in a somewhat
ad-hoc way. Here, we give, what is in our opinion, a more transparent construction that
additionally works for all ¢q. For lack of space, this part of the proof has been omitted from
this extended abstract.

Further modifications to the Dinur-Guruswami argument are required to handle k > 1.
We illustrate this with the example of ¢ = 2 and k£ = 2. Decomposing as in the Dinur-
Guruswami argument above, we obtain f = Xg+ h, Py = XQ1 + Ry, and P, = XQ3 + Rs.
Multiplying out, we get

fPiPy = X(Q1Q2(9 +h) + (9 +h)(Q1R2 + Q2R1) + gR1Ra) + hR1 Ry .
=Q

Bounding the probability that fP Py € Pa(n,d + 2e) thus reduces to bounding the
probability of event that hRy1 Ry € Pa(n—1,d+ 2e) — & depending only on Ry and Ro — and

* Actually, Lemma 1.2 implies the existence of a linear function with this property and not a variable.
But after a linear transformation of the underlying space, we may assume that it is a variable.
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then the probability that Q € Pa(n—1,d+2e — 1) — denoted &; — given any fixed Ry and Ra.
The former probability can be bounded using the induction hypothesis straightforwardly.

By a reasoning similar to the k = 1 case, we can reduce bounding Pr[&; | Ry, Rs] to the
probability that Q1Q2(g+ h) € Pa(n—1,d+ 2e —1). However, now we face a problem. Note
that we have g + h = f|x=1 is A’-far from Py(n —1,d) and Q1,Q2 € P2(n — 1, —1). Thus,
the induction hypothesis only allows us to upper bound the probability that Q1Q2(g + k) €
Pa(n — 1,d + 2e — 2) which is not quite the event that we want to analyze. Indeed, if f is a
polynomial of degree exactly d + 1, then the polynomial Q1Q2(g + h) € Pa(n,d + 2e — 1)
with probability 1. A similar problem occurs even if f is a polynomial of degree d’ slightly
larger than d or more generally, when f is close to some polynomial of degree d’.

This naturally forces us to break the analysis into two cases. In the first case, we assume
not just that f is far from Pa(n,d) but from Pa(n,d’) but for some d’ a suitable parameter
larger than d. In this case, we can modify the proof of Dinur and Guruswami to bound the
probability that fP Py € Pa(n,d + 2¢e) as claimed in Theorem 1.4. In the complementary
case when f is close to some polynomial F' € Py(n,d’), we can essentially assume that f is a
polynomial of degree d’. In this case, we can use the extension of Schwartz-Zippel lemma
referred to above to show that with high probability fP; P, is in fact a polynomial of degree
exactly d’ + 2e and is hence not of degree d + 2e < d’ + 2e.

1.5 Organization

We begin with some notation and definitions in Section 2. We prove the extension of the
Schwartz-Zippel lemma (Lemma 3.3) in Section 3 and then Theorem 1.4 in Section 4. Finally,
we give two applications of Theorem 1.4 in Section 5: one to proving a robust version of the
above test (thus resolving a question of Dinur and Guruswami [4]) and the other to proving
Corollary 1.6. For lack of space, many proofs have been omitted. The reader is referred to
the full version of this paper for details.

2 Preliminaries

For a prime power ¢, let Fy denote the finite field of size g. We use Fy[X1,...,X,] to
denote the standard polynomial ring over variables X1, ..., X,, and P;(n) to denote the ring
FolX1,..., Xn]/(X] = X1,..., X9 —X,,).

We can think of the elements of Py(n) as elements of F,[X;,..., X,] of individual degree
at most ¢ — 1 in a natural way. Given P,Q € Py(n), we use P - Q or PQ to denote their
product in Py(n). We use P * Q) to denote their product in Fg[X7, ..., X,].

Given a set S C Fy and an f € P,(n), we use f|s to denote the restricted function on
the set S. Typically, S will be specified by a polynomial equation. One special case is the
case when S is a hyperplane: i.e., there is a non-zero homogeneous degree-1 polynomial
U(X) € Py(n) and an o € F, such that S = {z | {(z) = a}. In this case, it is natural to
think of flyx)=a = f|s as an element of P,(n — 1) by applying a linear transformation that
transforms ¢(X) into one of the variables — say X,, — and then setting X,, = a.

For d > 0, we use P,4(n,d) to denote the polynomials in Py(n) of degree at most d.

The following are standard facts about the ring P, (n) and the space of functions mapping
Fy to .

» Fact 2.1.

1. Consider the ring of functions mapping Fy to Fy with addition and multiplication defined
pointwise. This ring is isomorphic to Py(n) under the natural isomorphism that maps each
polynomial P € Py(n) to the function (mapping Fy to F,) represented by this polynomial.
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2. In particular, each function f : Fy — Fy can be represented uniquely as a polynomial
from Py(n). As a further special case, any non-zero polynomial from P,(n) represents a
non-zero function f: ¥y — F,.

3. (Schwartz-Zippel lemma over F, [8]) Any non-zero polynomial from Py(n,d) is non-zero
on at least ¢"~*1(q — b) points from [y where d =a(q—1) +band 0 <b<q— 1.

4. In particular, if f,g € Py(n,d) differ from each other in at most A < ¢"~*~1(q — b)
places, then f =g.

5. (A probabilistic version of the Schwartz-Zippel lemma [6]) It follows from the above that
given a non-zero polynomial g € Py(n,d), then g(x) # 0 at a uniformly random point of
[y with probability at least g~ Y=Y Similarly, if f,g € Py(n,d) are distinct, then for
uniformly random x € Fy, the probability that f(x) # g(x) is at least g M=),

From now on, we will use without additional comment the fact that functions from Fy to
F, have unique representations as multivariate polynomials where the individual degrees are
bounded by g — 1.

Recall that my * mo denotes the product of these monomials in the ring Fq[ X7, ..., X,]
while my - my denotes their product in Py(n) = Fy[X1, ..., X,]/(X] — X1,..., X1 — X,,).
We say that monomials mq,mg € Py(n) are disjoint if my * mg = my - mo (where the latter
monomial is interpreted naturally as an element of Fy[X1,. .., X,]).

Given distinct monomials mq,mg € Fy[X7,...,X,], we say that mq > mg if either one of
the following holds: deg(mi) > deg(ms), or deg(m;) = deg(ms) and we have m; = [[, X7
and my =[], Xie/i where for the least j such that e; # e/, we have e; > e/.

The above is called the graded lexicographic order on monomials. The ordering obviously
restricts to an ordering on the monomials in P, (n), which are naturally identified as a subset
of the monomials of Fy[X,...,X,]. The well-known fact about this monomial ordering we
will use is the following.

» Fact 2.2. For any monomials my, mo, ms, we have my < mg = mq * m3 < Mo * M3.

Given an f € P,(n), we use Supp(f) to denote the set of points z € Fy such that f(z) # 0.
If f#0, we use LM(f) to denote the largest monomial (in the ordering defined above) with
non-zero coefficient in f.

Let m = Hie[n] X" with e; < ¢ for each 4. For an integer s > 0, we let

o

B
[

—
b

qu>e;26j,Ze;-:d+s

J€[n] J
Dy(m) := H X;j Vj e;-+ej<q,Ze;-:s
J€ln] J

Note that the monomials in Dg(m) are precisely the monomials of degree s that are
disjoint from m. Further, the map p : Ds(m) — Ugs(m) defined by p(m1) = mq - m defines a
bijection between Dg(m) and Us(m), and hence we have

» Fact 2.3. For any monomial m and any s > 0, |Us(m)| = |Ds(m)|.

For non-negative integers s < e, we define U, c(m) := U ;<. Ut(m) and Ds c(m) =
Us<t<e Di(m) where Uy(m) and Dy(m) are as defined in Section 2. Since |Uz(m)| = |D¢(m)|
for each t (Fact 2.3), we have |Us .(m)| = |Ds.(m)].
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3  An extension of the Schwartz-Zippel Lemma over F,
The results of this section hold over F, where ¢ is any prime power.

» Lemma 3.1. Let d, s > 0 be arbitrary integers with d+s < n(q—1). Assumed = (¢—1)u+v
for u,v > 0 with v < (¢ —1). Then the monomial mg := X3 " .. - X471XY , of degree d
satisfies |Us(mg)| < |Us(m)| for all monomials m of degree exactly d.

Proof. Fix any monomial m of degree d such that |Us(m)| is as small as possible; say
m = Hj cnl X;j. By renaming the variables if necessary, we assume that e; > e > -+ > e,.

If m # my, then we can find an ¢ < n such that 0 < e;1; < e; < ¢ — 1. Consider the
monomial m’ = Xf’i+1Xf_:_+1171 ITiggiivn X;j. We claim that |Us(m/)| < |Us(m)]. This will
complete the proof of the lemma, since it is easy to check that by repeatedly modifying the
monomial in this way at most d times, we end up with the monomial mg. By construction,
we will have shown that |Us(mqg)| < |Us(m)|.

We are left to show that |Us(m’)| < |Ug(m)| or equivalently (Fact 2.3) that |Dg(m')| <
|Ds(m)|. To this end, we show that for any (n — 2)-tuple e’ = (e},...,€j_1,€j o,...,¢€}),
that |Ds(m’,e’)| < |Ds(m,e’)| where Ds(m,e’) denotes the set of monomials m € Dg(m)
such that for each j € [n] \ {i,i + 1}, the degree of X; in m is ). To see this, note that
Dg(m,e’) and Dy(m’,€’) are in bijective correspondence with the sets S and T respectively,

defined as follows:

S={(d1,d2) |0<d; <a,0<dy <b,di+dy=r}
T={(d1,d2) |0<d1 <a—1,0<dy <b+1,di +dy =1}

where a 1= (¢—1)—e;, b:= (¢—1)—e€jq1, and r = s =3 o, .14y €); note that by assumption,
(g—1) > e; > e;41 and hence 1 < a < b. Our claim thus reduces to showing |T'| < |S|, which
is done as follows.

If r <0orr > a+b, then both S and T" are empty sets and the claim is trivial. So assume
that 0 < r < a+ b. In this case, we see that |7\ S| < 1: in fact, T'\ S can only contain the
element (r —b—1,b+ 1) and this happens only when the inequalities 0 <r—b—1<a—11is
satisfied. But this allows us to infer that S\ T' contains (a,r7 —a) since 0 <r—b—1<r—a
and r —a < b. Thus, |T'\ S| <|S\ T| and hence |T| < |5|. <

We have the following immediate corollary of Lemma 3.1.

» Corollary 3.2. Let d,e,s > 0 be arbitrary parameters with s < e and d < n(q—1). Assume
d=(qg—1)u+v foru,v >0 withv < (g—1). Then the monomial mg := X* ' S XATIXY
satisfies |Us.e(mo)| < |Us,e(m)| for all monomials m of degree exactly d.

The main technical lemma of this section is the following.

» Lemma 3.3 (Extension of the Schwartz-Zippel lemma over F,). Let e,d,s > 0 be integer
parameters with s < e. Let f € Py(n) be non-zero and of degree exactly d with LM(f) = m.
Then,

1
P d P)<d <
PERPf(n,e)[ eg(f ) +8] - q‘Us,c(mlﬂ

In particular, using Corollary 3.2, the probability above is upper bounded by m where
the monomial mg is as defined in the statement of Corollary 3.2.
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Proof. Let P = Zm;dcg(m)SG

at random from F,. Also, let f = Zfil Bim; where 3; # 0 for each i and we have
mi1 > meg > --- > my in the graded lexicographic order defined earlier.
Thus, we have

m:deg(m)<e 2 m (m,j):mmj:;’rvz

amm where the «,, are chosen independently and uniformly

The polynomial fP has degree < d+ s iff for each m of degree at least d+ s, its coefficient
in the above expression is 0. Since the 3;’s are fixed, we can view this event as the probability
that some set of homogeneous linear equations in the «,, variables are satisfied. By standard
linear algebra, this is exactly ¢~ where ¢ is the rank of the linear system. So it suffices to
show that there are at least |Us (m1)| many independent linear equations in the system.

Recall that |Ds (m1)| = |Us,e(m1)]. Now, for each m € D .(m4), consider the monomial
m = m-m; = mx*m (the second equality is true since m is disjoint from my). Let M
denote the set of all such . Note that each 7 € M has degree exactly deg(m) + deg(mq) €
[d+ s,d + e]. Thus, for fP to have degree < d + s , the coefficient of each m must vanish.
Further, since M/ﬂ = |Ds e(m1)| = |Us,e(m1)] it suffices to show that the linear equations
corresponding to the different m € M are all linearly independent.

To prove this, we argue as follows. Let m’ be a monomial of degree at most e. We say that
m' influences m € M if Q. appears with non-zero coefficient in the equation corresponding
to m. We now make the following claim.

» Claim 3.4. Let € M and m € D .(mq) be such that m = m*my. Then, m influences
m. Further, if some monomial m' influences m, then m' > m.

Assuming the above claim, we complete the proof of the lemma as follows. Consider the

matrix B of coefficients obtained by writing the above linear system in the following manner.

For each m = m xm; € M, we have a row of B and let the rows be arranged from top to
bottom in increasing order of m (w.r.t. the graded lexicographic order). Similarly, for each
m' of degree at most e, we have a column and again the columns are arranged from left to
right in increasing order of m/. The (m, m’)th entry contains the coefficient of o,/ in the
equation corresponding to the coefficient of m.

Restricting our attention only to columns corresponding to m’ € D; .(my), Claim 3.4
guarantees to us that the submatrix thus obtained is a |D; o(m1)| X | D e(m1)| matrix that
is upper triangular with non-zero entries along the diagonal. Hence, the submatrix is full

rank. In particular, the matrix B (and hence our linear system) has rank at least |D; .(ma)].

This proves the lemma. |

Proof of Claim 3.4. We start by showing that m does indeed influence m. The linear
equation corresponding to m is

> B =0 @)
(m’,j):m’Amj:'r’;

where m’ runs over all monomials of degree at most e.
Clearly, one of the summands in the LHS above is Sia,,. Thus, to ensure that m

influences m, it suffices to ensure that no other summand containing the variable «,, appears.

That is, that m - m; # m for any j > 1. (Note that in general unique factorization is not
true in Py(n), since X7 = X.)
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To see this, note further that m - m; is either equal to m % m; (if they are disjoint) or has
smaller degree than m * m;. In either case, we have m - m; < m * m;. Thus, we obtain

m-m; <m*xm; <mx*m; =m

where the second inequality follows from the fact that m; > m; and hence (Fact 2.2)
m’ *mq > m' xm; for any monomial m’. This shows that o, appears precisely once in the
left hand side of (2) and in particular, that it must influence m.

Now, we show that no m’ < m influences m. Fix some m/ < m. For any j € [N] we have

m'-mj; <m'xm; <m'xm; <msxmg =m
where the first two inequalities follow from a similar reasoning to above and the third from
the fact that m’ < m. Hence, we see that no monomial that is a product of m’ with another
monomial from f can equal m. In particular, this means that m’ cannot influence m.

This completes the proof of the claim. <

» Corollary 3.5. Letn, e, d, P, f be as in Lemma 3.3. Further, let r be such that (g—1)n—d = r
and assume r > 2e + (q — 1). Then, Prp p, (n.¢)[deg(fP) < d+ €] < q_qQ(e/Q).

Proof. To prove the corollary, we use Lemma 3.3 with s = e and prove a lower bound
on |Ue e(mo)| = |Ue(mo)| = |De(mo)| where my is the monomial from the statement of

1
lower bound |D.(mg)| by the number of monomials of degree exactly e in P,4(n, e) supported
on variables from T'; let M denote this set of monomials.
Partition T arbitrarily into two sets T and T such that |Ty| =€’ = |e/(q — 1)].
To lower bound | M|, note that given any monomial m; in P,(n,e) in the variables of
T1, we can find a monomial mso over the variables of T such that their product has degree

Lemma 3.1. Let T index the t = Lqﬁ J variables not present in the monomial my. We can

e. The reason for this is that m; can have degree at most €’(¢ — 1) < e and further, the
maximum degree of any monomial in the variables in 75 is

7’7176
q—1 q—1

=== ( Ja-n=r-c--1ze

where the last inequality follows from our assumed lower bound on r. Hence, we can always
find a monomial my such that deg(myms) = e. Hence, we can lower bound | M| by the
number of monomials my over the variables in T} which is ¢!7tl = ¢**(¢/9) We have thus
shown that |U, .(mg)| = ¢*(¢/9). An application of Lemma 3.3 now implies the corollary. <«

3.1 Connection to the Schwartz-Zippel Lemma over F,

Consider the special case of Lemma 3.3 when e = (¢ — 1)n and s = 0. In this case, note that
Py(n,e) is just the ring Py(n) and hence the above lemma implies Prp p_ (n[deg(fP) <
d] < m where mg is the monomial from the statement of Lemma 3.1. Note that as a
special case, this implies that Prp. p, ) [fP = 0] < m

Observe that by Fact 2.1, fP = 0 if and only it the polynomial fP vanishes at each
point of Fy. However, since P evaluates to an independent random value in F, at each
input z € Fy, we see that the probability that fP evaluates to 0 at each point is exactly
the probability that P(x) = 0 at each point where f(z) # 0. This happens with probability
exactly m.

Putting it all together, we see that q,Suplp(f)‘
‘Us,e(m0)| = |Ds,e(m0)|-

qws,clmon and hence, [Supp(f)| >
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For the chosen values of e and s, the latter quantity is exactly the total number of
monomials — of any degree — that are disjoint from mg, which is exactly (¢ — v)g" %1,
matching the Schwartz-Zippel lemma over F, (Fact 2.1).

It is also known that the Schwartz-Zippel lemma over I, is tight for a suitably chosen
degree d polynomial f. Lemma 3.3 is also tight for the same polynomial f. This fact is not
required for the other results of this paper and thus we defer it to the full version.

4  Analyzing Test,

We prove the main theorem of the paper, namely Theorem 1.4, in this section. The results
of this section only hold for prime fields. For lack of space, a part of the proof has been
omitted.

We argue that the theorem holds by considering two cases. We argue that when f is
A-far from polynomials of degree d 4+ r/4 — a much stronger assumption than the hypothesis
of the theorem — then a modification of the proof of Dinur and Guruswami [4] coupled with
a suitable choice of basis for Py(n,d) (see the full version for details) yields the desired
conclusion.

If not, then f is A-close to some polynomial of degree d’ that is slightly larger than d. In
this case, we can argue that f is “essentially” a polynomial of degree d’ and for any such
polynomial, the product fP; ... P is, w.h.p., a polynomial of degree exactly d’ + ek and
hence f & Py(n,d + ek). This requires the results of Section 3.

We will assume throughout that r is greater than or equal to some fixed constant (possibly
depending on ¢, k) since otherwise the statement of the theorem is trivial.

Case 1: f is A-far from P,(n,d + 7). For lack of space, this section has been omitted.
See the full version for details.

Case 2: f is A-close to Py(n,d + 7). Let I € Py(n,d+ ) be such that f is A-close to
F. Let d = deg(F). Note that d’ > d since f is A-far from P,(n,d) by assumption.
Hence, we must have d < d’ <d + .

Note that for any P, ..., P, € Py(n,e), we have fP; --- Py is A-close to F'P; - - - P, (since
f(z) = F(x) implies that f(z) - [[, Pi(z) = F(x) - [[, Pi(x)). We have FP,---P, €
Py(n,d +1r/4) C Py(n,d+r/2). Now if fPy--- Py, € Py(n,d+ek) C Py(n,d+1/2), then
by the Schwartz Zippel lemma over Fy (Fact 2.1) applied to polynomials of degree at most
d+r/2, we see that fPy--- P, = FP;--- P,. Hence, we have F P --- P, € Py(n,d + ek)
which in particular implies that F'P; - - - P, must have degree strictly less than d’ + ek.
For this event to occur there must be some ¢ < k such that F'P; - -- P; has degree exactly
d; :==d +ei but FP;--- P41 has degree strictly less than d; + e.

The above reasoning implies

Pl’lir’Pk [fPi- Py € Py(n,d+ek)] < Pl,lffpk [deg(FPy---Py) <d + ek]

! _ !
< §Pllffpk[deg(FP1 P P)<d;+e|deg(FP,---P_1) =dl]. (3)

For each i, conditioning on any fixed choice of P,..., P,_1, the right hand side of (3)
can be bounded by q_qmem = q_qgm using Corollary 3.5 applied with d replaced by

d; <d+r/2—e=(q—1)n—(r/2+e). This implies Theorem 1.4 in this case.

17:11
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5 Two applications

5.1 A question of Dinur and Guruswami

In this section, we show how Theorem 1.4 implies Lemma 1.5, thus answering a open question
raised by Dinur and Guruswami [4].

Proof of Lemma 1.5. The proof of the lemma for robustness A’ can be reduced to The-
orem 1.4 for k =1+ [log,,,_1)(2A")] as follows.

Let f be A-far from Py(n,d) as stated in the lemma. Call P “lucky” if A(f - P, Py(m,d+
e)) < A’. We need to bound the probability Prpep, (n,e)[P is lucky |. For a lucky P, let F
be a degree-(d + e) polynomial that is A’-close to f - P. Define k := 1+ [log, ,_1)(2A")].
Now, choose Py,...,Py_1 €g Py(n,e) and let g = fP -], Pi. Also, let G = F - [[,_, P
note that G € Py(n,d + ek).

Observe that for any x such that F(z) # f(x)P(z), the probability that G(x) # g(z)

k—1
is at most the probability that all the P;(z) are non-zero and this is (1 — %) < i.

Hence, the probability that any point of difference between F' and fP survives as a point of
difference between G and g is at most % Since no new points of difference are introduced,
we see that

P, Py 7F)-T,Pkfl[fpl‘Z% ohee Pq (n’ d+ ek)]

> i . .P. . '
> P;,r[P is lucky | P7P17]-:-)-I:Pk—1[f P gPZ € Py(n,d+ ek) | P is lucky ]

Pr  [g€Py(n,d+ek)| P islucky |

P,Py,...,P,_1

= Pr|P is luck
Pr[ is lucky |

N | =

> Pr[P is lucky | - P = P is lucky | > Pr[P is lucky | -
> Pr[ is lucky | P,Pl,...I:Pk_l[g G| P is lucky | > Pr[ is lucky |
The lemma now follows since Theorem 1.4 implies that Prp p, . p,_,[fPiP2--- Py € Py(n,d+
ek)] < ¢~ <

» Remark 5.1. An anonymous reviewer for FSTTCS 2016 pointed out to us that Lemma 1.5
only works if log A’ = O(k), which in particular implies that A’ must be a constant
(independent of n and d). However, an easy modification of the above idea actually shows a
statement of the above form for A’ as large as ¢*("). We refer the reader to the full version
for details.

5.2 Analysis of Corr-h

Recall the test Corr-h defined in the introduction where h € Py(n, k) is a polynomial of exact
degree k. In this section, we analyze this test Corr-h, thus proving Corollary 1.6.
For this we need the following properties of polynomials.

Dual of P4(n,d): For any two functions, f,g € Fy(b), define (f,g) := > pn f(z) - g(2).
The set of polynomials P,(n,r — 1) is the dual to the set of polynomials qu(n, d) in the
following sense.

For any two polynomials P € Py(n,d) and @ € Py(n,r — 1), we have (P, Q) = 0.
Furthermore, for any P ¢ Py(n,d) and a random Q €gr Py(n,r — 1), we have that
(P, Q) is an unbiased element of F,,.
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This implies that the indicator variable for the event “f € P,(n,d)” can be equivalently
written as Lrep, (n,a) = Egep,(n,r—1) [w<f’Q>] , where w = €27/4,

Squaring trick: We use a standard squaring trick to bound the absolute value of the quantity
Ep [w<h(P)’f>]. Let us consider the case when h(P) = P2. In this case we have

2 2

[w<(P+P1)27f> .w<fP2,f>} E [w<2PP1+Pf,f>]

P,P,

Bl -
P

<E ‘E {w@PPlJrPf,f)} ’2]
- P

= E i E {w<2(P+P2)P1+P12,f> _w<—(zppl+pf),f>H

P | PP
_E|E [w<2P1Pz7f>} - E [W(2P1P2,f>}
Py | PP, Py,P,

A similar argument shows that when h(P) is a polynomial of degree exactly k, we have

k
‘E{ww(m,ﬁﬂz - E [wwplmpk,f)]
P ~ P, P

We are now ready to prove Corollary 1.6.

Proof of Corollary 1.6.

Pr  [f-h(P) € Py(n,d+ ek)]

@) ’
PePy(n,e)

E
PePy(n,e),QEPy(n,s—1)
ok ok

I HP € Py(n,d + k)

1/2k
(o |

The corollary now follows from Theorem 1.4. <
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—— Abstract
We study the space complexity of querying regular languages over data streams in the sliding
window model. The algorithm has to answer at any point of time whether the content of the
sliding window belongs to a fixed regular language. A trichotomy is shown: For every regular

language the optimal space requirement is either in ©(n), ©(logn), or constant, where n is the
size of the sliding window.
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1 Introduction

Streaming algorithms, i.e. algorithms that process a non-terminating stream ajagas--- of
data values and which have at time ¢ only direct access to the current symbol a;, received a
lot of attention in recent years, see [1] for a general reference. Two variants of streaming
algorithms can be found in the literature:

In the standard model the algorithm computes at time ¢ a value f(aj - --a;) that depends

on the whole history.

In the sliding window model the algorithm computes at time ¢ a value f(at—pni1---at)

that depends on the n last symbols (we should assume ¢ > n here). The value n is also

called the window size.
For many applications, the sliding window model is more appropriate. Quite often data
items in a stream are outdated after a certain time, and the sliding window model is a simple
way to model this. The typical application is the analysis of a time series as it may arise
in medical monitoring, web tracking, or financial monitoring. In all these applications, the
most recent data items are more important than older ones.

A general goal in the area of sliding window algorithms is to avoid the explicit storage of
the whole window, and, instead, to work in considerably smaller space, e.g. polylogarithmic
space. In the seminal paper of Datar et al. [9], where the sliding window model was
introduced, the authors prove that the number of 1’s in a 0/1-sliding window of size n can
be maintained in space é -log? n if one allows a multiplicative error of 1 +¢. A matching
lower bound is provided as well in [9]. Other algorithmic problems that were addressed in
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the extensive literature on sliding window streams include the computation of statistical data
(e.g. computation of the variance and k-median [4], and quantiles [3]), optimal sampling from
sliding windows [7], database querying (e.g. processing of join queries over sliding windows
[12]) and graph problems (e.g. checking for connectivity and computation of matchings,
spanners, and minimum spanning trees [8]) . The reader can find further references in the
surveys [1, Chapter 8] and [6]. Another natural problem, whose investigation has so far
been surprisingly neglected for the sliding window model, is the membership problem for a
language or, equivalently, the computation of Boolean queries on the sliding window. In its
general form, one fixes a language L over the alphabet of the data stream, and asks for an
algorithm that can check at any time whether the content of the sliding window belongs to
L. In this paper, we are mainly interested in the case, where L is a regular language.

Note that in the standard streaming model, it is trivial to solve the membership problem
for a regular language L in constant space. For a data stream ajasas--- the algorithm
simply runs a deterministic finite automaton for L and only stores the current state (which
needs constant space since we assume the automaton to be fixed and not part of the input).
This obvious fact might explain why the membership problem for regular languages in the
streaming model has not received any attention so far. In contrast, there exist papers that
deal with membership problems for (restricted classes of) context-free languages in the
standard streaming model, see the paragraph on related work below.

Note that in the sliding window model the above algorithm (simulation of a DFA on
the data stream) does not work. The problem is the removal of the left-most symbol from
the sliding window in each step. A naive approach is to store the whole window in O(n)
bits and simulate the DFA on this word. In fact, there exist very simple languages L for
which this is the best possible solution in order to be able to decide at any point of time
whether the current content of the sliding window belongs to L. An example is the language
af{a,b}* of all words that start with a. The point is that by repeated checking whether the
sliding window content belongs to a{a,b}*, one can recover the exact content of the sliding
window, which implies that every sliding window algorithm for querying a{a, b}* has to use
n bits of storage (where n is the window size). The main result of this paper is a trichotomy:
The optimal space needed for querying a regular language L in the sliding window model
falls into three classes with respect to its growth rate: constant space, ©(logn), and ©(n),
where n is the window size. We characterize the regular languages by its optimal growth
rate algebraically in terms of the syntactic homomorphism and the left Cayley graph of the
syntactic monoid of a regular language. The precise characterizations are a bit technical and
will be presented in Section 4.

The sliding window model we have talked about so far is also known as the fized-size
model, since the sliding window has a fixed size n. In the literature there exists a second
model as well which is known as the variable-size model, see e.g. [3]. In this model, the arrival
of new data items and the expiration of old items can happen independently, which means
that the sliding window can grow and shrink. We also determine the space complexity of
querying a regular language for the variable-size model. Again, we prove the same trichotomy
as above (constant space, ©(logn), and ©(n)), but the corresponding three classes of regular
languages differ slightly from the situation in the fixed-size model.

Related work. In [5] the authors consider the problem of membership checking for various
subclasses of context-free languages in the standard streaming model (where the whole history
is checked for membership). For deterministic linear languages, a randomized streaming
algorithm is presented which works in space O(logn) and has an inverse polynomial one-sided
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error. On the other hand, a visibly pushdown language L exists, for which every randomized
streaming algorithm with an error probability < 1/2 must use space Q(n) [5].

One may consider our streaming algorithms as algorithms for testing membership of a
dynamic word in a language L, where the update operations are restricted. In the variable-size
model, these updates are the removal of the first symbol from the word, and appending a
given symbol a to the word. Membership testing algorithms for regular languages that allow
the replacement of the symbol at a specified position were studied in [11]. The focus of [11]
is on the cell probe complexity of updates and membership queries.

2 Preliminaries

Let X be a finite alphabet. For a word w = a1 ---a, € X* of length |w| = k we define
wli| =a; and wli : jl =a;---a; ifi <jand wi:jl=¢eif ¢ > j. A word v € ¥* is a suffiz of
the word w if there exists a word u € ¥* such that w = uwv.

We assume that the reader is familiar with the basic notions of formal languages, in
particular regular languages. Our query algorithms for regular languages make use of the

description of regular languages by finite monoids; see e.g. the textbook [14] for more details.

A monoid is a set M together with an associative operation - : M x M — M and an element
1€ M satisfying 1-x =x-1 ==z forall x € M. A function h : M — N between two monoids
M, N is a homomorphism if h(1) = 1 and h(x - y) = h(z) - h(y) for all z,y € M. A language
L C ¥* is recognized by a monoid M if there exists a homomorphism A : ¥* — M from the
free monoid ¥* into a monoid M and a set F' C M such that w € L if and only if h(w) € F
for all w € ¥*. It is well known that the class of regular languages is exactly the class of
languages recognized by finite monoids. For every language L C ¥* the syntactic congruence
=; on X* is defined by u =, v if and only if for all x,y € ¥*: zuy € L iff zvy € L. The
set of congruence classes X*/=;, forms a monoid, which is called the syntactic monoid of
L and is denoted by M(L). It is the smallest monoid which recognizes L. The function
h : ¥* — M(L) which maps a word u to its congruence class [u]=, is a homomorphism,
called the syntactic homomorphism of L.

In this paper all graphs are finite, directed and vertex-colored. For a graph I" we denote
by V(I') and E(T") the set of vertices and edges of T, respectively. Graphs may have loops,
i.e. E(T') is an arbitrary subset of V(I') x V(T'). For graphs I' and A, a homomorphism
from T" to A is a function ¢ : V(I') — V(A) such that for all v € V(I") the vertices v and
¢(v) have the same color and (u,v) € E(I') implies (p(u), p(v)) € E(A). We call a graph T’
homomorphic to A if there exists a homomorphism from I' to A. For a subset S C V(T") we
denote by reachr(S) the subgraph of " which is induced by all nodes that are reachable from
S. A graph T is strongly connected if for all u € V(I") we have reachp({u}) =T. A strongly
connected component, briefly SCC, of T' is an inclusion maximal subset S C V(T') such that
the subgraph induced by S is strongly connected. The set of SCCs of a graph is partially
ordered by S7 < S5 iff a vertex in Sy is reachable from a vertex in S7;. An SCC of I is trivial

if it consists of a single node v and (v,v) ¢ E(T'), otherwise the SCC is called non-trivial.

A graph is a directed cycle if it is strongly connected and every vertex has outdegree (and
indegree) 1. Our characterizations of regular languages will refer to homomorphisms from
certain graphs (that we define below) to directed cycles. Note that every monochromatic
graph is homomorphic to a directed cycle of size one.

For a monoid M and a subset A of M we denote by I'(M, A) the (unlabelled) left Cayley
graph over the vertex set M with the edge set {(z,y) | y = a -« for some a € A}. If the
subset A C M generates M, i.e. every element of M is a finite product over A, then y € M

18:3
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Figure 1 The left Cayley graph I'(M, A, F)) from Example 1 for the language (aa | bb)*. Vertices
from F' are black and SCCs are shaded.

is reachable from z € M in I'(M, A) if and only if <, y in M, which is defined by
r<py < HeM:x=~{-y. (1)

The L-equivalence is defined by x =, y if and only if x <, y <, x. For a subset F C M
we denote with T'(M, A, F') the graph I'(M, A), where in addition all vertices from F (resp.,
M \ F) are colored with 1 (resp., 0).

» Example 1. Consider the regular language L = (aa | bb)*. Let h : {a,b}* — M be the
syntactic homomorphism of L into its syntactic monoid M with 15 elements. Figure 1 shows
the left Cayley graph I'(M, A, F'), where A = {h(a),h(b)} and F = h(L). Note that every
SCC is homomorphic to a directed cycle.

3 Sliding window models

In the literature, one distinguishes two sliding window models: The fized-size model and the
variable-size model, see also [3] for a discussion of these models.

3.1 The fixed-size model

A data stream over ¥ is an infinite sequence ajasas - -+ of symbols a; € ¥. The idea is that
a data stream represents the sequence of data that is produced by some process. At time ¢,
the observer of this process can only see symbol a;.

Fix an n € N, which is called the window size. Moreover, fix a data stream ajasasz---.
At time t > 0 the sliding window contains the word a¢_,4+10¢—nt2 - - - a¢ consisting of the
n last symbols, where a; = a for a distinguished symbol a € ¥ when 7 < 0. Thus, in the
beginning the sliding window is filled with a’s. Let us denote with W,,(¢) the content of the
sliding window at time £.

In the fized-size sliding-window model we want to answer queries about the window
content W, (t), where the window size n is fixed. For this, the algorithm has at time ¢
access to the n-th symbol a; and a previously computed data structure, that w.l.o.g. can
be assumed to be a bit string S, (¢) € {0,1}*. The goal is to compute the query, based on
at and Sy, (t). The simplest solution is to store (a binary coding of) W, (t) in S, (¢), but in
many cases we can find a better solution, where S,,(t) is considerably smaller than W,, ().
Moreover, we would like to have such a query algorithm for every window size n. Note that
this is a non-uniform model: For every n we may have a different query algorithm. This will
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not be crucial for our upper bounds, since our algorithms will work for all window sizes n
(which is a parameter in the algorithms). But working with a non-uniform model makes our
lower bounds stronger.

In this paper, we are only interested in Boolean queries, i.e. queries that output a single
bit. Let us fix a language L C ¥*. We say that L is streamable in space s(n) in the fized-size
model if for every window size n there exists an algorithm such that for every input stream
aiasas - -+ the following holds:

The algorithm maintains a bit string S, (¢) of length at most s(n), where S, (0) is an

arbitrary bit string of length at most s(n) (it corresponds to an initial state).

At every time t > 0, the algorithm has only access to S, (t) and a;+1. Based on these

data, the algorithm computes S, (¢t + 1) and decides correctly whether W, (t) € L.

3.2 The variable-size model

In the fixed-size model, at every time a new data item arrives and the oldest data item
is removed from the window. In contrast, in the wvariable-size sliding-window model the
arrival of new data items and the expiration of old items is decoupled and can happen
independently. This means that the window can grow and shrink. One can think of an
adversary that executes an infinite sequence of operations op;,opy,0ps - - -, where every op;
is either a pop-operation or a push(a)-operation for a symbol a € ¥. A pop-operation deletes
the first symbol from the window; this corresponds to the situation where the first item in
the window expires and falls out of the window (if the window is already empty it stays
empty after a pop). A push(a)-operation appends the symbol a at the right end of the sliding
window; this corresponds to the arrival of an a in the data stream. In this way we can
define for an infinite sequence op;, op,, 0p; - - - of operations op; € {pop} U {push(a) | a € £}
the window content W (¢) at time ¢t € N, where W(0) = e. We say that the language L is
streamable in space s(n) in the variable-size model if there exists an algorithm such that for
every infinite sequence op;, op,,0p; - - of operations the following holds:

At every time t > 0, the algorithm stores a bit string S(t) of length at most s(|W (t)]),

where S(0) =e.

At time ¢ > 0, the algorithm has only access to S(t) and the operation op, ;. Based on

these data, the algorithm computes S(t + 1) and decides correctly whether W (t) € L.
Note the uniformity of this definition. There is a single algorithm that has to work for every
window size. Also note that if L is streamable in space s(n) in the variable-size model, then
L is also streamable in space s(n) in the fixed-size model.

The variable-size model captures various other streaming models that appeared in
the literature. For instance, the standard model that was mentioned in the introduction
corresponds to the case where no pop-operations are allowed. Another realistic model is the
time-stamp based model, where the data items arrive at arbitrary time points (which are
real numbers) and the sliding window contains all data values with an arrival time from the
interval [t — 7,t], where ¢ is the current time and 7 is a fixed duration. Also the time-stamp
based model can be simulated by the variable-size model, see [3] for details.

4 Streaming algorithms for regular languages

In this section, we will prove our main results. Let L C ¥* be a regular language. We
will query the content of the sliding window for membership in L. Let M = M (L) be the
syntactic monoid of L and h : ¥* — M be the syntactic homomorphism. Let F = h(L),
hence L = h™1(F). We simply write I" for the two-colored left Cayley graph I'(M, A, F)
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Table 1 The trichotomy results for querying regular languages in the sliding window model.

constant space logarithmic space linear space

fixed-size model Cy Ca Cs
variable-size model {0,=*} (C1UC)\{0,x7} Cs

where A = h(X). Recall that I' is a finite directed graph, possibly with loops. For the rest of
this section we fix X, L, M, h, A, and I'. Tt is important for our results that L is fixed, and
not part of the input. This implies that the monoid M and the graph I" can be hard-wired
into our algorithms.

We partition the set of all regular languages over ¥ into three classes C1, Ca, C3, where

L € ¢ if and only if for every non-trivial SCC S of T' the subgraph reachr(S) is

homomorphic to a directed cycle,

L € Cs if and only if L ¢ C; and every SCC of ' is homomorphic to a directed cycle,

L €Csif and only if L ¢ (C; UCs).
For instance, the language (aa | bb)* from Example 1 belongs to Co. Other examples for
languages in C1 U Cy are open languages, i.e. languages of the form ¥*L where L is a regular
language over ¥. Examples for languages in C; are languages of the form X*w for w € ¥*.

For the fixed-size model we will show that (i) languages in C; are streamable in constant
space, (ii) languages in Cy are streamable in space O(logn) but not streamable in space
o(logn), and (iii) languages in C3 are not streamable in space o(n). For the variable-size
model, languages in Cs are still not streamable in space o(n), but here only the languages (§
and X* are streamable in constant space. The remaining languages (C; U Cs) \ {0, X*} are
streamable in space O(logn) but not streamable in space o(logn) in the variable-size model.
Table 1 summarizes both trichotomies.

» Example 2. Let L1 = {a,b}*a be the set of all words that end with an a. Obviously, L;
is streamable in constant space in the fixed-size model: The algorithm has to store nothing.
At each time t one can determine from the current symbol a; whether the window content
belongs to Ly, which is the case for a; = a. Similarly, for every finite word w € {a, b}* the
language {a,b}*w is streamable in constant space in the fixed-size model: The algorithm
has to store the last |w| — 1 symbols from the stream. Note that this argument fails for the
variable-size model: In fact, Lq is not streamable in constant space in the variable-size model;
this follows from Theorem 7 in Section 4.2.

» Example 3. Let Ly = {a,b}*a{a,b}* be the set of all words that contain an a. This
language is streamable in space O(logn) in the variable-size model. The algorithm stores
(i) the current window size n (using O(logn) bits), and (ii) the position p of the right-most
a in the window (using O(logn) bits). We set p to 0 if the window contains no a. This
information can be easily updated: For a pop-operation, the algorithm sets n := max{0,n—1}
and p := max{0,p — 1}. For a push(a)-operation, the algorithm sets n :=n + 1 and p := n.
Finally, for a push(b)-operation only n is incremented.

On the other hand, Lo is not streamable in space o(logn) in the fixed-size model: If Lo
would be streamable in space o(logn) then one could represent every number 1 < i <n by a
bit string of length o(logn), namely by the o(logn)-size data structure d(i) obtained after
moving the word b*~tab”~* into the sliding window, where n is the window size. To recover i
from d(i) one continues the stream with b’s and thereby simulates the query algorithm for Lo
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starting with the data structure d(7). The smallest number of b’s after which a membership
query for Lo is answered negatively is 1.

» Example 4. Let L3 = a{a,b}* be the set of all words that start with an a. An argument
similar to Example 3 shows that Ls is not streamable in space o(n) in the fixed-size model.
More precisely, if Ly would be streamable in space o(n) in the fixed-size model, then one
could represent every word w € {a,b}™ by a bit string of length o(n), namely by the o(n)-size
data structure d(w) obtained after moving the word w into the sliding window, where n is
the window size. To recover w from d(w) one simulates the query algorithm starting with
the data structure d(w). The query result after seeing ¢ — 1 further symbols from the stream
yields the i-th symbol of w: A positive (resp., negative) query answer yields an a (resp., b).

4.1 Upper bounds

In this section we will prove two upper bounds on the space for querying regular languages
in the sliding window model. First, we show that every language in C; U C; is streamable in
logarithmic space in both streaming models.

» Theorem 5. If every SCC of ' is homomorphic to a directed cycle, then L is streamable
in space O(logn) in the variable-size model and hence also in the fized-size model.

Proof. Since the fixed-size model can be simulated by the variable-size model, it suffices to
present an algorithm for the variable-size model.

Let w € ¥* be a word of length n and Suf(w) be the set of suffixes of w, which includes
the empty word and w itself. Define the preorder < on Suf(w) by u < v iff h(u) < h(v),
where <, is defined in (1). This is in fact a total preorder: If v € Suf(w) is a suffix of
u € Suf(w) then u < v. But note that we may have u < v < u for two different suffixes of w.
The word w is a smallest element w.r.t. <. The induced equivalence relation = is defined by
u=wv iff u 2 v < wu. Clearly, u = v iff h(u) =, h(v). As usual, denote with Suf(w)/= the
set of equivalence classes of =. Note that |Suf(w)/=| is bounded by a constant which only
depends on the monoid M and not on the window size n. One can identify the elements of
Suf(w)/= with intervals on the set of positions of w. Hence we can represent (Suf(w), <) by
storing a constant number of interval endpoints using O(logn) bits. Our streaming algorithm
(for window size n) stores the following data:

the total preorder (Suf(w), <), using O(logn) bits,

the function f : Suf(w)/= — M defined by f(C) = h(v) where v is the shortest suffix in

the equivalence class C, using O(1) bits.

We describe these data conveniently by a sequence

Po,Mm1,P1,M2,P2, .-, Mk—1,Pk—1,Mk, Pk (2)

such that the following holds:

1<k <|M|,
O=po<p1 < - <pg1<pr=n+1,
mi,...,mg € M and my is the unit element of M.

The meaning of this sequence is the following: The equivalence classes of = are the sets
C; ={wlp:n]|pi—1 <p<p;}for1l<i<k (the class Cj contains the empty suffix for
p =pr =n+1). The monoid element m; is h(w[p; : n]) for 1 < i < k (hence, my = 1 is the
unit element). Thus, m; = h(v) where v is the shortest suffix in its equivalence class C;.
On the sequence (2) we can now perform the desired queries: In order to test whether
w € L, one has to check whether h(w) € F. For this we consider the monoid element m;.
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Note that m; =, h(w). Hence, the vertices h(w) and m; = h(w[p; : n]) belong to the same
SCC S of T'. Note that h(w) = h(w[l : p; — 1])m;. We cannot store this word w[1 : p; — 1],
in fact we do not even store its image under h. But, by assumption, the SCC S of I" that
contains h(w) and m; has a homomorphism ¢ onto a directed cycle ©. Thus, we can compute
©(h(w)) by traversing the cycle from ¢(my) for p; — 1 steps (the homomorphic image of T
under ¢ is hard-wired into the algorithm). The color of p(h(w)) in © then indicates whether
h(w) € F (i.e. we L) or h(w) € F (i.e. w ¢ L).
For a pop-operation on w and p; > 1, the algorithm updates the sequence (2) to

Po,Mmi1,p1 — 17m27p2 - 17 ceeyMg—1,Pk—1 — lamkypk -1

Otherwise, if p; = 1 then the algorithm updates the sequence (2) to

p1—1,mo,po—1,... ,mg_1,pk—1 — 1,mp,pr, — 1.

Finally, let us consider a push(a)-operation on w. Note that = is a right congruence, i.e.
x =, y implies xz =, yz for all z,y,z € M. This means that our interval-representation
of (Suf(wa), <) can be obtained from the interval-representation of (Suf(w), <) by possibly
merging successive intervals. In order to detect, which intervals have to be merged, note that
for all u,v € Suf(w) we have

ua =va <= h(u)h(a) =¢ h(v)h(a) <= [f([u]z)h(a) =¢ f([v]z)h(a),

because h(u) =, f([u]z) and h(v) =, f([v]z), and the fact that =, is a right congruence.
Using this, we can detect whether two successive intervals that represent the classes [u]=
and [v]= have to be merged into a single interval. Formally, we process the sequence (2) as
follows: We walk over the sequence from left to right. For every 1 < ¢ < k — 1 we check
whether m;h(a) =, mir1h(a). If this is true, then we remove m;, p; from the sequence,
otherwise we replace m;, p; by m;h(a),p;. Then we continue with i+ 1 (if i < k— 1). Finally,
we check whether h(a) =, 1. If this holds, then we replace mg,pr = 1,n+ 1 by 1,n + 2,
otherwise we replace 1,n+ 1 by h(a),n+1,1,n + 2. <

Next we show that languages in C; are streamable in constant space in the fixed-size
model.

» Theorem 6. Let reachr(S) be homomorphic to a directed cycle for every non-trivial SCC
S of T'. Then L is streamable in space O(1) in the fixed-size model.

Proof. Observe that every path in I' of length at least ¢ := |V(I')| (a constant) contains
a vertex in a non-trivial SCC S and therefore ends in reachp(S). Fix a window size n. If
n < ¢, we store the window content explicitly and can test whether w € L, e.g. using an
automaton for L. Now assume n > c. For a window content w € 3* we explicitly store the
suffix v of length c¢. Clearly this suffix can be updated when a new symbol arrives in the
window. Also v suffices to test whether w € L. We compute h(v) and a non-trivial SCC
S such that h(v) is contained in reachr(S). Let ¢ : reachr(S) — © be the homomorphism
into a directed cycle ©. Then we compute p(h(w)) by traversing © starting from the vertex
©(h(v)) for n — ¢ steps. The color of @(h(w)) determines whether w € L. <

As in most previous work on the sliding window model, our focus is on the space
requirements of query algorithms. But it is also interesting to note that in Theorem 5 and 6
we can achieve constant time for all update and query operations on the RAM model with
register length O(logn). Let us show this for Theorem 5 first. Recall that the sequence
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(2) that we manipulate in the proof of Theorem 5 has constant length. For a pop- or
push(a)-operation, the manipulation of (2) only needs constant time. To see this, note that
the numbers p; in (2) are only incremented or decremented and that all operations in the
monoid M need constant time since M is fixed. Finally, for a membership query we traverse
the cycle © starting from ¢(mq) for p; — 1 steps. To do this in constant time, we store also
the numbers (p; — 1) mod ¢(0), where £(0) is the length of the cycle. We have to maintain
these remainders for all (constantly many) cycle lengths £(01),...,£(©.), where O1,...,0,
are the cycles to which the SCCs of T" are homomorphic. For Theorem 6 it suffices to traverse
© for (n — ¢) mod £(O) steps.

4.2 Lower bounds

In this section, we prove matching lower bounds for the upper bounds from the previous
section. Let us first show that constant space in the variable-size model makes it impossible
to query any non-trivial language. Roughly speaking, the reason is that in order to query a
non-trivial language in the variable-size model one has to know when the sliding window
is empty. But for this, one has to maintain the size of the window, for which logn bits are
needed.

» Theorem 7. If L C ¥* and 0 C L C X*, then L is not streamable in space O(1) in the
variable-size model.

Proof. Towards a contradiction assume that L is streamable in the variable-size model in
space m, where m is a constant, which means that the algorithm has at most 2™ pairwise
distinct data structures. We can assume that € € L, otherwise consider the complement

¥*\ L which is also streamable in space m. Let further w € ¥* be a word such that w ¢ L.

Consider the 2™ + 1 words w®, w', w?,...,w?". There are two numbers 0 < i < j < 2™
such that the stream prefixes w’ and w’ lead to the same data structure. After (j — 1) - |w|
further pop-operations the window contains € € L and the word w ¢ L, respectively, which

is a contradiction. |

For the remaining lower bounds, we need the following simple graph theoretic lemma:

» Lemma 8. Let T be a finite directed vertex-colored graph (possibly with loops) and let s be
a vertex from which all vertices of T' are reachable. Assume that all vertices have outdegree
> 1 and s has indegree > 1. If T' is not homomorphic to a directed cycle, then there exist
paths my, ™ of the same length from s to vertices sg,s1 which have distinct colors.

Proof. Let V,, be the set of vertices which are reachable from s via a path of length n for
n > 0. The union J,,~, V, is the set of vertices reachable from s, which by assumption is
V(T). Towards a contradiction assume that every set V,, is monochromatic. Let ~ be the

transitive-reflexive closure of the binary relation R on V(I') defined by R = J,,5¢ Vi X Va.

Then, every equivalence class of ~ is monochromatic. Hence, we can construct the quotient
graph I'/x = ({[v]~ | v € V(D) }, {([u]~, [v]~) | (w,v) € E(T)}). Moreover, the equivalence
class [u]~ has the same color as all its elements. Clearly, I" is homomorphic to I'/ .

We claim that every vertex in I'/~, has out-degree 1: Since every vertex in I' has outdegree
> 1, the same holds for T'/~. Moreover, if a vertex v is contained in some set V,,, then all

successors of v are contained in V,,41. This implies that R respects the successor relation, i.e.

whenever (u,v) € R and (u,u), (v,v") € E(T), then also (u/,v") € R. Hence, also = respects
the successor relation. This proves that every vertex in I'/5 has out-degree 1. Finally, each
node has an incoming edge since s has an incoming edge and all other nodes are reachable
from s. It follows that I'/~ must in fact be a directed cycle. <
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SCC S reachr(S)
ug Ul
Vo V1 //’/ \\\\
Tu sces T

Figure 2 The origin of the words used in the proofs of Theorem 9 (left) and Theorem 10 (right).

Now we show that languages in C3 are not streamable in space o(n) in the fixed-size model.

» Theorem 9. If some SCC S of T" is not homomorphic to a directed cycle, then L is not
streamable in space o(n) in the fized-size model and hence not streamable in space o(n) in
the variable-size model.

Proof. We apply Lemma 8 with an arbitrary node s € S to the subgraph of I' induced by
S. Therefore, there exist paths my and 7 of the same length k from s to nodes sg,s1 € S,
which are colored differently, say sq € F and s; € F. Let ug,u; € ©* be words representing
the paths mg, 7 and let u € ¥* such that h(u) = s, which exists since h is surjective. Since
S is strongly connected, there also exist paths 7y and 7] from sg and s, respectively, back
to s. This results in words vg,v; € X1 such that h(vouou) = h(u) = h(viuiu), h(ugu) € F,
h(uiu) € F. The situation is shown in Figure 2 on the left. Choose numbers p, g > 0 such
that zo = (vouo)P and z; = (viug)? have the same length. We get h(zou) = h(z1u) = h(u).
Let xg, 21 such that zo = zoup and z; = zyu; and hence |zo| = |21].

Let z = 2y (we could also set z = z1). We have h(u) = h(z™u) for every m. Note that
z # . By replacing xg and x1 by z™x¢ and 2™z, respectively, for m large enough we can
therefore assume that |zo| = |z1| > |u|. Let z = 2’2" with [2"| + |u| = |zo|.

Assume now that L is streamable in space o(n) in the fixed-size model. We will deduce a
contradiction. Consider an arbitrary bit string & = aq - - - a,, € {0,1}"™ of length n. We encode
this bit string by the word w(a) = 24, 2a, - * - 24, 2’ of length n’ = ©(n). Let n’ be the window
size. For n large enough, there must exist bit strings « = a1 ---a, and § = by - - - b, of length
n such that o # 8 but after moving w(«) and w(B) into the sliding window, the same internal
data structure arises. Let 1 <1i < n be a position such that w.l.o.g. a; =0 and b; = 1. We
now move the word 2”2~ of length (i — 1)|2| +|2” |+ |u| = (i —1)|z|+ |zo| = (i —1)|2| + |21
into the sliding window. The window contents are then:

I 1 i—1

i
UQZa;yy " Zan? 2 2 U = UQZasy, " Ran R U

1 i—1

U1 Zh,, 2,2 2 27U = U1Zp,,, ccc 2p, 2 U

i1 it+1
Of course, the stream prefixes w(a)z”2 " u and w(B)z"2"~1u must still lead to the same
data structure. But we have h(uozq,,,  * * Za, 2'0) = h(uou) & F and h(u1zp,,, - 2, 2'u) =

h(uyu) € F, which is a contradiction. <

For a word w € ¥* of length k we define the signature §(w) = by ---by € {0,1}* such
that b; = 1 if h(w[i : k]) € F and b; = 0 otherwise. To complete our trichotomy, we finally
show that languages in Cy are not streamable in space o(logn) in the fixed-size model.

» Theorem 10. If some SCC S of T is non-trivial and reachr(S) is not homomorphic to a
directed cycle, then L is not streamable in space o(logn) in the fized-size model and hence
not streamable in space o(logn) in the variable-size model.
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Proof. Let S be the strongly connected component of I which is not trivial and where
reachr(S) is not homomorphic to a directed cycle. Pick an arbitrary node s € S. It must
have indegree > 1 since S is non-trivial. Since h is surjective there exists u € ¥* with
h(u) = s. We apply Lemma 8 to s and the subgraph reachr(S). This yields words z,y € X7
of equal length, say k > 1, which correspond to the paths my,m; in the lemma, such that
h(zu) € F and h(yu) ¢ F. Further, since S is strongly connected and non-trivial, there

exists a non-trivial path 7 from s back to s, which yields a word w € ¥ with h(wu) = h(u).

The situation is shown in Figure 2 on the right. Let ¢ = |w| and write k uniquely as
k=cl+({l—p+1)=(c+1)-L—p+1forc>0and 1 <p <l Consider the word
wlp : Jwe. In T this word yields the path consisting of ¢ repetitions of the circle = followed
by £ — p + 1 more steps of 7 such that the whole path has length k. If h(w[p : fJwu) € F
then we can replace x by wlp : fJw®
loss of generality we can assume that @ = wlp : fJw®. From h(zu) € F and h(yu) ¢ F it
follows that the signatures é(axu) and §(yu) differ in the first position. We can assume that
for each position 7 > 1 we have d(zu)[i] = é(yu)[i], otherwise we update the words x and y
to the suffixes z[i : k] and y[i : k], respectively, where ¢ is the maximal position such that
()] # 6(yw) ]

Now assume that L is streamable in space s(n) € o(logn) in the fixed-size model. We
will deduce a contradiction. For n large enough we consider the n words z; = vw” ‘yw?
(1 <i<n)ofequallengthn’ =¢-n+ |ul+ |yl =€ -n+|u|+k € O(n). Large enough here
means that 2°(") < n; such an n exists since s(n) € o(logn) and n’ € O(n). We now fix the
window size to n’ and move the words z; (1 <14 < n) into the window. Since 2s(n) < n, there

, otherwise we can replace y by wlp : fJw®. Without

exist ¢ < j such that after moving z; and z; in the window, the same internal data structure

n— n—

arises. Hence the two stream prefixes z;w™*u and z;w"~*u also lead to the same internal
data structure. Moreover, after the stream prefix z;w"™ *u = uw™ ‘yw™u the content of the
sliding window is yw™u (the suffix of uw™~*yw™u of length n’ = £-n + |u| + k), which does
not belong to L since h(yw"u) = h(yu) € F. So, it remains to show that the suffix of length
n’ of the stream prefix z;w""u = uvw™ I yw™ ="y belongs to L. We distinguish two cases
(recall that k = ¢- £+ ({ —p+1)): If j—i > ¢+ 1, then the suffix of uw™ I yw" T~y of length

n’ is wlp : Jw" Ty = zw"u which belongs to L since h(zw"u) = h(zu) € F. If j —i < ¢,

then the suffix of uw™ Iyw™ ="y of length n’ = £ - n + |u| + k is y[1 + (j — )€ : kJw" T~ tu.

We have h(y[l + (j — i) : kKJw" =) = h(y[l + (j — i)¢ : kJu). Now recall that the
signatures d(zu) and d(yu) only differ in the first position. Since 1+ (j — )¢ > 2 it
follows that h(y[l + ( — )€ : klu) € F if and only if h(z[l + (j — )¢ : kJu) € F. Since
x = wp: uw and j —i < ¢ we have z[1 + (j — )¢ : k] = w(p : w7 % Thus, we have
h(z[l + (j — i)l : klu) = h(w(p : w7 ) = h(wp : flwu) = h(xu) € F, which finally
show that y[1 + (j — )¢ : kJw™* =%y belongs to L.

n—u

To sum up, we found two stream prefixes z;w” "u and zjw"_iu, which lead to the same
internal data structure, but after seeing z;w™ *u the window content does not belongs L,

n—
whereas after seeing z;w ‘u the window content belongs to L. This is a contradiction. <

n—u

5 Streaming algorithms for non-regular languages

It would be interesting to know whether our classification can be extended to larger language
classes. As a first step, one might consider deterministic context-free languages or the subclass
of visibly pushdown languages [2]. All visibly pushdown languages that we have considered
so far fall into our trichotomy.
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» Example 11. Let L, = {a*b* | k > 0}. This language is streamable in space O(logn) in
the variable-size model. The algorithm stores (i) the current window length n and the unique
numbers k, m such that a*b™ is the longest suffix of the window that belongs to a*b*. Note
that 1 < k 4+ m < n. This information can be maintained: For a pop-operation, k and m are
not changed unless n = k + m. In this case, k is decremented if k£ > 0. If £ = 0 then m is
decremented. For a push(b)-operation, m is incremented. Finally, for a push(a)-operation,
the algorithm sets k£ := 1 and m := 0 if m > 0. If m = 0, then k is incremented.

Assume that L, is streamable in space o(logn) in the fixed-size model. Similar to
Example 3 we would be able to represent every number 1 <4 < n by a bit string of length
o(logn), namely by the data structure obtained by inserting the word a™*%"~ into a sliding
window of size 2n.

» Example 12. Let L5 be the Dyck-language over a single pair (,) of brackets. We claim
that Ls is not streamable in space o(n) in the fixed-size model. In order to get a contradiction,
assume that Ly is streamable in space o(n) in the fixed-size model. As in Example 4 we
deduce that every bit string of length n can be represented with o(n) many bits. For this,
we encode a bit string o = aqag - -+ a, (a; € {0,1}) by the word u(a) = uqusg - - - 4y, where
u; = OO if a; =0 and u; = (Q) if a; = 1. Note that |u(«)| = 4n. We then represent o by
the o(n)-size data structure d(«) obtained by moving u(«a) in the sliding window, where the
window size is 4n. To recover a; from d(«) one continues the data stream with 2 — 1 many
repetitions of (). Then, the window content belongs to Ls if and only if a; = 0.

The following example shows that there exists a non-context-free language whose optimal
space requirement is O(y/n) in the fixed-size model.

» Example 13. Let Lg = {w* | n > 0,w € {a,b}*, |w| = k}. We claim that in the fixed-size
model, Lg is streamable in space O(y/n) but not in space o(y/n). If the window size n is
not a square, then the query algorithm can always answer with no. So, assume that the
window size is n = m?2. The algorithm then stores for the window content w (i) the length-m
suffix s of w and (ii) the largest position p such that m +1 < p < n and w[p] # wlp — m],
where we set p = m if such a position does not exist. Note that w € Lg if and only if p = m.
This information s,p can be maintained. For s this is clear. To maintain p, the algorithm
checks whether the next symbol in the stream is the first symbol of s. If this is the case, the
algorithm sets p := max{p — 1,m}, otherwise it sets p := n.

The argument that Lg is not streamable in space o(y/n) in the fixed-size model is similar
to the argument in Example 4. One shows that from the data structure that is obtained by
moving w™ (with w € {a,b}™) into the sliding window, one can recover the word w.

In the variable-size model, L¢ is not even streamable in space o(n): It is a basic result in
communication complexity that equality checking of two words = and y of length n needs
Q(n) bits of communication. Assume that Lg is streamable in space o(n) in the variable-size
model. Then Alice, who initially has access to =, and Bob, who has access to y, could check
x = y by exchanging o(n) bits, where n = |x| = |y|: Alice pushes the word x into the window
and then sends the o(n)-size data structure to Bob. Bob then pushes the word y"~! into the
window and afterwards check whether the window content belongs to Lg, which is the case if
and only if x = y.

In the long version of this paper, we will present for every k > 2 an example for a non-
deterministic context-free language that in the fixed-size model is streamable in space O(n'/*)
but not streamable in space o(n'/*) .
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6 Future work

Our results on querying regular languages in the sliding window model open several avenues
for further research. First of all, one might also consider randomized query algorithms for
the sliding window model. For the standard streaming model randomized query algorithms
were studied in [5] for subclasses of context-free languages.

We also plan to investigate whether our trichotomy can be extended to larger language
classes. As remarked above, it fails for non-deterministic context-free languages. But it is
open whether there exists a deterministic context-free language or even a visibly pushdown
language L such that in the fixed-size (resp., variable-size) model L is streamable in space
o(n) but not streamable in space O(logn).

It would be interesting to know the space complexity of querying regular languages in the
sliding window model, when the regular language is part of the input, and, for instance, given
by a deterministic finite automaton (DFA). The syntactic monoid of L(A), where A is an
m-state DFA,| can have size m™ [13]. This yields the space bound O(log(n) - m -log(m) - m™)
in the proof of Theorem 5, where n is the window size. But maybe a better algorithm exists.

Finally, one might also study weighted automata in the sliding window model. A weighted
automaton computes for an input word a value from a semiring, which is the Boolean semiring
for classical finite automata; see [10] for details. The goal would be to maintain the semiring
value to which the sliding window content maps.

Acknowledgements. We thank Philipp Reh for spotting a mistake in an earlier version of
the paper.
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—— Abstract
Fractional share models are used to reason about how multiple actors share ownership of resources.
We examine the decidability and complexity of reasoning over the “tree share” model of Dockins
et al. using first-order logic, or fragments thereof. We pinpoint a connection between the basic
operations on trees union LI, intersection M, and complement [ and countable atomless Boolean
algebras, allowing us to obtain decidability with the precise complexity of both first-order and
existential theories over the tree share model with the aforementioned operations. We establish
a connection between the multiplication operation 0 on trees and the theory of word equations,
allowing us to derive the decidability of its existential theory and the undecidability of its full
first-order theory. We prove that the full first-order theory over the model with both the Boolean
operations (L, M, 0) and the restricted multiplication operation (> with constants on the right
hand side) is decidable via an embedding to tree-automatic structures.
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1 Introduction

The state of the art: Fractional shares enable reasoning about shared ownership of resources
between multiple parties, e.g. ownership of memory cells by different threads in a concurrent
program [7]. Threads are then allowed to take actions depending on the amount of ownership
they have, e.g. with full ownership allowing both reading and writing, partial ownership
allowing only reading, and empty ownership allowing nothing. Although rational numbers
are the most obvious model for fractional shares, they are unfortunately not a good model for
realistic program verification because they do not satisfy the so-called “disjointness” axiom [3],
i.e. Vex,y. x4+ x =y = x =y =0. Dockins et al. proposed a better model for fractional
shares based on binary trees with Boolean leaves [10]. A tree share 7 € T is inductively

PN

defined as follows: 7 = o | e | B where o denotes an “empty” leaf while e a “full” leaf.

The tree o is thus the empty share, and e the full share. There are two “half” shares: O/\.

and /\o, and four “quarter” shares, beginning with _ <> . It is a feature that the two
o
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half shares in T are distinct, as compared to the two half shares in Q, 0.5 and 0.5, which are
of course equal. The ability to represent distinct partial shares of “equal measure” is closely
related to why the disjointness axiom holds. The basic operations for combining trees are
union LI, intersection M, and complement [J; these Will be defined formally in §2 but to a
first approximation they are all defined leafwise, e.g. I_I /(\ /A

A number of program logics incorporate tree shares to model fractlonal ownershlp [11, 12,
29, 3], but it has been unclear how to reason about them automatically, which has posed a
significant barrier to their use in verification tools. One reason for this barrier is the lack of
foundational results regarding decidability and complexity of theories over tree shares. The
only published result of this kind proves the decidability of entailment between systems of
equations over tree shares, a less-expressive format than general first-order formulae [19].

In addition to union, intersection, and complement, Dockins et al. defined a “multiplica-
tion” operator on tree shares, written 71 &<t 75 [10]. The basic 1dea is that you take each e leaf

in 71 and replace it with a full copy of 7, e.g. A /((X\

Dockins et al. showed that > could be used to split any nonempty tree T 1nto two nonempty
trees that joined together to equal the original since V7. 7 = (7> ) U (T ) More

generally, the > operator can be used as a kind of “scoping” or glulng operator to combine
different uses of tree shares together. Although <t has been used in metatheory [3], it has
never been used in an automated tool because its decidability properties were unclear.

Contributions: In this paper, we provide the first systematic study of decidability and
complexity of theories over the tree share model.

First (§3), we show that the tree share model M £ (1,1, 0, o, 8) is a Countable Atomless
Boolean Algebra (CABA), which are known to be unique up to isomorphism [28]. The
first-order theory over CABAs is known to be decidable and, in fact, complete for the class
STA (x,2°",n) of problems solvable by an alternating Turing machine with n alternations in
exponential time [17], the same complexity class as the first-order theory over (R, +,0,1) [4].
In addition, the full existential theory over CABAs is known to be NP-complete [24]. Our
connection shows that these decidability and complexity results transfer to M.

We then (§4) proceed to decision problems over the tree shares with the multiplication
operator 1. Our main result here is that the tree share model S = (T,) that only allows <
(i.e. but not U, M, and 0) is — in a technical sense — “equivalent” to the logical structure of
words with the concatenation operator. Makanin [20] showed that reasoning about a single
equation over this structure (a.k.a. word equations) is decidable. More complex problems
are known to be reducible to this basic case in polynomial-time, e.g. the existential theory
over the structure [8]. Accordingly, we deduce that the existential theory over S is decidable
in polynomial space but NP-hard, whereas the first-order theory over S is undecidable.

Finally (§5), we consider restrictions on i that admit a decidable theory. We define
the family of one-argument functions indexed by tree constants that applies bowtie on
the right-hand side <, d.e. <, (7') = 7/ 1 7. We prove that the combined theory of
T 2 (T,Mn,u,0,<g) has an embedding into tree-automatic structures. Since the first-
order theory of tree-automatic structures is decidable [6], we obtain the decidability of the
first-order theory of this extension of the tree share model with <tg. This suggests the
potential application of powerful heuristics for automata (e.g. antichain and simulation [1])
for providing a practical decision procedure for the tree share model.
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2 Formal preliminaries: the Tree Share model T of Dockins et al. [10]

Here we summarize additional details of tree shares and their associated theory from [10].

Canonical forms. In the first paragraph of §1 we presented the first quarter share as
/Ao instead of e.g. A This is deliberate: the second choice is not a valid
e © e o o o

share because the tree is not in canonical form. A tree is in canonical form when it is in its
most compact representation under the inductively-defined equivalence relation =:

T nT
S N A

o / /
c o e o 1 T2 1 T2

P
° o

1
1
1
1%

As we will see, operations on tree shares sometimes need to fold /unfold trees to/from canonical
form, a practice we will indicate using the symbol . Canonicality is needed to guarantee
some of the algebraic properties of tree shares; managing it requires a little care in the proofs
but does not pose any fundamental difficulties to the overall theory.

Boolean algebra operations. The connectives LI and M first unfold both trees to the same
shape; then calculate leafwise using the rules oU7T = 7o =7, eUT =7l e = e,
ofMMT=7Mo=o0,and e 7 =70e=r7; and finally refold back into canonical form, e.g:

/AOUA = e U< = < g,/>\
/A()”/X%/X“/X

12

<>

[e] [e] [¢] [e]

Complementation is simpler, since flipping leaves between o and e does not affect whether a
tree is in canonical form, e.g.: /(\o = /A. . Using these definitions we get all of

L] [0} o [ ]

the usual properties for Boolean algebras, e.g. 7, 175 = 71 L 75. Moreover, we can define a
partial ordering between trees using intersection in the usual way, i.e. 71 C 7o 2 7M1y = 71.
We can enjoy a strict partial order as well: 7 C 7 L2 HCnAND #* To.

Properties of tree multiplication <. Since it is nonstandard, the “tree multiplication”
operator < deserves some additional attention. The good news first: < is associative, has an
identity e, and is injective for non-o elements, i.e. ST £ (T \ {o},) forms a cancellative
monoid. Somewhat unsurprisingly, multiplication by the “additive identity” o reduces to o.
Unfortunately, < is not commutative (./\O B O/\. = /(\O # O/>\ = O/\. b ),

o L] ] o

L] o

although we do enjoy a distributive property over U and M on the right hand side. Accordingly:

» Lemma 1 (Properties of ).

Associativity : Ty D4 (Tp DA T3) = (71 DX T2) DX T3 (1)
Identity element : TX®e=0DIT =T (2)
Zero element : TIXIO=0DT =0 (3)
Left cancellation : T#0 = TXTI=TXT, = T =T (4)
Right cancellation : T#0 = MNXT=TaXT = 7| =T (5)

(6)
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Typical use of T in program verification. A standard way to use fractional shares in
program verification is by modifying the standard maps-to predicate of separation logic to
take a share as an additional argument. The predicate z ~ y then means that the heap has
a cell at address x, which is owned with nonempty fraction m # o and whose value is y. We
use 7 here because we often use share variables rather than concrete trees 7.

To combine divided fractional ownership stakes back together it is traditional to use the
“join” relation, written 7 @ 7o = 73. The join relation is defined in turn using the primitive
Boolean algebra operators: 7 @71 = 73 £ U7y =13 AT M7y = o. In other words, the join
relation is a kind of disjoint union; it is partial because e.g. ® @ e is undefined. Critically for
verification @ does satisfy the disjointness axiom: Vz,y. t @ x =y = z =y = o. Using @
we can state the following relationship between the spatial conjunction * and the underlying
Boolean operators as x sy * 13 z 4+ y=zAz o1 y (using 4F for bientailment).

It is common that we want to “split” a share 7 into sub-shares 7y, 72 so that the permission
can be transferred. This can be done within M £ (1,1, , o, ®) using the following rule:

T # o0

— = = SPLITJOIN
ro v A Imme (@SB vk B V) AT O T =TAT £AO0AT £ O

This rule has some drawbacks. The most obvious is the lengthy size of the entailment’s
consequent, even though we only split 7 into two pieces. Second, existential quantifiers are
expensive in program verification since they tend to increase the size of the proof obligations
and here we introduce two of them. Third, we have no control over what the shares m; and
o are — that is, 1 and o are not uniquely determined. Moreover, they are indistinguishable,
which makes it difficult to assign different permitted actions for them.

On the other hand, each of these issues can be solved nicely using > due to its right
distributivity over (M,U), and thus over @, yielding the following rules:

ne.. o1 ="T m#£o /\Ti;«éo

TIT i TITY T, SPLITJOIN (7)

v

3 Tree Shares are a model for Countable Atomless Boolean Algebras

In this section, we pinpoint the fact that M = (M, U, 0, o, ®) is a model for Countable Atomless
Boolean Algebra (CABA). Let B = (N,U,J,0,1) be a Boolean Algebra (BA), we define a
partial order C on B (C for M, resp.): a; C az 2 a;Naz =0and a; C as = a; C asAas € ay.
B is atomless if Va. 0 C a = Ja’. 0 C @’ C a. B is countable if its domain is countable.
Dockins et al. [10] proved that M is a model for BA where 0 £ 0,1 2 o, U= U, 1= N. The
atomless property can be derived from the Infinite Splitability property of tree shares [19]:
let @ J o and ai,as # o such that a; & as = a. This implies a1 Uas = a A aj Mag =o. By
Stone’s representation theorem each BA is isomorphic to a BA of powerset, thus a; U as = a
implies a; C a and as C a. Suppose that a; = a then as Ma = 0 which is a contradiction
because 0 C as C a. As a result, a; # a and thus a; C a. The proof that T is countable is
achieved by enumerating T in the ascending order of tree height |7| using the following total
strict order <:
il <lml o owl =l
FEANIEES —~ _ <

<
T1 T1 T2 T2 T T1 T T2

T1 < T2

P P
|T T1|:‘7' 7'2| T1—<T2

o<e T < To
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Tt is known that there is a unique model for CABA up to isomorphism [28], so we can
reason about the complexity of M in terms of CABA. Let STA(f(n),g(n), h(n)) be the
class of sets accepted by alternating Turing machines which use at most f(n) space, g(n)
time and h(n) alternations between universal and existential states on a given input of
length n. Any field in the description can be replaced with symbol * to indicate no bound is
required. Kozen [17] proved that the elementary theory of infinite BAs is <jog-complete for the
Berman complexity class J,.,, STA(*,2",n), which lies between the class of deterministic
exponential space and non-deterministic exponential space.

We now investigate the complexity of an important sub-theory of M, namely the existential
theory. Basically, this sub-theory includes all valid sentences whose prenex normal form
contains only existential quantifiers. Its counterpart is the universal theory in which all the
quantifiers are universal. A result by Marriott et al. [24] showed that the existential theory
and universal theory for infinite BAs are in NP-complete and co-NP-complete respectively.

4 Decidability of general multiplication ><i over Tree Shares

In this section, we will prove the following results about & = (T, ):

» Theorem 2 (Complexity of S).

1. The existential theory of S is decidable in PSPACE.
2. The existential theory of S is NP-hard.

3. The general first-order theory over S is undecidable.

The proof of Theorem 2 largely rests on the identical conclusions for the key subtheory
ST £ (T+,), where T+ £ T\ {o} are the “positive trees” obtained by removing the “zero
element” o from T:

» Lemma 3 (Complexity of ST).

1. The existential theory of ST is decidable in PSPACE.
2. The existential theory of ST is NP-hard.

3. The general first-order theory over ST is undecidable.

We will prove Lemma 3 shortly, but first let us use it to polish off Theorem 2:

Proof of Theorem 2. We take each part in turn as follows:

1. Represent the set of variables V = {x1,...,2,} in a given formula F of S as a n-length
bitvector. We can enumerate through all possibilities Py, ..., Pon for this vector using
linear space and binary addition. For each possibility P;, variable x;’s bit is 0 to indicate
that x; must be o and 1 when z; must be non-o. For each x; that is marked as o, we
substitute o for x; in F' to reach F; and simplify using the rules

T DA O = Ty oD T = To T XA = O
T = O g = O T =0V g =0

7 D 0 #£ Ty 0Dy F# Ty T DI o # o
Ty # 0 Ty # O T £ OoNATg £ o

We can then just check to make sure that the resulting “fresh” (in)equalities are consistent
with the current value of the bitvector P;. If not, we have reached a contradiction and
can proceed to the next bitvector P; 1. If so, then after removing the trivial equalities
(e.g. o = o) from F; we are left with an equivalent formula FjJr which is in 8T, so

19:5
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by Lemma 3.1 we can check if Fj is satisfiable in PSPACE. If so, we know that F} is
satisfiable, and thus that F is satisfiable. If not, we proceed to the next bitvector Pjiq;
if all F; are unsatisfiable then F' is unsatisfiable.

2. By Lemma 3.2 it is sufficient to reduce a formula F'* in ST to S. Let V be the set of
variables in F* and define FF & F*+ A ( N\ x# o>; note that we construct F' in linear

zeV
time from |F*|. F is satisfiable in S if and only if F'* is satisfiable in ST, so we are done.

3. Any extension of an undecidable theory is also undecidable; by Lemma 3.3 we are done.
<

4.1 Word equations

To prove Lemma 3 we will show that ST is isomorphic to the theory of word equations. Let
us recall this theory. Let A = {aj,as,...} be a finite set of letters and « be a concatenation
operator that combines letters into words. Let A* be the Kleene closure of A using .. We
define a model for the alphabet A, written Wy as the pair (A*,+). Now let V = {v1,va,...}
be a finite set of variables, and w € W £ (AU V)* a finitely generated word that includes
both letters and variables. We extend a word context p: V — A* to the domain AUV by
mapping constants to themselves, and further to the domain W by replacing each letter
within a word with its value in p. A word equation Ewy is a pair of words (wy,ws) € W x W.
We say that p is a solution of Ew if p(w1) = p(ws).

The satisfiability of word equation asks whether a word equation Ew has a solution p,
denoted SATvw (Ew). Makanin proposed a complete treatment to this problem in a series
of papers [20, 21, 22] but his method was highly intractable (quadruple-exponential non-
deterministic time [16]). Substantial research since has improved this bound, e.g. [2, 13].
The best known complexity bound for this problem is PSPACE and NP-hard [25, 26] and it
is hypothesized to be NP-complete. Importantly for our present result, the existential theory
over word equations is known to be reducible to SATw in polynomial time [8]. Finally, the
first order theory over W is known to be undecidable [23, 18].

Infinite alphabets. To define our isomorphism from TT to A* it will be convenient if the
alphabet A can be countably infinite. Accordingly, we must reduce word equations over
an infinite alphabet to the standard finite case. Let o : W — P(A) be the function that
extracts the set of letters from a word w, e.g. o(viajasvs) = {a1,a3} and extend o to
W x W by o(wy,ws) = o(wr) Uo(ws). Let ¢ : W x P(A) = W be the projection function
that takes a word w and a set of letters B C A and removes all letters in w that are not
in B, e.g. ¢(via1a3va, {a1,a2}) = viavs. It is not hard to prove that ¢ with fixed B is an
homomorphism over W,4. Now we are ready to state and prove the extension to infinite
alphabets:

» Lemma 4 (Infinite alphabet word equations). Let A be infinite and Ew = (w1, ws) a word
equation over A. Ewy is satisfiable in Wa iff Ew is satisfiable in Wy (g,,)-

Proof. <« is trivial. Let p: V — A* be a solution of Ew over A and p' = A\v. ¢(p(v),c(Ew)).
Notice p’ preserves all the letters in Ew and p(w;) = p(ws) implies p’(w1) = p’(wsz). Thus p’
is a new solution of Eyw that only contains letters from o (Ew). <

4.2 Finding an infinite alphabet inside T+

Since < is a kind of multiplication operation, and the fundamental building blocks of (N, x)
are prime numbers, it is natural to wonder whether there is an analogue on trees. There is:
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» Definition 5 (Prime trees). 7 € T\ {e} is prime if V7, 72. T=T1 X T = (11 = V7o = e).

Furthermore, let Prime(7) indicate 7 is prime and T, be the set of all prime trees.

. P
Examples of tree primes are ; , and A . On the other hand, the tree O/(.\O
[ ] o [ ] o

. . . . s S . . .
is not prime since it can be factored as ;> 7 7. Prime trees have many nice properties:

» Lemma 6 (Properties of prime trees).

1. There are countably infinitely many prime trees.

2. Let 7,71, 72, 79 € Tp, 71 DATo = 7{ DTy iff 71 =T and 1o = 7.

3. Given two prime tree sequences Sy = T, ... ,lel and So =1T3,. .. ,72]“2, S1 = Sy iff their
ba products are equal: dAML | i =2 Tl o (k= ky A2 \Ti=1Y).

= = i=

To prove Lemma 6 we must define the notation |7| to be the height of 7 (with |o| = || =0
and counting up from there). Given this notation it is simple to define the set of all trees up
to height n, written T™. We will also need the following technical lemma which allows us to
split an application of bowtie 75 1 73 to children of 75:

» Lemma 7 (Split for ). Let 71,72, 73, 7,7 € TT and 71 = o A3 AT = 7-’/\7-’" then
1 1
either (1) 7o = @ A7y =73 or (2) 37k, 75. TQZTZ/\TT/\T{ =7l AT = 7§ T3,
2 2

Proof. The case 7, = o is trivial. Otherwise, there exists 74,75 € T such that 7, = >

T To
By definition of 1, 4 = 75 < 73 is computed by replacing each leaf e in 7 with 73,
which is equivalent to replace each leaf @ in 74 and 75 with 73. Thus, 7 = 74 > 73 and
T] =Ty DA T3. |

Proof of Lemma 6.

1. We construct an infinite sequence S of prime trees: let p; £ ./\O, Dy £ p'/l\.’ i.e.
i

N A~
L]

It is immediate that p; is prime. To prove that p; is prime for ¢ > 1, we proceed as
follows. Suppose p; = 71 I 75 and neither 7 nor 7 is e. The right subtree of each p;
is just e and by the definition of > must contain a copy of 7o, i.e. 72 = o, so we have a
contradiction and p; is prime.

2. We prove by induction on the height of 71, 7]. The base case T is easy to verify. Assume

it holds for T* and 71,7 € T**!. Let 1 = Tl/\TT,T{ = TZI/\TT/ then by Lemma 7,
1 1 1 1

. / / . . .
we derive 71 > 5 = 71 > 75,7 > 7 = 7] > 75. By our induction hypothesis,
’ ’
=7 7 =7, 7 = 75. Consequently, 7, = 7/.
3. This is a simple generalization of property 2.

<

Of course the real fun with prime numbers is the the unique factorization theorem.
Since > is not commutative we get a stronger version of the traditional theorem:

» Lemma 8 (Unique representation of ST). For each T € Tt\{e}, there exists a unique
sequence Ty, ..., T, € Ty, such that T =<}, 7;. Each 1; is called a prime factor of 7.

19:7
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Proof. We prove by induction on the height of 7. The base case T! is trivial. Assume it
holds for T* and let 7 € T*+1. If 7 is prime then we are done. Otherwise, let 71,72 € T*\{e}
and 7 = 7! xx 72, By our induction hypothesis, there are 2 sequences 71, ..., T,il € T, and

7%, .y Th, € Tp such that 71 = bkl 7l and 72 = 02 | 72 and thus 7 = (2, 71) ba (baF2, 72).
The uniqueness is a consequence of property 3 from Lemma 6. <

» Corollary 9 (Basis of ST). T, U {e} is a basis of ST, i.e. the closure of T, over < together
with e is TT. Furthermore, it is the smallest basis: if B is a basis of St then T, U {e} C B.

Accordingly, we will use T), as our “infinite alphabet” in our isomorphism.

4.3 Connecting Tree Shares to Word Equations

We are ready to make the central connection needed for Lemma 3:
» Lemma 10. (T*,) is isomorphic to (T5,-)

Proof. Let f: Tt — T}, be defined as follows. First, map the identity element e to the empty
word € and then for each prime tree 7, € Tt map 7, to itself. Finally, for each composite
7 € TT map 7 to exactly the concatenation of its (unique) prime factors.

We now wish to prove that for any 7 and 7o, f(