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Preface

The 20th International Conference on Database Theory (ICDT 2017) was held in Venice
Italy, March 21-24, 2017. Originally biennial, the ICDT conference has been held annually
and jointly with the conference on Extending Database Technology (EDBT) since 2009.

The proceedings of ICDT 2017 includes a paper by Carsten Lutz (University of Bremen),
based on his keynote address, an overview of the keynote by Tova Milo (Tel Aviv University),
as well as an overview of the invited lecture of Daniel Marx (Hungarian Academy of Sciences),
and 19 research papers that were selected by the Program Committee.

Out of the 19 accepted papers, the Program Committee selected the paper How many
variables are needed to express an existential positive query? by Simone Bova and Hubie
Chen for the ICDT 2017 Best Paper Award. Furthermore, the Program Committee selected
the paper k-Regret Minimizing Set: Efficient Algorithms and Hardness by Wei Cao, Jian Li,
Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing Wong, and Wei Zhan
for the ICDT 2017 Best Newcomer Award.

We want to acknowledge Andrei Voronkov for his prompt support with the EasyChair
system, which has made ICDT’s transition to a two-cycle submission process work very
smoothly. We thank the previous program chair and current ICDT Council Chair Wim
Martens for his guidance on the mechanics of running the program committee, and last
year’s proceedings chair Thomas Zeume for his help in producing the proceedings. We also
thank the EDBT/ICDT general chair Salvatore Orlando for enormous assistance with issues
related to the conference organization.

Our final thanks is to the members of the ICDT program committee for their work. We
are particularly grateful to the following PC members for the enormous effort and care they
put in, beyond what we can reasonably expect: Meghyn Bienvenue, Gianluigi Greco, Egor
Kostylev, Paweł Parys, Gabriele Puppis, Pierre Senellart, and Jef Wijsen.

We experimented with a different system for running the review and discussion this year,
and we appreciate the patience and flexibility of the PC in trying something new.

Michael Benedikt and Giorgio Orsi
March 2017
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Rewritability in Monadic Disjunctive Datalog,
MMSNP, and Expressive Description Logics∗†

Cristina Feier1, Antti Kuusisto2, and Carsten Lutz3
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Abstract
We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP
sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the
ALC family and on conjunctive queries. We show that rewritability into FO and into monadic
Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable when the original
query satisfies a certain condition related to equality. We establish 2NExpTime-completeness
for all studied problems except rewritability into MDLog for which there remains a gap between
2NExpTime and 3ExpTime. We also analyze the shape of rewritings, which in the MMSNP
case correspond to obstructions, and give a new construction of canonical Datalog programs that
is more elementary than existing ones and also applies to non-Boolean queries.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.3 Deduction and Theorem
Proving, I.2.4 Knowledge Representation Formalisms and Methods, I.1.2 Algorithms, F.2.2 Non-
numerical Algorithms and Problems, H.2.4 Systems, H.2.3 Languages

Keywords and phrases FO-Rewritability, MDDLog, MMSNP, DL, Ontology Mediated Queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.1

Category Invited Talk

1 Introduction

In data access with ontologies, the premier aim is to answer queries over incomplete and
heterogeneous data while taking advantage of the domain knowledge provided by an ontology
[17, 10]. Since traditional database systems are often unaware of ontologies, it is common
to rewrite the emerging ontology-mediated queries (OMQs) into more standard database
query languages. For example, the DL-Lite family of description logics (DLs) was designed
specifically so that any OMQ Q = (T ,Σ, q) where T is a DL-Lite ontology, Σ a data signature,
and q a conjunctive query, can be rewritten into an equivalent first-order (FO) query that
can then be executed using a standard SQL database system [18, 2]. In more expressive
ontology languages, it is not guaranteed that for every OMQ there is an equivalent FO query.
For example, this is the case for DLs of the EL and Horn-ALC families [38, 23], and for DLs
of the expressive ALC family. In many members of the EL and Horn-ALC families, however,

∗ A long version of the paper is available at http://arxiv.org/abs/1701.02231.
† The authors were funded by ERC grant 647289.

© Cristina Feier, Antti Kuusisto, and Carsten Lutz;
licensed under Creative Commons License CC-BY
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1:2 Rewritability in MDDLog, MMSNP, and Expressive DLs

rewritability into monadic Datalog (MDLog) is guaranteed, thus enabling the use of Datalog
engines for query answering. In ALC and above, not even Datalog-rewritability is generally
ensured. Since ontologies emerging from practical applications tend to be structurally simple,
though, there is reason to hope that (FO-, MDLog-, and Datalog-) rewritings do exist in many
practically relevant cases even when the ontology is formulated in an expressive language.
This has in fact been experimentally confirmed for FO-rewritability in the EL family of DLs
[27], and it has led to the implementation of rewriting tools that, although incomplete, are
able to compute rewritings in many practical cases [37, 28, 41].

Fundamental problems that emerge from this situation are to understand the exact
limits of rewritability and to provide (complete) algorithms that decide the rewritability
of a given OMQ and that compute a rewriting when it exists. These problems have been
adressed in [9, 27, 8] for DLs from the EL and Horn-ALC families. For DLs from the ALC
family, first results were obtained in [11] where a connection between OMQs and constraint
satisfaction problems (CSPs) was established that was then used to transfer decidability
results from CSPs to OMQs. In fact, rewritability is an important topic in CSP (where it
would be called definability) as it constitutes a central tool for analyzing the complexity of
CSPs [24, 30, 22, 21]. In particular, rewritability of (the complement of) CSPs into FO and
into Datalog is NP-complete [30, 4, 19], and rewritability into MDLog is NP-hard and in
ExpTime [19]. In [11], these results were used to show that FO- and Datalog-rewritability
of OMQs (T ,Σ, q) where T is formulated in ALC or a moderate extension thereof and q is
an atomic query (AQ) of the form A(x) is decidable and, in fact, NExpTime-complete. For
MDLog-rewritability, one can show NExpTime-hardness and containment in 2ExpTime.

The aim of this paper is to study the above questions for OMQs where the ontology
is formulated in an expressive DL from the ALC family and where the actual query is
a conjunctive query (CQ) or a union of conjunctive queries (UCQ). As observed in [11],
transitioning in OMQs from AQs to UCQs corresponds to the transition from CSP to its
logical generalization MMSNP introduced by Feder and Vardi [24] and studied, for example,
in [34, 32, 33, 12]. More precisely, while the OMQ language (ALC,AQ) that consists of all
OMQs (T ,Σ, q) where T is formulated in ALC and q is an AQ has the same expressive
power as the complement of CSP (with multiple templates and a single constant), the
OMQ language (ALC,UCQ) has the same expressive power as the complement of MMSNP
(with free variables)—which in turn is a notational variant of monadic disjunctive Datalog
(MDDLog). It should be noted, however, that while all these formalisms are equivalent in
expressive power, they differ significantly in succinctness [11]; in particular, the best known
translation of OMQs into MMSNP/MDDLog involves a double exponential blowup. In
contrast to the CSP case, FO-, MDLog-, and Datalog-rewritability of (the complement of)
MMSNP sentences was not known to be decidable. In this paper, we establish decidability
of FO- and MDLog-rewritability in (ALC,UCQ) and related OMQ languages, in MDDLog,
and the complement of MMSNP. We show that FO-rewritability is 2NExpTime-complete
in all three cases, and that MDLog-rewritability is in 3ExpTime; a 2NExpTime lower
bound was established in [15]. Let us discuss our results on FO-rewritability from three
different perspectives. From the OMQ perspective, the transition from AQs to UCQs results
in an increase of complexity from NExpTime to 2NExpTime. From the monadic Datalog
perspective, adding disjunction (transitioning from monadic Datalog to MDDLog) results in
a moderate increase of complexity from 2ExpTime [6] to 2NExpTime. And from the CSP
perspective, the transition from CSPs to MMSNP results in a rather dramatic complexity
jump from NP to 2NExpTime.
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For Datalog-rewritability, we obtain only partial results. In particular, we show that
Datalog-rewritability is decidable and 2NExpTime-complete for MDDLog programs that, in
a certain technical sense made precise in the paper, have equality. For the general case, we
only obtain a potentially incomplete procedure. It is well possible that the procedure is in
fact complete, but proving this remains an open issue for now. These results also apply to
analogously defined classes of MMSNP sentences and OMQs that have equality.

While we mainly focus on deciding whether a rewriting exists rather than actually
computing it, we also analyze the shape that rewritings can take. Since the shape turns out
to be rather restricted, this is important information for algorithms (complete or incomplete)
that seek to compute rewritings. In the CSP/MMSNP world, this corresponds to analyzing
obstruction sets for MMSNP, in the style of CSP obstructions [35, 16, 3] and not to be
confused with colored forbidden patterns sometimes used to characterize MMSNP [34]. More
precisely, we show that an OMQ (T ,Σ, q) from (ALC,UCQ) is FO-rewritable if and only
if it is rewritable into a UCQ in which each CQ has treewidth (1,max{2, nq}), nq the size
of q;1 similarly, the complement of an MMSNP sentence ϕ is FO-definable if and only if it
admits a finite set of finite obstructions of treewidth (1, k) where k is the diameter of ϕ (the
maximum size of a negated conjunction in its body, in Feder and Vardi’s terminology). We
also show that (T ,Σ, q) is MDLog-rewritable if and only if it is rewritable into an MDLog
program of diameter (1,max{2, nq}); similarly, the complement of an MMSNP sentence ϕ
is MDLog-definable if and only if it admits a (potentially infinite) set of finite obstructions
of treewidth (1, k) where k is the diameter of ϕ. For the case of rewriting into unrestricted
Datalog, we give a new and direct construction of canonical Datalog-rewritings. It has
been observed in [24] that for every CSP and all `, k, it is possible to construct a canonical
Datalog program Π of width ` and diameter k in the sense that if any such program is a
rewriting of the CSP, then so is Π; moreover, even when there is no (`, k)-Datalog rewriting,
then Π is the best possible approximation of such a rewriting. The existence of canonical
Datalog-rewritings for (the complement of) MMSNP sentences was already known from [13].
However, the construction given there is quite complex, proceeding via an infinite template
that is obtained by applying an intricate construction due to Cherlin, Shelah, and Shi [20],
which makes them rather hard to analyze. In contrast, our construction is elementary and
essentially parallels the CSP case; it also applies to MMSNP formulas with free variables,
where the canonical program takes a rather special form that involves parameters, similar in
spirit to the parameters to least fixed-point operators in FO(LFP) [5].

Our main technical tool is the translation of an MMSNP sentence into a generalized CSP,
i.e. a CSP in which there are multiple templates, exhibited by Feder and Vardi in [24]. The
translation is not equivalence preserving and involves a double exponential blowup, but was
designed so as to preserve complexity up to polynomial time reductions. Here, we are not so
much interested in the complexity aspect, but rather in the semantic relationship between
the original MMSNP sentence and the constructed CSP. It turns out that the translation
does not quite preserve rewritability. In particular, when the original MMSNP sentence has a
rewriting, then the natural way of constructing from it a rewriting for the CSP is sound only
on instances of high girth. However, FO- and MDLog-rewritings that are sound on high girth
(and unconditionally complete) can be converted into rewritings that are unconditionally
sound (and complete). The same is true for Datalog-rewritings when the MMSNP sentence
has equality, but it remains open whether it is true in the general case.

1 What we mean here is that q has a tree decomposition in which every bag has at most max{2, nq}
elements and in which neighboring bag overlap in at most one element.
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1:4 Rewritability in MDDLog, MMSNP, and Expressive DLs

The structure of this paper is as follows. In Section 2, we give some preliminaries. In
Section 3, we summarize the main properties of Feder and Vardi’s translation of MMSNP
into CSP. This is used in Section 4 to show that FO- and MDLog-rewritability of Boolean
MDDLog programs and of the complement of MMSNP sentences is decidable, also establishing
the announced complexity results. In Section 5, we analyze the shape of FO- and MDLog-
rewritings and of obstructions for MMSNP sentences. In Section 6, we study Datalog-
rewritability of MDDLog programs that have equality and construct canonical Datalog
programs. Section 7 lifts the results from the Boolean case to the general case. Section 8
introduces OMQs and further lifts our results to this setting. We conclude in Section 9.

A long version of the paper is available at: http://arxiv.org/abs/1701.02231.

2 Preliminaries

A schema is a finite collection S = (S1, . . . , Sk) of relation symbols with associated arity. An
S-fact is an expression of the form S(a1, . . . , an) where S ∈ S is an n-ary relation symbol,
and a1, . . . , an are elements of some fixed, countably infinite set const of constants. For an
n-ary relation symbol S, pos(S) is {1, . . . , n}. An S-instance I is a finite set of S-facts. The
active domain dom(I) of I is the set of all constants that occur in a fact in I. For an instance
I and a schema S, we write I|S to denote the restriction of I to the relations in S.

A tree decomposition of an instance I is a pair (T, (Bv)v∈V ), where T = (V,E) is an
undirected tree and (Bv)v∈V is a family of subsets of dom(I) such that: for all a ∈ dom(I),
{v ∈ V | a ∈ Bv} is nonempty and connected in T ; for every fact R(a1, . . . ar) in I, there is a
v ∈ V such that a1, . . . , ar ∈ Bv. Unlike in the traditional setup [25], we are interested in two
parameters of tree decompositions instead of only one. We call (T, (Bv)v∈V ) an (`, k)-tree
decomposition if for all v, v′ ∈ V , |Bv ∩Bv′ | ≤ ` and |Bv| ≤ k. An instance I has treewidth
(`, k) if it admits an (`, k)-tree decomposition.

An instance I has a cycle of length n if it contains distinct facts R0(a0), . . . , Rn−1(an−1),
ai = ai,1 · · · ai,mi

, and there exist pi, p
′
i ∈ pos(Ri), 0 ≤ i < n such that: pi 6= p′i for 1 ≤ i ≤ n,

and ai,p′
i

= ai⊕1,pi⊕1 for 0 ≤ i < n, where ⊕ denotes addition modulo n. The girth of I is the
length of its shortest cycle and ∞ if it has no cycle (in which case we say that I is a tree).

A constraint satisfaction problem (CSP) is defined by an instance T over a schema SE ,
called template. The problem associated with T , denoted CSP(T ), is to decide whether an
input instance I over SE admits a homomorphism to T , denoted I → T . We use coCSP(T )
to denote the complement problem, that is, deciding whether I 6→ T . A generalized CSP
is defined by a set of templates S over the same schema SE and asks for a homomorphism
from the input I to at least one templates T ∈ S, denoted I → S.

An MMSNP sentence θ over schema SE has the form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with
X1, . . . , Xn monadic second-order variables, x1, . . . , xm first-order variables, and ϕ a con-
junction of quantifier-free formulas of the form α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0,
where each αi takes the form Xi(xj) or R(x) with R ∈ SE , and each βi takes the form
Xi(xj). The diameter of θ is the maximum number of variables in some implication in ϕ.

A conjunctive query (CQ) takes the form ∃yϕ(x,y) where ϕ is a conjunction of relational
atoms and x, y denote tuples of variables; the equality relation may be used. Whenever
convenient, we will confuse a CQ ∃yϕ(x,y) with the set of atoms in ϕ. A union of conjunctive
queries (UCQ) is a disjunction of CQs with the same free variables.

A disjunctive Datalog rule ρ has the form S1(x1)∨ · · · ∨Sm(xm)← R1(y1)∧ · · · ∧Rn(yn)
where n > 0 and m ≥ 0. When m ≤ 1, the rule is a Datalog rule. We refer to S1(x1) ∨ · · · ∨
Sm(xm) as the head of ρ, and to R1(y1) ∧ · · · ∧ Rn(yn) as the body. Every variable that
occurs in the head of a rule ρ is required to also occur in the body of ρ. A (disjunctive)
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Datalog ((D)DLog) program Π is a finite set of (disjunctive) Datalog rules with a selected
goal relation goal that does not occur in rule bodies and appears only in non-disjunctive goal
rules goal(x)← R1(x1) ∧ · · · ∧Rn(xn). The arity of Π is the arity of the goal relation; Π is
Boolean if it has arity zero. Relation symbols that occur in the head of at least one rule of
Π are intensional (IDB) relations, and all remaining relation symbols in Π are extensional
(EDB) relations. relation. A (D)DLog program is called monadic or an M(D)DLog program
if all its IDB relations with the possible exception of goal have arity at most one. The size of
a DDLog program Π is the number of symbols needed to write it (where relation symbols
and variables names count one), its width is the maximum arity of non-goal IDB relations
used in it, and its diameter is the maximum number of variables that occur in a rule in Π.
An (`, k)-DLog program is a DLog program of width ` and diameter k. Sometimes we omit k
and speak of `-DLog programs.

For Π an n-ary MDDLog program over schema SE , an SE-instance I, and a1, . . . , an ∈
dom(I), we write I |= Π(a1, . . . , an) if Π ∪ I |= goal(a1, . . . an) where variables in all rules of
Π are universally quantified and thus Π is a set of first-order (FO) sentences. A query q over
SE of arity n is:

sound for Π if for all SE-instances I and a ∈ dom(I), I |= q(a) implies I |= Π(a);
complete for Π if for all SE-instances I and a ∈ dom(I), I |= Π(a) implies I |= q(a);
a rewriting of Π if it is sound for Π and complete for Π.

To additionally specify the syntactic shape of q, we speak of a UCQ-rewriting, an MDLog-
rewriting, and so on. An FO-rewriting takes the form of an FO-query that uses only relations
from the EDB schema and possibly equality, but neither constants nor function symbols. We
say that Π is Q-rewritable if there is a Q-rewriting of Π, for Q ∈ {FO, UCQ, MDLog}.

It was shown in [11] that the complement of an MMSNP sentence can be translated into
an equivalent Boolean MDDLog program in polynomial time and vice versa; moreover, the
transformations preserve diameter and all other parameters relevant for this paper. Thus, we
will not explicitly distinguish between Boolean MDDLog and (the complement of) MMSNP.

3 From MDDLog via Simple MDDLog to CSPs

Feder and Vardi show how to translate an MMSNP sentence into a generalized CSP that
has the same complexity up to polynomial time reductions [24]. The generalized CSP has a
different schema to the original MMSNP sentence and is thus not equivalent to it. We use
this translation to reduce rewritability problems for MDDLog to corresponding problems
for CSPs. In this section, we sum up the results obtained in [24] that are relevant for our
reduction and refer to the long version for more details.

To capture the relation between the schema of an MDDLog program and the generalized
CSP constructed from it, we introduce the notion of an aggregation schema. Let SE be
a schema. A schema S′E is a k-aggregation schema for SE if its relations have the form
Rq(x) where q(x) is a CQ over SE without quantified variables and the arity of Rq(x) is
identical to the number of variables in x, which is at most k. For I an SE-instance, its
corresponding S′E-instance I ′ consists of all facts Rq(x)(a) such that I |= q(a). Conversely,
for I ′ an S′E-instance, the corresponding SE-instance I consists of all facts S(b) such that
Rq(x)(a) ∈ I ′ and S(b) is a conjunct of q(a).

I Example 1. Let SE = {r}, r a binary relation, q(x) = r(x1, x2)∧ r(x2, x3)∧ r(x3, x1)
where x = (x1, x2, x3), and S′E = {Rq(x)}. If I ′ is the S′E-instance {Rq(a, a′, c′), Rq(b, b′, a′),
Rq(c, c′, b′)}, then its corresponding SE-instance I is {r(a, a′), r(a′, c′), r(c′, a), r(b, b′),
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Figure 1 Translating an S′
E-instance into an SE-instance and vice versa.

r(b′, a′), r(a′, b), r(c, c′), r(c′, b), r(b′, c)}. Note that the S′E-instance I ′′ that corresponds
to I is a strict superset of I ′: it contains additional facts such as Rq(c′, b′, a′), see Figure 1.

The translation in [24] consists of two steps. The first step is to transform the given
Boolean MDDLog program Π into a Boolean MDDLog program ΠS over a suitable aggregation
schema S′E . ΠS is of a restricted syntactic form, called simple, which means that each of its
rules contains at most one EDB atom, that this atom contains all variables of the rule body,
each variable exactly once, and that rules without an EDB atom contain at most a single
variable. To achieve this, Π is first saturated by adding all rules that can be obtained from a
rule in Π by identifying variables; then Π is rewritten in an equivalence-preserving way so
that all rule bodies are biconnected, introducing fresh unary and nullary IDBs as needed.
Finally, for each rule body the conjunction q(x) of its EDB atoms is replaced with a single
EDB atom Rq(x)(x), additionally taking care of interactions between the new EDB relations
that arise, e.g. when we have two relations Rq(x) and Rp(x) such that q(x) is contained in
p(x) (in the sense of query containment).

I Theorem 2 ([24]). Given a Boolean MDDLog program Π over EDB schema SE of diameter
k and size n, one can construct a simple Boolean MDDLog program ΠS over a k-aggregation
schema S′E for SE such that
1. If I is an SE-instance and I ′ the corresponding S′E-instance, then I |= Π iff I ′ |= ΠS;
2. If I ′ is an S′E-instance and I the corresponding SE-instance, then

(a) I ′ |= ΠS implies I |= Π;
(b) I |= Π implies I ′ |= ΠS if the girth of I ′ exceeds k.

The size of Πs and the cardinality of S′E are bounded by 2p(k·logn), p a polynomial. The
construction takes time polynomial in the size of ΠS.

Note that ΠS is equivalent to Π only on instances whose girth exceeds k, the maximal arity
of a relation symbol in S′E .

In the second step, the simple MDDLog program ΠS is translated into a generalized CSP
whose complement is equivalent to ΠS . Informally, one introduces one template for every
0-type (set of nullary IDBs), each template contains one constant for every 1-type (set of
at most unary IDBs) that is compatible with the 0-type and interprets the EDB relations
in a maximal way so that all rules in Π are satisfied (when interpreting the IDBs true as
suggested by the 1-types).

I Theorem 3 ([24]). Let Π be a simple Boolean MDDLog program over EDB schema SE

and with IDB schema SI , m the maximum arity of relations in SE. Then there exists a set
of templates SΠ over SE such that
1. Π is equivalent to coCSP(SΠ);
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2. |SΠ| ≤ 2|SI | and |T | ≤ |SE | · 2m|SI | for each T ∈ SΠ;
The construction takes time polynomial in

∑
T∈SΠ

|T |.

4 FO- and MDLog-Rewritability of Boolean MDDLog Programs

We exploit the translation described in the previous section to lift the decidability of FO-
rewritability and of MDLog-rewritability from coCSPs to Boolean MDDLog, and thus also to
MMSNP. In the case of FO, we obtain tight 2NExpTime complexity bounds. For MDLog, the
exact complexity remains open (as in the CSP case), between 2NExpTime and 3ExpTime.

We start with observing that FO-rewritability and MDLog-rewritability are more closely
related than one might think at first glance. In fact, every MDLog-rewriting can be viewed
as an infinitary UCQ-rewriting and, by Rossman’s homomorphism preservation theorem [39],
FO-rewritability of a Boolean MDDLog program coincides with (finitary) UCQ-rewritability.
The latter is true also in the non-Boolean case.

I Proposition 4. An MDDLog program Π is FO-rewritable iff it is UCQ-rewritable.

For utilizing the translation of Boolean MDDLog programs to generalized CSPs in the
intended way, the interesting aspect is to deal with the translation of a Boolean MDDLog
program Π into a simple program ΠS stated in Theorem 2, since it is not equivalence
preserving. The following lemma relates rewritings of Π to rewritings of ΠS .

I Lemma 5. Let Π be a Boolean MDDLog program of diameter k, ΠS as in Theorem 2, and
Q ∈ {UCQ,MDLog,DLog}. Then
1. every Q-rewriting of ΠS can effectively be converted into a Q-rewriting of Π;
2. every Q-rewriting of Π can effectively be converted into a Q-rewriting of ΠS that is

(i) sound on instances of girth exceeding k and (ii) complete.

Proof (Sketch). We only give the constructions for the case Q = UCQ and refer to the long
version for the other cases and for correctness proofs. For Point 1, let qΠS

be a UCQ-rewriting
of ΠS . Then we obtain a UCQ-rewriting of Π by replacing every atom Rq(x)(y) with q[y/x],
that is, with the result of replacing the variables x in q(x) with the variables y.

For Point 2, let qΠ be a UCQ-rewriting of Π. We obtain a UCQ-rewriting of ΠS by taking
the UCQ that consists of all CQs which can be obtained as follows:
1. choose a CQ q(x) from qΠ, identify variables in q to obtain a CQ q′(x′), and choose a

partition q1(x1), . . . , qn(xn) of q′(x′);
2. for each i ∈ {1, . . . , n}, choose a relation Rp(z) from the EDB schema of ΠS and a vector y

of |z| variables (repeated occurrences allowed) that are either from xi or do not occur in x′
such that qi(xi) ⊆ p[y/z]; then replace qi(xi) in q′(x′) with the single atom Rp(z)(y). J

Point 2 of Lemma 5 only yields a rewriting of ΠS on S′E-instances of high girth. We
next show that for CSPs, the existence of a Q-rewriting on instances of high girth, Q ∈
{UCQ,MDLog}, implies the existence of a Q-rewriting that works on instances of unrestricted
girth. Whether the same is true for Q = Datalog remains as an open problem.

I Lemma 6. Let S be a set of templates over schema SE, g ≥ 0, and Q ∈ {UCQ,MDLog}.
If coCSP(S) is Q-rewritable on instances of girth exceeding g, then it is Q-rewritable.

The proof of Lemma 6 uses a well-known combinatorial lemma that goes back to Erdös and
was adapted to CSPs by Feder and Vardi. Putting together Theorem 2 and 3, Proposition 4,
and Lemmas 5 and 6, we obtain the following reductions of rewritability of Boolean MDDLog
programs to CSP rewritability.
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I Proposition 7. Every Boolean MDDLog program Π can be converted into a set of templates
SΠ such that
1. Π is Q-rewritable iff SΠ is Q-rewritable for every Q ∈ {FO,UCQ,MDLog};
2. every Q-rewriting of Π can be effectively translated into a Q-rewriting of SΠ and vice

versa, for every Q ∈ {UCQ,MDLog}.
3. |SΠ| ≤ 22p(n) and |T | ≤ 22p(n) for each T ∈ SΠ, n the size of Π and p a polynomial.
The construction takes time polynomial in

∑
T∈SΠ

|T |.

FO-rewritability of CSPs is NP-complete [30] and it was observed in [11] that the upper
bound lifts to generalized CSPs. MDLog-rewritability of coCSPs is NP-hard and in ExpTime
[19]. We show in the long version that this upper bound lifts to generalized coCSPs. Together
with Proposition 7 and the lower bounds from [15], we obtain the following:

I Theorem 8. For Boolean MDDLog programs and the complement of MMSNP sentences,
1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
2. MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard).

5 Shape of Rewritings and Obstructions for MMSNP sentences

An important first step towards the design of practical algorithms that compute rewritings
(when they exist) is to analyze the shape of the rewritings. In the case of CSPs, both UCQ-
and MDLog-rewritings are known to be of a rather restricted shape, far from exploiting the
full expressive power of the target languages: any FO-rewritable CSP has a UCQ-rewriting
that consists of tree-shaped CQs and any MDLog-rewritable CSP has an MDLog-rewriting in
which each rule has at mosrt a single EDB atom. In this section, we establish corresponding
results for Boolean MDDLog.

Exploiting the results concerning the shape of UCQ- and MDLog- rewritings for CSPs
and the constructions from the proof of Point 2 of Lemma 5, one can show the following.

I Theorem 9. Let Π be a Boolean MDDLog program of diameter k. Then
1. if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k);
2. if Π is MDLog-rewritable, then it has an MDLog-rewriting of diameter k.

In a sense, the concrete bound k in Points 1 and 2 of Theorem 9 is quite remarkable.
Point 2 says, for example, that when eliminating disjunction from a Boolean MDDLog
program, it never pays off to increase the diameter.

For CSPs, FO- and MDLog-rewritability is closely related to the theory of obstructions:
an obstruction set O for a CSP template T over schema SE is a set of instances over the
same schema, called obstructions, such that for any SE-instance I, we have I 6→ T iff O → I

for some O ∈ O. A lot is known about CSP obstructions. For example, T is FO-rewritable if
and only if it has a finite obstruction set [3] if and only if it has a finite obstruction set that
consists of finite trees [36], and T is MDLog-rewritable if and only if it has a (potentially
infinite) obstruction set that consists of finite trees [24].

Here we establish similar results for the case of MMSNP. Obstruction sets for MMSNP
are defined in the obvious way: an obstruction set O for an MMSNP sentence θ over schema
SE is a set of instances over the same schema such that for any SE-instance I, we have I 6|= θ

iff O → I for some O ∈ O. The following result, which essentially is a consequence of Point 1
of Theorem 9, characterizes FO-rewritability of MMSNP sentences in terms of obstruction
sets.
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I Corollary 10. For every MMSNP sentence θ, the following are equivalent:
1. θ is FO-rewritable;
2. θ has a finite obstruction set;
3. θ has a finite set of finite obstructions of treewidth (1, k).

We now turn to MDLog-rewritability.

I Proposition 11. Let θ be an MMSNP sentence of diameter k. Then ¬θ is MDLog-rewritable
iff θ has a set of obstructions (equivalently: finite obstructions) that are of treewidth (1, k).

We remark that the results in [13] almost give Proposition 11, but do not seem to deliver a
concrete bound on the parameter k of the treewidth of obstruction sets.

6 Datalog-Rewritability of Boolean MDDLog Programs and
Canonical Datalog Programs

We study the Datalog-rewritability of Boolean MDDLog programs. In contrast to the case
of FO- or MDLog-rewritings, we obtain a procedure that is sound, but whose completeness
remains an open problem. We can show, however, that the procedure is complete for MDDLog
programs that have equality, a condition that is defined in detail below. We also give a
new and direct construction of canonical Datalog-rewritings of Boolean MDDLog programs
(equivalently: the complements of MMSNP sentences), bypassing the construction of infinite
templates which involves the application of a non-trivial construction due to Cherlin, Shelah,
and Shi [13, 20].

6.1 Datalog-Rewritability of Boolean MDDLog Programs
We say that an MDDLog program Π has equality if its EDB schema includes the distinguished
binary relation eq, Π contains the rules P (x) ∧ eq(x, y)→ P (y) and P (y) ∧ eq(x, y)→ P (x)
for each IDB relation P , and these are the only rules that mention eq. For an MDDLog
program Π that does not have equality, we use Π= to denote the extension of Π with the
fresh EDB relation eq and the above rules. If Π has equality, then Π= simply denotes Π.
Clearly, a DLog-rewriting of Π= can be converted into a DLog-rewriting of Π by dropping
all rules that use the relation eq. This gives the following lemma.

I Lemma 12. For any MDDLog program Π, DLog-rewritability of Π= implies DLog-
rewitability of Π.

It remains an interesting open question whether the converse of Lemma 12 holds.
A CSP template T has equality if its schema includes the distinguished binary relation

eq and T interprets eq as the relation {(a, a) | a ∈ dom(T )}. It can be verified that when an
MDDLog program that has equality is converted into a generalized CSP based on a set of
templates SΠ according to Theorems 2 and 3 (using the concrete constructions in the long
version), then all templates in SΠ have equality. The interesting aspect of having equality is
that it allows us to establish a counterpart of Lemma 6 also for Datalog-rewritability.

I Lemma 13. Let S be a set of templates over schema SE that have equality, and let g ≥ 0.
If coCSP(S) is DLog-rewritable on instances of girth exceeding g, then it is DLog-rewritable.

Proof (Sketch). With every SE-instance I and g ≥ 0, we associate an SE-instance Ig of
girth exceeding g such that for any template T over SE that has equality, Ig → T iff I → T .
In fact, Ig is obtained from I by duplicating domain elements, and introducing chains of
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equality atoms. Then, for every DLog rewriting Γ of coCSP(S) on instances of girth exceeding
g, it is possible to construct a DLog program Γ′ such that I |= Γ′ iff Ig |= Γ. Intuitively, when
executed over I, Γ′ mimics the execution of Γ over Ig. Clearly, Γ′ is then a DLog-rewriting
of coCSP(S) on unrestricted instances. J

DLog-rewritability of CSPs is NP-complete [4, 19] and it was observed in [11] that this result
lifts to generalized CSPs. It thus follows from Theorems 2 and 3 and Lemma 13 that DLog-
rewritability of Boolean MDDLog programs that have equality is decidable in 2NExpTime.
It is straightforward to verify that the 2NExpTime lower bound for DLog-rewritability of
MDDLog programs from [15] applies also to programs that have equality.

I Theorem 14. For Boolean MDDLog programs that have equality, DLog-rewritability is
2NExpTime-complete.

MDDLog programs obtained from OMQs typically do not have equality. Due to Lemma 12,
though, we obtain a sound but possibly incomplete algorithm for deciding DLog-rewritability
of an unrestricted MDDLog program Π by first replacing it with Π= and then deciding
DLog-rewritability as per Theorem 14. We speculate that this algorithm is actually complete.
Note that for CSPs, it is known that adding equality preseves DLog-rewritability [31], and
completeness of our algorithm is equivalent to an analogous result holding for MDDLog.

6.2 Canonical Datalog-Rewritings
For constructing actual DLog-rewritings instead of only deciding their existence, canonical
Datalog programs play an important role. Feder and Vardi show that for every CSP template
T and all `, k > 0, once can construct an (`, k)-Datalog program that is canonical for T in
the sense that if there is any (`, k)-Datalog program which is equivalent to the complement
of T , then the canonical one is [24]. In this section, we show that there are similarly simple
canonical Datalog programs for Boolean MDDLog. Note that the existence of canonical
Datalog programs for MMSNP (and thus for Boolean MDDLog) is already known from [13].
However, the construction given there is rather complex, proceeding via an infinite template
and exploiting that it is ω-categorial. This makes it hard to analyze the exact structure and
size of the resulting canonical programs. Here, we define canonical Datalog programs for
Boolean MDDLog programs in a more elementary way.

Let 0 ≤ ` < k, and let Π be a Boolean MDDLog program over EDB schema SE and with
IDB relations from SI . We first convert Π into a DDLog program Π′ that is equivalent to Π
on instances of treewidth (`, k). Unlike Π, the new program Π′ is no longer monadic. We start
with a preliminary. With every DDLog rule p(y) ← q(x) where q(x) is of treewidth (`, k)
and every (`, k)-tree decomposition (T, (Bv)v∈V ) of q(x), we associate a set of rewritten rules
constructed as follows. Choose a root v0 of T , thus inducing a direction on the undirected
tree T . We write v ≺ v′ if v′ is a successor of v in T and use xv′ to denote Bv ∩Bv′ . For all
v ∈ V \ {v0} such that |xv| = m, introduce a fresh m-ary IDB relation Qv; note that m ≤ `.
Now, the set of rewritten rules contains one rule for each v ∈ V . For v 6= v0, the rule is

pv(yv) ∨Qv(xv)← q(x)|Bv ∧
∧

v≺v′

Qv′(xv′)

where pv(yv) is the sub-disjunction of p(y) that contains all disjuncts P (z) with z ⊆ Bv. For
v0, we include the same rule, but use only pv(yv) as the head. The set of rewritten rules
associated with p(y)← q(x) is obtained by taking the union of the rewritten rules associated
with p(y)← q(x) and any (T, (Bv)v∈V ).
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The DDLog program Π′ is constructed from Π as follows:
1. first extend Π with all rules that can be obtained from a rule in Π by identifying variables;
2. then delete all rules with q(x) not of treewidth (`, k) and replace every rule p(y)← q(x)

with q(x) of treewidth (`, k) with the rewritten rules associated with it.
It can be verified that Π′ satisfies the following conditions:
(i) Π′ is sound for Π, that is, for all SE-instances I, I |= Π′ implies I |= Π;
(ii) Π′ is complete for Π on SE-instances of treewidth (`, k), that is, for all such instances I,

I |= Π implies I |= Π′.
Let S′I denote the additional IDB relations in Π′. We now construct the canonical

(`, k)-DLog program Γc for Π. Fix constants a1, . . . , a`. For `′ ≤ `, we use I`′ to denote the
set of all SI ∪ S′I -instances with domain a`′ := a1, . . . , a`′ . The program uses `′-ary IDB
relations PM , for all `′ ≤ ` and all M ⊆ I`′ . It contains all rules q(x)→ PM (y), M ⊆ I`′ ,
that satisfy the following conditions:
1. q(x) contains at most k variables;
2. for every extension J of the SE-instance Iq|SE

with SI ∪ S′I -facts such that
(a) J satisfies all rules of Π′ and does not contain goal() and
(b) for each PN (z) ∈ q, N ⊆ I`′′ , there is an L ∈ N such that L[z/a`′′ ] = J |SI∪S′

I
, z

there is an L ∈M such that L[y/a`′ ] = J |SI∪S′
I
,y

where L[x/a] denotes the result of replacing the constants in a with the variables in x (possibly
resulting in identifications) and where J |SI∪S′

I
,x denotes the simultaneous restriction of J

to schema SI ∪ S′I and constants x.2 We also include all rules of the form P∅(x)→ goal(),
P∅ of any arity from 0 to `.

The following theorem says that the canonical program is indeed canonical in the desired
sense. For two Boolean DLog programs Π1,Π2 over the same EDB schema SE , we write
Π1 ⊆ Π2 if for every SE-instance I, I |= Π1 implies I |= Π2.

I Theorem 15. Let Π be a Boolean MDDLog program, 0 ≤ ` ≤ k, and Γc the canonical
(`, k)-DLog program for Π. Then
1. Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
2. Π is (`, k)-DLog-rewritable iff Γc is a DLog-rewriting of Π.

Note that by Point 2 of Theorem 15, the canonical (`, k)-DLog program for an MDDLog
program Π is interesting even if Π is not rewritable into an (`, k)-DLog program as it is the
strongest sound (`, k)-DLog approximation of Π.

7 Non-Boolean MDDLog Programs

We lift the results about the complexity of rewritability, about canonical DLog programs, and
about the shape of rewritings and obstructions from the case of Boolean MDDLog programs
to the non-Boolean case. For all of this, a certain extension of (`, k)-Datalog programs with
parameters plays a central role. We thus begin by introducing these extended programs.

7.1 Deciding Rewritability
An (`, k)-Datalog program with n parameters is an n-ary (`+ n, k + n)-Datalog program in
which all IDBs have arity at least n and where in every rule, all IDB atoms agree on the

2 We could additionally demand that M is minimal so that Condition 2 is satisfied, but this is not strictly
required.
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variables used in the last n positions (both in rule bodies and heads and including the goal
IDB). The last n positions of IDBs are called parameter positions. To visually separate the
parameter positions from the non-distinguished positions, we use “|” as a delimiter, writing
e.g. P (x1, x2 | y1, y1, y2)← Q(y1 | y1, y1, y2)∧R(x1, y1, y2, x2) where P,Q are IDB, R is EDB,
and there are three parameter positions. Note that, by definition, all variable positions in
goal atoms are parameter positions.

I Example 16. The following is an MDLog program with one parameter that returns all
constants which are on an R-cycle, R a binary EDB relation:

P (y |x) ← R(x | y); P (z |x) ← P (y |x) ∧R(y, z); goal(x) ← P (x |x)

Parameters in Datalog programs play a similar role as parameters to least fixed-point operators
in FO(LFP), see for example [5] and references therein. The program in Example 16 is not
definable in MDLog without parameters, which shows that adding parameters increases
expressive power. But although (`, k)-DLog programs with n parameters are (`+ n, k + n)-
DLog programs, one should think of them as a mild generalization of (`, k)-programs.

To lift decidability and complexity results from the Boolean case to the non-Boolean case,
we show that rewritability of an n-ary MDDLog program into (`, k)-DLog with n parameters
can be Turing reduced to rewritability of Boolean MDDLog programs into (`, k)-DLog
(without parameters). Note that the case ` = 0 is about UCQ-rewritability (and thus about
FO-rewritability) since 0-DLog programs (with and without parameters) are an alternative
presentation of UCQs.

The reduction proceeds in two steps: first, rewritability of an n-ary MDDLog program
into (`, k)-DLog with n parameters is Turing reduced to rewritability of Boolean MDDLog
programs with constants into (`, k)-DLog with constants; then (`, k)-DLog rewritability of
a Boolean MDDLog program with constants is reduced to (`, r)-DLog rewritability of a
Boolean MDDLog program with constants, where r is the maximum number of occurrences
of variables in a rule body of the program with constants. We can now lift the complexity
results from Theorems 8 and 14 to the non-Boolean case.

I Theorem 17. In MDDLog,
1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
2. rewritability into MDLog with parameters is in 3ExpTime (and 2NExpTime-hard);
3. DLog-rewritability is 2NExpTime-complete for programs that have equality.

In view of Point 2, we remark that for non-Boolean MDDLog programs Π, MDLog with
parameters is in a sense a more natural target for rewriting than MDLog without parameters.

I Example 18. The following MDDLog program is rewritable into the MDLog program
with parameters from Example 16, but not into an MDLog program without parameters:

P0(x) ∨ P1(y)← R(x, y); goal(x)← P0(x; ) P1(y)← P1(x) ∧R(x, y); goal(x)← P1(x)

MDLog with parameters also enjoys similarly nice properties as standard MDLog. For
example, containment is decidable. This follows from [40, 14] where generalizations of
MDLog with parameters are studied, the actual parameters being represented by constants.
We also remark that Theorem 17 remains true even when we admit constants in MDDLog
programs and that, as another consequence of our reductions, rewritability of MDDLog
programs into DLog programs with parameters is decidable if and only if DLog-rewritability
of Boolean MDDLog programs is decidable.
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7.2 Canonical Datalog-Rewritings
We now turn our attention to canonical DLog-rewritings for non-Boolean MDDLog programs.
For any n-ary MDDLog program Π, and ` < k, we construct a canonical (`, k)-DLog program
with n parameters. The construction is a refinement of the one from the Boolean case.

We start with some preliminaries. An n-marked instance is an instance I endowed with n
(not necessarily distinct) distinguished elements c = c1, . . . , cn. An (`, k)-tree decomposition
with n parameters of an n-marked instance (I, c) is an (`+m, k +m)-tree decomposition
of I, m the number of distinct constants in c, in which every bag Bv contains all constants
from c. An n-marked instance has treewidth (`, k) with n parameters if it admits an (`, k)-tree
decomposition with n parameters.

We first convert Π into a DDLog program Π′ that is equivalent to Π on instances
of bounded treewidth. The construction is identical to the Boolean case (first variable
identification, then rewriting) except that, in the rewriting step,
1. we use treewidth (`+ n, k + n) in place of treewidth (`, k); consequently, the arity of the

freshly introduced IDB relations may also be up to `+ n;
2. for goal rules, all head variables occur in the root bag of the tree decomposition (they can

then be treated in the same way as a Boolean goal rule despite the n-ary head relation).
It can be verified that Π′ is sound for Π. It is complete for Π only on n-marked instances of
treewidth (`, k) with n parameters: for all such instances (I, c), I |= Π[c] implies I |= Π′[c].

Let S′I denote the new IDB relations in Π′. We now construct the canonical (`, k)-DLog
program with n parameters Γc. Fix constants a1, . . . , a`, b1, . . . , bn and let I`′+n denote
the set of all SI ∪ SI′-instances with domain a`′+n := a1, . . . , a`′ , b1, . . . , bn. The program
uses `′ + n-ary IDB relations PM , for all `′ ≤ ` and all M ⊆ I`′+n. It contains all rules
q(x)→ PM (y |xp), M ⊆ I`′+n, that satisfy the following conditions:
1. q(x) contains at most k + n variables;
2. in every extension J of the SE-instance Iq|SE

with SI ∪ S′I -facts such that
(a) J satisfies all rules of Π′ and does not contain goal(xp) and
(b) for each PN (z |xp) ∈ q, N ⊆ I`′′+n, there is an L ∈ N such that L[zxp/a`′′+n] =

J |SI∪S′
I
, z

there is an L ∈M such that L[yxp/a`′+n] = J |SI∪S′
I
,y

We also include all rules of the form P∅(y |xp)→ goal(xp). This finishes the construction. It
is straightforward to verify that Γc is sound for Π and complete in the same sense as Π′. We
obtain the following generalization of Theorem 15.

I Theorem 19. Let Π be an n-ary MDDLog program, 0 < ` ≤ k, and Γc the canonical
(`, k)-DLog program with n parameters associated with Π. Then
1. Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
2. Π is rewritable into (`, k)-DLog with n parameters iff Γc is a rewriting of Π.

7.3 Shape of Rewritings and Obstructions
We now analyze the shape of rewritings of non-Boolean MDDLog programs. An (`, k)-tree
decomposition with n parameters of an n-ary CQ q is an (`+ n, k + n)-tree decomposition of
q in which every bag Bv contains all answer variables of q. The treewidth with parameters
of an n-ary CQ is now defined in the expected way.

I Theorem 20. Let Π be an n-ary MDDLog program of diameter k. Then
1. if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k)

with n parameters;
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2. if Π is rewritable into MDLog with n parameters, then it has an MDLog-rewriting with n
parameters of diameter k.

As in the Boolean case, rewritings are closely related to obstructions. We define obstruction
sets for MMSNP formulas with free variables and summarize the results that we obtain for
them. A set of marked obstructions O for an MMSNP formula θ with n free variables over
schema SE is a set of n-marked instances over the same schema such that for any SE-instance
I, we have I 6|= θ[a] iff for some (O, c) ∈ O, there is a homomorphism h from O to I with
h(c) = a. We obtain the following corollary from Point 1 of Theorem 20 in exactly the same
way in which Corollary 10 is obtained from Point 1 of Theorem 9.

I Corollary 21. For θ an MMSNP formula with n free variables, the following are equival-
ent:
1. θ is FO-rewritable;
2. θ has a finite marked obstruction set;
3. θ has a finite set of finite marked obstructions of treewidth (1, k) with n parameters.

It is interesting to note that this result can be viewed as a generalization of the character-
ization of obstruction sets for CSP templates with constants in terms of ‘c-acyclicity’ in [1];
our parameters correspond to constants in that paper. We now turn to MDLog-rewritability.

I Proposition 22. Let θ be an MMSNP formula of diameter k with n free variables. Then ¬θ
is rewritable into an MDLog program with n parameters iff θ has a set of marked obstructions
(equivalently: finite marked obstructions) that are of treewidth (1, k) with n parameters.

8 Ontology-Mediated Queries

We study rewritability of ontology-mediated queries, covering several standard description
logics as the ontology language. We start with introducing the relevant classes of queries.

An ontology-mediated query (OMQ) over a schema SE is a triple (T ,SE , q) where T is a
TBox formulated in a description logic and q is a query over the schema SE ∪ sig(T ), sig(T )
the set of relation symbols used in T . The TBox can introduce symbols that are not in
SE , which allows it to enrich the schema of the query q. As the TBox language, we use
the description logic ALC, its extension ALCI with inverse roles, and the further extension
SHI of ALCI with transitive roles and role hierarchies. Since all these logics admit only
unary and binary relations, we assume that these are the only allowed arities in schemas
throughout the section. As the actual query language, we use UCQs and CQs. The OMQ
languages that these choices give rise to are denoted with (ALC,CQ), (SHI,UCQ), and so
on. In OMQs (T ,SE , q) from (SHI,UCQ), we disallow superroles of transitive roles in q; it
is known that allowing such roles in the query poses serious additional complications, which
are outside the scope of this paper, see e.g. [7, 26]. The semantics of an OMQ is given in
terms of certain answers. More details are provided in the long version of the paper. An
OMQ Q = (T ,SE , q) is FO-rewritable if there is an FO query ϕ(x) over schema SE (and
possibly involving equality), called an FO-rewriting of Q, such that for all SE-instances
I and a ⊆ dom(I), we have I |= Q(a) iff I |= ϕ(a). Other notions of rewritability such
as UCQ-rewritability are defined accordingly. Note that the TBox T can be inconsistent
with the input instance I, that is, there could be no model of T and I. It can thus be a
sensible alternative to work with consistent FO-rewritability, considering only SE-instances
I that are consistent w.r.t. T . As argued in the long version, our results apply to consistent
FO-rewritability, too.
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I Theorem 23. In all OMQ languages between (ALC,UCQ) and (SHI,UCQ), as well as
between (ALCI,CQ) and (SHI,UCQ),
1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete; in fact, there

is an algorithm which, given an OMQ Q = (T ,SE , q), decides in time 22p(nq·lognT ) whether
Q is FO-rewritable;

2. MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard); in fact, there is an
algorithm which, given an OMQ Q = (T ,SE , q), decides in time 222p(nq·lognT )

whether Q
is MDLog-rewritable

where nq and nT are the size of q and T and p is a polynomial.

Note that the runtime for deciding FO-rewritability stated in in Theorem 23 is double
exponential only in the size of the actual query q (which tends to be very small) while it is
only single exponential in the size of the TBox (which can become large) and similarly for
MDLog-rewritability, only one exponential higher.

The lower bounds in Theorem 23 are from [15]. We obtain the upper bounds by translating
the OMQ into an equivalent MDDLog program and then applying the constructions that
we have already established. As shown in [11] and refined in [15], every OMQ from the
languages mentioned in Theorem 23 can be converted into an equivalent MDDLog program
at the expense of a single or even double exponential blowup, depending on the OMQ
language. Thus, we can decide FO- or MDLog-rewritability of an OMQ Q from (SHI,UCQ)
by translating Q into an MDDLog program Π and deciding the same problem for Π. A
detailed analysis of all the relevant blowups involved in the composed reductions reveals that,
when implemented with sufficent care, we actually obtain a 2NExpTime upper bound.

9 Discussion

We have clarified the decidability status and computational complexity of FO- and MDLog-
rewritability in MMSNP, MDDLog, and various OMQ languages based on expressive de-
scription logics and conjunctive queries. For Datalog-rewritability, we were only able to
obtain partial results, namely a sound algorithm that is complete only on a certain class of
inputs and potentially incomplete in general. This raises several natural questions: is our
algorithm actually complete in general? Does an analogue of Lemma 6 (that is, rewritability
on high girth implies rewritability) hold for Datalog as a target language? What is the
complexity of deciding Datalog-rewritability in the afore-mentioned languages? From an
OMQ perspective, it would also be important to work towards more practical approaches for
computing (FO-, MDLog-, and DLog-) rewritings. Given the high computational complexities
involved, such approaches might have to be incomplete to be practically feasible. However,
the degree/nature of incompleteness should then be characterized, and we expect the results
in this paper to be helpful in such an endeavour.

Acknowledgement. We thank Libor Barto, Manuel Bodirsky, and Florent Madeleine for
helpful discussions.
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Abstract
The complexity of evaluating conjunctive queries can depend significantly on the structure of the
query. For example, it is well known that various notions of acyclicity can make the evaluation
problem tractable. More generally, it seems that the complexity is connected to the “treelikeness”
of the graph or hypergraph describing the query structure. In the lecture, we will review some
of the notions of treelikeness that were proposed in the literature and how they are relevant for
the complexity of evaluating conjunctive queries and related problems.
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Abstract
One of the foremost challenges for information technology over the last few years has been to
explore, understand, and extract useful information from large amounts of data. Some particular
tasks such as annotating data or matching entities have been outsourced to human workers for
many years. But the last few years have seen the rise of a new research field called crowdsourcing
that aims at delegating a wide range of tasks to human workers, building formal frameworks, and
improving the efficiency of these processes.

In order to provide sound scientific foundations for crowdsourcing and support the devel-
opment of efficient crowd sourcing processes, adequate formal models and algorithms must be
defined. In particular, the models must formalize unique characteristics of crowd-based settings,
such as the knowledge of the crowd and crowd-provided data; the interaction with crowd mem-
bers; the inherent inaccuracies and disagreements in crowd answers; and evaluation metrics that
capture the cost and effort of the crowd.

Clearly, what may be achieved with the help of the crowd depends heavily on the properties
and knowledge of the given crowd. In this talk we will focus on knowledgeable crowds. We
will examine the use of such crowds, and in particular domain experts, for assisting solving data
management problems. Specifically we will consider three dimensions of the problem:
1. How domain experts can help in improving the data itself, e.g. by gathering missing data and

improving the quality of existing data,
2. how they can assist in gathering meta-data that facilitate improved data processing, and
3. how can we find and identify the most relevant crowd for a given data management task.
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Abstract
Multiround algorithms are now commonly used in distributed data processing systems, yet the
extent to which algorithms can benefit from running more rounds is not well understood. This
paper answers this question for several rounds for the problem of computing the equijoin of n
relations. Given any query Q with width w, intersection width iw, input size IN, output size
OUT, and a cluster of machines with M = Ω(IN

1
ε ) memory available per machine, where ε > 1

and w ≥ 1 are constants, we show that:
1. Q can be computed in O(n) rounds with O(n (INw+OUT)2

M ) communication cost with high
probability.

2. Q can be computed in O(log(n)) rounds with O(n (INmax(w,3iw)+OUT)2

M ) communication cost
with high probability.

Intersection width is a new notion we introduce for queries and generalized hypertree decompos-
itions (GHDs) of queries that captures how connected the adjacent components of the GHDs
are.

We achieve our first result by introducing a distributed and generalized version of Yannaka-
kis’s algorithm, called GYM. GYM takes as input any GHD of Q with width w and depth d,
and computes Q in O(d + log(n)) rounds and O(n (INw+OUT)2

M ) communication cost. We achieve
our second result by showing how to construct GHDs of Q with width max(w, 3iw) and depth
O(log(n)). We describe another technique to construct GHDs with longer widths and lower
depths, demonstrating other tradeoffs one can make between communication and the number of
rounds.
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1 Introduction

The problem of evaluating joins efficiently in distributed environments has gained importance
since the advent of Google’s MapReduce [9] and the emergence of a series of distributed
systems with relational operators, such as Pig [24], Hive [28], SparkSQL [27], and Myria [18].
These systems are conceptually based on Valiant’s bulk synchronous parallel (BSP) computa-
tional model [29]. Briefly, there are a set of machines that do not share any memory and are
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connected by a network. The computation is broken into a series of rounds. In each round,
machines perform some local computation in parallel and communicate messages over the
network. Costs of algorithms in these systems can be broken down to: (1) local computation
of machines; (2) communication between the machines; and (3) the number of new rounds of
computation that are started, which can have large overheads in some systems, e.g. due to
reading input from disk or waiting for resources to be available in the cluster. In this paper,
we focus on communication and the number of rounds, as for many data processing tasks,
the computation cost is generally subsumed by the communication cost [19, 20].

This paper studies the problem of evaluating an equijoin query Q in multiple rounds of
computation in a distributed cluster. We restrict ourselves to queries that are full, i.e. do not
contain projections, but queries can contain self-joins. We let n be the number of relations,
IN the input size, OUT the output size of Q, and M = o(IN) the memory available per
machine in the cluster. Memory sizes of the machines intuitively capture different parallelism
levels: when memory sizes are smaller, we need a larger number of machines to evaluate the
join, which increases parallelism. We assume throughout the paper that M = Ω(IN

1
ε ) for

some constant ε > 1. For practical values of input and memory sizes, ε is a small constant.
For instance, if IN is in terabytes, then even when M is in megabytes, ε ≈ 2.

Our study of multiround join algorithms is motivated by two developments. First, it has
been shown recently that there are prohibitively high lower bounds on the communication
cost of any one-round algorithm for evaluating some join queries [3, 6]. For example, for the
chain query, Cn = R1(A0, A1) ./ R2(A1, A2) ./ · · · ./ Rn(An−1, An), the lower bound on the
communication cost of any one-round algorithm is ≥ ( IN

M )n/4. For example, if the input is
one petabyte, i.e., IN=1015, even when we have machines with ten gigabytes of memory, i.e.,
M=1010, the communication cost of any one-round algorithm to evaluate the C16 query is
100000 petabytes. Moreover, this lower bound holds even when the query output is known
to be small, e.g., OUT = O(IN), and the input has no skew [6], implying that designing
multiround algorithms is the only way to compute such joins more efficiently.

Second, the cost of running a new round of computation has decreased from several
minutes in the early systems (e.g., Hadoop [5]) to milliseconds in some recent systems (e.g.,
Spark [31]), making it practical to run algorithms that consist of a large number of rounds.
Although multiround algorithms are becoming commonplace, how much algorithms can
benefit from running more rounds is not well understood. In this paper, we answer this
question for equijoin queries.

We describe a multiround algorithm, called GYM, for Generalized Yannakakis in
MapReduce (Sections 4-5), which is a distributed and generalized version of Yannaka-
kis’s algorithm for acyclic queries [30]. The performance of GYM depends on two important
structural properties of the input query: depths and widths of its generalized hypertree
decompositions (GHDs). We then present two algorithms, Log-GTA (Section 6) and C-GTA
(Section 7), for constructing GHDs of queries with different depths and widths, exposing a
spectrum of tradeoffs one can make between the number of rounds and communication using
GYM. In the remainder of this section, we give an overview of our results.

1.1 GYM: A Multiround Join Algorithm
The width of a query, i.e., the minimum width of any of its GHDs, characterizes its degree
of cyclicity, where acyclic queries are equivalent to width-1 queries. The original serial
algorithm of Yannakakis takes as input a width-1 GHD of an acyclic query. GYM generalizes
Yannakakis’s algorithm to take as input any GHD of any query Q and evaluates Q in a
distributed fashion. In this paper, we focus on bounded width queries in this paper, i.e.
those whose widths are a constant.
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Table 1 Example Queries Sn, Cn, and TCn.

Query Width Min-Depth
GHD

Intersection
Width

Sn : S(A1, . . . , An−1) ./ R1(A1, B1) ./ · · · ./ Rn−1(An−1, Bn−1) 1 1 1
Cn : R1(A0, A1) ./ R2(A1, A2) ./ · · · ./ Rn(An−1, An) 1 Θ(n) 1

TCn : R1(A0, A1) ./ R2(A0, A2) ./ R3(A1, A2) ./
R4(A2, A3) ./ R5(A2, A4) ./ R6(A3, A4) ./

. . .
Rn−2(A 2n

3 −2, A 2n
3 −1) ./ Rn−1(A 2n

3 −2, A 2n
3

) ./ Rn(A 2n
3 −1, A 2n

3
)

2 Θ(n) 1

A1B1 
λ:R1 

A2B2 
λ:R2 

A1A2…An-1 
λ:S1 

An-2Bn-2 
λ:Rn-2 

An-1Bn-1 
λ:Rn-1 

… 

(a) Sn.

A0A1 
λ:R1 

A1A2 
λ:R2 

An-2An-1 
λ:Rn-1 

An-1An 
λ:Rn 

… 

(b) Cn.

A0A1A2 
λ:R1R2 

A2A3A4 
λ:R4R5 

A2n/3-2A2n/3-1A2n/3 
λ:Rn-2Rn-1 

… 

A2n/3-4A2n/3-3A2n/3-2 
λ:Rn-5Rn-4 

(c) TCn.

Figure 1 Example GHDs.

I Main Result 1. Given a width-w, depth-d GHD of a query Q over n relations, GYM
computes Q in O(d + log(n)) rounds with O(n (INw+OUT)2

M ) communication cost with high
probability.

Since every width-w query over n relations has a GHD of width w and depth at most n,
an immediate corollary to our first main result is that every width-w query can be computed
in O(n) rounds and O(n (INw+OUT)2

M ) communication cost using GYM.
Table 1 lists three example queries and their widths w, minimum depths of their width-w

GHDs, and intersection widths (explained momentarily). Figure 1 shows example GHDs of
these queries. The labels on the vertices of the GHDs in Figure 1 are the λ and χ values,
following the notation in Section 3.

I Example 2. The star query Sn is an acyclic query. As shown in Figure 1, Sn has a
depth-1 and width-1 GHD. Using this GHD, GYM executes Sn in O(log(n)) rounds with a
communication cost of O(n (IN+OUT)2

M ).

I Example 3. The chain query Cn is also an acyclic query. Figure 1 shows an example
width-1 GHD of Cn with depth n−1. On this GHD, GYM executes Cn in O(n) rounds with
a communication cost of O(n (IN+OUT)2

M ).

We present GYM within the context of the MapReduce system because it is the earliest
and one of the simplest modern large-scale data processing systems. However, GYM can
easily run on any BSP system, so our results apply to other BSP systems as well. We also
note that all of the results presented in this paper hold under any amount of skew in the
input data. We discuss the improvements to our results when the inputs to queries are
skew-free in the longer version of our paper [1].

ICDT 2017
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1.2 Log-GTA: Log-depth GHDs
For some width-w queries, any width-w GHD of the query has a depth of Θ(n). Cn and the
triangle-chain query, TCn, shown in Table 1, are examples of such queries with widths 1 and
2, respectively. Therefore, on any width-w GHD of such queries, GYM executes Θ(n) rounds.
Our second main result shows how to execute such queries by GYM in exponentially fewer
number of rounds but with more communication cost by proving a combinatorial lemma
about GHDs, which may be of independent interest to readers:

I Main Result 4. Given a width-w, intersection-width-iw, and depth-d GHD D of Q, we
can construct a GHD D′ of Q of depth O(log(n)) and width at most max(w, 3iw).

Intersection width is a new notion of GHDs we introduce, that captures how connected
the adjacent components of a GHD are. We present an algorithm Log-GTA, for Log-depth
GHD Transformation Algorithm, to achieve our second main result. Using Log-GTA, we
can tradeoff rounds and communication for queries with high depth GHDs as follows:

I Example 5. The TCn query has a width of 2 and intersection width of 1. Figure 1c shows
an example width-2 GHD D of TCn which has a depth of n3 -1. One option to evaluate TCn
is to use D directly. On D, GYM will execute Θ(n) rounds and have a communication cost of
O(n (IN2+OUT)2

M ). Another option is to construct a new GHD D′ from D by Log-GTA, which
will have a depth of O(log(n)) and width of 3. On D′, GYM will take O(log(n)) rounds and
have a communication cost of O(n (IN3+OUT)2

M ).

We end this section by discussing two interesting consequences of Log-GTA and GYM.

Log-depth Decompositions. GHDs [12] are one of several structural decomposition methods
that are used to characterize the cyclicity of queries. Each decomposition method represents
queries as a graph (if the input relations have arity at most 2) or a hypergraph and has a notion
of “width” to measure the cyclicity of queries. Examples include query decompositions [8],
tree decompositions (TDs) [26], and hypertree decompositions (HDs) [17]. Two previous results
by Bodlaender [7] and Akatov [4] have proved the existence of log-depth TDs of hypergraphs
with thrice their treewidths and HDs of hypergraphs with thrice their hypertreewidths,
respectively. Our second main result proves that a similar and stronger property also holds
for GHDs of hypergraphs. Interestingly, neither of these results (including ours) imply each
other. However, we show in the longer version of our paper [1] that Log-GTA also recovers
Bodlaender’s result. That is, Log-GTA also transforms a given TD into log-depth one with
thrice its treewidth. In addition, we show that a modification of Log-GTA recovers both
Akatov’s and Bodlaender’s results and a weaker version of our second main result. We also
show that using similar definitions of intersection widths for TDs and HDs, we can improve
both Bodlaender’s and Akatov’s results.

Parallel Complexity of Bounded-width Queries. Database researchers have often thought
of Yannakakis’s algorithm as having a sequential nature, executing for Θ(n) steps in the PRAM
model. In the PRAM literature [10, 15, 16], acyclic queries have been described as being
polynomial-time sequentially solvable by Yannakakis’s algorithm, but highly parallelizable
by the ACQ algorithm [14], where parallelizability refers to being in the complexity class NC.
By constructing log-depth GHDs of queries and simulating GYM in the PRAM model, we
show that unlike previously thought, with simple modifications Yannakakis’s algorithm can
run in logarithmic rounds, implying that bounded-width queries are in the complexity class
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NC, recovering a result that was prove using the ACQ algorithm [14]. We note that BSP
models can also simulate PRAM and a comparison of GYM against a distributed simulation
of ACQ, which we call ACQ-MR, is given in the longer version of our paper [1]. We also
show in the longer version of our paper [1] that GYM can match ACQ-MR’s performance
on every query using an appropriate GHD for the query and on some queries GYM strictly
outperforms ACQ-MR.

2 Related Work

We provide a brief overview of related work here. A comprehensive coverage of related work
is in the full version of this paper [1].

Shares. Shares [3] is the optimal one-round join algorithm. References [2] and [6] have
shown that for every query Q, and value of M , and skew level, the Shares algorithm can
be configured to incur the lowest possible communication cost among one-round algorithms
that send at most M input tuples to each machine. However, as we discussed in Section 1,
for some queries, these costs can be prohibitively expensive.

Other Distributed Join Algorithms. Reference [6] studies multiround distributed join
algorithms in the Massively Parallel Computing (MPC) model. Reference [6] proves lower
bounds on the number of rounds required to compute queries when M = IN

p1−ε′ , where p is
the number of machines, and ε′ is a constant ∈ [0, 1) called the space exponent. They show
that when evaluating a query whose GHDs are of depth d on an arbitrary database, any
algorithm with limited memory, where the limitation is defined as space exponent being
a constant, will have to run O(log(d)) rounds. The authors show that running the Shares
algorithm iteratively on sets of the input relations matches these lower bounds on a limited
set of inputs, called matching databases, which represent skew-free inputs. On arbitrary
databases, their iterative Shares algorithm can produce intermediate data of size INΘ(n) for
any query irrespective of its width. By our second result, GYM evaluates these queries on
any database instance in O(log(n)) rounds. So when d i constant but n is unbounded, GYM
runs O(log(n)) rounds whereas their lower bound is O(1). However, GYM keeps intermediate
relation sizes bounded by INmax (w,3iw) + OUT. On matching databases, their algorithms
matches these lower bounds exactly. In the longer version of our paper [1], we show that our
GYM algorithm matches these lower bounds exactly using several optimizations.

Reference [22] describes worst case optimal constant-round join algorithms for several
classes of conjunctive queries when the frequencies of each value in the attributes of the
relations are known. The authors relate the communication cost of algorithms on a query to a
structural property of the query called edge quasi-packing number, which can be smaller than
the width of the query. In contrast, we do not assume any prior knowledge of frequencies.

Generalized Hypertree Decompositions. Structural decomposition methods, such as
GHDs [13], query decompositions (QDs) [8], tree decompositions (TDs) [26], and hypertree
decompositions (HDs) [17], are mathematical tools to characterize the difficulty of computa-
tional problems that can be represented as graphs or hypergraphs, such as joins or constraint
satisfaction problems. GYM can use methods other than GHDs, such as QDs, and HDs,
but we use GHDs because the widths of GHDs are known to be smaller than HDs and QDs,
giving us stronger results in terms of communication cost.

ICDT 2017
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A B

F

C D

E G

(a) Hypergraph.

CDE 
λ:R4 

BCD 
λ:R3 

DEG 
λ:R5 

ABC 
λ:R1 

BF 
λ:R2 

(b) GHD.

Figure 2 Hypergraph and GHD of Example 6.

3 Preliminaries

We review GHDs, describe our model, and specify the assumptions we make in this paper.

3.1 Generalized Hypertree Decompositions
A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty set V (H) of vertices,
and a set E(H) of subsets of V (H), the hyperedges of H. Natural join queries can be
expressed as hypergraphs, where we have a vertex for each attribute of the query, and a
hyperedge for each relation.

I Example 6. Consider the query Q:

R1(A,B,C) ./ R2(B,F ) ./ R3(B,C,D) ./
R4(C,D,E) ./ R5(D,E,G)

The hypergraph of Q is shown in Figure 2a.

Let H be a hypergraph. A generalized hypertree decomposition (GHD) of H is a
triple D = (T, χ, λ), where:

T (V (T ), E(T )) is a tree;
χ : V (T )→ 2V (H) is a function associating a set of vertices χ(t) ⊆ V (H) to each vertex t
of T ;
λ : V (T )→ 2E(H) is a function associating a set of hyperedges to each vertex t of T ;

such that the following properties hold:
1. For each e ∈ E(H), there is a vertex t ∈ V (T ) such that e ⊆ χ(t).
2. For each v ∈ V (H), the set {t ∈ V (T )|v ∈ χ(t)} is connected in T .
3. For every t ∈ V (T ), χ(t) ⊆

⋃
λ(t), i.e., hyperedges of λ(t) must “cover” the vertices of

χ(t).
For any t ∈ V (T ), we refer to χ(t) as the attributes of t and λ(t) as the relations on t. A
GHD of a join query Q is defined to be a GHD on the hypergraph of Q.

I Example 7. Figure 2b shows a GHD of the query from Example 6. In the figure, the
attribute values on top of each vertex t are the χ assignments for t and the λ assignments
are explicitly shown.

We next define several properties of GHDs and hypergraphs:
The depth of a GHD D = (T, χ, λ) is the depth of the tree T .
The width of a GHD D is maxt∈V (T ){|λ(t)|}, i.e., the maximum number of relations
assigned to any vertex t.
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A1 A2 A4 A2n/3 A2n/3-2 

A0 A3 A2n/3-1 

… 

Figure 3 Hypergraph of TCn.

The generalized hypertree width, or width for short, of a hypergraph H is the
minimum width of all GHDs of H.

The width of a query captures its degree of cyclicity. In general, the larger the width of a
query, the more “cyclic” it is. Acyclic queries are exactly the queries with width 1 [8]. We
next define a new notion called intersection width.

The intersection width of a GHD D = (T, χ, λ) is defined as follows: For any adjacent
vertices t, t′ ∈ V (T ), let iw(t, t′) denote the size of the smallest set S ⊆ E(H) such that
χ(t) ∩ χ(t′) ⊆

⋃
s∈S s. In other words, iw(t, t′) is the size of the smallest set of relations

whose attributes cover the common attributes between t and t′. The intersection width
iw of a GHD is the maximum iw(t, t′) over all adjacent t, t′ ∈ V (T ).

Notice that the intersection width of D is never larger than the width of D, because
∀ t, t′ ∈ V (T ) : iw(t, t′) ≤ |λ(t)|, since by the 3rd property of GHDs λ(t) is one (possibly
not the smallest) set of relations that covers the attributes of t, and therefore any common
attribute that t shares with its neighbors. The intersection width of a GHD can be strictly
smaller than the width, as the next example shows.

I Example 8. Consider the TCn example from Table 1. TCn is a width-2 query. The
hypergraph of TCn, shown in Figure 3, visually is a chain of triangles, where any two
consecutive triangles are connected by a single attribute. Figure 1c shows a width-2 GHD
of TCn, where each node covers one of the triangles in the same order they appear in the
hypergraph. The intersection width of this GHD is 1, as the common attribute between each
triangle can be covered by one relation (e.g., A2, which is the common attribute between the
first two triangles, can be covered by R2).

In the rest of this paper we restrict ourselves, for simplicity of presentation, to queries
whose hypergraphs are connected. All of our results generalize to queries with disconnected
hypergraphs. A GHD D(T, χ, λ) of a hypergraph H is called complete if each hyperedge
e ∈ E(H) occurs in λ(t) of some vertex t ∈ V (T ). That is, each relation is assigned to the
λ-label of some vertex t ∈ V (T ). We assume throughout the paper that the GHDs we use
are rooted, i.e., one of the vertices (arbitrarily) in T is picked as a root. This ensures that
there is a well defined notion of height of vertices and parent-child relationships between the
vertices in T . We end this section by stating a lemma about complete GHDs of queries:

I Lemma 9. If a query Q has a width-w, intersection width-iw GHD D = (T, χ, λ) of depth
d, then Q has a complete GHD D′ = (T ′, χ′, λ′) with depth ≤ d+ 1, width w, intersection
width iw, and |V (T ′)| ≤ 4n.

We prove this lemma in the longer version of our paper [1]. Using this lemma, we will assume
w.l.o.g. that the GHDs of queries that we use in our algorithms are complete and have O(n)
size.

ICDT 2017
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3.2 MapReduce and Cost Model
Our MapReduce (MR) model is equivalent to the MR model in reference [25] except we use
tuples instead of bits as our cost unit. In the tuple-based MR model, the unit of memory
and communication cost is a base or intermediate tuple consisting of any set of attributes
in Q. There is a set of distributed machines on a networked file system, each with memory
M = o(IN).

Map Stage: Each machine, referred to as a mapper, reads a set of base or intermediate
tuples over any set of attributes in the query from the networked file system. Mappers can
send tuples to one or more machines, called reducers1, deterministically or by hashing them
on any set of their attributes. We assume that mappers have access to the same random bits
and families of universal hash functions.2 Suppose there are k reducers. Using an appropriate
family of hash functions, mappers can hash tuples of an input or intermediate relation R,
using any subset of the tuples’ attributes, to one of the k reducers. Therefore two tuples with
the same attributes that were used in the hashing will go to the same reducer. The total
number of tuples received by a reducer from all mappers should not exceed memory size M .
Otherwise the computation aborts. We note that we use randomization for load-balancing
only. Specifically, GYM might send a machine more than M tuples, exceeding the memory
capacity of the machine, resulting in the computation to abort. However, this will happen
with exponentially small probability.

Reduce Stage: Each reducer locally performs any computation on the ≤ M tuples it
receives, produces a set of output tuples, and streams the output tuples to the network file
system. The local computation at a reducer cannot exceed memory size M , but the output
of a reducer can exceed M as it is streamed to the file system.

The communication cost of each round is defined as the total number of tuples sent from
all mappers to reducers plus the number of output tuples produced by the reducers. We
measure the complexity of our algorithms in terms of the total communication cost and the
number of rounds. In the longer version of our paper [1], we compare our model to existing
models of modern distributed BSP systems.

3.3 Assumptions
We next specify three assumptions we make throughout the paper.
1. As in many MapReduce and distributed BSP models [6, 11, 21, 23, 25], we constrain M

to be o(IN). This ensures that machines cannot store the entire input. Otherwise we can
send the entire input to a single machine and incrementally evaluate the join using any
binary join plan, without exceeding memory O(M), in a single round and without any
communication (except to write the output to the networked file system).

2. We assume M = Θ(IN
1
ε ) for some constant ε > 1.

3. We assume queries have constant widths, i.e., the term w is a constant (O(1)).
As we discuss in Section 5, the complexities of our algorithms become slightly worse when
we drop assumptions (2) and (3).

1 The machines we refer to as reducers are equivalent to reduce keys in the original description of MR [9].
These are separate groups of data on which the reduce() function is executed in the original system.

2 Access to these random bits do not require any synchronization. In practice this would achieved by
using a pseudorandom number generator with the same seed.
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3.4 Basic Relational Operations in MR

We next state four lemmas characterizing the costs of joins, duplicate elimination, semijoins,
and intersections in our model.

I Lemma 10. Any z relations R1, . . . , Rz can be joined in 1 round with O( z
z(Σi|Ri|)z
Mz−1 +

|R1 ./ · · · ./ Rz|) communication. When z is a constant, the join can be performed in
O( (Σi|Ri|)z

Mz−1 + |R1 ./ · · · ./ Rz|) communication.

Proof. We perform the join as follows. We divide each Ri in gri = z|Ri|
M disjoint groups

of size M
z each. Then we use a total of gr1 × · · · × grz reducers and map a distinct set

of z groups, one from each relation, to each reducer. Each reducer joins its z groups
locally. Thus we use zz|R1|...|Rz|

Mz reducers and each reducer gets an input equal to M ,
and the total output size is |R1 ./ · · · ./ Rz|. Therefore, the total communication cost is
O( z

z(Σi|Ri|)z
Mz−1 + |R1 ./ · · · ./ Rz|). J

We note that Lemma 10 holds even if the given relations contain self-joins.

I Lemma 11. Let S be a multiset such that each tuple t ∈ S has at most k duplicates. We can
remove the duplicates in S w.h.p. in O(logM (k)) rounds and O(logM (k)|S|) communication.

Proof. We cannot send the duplicates of each tuple to a separate reducer because k might be
greater than M , exceeding the memory of machines. Let h be a hash function mapping the
tuples of S into |S|2 buckets randomly, so w.h.p. each bucket h(i) gets O(1) unique tuples.
In the first round of duplicate elimination, we use |S|2k2 reducers indexed with two numbers,
(1, 1), . . . , (1, k2), . . . , (|S|2, 1), . . . ,(|S|2, k2), and each tuple t is mapped to the reducer with
the first index h(t) and a uniformly random second index. Therefore, w.h.p., each reducer
gets O(1) tuples. Reducers do not perform any computation on their tuples. Note that every
duplicate of tuple t is mapped to a reducer with the first index h(t). In addition, the number
of non-duplicate tuples across all of the reducers with the same first index is O(1), since h
maps O(1) unique S tuples to each h(i). In the second round, for each set of reducers with
the same first index we do the following in parallel: We group the reducers into groups of√
M , map their tuples to the same reducer, and eliminate the duplicates across them.3 This

reduces the number of reducers that can contain duplicates to k2
√
M
. We then repeat this

procedure in parallel for each group of reducers with the same first index until all duplicates
within each group are eliminated. In each round, each reducer gets O(

√
M) tuples and

outputs O(1) tuples. This computation takes O(log√M (k)) rounds. Since the communication
in each round is |S|, this computation takes O(log√M (k)|S|) communication.4 J

I Lemma 12. Let B(X,M) = X2

M . Given two relations R and S, the semijoin S nR can be
computed w.h.p. in O(logM (|R|)) rounds with O(logM (|R|)B(|R|+ |S|,M)) communication.
When M = Ω((|R|)1/ε), for some ε > 1, the semijoin can be performed in O(1) rounds and
O(B(|R|+ |S|,M)) communication.

3 We can also group them into M
c for a constant c that is larger than the (O(1)) tuples any reducer has.

4 As is standard, we use the term w.h.p. in this paper to refer to probabilities that are exponentially small
in the input size IN. The probabilities mentioned in Lemma 11 are exponentially small in the size of S,
which as we will see, in Yannakakis’s algorithm can be smaller than IN. However when an input relation
S on which we perform duplicate elimination is small, we can make this probability exponentially small
in IN by simply increasing the number of our buckets to IN2.

ICDT 2017



4:10 GYM: A Multiround Distributed Join Algorithm

Proof. The first round of the semijoin SnR is similar to the join. Let gr = 2|R|
M and gs = 2|S|

M

be disjoint groups of size M
2 . Each of the grgs reducers locally computes the semijoin of one

S group and one R group it receives. Because each tuple of S is sent to gr different reducers,
there may be up to gr duplicates of each tuple. So the size of the multiset S′ with duplicates
of S is gr|S|. Using Lemma 11, we can eliminate these tuples w.h.p. in O(logM (gr)) rounds
and O(logM (gr)gr|S|) = O( logM (|R|)|R||S|

M ) communication. Together with the costs of the
join operation, which takes 1 round and O( (|R|+|S|)2

M ) communication, we conclude that the
semijoin can be performed w.h.p. in O(logM (|R|)) rounds and O(logM (|R|)B(|R|+ |S|,M))
communication cost. When M = Ω((|R|)1/ε), the semijoin can be computed in O(1) rounds
and O(B(|R|+ |S|,M)) communication. J

I Lemma 13. Two relations R and S can be intersected w.h.p in 1 round with O(|R|+ |S|)
communication.

Proof. Suppose w.l.o.g. that |R| > |S|. We simply hash each tuple of R and S using all
of their attributes into |R|2 machines, so w.h.p. each machine gets O(1) tuples from both
R and S and performs a local intersection, without exceeding M , and writes the at most
|R|+ |S| output. J

4 Distributed Yannakakis

We first review the serial version of Yannakakis’s algorithm for acyclic queries in Section 4.1.
In Section 4.2, we show how to run Yannakakis’s algorithm in a distributed setting in O(n)
rounds and O(nB(IN + OUT,M)) communication cost. In Section 4.3, we reduce the number
of rounds to O(d + log(n)) rounds without affecting the communication cost.

4.1 Serial Yannakakis Algorithm

The serial version of Yannakakis’s algorithm takes as input an acyclic query Q = R1 ./ R2 ./

· · · ./ Rn, and constructs a width-1 GHD D = (T, χ, λ) of Q. Since D is a GHD with width
1, each vertex of D is assigned exactly one relation Ri. We will refer to relations that are
assigned to leaf (non-leaf) vertices in T as leaf (non-leaf) relations. Yannakakis’s algorithm
first eliminates all tuples that will not contribute to the final output by a series of semijoin
operations. The overall algorithm consists of two phases: (1) a semijoin phase; and (2) a
join phase.

Semijoin Phase: The semijoin phase operates recursively as follows.
Basis: If T is a single node, do nothing.
Induction: If T has more than one node, pick a leaf t that is assigned relation R, and
let S be the relation assigned to t’s parent.
1. Replace S by the semijoin of S with R, S nR = S ./ πR∩S(R).
2. Recursively process T \R.
3. Compute the final value of R by computing its semijoin with the value of S that results

from step (2); that is, R := Rn S.
The executions of step (1) in this recursive algorithm form the upward sub-phase, and the
executions of step (3) form the downward sub-phase. In total, this version of the algorithm
performs 2(n− 1) semijoin operations.
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Join Phase: The algorithm performs a series of (n− 1) joins, in any bottom-up order on T .

An important property of Yannakakis’s algorithm is that the semijoin phase removes all
of the “dangling” tuples in the input, i.e., those that will not contribute to the final output.
This guarantees that the sizes of all intermediate tables during the join phase are no larger
than the final output size OUT [30].

4.2 DYM-n
If we simply execute each semijoin and join operation of Yannakakis’s algorithm by the
algorithms in Lemmas 10 and 12, we get a distributed algorithm which we refer to as
DYM-n:

I Theorem 14. DYM-n computes every acyclic query Q in O(n) rounds and in O(nB(IN +
OUT,M)) communication cost.

Proof. The algorithm executes a total of 2(n−1) pairwise semijoins and n−1 joins, in a total
of O(n) rounds. The largest input to any semijoin operation is the largest relation size, which
is at most IN. By Lemma 12, the communication cost of the semijoin phase is O(nB(IN,M)).
In each round of the join phase, the input and outputs are at most the final output size
OUT. By Lemma 10, the cost of each round is O(OUT2

M + OUT). Therefore, the total cost of
both phases is O(n(B(IN,M) + B(OUT,M) + OUT)), which is O(nB(IN + OUT,M)) when
M = O(IN), as we assume in this paper (recall Section 3.3). J

4.3 DYM-d
DYM-d parallelizes Yannakakis’s algorithm further by executing multiple semijoins and joins
in parallel, reducing the number of rounds to O(d + log(n)), where d is the depth of the GHD
D(T, χ, λ), without asymptotically affecting DYM-n’s communication cost.

Upward Semijoin Sub-phase in O(d + log(n)) Rounds: During the upward semijoin
sub-phase, the algorithm from Section 4.1 picks one leaf t that is assigned relation R and
processes R by replacing it’s parent S with S nR in O(1) rounds. Instead we can pick and
process all leaves in parallel. Consider the set L of leaves of T . Let L1 be the set of leaves
that have no siblings, and let L2 be the remaining leaves. We will replace step (1) of the
algorithm from Section 4.1 with two steps, which will be performed in parallel.

1.1. For each R in L1 in parallel, replace R’s parent S with S nR.
1.2. Divide the leaves in L2 into disjoint pairs of siblings, and up to one triple of siblings

per parent, if there is an odd number of siblings with the same parent. Then in parallel
perform the following computation. Suppose R1 and R2 form such a pair with parent
S. Replace R1 with (S nR1) ∩ (S nR2) and remove R2. If there is a triple R1, R2, R3,
replace R1 with (S nR1) ∩ (S nR2) ∩ (S nR3) (using two pairwise intersections) and
remove R2 and R3.

I Lemma 15. The above procedure runs in O(d + log(n)) rounds.

The proof of this lemma is provided in the longer version of our paper [1]. Since we perform
O(n) intersection or semijoin operations in total and all of the initial and intermediate
relations involved have size at most IN, by Lemmas 12 and 13, the total communication cost
of the upward semijoin sub-phase is O(nB(IN,M)).
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Downward Semijoin Sub-phase in O(d) Rounds: Note that in the downward semijoin
sub-phase, the semijoins of the children relations with the same parent are independent and
can be done in parallel in O(1) rounds. Thus we can perform the downward sub-phase in
O(d) rounds and in O(nB(IN,M)) communication.

Join Phase in O(d + log(n)) Rounds: The join phase is similar to the upward semijoin
sub-phase. The only difference is, we compute S ./ R instead of S n R for R ∈ L1, and
(R1 ./ S) ./ (R2 ./ S) for pair R1, R2 ∈ L2. The total number of rounds required is again
O(d + log(n)). The total communication cost of each pairwise join is O(nB(OUT,M)), since
the intermediate relations being joined are at most as large as OUT. Therefore, both the
semijoin and join phases can be performed in O(d+log(n)) rounds with a total communication
cost of O(nB(IN + OUT,M)), justifying the following theorem:

I Theorem 16. DYM-d evaluates an acyclic query Q in O(d+log(n)) rounds and O(nB(IN+
OUT,M)) communication cost, where d is the depth of a width-1 GHD D(T, χ, λ) of Q.

5 GYM

Our GYM algorithm generalizes DYM-d from acyclic queries to any query. Consider a
width-w, depth-d GHD D(T, χ, λ) of a query Q. By Lemma 9, we assume w.l.o.g. that D
is complete. Consider “materializing” each v ∈ V (T ) by computing IDBv = ./Ri∈λ(v) Ri.
Now, consider the query Q′ = ./v∈V (T ) IDBv. Note that Q′ has the exact same output as Q.
This is because Q′ is also the join of all Ri, where some Ri might (unnecessarily) be joined
multiple times if they are assigned to multiple vertices. However, observe that Q′ is now an
acyclic query and D is now a width-1 GHD for Q′. Therefore we can directly run DYM-d to
compute Q′.

I Theorem 17 (First Main Result). Given a width-w, depth-d GHD D(T, χ, λ) of a query
Q over n relations, GYM executes Q in O(d + log(n)) rounds and O(nB(INw + OUT,M))
communication cost.

Proof. For the materialization stage, for each vertex v of D, joining the w relations inside
λ(v) takes 1 round and O( INw

Mw−1 + |IDBv|) communication cost by Lemma 10. In the worst
case when the relations constitute a Cartesian product, |IDBv| is INw, so evaluating IDBv
takes O(INw) cost. By Lemma 9 there are at most 4n vertices in V (T ), so the materialization
stage takes O(nINw) communication cost. Since the size of each IDBv is at most INw,
executing DYM-d on the IDBv’s takes O(d + log(n)) rounds and O(nB(INw + OUT,M))
communication, which dominates the cost of materialization phase, completing the proof. J

In the longer version of our paper [1], we present an example execution of GYM on a
query. We note that if we drop our assumptions that M = Ω(IN

1
ε ) and w is a constant,

the number of rounds that GYM takes on a width-w, depth-d GHD increases by a factor
of logM (INw) = w logM (IN). This is because the semijoin operations on O(INw) size inputs
will execute O(w logM (IN)) rounds instead of O(1). Similarly, the communication cost of
GYM will increase by at most a factor of max{w logM (IN),ww}. The w logM (IN) and ww

factors are due to the communication cost increases in the semijoin (Lemma 12) and join
operations (Lemma 10), respectively.
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6 Log-GTA

We now describe our Log-GTA algorithm (for Log-depth GHD Transformation Algorithm)
which takes as input a hypergraph H of a query Q, and its GHD D(T, χ, λ) with width w
and intersection width iw, and constructs a GHD D∗ with depth O(log(|V (T )|)) and width
≤ max(w, 3iw). For simplicity, we will refer to all GHDs during Log-GTA’s transformation as
D′(T ′, χ′, λ′), i.e., D′ = D in the beginning and D′ = D∗ at the end. By running GYM on D∗,
we can execute Q in O(log(n)) rounds with O(nB(INmax (w,3iw) + OUT,M)) communication.

6.1 Extending to D′

Log-GTA associates two new labels with the vertices of T ′:
1. Active/Inactive: An ‘active’ vertex is one that will be modified in later iterations of

Log-GTA. Log-GTA starts with all vertices active, and inactivates vertices iteratively
until all of them are inactive. At any point, we refer to the subtree of T ′ consisting of only
active vertices as active(T ′). We prove that active(T ′) is indeed a tree in Lemma 19.

2. Height: The height of a vertex is its minimum distance from a leaf of the tree. The
height of each vertex v is assigned when v is first inactivated, and remains unchanged
thereafter.

In addition, Log-GTA associates a label with each “active” edge (u, v) ∈ E(active(T ′)):
Common-cover(u, v) (cc(u, v)): Is a set S ⊆ E(H) such that (χ(u)∩χ(v)) ⊆ ∪

s∈S
s. In

query terms, cc(u, v) is a set of relations whose attributes cover the common attributes
between u and v. In the original D(T, χ, λ), for each (u, v), we set cc(u, v) to any covering
subset of size at most iw. Recall from Section 3 that by definition of iw, such a subset
must exist.

Unique-c-gc vertices: Consider a tree T of n vertices with a high depth, say, Θ(n). Intu-
itively, such high depths are caused by long chains of vertices, where vertices in the chain
have only a single child. Log-GTA reduces the depth of high-depth GHDs by identifying and
“branching out” such chains. At a high-level, Log-GTA finds a vertex v with a unique child c
(for child), which also has unique child gc (for grandchild), and puts v, c, and gc under a
new vertex s. We call vertices like v unique-c-gc vertices.

In each iteration, Log-GTA identifies a set of nonadjacent unique-c-gc vertices and leaves
of active(T ′), and inactivates them (while shortening the chains of unique-c-gc vertices). We
next state an important lemma that will help bound the number of iterations of Log-GTA
(proved in the longer version of our paper [1]):

I Lemma 18. In a tree with N vertices, we can find two sets L′ and U ′ such that |L′|+|U ′| >
dN4 e and vertices in L′ are leaves, and vertices in U ′ are (1) unique-c-gc vertices; and (2)
pairwise non-adjacent.

6.2 Two Transformation Operations
We next describe the two operations that Log-GTA performs on the nodes of active(T ′).

Leaf Inactivation: Takes a leaf l of active(T ′) and (1) sets its label to inactive; and (2) sets
height(l) to max{0,maxc{height(c)}+ 1}, where c is over the (inactive) children of l. χ(l)
and λ(l) remain the same. The common-cover between l and l’s parent is removed.
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(a) Original GHD. (b) Leaf Inactivation. (c) Unique-c-gc Inactivation.

Figure 4 Effects of leaf inactivation and unique-c-gc inactivation.

Unique-c-gc (And Child) Inactivation: Let u be a unique-c-gc vertex in active(T ′). Note
that u is not necessarily a unique-c-gc vertex in T ′. Let u’s parent be p (if one exists), u’s
child be c, and u’s grandchild be gc. Unique-c-gc inactivation does the following:
1. Creates a new active vertex s, where λ(s) = cc(p, u) ∪ cc(u, c) ∪ cc(c, gc) and χ(s) =

(χ(p) ∩ χ(u)) ∪ (χ(u) ∩ χ(c)) ∪ (χ(c) ∩ χ(gc)).
2. Inactivates u and c. Similar to leaf inactivation, sets their heights to 0 if they have no

inactive children, and one plus the maximum height of their inactive children otherwise.
3. Removes the edges (p, u) and (u, c) and adds an edge from s to both u and c.
4. Adds an edge from p to s with cc(p, s) = cc(p, u) and s to gc with cc(s, gc) = cc(c, gc).

Figure 4b shows the effect of leaf inactivation on vertex v4 of the extended GHD in
Figure 4a. In the figure, green and red indicate that the vertex is active and inactive,
respectively. The attributes of each Ri are the χ values on the nodes that Ri is assigned
to. Figure 4c shows the effect of Unique-c-gc Inactivation on a unique-c-gc vertex v1 from
Figure 4b. We next state a key lemma about these two operations:

I Lemma 19. Assume that an extended GHD D′(T ′, χ′, λ′) of a hypergraph H with act-
ive/inactive labels on V (T ′), and common covers on E(T ′) initially satisfies the following
five properties:
1. active(T ′) is a tree.
2. The subtree rooted at each inactive vertex v contains only inactive vertices.
3. The height of each inactive vertex v is v’s correct height in T ′.
4. |cc(u, v)| ≤ iw between any two active vertices u and v and does indeed cover the shared

attributes of u and v.
5. D′ is a GHD of H with width at most max(w, 3iw).
Performing any sequence of leaf and unique-c-gc inactivations maintains these five properties.

We prove this lemma in the longer version of our paper [1]. We next state an immediate
corollary to Lemma 19.

I Corollary 20. Let D(T, χ, λ) be a GHD of a hypergraph H with width w, intersection width
iw. Consider extending D to GHD D′(T ′, χ′, λ′) with active/inactive labels, common-covers,
and heights as described in Section 6.1, and then applying any sequence of leaf and unique-c-gc
inactivations on D′. Then the resulting D′ is a GHD with width at most max(w, 3iw) and
the height of each inactive vertex v is v’s actual height in T ′.
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1 Input: GHD D(T, χ, λ) for hypergraph H

2 Extend D into D′(T ′, χ′, λ′) as described in Section 6.1.
3 while(there are active nodes in T ′)
4 Select at least 1

4 of the active vertices that are either leaves L′

5 or non-adjacent unique-c-gc vertices U ′

6 Inactivate each l ∈ L′, each u ∈ U ′ and the child of u

7 return D′

Figure 5 Log-GTA.

6.3 Log-GTA
Finally, we present our Log-GTA algorithm. Log-GTA takes a GHD D and extends it into
D′ by following the procedure in Section 6.1. Then, Log-GTA iteratively inactivates a set
of active leaves L′ and nonadjacent unique-c-gc vertices U ′ (along with the children of U ′),
which constitute at least 1

4 fraction of the remaining active vertices in T ′ by Lemma 18, until
all vertices are inactive. Figure 5 shows the pseudocode of Log-GTA. We next state two
lemmas about Log-GTA and then prove our second main result.

I Lemma 21. Log-GTA takes O(log(|V (T )|)) iterations.

Proof. Observe that both leaf inactivation and unique-c-gc inactivation decrease the number
of active vertices in T ′ by 1. In each iteration the number of active vertices decreases by a
factor of 1

4 . Therefore the algorithm terminates in O(log(|V (T )|) iterations. J

I Lemma 22. The height of each inactive vertex v is at most the iteration number at which
v was inactivated.

Proof. By Corollary 20, the heights assigned to vertices are their correct heights in the final
GHD returned. Moreover the height numbers start at 0 in the first iteration and increase by
at most one in each iteration, because in each iteration, the height of each inactivated vertex
v is set to the maximum of v’s inactive children plus one. Therefore the height numbers
assigned in iteration i are less than i, completing the proof. J

I Theorem 23 (Second Main Result). Given any GHD D(T, χ, λ) with width w, intersection
width iw, we can construct a GHD D′(T ′, χ′, λ′) where width w′ ≤ max(w, 3iw), depth(T ′) =
min{depth(T ), O(log(|V (T )|))}.

Proof. By Corollary 20 the width of D′ is at most max(w, 3iw). By Lemmas 19, 21 and 22,
the height of each vertex v is v’s true height in the tree and is at most the maximum iteration
number, which is O(log(|V (T )|)). Therefore, the depth of T ′ is O(log(|V (T )|)). Also, the
leaf and unique-c-gc inactivation operations never increase the depth of the tree, justifying
that the depth of the final tree is min{depth(T ), O(log(|V (T )|))}. J

Theorems 17 and 23 and Lemma 9 imply the following two results:

I Corollary 24. Given a hypergraph H with n hyperedges, width w, intersection width iw,
we can construct a log(n) depth GHD of H with width at most max(w, 3iw).

I Theorem 25. Any query Q with width w can be executed in O(log(n)) rounds and
O(nB(INmax(w,3iw) + OUT,M)) communication.
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We note that Corollary 24 shows that, similar to Bodlaender’s and Akatov’s results about
log-depth TDs and HDs, a similar and stronger property also holds for GHDs. In the longer
version of our paper [1] we further show: (1) Log-GTA without any modifications recovers
Bodlaender’s result about TDs; and (2) a modification of Log-GTA recovers Bodlaender’s
and Akatov’s results and a weaker version of our result.

Surprisingly, if we simulate GYM on PRAM using a log-depth GHD generated by Log-
GTA, we show that any bounded-width query can be evaluated in logarithmic PRAM steps
using polynomial number of processors, i.e., bounded-width queries are in the complexity
class NC—a result that was proven by the ACQ algorithm [14]. This is interesting in itself,
since we recover this positive parallel complexity result by using only a simple variant of
Yannakakis’s algorithm, which has been thought to be an inherently sequential algorithm.

7 C-GTA (Constant-depth GHD Transformation Algorithm)

Our C-GTA algorithm is based on the following observation. For any two adjacent nodes
t1, t2 ∈ V (T ), we can “merge” them and replace them with a new node t ∈ V (T ) and set
χ(t) = χ(t1) ∪ χ(t2), λ(t) = λ(t1) ∪ λ(t2) and set t’s neighbors to the union of neighbors of
t1 and t2. As long as t1 and t2 were either neighbors, or both leaves with the same parent, T
remains a valid GHD tree after this operation. C-GTA operates as follows:
1. For each node u that has an even number of leaves as children, divide u’s leaves into

pairs and merge each pair.
2. For each node u that has an odd number of leaves as children, divide the leaves into pairs

and merge them, and merge the remaining leaf with u.
3. For each vertex u that has a unique child c, if c has an even number of leaf children, then

merge u and c.
If T has L leaves and a set U of pairwise non-adjacent unique-c-gc nodes, then the above
procedure removes at least max(L,U)

2 nodes from T . We next state a combinatorial lemma to
bound this quantity, which is proved in the longer version of our paper [1].

I Lemma 26. Suppose a tree has N nodes, L of which are leaves, and U of which are
unique-c-gc nodes. Then 4L+ U ≥ N + 2.

By Lemma 26, max(L,U) is at least n/8. Therefore, the resulting tree T ′ has at most
15n/16 nodes, and width ≤ 2w. We can use this operation repeatedly to reduce the number
of vertices while increasing width. We can then apply Log-GTA to get the following theorem:

I Theorem 27. For any query Q with a width-w, intersection width-iw GHD D = (T, χ, λ),
for any i, there exists a GHD D′ = (T ′, χ′, λ′) with width ≤ 2i.max(w, 3iw) and depth
≤ log(( 15

16 )in).

Thus we can further trade off communication by constructing trees of even lower depth than
a single invocation of Log-GTA.

8 Conclusions and Future Work

We have shown that by using GYM as a primitive and proving different properties of depths
and widths of GHDs of queries, we can trade off communication against number of rounds
of computations. We believe our approach of discovering such tradeoffs using different
combinatorial properties of GHDs is a promising direction for future work. An important
open area is to explore other GHD construction algorithms that output GHDs with different
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depths and widths. Specifically, we believe it is plausible that an algorithm can generate
polynomially lower depth GHDs with twice their widths (instead of the constant depth
reduction of C-GTA). We also plan to investigate the lower bounds on the communication
costs of algorithms that run O(log(n)) or O(n) rounds.

Acknowledgements. We would like to thank the anonymous ICDT reviewers whose com-
ments and suggestions about many parts of this paper were critical when preparing the final
version of this paper.
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Abstract
Many practical scenarios make it necessary to evaluate top-k queries over data items with par-
tially unknown values. This paper considers a setting where the values are taken from a numerical
domain, and where some partial order constraints are given over known and unknown values: un-
der these constraints, we assume that all possible worlds are equally likely. Our work is the first
to propose a principled scheme to derive the value distributions and expected values of unknown
items in this setting, with the goal of computing estimated top-k results by interpolating the un-
known values from the known ones. We study the complexity of this general task, and show tight
complexity bounds, proving that the problem is intractable, but can be tractably approximated.
We then consider the case of tree-shaped partial orders, where we show a constructive PTIME
solution. We also compare our problem setting to other top-k definitions on uncertain data.
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1 Introduction

Many data analysis tasks involve queries over ordered data, such as maximum and top-k
queries, which must often be evaluated in presence of unknown data values. This problem
occurs in many real-life scenarios: retrieving or computing exact data values is often expensive,
but querying the partially unknown data may still be useful to obtain approximate results,
or to decide which data values should be retrieved next. In such contexts, we can often make
use of order constraints relating the data values, even when they are unknown: for instance,
we know that object A is preferred to object B (though we do not know their exact rating).

This paper thus studies the following general problem. We consider a set of numerical
values, some of which are unknown, and we assume a partial order on these values: we may
know that x > y should hold although the values x or y are unknown. Our goal is to estimate
the unknown values, in a principled way, and to evaluate top-k queries, namely find the
items with (estimated) highest values.

Without further information, one may assume that every valuation compatible with
the order constraints is equally likely, i.e., build a probabilistic model where valuations are
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Sports  Electronics  Clothing 
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Smartphones Smartphones 

Diving Gear Diving Gear 

Diving Watches Diving Watches 
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0.1 

Wearable Devices Wearable Devices 
0.9 

1 

Figure 1 Sample catalog taxonomy with compatibility scores.

uniformly distributed. Indeed, uniform distributions in the absence of prior knowledge is a
common assumption in probabilistic data management [1, 12, 34] for continuous distributions
on data values within an interval; here we generalize to a uniform distribution over multiple
unknown values. Though the distribution is uniform, the dependencies between values lead
to non-trivial insights about unknown values and top-k results, as we will illustrate.

Illustrative example. We consider a specific application setting where our problem occurs.
Consider a scenario where products are classified in a catalog taxonomy (Figure 1) using
human input: the relevance of a product to any category is captured by a compatibility
score. Assessing this compatibility is often left to human judgement rather than attempting
to derive it from records or statistics [49, 9, 40]. Thus we assume scores are obtained via
questions to domain experts or to a crowd of unqualified users1. Our goal is to assign the
product to the top-k most compatible categories among a set of end categories (in yellow
with a solid border), as opposed to virtual categories (dashed border). The virtual categories
generalize the end categories, and allow us to ask broader questions to experts, but we do not
try to assign products to them, e.g., they do not have a dedicated page in our online store.

Imagine now that the product to classify is a smartwatch, and that we want to find
the top-2 end categories for it. We asked an expert for its compatibility score with some
categories (both end and virtual categories), which we indicate in Figure 1. Because expert
input is costly, however, we wish to choose the top-2 end categories based on the incomplete
information that we have. The naïve answer is to look only at categories with known scores,
and to identify Wearable Devices and Diving Watches as the best end categories.

In this scenario, however, we can impose a natural partial order over the scores, both
known and unknown: any product that belongs to a specific category (e.g., Smartphones)
conceptually also belongs to each of the more general categories (e.g., Cell Phones). We can
thus require that if a category x is a sub-category of y, then the product’s compatibility
score for x should be at most its score for y. This can be explained in the instructions to the
humans providing the scores, and enforced by the user interface. Beyond this constraint, we
do not make any further assumption on the scores.

Now, note that due to order constraints, the scores of Watches and Diving Gear, while
unknown, cannot be lower than that of Diving Watches; so either of the two could replace
Diving Watches in the top-2 answer. To choose between these categories, we observe that
the score of Diving Gear must be exactly 0.5 (which bounds it from above and below). In
contrast, as the score of Wearable Devices is 0.9, Clothing has a score of at least 0.9, so the
score of Watches can be anything between 0.5 and an unknown value which is > 0.9. A

1 In the latter case, we aggregate the answers of multiple workers to obtain the compatibility score.
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better top-2 answer is thus Wearable Devices and Watches, the latter being likely to have a
higher score than Diving Watches (or Diving Gear).

Other application domains. Beyond the crowdsourcing example that we illustrate, our
setting is relevant to many other application domains involving different types of unknown
data. For instance, in the domain of Web services [46], one may wish to find the k-most
relevant apartments for a user, given user-provided criteria on the apartment (price range,
location, size, etc.) but no precise way to aggregate them into a relevance function. In this
case, order constraints may be imposed on the unknown relevance of apartments, whenever
one apartment dominates another (i.e., is better for each criterion); exact-value constraints
may capture user-provided ratings to viewed apartments; and a top-k query could be used,
e.g., to select the most relevant apartments among those available for sale.

As another example, in the context of top-k queries over sensor data [25, 35], one may
wish to find the k-fastest drivers in a certain region given partial data from speedometers
and street cameras; comparing the progress and locations of vehicles may yield partial order
constraints on their speed. Other domains include, e.g., data mining [3], managing preference
data [48], or finding optimal values of black-box functions expressing cost, running time, etc.

Contributions. As previously mentioned, we assume a uniform probability distribution over
valuations of unknown items, which we capture formally in our model via possible-world
semantics. We then use the expected values of items as an estimate of their unknown values,
for the sake of top-k computation (see Section 2). Our work presents three main contributions
using this general model, as follows.

First, in Section 3 we present a general and principled scheme to interpolate unknown
values from known ones under partial order constraints, and thereby obtain the top-k such
values. We implement this in an algorithm that is polynomial in the number of possible
item orderings, and consequently show that in the worst case it is in FP#P in the size of the
input.2 The problem of finding expected values has a geometric characterization as centroid
computation in high-dimensional polytopes (as we explain further); however, our FP#P

membership result goes beyond existing computational geometry results since the constraints
that we consider, namely, partial order and exact-value constraints, correspond to special
classes of polytopes not studied in the context of geometry. Indeed, centroid computation is
generally not in FP#P [32, 42]. Our work also departs from previous work on top-k queries
over incomplete or probabilistic data [15, 28, 46]: we do not make the simplifying assumption
that item distributions are independent and given, but rather study the effect of constraints
on individual item distributions.

Our second main contribution, in Section 4, is to establish hardness results, and specifically,
a matching lower FP#P bound for top-k computation. While the #P-hardness of computing
expected values follows from the geometric characterization of the problem [42], we show
that top-k is hard even without computing expected values. Hence the FP#P bound is
tight for both interpolation and top-k; this shows that the assumption regarding variable
independence in previous work, that enables PTIME solutions [15, 28, 46], indeed simplifies
the problem. To complete the picture we discuss possible approximation schemes for the
interpolation and top-k problems, again by the connection to centroid computation.

2 #P is the class of counting problems that return the number of solutions of NP problems. FP#P is the
class of function problems that can be computed in PTIME using a #P oracle.
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Our third main contribution, in Section 5, is the study of tractable cases, following the
hardness of the general problem and the high complexity of approximation. We devise a
PTIME algorithm to compute expected values and top-k results when the order constraints
are tree-shaped or decomposable to trees. This class of constraints is commonly encountered
in the context of unknown values (e.g., taxonomies of products are often trees rather than
DAGs); yet, to our knowledge, the corresponding polytopes have no equivalents in the context
of computational geometry.

Our results also include a review of existing definitions for top-k over uncertain data,
which motivates our particular choice of definition (in Section 6). We survey related work in
more depth in Section 7 and conclude in Section 8. Full proofs of our results can be found
in [5], an extended version of this paper.

2 Preliminaries and Problem Statement

This section introduces the formal definitions for the problem that we study in this paper.
We model known and unknown item values as variables, and order constraints as equalities
and inequalities over them. Then we define the possible valuations for the variables via
possible-world semantics, and use this semantics to define a uniform distribution where all
worlds are equally likely. The problem of top-k querying over unknown values can then be
formally defined with respect to the expected values of variables in the resulting distribution.

2.1 Unknown Data Values under Constraints

Our input includes a set X = {x1, . . . , xn} of variables with unknown values v(x1), . . . , v(xn),
which we assume3 to be in the range [0, 1]. We consider two kinds of constraints over them:

order constraints, written xi 6 xj for xi, xj ∈ X , encoding that v(xi) 6 v(xj);
exact-value constraints to represent variables with known values, written4 xi = α for
0 6 α 6 1 and for xi ∈ X , encoding that v(xi) = α.

In what follows, a constraint set with constraints of both types is typically denoted C. We
assume that constraints in C are not contradictory (e.g., we forbid x = 0.1, y = 0.2, y 6 z,
and z 6 x), and that they are closed under implication: e.g., if x = α, y = β are given,
and α 6 β, then x 6 y is implied and thus should also be in C. We can check in PTIME
that C is non-contradictory by simply verifying that it does not entail a false inequality on
exact values (e.g., 0.2 6 0.1 as in our previous example). The closure of C can be found in
PTIME as a transitive closure computation [27] that also considers exact-value constraints.
We denote by Xexact the subset of X formed of variables with exact-value constraints.

I Example 1. In the product classification example from the Introduction, a variable xi ∈ X
would represent the compatibility score of the product to the i-th category. If the score is
known, we would encode it as a constraint xi = α. In addition, C would contain the order
constraint xi 6 xj whenever category i is a sub-category of j (recall that the score of a
sub-category cannot be higher than that of an ancestor category).

3 Our results extend to other bounded, continuous ranges, because we can rescale them to fall in [0, 1].
4 The number α is written as a rational number, represented by its numerator and denominator.
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2.2 Possible World Semantics
The unknown data captured by X and C makes infinitely many valuations of X possible
(including the true one). We model these options via possible world semantics: a possible
world w for a constraint set C over X = {x1, . . . , xn} is a vector of values w = (v1, . . . , vn) ∈
[0, 1]n, corresponding to setting v(xi) := vi for all i, such that all the constraints of C hold
under this valuation. The set of all possible worlds is denoted by pwX (C), or by pw(C) when
X is clear from context.

Notice that C can be encoded as a set of linear constraints, i.e., a set of inequalities
between linear expressions on X and constants in [0, 1]. Thus, following common practice in
linear programming, the feasible region of a set of linear constraints (pw(C) in our setting) can
be characterized geometrically as a convex polytope, termed the admissible polytope: writing
n := |X |, each linear constraint defines a feasible half-space of Rn (e.g., the half-space where
x 6 y), and the convex polytope pw(C) is the intersection of all half-spaces. In our setting
the polytope pw(C) is bounded within [0, 1]n, and it is non-empty by our assumption that C
is not contradictory. With exact-value constraints, or order constraints such as xi 6 xj and
xj 6 xi, it may be the case that the dimension of this admissible polytope is less than |X |.
Computing this dimension can easily be done in PTIME (see, e.g., [44]).

I Example 2. Let X = {x, y, z}. If C = {x 6 y}, the admissible polytope has dimension 3
and is bounded by the planes defined by x = y, x = 0, y = 1, z = 0 and z = 1. If we add
to C the constraint y = 0.3, the admissible polytope is a 2-dimensional rectangle bounded by
0 6 x 6 0.3 and 0 6 z 6 1 on the y = 0.3 plane. We cannot add, for example, the constraint
x = 0.5, because C would become contradictory.

2.3 Probability Distribution
Having characterized the possible worlds of pw(C), we assume a uniform probability distri-
bution over pw(C), as indicated in the Introduction. This captures the case when all possible
worlds are equally likely, and is a natural choice when we have no information about which
valuations are more probable.

Since the space of possible worlds is continuous, we formally define this distribution via a
probability density function (pdf), as follows. Let X and C define a d-dimensional polytope
pwX (C) for some integer d. The d-volume (also called the Lebesgue measure [29] on Rd) is a
measure for continuous subsets of d-dimensional space, which coincides with length, area,
and volume for dimensions 1, 2, and 3, respectively. We denote by Vd(C) the d-volume of the
admissible polytope, or simply V (C) when d is the dimension of pw(C).

I Definition 3. The uniform pdf p maps each possible world w ∈ pw(C) to the constant
p(w) := 1/V (C).

2.4 Top-k Queries
We are now ready to formally define the main problem studied in this paper, namely, the
evaluation of top-k queries over unknown data values. The queries that we consider retrieve
the k items that are estimated to have the highest values, along with their estimated values,
with ties broken arbitrarily. We further allow queries to apply a selection operator σ on the
items before performing the top-k computation. In our example from the Introduction, this
is what allows us to select the top-k categories among only the end categories. We denote
the subset of X selected by σ as Xσ.

ICDT 2017
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If all item values are known, the semantics of top-k queries is clear. In presence of
unknown values, however, the semantics must be redefined to determine how the top-k items
and their values are estimated. In this paper, we estimate unknown items by their expected
value over all possible worlds, i.e., their expected value according to the uniform pdf p defined
above on pw(C). This corresponds to interpolating the unknown values from the known ones,
and then querying the result. We use these interpolated values to define the top-k problem
as computing the k variables with the highest expected values, but we also study on its own
the interpolation problem of computing the expected values.

To summarize, the two formal problems that we study on constraint sets are:
Interpolation. Given a constraint set C over X and variable x ∈ X , the interpolation problem

for x is to compute the expected value of x in the uniform distribution over pwX (C).
Top-k. Given a constraint set C over X , a selection predicate σ, and an integer k, the top-k

computation problem is to compute the ordered list of the k maximal expected values of
variables in Xσ (or less if |Xσ| 6 k), with ties broken arbitrarily.

We review other definitions of top-k on uncertain data in Section 6, where we justify our
choice of semantics.

Alternate phrasing. The Interpolation problem can also be defined geometrically, as the
computation of the centroid (or center of mass) of the admissible polytope: the point G such
that all vectors relative to G originating at points within the polytope sum to zero. The
constraints that we study correspond to a special kind of polytopes, for which we will design
a specific algorithm in the next section, and derive an FP#P membership bound which does
not hold for general polytopes (as explained in the Introduction). However, the geometric
connection will become useful when we study the complexity of our problem in Section 4.1.

3 An Algorithm for Interpolation and Top-k

Having defined formally the problems that we study, we begin our complexity analysis by
designing an algorithm that computes the expected value of variables.

The algorithm enumerates all possible orderings of the variables (to be defined formally
below), but it is still nontrivial: we must handle exact-value constraints specifically, and we
must compute the probability of each ordering to determine its weight in the overall expected
value computation. From the algorithm, we will deduce that our interpolation and top-k
problems are in FP#P.

Eliminating ties. To simplify our study, we will eliminate from the start the problem of
ties, which will allow us to assume that values in all worlds are totally ordered. We say that
a possible world w = (v1, . . . , vn) of C has a tie if vi = vj for some i, j. Note that occasional
ties, not enforced by C, have an overall probability of 0: intuitively, if the admissible polytope
is d-dimensional, then all the worlds where vi = vj correspond to a (d − 1)-dimensional
hyperplane bounding or intersecting the polytope. A finite set of such hyperplanes (for every
pair of variables) has total d-volume 0. Since our computations (volume, expected value)
involve integrating over possible worlds, a set of worlds with total probability 0 does not
affect the result.

What is left is to consider ties enforced by C (and thus having probability 1). In such
situations, we can rewrite C by merging these variables to obtain an equivalent constraint set
where ties have probability 0. Formally:
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I Lemma 4. For any constraint set C, we can construct in PTIME a constraint set C′ such
that the probability that the possible worlds of C′ have a tie (under the uniform distribution)
is zero, and such that any interpolation or top-k computation problem on C can be reduced in
PTIME to the same type of problem on C′.

Hence, we assume from now on that ties have zero probability in C, so that we can ignore
possible worlds with ties without affecting the correctness of our analysis. Note that this
implies that all of our results also hold for strict inequality constraints, of the forms x < y

and x 6= y.
Under this assumption, we first study in Section 3.1 the case where C is a total order.

We then handle arbitrary C by aggregating over possible variable orderings, in Section 3.2.

3.1 Total Orders
In this section we assume C is a total order Cn1 (α, β) defined as x0 6 x1 6 · · · 6 xn 6 xn+1,
where x0 = α and xn+1 = β are variables with exact-value constraints in Xexact.

We first consider unfragmented total orders, where x1, . . . , xn 6∈ Xexact. In this case, we
can show that the expected value of xi, for 1 6 i 6 n, corresponds to a linear interpolation
of the unknown variables between α and β, namely: i

n+1 · (β − α) + α. This can be shown
formally via a connection to the expected value of the order statistics of samples from a
uniform distribution, which follows a Beta distribution [22].

Now consider the case of fragmented total orders, where C is allowed to contain more
exact-value constraints than the ones on α and β. We observe that we can split the total
order into fragments: by cutting at each variable that has an exact-value constraint, we
obtain sub-sequences of variables which follow an unfragmented total order. We can then
compute the expected values of each fragment independently, and compute the total order
volume as the product of the fragment volumes. The correctness of this computation follows
from a more general result (Lemma 12) stated and proven in Section 5.

Hence, given a constraint set C imposing a (possibly fragmented) total order, the expected
value of xi can be computed as follows. If xi ∈ Xexact, analysis is trivial. Otherwise, we
consider the fragment Cq−1

p+1(vp, vq) that contains xi; namely, p is the maximal index such
that 0 6 p < i and xp ∈ Xexact, and q is the minimal index such that i < q 6 n + 1 and
xq ∈ Xexact. The expected value of xi can then be computed within Cq−1

p+1(vp, vq) using linear
interpolation.

The following proposition summarizes our findings:

I Proposition 5. Given a constraint set C implying a total order, the expected value of any
variable xi ∈ X can be computed in PTIME.

3.2 General Constraint Sets
We can now extend the result for total orders to an expression of the expected value for a
general constraint set C. We apply the previous process to each possible total ordering of the
variables, and aggregate the results. To do this, we define the notion of linear extensions,
inspired by partial order theory:

I Definition 6. Given a constraint set C over X , we say that a constraint set T is a linear
extension of C if (i) T is a total order; (ii) the exact-value constraints of T are exactly those
of C; and (iii) C ⊆ T , namely every constraint x 6 y in C also holds5 in T .

5 The linear extensions of C in this sense are thus exactly the linear extensions of the partial order on X
imposed by C: this partial order is indeed antisymmetric because C has no ties.
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Algorithm 1: Compute the expected value of a variable.
Input: Constraint set C on variables X with n := |X | where ties have probability 0

and where value range [0, 1] is enforced by constraints; variable x ∈ X
Output: Expected value of x

1 if x is in Xexact, i.e., has an exact-value constraint in C to some v then return v;
2 EC [x]← 0; V (C)← 0;
3 m← |Xexact|;
4 Write x0 < · · · < xm−1 the variables of Xexact and v0 < · · · < vm−1 their values;
5 foreach linear extension T of C do
6 Write i0 < · · · < im−1 the indices in T of variables x0, . . . , xm−1 in Xexact;
7 Write k the index in T of the variable x;
8 Write ij , ij+1 the indices of variables from Xexact s.t. ij < k < ij+1;
9 ET [x]← ExpectedValFrag(ij , ij+1, k, vj , vj+1) ; // Expected value of x in T

10 V (T )←
∏m−2
l=0 VolumeFrag(il, il+1, vl, vl+1) ; // Volume of T

11 EC [x]← EC [x] + V (T )× ET [x]; // Sum exp. value of x weighted by V (T )
12 V (C)← V (C) + V (T ); // Sum of total order volumes

13 return EC [x]
V (C) ;

14 Function ExpectedValFrag(p, q, k, α, β)
Input: p < q: indices; k: requested variable index; α < β: exact values at p, q resp.
Output: Expected value of variable xk in the fragment Cq−1

p+1(α, β)
15 n← q − p− 1 ; // num. of variables in the fragment which are 6∈ Xexact

16 return k−p
n+1 · (β − α) + α ; // linear interpolation (see Section 3.1)

17 Function VolumeFrag(p, q, α, β)
Input: p < q: indices; α < β: exact values at p, q resp.
Output: V (Cq−1

p+1(α, β)): volume of the total order fragment between indices p, q
18 n← q − p− 1 ; // num. of variables in the fragment which are 6∈ Xexact

19 return (β−α)n

n! ; // Volume of [α, β]n divided by num. of total orders

Algorithm 1 presents our general scheme to compute the expected value of a variable
x ∈ X under an arbitrary constraint set C, assuming the uniform distribution on pw(C).

The algorithm iterates over each linear extension T of C, and computes the expected
value of x in T and the overall probability of T in pw(C). A linear extension is a total order,
so x is within a particular fragment of it, namely, between the indices of two consecutive
variables with exact-value constraints, ij and ij+1. The expected value of x in T , denoted by
ET [x], is then affected only by the constraints and variables of this fragment, and can be
computed using linear interpolation by the function ExpectedValFrag (line 9).

Now, the final expected value of x in C is the average of all ET [x] weighted by the
probability of each linear extension T , i.e., the volume of pw(T ) divided by the volume
of pw(C). Recall that, by Lemma 4, worlds with ties have total volume 0 and do not affect
this expected value. We compute the volume of T as the product of volumes of its fragments
(line 10). The volume of a fragment, computed by function VolumeFrag, is the volume of
[α, β]n, i.e., all assignments to the n variables of the fragment in [α, β], divided by the number
of orderings of these variables, to obtain the volume of one specific order (line 19).

The complexity of Algorithm 1 is polynomial in the number of linear extensions of C, as we
can enumerate them in constant amortized time [41]. However, in the general case, there may
be up to |X |! linear extensions. To obtain an upper bound in the general case, we note that
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we can rescale all constraints so that all numbers are integers, and then nondeterministically
sum over the linear extensions. This yields our FP#P upper bound:

I Theorem 7. Given a constraint set C over X and x ∈ X (resp., and a selection predicate σ,
and an integer k), determining the expected value of x in pw(C) under the uniform distribution
(resp., the top-k computation problem over X , C, and σ) is in FP#P.

The FP#P membership for interpolation does not extend to centroid computation in
general convex polytopes, which is not in FP#P [32, 42]. Our algorithm thus relies on the fact
that the polytope pw(C) is of a specific form, defined with order and exact-value constraints.
The same upper bound for the top-k problem immediately follows. We will show in Section 4
that this FP#P upper bound is tight.

We also provide a complete example to illustrate the constructions of this section.

x

y′ = γy

zFull Example. We exemplify our scheme on variables X = {x, y, y′, z}
and on the constraint set C generated by the order constraints x 6 y,
y 6 z, x 6 y′, y′ 6 z and the exact-value constraint y′ = γ for some
fixed 0 < γ < 1. Remember that we necessarily have 0 6 x and z 6 1
as well. The constraints of C are closed under implication, so they also
include x 6 z. The figure shows the Hasse diagram of the partial order
defined by C on X . Note that ties have a probability of zero in pw(C).

The two linear extensions of C are T1 : x 6 y 6 y′ 6 z and T2 : x 6 y′ 6 y 6 z. Now,
T1 is a fragmented total order, and we have pw(T1) = pw{x,y}(C′) × {γ} × [γ, 1] where C′
is defined on variables {x, y} by 0 6 x 6 y 6 γ. We can compute the volume of pw(T1) as
α1 = γ2

2 × (1− γ). Similarly the volume of pw(T2) is α2 = γ × (1−γ)2

2 .
Let us compute the expected value of y for C. In T1 its expected value is µ1 = ET1 [y] =

2
3 · (γ − 0) + 0 = 2

3γ. In T2 its expected value is µ2 = ET2 [y] = 1
3 · (1− γ) + γ = 1+2γ

3 . The
overall expected value of y is the average of these expected values weighted by total order
probabilities (volumes fractions), namely EC [y] = α1µ1+α2µ2

α1+α2
.

4 Hardness and Approximations

We next show that the intractability of Algorithm 1 in Section 3 is probably unavoidable.
We first show matching lower bounds for interpolation and top-k in Section 4.1. We then
turn in Section 4.2 to the problem of approximating expected values.

4.1 Hardness of Exact Computation
We now analyze the complexity of computing an exact solution to our two main problems.
We show below a new result for the hardness of top-k. But first, we state the lower bound
for the interpolation problem, which is obtained via the geometric characterization of the
problem. In previous work, centroid computation is proven to be hard for order polytopes,
namely, polytopes without exact-value constraints, which are a particular case of our setting:

I Theorem 8. ([42], Theorem 1). Given a set C of order constraints and x ∈ X , determining
the expected value of x in pw(C) under the uniform distribution is FP#P-hard.

We now show a new lower bound for top-k queries: interestingly, these queries are
FP#P-hard even if they do not have to return the expected values. Recall that σ is the
selection operator (see Section 2.4), which we use to compute top-k among a restricted subset
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of variables. We can show hardness even for top-1 queries, and even when σ only selects two
variables:

I Theorem 9. Given a constraint set C over X , a selection predicate σ, and an integer k,
the top-k computation problem over X , C and σ is FP#P-hard even if k is fixed to be 1,
|Xσ| is 2, and the top-k answer does not include the expected value of the variables.

Proof sketch. To prove hardness in this case, we reduce from interpolation. We show that
a top-1 computation oracle can be used as a comparison oracle to compare the expected
value of a variable x to any other rational value α, by adding a fresh element x′ with an
exact-value constraint to α and using σ to compute the top-1 among {x, x′}. What is more
technical is to show that, given such a comparison oracle, we can perform the reduction and
determine exactly the expected value v of x (a rational number) using only a polynomial
number of comparisons to other rationals. This follows from a bound on the denominator
of v, and by applying the rational number identification scheme of [39]. J

In settings where we do not have a selection operator (i.e., Xσ = X ), we can similarly
show the hardness of top-k (rather than top-1). See [5] for details.

4.2 Complexity of Approximate Computation

In light of the previous hardness results, we now review approximation algorithms, again
via the geometric characterization of our setting. In Section 5, we will show a novel exact
solution in PTIME for specific cases.

The interpolation problem can be shown to admit a fully polynomial-time randomized
approximation scheme (FPRAS). This result follows from existing work [31, 7], using a
tractable almost uniform sampling scheme for convex bodies.

I Proposition 10 ([31], Algorithm 5.8). Let C be a set of constraints with variable set X and
x ∈ X . There is an FPRAS that determines an estimate ÊC [x] of the expected value EC [x] of
x in pw(C) under the uniform distribution.

This result is mostly of theoretical interest, as the polynomial is in |X |7 (see [7], Table 1),
but recent improved sampling algorithms [37] may ultimately yield a practical approximate
interpolation technique for general constraint sets (see [36, 21]).

For completeness, we mention two natural ways to define randomized approximations for
top-k computation:

We can define the approximate top-k as an ordered list of k items whose expected value
does not differ by more than some ε > 0 from that of the item in the actual top-k at the
same rank. An FPRAS for this definition of approximate top-k can be obtained from
that of Proposition 10.
It is highly unlikely that there exists a PTIME algorithm to return the actual top-k with
high probability, even without requiring it to return the expected values. Indeed, such an
algorithm would be in the BPP (bounded-error probabilistic time) complexity class; yet
it follows from Theorem 9 above that deciding whether a set of variables is the top-k is
NP-hard, so the existence of the algorithm would entail that NP ⊆ BPP.
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5 Tractable Cases

Given the hardness results in the previous section and the impracticality of approximation, we
now study whether exact interpolation and top-k computation can be tractable on restricted
classes of constraint sets. We consider tree-shaped constraints (defined formally below) and
generalizations thereof: they are relevant for practical applications (e.g., classifying items
into tree- or forest-shaped taxonomies), and we will show that our problems are tractable
on them. We start by a splitting lemma to decompose constraint sets into “independent”
subsets of variables, and then define and study our tractable class.

5.1 Splitting Lemma
We will formalize the cases in which the valuations of two variables in X are probabilistically
dependent (the variables influence each other), according to C. This, in turn, will enable us
to define independent subsets of the variables and thus independent subsets of the constraints
over these variables. This abstract result will generalize the notion of fragments from total
orders (see Section 3.1) to general constraint sets. In what follows, we use xi ≺ xj to
denote the covering relation of the partial order 6, i.e., xi 6 xj is in C but there exists no
xk /∈ {xi, xj} such that xi 6 xk and xk 6 xj are in C.

I Definition 11. We define the influence relation x↔ y between variables of X\Xexact as
the equivalence relation obtained by the symmetric, reflexive, and transitive closure of the ≺
relation on X\Xexact.

The uninfluenced classes of X under C is the partition of X\Xexact as the subsets
X1, . . . ,Xm given by the equivalence classes of the influence relation.

The uninfluence decomposition of C is the collection of constraint sets C1, . . . , Cm of C
where each Ci has as variables Xi t Xexact and contains all exact-value constraints of C and
all order constraints between variables of Xi t Xexact.

We assume w.l.o.g. that m > 0, i.e., there are unknown variables in X\Xexact; otherwise
the uninfluence decomposition is meaningless but any analysis is trivial. Intuitively, two
unknown variables x, x′ are in different uninfluenced classes if in every linear extension there
is some variable from Xexact between them, or if they belong to disconnected (and thus
incomparable) parts of the partial order. In particular, uninfluenced classes correspond to
the fragments of a total order: this is used in Section 3.1. The uninfluence decomposition
captures only constraints between variables that influence each other, and constraints that
can bound the range of a variable by making it comparable to variables from Xexact. We
formally prove the independence of C1, . . . , Cm via possible-world semantics: every possible
world of C can be decomposed to possible worlds of C1, . . . , Cm, and vice versa.

I Lemma 12. Let C1, . . . , Cm be the uninfluence decomposition of C. There exists a bijective
correspondence between pw(C) and pw(C1)× · · · × pw(Cm).

I Example 13. Let X be {x, y, y′, z, w}, and let C be defined by y′ = 0.5 and x 6 y 6 y′ 6 z.
The uninfluence classes are X1 = {x, y}, X2 = {z}, and X3 = {w}. The uninfluence
decomposition thus consists of C1, with variables X1 t {y′}, and constraints x 6 y 6 y′ and
y′ = 0.5; C2, with variables X2 t {y′}, and constraints y′ 6 z and y′ = 0.5; and C3, with
variables X3 t {y′}, and constraint y′ = 0.5.

We next use this independence property to analyse restricted classes of constraint sets.
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5.2 Tree-Shaped Constraints
We define the first restricted class of constraints that we consider: tree-shaped constraints.
Recall that a Hasse diagram is a representation of a partial order as a directed acyclic graph,
whose nodes correspond to X and where there is an edge (x, y) if x ≺ y. An example of such
a diagram is the one used in Section 3.2.

I Definition 14. A constraint set C over X is tree-shaped if the probability of ties is zero,
the Hasse diagram of the partial order induced on X by C is a directed tree, the root has
exactly one child, and exactly the root and leaves are in Xexact. Thus, C imposes a global
minimal value, and maximal values at each leaf, and no other exact-value constraint.

We call C reverse-tree-shaped if the reverse of the Hasse diagram (obtained by reversing
the direction of the edges) is tree-shaped.

Tree-shaped constraints are often encountered in practice, in particular in the context
of product taxonomies. Indeed, while our example from Figure 1 is a DAG, many real-life
taxonomies are trees: in particular, the Google Product Taxonomy [23] and ACM CCS [2].

We now show that for a tree-shaped constraint set C, unlike the general case, we can
tractably compute exact expressions of the expected values of variables. In the next two
results, we assume arithmetic operations on rationals to have unit cost, e.g., they are
performed up to a fixed numerical precision. Otherwise, the complexities remain polynomial
but the degrees may be larger. We first show:

I Theorem 15. For any tree-shaped constraint set C over X , we can compute its volume
V (C) in time O(|X |2).

Proof sketch. We process the tree bottom-up, propagating a piecewise-polynomial function
expressing the volume of the subpolytope on the subtree rooted at each node as a function
of the value of the parent node: we compute it using Lemma 12 from the child nodes. J

This result can be applied to prove the tractability of computing the marginal distribution
of any variable x ∈ X\Xexact in a tree-shaped constraint set, which is defined as the pdf
px(v) := Vd−1(C ∪ {x = v})/Vd(C), where d is the dimension of pw(C):

I Theorem 16. For any tree-shaped constraint set C on variable set X , for any variable
x ∈ X\Xexact, the marginal distribution for x is piecewise polynomial and can be computed
in time O(|Xexact| × |X |2).

Proof sketch. We proceed similarly to the proof of Theorem 15 but with two functions:
one for x and its descendants, and one for all other nodes. The additional |Xexact| factor is
because the second function depends on how the value given to x compares to the leaves. J

We last deduce that our results for tree-shaped constraints extend to a more general
tractable case: constraint sets C whose uninfluence decomposition C1, . . . , Cm is such that
every Ci is (reverse-)tree-shaped. By Lemma 12, each Ci (and its variables) can be considered
independently, and reverse-tree-shaped trees can be easily transformed into tree-shaped ones.
Our previous algorithms thus apply to this general case, by executing them on each constraint
set of the uninfluence decomposition that is relevant to the task (namely, containing the
variable x to interpolate, or top-k candidates from the selected variables Xσ):

I Corollary 17. Given any constraint set C and its uninfluence decomposition C1, . . . , Cm,
assuming that each Ci is a (reverse-)tree-shaped constraint set, we can solve the interpolation
problem in time O(maxi |Xi|3) and the top-k problem in PTIME.
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On large tree-shaped taxonomies (e.g., the Google Product Taxonomy [23]), in an
interactive setting where we may ask user queries (e.g., the one in the Introduction), we
can improve running times by asking more queries. Indeed, each answer about a category
adds an exact-value constraint, and reduces the size of the constraint sets of the uninfluence
decomposition, which decreases the overall running time, thanks to the superadditivity of
x 7→ x3. We do not study which variables should be queried in order to reduce the running
time of the algorithm; see, e.g., [40] for tree-partitioning algorithms.

6 Other Variants

We have defined top-k computation on constraint sets by considering the expected value of
each variable under the uniform distribution. Comparing to different definitions of top-k on
unknown values that have been studied in previous work, our definition has some important
properties [15]: it provides a ready estimation for unknown values (namely, their expected
value) and guarantees an output of size k. Moreover, it satisfies the containment property
of [15], defined in our setting as follows:

I Definition 18. A top-k definition satisfies the containment property if for any constraint
set C on variables X , for any predicate σ (where we write Xσ the selected variables), and for
any k < |Xσ|, letting Sk and Sk+1 be the ordered lists of top-k and top-(k + 1) variables, Sk
is a strict prefix of Sk+1.

The containment property is a natural desideratum: computing the top-k for some k ∈ N
should not give different variables or order for the top-k′ with k′ < k. Our definition clearly
satisfies the containment property (except in the case of ties). By contrast, we will now
review prominent definitions of top-k on uncertain data from related work [47, 15, 52], and
show that they do not satisfy the containment property when we apply them to the possible
world distributions studied in our setting. We focus on two prominent definitions, U-top-k
and global-top-k and call our own definition local-top-k when comparing to them; we also
discuss other variants in [5].

U-top-k. The U-top-k variant does not study individual variables but defines the output
as the sequence of k variables most likely to be the top-k (in that order), for the uniform
distribution on pw(C). We call this alternative definition U-top-k by analogy with [47, 15].
Interestingly, the U-top-k and local-top-k definitions sometimes disagree in our setting:

I Lemma 19. There is a constraint set C and selection predicate σ such that local-top-k and
U-top-k do not match, even for k = 1 and without returning expected values or probabilities.

We can easily design an algorithm to compute U-top-k in PSPACE and in polynomial
time in the number of linear extensions of C: compute the probability of each linear extension
as in Algorithm 1, and then sum on linear extensions depending on which top-k sequence
they realize (on the variables selected by σ), to obtain the probability of each answer. Hence:

I Proposition 20. For any constraint set C over X , integer k and selection predicate σ, the
U-top-k query for C and σ can be computed in PSPACE and in time O(poly(N)), where N
is the number of linear extensions of C.

Unlike Theorem 7, however, this does not imply FP#P-membership: when selecting the
most probable sequence, the number of candidate sequences may not be polynomial (as k is
not fixed). We leave to future work an investigation of the precise complexity of U-top-k.

We show that in our setting U-top-k does not satisfy the containment property of [15].
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I Lemma 21. There is a constraint set C without ties such that U-top-k does not satisfy the
containment property for the uniform distribution on pw(C).

Global-top-k. We now study the global-top-k definition [52], and show that it does not
respect the containment property either, even though it is defined on individual variables:

I Definition 22. The global-top-k query, for a constraint set C, selection predicate σ, and
integer k, returns the k variables that have the highest probability in the uniform distribution
on pw(C) to be among the variables with the k highest values, sorted by decreasing probability.

I Lemma 23. There is a constraint set C without ties such that global-top-k does not satisfy
the containment property for the uniform distribution on pw(C).

7 Related Work

We extend the discussion about related work from the Introduction.

Ranking queries over uncertain databases. A vast body of work has focused on providing
semantics and evaluation methods for order queries over uncertain databases, including top-k
and ranking queries (e.g., [15, 19, 25, 26, 28, 33, 43, 46, 50, 51]). Such works consider two
main uncertainty types: tuple-level uncertainty, where the existence of tuples (i.e., variables)
is uncertain, and hence affects the query results [15, 19, 26, 28, 33, 43, 50, 51]; and attribute-
level uncertainty, more relevant to our problem, where the data tuples are known but some
of their values are unknown or uncertain [15, 25, 28, 46]. Top-k queries over uncertain data
following [46] was recently applied to crowdsourcing applications in [13]. These studies are
relevant to our work as they identify multiple possible semantics for order queries in presence
of uncertainty, and specify desired properties for such semantics [15, 28]; our definition of
top-k satisfies the desiderata that are relevant to attribute-level uncertainty [28].

We depart from this existing work in two main respects. First, existing work assumes that
each variable is given with an independent function that describes its probability distribution.
We do not assume this, and instead derive expressions for the expected values of variables in
a principled way from a uniform prior on the possible worlds. Our work is thus well-suited
to the many situations where probability distributions on variables are not known, or where
they are not independent (e.g., when order constraints are imposed on them). For this reason,
the problems that we consider are generally computationally harder. For instance, [46] is
perhaps the closest to our work, since they consider the total orders compatible with given
partial order constraints. However, they assume independent marginal distributions, so they
can evaluate top-k queries by only considering k-sized prefixes of the linear extensions; in
our setting even computing the top-1 element is hard (Theorem 9).

The second key difference is that other works do not try to estimate the top-k values,
because they assume that the marginal distribution is given: they only focus on ranks. In
our context, we need to compute missing values, and need to account, e.g., for exact-value
constraints and their effect on the probability of possible worlds and on expected values
(Section 3).

We also mention our previous work [4] which considers the estimation of uncertain values
(expectation and variance), but only in a total order, and did not consider complexity issues.

Partial order search. Another relevant research topic, partial order search, considers queries
over elements in a partially ordered set to find a subset of elements with a certain property [3,
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17, 20, 24, 40]. This relates to many applications, e.g., crowd-assisted graph search [40],
frequent itemset mining with the crowd [3], and knowledge discovery, where the unknown
data is queried via oracle calls [24]. These studies are complementary to ours: when the
target function can be phrased as a top-k or interpolation problem, if the search is stopped
before all values are known, we can use our method to estimate the complete output.

Computational geometry. Our work reformulates the interpolation problem as a centroid
computation problem in the polytope of possible worlds defined by the constraint set. This
problem has been studied independently by computational geometry work [42, 31, 38].

Computational geometry mostly studies arbitrary convex polytopes (corresponding to
polytopes defined by arbitrary linear constraint sets), and often considers the task of volume
computation, which is related to the problem of computing the centroid [42]. In this context,
it is known that computing the exact volume of a polytope is not in FP#P because the output
is generally not of polynomial size [32]. Nevertheless, several (generally exponential) methods
for exact volume computation [11] have been developed. The problem of approximation has
also been studied, both theoretically and practically [31, 45, 18, 16, 36, 21]. Our problem of
centroid computation is studied in [38], whose algorithm is based on the idea of computing
the volume of a polytope by computing the lower-dimensional volume of its facets. This
is different from our algorithm, which divides the polytope along linear extensions into
subpolytopes, for which we apply a specific volume and centroid computation method.

Some works in computational geometry specifically study order polytopes, i.e., the poly-
topes defined by constraint sets with only order constraints and no exact-value constraints.
For such polytopes, volume computation is known to be FP#P-complete [10], leading to a
FP#P-hardness result for centroid computation [42]. However, these results do not apply to
exact-value constraints, i.e., when order polytopes can only express order relations, between
variables which are in [0, 1]. Exact-value constraints are both highly relevant in practice (to
represent numerical bounds, or known information, e.g., for crowdsourcing), allow for more
general polytopes, and complicate the design of Algorithm 1, which must perform volume
computation and interpolation in each fragmented linear order.

Furthermore, to our knowledge, computational geometry works do not study the top-k
problem, or polytopes that correspond to tree-shaped constraint sets, since these have no
clear geometric interpretation.

Tree-shaped partial orders. Our analysis of tractable schemes for tree-shaped partial orders
is reminiscent of the well-known tractability of probabilistic inference in tree-shaped graphical
models [8], and of the tractability of probabilistic query evaluation on trees [14] and treelike
instances [6]. However, we study continuous distributions on numerical values, and the
influence between variables when we interpolate does not simply follow the tree structure; so
our results do not seem to follow from these settings.

8 Conclusion

In this paper, we have studied the problems of top-k computation and interpolation for
data with unknown values and order constraints. We have provided foundational solutions,
including a general computation scheme, complexity bounds, and analysis of tractable cases.

One natural direction for future work is to study whether our tractable cases (tree-shaped
orders, sampling) can be covered by more efficient PTIME algorithms, or whether more
general tractable cases can be identified: for instance, a natural direction to study would be
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partial orders with a bounded-treewidth Hasse diagram, following recent tractability results
for the related problem of linear extension counting [30]. Another question is to extend our
scheme to request additional values from the crowd, as in [3, 13], and reduce the expected
error on the interpolated values or top-k query, relative to a user goal. In such a setting, how
should we choose which values to retrieve, and could we update incrementally the results of
interpolation when we receive new exact-value constraints? Finally, it would be interesting
to study whether our results generalize to different prior distributions on the polytope.

Acknowledgements This work is partially supported by the European Research Council
under the FP7, ERC grant MoDaS, agreement 291071, by a grant from the Blavatnik
Interdisciplinary Cyber Research Center, by the Israel Science Foundation (grant No. 1157/16),
and by the Télécom ParisTech Research Chair on Big Data and Market Insights.

References
1 Serge Abiteboul, T-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre Senellart.

Capturing continuous data and answering aggregate queries in probabilistic XML. TODS,
36(4), 2011.

2 ACM Computing Classification System, 2012. https://www.acm.org/about/class/
class/2012.

3 Antoine Amarilli, Yael Amsterdamer, and Tova Milo. On the complexity of mining itemsets
from the crowd using taxonomies. In ICDT, 2014. doi:10.5441/002/icdt.2014.06.

4 Antoine Amarilli, Yael Amsterdamer, and Tova Milo. Uncertainty in crowd data sourcing
under structural constraints. In UnCrowd, 2014.

5 Antoine Amarilli, Yael Amsterdamer, Tova Milo, and Pierre Senellart. Top-k querying of
unknown values under order constraints (extended version). CoRR, abs/1701.02634, 2017.

6 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. doi:10.1007/978-3-662-47666-6_5.

7 Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
JACM, 51(4), 2004.

8 Christopher M. Bishop. Graphical models. In Pattern Recognition and Machine Learning,
chapter 8. Springer, 2006.

9 Jonathan Bragg, Mausam, and Daniel S. Weld. Crowdsourcing multi-label classification
for taxonomy creation. In HCOMP, 2013.

10 Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3), 1991.
11 Benno Büeler, Andreas Enge, and Komei Fukuda. Exact volume computation for polytopes:

a practical study. In Polytopes – combinatorics and Computation, 2000.
12 Reynold Cheng, Dmitri V Kalashnikov, and Sunil Prabhakar. Evaluating probabilistic

queries over imprecise data. In SIGMOD, 2003.
13 Eleonora Ciceri, Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. Crowd-

sourcing for top-k query processing over uncertain data. IEEE TKDE, 28(1), 2016.
14 Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. Running tree automata on probabilistic

XML. In PODS, 2009.
15 Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for probabilistic data

and expected ranks. In ICDE, 2009.
16 Ben Cousins and Santosh Vempala. A practical volume algorithm. Mathematical Program-

ming Computation, 8(2), 2016.
17 Susan B. Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Using the crowd for

top-k and group-by queries. In ICDT, 2013.

https://www.acm.org/about/class/class/2012
https://www.acm.org/about/class/class/2012
http://dx.doi.org/10.5441/002/icdt.2014.06
http://dx.doi.org/10.1007/978-3-662-47666-6_5


A. Amarilli, Y. Amsterdamer, T. Milo, and P. Senellart 5:17

18 Jesús A De Loera, B Dutra, Matthias Köppe, S Moreinis, G Pinto, and J Wu. Software for
exact integration of polynomials over polyhedra. Computational Geometry, 46(3), 2013.

19 Landon Detwiler, Wolfgang Gatterbauer, Brenton Louie, Dan Suciu, and Peter Tarczy-
Hornoch. Integrating and ranking uncertain scientific data. In ICDE, 2009.

20 Ulrich Faigle, Laszlo Lovasz, Rainer Schrader, and Gy Turán. Searching in trees, series-
parallel and interval orders. SIAM J. Comput., 15(4), 1986.

21 Cunjing Ge and Feifei Ma. A fast and practical method to estimate volumes of convex
polytopes. In FAW, 2015.

22 James E. Gentle. Computational Statistics. Springer, 2009.
23 Google Product Taxonomy, 2016. https://support.google.com/merchants/answer/

1705911?hl=en.
24 Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivonen,

and Ram Sewak Sharma. Discovering all most specific sentences. TODS, 28(2), 2003.
25 Parisa Haghani, Sebastian Michel, and Karl Aberer. Evaluating top-k queries over incom-

plete data streams. In CIKM, 2009.
26 Ming Hua, Jian Pei, and Xuemin Lin. Ranking queries on uncertain data. VLDB J., 20(1),

2011.
27 Yannis E. Ioannidis and Raghu Ramakrishnan. Efficient transitive closure algorithms. In

VLDB, 1988.
28 Jeffrey Jestes, Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for

probabilistic data. IEEE TKDE, 23(12), 2011.
29 Frank Jones. Lebesgue Integration on Euclidean Space. Jones & Bartlett Learning, 2001.
30 Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, and Mikko Koivisto. Counting linear

extensions of sparse posets. In IJCAI, 2016.
31 Ravi Kannan, László Lovász, and Miklós Simonovits. Random walks and an O∗(n5) volume

algorithm for convex bodies. Random Struct. Algorithms, 11(1), 1997.
32 Jim Lawrence. Polytope volume computation. Mathematics of Computation, 57(195), 1991.
33 Jian Li, Barna Saha, and Amol Deshpande. A unified approach to ranking in probabilistic

databases. PVLDB, 2(1), 2009.
34 Xiang Lian and Lei Chen. Probabilistic ranked queries in uncertain databases. In EDBT,

2008.
35 Xiang Lian and Lei Chen. A generic framework for handling uncertain data with local

correlations. VLDB, 4(1), 2010.
36 László Lovász and István Deák. Computational results of an O∗(n4) volume algorithm.

European J. Operational Research, 216(1), 2012.
37 László Lovász and Santosh Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4),

2006.
38 Frederic Maire. An algorithm for the exact computation of the centroid of higher dimen-

sional polyhedra and its application to kernel machines. In ICDM, 2003.
39 Christos H Papadimitriou. Efficient search for rationals. Information Processing Letters,

8(1), 1979.
40 A. Parameswaran, A.D. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom. Human-

assisted graph search: it’s okay to ask questions. PVLDB, 4(5), 2011.
41 Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM J. Comput.,

23(2), 1994.
42 Luis A Rademacher. Approximating the centroid is hard. In SCG, 2007.
43 Christopher Re, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation on

probabilistic data. In ICDE, 2007.
44 Alexander Schrijver. The structure of polyhedra. In Theory of Linear and Integer Pro-

gramming, chapter 8. Wiley-Interscience, 1986.

ICDT 2017

https://support.google.com/merchants/answer/1705911?hl=en
https://support.google.com/merchants/answer/1705911?hl=en


5:18 Top-k Querying of Unknown Values under Order Constraints

45 Miklós Simonovits. How to compute the volume in high dimension? Mathematical pro-
gramming, 97(1-2), 2003.

46 Mohamed A. Soliman, Ihab F. Ilyas, and Shalev Ben-David. Supporting ranking queries
on uncertain and incomplete data. VLDB J., 19(4), 2010.

47 Mohamed A. Soliman, Ihab F. Ilyas, and K. Chen-Chuan Chang. Top-k query processing
in uncertain databases. In ICDE, 2007.

48 Julia Stoyanovich, Sihem Amer-Yahia, Susan B Davidson, Marie Jacob, Tova Milo, et al.
Understanding local structure in ranked datasets. In CIDR, 2013.

49 Chong Sun, Narasimhan Rampalli, Frank Yang, and AnHai Doan. Chimera: Large-scale
classification using machine learning, rules, and crowdsourcing. PVLDB, 7(13), 2014.

50 Chonghai Wang, Li-Yan Yuan, Jia-Huai You, Osmar R. Zaïane, and Jian Pei. On pruning
for top-k ranking in uncertain databases. PVLDB, 4(10), 2011.

51 Ke Yi, Feifei Li, George Kollios, and Divesh Srivastava. Efficient processing of top-k queries
in uncertain databases. In ICDE, 2008.

52 Xi Zhang and Jan Chomicki. Semantics and evaluation of top-k queries in probabilistic
databases. DAPD, 26(1), 2009.



Combined Tractability of Query Evaluation via
Tree Automata and Cycluits
Antoine Amarilli1, Pierre Bourhis2, Mikaël Monet3, and
Pierre Senellart4

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
2 CRIStAL, CNRS & Université Lille 1, Lille, France
3 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France; and

Inria Paris, Paris, France
4 DI, École normale supérieure, PSL Research University, Paris, France; and

Inria Paris, Paris, France

Abstract
We investigate parameterizations of both database instances and queries that make query evalu-
ation fixed-parameter tractable in combined complexity. We introduce a new Datalog fragment
with stratified negation, intensional-clique-guarded Datalog (ICG-Datalog), with linear-time eval-
uation on structures of bounded treewidth for programs of bounded rule size. Such programs cap-
ture in particular conjunctive queries with simplicial decompositions of bounded width, guarded
negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result
is shown by compiling to alternating two-way automata, whose semantics is defined via cyclic
provenance circuits (cycluits) that can be tractably evaluated. Last, we prove that probabilistic
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1 Introduction

Arguably the most fundamental task performed by database systems is query evaluation,
namely, computing the results of a query over a database instance. Unfortunately, this task
is well-known to be intractable in combined complexity [55] even for simple query languages.

To address this issue, two main directions have been investigated. The first is to restrict
the class of queries to ensure tractability, for instance, to α-acyclic conjunctive queries [57],
this being motivated by the idea that many real-world queries are simple and usually small.
The second approach restricts the structure of database instances, e.g., requiring them to have
bounded treewidth [52] (we call them treelike). This has been notably studied by Courcelle [24],
to show the tractability of monadic-second order logic on treelike instances, but in data
complexity (i.e., for fixed queries); the combined complexity is generally nonelementary [49].

This leaves open the main question studied in this paper: Which queries can be efficiently
evaluated, in combined complexity, on treelike databases? This question has been addressed
by Gottlob, Pichler, and Fei [36] by introducing quasi-guarded Datalog; however, an unusual
feature of this language is that programs must explicitly refer to the tree decomposition of
the instance. Instead, we try to follow Courcelle’s approach and investigate which queries
can be efficiently compiled to automata. Specifically, rather than restricting to a fixed class
of “efficient” queries, we study parameterized query classes, i.e., we define an efficient class
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of queries for each value of the parameter. We further make the standard assumption that
the signature is fixed; in particular, its arity is constant. This allows us to aim for low
combined complexity for query evaluation, namely, fixed-parameter tractability with linear
time complexity in the product of the input query and instance, called FPT-linear complexity.

Surprisingly, we are not aware of further existing work on tractable combined query
evaluation for parameterized instances and queries, except from an unexpected angle: the
compilation of restricted query fragments to tree automata on treelike instances was used in the
context of guarded logics and other fragments, to decide satisfiability [13] and containment [11].
To do this, one usually establishes a treelike model property to restrict the search to models of
low treewidth (but dependent on the formula), and then compiles the formula to an automaton,
so that the problems reduce to emptiness testing: expressive automata formalisms, such as
alternating two-way automata, are typically used. One contribution of our work is to notice
this connection, and show how query evaluation on treelike instances can benefit from these
ideas: for instance, as we show, some queries can only be compiled efficiently to such concise
automata, and not to the more common bottom-up tree automata.

From there, the first main contribution of this paper is to define the language of intensional-
clique-guarded Datalog (ICG-Datalog), and show an efficient FPT-linear compilation procedure
for this language, parameterized by the body size of rules: this implies FPT-linear combined
complexity on treelike instances. While we present it as a Datalog fragment, our language
shares some similarities with guarded logics; yet, its design incorporates several features
(fixpoints, clique-guards, guarded negation, guarding positive subformulae) that are not
usually found together in guarded fragments, but are important for query evaluation. We
show how the tractability of this language captures the tractability of such query classes as
two-way regular path queries [10] and α-acyclic conjunctive queries.

Already for conjunctive queries, we show that the treewidth of queries is not the right
parameter to ensure efficient compilability. In fact, a second contribution of our work is
a lower bound: we show that bounded treewidth queries cannot be efficiently compiled to
automata at all, so we cannot hope to show combined tractability for them via automata
methods. By contrast, ICG-Datalog implies the combined tractability of bounded-treewidth
queries with an additional requirement (interfaces between bags must be clique-guarded),
which is the notion of simplicial decompositions previously studied by Tarjan [53]. To our
knowledge, our paper is the first to introduce this query class and to show its tractability
on treelike instances. ICG-Datalog can be understood as an extension of this fragment to
disjunction, clique-guarded negation, and inflationary fixpoints, that preserves tractability.

To derive our main FPT-linear combined complexity result, we define an operational
semantics for our tree automata by introducing a notion of cyclic provenance circuits, that
we call cycluits. These cycluits, the third contribution of our paper, are well-suited as a
provenance representation for alternating two-way automata encoding ICG-Datalog programs,
as they naturally deal with both recursion and two-way traversal of a treelike instance, which
is less straightforward with provenance formulae [37] or circuits [26]. While we believe that
this natural generalization of Boolean circuits may be of independent interest, it does not
seem to have been studied in detail, except in the context of integrated circuit design [45, 51],
where the semantics often features feedback loops that involve negation; we prohibit these by
focusing on stratified circuits, which we show can be evaluated in linear time. We show that
the provenance of alternating two-way automata can be represented as a stratified cycluit in
FPT-linear time, generalizing results on bottom-up automata and circuits from [5].

Since cycluits directly give us a provenance representation of the query, we then investigate
probabilistic query evaluation, which we showed in [5] to be linear-time in data complexity
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through the use of provenance circuits. We show how to remove cycles, so as to apply message-
passing methods [42], yielding a 2EXPTIME upper bound for the combined complexity
of probabilistic query evaluation. While we do not obtain tractable probabilistic query
evaluation in combined complexity, we give lower bounds showing that this is unlikely.

Outline. We give preliminaries in Section 2, and then position our approach relative to
existing work in Section 3. We then present our tractable fragment, first for bounded-
simplicial-width conjunctive queries in Section 4, then for our ICG-Datalog language in
Section 5. We then define our automata and compile ICG-Datalog to them in Section 6,
before introducing cycluits and showing our provenance computation result in Section 7. We
last study the conversion of cycluits to circuits, and probability evaluation, in Section 8. Full
proofs are provided in the extended version [4].

2 Preliminaries

A relational signature σ is a finite set of relation names written R, S, T , . . . , each with its
associated arity arity(R) ∈ N. Throughout this work, we always assume the signature σ to be
fixed: hence, its arity arity(σ) (the maximal arity of relations in σ) is constant, and we further
assume it is > 0. A (σ-)instance I is a finite set of ground facts on σ, i.e., R(a1, . . . , aarity(R))
with R ∈ σ. The active domain dom(I) consists of the elements occurring in I.

We study query evaluation for several query languages that are subsets of first-order (FO)
logic (e.g., conjunctive queries) or of second-order (SO) logic (e.g., Datalog). Unless otherwise
stated, we only consider queries that are constant-free, and Boolean, so that an instance I
either satisfies a query q (I |= q), or violates it (I 6|= q), with the standard semantics [1].

We study the query evaluation problem (or model checking) for a query class Q and
instance class I: given an instance I ∈ I and query Q ∈ Q, check if I |= Q. Its combined
complexity for I and Q is a function of I and Q, whereas data complexity assumes Q to
be fixed. We also study cases where I and Q are parameterized: given infinite sequences
I1, I2, . . . and Q1,Q2, . . ., the query evaluation problem parameterized by kI, kQ applies to IkI

and QkQ . The parameterized problem is fixed-parameter tractable (FPT), for (In) and (Qn),
if there is a constant c ∈ N and computable function f such that the problem can be solved
with combined complexity O (f(kI, kQ) · (|I| · |Q|)c). For c = 1, we call it FPT-linear (in
|I| · |Q|). Observe that calling the problem FPT is more informative than saying that it is in
PTIME for fixed kI and kQ, as we are further imposing that the polynomial degree c does
not depend on kI and kQ: this follows the usual distinction in parameterized complexity
between FPT and classes such as XP [29].

Query languages. We first study fragments of FO, in particular, conjunctive queries (CQ),
i.e., existentially quantified conjunctions of atoms. The canonical model of a CQ Q is the
instance built from Q by seeing variables as elements and atoms as facts. The primal graph
of Q has its variables as vertices, and connects all variable pairs that co-occur in some atom.

Second, we study Datalog with stratified negation. We summarize the definitions here,
see [1] for details. A Datalog program P (without negation) over σ (called the extensional
signature) consists of an intensional signature σint disjoint from σ (with the arity of σint
being possibly greater than that of σ), a 0-ary goal predicate Goal in σint, and a set of rules:
those are of the form R(x)← ψ(x,y), where the head R(x) is an atom with R ∈ σint, and
the body ψ is a CQ over σint t σ where each variable of x must occur. The semantics P (I)
of P over an input σ-instance I is defined by a least fixpoint of the interpretation of σint:
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we start with P (I) := I, and for any rule R(x) ← ψ(x,y) and tuple a of dom(I), when
P (I) |= ∃yψ(a,y), then we derive the fact R(a) and add it to P (I), where we can then
use it to derive more facts. We have I |= P iff we derive the fact Goal(). The arity of P is
max(arity(σ), arity(σint)). P is monadic if σint has arity 1.

Datalog with stratified negation [1] allows negated intensional atoms in bodies, but
requires P to have a stratification, i.e., an ordered partition P1 t · · · t Pn of the rules
where:
(i) Each R ∈ σint has a stratum ζ(R) ∈ {1, . . . , n} such that all rules with R in the head

are in Pζ(R);
(ii) For any 1 6 i 6 n and σint-atom R(z) in a body of a rule of Pi, we have ζ(R) 6 i;
(iii) For any 1 6 i 6 n and negated σint-atom R(z) in a body of Pi, we have ζ(R) < i.
The stratification ensures that we can define the semantics of a stratified Datalog program by
computing its interpretation for strata P1, . . . , Pn in order: atoms in bodies always depend
on a lower stratum, and negated atoms depend on strictly lower strata, whose interpretation
was already fixed. Hence, there is a unique least fixpoint and I |= P is well-defined.

I Example 1. The following stratified Datalog program, with σ = {R} and σint = {T,Goal},
and strata P1, P2, tests if there are two elements that are not connected by a directed R-path:

P1 : T (x, y)← R(x, y), T (x, y)← R(x, z) ∧ T (z, y) P2 : Goal()← ¬T (x, y)

Treewidth. Treewidth is a measure quantifying how far a graph is to being a tree, which
we use to restrict instances and conjunctive queries. The treewidth of a CQ is that of its
canonical instance, and the treewidth of an instance I is the smallest k such that I has a tree
decomposition of width k, i.e., a finite, rooted, unranked tree T , whose nodes b (called bags)
are labeled by a subset dom(b) of dom(I) with |dom(b)| 6 k + 1, and which satisfies:
(i) for every fact R(a) ∈ I, there is a bag b ∈ T with a ⊆ dom(b);
(ii) for all a ∈ dom(I), the set of bags {b ∈ T | a ∈ dom(b)} is a connected subtree of T .
A family of instances is treelike if their treewidth is bounded by a constant.

3 Approaches for Tractability

We now review existing approaches to ensure the tractability of query evaluation, starting by
query languages whose evaluation is tractable in combined complexity on all input instances.
We then study more expressive query languages which are tractable on treelike instances,
but where tractability only holds in data complexity. We then present the goals of our work.

3.1 Tractable Queries on All Instances
The best-known query language to ensure tractable query complexity is α-acyclic queries [28],
i.e., those that have a tree decomposition where the domain of each bag corresponds exactly
to an atom: this is called a join tree [34]. With Yannakakis’s algorithm [57], we can evaluate
an α-acyclic conjunctive query Q on an arbitrary instance I in time O(|I| · |Q|).

Yannakakis’s result was generalized in two main directions. One direction [33], moving
from linear time to PTIME, has investigated more general CQ classes, in particular CQs of
bounded treewidth [30], hypertreewidth [34], and fractional hypertreewidth [38]. Bounding
these query parameters to some fixed k makes query evaluation run in time O((|I|·|Q|)f(k)) for
some function f , hence in PTIME; for treewidth, since the decomposition can be computed in
FPT-linear time [19], this goes down to O(|I|k · |Q|). However, query evaluation on arbitrary
instances is unlikely to be FPT when parameterized by the query treewidth, since it would
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imply that the exponential-time hypothesis fails (Theorem 5.1 of [47]). Further, even for
treewidth 2 (e.g., triangles), it is not known if we can achieve linear data complexity [2].

In another direction, α-acyclicity has been generalized to queries with more expressive
operators, e.g., disjunction or negation. The result on α-acyclic CQs thus extends to the
guarded fragment (GF) of first-order logic, which can be evaluated on arbitrary instances in
time O(|I| · |Q|) [44]. Tractability is independently known for FOk, the fragment of FO where
subformulae use at most k variables, with a simple evaluation algorithm in O(|I|k · |Q|) [56].

Another important operator are fixpoints, which can be used to express, e.g., reachability
queries. Though FOk is no longer tractable when adding fixpoints [56], query evaluation is
tractable [17, Theorem 3] for µGF, i.e., GF with some restricted least and greatest fixpoint
operators, when alternation depth is bounded; without alternation, the combined complexity
is in O(|I| · |Q|). We could alternatively express fixpoints in Datalog, but, sadly, most
known tractable fragments are nonrecursive: nonrecursive stratified Datalog is tractable
[30, Corollary 5.26] for rules with restricted bodies (i.e., strictly acyclic, or bounded strict
treewidth). This result was generalized in [35] when bounding the number of guards: this
nonrecursive fragment is shown to be equivalent to the k-guarded fragment of FO, with
connections to the bounded-hypertreewidth approach. One recursive tractable fragment is
Datalog LITE, which is equivalent to alternation-free µGF [32]. Fixpoints were independently
studied for graph query languages such as reachability queries and regular path queries (RPQ),
which enjoy linear combined complexity on arbitrary input instances: this extends to two-way
RPQs (2RPQs) and even strongly acyclic conjunctions of 2RPQs (SAC2RPQs), which are
expressible in alternation-free µGF. Tractability also extends to acyclic RPQs but with
PTIME complexity [10].

3.2 Tractability on Treelike Instances
We now study another approach for tractable query evaluation: this time, we restrict the
shape of the instances, using treewidth. This ensures that we can translate them to a
tree for efficient query evaluation. Informally, having fixed the signature σ, for a fixed
treewidth k ∈ N, there is a finite tree alphabet Γkσ such that σ-instances of treewidth 6 k

can be translated in FPT-linear time (parameterized by k), following the structure of a tree
decomposition, to a Γkσ-tree, i.e., a rooted full ordered binary tree with nodes labeled by Γkσ,
which we call a tree encoding. We omit the formal construction: see the extended version [4]
for more details.

We can then evaluate queries on treelike instances by running tree automata on the tree
encoding that represents them. Formally, given an alphabet Γ, a bottom-up nondeterministic
tree automaton on Γ-trees (or Γ-bNTA) is a tuple A = (Q,F, ι,∆), where:
(i) Q is a finite set of states;
(ii) F ∈ Q is a subset of accepting states;
(iii) ι : Γ→ 2Q is an initialization function determining the state of a leaf from its label;
(iv) ∆ : Γ×Q2 → 2Q is a transition function determining the possible states for an internal

node from its label and the states of its two children.
Given a Γ-tree 〈T, λ〉 (where λ : T → Γ is the labeling function), we define a run of A
on 〈T, λ〉 as a function ϕ : T → Q such that (1) ϕ(l) ∈ ι(λ(l)) for every leaf l of T ; and
(2) ϕ(n) ∈ ∆(λ(n), ϕ(n1), ϕ(n2)) for every internal node n of T with children n1 and n2. The
bNTA A accepts 〈T, λ〉 if it has a run on T mapping the root of T to a state of F .

We say that a bNTA A tests a query Q for treewidth k if, for any Γkσ-encoding 〈E, λ〉
coding an instance I (of treewidth 6 k), A accepts 〈E, λ〉 iff I |= Q. By a well-known result
of Courcelle [24] on graphs (extended to higher-arity in [30]), we can use bNTAs to evaluate
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all queries in monadic second-order logic (MSO), i.e., first-order logic with second-order
variables of arity 1. MSO subsumes in particular CQs and monadic Datalog (but not general
Datalog). Courcelle showed that MSO queries can be compiled to a bNTA that tests them:

I Theorem 2 ([24, 30]). For any MSO query Q and treewidth k ∈ N, we can compute a
bNTA that tests Q for treewidth k.

This implies that evaluating any MSO query Q has FPT-linear data complexity when
parameterized by Q and the instance treewidth [24, 30], i.e., it is in O (f(|Q| , k) · |I|) for
some computable function f . However, this tells little about the combined complexity, as
f is generally nonelementary in Q [49]. A better combined complexity bound is known for
unions of conjunctions of two-way regular path queries (UC2RPQs) that are further required
to be acyclic and to have a constant number of edges between pairs of variables: these can
be compiled into polynomial-sized alternating two-way automata [11].

3.3 Restricted Queries on Treelike Instances
Our approach combines both ideas: we use instance treewidth as a parameter, but also
restrict the queries to ensure tractable compilability. We are only aware of two approaches
in this spirit. First, Gottlob, Pichler, and Wei [36] have proposed a quasiguarded Datalog
fragment on relational structures and their tree decompositions, with query evaluation is in
O(|I| · |Q|). However, this formalism requires queries to be expressed in terms of the tree
decomposition, and not just in terms of the relational signature. Second, Berwanger and
Grädel [17] remark (after Theorem 4) that, when alternation depth and width are bounded,
µCGF (the clique-guarded fragment of FO with fixpoints) enjoys FPT-linear query evaluation
when parameterized by instance treewidth. Their approach does not rely on automata
methods, and subsumes the tractability of α-acyclic CQs and alternation-free µGF (and
hence SAC2RPQs), on treelike instances. However, µCGF is a restricted query language
(the only CQs that it can express are those with a chordal primal graph), whereas we want a
richer language, with a parameterized definition.

Our goal is thus to develop an expressive parameterized query language, which can be
compiled in FPT-linear time to an automaton that tests it (with the treewidth of instances
also being a parameter). We can then evaluate the automaton, and obtain FPT-linear
combined complexity for query evaluation. Further, as we will show, the use of tree automata
will yield provenance representations for the query as in [5] (see Section 7).

4 Conjunctive Queries on Treelike Instances

To identify classes of queries that can be efficiently compiled to tree automata, we start by
the simplest queries: conjunctive queries.

α-acyclic queries. A natural candidate for a tractable query class via automata methods
would be α-acyclic CQs, which, as we explained in Section 3.1, can be evaluated in time
O(|I| · |Q|) on all instances. Sadly, we show that such queries cannot be compiled efficiently
to bNTAs, so our compilation result (Theorem 2) does not extend directly:

I Proposition 3. There is an arity-two signature σ and an infinite family Q1, Q2, . . . of
α-acyclic CQs such that, for any i ∈ N, any bNTA that tests Qi for treewidth 1 must have
Ω(2|Qi|1−ε) states for any ε > 0.
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The intuition of the proof is that bNTAs can only make one traversal of the encoding
of the input instance. Faced by this, we propose to use different tree automata formalisms,
which are generally more concise than bNTAs. There are two classical generalizations of
nondeterministic automata, on words [18] and on trees [23]: one goes from the inherent
existential quantification of nondeterminism to quantifier alternation; the other allows two-
way navigation instead of imposing a left-to-right (on words) or bottom-up (on trees) traversal.
On words, both of these extensions independently allow for exponentially more compact
automata [18]. In this work, we combine both extensions and use alternating two-way tree
automata [23, 20], formally introduced in Section 6, which leads to tractable combined
complexity for evaluation. Our general results in the next section will then imply:

I Proposition 4. For any treewidth bound kI ∈ N, given an α-acyclic CQ Q, we can compute
in FPT-linear time in O(|Q|) (parameterized by kI) an alternating two-way tree automaton
that tests it for treewidth kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · |Q| (parameterized by kI).

Bounded-treewidth queries. Having re-proven the combined tractability of α-acyclic quer-
ies (on bounded-treewidth instances), we naturally try to extend to bounded-treewidth CQs.
Recall from Section 3.1 that these queries have PTIME combined complexity on all instances,
but are unlikely to be FPT when parameterized by the query treewidth [47]. Can they be
efficiently evaluated on treelike instances by compiling them to automata? We answer in the
negative: that bounded-treewidth CQs cannot be efficiently compiled to automata to test
them, even when using the expressive formalism of alternating two-way tree automata [23]:

I Theorem 5. There is an arity-two signature σ for which there is no algorithm A with
exponential running time and polynomial output size for the following task: given a conjunctive
query Q of treewidth 6 2, produce an alternating two-way tree automaton AQ on Γ5

σ-trees
that tests Q on σ-instances of treewidth 6 5.

This result is obtained from a variant of the 2EXPTIME-hardness of monadic Datalog
containment [12]. We show that efficient compilation of bounded-treewidth CQs to automata
would yield an EXPTIME containment test, and conclude by the time hierarchy theorem.

Bounded simplicial width. We have shown that we cannot compile bounded-treewidth
queries to automata efficiently. We now show that efficient compilation can be ensured with an
additional requirement on tree decompositions. As it turns out, the resulting decomposition
notion has been independently introduced for graphs:

I Definition 6 ([27]). A simplicial decomposition of a graph G is a tree decomposition T
of G such that, for any bag b of T and child bag b′ of b, letting S be the intersection of the
domains of b and b′, then the subgraph of G induced by S is a complete subgraph of G.

We extend this notion to CQs, and introduce the simplicial width measure:

I Definition 7. A simplicial decomposition of a CQ Q is a simplicial decomposition of its
primal graph. Note that any CQ has a simplicial decomposition (e.g., the trivial one that
puts all variables in one bag). The simplicial width of Q is the minimum, over all simplicial
tree decompositions, of the size of the largest bag minus 1.

Bounding the simplicial width of CQs is of course more restrictive than bounding their
treewidth, and this containment relation is strict: cycles have treewidth 6 2 but have
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unbounded simplicial width. This being said, bounding the simplicial width is less restrictive
than imposing α-acyclicity: the join tree of an α-acyclic CQ is in particular a simplicial
decomposition, so α-acyclic CQs have simplicial width at most arity(σ)−1, which is constant
as σ is fixed. Again, the containment is strict: a triangle has simplicial width 2 but is not
α-acyclic.

To our knowledge, simplicial width for CQs has not been studied before. Yet, we show
that bounding the simplicial width ensures that CQs can be efficiently compiled to automata.
This is unexpected, because the same is not true of treewidth, by Theorem 5. Hence:

I Theorem 8. For any kI, kQ ∈ N, given a CQ Q and a simplicial decomposition T of
simplicial width kQ of Q, we can compute in FPT-linear in |Q| (parameterized by kI and kQ)
an alternating two-way tree automaton that tests Q for treewidth kI.

Hence, if we are additionally given a relational instance I of treewidth 6 kI, one can
determine whether I |= Q in FPT-linear time in |I| · (|Q|+ |T |) (parameterized by kI and kQ).

Notice the technicality that the simplicial decomposition T must be provided as input to
the procedure, because it is not known to be computable in FPT-linear time, unlike tree
decompositions. While we are not aware of results on the complexity of this specific task,
quadratic time algorithms are known for the related problem of computing the clique-minimal
separator decomposition [43, 16].

The intuition for the efficient compilation of bounded-simplicial-width CQs is as follows.
The interface variables shared between any bag and its parent must be “clique-guarded”
(each pair is covered by an atom). Hence, consider any subquery rooted at a bag of the
query decomposition, and see it as a non-Boolean CQ with the interface variables as free
variables. Each result of this CQ must then be covered by a clique of facts of the instance,
which ensures [31] that it occurs in some bag in the instance tree decomposition and can be
“seen” by a tree automaton. This intuition can be generalized, beyond conjunctive queries, to
design an expressive query language featuring disjunction, negation, and fixpoints, with the
same properties of efficient compilation to automata and FPT-linear combined complexity of
evaluation on treelike instances. We introduce such a Datalog variant in the next section.

5 ICG-Datalog on Treelike Instances

To design a Datalog fragment with efficient compilation to automata, we must of course
impose some limitations, as we did for CQs. In fact, we can even show that the full Datalog
language (even without negation) cannot be compiled to automata, no matter the complexity:

I Proposition 9. There is a signature σ and Datalog program P such that the language of
Γ1
σ-trees that encode instances satisfying P is not a regular tree language.

Hence, there is no bNTA or alternating two-way tree automaton that tests P for
treewidth 1. To work around this problem and ensure that compilation is possible and
efficient, the key condition that we impose on Datalog programs, pursuant to the intuition of
simplicial decompositions, is that intensional predicates in rule bodies must be clique-guarded,
i.e., their variables must co-occur in extensional predicates of the rule body. We can then
use the body size of the program rules as a parameter, and will show that the fragment can
then be compiled to automata in FPT-linear time.

I Definition 10. Let P be a stratified Datalog program. An intensional literal A(x) or
¬A(x) in a rule body ψ of P is clique-guarded if, for any two variables xi 6= xj of x, xi and
xj co-occur in some extensional atom of ψ. P is intensional-clique-guarded (ICG) if, for any
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rule R(x)← ψ(x,y), every intensional literal in ψ is clique-guarded in ψ. The body size of P
is the maximal number of atoms in the body of its rules, multiplied by its arity.

The main result of this paper is that evaluation of ICG-Datalog is FPT-linear in combined
complexity, when parameterized by the body size of the program and the instance treewidth.

I Theorem 11. Given an ICG-Datalog program P of body size kP and a relational instance I
of treewidth kI, checking if I |= P is FPT-linear time in |I| · |P | (parameterized by kP and kI).

We will show this result in the next section by compiling ICG-Datalog programs in
FPT-linear time to a special kind of tree automata (Theorem 22), and showing in Section 7
that we can efficiently evaluate such automata and even compute provenance representations.
The rest of this section presents consequences of our main result for various languages.

Conjunctive queries. Our tractability result for bounded-simplicial-width CQs (Theorem 8),
including α-acyclic CQs, is shown by rewriting to ICG-Datalog of bounded body size:

I Proposition 12. There is a function fσ (depending only on σ) such that for all k ∈ N, for
any conjunctive query Q and simplicial tree decomposition T of Q of width at most k, we can
compute in O(|Q|+ |T |) an equivalent ICG-Datalog program with body size at most fσ(k).

This implies that ICG-Datalog can express any CQ up to increasing the body size
parameter, unlike, e.g., µCGF. Conversely, we can show that bounded-simplicial-width CQs
characterize the queries expressible in ICG-Datalog when disallowing negation, recursion and
disjunction. Specifically, a Datalog program is positive if it contains no negated atoms. It
is nonrecursive if there is no cycle in the directed graph on σint having an edge from R to
S whenever a rule contains R in its head and S in its body. It is conjunctive [14] if each
intensional relation R occurs in the head of at most one rule. We can then show:

I Proposition 13. For any positive, conjunctive, nonrecursive ICG-Datalog program P with
body size k, there is a CQ Q of simplicial width 6 k that is equivalent to P .

However, our ICG-Datalog fragment is still exponentially more concise than such CQs:

I Proposition 14. There is a signature σ and a family (Pn)n∈N of ICG-Datalog programs with
body size at most 9 which are positive, conjunctive, and nonrecursive, such that |Pn| = O(n)
and any CQ Qn equivalent to Pn has size Ω(2n).

Guarded negation fragments. Having explained the connections between ICG-Datalog
and CQs, we now study its connections to the more expressive languages of guarded logics,
specifically, the guarded negation fragment (GNF), a fragment of first-order logic [9]. Indeed,
when putting GNF formulae in GN-normal form [9] or even weak GN-normal form [15],
we can translate them to ICG-Datalog, and we can use the CQ-rank parameter [15] (that
measures the maximal number of atoms in conjunctions) to control the body size parameter.

I Proposition 15. There is a function fσ (depending only on σ) such that, for any weak
GN-normal form GNF query Q of CQ-rank r, we can compute in time O(|Q|) an equivalent
nonrecursive ICG-Datalog program P of body size fσ(r).

In fact, the efficient compilation of bounded-CQ-rank normal-form GNF programs (using
the fact that subformulae are “answer-guarded”, like our guardedness requirements) has
been used recently (e.g., in [13]), to give efficient procedures for GNF satisfiability, compiling
them to automata (to a treewidth which is not fixed, unlike in our context, but depends on
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the formula). ICG-Datalog further allows clique guards (similar to CGNFO [9]), can reuse
subformulae (similar to the idea of DAG-representations in [15]), and supports recursion
(similar to GNFP [9], or GN-Datalog [8] but whose combined complexity is intractable —
PNP-complete). ICG-Datalog also resembles µCGF [17], but remember that it is not a
guarded negation logic, so, e.g., µCGF cannot express all CQs.

Hence, the design of ICG-Datalog, and its compilation to automata, has similarities with
guarded logics. However, to our knowledge, the idea of applying it to query evaluation is new,
and ICG-Datalog is designed to support all relevant features to capture interesting query
languages (e.g., clique guards are necessary to capture bounded-simplicial-width queries).

Recursive languages. The use of fixpoints in ICG-Datalog, in particular, allows us to
capture the combined tractability of interesting recursive languages. First, observe that
our guardedness requirement becomes trivial when all intensional predicates are monadic
(arity-one), so our main result implies that monadic Datalog of bounded body size is tractable
in combined complexity on treelike instances. This is reminiscent of the results of [36]:

I Proposition 16. The combined complexity of monadic Datalog query evaluation on bounded-
treewidth instances is FPT when parameterized by instance treewidth and body size (as in
Definition 10) of the monadic Datalog program.

Second, ICG-Datalog can capture two-way regular path queries (2RPQs) [21, 10], a
well-known query language in the context of graph databases and knowledge bases:

I Definition 17. We assume that the signature σ contains only binary relations. A regular
path query (RPQ) QL is defined by a regular language L on the alphabet Σ of the relation
symbols of σ. Its semantics is that QL has two free variables x and y, and QL(a, b) holds on
an instance I for a, b ∈ dom(I) precisely when there is a directed path π of relations of σ
from a to b such that the label of π is in L. A two-way regular path query (2RPQ) is an
RPQ on the alphabet Σ± := Σt {R− | R ∈ Σ}, which holds whenever there is a path from a

to b with label in L, with R− meaning that we traverse an R-fact in the reverse direction. A
Boolean 2RPQ is a 2RPQ which is existentially quantified on its two free variables.

I Proposition 18 ([48, 10]). 2RPQ query evaluation (on arbitrary instances) has linear time
combined complexity.

ICG-Datalog allows us to capture this result for Boolean 2RPQs on treelike instances. In
fact, the above result extends to SAC2RPQs, which are trees of 2RPQs with no multi-edges or
loops. We can prove the following result, for Boolean 2RPQs and SAC2RPQs, which further
implies compilability to automata (and efficient compilation of provenance representations).
We do not know whether this extends to the more general classes studied in [11].

I Proposition 19. Given a Boolean SAC2RPQ Q, we can compute in time O(|Q|) an
equivalent ICG-Datalog program P of body size 4.

6 Compilation to Automata

In this section, we study how we can compile ICG-Datalog queries on treelike instances to
tree automata, to be able to evaluate them efficiently. As we showed with Proposition 3,
we need more expressive automata than bNTAs. Hence, we use instead the formalism of
alternating two-way automata [23], i.e., automata that can navigate in trees in any direction,
and can express transitions using Boolean formulae on states. Specifically, we introduce for
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our purposes a variant of these automata, which are stratified (i.e., allow a form of stratified
negation), and isotropic (i.e., no direction is privileged, in particular order is ignored).

As in Section 3.2, we will define tree automata that run on Γ-trees for some alphabet Γ:
a Γ-tree 〈T, λ〉 is a finite rooted ordered tree with a labeling function λ from the nodes of T
to Γ. The neighborhood Nbh(n) of a node n ∈ T is the set which contains n, all children of n,
and the parent of n if it exists.

Stratified isotropic alternating two-way automata. To define the transitions of our altern-
ating automata, we write B(X) the set of propositional formulae (not necessarily monotone)
over a set X of variables: we will assume w.l.o.g. that negations are only applied to variables,
which we can always enforce using de Morgan’s laws. A literal is a propositional variable
x ∈ X (positive literal) or the negation of a propositional variable ¬x (negative literal).

A satisfying assignment of ϕ ∈ B(X) consists of two disjoint sets P,N ⊆ X (for “positive”
and “negative”) such that ϕ is a tautology when substituting the variables of P with 1 and
those of N with 0, i.e., when we have ν(ϕ) = 1 for every valuation ν of X such that ν(x) = 1
for all x ∈ P and ν(x) = 0 for all x ∈ N . Note that we allow satisfying assignments with
P tN ( X, which will be useful for our technical results. We now define our automata:

I Definition 20. A stratified isotropic alternating two-way automata on Γ-trees (Γ-SATWA)
is a tuple A = (Q, qI,∆, ζ) with Q a finite set of states, qI the initial state, ∆ the transition
function from Q× Γ to B(Q), and ζ a stratification function, i.e., a surjective function from
Q to {0, . . . ,m} for some m ∈ N, such that for any q, q′ ∈ Q and f ∈ Γ, if ∆(q, f) contains q′
as a positive literal (resp., negative literal), then ζ(q′) 6 ζ(q) (resp. ζ(q′) < ζ(q)).

We define by induction on 0 6 i 6 m an i-run of A on a Γ-tree 〈T, λ〉 as a finite tree
〈Tr, λr〉, with labels of the form (q, w) or ¬(q, w) for w ∈ T and q ∈ Q with ζ(q) 6 i, by the
following recursive definition for all w ∈ T :

For q ∈ Q such that ζ(q) < i, the singleton tree 〈Tr, λr〉 with one node labeled by (q, w)
(resp., by ¬(q, w)) is an i-run if there is a ζ(q)-run of A on 〈T, λ〉 whose root is labeled
by (q, w) (resp., if there is no such run);
For q ∈ Q such that ζ(q) = i, if ∆(q, λ(w)) has a satisfying assignment (P,N), if we have
a ζ(q′)-run Tq− for each q− ∈ N with root labeled by ¬(q−, w), and a ζ(q+)-run Tq+

for each q+ ∈ P with root labeled by (q+, wq+) for some wq+ in Nbh(w), then the tree
〈Tr, λr〉 whose root is labeled (q, w) and has as children all the Tq− and Tq+ is an i-run.

A run of A starting in a state q ∈ Q at a node w ∈ T is a m-run whose root is labeled (q, w).
We say that A accepts 〈T, λ〉 (written 〈T, λ〉 |= A) if there exists a run of A on 〈T, λ〉 starting
in the initial state qI at the root of T .

Observe that the internal nodes of a run starting in some state q are labeled by states q′
in the same stratum as q. The leaves of the run may be labeled by states of a strictly
lower stratum or negations thereof, or by states of the same stratum whose transition
function is tautological, i.e., by some (q′, w) such that ∆(q′, λ(w)) has ∅, ∅ as a satisfying
assignment. Intuitively, if we disallow negation in transitions, our automata amount to the
alternating two-way automata used by [20], with the simplification that they do not need
parity acceptance conditions (because we only work with finite trees), and that they are
isotropic: the run for each positive child state of an internal node may start indifferently on
any neighbor of w in the tree (its parent, a child, or w itself), no matter the direction. (Note,
however, that the run for negated child states must start on w itself.)

We will soon explain how the compilation of ICG-Datalog is performed, but we first note
that evaluation of Γ-SATWAs is in linear time:
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I Proposition 21. For any alphabet Γ, given a Γ-tree T and a Γ-SATWA A, we can determine
whether T |= A in time O(|T | · |A|).

In fact, this result follows from the definition of provenance cycluits for SATWAs in the
next section, and the claim that these cycluits can be evaluated in linear time.

Compilation. We now give our main compilation result: we can efficiently compile any
ICG-Datalog program of bounded body size into a SATWA that tests it (in the same sense
as for bNTAs). This is our main technical claim, which is proven in the extended version [4].

I Theorem 22. Given an ICG-Datalog program P of body size kP and kI ∈ N, we can build
in FPT-linear time in |P | (parameterized by kP, kI) a SATWA AP testing P for treewidth kI.

Proof Sketch. The idea is to have, for every relational symbol R, states of the form qνR(x),
where ν is a partial valuation of x. This will be the starting state of a run if it is possible to
navigate the tree encoding from some starting node and build in this way a total valuation
ν′ that extends ν and such that R(ν′(x)) holds. When R is intensional, once ν′ is total on x,
we go into a state of the form qν

′,A
r where r is a rule with head relation R and A is the

set of atoms in the body of r (whose size is bounded by the body size). This means that
we choose a rule to prove R(ν′(x)). The automaton can then navigate the tree encoding,
build ν′ and coherently partition A so as to inductively prove the atoms of the body. The
clique-guardedness condition ensures that, when there is a match of R(x), the elements to
which x is mapped can be found together in a bag. The fact that the automaton is isotropic
relieves us from the syntactic burden of dealing with directions in the tree, as one usually
has to do with alternating two-way automata. J

7 Provenance Cycluits

In the previous section, we have seen how ICG-Datalog programs could be compiled efficiently
to tree automata (SATWAs) that test them on treelike instances. To show that SATWAs can
be evaluated in linear time (stated earlier as Proposition 21), we will introduce an operational
semantics for SATWAs based on the notion of cyclic circuits, or cycluits for short.

We will also use these cycluits as a new powerful tool to compute (Boolean) provenance
information, i.e., a representation of how the query result depends on the input data:

I Definition 23. A (Boolean) valuation of a set S is a function ν : S → {0, 1}. A Boolean
function ϕ on variables S is a mapping that associates to each valuation ν of S a Boolean
value in {0, 1} called the evaluation of ϕ according to ν; for consistency with further notation,
we write it ν(ϕ). The provenance of a query Q on an instance I is the Boolean function ϕ,
whose variables are the facts of I, which is defined as follows: for any valuation ν of the facts
of I, we have ν(ϕ) = 1 iff the subinstance {F ∈ I | ν(F ) = 1} satisfies Q.

We can represent Boolean provenance as Boolean formulae [39, 37], or (more recently)
as Boolean circuits [26, 5]. In this section, we first introduce monotone cycluits (monotone
Boolean circuits with cycles), for which we define a semantics (in terms of the Boolean
function that they express); we also show that cycluits can be evaluated in linear time,
given a valuation. Second, we extend them to stratified cycluits, allowing a form of stratified
negation. We conclude the section by showing how to construct the provenance of a SATWA
as a cycluit, in FPT-linear time. Together with Theorem 22, this claim implies our main
provenance result:
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I Theorem 24. Given an ICG-Datalog program P of body size kP and a relational instance I
of treewidth kI, we can construct in FPT-linear time in |I| · |P | (parameterized by kP and kI)
a representation of the provenance of P on I as a stratified cycluit. Further, for fixed kI, this
cycluit has treewidth O(|P |).

Of course, this result implies the analogous claims for query languages that are captured
by ICG-Datalog parameterized by the body size, as we studied in Section 5. When combined
with the fact that cycluits can be tractably evaluated, it yields our main result, Theorem 11.
The rest of this section formally introduces cycluits and proves Theorem 24.

Cycluits. We define cycluits as Boolean circuits without the acyclicity requirement, as
in [51]. To avoid the problem of feedback loops, however, we first study monotone cycluits,
and then cycluits with stratified negation.

I Definition 25. A monotone Boolean cycluit is a directed graph C = (G,W, g0, µ) where
G is the set of gates, W ⊆ G2 is the set of directed edges called wires (and written g → g′),
g0 ∈ G is the output gate, and µ is the type function mapping each gate g ∈ G to one of inp
(input gate, with no incoming wire in W ), ∧ (AND gate) or ∨ (OR gate).

We now define the semantics of monotone cycluits. A (Boolean) valuation of C is a
function ν : Cinp → {0, 1} indicating the value of the input gates. As for standard monotone
circuits, a valuation yields an evaluation ν′ : C → {0, 1}, that we will define shortly, indicating
the value of each gate under the valuation ν: we abuse notation and write ν(C) ∈ {0, 1} for
the evaluation result, i.e., ν′(g0) where g0 is the output gate of C. The Boolean function
captured by a cycluit C is thus the Boolean function ϕ on Cinp defined by ν(ϕ) := ν(C) for
each valuation ν of Cinp. We define the evaluation ν′ from ν by a least fixed-point computation
(see the algorithm in the extended version [4]): we set all input gates to their value by ν,
and other gates to 0. We then iterate until the evaluation no longer changes, by evaluating
OR-gates to 1 whenever some input evaluates to 1, and AND-gates to 1 whenever all their
inputs evaluate to 1. The Knaster–Tarski theorem [54] gives an equivalent characterization:

I Proposition 26. For any monotone cycluit C and Boolean valuation ν of C, the set
S := {g ∈ C | ν′(g) = 1} is the minimal set of gates (under inclusion) such that:
(i) S contains the true input gates, i.e., it contains {g ∈ Cinp | ν(g) = 1};
(ii) for any g such that µ(g) = ∨, if some input gate of g is in S, then g is in S;
(iii) for any g such that µ(g) = ∧, if all input gates of g are in S, then g is in S.

We show that this definition is computable in linear time (see the extended version [4]):

I Proposition 27. Given any monotone cycluit C and Boolean valuation ν of C, we can
compute the evaluation ν′ of C in linear time.

Stratified cycluits. We now move from monotone cycluits to general cycluits featuring
negation. However, allowing arbitrary negation would make it difficult to define a proper
semantics, because of possible cycles of negations. Hence, we focus on stratified cycluits:

I Definition 28. A Boolean cycluit C is defined like a monotone cycluit, but further allows
NOT-gates (µ(g) = ¬), which are required to have a single input. It is stratified if there
exists a stratification function ζ mapping its gates surjectively to {0, . . . ,m} for some m ∈ N
such that ζ(g) = 0 iff g ∈ Cinp, and ζ(g) 6 ζ(g′) for each wire g → g′, the inequality being
strict if µ(g′) = ¬.
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Equivalently, C contains no cycle of gates involving a ¬-gate. If C is stratified, we can
compute a stratification function in linear time by a topological sort, and use it to define the
evaluation of C (which will clearly be independent of the choice of stratification function):

I Definition 29. Let C be a stratified cycluit with stratification function ζ : C → {0, . . . ,m},
and let ν be a Boolean valuation of C. We inductively define the i-th stratum evaluation νi,
for i in the range of ζ, by setting ν0 := ν, and letting νi extend the νj (j < i) as follows:

For g such that ζ(g) = i with µ(g) = ¬, set νi(g) := ¬νζ(g′)(g′) for its one input g′.
Evaluate all other g with ζ(g) = i as for monotone cycluits, considering the ¬-gates of
point 1. and all gates of lower strata as input gates fixed to their value in νi−1.

Letting g0 be the output gate of C, the Boolean function ϕ captured by C is then defined as
ν(ϕ) := νm(g0) for each valuation ν of Cinp.

I Proposition 30. We can compute ν(C) in linear time in the stratified cycluit C and in ν.

Building provenance cycluits. Having defined cycluits as our provenance representation,
we compute the provenance of a query on an instance as the provenance of its SATWA on a
tree encoding. To do so, we must give a general definition of the provenance of SATWAs.
Consider a Γ-tree T := 〈T, λ〉 for some alphabet Γ, as in Section 6. We define a (Boolean)
valuation ν of T as a mapping from the nodes of T to {0, 1}. Writing Γ := Γ× {0, 1}, each
valuation ν then defines a Γ-tree ν(T ) := 〈T, (λ × ν)〉, obtained by annotating each node
of T by its ν-image. As in [5], we define the provenance of a Γ-SATWA A on T , which
intuitively captures all possible results of evaluating A on possible valuations of T :

I Definition 31. The provenance of a Γ-SATWA A on a Γ-tree T is the Boolean function ϕ
defined on the nodes of T such that, for any valuation ν of T , ν(ϕ) = 1 iff A accepts ν(T ).

We then show that we can efficiently build provenance representations of SATWAs on
trees as stratified cycluits:

I Theorem 32. For any fixed alphabet Γ, given a Γ-SATWA A and a Γ-tree T , we can build
a stratified cycluit capturing the provenance of A on T in time O(|A| · |T |). Moreover, this
stratified cycluit has treewidth O(|A|).

Note that the proof can be easily modified to make it work for standard alternating two-
way automata rather than our isotropic automata. This result allows us to prove Theorem 24,
by applying it to the SATWA obtained from the ICG-Datalog program (Theorem 22), slightly
modified so as to extend it to the alphabet Γ. Recalling that nodes of the tree encodings
each encode at most one fact of the instance, we use the second coordinate of Γ to indicate
whether the fact is actually present or should be discarded. This allows us to range over
possible subinstances, and thus to compute the provenance. This concludes the proof of
our main result (Theorem 11 in Section 5): we can evaluate an ICG-Datalog program on
a treelike instance in FPT-linear time by computing its provenance by Theorem 24 and
evaluating the provenance in linear time (Proposition 30).

8 From Cycluits to Circuits and Probability Bounds

We have proven our main result on ICG-Datalog, Theorem 11, in the previous section,
introducing stratified cycluits in the process as a way to capture the provenance of ICG-
Datalog. In this section, we study how these stratified cycluits can be transformed into
equivalent acyclic Boolean circuits, and we then show how we can use this to derive bounds
for the probabilistic query evaluation problem (PQE).
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From cycluits to circuits. We call two cycluits or circuits C1 and C2 equivalent if they
have the same set of inputs Cinp and, for each valuation ν of Cinp, we have ν(C1) = ν(C2). A
first result from existing work is that we can remove cycles in cycluits and convert them to
circuits, with a quadratic blowup, by creating linearly many copies to materialize the fixpoint
computation. This allows us to remain FPT in combined complexity, but not FPT-linear:

I Proposition 33 (([51], Theorem 2)). For any stratified cycluit C, we can compute in time
O(|C|2) a Boolean circuit C ′ which is equivalent to C.

In addition to being quadratic rather than linear, another disadvantage of this approach
is that bounds on the treewidth of the cycluit (which we will need later for probability
computation) are generally not preserved on the output. Hence, we prove a second cycle
removal result, that proceeds in FPT-linear time when parameterized by the treewidth of
the input cycluit. When we use this result, we no longer preserve FPT combined complexity
of the overall computation, because the stratified cycluits produced by Theorem 24 generally
have treewidth Ω(|P |). On the other hand, we obtain an FPT-linear data complexity bound,
and a bounded-treewidth circuit as a result.

I Theorem 34. There is an α ∈ N s.t., for any stratified cycluit C of treewidth k, we can
compute in time O(2kα |C|) a circuit C ′ which is equivalent to C and has treewidth O(2kα).

Probabilistic query evaluation. We can then apply the above result to the probabilistic
query evaluation (PQE) problem, which we now define:

I Definition 35. A TID instance is a relational instance I and a function π mapping each
fact F ∈ I to a rational probability π(F ). A TID instance (I, π) defines a probability
distribution Pr on I ′ ⊆ I, where Pr(I ′) :=

∏
F∈I′ π(F )×

∏
F∈I\I′(1− π(F )).

The probabilistic query evaluation (PQE) problem asks, given a Boolean query Q and
a TID instance (I, π), the probability that the query Q is satisfied in the distribution Pr
of (I, π). Formally, we want to compute

∑
I′⊆I s.t. I′|=Q Pr(I ′). The data complexity of PQE

is its complexity when Q is fixed and the TID instance (I, π) is given as input. Its combined
complexity is its complexity when both the query and TID instance are given as input.

Earlier work [25] showed that PQE has #P-hard data complexity even for some CQs of
a simple form, but [5, 6] shows that PQE is tractable in data complexity for any Boolean
query in monadic second-order (MSO) if the input instances are required to be treelike.

We now explain how to use Theorem 34 for PQE. Let P be an ICG-Datalog program
of body size kP. Given a TID instance (I, π) of treewidth kI, we compute a provenance
cycluit for P on I of treewidth O(|P |) in FPT-linear time in |I| · |P | by Theorem 24. By
Theorem 34, we compute in O(2|P |α |I| |P |) an equivalent circuit of treewidth O(2|P |α). Now,
by Theorem D.2 of [6], we can solve PQE for P and (I, π) in O(22|P |

α

|I| |P | + |π|) up to
PTIME arithmetic costs. Linear-time data complexity was known from [5], but 2EXPTIME
combined complexity is novel, as [5] only gave non-elementary combined complexity bounds.

Acyclic queries on tree TIDs. A natural question is then to understand whether better
bounds are possible. In particular, is PQE tractable in combined complexity on treelike
instances? We show that, unfortunately, treewidth bounds are not sufficient to ensure this.
The proof draws some inspiration from earlier work [40] on the topic of tree-pattern query
evaluation in probabilistic XML [41].

I Proposition 36. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are α-acyclic CQs.

ICDT 2017
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Path queries on tree TIDs. We must thus restrict the query language further to achieve
combined tractability. One natural restriction is to go from α-acyclic queries to path queries,
i.e., Boolean CQs of the form R1(x1, x2), . . . , Rn(xn−1, xn), where each Ri is a binary relation
of the signature. For instance, R(x, y), S(y, z), T (z, w) is a path query, but R(x, y), S(z, y) is
not (we do not allow inverse relations). We can strengthen the previous result to show:

I Proposition 37. There is a fixed arity-two signature on which PQE is #P-hard even when
imposing that the input instances have treewidth 1 and the input queries are path queries.

Tractable cases. In which cases, then, could PQE be tractable in combined complexity?
One example is in [22]: PQE is tractable in combined complexity over probabilistic XML,
when queries are written as deterministic tree automata. In this setting, that the edges
of the XML document are directed (preventing, e.g., the inverse construction used in the
proof of Proposition 37). Further, as the result works on unranked trees, it is important that
children of a node are ordered as well (see [3] for examples where this matters).

We leave open the question of whether there are some practical classes of instances and
of queries for which such a deterministic tree automaton can be obtained from the query in
polynomial time to test the query for a given treewidth. As we have shown, path queries
and instances of treewidth 1, even though very restricted, do not suffice to ensure this. Note
that, in terms of data complexity, we have shown in [7] that treelike instances are essentially
the only instances for which first-order tractability is achievable.

9 Conclusion

We introduced ICG-Datalog, a new stratified Datalog fragment whose evaluation has FPT-
linear complexity when parameterized by instance treewidth and program body size. The
complexity result is obtained via compilation to alternating two-way automata, and via the
computation of a provenance representation in the form of stratified cycluits, a generalisation
of provenance circuits that we hope to be of independent interest.

We believe that ICG-Datalog can be further improved by removing the guardedness
requirement on negated atoms, which would make it more expressive and step back from
the world of guarded negation logics. In particular, we conjecture that our FPT-linear
tractability result generalizes to frontier-guarded Datalog, and its extensions with clique-
guards and stratified (but unguarded) negation, taking the rule body size and instance
treewidth as the parameters. We further hope that our results could be used to derive
PTIME combined complexity results on instances of arbitrary treewidth, e.g., XP membership
when parametrizing by program size; this could in particular recapture the tractability of
bounded-treewidth queries. Last, we intend to extend our cycluit framework to support more
expressive provenance semirings than Boolean provenance (e.g., formal power series [37]).

We leave open the question of practical implementation of the methods we developed,
but we have good hopes that this approach can give efficient results in practice, in part from
our experience with a preliminary provenance prototype [50]. Optimization is possible, for
instance by not representing the full automata but building them on the fly when needed in
query evaluation. Another promising direction supported by our experience, to deal with
real-world datasets that are not treelike, is to use partial tree decompositions [46].
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Abstract
Reverse engineering problems for conjunctive queries (CQs), such as query by example (QBE) or
definability, take a set of user examples and convert them into an explanatory CQ. Despite their
importance, the complexity of these problems is prohibitively high (coNEXPTIME-complete).
We isolate their two main sources of complexity and propose relaxations of them that reduce the
complexity while having meaningful theoretical interpretations. The first relaxation is based on
the idea of using existential pebble games for approximating homomorphism tests. We show that
this characterizes QBE/definability for CQs up to treewidth k, while reducing the complexity to
EXPTIME. As a side result, we obtain that the complexity of the QBE/definability problems
for CQs of treewidth k is EXPTIME-complete for each k ≥ 1. The second relaxation is based on
the idea of “desynchronizing” direct products, which characterizes QBE/definability for unions
of CQs and reduces the complexity to coNP. The combination of these two relaxations yields
tractability for QBE and characterizes it in terms of unions of CQs of treewidth at most k.
We also study the complexity of these problems for conjunctive regular path queries over graph
databases, showing them to be no more difficult than for CQs.

1998 ACM Subject Classification H.2.3 [Database Management] Query Languages

Keywords and phrases reverse engineering, conjunctive queries, query by example, definability,
treewidth, complexity of pebble games

Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.7

1 Introduction

Reverse engineering is the general problem of abstracting user examples into an explanatory
query. An important instance of this problem corresponds to query-by-example (QBE) for a
query language L. In QBE, the system is presented with a database D and n-ary relations
S+ and S− over D of positive and negative examples, respectively. The question is whether
there exists a query q in L such that its evaluation q(D) over D contains all the positive
examples (i.e., S+ ⊆ q(D)) but none of the negative ones (i.e., q(D) ∩ S− = ∅). In case
such q exists, it is also desirable to return its result q(D). Another version of this problem
assumes that the system is given the set S+ of positive examples only, and the question is
whether there is a query q in L that precisely defines S+, i.e., q(D) = S+. This is often
known as the definability problem for L. As of late, QBE and definability have received quite
some attention in different contexts; e.g., for first-order logic and the class of conjunctive
queries over relational databases [26, 23, 19, 7, 2, 24, 22]; for regular path queries over graph
databases [1, 6]; for SPARQL queries over RDF [3]; and for tree patterns over XML [10, 20].
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In data management, a particularly important instance of QBE and definability corres-
ponds to the case when L is the class of conjunctive queries (CQs). Nevertheless, the relevance
of such instance is counterbalanced by its inherent complexity: Both QBE and definability
for CQs are coNEXPTIME-complete [24, 22]. Moreover, in case that a CQ-explanation q for
S+ and S− over D exists (i.e., a CQ q such that S+ ⊆ q(D) and q(D)∩ S− = ∅ for QBE), it
might take double exponential time to compute its result q(D). While several heuristics have
been proposed that alleviate this complexity in practice [26, 23, 19, 7], up to date there has
been (essentially) no theoretical investigation identifying the sources of complexity of these
problems and proposing principled solutions for them. The general objective of this article is
to make a first step in such direction.

A semantic characterization of QBE for CQs has been known for a long time in the
community. Formally, there exists a CQ q such that S+ ⊆ q(D) and q(D) ∩ S− = ∅ (i.e., a
CQ-explanation) if and only if (essentially) the following QBE test for CQs succeds:

QBE test for CQs: For each tuple b̄ in S− it is the case that
∏

ā∈S+(D, ā) 6→ (D, b̄), i.e.,∏
ā∈S+(D, ā) does not homomorphically map to (D, b̄). (Here,

∏
denotes the usual direct

product of databases with distinguished tuples of constants).
(A similar test characterizes CQ-definability, save that now b̄ is an arbitrary tuple over D
outside S+). Moreover, in case there is a CQ-explanation q for S+ and S− over D, then there
is a canonical such explanation given by the CQ whose body corresponds to

∏
ā∈S+(D, ā).

As shown by Willard [24], the QBE test for CQs yields optimal bounds for determining (a)
the existence of a CQ-explanation q for S+ and S− over D (namely, coNEXPTIME), and
(b) the size of such q (i.e., exponential). More important, it allows to identify the two main
sources of complexity of the problem, each one of which increases its complexity by one
exponential:
1. The construction of the canonical explanation

∏
ā∈S+(D, ā), which takes exponential time

in the combined size of D and S+.
2. The homomorphism test

∏
ā∈S+(D, ā)→ (D, b̄) for each tuple b̄ ∈ S−. Since, in general,

checking for the existence of a homomorphism is an NP-complete problem, this step
involves an extra exponential blow up.

Our contributions: We propose relaxations of the QBE test for CQs that alleviate one
or both sources of complexity and have meaningful theoretical interpretations in terms of
the QBE problem (our results also apply to definability). They are based on standard
approximation notions for the homomorphism test and the construction of the direct product∏

ā∈S+(D, ā), as found in the context of constraint satisfaction and definability, respectively.

1. We start by relaxing the second source of complexity, i.e., the one given by the homo-
morphism tests of the form

∏
ā∈S+(D, ā)→ (D, b̄), for b̄ ∈ S−. In order to approximate

the notion of homomorphism, we use the strong consistency tests often applied in the area
of constraint satisfaction [13]. As observed by Kolaitis and Vardi [18], such consistency
tests can be recast in terms of the existential pebble game [17], first defined in the context
of database theory as a tool for studying the expressive power of Datalog, and also used
to show that CQs of bounded treewidth can be evaluated efficiently [12].
As opposed to the homomorphism test, checking for the existence of a winning duplicator
strategy in the existential k-pebble game on (D, ā) and (D′, b̄), denoted (D, ā)→k (D′, b̄),
can be solved in polynomial time for each fixed k > 1 [17]. Therefore, replacing the
homomorphism test

∏
ā∈S+(D, ā) → (D, b̄) with its “approximation”

∏
ā∈S+(D, ā) →k

(D, b̄) reduces the complexity of the QBE test for CQs to EXPTIME. Furthermore, this
approximation has a neat theoretical interpretation: The relaxed version of the QBE
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test accepts the input given by (D, S+, S−) if and only if there is a CQ-explanation q for
S+ and S− over D such that q is of treewidth at most (k − 1). While the latter is not
particularly surprising in light of the strong existing connections between the existential
k-pebble game and the evaluation of CQs of treewidth at most (k − 1) [12], we believe
our characterization to be of conceptual importance.
Interestingly, when this relaxed version of the QBE test yields a CQ-explanation q of
treewidth at most (k − 1), its result q(D) can be evaluated in exponential time (recall
that for general CQs this might require double exponential time).

2. We then prove that the previous bound is optimal, i.e., checking whether the relaxed
version of the QBE test accepts the input given by (D, S+, S−), or, equivalently, if there
is a CQ-explanation q for S+ and S− over D of treewidth at most k, for each k ≥ 1, is
EXPTIME-complete. (This also holds for the definability problem for CQs of treewidth
at most k). Intuitively, this states that relaxing the second source of complexity of the
test by using existential pebble games does not eliminate the first one.

3. Finally, we look at the second source of complexity, i.e., the construction of the exponential
size canonical explanation

∏
ā∈S+(D, ā). While it is not clear which techniques are better

suited for approximating this construction, we look at a particular one that appears in
the context of definability: Instead of constructing the synchronized product

∏
ā∈S+(D, ā)

with respect to all tuples in S, we look at them one by one. That is, we check whether
for each tuples ā ∈ S+ and b̄ ∈ S− it is the case that (D, ā) 6→ (D, b̄). By using a
characterization developed in the context of definability [1], we observe that this relaxed
version of the QBE test is coNP-complete and has a meaningful interpretation: It
corresponds to finding explanations based on unions of CQs. Moreover, when combined
with the previous relaxation (i.e., replacing the homomorphism test (D, ā)→ (D, b̄) with
(D, ā)→k (D, b̄)) we obtain tractability. This further relaxed test corresponds to finding
explanations over the set of unions of CQs of treewidth at most (k − 1).

We then switch to study QBE in the context of graph databases, where CQs are often
extended with the ability to check whether two nodes are linked by a path whose label satisfies
a given regular expression. This gives rise to the class of conjunctive regular path queries,
or CRPQs (see, e.g., [11, 8, 25, 5]). CRPQ-definability was first studied by Antonopulos
et al. [1]. In particular, it is shown that CRPQ-definability is in EXPSPACE by exploting
automata-based techniques, in special, pumping arguments. Our contributions in this context
are the following:
1. We first provide a QBE test for CRPQs in the spirit of the one for CQs given above. With

such characterization we prove that QBE and definability for CRPQs are in coNEXPTIME,
improving the EXPSPACE upper bound of Antonopoulos et al. This tells us that these
problems are at least not more difficult than for CQs.

2. We also develop relaxations of the QBE test for CRPQs based on the existential pebble
game and the “desynchronization” of the direct product

∏
ā∈S+(D, ā). As before, we

show that they reduce the complexity of the test and have meaningful interpretations in
terms of the class of queries we use to construct explanations.

Organization: Preliminaries are in Section 2. A review of QBE/definability for CQs is
provided in Section 3. Relaxations of the homomorphism tests are studied in Section 4
and the desynchronization of the direct product in Section 5. In Section 6 we consider
QBE/definability for CRPQs. Future work is presented in Section 7.
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2 Preliminaries

Databases, homomorphisms, and direct products. A schema is a finite set of relation
symbols, each one of which has an associated arity n > 0. A database over schema σ is a
finite set of atoms of the form R(ā), where R is a relation symbol in σ of arity n > 0 and ā
is an n-ary tuple of constants. We slightly abuse notation, and sometimes write D also for
the set of elements mentioned in D.

Let D and D′ be databases over the same schema σ. A homomorphism from D to D′ is a
mapping h from the elements of D to the elements of D′ such that for every atom R(ā) in D
it is the case that R(h(ā)) ∈ D′. We often need to talk about distinguished tuples of elements
in databases. We then write (D, ā) to define the pair that corresponds to the database D
and the tuple ā of elements in D. Let ā and b̄ be n-ary (n ≥ 0) tuples of elements in D and
D′, respectively. A homomorphism from (D, ā) to (D′, b̄) is a homomorphism from D to D′
such that h(ā) = b̄. We write (D, ā) → (D′, b̄) if there is a homomorphism from (D, ā) to
(D′, b̄). Checking if (D, ā)→ (D′, b̄) is a well-known NP-complete problem.

In this work, the notion of direct product of databases is particularly important. Let
ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be n-ary tuples of elements over A and B, respectively.
Their direct product ā⊗ b̄ is the n-ary tuple ((a1, b1), . . . , (an, bn)) over A×B. If D and D′
are databases over the same schema σ, we define D⊗D′ to be the following database over σ:

{R(ā⊗ b̄) | R ∈ σ, R(ā) ∈ D, and R(b̄) ∈ D′}.

Further, we use (D, ā)⊗(D′, b̄) to denote the pair (D⊗D′, ā⊗ b̄), and write
∏

1≤i≤m(Di, āi) as
a shorthand for (D1, ā1)⊗ · · ·⊗ (Dm, ām). This is allowed since ⊗ is an associative operation.

The elements in the tuple
∏

1≤i≤m āi may or may not appear in
∏

1≤i≤mDi. If they do
appear, we call

∏
1≤i≤m(Di, āi) safe. The notion of safeness is important in our work for

reasons that will become apparent later. The next example better explains this notion:

I Example 1. If D = {R(a, b), S(c, d)}, ā1 = (a, b), and ā2 = (c, d), then (D, ā1)⊗ (D, ā2) is
unsafe. In fact, ā1⊗ ā2 =

(
(a, c), (b, d)

)
and D⊗D = {R((a, a), (b, b)), S((c, c), (d, d))}. That

is, none of the elements in ā1 ⊗ ā2 belongs to D ⊗D. J

It is worth remarking that the direct product ⊗ defines the least upper bound in the
lattice of databases defined by the notion of homomorphism. In particular:
1.
∏

1≤i≤m(Di, āi)→ (Di, āi) for each 1 ≤ i ≤ m, and
2. if (D, ā)→ (Di, āi) for each 1 ≤ i ≤ m, then (D, ā)→

∏
1≤i≤m(Di, āi).

Conjunctive queries. A conjunctive query (CQ) q over relational schema σ is an FO formula
of the form:

∃ȳ
(
R1(x̄1) ∧ · · · ∧Rm(x̄m)

)
, (1)

such that (a) each Ri(x̄i) is an atom over σ, for 1 ≤ i ≤ m, and (b) ȳ is a sequence of
variables taken from the x̄i’s. In order to ensure domain-independence for queries, we only
consider CQs without constants. We often write q(x̄) to denote that x̄ is the sequence of free
variables of q, i.e., the ones that do not appear existentially quantified in ȳ.

Let D be a database over σ. We define the evaluation of a CQ q(x̄) of the form (1)
over D in terms of the homomorphisms from Dq to D, where Dq is the canonical database
of q, that is, Dq is the database {R1(x̄1), . . . , Rm(x̄m)} that contains all atoms in q. The
evaluation of q(x̄) over D, denoted q(D), contains exactly those tuples h(x̄) such that h is a
homomorphism from Dq to D.
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CQs of bounded treewidth. The evaluation problem for CQs (i.e., determining whether
q(D) 6= ∅, given a database D and a CQ q) is NP-complete, but becomes tractable for several
syntactically defined classes. One of the most prominent such classes corresponds to the CQs
of bounded treewidth [9]. Recall that treewidth is a graph-theoretical concept that measures
how much a graph resembles a tree (see, e.g., [14]). For instance, trees have treewidth one,
cycles treewidth two, and Kk, the clique on k elements, treewidth k − 1.

Formally, let G = (V,E) be an undirected graph. A tree decomposition of G is a pair
(T, λ), where T is a tree and λ is a mapping that assigns a nonempty set of nodes in V to
each node t in T , for which the following holds:
1. For each v ∈ V it is the case that the set of nodes t ∈ T such that v ∈ λ(t) is connected.
2. For each edge {u, v} ∈ E there exists a node t ∈ T such that {u, v} ⊆ λ(t).
The width of (T, λ) corresponds to (max {|λ(t)| | t ∈ T}) − 1. The treewidth of G is then
defined as the minimum width of its tree decompositions.

We define the treewidth of a CQ q = ∃ȳ
∧

1≤i≤m Ri(x̄i) as the treewidth of the Gaifman
graph of its existentially quantified variables. Recall that this is the undirected graph whose
vertices are the existentially quantified variables of q (i.e., those in ȳ) and there is an edge
between distinct existentially quantified variables y and y′ if and only they appear together
in some atom of q, that is, they both appear in a tuple x̄i for 1 ≤ i ≤ m. For k ≥ 1, we
denote by TW(k) the class of CQs of treewidth at most k. It is known that the evaluation
problem for the class TW(k) (for each fixed k ≥ 1) can be solved in polynomial time [9, 12].

The QBE and definability problems. Let C be a class of queries (e.g., the class CQ of
all conjunctive queries, or TW(k) of CQs of treewidth at most k). Suppose that D is a
database and S+ and S− are n-ary relations over D of positive and negative examples,
respectively. A C-explanation for S+ and S− over D is a query q in C such that S+ ⊆ q(D)
and q(D) ∩ S− = ∅. Analogously, a C-definition of S+ over D is a query q in C such that
q(D) = S+. The query by example and definability problems for C are as follows:

PROBLEM : C-query-by-example (resp., C-definability)
INPUT : A database D and n-ary relations S+ and S− over D

(resp., a database D and an n-ary relation S+ over D)
QUESTION : Is there a C-explanation for S+ and S− over D?

(resp., is there a C-definition of S+ over D?)

3 Query by example and definability for CQs

Let us start by recalling what is known about these problems for CQs. We first establish
characterizations of the notions of CQ-explanations/definitions based on the following tests:

QBE test for CQs: Takes as input a database D and n-ary relations S+ and S− over D.
It accepts if and only if:
1.
∏

ā∈S+(D, ā) is safe, and
2.
∏

ā∈S+(D, ā) 6→ (D, b̄) for each tuple b̄ ∈ S−.
Definability test for CQs: Takes as input a database D and an n-ary relation S+ over D.
It accepts if and only if:
1.
∏

ā∈S+(D, ā) is safe, and
2.
∏

ā∈S+(D, ā) 6→ (D, b̄) for each n-ary tuple b̄ over D that is not in S+.

The following characterizations are considered to be folklore in the literature:
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I Proposition 2. The following statements hold:
1. Let D be a database and S+, S− relations over D. There is a CQ-explanation for S+ and

S− over D if and only if the QBE test for CQs accepts D, S+, and S−.
2. Let D be a database and S+ a relation over D. There is a CQ-definition for S+ over D

if and only if the definability test for CQs accepts D and S+.

This provides us with a simple method for obtaining a coNEXPTIME upper bound for
CQ-query-by-example and CQ-definability. Let us concentrate on the first problem
(a similar argument works for the second one). Assume that S+ and S− are relations of
positive and negative examples over a database D. It follows from Proposition 2 that to
check that there is not CQ-explanation for S+ and S− over D, we need to either show that∏

ā∈S+(D, ā) is unsafe or guess a tuple b̄ ∈ S− and a homomorphism h from
∏

ā∈S+(D, ā)
to (D, b̄). Since

∏
ā∈S+(D, ā) is of exponential size, checking its safety can be carried out in

exponential time. On the other hand, the guess of h is also of exponential size, and therefore
checking that h is indeed a homomorphism from

∏
ā∈S+(D, ā) to (D, b̄) can be performed in

exponential time. The whole procedure can then be carried out in NEXPTIME. As it turns
out, this bound is also optimal:

I Theorem 3. [24, 22] The problems CQ-query-by-example and CQ-definability are
coNEXPTIME-complete.

The lower bound for CQ-definability was established by Willard using a complicated
reduction from the complement of a tiling problem. A simpler proof was then obtained by
ten Cate and Dalmau [22]. Their techniques also establish a lower bound for CQ-query-by-
example. Notably, these lower bounds hold even when S+ and S− are unary relations.

The cost of evaluating CQ-explanations. Recall that in query by example not only we
want to find a CQ-explanation q for S+ and S− over D, but also compute its result q(D) if
possible. It follows from the proof of Proposition 2 that in case there is a CQ-explanation for
S+ and S− over D, then we can assume such CQ to be

∏
ā∈S+(D, ā), i.e., the CQ whose

set of atoms is D|S+| and whose tuple of free variables is
∏

ā∈S+ ā (notice that we are using
here the assumption that

∏
ā∈S+(D, ā) is safe, i.e., that the free variables in

∏
ā∈S+ ā do

in fact appear in the atoms in D|S+|). The CQ
∏

ā∈S+(D, ā) is known as the canonical
CQ-explanation. We could then simply evaluate this canonical CQ-explanation over D in
order to meet the requirements of query by example. This, however, takes double exponential
time since

∏
ā∈S+(D, ā) itself is of exponential size. It is not known whether there are better

algorithms for computing the result of some CQ-explanation, but the results in this section
suggest that this is unlikely.

Size of CQ explanations and definitions. It follows from the previous observations that
CQ-explanations are of at most exponential size (by taking the canonical CQ-explanation as
witness). The same holds for CQ-definitions. Interestingly, these bounds are optimal:

I Proposition 4. [24, 22] The following statements hold:
1. If there is a CQ-explanation for S+ and S− over D, then there is a CQ-explanation of at

most exponential size; namely,
∏

ā∈S+(D, ā). Similarly, for CQ-definitions.
2. There is a family (Dn, S

+
n , S

−
n )n≥0 of tuples of databases Dn and relations S+

n and S−n
over Dn, such that (a) the combined size of Dn, S+

n , and S−n is polynomial in n, (b)
there is a CQ-explanation for S+

n and S−n over Dn, and (c) the size of the smallest such
CQ-explanation is at least 2n. Similarly, for CQ-definitions.
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Sources of complexity. The QBE test performs the following steps on input (D, S+, S−):
(1) It computes

∏
ā∈S+(D, ā), and (2) it checks whether

∏
ā∈S+(D, ā) is unsafe or it is the

case that
∏

ā∈S+(D, ā) → (D, b̄) for some b̄ ∈ S−. The definability test is equivalent, but the
homomorphism test is then extended to each tuple over D but outside S+. Two sources of
complexity are involved in these tests, each one of which incurs in one exponential blow up:
(a) The construction of

∏
ā∈S+(D, ā), and (b) the homomorphism tests

∏
ā∈S+(D, ā)→ (D, b̄).

In order to alleviate the high complexity of the tests we thus propose relaxations of these two
sources of complexity. The proposed relaxations are based on well-studied approximation
notions with strong theoretical support. As such, they give rise to clean reformulations of
the notions of CQ-explanations/definitions. We start with the homomorphism test in the
following section.

4 A relaxation of the homomorphism test

We use an approximation technique for the homomorphism test based on the existential
pebble game. This technique finds several applications in database theory [17, 12] and can
be shown to be equivalent to the strong consistency tests for homomorphism approximation
used in the area of constraint satisfaction [18]. The complexity of the (existential) pebble
game is by now well-understood [15, 16]. We borrow several techniques used in such analysis
to understand the complexity of our problems. We also prove some results on the complexity
of such games that are of independent interest. We define the existential pebble game below.

The existential pebble game. Let k > 1. The existential k-pebble game is played by the
spoiler and the duplicator on pairs (D, ā) and (D′, b̄), where D and D′ are databases over
the same schema and ā and b̄ are n-ary (n ≥ 0) tuples over D and D′, respectively. The
spoiler plays on D only, and the duplicator responds on D′. In the first round the spoiler
places his pebbles p1, . . . , pk on (not necessarily distinct) elements c1, . . . , ck in D, and the
duplicator responds by placing his pebbles q1, . . . , qk on elements d1, . . . , dk in D′. In every
further round, the spoiler removes one of his pebbles, say pi, for 1 ≤ i ≤ k, and places it
on an element of D, and the duplicator responds by placing his corresponding pebble qi on
some element of D′. The duplicator wins if he has a winning strategy, i.e., he can indefinitely
continue playing the game in such way that at each round, if c1, . . . , ck and d1, . . . , dk are
the elements covered by pebbles p1, . . . , pk and q1, . . . , qk on D and D′, respectively, then(

(c1, . . . , ck, ā), (d1, . . . , dk, b̄)
)

is a partial homomorphism from D to D′. Recall that this means that for every atom of
the form R(c̄) ∈ D, where each element c of c̄ appears in (c1, . . . , ck, ā), it is the case that
R(d̄) ∈ D′, where d̄ is the tuple that is obtained from c̄ by replacing each element c of c̄ by
its corresponding element d in (d1, . . . , dk, b̄). If such winning strategy for the duplicator
exists, we write (D, ā)→k (D′, b̄).

It is easy to see that the relations →k, for k > 1, provide an approximation of the notion
of homomorphism in the following sense:

→ ( . . . ( →k+1 ( →k ( · · · ( →2 .

Furthermore, these approximations are convenient from a complexity point of view: While
checking for the existence of a homomorphism from (D, ā) to (D′, b̄) is NP-complete, checking
for the existence of a winning strategy for the duplicator in the existential k-pebble game
can be solved efficiently:
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I Proposition 5. [17] Fix k > 1. Checking if (D, ā)→k (D′, b̄), given databases D and D′
and n-ary tuples ā and b̄ over D and D′, respectively, can be solved in polynomial time.

Furthermore, there is an interesting connection between the existential pebble game and
the evaluation of CQs of bounded treewidth as established in the following proposition:

I Proposition 6. [4] Fix k ≥ 1. Consider databases D and D′ over the same schema and
n-ary tuples ā and b̄ over D and D′, respectively. Then (D, ā)→k+1 (D′, b̄) if and only if for
each CQ q(x̄) in TW(k) such that |x̄| = n the following holds:

ā ∈ q(D) =⇒ b̄ ∈ q(D′),

or, equivalently, (Dq, x̄)→ (D, ā) implies (Dq, x̄)→ (D′, b̄), where as before Dq is the database
that contains all the atoms of q.

Moreover, in case that (D, ā) 6→k+1 (D′, b̄) there exists an exponential size CQ q(x̄) in
TW(k) such that ā ∈ q(D) but b̄ 6∈ q(D′).

The relaxed test. We study the following relaxed version of the QBE test for CQs that
replaces the notion of homomoprhism → with its approximation →k, for a fixed k > 1:

k-pebble QBE test for CQs: Takes as input a database D and n-ary relations S+ and S−
over D. It accepts if and only if:
1.
∏

ā∈S+(D, ā) is safe, and
2.
∏

ā∈S+(D, ā) 6→k (D, b̄) for each tuple b̄ ∈ S−.

Analogously, we define the k-pebble definability test for CQs. It immediately follows
from the fact that the relation →k can be decided in polynomial time (Proposition 5) that
the k-pebble tests for CQs reduce the complexity of the general test from coNEXPTIME to
EXPTIME. Later, in Section 4.2, we show that this is optimal.

4.1 A characterization of the k-pebble tests for CQs
Using Proposition 6 we can now establish the theoretical meaningfulness of the relaxed tests:
They admit a clean characterization in terms of the CQs of bounded treewidth. In fact,
recall that the QBE (resp., definability) test for CQs precisely characterizes the existence of
CQ-explanations (resp., CQ-definitions). As we show next, their relaxed versions based on
the existential (k + 1)-pebble game preserve these characterizations up to treewidth k:

I Theorem 7. Fix k ≥ 1. Consider a database D and n-ary relations S+ and S−

over D.
1. There is a TW(k)-explanation for S+ and S− over D if and only if the (k + 1)-pebble

QBE test for CQs accepts D, S+, and S−.
2. There is a TW(k)-definition for S+ over D if and only if the (k + 1)-pebble definability

test for CQs accepts D and S+.

Proof. We concentrate on explanations (the proof for definitions is analogous). From left to
right, assume for the sake of contradiction that q is a TW(k)-explanation for S+ and S−
over D, yet the (k + 1)-pebble QBE test for CQs fails over D, S+, and S−. Since there is a
TW(k)-explanation for S+ and S− over D, we have from Proposition 2 that

∏
ā∈S+(D, ā) is

safe. Therefore, it must be the case that
∏

ā∈S+(D, ā)→k+1 (D, b̄) for some b̄ ∈ S−. Since
S+ ⊆ q(D) it is the case that ā ∈ q(D) for each ā ∈ S+. That is, (Dq, x̄)→ (D, ā) for each
ā ∈ S+. Due to basic properties of direct products, this implies that (Dq, x̄)→

∏
ā∈S+(D, ā).
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From Proposition 6 we conclude that (Dq, x̄)→ (D, b̄), i.e., b̄ ∈ q(D). This is a contradiction
since b̄ ∈ S− and q(D) ∩ S− = ∅.

From right to left, assume that the (k + 1)-pebble QBE test for CQs accepts D, S+, and
S−, i.e.,

∏
ā∈S+(D, ā) is safe and for every tuple b̄ ∈ S− it is the case that

∏
ā∈S+(D, ā) 6→k+1

(D, b̄). Since
∏

ā∈S+(D, ā) is safe we can apply Proposition 6, which tells us that for each
b̄ ∈ S− there is a CQ qb̄(x̄) such that (Dqb̄

, x̄)→
∏

ā∈S+(D, ā) but (Dqb̄
, x̄) 6→ (D, b̄). Suppose

first that S− 6= ∅ and let:

q(x̄) :=
∧

b̄∈S−

qb̄(x̄).

It is easy to see that q(x̄) is well-defined (since S− is nonempty) and can be expressed as a
CQ in TW(k). For the latter we simply use fresh existentially quantified variables for each
CQ qb̄ such that b̄ ∈ S− and then move all existentially quantified variables in

∧
b̄∈S− qb̄(x̄)

to the front. We now prove that q(x̄) is a TW(k)-explanation for S+ and S− over D. It
easily follows that (Dq, x̄) →

∏
ā∈S+(D, ā) from the fact that (Dqb̄

, x̄) →
∏

ā∈S+(D, ā) for
each b̄ ∈ S−. But then (Dq, x̄)→ (D, ā) for each ā ∈ S+. This means that ā ∈ q(D) for each
ā ∈ S+, i.e., S+ ⊆ q(D). Assume now for the sake of contradiction that q(D) ∩ S− 6= ∅, that
is, there is a tuple b̄ ∈ q(D)∩S−. Then (Dq, x̄)→ (D, b̄), which implies that (Dqb̄

, x̄)→ (D, b̄).
This is a contradiction. The case when S− = ∅ can be proved using similar techniques. J

4.2 The complexity of the k-pebble tests for CQs
As mentioned before, the k-pebble tests for CQs can be evaluated in exponential time. We
show here that such bounds are also optimal:

I Theorem 8. Deciding whether the k-pebble QBE test for CQs accepts (D, S+, S−) is
EXPTIME-complete for each k > 1. Similarly, for the k-pebble definability test for CQs.
This holds even if restricted to the case when S+ and S− are unary relations.

As a corollary to Theorems 7 and 8, we obtain the following interesting result:

I Corollary 9. The problems TW(k)-query-by-example and TW(k)-definability are
EXPTIME-complete for each fixed k ≥ 1. This holds even if restricted to the case when the
relations to be explained/defined are unary.

We now provide a brief outline of the main ideas used for proving the lower bounds in
Theorem 8. Let us first notice that in the case of the general QBE/definability tests for CQs,
a coNEXPTIME lower bound is obtained in [22] as follows:
1. It is first shown that the following product homomorphism problem (PHP) is NEXPTIME-

hard: Given databases D1, . . . ,Dm and D, is it the case that
∏

1≤i≤mDi → D?
2. It is then shown that there is an easy polynomial-time reduction from PHP to the problem

of checking whether the QBE/definability test fails on its input.

The ideas used for proving (2) can be easily adapted to show that there is a polynomial-
time reduction from the following relaxed version of PHP to the problem of checking whether
the k-pebble QBE/definability test fails on its input:

PROBLEM : k-pebble PHP (for k > 1)
INPUT : Databases D1, . . . , Dm and D over the same schema
QUESTION : Is it the case that

∏
1≤i≤m

Di →k D?
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We establish that this relaxed version of PHP is EXPTIME-complete for each fixed k > 1:

I Theorem 10. The problem k-pebble PHP is EXPTIME-complete for each fixed k > 1.

To prove this result, we exploit techniques from [16, 15] that study the complexity of
pebble games. In particular, it is shown in [16] that for each fixed k > 1, checking whether
D →k D′ is P-complete. The proof uses an involved reduction from the monotone circuit
value problem, that is, given a monotone circuit C, it constructs two databases DC and D′C
such that the value of C is 1 if and only if DC →k D′C .

In our case, to show that k-pebble PHP is EXPTIME-hard for each fixed k > 1, we
reduce from the following well-known EXPTIME-complete problem: Given an alternating
Turing machine M and a positive integer n, decide whether M accepts the empty tape using
n space. The latter problem can be easily recast as a circuit value problem: We can construct
a circuit CM,n such that the value of CM,n is 1 if and only if M accepts the empty tape
using n space. The main idea of our reduction is to construct databases D1, . . . ,Dm and D,
given M and n, such that:∏

1≤i≤m

Di →k D ⇐⇒ DCM,n
→k D′CM,n

,

where DCM,n
and D′CM,n

are defined as in [16].
A natural approach then is to construct D1, . . . ,Dm,D such that

∏
1≤i≤mDi and D

roughly coincide with DCM,n
and D′CM,n

. However, there is a problem with this: the
databases DCM,n

and D′CM,n
closely resemble the circuit CM,n, but the size of CM,n is

exponential in |M | and n, and so are the sizes of DCM,n
and D′CM,n

. Although it is possible
to codify the exponential size database DCM,n

using a product of polynomial size databases
D1, . . . ,Dm, we cannot do the same with the exponential size D′CM,n

using D only. To
overcome this, we need to extend the techniques in [16] and show that the complexity of the
existential k-pebble game is P-complete even over a fixed template:

I Lemma 11. For each fixed k > 1, there is a database Dk that only depends on k, such
that the following problem is P-complete: Given a database D, decide whether D →k Dk.

To prove this, we again use a reduction from the circuit value problem that given a circuit
C constructs a database D̃C such that C takes value 1 if and only if D̃C →k Dk. We then
use the following idea to prove that k-pebble PHP is EXPTIME-complete: Given M and
n, we construct in polynomial time databases D1, . . . ,Dm and D such that

∏
1≤i≤mDi and

D roughly coincide with D̃CM,n
and Dk, respectively. It then follows that:∏

1≤i≤m

Di →k D ⇐⇒ D̃CM,n
→k Dk ⇐⇒ M accepts the empty tape using n space.

4.3 Evaluating the result of TW(k)-explanations
Recall that computing the result of CQ-explanations might require double exponential time.
For TW(k)-explanations, instead, we can do this in single exponential time.

I Theorem 12. Fix k ≥ 1. There is a single exponential time algorithm that, given a
database D and n-ary relations S+ and S− over D, does the following:
1. It checks whether there is a TW(k)-explanation for S+ and S− over D, and
2. if the latter holds, it computes the evaluation q(D) of one such TW(k)-explanation q.
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Proof. We first check in exponential time the existence of one such TW(k)-explanation for
S+ and S− over D using the (k + 1)-pebble QBE test for CQs. If such TW(k)-explanation
exists, we compute in exponential time the set Se of all n-ary tuples b̄ over D such that∏

ā∈S+(D, ā)→k+1 (D, b̄). Notice, in particular, that S+ ⊆ Se and Se ∩ S− = ∅. Moreover,
it can be shown that Se = q(D) for some TW(k)-explanation q for S+ and S− over D. J

Notably, the previous result computes the result of a TW(k)-explanation q for S+ and
S− over D without explicitly computing q. One might wonder whether it is possible to also
include q in the output of the algorithm. The answer is negative, and the reason is that
TW(k)-explanations/definitions can be double exponentially large in the worst case:

I Proposition 13. Fix k ≥ 1. The following holds:
1. Assume that there is a TW(k)-explanation for S+ and S− over D. Then there is one

such TW(k)-explanation of at most double exponential size.
2. There is a family (Dn, S

+
n , S

−
n )n≥0 of tuples of databases Dn and relations S+

n and S−n
over Dn, such that (a) the combined size of Dn, S+

n , and S−n is polynomial in n, (b) there
is a TW(k)-explanation for S+

n and S−n over Dn, and (c) the size of the smallest such
TW(k)-explanation is at least 22n .

The same holds for TW(k)-definitions.

Proof. From the proof of Theorem 7, whenever there is a TW(k)-explanation for S+ and
S− over D this can be assumed to be the CQ q =

∧
b̄∈S− qb̄(x̄). From Proposition 6, each

such qb̄ is of exponential size in the combined size of
∏

ā∈S+(D, ā) and (D, b̄), i.e., double
exponential in the size of D, S+ and S−. Thus, the size of q is at most double exponential in
that of D, S+ and S−. The lower bound follows by inspection of the proof of Theorem 8. J

Notice that this establishes a difference with CQ-explanations/definitions, which are at
most of exponential size (see Proposition 4).

5 Desynchronizing the direct product

We now look at the other source of complexity for the QBE and definability tests for CQs:
The construction of the direct product

∏
ā∈S+(D, ā). It is a priori not obvious how to define

reasonable approximations of this construction with a meaningful theoretical interpretation.
As a first step in this direction, we look at a simple idea that has been applied in the study
of CQ-definability: We “desynchronize” this direct product and consider each tuple ā ∈ S+

in isolation. This leads to the following relaxed test:
Desynchronized QBE test for CQs: Takes as input a database D and n-ary relations
S+, S− over D. It accepts iff for each ā ∈ S+ and b̄ ∈ S− it is the case that (D, ā) 6→ (D, b̄).

Similarly, we define the desynchronized definability test for CQs. Notice that, unlike the
previous tests we have presented in the paper, the desynchronized tests do not require any
safeness condition (for reasons we explain below).

It follows from [1] that these tests capture the notion of explanations/definitions for the
class of unions of CQs (UCQs). Recall that a UCQ is a formula Q of the form

∨
1≤i≤m qi(x̄),

where the qi(x̄)’s are CQs over the same schema. The evaluation Q(D) of Q over database
D corresponds to

⋃
1≤i≤m qi(D). We denote by UCQ the class of UCQs. We then obtain the

following:

I Theorem 14 (implicit in [1]). Consider a database D and n-ary relations S+ and S− over
D. There is a UCQ-explanation for S+ and S− over D if and only if the desynchronized
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QBE test for CQs accepts D, S+, and S−. Similarly, for the UCQ-definitions of S+ and the
desynchronized definability test for CQs.

In this case, the canonical UCQ-explanation/definition corresponds to Q =
⋃

ā∈S+(D, ā).
This explains why no safeness condition is required on the desynchronized tests, as each pair
of the form (D, ā), for ā ∈ S+, is safe by definition. Notice that Q consists of polynomially
many CQs of polynomial size. Its evaluation Q(D) over a database D can thus be computed
in single exponential time (as opposed to the double exponential time needed to evaluate the
canonical CQ-explanation

∏
ā∈S+(D, ā)).

It is easy to see that the desynchronization of the direct product reduces the complexity
of the general tests from coNEXPTIME to coNP. It follows from [1] that this bound is
optimal. As a corollary to Theorem 14 we thus obtain that QBE/definability for UCQs are
coNP-complete:

I Proposition 15. [1] The following statements hold:
1. Deciding whether the desynchronized QBE test for CQs accepts (D, S+, S−) is coNP-

complete. Similarly, for the desynchronized definability test for CQs.
2. UCQ-query-by-example and UCQ-definability are coNP-complete.

5.1 Combining both relaxations
By combining both relaxations (replacing homomorphism tests with relations →k, for k > 1,
and desynchronizing direct products) we obtain the desynchronized k-pebble QBE (resp.,
definability) test for CQs. Its definition coincides with that of the desynchronized QBE (resp.,
definability) test for CQs given above, save that now the homomorphism test (D, ā)→ (D, b̄)
is replaced by (D, ā)→k (D, b̄). As is to be expected from the previous charaterizations, this
test captures definability by the class of UCQs of bounded treewidth. Formally, let UTW(k)
be the class of unions of CQs in TW(k) (for k ≥ 1). Then:

I Theorem 16. Fix k ≥ 1. Consider a database D and n-ary relations S+ and S− over
D. There is a UTW(k)-explanation for S+ and S− over D if and only if the desynchronized
(k+1)-pebble QBE test for CQs accepts D, S+, and S−. Similarly, for the UTW(k)-definitions
of S+ and the desynchronized (k + 1)-pebble definability test for CQs.

Furthermore, in case there is a UTW(k)-explanation for S+ and S− over D (resp., a
UTW(k)-definition of S+ over D), then there is one such explanation/definition given by a
union of polynomially many CQs in TW(k), each one of which is of at most exponential size.

Interestingly, the combination of both relaxations yields tractability for the QBE test. In
contrast, the definability test remains coNP-complete. The difference lies on the fact that the
QBE test only needs to perform a polynomial number of tests of the form (D, ā)→k (D, b̄)
for each ā ∈ S+ (one for each tuple b̄ ∈ S−), while the definability test needs to perform
exponentially many such tests (one for each tuple b̄ outside S+). Then:

I Proposition 17. The following statements hold:
1. Deciding whether the desynchronized k-pebble QBE test for CQs accepts (D, S+, S−) can

be solved in polynomial time for each fixed k > 1. As a consequence, UTW(k)-query-by-
example is in polynomial time for each fixed k ≥ 1.

2. If a UTW(k)-explanation for S+ and S− over D exists, we can compute the evaluation
Q(D) of one such explanation Q in exponential time.

3. Deciding whether the desynchronized k-pebble definability test for CQs accepts (D, S+)
is coNP-complete for each fixed k > 1. As a consequence, UTW(k)-definability is
coNP-complete for each k ≥ 1.
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6 Conjunctive regular path queries

We now switch to study the QBE and definability problems in the context of graph databases.
Let Σ be a finite alphabet. Recall that a graph database G = (V,E) over Σ consists of a finite
set V of nodes and a set E ⊆ V × Σ× V of directed edges labeled in Σ (i.e., (v, a, v′) ∈ E
represents the fact that there is an a-labeled edge from node v to node v′ in G). A path in G
is a sequence

η = v0a1v1a2v2 . . . vk−1akvk, for k ≥ 0,

such that (vi−1, ai, vi) ∈ E for each 1 ≤ i ≤ k. The label of η, denoted label(η), is the word
a1a2 . . . ak in Σ∗. Notice that v is a path for each node v ∈ V . The label of such path is the
empty word ε.

The basic navigational mechanism for querying graph databases is the class of regular
path queries, or RPQs (see, e.g., [25, 5]). An RPQ L over alphabet Σ is a regular expression
over Σ. The evaluation L(G) of L over graph database G consists of those pairs (v, v′) of
nodes in G such that there is a path η in G from v to v′ whose label label(η) satisfies L.
The analogue of CQs in the context of graph databases is the class of conjunctive RPQs, or
CRPQs [8]. Formally, a CRPQ γ over Σ is an expression of the form:

∃z̄(L1(x1, y1) ∧ · · · ∧ Lm(xm, ym)),

where each Li is a RPQ over Σ, for 1 ≤ i ≤ m, and z̄ is a tuple of variables among
{x1, y1, . . . , xm, ym}. We write γ(x̄) to denote that x̄ is the tuple of free variables of γ. A
homomorphism from γ to the graph database G is a mapping h from {x1, y1, . . . , xm, ym} to
the nodes of G, such that (h(xi), h(yi)) ∈ Li(G) for each 1 ≤ i ≤ m. The evaluation γ(G) of
γ(x̄) over G is the set of tuples h(x̄) such that h a homomorphism from γ to G. We denote
the class of CRPQs by CRPQ.

6.1 The QBE and definability tests for CRPQs
We present QBE/definability tests for CRPQs in the same spirit than the tests for CQs, save
that we now use a notion of strong homomorphism from a product

∏
1≤i≤n Gi of directed

graphs to a single directed graph G. This notion preserves, in a precise sense defined below,
the languages defined by pairs of nodes in

∏
1≤i≤n Gi. Interestingly, these tests yield a

coNEXPTIME upper bound for the QBE/definability problems for CRPQs, which improves
the EXPSPACE upper bound from [1]. In conclusion, QBE/definability for CRPQs is no
more difficult than for CQs.

We start with some notation. Let v and v′ be nodes in a graph database G. We define
the following language in Σ∗:

LGv,v′ := {label(η) | η is a path in G from v to v′}.

Moreover, if G1 = (V1, E1) and G2 = (V2, E2) are graph databases over Σ, their direct product
G1 ⊗ G2 is the graph database (V,E) such that V = V1 × V2 and there is an a-labeled edge
in E from node (v1, v2) to node (v′1, v′2) if and only if (v1, a, v2) ∈ E1 and (v′1, a, v′2) ∈ E2.

Let then G1, . . . ,Gn and G be graph databases over Σ. A strong homomorphism from∏
1≤i≤n Gi to G is a mapping h from the nodes of

∏
1≤i≤n Gi to the nodes of G such that for

each pair v̄ = (v1, . . . , vn) and v̄′ = (v′1, . . . , v′n) of nodes in
∏

1≤i≤n Gi, it is the case that:

LGi

vi,v′
i
⊆ LGh(v̄),h(v̄′), for some coordinate i with 1 ≤ i ≤ n.
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We write
∏

1≤i≤n Gi ⇒ G when there is a strong homomorphism h from
∏

1≤i≤n Gi to G.
Note that in this case, h must also be a (usual) homomorphism from

∏
1≤i≤n Gi to G, i.e.,∏

1≤i≤n Gi ⇒ G implies
∏

1≤i≤n Gi → G. The next example shows that the converse does not
hold in general:

I Example 18. Let ~Cn be the directed cycle of length n over {1, 2, . . . , n}. We assume ~Cn

to be represented as a graph database over the unary alphabet Σ = {a}. We then have that
~C2 ⊗ ~C3 → ~C6, since ~C2 ⊗ ~C3 is isomorphic to ~C6 as shown below (we omit the labels):

(2, 3)

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2)

Figure 4: The graph D′.

where h and h′ are identified with w and w′ respectively; x of Oand is connected with i and j of
Hand, and x′ with i′ and j′; y and y′ of Oand are connected with z and z′ respectively. Additionally,
there is a copy of Ok

D, called InitD, where y and y′ is connected to z and z′ respectively, and the
node x′ is colored with the color init. Also, there are two copies of Ok

D, called O0 and O1, where
x and x′ in both O0 and O1 are connected to w and w′, respectively. The node y′ in O0 is colored
with a fresh color fail. All the nodes in O0 and O1 are additionally colored with zero and one,
respectively.

Note that DC and D′ can be constructed from C, α, v using logarithmic space. We conclude by
showing the correctness of the construction.

Claim 1.5. valCα (v) = 1 if and only if DC →k D′.

Proof: Suppose first that valCα (v) = 0. In this case, the intuition is that the spoiler can traverse DC

in a top-down fashion from the gadgets representing the output node v to a gadget representing an
input node a with value 0. At this point spoiler can reach the position {yy′} between Oa and O0.
Since the colors of y and y′ are distinct (y′ is colored with the special color fail), this is a winning
position for the spoiler. Formally, the strategy of the spoiler is as follows. He starts playing one
pebble on the node x of InitS . Since this node is colored with init, duplicator must respond with
the only init-colored node, that is, with x′ in InitD. By Lemma 1.4, spoiler can reach position
{yy′} on InitS and InitD and then position {vz′}.

The invariant is that spoiler can always reach a position of the form {au′}, where a corresponds
to a node in C with value 0, and u′ = z′ if a corresponds to an Or-node, or u′ = w′ otherwise.
To maintain the invariant spoiler proceed as follows. Suppose a corresponds to an Or-node in C
with children b and c. Since the value of a is 0, so are the values of b and c. By Lemma 1.3, when
playing over Ia and Ior, spoiler can reach either ii′ or jj′. Assume he reaches ii′ (the case jj′ is
analogous). Then he can reach xx′ on Oab and Oor, and by Lemma 1.4, he can reach position
{bw′} and then satisfies the invariant. Similarly, suppose a corresponds to an And-node in C with
children b and c. Since the value of a is 0, one of the values of b and c is 0. Assume the value of b is
0 (the other case is analogous). By Lemma 1.3, when playing over Ha and Hand, spoiler can reach
ii′ and then xx′ on Oab and Oand. By Lemma 1.4, he can reach position {bz′} and then satisfies
the invariant. With this strategy the spoiler eventually reach a position {aw′} where a corresponds
to an input node with value 0. Then spoiler places a pebble on x in Oa. Since Oa is colored with
zero, and the only zero-colored nodes in D′ are those in O0, duplicator must respond with x′ in
O0. By Lemma 1.4, he can reach position {yy′} on Oa and O0. This is a winning position for the
spoiler as the colors of y and y′ are distinct.

Suppose now that valCα (v) = 1. Let T be a tree witnessing the fact that valCα (v) = 1, that is, T
is a subgraph of C such that (i) its underlying graph is a tree rooted at v, (ii) if a is an Or-node
in T , then there is only one child of a in C that is also in T (together with the edge from this
child to a), (iii) if a is an And-node in T , then the two children of a in C are in T (together with

4

On the other hand, ~C2 ⊗ ~C3 6⇒ ~C6. To see this, take e.g. the homomorphism h defined as

{(1, 1) 7→ 1, (2, 2) 7→ 2, (1, 3) 7→ 3, (2, 1) 7→ 4, (1, 2) 7→ 5, (2, 3) 7→ 6}.

This is not a strong homomorphism as witnessed by the pair (1, 1) and (2, 2). Indeed, we
have that:(

h(1, 1) = 1 and h(2, 2) = 2
)

but
(
L

~C2
1,2 6⊆ L

~C6
1,2 and L

~C3
1,2 6⊆ L

~C6
1,2.
)

The reason is that aaa ∈ L~C2
1,2, aaaa ∈ L

~C3
1,2, but none of these words is in L~C6

1,2. The same
holds for any homomorphism h : ~C2 ⊗ ~C3 → ~C6. J

If (G1, ā1), . . . , (Gn, ān) and (G, b̄) are graph databases with distinguished tuple of elements,
then we write

∏
1≤i≤n(Gi, āi)⇒ (G, b̄) if there is a strong homomorphism h from

∏
1≤i≤n Gi

to G such that h(ā1 ⊗ · · · ⊗ ān) = b̄. Next we present our tests for CRPQs:
QBE test for CRPQs: Takes as input a graph database G and n-ary relations S+ and S−
over G. It accepts if and only if

∏
ā∈S+(G, ā) 6⇒ (G, b̄) for each tuple b̄ ∈ S−.

Definability test for CRPQs: Takes as input a graph database G and an n-ary relation
S+ over G. It accepts if and only if

∏
ā∈S+(G, ā) 6⇒ (G, b̄) for each n-ary tuple b̄ /∈ S+.

As it turns out, our tests characterize the non-existence of CRPQ-explanations/definitions.
(Notice that unlike Proposition 2, we need no safety conditions on QBE/definability tests for
CRPQs for this characterization to hold).

I Theorem 19. The following hold:
1. Let G be a database and S+, S− relations over G. There is a CRPQ-explanation for S+

and S− over G if and only if the QBE test for CRPQs accepts G, S+, and S−.
2. Let G be a database and S+ a relation over G. There is a CRPQ-definition for S+ over G

if and only if the definability test for CRPQs accepts G and S+.

Since containment of regular languages can be checked in polynomial space [21], it is
straightforward to check that both tests can be carried out in coNEXPTIME. Thus:

I Theorem 20. CRPQ-query-by-example and CRPQ-definibility are in coNEXPTIME.

Whether these problems are complete for coNEXPTIME is left as an open question.
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Figure 4: The graph D′.

where h and h′ are identified with w and w′ respectively; x of Oand is connected with i and j of
Hand, and x′ with i′ and j′; y and y′ of Oand are connected with z and z′ respectively. Additionally,
there is a copy of Ok

D, called InitD, where y and y′ is connected to z and z′ respectively, and the
node x′ is colored with the color init. Also, there are two copies of Ok

D, called O0 and O1, where
x and x′ in both O0 and O1 are connected to w and w′, respectively. The node y′ in O0 is colored
with a fresh color fail. All the nodes in O0 and O1 are additionally colored with zero and one,
respectively.

Note that DC and D′ can be constructed from C, α, v using logarithmic space. We conclude by
showing the correctness of the construction.

Claim 1.5. valCα (v) = 1 if and only if DC →k D′.

Proof: Suppose first that valCα (v) = 0. In this case, the intuition is that the spoiler can traverse DC

in a top-down fashion from the gadgets representing the output node v to a gadget representing an
input node a with value 0. At this point spoiler can reach the position {yy′} between Oa and O0.
Since the colors of y and y′ are distinct (y′ is colored with the special color fail), this is a winning
position for the spoiler. Formally, the strategy of the spoiler is as follows. He starts playing one
pebble on the node x of InitS . Since this node is colored with init, duplicator must respond with
the only init-colored node, that is, with x′ in InitD. By Lemma 1.4, spoiler can reach position
{yy′} on InitS and InitD and then position {vz′}.

The invariant is that spoiler can always reach a position of the form {au′}, where a corresponds
to a node in C with value 0, and u′ = z′ if a corresponds to an Or-node, or u′ = w′ otherwise.
To maintain the invariant spoiler proceed as follows. Suppose a corresponds to an Or-node in C
with children b and c. Since the value of a is 0, so are the values of b and c. By Lemma 1.3, when
playing over Ia and Ior, spoiler can reach either ii′ or jj′. Assume he reaches ii′ (the case jj′ is
analogous). Then he can reach xx′ on Oab and Oor, and by Lemma 1.4, he can reach position
{bw′} and then satisfies the invariant. Similarly, suppose a corresponds to an And-node in C with
children b and c. Since the value of a is 0, one of the values of b and c is 0. Assume the value of b is
0 (the other case is analogous). By Lemma 1.3, when playing over Ha and Hand, spoiler can reach
ii′ and then xx′ on Oab and Oand. By Lemma 1.4, he can reach position {bz′} and then satisfies
the invariant. With this strategy the spoiler eventually reach a position {aw′} where a corresponds
to an input node with value 0. Then spoiler places a pebble on x in Oa. Since Oa is colored with
zero, and the only zero-colored nodes in D′ are those in O0, duplicator must respond with x′ in
O0. By Lemma 1.4, he can reach position {yy′} on Oa and O0. This is a winning position for the
spoiler as the colors of y and y′ are distinct.

Suppose now that valCα (v) = 1. Let T be a tree witnessing the fact that valCα (v) = 1, that is, T
is a subgraph of C such that (i) its underlying graph is a tree rooted at v, (ii) if a is an Or-node
in T , then there is only one child of a in C that is also in T (together with the edge from this
child to a), (iii) if a is an And-node in T , then the two children of a in C are in T (together with
the edges from the children to a), (iv) the value of each node in T is 1. Note that in particular,
all the leaves of T are input nodes with value 1 (not necessarily all the input nodes with value 1
from C). Using T we can show that there is an homomorphism hT from DC to D′. In particular,

4

Figure 1 The graph database G from Example 21.

CRPQ vs UCQ explanations. It is easy to see that if there is a CRPQ-explanation for S+

and S− over G, then there is also a UCQ-explanation [1]. One may wonder then if QBE
for CRPQs and UCQs coincide. If this was the case, we would directly obtain a coNP
upper bound for CRPQ-query-by-example from Proposition 15 (which establishes that
UCQ-query-by-example is in coNP). The next example shows that this is not the case:

I Example 21. Consider the graph database G over Σ = {a} given by the three connected
components depicted in Figure 1 (we omit the labels). Let S+ = {1, 1′} and S− = {1′′}.
Clearly, (G, 1) 6→ (G, 1′′) and (G, 1′) 6→ (G, 1′′), since the underlying graph of each component
on the left-hand side is a clique of size 4, while the one on the right-hand side is a clique
of size 3. It follows that there is a UCQ-explanation for S+ and S− over G. On the other
hand, a straightforward construction shows that (G, 1)⊗ (G, 1′)⇒ (G, 1′′). The intuition is
that, since (4′, 1′) and (1, 4) have opposite direction, they do not synchronize in the product
and, thus, the product does not contain a clique of size 4. We conclude that there is no
CRPQ-explanation for S+ and S− over G. J

6.2 Relaxing the QBE and definability tests for CRPQs
In this section, we develop relaxations of the tests for CRPQs based on the ones we studied
for CQs in the previous sections. Let us start by observing that desynchronizing the
direct product trivializes the problem in this case: In fact, as expected the desynchronized
QBE/definability tests for CRPQs characterize QBE/definability for the unions of CRPQs
(UCRPQ). It is known, on the other hand, that QBE/definability for UCRPQ and UCQ
coincide [1]. The results then follow directly from the ones obtained in Section 5 for UCQs.
In particular, UCRPQ-query-by-example and UCRPQ-definability are coNP-complete.
+

We thus concentrate on the most interesting case, which is the relaxation of the homo-
morphism tests. In order to approximate the strong homomorphism test, we consider a variant
of the existential pebble game. Fix k > 1. Let (G1, ā1), . . . , (Gn, ān) and (G, b̄) be graph data-
bases over Σ with distinguished tuples of elements. We define ā := ā1 ⊗ · · · ⊗ ān. The strong
existential k-pebble game on

∏
1≤i≤n(Gi, āi) and (G, b̄) is played as the existential k-pebble

game on
∏

1≤i≤n(Gi, āi) and (G, b̄), but now, at each round, if c1, . . . , ck and d1, . . . , dk are the
elements covered by pebbles on

∏
1≤i≤n Gi and G, respectively, then the duplicator needs to

ensure that ((c1, . . . , ck, ā), (d1, . . . , dk, b̄)) is a strong partial homomorphism from
∏

1≤i≤n Gi

and G. This means that for every pair v̄ = (v1, . . . , vn) and v̄′ = (v′1, . . . , v′n) of nodes in∏
1≤i≤n Gi that appear in (c1, . . . , ck, ā), if u and u′ are the elements in (d1, . . . , dk, b̄) that

correspond to v̄ and v̄′, respectively, then:

LGi

vi,v′
i
⊆ LGu,u′ , for some coordinate i with 1 ≤ i ≤ n.

We write
∏

1≤i≤n(Gi, āi) ⇒k (G, b̄) if the duplicator has a winning strategy in the strong
existential k-pebble game on

∏
1≤i≤n(Gi, āi) and (G, b̄).
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By replacing the notion of strong homomorphism ⇒ with its approximation ⇒k, for a
fixed k > 1, we can then define the following relaxed test:

k-pebble QBE test for CRPQs: Takes as input a graph database G and n-ary relations
S+ and S− over G. It accepts iff

∏
ā∈S+(G, ā) 6⇒k (G, b̄) for each tuple b̄ ∈ S−.

The k-pebble definability test for CRPQs is defined analogously. As in the case of CQs,
these tests characterize the existence of CRPQs-explanations/definitions of treewidth at
most k. Formally, the treewidth of a CRPQ γ = ∃ȳ

∧
1≤i≤m Li(xi, yi) is the treewidth of the

undirected graph that contains as nodes the existentially quantified variables of γ, i.e., those
in ȳ, and whose set of edges is {{xi, yi} | 1 ≤ i ≤ m, xi 6= yi}. We denote by TWcrpq(k) the
class of CRPQs of treewidth at most k (for k ≥ 1). Then:

I Theorem 22. Fix k ≥ 1. Consider a database G and n-ary relations S+ and S−

over G.
1. There is a TWcrpq(k)-explanation for S+ and S− over G if and only if the (k + 1)-pebble

QBE test for CRPQs accepts G, S+ and S−.
2. There is a TWcrpq(k)-definition for S+ over G if and only if the (k+ 1)-pebble definability

test for CRPQs accepts G and S+.

Using similar ideas as for the existential k-pebble game, it is possible to prove that
the problem of checking whether

∏
1≤i≤n(Gi, āi)⇒k (G, b̄), given (G1, ā1), . . . , (Gn, ān) and

(G, b̄), can be solved in exponential time for each fixed k > 1. We then obtain that the
k-pebble QBE/definability tests for CRPQs take exponential time, and from Theorem 22
that TWcrpq(k)-query-by-example and TWcrpq(k)-definability are in EXPTIME (same
than for TW(k) as stated in Corollary 9). We also obtain an exponential upper bound on
the cost of evaluating a TWcrpq(k)-explanation (in case it exists):

I Proposition 23. Fix k ≥ 1. The following statements hold:
1. TWcrpq(k)-query-by-example and TWcrpq(k)-definability are in EXPTIME.
2. Moreover, in case that there is a TWcrpq(k)-explanation of S+ and S− over G, the

evaluation γ(G) of one such explanation γ over G can be computed in exponential time.

7 Future work

We have left some problems open. The most notable one is determining the precise complexity
of QBE/definability for CRPQs (resp., CRPQs of bounded treewidth). We have only obtained
upper bounds for these problems that show that they are no more difficult than for CQs,
but proving matching lower bounds seems challenging.

An interesting line for future research is studying what to do when no explanation/defin-
ition exists for a set of examples. In such cases one might want to compute a query that
minimizes the “error”, e.g., the number of misclassified examples. We plan to study whether
the techniques presented in this paper can be extended to deal with such problems.
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Abstract
We investigate the query evaluation problem for fixed queries over fully dynamic databases, where
tuples can be inserted or deleted. The task is to design a dynamic algorithm that immediately
reports the new result of a fixed query after every database update.

We consider queries in first-order logic (FO) and its extension with modulo-counting quanti-
fiers (FO+MOD), and show that they can be efficiently evaluated under updates, provided that
the dynamic database does not exceed a certain degree bound.

In particular, we construct a data structure that allows to answer a Boolean FO+MOD query
and to compute the size of the query result within constant time after every database update.
Furthermore, after every update we are able to immediately enumerate the new query result with
constant delay between the output tuples. The time needed to build the data structure is linear
in the size of the database.

Our results extend earlier work on the evaluation of first-order queries on static databases of
bounded degree and rely on an effective Hanf normal form for FO+MOD recently obtained by
Heimberg, Kuske, and Schweikardt (LICS 2016).
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1 Introduction

Query evaluation is a fundamental task in databases, and a vast amount of literature is
devoted to the complexity of this problem. In this paper we study query evaluation on
relational databases in the “dynamic setting”, where the database may be updated by
inserting or deleting tuples. In this setting, an evaluation algorithm receives a query ϕ and
an initial database D and starts with a preprocessing phase that computes a suitable data
structure to represent the result of evaluating ϕ on D. After every database update, the
data structure is updated so that it represents the result of evaluating ϕ on the updated
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database. The data structure shall be designed in such a way that it quickly provides the
query result, preferably in constant time (i. e., independent of the database size). We focus
on the following flavours of query evaluation.

Testing: Decide whether a given tuple a is contained in ϕ(D).
Counting: Compute |ϕ(D)| (i.e., the number of tuples that belong to ϕ(D)).
Enumeration: Enumerate ϕ(D) with a bounded delay between the output tuples.

Here, as usual, ϕ(D) denotes the k-ary relation obtained by evaluating a k-ary query ϕ on a
relational database D. For Boolean queries, all three tasks boil down to

Answering: Decide if ϕ(D) 6= ∅.

Compared to the dynamic descriptive complexity framework introduced by Patnaik
and Immerman [17], which focuses on the expressive power of first-order logic on dynamic
databases and has led to a rich body of literature (see [18] for a survey), we are interested in
the complexity of query evaluation. The query language studied in this paper is FO+MOD,
the extension of first-order logic FO with modulo-counting quantifiers of the form ∃imodm xψ,
expressing that the number of witnesses x that satisfy ψ is congruent to i modulo m.
FO+MOD can be viewed as a subclass of SQL that properly extends the relational algebra.

Following [2], we say that a query evaluation algorithm is efficient if the update time
is either constant or at most polylogarithmic (logc n) in the size of the database. As a
consequence, efficient query evaluation in the dynamic setting is only possible if the static
problem (i.e., the setting without database updates) can be solved in linear or pseudo-linear
(n1+ε) time. Since this is not always possible, we provide a short overview on known results
about first-order query evaluation on static databases and then proceed by discussing our
results in the dynamic setting.

First-order query evaluation on static databases. The problem of deciding whether a given
database D satisfies a FO-sentence ϕ is AW[∗]-complete (parameterised by ||ϕ||) and it is
therefore generally believed that the evaluation problem cannot be solved in time f(||ϕ||)||D||c
for any computable f and constant c (here, ||ϕ|| and ||D|| denote the size of the query and
the database, respectively). For this reason, a long line of research focused on increasing
classes of sparse instances ranging from databases of bounded degree [19] (where every domain
element occurs only in a constant number of tuples in the database) to classes that are
nowhere dense [9]. In particular, Boolean first-order queries can be evaluated on classes of
databases of bounded degree in linear time f(||ϕ||)||D||, where the constant factor f(||ϕ||) is
3-fold exponential in ||ϕ|| [19, 7]. As a matter of fact, Frick and Grohe [7] showed that the
3-fold exponential blow-up in terms of the query size is unavoidable assuming FPT 6= AW[∗].

Durand and Grandjean [5] and Kazana and Segoufin [11] considered the task of enumer-
ating the result of a k-ary first-order query on bounded degree databases and showed that
after a linear time preprocessing phase the query result can be enumerated with constant
delay. This result was later extended to classes of databases of bounded expansion [12].
Kazana and Segoufin [12] also showed that counting the number of result tuples of a k-ary
first-order query on databases of bounded expansion (and hence also on databases of bounded
degree) can be done in time f(||ϕ||)||D||. In [6] an analogous result was obtained for classes of
databases of low degree (i. e., degree at most ||D||o(1)) and pseudo-linear time f(||ϕ||)||D||1+ε;
the paper also presented an algorithm for enumerating the query results with constant delay
after pseudo-linear time preprocessing.

Our contribution. We extend the known linear time algorithms for first-order logic on
classes of databases of bounded degree to the more expressive query language FO+MOD.
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Moreover, and more importantly, we lift the tractability to the dynamic setting and show
that the result of FO and FO+MOD-queries can be maintained with constant update time.
In particular, we obtain the following results. Let ϕ be a fixed k-ary FO+MOD-query and d
a fixed degree bound on the databases under consideration. Given an initial database D, we
construct in linear time f(||ϕ||, d)||D|| a data structure that can be updated in constant time
f(||ϕ||, d) when a tuple is inserted into or deleted from a relation of D. After each update
the data structure allows to

immediately answer ϕ on D if ϕ is a Boolean query (Theorem 4.1),
test for a given tuple a whether a ∈ ϕ(D) in time O(k2) (Theorem 6.1),
immediately output the number of result tuples |ϕ(D)| (Theorem 8.1), and
enumerate all tuples (a1, . . . , ak) ∈ ϕ(D) with O(k3) delay (Theorem 9.4).

For fixed d, the parameter function f(||ϕ||, d) is 3-fold exponential in terms of the query size,
which is (by Frick and Grohe [7]) optimal assuming FPT 6= AW[∗].

Outline. Our dynamic query evaluation algorithm crucially relies on the locality of FO+MOD
and in particular an effective Hanf normal form for FO+MOD on databases of bounded degree
recently obtained by Heimberg, Kuske, and Schweikardt [10]. After some basic definitions
in Section 2 we briefly state their result in Section 3 and obtain a dynamic algorithm for
Boolean FO+MOD-queries in Section 4. After some preparations for non-Boolean queries
in Section 5, we present the algorithm for testing in Section 6. In Section 7 we reduce the
task of counting and enumerating FO+MOD-queries in the dynamic setting to the problem
of counting and enumerating independent sets in graphs of bounded degree. We use this
reduction to provide efficient dynamic counting and enumeration algorithms in Section 8
and 9, respectively, and we conclude in Section 10. Due to space constraints some technical
proofs are deferred to the full version of the paper [3].

2 Preliminaries

We write N for the set of non-negative integers and let N>1 := N \ {0} and [n] := {1, . . . , n}
for all n ∈ N>1. By 2M we denote the power set of a set M . For a partial function f we
write dom(f) and codom(f) for the domain and the codomain of f , respectively.

Databases. We fix a countably infinite set dom, the domain of potential database entries.
Elements in dom are called constants. A schema is a finite set σ of relation symbols, where
each R ∈ σ is equipped with a fixed arity ar(R) ∈ N>1. Let us fix a schema σ = {R1, . . . , R|σ|}.
A database D of schema σ (σ-db, for short), is of the form D = (RD1 , . . . , RD|σ|), where each
RDi is a finite subset of domar(Ri). The active domain adom(D) of D is the smallest subset
A of dom such that RDi ⊆ Aar(Ri) for each Ri in σ.

The Gaifman graph of a σ-db D is the undirected simple graph GD = (V,E) with vertex
set V := adom(D), where there is an edge between vertices u and v whenever u 6= v and
there are R ∈ σ and (a1, . . . , aar(R)) ∈ RD such that u, v ∈ {a1, . . . , aar(R)}. A σ-db D is
called connected if its Gaifman graph GD is connected; the connected components of D are
the connected components of GD. The degree of a database D is the degree of its Gaifman
graph GD, i.e., the maximum number of neighbours of a node of GD. Throughout this paper
we fix a number d ∈ N and restrict attention to databases of degree at most d.

Updates. We allow to update a given database of schema σ by inserting or deleting tuples
as follows (note that both types of commands may change the database’s active domain and
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the database’s degree). A deletion command is of the form deleteR(a1, . . . , ar) for R ∈ σ,
r = ar(R), and a1, . . . , ar ∈ dom. When applied to a σ-db D, it results in the updated σ-db
D′ with RD′ = RD \ {(a1, . . . , ar)} and SD

′ = SD for all S ∈ σ \ {R}.
An insertion command is of the form insertR(a1, . . . , ar) for R ∈ σ, r = ar(R), and

a1, . . . , ar ∈ dom. When applied to a σ-db D in the unrestricted setting, it results in the
updated σ-db D′ with RD′ = RD ∪ {(a1, . . . , ar)} and SD

′ = SD for all S ∈ σ \ {R}. In this
paper, we restrict attention to databases of degree at most d. Therefore, when applying
an insertion command to a σ-db D of degree 6 d, the command is carried out only if the
resulting database D′ still has degree 6 d; otherwise D remains unchanged and instead of
carrying out the insertion command, an error message is returned.

Queries. We fix a countably infinite set var of variables. We consider the extension
FO+MOD of first-order logic FO with modulo-counting quantifiers. For a fixed schema σ,
the set FO+MOD[σ] is built from atomic formulas of the form x1=x2 and R(x1, . . . , xar(R)),
for R ∈ σ and variables x1, x2, . . . , xar(R) ∈ var, and is closed under Boolean connectives
¬, ∧, existential first-order quantifiers ∃x, and modulo-counting quantifiers ∃imodm x, for a
variable x ∈ var and integers i,m ∈ N with m > 2 and i < m. The intuitive meaning of a
formula of the form ∃imodm xψ is that the number of witnesses x that satisfy ψ is congruent i
modulo m. As usual, ∀x, ∨, →, ↔ will be used as abbreviations when constructing formulas.
It will be convenient to add the quantifier ∃>mx, for m ∈ N>1; a formula of the form ∃>mxψ
expresses that the number of witnesses x which satisfy ψ is > m. This quantifier is just
syntactic sugar an does not increase the expressive power of FO+MOD.

The quantifier rank qr(ϕ) of a FO+MOD-formula ϕ is the maximum nesting depth of
quantifiers that occur in ϕ. By free(ϕ) we denote the set of all free variables of ϕ, i.e., all
variables x that have at least one occurrence in ϕ that is not within a quantifier of the form
∃x, ∃>mx, or ∃imodm x. A sentence is a formula ϕ with free(ϕ) = ∅.

An assignment for ϕ in a σ-db D is a partial mapping α from var to adom(D), where
free(ϕ) ⊆ dom(α). We write (D,α) |= ϕ to indicate that ϕ is satisfied when evaluated in
D with respect to active domain semantics while interpreting every free occurrence of a
variable x with the constant α(x). Recall from [1] that “active domain semantics” means
that quantifiers are evaluated with respect to the database’s active domain. In particular,
(D,α) |= ∃xψ iff there exists an a ∈ adom(D) such that (D,α ax ) |= ψ, where α ax is the
assignment α′ with α′(x) = a and α′(y) = α(y) for all y ∈ dom(α) \ {x}. Accordingly,
(D,α) |= ∃>mx ψ iff

∣∣{ a ∈ adom(D) : (D,α ax ) |= ψ }
∣∣ > m, and (D,α) |= ∃imodm x ψ

iff
∣∣{ a ∈ adom(D) : (D,α ax ) |= ψ }

∣∣ ≡ i mod m .
A k-ary FO+MOD query of schema σ is of the form ϕ(x1, . . . , xk) where k ∈ N, ϕ ∈

FO+MOD[σ], and free(ϕ) ⊆ {x1, . . . , xk}. We will often assume that the tuple (x1, . . . , xk) is
clear from the context and simply write ϕ instead of ϕ(x1, . . . , xk) and

(
D, (a1, . . . , ak)

)
|= ϕ

instead of
(
D, a1,...,ak

x1,...,xk

)
|= ϕ, where a1,...,ak

x1,...,xk
denotes the assignment α with α(xi) = ai for all

i ∈ [k]. When evaluated in a σ-db D, the k-ary query ϕ(x1, . . . , xk) yields the k-ary relation

ϕ(D) :=
{

(a1, . . . , ak) ∈ adom(D)k :
(
D, a1,...,ak

x1,...,xk

)
|= ϕ

}
.

Boolean queries are k-ary queries with k = 0. As usual, for Boolean queries we will write
ϕ(D) = no instead of ϕ(D) = ∅, and ϕ(D) = yes instead of ϕ(D) 6= ∅; and we write D |= ϕ

to indicate that (D,α) |= ϕ for any assignment α.

Sizes and Cardinalities. The size ||σ|| of a schema σ is the sum of the arities of its relation
symbols. The size ||ϕ|| of an FO+MOD query ϕ of schema σ is the length of ϕ when
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viewed as a word over the alphabet σ ∪ var ∪ N ∪ {=,∧,¬,∃,mod, (, )}. For a k-ary query
ϕ(x1, . . . , xk) and a σ-db D, the cardinality of the query result is the number |ϕ(D)| of tuples
in ϕ(D). The cardinality |D| of a σ-db D is defined as the number of tuples stored in D, i.e.,
|D| :=

∑
R∈σ |RD|. The size ||D|| of D is defined as ||σ|| + |adom(D)| +

∑
R∈σ ar(R)·|RD|

and corresponds to the size of a reasonable encoding of D.

Dynamic Algorithms for Query Evaluation. We adopt the framework for dynamic al-
gorithms for query evaluation of [2]; the next paragraphs are taken almost verbatim from
[2]. Following [4], we use Random Access Machines (RAMs) with O(logn) word-size and a
uniform cost measure to analyse our algorithms. We will assume that the RAM’s memory is
initialised to 0. In particular, if an algorithm uses an array, we will assume that all array
entries are initialised to 0, and this initialisation comes at no cost (in real-world computers
this can be achieved by using the lazy array initialisation technique, cf. e.g. [16]). A further
assumption is that for every fixed dimension k ∈ N>1 we have available an unbounded number
of k-ary arrays A such that for given (n1, . . . , nk) ∈ Nk the entry A[n1, . . . , nk] at position
(n1, . . . , nk) can be accessed in constant time.1

Our algorithms will take as input a k-ary FO+MOD-query ϕ(x1, . . . , xk), a parameter d,
and a σ-db D0 of degree 6 d. For all query evaluation problems considered in this paper, we
aim at routines preprocess and update which achieve the following.

Upon input of ϕ(x1, . . . , xk) and D0, preprocess builds a data structure D which rep-
resents D0 (and which is designed in such a way that it supports the evaluation of ϕ on
D0). Upon input of a command update R(a1, . . . , ar) (with update ∈ {insert, delete}), calling
update modifies the data structure D such that it represents the updated database D. The
preprocessing time tp is the time used for performing preprocess; the update time tu is the
time used for performing an update. In this paper, tu will be independent of the size of the
current database D. By init we denote the particular case of the routine preprocess upon
input of a query ϕ(x1, . . . , xk) and the empty database D∅ (where RD∅ = ∅ for all R ∈ σ).
The initialisation time ti is the time used for performing init. In all dynamic algorithms
presented in this paper, the preprocess routine for input of ϕ(x1, . . . , xk) and D0 will carry
out the init routine for ϕ(x1, . . . , xk) and then perform a sequence of |D0| update operations
to insert all the tuples of D0 into the data structure. Consequently, tp = ti + |D0| · tu.

In the following, D will always denote the database that is currently represented by the
data structure D.

To solve the enumeration problem under updates, apart from the routines preprocess
and update, we aim at a routine enumerate such that calling enumerate invokes an
enumeration of all tuples (without repetition) that belong to the query result ϕ(D). The
delay td is the maximum time used during a call of enumerate

until the output of the first tuple (or the end-of-enumeration message EOE, if ϕ(D) = ∅),
between the output of two consecutive tuples, and
between the output of the last tuple and the end-of-enumeration message EOE.

To test if a given tuple belongs to the query result, instead of enumerate we aim at a
routine test which upon input of a tuple a ∈ domk checks whether a ∈ ϕ(D). The testing
time tt is the time used for performing a test. To solve the counting problem under updates,
instead of enumerate or test we aim at a routine count which outputs the cardinality
|ϕ(D)| of the query result. The counting time tc is the time used for performing a count.

1 While this can be accomplished easily in the RAM-model, for an implementation on real-world computers
one would probably have to resort to replacing our use of arrays by using suitably designed hash functions.
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To answer a Boolean query under updates, instead of enumerate, test, or count we aim
at a routine answer that produces the answer yes or no of ϕ on D. The answer time ta is
the time used for performing answer. Whenever speaking of a dynamic algorithm, we mean
an algorithm that has routines preprocess and update and, depending on the problem at
hand, at least one of the routines answer, test, count, and enumerate.

Throughout the paper, we often adopt the view of data complexity and suppress factors
that may depend on the query ϕ or the degree bound d, but not on the database D. E.g.,
“linear preprocessing time” means tp 6 f(ϕ, d) · ||D0|| and “constant update time” means
tu 6 f(ϕ, d), for a function f with codomain N. When writing poly(n) we mean nO(1).

3 Hanf Normal Form for FO+MOD

Our algorithms for evaluating FO+MOD queries rely on a decomposition of FO+MOD queries
into Hanf normal form. To describe this normal form, we need some more notation.

Two formulas ϕ and ψ of schema σ are called d-equivalent (in symbols: ϕ ≡d ψ) if
ϕ(D) = ψ(D) for all σ-dbs D of degree 6 d. For a σ-db D and a set A ⊆ adom(D) we write
D[A] to denote the restriction of D to the domain A, i.e., RD[A] = {a ∈ RD : a ∈ Aar(R)},
for all R ∈ σ. For two σ-dbs D and D′ and two k-tuples a = (a1, . . . , ak) and a′ = (a′1, . . . , a′k)
of elements in adom(D) and adom(D′), resp., we write

(
D, a

) ∼= (
D′, a′

)
to indicate that

there is an isomorphism2 π from D to D′ that maps ai to a′i for all i ∈ [k].
The distance distD(a, b) between two elements a, b ∈ adom(D) is the minimal length (i.e.,

the number of edges) of a path from a to b in D’s Gaifman graph GD (if no such path exists,
we let distD(a, b) = ∞; note that distD(a, a) = 0). For r > 0 and a ∈ adom(D), the r-ball
around a in D is the set ND

r (a) := {b ∈ adom(D) : distD(a, b) 6 r}. For a σ-db D and a
tuple a = (a1, . . . , ak) we let ND

r (a) :=
⋃
i∈[k] N

D
r (ai). The r-neighbourhood around a in D

is defined as the σ-db ND
r (a) := D[ND

r (a)].
For r > 0 and k > 1, a type τ (over σ) with k centres and radius r (for short: r-type with

k centres) is of the form (T, t), where T is a σ-db, t ∈ adom(T )k, and adom(T ) = NT
r (t).

The elements in t are called the centres of τ . For a tuple a ∈ adom(D)k, the r-type of a in
D is defined as the r-type with k centres

(
ND
r (a), a

)
.

For a given r-type with k centres τ = (T, t) it is straightforward to construct a first-order
formula sphτ (x) (depending on r and τ) with k free variables x = (x1, . . . , xk) which expresses
that the r-type of x is isomorphic to τ , i.e., for every σ-db D and all a = (a1, . . . , ak) ∈
adom(D)k we have

(
D, a

)
|= sphτ (x) ⇐⇒

(
ND
r (a), a

) ∼= (
T, t
)
. The formula sphτ (x) is

called a sphere-formula (over σ and x); the numbers r and k are called locality radius and
arity, resp., of the sphere-formula.

A Hanf-sentence (over σ) is a sentence of the form ∃>mx sphτ (x) or ∃imodm x sphτ (x),
where τ is an r-type (over σ) with 1 centre, for some r > 0. The number r is called
locality radius of the Hanf-sentence. A formula in Hanf normal form (over σ) is a Boolean
combination3 of sphere-formulas and Hanf-sentences (over σ). The locality radius of a
formula ψ in Hanf normal form is the maximum of the locality radii of the Hanf-sentences
and the sphere-formulas that occur in ψ. The formula is d-bounded if all types τ that occur
in sphere-formulas or Hanf-sentences of ψ are d-bounded, i.e., T is of degree 6 d, where
τ = (T, t). Our query evaluation algorithms for FO+MOD rely on the following result by
Heimberg, Kuske, and Schweikardt [10].

2 An isomorphism π : D → D′ is a bijection from adom(D) to adom(D′) with (b1, . . . , br) ∈ RD ⇐⇒
(π(b1), . . . , π(br)) ∈ RD′

for all R ∈ σ, for r := ar(R), and for all b1, . . . , br ∈ adom(D).
3 Throughout this paper, whenever we speak of Boolean combinations we mean finite Boolean combinations.
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I Theorem 3.1 ([10]). There is an algorithm which receives as input a degree bound d ∈ N
and a FO+MOD[σ]-formula ϕ, and constructs a d-equivalent formula ψ in Hanf normal form
(over σ) with the same free variables as ϕ. For any d > 2, the formula ψ is d-bounded and
has locality radius 6 4qr(ϕ), and the algorithm’s runtime is 2d2O(||ϕ||+||σ||)

.

The first step of all our query evaluation algorithms is to use Theorem 3.1 to transform a
given query ϕ(x) into a d-equivalent query ψ(x) in Hanf normal form. The following lemma
summarises easy facts that are useful for evaluating the sphere-formulas that occur in ψ.

I Lemma 3.2. Let d > 2 and let D be a σ-db of degree 6 d. Let r > 0, k > 1, and
a = (a1, . . . , ak) ∈ adom(D).
(a)

∣∣ND
r (a)

∣∣ 6 k
∑r
i=0 d

i 6 kdr+1.
(b) Given D and a, the r-neighbourhood ND

r (a) can be computed in time
(
kdr+1)O(||σ||).

(c) ND
r (a1, a2) is connected if and only if distD(a1, a2) 6 2r + 1.

(d) If ND
r (a) is connected, then ND

r (a) ⊆ ND
r+(k−1)(2r+1)(ai), for all i ∈ [k].

(e) Let D′ be a σ-db of degree 6 d and let b = (b1, . . . , bk) ∈ adom(D′).
It can be tested in time (kdr+1)O(||σ||+kdr+1) 6 2O(||σ||k2d2r+2) whether(
ND
r (a), a

) ∼= (
ND′

r (b), b
)
.

The time bound stated in part (e) of Lemma 3.2 is obtained by a brute-force approach.
When using Luks’ polynomial time isomorphism test for bounded degree graphs [15], the
time bound of Lemma 3.2(e) can be improved to

(
kdr+1)poly(d||σ||). However, the asymptotic

overall runtime of our algorithms for evaluating FO+MOD-queries won’t improve when using
Luks algorithm instead of the brute-force isomorphism test of Lemma 3.2(e).

4 Answering Boolean FO+MOD Queries Under Updates

In [7], Frick and Grohe showed that in the static setting (i.e., without database updates),
Boolean FO-queries ϕ can be answered on databases D of degree 6 d in time 2d2O(||ϕ||)

·||D||.
Our first main theorem extends their result to FO+MOD-queries and the dynamic setting.

I Theorem 4.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a Boolean FO+MOD[σ]-query ϕ, and a σ-db D0 of degree 6 d, and computes within
tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated in time tu = f(ϕ, d)
and allows to return the query result ϕ(D) with answer time ta = O(1). The function f(ϕ, d)
is of the form 2d2O(||ϕ||)

.
If ϕ is a d-bounded Hanf-sentence of locality radius r, then f(ϕ, d) = 2O(||σ||d2r+2), and

the initialisation time is ti = O(||ϕ||).

Proof. W.l.o.g. we assume that all the symbols of σ occur in ϕ (otherwise, we remove from
σ all symbols that do not occur in ϕ). In the preprocessing routine, we first use Theorem 3.1
to transform ϕ into a d-equivalent sentence ψ in Hanf normal form; this takes time 2d2O(||ϕ||)

.
The sentence ψ is a Boolean combination of d-bounded Hanf-sentences (over σ) of locality
radius at most r := 4qr(ϕ). Let ρ1, . . . , ρs be the list of all types that occur in ψ. Thus, every
Hanf-sentence in ψ is of the form ∃>kx sphρj (x) or ∃imodm x sphρj (x) for some j ∈ [s] and
k, i,m ∈ N with k > 1, m > 2, and i < m. For each j ∈ [s] let rj be the radius of ρj . Thus,
ρj is an rj-type with 1 centre (over σ).

For each j ∈ [s] our data structure will store the number A[j] of all elements a ∈ adom(D)
whose rj-type is isomorphic to ρj , i.e., (ND

rj (a), a) ∼= ρj . The initialisation for the empty
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database D∅ lets A[j] = 0 for all j ∈ [s]. In addition to the array A, our data structure stores
a Boolean value Ans where Ans = ϕ(D) is the answer of the Boolean query ϕ on the current
database D. This way, the query can be answered in time O(1) by simply outputting Ans.
The initialisation for the empty database D∅ computes Ans as follows. Every Hanf-sentence of
the form ∃>kx sphρj (x) in ψ is replaced by the Boolean constant false. Every Hanf-sentence
of the form ∃imodm x sphρj (x) is replaced by true if i = 0 and by false otherwise. The
resulting formula, a Boolean combination of the Boolean constants true and false, then is
evaluated, and we let Ans be the obtained result. The entire initialisation takes time at most
ti = f(ϕ, d) = 2d2O(||ϕ||)

. If ϕ is a Hanf-sentence, we even have ti = O(||ϕ||).
To update our data structure upon a command updateR(a1, . . . , ak), for k = ar(R) and

update ∈ {insert, delete}, we proceed as follows. The idea is to remove from the data structure
the information on all the database elements whose rj-neighbourhood (for some j ∈ [s]) is
affected by the update, and then to recompute the information concerning all these elements
on the updated database.

Let Dold be the database before the update is received and let Dnew be the database
after the update has been performed. We consider each j ∈ [s]. All elements whose rj-
neighbourhood might have changed, belong to the set Uj := ND′

rj (a), where D′ := Dnew if
the update command is insert R(a), and D′ := Dold if the update command is delete R(a).

To remove the old information from A[j], we compute for each a ∈ Uj the neighbourhood
Ta := NDold

rj (a), check whether (Ta, a) ∼= ρj , and if so, decrement the value A[j].
To recompute the new information for A[j], we compute for all a ∈ Uj the neighbourhood

T ′a := NDnew
rj (a), check whether (T ′a, a) ∼= ρj , and if so, increment the value A[j].

Using Lemma 3.2 we obtain for each j ∈ [s] that |Uj | 6 kdrj+1. For each a ∈ Uj ,
the neighbourhoods Ta and T ′a can be computed in time

(
drj+1)O(||σ||), and testing for

isomorphism with ρj can be done in time
(
drj+1)O(||σ||+drj+1). Thus, the update of A[j] is

done in time k·
(
drj+1)O(||σ||+drj+1)

6 2d2O(||ϕ||)

(note that k 6 ||σ|| 6 ||ϕ|| and rj 6 4qr(ϕ) 6
2O(||ϕ||))).

After having updated A[j] for each j ∈ [s], we recompute the query answer Ans as follows.
Every Hanf-sentence of the form ∃>kx sphρj (x) in ψ is replaced by the Boolean constant
true if A[j] > k, and by the Boolean constant false otherwise. Every Hanf-sentence of
the form ∃imodm x sphρj (x) is replaced by true if A[j] ≡ i mod m, and by false otherwise.
The resulting formula, a Boolean combination of the Boolean constants true and false,
then is evaluated, and we let Ans be the obtained result. Thus, recomputing Ans takes time
poly(||ψ||).

In summary, the entire update time is tu = f(ϕ, d) = 2d2O(||ϕ||)

. In case that ϕ is a
d-bounded Hanf-sentence of locality radius r, we even have tu = k·

(
dr+1)O(||σ||+dr+1)

6

2O(||σ||d2r+2). This completes the proof of Theorem 4.1. J

In [7], Frick and Grohe obtained a matching lower bound for answering Boolean FO-
queries of schema σ = {E} on databases of degree at most d := 3 in the static setting. They
used the (reasonable) complexity theoretic assumption FPT 6= AW[∗] and showed that if
this assumption is correct, then there is no algorithm that answers Boolean FO-queries ϕ
on σ-dbs D of degree 6 3 in time 222o(||ϕ||)

· poly(||D||) in the static setting (see Theorem 2
in [7]). As a consequence, the same lower bound holds in the dynamic setting and shows
that in Theorem 4.1, the 3-fold exponential dependency on the query size ||ϕ|| cannot be
substantially lowered (unless FPT = AW[∗]):
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I Corollary 4.2. Let σ := {E} and let d := 3. If FPT 6= AW[∗], then there is no dynamic
algorithm that receives a Boolean FO[σ]-query ϕ and a σ-db D0, and computes within
tp 6 f(ϕ)· poly(||D0||) preprocessing time a data structure that can be updated in time tu 6 f(ϕ)
and allows to return the query result ϕ(D) with answer time ta 6 f(ϕ), for a function f with
f(ϕ) = 222o(||ϕ||)

.

5 Technical Lemmas on Types and Spheres Useful for Handling
Non-Boolean Queries

For our algorithms for evaluating non-Boolean queries it will be convenient to work with a
fixed list of representatives of d-bounded r-types, provided by the following straightforward
lemma.

I Lemma 5.1. There is an algorithm which upon input of a schema σ, a degree bound d > 2,
a radius r > 0, and a number k > 1, computes a list Lσ,dr (k) = τ1, . . . , τ` (for a suitable
` > 1) of d-bounded r-types with k centres (over σ), such that for every d-bounded r-type τ
with k centres (over σ) there is exactly one i ∈ [`] such that τ ∼= τi. The algorithm’s runtime
is 2(kdr+1)O(||σ||) . Furthermore, upon input of a d-bounded r-type τ with k centres (over σ),
the particular i ∈ [`] with τ ∼= τi can be computed in time 2(kdr+1)O(||σ||) .

Throughout the remainder of this paper, Lσ,dr (k) will always denote the list provided
by Lemma 5.1. The following lemma will be useful for evaluating Boolean combinations of
sphere-formulas.

I Lemma 5.2. Let σ be a schema, let r > 0, k > 1, d > 2, and let Lσ,dr (k) = τ1, . . . , τ`.
Let x = (x1, . . . , xk) be a list of k pairwise distinct variables. For every Boolean combination
ψ(x) of d-bounded sphere-formulas of radius at most r (over σ), there is an I ⊆ [`] such that
ψ(x) ≡d

∨
i∈I sphτi(x).

Furthermore, given ψ(x), the set I can be computed in time poly(||ψ||) · 2(kdr+1)O(||σ||) .

The lemma’s proof is based on the following observations. Negations can be eliminated
by the equivalence ¬ sphτj (x) ≡d

∨
i∈[`]\{j} sphτi(x). To eliminate conjunctions, observe

that for i 6= i′ the formula sphτi(x) ∧ sphτi′ (x) is unsatisfiable. Thus, by the distributive
law we obtain for all m > 1 and all I1, . . . , Im ⊆ [`] that∧
j∈[m]

( ∨
i∈Ij

sphτi(x)
)
≡d

∨
i1∈I1

· · ·
∨

im∈Im

(
sphτi1 (x)∧· · ·∧ sphτim (x)

)
≡d

∨
i∈I

sphτi(x)

for I := I1 ∩ · · · ∩ Im.

For evaluating a Boolean combination ψ(x) of sphere-formulas and Hanf-sentences on a
given σ-db D, an obvious approach is to first consider every Hanf-sentence χ that occurs
in ψ, to check if D |= χ, and replace every occurrence of χ in ψ with true (resp., false) if
D |= χ (resp., D 2 χ). The resulting formula ψ′(x) is then transformed into a disjunction
ψ′′(x) :=

∨
i∈I sphτi(x) by Lemma 5.2, and the query result ψ(D) = ψ′′(D) is obtained as

the union of the query results sphτi(D) for all i ∈ I.
While this works well in the static setting (i.e., without database updates), in the dynamic

setting we have to take care of the fact that database updates might change the status of
a Hanf-sentence χ in ψ, i.e., an update operation might turn a database D with D |= χ

into a database D′ with D′ 2 χ (and vice versa). Consequently, the formula ψ′′(x) that is
equivalent to ψ(x) on D might be inequivalent to ψ(x) on D′.
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To handle the dynamic setting correctly, at the end of each update step we will use the
following lemma (the lemma’s proof is an easy consequence of Lemma 5.2).

I Lemma 5.3. Let σ be a schema. Let s > 0 and let χ1, . . . , χs be FO+MOD[σ]-sentences.
Let r > 0, k > 1, d > 2, and let Lσ,dr (k) = τ1, . . . , τ`. Let x = (x1, . . . , xk) be a list of k
pairwise distinct variables. For every Boolean combination ψ(x) of the sentences χ1, . . . , χs
and of d-bounded sphere-formulas of radius at most r (over σ), and for every J ⊆ [s] there is
a set I ⊆ [`] such that

ψJ(x) ≡d
∨
i∈I

sphτi(x),

where ψJ is the formula obtained from ψ by replacing every occurrence of a sentence χj with
true if j ∈ J and with false if j 6∈ J (for every j ∈ [s]).
Given ψ and J , the set I can be computed in time poly(||ψ||) · 2(kdr+1)O(||σ||) .

To evaluate a single sphere-formula sphτ (x) for a given r-type τ with k centres (over σ),
it will be useful to decompose τ into its connected components as follows. Let τ = (T, t)
with t = (t1, . . . , tk). Consider the Gaifman graph GT of T and let C1, . . . , Cc be the vertex
sets of the c connected components of GT . For each connected component Cj of GT , let
tj be the subsequence of t consisting of all elements of t that belong to Cj , and let kj be
the length of tj . Since (T, t) is an r-type with the k centres, we have T = N T

r (t), and thus
c 6 k and kj > 1 for all j ∈ [c]. To avoid ambiguity, we make sure that the list C1, . . . , Cc is
sorted in such a way that for all j < j′ we have i < i′ for the smallest i with ti ∈ Cj and the
smallest i′ with ti′ ∈ Cj′ .

For each Cj consider the r-type with kj centres ρj =
(
T [Cj ], tj

)
. Let νj be the unique

integer such that ρj is isomorphic to the νj-th element in the list Lσ,dr (kj), and let τj,νj be
the νj-th element in this list.

It is straightforward to see that the formula sphτ (x) is d-equivalent to the formula

conn-sphτ (x) :=
∧
j∈[c]

sphτj,νj (xj) ∧
∧
j 6=j′

¬ distkj ,kj′

62r+1(xj , xj′), (1)

where xj is the subsequence of x obtained from x in the same way as tj is obtained from t,
and distkj ,kj′

62r+1(xj , xj′) is a formula of schema σ which expresses that for some variable y in xj
and some variable y′ in xj′ the distance between y and y′ is 6 2r+1. I.e., for a = (a1, . . . , akj )
and b = (b1, . . . , bkj′ ) we have (a, b) ∈ distkj ,kj′

62r+1(D) ⇐⇒ distD(a; b) 6 2r+1, where

distD(a; b) 6 2r+1 means that distD(ai, bi′) 6 2r+1 for some i ∈ [kj ] and i′ ∈ [kj′ ]. (2)

Using the Lemmas 3.2 and 5.1, the following lemma is straightforward.

I Lemma 5.4. There is an algorithm which upon input of a schema σ, numbers r > 0, k > 1,
and d > 2, and an r-type τ with k centres (over σ) computes the formula conn-sphτ (x), along
with the corresponding parameters c and kj, νj, xj, τj,νj for all j ∈ [c].
The algorithm’s runtime is 2(kdr+1)O(||σ||) .

We define the signature of τ to be the tuple sgn(τ) built from the parameters c and(
kj , νj , {µ ∈ [k] : xµ belongs to xj}

)
j∈[c] obtained from the above lemma. The signature

sgnD(a) of a tuple a in a database D (w.r.t. radius r) is defined as sgn(ρ) for ρ :=
(
ND
r (a), a

)
.

Note that a ∈ sphτ (D) ⇐⇒ sgnD(a) = sgn(τ).
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6 Testing Non-Boolean FO+MOD Queries Under Updates

This section is devoted to the proof of the following theorem.

I Theorem 6.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated in
time tu = f(ϕ, d) and allows to test for any input tuple a ∈ domk whether a ∈ ϕ(D) within
testing time tt = O(k2). The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

For the proof, we use the lemmas provided in Section 5 and the following lemma.

I Lemma 6.2. There is a dynamic algorithm that receives a schema σ, a degree bound d > 2,
numbers r > 0 and k > 1, an r-type τ with k centres (over σ), and a σ-db D0 of degree 6 d,
and computes within tp = 2(kdr+1)O(||σ||) · ||D0|| preprocessing time a data structure that can be
updated in time tu = 2(kdr+1)O(||σ||) and allows to test for any input tuple a ∈ domk whether
a ∈ sphτ (D) within testing time tt = O(k2).

Proof sketch. The preprocessing routine starts by using Lemma 5.4 to compute the formula
conn-sphτ (x), along with the according parameters c and kj , νj , xj , τj,νj for each j ∈ [c].
This is done in time 2(kdr+1)O(||σ||) . We let sgn(τ) be the signature of τ (defined directly
after Lemma 5.4). Recall that conn-sphτ (x) ≡d sphτ (x), and recall from equation (1) the
precise definition of the formula conn-sphτ (x). Our data structure will store the following
information on the database D:

the set Γ of all tuples b ∈ adom(D)k′ where k′ 6 k and ND
r (b) is connected, and

for every j ∈ [c] and every kj-tuple b ∈ Γ, the unique number νb such that ρb :=
(
ND
r (b), b

)
is isomorphic to the νb-th element in the list Lσ,dr (kj).

We want to store this information in such a way that for any given tuple b ∈ domk′
it can

be checked in time O(k) whether b ∈ Γ. To ensure this, we use a k′-ary array Γk′ that is
initialised to 0, and where during update operations the entry Γk′ [b] is set to 1 for all b ∈ Γ
of arity k′. In a similar way we can ensure that for any given j ∈ [c] and any b ∈ Γ of arity
kj , the number νb can be looked up in time O(k).

The test routine upon input of a tuple a computes the signature sgnD(a) of a in D, tests
whether sgnD(a) = sgn(τ) and outputs “yes” if this is the case and “no” otherwise. Using
the information stored in our data structure, all this can be done in time O(k2). The bound
on the update time follows from the fact that the insertion or deletion of a tuple affects only
a small number of entries in the data structure. J

Theorem 6.1 is now obtained by combining Theorem 3.1, Lemma 6.2, Theorem 4.1, and
Lemma 5.3.

Proof of Theorem 6.1. For k = 0, the theorem immediately follows from Theorem 4.1.
Consider the case where k > 1. As in the proof of Theorem 4.1, we assume w.l.o.g. that all
the symbols of σ occur in ϕ. We start the preprocessing routine by using Theorem 3.1 to
transform ϕ(x) into a d-equivalent query ψ(x) in Hanf normal form; this takes time 2d2O(||ϕ||)

.
The formula ψ is a Boolean combination of d-bounded Hanf-sentences and sphere-formulas
(over σ) of locality radius at most r := 4qr(ϕ), and each sphere-formula is of arity at most k.
Let χ1, . . . , χs be the list of all Hanf-sentences that occur in ψ.

We use Lemma 5.1 to compute the list Lσ,dr (k) = τ1, . . . , τ`. In parallel for each i ∈ [`],
we use the algorithm provided by Lemma 6.2 for τ := τi. Furthermore, for each j ∈ [s], we
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use the algorithm provided by Theorem 4.1 upon input of the Hanf-sentence ϕ := χj . In
addition to the components used by these dynamic algorithms, our data structure also stores

the set J := {j ∈ [s] : D |= χj},
the particular set I ⊆ [`] provided by Lemma 5.3 for ψ(x) and J , and
the set K = {sgn(τi) : i ∈ I}, where for each type τ , sgn(τ) is the signature of τ defined
directly after Lemma 5.4.

The test routine upon input of a tuple a = (a1, . . . , ak) proceeds in the same way as in the
proof of Lemma 6.2 to compute in time O(k2) the signature sgnD(a) of the tuple a. For every
i ∈ [`] we have a ∈ sphτi(D) ⇐⇒ sgnD(a) = sgn(τi). Thus, a ∈ ϕ(D) ⇐⇒ sgnD(a) ∈ K.
Therefore, the test routine checks whether sgnD(a) ∈ K and outputs “yes” if this is the case
and “no” otherwise. To ensure that this test can be done in time O(k2), we use an array
construction for storing K (similar to the one for storing Γ in the proof of Lemma 6.2).

The update routine runs in parallel the update routines for all the used dynamic data
structures. Afterwards, it recomputes J by calling the answer routine for χj for all j ∈ [s].
Then, it uses Lemma 5.3 to recompute I. The set K is then recomputed by applying
Lemma 5.4 for τ := τi for all i ∈ I. It is straightforward to see that the overall runtime of
the update routine is tu = 2d2O(||σ||)

. This completes the proof of Theorem 6.1. J

7 Representing Databases by Coloured Graphs

To obtain dynamic algorithms for counting and enumerating query results, it will be con-
venient to work with a representation of databases by coloured graphs that is similar to
the representation used in [6]. For defining this representation, let us consider a fixed d-
bounded r-type τ with k centres (over a schema σ). Use Lemma 5.4 to compute the formula
conn-sphτ (x) (for x = (x1, . . . , xk)) and the according parameters c and kj , νj , xj , τj,νj , and
let sgn(τ) be the signature of τ . To keep the notation simple, we assume w.l.o.g. that
x1 = x1, . . . , xk1 , x2 = xk1+1, . . . , xk1+k2 etc.

Recall that sphτ (x) is d-equivalent to the formula

conn-sphτ (x) :=
∧
j∈[c]

sphτj,νj (xj) ∧
∧
j 6=j′

¬ distkj ,kj′

62r+1(xj , xj′).

To count or enumerate the results of the formula sphτ (x) we represent the database D by a
c-coloured graph GD. Here, a c-coloured graph G is a database of the particular schema

σc := {E,C1, . . . , Cc},

where E is a binary relation symbol and C1, . . . , Cc are unary relation symbols. We define
GD in such a way that the task of counting or enumerating the results of the query sphτ (x)
on the database D can be reduced to counting or enumerating the results of the query

ϕc(z1, . . . , zc) :=
∧
j∈[c]

Cj(zj) ∧
∧
j 6=j′

¬E(zj , zj′) (3)

on the c-coloured graph GD. The vertices of GD correspond to tuples over adom(D) whose
r-neighbourhood is connected; a vertex has colour Cj if its associated tuple a is in sphτj,νj (D);
and an edge between two vertices indicates that distD(a; b) 6 2r+1, for their associated
tuples a and b. The following lemma allows to translate a dynamic algorithm for counting
or enumerating the results of the query ϕc(z1, . . . , zc) on c-coloured graphs into a dynamic
algorithm for counting or enumerating the result of the query sphτ (x) on D.
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I Lemma 7.1. Suppose that the counting problem (the enumeration problem) for ϕc(z) on
σc-dbs of degree at most d′ can be solved by a dynamic algorithm with initialisation time
ti(c, d′), update time tu(c, d′), and counting time tc(c, d′) (delay td(c, d′)). Then for every
schema σ and every d > 2 the following holds.

(1) Let r > 0, k > 1, τ a d-bounded r-type with k centres, and fix d′ := d2k2(2r+1)

and t̃x := maxkc=1 tx(c, d′) for tx ∈ {ti, tu, tc, td}. The counting problem (the enumeration
problem) for sphτ (x) on σ-dbs of degree at most d can be solved by a dynamic algorithm
with counting time t̃c (delay O(t̃dk)), update time t′u 6 t̃ud

O(k2r+k||σ||) + 2O(||σ||k2d2r+2), and
initialisation time t̃i.

(2) The counting problem (the enumeration problem) for k-ary FO+MOD-queries ϕ(x)
on σ-dbs of degree at most d can be solved with counting time O(1) (delay O(t̂dk)), update
time (t̂u + t̂c)2d

2O(||ϕ||)

, and initialisation time t̂i2d
2O(||ϕ||)

where t̂x = maxkc=1 tx
(
c, d2O(||ϕ||))

for tx ∈ {ti, tu, tc, td}.

Proof sketch. The first part is a simple reduction from conn-sphτ (x) to ϕc and can be
found in the full version of the paper. The second part for k = 0 follows immediately from
Theorem 4.1. Consider the case where k > 1. W.l.o.g. we assume that all the symbols of σ
occur in ϕ (otherwise, we remove from σ all symbols that do not occur in ϕ). We start the
preprocessing routine by using Theorem 3.1 to transform ϕ(x) into a d-equivalent query ψ(x)
in Hanf normal form; this takes time 2d2O(||ϕ||)

. The formula ψ is a Boolean combination of
d-bounded Hanf-sentences and sphere-formulas (over σ) of locality radius at most r := 4qr(ϕ),
and each sphere-formula is of arity at most k. Note that for d′ := d2k2(2r+1) as used in the
first part it holds that d′ = d2O(||ϕ||) . Let χ1, . . . , χs be the list of all Hanf-sentences that
occur in ψ (recall that s 6 2d2O(||ϕ||)

).

We use Lemma 5.1 to compute the list Lσ,dr (k) = τ1, . . . , τ` (note that ` 6 2d2O(||ϕ||)

).
In parallel for each i ∈ [`], we use the dynamic algorithm for sphτi(x) provided from the
lemma’s part (1). Furthermore, for each j ∈ [s], we use the dynamic algorithm provided by
Theorem 4.1 upon input of the Hanf-sentence ϕ := χj . In addition to the components used
by these dynamic algorithms, our data structure also stores

the set J := {j ∈ [s] : D |= χj},

the particular set I ⊆ [`] provided by Lemma 5.3 for ψ(x) and J , and

the cardinality n = |ϕ(D)| of the query result.

The count routine simply outputs the value n in time O(1). The enumerate routine
runs the enumerate routine on sphτi(D) for every i ∈ I. Note that this enumerates, without
repetition, all tuples in ϕ(D), because by Lemma 5.3, ϕ(D) is the union of the sets sphτi(D)
for all i ∈ I, and this is a union of pairwise disjoint sets. The update routine runs in parallel
the update routines for all used dynamic data structures. Afterwards, it recomputes J by
calling the answer routine for χj for all j ∈ [s]. Then, it uses Lemma 5.3 to recompute
I. The number n is then recomputed by letting n =

∑
i∈I ni, where ni is the result of the

count routine for τi. It is straightforward to verify that the overall runtime of the update
routine is bounded by (t̂u + t̂c)2d

2O(||ϕ||)

. J
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8 Counting Results of FO+MOD Queries Under Updates

This section is devoted to the proof of the following theorem.

I Theorem 8.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to return the cardinality |ϕ(D)| of the query result within
time O(1). The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

The theorem follows immediately from Lemma 7.1 and the following dynamic counting
algorithm for the query ϕc(z).

I Lemma 8.2. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes |ϕc(G)| with dO(c2) initialisation time,
O(1) counting time, and dO(c2) update time.

Proof. Recall that ϕc(z1, . . . , zc) =
∧
i∈[c] Ci(zi) ∧

∧
j 6=j′ ¬E(zj , zj′). For all j, j′ ∈ [c]

with j 6= j′ consider the formula θj,j′(z1, . . . , zc) := E(zj , zj′) ∧
∧
i∈[c] Ci(zi). Furthermore,

let α(z1, . . . , zc) :=
∧
i∈[c] Ci(zi). Clearly, for every σc-db G we have

α(G) = CG1 × · · · × CGc ,

ϕc(G) = α(G) \
( ⋃
j 6=j′

θj,j′(G)
)
, and hence, |ϕc(G)| = |α(G)| −

∣∣∣ ⋃
j 6=j′

θj,j′(G)
∣∣∣.

By the inclusion-exclusion principle we obtain for J := {(j, j′) : j, j′ ∈ [c], j 6= j′} that∣∣∣ ⋃
j 6=j′

θj,j′(G)
∣∣∣ =

∑
∅6=K⊆J

(−1)|K|−1
∣∣∣ ⋂
(j,j′)∈K

θj,j′(G)
∣∣∣ =

∑
∅6=K⊆J

(−1)|K|−1 ∣∣ϕK(G)
∣∣

for the formula ϕK(z1, . . . , zc) :=
∧
i∈[c] Ci(zi) ∧

∧
(j,j′)∈K E(zj , zj′).

Our data structure stores the following values:
|CGi |, for each i ∈ [c], and n1 := |α(G)| =

∏
i∈[c] |C

G
i |,

|ϕK(G)|, for each K ⊆ J with K 6= ∅, and
n2 :=

∑
∅6=K⊆J(−1)|K|−1

∣∣ϕK(G)
∣∣ and n3 := n1 − n2.

Note that n3 = |ϕc(G)| is the desired size of the query result. Therefore, the count routine
can answer in time O(1) by just outputting the number n3.

It remains to show how these values can be initialised and updated during updates of G.
The initialisation for the empty graph initialises all the values to 0. In the update routine,
the values for |CGi | and n1 can be updated in a straightforward way (using time O(c)). For
each K ⊆ J , the update of |ϕK(G)| is provided within time dO(c2) by the following Claim 8.3,
whose proof can be found in the full version of the paper.

I Claim 8.3. For every K ⊆ J , the cardinality |ϕK(G)| of a σc-db G of degree at most d can
be updated within time dO(c2) after dO(c2) · |G0| preprocessing time.

Once we have available the updated numbers |ϕK(G)| for all K ⊆ J , the value n2 can
be computed in time O(|2J |) 6 2O(c2). And n3 is then obtained in time O(1). Altogether,
performing the update routine takes time at most dO(c2). The preprocess routine initialises
all values for the empty graph and then uses |G0| update steps to insert all the tuples of G0
into the data structure. This completes the proof of Lemma 8.2. J
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9 Enumerating Results of FO+MOD Queries Under Updates

In this section we prove (and afterwards, improve) the following theorem.

I Theorem 9.1. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to enumerate ϕ(D) with d2O(||ϕ||) delay.

The function f(ϕ, d) is of the form 2d2O(||ϕ||)

.

The theorem follows immediately from Lemma 7.1 and the following dynamic enumeration
algorithm for the query ϕc(z).

I Lemma 9.2. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes within tp = dpoly(c) · |G0| preprocessing
time a data structure that can be updated in time dpoly(c) and allows to enumerate the query
result ϕc(G) with O(c3d) delay.

Proof. For a σc-db G and a vertex v ∈ adom(G) we let NG(v) be the set of all neighbours of
v in G. I.e., NG(v) is the set of all w ∈ adom(G) such that (v, w) or (w, v) belongs to EG .

The underlying idea of the enumeration procedure is the following greedy strategy. We
cycle through all vertices u1 ∈ CG1 , u2 ∈ CG2 \NG(u1), u3 ∈ CG3 \

(
NG(u1) ∪NG(u2)

)
, . . . ,

uc ∈ CGc \
⋃
i6c−1 N

G(ui) and output (u1, . . . , uc). This strategy does not yet lead to a
constant delay enumeration, as there might be vertex tuples (u1, . . . , ui) (for i < c) that
do extend to an output tuple (u1, . . . , uc), but where many possible extensions are checked
before this output tuple is encountered. We now show how to overcome this problem and
describe an enumeration procedure with O(c3d) delay and update time dpoly(c).

Note that for every J ⊆ [c] we have
∣∣⋃

j∈J N
G(uj)

∣∣ 6 cd. Hence, if a set CGi contains
more than cd elements, we know that every considered tuple has an extension ui ∈ CGi that is
not a neighbour of any vertex in the tuple. Let I := {i ∈ [c] : |CGi | 6 cd} be the set of small
colour classes in G and to simplify the presentation we assume without loss of generality that
I = {1, . . . , s}. In our data structure we store the current index set I and the set

S :=
{

(u1, . . . , us) ∈ CG1 × · · · × CGs : (uj , uj′) /∈ EG , for all j 6= j′
}

(4)

of tuples on the small colours. Note that a tuple (u1, . . . , us) ∈ CG1 × · · · ×CGs extends to an
output tuple (u1, . . . , uc) ∈ ϕc(G) if and only if it is contained in S. As |S| 6 (cd)c, it is not
hard to see that we can recompute the sets I and S in time dpoly(c) after every update. The
enumeration procedure is given in Algorithm 1.

It is straightforward to see that this procedure enumerates ϕc(G). Let us analyse the delay.
Since for all i > s we have that

∣∣CGi ∣∣ > cd, it follows that every call of Enum(u1, . . . , ui)
leads to at least one recursive call of Enum(u1, . . . , ui, ui+1). Furthermore, there are at most
cd iterations of the loop in line 7 that do not lead to a recursive call. As every test in line 8
can be done in time O(c), it follows that the time spans until the first recursive call, between
the calls, and after the last call are bounded by O(c2d). As the recursion depth is c, the
overall delay between two output tuples is bounded by O(c3d). J

By using similar techniques as in [6], we can obtain the following improved version of
Lemma 9.2 where the delay is independent of the degree bound d.
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Algorithm 1 Enumeration procedure.
1: for all (u1, . . . , us) ∈ S do Enum(u1, . . . , us).
2: Output the end-of-enumeration message EOE.
3:
4: function Enum(u1, . . . , ui)
5: if i = c then output the tuple (u1, . . . , uc).
6: else
7: for all ui+1 ∈ CGi+1 do
8: if ui+1 /∈

⋃i
j=1 N

G(uj) then Enum(u1, . . . , ui, ui+1).

I Lemma 9.3. There is a dynamic algorithm that receives a number c > 1, a degree bound
d > 2, and a σc-db G0 of degree 6 d, and computes within tp = dpoly(c) · |G0| preprocessing
time a data structure that can be updated in time dpoly(c) and allows to enumerate the query
result ϕc(G) with O(c2) delay.

Proof idea. We proceed in a similar way as in the proof of Lemma 9.2. But in order to
enumerate the tuples with onlyO(c2) delay, we replace the loop in lines 7–8 of Algorithm 1 by a
precomputed “skip” function that allows to iterate through all elements in CGi+1\

⋃i
j=1 N

G(uj)
with O(c) delay. This technique has been introduced for static databases in [6]. It turns
out that it is possible to maintain the additional information with dpoly(c) update time. For
details we refer the reader to the full version of the paper. J

By Lemma 7.1, this directly improves the delay in Theorem 9.1 from d2O(||ϕ||) to O(k3)
and leads to the following theorem.

I Theorem 9.4. There is a dynamic algorithm that receives a schema σ, a degree bound
d > 2, a k-ary FO+MOD[σ]-query ϕ(x) (for some k ∈ N), and a σ-db D0 of degree 6 d, and
computes within tp = f(ϕ, d) · ||D0|| preprocessing time a data structure that can be updated
in time tu = f(ϕ, d) and allows to enumerate ϕ(D) with O(k3) delay. The function f(ϕ, d)
is of the form 2d2O(||ϕ||)

.

10 Conclusion

Our main results show that in the dynamic setting (i.e., allowing database updates), the
results of k-ary FO+MOD-queries on bounded degree databases can be tested and counted
in constant time and enumerated with constant delay, after linear time preprocessing and
with constant update time. Here, “constant time” refers to data complexity and is of size
poly(k) concerning the delay and the time for testing and counting. The time for performing
a database update is 3-fold exponential in the size of the query and the degree bound, and is
worst-case optimal.

The starting point of our algorithms is to decompose the given query into a query in
Hanf normal form, using a recent result of [10]. This normal form is only available for the
setting with a fixed maximum degree bound d, i.e., the setting considered in this paper.

Recently, Kuske and Schweikardt [13] introduced a new kind of Hanf normal form for a
variant of first-order logic with counting that contains and extends Libkin’s logic FO(Cnt) [14]
and Grohe’s logic FO+C [8]. As an application it is shown in [13] that the present paper’s
techniques can be lifted from FO+MOD to full first-order logic with counting.



C. Berkholz, J. Keppeler, and N. Schweikardt 8:17

An obvious future task is to investigate to which extent further query evaluation results
that are known for the static setting can be lifted to the dynamic setting. More specifically:
Are there efficient dynamic algorithms for evaluating (i.e., answering, testing, counting, or
enumerating) results of first-order queries on other sparse classes of databases (e.g. planar,
bounded treewidth, bounded expansion, nowhere dense) or databases of low degree, lifting
the “static” results accumulated in [12, 9, 6] to the dynamic setting?
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Abstract
The number of variables used by a first-order query is a fundamental measure which has been
studied in numerous contexts, and which is known to be highly relevant to the task of query
evaluation. In this article, we study this measure in the context of existential positive queries.
Building on previous work, we present a combinatorial quantity defined on existential positive
queries; we show that this quantity not only characterizes the minimum number of variables
needed to express a given existential positive query by another existential positive query, but
also that it characterizes the minimum number of variables needed to express a given existential
positive query, over all first-order queries. Put differently and loosely, we show that for any
existential positive query, no variables can ever be saved by moving out of existential positive
logic to first-order logic. One component of this theorem’s proof is the construction of a winning
strategy for a certain Ehrenfeucht-Fraïssé type game.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic, G.2.2 Graph Theory, H.2.1 Logical Design

Keywords and phrases Existential positive queries, finite-variable logics, first-order logic, query
optimization
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1 Introduction

Background. The number of variables used by a first-order query is recognized as a highly
useful and fundamental measure, and has been studied in numerous settings, including
descriptive complexity, finite model theory, and query evaluation. By the number of variables
used by a query, we refer to the total number of variables that appear in the query. Note
that this measure is, in essence, equivalent to the width of a query, which is defined as the
maximum number of free variables over all subformulas of the query: a query having width
k can be rewritten, just by syntactically renaming variables, as a query using k variables;
and, a query using k variables clearly has width at most k. Within this article, all queries
dealt with are relational and first-order.

In the setting of query evaluation, the number of variables is a measure of prime and
crucial interest. A first reason for this is that the natural bottom-up algorithm for evaluating
a first-order query on a finite structure exhibits, in general, an exponential dependence
on the number of variables; it also runs in polynomial-time when a constant bound is
placed on the number of variables [21]. Furthermore, there are complexity classification
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theorems [17, 14, 9, 10] on classes of Boolean queries in which the number of variables
emerges as the decisive measure for describing whether or not a class of Boolean queries
enjoys tractable query evaluation; in particular, these classification theorems show that, if a
class of queries enjoys tractable query evaluation at all, then there exists a constant k ≥ 1
such that each query in the class can be expressed by (that is, is logically equivalent to) a
query using at most k variables. Let us remark that these classification theorems are given
in a parameterized complexity setting in which a query can be preprocessed independently
of the structure on which it is to be evaluated; and, that these theorems concern classes of
queries having bounded arity.1 (We refer the reader to the cited articles for precise theorem
statements and more information.)

Given the computational relevance of the number of variables as a query measure,
it is natural to inquire, given a query, to what extent the number of variables can be
minimized; indeed, it is a natural desire to attempt to rewrite/optimize a given query as
one that uses the fewest number of variables (and which retains logical equivalence to the
original query). In this article, we study this question on existential positive queries. They
include and are semantically equivalent to the so-called unions of conjunctive queries, also
known as select-project-join-union queries; these have been argued to be the most common
database queries [1]. Previous work [6] due to the present authors yields a combinatorial
characterization (Theorem 21) of the minimum number of variables needed to express a
given Boolean existential positive query, by another existential positive query. Let FO denote
the class of first-order queries, let EP denote the class of existential positive queries, and let
FOk and EPk denote the restrictions of these classes to queries using at most k variables,
respectively; say that a query φ is L-expressible if there exists a query ψ ∈ L that is logically
equivalent to φ. Rephrasing, the combinatorial characterization yields, given a Boolean
existential positive query φ, the minimum value k such that φ is EPk-expressible. This
characterization thus indicates how to minimize number of variables within the class of
existential positive queries. However, this characterization does not preclude the possibility
that a query requiring k variables to be expressed as an existential positive query, could be
expressed by a first-order query that uses strictly fewer than k variables.

Contributions. We prove that the just-mentioned possibility can never occur. We generalize
the aforementioned combinatorial quantity so that it is defined on all existential positive
queries (both Boolean and non-Boolean), and dub this quantity the combinatorial width.
Our primary theorem states that, for any existential positive query φ, when k is set equal to
the combinatorial width,

φ is can be expressed by an existential positive query using k variables, but
φ cannot be expressed by any first-order query using a number of variables that is strictly
less than k.

That is, the combinatorial width not only gives the minimum value k such that φ is EPk-
expressible, it in fact more sharply gives the minimum value k such that φ is FOk-expressible.
This theorem can be viewed as a collapse result, namely, that for existential positive
queries, FOk-expressibility implies (and hence coincides with) EPk-expressibility. We want
to emphasize that the theorem applies individually to every single existential positive query;
in our view, the theorem contains a certain element of surprise, since it states (essentially)

1 A class of queries has bounded arity if there is a constant upper bound on the arity of all relation
symbols appearing in a query of the class.
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that there is no existential positive query whatsoever for which one can save variables by
moving out of existential positive logic to the more general first-order logic.

One corollary of our development is that deciding FOk-expressibility of existential positive
sentences is complete for the class Πp

2 of the polynomial hierarchy (Corollary 25); this follows
from the present theory in conjunction with a previous theorem on the complexity of deciding
EPk-expressibility of existential positive sentences ([6, Theorem 6]). Let us remark that
FOk-expressibility is undecidable on first-order sentences ([2, Remark 5.3]), and that (to our
knowledge) prior to this work, FOk-expressibility of existential positive sentences was not
even known to be decidable.

To establish the inexpressibility portion of our primary theorem, for each Boolean
existential positive query φ, we show how to construct two finite structures B, B′ on which
the query differs, but which are not distinguishable from each other by any first-order
query using a number of variables strictly less than the combinatorial width of φ. To show
this non-distinguishability, we make use of a known Ehrenfeucht-Fraïssé type game [5, 19]
designed for showing non-FOm-expressibility. We in fact first perform this construction
for Boolean conjunctive queries (phrased in terms of homomorphisms; see Section 3.1,
Theorem 6); after this, we observe that this result extends to Boolean existential positive
queries (Theorem 22), and then build on this understanding to treat general existential
positive queries (Theorem 23).

The construction of the aforementioned two structures is based on a construction due to
Atserias et al. [3]. This previous work characterized, for each finite structure A, the number
of pebbles needed for the existential pebble game [20] to act as a solution procedure for
deciding if there exists a homomorphism from A to an given structure B (or, equivalently,
if the conjunctive query corresponding to A evaluates to true on an given structure B).
As we show in the present article (see the discussion of Theorem 28 in Section 5), this
previous characterization theorem can be readily derived from our primary theorem, and
hence our primary theorem provides a strengthening of and broader perspective on this
previous theorem.

Let us mention that, in related work, there are numerous articles that investigate the
applicability of pebble games to query evaluation problems, which issue was a motivation
for the Atserias et al. article [3]. As examples, we mention the work of Dalmau et al. on
conjunctive queries and the existential pebble game [15]; the works of Chen and Dalmau on
quantified conjunctive queries [13, 8]; the work of Chen and Dalmau on conjunctive queries
and generalized hypertree width [12]; and, the work of Barceló et al. [4] on semantically
acyclic query evaluation under database constraints.

2 Preliminaries

For an integer k ≥ 0, we use [k] to denote the set {1, . . . , k}, with the convention that [0] = ∅.
For i = 1, 2, we freely let πi denote the ith projection both over pairs and over sets of pairs,
so for instance πi((a1, a2)) = ai and πi(A1 ×A2) = Ai. For an integer n, we let n (mod 2)
denote the value b ∈ {0, 1} such that n and b are congruent modulo 2, that is, such that
n− b is an integer multiple of 2.

When f : A→ B and g : B → C are functions, we use g(f) to denote their composition.
When h is a partial function, we use dom(h) to denote the domain of h.

ICDT 2017
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Graphs, Structures, and Logic

Graphs. All graphs G = (V,E) in this article are undirected and simple, that is, E is a set
of 2-element subsets of V .

A walk in G is a sequence W = (a1, . . . , am) ∈ V m, m ≥ 0, such that a1, . . . , am ∈ V and
{ai, ai+1} ∈ E for all i ∈ [m− 1]. Relative to a walk W = (a1, . . . , am), we use the following
terminology. We say that W : contains a ∈ V if a = ai for some i ∈ [m]; is from s ∈ V to
t ∈ V if a1 = s and am = t; is from s ∈ V to T ⊆ V if a1 = s and am ∈ T ; is s-cyclic if
a1 = am = s. A graph G = (V,E) is connected if for every two vertices v and v′ in V there
exists a walk from v to v′.

A tree decomposition of a graph G = (V,E) consists of a tree T where each node u is
associated to a nonempty subset Bu of V (also called bag) such that the following holds:

For each vertex v ∈ V , the nodes u of T such that v ∈ Bu form a non-empty connected
subtree of T .
For each edge e ∈ E, there exists a node u in T such that e ⊆ Bu.

The width of a tree decomposition T of a graph G is defined as the maximum size attained
by its bags minus 1, that is, maxu∈T |Bu| − 1. The treewidth of a graph G, denoted by tw(G),
is the minimum width over all tree decompositions of G.

Let G = (V,E) be a graph. We say that two subsets U and U ′ of V touch if U ∩ U ′ 6= ∅
or there exist u ∈ U , u′ ∈ U ′ such that {u, u′} ∈ E. A setM of mutually touching connected
subsets of V is called a bramble of G. A subset H of V hitsM if H ∩M 6= ∅ for all M ∈M.
The order of a bramble is the minimum size attained over its hitting sets. We will make use
of the following duality theorem.

I Theorem 1. (refer to [16]) For k ≥ 1, a graph has treewidth ≥ k if and only if it has a
bramble of order > k.

Structures. A relational vocabulary σ is a set of relation symbols R, each of which has an
associated natural number ar(R) called its arity.

Let σ be a relational vocabulary. A σ-structure A is specified by a nonempty set A, called
the universe of A and denoted by the corresponding italic letter, and a relation RA ⊆ Aar(R)

for each relation symbol R ∈ σ. A structure is finite if its universe is finite.
Let A and B be σ-structures. A homomorphism from A to B is a mapping h : A→ B

such that for each symbol R ∈ σ: if the tuple (a1, . . . , aar(R)) is in RA, then the tuple
(h(a1), . . . , h(aar(R))) is in RB. We write A→ B to indicate that there exists a homomorphism
from A to B. A and B are homomorphically equivalent if A→ B and B→ A both hold. An
endomorphism of A is a homomorphism from A to A. An automorphism of A is a bijective
mapping h : A→ A such that (a1, . . . , aar(R)) ∈ RA if and only if (h(a1), . . . , h(aar(R))) ∈ RA,
for all R ∈ σ and (a1, . . . , aar(R)) ∈ Aar(R); note that the inverse of an automorphism is an
automorphism. A structure A is a core if every endomorphism of A is an automorphism of
A.

The structure B is a substructure of the structure A if B ⊆ A and RB ⊆ RA for all
relation symbols R ∈ σ. When B is a substructure of A, there exists a homomorphism h

from A to B, and h fixes each element b ∈ B, the mapping h is said to be a retraction from
A to B; when there exists a retraction from A to B, it is said that A retracts to B. A
core of a structure A is a structure C such that A retracts to C, but A does not retract to
any proper substructure of C. It is well known that each finite structure has a core and all
cores of a finite structure are isomorphic [18]; we therefore freely refer to the core of a finite
structure A, and denote this object by core(A).
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The Gaifman graph of a structure A is the graph with vertex set A and having an edge
{a, a′} if and only if a 6= a′ and a and a′ cooccur in a tuple of A. The treewidth of a structure
A, denoted by tw(A), is defined as the treewidth of its Gaifman graph.

Logic. In this article, we deal with first-order logic. An atom (over vocabulary σ) is an
equality of variables (x = y) or is a predicate application R(x1, . . . , xr), where x1, . . . , xr are
variables, and R ∈ σ is a relation symbol of arity r. A formula (over vocabulary σ) is built
from atoms (over σ), negation (¬), conjunction (∧), disjunction (∨), universal quantification
(∀), and existential quantification (∃). We define free(φ) to be the set of free variables of a
formula φ. A sentence is a formula having no free variables.

We let FO denote the class of first-order formulas. An existential positive formula (over
vocabulary σ) is a formula built from atoms (over σ) using conjunction, disjunction, and
existential quantification; we let EP denote the class of existential positive formulas. A
primitive positive formula (over vocabulary σ) is a formula built from atoms (over σ) using
conjunction and existential quantification; we let PP denote the class of primitive positive
formulas. Let L ⊆ FO. A formula φ ∈ FO is called an L-formula (respectively, an L-sentence)
if φ is in L (respectively, if φ is a sentence in L).

When A is a structure, f is an assignment of variables in A, and φ is a formula over
the vocabulary of A, we write A, f |= φ to indicate that φ is true in A under f ; if φ is a
sentence, we simply write A |= φ. Let φ and ψ be formulas over the vocabulary σ having the
same free variables. We write φ |= ψ to indicate that φ entails ψ, that is, for all σ-structures
A and assignments f in A it holds that, A, f |= φ implies A, f |= ψ. We say that φ and ψ
are logically equivalent (denoted φ ≡ ψ) if φ |= ψ and ψ |= φ. Let φ be an FO-formula and
let L ⊆ FO. We say that φ is L-expressible if there exists an L-formula φ′ such that φ ≡ φ′.

For any PP-sentence φ over σ, we let C[φ] denote the canonical structure induced by φ.
The canonical structure of φ is obtained by first prenexing the quantifiers and eliminating the
equalities in φ, obtaining a logically equivalent PP-sentence φ′ in prenex form and equality
free; and second by defining C[φ] to be the structure having a universe element for each
existentially quantified variable in φ′, and where, for each R ∈ σ, the relation RC[φ] contains
(x1, . . . , xr) if and only if R(x1, . . . , xr) appears in the quantifier free part of φ′.

For a finite σ-structure A, we let Q[A] denote the canonical query of A, namely, if
A = {a1, . . . , an}, then

Q[A] = ∃a1 . . . ∃an
∧
R∈σ

∧
(a′

1,...,a
′
k

)∈RA

R(a′1, . . . , a′k).

It is straightforward to verify that any PP-sentence φ is logically equivalent to Q[C[φ]],
and that every finite structure A is homomorphically equivalent to C[Q[A]]. We will use the
following known fact [7].

I Theorem 2 (Chandra and Merlin [7]). Let φ be a PP-sentence and let A be a finite structure,
such that φ = Q[A] or A = C[φ]. Then, for any structure B, it holds that A → B if and
only if B |= φ.

Finite Variable Logics

For each class L of first-order formulas and each integer k ≥ 1, we let Lk denote those
formulas in L that use at most k distinct variable symbols. Fragments of first-order logic
using only finitely many variables, called finite variable logics, are central in finite model
theory. Equivalence in these fragments can be characterized by Ehrenfeucht-Fraïssé style
games called pebble games [19], which we now introduce.
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I Definition 3. Let σ be a relational vocabulary and let A and B be σ-structures. A
partial isomorphism from A to B is an injective partial function h from A to B such that
for all R ∈ σ and a1, . . . , aar(R) ∈ dom(h) it holds that (a1, . . . , aar(R)) ∈ RA if and only if
(h(a1), . . . , h(aar(R))) ∈ RB.

The k-pebble game is played by two players, a spoiler and a duplicator, over two (finite)
relational structures A and B over the same vocabulary. A position of the game is a subset of
A×B of size at most k. The game starts in the empty position and continues in a sequence
of rounds. In each round of the game, the spoiler removes a pair from the current position if
its size is k, and then selects an element a ∈ A or b ∈ B; the duplicator answers by selecting
an element b ∈ B or a ∈ A, respectively. The new position is defined by adding the pair
(a, b) to the old position. The duplicator wins the game if each position occurring along the
rounds is a partial isomorphism from A to B.

I Definition 4. [19] Let k ≥ 0. A duplicator winning strategy in the k-pebble game on A
and B is a family S of partial isomorphisms h from A to B with |dom(h)| ≤ k such that:
(S1) ∅ → ∅ is in S.
(S2) If h ∈ S and |dom(h)| < k, then:

(S2.F) For every a ∈ A there exists b ∈ B such that h ∪ {(a, b)} is in S.
(S2.B) For every b ∈ B there exists a ∈ A such that h ∪ {(a, b)} is in S.

(S3) If h ∈ S and a ∈ dom(h), then h|dom(h)\{a} is in S.

It is clear that the duplicator wins the above described k-pebble game on A and B if
and only if the game admits a duplicator winning strategy.

We say that two structures A, B are indistinguishable by FOk-sentences (in short FOk-
indistinguishable), if for each FOk-sentence φ it holds that A |= φ if and only if B |= φ.
As anticipated, k-pebble games characterize expressibility in the k-variable fragment of
first-order logic.

I Theorem 5 (Barwise [5], Immerman [19]). Let k ≥ 0 and let A and B be relational
structures on the same vocabulary. The following are equivalent.
1. There exists a duplicator winning strategy in the k-pebble game on A and B.
2. A and B are FOk-indistinguishable.

3 Construction of Structures

In this section, we show a theorem implying that certain PP-sentences, namely those
corresponding (via Chandra-Merlin, Theorem 2) to cores of treewidth at least k, cannot be
expressed by FO-sentences using k variables (Theorem 6). This inexpressibility result allows
us to later derive our primary theorem (Theorem 23).

I Theorem 6. Let A be a core on the relational vocabulary σ such that tw(A) ≥ k ≥ 1.
There exist σ-structures B and B′ such that B→ A; A→ B′; A 6→ B; and, B and B′ are
FOk-indistinguishable.

The remainder of the current section is devoted to the construction (Section 3.1) and the
study (Section 3.2 and Section 3.3) of the structures B and B′ mentioned in Theorem 6. We
remark that the structure B is essentially equal to the structure defined by Atserias et al. in
[3, Section 4].

We give a proof of Theorem 6 that makes forward references; this proof might serve as a
guide to the layout of this section.
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Proof of Theorem 6. It is readily verified that tw(A) ≥ k ≥ 1 implies the existence of a
connected component (C,E) in the Gaifman graph of A such that tw((C,E)) ≥ k ≥ 1. Let s
be an arbitrary but fixed vertex in C. Let B and B′ be the two σ-structures defined relative
to A and s in Section 3.1; then B → A by Observation 9 in Section 3.1. In Section 3.2,
Lemma 11 and Lemma 12 show that A → B′ and A 6→ B, respectively. In Section 3.3,
Lemma 16 gives a duplicator winning strategy in the k-pebble game on (B,B′), which suffices
via Theorem 5. J

I Notation 7. The following names are reserved throughout the current section:
A denotes a core on the relational vocabulary σ, with universe A, such that tw(A) ≥ k ≥ 1.
G = (C,E) denotes a connected component in the Gaifman graph of A such that tw(G) ≥
k ≥ 1. Note that, in particular, |C| ≥ 2.
s denotes an arbitrary but fixed vertex in C.
M denotes an arbitrary but fixed bramble of G having order > k (this exists by Theorem 1).
Recall that, therefore, any hitting set forM has size at least k + 1.

3.1 Construction of B and B′

In this section, relative to A and s, we define two σ-structures B and B′ as follows.
For all a ∈ A, let Ea denote the edges incident on a in the Gaifman graph of A. Let:

UC =
{

(a, f)

∣∣∣∣∣ a ∈ C, f : Ea → {0, 1} is such that
∑
e∈Ea

f(e) (mod 2) =
{

0 if a 6= s

1 if a = s

}

U ′C =
{

(a, f)

∣∣∣∣∣ a ∈ C, f : Ea → {0, 1} is such that 0 =
∑
e∈Ea

f(e) (mod 2)
}

UA\C = {(a, f : Ea → {0}) | a ∈ A \ C}.

Then B and B′ have universes B and B′ defined as follows:

B = UC ∪ UA\C
B′ = U ′C ∪ UA\C

The vocabulary is interpreted as follows. For all R ∈ σ, let (a1, f1), . . . , (ar, fr) be
elements of B (respectively, of B′), where r = ar(R). Then ((a1, f1), . . . , (ar, fr)) is in RB

(respectively, in RB′) if and only if
(a1, . . . , ar) ∈ RA;
for all i, j ∈ [r], if e = {ai, aj} ∈ E then fi(e) = fj(e).

For the sake of intuition, suppose that A is a connected graph, so that A is isomorphic to
its Gaifman graph and C = A. The universes of B and B′ are formed by pairs (a, f) where
a is a vertex of A and f is a Boolean labelling of the edges incident on a. The Boolean
labellings have even parity with the only exception of those paired with s in B which have
odd parity. Moreover there is an edge {(a, f), (a′, f ′)} in B (respectively, B′) if and only if
the edge {a, a′} is in A and the labellings f and f ′ agree on {a, a′}. A concrete example
follows.

I Example 8. Let A = (A,EA) where A = {a, s} and EA = {(a, s), (s, a)}, that is, A is the
graph formed by the single edge {a, s}. Let fi : {{a, s}} → {0, 1} be such that fi({a, s}) = i

for i = 0, 1. Then B = (B,EB) where B = {(a, f0), (s, f1)} and EB = ∅, and B′ = (B′, EB′)
where B′ = {(a, f0), (s, f0)} and EB′ = {((a, f0), (s, f0)), ((s, f0), (a, f0))}.
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Note that, by construction of B, the map π1 : B → A is a homomorphism from B to A.
We inline this observation for later use.

I Observation 9. B→ A.

3.2 A Treats B and B′ Differently
Let B and B′ be the two σ-structures defined relative to A and s in Section 3.1. We show
that A maps homomorphically to B′ (Lemma 11) but not to B (Lemma 12).

I Example 10. Let A, B, and B′ be as in Example 8. Then the mapping h defined by
h(a′) = (a′, f0) for all a′ ∈ A is a homomorphism from A to B′, but A has no homomorphisms
to B by direct inspection, as EB = ∅.

A direct inspection of the construction in Section 3.1 shows that a copy of A sits inside
B′, by looking at the pairs in B′ carrying an identically 0 labelling. Therefore A maps
homomorphically to B′.

I Lemma 11. A→ B′.

On the other hand, we claim that B has no homomorphisms from A. For the sake
of intuition, let A be a connected graph. A homomorphism from A to B maps A to B
preserving all edges. By construction (here we use that A is a core), the homomorphic
image of A in B is a copy of A where all edges carry two Boolean labels equal to each other.
Summing these Boolean labels in two ways, edgewise and vertexwise, we get the contradiction
that the edgewise sum has even parity but the vertexwise sum, by the contribution of the
labels of s, has odd parity.

I Lemma 12. [3, Lemma 1] A 6→ B.

3.3 B and B′ are FOk-Indistinguishable
Let B and B′ be the two σ-structures defined relative to A and s in Section 3.1. We show
that B and B′ are FOk-indistinguishable (Lemma 16).

We describe informally a winning strategy for the duplicator in the k-pebble game on B
and B′. For the sake of illustration, consider the simple case where B and B′ are constructed
relative to a connected graph A so that A = G (the lemma lifts the idea to arbitrary
relational structures A, whose Gaifman graphs are possibly disconnected). The duplicator
fixes a brambleM of G and maintains along the rounds of the game the following position
(i = 0, 1, . . . , k):

i pebble pairs are placed on elements (a1, f1), . . . , (ai, fi) ∈ B and correspondingly on
elements (a1, f

′
1), . . . , (ai, f ′i) ∈ B′ such that for some walk W in G from s to a bramble

set inM avoiding a1, . . . , ai it holds that fj(e) equals the parity of f ′j(e) plus the number
of times e occurs in W (for all j ∈ [i] and e ∈ Eaj

).
That such a position exists and is a partial isomorphism is the content of Lemma 14; that
the duplicator can maintain such a position along the rounds of the game is the content of
Lemma 16.

We now start proving our statement. Recall Notation 7 for the meaning of G, M, et
cetera. We further prepare the following notation.

I Notation 13. Let W = (a1, . . . , am) be a walk in G. For e ∈ E, we let

occW (e) = |{i ∈ [m− 1] | e = {ai, ai+1}}|
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denote the number of times the edge e is used in W . Moreover, for every S ⊆ A, let

avoidM(S) =
⋃

{M∈M|M∩S=∅}

M

be the union of the bramble sets inM disjoint from S.

I Lemma 14. Let 0 ≤ i ≤ k and let {(a1, fa1), . . . , (ai, fai
)} ⊆ B. Let W be a walk in

G from s to avoidM({a1, . . . , ai}). For all j ∈ [i], let f ′aj
: Eaj → {0, 1} be defined by

f ′aj
(e) = faj

(e) + occW (e) (mod 2). Then the mapping h sending (aj , faj
) to (aj , f ′aj

) for
all j ∈ [i] is a partial isomorphism from B to B′.

Towards proving Lemma 14, we claim the following.

I Claim 15. Let a ∈ A and let W be a walk in G from s to t 6= a. Then:
If (a, f) ∈ B and f ′(e) = f(e) + occW (e) (mod 2) for all e ∈ Ea, then (a, f ′) ∈ B′.
If (a, f ′) ∈ B′ and f(e) = f ′(e)− occW (e) (mod 2) for all e ∈ Ea, then (a, f) ∈ B.

The idea underlying the claim is that, for (a, f) ∈ B with a = s, both the sum of the
labellings of Ea under f , and the number of occurrences of edges in Ea in a walk W that
starts at a and does not end at a, are odd. For (a, f) ∈ B with a 6= s both the sum of the
labellings under f of edges incident on a, and the number of occurrences of edges incident
on a in a walk W that neither starts nor ends at a, are even. It follows that (a, f ′) ∈ B′ by
construction.

We are now ready to prove the lemma. For the sake of intuition, consider the case where A
is a connected graph, so that A = G. If the edge {(a, f), (b, g)} is in B and h((a, f)) = (a, f ′),
h((b, g)) = (b, g′), then on the one hand f({a, b}) = g({a, b}), which is the content of (3);
and on the other hand f ′({a, b}) and g′({a, b}) equal the parity of the sum of f({a, b}) and
g({a, b}), respectively, and the number of occurrences of {a, b} in a fixed walk W , which is
the content of (2). Therefore f ′({a, b}) = g′({a, b}) and the edge {(a, f), (b, g)} is in B′. The
converse is symmetric.

Proof of Lemma 14. By Claim 15, (aj , f ′aj
) ∈ B′ for all j ∈ [i], hence h is a partial function

from B to B′; moreover, h is injective by definition. Let R ∈ σ, let ar(R) = r, and let
(b1, fb1), . . . , (br, fbr ) ∈ dom(h). It is sufficient to show that

((b1, fb1), . . . , (br, fbr
)) ∈ RB ⇐⇒ (h(b1, fb1), . . . , h(br, fbr

)) ∈ RB′

We prove the forward direction; the backward direction is similar.
Assume ((b1, fb1), . . . , (br, fbr )) ∈ RB. Then by construction (b1, . . . , br) ∈ RA. We

distinguish two cases.
Case: {b1, . . . , br} ∩ C = ∅. Note that if bj ∈ A \ C, then fbj (e) = 0 for all e ∈ Ebj by

construction and occW (e) = 0 for all e ∈ Ebj
because W lies entirely in C. Then f ′bj

(e) = 0
for all e ∈ Ebj

. Therefore, by construction, (h(b1, fb1), . . . , h(br, fbr
)) ∈ RB′ .

Case: If {b1, . . . , br} ⊆ C, then let e = {bj , bj′} ∈ E, j, j′ ∈ [r]. We claim that
f ′bj

(e) = f ′bj′ (e). By hypothesis, there exists a walkW in G from s to t ∈ avoidM({a1, . . . , ai})
such that for all j ∈ [i] and all e ∈ Eaj

it holds that

f ′aj
(e) = faj (e) + occW (e) (mod 2). (1)

It follows from (1) that, for all j ∈ [r] and e ∈ Ebj
,

f ′bj
(e) = fbj

(e) + occW (e) (mod 2). (2)

ICDT 2017



9:10 How Many Variables Are Needed to Express an Existential Positive Query?

Moreover, by construction, if j, j′ ∈ [r] and e = {bj , bj′} ∈ E, then

fbj
(e) = fbj′ (e). (3)

Therefore,

f ′bj
(e) = fbj (e) + occW (e) (mod 2) by (2)

= fbj′ (e) + occW (e) (mod 2) by (3)

= f ′bj′ (e) by (2)

We conclude that ((b1, f
′
b1

), . . . , (br, f ′br
)) = (h(b1, fb1), . . . , h(br, fbr

)) ∈ RB′ . J

We now formalize the strategy informally described above and show that, indeed, it is a
winning strategy for the duplicator in the k-pebble game on B and B′.

I Lemma 16. Let S be the family of partial isomorphisms from B to B′ that contains an
injective map h : B → B′ when |dom(h)| ≤ k and there exists a walk W in G from s to
avoidM(π1(dom(h))) such that, for all (a, f) ∈ dom(h), it holds that h((a, f)) = (a, f ′) where

f ′(e) = f(e) + occW (e) (mod 2)

for all e ∈ Ea. Then S is a duplicator winning strategy in the k-pebble game on B and B′.

The crux of the proof is the following. Suppose that i < k pebble pairs are placed on
elements (a1, f1), . . . , (ai, fi) ∈ B and correspondingly on elements (a1, f

′
1), . . . , (ai, f ′i) ∈ B′

such that for some walk W in G from s to t in a bramble set in M avoiding a1, . . . , ai it
holds that f ′j(e) equals the parity of fj(e) plus the number of times e occurs in W (for all
j ∈ [i] and e ∈ Eaj

).
The spoiler pebbles, say, (ai+1, fi+1) ∈ B. The duplicator obtains a walk W ′ in G from

s to a vertex t′ lying in a bramble set of M that avoids a1, . . . , ai, ai+1 (such a set exists
because the bramble has order greater than k ≥ i+ 1) by walking from s to t over W and
then from t to t′ using only vertices in the bramble sets of t and t′ (which is feasible by the
properties of the bramble). The duplicator pebbles (ai+1, f

′
i+1) ∈ B, where f ′i+1(e) equals the

parity of fi+1(e) plus the number of times e occurs in W ′ for all e ∈ Eai+1 ; thus maintaining
its winning position, because the number of occurrences of edges incident to any of a1, . . . , ai
does not change in passing from W to W ′.

Proof of Lemma 16. We check that S satisfies Definition 4 relative to B and B′.
For (S1), we show that the function h : ∅ → ∅ is in S. Since any hitting set of the bramble

M has size at least k+ 1 ≥ 2, there exists a set M inM such that s 6∈M . Let a ∈M . Then
a ∈ avoidM(π1(dom(h))). Moreover, G is connected, hence there is a walk W in G from s to
a. Thus h ∈ S.

We now verify that S satisfies (S2.F) and (S2.B). Let h ∈ S and let |dom(h)| < k. By
definition of S, there exists a walk W in G from s to t ∈ avoidM(π1(dom(h))) such that, for
all (a, f) ∈ dom(h) it holds that h((a, f)) = (a, f ′) where f ′(e) = f(e) + occW (e) (mod 2)
for all e ∈ Ea.

For (S2.F), let (a, f) ∈ B. Since |dom(h)| < k, we have that |π1(dom(h)) ∪ {a}| ≤ k. So,
by the observation about any hitting set of the brambleM, there exists a set M ′ ∈M such
that M ′ ∩ (π1(dom(h)) ∪ {a}) = ∅. Let t ∈ M ∈ M. Obtain a walk W ′ in G from s to
t′ ∈ avoidM(π1(dom(h)) ∪ {a}) by concatenating W and a walk in G from t ∈M to t′ ∈M ′
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containing only vertices inM andM ′. Let (a, f ′) be such that f ′(e) = f(e)+occW ′(e) (mod 2)
for all e ∈ Ea. Now define h′ = h ∪ {((a, f), (a, f ′))}.

We want to show that h′ is in S. We claim that, for all (b, fb) ∈ dom(h′), if h′((b, fb)) =
(b, f ′b), then f ′b(e) = fb(e) + occW ′(e) (mod 2) for all all e ∈ Eb. It follows that h′ is a partial
isomorphism from B to B′ by Lemma 14, so that h′ is in S witnessed by W ′. Hence h′ ∈ S.

For the claim, let (b, fb) ∈ dom(h′) and let h′((b, fb)) = (b, f ′b). If b = a, then (b, fb) =
(a, f) and h′((a, f)) = (a, f ′) such that f ′(e) = f(e) + occW ′(e) (mod 2) for all e ∈ Ea by
construction. If b 6= a, then notice that b 6∈M and b 6∈M ′, so that for every e ∈ Eb it holds
that occW (e) = occW ′(e), and therefore,

f ′b(e) = fb(e) + occW (e) (mod 2) by hypothesis on h
= fb(e) + occW ′(e) (mod 2)

and the claim is settled.
For (S2.B), let (a, f ′) ∈ B′. Along the lines above, we obtain a walk W ′ in G from s to

avoidM(π1(dom(h))∪{a}), and f : Ea → {0, 1} such that f ′(e) = f(e)+occW ′(e) (mod 2) for
all e ∈ Ea; we put h′ = h ∪ {((a, f), (a, f ′))}, and show that h′ ∈ S appealing to Lemma 14.

We conclude by verifying that S satisfies (S3). Let h ∈ S and let (a, f) ∈ dom(h). We
want to show that the restriction of h to dom(h)\{(a, f)}, namely, h′ = h|dom(h)\{(a,f)} is in S.
Partial isomorphisms are closed under restrictions, hence h′ is a partial isomorphism from B to
B′ of domain size at most k. Let W be a walk in G from s to avoidM(π1(dom(h))) witnessing
that h is in S. We claim that W also witnesses that h′ is in S. By definition, W is from
s to avoidM(π1(dom(h))) ⊆ avoidM(π1(dom(h′))). Moreover, if h′((a′, f ′)) = (a′, f ′′), then
h((a′, f ′)) = (a′, f ′′) and for all e ∈ Ea′ it holds that f ′′(e) = f ′(e) + occW (e) (mod 2). J

4 Existential Positive Logic

In this section, we present combinatorial width, the combinatorial measure on EP-formulas.
While the specialization of this measure to EP-sentences is due (implicitly) to previous work,
we here give a definition that applies to all EP-formulas.

In order to define our measure, we first associate a structure to each PP-formula, as
follows. In the following definition, one should conceive of ψ as a disjunct of an EP-formula
which is the disjunction of PP-formulas and which has free variables v1, . . . , v`.

I Definition 17. For each vocabulary σ and each integer ` ≥ 1, we fix Uσ,` to be a relation
symbol of arity ` outside of σ.

For each vocabulary σ, each list v1, . . . , v` of variables, and each PP-formula ψ over
vocabulary σ with free(ψ) ⊆ {v1, . . . , v`}, we define a structure C[ψ;σ; v1, . . . , v`] as follows:

Define ψ′ as the formula obtained from ψ by prenexing ψ and then renaming quantified
variables (if necessary) so that none of the variables v1, . . . , v` are quantified.
Define ψ+ as ∃v1 . . . v`(Uσ,`(v1, . . . , v`) ∧ ψ′) if ` > 0, and as ψ′ if ` = 0.
Define C[ψ;σ; v1, . . . , v`] as C[ψ+].

Note that, in the case that ` = 0, it holds that C[ψ;σ; v1, . . . , v`] is isomorphic to C[ψ], since
in this case ψ′ and ψ are identical up to renaming variables, and ψ+ = ψ′.

In essence, the structure just defined is the canonical structure obtained by conjoining,
to the PP-formula, the atom Uσ,`(v1, . . . , v`), where the symbol Uσ,` is a fresh one; and then
existentially quantifying all free variables.

We now define a notion of normalized EP-formula.
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I Definition 18. (extends [6, Definition 3]) Let φ be an EP-formula over vocabulary σ and
whose free variables are v1, . . . , v`. We say that φ is normalized if it is equal to a disjunction∨
i∈[m] ψi (with m ≥ 0) where:
each ψi is a prenex PP-formula,
for each i ∈ [m], the structure C[ψi;σ; v1, . . . , v`] is a core, and
for each i, j ∈ [m] with i 6= j, it holds that C[ψi;σ; v1, . . . , v`] 6→ C[ψj ;σ; v1, . . . , v`].

I Proposition 19. There exists an algorithm that, given as input an EP-formula φ, outputs
a normalized EP-formula φ′ =

∨
i∈[m] ψ

′
i that is logically equivalent to φ, and such that (for

any k ≥ 0) if φ is EPk-expressible, then ψ′i is PPk-expressible for every i ∈ [m].

This proposition was observed in the particular case of sentences by [6, Section 3]; the con-
struction is, in essence, a solution to a classic exercise in database theory [1, Exercise 6.14(c)].

We now define the notion of combinatorial width. Although we only define it directly on
normalized EP-formulas, the definition can be naturally extended to all EP-formulas in light
of Proposition 19.

I Definition 20. Let φ =
∨
i∈[m] ψi be a normalized EP-formula with free variables v1, . . . , v`

and over vocabulary σ. We define comb-width(φ) = maxi∈[m](tw(C[ψi;σ; v1, . . . , v`]) + 1).
Note that, in the case that φ is a sentence (equivalently, when ` = 0), it holds that
comb-width(φ) = maxi∈[m](tw(C[ψi]) + 1).

The notion of the combinatorial width of a normalized sentence was studied implicitly in
previous work; see Proposition 3.4 of [9] and Section 3 of [6]. The following theorem was
known [15, 6].

I Theorem 21. Let φ =
∨
i∈[m] ψi be a normalized EP-sentence. Let k = comb-width(φ).

The sentence φ is EPk-expressible, but (assuming k > 0) is not EPk−1-expressible.

Proof. We will use the fact, which follows from [15, Theorem 12], that (when w ≥ 1) a
PP-sentence ψ has tw(core(C[ψ])) < w if and only if ψ is PPw-expressible.

We have that φ is EPk-expressible via this fact, since each disjunct ψi has tw(C[ψi]) <
comb-width(φ).

For the non-expressibility result, suppose that φ is EPn-expressible; we prove that n ≥ k.
It follows from Proposition 19 that φ is logically equivalent to a disjunction

∨
i∈[m′] ψ

′
i

of PPn-formulas. By the fact, we may assume that each C[ψ′i] is a core; we obtain that
tw(C[ψ′i]) + 1 ≤ n. By Lemma 4(2) of [6], it follows that k = maxi∈[m′](tw(C[ψ′i]) + 1). We
thus have k ≤ n. J

5 Main Theorems and Consequences

We first prove our number-of-variables characterization for EP-sentences.

I Theorem 22. Let φ =
∨
i∈[m] ψi be a normalized EP-sentence; let w = comb-width(φ).

The sentence φ is EPw-expressible, but (assuming w > 1) is not FOw−1-expressible.

This theorem is transparently seen to be a strengthening of Theorem 21 (when the stated
assumption holds).

Proof. That the sentence φ is EPw-expressible follows directly from Theorem 21, so we prove
that φ is not FOw−1-expressible. Choose i ∈ [m] such that comb-width(φ) = tw(C[ψi]) + 1;
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set A = C[ψi]. By the definition of normalized, we have that A is a core. Let B, B′ be the
structures provided by Theorem 6 relative to A and k = tw(A); note that k = w − 1.

We show in the next paragraph that B′ |= φ and B 6|= φ. Then, since B′ and B are
FOk-indistinguishable by Theorem 6, and since φ distinguishes between B′ and B, it follows
that φ is not FOk-expressible.

We prove the claim. We have that A→ B′, hence B′ |= ψi by Theorem 2, and B′ |= φ.
Now, assume for a contradiction that B |= φ. Then B |= ψj for some j ∈ [m]. Then
C[ψj ]→ B by Theorem 2. We have B→ A = C[ψi] by Theorem 6. Hence C[ψj ]→ C[ψi],
so i = j by the hypothesis that φ is normalized. But we also have A = C[ψi] 6→ B, hence
i 6= j, a contradiction. J

We now extend the previous theorem to address all normalized EP-formulas. The following
is our primary theorem.

I Theorem 23 (Primary theorem). Let φ =
∨
i∈[m] ψi be a normalized EP-formula; let

w = comb-width(φ). The formula φ is EPw-expressible, but (assuming w > 1) is not
FOw−1-expressible.

Proof. Let σ denote the vocabulary of φ. Let v1, . . . , v` denote the free variables of φ. We
assume that ` ≥ 1 (otherwise, the theorem follows from Theorem 22).

We first establish that φ is EPw-expressible. It suffices to prove that, for each i ∈ [m],
the formula ψi is expressible using b = tw(C[ψi;σ; v1, . . . , v`]) + 1 variables. By definition of
treewidth, there exists a tree decomposition of C[ψi;σ; v1, . . . , v`] where each bag has size b or
less. It is readily verified that this tree decomposition is a tree decomposition of C[ψ′i] (where
ψ′i is derived from ψi as described in Definition 17) which has a bag Bs with v1, . . . , v` ∈ Bs.
The result now essentially follows from the argument of Lemma 5.11 of [10, 11]. We give an
explanation for the sake of completeness. Add a vertex r adjacent to s to the tree and define
Br = {v1, . . . , v`}. Let T be the resulting object, which is straightforwardly verified to be a
tree decomposition of C[ψ′i] where each bag has size b or less.

We now describe how to construct the desired formula. Each variable of ψ′i, other than
v1, . . . , v`, will be existentially quantified exactly once in the formula; and all atoms of ψ′i,
will appear in the formula. In this way, the constructed formula will be clearly logically
equivalent to ψ′i, and hence ψi.

Root the tree T at r; note that r has a single child, s.
For each non-root vertex t of T , we define a PP-formula θt inductively, as follows. Define
θt as ∃w1 . . . wmθ

′
t where w1, . . . , wm is a list of variables that are in the bag Bt of t but

not in the bag of t’s parent, and θ′t is the conjunction of θu over all children u of t and all
atoms R(z1, . . . , zk) of ψ′i where {z1, . . . , zk} ⊆ Bt.
The desired formula is θs.

Observe (by induction) that, for each non-root vertex t of T , it holds that free(θ′t) ⊆ Bt and
free(θt) ⊆ Bp where p is the parent of t. It follows that each formula θt, and in particular θs,
has width ≤ b, and is thus PPb-expressible.

We now establish that φ is not FOw−1-expressible.
If w ≤ `, then it is straightforward to verify that the formula φ is not FOw−1-expressible,

since w − 1 is strictly lower than the number of free variables of φ. (We can remark that
w ≥ `, since each structure C[ψi;σ; v1, . . . , v`] interprets Uσ,` as {(v1, . . . , v`)}, and so the
treewidth of each such structure plus 1 is ` or more.)

We thus assume in the sequel that w > `. For each i ∈ [m], we may assume without loss
of generality that each ψi is prenexed and that in each ψi, none of the variables v1, . . . , v` are
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quantified. Define ψ+
i as in Definition 17; we then have ψ+

i = ∃v1 . . . ∃v`(Uσ,`(v1, . . . , v`)∧ψi).
Define φ+ as

∨
i∈[m] ψ

+
i . We have that C[ψi;σ; v1, . . . , v`] = C[ψ+

i ]. We have

comb-width(φ) = max
i∈[m]

(tw(C[ψi;σ; v1, . . . , v`])+1) = max
i∈[m]

(tw(C[ψ+
i ])+1) = comb-width(φ+),

where the last equality holds by the note in Definition 20.
Observe that

φ+ =
∨
i∈[m]

ψ+
i =

∨
i∈[m]

∃v1 . . . ∃v`(Uσ,`(v1, . . . , v`) ∧ ψi)

≡ ∃v1 . . . ∃v`
∨
i∈[m]

(Uσ,`(v1, . . . , v`) ∧ ψi) ≡ ∃v1 . . . ∃v`(Uσ,`(v1, . . . , v`) ∧ (
∨
i∈[m]

ψi))

= ∃v1 . . . ∃v`(Uσ,`(v1, . . . , v`) ∧ φ).

Suppose, for a contradiction, that φ is FOw−1-expressible. Then, φ can be expressed just
using the variables x1, . . . , xw−1 (recall the assumption that w > `, which gives w − 1 ≥
`). Since φ+ ≡ ∃v1 . . . ∃v`(Uσ,`(v1, . . . , v`) ∧ φ), this immediately implies that φ+ can be
expressed just using the variables x1, . . . , xw−1, and that φ+ is FOw−1-expressible. As
w = comb-width(φ) = comb-width(φ+), this contradicts Theorem 22. J

I Corollary 24. For each k ≥ 1, FOk-expressibility and EPk-expressibility coincide on
existential positive formulas; that is, an existential positive formula is FOk-expressible if and
only if it is EPk-expressible.

I Corollary 25. The problem of deciding FOk-expressibility of EP-sentences is Πp
2-complete.

By this, we refer to the problem of deciding, given an EP-sentence φ and an integer k ≥ 1,
whether φ is FOk-expressible.

Proof. The problem of deciding, given an EP-sentence φ and an integer k ≥ 1, whether φ is
EPk-expressible, is Πp

2-complete by [6, Theorem 6]. The present corollary thus follows from
Corollary 24. J

We conclude the article by explaining how the main result of [3] follows from our
development. We first present the necessary definitions.

I Definition 26. Let σ be a relational vocabulary and let A and B be σ-structures. A
partial homomorphism from A to B is a partial function h from A to B such that, for
all R ∈ σ and all a1, . . . , aar(R) ∈ dom(h), it holds that (a1, . . . , aar(R)) ∈ RA implies
(h(a1), . . . , h(aar(R))) ∈ RB.

I Definition 27. [20] Let k ≥ 0. A duplicator winning strategy in the existential k-pebble
game on (A,B) is a family S of partial homomorphisms h from A to B with |dom(h)| ≤ k
such that:
(E1) ∅ → ∅ is in S.
(E2) If h ∈ S and |dom(h)| < k, then for every a ∈ A there exists b ∈ B such that h∪{(a, b)}

is in S.
(E3) If h ∈ S and a ∈ dom(h), then h|dom(h)\{a} is in S.

I Theorem 28. (Main theorem of [3]) Let A be a core on the relational vocabulary σ such
that tw(A) ≥ k ≥ 1. There exists a σ-structure B such that A 6→ B and there exists a
duplicator winning strategy in the existential k-pebble game on (A,B).
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To prove Theorem 28, we will make use of the following transitivity property.

I Lemma 29. Let k ≥ 0. If there exist duplicator winning strategies in the existential
k-pebble games on (A,B) and (B,C), then there exists a duplicator winning strategy in the
existential k-pebble game on (A,C).

We now give a proof of Theorem 28 using the construction of this article.

Proof of Theorem 28. Let A be a σ-structure. By hypothesis, A is a core and tw(A) ≥ k;
so, by Theorem 6 there exist σ-structures B and B′, such that A 6→ B, A→ B′, and (via
Theorem 5) the duplicator has a winning strategy in the k-pebble game on B and B′.

Therefore the duplicator has a winning strategy S in the existential k-pebble game on
(B′,B), because duplicator winning strategies in the k-pebble game on B and B′ are also
duplicator winning strategies in the existential k-pebble game on (B′,B). Moreover, there
exists a homomorphism g from A to B′. It is straightforward to verify that the family
containing each restriction of g to a subset S ⊆ A with |S| ≤ k is a duplicator winning
strategy in the existential k-pebble game on (A,B′). It follows, from Lemma 29 that there
exists a duplicator winning strategy existential k-pebble game on (A,B). J
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Abstract
We develop a unifying approach to declarative entity linking by introducing the notion of an entity
linking framework and an accompanying notion of the certain links in such a framework. In an
entity linking framework, logic-based constraints are used to express properties of the desired link
relations in terms of source relations and, possibly, in terms of other link relations. The definition
of the certain links in such a framework makes use of weighted repairs and consistent answers in
inconsistent databases. We demonstrate the modeling capabilities of this approach by showing
that numerous concrete entity linking scenarios can be cast as such entity linking frameworks for
suitable choices of constraints and weights. By using the certain links as a measure of expressive
power, we investigate the relative expressive power of several entity linking frameworks and obtain
sharp comparisons. In particular, we show that we gain expressive power if we allow constraints
that capture non-recursive collective entity resolution, where link relations may depend on other
link relations (and not just on source relations). Moreover, we show that an increase in expressive
power also takes place when we allow constraints that incorporate preferences as an additional
mechanism for expressing “goodness” of links.
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1 Introduction and Summary of Results

Entity linking is the problem of creating links among records representing real-world entities
that are related in certain ways. As an important special case, it includes entity resolution,
which is the problem of identifying or linking “duplicate” entities. Since the pioneering
work of Fellegi and Sunter [11] in 1969, entity linking has been recognized as a fundamental
computational problem that has been investigated by several different research communities.
While much of the work in this area [8, 10, 15, 18] has focused and continues to focus on
the design, implementation, and validation of direct algorithms for entity linking (and, in
particular, for entity resolution), recent investigations have developed declarative approaches
to entity linking that make it possible to separate the specification of entity linking from its
actual implementation (see, for example, [1, 7, 13, 14]).
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10:2 Expressive Power of Entity-Linking Frameworks

In [7], we introduced and explored a declarative approach to entity linking that makes use
of logical constraints. Our approach differs from earlier declarative approaches because it uses
link-to-source constraints, instead of source-to-link constraints. Source-to-link constraints
constitute, in effect, rules for creating links from source data in an operational manner. Our
link-to-source constraints spell out conditions that the links must satisfy, independently of
how the links will be created, and thus give rise to solutions of the declarative entity-linking
specification at hand. In [7], we focused on the class of maximum-value solutions as “good”
solutions for entity linking; intuitively, these are the solutions in which links have maximum
“justification” in terms of the constraints and in terms of the source data. Since there can be
multiple maximum-value solutions, we introduced the notion of the certain links, which, by
definition, are the links that appear in every maximum-value solution and, therefore, are the
links that should be kept. We then explored the problem of enumerating all maximum-value
solutions and the problem of computing the certain links. This investigation was carried out
for several different languages expressing link-to-source constraints, including languages that
capture collective entity resolution, where interdependence between link relations is allowed.

The variety and multitude of entity-linking approaches raise the question of developing
methods and tools for comparing such different approaches. A comparative evaluation of the
performance of several different direct algorithms for entity resolution (or entity matching)
has been carried in [16] and [17]. Up to now, however, no methodology has been developed
for comparing, along some axis, different declarative approaches for entity linking. The main
aim of this paper is to develop such a methodology that is centered on the notion of the
expressive power of declarative entity-linking frameworks.

Our first conceptual contribution is to formulate a unifying notion of an entity-linking
framework and an accompanying notion of the certain links in such a framework. This is
achieved by bringing into the picture a notion of weighted repairs of inconsistent databases,
which are a variant of the notion of weighted repairs of inconsistent databases in description
logics studied in [9]. The “good” solutions for entity linking are then identified with
the maximum weight repairs of inconsistent databases with respect to suitable choices of
constraints and weights, while the certain links are defined to be the consistent answers of
atomic link queries with respect to the maximum weight repairs, that is, those links that
are in every maximum weight repair. The inconsistent database whose weighted repairs we
consider gives an upper bound or a domain for the candidate links; it could be provided (e.g.,
handed in from another system), or could be simply based on the Cartesian product of sets
of entities (which we do in many of our definitions and proofs1).

This general approach gives rise to a single formalism for declarative entity linking in
which the constraint language, the sets of constraints allowed, and the weight function that
measures the “strength” of the links are parameters of the definition. We demonstrate the
modeling capabilities of this formalism by showing that it not only contains as special cases
the concrete declarative entity linking scenarios studied in [7], but also can account for new
ones, such as entity linking based on maximum cardinality repairs and entity linking with
constraints that incorporate preferences.

Our second conceptual contribution is to use the certain links as a measure of the
expressive power of an entity linking framework and define what it means for an entity
linking framework to subsume another entity linking framework. This makes it possible to
compare different entity linking frameworks along the axis of their expressive power.

1 Note that this is conceptual and it does not mean that such a Cartesian product needs to be materialized.
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As regards technical results, we first show that, under some mild hypotheses on entity
linking frameworks, it is possible to enumerate with polynomial delay all maximum weight
repairs and to compute the certain links in polynomial time. This general result contains
as special cases several similar results for concrete entity linking scenarios obtained in [7].
Our main technical contribution, however, is to delineate the relative expressive power of
different linking frameworks. Specifically, we show that the entity linking framework of the
maximum-value solutions considered in [7] and the entity linking framework of maximum
cardinality repairs introduced here are of incomparable expressive power, in the sense that
neither of the two can subsume the other. We also show that the entity linking framework
for collective entity resolution where the constraints allow the link relations to depend on
other link relations is strictly more expressive than in the case where constraints do not
allow for interdependence among the link relations. This increase in expressive power takes
place even when the dependencies among the link relations are non-recursive. Finally, we
show that we also gain expressive power by adding preference constraints, which represent
an additional, practical mechanism (see HIL [14]) for specifying the “good” links by letting a
user explicitly, and declaratively, give priority to some types of links over other types of links.
Concretely, we show that there is an entity linking framework with preference constraints
that is not subsumed by the entity linking framework of maximum-value solutions (with no
preference constraints).

Note that since the expressive power is measured via the certain links, proving that
a specific entity linking framework is not subsumed by some other specific entity linking
framework is a much more challenging task than simply showing that the constraints defining
the first framework are not logically equivalent to those defining the second framework.
The proofs of our results about the expressive power of entity linking frameworks involve
a combination of special-purpose techniques with techniques from finite model theory. In
particular, the proof of the result concerning the expressive power of entity linking frameworks
with preference constraints uses a locality theorem that is interesting in its own right.

In summary, the conceptual and technical contributions in this paper provide a unifying
approach to declarative entity linking and pave the way for the systematic comparative
evaluation of different entity linking frameworks.

2 Weighted Repairs and Consistent Answers

Let S and L be two disjoint relational schemas, and let R = S ∪L be the union of these two
schemas. If I is an S-instance and J is an L-instance, then 〈I, J〉 denotes the R-instance
that is the union of I and J viewed as sets of facts. Clearly, every R-instance is of the form
〈I, J〉, where I is an S-instance and J is an L-instance. If I is an S-instance and S is a
relation symbol in S, then SI denotes the relation of I interpreting the relation symbol S;
similarly, if J is an L-instance and L is a symbol in L, then LJ denotes the relation of J
interpreting the relation symbol L.

I Definition 1. A weight function on R is a function w that assigns a non-negative weight
w(〈I, J〉, LJ(a1, . . . , an)) for every R-instance 〈I, J〉 and for every fact LJ(a1, . . . , an) of J ,
where L is a relation symbol in L. The weight w(〈I, J〉, LJ(a1, . . . , an)) is called the weight
of the fact LJ(a1, . . . , an) in 〈I, J〉.

Note that, even though only facts in relations interpreting L-symbols have weights, the
weight of such a fact may depend on the entire R-instance 〈I, J〉 and not just on J .

In what follows, we will define the notion of a maximum weight repair of an R-instance
〈I, J〉; this notion is inspired by a similar one introduced by Du, Qi, and Shen [9] in the
context of knowledge-bases with constraints expressed in description logics.
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I Definition 2. Let Σ be a set of integrity constraints on R, let w be a weight function on
R, and let 〈I, J〉 be an R-instance. A sub-instance 〈I, J ′〉 of 〈I, J〉 is a maximum weight
repair of 〈I, J〉 with respect to Σ and w if 〈I, J ′〉 has the following properties:
1. 〈I, J ′〉 is consistent, i.e., 〈I, J ′〉 satisfies every constraint in Σ.
2. J ′ has maximum weight, i.e., if 〈I, J ′′〉 is a consistent sub-instance of 〈I, J〉, then

Σf∈J′′w(〈I, J ′′〉, f) ≤ Σf∈J′w(〈I, J ′〉, f).
In general, the weight function w may also depend on the set Σ of constraints at hand. If Σ
and w are understood from the context, then we will simply talk about maximum weight
repairs of 〈I, J〉, instead of maximum weight repairs of 〈I, J〉 with respect to Σ and w.

Thus, a maximum weight repair of 〈I, J〉 is a consistent sub-instance 〈I, J ′〉 of 〈I, J〉 whose
total sum of the weights of its L-facts is maximum across all consistent sub-instances 〈I, J ′′〉
of 〈I, J〉. Note that the notion of maximum weight repairs introduced in Definition 2 differs
from the standard notion of subset repairs [2] in two ways: first, in the standard notion,
the repair takes place with respect to the entire schema or, more precisely, we have there
that S = ∅ and R = L; second, in the standard notion, there is no weight function on
the facts. Note also that maximum cardinality subset repairs [21] are the special case of
maximum weight repairs in which S = ∅, R = L, and the weight function assigns weight
1 to each fact. Finally, note that our notion of maximum weight repairs differs also from
the notion of maximum weight repairs introduced in [9] in the following way. In [9], the
weight of each fact f depends on the inconsistent instance 〈I, J〉 under consideration, but
remains the same on all consistent sub-instances of 〈I, J〉 containing f . In contrast, in
Definition 2, the weight of each fact f may differ from instance to instance; thus, we may
have w(〈I, J〉, f) 6= w(〈I, J ′〉, f), where 〈I, J ′〉 is a consistent sub-instance of 〈I, J〉.

Maximum weight repairs give rise to a notion of consistent answers of queries in exactly
the same way subset repairs do.

I Definition 3. Let Σ be a set of integrity constraints on R and let w be a weight function
on R. If q is a query on R, and 〈I, J〉 is an R-instance, then a tuple a is a consistent answer
of q on 〈I, J〉 with respect to Σ and w if a ∈ q(〈I, J ′〉), for every maximum weight repair
〈I, J ′〉 of 〈I, J〉 with respect to Σ and w.

3 Certain Links and Entity-Linking Frameworks

Here, we will focus on maximum weight repairs in declarative scenarios for entity linking,
such as the ones considered in [7]. In such scenarios, S is the schema of source relations,
while L is the schema of link relations, where each link relation is binary. Relation symbols
in S will be referred to as source symbols, while relation symbols in L will be referred to as
link symbols. Some source symbols may be interpreted by built-in relations, that is, such
symbols may have the same interpretation on every allowable source instance. For example,
a source symbol may stand for the substring relation between two strings, or it may stand for
a user-defined predicate, such as similarity of names. If J is an L-instance and (a, b) ∈ LJ
for some link symbol L in L, then we say that (a, b) is a link of L in J . We sometimes write
such a link as the fact LJ(a, b), or L(a, b) when J is clear from the context. We may also
refer to J as a link instance.

I Definition 4. Let S be a schema of source symbols, let L be a schema of link symbols,
let Σ be a set of integrity constraints on R = S ∪ L, and let w be a weight function on
R = S ∪ L. If L is a link symbol in L and 〈I, J〉 is an R-instance, then a certain link of L
on 〈I, J〉 with respect to Σ and w is a consistent answer of the atomic query L(x, y) on 〈I, J〉
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with respect to Σ and w, i.e., a pair (a, b) such that (a, b) ∈ LJ′ , for every maximum weight
repair 〈I, J ′〉 of 〈I, J〉 with respect to Σ and w.

We will also use the notation L(a, b) for a certain link (a, b) of L. It will be clear from
the context if L(a, b) refers to a certain link or to a link LJ(a, b) for some instance J .

Intuitively, in the above definition, we are given an instance 〈I, J〉, not necessarily
consistent with respect to the set Σ of integrity constraints, where J represents an initial set
of link facts. Then, the certain links of L on 〈I, J〉 represent precisely the subset of L-facts
of J that appear in every maximum weight repair of 〈I, J〉. In this paper, we focus on links
that are certain because it is a standard semantics in information integration, including
data exchange and incomplete databases. While other alternatives may be considered (e.g.,
possible links, which are the links that appear in at least one maximum weight repair), we
leave such investigation for future work.

Note that Definition 4 is very general and does not make any assumptions about the class
of integrity constraints that is allowed in Σ or about the weight function w. We also note that
the weight function w is assumed to be defined over instances of R = S ∪ L, independently
of whether these instances are consistent with Σ or not.

The concrete choices for Σ and w will be incorporated into the notion of entity-linking
frameworks, which we define next, together with the notion of entity-linking specifications.

I Definition 5. Let S be a schema of source symbols, let L be a schema of link symbols,
and let R = S ∪ L.

An entity-linking framework on R is a triple (L,S,W) consisting of a logical language L
on R, a collection S of finite sets of L-formulas, and a collection W of weight functions
such that, for each Σ ∈ S, there is a weight function wΣ on R.
If Σ is a member of S and wΣ is the associated weight function in W, then we say that
the triple (L,Σ, wΣ) is an entity-linking specification in the entity-linking framework
(L,S,W).

Several different logical languages for expressing entity-linking specifications were intro-
duced in [7] and then used to define and study different scenarios for declarative entity linking.
Here, we show that all but one of the scenarios considered in [7] (namely, the scenario of
maximal solutions) are concrete instances of the notion of an entity-linking framework in
Definition 5, by choosing, in each case, the logical language L, the collection S of finite sets
of constraints from L, and the collection W of weight functions. As we shall see, the weight
functions can become progressively more sophisticated. Furthermore, the logical language L
together with the collection S can become progressively richer.

We first focus on the language L0 introduced in [7], consisting of three types of constraints:
Inclusion dependencies of the form L[X] ⊆ S[A] and L[Y ] ⊆ T [B], where L is a link
symbol, and S and T are source symbols. We use X and Y to denote the first and the
second attribute of L, while A and B denote attributes in relations S and T , respectively.
Note that S and T could be the same source symbol.
Functional dependencies (FDs) L : X → Y and L : Y → X, where L is a link symbol
and X and Y denote the attributes of L.
Matching constraints of the form:

L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk), (1)

where L is a link symbol, ψ(x, y,u) is a (possibly empty) conjunction of atomic formulas
over S (with the requirement that the universally quantified variables u must occur in
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ψ), and where αi is of the form ∃zi φi(x, y,u, zi). Each φi is a conjunction of atomic
formulas2 over S along with equalities. We assume that the variables in zi are disjoint
from the variables in ψ and from {x, y}. Also, note that x and y are universally quantified,
but for simplicity of notation we omit their quantifiers.

The intuition behind the use of disjunction in a matching constraint is that it lists all
the possible matching conditions α1, . . ., αk for why a link L(x, y) may exist (provided ψ
holds). If a link L(x, y) exists, then one or more of those conditions must be true. We do not
require a matching constraint to be given for each link; for those links without a matching
constraint, the link relation is implicitly defined by the rest of the constraints.

The inclusion dependencies have the important role of specifying the domain of values
that can be used to populate a link relation. While in general there could be more than
two inclusion dependencies for each link, all the scenarios considered in [7] focused on the
case of exactly two inclusion dependencies and also on the case of exactly one matching
constraint per link symbol. The next definition captures these requirements by introducing
the collection S0; it also introduces an initial instance 〈I, I∗〉 that will be used repeatedly in
the sequel (intuitively, as a superset for the repairs).

I Definition 6. Let S be a schema of source symbols and let L be a schema of link symbols.
We write S0 to denote the collection of all finite sets Σ of L0-formulas such that for
each link symbol L, the set Σ contains one inclusion dependency on L for each of its
attributes, contains zero, one or both functional dependencies on L, and at most one
matching constraint on L.
If I is an S-instance, then we write I∗ to denote the L-instance defined as follows: for
each link symbol L in S, we have that LI∗ = πA(SI)×πB(T I), where A is the attribute of
the source symbol S and B is the attribute of the target symbol T for which L0 contains
the inclusion dependencies L[X] ⊆ S[A] and L[Y ] ⊆ T [B].

In the above definition, the instance 〈I, I∗〉 satisfies the inclusion dependencies of L0
on each link symbol, but it need not satisfy the functional dependencies or the matching
constraints of L0.

While other combinations of constraints may also be meaningful (e.g., more than two
inclusion dependencies per link, as mentioned above, or more than one matching constraint
per link), the collection S0 is one of the simplest; it also has a good practical motivation,
since it corresponds to entity linking statements in the HIL language [14].

We next give a concrete example taken from [7] of a set Σ of constraints in S0. We will
make use of this example in the sequel.

I Example 7. In this scenario, we link subsidiaries in one database with parent companies
in another database. Consider the following source schema S:

Subsid(sid, sname, location) Company(cid, cname, hdqrt)
Exec(eid, cid, name, title)

This source schema includes the relation symbols Subsid from the first database, and Company
and Exec from the second database. The link schema L consists of a single link relation
L(sid, cid). The following set Σ of constraints can be used to specify declaratively the
properties of the link relation in terms of the source relations. First, Σ contains two inclusion

2 Note that some of these atomic formulas may involve built-in relations.
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dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the functional dependency
L : sid → cid. While the inclusion dependencies specify where L is allowed to take values
from, the functional dependency gives the additional requirement that the links must be
many-to-one from sid to cid (i.e., every subsidiary must link to at most one parent company).
Additionally, Σ includes the matching constraint:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn)
∨
∃e, n, t (Exec(e, cid, n, t) ∧ contains(t, sn)) ),

which lists all possible reasons as to why a link may exist. Concretely, if a subsidiary id
(sid) and a company id (cid) are linked, then for every binding of Subsid and Company
source tuples where sid and cid respectively occur, it must be that one of the two matching
conditions holds: (1) there is a similarity in the names, as specified by sn ∼ cn, or (2) there
is some executive working for the company and this executive has a title that contains the
subsidiary’s name.

3.1 Concrete Entity-Linking Frameworks Based on L0

We are now in a position to define several concrete entity-linking frameworks by instantiating
the general concepts introduced above. We first consider three different entity-linking
frameworks obtained from L0 and S0 by using three different types of weight functions.

I Framework 8. The entity-linking framework (L0,S0,W1) of maximum cardinality repairs.
Let 1 be the weight function on R such that 1(〈I, J〉, LJ (a, b)) = 1, for every R-instance

〈I, J〉 and every fact LJ(a, b). Consider the entity-linking framework (L0,S0,W1), where,
for each Σ ∈ S, we have that wΣ = 1.

A maximum weight repair of 〈I, I∗〉 with respect to Σ and 1 is a repair that maximizes
the total cardinality of the link facts. We call such repairs maximum cardinality repairs.

It can be verified that if 〈I, J〉 is such a maximum cardinality repair of 〈I, I∗〉, then J is a
maximal solution for I, as defined in [7]. The converse, however, does not always hold. Like
maximal solutions, the notion of maximum cardinality repairs suffers from the deficiency that
they give rise to “too few" certain links. This can be seen in the following example from [7].

I Example 9. Assume the same schemas and constraints as in Example 7. A source instance
I for S is given below as a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”, “CEO, Citibank N.A.”)

In the above, ‘Citigroup Inc” and “CIT Group Inc” are two different parent companies, and “Citibank
N.A.” is the name of a true subsidiary of “Citigroup Inc”, while “CIT Bank” is the name of a true
subsidiary of “CIT Group Inc”. The goal of entity linking is to identify links such as L(s1, c1) and
L(s2, c2).

It can be seen that, given our set Σ of constraints, there are exactly four maximum cardinality
repairs for 〈I, I∗〉, namely 〈I, Ji〉, i = 1, 4, where the Ji’s are as follows:

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}
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It is assumed here that the name similarity predicate ∼ evaluates to true for all pairs of subsidiary
name and company name occurring in our instance I (thus, “Citibank N.A.” ∼ “Citigroup Inc” but
also “Citibank N.A.” ∼ “CIT Group Inc”, and so on).

It follows that the set of certain links of L on 〈I, I∗〉 w.r.t. Σ and 1 is empty: there is no
link that appears in all four maximum cardinality repairs and, hence, no link qualifies as a certain
link. However, some links are clearly stronger than others. In particular, the link L(s1, c1) relating
“Citibank N.A.” to “Citigroup Inc.” satisfies both the ∼ predicate and the Exec-based matching
constraint, while the other links satisfy only the ∼ predicate. Intuitively, there is evidence that
suggests that L(s1, c1) is a strong link that should be differentiated from the other links. However,
the constant weight function 1 does not provide such differentiation.

The above example illustrates the need for more refined notions of weights on links.

I Framework 10. The entity-linking framework (L0,S0,V0) of maximum-value solutions.
For each Σ ∈ S0, consider the following weight function wΣ. Given an R-instance 〈I, J〉

and a fact LJ(a, b), we distinguish the following cases:
1. If L(a, b) does not satisfy the inclusion dependencies, then wΣ(〈I, J〉, LJ(a, b)) = 0.

Otherwise:
(a) If Σ contains no matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = 1.
(b) If Σ contains a matching constraint for L (which, by the definition of S0, is the only

such matching constraint) and if (a, b) does not satisfy the right-hand side of the
matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = 0.

(c) If Σ contains a matching constraint for L and if (a, b) satisfies the right-hand side of
the matching constraint for L, then wΣ(〈I, J〉, LJ(a, b)) = Val(LJ(a, b)), as defined
in Section 5.2 of [7]. The precise definition of Val is as follows.

First, let us recall that the matching constraint for L has the form (1). Assume that
there is no instantiation u0 of the vector of universally quantified variables u such
that I |= ψ(a, b,u0). This means that the matching constraint for L(a, b) is satisfied
for vacuous reasons. As in the earlier case of no matching constraint, we take the
value of the link to be 1. In all other cases, we let the value of the link be:

Val(LJ(a, b)) = min
u0

(
∑
αi,z0

1). (2)

In the above, u0 ranges over all the distinct instantiations of the vector of universally
quantified variables u such that I |= ψ(a, b,u0). We take the minimum, over all
such u0, of the strength with which the source instance I satisfies the disjunction
α1 ∨ . . . ∨ αk. This strength is defined as a sum that gives a value of 1 for every
distinct combination of a disjunct αi such that I satisfies αi(a, b,u0), and distinct
instantiation z0 of the vector z of existentially quantified variables of αi that makes
the satisfaction of αi hold. (Recall that αi is, in general, of the form ∃z φi(x, y,u, z).)
In the case when αi is satisfied and the existentially quantified variables are missing,
then we count only 1.
We can see that, intuitively, the sum in formula (2) calculates the strength of a link by
counting the number of satisfied disjuncts together with the evidence (i.e., the number
of existential witnesses). Taking the minimum guarantees that we take the weakest
strength among all u0.

We remark that the weights wΣ(〈I, J〉, LJ(a, b)) do not actually depend on J .
If we revisit the earlier Example 9, we have that Val(LJ1(s1, c1)) = 2, since LJ1(s1, c1)

satisfies both disjuncts in the matching constraint, while Val(LJ1(s2, c1)) = 1. Thus, the
total weight of the link instance J1 is 3. Similarly, the other link instance containing L(s1, c1),
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namely J2, also has weight 3. The remaining link instances J3 and J4 have weight of 2.
Hence, 〈I, J1〉 and 〈I, J2〉 are the two maximum weight repairs of 〈I, I∗〉 in this example. It
follows that there is precisely one certain link of L on 〈I, I∗〉 w.r.t. Σ and the weight function
wΣ, namely L(s1, c1). This is in contrast with the earlier case of maximum cardinality repairs,
where we had no certain links.

Consider the above entity-linking framework (L0,S0,V0). It is easy to verify that if I is
an S-instance, then the following statements are equivalent for an L-instance J :
1. 〈I, J〉 is a maximum weight repair of 〈I, I∗〉 with respect to Σ and wΣ.
2. J is a maximum-value solution for I with respect to Σ, as defined in [7].

It follows that the entity-linking framework (L0,S0,V0) coincides with the entity-linking
scenario given by L0(⊕) in [7].

I Framework 11. The entity-linking frameworks (L0,S0,Vw) of maximum-value solutions
with weighted disjuncts.

For each matching constraint L(x, y)→ ∀u(ψ(x, y,u)→ α1∨ . . .∨αk) of L0 and for each
disjunct αi ::= ∃z φi(x, y,u, z), let wφi

(x, y,u, z) be a function that returns non-negative
numbers. Intuitively, with each disjunct that returns true or false, we also have a function
that computes a weight for that disjunct. This collection of functions wφi

gives rise to a
weight function Vw that is computed as in the case of V0 except that in formula (2) we replace
the number 1 by wφi

(a, b,u0, z0).
Note that each different collection of functions wφi

gives rise to a different entity-linking
framework (L0,S0,Vw). This family of frameworks captures the entity-linking scenarios
given by L0(⊕,w), which, as discussed in [7], is of special interest because of its connection
to probabilistic methods for entity resolution, including those based on Markov Logic Networks
(MLNs) [22].

Next, we state a general theorem for enumerating all maximum weight repairs with
polynomial delay and for computing the certain links in polynomial time. Several results in
[7], including Theorem 5.4, are special cases of this theorem.

I Theorem 12. Let (L0,S0,W) be an entity-linking framework such that for each Σ ∈ S0,
for each S-instance I, for each sub-instance J of I∗, and for each fact LJ (a, b), we have that
wΣ(〈I, I∗〉, LI∗(a, b)) = wΣ(〈I, J〉, LJ(a, b)). Then the following statements are true.
1. There is a polynomial-delay algorithm that, given an S-instance I, enumerates the max-

imum weight repairs of 〈I, I∗〉.
2. There is a polynomial-time algorithm that, given an S-instance I, computes the certain

links of 〈I, I∗〉 with respect to Σ and wΣ.

Note that the hypothesis of Theorem 12 is satisfied by the preceding three entity-linking
frameworks. In particular, in all three frameworks, the weight of a link fact does not depend
on the link instance J in which it appears. The proof of Theorem 12 is essentially the same as
the proof of Theorem 5.4 in [7], where the problem is reduced to computing and enumerating
maximum-weight matchings in undirected weighted bipartite graphs.

3.2 Collective Entity-Linking Frameworks
We now consider a language Lc that is richer than L0 and allows for link relations to appear
in the right-hand side of matching constraints. Thus, the language Lc allows us to express
what is usually called collective entity linking [5], that is, the process of creating or specifying
multiple inter-dependent links.
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Concretely, in Lc, the matching constraint for a link symbol L has the same form

L(x, y)→ ∀u(ψ(x, y,u)→ α1 ∨ . . . ∨ αk)

as in L0, with the difference that in each disjunct αi ::= ∃z φi(x, y,u, z), the formula φi can
now be a conjunction of source and link atomic formulas, along with equalities. Thus, the
matching constraint for L is allowed to refer to other link symbols (possibly, including L
itself). As an example, which we give shortly, in Lc one can express matching constraints to
specify both publication links and venue links, where the matching constraint for publication
links may depend on the links between venues, and the matching constraint for venue links
may depend on the links between publications.

Based on the language Lc, we can define two entity-linking frameworks, one that does
not allow for recursion among the links, and one that does allow for recursion.

I Framework 13. The entity-linking framework (Lc,S1,V1) for recursion-free collective
entity linking.

In this framework, S1 is the collection of all finite sets of constraints from Lc, such that
for each link symbol L, the set Σ contains the two inclusion dependencies on L, it contains
zero, one or two functional dependencies on L, and at most one matching constraint on L.
Additionally, we require that there is no recursion through the links. Thus, for each Σ in
S1, there is implicitly a hierarchy of link symbols, and a matching constraint for L may call
only links that are strictly lower in the hierarchy than L. Additionally, V1 is the collection of
weight functions that associates with each Σ in S1 a weight function wΣ defined in the same
way as in the entity-linking framework (L0,S0,V0).

I Framework 14. The entity-linking framework (Lc,S2,V2) for recursive collective entity
linking is defined in the same way as (Lc,S1,V1) except that S2 allows recursion through the
links.

I Example 15. Consider a bibliographic example from [7], where we link papers (from
one database) with articles (from another database), while also linking the corresponding
venues. The source schema S consists of Paper(pid, title, venue, year) and Article(ano, title,
journal, year). Here, pid is a unique id assigned to Paper records, while venue could
be a conference, a journal, or some other place of publication. The Article relation
represents publications that appeared in journals, and ano is a unique id assigned to such
records. The link schema L consists of two relations: PaperLink (pid, ano) and VenueLink
(venue, journal). The first relation is intended to link paper ids from Paper with article
numbers from Article, when they represent the same publication. The second relation is
intended to relate journal values that occur in Article (e.g., “ACM TODS”) to journal
values that occur under the venue field in Paper (e.g., “TODS”).

A possible entity linking specification in the framework (Lc,S2,V2) is (Lc,Σ, wΣ), where
Σ contains the following two matching constraints:

VenueLink(ven, jou) → (ven ∼1 jou)
∨ ∃pid, t1, y1, ano, t2, y2 ( Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)
∧ PaperLink(pid, ano) )

PaperLink(pid, ano) →
∀t1, ven, y1, t2, jou, y2 ( Paper(pid, t1, ven, y1)∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2))
∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou)) )
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The first constraint specifies that we may link a venue with a journal only if their string
values are similar (via some similarity predicate ∼1), or if there are papers and articles that
have been published in the respective venue and journal and that are linked via PaperLink.
The second constraint specifies that we may link a paper with an article only if their titles
are similar (via a similarity predicate ∼2) and their years of publication match exactly, or if
their titles are similar and their venues of publications are linked via VenueLink.

Additionally, Σ includes two functional dependencies on PaperLink: pid→ ano, ano→
pid, to reflect that each paper id in Paper must match to at most one article number in
Article, and vice-versa. We do not require any functional dependencies on VenueLink; thus,
we could have multiple venue strings in Paper matching with a journal string in Article,
and vice-versa. We also include in Σ the expected inclusion dependencies from the link
attributes to the corresponding source attributes (e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching
constraint for PaperLink, we obtain a different entity linking specification that is in the
recursion-free collective entity-linking framework (Lc,S1,V1).

We point out that the entity-linking framework (Lc,S1,V1) coincides with the entity-
linking scenario given by L1(⊕) in [7], while entity-linking framework (Lc,S2,V2) coincides
with the entity-linking scenario given by L2(⊕) in [7].

For the above two entity-linking frameworks, it is important to note that the weight
functions depend on the link instance in a crucial way. In particular, the hypothesis of the
preceding Theorem 12, stating that the weight of a link fact only depends on I∗ and not on
the link instance J , is no longer satisfied. In fact, as shown in [7] (Theorem 7.3), Theorem
12 fails even for (Lc,S1,V1), unless NP = coNP.

4 Comparing the Expressive Power of Entity-Linking Frameworks

The notion of certain links makes it possible to compare the expressive power of entity-linking
frameworks. In the next definition, we first introduce the notion of certain-link equivalence
between entity-linking specifications. This notion is of interest as a tool to compare entity-
linking specifications in a way other than logical equivalence (which may be too strict for
entity linking purposes). The second part of the definition then makes use of certain-link
equivalence to define a notion of subsumption between entity-linking frameworks.

I Definition 16. Let S be a schema of source symbols, let L be a schema of link symbols,
let R = S ∪ L. Assume that F = (L,S,W) and F ′ = (L′,S ′,W ′) are two entity-linking
frameworks on R.

Let E = (L,Σ, wΣ) be an entity-linking specification in F , and let E ′ = (L′,Σ′, wΣ′) be
an entity-linking specification in F ′. We say that E and E ′ are certain-link equivalent if
for every link symbol L in L and every R-instance 〈I, J〉, we have that the certain links
of L on 〈I, J〉 with respect to Σ and wΣ coincide with the certain links of L on 〈I, J〉
with respect to Σ′ and wΣ′ .
We say that F is subsumed by F ′, denoted F � F ′, if for every entity-linking specification
E of F there is an entity-linking specification E ′ of F ′ such that E and E ′ are certain-link
equivalent. Otherwise, we say that F is not subsumed by F ′, and write F 6� F ′.
We say that F is strictly subsumed by F ′ if F � F ′, but F ′ 6� F .

We note that a weaker notion of subsumption was considered implicitly in [7] for concrete
entity linking scenarios. In this weaker notion, certain-link equivalence holds for repairs of
the instance 〈I, I∗〉 instead of arbitrary instances 〈I, J〉. In effect, Theorem 6.2 in [7] asserts
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that linear MLNs, an important special case of MLNs, are subsumed under this weaker
notion of subsumption by an entity linking framework of maximum-value solutions with
weighted disjuncts, where the matching constraints are in the existential fragment ∃L0 of
the language L0.

We note that for of all our subsumption results (Theorems 17, 18, 19, and 23), whenever
we prove failure of subsumption, we actually prove it in a stronger sense, by showing that it
fails even under the weaker notion.

The next two theorems say that the entity-linking framework (L0,S0,V0) of maximum-
value solutions and the entity-linking framework (L0,S0,W1) of maximum cardinality repairs
are incomparable in expressive power, in that neither subsumes the other.

I Theorem 17. The entity-linking framework (L0,S0,V0) of maximum-value solutions is
not subsumed by the entity-linking framework (L0,S0,W1) of maximum cardinality repairs.

Proof. (Hint) Our entity-linking specification in (L0,S0,V0) that is not certain-link equival-
ent to any entity-linking specification in (L0,S0,W1) has one link symbol L, the matching
constraint L(x, y) → R(x, y) ∨ S(x, y) ∨ T (x, y), the FD L : X → Y , and the inclusion
dependencies L[X| ⊆ D and L[Y | ⊆ D. J

I Theorem 18. The entity-linking framework (L0,S0,W1) of maximum cardinality repairs
is not subsumed by the entity-linking framework (L0,S0,V0) of maximum-value solutions.

Proof. (Hint) Our entity-linking specification in (L0,S0,W1) that is not certain-link equi-
valent to any entity-linking specification in (L0,S0,V0) has one link symbol L, the matching
constraint L(x, y)→ R(x, y) ∨ S(x, y), the FD L : X → Y , and the inclusion dependencies
L[X| ⊆ D1 and L[Y | ⊆ D2. J

By definition, the entity-linking framework (L0,S0,V0) is subsumed by the entity-linking
framework (Lc,S1,V1). The next theorem says that this subsumption is strict. This means
that allowing for link relations to appear on the right-hand side of matching constraints gives
strictly more expressive power than not allowing this, even when the dependencies among
the link relations are non-recursive.

I Theorem 19. The entity-linking framework (L0,S0,V0) of maximum-value solutions is
strictly subsumed by the entity-linking framework (Lc,S1,V1) for recursion-free collective
entity linking.

Proof. (Hint) Our entity-linking specification in (Lc,S1,V1) that is not certain-link equivalent
to any entity-linking specification in (L0,S0,V0) has two link symbols L1 and L2, ,the
matching constraints L1(x, y)→ (S(x, y)→ (L2(x, y) ∧R(x, y)) and L2(x, y)→ (P (x, y)→
T (x, y)) and the inclusion dependencies L1[X| ⊆ D, L1[Y | ⊆ D, L2[X] ⊆ D, and L2[Y ] ⊆ D.
There are no FDs. J

5 Adding Preference Constraints

In this section, we introduce a family of entity-linking frameworks (L0,S0,PΠ) that is
parameterized by a set of Π preference constraints. This family of frameworks can be seen
as an extension of the entity-linking framework (L0,S0,V0), where we use a more refined
collection of weight functions that also take into account preferences among the link facts.

We first introduce the language of preference constraints from which Π is drawn. The
main motivation for such preference constraints is that they allow a user to specify explicitly
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whether some link facts should be considered stronger than other link facts. Such preference
constraints are given independently of, and in addition to, the set Σ of constraints in S0,
and will be used to further differentiate among conflicting links (i.e., pairs of link facts that
violate one or both of the functional dependencies on a link relation).

A preference constraint has the following general form:

L(x, y) ∧ L(x′, y′) ∧ α(x, y) ∧ ¬α(x′, y′)→ L(x, y) ≥ L(x′, y′) (3)

In the above, L can be any of the link symbols in L while α(x, y) can be any predicate of the
form ∃z φ(x, y, z), where φ is a conjunction of source atomic formulas along with equalities.

I Example 20. Consider a variation of the earlier Example 7 linking subsidiaries with
companies, where the set Σ of constraints is as follows. The functional and inclusion
dependencies are as before. However, the matching constraint is simplified, for the purposes
of this example, so that it now requires only the similarity of the subsidiary name and
company name:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc)∧ Company(cid, cn, hd)
→ (sn ∼ cn) .

We now consider, additionally, a set Π consisting of a single preference constraint, which
uses an Exec-based condition to differentiate among links:

L(sid, cid) ∧ L(sid′, cid′)
∧ ∃e, n, t, sn, loc (Exec(e, cid, n, t) ∧ Subsid(sid, sn, loc) ∧ contains(t, sn) )
∧¬∃e, n, t, sn, loc (Exec(e, cid′, n, t) ∧ Subsid(sid′, sn, loc) ∧ contains(t, sn) )
→ L(sid, cid) ≥ L(sid′, cid′)

Thus, whenever we have two links relating a subsidiary with a company, if one of the links
satisfies the fact that the company has an executive whose title contains the subsidiary name,
while the other link does not satisfy such fact, we prefer the first link over the second link.

Note that a user has the freedom, in general, to choose which conditions to push into
the matching constraints of Σ and which ones into the preference constraints of Π. This is
manifested, in this example, via the fact that the executive information is used in a preference
constraint whereas before it was used as part of a matching constraint.

The notion of a consistent instance when there are preference constraints continues to
be the same as that of a consistent instance with respect to an entity-linking specification
in (L0,S0,V0) where there are no preference constraints. Thus, the set Π of preference
constraints plays no role in defining consistent instances under (L0,S0,PΠ). However, Π
plays an important role in defining the weight functions for the links, as we see next.

We are now ready to formally define (L0,S0,PΠ). First, we recall from Section 3 the
instance 〈I, I∗〉, which for a given source instance I, represents a superset for the repairs
that we consider. Thus, I∗ represents the domain for all the links that may appear in link
relations.

I Framework 21. The family of entity-linking frameworks (L0,S0,PΠ) with preference
constraints.

For every fixed finite set Π of preference constraints, we define an entity-linking framework
(L0,S0,PΠ), by assigning to each Σ ∈ S0 a weight function wΣ,Π that depends on both Σ
and Π. Given an R-instance 〈I, J〉 and a fact LJ(a, b), we define wΣ,Π(〈I, J〉, LJ(a, b)) to
be wΣ,Π(〈I, I∗〉, LI∗(a, b)), which in turn is defined as follows.
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For each link symbol L, and source instance I, we first compute a preference relation
≥L on I∗ on conflicting links of L, by evaluating each preference constraint of the form
(3) that involves L. Concretely, whenever (x0, y0) and (x′0, y′0) are pairs in I∗ such that
L(x0, y0) and L(x′0, y′0) are conflicting (i.e., together violate one or both of the functional
dependencies on L), and such that α(x0, y0) is true in I but α(x′0, y′0) is not true in I, we
set L(x0, y0) ≥L L(x′0, y′0). In general, ≥L can have cycles. For example, we can have two
distinct pairs l = L(x0, y0) and l′ = L(x′0, y′0) such that l ≥L l′ and l′ ≥L l. Such situation
may arise when a user gives (at least) two preference constraints for L, the evaluation of
which leads to opposite preferences for the particular links.

We then turn ≥L into an acyclic relation >L as follows. First, we take the transitive
closure ≥∗L of ≥L. Then, we set l >L l′ whenever l ≥∗L l′ but it is not the case that l′ ≥∗L l.
Intuitively, l >L l′ means that l is strictly preferred to l′. It can be verified that, for each L,
the relation >L (or rather its inverse <L) forms a strict partial order. We may also drop the
subscript L and use the notation > or (≥) whenever L is understood from the context. We
may refer to > as the preference relation.

The weight of a link fact l in I∗ is then defined recursively:

wΣ,Π(〈I, I∗〉, l) = wΣ(〈I, I∗〉, l) +
∑
l>l′

wΣ,Π(〈I, I∗〉, l′),

where wΣ is the weight function associated with Σ in the entity-linking framework (L0,S0,V0)
of maximum-value solutions. Thus, the weight of l is obtained by adding up wΣ(〈I, I∗〉, l),
which is calculated solely based on Σ as defined for (L0,S0,V0), with the total aggregated
weight of all the links that l dominates (via the preference relation >). In the special case when
there are no preference constraints, the weight of a link l falls back to wΣ(〈I, I∗〉, l). Thus,
for each Π, the entity-linking framework (L0,S0,PΠ) is an extension of the entity-linking
framework (L0,S0,V0).

Note that, by definition, the weight of a link is relative to 〈I, I∗〉, on which we evaluated
the preference constraints, but independent of any particular sub-instance 〈I, J〉. Thus, the
hypothesis of Theorem 12 holds, by definition.

I Example 22. Recall the specification in Example 20. First, it is immediate to see that this
is an example of an entity-linking specification in the entity-linking framework (L0,S0,PΠ),
for the given set Π of preference constraints. Moreover, let us assume the same source
instance I as in Example 9. The link L(s1, c1) strictly dominates the link L(s1, c2) (by the
fact that c1 satisfies the Exec condition for s1 in the preference constraint, while c2 does not).
Since no other strict domination holds, we have that wΣ,Π(〈I, I∗〉, LI∗(s1, c1)) = 2, while the
weight of any other link is 1. As a consequence, among the four maximal cardinality repairs
for 〈I, I∗〉 that we have seen earlier, we have that 〈I, J1〉 and 〈I, J2〉 have weight 3, while
〈I, J3〉 and 〈I, J4〉 have weight 2. Thus, 〈I, J1〉 and 〈I, J2〉 are the maximum weight repairs
with respect to Σ and wΣ,Π. As a result, we also obtain that L(s1, c1) is the sole certain link,
in this example.

As we noted above, the hypothesis of Theorem 12 holds for (L0,S0,PΠ) and so we obtain,
as a corollary, a polynomial-delay algorithm for the enumeration of maximum weight repairs
and a polynomial-time algorithm for the computation of the certain links.

It is clear that every entity-linking framework (L0,S0,V0) (Framework 10) can be
simulated by using an entity-linking framework involving preferences (Framework 21) by
simply taking the set Π of preferences to be empty. The next theorem says that, in fact, we
gain expressive power by allowing preference constraints. This is our main technical result.
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I Theorem 23. There is a finite set Π of preference constraints such that the corresponding
framework (L0,S0,PΠ) is not subsumed by the entity-linking framework (L0,S0,V0) of
maximum-value solutions.

A key tool in the proof of Theorem 23 is a locality theorem that is interesting in its
own right, and that we use multiple times in the proof of Theorem 23. We first need some
preliminaries. For each entry a in a fact in an instance I, define N0(a) to be {a}. Inductively,
define Ni+1(a) to consist of Ni(a) along with each c such that there is a′ in Ni(a) where a′
and c are both entries in some fact in I. Thus Nr(a) consists of those entries of I within
distance r of a in the Gaifman graph [20] of I. Let Nr(a, b) be Nr(a) ∪Nr(b). We may refer
to Nr(a, b) as an r-neighborhood.

I Theorem 24 (Locality Theorem). Let E be an entity-linking specification in (L0,S0,V0),
with link symbol L. Then there is r, depending only on E, such that for every source instance
I, if I � Nr(a1, b1) and I � Nr(a2, b2) are isomorphic under an isomorphism f with f(a1) = a2
and f(b1) = b2, then the weights of the links L(a1, b1) and L(a2, b2) in E are the same.

By I � Nr(ai, bi) we mean the usual notion of the restriction of I to the domain Nr(ai, bi).
The proof of the Locality theorem makes use of the Gaifman locality theorem for first-order
logic [12], and extensions of that theorem to logics with counting by Libkin [19]. Our proof
of the Locality Theorem depends on a certain uniformity in the choice of r.

Sketch of the proof of Theorem 23. Our entity-linking specification E in the framework
(L0,S0,PΠ) has one link symbol L, the matching constraint L(x, y) → R(x, y), both FDs
on L, and the inclusion dependencies L[X| ⊆ R[X] and L[Y | ⊆ R[Y ]. We define a family
of source instance Kr and a set of preference constraints such that we get two long chains
L(0, 1) > L(2, 3) > L(4, 5) > · · · > L(m,m+ 1) and L(0, 1′) > L(2′, 3′) > L(4′, 5′) > · · · >
L(n′, (n+ 1)′) of strict preferences, where m > n (so the first chain is longer than the second).
It is shown that L(0, 1) has so much weight that it is a certain link for E . However, given an
entity-linking specification E ′ in the entity-linking framework (L0,S0,V0) of maximum-value
solutions, when we select r based on E ′, the source instance K = Kr is designed so that
the neighborhoods K � Nr(0, 1) and K � Nr(0, 1′) are isomorphic, and so by the Locality
Theorem, L(0, 1) and L(0, 1′) have the same weight in E ′.

Assume, by way of contradiction, that there is an entity-linking specification E ′ in the
entity-linking framework (L0,S0,V0) that is certain-link equivalent to E . By considering an
instance with only one fact R(0, 1), we show that E ′ has the same inclusion dependencies as
E . We show that E ′ has both FDs on L with the following argument. Assume first that E ′
does not have the FD L : Y → X. Since L(0, 1′) has the same weight in E ′ as L(0, 1), in
particular L(0, 1′) satisfies the matching constraint for E ′. Now L(0, 1′) is not a certain link
in E ′, since it is not a certain link in E . So let 〈K,N〉 be a maximum weight repair of 〈K,K∗〉
that does not contain L(0, 1′). Then of course N contains the certain link L(0, 1). Form N ′

by replacing L(0, 1) in N by L(0, 1′). Now N ′ satisfies the only possible FD L : X → Y ,
and it satisfies the inclusion dependencies and matching constraint. Furthermore, N ′ has
the same weight as N , since L(0, 1) and L(0, 1′) have the same weight, and so 〈K,N ′〉 is a
maximum weight repair. But this is a contradiction, since 〈K,N ′〉 is a maximum weight
repair that does not contain the certain link L(0, 1). Now define the instance U(K), where
(a, b) is a tuple of a relation of K if and only if (b, a) is a tuple of the corresponding relation
of U(K), and where a and b are new values. The proof that the FD L : X → Y holds for
E ′ is the same, except rather than replacing the certain link L(0, 1) in a maximum weight
repair of 〈K,K∗〉 by L(0, 1′), we instead replace the certain link L(1, 0) in a maximum weight
repair of 〈U(K), (U(K))∗〉 by L(1′, 0).
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We explicitly find the set M of certain links for I = K ∪ U(K) in E and prove, using the
FDs and inclusion dependencies for E ′, that 〈I,M〉 is the unique maximum weight repair
for 〈I, I∗〉 in E ′. Let M ′ consist precisely of all of the links of E that are not links in M .
We prove, again using the Locality Theorem, that there is a one-to-one correspondence
between the links ` of M and the links `′ of M ′, where ` and `′ have the same weight in
E ′. In particular, each link of M ′ satisfies the entity-linking specification of E ′. Further,
since M ′ also satisfies both FDs and the inclusion dependencies, it follows that 〈I,M ′〉 is a
maximum weight repair. But this is a contradiction, since 〈I,M〉 is the unique maximum
weight repair. J

6 Concluding Remarks

In this paper, we introduced and explored a unifying approach to entity linking. This
approach, which is based on the notion of an entity linking framework and the notion of
the certain links in such a framework, provides a single formalism for modeling different
entity linking scenarios and for comparing them using the certain links as a measure of their
expressive power. To this effect, we defined a notion of certain-link equivalence that allows
us to compare entity-linking specifications, in a way other than logical equivalence (which
may be too strict for entity linking purposes). We then made use of certain-link equivalence
to define what it means for an entire entity-linking framework to subsume another one. We
established a number of technical results that delineate the comparative expressive power
of several concrete entity linking frameworks. Our concrete focus in this paper was on
the comparison of the entity linking framework of maximum-value solutions with entity
linking frameworks (1) that involve maximum cardinality repairs, (2) that allow recursion-free
collective entity linking, and (3) that incorporate preferences among links.

A next step in this investigation is to understand the expressive power of recursive
collective entity linking. Specifically, we conjecture that the framework (Lc,S2,V2) of
recursive collective entity linking cannot be subsumed by the framework (Lc,S1,V1) of
non-recursive collective entity linking. Another next step has to do with Markov Logic
Networks (MLNs), which were first studied in [22]. As stated earlier, it follows from results
in [7] that linear MLNs are subsumed by an entity linking framework of maximum-value
solutions with weighted disjuncts, where the constraints are in the existential fragment ∃L0
of the language L0. It is an open problem if more general MLNs (i.e., not necessarily linear)
can be subsumed by an entity linking framework of maximum-value solutions with weighted
disjuncts for some suitable choice of weights and constraints from L0 or from the more
general language Lc.

In a different direction, we note that our unifying approach to entity linking is flexible
enough to allow assigning probabilities to links in a natural way. Specifically, we can define
the probability Pr(L(a, b)) of a link L(a, b) to be the number of maximum weight repairs
containing L(a, b) divided by the total number of maximum weight repairs. Thus, a link
L(a, b) is certain if and only if Pr(L(a, b)) = 1. The introduction of probabilities in entity
linking frameworks raises several algorithmic questions, including the question of enumerating
the links whose probability is above a fixed threshold, say, enumerating all links L(a, b) such
that Pr(L(a, b)) ≥ 0.75. Furthermore, it may be possible to establish tight connections
between our approach and other approaches in entity linking and entity resolution, such
as Probabilistic Soft Logic (PSL) [3, 4, 6], that derive links with scores based on weighted
first-order formulas. By utilizing such connections, one may also be able to transfer the
formalism of preference constraints, which fits naturally in our declarative approach, into PSL
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(or into MLN as well). In general, we may obtain more powerful entity linking approaches
that combine declarative, logic-based specification with probabilistic reasoning and with
explicit user preference constraints.
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Abstract
We study the k-regret minimizing query (k-RMS), which is a useful operator for supporting
multi-criteria decision-making. Given two integers k and r, a k-RMS returns r tuples from the
database which minimize the k-regret ratio, defined as one minus the worst ratio between the k-th
maximum utility score among all tuples in the database and the maximum utility score of the r
tuples returned. A solution set contains only r tuples, enjoying the benefits of both top-k queries
and skyline queries. Proposed in 2012, the query has been studied extensively in recent years.
In this paper, we advance the theory and the practice of k-RMS in the following aspects. First,
we develop efficient algorithms for k-RMS (and its decision version) when the dimensionality is 2.
The running time of our algorithms outperforms those of previous ones. Second, we show that
k-RMS is NP-hard even when the dimensionality is 3. This provides a complete characterization
of the complexity of k-RMS, and answers an open question in previous studies. In addition, we
present approximation algorithms for the problem when the dimensionality is 3 or larger.
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1 Introduction

One major task of a database system is to return “representative” records to a user. Usually,
there are two goals in the system. The first goal is to return a limited number of records
to a user when the utility function of this user is known. One query type achieving this
goal is top-k queries [14, 15, 20, 29, 30, 34], each returning k records that have the greatest
scores calculated based on these k records and the utility function of a user where k is a
positive integer. Interested readers may refer to [18] for a survey of top-k queries. The
second goal is to return a set of records which are interesting to a user even though his/her
utility function is unknown. One example of a query type for this goal is skyline queries
[3, 4, 15, 20, 22, 24, 31], each returning a set of records from the database each of which is
not dominated by other records in the database. Here, a record x is said to dominate another
record x′ if and only if each attribute value of x is not worse than that of x′ and at least one
attribute value of x is better than that of x′. Interested readers may also refer to [9] for a
survey of skyline queries.

However, as described in [25, 26, 27], the above two popular queries could not achieve
these two goals simultaneously. First, a top-k query does not achieve the second goal since it
requires that a user is given an exact utility function indicating his/her preference, which is
not reasonable in some cases because in many situations, the user does not know how to
specify his/her exact utility function. Second, a skyline query does not meet the first goal
because it returns an uncontrolled number of records. In the worst case, all records in the
database are returned as an output in a skyline query.

Recently, r-regret queries and k-regret minimizing set (k-RMS) queries, two new types of
queries meeting the above two goals, were proposed [8, 25, 26, 27] and studied extensively
due to its usefulness and its wide applicability, where r and k are two positive integers. All
applications originally applied to top-k queries and skyline queries could also be applied
to r-regret queries and k-RMS queries. Some typical applications are choosing hotels for
vacation and choosing items (e.g., cars) for purchase.

The purpose of an r-regret query is to return a set of r records in the database, minimizing
the “unhappiness” level of a user when seeing only these r records instead of all records in
the database, even though the utility function of this user is unknown. Given a positive
integer r and a database D containing a number of records, an r-regret query is to return
a set R of r records from D such that the greatest “unhappiness” level of a user, formally
called the maximum regret ratio of a user, is minimized when the user sees only records in R.
Here, the “unhappiness” level of a user, called the regret ratio of a user, ranging from 0 to 1,
refers to how unhappy the user would be when seeing only the records in R, instead of all
records in D. Consider the user with his/her utility function f . The score of a record x in D
with respect to the utility function f is denoted by f(x). The greater the score of a record
is, the better the record is. Given a set R of records, the best record in R with respect to
the utility function f is defined to be the record in R with its greatest score with respect
to the utility function f . The regret ratio of this user is equal to 0 if the score of the best
record in the selection set R is equal to the one in the whole database D. It becomes larger
if the score of the best record in R is smaller than the one in D. The maximum regret ratio
of a user refers to the greatest possible regret ratio of a user (since different users can have
different utility functions).

Recently, Chester et al. [8] proposed a generalized version of r-regret queries called the
k-regret minimizing set (k-RMS) problem (or queries) relaxing the concept of the “best”
record to the concept of the best k records. The original form of an r-regret query assumes
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that a user must be satisfied with only the “best” record in D. Chester et al. [8] relaxed
this assumption and considered that a user is already satisfied and “happy” with one of the
best k records in D. Specifically, given two positive integers r and k, and a database D
containing a number of records, the k-RMS problem is to return a set R of r records from D

such that the maximum k-regret ratio of a user is minimized. Here, the k-regret ratio of a
user, ranging from 0 to 1, is equal to 0 if the score of the best record in R is at least the
score of the k-th best record in D. It becomes larger if the score of the best record in R is
smaller than the score of the k-th best record in D. Clearly, when k = 1, k-RMS becomes
the r-regret query (called 1-RMS, or simply the RMS problem). In this paper, we have the
following contributions.
1. For RMS in R2 (i.e., the dimensionality is 2), we propose an O(n logn) time exact

algorithm, where n is the number of records in the dataset D. The time complexity is
better than the previous best-known time complexity of O(rn2 + n2 logn) [8].

2. For k-RMS in R2, we present an O(n2 logn) time algorithm, which improves the O(rn2k
1
3 +

n2 logn) time complexity result in [8]. We also propose an approximation algorithm
of O(nk 1

3 log(1/ε) + n logn+ nk
1
3 log1+δ n) time, where ε is the additive approximation

error and δ is any positive constant. For typical parameters, it performs much faster than
the previous best-known algorithm [8]. To solve the problem, we also give an efficient
algorithm for the decision version of the problem, which is interesting in its own right
both theoretically and practically. A summary of our results is in Table 1.

3. We show that for any positive integer k, the k-RMS problem is NP-hard when the
dimensionality of the database is 3 (or larger). This is the first-known hardness result for
the k-RMS problem in a fixed dimensional database. Although Chester et al. [8] prove
the NP-hardness of the RMS problem, it states that the hardness is due to both the high
dimensionality of the dataset and the large number of records in the dataset. It has been
open whether the problem is still NP-hard for fixed dimensional cases. Our result settles
the open problem and thus provides a complete characterization of the computational
complexity of the problem (together with our algorithms in R2).

4. For RMS in Rd, we show it is closely connected to the notion of ε-kernel, introduced by
Agarwal et al. [2]. Based on the connection, we derive an upper bound r−2/(d−1) of the
maximum regret ratio, improving the previous bound r−1/(d−1) in [26]. We also provide
an approximation algorithm for k-RMS when d ≥ 3.

Outline: The rest of the paper is organized as follows. In Section 2, we formally define the
problem. Section 3 gives our algorithms for k-RMS when the dimensionality is 2. Section 4
presents the NP-hardness result. Section 5 gives our algorithms in high-dimensional cases.
Section 6 discusses the related work. Due to the page limitation, many details and proofs
are omitted but can be found in the full version of this paper1.

2 Problem Formulation

Let D be a database containing n records/points2 with d attributes/dimensions. Given a
point x in D, for each i ∈ [1, d], the i-th dimensional value of point x is denoted by x[i].
We assume that the values x[i] in the database are all non-negative real numbers, which is

1 http://www.ruosongwang.net/Paper/k_RMS.pdf
2 In the following, we use term “records” and “points” interchangeably since they refer to the same

concept.
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the common assumption in related literatures [8, 26]. Each user is associated with a utility
function f denoted by a d-dimensional non-negative vector ω called a weight vector. Let W
be the set of all possible weight vectors.

Given a point x in D and a weight vector ω, the score of x with respect to ω is the dot
product of x and ω, denoted by 〈x, ω〉. That is, 〈x, ω〉 is equal to

∑d
i=1 x[i]ω[i]. If we know

the utility function f with the weight vector ω, this score 〈x, ω〉 is also written as fω(x).
Given an integer k ≥ 1, we denote the k-th largest score among x ∈ D with respect to weight
vector ω by max(k)

x∈D〈x, ω〉.
Given a non-empty subset R of D and a weight vector ω, the k-regret ratio of set R with

respect to weight vector ω, denoted by k-regratio(R,ω), is defined to be

k-regratio(R,ω) = max
{

0, 1− maxx∈R〈x, ω〉
max(k)

x∈D〈x, ω〉

}
.

If k-regratio(R,ω) is 0, the best score in R is at least as good as the k-th largest score
with respect to ω in the original dataset D. The maximum k-regret ratio of R, denoted by
k-regratio(R), is defined to be k-regratio(R) = supω∈W k-regratio(R,ω).

I Problem 1 (k-RMS [8]). Given two positive integers k and r, we want to find a set R of r
points from D such that k-regratio(R) is minimized.

This is an optimization problem. The following defines its decision version, called
Dec-k-RMS (we also use Dec-RMS to refer to the case k = 1).

I Problem 2 (Dec-k-RMS). Given two positive integers k and r, and a real value θ ∈ [0, 1],
determine whether there exists a set R of r points from D such that k-regratio(R) is at most
1− θ (if yes, find such a solution set R).

We will also give algorithms for Dec-k-RMS since they will be used as subroutines for
solving the optimization version (i.e., Problem 1). On the other hand, in some applications
where there is a pre-specified error threshold of k-regratio(·), it would be more suitable to
solve the decision version, and thus the decision problem may be interesting in its own right.

3 Efficient Algorithms in R2

In this section, we develop several algorithms for RMS and k-RMS in R2. Table 1 summarizes
our results. We assume that ‖ω‖1 = ω[1] + ω[2] = 1 for any weight vector ω ∈W as scaling
does not change the k-regratio. Hence, we can write ω = (λ, 1− λ) for some λ ∈ [0, 1].

For each point p = (x, y) in D, we define a linear function fp(λ) = λx+ (1− λ)y with
λ ∈ [0, 1]. We reformulate both the decision version and the optimization version as follows.
1. (The decision version) In the decision version Dec-k-RMS, we are given a constant θ,

and we need to decide whether there is some set R ⊆ D of cardinality r such that the
following holds:

∀λ ∈ [0, 1], max
p∈R

fp(λ) ≥ θ ·max(k)
p∈Dfp(λ), (1)

where max(k) is the operator that returns the k-th largest value.
2. (The optimization version) The optimization version k-RMS is to maximize θ in (1).
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Table 1 The running times of the previous algorithms and our new algorithms in R2. Det:
Deterministic/randomized algorithms (yes/no); Ex: Exact/approximation algorithms (yes/no);
The naming of the algorithms: D- means the decision version, E- means an exact algorithm
and A- means an approximation algorithm. n = |D|, m = |LSk|, r = |R|. ε is the additive
error of the approximate regret ratio. δ can be any positive constant. † D-Greedy-k requires
O(n logn+m log1+δ n) preprocessing time, and runs in O(n+m) time for any threshold θ. †† In [8],
the authors claim their algorithm runs in O(rn2) time, with the factor depending on k omitted as a
constant. However, a more careful examination shows their algorithm runs in O(rn2 +n2 logn) time
for RMS and O(rn2k

1
3 + n2 logn) time for k-RMS instead: The priority queue requires O(n2 logn)

time; the best known upper bound of the size of the k-level set is O(nk 1
3 ).

Problem Algorithm Time Complexity Det Ex Source
Dec-RMS D-IntCov-1 O(n logn) yes yes Sect. 3.1.1

Dec-k-RMS D-Greedy-k O(n+m) † yes yes Sect. 3.2

RMS

E-Pre-1 O(rn2 + n2 logn) †† yes yes [8]
A-IntCov-1 O(n logn log(1/ε)) yes no Sect. 3.1.2
A-Greedy-k O(n logn+ n log(1/ε)) yes no Sect. 3.2
E-Greedy-1 O(n logn) no yes Sect. 3.3.2

k-RMS
E-Pre-k O(rn2k

1
3 + n2 logn) †† yes yes [8]

A-Greedy-k O((n+m) log(1/ε) + n logn+m log1+δ n) yes no Sect. 3.2
E-Greedy-k O(n2 logn) yes yes Sect. 3.3.1

It is convenient to view the problem from a geometric perspective as follows. Each record
p ∈ D corresponds to a line fp(λ) (λ ∈ [0, 1]). All such lines form a line arrangement A(D).
The k-level set of A(D) [5] is a piecewise linear curve (see Figure 1 for an example)

LSk(λ) = max(k)
p∈Dfp(λ), for λ ∈ [0, 1].

A segment is a maximal linear piece in the k-level set. Let m denote the number of
segments of LSk(λ). It is known that m is bounded by O(nk 1

3 ) and LSk(λ) can be computed
in O(n logn+nk 1

3 ) expected time by a randomized algorithm [5] or in O(n logm+m log1+δ k)
time by a deterministic algorithm for any constant δ > 0 [5]. Note that the 1-level set LS1 is
always convex since it is the upper envelop of A(D) (see the red-dashed curve in Figure 1).
However, the convexity property does not necessarily hold for any k > 1.

We introduce scaled level sets, which generalizes the notion of k-level sets.

I Definition 3. (Scaled Level Set) Given a threshold θ > 0, define the θ-scaled k-level set as
the function θ-LSk(λ) = θ · LSk(λ) = θ ·max(k)

p∈Dfp(λ), for λ ∈ [0, 1].

We can reformulate the decision problem Dec-k-RMS as follows: Decide whether there
exists a subset R of r lines, such that the upper envelop of R covers the scaled level set (i.e.,
the function maxp∈R fp(λ) is above θ-LSk).

I Example 4. As an example of the decision problem Dec-k-RMS shown in Fig. 2, where
k = 3, θ = 0.9 and the dashed thick curve is θ-LSk, we aim to find r lines such that they
collectively cover the dashed thick curve from above. When r = 2, the two thick lines shown
in red form a solution. When r = 1, the thick blue line is the only valid solution.

In the sequel, we solve the decision problem in Section 3.2. In Section 3.3, we solve the
optimization problem, using the algorithms for the decision problem as subroutines. But as
warm-ups, we first give some simple but practical algorithms.

ICDT 2017
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O λ

fp(λ)

1

LS1
θ-LS1

λ1 λ2

Figure 1 The arrangement A(D) (black lines),
its 1-level set LS1 (red dashed line), θ-scaled 1-
level set (blue lines), and 3-level set (thick black
line).

O λ

fp(λ)

1

Figure 2 Illustrating Example 4: θ-LSk is the
dashed thick curve.

3.1 The Warm-up Algorithms
In this section we present algorithms for Dec-RMS and RMS. These algorithms are theoretically
not as efficient as the algorithms given later, but they are very simple and practical, and
may also provide some directions for the later improved ones.

3.1.1 Reducing Dec-RMS to Interval Coverage
Note that since LS1 (which is actually the upper envelop of A(D)) is convex, the scaled level
set θ-LS1 is also convex. Also note that m ≤ n in this case. We can compute LS1 (and thus
θ-LS1) in O(n logn) time [16]. We use λ0 = 0, λ1, . . . , λm−1, λm = 1 to denote all breaking
points of θ-LS1 (see Fig. 1). Our task is to cover θ-LS1 using at most r lines. For a line fp,
we let I(p) = {λ | fp(λ) ≥ θ-LS1(λ)}. The convexity of θ-LS1 implies that I(p) is a closed
interval (which may be empty). Moreover, the interval can be computed in O(logn) time by
binary search.

Hence, we can compute the set of intervals {I(p)}p∈D in O(n logn) time.
To solve our problem Dec-RMS, it is sufficient to find a minimum number of intervals in

the above set whose union covers the range [0, 1]. This can be easily done in O(n) time by a
greedy method after the endpoints of the intervals of {I(p)}p∈D are sorted [1].

We call the above algorithm D-IntCov-1.

I Theorem 5. D-IntCov-1 solves the Dec-RMS problem in O(n logn) time and O(n) space
deterministically.

3.1.2 An Approximating Algorithm for RMS
To solve the optimization problem RMS, the high-level idea is to perform binary search on a
set of “candidate values” for the optimal regret ratio θ, and use our decision algorithms to
check whether θ-LS1 can be covered by r lines from D.

We simply perform binary search directly on the interval [0, 1]. Initially, the candidate
range of θ is [0, 1]. Given θ ∈ [0, 1], we run the decision algorithm for Dec-RMS to check
whether the regret ratio of 1− θ is achievable (i.e., whether θ-LS1 can be covered). If the
answer is yes (resp., no), then we say that θ is feasible and the optimal value is at least
θ (resp., smaller than θ). We stop until the interval for the candidate θ values is shorter
than ε, a given tolerable error. The decision procedure is evoked for O(log 1

ε ) times and
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the regret ratio of solution is at most the optimal regret plus ε (we call such a solution an
ε-approximation). We refer to the algorithm as A-IntCov-1 (using D-IntCov-1 as the decision
procedure). We have the following theorem.

I Theorem 6. For any ε > 0, A-IntCov-1 can find an ε-approximation for RMS in
O(n logn log 1

ε ) time.

3.2 The Decision Algorithm for Dec-k-RMS
In this section, we present an algorithm for the problem Dec-k-RMS (and thus also for
Dec-RMS). We call our algorithm D-Greedy-k. We will prove the following theorem.

I Theorem 7. After O(n logn + m log1+δ k)-time preprocessing for any δ > 0, given any
θ ∈ [0, 1], our algorithm D-Greedy-k solves the problem Dec-k-RMS in O(n+m) time, where
n is the number of lines of D and m is the number of segments in the k-level set LSk.

Due to the page limitation, we ignored proofs for some lemmas and some implementation
details, which can be found in the full version of this paper.

Given any θ > 0, D-Greedy-k first finds a smallest subset R ⊆ D of lines such that the
upper envelop of R is above θ-LSk for λ ∈ [0, 1] and then solves Dec-k-RMS by comparing
|R| with the given maximum cardinality r.

As preprocessing, we sort all lines of D by their intersections with the vertical line λ = 0
from top to bottom. This step can be done in O(n logn) time. Then we compute LSk in
O(n logm+m log1+δ k) time for any δ > 0, using the algorithm in [5]. The total preprocessing
time is O(n logn+m log1+δ k) (since m = O(nk 1

3 ) and k ≤ n).
After the preprocessing, for any given θ, we first compute θ-LSk, which can be done in

O(m) time since LSk has been computed in the preprocessing step. Let l1, l2, . . . , ln be the
lines of D sorted by their intersections with the vertical line λ = 0 from top to bottom. For
each i ∈ [1, n], let ai denote the intersection of li and the vertical line λ = 0, and thus ai is
also from top to bottom. For convenience, we use l0 to denote the vertical line λ = 0 and
ln+1 to denote the vertical line λ = 1. A simple observation, as formalized in Lemma 8, is
that for two lines l and l′, if l “dominates” l′, then l′ can be directly discarded.

I Lemma 8. For any 1 ≤ i < j ≤ n, if the slope of li is larger than or equal to that of lj,
then there exists an optimal solution R that does not contain lj (and thus lj can be ignored
for solving the problem).

Notice that Lemma 8 essentially states that points that are not in the skyline (in the
original space) can be dropped. This has already been known in previous works (e.g., [8]).

We run a pruning procedure on D to remove such lines lj as specified in the preceding
lemma. This can be done by scanning the lines of D in their index order in O(n) time.
The following algorithm will work on the remaining lines of D. Hence, after the pruning
procedure, we can assume that the remaining lines of D following their index order are also
sorted by their slopes in strictly ascending order (renamed as {l1, l2, ...ln}).

To simplify the notation, we use C to refer to θ-LSk. For any two values λ1 and λ2 with
λ1 ≤ λ2, we use C[λ1, λ2] to denote the portion of C defined on the interval λ ∈ [λ1, λ2]. For
any two points q1 and q2 on C, we also use C[q1, q2] to refer to the portion of C between q1
and q2. Let P (C) denote the region of the plane above C and between l0 and ln+1. For any
set D′ of lines, we use U(D′) to denote its upper envelop. For any point q in the plane, let
λ(q) denote its λ-coordinate. Note that C is λ-monotone, i.e., any vertical line intersects C
at most once. Therefore, we can say something like “move a point on C from left to right”.

ICDT 2017
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l0 ln+1

l1

l2

l3

l4

λ1 λ2

C

P (C)

C[λ1, λ2]

a1

a2

a3

a4

an+1

b

b

b

b

b

Figure 3 The blue curve denotes
U({l1, l2, l3, l4}). The brown curve denotes
C[λ1, λ2]. The gray area denotes P (C).

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

Figure 4 Illustrating the set Ri =
{l0, lf(1), lf(2), lf(3), lf(4)} with gi = 4. The red
curve is C and the blue curve is U(Ri). The point p
is at bf(4).

Let C ′ be another λ-monotone curve in the plane. We say that C ′ is above C[λ1, λ2] for
some λ1 ≤ λ2 if for any value λ′ ∈ [λ1, λ2], the intersection of the vertical line λ = λ′ and C ′
is not lower than that of the vertical line λ = λ′ and C. For two points p1 6= p2, we use p1p2
to denote the line segment with endpoints p1 and p2. See Figure 3 for an illustration of the
definitions given above.

Our algorithm processes the lines of l0, l1, . . . , ln+1 in their index order from l0 to ln+1.
In general, suppose line li has just been processed and we are about to process li+1 for
some i with 0 ≤ i ≤ n. Our algorithm maintains a set Ri = {lf(0), lf(1), . . . , lf(gi)} of
gi + 1 lines in {l0, l1, l2 . . . , li} and a set Bi = {bf(0), bf(1), . . . , bf(gi)} of gi + 1 points with
f(0) < f(1) < · · · < f(gi), for some integer gi ≥ 0, such that Ri and Bi have the following
properties. Refer to Figure 4 for an example.

1. f(0) = 0, i.e., lf(0) is l0. Since l0 is vertical, we tilt it slightly such that it has a negative
slope so that the definition of the upper envelop U(Ri) is clear. Similarly, we tilt ln+1
slightly such that it has a positive slope.

2. Each line of Ri has a segment that appears in U(Ri). The segments of lines of Ri appear
on U(Ri) from left to right following the index order.

3. 0 = λ(bf(0)) < λ(bf(1)) < . . . < λ(bf(gi)). For 0 ≤ t ≤ gi, bf(t) ∈ lf(t) ∩ C. Recall that ai
denote the intersection of li and the vertical line λ = 0, thus the line segment af(t)bf(t)
is segment of the line lf(t). For 0 < t ≤ gi, lt is above C[bf(t−1), bf(t)]. Thus, U(Ri) is
above C[0, λ(bf(gi))].

4. For each line lf(t) ∈ Ri with 0 ≤ t ≤ i, the point bf(t) is defined as follows.
When t = 0, bf(t) (i.e., b0) is defined as the intersection of C and l0. Here, for convenience
of discussion, we also let C include the half-line of l0 above b0 and the half-line of ln+1
above an+1 (i.e., the intersection of C and ln+1). In this way, C is the boundary of the
region P (C).
When t > 0, suppose point bf(t−1) has been defined on C. Denote q to be the intersection
of lf(t) and the vertical line through bf(t−1), it holds that q is above bf(t−1). If we move
q rightwards on lf(t), then bf(t) is defined as the first point of P (C) we encounter after
which q will move out of P (C).

5. af(t)bf(t) intersects af(t−1)bf(t−1) for any t with 1 ≤ t ≤ i. For any 2 ≤ t ≤ i, either
af(t)bf(t) does not intersect af(t−2)bf(t−2), or they intersect but lf(t) is not completely
above C[bf(t−2), bf(t−1)]. In Figure 4, although af(1)bf(1) intersects with af(3)bf(3), lf(3)
is not completely above C[bf(1), bf(2)].

6. For each 1 ≤ t ≤ i, the upper hull of the convex hull of C[bf(t−1), bf(t)] is maintained in
a linked list L(bf(t−1), bf(t)). More specifically, L(bf(t−1), bf(t)) stores the edges of the
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Figure 5 Illustrating the special case. No-
tice that li+1 ∩ af(4)bf(4) = bf(4).

bf(1)
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bf(2) bf(3)
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bf(4)
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Figure 6 Illustrating the case where li+1 (the
dashed line) intersects af(gi)bf(gi) with gi = 4. In
this example, Ri+1 = {l0, lf(1), lf(2), li+1} because li+1

intersects af(1)bf(1) but is not above C[bf(1), bf(2)].

upper hull of C[bf(t−1), bf(t)] from left to right.

3.2.1 The Algorithm
Initially, for i = 0, we let R0 = {l0} and B0 = {b0}. In general, suppose we have processed
the line li and obtained Ri and Bi. In the following, we describe the algorithm for processing
the next line li+1 and obtain the set Ri+1 and Bi+1.

We first check whether li+1 intersects af(gi)bf(gi). If not, we simply ignore li+1 and let
Ri+1 = Ri.

If li+1 intersects af(gi)bf(gi), we consider a special case where li+1 ∩ af(gi)bf(gi) = bf(gi)
and bi+1 is bf(gi) (e.g., see Fig. 5). If this case happens, then we simply ignore li+1 and let
Ri+1 = Ri. To determine whether bi+1 is bf(gi), we check whether we will go outside P (C)
after we cross bf(gi) if we move on li+1 rightwards. Since bf(gi) is known, we can determine
whether this special case happens in O(1) time.

If li+1 intersects af(gi)bf(gi) and the special case does not happen (e.g., see Figure 6),
then we proceed to compute the point bi+1 as follows.

As f(gi) ≤ i < i+ 1, ai+1 is below af(gi). Since li+1 intersects af(gi)bf(gi) and the special
case does not happen, if q is the intersection of li+1 and the vertical line through bf(gi), then
q must be above bf(gi). Imagine that we move q rightwards on li+1. As we defined earlier,
bi+1 is the first point of P (C) we encounter after which q will move out of P (c) (e.g., see
Figure 6). As the special case does not happen, λ(bi+1) > λ(bf(gi)) holds. To find bi+1, we
simply move q rightwards on C until we meet an intersection between li+1 and an edge of C.

Next we compute the upper hull of (the convex hull of) C[bf(gi), bi+1] and store it in a
linked list L(bf(gi), bi+1). The list L(bf(gi), bi+1) can be constructed when we compute bi+1
by moving q from bf(gi) to bi+1. Since C is λ-monotone, L(bf(gi), bi+1) can be constructed
in linear time in the number of vertices of C[bf(gi), bi+1] (e.g., by Graham’s scan).

Finally, we determine the set Ri+1 as follows. We consider the lines of Ri in the reverse
order of their indices. Consider lf(gi) first. If li+1 does not intersect the line segment
af(gi−1)bf(gi−1) of lf(gi−1), we stop the procedure with Ri+1 = Ri ∪ {li+1}.

Otherwise, there are further two subcases. We check whether li+1 is above
C[bf(gi−1), bf(gi)]. To this end, observe that li+1 is above C[bf(gi−1), bf(gi)] if and only if li+1
is above the upper hull of C[bf(gi−1), bf(gi)], which is stored in the list L(bf(gi−1), bf(gi)). As
we will formalize later in Lemma 9, we can use a upper hull walking procedure to efficiently
determine whether li+1 is above the upper hull of C[bf(gi−1), bf(gi)].
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If li+1 is not above C[bf(gi−1), bf(gi)], then we stop the procedure with Ri+1 = Ri∪{li+1}.
Otherwise, we remove lf(gi) from Ri and proceed on considering the next line lf(gi−1). In
addition, we perform a upper hull merge procedure to merge the two lists L(bf(gi−1), bf(gi))
and L(bf(gi), bi+1) to obtain a single list L(bf(gi−1), bi+1), representing the upper hull of
C[bf(gi−1), bi+1]. As formalized later in Lemma 9, the merge procedure can be efficiently
implemented.

The above processes the line lf(gi). Processing the next line lf(gi−1) (and other lines) is
done similarly, and we omit the details. Refer to Figure 6 for an example.

The above algorithm may remove some lines from Ri. For ease of reference, we let R′i be
the remaining Ri after the above algorithm and we still use Ri to refer to the original set.
After the above algorithm, we have Ri+1 = R′i ∪ {li+1}.

The algorithm finishes once ln+1 is processed, after which we will obtain the set Rn+1.
In the full version of this paper, we show that Rn+1 \ {l0, ln+1} is the optimal solution set
R for the problem Dec-k-RMS and the whole algorithm runs in O(n+m) time (excluding
the preprocessing). The subsequent lemma state that the upper hull merge and walking
procedures can be efficiently implemented. See the full version for details of these two
procedures. Note that the efficiency of Lemma 9 relies on that the slopes of the lines of D in
their index order are sorted increasingly.

I Lemma 9. We can implement the upper hull merge procedure and the upper hull walking
procedure such that the total time of the procedure in the entire algorithm is O(m+ n).

By the similar binary search approach as in Section 3.1.2 with D-Greedy-k as the decision
procedure instead, we can obtain an approximation algorithm for k-RMS. We refer to this
algorithm as A-Greedy-k, whose performance is summarized below.

I Theorem 10. For any ε > 0, A-Greedy-k can find an ε-approximation for k-RMS in
O((n+m) log(1/ε) + n logn+m log1+δ n) time.

3.3 Optimization Algorithms
In this section, we solve the optimization problems RMS and k-RMS. As in Section 3.1.2, the
idea is to perform binary search on the candidate values of the optimal θ, with the regret
ratio 1− θ. Unlike the algorithm there that only gives approximating result, here we present
two exact algorithms. The first algorithm (Section 3.3.1) determines all candidate values
implicitly (there are too many such values so we cannot afford to compute them explicitly),
and performs binary search on them to find an optimal solution for k-RMS. The second
algorithm (Section 3.3.2) exploits the convexity of θ-LS1 and performs randomized binary
search over the candidate values, and it works quite efficiently but only on RMS.

3.3.1 An Exact Algorithm for k-RMS
I Lemma 11. The following statements are equivalent:
1. A set R covers θ-LSk for all λ ∈ [0, 1].
2. A set R covers θ-LSk for all λ ∈ X(D) := {0, 1} ∪ {λ | ∃ l1, l2 ∈ D, l1(λ) = l2(λ)}.

Obviously statement (1) implies (2). On the other hand, note that both θ-LSk and the upper
envelop of R are piecewise linear, with all breaking points contained in X(D). Therefore if
(2) holds, the upper envelop of R must be above θ-LSk. Hence, statement (2) implies (1) as
well. The lemma thus follows.

The following lemma is a consequence of Lemma 11.
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I Lemma 12. For k-RMS, the optimal θ is 0, 1 or in

Cand(D) :=
{

l(λ)
LSk(λ)

∣∣∣ l ∈ D,λ ∈ X(D)
}
.

Proof. Notice that by Lemma 11, θ is optimized so that R covers θ-LSk within X(D). This
implies θ-LSk and the upper envelop of R coincide at some λ ∈ X(D), so the lemma holds. J

Clearly, the set Cand(D) consists of at most |D| · |X(D)| = O(n3) values. To solve the
problem k-RMS, we can call the decision algorithm D-Greedy-k to find the largest feasible
θ ∈ Cand(D). Computing the set Cand(D) explicitly would take Ω(n3) time. Instead, we
present an approach that only constructs Cand(D) implicitly.

First we compute and sort the set X(D). For each λ ∈ X(D), our algorithm maintains
an interval of indices Iλ ⊆ [1, n] so that if the optimal value θ is equal to the j-th largest
value of l(λ)/LSk(λ) for all l ∈ D, then j ∈ Iλ must hold. Initially, Iλ is set to [1, n] for each
λ ∈ X(D), and the interval will shrink during the algorithm.

The algorithm consists of multiple stages. In each stage, we use a line sweeping algorithm
on λ, keeping track of the lines l of D ordered by l(λ). For the i-th time the sweeping line
hits a λi ∈ X(D), we compute a value θi of θ (according to Lemma 12) determined by the
line ranked at the median of the interval Iλi , and assign it a weight wi = |Iλi |. In this way,
we compute a weighted subset S = {θi}i ⊆ Cand(D) of size O(n2). Next we compute the
weighted median of S: that is, a value θm ∈ S such that∑

{wi | θi < θm} ≤
1
2
∑
i

wi <
∑
{wi | θi ≤ θm}.

The weighted median can be found in O(|S|) time using the linear-time selection algorithm [21].
Then we use D-Greedy-k to determine whether θm is feasible. If yes, we update each Iλi

with θi ≥ θm to be its lower-half interval; otherwise, we update each Iλi
with θi ≤ θ to

be its upper-half interval. Hence, the reduced weight of all intervals of S is 1
2
∑
{wi | θi ≥

θ} or 1
2
∑
{wi | θi ≤ θ}, which is larger than 1

4
∑
i wi in either case. Therefore, each stage

will reduce the total weight by at least 1/4. Since the initial total weight, that is, the total
size of all intervals Iλ is O(n3), we conclude that there are O(logn) stages (the algorithm
stops once the remaining total weight is O(1), after which we can use D-Greedy-k to find the
optimal θ from the remaining O(1) candidate values).

For the running time, each stage is comprised of an O(n2)-time line sweeping algorithm,
an O(n2)-time weighted median algorithm [21], and one call of D-Greedy-k taking O(n+m) =
O(n2) time. Thus, the total time of the algorithm is O(n2 logn). We refer to the algorithm
is as E-Greedy-k (for Exact Greedy Algorithm).

I Theorem 13. E-Greedy-k can compute an optimal solution for the k-RMS problem in
O(n2 logn) time.

3.3.2 An O(n log n) Time Exact Algorithm for RMS
For RMS, we derive a more efficient randomized algorithm, whose expected running time
is O(n logn). Lemma 12 still applies here, but we have a stronger Lemma 14 (which is not
applicable to k-RMS),

I Lemma 14. For RMS, the optimal value θ is in the set Cand(D) defined as

{0, 1} ∪
{

l(λ)
LS1(λ)

∣∣∣∣ l ∈ D and λ ∈ {0, 1}, or ∃ l′ ∈ D, l(λ) = l′(λ)
}
.
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Figure 7 Illustration of the band, the segments in it, and the sampling method.

Proof. For the optimal θ such that a set R covers θ-LS1, the upper envelop of R and θ-LS1
must coincide at some point. Let l ∈ R to be the line whose segment in the upper envelop
contains such a coincidence point. Suppose two endpoints of this segment are at λ1, λ2. Then
at least one of them is also a coincidence point, since otherwise θ-LS1 would be strictly above
the segment at one of λ1 and λ2, incurring contradiction. J

We partition Cand(D) into two subsets:

Cand1(D) = {0, 1} ∪
{

l(λ)
LS1(λ) | l ∈ D and λ ∈ {0, 1}

}
,

Cand2(D) =
{

l(λ)
LS1(λ) | ∃ l

′ ∈ D, l(λ) = l′(λ)
}
.

Notice that |Cand1(D)| ≤ 2n+ 2 = O(n). In the following, we first process Cand2(D). Our
approach is inspired by the random sampling technique of Matoušek [23].

We perform a randomized search over the values of Cand2(D), without constructing
Cand2(D) explicitly. The algorithm consists of multiple rounds and each round shrinks the
search range significantly. Initially, the search range of θ is [0, 1]. In general, suppose the
search range is [θ0, θ1] in the current round. We define a band B as the region bounded by
θ0-LS1, θ1-LS1, and the two vertical lines λ = 0 and λ = 1 (See Figure 7a). A candidate
value l(λ)

LS1(λ) in [θ0, θ1] corresponds to an intersection (λ, l(λ)) of two lines of D lying in the
band B. The current round of the algorithm works as follows.

We first compute the number of line intersections in B and then sample at most n out of
them. Note that the intersection of each line l ∈ D and B consists of at most two (maximal)
segments, and each segment has two endpoints on the boundary of B. Thus there are at most
4 such endpoints on each line l ∈ D, and the total number of endpoints is O(n). (See Fig. 7b).
These endpoints can be calculated in O(logn) time for each line due to the convexity of LS1.
We then sort the O(n) endpoints on the boundary B in counterclockwise order (See Fig. 7c),
and for the i-th endpoint, we use si to denote the segment ending at it. We traverse these
endpoints in order along the boundary of B. During the traversal, we maintain an ordered
list L, and a counter N . For the i-th endpoint, let i′ be the index such that si = si′ . If i′ is
not in L, then we add i to L; otherwise we delete i′ from L and increase N by the size of the
set {j ∈ L | j > i′}.

I Lemma 15. After the traversal, the counter N is the number of candidates of θ = l(λ)
LS1(λ)

in [θ0, θ1].
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Proof. For each λ ∈ Cand2(D) which is determined by an intersection of two lines l(λ) = l′(λ)
for l, l′ ∈ D, the corresponding segments in B must have four endpoints with indices
i′ < j < i < j′ where i and i′ belong to l while j and j′ belong to l′. Thus, we will increase
the counter N for exactly one time, i.e., when i′ is deleted from L and we find that j < i′.
Therefore, there exists a bijection between all candidate values and all increments of the
counter N . So the lemma holds. J

I Example 16. As an example, consider the instance presented in Figure 7c. The endpoints
of segments are labeled counterclockwise. Starting from endpoint 1, we in turn add 1, 2, 3, 4, 5
into the list L. Then for endpoint 6, since s2 = s6 the list becomes {1, 3, 4, 5}, and N

increases by 3. For endpoint 7, we delete 4 from the list and increase N by 1.

The above computes the number of candidates N . We assume N > n. Next, we uniformly
and randomly pick n candidates out of the N candidate values in [θ0, θ1]. To this end, we first
uniformly (with replacement) pick a set S of n indices from {1, . . . , N}. Then we compute
the candidate values corresponding to these picked indices, which can be done by doing the
above traversal again. Specifically, during the traversal, suppose that after processing an
endpoint i, the counter N grows from N0 to N1. Then we add the following candidate values:
for every index k ∈ (N0, N1] ∩ S, we add the candidate value determined by the intersection
of the segment si and the segment corresponding to the (k −N0)-th largest endpoint in the
current ordered list L maintained during the traversal.

The above (at most) n candidate values of θ can be regarded as uniform samples from all
candidate values in the search range [θ0, θ1]. We sort and perform a binary search on these
values using the decision procedure D-Greedy-k (with k = 1) to find two adjacent values
θ′1 and θ′2 in the sorted list such that the optimal θ value is in the range (θ′0, θ′1]. Then, we
shrink the range [θ0, θ1] by updating θ0 = θ′0 and θ1 = θ′1, and proceed to the next round.

We proceed as above until there are at most n candidate values in the search range (i.e.,
N ≤ n). Finally, we run the following post-processing step. Let U be the union of the set of
these at most n candidate values in the search range and Cand1(D). By the above algorithm,
the optimal value θ is in U . Since |Cand1(D)| = O(n), |U | = O(n). We sort and perform
a binary search on the values of U using the decision procedure D-Greedy-k to eventually
compute the optimal θ value. This finishes our algorithm.

To analyze the running time, it is easy to see that the post-processing step takes O(n logn)
time. Below, we analyze the algorithm before the post-processing step.

We first consider the running time for each round. In each round, the algorithm computes
and sorts the line segment endpoints on the boundary of B, in O(n logn) time. Maintaining
the list L for a traversal of O(n) endpoints can be done in O(n logn) time using a balanced
binary search tree. Sorting and doing the binary search on the sampled n values takes
O(n logn) time, since the procedure D-Greedy-k is called O(logn) times. Thus, the total
running time of each round is O(n logn).

Next, we show that the algorithm has a constant p∗ > 0 probability to proceed into
post-processing within two rounds. Indeed, let p(n0, n1) denote the probability of reducing
the size of the candidate set from n0 to at most n1 in one round. We can obtain that
p(n0, n1) ≥ 1− n0 ·

(
n0−n1
n0

)n
, because the size after the round is larger than n1 only if our

algorithm did not pick any indices from some interval [i, i+ n1) (here the indices i refer to
the θ values of the candidate set after they are sorted). For large enough n, we can see that
p∗ = p(n2, n3/2)·p(n3/2, n) ≥ (1−n2e−

√
n)2 is close to 1. Suppose the algorithm terminates at

round t (t is a random variable). For any r ≥ 3, it holds that Pr[t ≥ r] ≤ (1−p∗)r−2. Overall,
the expected number of rounds is E[t] ≤ 2 +

∑∞
r=3 Pr[t ≥ r] ≤ 2 +

∑∞
r=3(1− p∗)r−2 = O(1).
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By the above analysis, our algorithm, named E-Greedy-1, has the following performance.

I Theorem 17. E-Greedy-1 solves RMS in O(n logn) expected time.

4 NP-Hardness

The main results of this section are the NP-hardness results in Theorem 18 and Theorem 19.

I Theorem 18. Dec-RMS is NP-hard even in R3.

Note that Dec-RMS in Rd for d > 3 generalizes Dec-RMS in R3 (by adding a few dummy
dimensions). Further, by duplicating each point k times in an Dec-RMS instance, we can
create a Dec-k-RMS instance with exactly the same optimal solution as the Dec-RMS instance.
This implies the following hardness result.

I Theorem 19. Dec-k-RMS is NP-hard for any fixed k ≥ 1 and d ≥ 3.

In the following, we will prove Theorem 18, by a reduction from the vertex cover problem
on a special planar graph, defined as follows.

A planar straight-line graph (PSLG) [28] is a graph G = (V,E) where V is a finite subset
of R2, and E is a subset of mutually disjoint open line segments with both endpoints in
V . A face of a PSLG is a connected component of R2 \ (V ∪ E). The unique unbounded
face is called the outer face, and all others are called inner faces. Similarly, vertices on the
boundary of the outer face are called outer vertices, and all others are called inner vertices.
Notice that in a PSLG, every inner face is an open polygon, and thus for every inner vertex
with degree t, there are t interior angles attached to it. We say that a PSLG is convex if
every inner face is convex, and the complement of the outer face is also convex.

Given an undirected graph G = (V,E), a vertex cover is a subset of vertices S ⊆ V that
cover all edges in E (i.e., every edge in E is incident on some vertex in S). The vertex cover
(VC) problem asks for a vertex cover of minimum cardinality. Das and Goodrich [10] showed
that the VC problem on a convex PSLG is NP-hard, and below we do the reduction to prove
Theorem 18.

We first define an intermediate problem, called the inner vertex cover problem (IVC), on
a class of so-called normalized PSLG graphs, and provide a reduction from VC convex PSLG
to it in Section 4.1. Then, we further reduce the problem to Dec-RMS in Section 4.2.

4.1 IVC on Normalized PSLG
We define a PSLG to be normalized if it satisfies the following properties:

(convex) Every inner face is convex, and the complement of the outer face is also convex;
(low-degree) Every inner vertex has degree 2 or 3, and every outer vertex has degree 3.
(bounded-angle) Every interior angle attached to an inner vertex of degree 3 is in the
range [π/4, π).
(α-isometric) There exist a standard length l and a constant α ∈ (0, 1) such that every
edge with at least one endpoint being inner vertex has a length in range [l(1−α), l(1+α)],
and such an edge must also have at least one endpoint with degree 2.

Given a normalized PSLG, the inner vertex cover (IVC) problem on PSLG asks for a
vertex cover which contains all the outer vertices of G. Given an instance of convex PSLG
G0 = (V0, E0), we first construct a normalized PSLG G4 = (V4, E4) through other three
intermediate graphs, such that VC on G0 is reduced to IVC on G4. The construction can be
found in the full version, and we also decide the value of the parameter α = Ω(1/|V0|) there.
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Figure 9 Sphere projection for G4 from the disk D.

I Lemma 20. There is a polynomial reduction from VC on a convex PSLG to IVC on a
normalized PSLG.

4.2 Reduction to Dec-RMS
Then we construct a 3D point set D for Dec-RMS from the above IVC instance on the
normalized PSLG G4 = (V4, E4). Consider the eighth sphere S = {(x, y, z) ∈ R3

+ | x2 + y2 +
z2 = ρ2}, where ρ is a constant depending on the parameters of G4. and we draw the PSLG
G4 in the unit disk D inscribed in S. From the origin O, we project the vertices and the
edges V4 ∪ E4 onto S, and denote the projection mapping by η. Note that straight lines
in E4 are projected to arcs of great-circles, and thus the faces in the projection image are
still convex. In fact, when ρ is large enough, the image of the graph does not deform a lot.
Formally, we have Lemma 21, whose proof is omitted and can be found in the full version.

I Lemma 21. For any two points A,B ∈ D, we have

ρ2

√
1− AB2

ρ2 − 1 ≤ 〈η(A), η(B)〉 ≤ ρ2
(

1− AB2

2ρ2

)
.

Let D be the projection image of V4. Thus, |D| = |V4|, and D can be computed in
polynomial time. The convexity of the sphere S ensures that D forms the 1-level of itself.
Intuitively, the normalizing constraints on the degrees, angles, and edges of G4 make sure
that a point of D outside a subset R ⊆ D could keep a small regret ratio if and only if all its
neighbors are in R. We claim that by properly choosing θ in the Dec-RMS problem, a subset
R ⊆ D has 1-regret ratio at most 1− θ if and only if η−1(R) is an inner vertex cover of G4,
and this is implied by the following two lemmas.

I Lemma 22. There exists a constant θ such that for any subset R ⊆ D, if η−1(R) is an
inner vertex cover of G4, then 1-regratio(R) ≤ 1− θ.

By careful computations in the proof of Lemma 22 in the full version, we can set
θ =

√
1− l2(1 + α)2/(ρ2 − 1). For carefully chosen values of l, α and ρ, we can prove:
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I Lemma 23. For any subset R ⊆ D, if η−1(R) is not an inner vertex cover of G4, then
1-regratio(R) > 1− θ.

Combining Lemmas 22 and 23 leads to Lemma 24.

I Lemma 24. For any integer r, G4 has an inner vertex cover of size r if and only if D has
an 1-regret set of size r with ratio 1− θ, where D, θ can be obtained from G4 in polynomial
time.

Theorem 18 thus follows.

5 Algorithms in High Dimensions

5.1 The Problem RMS
The concept of ε-kernel was introduced by Agarwal et al. [2]. By showing that RMS is closely
connected to ε-kernel, we obtain an approximation algorithm for RMS and an upper bound
of the maximum regret ratio, which improves the previous result [26].

A subset R of D is an ε-kernel if maxx∈R〈x,ω〉−miny∈R〈y,ω〉
maxx∈D〈x,ω〉−miny∈D〈y,ω〉 ≥ 1− ε, for any non-zero real

vector ω. Roughly speaking, an ε-kernel is a subset that approximately preserves the width
of the data set in every direction. It is well known that an ε-kernel of constant size can be
computed in linear time (when d = O(1)).

I Theorem 25. [2, 6, 35] Given D in Rd, one can compute an ε-kernel of D of size
O(ε−(d−1)/2) in O(|D|+ 1/εd) time.

We reduce the RMS problem to the ε-kernel problem as follows. Recall that due to
our assumption, all points of D are in the first orthant. We make 2d copies of D in every
orthant as follows. Define D± = {(p[1]x[1], . . . , p[d]x[d]) | (x[1], . . . , x[d]) ∈ D, p[i] ∈ {±1})}.
Suppose we have already found an ε-kernel R′ of D±; then we can project the subset back to
D by taking the absolute value in each coordinate, as follows. Define

abs(x) := (|x[1]|, . . . , |x[d]|), R = abs(R′) := {abs(x) | x ∈ R′}.

I Lemma 26. If R′ is an ε-kernel of D±, then R must have regret ratio at most ε in D.

Using the above reduction and observing that |R| ≤ |R′|, it is immediate to translate
Theorem 25 to an approximation algorithm for RMS in high dimensions.

I Corollary 27. Fixing the dimension d, one can compute a subset R ⊆ D of size r with
maximum regret ratio O(r−2/(d−1)) in O(2dn+ r2d/(d−1)) time.

The upper bound on the regret ratio is better than the previous upper bound O(r−1/(d−1))
given in [26].

5.2 The Problem k-RMS
Given r and k, the goal of k-RMS is to compute a set R of r points from D such that the
maximum regret ratio is minimized. Let 1−θ∗ denote the maximum regret ratio in the optimal
solution, for some θ∗ ∈ [0, 1]. Viewing each point in D as a (d− 1)-dimensional hyperplane,
Theorem 28 follows from a reduction to the set cover problem over the arrangement of these
hyperplanes. See the full version for a complete proof.

I Theorem 28. There exists a polynomial time algorithm that can compute a set R of at
most r · (d · ln(2n) + 1) points from D with maximum regret ratio at most 1− θ∗.
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6 Related Work

Due to the individual drawback of top-k queries and skyline queries, there exist a variety of
ways to combine these two queries in the literature. Top-k skyline select and top-k skyline
join were proposed in [15]. ε-skyline [33] controls the output size with respect to ε after the
utility function specified by the user is known. However, these studies still require that the
utility function should be known beforehand.

The RMS query we study in this paper has the attractive property that no information
on the utility function has to be provided by the user. Since its introduction in [26], it has
been extended and generalized to the interactive setting in [25] and the k-RMS problem in
[8]. [27] proposed an efficient algorithm for 1-RMS. [19] generalized the notion of RMS to
include nonlinear utility functions.

Computing k-level sets and obtaining tight size bounds are of fundamental importance in
computational geometry. For the two-dimension case, [12] provided the best-known upper
bound O(nk1/3). However, the best-known lower bound is Ω(nec

√
log k) [32], which is still

far from the upper bound, and closing the gap is an open problem for years. For algorithms
that compute the k-level sets, we refer the interested readers to [5] and the references therein.
Note that any improvement on computing the k-level sets may lead to improvement of the
time bounds of our algorithms for k-RMS.

The notion of ε-kernel coreset was introduced in the seminal paper by Agarwal et al. [2].
They applied their algorithm for constructing ε-kernel to several shape fitting problems. Since
then, the idea has been extended to many other settings such as clustering (e.g., [7, 13]),
matrix approximation [11, 13] and stochastic points [17].

Acknowledgement. We are grateful to the anonymous reviewers for their constructive
comments on this paper.
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Abstract
Motivated by a growing market that involves buying and selling data over the web, we study
pricing schemes that assign value to queries issued over a database. Previous work studied
pricing mechanisms that compute the price of a query by extending a data seller’s explicit prices
on certain queries, or investigated the properties that a pricing function should exhibit without
detailing a generic construction. In this work, we present a formal framework for pricing queries
over data that allows the construction of general families of pricing functions, with the main goal
of avoiding arbitrage. We consider two types of pricing schemes: instance-independent schemes,
where the price depends only on the structure of the query, and answer-dependent schemes, where
the price also depends on the query output. Our main result is a complete characterization of
the structure of pricing functions in both settings, by relating it to properties of a function over a
lattice. We use our characterization, together with information-theoretic methods, to construct
a variety of arbitrage-free pricing functions. Finally, we discuss various tradeoffs in the design
space and present techniques for efficient computation of the proposed pricing functions.
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Keywords and phrases Data pricing, Determinacy, Arbitrage
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1 Introduction

The commodification of data over the last decade has created many unique research challenges,
among them data privacy and pricing of data. In a broad range of application areas, data
today is being collected at an unprecedented scale. This phenomenon has led to a growing
market for so called big data brokers, who sell this data to buyers such as financial firms,
retailers and insurance companies [6, 5].

In this paper, we investigate the problem of query-based data pricing, where the task
is to assign prices to queries over a database, such that the price captures the amount of
information revealed by asking the query. Traditionally, data pricing has been done either by
allowing the buyer to access only certain queries with a fixed price set by the seller, or the
buyer needs to purchase the whole dataset [20]. Although such an approach is conceptually
simple, defining a large set of queries that are representative of the user’s needs is a tall task
for the data seller. Even if this is feasible, such a pricing scheme may allow arbitrage, which
occurs when a data buyer can potentially buy data at a price less than what is set by the
seller. It can also lead to prices that exhibit undesirable behavior.

Previous work in the area of data pricing has identified a set of arbitrage conditions
that any reasonable pricing function should avoid. The fundamental arbitrage condition is
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information arbitrage, first introduced in [16]. Intuitively, a query Q1 that reveals a subset
of the information that is revealed by another query Q2 should be priced at most as much
as Q2. If not, an arbitrage opportunity occurs: a clever buyer can pay the price of Q2 and
then use the result of Q2 to compute Q1 for a lower price. A second arbitrage condition is
bundle arbitrage [20]. Intuitively, asking simultaneously for Q1 and Q2 (as a bundle) should
cost at most the sum of asking separately for each. Both [16, 20] propose pricing functions
that avoid both arbitrage conditions. However, to the best of our knowledge, there exists
no framework that supports a generic construction of pricing functions, and facilitates the
analysis of the various tradeoffs in design choices.

Our Contribution. We address the question of designing arbitrage-free pricing schemes that
assign prices to queries over a database. Our main result is a complete characterization of
the structure of pricing functions for two pricing schemes: answer-dependent prices (APS),
and instance-independent prices (QPS). We use this characterization to construct a variety of
pricing functions, and also discuss the various tradeoffs involved in choosing the right pricing
function. We summarize below our results in more detail.

We first study APS, where the price depends both on the query Q and on the answer of
the query E = Q(D). To characterize such schemes, we define the conflict set, which is the
set of databases such that Q(D) 6= E. We show that any arbitrage-free pricing function is
equivalent to a monotone and subadditive function over the join-semilattice defined by the
conflict sets (Theorems 8 and 9). Equipped with this characterization, we present several
examples of arbitrage-free functions, including the weighted coverage and the weighted set
cover functions. In addition, we show that an answer-dependent pricing function with no
bundle arbitrage leads to unnatural behavior: any query can cost at least half the price of
the whole dataset for some databases. This suggests that there is a tradeoff that any data
seller must take into account when choosing a pricing function.

Second, we examine the structure of QPS, where the pricing function depends only on
the query Q. We prove that any non-trivial instance-independent pricing function must
have weaker arbitrage guarantees compared to an answer-dependent function. To provide a
characterize of functions in QPS, we view the query Q as a partition over the set of possible
databases: our main results is that any arbitrage-free function is equivalent to a monotone
and subadditive function over the elements of the join-semilattice formed from the partitions
(Theorems 24 and 25).

To design pricing functions in QPS, we apply two methods. The first method applies an
appropriate aggregate function to combine the prices of an arbitrage-free answer-dependent
function (Theorem 28). The second method views the database as a random variable (with
some probability distribution over the possible databases), and computes the price as the
information gain of the data buyer after the answer has been revealed (Section 4.4). This
approach is parallel to work on side-channel attacks [13], and quantitative information
flow [14]. By using different entropy measures, such as Shannon entropy, or min-entropy, we
obtain pricing functions that we prove to be arbitrage-free using the machinery we developed.

Third, we show how the proposed pricing functions can be computed efficiently in practical
settings. We discuss two different techniques. The first method restricts the computation of
a pricing function to a small set of databases (instead of all possible databases). The second
method uses approximation techniques to estimate the price within a small margin of error.

Organization. Section 2 presents the key concepts, terminology and notation that we use
throughout the paper. In Section 3, we study the construction and properties of pricing
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functions for the answer-dependent case. Section 4 details the corresponding problem for
instance-independent pricing schemes. Section 5 discusses techniques to compute a pricing
function efficiently. We present the related work and conclude in Sections 6 and 7 respectively.

2 Notation and Framework

In this section, we set up the necessary notation and formally describe the pricing framework.

2.1 Preliminaries

We fix a relational schema R = (R1, . . . , Rk); we use D to denote a database instance
that uses the schema. We will use I to denote the set of possible database instances. The
set I encodes information about the database that is provided by the data seller, and is
public information known to any data buyer. Further, we allow the set I to be infinite, but
countable. For example, suppose that the schema consists of a single binary relation R(A,B)
and we know that the domain of both attributes is [n] = {1, . . . , n}. Then, I = 2[n]×[n],
which represents equivalently the set of all possible directed graphs on the vertex set [n].

We will view a query Q from some query language L as a deterministic function that
takes as input a database instance D ∈ I and returns an output Q(D). In this paper, we do
not impose any restriction on the query language L, but in the examples we will use and
in some of the design tradeoffs we assume Q is either a conjunctive query (CQ) or a union
of conjunctive queries (UCQ). A query bundle Q = (Q1, . . . , Qn) is a finite set of queries
that is asked simultaneously on the database. We denote by B(L) the set of finite query
bundles from the language L. Given two query bundles Q1,Q2, we denote their union as
Q = Q1,Q2.

Queries as Partitions. It will be handy to provide an alternative viewpoint of a query
bundle Q as a partition over the set of instances I. A partition P = {B1, . . . , Bk} of I is
a set of pairwise disjoint sets Bi ⊆ I, which we call blocks, such that ∪ki=1Bi = I. Given
Q ∈ L, we denote by PQ the partition that is induced by the following equivalence relation:
D ∼ D′ iff Q(D) = Q(D′) and Q ∈ L. In other words, two databases belong in the same
block of the partition if and only if their output for Q is indistinguishable. We use the
standard notation [D]Q to denote the equivalence class in which D belongs; in other words,
[D]Q = {D′ ∈ I | Q(D′) = Q(D)}. For two partitions P1,P2, we say that P1 refines P2,
and write P1 � P2, if every block of P1 is a subset of some block in P2. In other words, P1
is a more fine-grained partition of I than P2.

Lattices and Join-Semilattices. A join-semilattice (L,≤) is a partially ordered set in which
every two elements in L have a unique supremum (called join and denoted as ∨). A lattice
(L,≤) is a partially ordered set in which every two elements in L have both a unique
supremum, and a unique infimum (called meet and denoted ∧). In this paper, we will
consider two different join-semilattices. The first semilattice has elements subsets of I, which
are ordered by subset inclusion ⊆. The second semilattice has elements partitions of I, which
are ordered by the refinement relation �.

Let f : L→ R be a function defined on the elements of the join-semilattice. We say that
f is monotone, or isotone, if whenever A ≤ B, then f(A) ≤ f(B). Moreover, we say that f is
subadditive if for any two elements A,B of the semilattice we have f(A ∨B) ≤ f(A) + f(B).
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2.2 The Pricing Framework
In our setting, a data seller offers a database instance D for sale. Data buyers can issue
queries on the database in the form of query bundles Q. For each query Q over the instance
D, the task in hand is to assign a price to the query answer Q(D) that reflects the amount
of information gained by the data buyer. When a price is assigned to a query bundle Q, we
can differentiate between three different pricing strategies, which depend on the parameters
used to compute the price. There are three possible parameters we can use to determine the
price of a query: the query bundle Q, the answer of the query on the database D, denoted
E = Q(D), and the database D itself. The price will obviously depend on which query Q
we issue, but there is a choice of which D,E should be further used to compute the price.
This choice defines three different classes of pricing schemes:

Instance-independent (QPS): the price depends only on Q, in which case the pricing
function is of the form p(Q). The price is independent of the underlying data.
Answer-dependent (APS): the price depends on the answer E = Q(D), so the price is
of the form p(Q, E). In this case, the price depends on the query and the query output.
Data-dependent (DPS): the price depends on the underlying database D, so the pricing
function is of the form p(Q, D).

Any instance-independent scheme can be cast as an answer-dependent scheme, and any
answer-dependent scheme as a data-dependent scheme. The distinction between APS and
DPS was introduced in [20], where the authors use the terminology delayed pricing and
up-front pricing respectively. Notice that both in QPS and APS the prices themselves do not
leak any information about the underlying data D.1 In contrast, a data-dependent pricing
scheme can leak information about the data (for more details see [20]). For this reason, in
this paper we focus on the first two types of pricing schemes: QPS and APS.

The reason we consider query bundles in our setting is that in practice a data buyer will
issue over time a sequence Q1, . . . ,Qm of query bundles on the database. In this case, after
issuing the first i queries, the data buyer should not be charged a price of

∑
i p(Qi, D), but

instead p(Q1, . . . ,Qi, D). Notice here that, even if a user issues only single queries, we still
need to be able to price a query bundle.

2.3 Arbitrage Conditions
Assigning prices to query bundles without any restrictions can lead to the occurrence of
arbitrage opportunities. In [15], the authors presented a single condition that captures
arbitrage. Here, we follow [20], and consider independently two different conditions where
arbitrage may occur.

Information Arbitrage. The first condition captures the intuition that the price of query
bundle must capture the amount of information that an answer reveals about the actual
database D. In particular, if a query bundle Q1 reveals a subset of information than a query
bundle Q2 reveals, the price of Q1 must be less than the price of Q2. If this condition is not
satisfied, it creates an arbitrage opportunity, since a data buyer can purchase Q2 instead,
and use it to obtain the answer of Q1 for a cheaper price.

1 For the case of answer-dependent prices, we must make sure that we reveal the price only if we are
certain that the buyer will be charged for the cost.
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Bundle Arbitrage. The second condition regards the scenario where a data buyer that
wants to obtain the answer for the bundle Q = Q1,Q2 creates two separate accounts, and
uses one to ask for Q1 and the other to ask for Q2. To avoid such an arbitrage situation, we
must make sure that the price of Q is at most the sum of the prices for Q1 and Q2. [20]
uses the terminology separate-account arbitrage to refer to this arbitrage condition.

We will show in the next sections how to mathematically formalize information arbitrage
and bundle arbitrage for both APS and QPS.

3 Answer-Dependent Pricing

In this section, we study the design of answer-dependent pricing schemes. In an APS the
pricing function takes the form p(Q, E), where Q is a query bundle and E ∈ {Q(D) | D ∈ I}.
Throughout the section, we assume that query bundles belong to some query language L.
We first discuss how to formalize the arbitrage conditions. To formally describe information
arbitrage, we use the notion of data-dependent determinacy.

I Definition 1. We say that Q2 determines Q1 under database D, denoted D ` Q2 � Q1
if for every database D′ such that Q2(D) = Q2(D′), we also have Q1(D′) = Q1(D).

The above definition of determinacy is different from query determinacy [23, 24], since it
is defined with respect to a given database D. It is also easy to see that if D ` Q2 � Q1,
we also have that D′ ` Q2 � Q1 for any database D′ such that Q2(D) = Q2(D′).

I Definition 2 (APS Information Arbitrage). Let Q1,Q2 be two query bundles. We say that
the pricing function p has no information arbitrage if for every database D ∈ I, D ` Q2 � Q1
implies that p(Q2, E2) ≥ p(Q1, E1), where Ei = Qi(D) for i = 1, 2.

This definition of information arbitrage captures both post-processing arbitrage and
serendipitous arbitrage, as these are defined in [20]. For the case of bundle arbitrage, we
formalize it as follows.

I Definition 3 (APS Bundle arbitrage). Let the query bundle Q = Q1,Q2. We say that the
price function p has no bundle arbitrage if for every database D ∈ I, we have p(Q, E) ≤
p(Q1, E1) + p(Q2, E2), where E = Q(D) and Ei = Qi(D) for i = 1, 2.

We say that an answer-dependent pricing function is arbitrage-free if it has no information
arbitrage and no bundle arbitrage.

3.1 How to Find a Pricing Function
In this section, we characterize the family of answer-dependent pricing functions that satisfy
both arbitrage conditions. The critical component is the notion of a conflict set.

3.1.1 Conflict Sets
Consider a query bundle Q ∈ B(L), a database D ∈ I and let E = Q(D). We define

SQ(E) = {D′ ∈ I | Q(D′) = E}, SQ(E) = {D′ ∈ I | Q(D′) 6= E}

In other words, SQ(E) computes the set of databases that “agree” with the view extension
E, and SQ(E) contains the complement set, i.e. the set of databases that “disagree” with
E. Notice that SQ(Q(D)) = [D]Q. We refer to SQ(E) as the conflict set for query Q
and extension E, while we refer to SQ(E) as the agreement set. It is straightforward that
SQ(E) = I \ SQ(E).

ICDT 2017
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{D00, D01, D10} {D00, D01, D11} {D00, D10, D11} {D01, D10, D11}

{D00, D01} {D00, D10} {D00, D11} {D01, D10} {D01, D11} {D10, D11}

{D00} {D01} {D10} {D11}

φ

Figure 1 A simultaneous depiction of the join-semilattices for the four databases in Example 4.

I Example 4. We will use the following scenario as a running example throughout this
section. Suppose that we have a binary relation R(A,B), where attribute A is the key. The
values of the n keys are also publicly known {a1, a2, . . . , an}. Moreover, assume that B can
take two possible values from {0, 1}. It is easy to see that I consists of 2n databases. For
n = 2, let Dij denote the database {(a1, i), (a2, j)}. For example D01 = {(a1, 0), (a2, 1)}.

Consider now the query Q(x) = R(a1, x), which asks for value of attribute B for the tuple
with key A = a1. Assume that the underlying database is D01. The conflict set of Q and
E = Q(D01) consists of all databases D for which (a1, 1) ∈ D, hence SQ(E) = {D10, D11}.

If Q returns a constant answer for every database in I, the conflict set will be the empty
set. On the other hand, if Q reveals the whole database D, the conflict set will be I \ {D}.
We can now define the set of all possible conflict sets for a database D and a given language
L as SLD = {SQ(Q(D)) | Q ∈ B(L)}. The following lemma, which we prove in [8], shows
that SLD forms a join-semilattice under the partial order ⊆, where the join operator is set
union.

I Lemma 5. Let Q = Q1,Q2. For a database D ∈ I, let E1 = Q1(D), E2 = Q2(D), and
E = Q(D). Then, SQ(E) = SQ1(E1) ∪ SQ2(E2).

The diagram in Figure 1 depicts simultaneously the four join-semilattices for each of the
databases in Example 4. We next show in [8] the following lemma that connects the notion
of a conflict set with data-dependent determinacy.

I Lemma 6. Let Q1,Q2 be two query bundles, and D ∈ I be a database. Let Ei = Qi(D)
for i = 1, 2. The following two statements are equivalent:
1. D ` Q2 � Q1
2. SQ2(E2) ⊇ SQ1(E1)

Lemma 6 and Lemma 5 demonstrate that information and bundle arbitrage can be cast
as conditions on the elements of the semilattice of conflict sets.

I Example 7. Continuing Example 4, consider the queries Q1(x) = R(a1, x) and Q2() =
R(x, 1). Let D00 be the underlying database. It is easy to see that D00 ` Q2 � Q1, since
after asking Q2 we learn that the database contains no 1 values for B, and thus it must have
only 0 values. The conflict sets for E1 = Q1(D00), E2 = Q2(D00) are SQ1(E1) = {D11, D10}
and SQ2(E2) = {D01, D10, D11} respectively.
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3.1.2 A Characterization of Arbitrage-Free APS
We can now use the notion of a conflict set to define pricing functions of the form p(Q, E) =
f(SQ(E)), where f : 2I \ {I} → R+ is a set function. It is straightforward to see that
such a pricing function is by construction in APS, since the computation depends only on
Q and E, and not on the database D. For example, if Q returns a constant answer for
every database in I, p(Q, E) = f(∅). On the other hand, if Q reveals the whole database
D, p(Q, E) = f(I \ {D}). We can now show a necessary and sufficient characterization of
answer-dependent functions with no information arbitrage in terms of such a function f .

I Theorem 8. Let p be an answer-dependent pricing function. The following two statements
are equivalent:
1. p has no information arbitrage.
2. p(Q, E) = f(SQ(E)), where f is a monotone function over every semilattice SLD.

We have shown that in order to avoid information arbitrage it suffices to restrict the
function to be monotone. We next demonstrate a similar connection of bundle arbitrage to
the property of subadditivity.

I Theorem 9. Let p(Q, E) = f(SQ(E)) be a pricing function, where f is a set function.
Then, the following two statements are equivalent:
1. p has no bundle arbitrage.
2. f is subadditive over every semilattice SLD.

Both Theorem 8 and Theorem 9 are proved in the full version of the paper [8]. Observe
that if a function f is monotone and subadditive over 2I , it will also be monotone and
subadditive over every semilattice SLD. Hence, as a corollary we can describe a general family
of arbitrage-free pricing functions.

I Corollary 10. Let f be a monotone and subadditive set function f . Then, the function
p(Q, E) = f(SQ(E)) is an answer-dependent pricing function that is arbitrage-free.

3.2 Explicit Constructions of Pricing Functions
We have so far described a general class of functions that are both information and bundle
arbitrage-free. Since any submodular function is also subadditive, any monotone submodular
set function f will also produce a desired pricing function. We give some concrete examples
of arbitrage-free pricing functions below.

I Corollary 11. Suppose that we assign a weight of wD to each D ∈ I, such that
∑
D∈I wD <

∞. Then, the following pricing functions are arbitrage-free:
1. the weighted coverage function:

∑
D:Q(D)6=E wD.

2. the supremum function: supD:Q(D)6=E wD.2
3. the budget-limited weighted coverage function for some B ≥ 0: min{B,

∑
D:Q(D)6=E wD}.

We can construct richer pricing functions by combining the weighted coverage function
with a concave function g. Indeed, we can show that p(Q, E) = g(

∑
D∈SQ(E) wD) is arbitrage-

free for any concave function g. If I is finite, we can assign to each database D ∈ I an equal
weight, in which case we obtain the arbitrage-free function p(Q, E) = g(|SQ(E)|).

2 The supremum becomes equivalent to the max function if I is finite.
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I Corollary 12. Suppose that we assign a weight of wD to each D ∈ I, such that
∑
D∈I wD <

∞. Then, the pricing function p(Q, E) = g(
∑
D∈SQ(E) wD) is arbitrage-free for any concave

function g.

Proof. We know that if f(A) is a modular set function and g is concave, then g(f(A)) is a
submodular function. Notice that f(A) =

∑
i∈A wi is a modular function for any choice of

weights wi. J

The pricing functions we have presented thus far are constructed by assigning a weight to
each database in I. Another type of construction starts by specifying a family F of subsets
of I. For each subset S ∈ F , we assign a weight wS . Finally, we pick some real number
B ≥ maxS∈F wS . We define the weighted set cover function f(A) as the cost of the minimum
set cover for A if such a set exists, otherwise f(A) = B.

I Lemma 13. The weighted set cover pricing function is arbitrage-free.

The weighted set cover function generalizes the approach from [15], where explicit prices
are specified for certain views, and the price of the query is computed as the cheapest set
of views that determine the query. Indeed, if we are given explicit price points (Qi, pi) for
i = 1, . . . ,m, we can define the following family of sets: F = {SQi(Qi(D)) | i = 1, . . . ,m},
where each set SQi

(Qi(D)) is assigned a weight of pi. Since D ` Qi1 , . . . ,Qi` � Q is
equivalent to saying that the union of the conflict sets of Qi1 , . . . ,Qi` is a superset of the
conflict set of Q, the minimum set cover for SQ(E) corresponds to the cheapest set of views
that determine Q under database D.

3.2.1 Information Gain as a Pricing Function
A natural mechanism for pricing is to start from a probabilistic point of view and compute
the price as the reduction in uncertainty, or information gain, using some notion of entropy.

Formally, consider an initial probability distribution over the set I of possible databases:
in other words, assign a probability pD to each database D ∈ I. This probability distribution
may reflect public information about the database (for example some value might be more
probable than some other value). Let X be a random variable such that P (X = D) = pD.
Given some entropy measure H(·) of a random variable, such as Shannon entropy or min-
entropy, we can set the price as the information gain: the initial entropy H(X) minus the
entropy of the new distribution, which is now conditioned on the event Q(X) = E. Formally,
we define the price as p(Q, E) = H(X) −H(X | Q(X) = E). We can now plug standard
uncertainty measures to obtain a pricing function. For example, we can use the Shannon
entropy H(X) = −

∑
D∈I pD log(pD), or the min-entropy H∞(X) = − log(maxD pD).

I Lemma 14. There exists a probability distribution pD over I such that the answer-dependent
entropy function has information-arbitrage.

Proof. Consider two sets B ⊆ A ⊆ I, such that A\B = {D0}. Assume that the probabilities
are set as follows: for every D ∈ B we have pD = ε, and pD0 = 1 −mε, where m = |A|.
Define now two queries QA and QB such that SQA

(E) = A and SQB
(E) = B. In this case,

we have:

p(QB , E) = H(D) +
m∑
i=1

1
m

log(1/m) = H(D)− log(m)

p(QA, E) = H(D) +mε log(ε) + (1−mε) log(1−mε)
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Further, 0 < mε < 1. To create a counterexample, we choose mε = 1
2 , and now we have:

p(QA, E)− p(QB , E) =
= mε log(ε) + (1−mε) log(1−mε) + log(m)

= 1
2 log(ε)− 1

2 + log(m) = 1
2 log(m)− 1

By picking m large enough, we can make this quantity strictly positive, hence violating the
information arbitrage condition. J

The intuition in the above proof is the following: the result for query QA will have
a somewhat small entropy, because D0 is much more probable than the other databases.
However, by asking QB we learn that D0 cannot be the actual database, and now the
probability is equally distributed among the rest of the candidates; hence, the entropy grows!

The information gain, even though it seems a natural candidate, is not a well-behaved
pricing function for APS, since it exhibits both information and bundle arbitrage (see
Lemma 14 for such an example of information arbitrage). As we will see in Section 4 though,
we can use information gain to construct arbitrage-free functions for QPS. In the case where
the probabilities pD are all equal, the information gain based on Shannon entropy has no
information arbitrage (but can still exhibit bundle arbitrage) as shown in [8].

I Lemma 15. If the probability distribution pD over I is uniform, the information gain
based on Shannon entropy has no information arbitrage.

3.3 A Tradeoff for Arbitrage-Free APS
I Example 16. Continuing Example 4, consider the query Q(x) = R(a, x) and the pricing
function p2(Q, E) = log(|SQ(E)|). Notice that, independent of the actual database D, the
conflict set has always size 2n−1. In this case, p2(Q,E) = n− 1. Notice that the price for
learning the whole database is log(2n − 1), which means that for learning a single tuple we
pay almost as much as the whole database.

We will show here that the above example is not a random occurrence, and that the
requirement that a pricing function has no bundle arbitrage gives rise to the phenomenon of
assigning high prices (w.r.t. to the price of the whole dataset) to queries that reveal only a
small amount of information.

I Lemma 17. Let p(Q, E) = f(SQ(E)) be an answer-dependent pricing function where f
is monotone and subadditive over 2I . Then, for every non-constant query Q ∈ B(L) there
exists a database D ∈ I such that p(Q,Q(D)) is at least half the price of D.

To see that the bundle-arbitrage requirement cause the problem, consider the function
p(Q, E) = log(|I|) − log(|SQ(E)|), for which we showed that it exhibits no information
arbitrage, but can still have bundle arbitrage. Continuing our example, we can see that
p(Q,E) = log(2n)−log(2n−1) = 1; thus, learning about one of the n tuples is priced reasonably
to 1/n of the price of the whole database. Our analysis demonstrates an important tradeoff in
the design space of answer-dependent pricing functions: ensuring no bundle arbitrage implies
that the pricing function will charge disproportionately high prices for little information.

It is also instructive to note that while Lemma 17 guarantees that existence of database
D ∈ I that behaves badly, it does not say anything about the number of such databases. In
fact, for our example we can show that for query Q at least half of the databases in I will
exhibit this undesirable behavior.
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4 Instance-Independent Pricing

We study here the structure of instance-independent pricing schemes. In a QPS, the pricing
function is of the form p(Q), depending only on the query. We first formalize the conditions
under which the pricing function has no information arbitrage and no bundle arbitrage.

I Definition 18. We say that Q2 determines Q1, denoted Q2 � Q1, if for every database
database D′ and D′′, Q2(D′) = Q2(D′′) implies Q1(D′) = Q1(D′′).

In contrast to answer-dependent pricing functions, where we used a notion of determinacy
that depends on the database, here we use the standard notion of information-theoretic
determinacy.3 We can now describe the formal definition for information arbitrage.

I Definition 19 (QPS Information Arbitrage). The pricing function p has no information
arbitrage if for any two query bundles Q1,Q2 such that Q2 � Q1, we have p(Q2) ≥ p(Q1).

I Definition 20 (QPS Bundle arbitrage). Let the query bundle Q = Q1,Q2. We say that
the pricing function p has no bundle arbitrage if we have p(Q) ≤ p(Q1) + p(Q2).

4.1 Serendipitous Arbitrage
Consider two query bundles Q1 and Q2 such that Q1 6� Q2, but for some D ∈ I, D `
Q1 � Q2. For example, consider the boolean query Q1() = R(x, y) over the binary relation
R(A,B). Let Q2(x, y) = R(x, y). Clearly, for all databases D other than the empty database,
D ` Q1 6� Q2. However, for the database D0 = ∅, note that D0 ` Q1 � Q2. In this
case, if p(Q1) > p(Q2), the data buyer would have an arbitrage opportunity. However, this
opportunity would arise by chance, since the buyer does not know the underlying database
and thus does not know that asking for Q2 can lead to learning Q1 for a lower price. We call
this phenomenon serendipitous arbitrage [20]. Our definition of QPS information arbitrage
does not capture serendipitous arbitrage. The next result demonstrates a second tradeoff in
the design space of pricing functions: any non-trivial QPS will exhibit serendipitous arbitrage.
We prove in [8]

I Theorem 21. Let L = UCQ. If a QPS exhibits no serendipitous arbitrage, then the price
of any non-constant query bundle Q is equal to the price of asking for the whole database.

4.2 How to Find a Pricing Function
To characterize the structure of instance-independent pricing functions, we exploit the fact
that we can equivalently view a query as a partition of the set of possible databases I.

4.2.1 The Partition Lattice
Fix some query language L. Recall that for a query bundle Q ∈ B(L), PQ is the partition
that is induced by the following equivalence relation: D ∼ D′ iff Q(D) = Q(D′).

I Lemma 22. Let Q1,Q2 ∈ L be two query bundles. The following are equivalent:
1. Q1 � Q2
2. PQ1 � PQ2 , i.e. PQ1 refines PQ2

3 Here we should note that there exists a slight difference, since the databases we consider can come only
from I, and not be any database.
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The refinement relation defines a partial order on the set ΠLI of all partitions of I induced
by any bundle Q ∈ B(L). An equivalent way to define the partial order is through the
distinction set of a partition dit(P) =

⋃
B,B′∈P:B 6=B′ B ×B′. Intuitively, the distinction set

contains all pairs of elements that are not in the equivalence relation. It is straightforward
to see that dit(PQ) = {(D′, D′′) ∈ I × I | Q(D′) 6= Q(D′′)}. Furthermore, P1 � P2 if and
only if dit(P1) ⊇ dit(P2) and thus one can use the inclusion of the distinction sets to define
a partial order on the partitions.

The partial order induced by � on ΠLI forms a join-semilattice. The bottom element of
the semilattice is the partition {I}, which corresponds to a query that returns a constant
answer. The top element is the partition where each block is a singleton set: this corresponds
to a query that informs about the whole database. The join P1 ∨P2 is a new partition whose
blocks are the non-empty intersections of any two blocks from P1,P2. The lemma below
proves that the algebraic structure we defined is indeed a semilattice.

I Lemma 23. Let Q = Q1,Q2, where Q1,Q2 ∈ B(L). Then, PQ = PQ1 ∨ PQ2 .

If we define the partial order as the inclusion of distinction sets, dit(PQ) = dit(PQ1 ∨
PQ2) = dit(PQ1) ∪ dit(PQ2), the join operator is simply the union of the distinction sets.

4.2.2 A Characterization of Arbitrage-Free QPS
We now consider the family of instance-independent pricing functions of the form p(Q) =
f(PQ), where f : ΠLI → R+ is a function that maps a partition to the positive real numbers.

I Theorem 24. Let p be an instance-independent pricing function. Then, the two statements
are equivalent:
1. p has no information arbitrage.
2. p(Q) = f(PQ), where f is a monotone function over ΠLI .

I Theorem 25. Let p(Q) = f(PQ) be an instance-independent pricing function, where f is
a function over ΠLI . Then, the two statements are equivalent:
1. p has no bundle arbitrage.
2. f is subadditive over ΠLI .

I Corollary 26. Let f be a monotone and subadditive function over ΠLI . Then, p(Q) = f(PQ)
is an instance-independent pricing function that has no bundle or information arbitrage.

Alternatively, we could also define the pricing function as p(Q) = f(dit(PQ)). Using the
same type of arguments, we can show:

I Corollary 27. Let f be a monotone and subadditive set function. Then, p(Q) = f(dit(PQ))
is an instance-independent pricing function that has no bundle or information arbitrage.

4.3 Construction of Pricing Functions From Answer-Dependent Prices
We show first how we can design an instance-independent pricing function p(Q) starting from
an answer-dependent function p(Q, E). Given a query bundle Q, the idea is to construct
a vector of all prices p(Q,Q(D)) for all databases D ∈ I. Formally, we define the price
vector ~p(Q) = 〈p(Q,Q(D)) | D ∈ I〉. Then we can obtain an instance-independent pricing
function by computing another function g : R|I|+ → R+ over the above vector, such that
p(Q) = g(~p(Q)). The next lemma describes the conditions for g under which the arbitrage-free
property carries over.
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I Lemma 28. Let p(Q, E) be an arbitrage-free pricing function. If g is a monotone and
subadditive function, then p(Q) = g(~p(Q)) is an arbitrage-free instance-independent function.

We next present an application of Lemma 28 to obtain arbitrage-free pricing functions.

I Lemma 29. Let f be a monotone and subadditive set function. Let wD be a non-negative
weight wD to each D ∈ I, and denote wB =

∑
D∈B wD. Then, the pricing functions

p1(Q) = maxB∈PQ{f(I \B)} and p2(Q) =
∑
B∈PQ

wB · f(I \B) are arbitrage-free.

I Example 30. Consider the function p2 with equal weights wD = 1 and the set function
f(A) = |A|. The resulting arbitrage-free function is p(Q) =

∑
B∈PQ

|B|(|I|−|B|) = |dit(PQ)|,
which sets the price to be the size of the distinction set.

If
∑
D wD = 1 for p2, one can interpret the weights as a probability distribution over the

set of databases I. In this case, we can write p2(Q) = EB∈PQ [f(I \B)], where each block
B has probability wB. In other words, the pricing function is the expected price over all
answer-dependent prices. The converse of Lemma 28 does not hold: it is possible for p(Q) to
be arbitrage-free, and for some database D it may not be the case. As we will see next, this
allows us to construct arbitrage-free functions that are based on measures of uncertainty.

4.4 Construction of Pricing Functions From Uncertainty Measures
In this section, we describe arbitrage-free pricing functions that do not originate from answer-
dependent functions. To construct such functions, we switch to a probabilistic view of the
problem and then apply information-theoretic tools that are used to measure uncertainty.
For the remainder of this section, we assume that each database D is associated with a
probability pD. We denote by X the random variable such that P (X = D) = pD and let
pE =

∑
D:Q(D)=E pD. The detailed proofs in this section are presented in [8].

Shannon Entropy. The first measure of uncertainty we apply is the most commonly used
form of entropy, and was proposed in [20] as a pricing function. In the answer-dependent
context, we defined the price as the information gain after the output E has been revealed.
Since in this setting the price is independent of the output, we define the price as the expected
information gain over all possible outcomes. Formally:

pH(Q) = H(X)−
∑
E

pE ·H(X | Q(X) = E) (1)

Equivalently, we can also express the price as

pH(Q) = H(X)−H(X | Q(X)) = I(X; Q(X)) = H(Q(X))−H(Q(X) | X) = H(Q(X))

where I(X;Y ) is the mutual information between the random variables X and Y . [20]
proves that pH is both bundle and information arbitrage-free, using the subadditivity of
entropy and the data-processing inequality respectively. It is instructing to write pH as
pH(Q) = −

∑
S∈PQ

pS · log pS =
∑
D pD · p(Q,Q(D)) where p(Q, E) = − log (pE) is now an

answer-dependent pricing function. Notice that p(Q, E) has no information arbitrage, and
thus by applying Lemma 28 we get an alternative proof that pH is information arbitrage-free.
However, p(Q, E) can have bundle arbitrage, and thus we cannot apply Lemma 28 to show
the subadditivity property as well: entropy is subadditive only in expectation. This example
demonstrates that the converse of Lemma 28 does not hold.
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Tsallis Entropy. For a real number q > 1, the Tsallis entropy [27], or q-entropy, of a
random variable X is defined as Sq(X) = 1

q−1 ·
(
1−

∑
x P (X = x)q−1). Tsallis entropy is a

generalization of Shannon entropy, since limq→1 Sq(X) = H(X). We define the price as the
Tsallis entropy of Q(X):

pT (Q) = Sq(Q(X)) =
∑
S∈PQ

pS
q − 1 · (1− p

q−1
S ) (2)

I Lemma 31. The pricing function pT defined in Equation (2) is arbitrage-free for q > 1.

Guessing Entropy. The guessing entropy measures the average number of successive guesses
required by an optimum strategy until we correctly guess the value of the random variable X
(in our case the underlying database D). The guessing entropy was first introduced in [21],
and subsequently used in [13] in the context of measuring leakage in side-channel attacks. To
compute the guessing entropy of X, suppose that we have ordered the databases in decreasing
order of their probabilities, i.e. such that p(X = Di) ≥ p(X = Dj) whenever i ≤ j. Then,
we define the guessing entropy as G(X) =

∑
i i · pDi

. The price is now defined as the initial
entropy minus the expected conditional guessing entropy G(X | Q(X) = E):

pG(Q) = G(X)−
∑
E

pE ·G(X | Q(X) = E) (3)

I Lemma 32. The pricing function pG defined in Equation (3) is arbitrage-free.

Min-Entropy. We apply here the notion of min-entropy, as it was introduced in [26] to
quantify information flow. Themin-entropy of a random variable isH∞(X) = − log(maxx P (X =
x)). The conditional min-entropy is defined as H∞(X | Y ) = − log(

∑
y P (Y = y) ·

maxx P (X = x | Y = y)). Then, we can construct the price of a query as follows:

pM (Q) = H∞(X)−H∞(X | Q(X)) = − log(max
D

pD) + log
(∑

E

max
D:Q(D)=E

pD

)
(4)

I Lemma 33. The pricing function pM defined in Equation (4) has no information arbitrage.

The min-entropy is not in general bundle arbitrage-free, as we show in the full version of
the paper [8]. However, it becomes so when the initial distribution is uniform. Let n = |I|, in
which case pD = 1/n for each database. Then, it is straightforward to see that the resulting
function is the logarithm of the number of sets in the partition PQ.

pMU (Q) = log(n) + log(|PQ|/n) = log(|PQ|) (5)

I Lemma 34. The pricing function pMU (Q) defined in Equation (5) is arbitrage-free.

β-Success Rate. This information measure, first introduced in [4], captures the expected
success of guessing the database D with β tries. We will consider here only the case where
the probability distribution is uniform, in which case the pricing functions becomes:

pβ(Q) = log

 ∑
S∈PQ

min{β, |S|}

 (6)

Observe that for β = 1 we have pβ(Q) = pMU (Q), hence this generalizes uniform min-entropy.
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Table 1 The price of a query bundle Q according to various entropy measures for the case of
uniform probability distributions. We denote n = |I|.

Shannon Entropy pH(Q) = 1
n

∑
B∈PQ

|B| log |B|

Guessing Entropy pG(Q) = 1
2n

(
n2 −

∑
B∈PQ

|B|2
)

Min-Entropy pMU (Q) = log |PQ|

Tsallis Entropy pT (Q) = 1
q−1

(
1−

∑
B∈PQ

( |B|
n

)q−1
)

β-Success Rate pβ(Q) = log
(∑

B∈PQ
min{β, |B|}

)

I Lemma 35. The pricing function pβ(Q) defined in Equation (6) is arbitrage-free.

We should finally mention that several other entropy measures have been discussed in
the broader literature. The Renyi entropy [25] is a generalization of both the Shannon
entropy and the min-entropy. However, it is not subadditive, and thus not applicable as
an arbitrage-free pricing function. Worst-case entropy measures [13] can also be applied to
measure information leakage, but they are also prone to bundle arbitrage.

5 Computing the Pricing Function

So far we have studied how to construct pricing functions for both APS and QPS. In this
section, we focus on the complexity of computing a pricing function.

5.1 Support Sets
We first start by discussing an generic approach that can construct efficiently computable
arbitrage-free pricing functions for any query language L that can be computed efficiently.
The key idea behind our construction is to define the pricing function on a smaller set C ⊆ I
of our choice, which we call support. The next two lemmas show that this restriction still
provides arbitrage-free answer-dependent and instance-independent pricing functions.

I Lemma 36. Let C ⊆ I. If f is a monotone and subadditive set function, the pricing
function p(Q, E) = f(SQ(E) ∩ C) is arbitrage-free.

Given a partition P of the set I, we define the restriction of P to C, denoted P ∩ C, as
the set {B ∩ C | B ∈ P, B ∩ C 6= ∅}.

I Lemma 37. Let C ⊆ I. If f is a monotone and subadditive function on the partition
semilattice, the pricing function p(Q) = f(PQ ∩ C) is arbitrage-free.

The above results provide us with a method to design an efficient arbitrage-free pricing
function for a query language L. We start by choosing a support C ⊆ I. To compute
the pricing function, we first compute SQ(E) ∩ C for answer-dependent (or PQ ∩ C for
instance-independent). The observation is that we can achieve this by evaluating the query
bundle Q only on the databases D ∈ C. Hence, the running time of computing the price
does not depend on |I|, but on |C| and the complexity of evaluating the query bundle Q.

I Example 38. Consider any set C ⊆ I. Then p(Q, E) = log |{D ∈ C | Q(D) 6= E}| is an
arbitrage-free pricing function. Similarly, p(Q) = log |PQ ∩ C| is also arbitrage-free.
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The advantage of using support sets to construct pricing functions is that they provide
us with a generic method that is independent of the language L. On the other hand, the size
and choice of the support C is a challenging problem. We can always choose C to contain
a single database. The evaluation of the price will be very efficient, but any query will be
assigned only one of two prices, and thus the pricing function will not be very successful in
measuring the value of the data. If we instead choose a very large support, this leads to
expensive and impractical price computation. We leave as an open research question how to
choose a good support C that is suitable for a practical implementation.

5.2 The Complexity of Entropy-Based Pricing

In a practical setting, the set I will be given implicitly. For example, I can be the infinite
set of all databases, or the set of all subsets of a given database D0, I = {D | D ⊆ D0}.
One might think that since the problem of determinacy (either query or data-dependent) is
hard even for the class of conjunctive queries, computing an arbitrage-free pricing function
is always hard. However, as we showed in the previous section about support sets, it is
always possible to construct non-trivial pricing schemes that circumvent the computation of
determinacy and thus can be computed efficiently. Here we will focus on the computational
complexity for the pricing functions we introduced that are based on entropy.

The task necessary to compute an answer-dependent pricing function such as p(Q, E) =
log(|SQ(E)|), or any of the instance-independent functions in Table 1 is the following: given
a view extension E and Q, compute |SQ(E)|, which is the number of databases in I such
that Q(D) = E. If I can be succinctly expressed as I = {D | D ⊆ D0}, the task relates
to the area of probabilistic databases. Indeed, we can view D0 as a tuple-independent
probabilistic database where each tuple has the same probability 1/2. Then, we can write
|SQ(E)| = P (Q(D0) = E) · |I|. Unfortunately, computing the probability P (Q(D0) = E)
is in general a #P -hard problem (w.r.t. the size of D0), even for the class of conjunctive
queries [7]. However, the task is known to be in polynomial time for certain types of queries.
For instance, in Example 4, where Q is a selection query over a single table, the size of the
conflict set can be computed exactly in polynomial time. We should note here that the
problem of checking whether SQ(E) is empty or not is equivalent to the problem of view
consistency, which is shown to be NP-hard for the class of conjunctive queries [1] when I
ranges over all databases.

Even if |SQ(E)| can be computed exactly, the number of blocks in the partition PQ may
still be exponentially large, which would make computing the Shannon or Guessing entropy
intractable. In this case, we can write the information gain as p(Q) = −

∑
D∈I log |[D]Q|,

and construct an estimator of the price that samples independently m databases from I and
outputs their average: p̃(Q) = 1

m

∑m
i=1 log |[Di]Q|. In [14, 3], the authors show that such an

estimator can achieve an additive δ-approximation of the price with a number of samples that
is polynomial in 1/δ, log(|I|). We say that a pricing function is ε-approximately arbitrage-free
if the arbitrage conditions are violated within an additive ε. It is straightforward to see that
p̃ results in a (3δ)-approximately arbitrage-free pricing scheme. This implies that we can
compute in polynomial time an approximation of the entropy function that is as close to
arbitrage-free as we would like to.
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6 Related Work

The problem of data pricing has been studied from a wide range of perspectives, including
online markets and privacy [10, 22]. [12] examined a variety of issues involved in pricing
of information products and presented an economic approach to design of optimal pricing
mechanism for online services. [2] introduced the challenge of developing pricing functions in
the context of cloud-based environments, where users can pay for queries without buying
the entire dataset. This work also outlines various research challenges, such as enabling
fine-grained pricing and developing efficient and fair pricing models for cloud-based markets.

The first formal framework for query-based data pricing was introduced by Koutris et
al. [15]. The authors define the notion of arbitrage, and provide a framework that takes a set
of fixed prices for views over the data identified by seller, and extends these price points to a
pricing function over any query. The authors also show that evaluation of the prices can be
done efficiently in polynomial time for specific classes of conjunctive queries and a restricted
set of views that include only selections. Subsequently, the authors demonstrated how the
framework can be implemented into a prototype pricing system called QueryMarket [16, 17].
Further work [18] discusses the pricing and complexity of pricing for the class of aggregate
queries. The work by Lin and Kifer [20] proposes several possible forms of arbitrage violations
and integrates them into a single framework. The authors allow the queries to be randomized,
and propose two potential pricing functions that are arbitrage-free across all forms.

Data pricing is tightly connected to differential privacy [9]. Ghosh and Roth [11] study the
buying and selling of data by considering privacy as an entity. Their framework compensates
the seller for the loss of privacy due to selling of private data. A similar approach to pricing
in the context of privacy is discussed in [19].

We should finally mention the close connection of query pricing to the measurement of
information leakage in programs. In [13], the authors apply information-theoretic measures,
including various entropy measures, to compute the leakage of information from a side-
channel attack that attempts to gain access to secret information. [14] uses similar ideas to
quantify the flow of information in programs, and proposes various approximation techniques
to efficiently compute them.

7 Conclusion

In this paper, we explore in depth the design space of arbitrage-free pricing functions.
We present a characterization of the structure for both answer-dependent and instance-
independent pricing functions, and propose several constructions. Our work opens several
exciting research questions, including testing which pricing functions behave well in practical
settings, and exploring the various tradeoffs when deploying a pricing scheme.

Acknowledgements. We would like to thank Aws Albarghouthi for pointing out the close
connection of our work to quantitative information flow and information leakage in side-
channel attacks.
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A Logic for Document Spanners∗
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Abstract
Document spanners are a formal framework for information extraction that was introduced by
Fagin, Kimelfeld, Reiss, and Vansummeren (PODS 2013, JACM 2015). One of the central models
in this framework are core spanners, which are based on regular expressions with variables that
are then extended with an algebra. As shown by Freydenberger and Holldack (ICDT 2016), there
is a connection between core spanners and ECreg, the existential theory of concatenation with
regular constraints. The present paper further develops this connection by defining SpLog, a
fragment of ECreg that has the same expressive power as core spanners. This equivalence extends
beyond equivalence of expressive power, as we show the existence of polynomial time conversions
between this fragment and core spanners. This even holds for variants of core spanners that
are based on automata instead of regular expressions. Applications of this approach include an
alternative way of defining relations for spanners, insights into the relative succinctness of various
classes of spanner representations, and a pumping lemma for core spanners.
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1 Introduction

Fagin, Kimelfeld, Reiss, and Vansummeren [11] introduced document spanners as a formal
framework for information extraction. Document spanners formalize the query language AQL
that is used in IBM’s SystemT. On an intuitive level, document spanners can be understood
as a generalized form of searching in a text w: In its basic form, search can be understood as
taking a search term u (or a regular expression α) and a word w, and computing all intervals
of positions of w that contain u (or a word from L(α)). These intervals are called spans.
Spanners generalize searching by computing relations over spans of w.

In order to define spanners, [11] introduced regex formulas, which are regular expressions
with variables. Each variable x is connected to a subexpression α, and when α matches a
subword of w, the corresponding span is stored in x (this behaves like the capture groups
that are often used in real world implementation of search-and-replace functionality). Core
spanners combine these regex formulas with the algebraic operators projection, union, join
(on spans), and string equality selection.

Freydenberger and Holldack [12] connected core spanners to ECreg, the existential theory
of concatenation with regular constraints. Described very informally, ECreg is a logic that
combines equations on words (like xaby = ybax) with positive logical connectives, and
regular languages that constrain variable replacement. In particular, [12] showed that every
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core spanner can be converted into an ECreg-formula, which can then be used to decide
satisfiability. Furthermore, while every ECreg-formula can be converted into an equisatisfiable
core spanner, the resulting spanner cannot be used to evaluate the formula (as, due to details
of the encoding, the input word w of the spanner needs to encode the formula).

This paper further explores the connection of core spanners and ECreg. As main conceptual
contribution, we introduce SpLog (short for spanner logic), a natural fragment of ECreg that
has the same expressive power as core spanners. In contrast to the PSPACE-complete
combined complexity of ECreg-evaluation, the combined complexity of SpLog-evaluation is
NP-complete, and its data complexity is in NL. As main technical result, we demonstrate
the existence of polynomial time conversions between SpLog and spanner representations (in
both directions), even if the spanners are defined with automata instead of regex formulas.

As a consequence, SpLog can augment (or even replace) the use of regex formulas or
automata in the definition of core spanners. Moreover, this shows that the PSPACE upper
bounds from [12] for deciding satisfiability and hierarchicality of regex formula based spanners
apply to automata based spanners as well. In addition to this, we adapt a pumping lemma
for word equations to SpLog (and, hence, to core spanners). The main result also provides
insights into the relative succinctness of classes of automata based spanners: While there are
exponential trade-offs between various classes of automata, these differences disappear when
adding the algebraic operators.

From a more general point of view, this paper can also be seen as an attempt to connect
spanners to the research on equations on words and on groups (cf. Diekert [7, 6] for surveys),
where ECreg has been studied as a natural extension of word equations. We shall see that
SpLog is a natural fragment of ECreg: On an informal level, SpLog has to express relations on
a word w without using additional working space (which explains the friendlier complexity
of evaluation, in comparison to ECreg). This gives us reason to expect that SpLog can be
applied to other models, like graph databases (as a related example of an application of ECreg

for graph databases, Barceló and Muñoz [1] use a restricted class of ECreg-formulas for which
data complexity is also in NL).

This paper is structured as follows: Section 2 gives the definitions of spanners and of
ECreg, as well as a few preliminary results. Section 3 introduces SpLog and connects it to
spanners. We then examine properties of SpLog: Section 4 discusses how SpLog can be used
to express relations, while Section 5 adapts an EC-inexpressibility result to SpLog. Section 6
concludes the paper. Most of the proofs can be found only in the full version of the paper1.

2 Preliminaries

Let Σ be a fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we
assume |Σ| ≥ 2. Let Ξ be an infinite alphabet of variables that is disjoint from Σ. We use ε
to denote the empty word. For every word w and every letter a, let |w| denote the length of
w, and |w|a the number of occurrences of a in w. A word x is a subword of a word y if there
exist words u, v with y = uxv. We denote this by x v y; and we write x 6v y if x v y does
not hold. For words x, y, z with x = yz, we say that y is a prefix of x, and z is a suffix of
x. A prefix or suffix y of x is proper if x 6= y. For every k ≥ 0, a k-ary word relation (over
Σ) is a subset of (Σ∗)k. Given a nondeterministic finite automaton (NFA) A (or a regular
expression α), we use L(A) (or L(α)) to denote its language. In NFAs, we allow the use of
ε-transitions (this model is also called ε-NFA in literature).

1 http://ddfy.de/sci/splog.pdf

http://ddfy.de/sci/splog.pdf
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The remainder of this section contains the two models that this paper connects: Document
spanners in Section 2.1, and ECreg in Section 2.2.

2.1 Document Spanners
2.1.1 Primitive Spanner Representations
Let w := a1a2 · · · an be a word over Σ, with n ≥ 0 and a1, . . . , an ∈ Σ. A span of w is
an interval [i, j〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ≥ 0. For each span [i, j〉 of w, we define
w[i,j〉 := ai · · · aj−1. That is, each span describes a subword of w by its bounding indices.

I Example 1. Let w := aabbcabaa. As |w| = 9, both [3, 3〉 and [5, 5〉 are spans of w, but
[10, 11〉 is not. As 3 6= 5, the first two spans are not equal, even though w[3,3〉 = w[5,5〉 = ε.
The whole word w is described by the span [1, 10〉.

Let V ⊂ Ξ be finite, and let w ∈ Σ∗. A (V,w)-tuple is a function µ that maps each
variable in V to a span of w. If context allows, we write w-tuple instead of (V,w)-tuple. A
set of (V,w)-tuples is called a (V,w)-relation. A spanner is a function P that maps every
w ∈ Σ∗ to a (V,w)-relation P (w). Let V be denoted by SVars (P ). Two spanners P1 and P2
are equivalent if SVars (P1) = SVars (P2), and P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w to a set of
functions, each of which assigns spans of w to the variables of the spanner. We now examine
a formalism that can be used to define spanners:

I Definition 2. A regex formula is an extension of regular expressions to include variables.
The syntax is specified with the recursive rules α := ∅ | ε | a | (α ∨ α) | (α · α) | (α)∗ | x{α}
for a ∈ Σ, x ∈ Ξ. We add and omit parentheses freely, as long as the meaning remains clear,
and use α+ as shorthand for α · α∗, and Σ as shorthand for

∨
a∈Σ a.

Regex formulas can be interpreted as special case of so-called regex, which extend classical
regular expressions with a repetition operator (see Section 4.3 for a brief and [12] for a
more detailed discussion). This applies to syntax and semantics. In particular, both models
define their syntax with parse trees, which is rather impractical for many of our proofs.
Instead of using this definition, we present one that is based on ref-words (short for reference
words) by Schmid [23]. A ref-word is a word over the extended alphabet (Σ ∪ Γ), where
Γ := {`x, ax | x ∈ Ξ}. Intuitively, the symbols `x and ax mark the beginning and the end
of the span that belongs to the variable x. In order to define the semantics of regex formulas,
we treat them as generators of ref-languages (i. e., languages of ref-words):

I Definition 3. For every regex formula α, we define its ref-language R(α) by R(∅) := ∅,
R(a) := {a} for a ∈ Σ ∪ {ε}, R(α1 ∨ α2) := R(α1) ∪ R(α2), R(α1 · α2) := R(α1) · R(α2),
R(α∗1) := R(α1)∗, and R(x{α1}) := `xR(α1)ax.

Let SVars (α) be the set of all x ∈ Ξ such that x{ } occurs in α. A ref-word r ∈ R(α) is
valid if, for every x ∈ SVars (α), |r|`x

= 1. Let Ref(α) := {r ∈ R(α) | r is valid}. We call α
functional if Ref(α) = R(α), and denote the set of all functional regex formulas by RGX.

In other words, R(α) treats α like a standard regular expression over the alphabet (Σ ∪ Γ),
where x{α1} is interpreted as `xα1ax. Furthermore, Ref(α) contains exactly those words
where each variable x is opened and closed exactly once.

I Example 4. Define regex formulas α := (x{a}y{b}) ∨ (y{a}x{b}), β := x{a} ∨ y{a}, and
γ := x{a}x{a}. Then α is a functional, while β and γ are not (in fact, Ref(α) = Ref(β) = ∅).

ICDT 2017
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Like [11, 12], this paper only examines functional regex formulas. Hence, without loss of
generality, we assume that no variable binding x{ } occurs under a Kleene star ∗.

The definition of R(α) implies that every r ∈ Ref(α) has a unique factorization r =
r1`xr2axr3 for every x ∈ SVars (α). This can be used to define µ(x) (i. e., the span that is
assigned to x). To this purpose, we define a morphism clr : (Σ ∪ Γ)∗ → Σ∗ by clr(a) := a for
all a ∈ Σ, and clr(g) := ε for all g ∈ Γ (in other words, clr projects ref-words to Σ). Then
clr(r1) contains the part of w that precedes µ(x), and clr(r2) contains wµ(x).

For α ∈ RGX and w ∈ Σ∗, let Ref(α,w) := {r ∈ Ref(α) | clr(r) = w}. Then every word
of Ref(α,w) encodes one possibility of assigning variables in w that is consistent with α.

I Definition 5. Let α ∈ RGX, w ∈ Σ∗, and V := SVars (α). Every r ∈ Ref(α,w) defines a
(V,w)-tuple µr in the following way: For every x ∈ Vars (α), there exist uniquely defined
r1, r2, r3 with r = r1`xr2axr3. Then µr(x) := [|clr(r1)|+ 1, |clr(r1r2)|+ 1〉. The function JαK
from words w ∈ Σ∗ to (V,w)-relations is defined by JαK(w) := {µr | r ∈ Ref(α,w)}.

I Example 6. Assume that a, b ∈ Σ. We define the functional regex formula

α := Σ∗ · x
{

a · y{Σ∗} · (z{a} ∨ z{b})
}
· Σ∗.

Let w := baaba. Then JαK(w) consists of the tuples ([2, 4〉, [3, 3〉, [3, 4〉), ([2, 5〉, [3, 4〉, [4, 5〉),
([2, 6〉, [3, 5〉, [5, 6〉), ([3, 5〉, [4, 4〉, [4, 5〉), ([3, 6〉, [4, 5〉, [5, 6〉).

As one example of an r ∈ Ref(α,w), consider r = b`xa`yaay`zbazaxa. This yields
µr(x) = [2, 5〉, µr(y) = [3, 4〉, and µr(z) = [4, 5〉.

It is easily seen that the definition of JαK with ref-words is equivalent to the definition
from [11]; and so is the definition of functional regex formulas. Basing the definition of
semantics on ref-words has two advantages: Firstly, treating R(α) as a language over (Σ∪ Γ)
allows us to use standard techniques from automata theory, and secondly, it generalizes well
to two automata models for defining spanners from [11]. We begin with the first model:

I Definition 7. Let V ⊂ Ξ be a finite set of variables, and define ΓV := {`x,ax | x ∈ V }. A
variable set automaton (vset-automaton) over Σ with variables V is a tuple A = (Q, q0, qf , δ),
where Q is the set of states, q0, qf ∈ Q are the initial and the final state, and δ : Q× (Σ ∪
{ε} ∪ ΓV )→ 2Q is the transition function.

We interpret A as a directed graph, where the nodes are the elements of Q, each q ∈ δ(p, a)
is represented with an edge from p to q with label a, where p ∈ Q and a ∈ (Σ∪{ε}∪ΓV ). We
extend δ to δ̂ : Q× (Σ ∪ ΓV )∗ → 2Q such that for all p, q ∈ Q and r ∈ (Σ ∪ ΓV )∗, q ∈ δ̂(p, r)
if and only if there is a path from p to q that is labeled with r. We use this to define
R(A) := {r ∈ (Σ ∪ ΓV )∗ | qf ∈ δ̂(q0, r)}.

Let SVars (A) be the set of all x ∈ V such that `x or ax occurs in A. A ref-word r ∈ R(A)
is valid if, for every x ∈ SVars (A), |r|`x

= |r|ax
= 1, and `x occurs to the left of ax. Then

Ref(A), Ref(A,w), and JAK are defined analogously to regex formulas.

Hence, a vset-automaton can be understood as an NFA over Σ that has additional transitions
that open and close variables. When using ref-words, it is interpreted as NFA over the
alphabet (Σ∪Γ), and defines the ref-language R(A); and Ref(A) is the subset of R(A) where
each variable in V is opened and closed exactly once (and the two operations occur in the
correct order). This also demonstrates why our definition is equivalent to the definition
from [11] (there, the condition that every variable has to be opened and closed exactly once
is realized by the definition of the successor relation for configurations). In particular, every
word in Ref(A) encodes an accepting run of A (as defined in [11]).
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Figure 1 A vset-automaton Aset (left) and a vstk-automaton Astk (right). Then Ref(Aset) consist of
ref-words r = ai1`xai2`yai3az1 ai4az2 ai5 , with i1, . . . , i5 ≥ 0, z1, z2 ∈ {x, y} and z1 6= z2. Similarly,
the ref-words from Ref(Astk) are of the form r = ai1`xai2`yai3a ai4a ai5 , with i1, . . . , i5 ≥ 0. The
left a closes y, and the right a closes x.

Although interpreting vset-automata as acceptors of ref-languages is often convenient, it
comes with a caveat. While Ref(A1) = Ref(A2) implies JA1K = JA2K for all A1, A2 ∈ VAset, the
converse does not hold: Consider the two ref-words r1 := `x`yaayax and r2 := `y`xaaxay.
Both define the same a-tuple µ (with µ(x) = µ(y) = [1, 2〉), although r1 6= r2.

Fagin et al. [11] also introduced the variable stack automaton (vstk-automaton). Its
definition is almost identical to vset-automata, the only difference is that instead of using a
distinct symbol ax for every variable x, vstk-automata have only a single closing symbol a,
which closes the variable that was opened most recently (hence the “stack” in “variable
stack automaton”). From now on, assume that Γ also includes a, and extend clr by defining
clr(a) := ε. For every vstk-automaton A, R(A) and SVars (A) are defined as for vset-
automata. We define Ref(A) as the set of all valid r ∈ R(A), where r is valid if, for each
x ∈ SVars (A), `x occurs exactly once in w, and is closed by a matching a. More formally,
r is valid if |r|a =

∑
x∈SVars(A) |r|`x

, and for every x ∈ SVars (A), we have that |r|`x
= 1 and

r can be uniquely factorized into r = r1`xr2ar3, with |r2|a =
∑
x∈SVars(A) |r2|`x

. This unique
factorization allows us to interpret every r ∈ Ref(A) as a µr analogously to vset-automata.

We use VAset and VAstk to denote the set of all vset-automata and all vstk-automata,
respectively. We define VA := VAset ∪ VAstk, and refer to the elements of VA as v-automata.
An example for each type of v-automata can be found in Figure 1.

2.1.2 Spanner Algebras
In order to construct more sophisticated spanners, we introduce spanner operators.

I Definition 8. Let P, P1, P2 be spanners. The algebraic operators union, projection, natural
join and selection are defined as follows.
Union P1 and P2 are union compatible if SVars (P1) = SVars (P2), and their union (P1 ∪ P2)

is defined by SVars (P1 ∪ P2) := SVars (P1) and (P1 ∪ P2)(w) := P1(w) ∪ P2(w), w ∈ Σ∗.
Projection Let Y ⊆ SVars (P ). The projection πY P is defined by SVars (πY P ) := Y and

πY P (w) := P |Y (w) for all w ∈ Σ∗, where P |Y (w) is the restriction of all µ ∈ P (w) to Y .
Natural join Let Vi := SVars (Pi) for i ∈ {1, 2}. The (natural) join (P1 ./ P2) of P1 and P2

is defined by SVars (P1 ./ P2) := SVars (P1)∪SVars (P2) and, for all w ∈ Σ∗, (P1 ./ P2)(w)
is the set of all (V1 ∪ V2, w)-tuples µ for which there exist µ1 ∈ P1(w) and µ2 ∈ P2(w)
with µ|V1

(w) = µ1(w) and µ|V2
(w) = µ2(w).

Selection Let R ∈ (Σ∗)k be a k-ary relation over Σ∗. The selection operator ζR is parame-
terized by k variables x1, . . . , xk ∈ SVars (P ), written as ζRx1,...,xk

. The selection ζRx1,...,xk
P

is defined by SVars
(
ζRx1,...,xk

P
)

:= SVars (P ) and, for all w ∈ Σ∗, ζRx1,...,xk
P (w) is the set

of all µ ∈ P (w) for which
(
wµ(x1), . . . , wµ(xk)

)
∈ R.

Note that join operates on spans, while selection operates on the subwords of w that are
described by the spans. Like [11] (also see the brief remark on core spanners below), we
mostly consider the string equality selection operator ζ= . Hence, unless otherwise noted,
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AN AF
a,`x,ax a

`x

a

ax

a

Figure 2 Two vset-automata AN and AF , which both define the universal spanner for the single
variable x (cf. [11]) over the alphabet {a}. As R(AN ) contains ref-words like aaxa`x or a`xa`x,
AN is not functional. In contrast to this, AF is functional, as it uses its three states to ensure that
its ref-words contain each of `x and ax exactly once, and in the right order.

the term “selection” refers to selection by the k-ary string equality relation. Regarding
the join of two spanners P1 and P2, P1 ./ P2 is equivalent to the intersection P1 ∩ P2 if
SVars (P1) = SVars (P2), and to the Cartesian Product P1 × P2 if SVars (P1) and SVars (P2)
are disjoint. If applicable, we write ∩ and × instead of ./.

We refer to regex formulas and v-automata as primitive spanner representations. A
spanner algebra is a finite set of spanner operators. If O is a spanner algebra and C is a class
of primitive spanner representations, then CO denotes the set of all spanner representations
that can be constructed by (repeated) combination of the symbols for the operators from
O with regex formulas from C. For each spanner representation of the form oρ (or ρ1 o ρ2),
where o ∈ O, we define JoρK = oJρK (and Jρ1 o ρ2K = Jρ1K o Jρ2K). Furthermore, JCOK is the
closure of JCK under the spanner operators in O.

Fagin et al. [11] refer to JRGX{π,ζ
=,∪,./}K as the class of core spanners, as these capture

the core of the functionality of SystemT. Following this, we define core := {π, ζ=,∪, ./}. This
allows us to use more compact notation, like RGXcore, VAcore

set , VAcore
stk , and VAcore.

2.1.3 Some Results on Automata-Based Spanners
This section develops some basic insights on aspects of v-automata, which we later use to
provide further context to the main result in Section 3. While [11] defines RGX as the set
of functional regex formulas, no analogous restriction is used for VAset and VAstk. Using
ref-word terminology, this means that for each α ∈ RGX, all information that is needed to
determine Ref(α,w) can be derived from R(α). We adapt this notion to v-automata, and
call A ∈ VA functional if Ref(A) = R(A). Figure 2 contains examples for (non-)functional
vset-automata (similar observations can be made for vstk-automata). This definition is also
natural under the semantics as defined in [11]: Translated to these semantics, a v-automaton
A is functional if every path from q0 to qf yields an accepting run of A.

While v-automata in general have to keep track of the used variables, functional v-
automata store this information implicitly in their states. Hence, their evaluation problem
can be solved efficiently:

I Lemma 9. Given w ∈ Σ∗, a functional A ∈ VA, and a (SVars (A), w)-tuple µ, µ ∈ JAK(w)
can be decided in polynomial time.

With a slight modification of standard reachability techniques, we can show the following:

I Proposition 10. Given A ∈ VA, we can decide in polynomial time whether A is functional.

In contrast to Lemma 9, even special cases of evaluating non-functional v-automata are hard:

I Lemma 11. Given A ∈ VA, deciding whether JAK(ε) 6= ∅ is NP-complete.
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The proof uses a basic reduction from the Hamiltonian path problem, which is NP-complete
(cf. Garey and Johnson [13]). We discuss the matching upper bound in Section 3.

Obviously, every vset- or vstk-automaton can be transformed into an equivalent functional
automaton, by intersecting with an NFA that accepts the set of all valid ref-words, using the
standard constructions for NFA-intersection. Lemma 11 already suggests that this conversion
is not possible in polynomial time (unless the number of variables is bounded); we also show
matching exponential size bounds:

I Proposition 12. Let fset(k) := 3k, fstk(k) := (k + 2)2k−1, and s ∈ {set, stk}. For every
A ∈ VAs with n states and k variables, there exists an equivalent functional AF ∈ VAs with
n · fs(k) states. For every k ≥ 1, there is an Ak ∈ VAs with one state and k variables, such
that every equivalent functional AF ∈ VAs has at least fs(k) states.

The lower bounds are obtained by treating the v-automata as NFAs, which allows the use
of a fooling set technique by Birget [2]. We briefly compare vset- and vstk-automata: As
shown in [11], JVAstkK ⊂ JVAsetK. The reason for this is that, as vstk-automata always close
the variable that was opened most recently, they can only express hierarchical spanners (a
spanner is hierarchical if its spans do not overlap – for a formal definition, see [11]). While
this behavior can be simulated with vset-automata, a slight modification of the proof of
Proposition 12 shows that this is not possible in an efficient manner:

I Proposition 13. For every k ≥ 1, there is a vstk-automaton Ak with one state and k + 2
edges, such that every vset-automaton A with JAK = JAkK has at least k! states.

Hence, although vstk-automata can express strictly less than vset-automata, they may offer
an exponential succinctness advantage. We revisit this in Section 3.

2.2 Word Equations and ECreg

A pattern is a word α ∈ (Σ ∪ Ξ)∗, and a word equation is a pair of patterns (ηL, ηR), which
can also be written as ηL = ηR. A pattern substitution (or just substitution) is a morphism
σ : (Ξ ∪ Σ)∗ → Σ∗ with σ(a) = a for all a ∈ Σ. Recall that a morphism from a free monoid
A∗ to a free monoid B∗ is a function h : A∗ → B∗ such that h(x · y) = h(x) · h(y) for all
x, y ∈ A∗. Hence, in order to define h, it suffices to define h(x) for all x ∈ A. Therefore, we
can uniquely define a pattern substitution σ by defining σ(x) for each x ∈ Ξ.

A substitution σ is a solution of a word equation (ηL, ηR) if σ(ηL) = σ(ηR). The set of all
variables in a pattern α is denoted by var(α). We extend this to word equations η = (ηL, ηR)
by var(η) := var(ηL) ∪ var(ηR).

The existential theory of concatenation EC is obtained by combining word equations
with ∧, ∨, and existential quantification over variables. Formally, every word equation η
is an EC-formula, and σ |= η if σ is a solution of η. If ϕ1 and ϕ2 are EC-formulas, so are
ϕ∧ := (ϕ1 ∧ ϕ2) and ϕ∨ := (ϕ1 ∨ ϕ2), with σ |= ϕ∧ if σ |= ϕ1 and σ |= ϕ2; and σ |= ϕ∨ if
σ |= ϕ1 or σ |= ϕ2. Finally, for every EC-formula ϕ and every x ∈ Ξ, ψ := (∃x : ϕ) is an
EC-formula, and σ |= ψ if there exists a w ∈ Σ∗ such that σ[x→w] |= ϕ, where the substitution
σ[x→w] is defined by σ[x→w](y) := w if y = x, and σ[x→w](y) := σ(y) if y 6= x.

We also consider the existential theory of concatenation with regular constraints, ECreg.
In addition to word equations, ECreg-formulas can use constraints CA(x), where x ∈ Ξ is a
variable, A is an NFA, and σ |= CA(x) if σ(x) ∈ L(A). As every regular expression can be
directly converted into an equivalent NFA, we also allow constraints Cα(x) that use regular
expressions instead of NFAs. We freely omit parentheses, as long as the meaning of the formula
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remains unambiguous. To increase readability, we allow existential quantifiers to range over
multiple variables; i. e., we use ∃x1, x2, . . . , xk : ϕ as a shorthand for ∃x1 : ∃x2 : . . . ∃xk : ϕ.

The set free(ϕ) of free variables of an ECreg-formula ϕ is defined by free(η) = var(η),
free(ϕ1∧ϕ2) := free(ϕ1∨ϕ2) := free(ϕ1)∪ free(ϕ2), and free(∃x : ϕ) := free(ϕ)−{x}. Finally,
we define free(C) = ∅ for every constraint C. (While one could also argue in favor of
free(C(x)) = {x}, choosing ∅ simplifies the definitions in Section 3). For all ϕ ∈ ECreg, let
JϕK := {σ | σ |= ϕ}. Two formulas ϕ1, ϕ2 ∈ ECreg are equivalent if free(ϕ1) = free(ϕ2) and
Jϕ1K = Jϕ2K. We write this as ϕ1 ≡ ϕ2. For increased readability, we use ϕ(x1, . . . , xk) to
denote free(ϕ) = {x1, . . . , xk}. Building on this, we also use (w1, . . . , wk) |= ϕ(x1, . . . , xk) to
denote σ |= ϕ for the substitution σ that is defined by σ(xi) := wi, 1 ≤ i ≤ k.

I Example 14. Consider the EC-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ) and the
ECreg-formula ϕ1(x, y, z) := ∃x̂, ŷ : (x = zx̂ ∧ y = zŷ ∧ CΣ+(z)) . Then σ |= ϕ1 if and only if
σ(x) and σ(y) have σ(z) as common prefix. If, in addition to this, σ(z) 6= ε, then σ |= ϕ2.

Every EC-formula can be converted into a single word equation (cf. Karhumäki, Mignosi, and
Plandowski [18]), and every ECreg-formula into a single word equation with rational constraints
(cf. Diekert [6]). For conjunctions, the construction is easily explained: Choose distinct
letters a, b ∈ Σ. Hmelevskii’s pattern pairing function is defined by 〈α, β〉 := αaβaαbβb.
Then (αL = αR) ∧ (βL = βR) holds if and only if 〈αL, βL〉 = 〈αR, βR〉. The construction
for disjunctions is similar, but more involved (and, in general, converting a formula with
alternating disjunctions and conjunctions leads to an exponential size increase).

Satisfiability for ECreg is PSPACE-complete; but even for EC, showing the upper bound
is by no means trivial (cf. [6, 8]). Note that negation is left out intentionally: Even the
EC-fragment ∀∃3 (one universal over three existential variables) is undecidable (Durnev [9]).

3 SpLog: A Logic for Spanners

As shown by Freydenberger and Holldack [12], every element of RGXcore can be converted into
an ECreg-formula, and every word equation with regular constraints (and, hence, every ECreg-
formula) can be converted to RGXcore. While the latter results in a spanner that is satisfiable
if and only if the formula is satisfiable, the input word of the spanner needs to encode the
whole word equation (see the comments after Example 14). Hence, the spanner can only
simulate satisfiability, but not evaluation. To overcome this problem, we introduce SpLog
(short for spanner logic), a fragment of ECreg that directly corresponds to core spanners:

I Definition 15. A formula ϕ ∈ EC is called safe if the following two conditions are met:
1. If (ϕ1 ∨ ϕ2) is a subformula of ϕ, then free(ϕ1) = free(ϕ2).
2. Every constraint CA(x) occurs only as part of a subformula (ψ∧CA(x)), with x ∈ free(ψ).
Let W ∈ Ξ. The set of all SpLog-formulas with main variable W, SpLog(W), is the set of all
safe ϕ ∈ ECreg such that
1. all word equations in ϕ are of the form W = ηR, with ηR ∈ ((Ξ− {W}) ∪ Σ)∗,
2. for every subformula ψ of ϕ, W ∈ free(ψ).
We also define the set of all SpLog-formulas by SpLog :=

⋃
W∈Ξ SpLog(W), and we use

SpLogrx to denote the fragment of SpLog that exclusively defines constraints with regular
expressions instead of NFAs.

Less formally, for every ϕ ∈ SpLog(W), the main variable W appears on the left side of
every equation (and is never bound with a quantifier). The requirement that ϕ is safe
ensures that each variable corresponds to a subword of W. When declaring the free variables
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of a SpLog-formula, we slightly diverge from our convention for ECreg-formulas, and write
ϕ(W;x1, . . . , xk) to denote a formula with main variable W, and free(ϕ) = {W, x1, . . . , xk}.

I Example 16. Let ϕ1(W;x) := ∃y, z1, z2 : (W = yy ∧W = z1xz2 ∧ CΣ+(x)). Then ϕ1 is
a SpLog(W)-formula, and σ |= ϕ1 iff. σ(W) is a square and contains σ(x) as a nonempty
subword. In contrast to this, ϕ2(W;x, y) := (W = xx ∨W = yyy) is not a SpLog-formula, as
it is not safe (intuitively, if e. g. σ(W) = σ(x)2, then σ |= ϕ2, even if σ(y) 6v σ(W)). Further
examples for SpLog-formulas can be found in Section 4.

Before we examine conversions between SpLog and various representations of core spanners,
we introduce a result that provides us with a convenient shorthand notation:

I Lemma 17. Let ϕ ∈ SpLog(W), x ∈ free(ϕ) − {W}, and let ψ ∈ SpLog(x) such that W
does not occur in ψ. We can compute in polynomial time a χ ∈ SpLog(W) with χ ≡ (ϕ ∧ ψ).

Proof. Let x1, x2 be new variables and define χ := ϕ ∧ ∃x1, x2 :
(
(W = x1 · x · x2) ∧ ψ̂

)
,

where ψ̂ is obtained from ψ by replacing every equation x = ηR with W = x1 · ηR · x2. Given
W = x1 · x · x2, these equations define the same relations as the x = ηR. As W does not
occur in ψ, χ ≡ (ϕ ∧ ψ) holds. J

This allows us to combine SpLog-formulas with different main variables.
When comparing the expressive power of spanners and SpLog, we need to address one

important difference of the two models: While SpLog is defined on words, spanners are
defined on spans of an input word. Apart from slight modifications to adapt it to SpLog, the
following definition for the conversion of spanners to formulas was introduced in [12]:

I Definition 18. Let P be a spanner and let ϕ ∈ SpLog(W) with free(ϕ) = {W} ∪ {xP , xC |
x ∈ SVars (P )}. We say that ϕ realizes P if, for all substitutions σ, σ |= ϕ holds if and
only if there is a µ ∈ P (σ(W)) such that, for each x ∈ SVars (P ), σ(xP ) = σ(W)[1,i〉 and
σ(xC) = σ(W)[i,j〉, where [i, j〉 = µ(x).

The intuition behind this definition is that every span [i, j〉 of w is characterized by its
content w[i,j〉, and by w[1,i〉, the prefix of w that precedes the span. Hence, every variable x
of the spanner is represented by two variables xC and xP , which store the content and the
prefix, respectively. Moreover, the main variable of the SpLog-formula corresponds to the
input word of the spanner. Next, we consider conversions in the other direction:

I Definition 19. Let ϕ ∈ SpLog(W). A spanner P with SVars (P ) = free(ϕ)− {W} realizes
ϕ if, for all substitutions σ, σ |= ϕ holds if and only if there is a µ ∈ P (σ(W)) such that
σ(W)µ(x) = σ(x) for all x ∈ SVars (P ).

Again, the main variable of the SpLog-formula corresponds to the input word of the spanner.
Note that it is possible to define realizability in a stricter way: Instead of requiring that
µ ∈ P (σ(W)) holds for one µ with σ(W)µ(x) = σ(x) for all x ∈ SVars (P ), we could require
µ ∈ P (σ(W)) for all such µ. But such a spanner can directly be constructed from a spanner P
that satisfies Definition 19, by joining P with a universal spanner (cf. [11]), and using string
equality selections (for the matter of this paper, this will not affect the complexity, as consider
spanners with string equality relations).´

Let C1 be a class of spanner representations (or SpLog-formulas), and let C2 be a class
of SpLog-formulas (or spanner representations). We say that there is a polynomial size
conversion from C1 to C2 if there is an algorithm that, given a ρ1 ∈ C1, computes a ρ2 ∈ C2
such that ρ2 realizes ρ1, and the size of ρ2 is polynomial in the size of ρ1. If the algorithm
also works in polynomial time, we say that there is a polynomial time conversion. First, we
use Lemma 11 to obtain a negative result on conversions to SpLog:
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I Lemma 20. P = NP, if there is a polynomial time conversion from VAset or VAstk to SpLog.

This result is less problematic than it might appear, as it can be overcome with a very minor
relaxation of the definition of polynomial time conversions: We say that a SpLog-formula ϕ
realizes a spanner P modulo ε if ϕ realizes a spanner P̂ with P (w) = P̂ (w) for all w ∈ Σ+. In
other words, ϕ realizes P on all inputs, except ε (where the behavior is undefined). Likewise,
a polynomial time conversion modulo ε computes formulas that realize the spanners modulo ε.
We now state the central result of this paper:

I Theorem 21. There are polynomial time conversions
1. from RGXcore to SpLogrx, and from SpLogrx to RGXcore,
2. from SpLog to VAcore

set and to VAcore
stk ,

3. modulo ε from VAcore
set and VAcore

stk to SpLog.

Recall that SpLogrx is the fragment of SpLog that uses only regular expressions to define
constraints. The conversion from RGXcore to SpLogrx is almost identical to the conversion
from RGXcore to ECreg that was presented in [12]. The most technically challenging part is
the conversion of non-functional v-automata to SpLog, which requires a gadget that acts as
a synchronization mechanism inside the formula. This is realized by sets of variables that
map to either ε or the first letter of W, which is the main reason that the construction only
works modulo ε. For most applications, P (ε) can be considered a pathological edge case: As
P (w) can be understood as searching in w, P (ε) corresponds to a search in ε. But even if
we insist on correctness on ε, we are still able to observe polynomial size conversions:

I Corollary 22. There are polynomial size conversions from VAcore to SpLog.

As discussed in Section 2.1.3, there are exponential blowups when moving from general to
functional v-automata, as well as from vstk- to vset-automata. Another consequence of
Theorem 21 is that this does not hold if we extend the automata with the core-algebra:

I Corollary 23. Given ρ ∈ VAcore, we can compute an equivalent ρf ∈ VA{π,ζ
=,∪,×}

set or
ρf ∈ VA{π,ζ

=,∪,×}
stk , where ρf is of polynomial size and every v-automaton in ρf is functional.

Again, due to Lemma 11, computing an equivalent ρf in polynomial time would imply
P = NP; but we can compute in polynomial time a ρf that is equivalent modulo ε.

This also demonstrates that ./ can be simulated by a combination of × and ζ=, in addition
to showing that the algebra compensates the aforementioned disadvantages in succinctness.
While we leave open whether there are polynomial size conversions from SpLog to RGXcore,
or from VAcore to SpLogrx or RGXcore, we observe that, due to Theorem 21, all these questions
are equivalent to asking how efficiently SpLogrx can simulate NFAs.

Another question that we leave open is whether JSpLogK = JECregK (see Section 4.4). But
we are able to state an important difference between the two logics: While evaluation of
ECreg-formulas is PSPACE-hard, this does not hold for SpLog (assuming NP 6= PSPACE):

I Corollary 24. Given ϕ ∈ SpLog and a substitution σ, deciding σ |= ϕ is NP-complete. For
every fixed ϕ ∈ SpLog, given a substitution σ, deciding σ |= ϕ is in NL.

Finally, we remark that Theorem 21 also shows that the PSPACE upper bounds of deciding
satisfiability and hierarchicality for RGXcore that were observed in [12] also apply to VAcore

set
and VAcore

stk . The same holds for the uppers bound for combined and data complexity.
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4 Expressing Relations in SpLog

This section examines how SpLog expresses relations and languages: Section 4.1 lays the
formal groundwork by introducing selectability of relations in SpLog (and connecting it to
core spanners), Section 4.2 contains an extended example, Section 4.3 provides an efficient
conversion of a subclass of regex to SpLog, and Section 4.4 defines and applies a normal form.

4.1 Selectable Relations
One of the topics of Fagin et al. [11] is which relations can be used for selections in core
spanners, without increasing the expressive power. This translates to the question which
relations can be used in the definition of SpLog-formulas. For ECreg, this question is simple:
If, for any k-ary relation R, there is an ECreg-formula ϕR such that ~w |= ϕR holds if and
only if ~w ∈ R, we know that we can use ϕR in the construction of ECreg-formulas. In
contrast to this, the special role of the main variable makes the situation a little bit more
complicated for SpLog. Fortunately, [11] already introduced an appropriate concept for core
spanners, that we can directly translate to SpLog: A k-ary word relation R is selectable by
core spanners if, for every ρ ∈ RGXcore and every sequence of variables ~x = (x1, . . . , xk) with
x1, . . . , xk ∈ SVars (ρ), the spanner JζR~x ρK is expressible in RGXcore.

Analogously, we say that R is SpLog-selectable if for every ϕ ∈ SpLog and every sequence
of variables ~x = (x1, . . . , xk) with x1, . . . , xk ∈ free(ϕ) − {W}, there is a ϕR~x ∈ SpLog with
free(ϕ) = free(ϕR~x ), and σ |= ϕR~x if and only if σ |= ϕ and (σ(x1), . . . , σ(xk)) ∈ R. Before we
consider some examples, we prove that these two definitions are equivalent not only to each
other, but also to a more convenient third definition:

I Lemma 25. For every relation R ⊆ (Σ∗)k, k ≥ 1, the following conditions are equiva-
lent:
1. R is selectable by core spanners,
2. R is SpLog-selectable,
3. there is a ϕ(W ;x1, . . . , xk) ∈ SpLog with σ |= ϕ if and only if (σ(x1), . . . , σ(xk)) ∈ R.

The equivalence of the two notions of selectability is one of the features of SpLog: When
defining core spanners, one can use SpLog to define relations that are used in selections. As
the proof is constructive and uses Theorem 21, this does not even affect efficiency. Before
we discuss how the equivalent third condition in Lemma 25 can be used to simplify this
even further, we consider a short example. As shown by Fagin et al. [11], the relation v is
selectable by core spanners. We reprove this by showing that it is SpLog-selectable:

I Example 26. The subword relation Rv := {(x, y) | x v y} is selected by the SpLog-formula
ϕv(W;x, y) := ∃z1, z2, y1, y2 : ((W = z1y1xy2z2) ∧ (W = z1yz2)). If this is not immediately
clear, note that the formula implies z1y1xy2z2 = z1yz2, which can be reduced to y1xy2 = y.

This allows us to use x v y as a shorthand in SpLog-formulas. We also use v to address two
inconveniences that arise when strictly observing the syntax of SpLog-formulas: Firstly, the
need to introduce additional variables that might affect readability (like z1, z2 in Example 26),
and, secondly, the basic form that equations have the main variable W on the left side.
Together with Lemma 17 and the third condition of Lemma 25, the selectability of v allows
us more compact definitions of SpLog-selectable relations: Instead of dealing with a single
main variable, we can combine multiple SpLog-functions with different main variables. Hence,
when using SpLog to define a relation over a set of variables V , we may assume that the
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formula is of the form (
∧
x∈V x v W) ∧ ϕ, and specify only ϕ. When the main variable is

clear, we also omit it, as seen in the following examples:

I Example 27. Using the aforementioned simplifications, we can write the formula from
Example 26 as ϕv(x, y) := ∃y1, y2 : (y = y1 ·x ·y2). Similarly, we can select the prefix relation
with the formula ϕpref (x, y) := ∃z : y = xz. Both are shorthands for SpLog(W)-formulas.

As mentioned above, this allows us to extend the syntax of SpLog with x v y. Other
extensions are x 6= ε and x 6= y: For x 6= ε, we can use ϕ 6=ε(x) := (x vW) ∧ (CΣ+(x)). For
the more general x 6= y, we consider the following SpLog(W)-formula:

ϕ6=(x, y) :=
((
∃x2 : (x = yx2) ∧ (x2 6= ε)

)
∨
(
∃y2 : (y = xy2) ∧ (y2 6= ε)

))
∨
(∨

a∈Σ

(
∃z, x2, y2, b : (x = zax2) ∧ (y = zby2) ∧ CΣ−{a}(b)

))
The core spanner selectability of 6= was already shown in [11], Proposition 5.2. Depending
on personal preferences, ϕ6= might be considered more readable than the spanner in that
proof. A similar construction was also used in [18] to show EC-expressibility of 6=.

4.2 Extended Example: Relations for Approximate Matching
In this section, we examine how SpLog-formulas can be used to express relations of words
that are approximately identical. In literature, this is commonly defined by the notion of an
edit distance between two words. Following Navarro [21], we consider edit distances that are
based on three operations: For words u, v ∈ Σ∗, we say that v can be obtained from u with
1. an insertion, if u = u1 · u2 and v = u1 · a · u2,
2. a deletion, if u = u1 · a · u2 and v = u1 · u2,
3. a replacement, if u = u1 · a · u2 and v = u1 · b · u2,
where u1, u2 ∈ Σ∗, a, b ∈ Σ. For every choice of permitted operations, a distance d(u, v)
is then defined as the minimal number of operations that is required to obtain v from u.
One common example is the Levenshtein-distance dL (also called edit distance), which uses
insertion, deletion, and replacement. The following SpLog-formula demonstrates that, for
each k ≥ 1, the relation of all (u, v) with dL(u, v) ≤ k is SpLog-selectable:

ϕL(k)(W;x, y) := ∃x1, . . . , xk, y1, . . . , yk, z0, . . . , zk :

(x = z0 ·x1 ·z1 ·x2 ·z2 · · ··xk ·zk)∧(y = z0 ·y1 ·z1 ·y2 ·z2 · · ··yk ·zk)∧
k∧
i=1

Cα(xi)∧
k∧
i=1

Cβ(yi),

where α := β := (Σ ∨ ε). Here, an insertion is expressed by assigning xi = ε and yi ∈ Σ, a
deletion is modeled by xi ∈ Σ and yi = ε, and a replacement by xi, yi ∈ Σ. This case and
xi = yi = ε also cover cases where less than k operations are used.

Hence, by changing the constraints, this formula can also be used for the Hamming distance
(which uses only replacements), and the episode distance (which uses only insertions), by
defining α := β := Σ, or α := ε and β := Σ (respectively).

With some additional effort, we can also express the relation for the longest common
subsequence distance, which uses only insertions and deletions. Instead of changing α or β,
we need to ensure that for every i, xi = ε or yi = ε holds. We cannot directly write
((xi = ε) ∨ (yi = ε)), as this is not a safe formula. Instead, we extend the conjunction inside
ϕL(k) with

∧k
i=1
(
((xi = ε) ∧ (yi v W)) ∨ ((yi = ε) ∧ (xi v W))

)
, which is safe and equivalent

to
∧k
i=1((xi = ε) ∨ (yi = ε)). In other words, we use v to guard the xi and yi.
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4.3 Efficient Conversion of vsf-Regex to SpLog
Most modern implementations of regular expressions contain a backreference operator that
allows the definition of non-regular languages. This is formalized in regex (also called extended
regular expressions), which extend regex formulas with variable references &x for every x ∈ Ξ.
Intuitively, the semantics of &x can be understood as repeating the last value that was
assigned to x{ }, assuming that the regex is parsed left to right (for a formal definition that
uses parse trees, see Freydenberger and Holldack [12]; for a definition with ref-words, see
Schmid [23] or the full version of this paper). For example, x{Σ∗} ·&x ·&x generates the
language of all www with w ∈ Σ∗.

As shown by Fagin et al. [11], core spanners cannot define all regex languages. But [12]
introduces a subclass of regex, the vstar-free regex (short: vsf-regex). A vsf-regex is a regex
that does not use x{ } or &x inside a Kleene star *. Every vsf-regex can be converted
effectively into a core spanner; but the conversion from [12] can lead to an exponential
blowup. The question whether a more efficient conversion is possible was left open in [12].
Using SpLog, we answer this positively:

I Theorem 28. Given a vsf-regex α, an equivalent ϕ ∈ SpLog can be computed in polynomial
time.

As a consequence, it is possible to extend the syntax of SpLogrx, SpLog, and ECreg by
defining constraints with vsf-regex instead of classical regular expressions, without affecting
the complexity of evaluation or satisfiability (and core spanner representations can also use
vsf-regex). Theorem 28 also shows that, given vsf-regex α1, . . . , αn, one can decide in PSPACE
whether

⋂
L(αi) = ∅ (by converting each αi into a formula ϕi, and deciding the satisfiability

of
∧
ϕi). This is an interesting contrast to the full class of regex, where even the intersection

emptiness problem for two languages is undecidable (cf. Carle and Narendran [3]).

4.4 A Normal Form for SpLog
Another advantage of using a logic is the existence of normal forms. In order to consider a
short example of such an application, we introduce the following:

IDefinition 29. A ϕ ∈ SpLog is a prenex conjunction if ϕ = ∃x1, . . . , xk : (
∧m
i=1 ηi∧

∧n
j=1 Cj),

with k, n ≥ 0, m ≥ 1, where the ηi are word equations, and the Cj are constraints. A SpLog-
formula is in DPC-normal form (DPCNF) if it is a disjunction of prenex conjunctions.

I Lemma 30. Given ϕ ∈ SpLog, we can compute ψ ∈ SpLog in DPCNF with ϕ ≡ ψ.

Fagin et al. [11] also examined CRPQ= and UCRPQ= (conjunctive regular path queries
with string equality, and unions of these). These are existential positive queries on graphs,
but when restricted to marked paths, JUCRPQ=K = JRGXcoreK holds (cf. [11]). Using our
methods, it is easy to show that there are polynomial time transformations between CRPQ=

and SpLog prenex conjunctions, and between UCRPQ= and DPCNF-formulas. The author
conjectures that the exponential blowup from the proof of Lemma 30 is necessary. This
would immediately imply that there is an exponential blowup from RGXcore to UCRPQ=.

We use DPCNF to illustrate some differences between SpLog and ECreg: First, consider the
following: Every ECreg-formula ϕ with free(ϕ) = {x} defines a language L(ϕ) := {σ(x) | σ |=
ϕ} (in Section 5, we shall see that this has applications beyond the language theoretic point
of view). For C ∈ {EC,ECreg, SpLog}, a language L ⊆ Σ∗ is a C-language if there is a ϕ ∈ C
with L(ϕ) = L. We denote this by L ∈ L(C). For L ⊆ Σ∗ and a ∈ Σ, we define the right
quotient of L by a as L /a := {w | wa ∈ L}. It is easily seen that the class of ECreg-languages
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is closed under this operation, by using formulas like ϕ/a(w) := ∃u : ((u = wa) ∧ ϕ(u)). But
as SpLog-variables can only contain subwords of the main variable, writing u = wa is not
possible in SpLog. The proof for the analogous is more involved and relies on Lemma 30.

I Lemma 31. For every SpLog-language L and every a ∈ Σ, L /a is a SpLog-language.

This allows us to use Greibach’s Theorem [15] to prove the following:

I Proposition 32. The following conditions are equivalent:
1. L(ECreg) = L(SpLog),
2. Given ϕ ∈ ECreg, it is decidable whether L(ϕ) ∈ L(SpLog),
3. L(SpLog) is closed under the prefix operator.

This characterization might serve as a starting point to answer whether JECregK = JSpLogK,
an important question that is left open in the present paper (we define JCK := {JϕK | ϕ ∈ C}
for C ⊆ ECreg). The question appears to be surprisingly complicated; even when only
considering word equations. We only discuss this briefly, as a deeper examination would
require considerable additional notation. In contrast to EC and ECreg, SpLog can only use
variables that are subwords of the main variable. Hence, one might expect that it is easy
to construct an EC-formula where other variables are necessary. But as it turns out, many
word equations can be rewritten to reduce the number of variables. In particular, there
is a notion of word equations where the solution set can be parameterized (i. e., expressed
with a finite number of so-called parametric words – for more details, see e. g. Czeizler [5],
Karhumäki and Saarela [20]). In all cases that were considered by the author, it was possible
to use these parametrizations to construct SpLog-formulas. Similarly, the solution sets of non-
parametrizable equations that the author examined, like xaby = ybax, are self-similar in a
way that allows the construction of SpLog-formulas (cf. Czeizler [5], Ilie and Plandowski [17]).
On the other hand, these constructions do not appear to generalize straightforwardly to an
equivalence proof.

5 Using EC-Inexpressibility to Prove Non-Selectability

While Section 4 examined various aspects of expressing relations in SpLog, the present section
examines how to prove that a relation cannot be selected. As we shall see, this can often
be proved by using inexpressibility of appropriate languages. To this end, general tools for
language inexpressibility (like a pumping lemma) would be very convenient. Up to now,
the only (somewhat) general technique for core spanner inexpressibility was given in [12],
where it was observed that on unary alphabets, core spanners can only define semi-linear
(and, hence, regular) languages. Due to the limited applicability of this result, having further
inexpressibility techniques appears to be desirable. As SpLog is a fragment of ECreg, it is
natural to ask whether this connection can be used to obtain inexpressibility results.

Karhumäki et al. [18] developed multiple inexpressibility techniques for EC. Sadly, EC-
inexpressibility does not imply SpLog-inexpressibility; e. g., for Σ = {a, b, c}, the language
{a, b}∗ is not EC-expressible (cf. [18]), but obviously SpLog-expressible. On the other hand,
while ECreg-inexpressibility results would be useful, to the author’s knowledge, the only
result in this direction is that every ECreg-language is an EDT0L-language (cf. Ciobanu et
al. [4]). While this allows the use of the EDT0L-inexpressibility results (e. g. Ehrenfeucht and
Rozenberg [10]), the large expressive power of EDT0L limits the usefulness of this approach.

As we shall see, developing a sufficient criterion for EC-expressible SpLog-languages
allows us to use one of the techniques from [18] for SpLog. We begin with a definition: A
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language L ⊆ Σ∗ is bounded if there exist words w1, w2, . . . , wn ∈ Σ+, n ≥ 1, such that
L ⊆ w∗1w

∗
2 · · ·w∗n. Combining a characterization of the class of bounded regular languages

(Ginsburg and Spanier [14]) with the observations on EC from [18] yields the following:

I Lemma 33. Every bounded regular language is an EC-language.

I Theorem 34. Every bounded SpLog-language is an EC-language.

The intuition behind this is very simple: In bounded SpLog-languages, every constraint can
be replaced with a bounded regular language (as this reasoning does not apply to ECreg, the
proof does not generalize). The EC-inexpressibility technique from [18] that we are going to
use is based on the following definition by Karhumäki, Plandowski, and Rytter [19]:

I Definition 35. A word w ∈ Σ+ is imprimitive if there exist a u ∈ Σ+ and n ≥ 2 with
w = un. Otherwise, w is primitive. For a given primitive word Q, the FQ-factorization of
w ∈ Σ∗ is the factorization w = w0 ·Qx1 ·w1 · · ·Qxk ·wk that satisfies the following conditions:
1. Q2 6v wi for all 0 ≤ i ≤ k,
2. Q is a proper suffix of w0, or w0 = ε,
3. Q is a proper prefix of wk, or wk = ε,
4. Q is a proper prefix and a proper suffix of wi for all 0 < i < k.
Furthermore, we define TQ(w) := {x | Qx occurs in the FQ-factorization of w}, as well as
expQ(w) := max(TQ(w) ∪ {0}).

For every primitive word Q, the FQ-factorization of every word w (and, hence, expQ(w)) is
uniquely defined (cf. [18, 19]). We use this definition in the following pumping result:

I Theorem 36 (Karhumäki et al. [18]). For every EC-language L and every primitive word Q,
there exists a k ≥ 0 such that, for each w ∈ L with expQ(w) > k, there is a u ∈ L with
expQ(u) ≤ k which is obtained from w by removing some occurrences of Q.

We now consider a short example of this proof technique: As shown by Fagin et al. [11]
(Theorem 4.21), Lel := {aibi | i ≥ 0} is not expressible with core spanners (note that Lel
is also used in [18] as an example application of Theorem 36). The length of this proof
is roughly one page. Contrast this to the following: Assume that Lel is a SpLog-language.
Then Lel is an EC-language, due to Theorem 34. Choose the primitive word Q := a. Then
there exists a k ≥ 0 that satisfies Theorem 36. Choose w := ak+2bk+2, and observe that
expQ(w) = k + 1 > k (due to the factorization w = ε · ak+1 · abk+2). Hence there exists a
u = ak+2−jbk+2, j > 0, with u ∈ Lel. As k + 2− j < k + 2, this is a contradiction.

From the inexpressibility of Lel, Fagin et al. then conclude that the equal length relation
{(u, v) | |u| = |v|} is not selectable with core spanners (Karhumäki et al. [18] and Ilie [16]
use the same approach for EC: Show the non-selectability of a relation by proving that a
suitable language is not expressible). Using Theorem 36 and 34 we observe:

I Proposition 37. For x, y ∈ Σ∗, x is a scattered subword of y if there exist a k ≥ 1,
x1, . . . , xk, y0, . . . yk ∈ Σ∗ with x = x1 · · ·xk and y = y0(x1y1) · · · (xkyk). For every word
w ∈ Σ∗, its reversal wR is the word that is obtained by reading w from right to left. We
define the following binary relations over Σ∗:

Rscatt := {(u, v) | u is a scattered subword of v}, Rrev := {(u, v) | v = uR},
Rnum(a) := {(u, v) | |u|a = |v|a} for a ∈ Σ, R< := {(u, v) | |u| < |v|},
Rpermut := {(u, v) | |u|a = |v|a for all a ∈ Σ}.

Each of Rscatt, Rnum(a), Rpermut, Rrev, and R< is not SpLog-selectable.
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Sadly, being limited to bounded languages also limits the applicability of this approach. For
example, Ilie [16] shows that the language of square-free words over a two letter alphabet
(words that contain no subword xx with x 6= ε) is not EC-expressible. Although one could
expect that this language is not a SpLog-language, it is easily seen that every bounded
subset of this language has to be finite, which means that this technique cannot be applied.
Furthermore, the author conjectures that the relation {(x, xn) | x ∈ Σ∗, n ≥ 1} is not
SpLog-selectable, but there is no suitable bounded language that could be used to prove this.

6 Conclusions and Further Directions

As we have seen, SpLog has the same expressive power as the three classes of representations
for core spanners that were introduced by Fagin et al. [11], and it is possible to convert
between these models in polynomial time. As a result of this, core spanner representations
can be converted to SpLog to decide satisfiability and hierarchicality, and SpLog provides a
convenient way of defining core spanners, and in particular relations that are selectable by
core spanners (see e. g. ϕ6= in Example 27). Of course, whether one considers SpLog or one
of the spanner representations more convenient mostly depends on personal preferences and
the task at hand. Independent of one’s opinion regarding the practical applications of SpLog,
it can be used as a versatile tool for examining core spanners: For example, we used SpLog
as intermediary to obtain polynomial time conversions between various subclasses of VAcore.

In addition to this, we defined a pumping lemma for core spanners by connecting SpLog to
EC. A promising next step could be extending this to more general inexpressibility techniques
that go beyond bounded SpLog languages. While the connection to word equations suggests
that this line of research is difficult, one might also expect that at least some of the existing
techniques for word equations can be used.

Another set of question where the comparatively simple syntax and semantics of SpLog
might help is the relative succinctness of various models. For example, in order to examine the
blowup from VAcore to RGXcore, it suffices to examine the blowup from NFAs to SpLogrx; and
converting RGXcore to UCRPQ= has the same blowup as the transformation of SpLog-formulas
to DPCNF. (Conjecture: All these blowups are exponential.)

Finally, the conversion of SpLog-formulas to spanner representations preserves many
structural properties. Hence, when looking for subclasses of spanners that have certain
properties (e. g., more efficient combined complexity of evaluation), the search can start with
examining certain fragments of SpLog that correspond to interesting classes of spanners. One
direction that seems to be promising as well as challenging is developing a notion of acyclic
core spanners, which would need to account for the interplay of join and string equality (as
seen in Corollary 23, every spanner representation can be rewritten into a representation
that simulates ./ with × and ζ=). This direction might be helped by first defining acyclicity
for SpLog-formulas, which in turn could be inspired by the restrictions that are discussed in
Reidenbach and Schmid [22].

A more fundamental question is whether JECregK = JSpLogK. In addition to our discussion
in Section 4.4, a potential approach to this is examining whether every bounded ECreg-language
is an EC-language (as ECreg can use arbitrary variables, the reasoning from Theorem 34 does
not carry over from SpLog to ECreg).

Another aspect of SpLog that makes it interesting beyond its connection to core spanners
is that it can be understood as the fragment of ECreg describes properties of words without
using any additional space, as every variable and equation has to be a subword of the main
variable (hence, the name “SpLog” can also be interpreted as “subword property logic”). One
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effect of this is that evaluation of SpLog has lower upper bounds that evaluation of ECreg.
While we have only defined SpLog with a single main variable, a natural generalization would
be allowing multiple main variables (the definition generalizes naturally, and the upper bound
for evaluation remains). A potential application of SpLog with two (or more) variables is
describing relations for path labels in graph databases.
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Abstract
Continuous tracking of complex data analytics queries over high-speed distributed streams is
becoming increasingly important. Query tracking can be reduced to continuous monitoring of a
condition over the global stream. Communication-efficient monitoring relies on locally processing
stream data at the sites where it is generated, by deriving site-local conditions which collectively
guarantee the global condition. Recently proposed geometric techniques offer a generic approach
for splitting an arbitrary global condition into local geometric monitoring constraints (known
as “Safe Zones”); still, their application to various problem domains has so far been based on
heuristics and lacking a principled, compositional methodology. In this paper, we present the
first known formal results on the difficult problem of effective Safe Zone (SZ) design for complex
query monitoring over distributed streams. Exploiting tools from convex analysis, our approach
relies on an algebraic representation of SZs which allows us to: (1) Formally define the notion
of a “good” SZ for distributed monitoring problems; and, most importantly, (2) Tackle and
solve the important problem of systematically composing SZs for monitored conditions expressed
as Boolean formulas over simpler conditions (for which SZs are known); furthermore, we prove
that, under broad assumptions, the composed SZ is good if the component SZs are good. Our
results are, therefore, a first step towards a principled compositional solution to SZ design for
distributed query monitoring. Finally, we discuss a number of important applications for our SZ
design algorithms, also demonstrating how earlier geometric techniques can be seen as special
cases of our framework.
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1 Introduction

As we are moving from network-centric computing into the era of Internet of Things, large-
scale event monitoring applications become ever more important. Such applications rely
on continuous monitoring queries over the union of local, high-speed data streams. The
scale of these applications, as well as power or bandwidth limitations, often impose critical
communication contraints that prohibit the centralization of streaming data. Instead, the
applications must rely on novel algorithmic paradigms for processing local streams of data in
situ (i.e., locally at the sites where the data is observed). This obviously raises the problem
of effectively decomposing the global monitoring query into “safe” local queries that can be
tracked independently at each site while guaranteeing correctness for the global monitoring
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operation. Such a decomposition enables truly distributed, push-based monitoring, where
sites track their local queries and communicate (e.g., with a “coordinator” site) only when
some local query constraints are violated. Still, the problem of effectively decomposing
a complex (e.g., non-linear) query over the global distributed stream into such safe local
constraints can be far from straightforward.

Problem Setup and the Geometric Method. In an abstract setting, our system architecture
comprises a collection of k physically-distributed sites, where each site p ∈ {1, . . . , k} observes
updates to the state of its local stream which is represented as a dynamic, high-dimensional
vector X(p) ∈ Rm. (Note that this is the standard model for general data streams used in the
streaming algorithms literature, e.g., [26, 12].) The state of the global, distributed stream X

is a convex combination of the local states; that is, X =
∑
p apX

(p), with ap ≥ 0,
∑
p ap = 1.

Arbitrary linear combinations, e.g., summation of local frequency distribution vectors, can
be captured by simply multiplying the local vectors by constant factors. In applications,
these states often comprise of one or more frequency distributions of streams, or (linear)
sketches thereof.

Let F (X) denote a global query function, e.g., the norm or entropy of a dynamic global
distribution, or the inner-product (i.e., equi-join size) of two underlying distributed streams
X1, X2 (note that in this case, X = X1⊕X2, the concatenation of X1,X2). A natural
global monitoring condition is a threshold query F (X) < T (or, > T ), where T is some
constant. Threshold queries can naturally express more complex monitoring tasks, including
approximate function monitoring [13].

A general approach to tracking threshold queries over distributed streams was pioneered
by Sharfman et al.’s Geometric Method [32, 21]. For arbitrary F (), it is generally impossible
to relate the locally-observed values of F (X(p)) to the global value F (X); thus, their key
idea is to employ geometric arguments to monitor the domain (rather than the range) of the
monitored function F (). More formally, given the threshold query F (X) < T , define the
set A , {x ∈ Rm|F (x) < T} ⊆ Rm as the query’s admissible region. Clearly, the condition
F (X) < T is equivalent to the condition X ∈ A, and this geometric condition in Rm is the
one being monitored — action needs to be taken only when X leaves A.

A key concept in geometric monitoring is that of a Safe Zone (SZ), which is defined
as a convex subset of the admissible region; that is, a SZ is a convex set Z such that
Z ⊆ A [21]. Let X(p)(t0) be the state of site p at some initial synchronization time t0, and
let X0 =

∑
p apX

(p)(t0) = X(t0). As updates arrive at any site p, the site maintains its
local drift vector u(p)(t) = X(p)(t)−X(p)(t0) +X0. It is trivial to show that, at any time t,
the convex combination of the local drift vectors is exactly the state of the global stream at
time t; that is,

∑
p apu

(p)(t) = X(t) [32]. Thus, as long as at every site p, we have u(p) ∈ Z,
by convexity of Z we also have X ∈ Z and, therefore, X ∈ A.

The Safe Zone Design Problem. The Geometric Method has been extended and success-
fully applied to various monitoring problems in a number of recent papers [5, 15, 13, 20,
23, 27, 29]. A survey of this body of work reveals that a crucial, and non-trivial aspect of
the technique is the issue of Safe Zone Design: Given a particular admissible region A, and
the initial global state X(t0) ∈ A, define a “good” (convex) safe zone Z ⊆ A. As a simple
example depicted in Fig. 1, if A is defined by constraint ‖X‖ ≥ T , a good SZ Z can be
defined by the constraint X ·X(t0) ≥ T‖X(t0)‖.

For complex queries, safe zone design is often analytically challenging, and general
methodologies are quite helpful. Simple solutions can be obtained using the original “covering
spheres” method of Sharfman et al. [32], but the quality of the safe zones and the performance
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O

X(t0)

Figure 1 The admissible region (hatched) for ‖X‖ ≥ T and a good safe zone (grayed).

obtained can be far from satisfactory. A more recent work [23] introduces the “convex
decomposition” method, which addresses some of the problems of “covering spheres” and
provides effective solutions for several problems, but the method is lacking a systematic
foundation.

The aforementioned methods, although valuable, suffer from two important drawbacks.
First, they do not provide any systematic guidance for designing safe zones of provable
quality, making the evaluation of a SZ design a purely experimental task. Second, and more
important, they do not provide for composable designs. To clarify our (envisioned) concept
of a composable SZ, we draw an analogy to the well-known chain rule for the differential
operator: D

(
f(g(x))

)
= Df(g(x))Dg(x). Ideally, we would wish for a “safe zone” transform,

that, similar to D, would provide safe zones for complex queries by combining safe zones for
simpler queries.

Our Results. In this paper, we present the first compositional method for SZ design, where
the composed safe zones inherit quality features from their components. We apply our
method to the important problem of inner-product queries (tracking the inner product of
two vectors), both exactly and approximately, via AMS sketches.

We formally define the notion of a good SZ Z ⊆ A, for an admissible region A and a
reference point E ∈ A (E is usually the initial system state X(t0)). A good SZ has two
“largeness” properties; the maximum distance property states that the distance of E ∈ Z from
the boundary of Z is equal to the distance of E from the boundary of A. The maximality
property states that there does not exist a proper superset of Z which is also a safe zone for
A. (Note that the SZ defined above for ‖X‖ ≥ T clearly satisfies both properties.)

Our compositional method is primarily applicable to query functions with separable sub-
components. The global state vector X is taken to be the concatenation of n (not necessarily
equidimensional) subvectors: X = X1⊕X2⊕ · · ·⊕Xn. For given safe zones on query func-
tions fi(Xi), we study the design of safe zones for a query function F (f1(X1), . . . , fn(Xn)).
Our compositional approach relies on expressing the constraint on F as a conjunction of
separable disjunctions. In particular, we present design methods for two important cases of
aggregate functions F :
Boolean Functions: Here, fi are boolean-valued functions, F : {0, 1}n → {0, 1} is a boolean

function, and we monitor the condition “F is true”. Given good safe zones for subproblems
fi(Xi), our method can compose a good safe zone for the overall condition.
An important application for this type of query is threshold monitoring for the median
(or, other order statistics); a query of the form median{g1(X1), . . . , gn(Xn)} ≤ T is
equivalent to the case where each fi(Xi) equals the boolean value of condition gi(Xi) ≤ T ,
and F is the majority function. Such order statistics queries arise often in monitoring
robust estimators, distributed voting schemes, and so on.
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Separable Sums: Here, fi are real-valued functions and F is summation; that is, we are
interested in the condition f1(X1) + · · · + fn(Xn) ≤ T . It is easy to show (e.g., by
negating the above condition) that the above condition can be written equivalently as a
conjunction of separable disjunctions:

∀(τ1, . . . , τn) ∈ ΣnT :
n∨
j=1

fj(Xj) ≤ τj , (1)

where ΣnT = {(τ1, . . . , τn) ∈ Rn | τ1 + · · ·+ τn = T}.
For this more complicated problem, our method’s scope is more limited; it can compose
a safe zone with the maximum distance property, provided maximum-distance safe zones
for queries of the form fi(Xi) ≤ τ are known, but maximality is harder to obtain in
general.

A Motivating Example. The problem of estimating the inner product of two vectors is
of fundamental importance for distributed stream processing. This problem abstracts the
situation where the vectors capture the (dynamic) frequency distribution of values in two
distinct data streams, and we wish to monitor the degree of correlation in the two streams.
(Note that this is also equivalent to tracking the size of the equi-join of the two streams [1].)

The global state comprises of a pair of vectors (X1,X2), whose inner product, X1 ·X2,
we wish to track. Often, the dimension of the raw streaming vectors can be too large for exact
tracking to be realistic, since we can only afford to maintain a synopsis/summary of the
streaming data. This problem has been addressed via the use of AGMS sketch synopses [2, 1].
Succinctly, the AGMS sketch of the frequency vector Xi, i = 1, 2 is a sequence of d l-
dimensional vectors X̂i = (x̂i,1, . . . , x̂i,d), with x̂i,j ∈ Rl. Then, as shown by Alon et al. [1],
the inner product X1 ·X2 can be approximated, with an accuracy of ε = ‖X̂1‖‖X̂2‖/

√
l,

with probability at least 1−O(1/2d), by F (X̂1, X̂2) = median{ x̂1,1 · x̂2,1, . . . , x̂1,d · x̂2,d}.
In a distributed stream setting, the problem has been addressed in [8, 13]. Both of the

above papers rely on a safe zone approach, but these safe zones have not been proven to
be either maximum-distance, or maximal. None of these, or any other known techniques,
provide guarantees on communication cost. Using our techniques, we design good safe zones
for both exact and approximate tracking (via AGMS sketches) of the inner product. For
exact tracking, the inner product query can be rewritten as a separable sum and the designed
safe zone is good (maximum-distance and maximal). Furthermore, the designed safe zone is
composed into a design of a good safe zone for approximate tracking (which is just tracking
the median of d inner products).

2 Safe Zone Design

In this section, we introduce some basic notation and definitions, and give the initial
mathematical formulation of safe zone representation and composition. Throughout the
paper, we use the notation of vector calculus; boldface letters stand for vectors. All vector
spaces in this paper are Euclidean. We use the letter V to denote a vector space Rd, equipped
with the standard inner product. Vector inner product is written as xy and self-product is
written as squaring, therefore x2 = ‖x‖2. We also use x⊕y to denote the so-called direct
sum of two vectors, that is, the vector resulting from the concatenation of x and y.

In addition, given a Boolean predicate φ : V → {0, 1}, we write {φ} = {X ∈ V |φ(X)}.
We will need some simple topological concepts. Assume some vector space V = Rd.

Let Ball(c, ρ) denote the open ball centered at c with radius ρ, i.e., Ball(c, ρ) = {x ∈
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V | ‖x− c‖ < ρ}. Given a set of points A ⊆ V and x ∈ A, we say that x is interior to A
(denoted x ∈ intA) iff there exists some ε > 0, so that Ball(x, ε) ⊆ A. A point x ∈ V is
exterior to A (denoted x ∈ extA) iff it is interior to the complement of A, A = V −A. A
point x ∈ V which is neither exterior nor interior to A is a boundary point for A (denoted
x ∈ bdA). Set A is open iff it only contains interior points; that is, A = intA. Dually, set
A is closed iff its complement A is open; in this case, A = intA ∪ bdA.

For completeness, we also state a few basic facts about convex sets. A set Z ⊆ V is
convex iff ∀x,y ∈ Z, ∀t ∈ [0, 1], (1− t)x+ ty ∈ Z. Alternatively, Z is convex iff it is closed
under convex combinations of its elements. An important property of convex sets is that the
intersection of any collection of convex sets is convex.

A (closed) halfspace h is a supporting halfspace of convex set Z, iff (a) h ⊇ Z, and (b) the
boundaries of h and Z intersect in at least one point p. We say that h supports Z at p. At
every boundary point p ∈ bdZ, there is at least one halfspace h supporting Z at p. Where
there is exactly one, p is called smooth and h is called tangent. A well-known theorem states
that any convex set Z is the intersection of its supporting halfspaces. In this paper, we shall
employ a stronger, but much less known theorem:

I Theorem 1 (Rockafellar [28], Thm. 18.8). A closed convex set Z ⊆ V is the intersection
of the closed halfspaces tangent to it.

A function f : V → R is convex iff, for every x,y ∈ V and λ ∈ [0, 1], it is f(λx+(1−λ)y) ≤
λf(x)+(1−λ)f(y). A function f is concave iff −f is convex. We will be interested primarily
in concave functions. A function f is both concave and convex, iff it is affine, that is,
f(x) = wx+ a, for some w ∈ V and a ∈ R.

2.1 Safe Zone Specification
Consider a monitored query on V , which corresponds to an admissible region A ⊆ V . The
problem of determining a good safe zone Z requires additional information; some reference
must be made by the user, as to the preferred locus of the safe zone, among mutually
exclusive alternatives. Motivated by previous work, we adopt the concept of a reference point
E ∈ intA, which our safe zone must include.

Therefore, the safe zone design problem can be stated as follows: given admissible region
A ⊆ V and reference point E ∈ intA, select a safe zone Z ⊆ A such that Z is convex and
E ∈ intZ. Towards a compositional approach, we assume that our admissible region A is
expressible as a set-algebraic combination (involving intersection and union) of subsets of V .

Now, consider a family of sets Ai ⊆ V , i ∈ I, where A = ∩i∈IAi, with E ∈ intAi for all
i ∈ I, and let Zi ⊆ Ai be safe zones. Towards a compositional approach, it is natural to
consider Z = ∩i∈IZi as a candidate safe zone for admissible region A = ∩i∈IAi. Indeed, Z
is convex and contains E.

Similarly, if A = ∪i∈IAi, with E ∈ intAi for some i ∈ I (note that E need not belong to
all Ai), it is natural to consider ∪i∈IZi as a candidate safe zone for A. Unfortunately, this
is not valid, as ∪iZi is not convex in general. Therefore, we need to restrict to a convex
subset Z ⊆ ∪i∈IZi, that contains E; moreover, Z should inherit good qualities of zones Zi.
To overcome the difficulties of handling unions, our method focuses on the special case of
decomposition into a separable union. In this case, V = Rd is the product space V1×· · ·×Vn
of a collection Vi = Rdi , i = 1, . . . , n of vector spaces (with

∑
di = d), and each x ∈ V is the

direct sum of xi ∈ Vi, where each xi is the projection of x on Vi. For Ai ⊆ Vi, the separable
union

∨n
i=1Ai is simply the set {x1⊕ · · ·⊕xn ∈ V |

∨n
i=1 xi ∈ Ai}. Equivalently, for n = 2,
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A1 ∨A2 = (A1 × V2) ∪ (V1 ×A2). Separable intersection
∧n
i=1Ai, defined similarly, is just

the Cartesian product A1 × · · · ×An.
Given safe zones Zi ⊆ Ai ⊆ Vi, the separable union

∨n
i=1 Zi is not a convex set. However,

it will be shown subsequently that properly selected subsets of the separable union do inherit
the good qualities of the safe zones Zi.

2.2 Safe Zone Representation and Composition

In our method, a convex set is represented as the level set of a concave function.

I Definition 2 (Level set). Let f : V → R be any function. The level set L(f) of f is the set
L(f) = {x ∈ V | f(x) ≥ 0} = {f(x) ≥ 0}.

When f is concave, L(f) is convex. We wish to avoid the degenerate cases where L(f)
is empty, or the whole space, or has empty interior. This is equivalent to the following
requirement:

I Definition 3 (Safe Zone function). A safe zone function is a concave function f : V → R,
which attains both a positive and a negative value over V .

Safe zone functions are positive in the interior of L(f), negative on the exterior and vanish
on the boundary. An important property of L(f) is monotonicity with respect to pointwise
dominance. Given functions f, g : V → R, f is dominated by g (denoted by f ≤ g) iff
∀x ∈ V, f(x) ≤ g(x). Clearly, f ≤ g directly implies L(f) ⊆ L(g).

We are interested in the compositions of safe zones for intersections and unions of safe zones.
We introduce two operations that construct the composite safe zone function from component
safe zone functions. The first operation, used to capture the intersection of safe zones, is
the pointwise-infimum of a (possibly infinite) family of safe zone functions. Given family
of safe zone functions ζi : V → R, i ∈ I, let ζ(x) = infi∈I ζi(x). Then, L(ζ) =

⋂
i∈I L(ζi).

The second operation is weighted sum with non-negative weights, sometimes called conical
combination. It is used to construct a convex subset of the union of a finite family of safe
zones.

I Theorem 4. For safe zone functions ζi : V → R, i = 1, . . . , n, and reals ai ≥ 0, not all
zero, let

ζ(X) =
n∑
i=1

aiζi(X). (2)

Then, L(ζ) is convex and
⋂n
i=1 L(ζi) ⊆ L(ζ) ⊆

⋃n
i=1 L(ζi).

Proof. It is
⋂n
i=1 L(ζi) ⊆ L(infi aiζi(X)) and L(supi aiζi(X)) ⊆

⋃n
i=1 L(ζi) (with equality

holding when all ai > 0). Since n infi aiζi(X) ≤ ζ(X) ≤ n supi aiζi(X), the theorem follows
directly from these formulas and monotonicity of L. J

The above theorem specializes to separable union straightforwardly. If ζi : Vi → R are
safe zone functions, then ζ(x1⊕ · · ·⊕xn) =

∑n
i=1 aiζi(xi) is a safe zone function and

×ni=1L(ζi) ⊆ L(ζ) ⊆
∨n
i=1 L(ζi).
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2.3 Functional Analysis For Safe Zone Functions
Having defined the two fundamental operations on safe zone functions, in the following
sections we proceed to study the conditions under which these operations maintain the
qualities of composed safe zones. We end this section with some foundational facts from
convex analysis.

All safe zone functions over V are continuous and differentiable almost everywhere in V
(that is, everywhere, except for a set of measure 0). The gradient ∇ζ(x) = ( ∂ζ∂x1

, . . . , ∂ζ∂xd
) is

the multi-dimensional analog of the derivative. At any point x, where ζ is differentiable, this
derivative is a vector vx, pointing to the direction of maximum increase of ζ, and its norm
‖vx‖ is proportional to the rate of change.

Let a safe zone function ζ be differentiable at point x0. The affine function h(x) =
∇ζ(x0)(x− x0) + ζ(x0) is called the tangent of ζ at x0. By virtue of concavity, ζ ≤ h.

In general, every safe zone function ζ is the pointwise infimum of some (non-unique)
family H of affine functions. This is denoted by ζ = infH. In particular, ζ is the pointwise
infimum of all its tangents.

Given a collection ζi, i ∈ I, of safe zone functions, and corresponding families of affine
functions Hi, such that ζi = infHi, the following two properties are very important in the
rest of this paper:
1. For arbitrary I, infi∈I ζi = inf(

⋃
i∈I Hi), and

2. For I finite, and ai ≥ 0, not all 0, it is
∑
i∈I aiζi = inf(

∑
i∈I aiHi), where

∑
i∈I aiHi is

the set of affine functions {
∑
i∈I aihi | hi ∈ Hi, i ∈ I}.

3 Maximum Distance

Given an admissible region A ⊆ V and reference pointE ∈ intA, several safe zones containing
E can be constructed. Given two such safe zones, Z and Z ′, one can argue that one is
“better” than the other, by assuming isotropy; that is, all directions around the reference
point are equally desirable. This assumption correlates with a monitoring situation where
each coordinate of the state vector behaves (or is assumed to behave) as an IID random
walk. Under this assumption, we have the following criterion:

I Criterion 5. Safe zone Z is “better” than safe zone Z ′ if dist(E, Z) ≥ dist(E, Z ′).

With respect to criterion 5, any safe zone containing a ball that touches the admissible
region’s boundary is best possible.

I Definition 6 (Maximum distance). Let A be an admissible region and E ∈ intA. A safe
zone Z ⊆ A has maximum distance in A with respect to E, iff dist(E, Z) = dist(E, A).

3.1 Preservation Of Maximum Distance Under Composition
The intersection operation always preserves the maximum distance of its operands. Given
safe zones Zi ⊆ Ai, and E ∈ intAi, for each i, if all Zi are maximum distance, then

⋂
i∈I Zi

is also maximum distance. As a matter of fact, if D = dist(E, A) = infi∈I dist(E, Ai), it is
sufficient and necessary to have dist(E, Zi) ≥ D. Consequently, the pointwise-inf operation
on any family of safe zone functions preserves the maximum distance property of its operands.

The situation with separable union is much more involved. It is not sufficient for the safe
zones of the operands to be maximum distance; the actual safe zone functions that describe
these safe zones must carry sufficient distance information, so that some conical combination

ICDT 2017



14:8 Distributed Query Monitoring through Convex Analysis

λ = 1

λ = 2

(1, 1)

Figure 2 Example of the safe zone of union {x1 ≥ 0} ∨ {x2 ≥ 0}, derived by with suboptimal
functions. The safe zone for λ = 1, whose boundary is the solid black line, is good for reference point
(1, 1). The safe zone for λ = 2, whose boundary is the dashed blue line, is neither maximum-distance
nor maximal.

can yield a maximum-distance subset of the union. This is best illustrated by example. With
reference to Fig. 2, consider the case in R2, where Z1 = L(f(x1)) and Z2 = L(f(x2)), with

f(x) =
{
x/λ if x ≥ 0
λx if x < 0

(3)

where λ ≥ 1 (so that f is concave). Note that, independently of the value of λ, Zi = {xi ≥ 0}.
The union Z1∨Z2 is not convex, but maximal convex subsets are all halfspaces whose boundary
supports the positive quadrant (Z1 × Z2). Yet, none of the sets L(a1f(x1) + a2f(x2)) have
maximum distance for any reference point in Z1 × Z2, unless λ = 1. In fact, as λ grows, safe
zones L(a1f(x1) + a2f(x2)) shrink towards Z1 ∩ Z2, which is their lower bound.

The intuitive reason of the failure in this example is that, the shape of the region generated
by Eq. (2) depends crucially on the values of f outside of L(f).

To ameliorate this situation, we introduce a class of safe zone functions which contain
sufficient distance information.

I Definition 7 (Affine Distance Function (ADF)). An affine function h : V → R with
h(x) = wx+ a is an ADF iff ‖∇h‖ = ‖w‖ = 1.

Every closed halfspace of V is equal to L(h) for a unique ADF h. For each x ∈ V , h(x) is
the signed distance of x from the boundary of L(h), non-negative if x ∈ L(h) and negative if
x 6∈ L(h).

I Definition 8 (Eikonal function). A safe zone function ζ is eikonal iff it is the pointwise-
infimum of a collection of ADFs.

A useful alternative characterization of eikonal functions is the following:

I Theorem 9 (Eikonal characterization). Let ζ : V → R be concave, and almost everywhere
differentiable. Then, ζ is eikonal, if and only if, ‖∇ζ‖ = 1 at every point where it is
differentiable.

(Due to space constraints, this and other ommitted proofs will appear in the full version of
the paper.)

The equation ‖∇ζ‖ = 1 is known as the (Euclidean) eikonal differential equation. As a
consequence of this equation, it can be shown, using the mean-value theorem of analysis,
that every eikonal function ζ is non-expansive: |ζ(x)− ζ(y)| ≤ ‖x− y‖.
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Signed Distance Functions. One important member in the family of eikonal functions is
the Signed Distance Function (SDF) of a convex set Z.

δZ(x) =
{

dist(x, Z) if x ∈ Z,
−dist(x, Z) if x ∈ Z.

(4)

The SDF of a convex set is concave. Also, since L(δZ) = Z, the SDF is positive in the
interior of Z, negative on the exterior, and vanishes on the boundary; therefore, it is a safe
zone function. Naturally, every ADF h is the SDF of L(h). However, this is not the case for
every eikonal function ζ.

Let Z = L(ζ) and let δZ be the SDF of L(Z). Then, δZ ≤ ζ. In fact, for every x ∈ L(f),
ζ(x) = δZ(x). But, ζ may strictly dominate δZ outside L(ζ).

The family of eikonal functions is well-behaved under our composition operators. The
pointwise-infimum of any family of eikonal functions is also eikonal. For the case of separable
union, we have the following:

I Theorem 10. Let ζi : Vi → R be eikonal functions, ai ≥ 0, and ζ(x1⊕ · · ·⊕xn) =∑n
i=1 aiζi(xi). Then, ζ is eikonal iff

∑n
i=1 a

2
i = 1.

Proof. Since ∇ζi ∈ Vi are orthogonal, ‖∇ζ‖2 =
(∑k

i=1 ai∇ζi
)2 =

∑k
i=1 a

2
i ‖∇ζi‖2 =∑k

i=1 a
2
i . J

Thus, any separable conical combination ζ of eikonal functions can always be scaled to an
eikonal function, by dividing it by

√∑
i a

2
i , which of course does not affect the described

safe zone L(ζ).
We now turn our attention to separable union. Let admissible region A =

∨n
i=1Ai

and let E = E1⊕ · · ·⊕En be the reference point. Consider eikonal functions ζi such that
L(ζi) ⊆ Ai, and let Z =

∨n
i=1 L(ζi). What is the radius D of the largest ball centered at

E, that can be attained by a conical combination of ζi? Clearly, D ≤ dZ = dist(E, Z). In
general, it is dZ ≤ dA = dist(E, A). The following theorem specifies the conditions under
which maximum distance can be achieved.

I Theorem 11. Let A =
∨n
i=1Ai, where Ai ⊆ Vi, and E = E1⊕ · · ·⊕En ∈ intA. Let

ζi : Vi → R be eikonal functions, such that L(ζi) ⊆ Ai, and let Z =
∨n
i=1 L(ζi). Then:

1. For any conical combination ζ =
∑
aiζi, it is dist(E, L(ζ)) =

∑n

i=1
aiζ(Ei)√∑n

i=1
a2

i

= D.

2. It is D ≤ dist(E, Z) = dZ , with equality holding iff, for some λ > 0,

ai =
{
λζi(Ei) if ζi(Ei) > 0,
0 otherwise,

3. It is dZ ≤ dA = dist(E, A), with equality holding iff, for every i such that Ei ∈ intAi,
L(ζi) has maximum distance in Ai w.r.t. Ei.

4 Maximality

During distributed monitoring using a safe zone Z ⊆ A, condition X ∈ Z may be violated,
while X ∈ A. We call such local violations, false violations. Typically, the performance of
distributed monitoring depends crucially on minimizing false violations. Therefore,

I Criterion 12. Safe zone Z is “better” that safe zone Z ′ if Z ⊇ Z ′
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This criterion is a rather obviously desirable; providing a larger safe zone will tend, other
things being equal, to reduce false violation.

With respect to criterion 12, the best possible for a safe zone is to be a ⊆-wise maximal
convex subset of the admissible region A.

I Definition 13 (Maximality). Let A be the admissible region. A safe zone Z is maximal
in A (with respect to set containment), if and only if, no convex subset of A is a proper
superset of Z.

We now develop a convenient characterization of maximality.

I Definition 14 (Flats of an affine family). Given a family H of affine functions on V , let
ΦH : H → 2V be

ΦH(h) = {p ∈ V | h(p) = 0 and ∀h′ ∈ H, h′ 6= h =⇒ h′(p) > 0} (5)

Set ΦH(h) is the flat of h in H.

Fix some affine family H and let ζ = infH and Z = L(ζ). Let h ∈ H be an affine function
with non-empty flat Φ(h). Each p ∈ Φ(h) is a boundary point of Z, since ζ(p) = 0. Also,
p is smooth, since ζ is differentiable at p (with ∇ζ(p) = ∇h). Therefore, h is a tangent
halfspace to Z.

Some examples of flats; a ball has a flat for each point on its boundary. A planar triangle
has three flats, each corresponding to a side minus the corners (which are not smooth). A
cylinder in 3-d has two 2-d flats, its top and bottom (minus the edges) and infinite 1-d flats
which are segments from top to bottom (minus the endpoints). Finally, the positive quadrant
in R2 has two flats, the rays (0,+∞)× {0} and {0} × (0,+∞).

I Definition 15 (Non-redundant affine family). A familyH of affine functions is non-redundant
iff, for every h ∈ H, ΦH(h) 6= ∅.

According to the above, a non-redundant affine family H contains only tangent halfspaces
(represented as affine functions) of Z = L(infH). However, not all tangents of Z need be
contained in H. As an example, consider the planar unit disk Z = {x2

1 + x2
2 ≤ 1}; although

there is a tangent at every point of the unit circle, only a countable family of tangent
halfspaces (say, those whose slope is rational) is enough to define it!

I Definition 16 (Witness). For admissible region A ⊆ V and an affine family H, so that
L(infH) ⊆ A, a point p ∈ bdA is a witness iff, for some h ∈ H, p ∈ ΦH(h).

I Theorem 17 (Witnessed maximality criterion). For admissible region A ⊆ V and affine
family H, so that Z = L(infH) ⊆ A, if every flat of H contains a witness, then Z is maximal
in A.

Witnessed maximality is sufficient for maximality, but not necessary. As an example,
consider the 2-d case where Z = {y ≤ 0} and A = {y ≤ 1/|x| ∨ x = 0}. Then, Z is maximal
in A, but there is no witness to the unique tangent halfspace that is the whole of Z.

The witnessed maximality criterion is handy, because it relates maximality of a set Z to
a requirement on each flat of a description of Z. It is possible, but cumbersome, to extend
the concept of a witness, so that a sufficient and necessary condition for maximality can be
obtained. Because of space constraints, this extension will be presented in the full paper.
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4.1 Preservation Of Maximality Under Composition
In contrast to maximum distance, intersection does not preserve maximality in general.
This is quite well-known; in fact, loss of maximality under intersection is the reason for
the unsatisfactory behavior of previous safe zone design approaches, such as the Covering
Spheres method.

Fortunately, under suitable conditions to be explored below, separable union does preserve
maximality; given maximal safe zones L(ζi) ⊆ Ai, it is possible to select a maximal convex
subset of

∨
L(ζi) which is also maximal in

∨
Ai. However, as in the case for maximum

distance, the safe zone functions ζi must a special requirement, non-redundancy.

I Definition 18 (Non-redundant safe zone function). A safe zone function ζ is non-redundant
iff ζ is the pointwise infimum of a non-redundant affine family; else it is redundant.

Intuitively, a non-redundant safe zone function ζ for Z = L(ζ) is one which is (pointwise)
maximal, among all safe zone functions g with L(g) = Z; that is, if L(f) = L(g) and f < g

(that is, f ≤ g and at some x0, f(x0) < g(x0)), then f is redundant.
An important observation pertains to eikonal non-redundant functions. Given any convex

set Z, the family F of eikonal functions f with L(f) = Z is known to contain a ≤-wise
least element, the SDF of Z. It can be shown that it also contains a unique ≤-wise greatest
element ηZ , which is the (unique) non-redundant function in F . Importantly, when Z is
smooth (all points of its boundary are smooth), then ηZ = δZ .

We now proceed to the main result of this section, which determines maximality of
safe zones for an admissible region composed as an intersection of unions. To describe the
intersection of unions, we use an antichain on [n] = {1, . . . , n}, i.e., a non-empty collection
C of subsets of [n], such that no element of C is a subset of another. A single separable
union is specified C = {[n]}. A (separable) intersection on the other hand is specified as
C =

{
{1}, . . . , {n}

}
.

I Theorem 19. Let ζi : Vi → R, i = 1, . . . , n be non-redundant safe zone functions, and C
an antichain on [n]. Let ζ = infΓ∈C

∑
i∈Γ ai(Γ)ζi, where ai(Γ) > 0. Then,

1. ζ is non-redundant, and
2. if, for Ai ⊆ Vi, each L(ζi) is witnessed maximal in Ai, then L(ζ) is witnessed maximal in

A =
⋂

Γ∈C
∨
i∈ΓAi.

5 Safe Zones For Boolean Functions

We now apply our method to the class of (separable) boolean query functions. Let
F : {0, 1}n → {0, 1} be any boolean function and let fi : Vi → {0, 1} be predicates
on Vi respectively. We are interested in a safe zone for admissible region A = {X ∈
V | F (f1(X1), . . . , fn(Xn))}, containing the reference point E = E1⊕ · · ·⊕En, with
E ∈ intA.

We assume that F is given to us as a conjunction of clauses, where each clause is a
disjunction of literals bi, bi, for i = 1, . . . , n. A clause Γ can be represented as a subset of
{1, . . . , n} × {+,−}, where pair (j, s) ∈ Γ means that the clause contains bj if s = +, or bj if
s = −.

Letting, A(+)
i = {fi(Xi)} and A

(−)
i = Vi − A

(+)
i , the admissible region A can be

decomposed as A =
⋂

Γ∈F
∨

(i,s)∈ΓA
(s)
i . By the observations for maximum distance, we are

allowed to reduce F to a (stronger) boolean function F̃ . In particular, for each i = 1, . . . , n,
we eliminate at least one of the literals bi, bi from all clauses: if Ei 6∈ intA(−)

i , we eliminate
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literal bi, and if Ei 6∈ intA(+)
i we eliminate bi. This justified is because, by Thm. 11, a

maximum-distance safe zone for each clause would eliminate the corresponding components.
Once F̃ is obtained, it can be further reduced by expressing it as a conjunction of its prime
implicates, so that no clause is weaker than another. This last step is needed in order to
apply Thm. 19.

Then, given safe zone functions ζi for the remaining admissible regions on Vi, the safe
zone function

ζ(X1⊕ . . .⊕Xn) = inf
Γ∈F̃

∑
(i,s)∈Γ ζi(Ei)ζi(Xi)√∑

(i,s)∈Γ ζ
2
i (Ei)

(6)

defines a safe zone for A. Furthermore, if, for all i, ζi are eikonal and L(ζi) are maximum
distance, then L(ζ) is maximum distance and ζ is eikonal. With respect to maximality, by
virtue of Thm. 19, if all ζi are non-redundant, and L(ζi) are (witnessed) maximal in Ai, then
L(ζ) is also (witnessed) maximal in A.

5.1 Monitoring Quantiles
Consider the query function Qk(g1(X1), . . . , gn(Xn)), where Qk : Rn → R returns the k-th
least value among its arguments. These queries arise in monitoring robust statistics of
(functions of) the state, such as the median or the inter-quartile range.

Condition Qk() ≤ T can be written as a boolean function Fk(f1(X1), . . . , fn(Xn)), where
fi(Xi) is the boolean value of “gi(Xi) ≤ T” and Fk is true iff k or more of its inputs are
true. With respect to Fk, the safe zone design of this section yields a safe zone function ζ,
given safe zone functions ζi for each constraint gi(Xi) ≤ T .

A practical point is related to the computational cost of checking membership in L(ζ),
which, if done straightforwardly, requires time O(2n). For counting queries, it is possible
to test condition ζ(X) ≥ 0 in time O(n). To see this, note that the set of clauses of
Fk(b1, . . . , bn) is the set of all n−k+ 1-subsets of {b1, . . . , bn} (since, if every n−k+ 1-subset
of literals contains a true literal, there are at most n− k false literals overall, and therefore
at least k true literals). Therefore, to check ζ(X) ≥ 0, it is sufficient to compute the sum S

of the least n− k + 1 elements of {ζi(Ei)ζi(Xi) | i = 1, . . . , n}, as it is ζ(X) ≥ 0 iff S ≥ 0.

6 Safe Zones For Separable Sums

Separable sum queries refer to conditions of the form
∑n
i=1 fi(Xi) ≤ T , where fi are arbitrary

real functions. As shown in Eq. 1, this condition can be written as a universal quantification
(which relates to conjunction) of a family of finite disjunctions. Therefore, at least in principle,
our composition operators can be used to derive a safe zone formula. In this section, we
demonstrate that this approach can go well beyond the principle, into an analytic method of
safe zone design.

The approach is straightforward; as shown in Eq. 1, the separable sum threshold condition
is rewritten as ∀τ ∈ Σn

T ,
∨n
i=1 fi(Xi) ≤ τi. Let the reference point be E = E1⊕ · · ·⊕En.

The booleanized condition decomposes as the intersection of a family Aτ ⊆ V , for τ ∈ ΣnT ,
of admissible regions, each corresponding to a disjunctive clause. In order to write a safe
zone function for each clause, we need to have a parametrized family of safe zone functions
for conditions fi(Xi) ≤ τi. Let ζi(Xi; τi), i = 1, . . . , n denote such a parameterized family.
Then, a safe zone for Aτ can be given by function ζτ (X) =

∑n
i=1 ai(τ )ζi(Xi; τi), for suitably

selected ai(τ ). Finally, the overall safe zone function is ζ(X) = infτ∈Σn
T
ζτ (X).
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As a first example, we solve a trivial problem; the linear constraint
∑n
i=1 wixi = wx ≤ T .

Booleanization gives ∀τ ∈ ΣnT :
∨n
i=1 wixi ≤ τi. Each constraint wixi ≤ τi has a good safe

zone described by the eikonal and non-redundant affine function ζi(xi; τi) = (τi − wixi)/|wi|.
Therefore, we have an overall expression of

ζ(x) = inf
τ∈Σn

T

ζτ (x) = inf
τ∈Σn

T

n∑
i=1

ai(τ )τi − wixi
|wi|

.

Although any choice for ai(τ ) will yield a legal safe zone, to obtain a good solution, we need
to select ai(τ ) more carefully. But, notice that if we select ai(τ ) = |wi|/‖w‖, we obtain
ζτ (x) = T−wx

‖w‖ , which is independent of τ . Therefore, the inf operator becomes redundant.
It is easy to see that the solution obtained is best possible; it is less clear whether there is a
systematic strategy for selecting ai(τ ), for more complex problems. Below we introduce two
such systematic strategies.

6.1 Dominating Index

It turns out that the previous example exhibits a dominating index. Assume that every
ζi(xi; τi) is eikonal and maximum distance. Define function

∆(τ ) =

√√√√ n∑
i=1

max
(
ζi(Ei; τi), 0

)2 = dist(E, Aτ )

where the second equality is a consequence of Thm. 11. Assume that ∆ minimizes at a unique
index τ ∗, where, naturally, ∆(τ ∗) is dist(E, A). We can select ai(τ ∗) as per Thm. 11, that
is, ai(τ ∗) = ζi(Ei; τ∗i )/∆(τ ∗), and obtain ζτ∗ . Now, if it so happens that L(ζτ∗) ⊆ A, then,
we say that τ ∗ is a dominating index: we can select ζ = ζτ∗ , eliminating the inf operation.
The overall safe zone L(ζ) is obviously maximum distance. Also, if L(ζτ∗) is maximal in
Aτ∗ , L(ζ) (i.e., L(ζτ∗)) is maximal in A ⊆ Aτ .

6.2 Alignment

Independently of the existence of a dominating index, alignment is a simple strategy for
selecting weights ai(τ ), when the query F (X) =

∑n
i=1 fi(Xi) is differentiable.

Fix some clause τ . Assume that each ζi(Xi; τ ) is witnessed maximal; for simplicity,
assume that it is also eikonal. Now, consider a point X̆ = X̆1⊕ · · ·⊕ X̆n, such that, for every
i, fi(X̆i) = τi and ζi(X̆i; τi) = 0. That is, each X̆i is a maximality witness for ζi(Xi; τi).
By smoothness of fi, its gradient gi = ∇fi(X̆i) will be parallel to the gradient ∇ζi(X̆i; τi)
at this witness point. Then, we can choose ai(τ ) so as to align (make parallel) the gradients
of F and ζτ at X̆, which is achieved by ai(τ ) = ‖gi‖. Note also that

∑n
i=1 g

2
i = ‖∇F (X̆)‖2,

thus, a choice of ai = ‖gi‖/‖∇F (X̆)‖ yields normalized weights.
This justifies the suitability of the choice ai = |wi|/‖w‖ for every clause τ in the previous

example. Also, with respect to the previous section, it is easy to see that at the minimizer
τ ∗ of ∆(τ ), since X̆ is a nearest neighbor of E on the boundary of A, by smoothness of F ,
‖gi‖ will be proportional to ζi(Ei; τ∗i ).

Like dominating index, this method is limited to query functions that exhibit symmetry;
if there are several witness points X̆, each giving a different value for ai, then it is not clear
what is the best choice.
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(u∗, v∗)

(‖ξ‖, ‖ψ‖) x

y

(‖ξ‖, ‖ψ‖)
x

y

Figure 3 Safe zones (grayed) for x2 − y2 ≥ T , when T ≤ 0 (left) and T > 0 (right). The
admissible regions are hatched. On the left, the safe zone is a single cone u∗x− v∗|y| ≥ T , where
(u∗, v∗) is the dominating index. On the right, the safe zone is defined by the intersection of all
cones ux− v|y| ≥ T (three such cones are shown).

6.3 Safe Zones For Inner Product
We turn to the non-trivial problem of designing a good safe zone for the inner product of two
vectors. Previous solutions [14, 23, 22] strove for the same qualities, but were suboptimal in
terms of maximum distance [23] or maximality [14, 22].

The problem is defined by condition XY ≥ t. Instead of decomposing this problem
on a per-dimension basis, we apply the polarization identity, by the change of variables
x = (X+Y )/

√
2, and y = (X−Y )/

√
2. It is easy to see that x2−y2 = 2XY and that the

change of variables is a rotation, that is, it preserves all distances. Therefore, we focus on the
(slightly more general) problem of monitoring x2 − y2 ≥ T , with x ∈ Rn and y ∈ Rm. We
shall design a safe zone for this problem, for reference point E = ξ⊕ψ, where ξ2 −ψ2 > T .

First note that, when ξ is 0 (which implies that T < 0), the constraint ‖y‖ ≤ −T defines
a good (maximum-distance and maximal) safe zone for the original problem. Therefore, we
assume ‖ξ‖ 6= 0 and we denote ξ̂ = ξ/‖ξ‖.

We treat this problem as a separable sum of two functions, f1(x) = x2 and f2(y) = −y2,
of which f1 is convex and f2 is concave (thus, −f2 is convex). The condition f1 + f2 ≥ T
can be booleanized as

∀u, v ≥ 0 : u2 − v2 = T : x2 ≥ u2 ∨ y2 ≤ v2,

where we have applied a convenient change of variables to the index tuple (τ1, τ2) = (u2,−v2).
The problem x2 ≥ u2 is solved optimally by the affine eikonal function ζ1(x;u) = xξ̂− u.

Similarly, the problem y2 ≤ v2 is solved optimally by the eikonal, non-redundant solution
ζ2(y; v) = v − ‖y‖. Putting everything together, we obtain formula

ζ(x⊕y) = inf
u2−v2=T

ζu,v(x⊕y) where ζu,v(x⊕y) = α(u, v)(xξ̂−u)+β(u, v)(v−‖y‖).

By alignment, we select (unnormalized) α(u, v) = u and β(u, v) = v, and get

ζu,v(x⊕y) = uxξ̂ − v‖y‖ − T.

which is tangent to the boundary of the admissible region at every point uξ̂⊕ vŷ, where
‖ŷ‖ = 1.

Instead of continuing the treatment of the problem directly, we will examine the case
n = m = 1; that is, the equivalent planar problem with reference point e = (‖ξ‖, ‖ψ‖). This
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problem (and its solution) is depicted in Fig. 3. In fact, treating the 2-d problem is equivalent
to treating the problem in any dimension, by the change of variables x = xξ̂ and y = ‖y‖.

Case T ≤ 0. When T ≤ 0, the problem admits a dominating index, (u∗, v∗), which is found
by minimizing ∆(u, v) over the index set.

Case T > 0. In this case there is no dominating index. The safe zone is the right lobe of the
hyperbola, that is Z = {x ≥

√
y2 + T}. This set is smooth everywhere on its boundary,

therefore its SDF δZ(x, y) is non-redundant.

Overall, we have the following:

I Theorem 20. Given constraint x2 − y2 ≥ T and reference point ξ⊕ψ in any dimension,
a good safe zone is given by ζ(x⊕y) = ζ2(xξ̂, ‖y‖), where ζ2 is the safe zone for the planar
constraint x2 − y2 ≥ T with reference point (‖ξ‖, ‖ψ‖). More precisely,
1. if T ≤ 0, ζ2(x, y) = (u∗x− v∗|y| − T )/

√
u∗2 + v∗2, and

2. if T > 0, ζ2(x, y) is the SDF of convex set {x ≥
√
y2 + T}.

Both ζ and ζ2 are eikonal and non-redundant, and define maximum-distance and witnessed
maximal safe zones.

Computation cost for monitoring the inner product. Computing the safe zone function
for l-dimensional vectors, takes time O(l), in order to compute xξ̂ and ‖y‖. Then, computing
the actual value can be done in time O(1). When the vectors between successive computations
of the safe zone function change in only O(1) coordinates (which is quite standard in stream
monitoring, when a stream update changes O(1) locations of the state vector), it is possible
simply update cached previous values of xξ̂ and ‖y‖ and reduce the cost to O(1).

Safe zones for AGMS sketches. As discussed, monitoring the inner product of two streams
by AGMS sketches, involves monitoring the median of d inner products, of dimension l each.
The result’s accuracy is within O(1/

√
l), with probability at least 1−O(1/2d). For practical

purposes, d will be of the order of 10, but l of the order of 1000.
Combining our safe zones for inner product with the safe zone for the median, we obtain

the first provably good safe zone for AGMS sketches. The computational cost of testing
membership in the safe zone is important, as it is likely to be performed for every stream
update. Using the FastAGMS sketch of [10], each stream update changes only 1 counter in
each of the d vectors of a sketch. Therefore, the change to each monitored inner product can
be computed in O(1) time. The median’s safe zone requires O(d) time for testing membership.
In conclusion, our safe zones can be used for membership testing with only O(d) cost per
update.

7 Related Work

The problem of tracking distributed streams through in situ constraints has attracted
significant attention in recent years. Still, most existing work has focused on purpose-
built solutions for specific query classes; these include, for instance, the simpler cases of
thresholding linear functions [19, 18, 24]. top-k monitoring [4, 25], ratio threshold queries [16],
and tracking polynomials of simple scalar variables [30]. All these techniques typically rely
on some form of locally-installed “adaptive filters” – that is, bounds around the value of
distributed variables that can grow or shrink over time (e.g., based on variability), while
guaranteeing a global bound on the overall uncertainty. Similar local filtering ideas are also
employed by Huang et al. [17] to monitor the eigenvalues of a network traffic matrix through
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perturbation analysis, and by Wolf et al. [33] to threshold the norm of the average vector in
a distributed system. Cormode and Garofalakis [7, 8] introduce the use of sketch synopses [9]
for effectively summarizing local data streams, and propose sketch-based schemes for the
communication-efficient, approximate monitoring of join aggregates over distributed streams.
Finally, Cormode et al. [11] give a theoretical study of the distributed function monitoring
problem focusing, in particular, on providing communication lower bounds for the case of
various Lp-norm functions, assuming a “cash-register” (i.e., insert only) streaming model.
Lower bounds for distributed norm monitoring are also given by Arackaparambil et al. [3],
who demonstrate that, for general “turnstile” streams (i.e., allowing both inserts and deletes),
the worst-case communication lower bounds are linear in the size of the stream. 1

The Geometric Method of Sharfman et al. [31, 32] introduced the first generic approach for
efficiently thresholding a general function/query over distributed data. Their solution relies on
a function-agnostic, geometric “covering spheres” technique for breaking the global condition
into safe local constraints. Extensions of the basic method as well as the more general notion of
convex Safe Zones (SZs) are discussed in a later paper [21], and a broad range of applications
have been explored, including distributed outlier detection [6], prediction-based distributed
stream monitoring [15], sketch-based monitoring of norms and range aggregates [13], and
distributed skyline tracking [27].

As demonstrated in our recent work [23], the safe zones (implicitly) defined by the
“covering spheres” method are often far from optimal, and geometric convexity arguments
(based on decomposing the problem into convex pieces) can give provably better results in
certain important cases. Still, the methodology and results in [23] are heuristic, refer to
specific classes of monitoring functions, and do not offer any hard quality guarantees for
the resulting safe zones; furthermore, they do not consider the important problem of safe
zone composition. Instead, our work is based on a novel functional representation of safe
zones which allows us to effectively deal with general Boolean safe zone composition with
provable quality guarantees. Our Boolean formalism is, in fact, much more powerful, and can
easily express the methodology of [23] as a special case. The very recent work of Lazerson et
al. [22] proposes another broad method based on defining “convex bounds” for the monitored
function F () using functional approximation techniques (assuming F () is differentiable).
However, no optimality properties are formally shown for the resulting SZs, and the problem
of effective SZ composition is not addressed. The worst-case communication complexity of
geometric techniques for distributed monitoring has not been studied, but empirical studies
demonstrate significant communication gains in real problems and query workloads.

8 Conclusions

In this paper, we have presented the first formal framework for the compositional design
of convex Safe Zones (SZs), for problems with separable constraints. To this end, we have
introduced a functional safe zone representation that conserves, under Boolean composition,
the quality guarantees of their component constraints. We have also applied our new
framework to general function monitoring scenarios of practical interest.

Important problems remain open for future research, mainly relating the quality of safe
zones to actual guarantees on the communication cost of monitoring, and extending our
compositional approach beyond boolean, to other types of composite queries.

1 The problem of communication lower bounds for general functions under the cash-register model
remains open.
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Abstract
We study the problem of finding the worst-case size of the result Q(D) of a fixed conjunctive query
Q applied to a database D satisfying given functional dependencies. We provide a characterization
of this bound in terms of entropy vectors, and in terms of finite groups. In particular, we show
that an upper bound provided by Gottlob, Lee, Valiant and Valiant [9] is tight, and that a
correspondence of Chan and Yeung [5] is preserved in the presence of functional dependencies.
However, tightness of a weaker upper bound provided by Gottlob et al., which would have
immediate applications to evaluation of join queries [11], remains open. Our result shows that
the problem of computing the worst-case size bound, in the general case, is closely related to
difficult problems from information theory.
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1 Introduction

Given a conjunctive query Q we would like to determine the least bound α ∈ R such that for
every database D, the inequality

|Q(D)| ≤ c · |D|α (1)

holds, for some multiplicative factor c depending only on Q. Above, |D| denotes the size of the
largest table in the database D, and |Q(D)| denotes the size of the result of the query applied
to D. In the general problem which is the main focus of this paper, we may additionally
impose some functional dependencies. Define α(Q) as the infimum of all values α for which
there exists a multiplicative factor c so that (1) holds for all databases D satisfying the given
functional dependencies. Note that defining |D| as the sum of the sizes of the tables in D
would result in the same value of α(Q), since this would increase |D| by at most a constant
factor (the number of relations in D), and this constant can be accommodated by c in (1).

For example, if Q1(x, y, z) = R(x, y) ∧ S(y, z) and there are no functional dependencies,
then it is not difficult to see that |Q1(D)| ≤ |R(D)| · |S(D)| ≤ |D|2, so in 1 we can take
α = 2, and it is not difficult to see that α(Q1) = 2. Now consider the natural join query
Q2(x, y, z) = R(x, y) ∧ S(y, z) ∧ T (z, x). A trivial bound gives α(Q2) ≤ 3. However, since

∗ Supported by VADA EPSRC grant M025268.
† Funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research

and innovation programme (grant agreement ERC-2014-CoG 648276 AUTAR).

© Tomasz Gogacz and Szymon Toruńczyk;
licensed under Creative Commons License CC-BY

20th International Conference on Database Theory (ICDT 2017).
Editors: Michael Benedikt and Giorgio Orsi; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 Entropy Bounds for Conjunctive Queries with Functional Dependencies

Q2(D) ⊆ Q1(D) for every D, it follows that α(Q2) ≤ 2. With some effort, one can show that
in the absence of functional dependencies, α(Q2) = 3/2. This follows from a result due to
Atserias, Grohe and Marx [1], which characterizes α(Q) when the query Q is a natural join
query (without projections, self-joins and attribute renamings), and there are no functional
dependencies, which we recall now.

Consider the hypergraph whose vertices are the variables appearing in Q, and for each
relation name R in Q there is a hyperedge containing those variables which appear in R.
A fractional edge packing of a hypergraph assigns a positive rational number to each of
its vertices, so that for every hyperedge, the numbers assigned to the adjacent vertices
sum up to at most 1. The total weight of a fractional edge packing is the sum of the
numbers assigned to all the vertices. Define AGM(Q) as the largest possible total weight
of a fractional edge packing of the hypergraph associated to Q. The AGM bound then
states that AGM(Q) = α(Q), in the absence of functional dependencies. For example, the
hypergraph obtained from the query Q2 is the triangle, and assigning 1/2 to each vertex
gives a fractional edge packing with total weight 3/2, which is the largest possible. Hence,
α(Q2) = AGM(Q2) = 3/2. Note that AGM(Q) can be computed using linear programming.

In this paper, we make progress towards characterizing the value α(Q) in the presence of
functional dependencies. In particular, we show that α(Q) can be characterized in two ways:
as an entropy bound H(Q), and in terms of a number GC(Q) derived from systems of finite
groups. The bound α(Q) ≤ H(Q) was observed by Gottlob et al. [9]. We provide a matching
lower bound α(Q) ≥ H(Q) based on a construction using finite groups. Unfortunately, we do
not know how to compute the value α(Q). Our results indicate that the problem is closely
connected to notorious problems from information theory.

Note that the paper [9] also gives a weaker bound α(Q) ≤ H(Q) ≤ h(Q), where h(Q) is
obtained by relaxing the entropy cone to the polymatroid defined by Shannon inequalities
(see Corollary 8). The question whether α(Q) = h(Q) remains open. Note that h(Q) can be
computed using linear programming. Moreover, α(Q) = h(Q) would prove optimality of an
algorithm computing Q(D), recently provided by Khamis et al. [11].

Throughout most of the paper, we focus on natural join queries. A gentle introduction
to entropy and natural join queries, and the relationship between them is given in the
preliminaries (Section 2). In the following section, Section 3, we state our main results
and their consequences. The main result is proved by first characterizing the value H(Q)
(Section 4), then adapting upper bounds and the tightness proof from the work of [5] to the
setting with functional dependencies (Sections 5 and 6). In Section 7 we discuss how to treat
general conjunctive queries and in Section 8 we show some preliminary results concerning
the computation of the result Q(D).

Comparison with previous work. The work of Chan and Yeung [5] establishes a two-way
relationship between entropy vectors and group vectors. Our construction of databases from
group systems, presented in Section 5, although reminiscent of their construction of entropy
vectors from group systems, was independent of that work and was motivated by the coloring
construction of Gottlob et al. [9] and their example showing its suboptimality. Nevertheless,
it is only fair to say that the development of Section 5 is a straightforward adaptation of a
construction of Chan and Yeung [5] in the database setting. As a consequence, we extend
their correspondence to a three-way correspondence between group vectors, entropy vectors,
and vectors induced from databases. The easier direction, from databases to entropy vectors,
was implicit in the paper by Gottlob et al. [9], however, the other direction was missing. For
completeness, we present all proofs.
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More importantly, however, we demonstrate that in all directions, the correspondences
preserve functional dependencies. Some of these preservation results are rather obvious:
if a group vector satisfies certain functional dependencies, then the corresponding entropy
vector satisfies them too – this has been observed in Proposition 3 of [4] – and so does the
corresponding database (see Proposition 18 below). In Section 6 we analyse the construction
of group vectors from entropy vectors from [14] and demonstrate that it preserves functional
dependencies. Also, to prove Theorem 5, we need to prove that functional dependencies
behave well with respect to topological closure (cf. Lemma 12). Reassuming, the main
contribution of this paper can be seen as a detailed study of the preservation of functional
dependencies in the framework proposed by Chan and Yeung.

2 Preliminaries

To fix notation, we recall some notions concerning databases and entropy. We assume a
fixed schema Σ, which specifies a finite set of attributes V(Σ), a finite set of relation names,
and for each relation name R, a finite set V(R) ⊆ V(Σ) of attributes of R. If X is a set of
attributes, then a row with attributes X is a function r assigning to each x ∈ X some value
r[x]. If r is a row with attributes X and Y ⊆ X then by r[Y ] we denote the restriction of
r to Y . A table with attributes X is a finite set of rows with attributes X. A database D
over Σ specifies for each relation name R in Σ a table with attributes V(R). A natural join
query is a set Q of relation names in Σ; we denote V(Q) =

⋃
R∈Q V(R). Such a query can

be applied to a database D, yielding as result the table Q(D) consisting of those rows r with
attributes V(Q) such that r[V(R)] ∈ R(D) for every R ∈ Q.

We say that a database D satisfies a functional dependency R : X 7→ x – where X is a
set of attributes and x is a single attribute – if for any two rows u, v of R(D), u[X] = v[X]
implies u[x] = v[x].

For the rest of this paper, fix a schema Σ and a set of functional dependencies F . Every
database D is assumed to be over this schema, and to satisfy F . Define α(Q) as the smallest
value α for which there exists a constant c such that (1) holds for all databases D over Σ
which satisfy the functional dependencies in F . For convenience, we define |D| to be the
maximal size of a relation in D.
I Remark. Observe that since Q is a natural join query and in the definition of α(Q) we are
interested in maximizing |Q(D)| while keeping |D| bounded, we may assume that Σ contains
only the relation symbols which appear in Q (as D would have the remaining tables empty
anyway) and furthermore, that if R : X 7→ x is a functional dependency in F , then also
S : X 7→ x is a functional dependency in F , for every relation name S such that X ⊆ V(S).
Therefore, we may simply write that F contains the functional dependency X 7→ x instead
of writing R : X 7→ x.

For a database D (over Σ, satisfying F), denote

α(Q,D) = log |Q(D)|
log |D| . (α)

Convention. Throughout this paper we will define several real-valued parameters of the
form γ(Q, x), where Q is a query and x is some object. For a fixed query Q, we denote by
supx γ(Q, x) the supremum, and by lim supx γ(Q, x) the limit superior over all values x, for
which the value γ(Q, x) is defined. In particular, lim supx γ(Q, x) is the smallest value s in
R ∪ {−∞,+∞} such that for every real ε > 0, there are only finitely many x’s such that
γ(Q, x) is defined and larger than s+ ε.

ICDT 2017
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Limit superior vs. supremum. The following lemma will simplify several formulations and
proofs throughout this paper.

I Lemma 1. Let Q be a natural join query Q. Then α(Q) = lim supD α(Q,D) = supD α(Q,D).

Proof. We omit the easy proof that α(Q) = lim supD(Q,D), and prove only the second
equality. To show that supD α(Q,D) ≤ lim supD α(Q,D), we use the following construction.
For a database D and a natural number n, let Dn be the database defined so that the
rows of R(Dn) are n-tuples of rows of R(D), and for such a row r = (r1, . . . , rn), we define
r[x] = (r1[x], . . . , rn[x]) for an attribute x ∈ V(R). It is easy to check that Dn satisfies the
same functional dependencies as D, and that |Dn| = |D|n and |Q(D)| = |Q(D)|n. In particular,
α(Q,Dn) = α(Q,D). It follows that if |D| > 1, then by choosing n arbitrarily large, we
have arbitrarily large databases Dn with α(Q,Dn) = α(Q,D). Therefore, lim supD α(Q,D) ≥
supD α(Q,D), the other inequality being obvious. J

Entropy. In this paper, we only consider random variables taking finitely many values.
Formally, a random variable X is a measurable function X : Ω→ V from a fixed probability
space (Ω,P) of events to a finite set V . In this paper, however, it is not harmful to assume
that Ω is a finite probability space, in which case every function X : Ω → V is a random
variable. By Im(X) ⊆ V we denote the set of values v such that P[X = v] > 0, where
P[X = v] is a shorthand for P[{ω ∈ Ω : X(ω) = v}].

For a random variable X taking values in a finite set V , define the entropy of X as
H(X) = −

∑
v∈Im(X) pv log pv, where pv = P[X = v]. Clearly, the entropy of X only depends

on the distribution of X. Also, the maximal possible entropy of a random variable with
values in a finite set V is equal to log |V |, and is attained by the uniform distribution on V ,
as follows from Jensen’s inequality applied to the convex function − log(x).

Upper bound. We recall an upper bound on α(Q,D), observed by Gottlob et al. [9]. Fix a
natural join query Q. Let U be a random variable U taking as values rows with attributes
V(Σ). For a set of attributes X ⊆ V(Σ), define U [X] to be the random variable whose
value is the restriction of the value of U to the set of attributes X. In particular, U [X] is a
random variable whose values are rows with attributes X, and Im(U [V(R)]) is a table with
attributes V(R). We say that U satisfies a functional dependency Y 7→ x if the table Im(U)
satisfies the functional dependency Y 7→ x. We write Y x to denote the set Y ∪ {x}. We say
that a vector h ∈ RP (V(Q)) satisfies a functional dependency Y 7→ x if h(Y ) = h(Y x). The
following lemma is immediate.

I Lemma 2. U satisfies a functional dependency Y 7→ x iff the vector hU satisfies Y 7→ x.

We remark that in information theory, hU (Y ) = hU (Y x) can be expressed using condi-
tional entropy as H( U [x] | U [Y ] ) = 0 or hU (x | Y ) = 0.

For a random variable U which satisfies every functional dependency in F , define

H(Q,U) = H(U [V(Q)])
maxR∈ΣH(U [V(R)]) . (H)

The following is an observation from [9].

I Lemma 3. Let Q be a natural join query. For a database D, let UD be a random variable
which picks a row of Q(D) uniformly at random. Then α(Q,D) ≤ H(Q,UD).

Proof. By definition of a natural join query, the values of UD[R] are rows of R(D). Then
H(Q,UD) ≥ α(Q,D) since H(UD) = log |Q(D)| and H(UD[R]) ≤ log |R(D)| by the fact that
the uniform distribution maximizes entropy. J
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Entropy cone. Fix a finite set X. Let U = (Ux)x∈X be a family of random variables indexed
by X. For Y ⊆ X, let U [Y ] denote the joint random variable (Uy)y∈Y . The random variable
U [Y ] can be seen as a random variable taking as values tuples indexed by Y . Consider the
real-valued function hU from subsets of X, such that hU (Y ) = H(U [Y ]) for Y ⊆ X; the
function hU can be also seen as a vector in RP (X). Vectors of the form hU ∈ RP (X), where U
is a family of random variables indexed by X, are called entropy vectors (or entropic vectors)
with ground set X [16].

The set of all entropy vectors with ground set X forms a subset of RP (X), denoted Γ∗X .
Its topological closure Γ∗X is a convex cone. The sets Γ∗X and Γ∗X are well studied, however,
to date, they lack effective descriptions when |X| ≥ 4. It is known that the closed cone Γ∗X
is a polyhedron if |X| ≤ 3, and is not a polyhedron if |X| > 3 (i.e. it is not described by
finitely many linear inequalities). Entropy vectors h ∈ Γ∗X (and hence, by continuity, also all
h ∈ Γ∗X) satisfy the submodularity property, expressing Shannon’s inequality for information:

h(Y ∪ Z) + h(Y ∩ Z) ≤ h(Y ) + h(Z) for Y,Z ⊆ X. (2)

Groups, actions and cosets. We use basic notions from algebra. We refer the reader to [12]
for background. If G is a group and H is its subgroup, then a (left) coset of H in G is a
subset of G of the form gH = {gh : h ∈ H} ∈ G/H. Let G/H denote the coset space, i.e.,
the set G/H = {gH : g ∈ G} of all cosets of H in G.

For a finite group G and a set X, recall that a (left) action of G on X is a mapping
G×X → X denoted (g, x) 7→ g · x, such that (g · h) · x = g · (h · x) for g, h ∈ G and x ∈ X,
and e · x = x for x ∈ X and e the identity element of G. We say that the action is transitive
if for every x, y ∈ X there is g ∈ G such that g · x = y. The stabiliser of a point x ∈ X (for a
given action of G on X) is the subset {g ∈ G : g · x = x} of G; this is in fact a subgroup of G.

Note that if H is a subgroup of G, then G acts transitively on G/H, where the action is
given by g′ · gH = (g′g)H for g′, g ∈ G; transitivity of this action follows from the fact that
for g, g′ ∈ G, (g′g)−1gH = g′H. Every transitive action of G on some set X arises in this
way, i.e., is isomorphic to the action of G on G/H, from some subgroup H of G (namely,
one can take H as the stabilizer of any element x ∈ X).

3 Main result and consequences

In this section, we give a brief overview of the main result of the paper, and its consequences.

Main result. For a relation name R in a schema Σ, by V(R) we denote the set of attributes
of R. For X ⊆ V(R) and x ∈ V(R), we write R : X 7→ x to denote the functional dependency
(fd) requiring that in R, the values of attributes X determine the value of the attribute x.
The value α(Q) is defined as in the introduction, taking into account all databases D over
the schema Σ which satisfy a given set of functional dependencies F . We associate another
value H(Q) to a query Q, as follows.

I Definition 4. Fix a schema Σ and a set of functional dependencies F . Let Q be a natural
join query with attributes X. Let H(Q) be the maximal1 value of h(X), for h ranging over
Γ∗X , satisfying:

1 Note that the supremum of h(X) is attained by some entropy vector h, since the function h 7→ h(X) is
continuous, and the set of entropy vectors satisfying the given constraints is compact, as we use Γ∗

X .
This will not necessarily hold in other places throughout this paper.

ICDT 2017
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{
h(V(R)) ≤ 1 for R ∈ Q,
h(Z ∪ {z}) = h(Z) for every fd R : Z 7→ z in F .

.

The main result of this paper is the following.

I Theorem 5. Let Q be a natural join query. Then α(Q) = H(Q).

I Remark. The inequality α(Q) ≤ H(Q) is straightforward, and was observed in [9] (see
Lemma 3). However, as we discuss in Remark 4, the inequality α(Q) ≥ H(Q) is more
involved.

Symmetric databases. The proof of the AGM bound (cf. [1] or Section 3.1 below) shows
that in the absence of functional dependencies, the databases D for which the size-increase
log |Q(D)|

log |D| achieves the bound α(Q) are of a very simple, specific form: each table is a full
Cartesian product. It follows from [9] that in the presence of functional dependencies, this is
no longer the case: databases of this form, satisfying the given functional dependencies, are
arbitrarily far from reaching the value of α(Q).

In this paper, we improve the construction of worst-case databases in the presence of
functional dependencies, by constructing databases which are arbitrarily close to achieving
the bound α(Q). Interestingly, these databases have a very symmetric structure, and their
construction uses finite groups. Our construction of databases from groups is very similar to
a construction from [5].

For a fixed group G, by a G-symmetric database we mean a database D together with an
action of G on the set of all values appearing in all tables of D, such that the componentwise
action of G on (the rows of) each table R(D) is transitive (the componentwise action is given
by (g · r)[x] = g · (r[x]) for g ∈ G, r ∈ R(D) and x ∈ V(R)). A symmetric database is a
database D which is G-symmetric for some finite group G. Intuitively, in each table of a
symmetric database, all rows are the same, up to permutation. Symmetric databases are
very regular. For example, if a database D represents a graph G (i.e., it has one relation E,
which is symmetric) and if D is symmetric, then the graph G is regular (all vertices have the
same degree), vertex transitive (for any two vertices there is an automorphism of G mapping
the first one to the second) and edge transitive (for any two edges there is an automorphism
of G mapping the first one to the second).

The second main result of this paper is the following.

I Theorem 6. Fix a schema Σ, functional dependencies F , and a natural join query Q. Then,
for each ε > 0 there are arbitrarily large symmetric databases D with log |Q(D)|

log |D| > α(Q)− ε.

This can be seen as a structure result for worst-case databases. Apart from that, symmetric
databases are essential in our proof of the lower bound given in Theorem 5.

Simple statistics. We state without proof a result generalizing Theorem 5, whose proof can
be obtained in a similar way. In Theorem 5, intuitively, we were interested in the worst-case
size of Q(D), assuming the maximal table of D has a given size (which is manifested by the
inequality h(V(R)) ≤ 1 for all R). Knowing the precise sizes of all tables in D may lead
to better bounds on Q(D), as we show below. For a database D over the schema of Q, its
simple log-statistics is the vector sls(D) = (log |R(D)|)R∈Q .

I Theorem 7. Fix a schema Σ and a set of functional dependencies F . Let Q be a natural
join query with attributes X, and let s = (sR)R∈Q be a vector of nonnegative real numbers.
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Let β(Q, s) be the maximal value of h(X), for h ranging over Γ∗X and satisfying:{
h(V(R)) ≤ sR for R ∈ Q,
h(Z ∪ {z}) = h(Z) for every fd R : Z 7→ z in F .

Then supD log |Q(D)| = lim supD log |Q(D)| = β(Q, s), where D ranges over all finite databases
satisfying the functional dependencies F and such that sls(D) ≤ s componentwise.

Theorem 5 is an immediate consequence of Theorem 7, obtained by setting sR = log |D| for
each R ∈ Q, and using the fact that Γ∗X is a cone, since we can divide the vector obtained by
Theorem 7 by any positive number (in our case, log |D|) and still get a vector from Γ∗X . It is
straightforward to verify that this new vector is a solution postulated by Theorem 5.

In this paper, we present in detail only the proof of Theorem 5. The proof of Theorem 7
proceeds similarly, and will be presented in the full version of the paper [8].

3.1 Consequences
We now show how some results known previously can be obtained as consequences of The-
orem 5 (in fact, of the easier, upper bound α(Q) ≤ supU H(Q,U) presented in Section 2.) The
results from Section 3.1 are not used in this paper, and are presented only for completeness.

Relaxing the condition in Definition 4 that h ∈ Γ∗X to the condition that h is submodular
gives the following upper bound on α(Q), which is equivalent to a bound in [9]. For a query
Q and functional dependencies F , consider the maximal2 value of h(X) for h ranging over
RP (X), satisfying:

h(∅) = 0 (3)
h(Y ) ≤ h(Z) for Y ⊆ Z ⊆ X, (4)

h(Y ∪ Z) + h(Y ∩ Z) ≤ h(Y ) + h(Z) for Y,Z ⊆ X, (5)
h(V(R)) ≤ 1 for R ∈ Q, (6)

h(Z ∪ {z}) = h(Z) for every fd R : Z 7→ z in F . (7)

Denote the above optimum by h(Q). Since the conditions describing h(Q) are a relaxation
of the conditions describing H(Q), from α(Q) ≤ H(Q) we get the following.

I Corollary 8 ([9]). For a conjunctive query Q and functional dependencies F , α(Q) ≤ h(Q).

Note that the bound h(Q) can be computed by linear programming, where the number of
variables is exponential in the size of Q. Unfortunately, the question whether α(Q) = h(Q)
for every query Q and functional dependencies, stated in [9], remains open. Recently, Khamis,
Ngo and Suciu [11] provided an algorithm for computing Q(D) in the presence of functional
dependencies, in time Õ(|D|h(Q)) (where Õ hides polylogarithmic factors), which is optimal
assuming the tightness of the above bound.

We now show how the AGM bound follows from Corollary 8. Note that the original
proof [1] of the AGM bound used Shearer’s Lemma from information theory and strong
duality of linear programs. The proof presented below only uses Shannon information
inequalities, manifested in Corollary 8. A function h ∈ RP (X), is modular if it satisfies
h(Y ) =

∑
y∈Y h({y}) for Y ⊆ X.

2 The maximum is attained, as follows by a simple compactness argument.

ICDT 2017
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I Lemma 9. In absence of functional dependencies, the optimum h(Q) is attained by a
modular function h ∈ RP (X).

Proof. Let h ∈ RP (X) be a function satisfying conditions (3)-(6), with maximal possible
value of h(X). In particular, h is submodular. We show that h can be in fact taken modular.

Denote by Ph the set3 of functions r : X → R satisfying r̂(Y ) ≤ h(Y ) for Y ⊆ X,

where r̂(Y ) is shorthand for
∑
x∈Y r(x). Consider the linear optimization problem of finding

r ∈ Ph which maximizes the value r̂(X) =
∑
x∈X r(x). It follows from general principles (see

e.g. [13], Section 3) that the so-called “greedy algorithm” gives an optimal solution r to this
problem, defined by

r(xi) = h({x1, . . . , xi})− h({x1, . . . , xi−1}) for i = 1, . . . , n,

where n = |X| and x1, x2, . . . , xn is a fixed enumeration of the elements of X. In our special
case it is sufficient and not difficult to check that conditions (3) and (5) imply r̂(Y ) ≤ h(Y )
for all Y ⊆ X. Optimality of r̂ then follows from the fact that r̂(X) =

∑n
i=1 r(xi) =

h(X) − h(∅) = h(X). By modularity, r̂ satisfies conditions (3)-(5), and it also satisfies
condition (6) because r̂(Y ) ≤ h(Y ) for all Y . Since r̂(X) = h(X), this proves the lemma. J

Since modular functions h ∈ RP (X) are uniquely determined by their values for singletons,
and automatically satisfy conditions (3)-(5), we conclude that in the absence of functional
dependencies, h(Q) is equal to the maximal value of

∑
x∈X r(x) for r ∈ RX satisfying∑

x∈V(R) r(x) ≤ 1 for R ∈ Q. Such functions r are by definition real-valued edge packings of
the hypergraph associated to Q, and the maximal possible total weight of such a packing is
equal4 to AGM(Q). Hence we get the following.

I Corollary 10. In the absence of functional dependencies, α(Q) ≤ h(Q) = AGM(Q).

We remark that [1] also prove a matching lower bound α(Q) ≥ h(Q) in the absence of
functional dependencies, thus proving h(Q) = α(Q) = AGM(Q).

We remark that Theorem 7 can be used to derive the following, more precise variant of
the AGM bound. A fractional vertex covering of a hypergraph is an assignment of rational
weights to hyperedges, so that for every vertex, the sum of the weights assigned to the
adjacent hyperedges is at least 1. By strong duality for linear programming, the smallest
total weight of a fractional vertex covering is equal to the largest total weight of a fractional
edge packing.

I Corollary 11 ([1]). In the absence of functional dependencies, |Q(D)| ≤
∏
R∈Q |R(D)|wR ,

where (wR)R∈Q is any fractional vertex covering of the hypergraph associated to Q.

To deduce the above corollary from Theorem 7, repeat the reasoning used above when
deriving Corollary 10 from Theorem 5, by relaxing the condition h ∈ Γ∗X in Theorem 7 to
submodularity of h, and apply strong duality for linear programming. We leave the details
to the interested reader.

3 Called the polymatroid associated with the submodular function h.
4 It follows from general principles of linear programming that a linear program with rational coefficients

is optimized by a fractional solution.
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Geometric inequalities. As noted elsewhere [15, 7, 2], Corollary 11 provides an upper
bound on the size of a finite set in multi-dimensional space, in terms of the sizes of its
projections. It implies the discrete versions of many inequalities from geometry and analysis,
such as Hölder’s inequality, Cauchy-Schwartz inequality, Loomis-Whitney inequality, Bollobás-
Thomason inequality, Friedgut’s inequality.

4 Characterization of H(Q)

In this section, we relate the value H(Q) from Definition 4 in terms of H(Q,U), as
supU H(Q,U) (cf. Proposition 14). Recall that according to our convention, the supremum
ranges over all random variables U which satisfy the given functional dependencies. Note
that the inequality H(Q) ≥ supU H(Q,U) follows from Definition 4 and the fact that the
entropy vector hU associated to U also satisfies the functional dependencies by Lemma 2.
The remaining inequality H(Q) ≤ supU H(Q,U) requires a more careful explanation. This
is because H(Q) is defined as a supremum for h ∈ Γ∗V(Q) which are limits of a sequence
h1, h2, . . . of entropy vectors, and such that h (and not h1, h2, . . .) satisfies the given functional
dependencies. Therefore, to prove Proposition 14, we need the following.

I Lemma 12. Let h ∈ Γ∗V(Q) be a vector satisfying functional dependencies F . Then there
exists a sequence of random variables {Vn}n∈N such that h = limn→∞ hVn , and each Vn
satisfies F .

Proof. Lemma 12 will be proven by induction on the size of F . Let {Un}n∈N be a sequence
of random variables such that h = limn→∞ hUn satisfies a functional dependency X 7→ y,
and moreover each random variable Un satisfies a set of functional dependencies F . We
construct a sequence of random variables {Vn}n∈N such that each random variable Vn satisfies
F ∪ {X 7→ y}, and limn→∞ hVn = h.

Let us focus on a single random variable U = Un. We partition the table Im(U) into sets
A1, A2, . . ., so that each Ai satisfies the functional dependency X 7→ y, as follows. For each
row r ∈ Im(U [X]) proceed as follows. Choose a row r1 ∈ Im(U [Xy]) extending r, which is
attained by the random variable U [Xy] with the greatest probability. Add to the set A1
all rows r′1 ∈ Im(U) which extend r1. After that choose a row r2 ∈ Im(U [Xy]) extending r,
which is attained by the random variable U [Xy] with the second greatest probability. Add
to the set A2 all rows r′2 ∈ Im(U) which extend r2. And so on.

At the end of this process, observe that each table Ai satisfies the dependency X 7→ y.
Let A be a random variable which indicates to which set Ai the tuple from Im(U [X])

belongs. In other words, A = i ⇔ U ∈ Ai. We omit the proof of the following lemma.

I Lemma 13. H(A) ≤ 2 ·H(U [y]|U [X])

Let V be the following modification of U . Each attribute value in the set Ai gets a new
prefix Ai_ attached to its name, so the sets of possible attribute values in sets Ai and Aj are
disjoint for i 6= j. After such a procedure, the entropy of the attributes could be increased,
but not more than by H(A).

We will show that setting Vn to V gives the desired result. The random variable V
satisfies the dependencies F ∪ {X 7→ y} on each set Ai by definition of the set Ai. As
presented during the construction, for any set of attributes Z, the entropy of V [Z] can differ
from U [Z] at most by 2 ·H(U [y] | U [X]). Since limn→∞H(Un[y] | Un[X]) = 0 we get that
limn→∞ hUn = limn→∞ hVn . J

Lemma 12 proves the following.
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I Proposition 14. Let Q be a natural join query. Then H(Q) = supU H(Q,U).

From Lemma 3 and Proposition 14 we get the following.

I Lemma 15. In the presence of functional dependencies, α(Q) ≤ H(Q).

Therefore, to prove Theorem 5, it remains to show that α(Q) ≥ H(Q).

I Remark. To prove α(Q) ≥ H(Q), it would be enough to construct, for a given random
variable U a database D satisfying the same functional dependencies, and such that α(Q,D) ≥
H(Q,U). It is not clear how to construct such a database, even if U attains each row with
rational probability (this is without loss of generality – see Lemma 22), or even with uniform
distribution (this assumption would require justification, since H(Q) ≤ α(Q) implies that for
every entropy vector h there is a database D which achieves the same size-increase; we can
then consider the uniform distribution UD on the results Q(D), as in Lemma 3). Our proof
of Theorem 5 does not follow such a direct approach, but rather constructs a database from
a system of finite groups constructed from the random variable U .

In Sections 5 and 6 we introduce a new parameter GC(Q) and prove the inequalities
α(Q) ≥ GC(Q) and GC(Q) ≥ H(Q). This, together with Lemma 15, will finish the proof of
Theorem 5.

5 Lower bounds

In this section, we prove a lower bound α(Q) ≥ GC(Q). This bound will be obtained by
a series of more and more refined constructions of databases. We start from recalling a
construction using colorings due to Gottlob et al. [9]. We then improve this bound to vector
space colorings, and finally, to group systems. In the entire Section 5, fix a natural join query
Q over a schema Σ, and a set of functional dependencies F .

5.1 Colorings

A coloring of Q is a function f assigning finite sets to V(Q). We say that f satisfies a
functional dependency X 7→ x if f(x) ⊆ f(X), where f(X) denotes

⋃
y∈X f(y). For a

coloring f of Q which satisfies all functional dependencies in F , define

C(Q, f) = |f(V(Q))|
maxR∈Σ |f(V(R))| , (C)

and let C(Q) = supf C(Q, f).
The following proposition is proved in [9], and amounts to constructing a database D

from a given coloring f . In the following section we will extend this construction to vector
space colorings.

I Proposition 16 ([9]). Let Q be a natural join query. Then α(Q) ≥ C(Q).

It is shown in [9] that the value C(Q) can be computed by a linear program. In the
case without functional dependencies, this program is dual to the program for AGM(Q), so
C(Q) = AGM(Q) = α(Q).
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5.2 Vector space colorings
In the presence of functional dependencies, there are queries Q for which α(Q) > C(Q), as
shown in the paper [9], by elaborating an example proposed by Dániel Marx, and using
Shamir’s secret sharing scheme. Inspired by that construction and Blakley’s secret sharing
scheme, in this section we define a new parameter VCK(Q) based on vector spaces, and
generalized later in Section 5.3 to GC(Q) based on arbitrary groups. We study the relations
between these parameters and C(Q). We note that the development of Section 5.2 and the
inequalities involving the parameter VCK(Q) proved in Section 5.3 are not needed for proving
α(Q) ≥ GC(Q) and our main result (Theorem 5), but we present them in order to relate our
parameters VCK(Q) and later GC(Q) to the coloring number C(Q), and also to provide a
gradual introduction to the most general parameter GC(Q) defined in Section 5.3.

We consider vector spaces over a fixed finite field K. If V is a vector space, X is a set,
and Vx is a subspace of V for x ∈ X, then by

∑
x∈X Vx we denote the smallest subspace of

V containing every Vx, for x ∈ X (we refer to [10] for background on vector spaces).
A vector space coloring of Q is a pair V = (V, (Vx)x∈V(Q)), where V is a vector space

and (Vx)x∈V(Q) is a family of its subspaces. For such a coloring, define VY =
∑
x∈Y Vx for

Y ⊆ V(Q). We say that V satisfies a functional dependency Y 7→ x if Vx ⊆ VY . For a vector
space coloring V satisfying all the functional dependencies in F , define

VCK(Q,V) =
dim(VV(Q))

maxR∈Σ dim(VV(R))
, (VC)

Let VCK(Q) = supV VCK(Q,V).

I Proposition 17. Let Q be a natural join query. Then VCK(Q) ≥ C(Q).

Proof. The inequality VCK(Q) ≥ C(Q) is obtained by defining for a coloring f a vector space
coloring V with V = KColors, Vx = Kf(x) ⊆ KColors, where Colors =

⋃
x∈V(Q) f(x), and

Kf(x) embeds into KColors in the natural way, by extending a vector with zeros on coordinates
in Colors − f(x). It is easy to see that V satisfies the same functional dependencies as f ,
and that VCK(Q,V) = C(Q, f). This proves VCK(Q) ≥ C(Q). J

5.3 Group systems
We relax the notion of a vector space coloring, by considering finite groups, as follows. Let
G be a finite group and (Gx)x∈V(Q) be a family of its subgroups. For a set of attributes
X ⊆ V(Q), denote by GX the group GX =

⋂
x∈X Gx, and by G/GX the space of (left)

cosets, {gGX : g ∈ G}. We call the pair G = (G, (Gx)x∈X) a group system for Q, and say
that it satisfies a functional dependency X 7→ x if GX ⊆ Gx (note the duality with respect
to vector space colorings, with ∪ replaced by ∩ and ⊆ replaced by ⊇). For a group system G
satisfying all the functional dependencies in F , define

GC(Q,G) =
log |G/GV(Q)|

maxR∈Σ(log |G/GV(R)|)
, (GC)

and let GC(Q) = supG GC(Q,G).

I Proposition 18. Let Q be a natural join query. Then

α(Q) ≥ GC(Q) ≥ VCK(Q). (8)
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Proof. Call a group system G a vector space system if it consists of a vector space V , treated
as a group with addition, and its subspaces (Vx)x∈X , treated as subgroups of V . The second
inequality in (8) is an immediate consequence of the following lemma, which is an application
of vector space duality (see e.g. [10]).

I Lemma 19. For every vector space coloring V there is a vector space system V∗ satisfying
the same functional dependencies as V, and such that VCK(Q,V) = GC(Q,V∗).

Proof. If V is a vector space, let V ∗ denote its algebraic dual, i.e., the space of all linear
functions from V to K (with addition and multiplication by scalars defined coordinatewisely).
If L is a subspace of V , then let L⊥ ⊆ V ∗ denote the set of functionals f ∈ V ∗ which
vanish on L, i.e., f(L) ⊆ {0}. For a vector space coloring V = (V, (Vx)x∈V(Q)) let V∗ =
(V ∗, (V ⊥x )x∈V(Q)). Using the standard facts (L1∩L2)⊥ = L⊥1 +L⊥2 and L1 ⊆ L2 iff L⊥1 ⊇ L⊥2 ,
one easily checks that V∗ satisfies the same functional dependencies as V . Furthermore, from
dimV = dimV ∗ and

dim(L⊥) = dimV −dimL = log |V |/ log |K| − log |L|/ log |K| = log |V/L|/ log |K|,

VCK(Q,V) = GC(Q,V∗) follows easily. J

It remains to prove the inequality α(Q) ≥ GC(Q). To this end, from a group system G
we construct a database D satisfying the same functional dependencies, and such that

α(Q,D) = GC(Q,G). (9)

For a relation name R and an element g ∈ G, let rg be the row such that rg[x] = gGx ∈
G/Gx for every attribute x ∈ V(R). Define D by setting R(D) = {rg : g ∈ G}, for every
relation name R. The following lemma implies immediately that the database D satisfies the
same functional dependencies as G.

I Lemma 20. Fix a group G, a family (Gx)x∈X of subgroups of G, and a subgroup G0 ⊆ G
such that G0 ⊇

⋂
x∈X Gx. For any given g ∈ G, the cosets (gGx)x∈X determine gG0, i.e.,

for every two elements g, h ∈ G, if gGx = hGx for all x ∈ X, then gG0 = hG0.

Proof. If G1 is a subgroup of G0 then gG1 ⊆ gG0, and gG0 is determined by gG1 as follows:
gG0 = {k · h : h ∈ gG1, h ∈ G0}. Applying this observation to G1 =

⋂
x∈X Gx yields that

gG0 is determined by g(
⋂
x∈X Gx) =

⋂
x∈X(gGx). J

Next we show (9). For each relation name R, consider the mapping fR : G→ R(D), where
fR(g) = rg. Clearly, the mapping is onto R(D). To compute the size of its image, we analyse
the kernel of fR and observe that {h : rg = rh} = gGV(R) for every g ∈ G. In particular,
|R(D)| = |G/GV(R)|. Similarly, we verify that |Q(D)| = |G/GV(Q)|. Equation (9) then
follows. By Lemma 1, this proves α(Q) ≥ GC(Q). J

I Remark. The database D constructed in the above proof is G-symmetric. Indeed, the
values appearing in the database are cosets the form gGx (where x ∈ V(Q)) and G acts
(from the left) on such cosets in the obvious way. Moreover, the action of G on each table
R(D) is isomorphic to the action of G on G/GV(R), in particular, it is transitive. Also, if D
is G-symmetric and Dn is defined as in the proof of Lemma 1, then Dn is Gn-symmetric.
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6 Tightness

Lemma 15 and Proposition 18 show that H(Q) ≥ α(Q) ≥ GC(Q) for every natural join
query Q, in the presence of functional dependencies. In this section, we close the circle by
proving the following.

I Proposition 21. Let Q be a natural join query. Then GC(Q) ≥ H(Q).

Together with Proposition 18 and Lemma 15, this proves that H(Q) = α(Q) = GC(Q).
As noted in Proposition 14, this gives Theorem 5. Moreover, from the observation in
Remark 5.3, it follows that the bound α(Q) can be approximated by (arbitrarily large)
symmetric databases, proving Theorem 6.

All the necessary ideas to prove the proposition are present in the proof of the result of
Chan and Yeung [5]. However, we cannot directly apply that theorem, since we need to keep
track of the functional dependencies. In the rest of Section 6, we present a self-contained
proof of Proposition 21, following [14].

For the rest of this section, fix a random variable U , taking values in a finite set of rows
with attributes X, and satisfying the functional dependencies F .

We say that a random variable V is rational if for every value v ∈ Im(V ), the probability
that V achieves v is a rational number. The following lemma follows easily from the density
of rationals among the real numbers.

I Lemma 22. For every number ε > 0 there exists a rational random variable V satisfying
the same functional dependencies as U , and such that ‖hV − hU‖ < ε with respect to the
euclidean norm on RP (X).

To prove Proposition 21, we proceed as follows. For each rational random variable U
satisfying the given functional dependencies, we will find a sequence of group systems Gk
satisfying the functional dependencies F , and such that

lim
k→∞

GC(Q,Gk) = H(Q,U). (10)

From that, Proposition 21 follows:

H(Q) Prop.14= sup
U
H(Q,U) Lem.22= sup

U rational
H(Q,U)

(10)
≤ sup

G
GC(Q,G) = GC(Q).

From now on, let U be a rational random variable satisfying the functional dependencies F .
We will show that there exists a sequence of group systems witnessing (10).

Let q ∈ N be a natural number such that for each row r ∈ Im(U) the probability P[U = r]
can be represented as a rational number with denominator q. For k = q, 2q, 3q, . . . let Ak be
a matrix whose columns are indexed by attributes, containing exactly k · P[U = r] copies of
the row r, for every row r ∈ Im(U). Notice that k · P[U = r] is always a natural number,
and that Ak has exactly k rows in total.

Let Gk denote the group of all permutations of the rows of Ak. For a set of attributes
Y ⊆ X, let GkY denote the subgroup of Gk which stabilizes the submatrix Ak[Y ] of Ak, i.e.,

GkY = {σ ∈ Gk | σ(r)[y] = r[y] for each r ∈ Ak and y ∈ Y }.

Denote Gk{x} by Gkx. In particular, GkY =
⋂
y∈Y G

k
y . The following lemma is immediate.

I Lemma 23. Suppose that U satisfies the functional dependency Y 7→ x. Then GkY ⊆ Gkx.
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We define Gk as (Gk, (Gkx)x∈X). By Lemma 23, Gk is a group system satisfying the
functional dependencies F . It remains to prove (10).

Fix a set of attributes Y ⊆ X. For a row r ∈ Im(U [Y ]), let pr denote P[U [Y ] = r]. Since
r occurs exactly k · pr times as a row of Ak[Y ], it follows that GkY is isomorphic to the
product of symmetric groups

∏
r∈Im(U [Y ]) Sk·pr

(where Sk·pr
is the symmetric group of all

permutations of the copies of the row r). In particular, |GkY | =
∏
r∈Im(U [Y ])(k · pr)!. Using

Stirling’s approximation we get the following (ak ∼ bk signifies limk→∞ ak/bk = 1):

log
(
|Gk|
|GkY |

)
= log

(
k!∏

r∈Im(U [Y ])(k · pr)!

)
∼

k log(k)−
∑

r∈Im(U [Y ])

(k · pr) log (k · pr)

 ∼
−

∑
r∈Im(U [Y ])

(k · pr)(log (k · pr − log k)) ∼ (−k) ·
∑

r∈Im(U [Y ])

pr log pr ∼ k ·H(U [Y ]).

In particular,

GC(Q,Gk) = log(|Gk|/|GkX |)
maxR∈Q log(|Gk|/|GkV(R)|)

k→∞−→ H(U)
maxR∈QH(U [V(R)]) = H(Q,U).

This yields (10), proving Proposition 21, which together with Lemma 15 and Proposition 18
gives H(Q) = GC(Q) = α(Q) and finishes the proof of Theorem 5. The more general
Theorem 7 is proved similarly. Moreover, Theorem 6 follows from Remark 5.3.

7 General conjunctive queries

The previous sections concern natural join queries: conjunctive queries without existential
quantifiers (or projections), in which the variables name coincides with the name of the
attribute of the relation in which it appears (in particular, the same variable name cannot
occur in the scope of one conjunct, and there are no equalities). In this section, we discuss
how to treat arbitrary conjunctive queries.

7.1 Set semantics
Define a natural conjunctive query to be a query of the form Q = ∃Y Q′, where Q′ is a
natural join query over the schema Σ, and Y ⊆ V(Σ). The set of free variables of Q is
V(Q) = V(Σ)− Y . For a database D over the schema Σ, define Q(D) as T [V(Q)], where
T = Q′(D). In other words, Q(D) is the table Q′(D) restricted to the free variables of Q.
This is the so-called set-semantics, since the result T [V(Q)] is a set of rows, i.e., each row
occurs either 0 or 1 times.

As explained in [9] for each conjunctive query Q there exists a natural conjunctive query
S, such that α(Q) = α(S). Such S can be constructed in a purely syntactical way from Q by
the chase procedure. Because of this, we only consider natural conjunctive queries.

The definition of α(Q) can be lifted without modification to natural conjunctive queries.
The generalization of Theorem 5 has the expected form:

I Theorem 24. Fix a relational schema Σ and a set of functional dependencies F . Let Q
be a natural conjunctive query over the schema Σ. Then α(Q) is equal to the maximal value
of vV(Q), for v ranging over Γ∗V(Σ) and satisfying:{

vV(R) ≤ 1 for R ∈ Q,
vZ∪{z} = vZ for every fd Z 7→ z in F .
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The proof of the lower bound is exactly the same as the proof of Theorem 5. However
the proof of the upper bound has to be modified slightly, as described below.

For a query Q = ∃Y. Q′, define H(Q,U) and H(Q) as in Section 2. We then have the
following analogue of Lemma 15, proving the upper bound.

I Lemma 25. For a natural conjunctive query Q = ∃Y. Q′, α(Q) ≤ H(Q).

Proof. For a database D, let UD be the random variable with values in Q′(D), described as
the result r′ of the following process: first choose uniformly at random a row r ∈ Q(D), and
then, choose uniformly at random a row r′ ∈ Q′(D) such that r′[V(Q)] = r.

By definition, the random variable UD[V(Q)] is uniformly distributed on Q(D). Now we
get that:

α(Q,D) = log |Q(D)|
maxR∈Q′ log |R(D|) = H(UD[V(Q)])

maxR∈Q′ log |R(D)|

≤ H(UD[V(Q)])
maxR∈Q′ H(UD[V(R)]) = H(Q,UD).

By a similar argument as in the proof of Lemma 15, we derive that α(Q) ≤ H(Q). J

8 Evaluation

In this section, we give some rudimentary results bounding the worst-case complexity of
computing the result of a query Q(D), for a given database D. In the absence of functional
dependencies, it was originally shown in [1] that Q(D) can be computed from D in time
proportional to |D|α(Q)+1, which was later improved to |D|α(Q) by Ngo et al. [15]. In the
bounds presented below, there is an additional factor |D|m, where m is a parameter depending
on the functional dependencies, defined below. Recently, Khamis et al. [11] showed how to
compute the result in time Õ(|D|h(Q)) in the presence of functional dependencies, i.e., in
almost optimal time assuming that the bound α(Q) ≤ h(Q) of Gottlob et al. [9] is tight.

Let F be a set of functional dependencies over attributes X. A minimal component C is an
inclusion-minimal nonempty set of attributes C ⊆ X with the property that whenever Y 7→ x

is a functional dependency with Y ∩ C nonempty, then x ∈ C. For a set X ′ ⊆ X, define
F [X ′] to be the set of functional dependencies over X ′ which consists of those functional
dependencies Y 7→ x from F , such that Y ⊆ X ′.

We say that a set of attributes S ⊆ X spans F , if the smallest subset S̄ of X containing
S and closed under functional dependencies (i.e., Y 7→ x and Y ⊆ S̄ implies x ∈ S̄) is equal
to X. We say that F has width m if it has a set of size at most m which spans it. We
inductively define the iterative width by saying that F has iterative width m if either the set
of attributes is empty, or for every its minimal component C, F [C] has width m, and if M
is the set of attributes which belong to the minimal components, then F [X −M ] also has
iterative width m.

I Example 26. If F is an empty set of functional dependencies over a nonempty set of
attributes, then F has iterative width 1. The set of dependencies x 7→ y, y 7→ z, z 7→ x has
width 1, since it is spanned by {x}. It also has iterative width 1. Finally, let X = {x, y, z}
and F consist of the functional dependency {x, y} 7→ z. Then F has width 2, since the set
{x, y} spans it. The only minimal component is {z}, and F [{z}] and F [{x, y}] have width 1
and 2, respectively. Hence F has iterative width 2.
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Let D be a database and let C be a minimal component. For a row r over attributes
X, denote by r/C the row with attributes X such that r/C[x] = r[x] for x ∈ X − C and
r/C[x] = x for x ∈ X ∩C. Therefore, r/C is obtained by replacing each value of an attribute
in C by a placeholder, storing the name of the attribute. Denote by D/C the database
obtained from D by replacing in each table R, every row r by the row r/C. Clearly, we have
the following.

I Lemma 27. The database D/C can be computed from D in linear time.

The following lemma is immediate, by the fact that C is a minimal component.

I Lemma 28. The database D/C satisfies all the functional dependencies of Q.

Note, however, that the database D/C usually satisfies more functional dependencies
than D, namely, it satisfies all functional dependencies ∅ 7→ x, for x ∈ C.

I Lemma 29. Let C be a minimal component, and suppose that F [C] has width m. Then, for
a given database D, the result Q(D) can be computed from Q(D/C) in time O(|Q(D/C)|·|D|m).

Very roughly, the algorithm proceeds by computing, for all s ∈ Q(D/C) and all rows r over a
spanning set for C and with admissible values, the row compatible with s and r (if it exists),
and adding it to the result. We omit the details, due to lack of space.

By iteratively applying Lemma 29, we obtain the main result of this section.

I Proposition 30. Fix a natural join query Q and functional dependencies F of iterative
width m. There is an algorithm which for a given database D computes Q(D) in time
O(|D|α(Q)+m).

Observe that when the set F of functional dependencies is empty, Proposition 30 gives the
algorithm from [1], whose running time is O(|D|α(Q)+1), since then F has iterative width 1.

9 Conclusion and future work

We characterized the worst-case size-increase for the evaluation of conjunctive queries, in
two ways: in terms of entropy and in terms of finite groups. Our construction improves a
construction from [9]. We also presented a rudimentary result concerning the evaluation of
natural join queries.

We see several directions of a possible future work. The first direction is to try to
prove tightness of the bound α(Q) ≤ h(Q) from Corollary 8, due to [9]. This would yield
computability of α(Q), as h(Q) can be computed using linear programming. Moreover,
together with the recent results of Khamis et al. [11], this would give an almost optimal
Õ(|D|α(Q)) algorithm for computing the results of joins.

Computing H(Q) directly looks hard, and probably would require a deeper understanding
of entropy, and the entropy cone in particular. By comparison, we note that in cryptography
and information theory the seemingly similar optimization problem of finding the optimal
information rate in access structures [3] (a security system which can be used as a secret
sharing scheme) is considered notoriously difficult [6]. This demonstrates that optimization
problems over the entropy cone can be very difficult.

The fractional edge cover was useful in the analysis of the Hypercube algorithm [2], an
algorithm for parallel evaluation of queries. Perhaps some ideas from the current paper can
also be applied in the parallel setting.
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Abstract
A large number of web applications is based on a relational database together with a program,
typically a script, that enables the user to interact with the database through embedded SQL
queries and commands. In this paper, we introduce a method for formal automated verification
of such systems which connects database theory to mainstream program analysis. We identify a
fragment of SQL which captures the behavior of the queries in our case studies, is algorithmically
decidable, and facilitates the construction of weakest preconditions. Thus, we can integrate
the analysis of SQL queries into a program analysis tool chain. To this end, we implement
a new decision procedure for the SQL fragment that we introduce. We demonstrate practical
applicability of our results with three case studies, a web administrator, a simple firewall, and a
conference management system.
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1 Introduction

Web applications are often written in a scripting language such as PHP and store their
data in a relational database which they access using SQL queries and data-manipulating
commands [37]. This combination facilitates fast development of web applications, which
exploit the reliability and efficiency of the underlying database engine and use the flexibility
of the script language to interact with the user. While the database engine is typically a
mature software product with few if any severe errors, the script with the embedded SQL
statements does not meet the same standards of quality.
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With a few exceptions (such as [15, 19]) the systematic analysis of programs with
embedded-SQL statements has been a blind spot in both the database and the computer-
aided verification community. The verification community has mostly studied the analysis
of programs which fall into two classes: programs with (i) numeric variables and complex
control structure, (ii) complex pointer structures and objects; however, the modeling of
data and their relationships has not received the same attention. Research in the database
community on the other hand has traditionally focused on correct design of databases rather
than correct use of databases.

Our long-term research vision is to transfer and extend the techniques from the verification
and program analysis community to the realm of programs with embedded SQL. Since the
seminal papers of Hoare, the first step for developing a program analysis is a precise
mathematical framework for defining programming semantics and correctness. In this paper
we develop a Hoare logic for a practically useful but simple fragment of SQL, called SmpSQL,
and a simple scripting language, called SmpSL, which has access to SmpSQL statements.
Specifically, we describe a decidable logic for formulating specifications and develop a weakest
precondition calculus for SmpSL programs; thus our Hoare logic allows to automatically
discharge verification conditions. When analyzing SmpSL programs, we treat SQL as a black
box library whose semantics is given by database theory. Thus we achieve verification results
relative to the correctness of the underlying database engine.

We recall from Codd’s theorem [13] that the core of SQL is equivalent in expressive power
to first-order logic FO. Thus, it follows from Trakhtenbrot’s theorem [35] that it is undecidable
whether an SQL query guarantees a given post condition. We have therefore chosen our
SQL fragment SmpSQL such that it captures an interesting class of SQL commands, but
corresponds to a decidable fragment of first-order logic, namely FO2

BD, the restriction of
first-order logic in which all variables aside from two range over fixed finite domains called
bounded domains. The decidability of the finite satisfiability problem of FO2

BD follows from
that of FO2, the fragment of first-order logic which uses only two variables. Although
the decidability of FO2 was shown by Mortimer [30] and a complexity-wise tight decision
procedure was later described by Grädel, Kolaitis and Vardi [21], we provide the first efficient
implementation of finite satisfiability of FO2.

We illustrate our methodology on the example of a simple web administration tool based
on [22]. The PANDA web administrator is a simple public domain web administration
tool written in PHP. We describe in Section 2 how the core mailing-list administration
functionality falls into the scope of SmpSL. We formulate a specification consisting of a
database invariant and pre- and postconditions. Our framework allows us to automatically
check the correctness of such specifications using our own FO2

BD reasoning tool.

Main contributions

1. We define SmpSQL, an SQL fragment which is contained in FO2
BD.

2. We define a simple imperative script language SmpSL with embedded SmpSQL statements.
3. We give a construction for weakest preconditions in FO2

BD for SmpSL.
4. We implemented the weakest precondition computation for SmpSL.
5. We implemented a decision procedure for FO2

BD. The procedure is based on the decidability
and NEXPTIME completeness result for FO2 by [21], but we use a more involved algorithm
which reduces the problem to a SAT solver and is optimized for performance.
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We evaluate our methodology on three applications: a web administrator, a simple
firewall, and a conference management system. We compared our tool with Z3 [14], currently
the most advanced general-purpose SMT solver with (limited) support for quantifiers. In
general, our tool performs better than Z3 in several examples for checking the validity of
verification conditions of SmpSL programs. However, our tool and Z3 have complementary
advantages: Z3 does well for unsatisfiable instances while our tool performs better on
satisfiable instances. We performed large experiments with custom-made blown up versions
of the web administrator and the firewall examples, which suggest that our tool scales well.
Moreover, we tested the scalability of our approach by comparing of our underlying FO2

solver with three solvers on a set of benchmarks we assembled inspired by combinatorial
problems. The solvers we tested against are Z3, the SMT solver CVC4 [3], and the model
checker Nitpick [7]. Our solver outperformed each of these solvers on some of the benchmarks.

2 Running Example

We introduce our approach on the example of a simple web service. The example is a
translation from PHP with embedded SQL commands into SmpSL of code excerpts from
the Panda web-administrator. The web service provides several services implemented in
dedicated functions for subscribing a user to a newsletter, deleting a newsletter, making a
user an admin of a newsletter, sending emails to all subscribed users of a newsletter, etc. We
illustrate our verification methodology by exposing an error in the Panda web-administrator.
The verification methodology we envision in this paper consists of (1) maintaining database
invariants and (2) verifying a contract specification for each function of the web service.

The database contains several tables including NS = NewsletterSubscription with at-
tributes nwl, user , subscribed and code. The database is a structure whose universe is
partitioned into three sets: domU, boolB, and codesB. The attributes nwl and user range
over the finite set domU, the attribute subscribed ranges over boolB = {true, false}, and the
attribute code ranges over the fixed finite set codesB. The superscripts in domU, boolB,
and codesB serve to indicate that the domain domU is unbounded, while the Boolean
domain and the domain of codes are bounded (i.e. of fixed finite size). When s = true,
(n, u, s, c) ∈ NS signifies that the user u is subscribed to the newsletter n. The process of
being (un)subscribed from/to a newsletter requires an intermediary confirmation step in
which the confirm code c plays a role.

Figure 1 provides the functions subscribe, unsubscribe, and confirm translated manu-
ally into SmpSL. The comments in quotations // “. . .” originate from the PHP source code.
The intended use of these functions is as follows: To subscribe a user u to a newsletter n,
the function subscribe is called with inputs n and u (e.g. by a web interface operated by
an admin or by the user). subscribe stores the tuple (n, u, false, new_code) in NS , where
new_code is a confirmation code which does not occur in the database, and an email contain-
ing a confirmation URL is sent to the user u. Visiting the URL triggers a call to confirm with
input new_code, which subscribes u to n by replacing the tuple (n, u, false, new_code) of NS
to with (n, u, true, nil). For unsubscribe the process is similar, and crucially, unsubscribe
uses the same confirm function. confirm decides between subscribe and unsubscribe ac-
cording to whether n is currently subscribed to u. The CHOOSE command selects one row
non-deterministically. The database preserves the invariant

Inv = ∀dx, y.∀bs1, s2.∀cc1, c2.
(

(s1 = s2 ∧ c1 = c2) ∨
∨
i=1,2 ¬NS(x, y, si, ci)

)
(1)

ICDT 2017
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subscribe(n,u):
A = SELECT * FROM NS WHERE user = u AND nwl = n;
if (A != empty) exit; // "This address is already registered to this

newsletter."
INSERT (n,u,false,new_code) INTO NS;
// Send confirmation email to u

unsubscribe(n,u):
A = SELECT * FROM NS WHERE user = u AND nwl = n;
if (A = empty) exit; // "This address is not registered to this

newsletter."
UPDATE NS SET code = new_code WHERE user = u AND nwl = n
// Send confirmation email to u

confirm(cd):
A = SELECT subscribe FROM NS WHERE code = cd;
if (A = empty) exit; //"No such code"
s1 = CHOOSE A;
if (s1 = false)

UPDATE NS SET subscribed = true, code = nil WHERE code = cd
else DELETE FROM NS WHERE code = cd;

Figure 1 Running Example: SmpSL code.

Inv says that the pair (n, u) of newsletter and user is a key of the relation NS . The subscripts
of the quantifiers denote the domains over which the quantified variables range. In our
verification methodology we add invariants as additional conjuncts to the pre- and post-
conditions of every function. In this way invariants strengthen the pre-conditions and can be
used to prove the post-conditions of the functions. On the other hand, the post-conditions
require to re-establish the validity of the invariants.

Figure 2 provides pre- and post-conditions pref and postf for each of the three functions
f. The relation names d, b, and c are interpreted as the sets domU, boolB, and codesB,
respectively. Proving correctness amounts to proving the correctness of each of the Hoare
triples {pref ∧ Inv} f {postf ∧ Inv}. Each Hoare triple specifies a contract: after every
execution of f, the condition postf ∧ Inv should be satisfied if pref ∧ Inv was satisfied before
executing f. presubscribe and preunsubscribe express that new_code is an unused non-nil code
and that NSgh is equal to NS . NSgh is a ghost table, used in the post-conditions to relate
the state before the execution of the function to the state after the execution. NSgh does
not occur in the functions and is not modified. postsubscribe and postunsubscribe express that
NS is obtained from NSgh by inserting or updating a row satisfying user = u AND nwl = n
whenever the exit command is not executed. The intended behavior of confirm depends
on which function created cd. preconfirm introduces a Boolean ghost variable subgh whose
value is true (respectively false) if cd was generated as a new code in subscribe (respectively
unsubscribe). subgh does not occur in confirm. postconfirm express that, when subgh is
true, NS is obtained from NS by toggling the value of the column subscribed from false to
true in the NSgh row whose confirm code is cd; when subgh is false, NS is obtained from
NSgh by deleting the row with confirm code cd.
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Let us now describe the error which prevents confirm from satisfying its specification.
Consider the following scenario. First, subscribe is called and then unsubscribe, both
with the same input n and u. Two confirm codes are created: cs by subscribe and cu by
unsubscribe. At this point, NS contains a single row for the newsletter n and user u namely
(n, u, false, cu). The user receives two confirmation emails containing the codes cs and cu.
Clicking on the confirmation URL for cs (i.e. running confirm(cs)) has no effect since cs

does not occur in the database. However, clicking on the confirmation URL for cs results in
subscribing u to n. This is an error, since confirming a code created in unsubscribe should
not lead to a subscription.

Our tool automatically checks whether the program satisfies its specification. If not, the
programmer or verification engineer may try to refine the specification to adhere more closely
to the intended behavior (e.g. by adding an invariant). In this case, the program is in fact
incorrect, so no meaningful correct specification can be written for it.

In Section 3.3 we describe a weakest-precondition calculus wp[[·]] which allows us to
automatically derive the weakest precondition for a post-condition with regard to a SmpSL
program. For our example functions f, wp[[·]] allows us to automatically derive wp[[f]]postf.
The basic property of the weakest precondition is that postf holds after f has executed iff
wp[[f]]postf held immediately at the start of the execution. It then remains to show that
the pre-condition pref implies wp[[f]]postf. This amounts to checking the validity of the
verification conditions VC f = pref → wp[[f]]postf.

Our reasoner for FO2 sentences is the back-end for our verification tool. The specification
in this example is all in FO2

BD. The weakest precondition of a SmpSL program applied to a
FO2

BD sentence gives again a FO2
BDsentence. Hence VC f are all in FO2

BD. Automatically
deciding the validity of FO2

BD sentences using our FO2 decision procedure is described in
Section 4. Recall that codesB is of fixed finite size. Here |codesB| = 3 is sufficient to detect
the error. Observe that the same confirm code may be reused once it is replaced with nil
in confirm, so the size of the database is unbounded. The size of codesB must be chosen
manually when applying our automatic tool.

A simple way to correct the error in confirm is by adding subgh as a second argument
of confirm and replacing if (s1 = false) · · · with if (subgh = false) · · · . Since s1 is
no longer used, the CHOOSE command can be deleted. The value of subgh received by
confirm is set correctly by subscribe and unsubscribe. With these changes, the error is
fixed and confirm satisfies its specification. In the scenario from above, the call to confirm
with cs and subgh = true leaves the database unchanged, while the call to confirm with cu

and subgh = false deletes the row (n, u, false, cu).

3 Verification of SmpSL Programs

Here we introduce our programming language and our verification methodology. We introduce
the SQL fragment SmpSQL in Section 3.1 and the scripting language SmpSL in Section 3.2.
In Section 3.3 we explain the weakest precondition transformer of SmpSL, and we show how
discharging verification conditions of FO2

BD specification reduces to reasoning in FO2.

3.1 The SQL fragment SmpSQL

3.1.1 Data model of SmpSQL
The data model of SmpSQL is based on the presentation of the relational model in Chapter 3.1
of [1]. We assume finite sets of domB

1 , . . . ,domB
s called the bounded domains and an infinite

ICDT 2017
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preg = NS = NSgh ∧ good-code(new_code)
good-code(c′) = c(c′) ∧ (c′ 6= nil) ∧ ∀dx, y.∀bs.¬NS(x, y, s, c′)
postg = ∀dx, y.∀bs.∀cc.NS(x, y, s, c)↔ (ϕg,1 ∨ ϕg,2)

ϕsubscribe,1 = NSgh(x, y, s, c)
ϕsubscribe,2 = (n = x) ∧ (u = y) ∧ (s = false) ∧ (c = new_code)

∧¬∃bs
′.∃cc

′.NSgh(n, u, s′, c′)

ϕunsubscribe,1 = ¬ ((n = x) ∧ (u = y)) ∧NSgh(x, y, s, c)
ϕunsubscribe,2 = (n = x) ∧ (u = y) ∧ (c = new_code) ∧ ∃cc

′.NSgh(n, u, s, c′)

preconfirm = NS = NSgh ∧ b(subgh)
postconfirm =

∧
tt∈b subgh = tt → (∀dx, y.∀bs.∀cc.NS(x, y, s, c)↔ ψtt)

ψfalse = cd 6= c ∧NSgh(x, y, s, c)
ψtrue = cd 6= c ∧NSgh(x, y, s, c) ∨ (c = nil ∧ s = true ∧NSgh(x, y, false, cd))

Figure 2 Running Example: Pre- and post-conditions. g is either subscribe or unsubscribe.

set domU called the unbounded domain. The domains are disjoint. We assume three disjoint
countably infinite sets: the set of attributes att, the set of relation names relnames, and the
set of variables SQLvars. We assume a function sort : att→ {domU,domB

1 , . . . ,domB
s }.

A table or a relation schema is a relation name and a finite sequence of attributes. The
attributes are the names of the columns of the table. The arity ar(R) of a relation schema
R is the number of its attributes. A database schema is a non-empty finite set of tables.

A database instance I of a database schema R is a many-sorted structure with finite
domains dom0 ⊆ domU and domj = domB

j for 1 ≤ j ≤ s. We denote by sortI the
function obtained from sort by setting sortI(att) = dom0 whenever sort(att) = domU.
The relation schema R = (relname, att1, . . . , atte) is interpreted in I as a relation RI ⊆
sortI(att1)× · · · × sortI(atte). A row is a tuple in a relation RI .

A database schema R is valid for SmpSQL if for all relation schemas R with attributes
att1, . . . , atte in R, there are at most two attributes attj for which sort(attj) = domU. In
the sequel we assume that all database schemas are valid. The SmpSQL commands will be
allowed to use variables from SQLvars. We denote members of SQLvars by p, p1, etc.

3.1.2 Queries in SmpSQL
Given a relation schema R and attributes att1, . . . , attn of R, the syntax of SELECT is:

〈Select〉 ::= SELECT atta1 , . . . , attai FROM R WHERE 〈Condition〉
〈Condition〉 ::= attb1 , . . . , attbj IN 〈Select〉 |

〈Condition〉 AND 〈Condition〉 |
〈Condition〉 OR 〈Condition〉 |
NOT 〈Condition〉 |
attm = p

where p is a variable and 1 ≤ m, a1, . . . , ai, b1, . . . , bj ≤ n. The semantics of 〈Select〉 is the
set of tuples from the projection of R on atta1 , . . . , attai

which satisfy 〈Condition〉. The



S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and F. Zuleger 16:7

condition attm = p indicates that the set of rows of R in which the attribute attm has value p
is selected. The condition attb1 , . . . , attbi IN 〈Select〉 selects the set of rows of R in which
attb1 , . . . , attbi

are mapped to one of the tuples queried in the nested query 〈Select〉.

3.1.3 Data-manipulating commands in SmpSQL
SmpSQL supports the three primitive commands INSERT, UPDATE, and DELETE.

Let R be a relation schema with attributes att1, . . . , attn. Let p, p1, . . . , pn be variables
from SQLvars. The syntax of the primitive commands is:

〈Insert〉 ::= INSERT (p1, . . . , pn) INTO R

〈Update〉 ::= UPDATE R SET attm = p WHERE 〈Condition〉
〈Delete〉 ::= DELETE FROM R WHERE 〈Condition〉

The semantics of INSERT, UPDATE and DELETE is given in the natural way. We
allow update commands which set several attributes simultaneously. We assume that the
data manipulating commands are used in a domain-correctness fashion, i.e. INSERT and
UPDATE may only assign values from sort(attk) to any attribute attk.

3.2 The script language SmpSL
3.2.1 Data model of SmpSL
The data model of SmpSL extends that of SmpSQL with constant names and additional
relation schemas. We assume a countably infinite set of constant names connames, which
is disjoint from att,domU,domB

1 , . . . ,domB
s , relnames but contains SQLvars.

A state schema is a database schema R expanded with a tuple of constant names const.
A state interprets a state schema. It consists of a database instance I expanded with a tuple
of universe elements constI interpreting const. In programs, the constant names play the
role of local variables, domain constants (e.g. true and true) and of inputs to the program1.

3.2.2 SmpSL programs
The syntax of SmpSL is given by

〈Program〉 ::= 〈Command〉 | 〈Program〉 ; 〈Command〉
〈Command〉 ::= 〈Insert〉 | 〈Update〉 | 〈Delete〉 | R = 〈Select〉 | d̄ = CHOOSE R |

if (cond) 〈Program〉 | if (cond) exit |
if (cond) 〈Program〉 else 〈Program〉

Every data-manipulating command C of SmpSQL is a SmpSL command. The semantics
of C in SmpSL is the same as in SmpSQL, with the caveat that the variables receive their
values from their interpretations (as constant names) in the state, and C is only legal if all
the variables of C indeed appear in the state schema as constant names.

The command R = 〈Select〉 assigns the result of a SmpSQL query to a relation schema
R ∈ R whose arity and attribute sorts match the select query. Executing the command in a
state (I, constI) sets RI to the relation selected by S, leaving the interpretation of all other

1 We deviate from [1] in the treatment of constants in that we do not assume that constant names are
always interpreted as distinct members of domU. This is so since several program variables or inputs
can have the same value.

ICDT 2017



16:8 On the Automated Verification of Web Applications with Embedded SQL

names unchanged. The variables in the query receive their values from their interpretations
in the state, and for the command to be legal, all variables in the query must appear in the
state schema as constant names.

Given a relation schema R ∈ R with attributes att1, . . . , attn and a tuple d̄ = (d1, . . . , dn)
of constant names from const, d̄ = CHOOSE R is a SmpSL command. If RI is empty, the
command has no effect. If RI is not empty, executing this command sets (dI1 , . . . , dIn) to the
value of a non-deterministically selected row from RI .

The branching commands have the natural semantics. Two types of branching conditions
cond are allowed: (R = empty) and (R != empty), which check whether RI is the empty set,
and (c1 = c2) and (c1! = c2), which check whether cI1 = cI2 .

3.3 Verification of SmpSL programs
3.3.1 SQL and FO
It is well-established that a core part of SQL is captured by FO by Codd’s classical theorem
relating the expressive power of relational algebra to relational calculus. While SQL goes
beyond FO in several aspects, such as aggregation, grouping, and arithmetic operations
(see [27]), these aspects are not allowed in SmpSQL. Hence, FO is especially suited for
reasoning about SmpSQL and SmpSL.

The notions of state schema and state fit naturally in the syntax and semantics of FO.
In the sequel, a vocabulary is a tuple of relation names and constant names. Every state
schema R is a vocabulary. A state (I, constI) interpreting a state schema R and a tuple of
constant names const is an

〈
R, const

〉
-structure.

3.3.2 Hoare verification of SmpSL programs and weakest precondition
Hoare logic is a standard program verification methodology [23]. Let P be a SmpSL program
and let ϕpre and ϕpost be FO-sentences. A Hoare triple is of the form {ϕpre}P{ϕpost}. A
Hoare triple is a contract relating the state before the program is run with the state afterward.
The goal of the verification process is to prove that the contract is correct.

Our method of proving that a Hoare triple is valid reduces the problem to that of finite
satisfiability of a FO-sentence. We compute the weakest precondition wp[[P ]]ϕpost of ϕpost
with respect to the program P . The weakest precondition transformer was introduced in
Dijkstra’s classic paper [17], c.f. [24]. Let AP denote the state after executing P on the initial
state A. The main property of the weakest precondition is: AP |= ϕpost iff A |= wp[[P ]]ϕpost .
Using wp[[·]] we can rephrase the problem of whether the Hoare triple {ϕpre}P{ϕpost} is
valid in terms of FO reasoning on finite structures: Is the FO-sentence ϕpre → wp[[P ]]ϕpost a
tautology? Equivalently, is the FO-sentence ϕpre ∧¬wp[[P ]]ϕpost unsatisfiable? Section 3.3.3
discusses the resulting FO reasoning task.

We describe the computation of the weakest precondition inductively for SmpSQL and
SmpSL. The weakest precondition for SmpSQL is given in Fig. 3, and for SmpSL in Fig. 4.
For SmpSQL conditions, [[·]]R is a formula with n free first-order variables v1, . . . , vn for a con-
ditional expression in the context of relation schema R of arity n. [[SELECT · · · FROM R · · · ]]
is also a formula with free variables v1, . . . , vn describing the rows selected by the SELECT
query. The rules wp[[s]]Q transform a (closed) formula Q, which is a postcondition of the
command s, into a (closed) formula expressing the weakest precondition. The notation ψ[t/v]
indicates substitution of all free occurrences of the variable v in ψ by the term t.

The notation ψ
[
θ(α1, . . . , αn)/R(α1, . . . , αn)] indicates that any atomic sub-formula of ψ

of the form R(α1, . . . , αn) (for any α1, . . . , αn) is replaced by θ(α1, . . . , αn) (with the same
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[[atti = c]]R =̂ vi = c

[[attb1 , . . . , attbj IN S1]]R =̂ [[S1]][vbk
/vk : 1 ≤ k ≤ j]

[[cond1 AND cond2]]R =̂ [[cond1]]R ∧ [[cond2]]R
[[cond1 OR cond2]]R =̂ [[cond1]]R ∨ [[cond2]]R
[[NOT cond1]]R =̂ ¬[[cond1]]R

[[SELECT atta1 , . . . , attai FROM R WHERE cond]] =̂
(∃vai+1 , . . . , van

R(v̄) ∧ [[cond]]R)[v`/va`
: 1 ≤ ` ≤ i]

where {a1, . . . , an} = {1, . . . , n}

wp[[INSERT (c1, . . . , cn) INTO R]]Q =̂ Q
[
R(ᾱ) ∨

∧n
i=1 αi = ci

/
R(ᾱ)

]
wp[[DELETE FROM R WHERE cond]]Q =̂ Q

[
R(ᾱ) ∧ ¬[[cond]]R[αi/vi : 1 ≤ i ≤ n]

/
R(ᾱ)

]
wp[[UPDATE R SET attj = c WHERE cond]]Q =̂

Q
[
R(ᾱ) ∧ ¬[[cond]]R[αi/vi : 1 ≤ i ≤ n] ∨
∃vjR(αj) ∧ [[cond]]R[αji/vi : 1 ≤ i ≤ n] ∧ αj = c

/
R(ᾱ)

]
Figure 3 Rules for weakest precondition for SmpSQL basic commands. We denote by R a relation

schema with attributes 〈att1, . . . , attn〉. We write αj
i for αi if i 6= j, and for vi if i = j. We denote

v̄ = (v1, . . . , vn), ᾱ = (α1, . . . , αn), and αj = (αj
1, . . . , α

j
n). Note that each of the last three rows

Q
[
expr(α)

/
R(ᾱ)

]
substitutes every occurrence of R with an updated expression expr .

α1, . . . , αn). The formula θ(v1, . . . , vn) has n free variables, and θ(α1, . . . , αn) is obtained by
substituting each vi into αi. The αi may be variables or constant names.

The weakest precondition of a SmpSL program is obtained by applying the weakest
precondition of its commands.

3.3.3 The specification logic FO2
BD and decidability of verification

As discussed in Section 3.3.2, using the weakest precondition, the problem of verifying Hoare
triples can be reduced to the problem of checking satisfiability of a FO-sentence by a finite
structure. While this problem is not decidable in general by Trakhtenbrot’s theorem, it is
decidable for a fragment of FO we denote FO2

BD, which extends the classical two-variable
fragment FO2. The logic FO2 is the set of all FO formulas which use only variables the
variables x and y. The vocabularies of FO2-sentences are not allowed function names, only
relation and constant names. Note FO2 cannot express that a relation name is interpreted as a
function. FO2 contains the equality symbol =. FO2

BD extends FO2 by allowing quantification
on an unbounded number of variables, under the restriction that all variables besides from x

and y range over the bounded domains only.
FO2

BD is the language of our invariants and pre- and postconditions, see Eq. (1) and
Fig. 2 in Section 2. An important property of FO2

BD is that it is essentially closed under
taking weakest precondition according to Figs. 3 and 4 since all relation schemas in a (valid)
database schema have at most 2 attributes whose sort is domU. We reduce the task of
reasoning over FO2

BD to reasoning over FO2.

I Theorem 1. Let {ϕpre}P{ϕpost} be a Hoare triple such that both ϕpre and ϕpost belong to
FO2

BD. The problem of deciding whether {ϕpre}P{ϕpost} is valid is decidable.
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[[c1 = c2]] =̂ c1 = c2

[[c1 != c2]] =̂ c1 6= c2

[[R ! = empty]] =̂ ∃v1, . . . , vnR(v1, . . . , vn)
[[R= empty]] =̂ ¬∃v1, . . . , vnR(v1, . . . , vn)

wp[[R = SELECT · · · ]]Q =̂ Q
[
[[SELECT · · · ]](α1, . . . , αn)

/
R(α1, . . . , αn)

]
wp[[(d1, . . . , dn) = CHOOSE R]]Q =̂ ∀u1, . . . , un

(
R(u1, . . . , un)→ Q[ui/di : 1 ≤ i ≤ n]

)
wp[[if cond s1 else s2]]Q =̂ (¬[[cond]] ∧ wp[[s2]]Q) ∨ ([[cond]] ∧ wp[[s1]]Q)

Figure 4 Rules for weakest precondition construction for SmpSL basic commands. The weakest
precondition of if cond exit; s2 is the same as that of if !cond s2.

Proof (sketch). By Section 3.3.2, {ϕpre}P{ϕpost} is valid iff θ = ¬(ϕpre ∧ ¬wp[[P ]]ϕpost) is
satisfiable by a finite structure. We assume for simplicity that in all the tables, the sort of
the first and second attributes att1 and att2 is domU. By Figs. 3 and 4, the only variables
ranging over the unbounded domain are v1 and v2. Let θ′ be the FO2

BD sentence obtained
from θ by substituting v1 and v2 with x and y respectively, and restricting the range of the
quantifiers appropriately: for a command manipulating or querying a table R with attributes
att1, . . . , attn in Figs. 3 and 4, each quantifier ∀vk or ∃vk is replaced with ∀sort(attk)vk or
∃sort(attk)vk. We compute an FO2 sentence θ′′ which is equivalent to θ′ by hardcoding the
bounded domains. Every table T with an attribute att with sort(att) = domB

j of size d
is replaced with d tables T1, . . . , Td without the attribute att. This change is reflected in
θ′′, e.g. existential quantification is replaced with disjunction. By the decidability of finite
satisfiability of FO2-sentences, we get that The problem of deciding whether {ϕpre}P{ϕpost}
is valid is reduced to the decidability of validity for FO2-sentences. J

4 FO2 Reasoning

4.1 The bounded model property of FO2

Section 4 is devoted to our algorithm for FO2 finite satisfiability. The main ingredient for
this algorithm is the bounded model property, which guarantees that if an FO2(τ) sentence
φ over vocabulary τ is satisfiable by any τ -structure – finite or infinite – it is satisfiable by
a finite τ -structure whose cardinality is bounded by a computable function of φ. Grädel,
Kolaitis and Vardi [21] computed an asymptotically-tight exponential bound bnd(φ), and
based on it gave a NEXPTIME algorithm. The algorithm non-deterministically guesses
t ≤ bnd(φ) and a τ -structure A with universe of size t, then checks whether A satisfies φ,
and answers accordingly.

4.2 Finite satisfiability using a SAT solver
Our algorithm for FO2 finite satisfiability reduces the problem of finding a satisfying model
of cardinality bounded by bnd to the satisfiability of a propositional Boolean formula in
Conjunctive Normal Form CNF, which is then solved using a SAT solver. The bound in
[21] is given for formulas in Scott Normal Form (SNF) only. We use a refinement of SNF
we call Skolemized Scott Normal Form (SSNF). The CNF formula we generate encodes the
semantics of the sentence ψ on a structure whose universe cardinality is bounded by bnd.
An early precursor for the use of a SAT solver for finite satisfiability is [28].



S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and F. Zuleger 16:11

4.2.1 Skolemized Scott Normal Form
An FO2-sentence is in Skolemized Scott Normal Form if it is of the form

∀x∀y

(
α(x, y) ∧

m∧
i=1

Fi(x, y)→ βi(x, y)
)
∧

m∧
i=1
∀x∃y Fi(x, y) (2)

where α and βi, i = 1, . . . ,m, are quantifier-free formulas which do not contain any Fj ,
j = 1, . . . ,m. Note that Fi are relation names.

I Proposition 2. Let τ be a vocabulary and φ be a FO2(τ)-sentence. There are polynomial-
time computable vocabulary σ ⊇ τ and FO2(σ)-sentence ψ such that
(a) ψ is in SSNF;
(b) The set of cardinalities of the models of φ is equal to the corresponding set for ψ; and
(c) The size of ψ is linear in the size of φ.

Proposition 2 follows from the discussion before Proposition 3.1 in [21], by applying an
additional normalization step converting SNF sentences to SSNF sentences.23

4.2.2 The CNF formula
Given the sentence ψ in SSNF from Eq. (2) and a bound bnd(ψ), we build a CNF propositional
Boolean formula Cψ which is satisfiable iff ψ is satisfiable. The formula Cψ will serve as the
input to the SAT solver. First we construct a related CNF formula Bψ. The crucial property
of Bψ is that it is satisfiable iff ψ is satisfiable by a model of cardinality exactly bnd(ψ).

It is convenient to assume ψ does not contain constants. If ψ did contain constants c,
they could be replaced by unary relations Uc of size 1.

We start by introducing the variables and clauses which guarantee that Bψ encodes a
structure with the universe {1, . . . , bnd(ψ)}. Later, we will add clauses to guarantee that
this structure satisfies ψ. For every unary relation name U in ψ and `1 ∈ {1, . . . , bnd(ψ)},
let vU,`1 be a propositional variable. For every binary relation name R in ψ and `1, `2 ∈
{1, . . . , bnd(ψ)}, let vR,`1,`2 be a propositional variable. The variables vU,`1 and vR,`1,`2

encode the interpretations of the unary and binary relation names U and R in the straight-
forward way (defined precisely below). Let Vψ be the set of all variables vU,`1 and vR,`1,`2 .

Given an assignment S to the variables of Vψ we define the unique structure AS as follows:
1. The universe AS of AS is {1, . . . , bnd(ψ)};
2. An unary relation name U is interpreted as the set {`1 ∈ AS | S(vU,`1) = True};
3. A binary relation name R is interpreted as the set {(`1, `2) ∈ A2

S | S(vR,`1,`2) = True};
For every structure A with universe {1, . . . , bnd(ψ)}, there is S such that A = AS.

Before defining Bψ precisely we can already state the crucial property of Bψ:

I Proposition 3. ψ is satisfiable by a structure with universe {1, . . . , bnd(ψ)} iff Bψ is
satisfiable.

The formula Bψ is the conjunction of Beq, B∀∃, and B∀∀, described in the following.

2 The word Skolemized is used in reference to the standard Skolemization process of eliminating existential
quantifiers by introducing fresh function names called Skolem functions. In our case, since function
names are not allowed in our fragment, we introduce the relation names Fi, to which we refer as Skolem
relations. Moreover, we cannot eliminate the existential quantifiers entirely, but only simplify the
formulas in their scope to the atoms Fi(x, y).

3 The linear size of ψ uses our relation symbols have arity at most 2 to get rid of a log factor in [21].
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The equality symbol. The equality symbol requires special attention. Let

Beq =
∧

1≤`1 6=`2≤m

(¬v=,`1,`2) ∧
∧

1≤`≤m
v=,`,`

Beq enforces that the equality symbol is interpreted correctly as the equality relation on
universe elements.

The ∀∃-conjuncts. For every conjunct ∀x∃y Fi(x, y) and 1 ≤ `1 ≤ bnd(ψ), let B∀∃i,`1
be the

clause
∨bnd(ψ)
`2=1 vFi,`1,`2 . This clause says that there is at least one universe element `2 such

that AS |= F (`1, `2). Let

B∀∃ =
∧

1≤i≤m

∧
1≤`1≤bnd(ψ)

B∀∃i,`1

For every truth-value assignment S to Vψ, AS satisfies
∧m
i=1 ∀x∃y Fi(x, y) iff S satisfies B∀∃.

The ∀∀-conjunct. Let ∀x∀y α′ be the unique ∀∀-conjunct of ψ. For every 1 ≤ `1, `2 ≤
bnd(ψ), let α′′`1,`2

denote the propositional formula obtained from the quantifier-free FO2

formula α′ by substituting every atom a with the corresponding propositional variable for `1
and `2 as follows:

U(x) 7→ vU,`1 , R(y, y) 7→ vR,`2,`2 , R(x, x) 7→ vR,`1,`1

U(y) 7→ vU,`2 , R(x, y) 7→ vR,`1,`2 , R(y, x) 7→ vR,`2,`1

Let B∀∀`1,`2
be the Tseitin transformation of α′′`1,`2

to CNF [36], see also [6, Chapter 2]. The
Tseitin transformation introduces a linear number of new variables of the form uγ`1,`2

, one for
each sub-formula γ of α′′`1,`2

. The transformation guarantees that, for every assignment S of
Vψ, S satisfies α′′`1,`2

iff S can be expanded to satisfy B∀∀`1,`2
. Let

B∀∀ =
∧

1≤`1,`2≤bnd(ψ)

B∀∀`1,`2
(`1, `2)

Note that [21] guarantees only that bnd(ψ) is an upper bound on the cardinality of a
satisfying model. Therefore, we build a formula Cψ based on Bψ such that Cψ is satisfiable
iff ψ is satisfiable by a structure of cardinality at most bnd(ψ). The algorithm for finite
satisfiability of a FO2-sentence φ consists of computing the SSNF ψ of φ and returning the
result of a satisfiability check using a SAT solver on Cψ. Both the number of variables and
the number of clauses in CUni(ψ) are quadratic in bnd(ψ).

5 Experimental Results

5.1 Details of our tools
The verification condition generator described in Section 3.3.2 is implemented in Java, JFlex
and CUP. It is employed to parse the schema, precondition and postcondition and the SmpSL
programs. The tool checks that the pre and post conditions are specified in FO2 and that the
scheme is well defined. The SMT-LIB v2 [4] standard language is used as the output format
of the verification condition generator. We compare the behavior of our FO2-solver with Z3
on the verification condition generator output. The validity of the verification condition can
be checked by providing its negation to the SAT solver. If the SAT solver exhibits a satisfying



S. Itzhaky, T. Kotek, N. Rinetzky, M. Sagiv, O. Tamir, H. Veith, and F. Zuleger 16:13

Table 1 Running time comparison for example benchmarks.

FO2-solver Z3

web-subscribe 0.910s TO
web-unsubscribe 0.741s OM
firewall 0.876s OM
conf-bid 0.451s 0.015s
conf-assign 0.369s 0.013s
conf-display 0.992s 0.016s

incorrect

FO2-solver Z3

web-subscribe 1.04s 0.02s
web-unsubscribe 1.46s 0.02s
firewall 18.50s 0.03s
conf-bid TO 0.22s
conf-assign 1.196s 0.2s
conf-display TO 0.16s

correct

assignment then that serves as counterexample for the correctness of the program. If no
satisfying assignment exists, then the generated verification condition is valid, and therefore
the program satisfies the assertions. The FO2-solver described in Section 4 is implemented
in python and uses pyparsing to parse the SMT-LIB v2 [4] file. The FO2-solver assumes a
FO2-sentence as input and uses Lingeling [5] SAT solver as a base Solver.

5.2 Example applications
We tried our approach with a few programs inspired by real-life applications. The first case
study is a simplified version of the newsletter functionality included in the PANDA web
administrator, that was already discussed and is shown in Fig. 1.4

The second is an excerpt from a firewall that updates a table of which device is allowed
to send packets to which other device. The third is a conference management system with
a database of papers, and transactions to manage the review process: reviewers first bid
on papers from the pool of submissions, with a policy that a users cannot bid for papers
with which they are conflicted. The chair then assigns reviewers to papers by selecting
a subset of the bids. At any time, users can ask to display the list of papers, with some
details, but the system may hide some confidential information, in particular, users should
not be able to see the status of papers before the program is made public. We show how our
system detects an information flow bug in which the user might learn that some papers were
accepted prematurely by examining the session assignments. This bug is based on a bug we
observed in a real system. Each example comes with two specifications, one correct and the
other incorrect.

The running time in seconds for all of our examples is reported in Table 1. Timeout is
set to 60 minutes and denoted as TO. If the solver reaches out of memory we mark it as OM.
On the set of correct examples, Z3 terminates within milliseconds, while FO2-solver takes a
few seconds and times out on some of them. On the set of incorrect examples, Z3 fails to
answer while our solver performs well. Note that correct examples correspond to unsatisfiable
FO2-sentences, while incorrect examples correspond to satisfiable FO2-sentences.

5.3 Examining scalability
Inflated examples. In order to evaluate scalability to large examples we inflated our base
examples. For instance, while the subscribe example from Table 1 consisted of the subscription

4 We omit the confirmation step due to a missing feature in the implementation of the weakest precondition,
however the final version of the tool will support the code from Table 1.
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of one new email to a mailing-list, Table 2 presents analogous examples based on combining
the verification conditions arising from subscribing multiple emails to the mailing-list. The
column multiplier details the number of individual subscriptions based on which the formula
is constructed. The unsubscribe and firewall example programs are inflated similarly.

We have tested both our FO2-solver and Z3 on large examples and the results reported
in Table 2. The high-level of the results is similar to the case of the small examples. On the
incorrect examples set Z3 continues to fail mostly due to running out of memory, though it
succeeds on the subscribe example. On the correct examples set Z3 continues to outperform
the FO2-solver.

Artificial examples. In addition, we constructed a set of artificial benchmarks comprising
of several families of FO2-sentences. Each family is parameterized by a number that controls
the size of the sentences (roughly corresponding to the number of quantifiers in the sentence).
These problems are inspired by combinatorial problems such as graph coloring and paths.
We ran experiments using the FO2-solver and three publicly available solvers: Z3, CVC4
(which are SMT solvers), and Nitpick (a model checker). The results are collected in Table 3.

Scalability of FO2-solver. We shall conclude that the FO2-solver, despite being a proof-of-
concept prototype implemented in Python with minimal optimizations, handles satisfiable
sentences well and also scales well for them. It struggles on unsatisfiable sentences and
does not scale well. SMT solvers usually find unsatisfiability proofs much faster, esp. when
quantifiers are involved, because they do not have to instantiate all clauses and can terminate
as soon as a core set of contradicting clauses is found. This suggests that in practice we
may choose to run both FO2-solver and Z3 in parallel and answer according the first result
obtained. We also intend to explore how to improve the performance of our solver in the
case of incorrect examples. By construction, whenever FO2-solver finds a satisfying model,
its size is at most 4 times that of the minimal model. (The constant 4 can be decreased or
increased.)

Tools and benchmarks online.
1. FO2Solver :

http://forsyte.at/people/kotek/fo2-solver/

2. SmpSL Verification Conditions Generator :
http://forsyte.at/people/kotek/smpsl-verification-conditions-generator/

3. Benchmarks for FO2:
http://forsyte.at/people/kotek/two-variable-fragment-benchmarks/

6 Discussion

Related work. Verification of database-centric software systems has received increasing
attention in the last decade, see for example the recent survey [15]. Below, we explain how
our approach differs from the works surveyed in [15]. [15] assumes the services accessing
the database to be provided a priori in terms of a local contract given by a pre- and post-
condition (see also [31, 26]). The focus of verification then is on the verification of global
temporal properties of the system, assuming the local contracts. While the services may be

http://forsyte.at/people/kotek/fo2-solver/
http://forsyte.at/people/kotek/smpsl-verification-conditions-generator/
http://forsyte.at/people/kotek/two-variable-fragment-benchmarks/
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Table 2 Running time comparison on inflated examples.

FO2-solver Z3
multiplier 1 10 100 1 10 100

incorrect subscribe 0.910s 3.84s 785.2s TO TO TO
unsubscribe 0.741s 1.70s 209.2s TO TO TO
firewall 0.876s 3.75s 455.7s OM OM OM

correct subscribe 1.04s TO TO 0.02s 0.03s 0.10s
unsubscribe 1.46s TO TO 0.02s 0.03s 0.09s
firewall 18.50s TO TO 0.03s 0.03s 0.11s

Table 3 Running time comparison on artificial benchmarks.

size status Z3 CVC4 Nitpick FO2-solver
2col 3 unsat 0m0.037s 0m0.076s TO TO

4 sat TO TO 0m7.038s 0m5.433s
5 unsat 0m0.702s 0m0.477s TO TO
6 sat TO TO 0m8.973s 0m9.323s
10 sat TO TO 0m37.944s 0m19.580s
11 unsat 1m32.664s 0m30.912s TO TO
14 sat TO TO 2m13.661s TO
40 sat TO TO TO TO

alternating-paths 2 sat 0m0.049s TO 0m11.144s 0m1.105s
100 sat TO TO TO 0m9.671s

alternating-simple-paths 3 sat TO TO TO 0m6.754s
4 sat TO TO TO 0m10.128s
7 sat TO TO TO TO
10 sat TO TO TO TO

exponential 3 sat TO TO 0m12.255s 0m1.847s
4 sat TO TO 0m15.358s 11m6.482s

one-var-alternating-sat 300 sat 0m0.037s 0m0.497s 0m11.605s 0m9.720s
one-var-alternating-unsat 5 unsat 0m0.026s 0m0.073s 0m22.537s 0m54.198s
one-var-nested-exists-sat 300 sat 0m0.031s 0m0.045s 0m7.132s 0m0.562s
one-var-nested-forall-sat 500 sat 0m0.033s TO 0m7.183s 0m7.318s
path-unsat 2 unsat 0m0.033s 0m0.044s TO 1m37.099s

3 unsat 0m0.030s 0m0.062s TO 1m35.451s
6 unsat 0m0.037s 0m0.891s TO 1m39.209s

automatically synthesized in some cases, e.g. [19, 20, 15, 16], they are often implemented
manually (e.g. using a scripting language) and the validity of their contracts needs to be
verified. This is the verification problem we target in this paper: we show how to prove the
correctness of a single service with regard to its pre- and postcondition. The approaches have
orthogonal strengths: The works surveyed in [15] use (modulo reductions) the existential
fragment of first-order logic (∃FO) to formalize local changes to the database and allow the
verification of LTL properties whose atoms are given by ∃FO-formulae. In contrast, our
approach is limited to the verification of local pre- and post-conditions and system invariants.
On the other hand we allow universal quantification in our specifications. It is an interesting
direction for future work how to extend our approach to more general temporal properties
(e.g. as considered in [15]).

Several papers use variations of FO2 to study verification of programs that manipulate
relational information. [8] presents a verification methodology based on FO2, a description
logic and a separation logic for analyzing the shapes and content of in-memory data structures.
[33] develops a logic similar to FO2 to reason about shapes. In both [8] and [33], the focus is
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on analysis of dynamically-allocated memory, and databases are not studied. Furthermore,
no tools based on these works are available. Our work draws inspiration from [2], which
discusses the verification of evolving graph databases based on a description logic related
to FO2 and a dedicated action language. Our work and [2] exhibit some similarity on a
technical level but have a different focus: [2] advocates the use of description logic, while we
consider the use of a scripting language with embedded SQL to be advantageous because
it does not require to learn new syntax (the identification of an appropriate language and
SQL fragment is one of the contributions of this paper); establishing the precise technical
relationship between our framework and [2] seems possible but requires additional work to be
carried out. Further, the verification method suggested by [2] was not implemented. To our
knowledge no description logic solver implements reasoning tasks for the description logic
counterpart of FO2 studied in [2], not even solvers for expressive description logics such as
SROIQ. The authors of [2] extended their work to description logics with path constrains
in [9].

Verification of script programs with embedded queries has revolved around security,
see [18]. However, it seems no other work has been done on such programs.

Conclusion and future work. We developed a verification methodology for script programs
with access to a relational database via SQL. We isolated a simple but useful fragment
SmpSQL of SQL and developed a simple script programming language SmpSL on top
of it. We have shown that verifying the correctness of SmpSL programs with respect to
specifications in FO2

BD is decidable. We implemented a solver for the FO2 finite satisfiability
problem, and, based on it, a verification tool for SmpSL programs. Our experimental results
are very promising and suggest that our approach has great potential to evolve into a
mainstream method for the verification of script programs with embedded SQL statements.

While we believe that many of the SQL statements that appear in real-life programs fall
into our fragment SmpSQL it is evident that future tools need to consider all of database
usage in real-world programs. In future work, we will explore the extension of SmpSL
and SmpSQL. Our next goal is to be able to verify large, real-life script programs such as
Moodle [29], whose programming language and SQL statements use e.g. some arithmetic
or simple inner joins. To do so, we will adapt our approach from the custom-made syntax
of SmpSL to a fragment of PHP. We will both explore decidable logics extending FO2

BD,
and investigate verification techniques based on undecidable logics including the use of first-
order theorem provers such as Vampire [34, 25] and abstraction techniques which guarantee
soundness but may result in spurious errors [12]. For dealing with queries with transitive
closure, it is natural to consider fragments of Datalog [10].

A natural extension is to consider global temporal specifications in addition to local
contracts. Here the goal is to verify properties of the system which can be expressed in a
temporal logic such as Linear Temporal Logic LTL [32, 11]. The approach surveyed in [15],
which explore global temporal specifications of services given in terms of local contracts, may
be a good basis for studying global temporal specifications in our context.

Another research direction which emerges from the experiments in Section 5 is to explore
how to improve the performance of our FO2 solver on unsatisfiable inputs.
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Abstract
In its traditional definition, a repair of an inconsistent database is a consistent database that
differs from the inconsistent one in a “minimal way.” Often, repairs are not equally legitimate, as it
is desired to prefer one over another; for example, one fact is regarded more reliable than another,
or a more recent fact should be preferred to an earlier one. Motivated by these considerations,
researchers have introduced and investigated the framework of preferred repairs, in the context
of denial constraints and subset repairs. There, a priority relation between facts is lifted towards
a priority relation between consistent databases, and repairs are restricted to the ones that are
optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed:
Pareto, global, and completion.

In this paper we investigate the complexity of deciding whether the priority relation suffices
to clean the database unambiguously, or in other words, whether there is exactly one optimal
repair. We show that the different lifting semantics entail highly different complexities. Under
Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional
dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under
global optimality, one FD per relation is still tractable, but we establish Πp

2-completeness for
a relation with two FDs. In contrast, under completion optimality the problem is solvable in
polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for
arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity,
this algorithm solves the problem even for global optimality. The algorithm is extremely simple,
but its proof of correctness is quite intricate.
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1 Introduction

Managing database inconsistency has received a lot of attention in the past two decades.
Inconsistency arises for different reasons and in different applications. For example, in
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common applications of Big Data, information is obtained from imprecise sources (e.g., social
encyclopedias or social networks) via imprecise procedures (e.g., natural-language processing).
It may also arise when integrating conflicting data from different sources (each of which can be
consistent). Arenas, Bertossi and Chomicki [3] introduced a principled approach to managing
inconsistency, via the notions of repairs and consistent query answering. Informally, a repair
of an inconsistent database I is a consistent database J that differs from I in a “minimal”
way, where minimality refers to the symmetric difference. In the case of anti-symmetric
integrity constraints (e.g., denial constraints and the special case of functional dependencies),
such a repair is a subset repair (i.e., J is a consistent subinstance of I that is not properly
contained in any consistent subinstance of I).

Various computational problems around database repairs have been extensively investig-
ated. Most studied is the problem of computing the consistent answers of a query q on an
inconsistent database I; these are the tuples in the intersection

⋂
{q(J) : J is a repair of I} [3,

27]. Hence, in this approach inconsistency is handled at query time by returning the tuples
that are guaranteed to be in the result no matter which repair is selected. Another well
studied question is that of repair checking [1]: given instances I and J , determine whether J
is a repair of I. Depending on the type of repairs and integrity constraints, these problems
may vary from tractable to highly intractable complexity classes [4].

In the above framework, all repairs of a given database instance are taken into account
and treated on a par with each other. There are situations, however, in which it is natural
to prefer one repair over another [16, 8, 34, 33]. For example, this is the case if one source is
regarded more reliable than another (e.g., enterprise data vs. Internet harvesting, precise
vs. imprecise sensing equipment, etc.) or if available timestamp information implies that
a more recent fact should be preferred over an earlier fact. Recency may be implied not
only by timestamps, but also by evolution semantics; for example, “divorced” is likely to be
more updated than “single,” and similarly is “Sergeant” compared to “Private.” (See [15]
for a comprehensive study of data quality.) Motivated by these considerations, Staworko,
Chomicki and Marcinkowski [34, 33] introduced the framework of preferred repairs, where a
priority relation between conflicting facts distinguishes a set of preferred repairs.

Specifically, the notion of Pareto optimality and that of global optimality are based on two
different notions of improvement—the property of one consistent subinstance being preferred
to another. Improvements are basically lifting of the priority relation from facts to consistent
subinstances; J is an improvement of K if J \K contains a fact that is better than all those
in K \ J (in the Pareto semantics), or if for every fact in K \ J there exists a better fact in
J \K (in the global semantics). In each of the two semantics, an optimal repair is a repair
that cannot be improved. A third semantics proposed by Staworko et al. [33] is that of a
completion-optimal repair, which is a globally optimal repair under some extension of the
priority relation into a total relation. In this paper, we refer to these preferred repairs as
p-repair, g-repair and c-repair, respectively.

Fagin et al. [13] have built on the concept of preferred repairs (in conjunction with
the framework of document spanners [14]) to devise a language for declaring inconsistency
cleaning in text information-extraction systems. They have shown there that preferred repairs
capture ad-hoc cleaning operations and strategies of some prominent existing systems for
text analytics [2, 9].

Staworko et al. [33] showed several results on preferred repairs. For example, every
c-repair is also a g-repair, and every g-repair is also a p-repair. They also showed that
p-repair and c-repair checking are solvable in polynomial time (under data complexity) in
the case of denial constraints, and that there is a set of functional dependencies (FDs) for
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which g-repair checking is coNP-complete. Later, Fagin et al. [12] extended that hardness
result to a full dichotomy in complexity over all sets of FDs: g-repair checking is solvable in
polynomial time whenever the set of FDs is equivalent to a single FD or two key constraints
per relation; in every other case, the problem is coNP-complete.

While the classic complexity problems studied in the theory of repairs include repair
checking and consistent query answering, the presence of repairs gives rise to the determinism
problem, which Staworko et al. [33] refer to as categoricity: determine whether the provided
priority relation suffices to clean the database unambiguously, or in other words, decide
whether there is exactly one optimal repair. The problem of repairing uniqueness (in a
different repair semantics) is also referred to as determinism by Fan et al. [18]. In this
paper, we study the three variants of this computational problem, under the three optimality
semantics Pareto, global and completion, and denote them as p-categoricity, g-categoricity
and c-categoricity, respectively.

It is known that under each of the three semantics there is always at least one preferred
repair, and Staworko et al. [33] present a polynomial-time algorithm for finding such a repair.
(We recall this algorithm in Section 3.) Hence, the categoricity problem is that of deciding
whether the output of this algorithm is the only possible preferred repair. As we explain
next, it turns out that each of the three variants of the problem entails quite a unique picture
of complexity.

For p-categoricity, we focus on integrity constraints that are FDs, and establish the
following dichotomy in data complexity. For a relational schema with a set ∆ of FDs:

If ∆ associates (up to equivalence) a single FD with every relation symbol, then p-
categoricity is solvable in polynomial time.
In any other case, p-categoricity is coNP-complete.

For example, with the relation symbol R(A,B,C) and the FD A → B, p-categoricity is
solvable in polynomial time; but if we add the dependency B → A then it becomes coNP-
complete. While there have been several dichotomy results on the complexity of problems
associated with inconsistent data [29, 12, 26, 36], to the best of our knowledge this paper is
the first to establish a dichotomy result for any variant of repair uniqueness identification.

We then turn to investigating c-categoricity, and establish a far more positive picture
than the one for p-categoricity. In particular, the problem is solvable in polynomial time for
every set of FDs. In fact, we present an algorithm for solving c-categoricity in polynomial
time, assuming that constraints are given as an input conflict hypergraph [10] (hence, we
establish polynomial-time data complexity for various types of integrity constraints, such as
conditional FDs [5] and denial constraints [19].) The algorithm is extremely simple, yet its
proof of correctness is quite intricate.

Finally, we explore g-categoricity. We show that in the tractable case of p-categoricity
(equivalence to a single FD per relation), g-categoricity is likewise solvable in polynomial time.
For example, R(A,B,C,D) with the dependency A→ B has polynomial-time g-categoricity.
Nevertheless, we prove that if we add C → D, then g-categoricity becomes Πp

2-complete. We
do not complete a dichotomy as in p-categoricity, and leave that open for future work. Lastly,
we ask whether transitivity of the preference relation makes a difference. We show that the
three semantics of repairs remain different in the presence of transitivity, yet quite remarkably,
the problems g-categoricity and c-categoricity are actually the same. Hence, in the presence
of transitivity g-categoricity is solvable in polynomial time (even when constraints are given
as a conflict hypergraph).

For lack of space, most of the proofs are excluded and will appear in the full version of
the paper [23].
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Related Work
We are not aware of any work on the complexity of categoricity within the prioritized repairing
of Staworko et al. [34]. Fagin et al. [13] investigated a static version of categoricity in the
context of text extraction, but the settings and problems are fundamentally different, and so
are their complexity results (e.g., Fagin et al. [13] establish undecidability results).

In the framework of data currency [16], relations consist of entities with attributes, where
each entity may appear in different tuples, every time with possibly different (conflicting)
attribute values. A partial order of currency is provided on each attribute. A completion
of an instance is obtained by completing the partial order on an attribute of every entity,
and it defines a current instance where each attribute takes its most recent value. In
addition, a completion needs to satisfy given (denial) constraints, which may introduce
interdependencies among completions of different attributes. Fan et al. [16] have studied the
problem of determining whether such a specification induces a single current instance (i.e.,
the corresponding version of categoricity), and showed that this problem is coNP-complete
under data complexity. It is not clear how to simulate their hardness in p-categoricity
or g-categoricity, since their hardness is due to the constrains on completions, and these
constraints do not have correspondents in our case (beyond the partial orders). A similar
argument relates our lower bounds to those in the framework of conflict resolution by Fan
Geerts [15, Chapter 7.3], where the focus is on establishing a unique tuple from a collection
of conflicting tuples.

Fan et al. [16] show that in the absence of constraints, their categoricity problem can be
solved in polynomial time. This tractability result can be used for establishing the tractability
side of Theorem 5.1 in the special case where the single FD is a key constraint. In the general
case of a single FD, we need to argue about relationships among sets, and moreover, the
differences among the three x-categoricity problems matter.

The work on certain fixes [18, 17] considers models that are substantially different from
the one adopted here, where repairs are obtained by chasing update rules (rather than tuple
deletion), and uniqueness applies to chase outcomes (rather than maximal subinstances
w.r.t. preference lifting). The problems relevant to our categoricity are the consistency
problem [18] (w.r.t. guarantees on the consistency of some attributes following certain
patterns), and the determinism problem [18].

Finally, we remark that there have several dichotomy results on the complexity of problems
associated with inconsistent data [29, 12, 26, 36], but to the best of our knowledge this paper
is the first to establish a dichotomy result for any variant of repair uniqueness identification.
A valid question for future work is whether one can use the techniques of this paper in order
to establish a dichotomy in complexity in any of the cleaning frameworks studied in past
research.

2 Preliminaries

We now present some general terminology and notation that we use throughout the paper.

Signatures and Instances

A (relational) signature is a finite set R = {R1, . . . , Rn} of relation symbols, each with a
designated positive integer as its arity, denoted arity(Ri). We assume an infinite set Const
of constants, used as database values. An instance I over a signature R = {R1, . . . , Rn}
consists of finite relations RI

i ⊆ Constarity(Ri), where Ri ∈ R. We write JRiK to denote the
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set {1, . . . , arity(Ri)}, and we refer to the members of JRiK as attributes of Ri. If I is an
instance over R and t is a tuple in RI

i , then we say that Ri(t) is a fact of I. By a slight
abuse of notation, we identify an instance I with the set of its facts. For example, Ri(t) ∈ I
denotes that Ri(t) is a fact of I. As another example, J ⊆ I means that RJ

i ⊆ RI
i for every

Ri ∈ R; in this case, we say that J is subinstance of I.
We use the conventional notation R/k to denote that R is a relation symbol of arity k. In

our examples we often name the attributes and refer to them by their names. For instance,
in Figure 1a we refer to the relation symbol as CompCEO(company, ceo) where company
and ceo refer to Attributes 1 and 2, respectively. In the case of generic relation symbols, we
implicitly name their attributes by capital English letters with the corresponding numeric
values; for instance, we may refer to Attributes 1, 2 and 3 of R/3 by A, B and C, respectively.
We stress that attribute names are not part of our formal model, but are rather used for
readability.

Integrity and Inconsistency

Let R be a signature, and I an instance over R. In this paper we consider two representation
systems for integrity constraints. The first is functional dependencies and the second is
conflict hypergraphs.

Let R be a signature. A Functional Dependency (FD for short) over R is an expression
of the form R : X → Y , where R is a relation symbol of R, and X and Y are subsets of JRK.
When R is clear from the context, we may omit it and write simply X → Y . A special case
of an FD is a key constraint, which is an FD of the form R : X → Y where X ∪ Y = JRK.
An FD R : X → Y is trivial if Y ⊆ X; otherwise, it is nontrivial.

When we are using the alphabetic attribute notation, we may write X and Y by simply
concatenating the attribute symbols. For example, if we have a relation symbol R/3, then
A→ BC denotes the FD R : {1} → {2, 3}. An instance I over R satisfies an FD R : X → Y

if for every two facts f and g over R, if f and g agree on (i.e., have the same values for) the
attributes of X, then they also agree on the attributes of Y . We say that I satisfies a set ∆
of FDs if I satisfies every FD in ∆; otherwise, we say that I violates ∆. Two sets ∆ and ∆′
of FDs are equivalent if for every instance I over R it holds that I satisfies ∆ if and only if
it satisfies ∆′. For example, for R/3 the sets {A → BC,C → A} and {A → C,C → AB}
are equivalent.

In this work, a schema S is a pair (R,∆), where R is a signature and ∆ is a set of FDs
over R. If S = (R,∆) and R ∈ R, then we denote by ∆|R the restriction of ∆ to the FDs
R : X → Y over R.

I Example 2.1. In our first running example, we use the schema S = (R,∆), defined as
follows. The signature R consists of a single relation CompCEO(company, ceo), associating
companies with their Chief Executive Officers (CEO). Figure 1a depicts an instance I over
R. We define ∆ to be {company→ ceo , ceo→ company}, stating that in CompCEO each
company has a single CEO and each CEO manages a single company. Observe that I violates
∆. For example, Google has three CEOs, Alphabet has two CEOs, and each of Pichai and
Page is the CEO of two companies.

While FDs define integrity logically, at the level of the signature, a conflict hypergraph [10]
provides a direct specification of inconsistencies at the instance level, by explicitly stating
sets of facts that cannot co-exist. In the case of FDs, the conflict hypergraph is a graph that
has an edge between every two facts that violate an FD. Formally, for an instance I over a
signature R, a conflict hypergraph H (for I) is a hypergraph that has the facts of I as its
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CompCEO
company ceo

f g
pi Google Pichai

f g
pa Google Page

f g
br Google Brin

f a
pa Alphabet Page

f a
pi Alphabet Pichai

(a) Inconsistent database of
the company-CEO running ex-
ample
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(b) The conflict graph HI
S and the priority relation �

for the company-CEO running example (left), and two
completions of � (middle and right)

Figure 1

node set. A subinstance J of I is consistent with respect to (w.r.t.) H if J is an independent
set of H; that is, no hyperedge of H is a subset of J . We say that J is maximal if J ∪ {f} is
inconsistent for every f ∈ I \ J . When all the edges of a conflict hypergraph are of size two,
we may call it a conflict graph.

Recall that conflict hypergraphs can represent inconsistencies for various types of integrity
constraints, including FDs, the more general conditional FDs [5], and the more general
denial constraints [19]. In fact, every constraint that is anti-monotonic (i.e., where subsets
of consistent sets are always consistent) can be represented as a conflict hypergraph. In
the case of denial constraints, the translation from the logical constraints to the conflict
hypergraph can be done in polynomial time under data complexity (i.e., when the signature
and constraints are assumed to be fixed).

Let S = (R,∆) be a schema, and let I be an instance over S. Recall that S is assumed
to have only FDs. We denote by HI

S the conflict graph for I that has an edge between every
two facts that violate some FD of S. Note that a subinstance J of I satisfies ∆ if and only if
J is consistent w.r.t. HI

S. As an example, the left graph of Figure 1b depicts the graph HI
S

for our running example; for now, the reader should ignore the directions on the edges, and
view the graph as an undirected one. The following example involves a conflict hypergraph
that is not a graph.

I Example 2.2. In our second running example, we use the toy scenario where the signature
has a single relation symbol Follows/2, where Follows(x, y) means that person x follows
person y (e.g., in a social network). We have two sets of people: ai for i = 1, 2, 3, and bj
for j = 1, . . . , 5. All facts have the form Follows(ai, bj), denoted fij . The instance I has the
following facts: f11, f12, f21, f22, f23, f24, f31, f32, f34, and f35. The hypergraph H for I
encodes the following rules: (a) each ai can follow at most i people; and (b) each bj can be
followed by at most j people. Specifically, H contains the following hyperedges:
{f11, f12}, {f21, f22, f23}, {f21, f22, f24}, {f21, f23, f24}, {f22, f23, f24}, {f31, f32, f34, f35}
{f11, f21}, {f11, f31}, {f21, f31}, {f12, f22, f32}

An example of a (maximal) consistent subinstance J is {f11, f22, f23, f32, f34, f35}.

Prioritizing Inconsistent Databases

We now recall the framework of preferred repairs by Staworko et al. [33]. Let I be an instance
over a signature R. A priority relation � over I is an acyclic binary relation over the facts in
I. By acyclic we mean that I does not contain any sequence f1, . . . , fk of facts with fi � fi+1
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for all i = 1, . . . , k − 1 and fk � f1. If � is a priority relation over I and K is a subinstance
of I, then max�(K) denotes the set of facts f ∈ K such that no g ∈ K satisfies g � f .

An inconsistent prioritizing instance over R is a triple (I,H,�), where I is an instance
over R, H is a conflict hypergraph for I, and � is a priority relation over I with the following
property: for every two facts f and g in I, if f � g then f and g are neighbors in H (that is,
f and g co-occur in some hyperedge).1 For example, if H = HI

S (where all the constraints in
S are FDs), then f � g implies that {f, g} violates at least one FD.

I Example 2.3. We continue our running company-CEO example. We define a priority
relation � by fg

pi � fg
pa, fg

pa � f
g
br and f a

pa � f a
pi. We denote � by corresponding arrows on the

left graph of Figure 1b. (Therefore, some of the edges are directed and some are undirected.)
We then get the inconsistent prioritizing instance (I,HI

S,�) over R. Observe that the graph
does not contain directed cycles, as required from a priority relation.

I Example 2.4. Recall that the instance I of our followers example is defined in Example 2.2.
The priority relation � is given by fil � fjk if one of the following holds: (a) i = j and
k = l + 1, or (b) j = i+ 1 and l = k. For example, we have f11 � f12 and f12 � f22. But we
do not have f11 � f22 (hence, � is not transitive).

Let (I,H,�) be an inconsistent prioritizing instance over a signature R. We say that �
is total if for every two facts f and g in I, if f and g are neighbors in H then either f � g or
g � f . A priority �c over I is a completion of � (w.r.t. H) if � is a subset of �c and �c

is total. As an example, the middle and right graphs of Figure 1b are two completions of
the priority relation � depicted on the left side. A completion of (I,H,�) is an inconsistent
prioritizing instance (I,H,�c) where �c is a completion of �.

Preferred Repairs

Let D = (I,H,�) be an inconsistent prioritizing instance over R. As defined by Arenas
et al. [3], J is a repair of D if J is a maximal consistent subinstance of I. Staworko et
al. [33] define three different notions of preferred repairs: Pareto optimal, globally optimal,
and completion optimal. The first two are based on checking whether a repair J of I can be
improved by replacing a set of facts in J with a “better preferred” set of facts from I; they
differ in the way “better preferred” is interpreted. The third notion is based on the concept
of completion. Next we give the formal definitions.

I Definition 2.5 (Improvement). Let (I,H,�) be an inconsistent prioritizing instance over
a signature R, and J and J ′ be two distinct consistent subinstances of I.

J is a Pareto improvement of J ′ if there exists f ∈ J \ J ′ such that f � f ′ for all
f ′ ∈ J ′ \ J .
J is a global improvement of J ′ if for every f ′ ∈ J ′ \ J there exists f ∈ J \ J ′ such that
f � f ′.

That is, J is a Pareto improvement of J ′ if, to obtain J from J ′, we insert and delete facts,
and one of the inserted facts is preferred to all deleted ones. And J is a global improvement
of J ′ if we similarly obtain J from J ′, but now for every deleted fact a preferred one is
inserted.

1 This requirement has been made with the introduction of the framework [33]. Obviously, the lower
bounds we present hold even without this requirement. Moreover, our main upper bound, Theorem 6.1,
holds as well without this requirement. We defer to future work the thorough investigation of the impact
of relaxing this requirement.
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I Example 2.6. We continue the company-CEO running example. We define four consistent
subinstances of I: J1 = {fg

br, f
a
pi}, J2 = {fg

pa, f
a
pi}, J3 = {fg

br, f
a
pa}, and J4 = {fg

pi, f
a
pa}. Note

the following. First, J2 is a Pareto improvement of J1, since fg
pa ∈ J2 \ J1 and fg

pa � f for
every fact in J1 \ J2 (where in this case there is only one such an f , namely fg

br). Second,
J4 is a global improvement of J2 because fg

pi � fg
pa and f a

pa � f a
pi. (We refer to J3 in later

examples.)

We then get the following variants of preferred repairs.

I Definition 2.7 (p/g/c-repair). Let D be an inconsistent prioritizing instance (I,H,�), and
let J be a consistent subinstance of I. Then J is a:

Pareto-optimal repair of D if there is no Pareto improvement of J .
globally-optimal repair of D if there is no global improvement of J .
completion-optimal repair of D if there exists a completion Dc of D such that J is a
globally-optimal repair of Dc.

We abbreviate “Pareto-optimal repair,” “globally-optimal repair,” and “completion-optimal
repair” by p-repair, g-repair and c-repair, respectively.

We remark that in the definition of a completion-optimal repair, we could replace
“globally-optimal” with “Pareto-optimal” and obtain an equivalent definition [33].

Let D = (I,H,�) be an inconsistent prioritizing instance over a signature R. We denote
the set of all the repairs, p-repairs, g-repairs and c-repairs of D by Rep(D), PRep(D),
GRep(D) and CRep(D), respectively. An easy observation is that when the relation � is
empty, the four types of repairs coincide. Moreover, the following was shown by Staworko et
al. [33].

I Proposition 2.8 ([33]). For all inconsistent prioritizing instances D we have CRep(D) 6= ∅
and CRep(D) ⊆ GRep(D) ⊆ PRep(D) ⊆ Rep(D).

I Example 2.9. We continue our company-CEO example. Recall the instances Ji defined in
Example 2.6. We showed that J1 has a Pareto improvement, so J1 is not a p-repair (although
a repair in the ordinary sense). The reader can verify that J2 has no Pareto improvements,
so J2 is a p-repair. But J2 is not a g-repair, as J4 is a global improvement of J2. The
reader can verify that J3 is a g-repair (hence, a p-repair). Finally, J4 is a g-repair w.r.t. the
left completion of � in Figure 1b (and also w.r.t. the right one). Hence, J4 is a c-repair
(and so a g-repair and a p-repair). In contrast, J3 has a global improvement (and a Pareto
improvement) in both completions; but it does not prove that J3 is not a c-repair (since,
conceptually, one needs to consider all possible completions of �).

I Example 2.10. We now continue the follower example. The inconsistent prioritiz-
ing instance (I,H,�) is defined in Examples 2.2 and 2.4. Consider the instance J1 =
{f11, f22, f23, f32, f34, f35}. The reader can verify that J1 is a c-repair (e.g., by completing
� through the lexicographic order). The subinstance J2 = {f12, f21, f22, f34, f35} is a repair
but not a p-repair, since we can add f11 and remove both f12 and f21, and thus obtain a
Pareto improvement.

3 Categoricity

In this section we define the computational problem of categoricity, which is the main problem
that we study in this paper. Proposition 2.8 states that, under each of the semantics of
preferred repairs, at least one such a repair exists. In general, there can be many possible
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preferred repairs. The problem of categoricity [33] is that of testing whether there is
precisely one such a repair; that is, there do not exist two distinct preferred repairs, and
therefore, the priority relation contains enough information to clean the inconsistent instance
unambiguously.

I Problem 3.1. The problems p-categoricity, g-categoricity, and c-categoricity are those
of testing whether |PRep(D)| = 1, |GRep(D)| = 1 and |CRep(D)| = 1, respectively, given a
signature R and an inconsistent prioritizing instance D over R.

As defined, categoricity takes as input both the signature R and the inconsistent priorit-
izing instance D, where constraints are represented by a conflict hypergraph. We also study
this problem from the perspective of data complexity; there, we fix a schema S = (R,∆),
where ∆ is a set of FDs. In that case, the input consists of an instance I over R and a
priority relation ≺ over I. The conflict hypergraph is then implicitly assumed to be HI

S. We
denote the corresponding variants of the problem by p-categoricity〈S〉, g-categoricity〈S〉 and
c-categoricity〈S〉, respectively.

I Example 3.2. Continuing our company-CEO example, we showed in Example 2.9 that there
are at least two g-repairs and at least three p-repairs. Hence, a solver for g-categoricity〈S〉
should return false on (I,�), and so is a solver for p-categoricity〈S〉. In contrast, we later
show that there is precisely one c-repair (Example 6.2); hence, a solver for c-categoricity〈S〉
should return true on (I,�). If, on the other hand, we replaced � with any of the completions
in Figure 1b, then there would be precisely one p-repair and one g-repair (namely, the current
single c-repair). This follows from a result of Staworko et al. [33], stating that categoricity
holds in the case of total priority relations.

4 Preliminary Insights

We begin with some basic insights into the different variants of the categoricity problem.

Generating an Optimal Repair

We recall an algorithm by Staworko et al. [33] for greedily constructing a c-repair. This is the
algorithm FindCRep of Figure 3a. The algorithm takes as input an inconsistent prioritizing
instance (I,H,�) and returns a c-repair J . It begins with an empty J , and incrementally
inserts tuples to J , as follows. In each iteration of lines 3–6, the algorithm selects a fact f
from max�(I) and removes it from I. Then, f is added to J if it does not violate consistency,
that is, if H does not contain any hyperedge e such that e ⊆ J ∪ {f}. The specific way
of choosing the fact f among all those in max�(I) is (deliberately) left unspecified, and
hence, different executions may result in different c-repairs. In that sense, the algorithm
is nondeterministic. Staworko et al. [33] proved that the possible results of these different
executions are precisely the c-repairs.

I Theorem 4.1 ([33]). Let (I,H,�) be an inconsistent prioritizing instance over R. Let J
be a consistent subinstance of I. Then J is a c-repair if and only if there exists an execution
of FindCRep(I,H,�) that returns J .

Theorem 4.1, combined with Proposition 2.8, has several implications for us. First,
we can obtain an x-repair (where x is either p, g or c) in polynomial time. Hence, if a
solver for x-categoricity determines that there is a single x-repair, then we can actually
generate that x-repair in polynomial time. Second, c-categoricity is the problem of testing
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whether FindCRep(I,H,�) returns the same instance J on every execution. Moreover, due
to Proposition 2.8, p-categoricity (resp. g-categoricity) is the problem of testing whether
every p-repair (resp. g-repair) is equal to the one that is obtained by some execution of the
algorithm.

I Example 4.2. We consider the application of the algorithm FindCRep to the instance of
our company-CEO example (where H = HI

S). The following are two different executions: (1)
+fg

pi, −fg
pa, −f

g
br, +f a

pa, −f a
pi, (2) +f a

pa, −f a
pi, +fg

pi, −fg
pa, −f

g
br. Here, we denote inclusion in

J (i.e., the condition of line 5 is true) by plus and exclusion from J by minus. Observe that
both executions return J4 = {fg

pi, f
a
pa}. This is on a par with the statement in Example 3.2

that in this running example there is a single c-repair.

Complexity Insights

Our goal is to study the complexity of x-categoricity (where x is g, p and c). This problem is
related to that of x-repair checking, namely, given D = (I,H,�) and J , determine whether
J is an x-repair of D. The following is known about this problem.

I Theorem 4.3 ([33, 12]). The following hold.
p-repair checking and c-repair checking are solvable in polynomial time; g-repair checking
is in coNP [33].
Let S = (R,∆) be a fixed schema. If ∆|R is equivalent to either a single FD or two key
constraints for every R ∈ R, then g-repair checking over S is solvable in polynomial time;
otherwise, g-repair checking over S is coNP-complete [12].

Recall from Proposition 2.8 that there is always at least one x-repair. Therefore, given
(I,H,�) we can solve the problem x-categoricity using a coNP algorithm with an oracle
to x-repair checking: for all two distinct subinstances J1 and J2, either J1 or J2 is not an
x-repair. Therefore, from Theorem 4.3 we conclude the following.

I Corollary 4.4. The following hold.
p-categoricity and c-categoricity are in coNP, and g-categoricity is in Πp

2.
For all fixed schemas S = (R,∆), g-categoricity〈S〉 is in Πp

2, and moreover, if ∆|R
is equivalent to either a single FD or two key constraints for every R ∈ R then g-
categoricity〈S〉 is in coNP.

We stress here that if x-categoricity is solvable in polynomial time, then x-categoricity〈S〉
is solvable in polynomial time for all schemas S; this is true since for every fixed schema S the
hypergraph HI

S can be constructed in polynomial time, given I. Similarly, if x-categoricity〈S〉
is coNP-hard (resp. Πp

2-hard) for at least one S, then x-categoricity is coNP-hard (resp. Πp
2-

hard).
When we are considering x-categoricity〈S〉, we assume that all the integrity constraints are

FDs. Therefore, unlike the general problem of x-categoricity, in x-categoricity〈S〉 conflicting
facts always belong to the same relation. It thus follows that our analysis for x-categoricity〈S〉
can be restricted to single-relation schemas. Formally, we have the following.

I Proposition 4.5. Let S = (R,∆) be a schema and x be one of p, g and c. For each relation
R ∈ R, let S|R be the schema ({R},∆|R).

If x-categoricity〈S|R〉 is solvable in polynomial time for every R ∈ R, then x-categoricity〈S〉
is solvable in polynomial time.
If x-categoricity〈S|R〉 is coNP-hard (resp. Πp

2-hard) for at least one R ∈ R, then x-
categoricity〈S〉 is coNP-hard (resp. Πp

2-hard).
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Observe that the phenomenon of Proposition 4.5 does not hold for general x-categoricity
(where conflicts are given by a conflict hypergraph), since hyperedges may cross relations.

In the following sections we investigate each of the three variants of categoricity: p-
categoricity (Section 5), c-categoricity (Section 6) and g-categoricity (Section 7).

5 p-Categoricity

In this section we prove a dichotomy in the complexity of p-categoricity〈S〉 over all schemas
S (where ∆ consists of FDs). This dichotomy states that the only tractable case is where
the schema associates a single FD (which can be trivial) to each relation symbol, up to
equivalence. In all other cases, p-categoricity〈S〉 is coNP-complete. Formally, we prove the
following.

I Theorem 5.1. Let S = (R,∆) be a schema. The problem p-categoricity〈S〉 can be solved
in polynomial time if ∆|R is equivalent to a single FD for every R ∈ R. In every other case,
p-categoricity〈S〉 is coNP-complete.

The tractability side of Theorem 5.1 is fairly simple to prove. The proof of the hardness
side is involved, and we outline it in the rest of this section. Due to Proposition 4.5, it suffices
to consider schemas S with a single relation, which is what we do in the remainder of this
section.

5.1 Proof of Hardness

Our proof is based on the concept of a fact-wise reduction [24], which is formally defined
as follows. Let S = (R,∆) and S′ = (R′,∆′) be two schemas. A mapping from R to R′ is
a function µ that maps facts over R to facts over R′. We naturally extend a mapping µ
to map instances J over R to instances over R′ by defining µ(J) to be {µ(f) | f ∈ J}. A
fact-wise reduction from S to S′ is a mapping Π from R to R′ with the following properties:
(a) Π is injective, that is, for all facts f and g over R, if Π(f) = Π(g) then f = g; (b) Π
preserves consistency and inconsistency, that is, for every instance J over S, the instance
Π(J) satisfies ∆′ if and only if J satisfies ∆; and (c) Π is computable in polynomial time.

Let S and S′ be two schemas, and let Π be a fact-wise reduction from S to S′. Given an
inconsistent instance I over S and a priority relation � over I, we denote by Π(�) the priority
relation �′ over Π(I) where Π(f) �′ Π(g) if and only if f � g. If D is the inconsistent
prioritizing instance (I,HI

S,�), then we denote by Π(D) the triple (Π(I),HΠ(I)
S′ ,Π(�)),

which is also an inconsistent prioritizing instance. The usefulness of fact-wise reductions is
due to the following proposition, which is straightforward.

I Proposition 5.2. Let S and S′ be two schemas, and suppose that Π is a fact-wise reduction
from S to S′. Let I be an inconsistent instance over S, � a priority relation over I, and D
the inconsistent prioritizing instance (I,HI

S,�). Then there is a bijection between PRep(D)
and PRep(Π(D)).

We then conclude the following corollary.

I Corollary 5.3. If there is a fact-wise reduction from S to S′, then there is a polynomial-time
reduction from p-categoricity〈S〉 to p-categoricity〈S′〉.
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S1 S2 S3 S4 S5

S6S0

Two KeysOne FD Other Schemas

Figure 2 The structure of fact-wise reductions for proving the hardness side of the dichotomy of
Theorem 5.1.

Specific Schemas

In the proof we consider seven specific schemas. The importance of these schemas will later
become apparent. We denote these schemas by Si, for i = 0, 1, . . . , 6, where each Si is the
schema (Ri,∆i), and Ri is the singleton {Ri}. The specification of the Si is as follows.

R0/2 and ∆0 = {A→ B, B → A} R1/3 and ∆1 = {AB → C, BC → A, AC → B}
R2/3 and ∆2 = {A→ B, B → A} R3/3 and ∆3 = {AB → C, C → B}
R4/3 and ∆4 = {A→ B, B → C} R5/3 and ∆5 = {A→ C, B → C}

R6/3 and ∆6 = {∅ → A, B → C}

(For S6, recall that ∅ → A denotes the FD ∅ → {1}, that is, facts should have the same value
on the first attribute.) The proof uses fact-wise reductions from the Si, as we explain in the
next section.

Two Hard Schemas

Our proof boils down to proving coNP-hardness for two specific schemas, namely S0 and
S6, and then using (known and new) fact-wise reductions in order to cover all the other
schemas. For S6 the proof is fairly simple. However, hardness for S0 turned out to be highly
challenging to prove, and in fact, this part is the hardest in the proof of Theorem 5.1. Note
that S0 is the schema of our company-CEO running example (introduced in Example 2.1).

I Theorem 5.4. The problems p-categoricity〈S0〉 and p-categoricity〈S6〉 are both coNP-hard.

Applying Fact-Wise Reductions

The following has been proved by Fagin et al. [12].

I Theorem 5.5 ([12]). Let S = (R,∆) be a schema such that R consists of a single relation
symbol. Suppose that ∆ is equivalent to neither any single FD nor any pair of keys. Then
there is a fact-wise reduction from some Si to S, where i ∈ {1, . . . , 6}.

We complete the proof using the following two lemmas, giving additional fact-wise
reductions.

I Lemma 5.6. Let S = (R,∆) be a schema such that R consists of a single relation symbol.
Suppose that ∆ is equivalent to a pair of key constraints, and ∆ is not equivalent to any
single FD. Then there is a fact-wise reduction from S0 to S.

I Lemma 5.7. For all i = 1, . . . , 5 there is a fact-wise reduction from S0 to Si.
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Algorithm FindCRep(I,H,�)

1: J := ∅
2: while max�(I) 6= ∅ do
3: choose a fact f in max�(I)
4: I := I \ {f}
5: if J ∪ {f} is consistent w.r.t. H then
6: J := J ∪ {f}
7: return J

(a) Finding a c-repair [33]

Algorithm CCategoricity(I,H,�)

1: i := 0
2: J := ∅
3: while I 6= ∅ do
4: i := i + 1
5: Pi := max�+ (I)
6: J := J ∪ Pi

7: Ni := {f ∈ I | H has a hyperedge e s.t.
f ∈ e, (e \ {f}) ⊆ J , and (e \ {f}) �+ f}

8: I := I \ (Pi ∪Ni)
9: return true iff J is consistent

(b) Algorithm for c-categoricity

Figure 3 Algorithms for the completion semantics.

The structure of our fact-wise reductions is depicted in Figure 2. Dashed edges are known
fact-wise reductions, while solid edges are new. Observe that each single-relation schema on
the hardness side of Theorem 5.1 has an ingoing path from either S0 or S6, both shown to
have coNP-hard p-categoricity (Theorem 5.4).

6 c-Categoricity

We now investigate the complexity of c-categoricity. Our main result is the following.

I Theorem 6.1. The c-categoricity problem is solvable in polynomial time.

In the remainder of this section we establish Theorem 6.1 by presenting a polynomial-time
algorithm (Figure 3b). The algorithm is very simple, but its proof of correctness is intricate.

To present our algorithm, some notation is required. Let (I,H,�) be an inconsistent
prioritizing instance. The transitive closure of �, denoted �+, is the priority relation over the
facts of I where for every two facts f and g it holds that f �+ g if and only if there exists
a sequence f0, . . . , fm of facts, where m > 0, such that f = f0, fm = g, and fi � fi+1 for
all i = 0, . . . ,m− 1. Obviously, �+ is acyclic (since � is acyclic). Yet unlike �, the relation
�+ may compare between facts that are not necessarily neighbors in H. Let (I,H,�) be an
inconsistent prioritizing instance, let K be a set of facts of I, and let f be a fact of I. By
K �+ f we denote the case where g �+ f for every fact g ∈ K.

The algorithm is depicted in Figure 3b. The input is (I,H,�), an inconsistent prioritizing
instance. (The signature R is not needed by the algorithm.) The algorithm incrementally
constructs a subinstance J of I, starting with an empty J . Later we will prove that there
is a single c-repair if and only if J is consistent; and in that case, J is the single c-repair.
The loop in the algorithm constructs fact sets P1, . . . , Pt and N1, . . . , Nt (where t is the total
number of iterations). Each Pi is called a positive stratum and each Ni is called a negative
stratum. Both Pi and Ni are constructed in the ith iteration. On that iteration we add to J
every fact in Pi, and remove from I every fact in Pi and every fact in Ni. The sets Pi and
Ni are defined as follows.
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f12

f21

f23 f24

f31 f32

f34 f35

P2 N2 P3 N3P1 N1

f22f11

(a)

A a 2

A b 2

B a 2

B b 3

B a 3

A b 3

B b 1A a 1

(b)

Figure 4 (a) Execution of CCategoricity on the followers example; (b) An inconsistent instance I

over S1 with a priority relation � over I.

Pi consists of the maximal facts in the current I, according to �+.
Ni consists of all the facts f that, together with P1 ∪ · · · ∪ Pi, complete a hyperedge of
preferred facts; that is, H has a hyperedge that contains f , is contained in P1∪· · ·∪Pi∪{f},
and satisfies g �+ f for every incident g 6= f .

The algorithm continues to iterate until I gets empty. As said above, in the end the algorithm
returns true if J is consistent, and otherwise false. Next, we give execution examples.

I Example 6.2. Consider (I,H,�) from our company-CEO running example, illustrated on
the left side of Figure 1b. The algorithm makes a single iteration on this instance, where
P1 = {fg

pi, f
a
pa} and N1 = {fg

pa, f
a
pi, f

g
pa}. Both f

g
pi and f a

pa are in P1 since both are maximal.
Also, each of fg

pa, f a
pi and fg

pa is in conflict with P1, and we have fg
pi � fg

pa, f a
pa � f a

pi, and
fg

pi �+ fg
br.

I Example 6.3. Now consider the inconsistent prioritizing instance (I,H,�) from our
followers running example. Figure 4a illustrates the execution of the algorithm, where
each column describes Pi or Ni, from left to right in the order of their construction. For
convenience, the priority relation �, as defined in Example 2.4, is depicted in Figure 4a using
corresponding edges between the facts.

On iteration 1, for instance, we have P1 = {f11, f34}, since f11 and f34 are the facts
without incoming edges on Figure 4a. Moreover, we have N1 = {f12, f21, f31}. The reason
why N1 contains f12, for example, is that {f11, f12} is a hyperedge, the fact f11 is in P1, and
f11 � f12 (hence, f11 �+ f12). For a similar reason N1 contains f21. Fact f31 is in N1 as
{f11, f31} is a hyperedge, and though f11 6� f31, we have f11 �+ f31. As another example,
N3 contains f24 since H has the hyperedge {f22, f23, f24}, the set {f22, f23} is contained in
P1 ∪ P2 ∪ P3, and {f22, f23} �+ f24.

In the end, J = {f11, f22, f23, f32, f34, f35}, which is also the subinstance J1 of Ex-
ample 2.10. Since J is consistent, the algorithm will determine that there is a single c-repair,
and that c-repair is J .

I Example 6.4. We now give an example of an execution on a negative instance of c-
categoricity. (In Section 7 we refer to this example for a different reason.) Figure 4b shows
an instance I over S1, which is defined in Section 5.1. Recall that in this schema every two
attributes form a key. Each fact R1(a1, a2, a3) in I is depicted by a tuple that consists of
the three values. For example, I contains the (conflicting) facts R1(A, a, 1) and R1(A, a, 2).
Hereon, we write Xyi instead of R1(X, y, i). The priority relation � is given by the directed
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edges between the facts; for example, Aa1 � Aa2. Undirected edges are between conflicting
facts that are incomparable by � (e.g., Ab2 and Ab3).

The execution of the algorithm on (I,HI
S1
,�) is as follows. On the first iteration,

P1 = {Aa1,Ab2,Ba3,Bb1} and N1 = {Aa2,Bb3}. In particular, note that N1 does not
contain Ba2 since it conflicts only with Ba3 in P1, but the two are incomparable. Similarly,
N1 does not contain Ab3 since it is incomparable with Ab2. Consequently, in the second
iteration we have P2 = {Ba2,Ab3} and N2 = ∅. In the end, J = P1 ∪ P2 is inconsistent, and
therefore, the algorithm will return false. Indeed, the reader can easily verify that each of the
following is a c-repair: {Aa1,Ab2,Ba3,Bb1}, {Aa1,Ab2,Ba2,Bb1}, and {Aa1,Ba3,Ab3,Bb1}.

Correctness of CCategoricity is stated in the following theorem.

I Theorem 6.5. Let (I,H,�) be an inconsistent prioritizing instance, and let J be the
subinstance of I constructed in the execution of CCategoricity(I,H,�). Then J is consistent
if and only if there is a single c-repair. Moreover, if J is consistent then J is the single
c-repair.

Theorem 6.5, combined with the observation that the algorithm CCategoricity terminates
in polynomial time, implies Theorem 6.1. As previously said, the proof of Theorem 6.5 is
quite involved. The “only if” direction is that of soundness—if the algorithm returns true
then there is precisely one c-repair. The other direction is that of completeness—if there is
precisely one c-repair then the algorithm returns true. Soundness is the easier direction to
prove, and we do not discuss the proof here. Proving completeness is more involved. We
assume, by way of contradiction, that the constructed J is inconsistent. We are looking at
the first positive stratum Pi such that P1 ∪ · · · ∪ Pi contains a hyperedge. Then, the crux
of the proof is in showing that we can then construct two c-repairs using the algorithm
FindCRep: one contains some fact from Pi and another one does not contain that fact. We
then establish that there are at least two c-repairs, hence a contradiction.

7 g-Categoricity

We now investigate the complexity of g-categoricity. We begin with a tractability result.
Recall from Theorem 5.1 that, assuming P 6= NP, the problem p-categoricity〈S〉 is solvable in
polynomial time if and only if S consists (up to equivalence) of a single FD per relation. The
proof works for g-categoricity〈S〉, so the tractable schemas of p-categoricity remain tractable
for g-categoricity.

I Theorem 7.1. Let S = (R,∆) be a schema. The problem g-categoricity〈S〉 can be solved
in polynomial time if ∆|R is equivalent to a single FD for every R ∈ R.

It is left open whether there is any schema S that is not as in Theorem 7.1 where
g-categoricity〈S〉 is solvable in polynomial time. In the next section we give an insight into
this open problem.

7.1 Intractable Schemas
Our next result shows that g-categoricity〈S〉 hits a harder complexity class than p-categoricity〈S〉.
In particular, while p-categoricity〈S〉 is always in coNP (due to Corollary 4.4), we will show
a schema S where g-categoricity〈S〉 is Πp

2-complete. This schema is the schema S6 from
Section 5.1.

I Theorem 7.2. g-categoricity〈S6〉 is Πp
2-complete.

ICDT 2017
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The proof of Theorem 7.2 is by a reduction from the Πp
2-complete problem QCNF2: Given a

CNF formula ψ(x,y), determine whether it is the case that for every truth assignment to x
there exists a truth assignment to y such that the two assignments satisfy ψ.

We can generalize Theorem 7.2 to a broad set of schemas, by using fact-wise reductions
from S6. This is done in the following theorem.

I Theorem 7.3. Let S = (R,∆) be a schema such that R consists of a single relation symbol
R and ∆ consists of two nontrivial FDs X → Y and W → Z. Suppose that each of W and
Z contains an attribute that is in none of the other three sets. Then g-categoricity〈S〉 is
Πp

2-complete.

As an example, recall that in S6 we have ∆ = {∅ → A,B → C}. This schema is a
special case of Theorem 7.3, since we can use ∅ → A as X → Y and B → C as W → Z;
and indeed, each of W and Z contains an attribute (namely B and C, respectively) that
is not in any of the other three sets. Additional examples that satisfy the conditions of
Theorem 7.3 (and hence the corresponding g-categoricity〈S〉 is Πp

2-complete) are the following:
{A→ B,C → D}, {A→ C,AB → CD}, {A→ B,ABC → D}, and {A→ B,C → ABD}.
All of these sets are over a relation symbol R/4. (And in each of these sets, the first FD
corresponds to X → Y and the second to W → Z.)

Unlike S6, to this day we do not know what is the complexity of g-categoricity〈Si〉 for
any of the other Si (defined in Section 5.1). This includes S0, for which all we know is
membership in coNP (as stated in Corollary 4.4). However, except for this open problem,
the proof technique of Theorem 5.1 is valid for g-categoricity〈S〉. Consequently, we can show
the following.

I Theorem 7.4. The following are equivalent.
g-categoricity〈S0〉 is coNP-hard.
g-categoricity〈S〉 is coNP-hard for every schema S that falls outside the polynomial-time
cases of Theorem 7.1.

7.2 Transitive Priority
Let (I,H,�) be an inconsistent prioritizing instance. We say that � is transitive if for every
two facts f and g in I, if f and g are neighbors in H and f �+ g, then f � g. Transitivity is
a natural assumption when � is interpreted as a partial order such as “is of better quality
than” or “is more current than.” In this section we consider g-categoricity in the presence of
this assumption. The following example shows that a g-repair is not necessarily a c-repair,
even if � is transitive. This example provides an important context for the results that
follow.

I Example 7.5. Consider again I and � from Example 6.4 (depicted in Figure 4b). Observe
that � is transitive. In particular, there is no priority between Ab2 and Ba2, even though
Ab2 �+ Ba2, because Ab2 and Ba2 are not in conflict (or, put differently, they are not
neighbors in HI

S1). Consider the subinstance J = {Aa1,Ba2,Ab3,Bb1} of I. The reader can
verify that J is a g-repair, but not a c-repair (since no execution of FindCRep can generate
J).

Example 7.5 shows that global and completion optimality are different notions, even
if the priority is transitive. Yet, quite remarkably, in the presence of transitivity the two
coincide on categoricity.
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I Theorem 7.6. Let D = (I,H,�) be an inconsistent prioritizing instance such that � is
transitive. |CRep(D)| = 1 if and only if |GRep(D)| = 1.

Proof. The “if” direction follows from Proposition 2.8, since every c-repair is also a g-repair.
The proof of the “only if” direction is based on the special structure of the c-repair, as
established in Section 6, in the case where only one c-repair exists. Specifically, suppose that
there is a single c-repair J and let J ′ 6= J be a consistent subinstance of I. We need to show
that J ′ has a global improvement. We claim that J is a global improvement of J ′. This is
clearly the case if J ′ ⊆ J . So suppose that J ′ 6⊆ J . Let f ′ be a fact in J ′ \ J . We need to
show that there is a fact f ∈ J \ J ′ such that f � f ′. We complete the proof by finding such
an f .

Recall from Theorem 6.5 that J is the result of executing CCategoricity(I,H,�). Consider
the positive strata Pi and the negative strata Nj constructed in that execution. Since J is
the union of the positive strata, we get that f ′ necessarily belongs to a negative stratum,
say Nj . From the definition of Nj it follows that H has a hyperedge e such that f ′ ∈ e,
(e \ {f ′}) ⊆ P1 ∪ · · · ∪ Pj , and (e \ {f ′}) �+ f ′. Let e be such a hyperedge. Since J ′ is
consistent, it cannot be the case that J ′ contains all the facts in e. Choose a fact f ∈ e such
that f /∈ J ′. Then f �+ f ′, and since � is transitive (and f and f ′ are neighbors), we have
f � f ′. So f ∈ J \ J ′ and f � f ′, as required. J

Interestingly, the proof of Theorem 7.6 is based on the correctness of the algorithm
CCategoricity of Figure 3b. Combining Theorems 6.1 and 7.6, we get the following.

I Corollary 7.7. For transitive priority relations, the problems g-categoricity and c-categoricity
coincide, and in particular, g-categoricity is solvable in polynomial time.

We conclude with two comments. First, the reader may wonder whether Theorem 7.6
and Corollary 7.7 hold for p-categoricity as well. This is not the case. Hardness of p-
categoricity〈S6〉 is proved by a reduction to a transitive priority relation. Second, in their
analysis Fagin et al. [12] have constructed various reductions for proving coNP-hardness
of g-repair checking. In several of these, the priority relation is transitive. We conclude
that there are schemas S such that, on transitive priority relations, g-repair checking is
coNP-complete whereas g-categoricity is solvable in polynomial time.

8 Concluding Remarks

We investigated the complexity of the categoricity problem, which is that of determining
whether the provided priority relation suffices to repair the database unambiguously, in
the framework of preferred repairs [33]. In this framework, integrity constraints are anti-
monotonic and repairing operations are tuple deletions (i.e., subset repairs). Following
the three semantics of optimal repairs, we investigated the three variants of this problem:
p-categoricity, g-categoricity and c-categoricity. We established a dichotomy in the data
complexity of p-categoricity for the case where constraints are FDs, partitioning the cases
into polynomial time and coNP-completeness. We further showed that the tractable side of
p-categoricity extends to g-categoricity, but the latter can reach Πp

2-completeness already for
two FDs. Finally, we showed that c-categoricity is solvable in polynomial time in the general
case where integrity constraints are given as a conflict hypergraph.

We did not address here any qualitative discrimination among the three notions of x-
repairs. Rather, we continue the line of work [34, 13] that explores the impact of the choice
on the entailed computational complexity. It has been established that, as far as repair
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checking is concerned, the Pareto and the completion semantics behave much better than the
global one, since g-repair checking is tractable only for a very restricted class of schemas [13].
In this work we have shown that from the viewpoint of categoricity, the Pareto semantics
becomes likewise intractable (while the global semantics hits an even higher complexity class),
and the completion semantics outstands so far as the most efficient option to adopt.

We complete this paper by discussing directions for future research. It would be interesting
to further understand the complexity of g-categoricity, towards a dichotomy (at least for FDs).
We have left open the question of whether there exists a schema with a single relation and a
set of FDs, not equivalent to a single FD, such that g-categoricity is solvable in polynomial
time. Another interesting direction is the generalization of categoricity to the problems of
counting and enumerating the preferred repairs. For classical repairs (without a priority
relation), Maslowski and Wijsen [29, 30] established dichotomies (FP vs. #P-completeness)
in the complexity of counting in the case where constraints are primary keys. For the
general case of denial constraints, counting the classical repairs reduces to the enumeration
of independent sets of a hypergraph with a bounded edge size, a problem shown by Boros et
al. [7] to be solvable in incremental polynomial time (and in particular polynomial input-
output complexity). For a general given conflict hypergraph, repair enumeration is the well
known problem of enumerating the minimal hypergraph transversals; whether this problem is
solvable in polynomial total time is a long standing open problem [20].

A natural continuation of this work would be to chart the complexity boundaries for more
general cleaning frameworks that feature preferences between repairs, including different types
of integrity constraints, different cleaning operations (e.g., tuple addition and cell update [35]),
and different priority specifications among repairs. The latter includes preferences by
means of general scoring functions [31, 22], aggregation of scores on the individual cleaning
operations [6, 18, 25, 18, 11], priorities among resolution policies [28] and preferences based
on soft rules [32, 21].

Acknowledgments. The authors are very grateful to Ronald Fagin and Phokion Kolaitis
for insightful discussions on the categoricity problem.
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Abstract
Many XML documents are data-centric and do not make use of the inherent document order.
Can we provide stronger compression for such documents through giving up order? We first
consider compression via minimal dags (directed acyclic graphs) and study the worst case ratio
of the size of the ordered dag divided by the size of the unordered dag, where the worst case is
taken for all trees of size n. We prove that this worst case ratio is n/ logn for the edge size and
n log logn/ logn for the node size. In experiments we compare several known compressors on the
original document tree versus on a canonical version obtained by length-lexicographical sorting
of subtrees. For some documents this difference is surprisingly large: reverse binary dags can be
smaller by a factor of 3.7 and other compressors can be smaller by factors of up to 190.
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1 Introduction

Understanding the interplay between ordered and unordered structures is an important
topic of database research. For XML this interplay has received considerable attention, see,
e.g., [1, 4, 20, 3, 18]. A document is deemed document-centric, if the order of elements
matters. Examples of such documents include web pages (e.g., in XHTML). In contrast, a
document is data-centric if the order of elements is unimportant. For instance, the order of
author-, title-, and year-elements in a bibliographic entry is unimportant. Of course, there
could be mixtures of both, unordered and ordered nodes. For instance, an author-node could
be marked “ordered” to contain subtrees for the first author, second author, etc. JSON
naturally supports ordered and unordered nodes (cf. the Conclusions).

The absence of order bears many opportunities such as query optimization and set-oriented
parallel processing, cf. [1]. Unordered XML has also been studied recently with respect to
schema language definitions [4], a topic already considered during the birth years of XML [16].
Here we study the question whether tree compression can benefit from unorderedness.

In XML compression, document trees are typically stored (and compressed) separately
from the data values, see, e.g., [14]. Let us first consider a very basic tree compression
technique: directed acyclic graphs (dags, for short). Let t be an ordered tree. By representing
repeated occurrences of the same subtree in t only once, one obtains a unique minimal dag
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Figure 1 The tree structure of a bibliography on the left and its unordered dag on the right.

for t. In the following, we denote this minimal dag as the dag of t. It was observed early on
that dags provide high compression ratios for common XML document trees [7] (10% on
average for their documents). Moreover, the dag can be produced in linear time [9] or in
amortized linear time using hashing (the well-known “hash-consing”), see, e.g., [7]. What
happens if we construct the unordered dag of the tree t, which is the minimal dag of the
unordered version of t?1 Figure 1 shows an XML document tree consisting of 12 edges. Since
there are no repeating subtrees (containing any edges), the minimal dag of this tree has 12
edges as well. In contrast, the unordered dag has only 6 edges. This raises the question how
much smaller, at most, the unordered dag can be in comparison to the dag. We answer this
question for two size measures: (i) the number of nodes and (ii) the number of edges. For
each of these measures we study the maximum of the dag size of t divided by the unordered
dag size of t, where the maximum is taken over all node-labelled trees t of size n. We denote
these worst case ratios by αN (n) (for the node size) and αE(n) (for the edge size). Our main
theoretical results provide precise growth rates (up to multiplicative constants) for these
values:
(i) for the edge size we obtain αE(n) ∈ Θ(n/ logn) and
(ii) for the node size we obtain αN (n) ∈ Θ(n log logn/ logn).

With respect to the upper bound αE(n) ∈ O(n/ logn) we show that for every tree t of
size n, the unordered dag has at least e/2 · ln(n/2) many edges (e is Euler’s constant and
ln is the logarithm to base e). This is shown using the well-known inequality between the
geometric and arithmetic mean, see e.g., [17]. The upper bound αN (n) ∈ Θ(n log logn/ logn)
uses a technique that has been applied in several related contexts, see e.g. [11]: one removes
from a tree t all subtrees of size at most m, where m is logarithmic in the size of t. Then one
bounds (i) the size of the remaining subtree and (ii) the number of different trees of size at
most m. This yields an upper bound on the node size of the dag of t. For the lower bounds
in (i) and (ii) one exploits the obvious fact that the list of subtrees of a node of rank r can
be permuted in r! many ways without affecting the corresponding unordered tree.

Let us also mention that the unordered dag can be computed in linear time as well. This
can be done using the method for unordered tree isomorphism as given in Aho, Hopcraft,
and Ullman’s book [2].

In the second part of the paper, we contrast our theoretical results by experimental data
for two corpora of XML trees. In addition to dags, we are interested in our experiments
to gauge the impact of unorderedness of other tree compression methods. These are the
dag variants introduced in [5] and the grammar-based tree compressor “TreeRePair” [15].
These are the strongest tree compressors that we are aware of. Instead of introducing
(nontrivial) adaptations of each of these compressors to unordered trees, we opted for a

1 Whenever we solely use the term dag (resp., tree), we always refer to the ordered version. If we want to
speak about the unordered versions, we explicitly add the adjective “unordered”.
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different approach: we compress canonical trees. For this, we use the well-known canonization
via length-lexicographical sorting of subtree lists, see., e.g., [8]. For an ordered tree t, it is
easy to observe that the dag of t’s canonical tree is isomorphic to the unordered dag of t.
Our experimental results can be summarized as follows: for plain dags as explained above,
the largest difference for any document of our collection is that the unordered dag has 60%
size of the ordered dag. Then, essentially, the stronger the tree compression method as such,
the larger the difference on the canonical tree. For the “hybrid dag” the largest difference is
a factor of 3 smaller. For dag-plus-string-compression (called “DS” in [5]) we obtain some
astonishing results: for one document tree (coming from Wikipedia data) the compression of
the canonical tree is smaller by a factor of 190 than that of the original tree.

2 Preliminaries

With e = 2, 71828 · · · we always denote Euler’s constant. With lnn (resp. logn) we denote
the logarithm of n to base e (resp., 2). For a positive integer k we denote by [k] the set
{1, 2, . . . , k}. Let Σ be an alphabet. For a string w = a1a2 · · · an ∈ Σ∗ (a1, . . . , an ∈ Σ) we
denote by alph(w) the set {a1, a2, . . . , an} of symbols that appear in w. For a ∈ Σ let |w|a
denote the number |{i ∈ [n] | ai = a}| of occurrences of the symbol a in w. For i ∈ [n] we
denote the i-th letter ai of w by w[i]. For a ∈ Σ we denote with am the word a · · · a with m
many occurrences of a.

3 Multi-graphs, Dags, and Trees

In this section we formally define node-labelled trees and dags in the ordered and unordered
setting. Our definitions are non-standard in the sense that we define trees and dags as
multi-graphs, whereas usually they are defined as ordinary graphs. Let Σ be an alphabet. A
Σ-labeled ordered dag (or briefly dag) is a tuple d = (V, γ, λ, v0), where

V is a finite set of nodes,
γ : V → V ∗ assigns to each node a finite sequence of successor nodes,
λ : V → Σ assigns to each node a label from Σ, and
v0 ∈ V is the root node.

Moreover, we require that the edge relation Ed := {(u, v) | v ∈ alph(γ(v))} satisfies the
following two properties:

Ed is acyclic, i.e., there is no node v with (v, v) ∈ E+
d and

every node v is reachable from v0, i.e., (v0, v) ∈ E∗d .
Often we speak of the multi-edges of d. Formally, these are triples (v, i, γ(v)[i]) for v ∈ V
and 1 ≤ i ≤ |γ(v)|. We use two size measures for a dag d = (V, γ, λ, v0):
‖d‖ =

∑
v∈V |γ(v)| is the number of multi-edges, and

|d| = |V | is the number of nodes.
A path in d of length n is a sequence v1, k1, v2, k2, . . . , vn+1 such that (vi, ki, vi+1) is a multi-
edge of d for all 1 ≤ i ≤ n. The height h(d) of d is the length of a longest path in d. For a
node v ∈ V , ρ(v) = |γ(v)| is its rank and the rank of d is ρ(d) = max{ρ(v) | v ∈ V }.

A Σ-labeled ordered tree (or briefly tree) can be defined as a dag d = (V, γ, λ, v0) such that
every node u ∈ V \{v0} has a unique occurrence in the set of strings {γ(v) | v ∈ V }. In other
words: alph(γ(u)) ∩ alph(γ(v)) = ∅ for u 6= v and |γ(u)|v ≤ 1 for all u, v ∈ V . Alternatively,
one can use terms over Σ to describe trees: if t1, . . . , tn (n ≥ 0) are trees and f ∈ Σ then
f(t1, . . . , tn) is also a tree. The set of all Σ-labeled ordered trees t with ρ(t) ≤ r is denoted as
Tr(Σ). Moreover, let T∞(Σ) =

⋃
r≥1 Tr(Σ). For r ∈ N∪{∞} and k ∈ N let Tr,k = Tr([k]). In
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this notation, T∞,1 is the set of all unlabelled trees (trees, where every node is labelled with
the same symbol 1). For a tree t there is no essential difference between the size measures
‖t‖ and |t| (we have ‖t‖ = |t| − 1).

A dag d = (V, γ, λ, v0) can be unfolded into a tree τ(d). To define this tree, we associate
with every node v ∈ V the tree τ(v) inductively as follows: if λ(v) = f and γ(v) = v1v2 · · · vn
then τ(v) = f(τ(v1), τ(v2), . . . , τ(vn)). Finally, let τ(d) = τ(v0). For a tree t we define its
minimal dag dag(t) as the smallest dag d with respect to |d| such that τ(d) = t. This is also
the smallest dag d with respect to ‖d‖ such that τ(d) = t. The minimal dag dag(t) is unique
up to isomorphism. It can be obtained from t by merging nodes u and v with λ(u) = λ(v)
and γ(u) = γ(v) as long as possible. Also note that |dag(t)| is exactly the number of different
subtrees of t. It is known that dag(t) can be computed in linear time [9].

There exist obvious unordered counterparts to the above definitions. A Σ-labeled unordered
dag can be defined as a tuple d = (V, γ, λ, v0), where V , λ and v0 have the same properties
as for an ordered dag, and γ : V → NV assigns to each node v a V -indexed tuple of
natural numbers, which can be seen as a multiset over V . Let us write γ(u, v) instead of
(γ(u))(v), which is the number of multi-edges from u to v. It is required that the edge
relation Ed := {(u, v) ∈ V × V | γ(u, v) > 0} is acyclic and that (v0, v) ∈ E∗d for all v ∈ V .
Unordered trees are then defined in the obvious way. As for ordered dags we define the two
size measures ‖d‖ =

∑
u,v∈V γ(u, v) and |d| = |V |. The unfolding of an unordered dag d is

an unordered tree that we again denote with τ(d). This allows us to define the minimal dag
dag(t) of the unordered tree t, which is an unordered dag. We make the following convention
for the rest of the paper:
I Convention 1. Whenever we solely use the term dag (resp., tree), we always refer to the
ordered version. If we want to speak about the unordered versions, we use the term unordered
dag (resp., unordered tree).
For an ordered dag d = (V, γ, λ, v0), we define the corresponding unordered dag du =
(V, γu, λ, v0), where γu(v, w) = |γ(v)|w is the number of occurrences of node w in the list
γ(v). For a tree t we define its unordered minimal dag dagu(t) of t as the minimal dag of the
corresponding unordered tree tu. In the following we omit the adjective “minimal” when we
speak of the minimal (unordered) dag of a tree. Figure 1 shows on the right the unordered
dag of the tree on the left.

4 Sizes of Dags versus Unordered Dags

We clearly have |dagu(t)| ≤ |dag(t)| and ‖dagu(t)‖ ≤ ‖dag(t)‖. In this section we study
the question, how much smaller the unordered dag for a given tree can be compared to its
ordered dag. Formally, we study the growth of the following two worst case ratios, where
n, r, k ∈ N and r, k ≤ n:

αN (n, r, k) = max
{
|dag(t)|
|dagu(t)|

∣∣∣∣ t ∈ Tr,k, |t| ≤ n} ,
αE(n, r, k) = max

{
‖dag(t)‖
‖dagu(t)‖

∣∣∣∣ t ∈ Tr,k, |t| ≤ n} .
Let x ∈ {N,E}. Note that αx(n, 1, k) = 1 since for a tree t ∈ T1,k (which is a linear chain)
the ordered as well as the unordered dag is equal to t. Hence, we only consider the ratio
αx(n, r, k) for r ≥ 2. Note that αx(n, r, k) ≤ αx(n, r′, k′) for all r, r′, k, k′ ≤ n with r ≤ r′

and k ≤ k′, since this implies Tr,k ⊆ Tr′,k′ . In the following we mainly concentrate on the
extreme cases αx(n, 2, 1) and αx(n, n, n). We use the abbreviation αx(n) = αx(n, n, n).
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0
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0

0
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0

0
1 1

β(0) β(1)

Figure 2 A possible choice for the tree t16 from Theorem 1 with n = 16, r = h = 4 and k = 2.
For the 0- (resp., 1-labelled) nodes one has to substitute the tree β(0) (resp., β(1)) on the right.

1 2 3 4 2 1 3 4 2 3 1 4 2 3 4 1

Figure 3 A possible choice for the tree t16 from Theorem 2 with n = 16, x = 1
2 log logn = 1, and

r = k = 4.

4.1 Lower Bounds for αE and αN
In this section, we prove two lower bounds. In the first part we derive a lower bound of
Ω(n/ logn) for αE(n, 2, 1). For this, we construct a family of binary trees, where the dag
achieves almost no compression, while the unordered dag achieves exponential compression
ratios. Later, we show that this bound is tight by providing a matching upper bound for
αE(n). Note that αN (n, 2, 1) ∈ Θ(αE(n, 2, 1)), since for a binary tree we have |dag(t)| − 1 ≤
‖dag(t)‖ ≤ 2 · |dag(t)| and analogously for dagu(t). In the following theorem and its
proof, we only consider trees from T2,1 (binary unlabelled trees). We denote such trees by
well-parenthesized strings over ( and ). Formally, () ∈ T2,1 and if t1, t2 ∈ T2,1 then also
(t1), (t1t2) ∈ T2,1. By Bh ∈ T2,1 we denote the complete unlabelled binary tree with 2h
leaves and height h. This tree has size 2h+1 − 1 and its dag has 2h multi-edges. For a tree t
with k leaves and trees t1, . . . , tk we write t[t1, . . . , tk] to denote the tree obtained from t by
replacing the i-th leaf (in pre-order) by ti. For k ≥ 1 let ck = (k)k denote a chain of k nodes.
We encode non-empty bit strings by trees from T2,1 using the function β that is inductively
defined as follows: β(0) = (()(())), β(1) = ((())()), and β(ds) = (β(d)β(s)) for d ∈ {0, 1}
and s ∈ {0, 1}+. The trees β(0) and β(1) are shown in Figure 2 on the right. Note that if
s1, s2 ∈ {0, 1}+ and |s1| = |s2| then the unordered trees β(s1)u and β(s2)u are isomorphic.
The construction in the proof of the following theorem is similar to a construction from [11].

I Theorem 1. For every n ≥ 2 there exists a tree tn ∈ T2,1 with
|tn| ∈ Θ(n)
‖dag(tn)‖ ∈ Θ(n)
‖dagu(tn)‖ ∈ Θ(logn)

Hence, we have αE(n, 2, 1) ∈ Ω(n/ logn) and αN (n, 2, 1) ∈ Ω(n/ logn).
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Proof. Let n ∈ N and h = dlogne. Let r = 2k ∈ Θ(n/ logn) be the smallest power of two
that is at least n/h. Let u1, . . . , ur be r distinct bit strings of length h (note that r ≤ n ≤ 2h).
Consider the trees s1 = β(u1), . . . , sr = β(ur). We add to si a chain of length h and obtain
the tree s′i = ch[si] (1 ≤ i ≤ r). Finally, set tn = Bk[s′1, . . . , s′r]. A possible choice for the
tree t16 is shown in Figure 2.

Let us first bound the size of tn. For Bk we have |Bk| ∈ Θ(r) = Θ(n/ logn). The total
size of all r copies of the chain ch is Θ(r · h) = Θ(n). Finally, every si has size Θ(h); so their
sizes sum up to Θ(r · h) = Θ(n). Altogether, we get |tn| ∈ Θ(n).

To bound ‖dag(tn)‖, note that the trees s1, . . . , sr are pairwise different (as ordered trees).
This implies that in the dag of tn, the r copies of the chains ch are still present. Therefore,
dag(tn) has at least r · h ∈ Θ(n) many nodes (and, of course, it has at most n nodes). Since
every node of tn has rank at most 2, we get ‖dag(tn)‖ ∈ Θ(n).

Finally, for the unordered dag note that the trees s1, . . . , sr are pairwise isomorphic when
considered as unordered trees. Therefore, the copies of the chains ch are collapsed into a
single chain in dagu(tn) and also the top Bk-part is collapsed into Θ(log r) = Θ(logn) many
nodes. We get ‖dagu(tn)‖ ∈ Θ(logn) as well as |dagu(tn)| ∈ Θ(logn). J

In the next section, we will prove αE(n) ∈ O(n/ logn), which yields the same upper bound
for αE(n, 2, 1). Moreover, also the lower bound of Ω(n/ logn) for αN (n, 2, 1) turns out be
sharp (see Corollary 7 for k = 1). On the other hand, for αN (n) = αN (n, n, n) we can
improve the lower bound to Ω(n log logn/ logn):

I Theorem 2. Fix a constant δ > 1. For every n ≥ 1 large enough (depending on δ) there
exists a tree tn ∈ Tr,k with the following properties:

k = dδ · logn/ log logne and r ∈ Θ(n · log logn/ logn).
|tn| ∈ Θ(n)
|dag(tn)| ∈ Θ(n)
|dagu(tn)| ∈ Θ(logn/ log logn)

Hence, we have αN (n) ∈ Ω(n · log logn/ logn).

Proof. Fix n ≥ 1 and let x = 1
δ log logn, k = d(logn)/xe = dδ · logn/ log logne, and

r = bn/kc ∈ Θ(n · log logn/ logn). Let us first show that with this choice we have k! ≥ r.
With Stirling’s formula (or, more precisely, the inequality z! ≥

√
2πz · (z/e)z) we get

k! ≥ (k/e)k ≥ (logn/ex)(logn)/x = 2(log logn−log(ex))(logn)/x = n(log logn−log(ex))/x.

Since moreover n ≥ n/k ≥ r, it suffices to show

n(log log(n)−log(ex))/x ≥ n,

i.e., log logn − log(ex) ≥ x = 1
δ log logn, or, equivalently (1 − 1

δ ) log logn ≥ log(ex) =
log(e/δ) + log log logn, which holds for n large enough. This shows that, indeed, k! ≥ r.

We now construct the tree tn ∈ Tr,k as follows: take r many pairwise different trees
s1, . . . , sr consisting of a root node with k many children, which are leaves. The sequence of
labels of these k leaves forms a permutation of [k]. Since k! ≥ r, these r pairwise different
trees exist. From si we next construct s′i by adding a chain of length k on top of si. Finally,
the tree tn is obtained by taking a new root node, whose children are the roots of the trees
s′1, . . . , s

′
r. A possible choice for the tree t16 is shown in Figure 3. Note that for n large

enough we have k ≤ r since k ∈ Θ(logn/ log logn) and r ∈ Θ(n · log logn/ logn). Hence,
tn ∈ Tr,k.
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We get |tn| = 1 + 2rk ∈ Θ(n). For the node size of the dag, we obtain |dag(tn)| =
1 + rk + k ∈ Θ(n). Finally, for the node size of the unordered dag, note that the unordered
trees corresponding to s′1, . . . , s′r are all isomorphic. Hence, we obtain that |dagu(tn)| =
1 + 2k ∈ Θ(k) = Θ(logn/ log logn), which proves the statement. J

4.2 Upper Bound for αE
In this section we prove an upper bound for αE(n) via a lower bound of Ω(logn) for the
function

µ(n) := min {‖dagu(t)‖ | t ∈ Tn,n, |t| ≤ n} .

Thus, the unordered dag of a tree of size n has at least logarithmic size in n. Note that for
binary trees (or trees of constant rank) this is obvious since the height of such a tree is at
least logn, which implies that also the minimal unordered dag has at least logn many edges.
Also note that

µ(n) = min {‖dag(t)‖ | t ∈ Tn,n, |t| ≤ n} .

The reason is that for every tree t there is a tree t′ with |t| = |t′| and dagu(t) = (dag(t′))u
and thus ‖dagu(t)‖ = ‖dag(t′)‖. Moreover, it holds that

µ(n) = min {‖dag(t)‖ | t ∈ Tn,1, |t| ≤ n} ,

i.e., it suffices to consider unlabelled trees. This is because adding labels to a tree can make
the minimal dag only larger. Therefore we do not consider labels in the following and consider
dags as triples (V, γ, v0) without a labelling function λ.

Let d = (V, γ, v0) be such a dag. For a node v ∈ V define depth(v) as the length of a longest
path from the root v0 to v. Thus, depth(v0) = 0. Note that h(d) = max{depth(v) | v ∈ V }.
For 1 ≤ i ≤ h(d) + 1 let Vi(d) = {v ∈ V | depth(v) = i− 1} be the set of nodes at depth i− 1.
Finally, let ρi(d) =

∑
v∈Vi(d) |γ(v)| for 1 ≤ i ≤ h(d). This is the total number of multi-edges

that start in a node at depth i − 1. Every such multi-edge goes to a node at depth j ≥ i.
We write Vi and ρi for Vi(d) and ρi(d), respectively, if d is clear from the context.

I Lemma 3. Let d = (V, γ, v0) be a dag of height h = h(d). The number of leaves of the
unfolding τ(d) is bounded by

∏h
i=1 ρi.

Proof. Consider the dag d′ = ({1, . . . , h+ 1}, γ′, 1) with γ′(i) = (i+ 1)ρi (the string with ρi
many occurrences of i+ 1) for 1 ≤ i ≤ h and γ′(h+ 1) = ε. It is a chain of h+ 1 nodes with
ρi many multi-edges from node i to node i+ 1. The unfolding of d′ has

∏h
i=1 ρi many leaves.

It therefore suffices to transform d into d′ and show that this transformation does not reduce
the number of leaves of the unfolding.

First of all, we can merge in d all nodes v with γ(v) = ε to a single node. This does
not change the unfolding, the height of the dag, and the number of multi-edges starting at
depth i. Hence, Vh+1 consists of the unique sink node of d; let us call this node s. Next, we
construct from d the dag d1 = (V, γ1, v0), where γ1 is defined as follows: we set γ1(s) = ε.
Now, let v ∈ Vi with 1 ≤ i ≤ h and γ(v) = v1v2 · · · vr. We set γ1(v) = v′1v

′
2 · · · v′r, where the

nodes v′j are defined as follows: if vj ∈ Vi+1 then set v′j = vj . Otherwise, i.e., if vj ∈ Vk with
k > i+ 1, then let v′j be a node in Vi+1 such that there exists a path from v′j to vj . Note
that such a node v′j exists, since every node in Vk (k > 1) has a predecessor in Vk−1. Note
that the unfolding τ(vj) is a subtree of the unfolding τ(v′j). Therefore, τ(d1) has indeed at
least as many leaves as τ(d).
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The dag d1 has still height h and ρi(d1) = ρi(d) for 1 ≤ i ≤ h. But in contrast to d, all
multi-edges in d1 go from a node in Vi to a node in Vi+1 for some 1 ≤ i ≤ h. Moreover,
every node in Vi (1 ≤ i ≤ h) has at least one successor node (in Vi+1). If we now merge all
nodes in Vi to a single node, we obtain (up to isomorphism) the dag d′. Clearly, this merging
increases the number of paths from the root v0 to the sink s. But the number of such paths
is exactly the number of leaves in the unfolding. This shows the lemma. J

I Theorem 4. We have µ(n) ≥ e
2 · ln(n/2).

Proof. Let t be an arbitrary (unlabelled tree) of size n. We first transform t into a new tree
t′ by adding exactly one additional child node to every non-leaf of t. These new children are
leaves in t′. Now t′ has the property that every non-leaf node has at least two children. Note
that n ≤ |t′| ≤ 2n. Moreover, for the dag we also have ‖dag(t)‖ ≤ ‖dag(t′)‖ ≤ 2 · ‖dag(t)‖.
Intuitively, dag(t′) is obtained from dag(t) by adding for every internal node v an additional
multi-edge to the unique sink node of dag(t).

Let ` be the number of leaves of t′. Since every non-leaf node of t′ has at least two
children, we have ` ≥ |t′|/2 ≥ n/2. Moreover, let h be the height of t′ and let ρi = ρi(dag(t′)).
From Lemma 3 we obtain

` ≤
h∏
i=1

ρi.

On the other hand, we have

‖dag(t′)‖ =
h∑
i=1

ρi.

The well-known inequality between the arithmetic and geometric mean states that for all
x1, . . . , xm ∈ R,

1
m
·
m∑
i=1

xi ≥

(
m∏
i=1

xi

)1/m

.

Applying this to the numbers ρi (1 ≤ i ≤ h), we get

‖dag(t′)‖ =
h∑
i=1

ρi ≥ h ·

(
h∏
i=1

ρi

)1/h

≥ h · `1/h.

To further bound the term h · `1/h, we consider it as a function of h: let f(x) = x · `1/x. Its
derivative is

f ′(x) = `1/x
(

1− ln(`)
x

)
.

Therefore f(x) has a minimum at x = ln ` in the interval (0,∞), from which it follows that

h · `1/h ≥ `1/ ln(`) · ln ` = e · ln `.

With ` ≥ n/2 we finally get

‖dag(t)‖ ≥ 1
2 · ‖dag(t′)‖ ≥ e

2 · ln ` ≥
e

2 · ln(n/2) J
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For every tree t of size n we have ‖dag(t)‖ ≤ n. Moreover, by Theorem 4 it holds that
‖dagu(t)‖ ≥ e

2 · ln(n/2). Hence, we obtain

‖dag(t)‖
‖dagu(t)‖ ≤

2n
e · ln(n/2) ∈ Θ(n/ logn),

which is stated in the next corollary.

I Corollary 5. It holds that αE(n) ∈ O(n/ logn).

4.3 Upper Bound for αN
In this section, we derive an upper bound on the node size of the minimal dag.

I Theorem 6. For every tree t ∈ Tn,k of size n and height h, it holds that2

|dag(t)| ∈ O
(
n · h · log(k + 1)

logn

)
.

Proof. Let t ∈ Tn,k be a tree of size n and height h. Note that |dag(t)| is the number of
different subtrees of t. Let t′ be the tree that is obtained from t by removing all maximal
subtrees of size at most

m := 1
2 · log4k n = logn

2 · log 4k .

Let F be the forest consisting of all these removed subtrees. Then the number of different
subtrees of t (i.e., |dag(t)|) is bounded by |t′| plus the number of different subtrees in F . But
the latter is bounded by the number of trees s ∈ T∞,k with |s| ≤ m, which by [11, Lemma 2]
is at most 4

3 (4k)m = 4
3n

1/2.
Let us now bound |t′|. Consider a leaf v of t′. Then, the subtree of t rooted in v must

have size larger than m; otherwise v would not belong to t′. Therefore, t′ has at most n/m
many leaves. Clearly, if every internal node in t′ would have at least two children, then we
could conclude that t′ has at most 2n/m many nodes. But t′ may contain nodes with a single
child. Let us call such nodes unary. Moreover, let ` be the length of a longest path in t′ in
which all nodes except the last one are unary. Then, we get |t′| ≤ 2(`+1)n/m ≤ 2(h+1)n/m.
In total, we get

|dag(t)| ≤ 2(h+ 1)n
m

+ 4
3 · n

1/2

= 4 · (h+ 1) · n · log 4k
logn + 4

3 · n
1/2 ∈ O

(
n · h · log(k + 1)

logn

)
.

J

I Corollary 7. It holds that αN (n, n, k) ∈ O
(
n·log(k+1)

logn

)
and αN (n) ∈ O

(
n·log logn

logn

)
.

Proof. Let us first show αN (n, n, k) ∈ O
(
n·log(k+1)

logn

)
. Let t be a tree of size n and height h

with labels from [k]. By Theorem 6 we have

|dag(t)| ∈ O
(
n · h · log(k + 1)

logn

)
.

2 We write log(k + 1) instead of log k in order to avoid log k = 0 for k = 1.

ICDT 2017



18:10 Compression of Unordered XML Trees

On the other hand, we clearly have |dagu(t)| ≥ h. Therefore, we get

|dag(t)|
|dagu(t)| ∈ O

(
n · log(k + 1)

logn

)
.

Let us now prove αN (n) ∈ O
(
n·log logn

logn

)
. Consider an arbitrary tree t of size n with labels

from [n]. If more than logn labels occur in t, then we clearly have |dagu(t)| > logn. Since
|dag(t)| ≤ n we get (for n large enough)

|dag(t)|
|dagu(t)| ≤

n

logn ≤
n · log logn

logn .

On the other hand, if at most logn many different labels occur in t then the bound
αN (n, n, k) ∈ O

(
n·log(k+1)

logn

)
implies

|dag(t)|
|dagu(t)| ∈ O

(
n · log logn

logn

)
.

This proves the bound αN (n) ∈ O
(
n·log logn

logn

)
. J

4.4 Summary of the Results for αN and αE
The following result summarizes our theoretical bounds for the functions αN (n, 2, 1), αN (n),
αE(n, 2, 1), and αE(n):

I Corollary 8. It holds that:

αN (n, 2, 1) = Θ
(

n

logn

)
, αN (n) = Θ

(
n · log logn

logn

)
,

αE(n, 2, 1) = Θ
(

n

logn

)
, αE(n) = Θ

(
n

logn

)
.

5 Experimental Results

In this section we experimentally evaluate the impact of unorderedness with regards to
compression of XML trees. We compute for an XML tree t its canonical tree canon(t). The
tree canon(f(t1, t2, . . . , tn)) is obtained by sorting the trees canon(t1), . . . , canon(tn) according
to their size, and in case of equal sizes, according to the lexicographical order of their XML
traversal strings. Clearly, for all trees s, t we have su = tu if and only if canon(s) = canon(t).
The minimal unordered dag can be obtained from the canonical tree by computing its minimal
dag. Clearly, this is a very expensive way of obtaining the minimal unordered dag: it can
be obtained in linear time by a variant of the algorithm of Aho, Hopcroft and Ullman [2],
see also [19]. We have implemented that procedure and can confirm its efficiency: it runs at
least as fast as our (ordered) dag programs based on hashing. The reason for computing
the canonical tree is to provide a simple way of gauging how other compressors benefit from
unorderedness (by imposing a canonical order). It should be understood that our experiment
only gives a rough indication of the benefit of unorderedness for compressors other than the
dag. We expect that a more careful adaptation of those compressors to unordered trees will
provide stronger compression.

We only report number of edges, so “size” in this section always refers to number of edges.
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5.1 Tree Compressors

We compare seven known tree compressors, which are considered in [5]:
1. minimal dag,
2. minimal binary dag,
3. minimal reverse binary dag,
4. minimal hybrid dag,
5. minimal reverse hybrid dag,
6. DS, and
7. TreeRePair.
We choose these compressors, since they all produce a graph-based representation of the
input tree. This makes the output sizes of the compressors comparable.

It should be clear that the minimal dag of the canonical tree is isomorphic to the unordered
dag of the original tree. Thus, the size of the minimal dag of a canonical tree is always
smaller than or equal to the size of the minimal dag of the original tree.

The minimal binary dag (bdag) of an unranked tree t is the minimal dag of the “first-
child/next-sibling encoding” (for short, fcns encoding) of t. The fcns encoding s is common
for XML: it has the same nodes as t, a node v is the left child in s of a node u if and
only if v is the first child of u in t, and, a node v is the right child in s of a node u if and
only if v is the next sibling of u in t. This encoding is considered in Paragraph 2.3.2 of
Knuth’s first book [12]. The minimal reverse binary dag (rbdag) is the minimal dag of the
“first-child/previous-sibling encoding” (fcps), defined in the obvious way. Binary dags and
reverse binary dags share end- and begin-sequences, respectively, of subtrees. This implies
that both the bdag and rbdag of a canonical tree can be larger than the corresponding dags
of the original tree. As an example consider the following tree

t = f(g(c, d, b, a, h), g(c, d, b), g(b, d, c, d, b)).

This tree has 16 edges. Its minimal binary dag has only 14 edges, because the end-sequence
of subtrees “c, d, b” occurs twice and can be shared. Similarly, the minimal reverse binary
dag has size 14 (because “c, d, b” appears twice). In contrast, the canonical tree of t

canon(t) = f(g(b, c, d), g(a, b, c, d, h), g(b, b, c, d, d))

has a bdag and rbdag of 16 edges. Interestingly, such scenarios where bdag and rbdag become
larger for the canonical tree appear frequently in practice.

The hybrid dag (hdag) (and reverse hybrid dag (rhdag)) were introduced in [5] as data
structures that are guaranteed to be smaller than or equal in size to both the dag and
the bdag (rbdag) of an unranked tree. The hdag (resp., rhdag) is obtained from a dag by
applying the fcns-encoding (resp., fcps-encoding) to the rules of the dag (where the dag is
viewed as a regular tree grammar), and then computing the minimal dag of the resulting
forest of encoded rules; see [5] for a precise definition. Similarly as with bdag and rbdag, the
hdag and rhdag can be larger for the canonical tree than for the original one.

The acronym DS stands for “dag and string compression”. The idea is to compute a
minimal dag and to then apply a string compressor to the above mentioned rules of the
dag. As in [5], we use RePair [13] as our string compressor. Finally, TR refers to the
grammar-based tree compressor TreeRePair of [15]. The sizes are numbers of edges of the
compressed structures, see [5] for details.

ICDT 2017
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Table 1 Document characteristics, Edges = average number of edges in a tree, aD = average
depth of a node, mD = maximum depth of a node in any tree, aR = average rank of a node, mR =
maximum rank of a tree.

Corpus Documents Edges aD mD aR mR

I 21 3.1 · 106 6.6 36 5.7 3.9 · 106

II 1131 79465 7.9 65 6.0 2925

5.2 Corpora of XML Documents
We use two different Corpora of XML documents. These corpora were also used in [5]. For
each document we consider the unranked tree of its element nodes, i.e., we ignore attribute
and text values. Corpus I consists of XML documents from the web which are often used in
XML compression research. Many of the files of this corpus can be downloaded from the
XMLCompBench site3 (see [5] for details). Corpus II is a subset of files from the University
of Amsterdam XML Web Collection4. We have verified by hand that, according to the tag
names, all of the documents in Corpus I appear to be order independent. By sampling
Corpus II we also did not find order dependent documents.

The characteristics of the Corpora are quite different: Corpus I consists of few and very
large files while Corpus II has many small files. Some characteristics are shown in Table 1. As
can be seen, the average size of documents from Corpus I is about 40 times larger than that
of Corpus II, and the rank (=maximum length of sibling lists) of documents from Corpus I is
about 1300 times larger; this indicates that most of the documents from Corpus I are indeed
very long lists of (small) subtrees.

5.3 Experimental Setup
The implementations for dag, bdag, rbdag, hdag, and DS are the same ones as used in [5].
Note that DS uses Gonzalo Navarro’s implementation of RePair for strings5. For TreeRePair,
called “TR” in what follows, we use Roy Mennicke’s implementation6; we do not change any
parameters and run it plain from the command line (thus, the maxRank parameter of TR is
at its default value of 4). We do not report running times (they are provided in [5]). The
canonizer was implemented from scratch in java using integer and string sorting as provided
by java (this runs quite slow and can take several hours for some of the documents).

5.4 Compression of Canonical versus Original Tree
The results of applying the different compressors to the documents of Corpus I are shown
in Table 2. The first line shows how the compression ratio on the canonical tree changes
with respect to the compression ratio for the original tree (a percentage of more than 100%
means that the compression ratio is better on the canonical tree). The second row shows the
sizes of the compressed canonical trees (in number of edges). For instance, the compression
ratio of the hdag of the canonical tree of document “sprot39.dat” is 67% of the ratio for
the original tree. On the other hand, DS compressor over the canonical tree of document

3 http://xmlcompbench.sourceforge.net
4 http://data.politicalmashup.nl/xmlweb
5 http://www.dcc.uchile.cl/~gnavarro/software/
6 http://code.google.com/p/treerepair

http://xmlcompbench.sourceforge.net
http://data.politicalmashup.nl/xmlweb
http://www.dcc.uchile.cl/~gnavarro/software/
http://code.google.com/p/treerepair
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Figure 4 Comparison of average sizes of Corpus I (left) and Corpus II (right).

“EnWikTionary” has a compression that is 191-times better than the ratio for the original
tree. For each document we indicate in bold the unique best increase of compression, and
underline the smallest size.

Note that the dag of the canonical tree can never be larger than the dag of the original tree.
Intuitively, every original repeating subtree (that gets shared in the dag) is also repeating in
the canonical tree. Thus, there cannot be percentages below 100 in the column for the dag.
In every other column the percent number can potentially be below 100. This is because
these compressors take into account sibling sequences and hence are effected by the change
of sibling orders due to canonization. In fact, this happens for the file “EXI-factbook”: here
all compression ratios (except that for the dag) become worse for the canonical tree. It
means the the ordering of the canonization removes repetitions that are meaningful for the
compressor. It is interesting to see that for this outlier, the strongest overall compressor TR
(with respect to size) is affected the most: the compression goes down to 81% of the original;
this is also the only file where this ever happens for TR. Another outlier that comes from
the EXI group is EXI-weblog, where no compression ratio changes; this document is in an
order that is isomorphic to that of the canonical tree.

The majority (almost one half) of documents have the strongest increase for the DS
compressor. In particular, all the EnWik documents belong to this group. It is interesting
to observe that for all the EnWik documents only DS and TR give (massive) compression,
while for all the dag variants the compression ratio does not change. This means that after
canonization there are (i) no repeating subtrees and (ii) no repeating prefixes or suffixes of
sibling lists that were different before canonization. Note also that for this group,

DS achieves the smallest size values for each document. It means that there are no
complex tree patterns that are repeating, and hence would be compressed by TR but not
by DS; all repetition seems to be purely on the level of sibling lists. In contrast to that,
observe the treebank file which features (by far) the most complex tree structure of all the
documents: here the size of TR is almost twice smaller than that of DS. Curiously, the
rhdag has the highest increase for this document. There is another interesting group of
documents, namely those where the rbdag has the largest increase. It means that after
canonization there are a lot of repeating prefixes of sibling sequences; thus, optional elements
which typically appear at the end of sibling lists (the reverse dags profit from that) have,
after canonization, remained to appear at the end. Apparently, this is less often the case for
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Table 2 Difference (in %) of canonical versus original tree compression, and size of canonical
compression output (largest in bold and smallest underlined, respectively).

document dag bdag rbdag hdag rhdag DS TR

1998statistics 118% 352% 373% 306% 333% 239% 211%
1164 682 632 422 373 200 238

catalog-01 146% 82% 177% 84% 182% 146% 117%
5856 8514 5830 5302 3295 2994 3390

catalog-02 114% 98% 111% 98% 113% 473% 331%
28496 53647 50858 27912 25823 5761 8072

dictionary-01 107% 102% 225% 104% 187% 130% 136%
54575 75827 33386 45214 24960 24634 16434

dictionary-02 116% 116% 254% 117% 207% 138% 145%
469915 588665 257228 353365 197197 194324 115932

EnWikiNew 100% 100% 100% 100% 100% 2712% 2282%
35075 70018 70025 35057 35054 341 422

EnWikiQuote 100% 100% 100% 100% 100% 2370% 2091%
23904 47692 47699 23888 23887 267 316

EnWikiVersity 100% 100% 100% 100% 100% 2672% 2287%
43693 87258 87263 43676 43673 264 326

EnWikTionary 100% 100% 100% 100% 100% 19108% 15839%
726221 1452273 1452279 726197 726191 428 531

EXI-Array 100% 100% 100% 100% 100% 425% 375%
95584 128009 128011 95562 95563 213 267

EXI-factbook 100% 100% 91% 96% 96% 93% 81%
4477 5090 3227 3766 2225 1937 1708

EXI-Invoice 100% 100% 100% 100% 100% 98% 102%
1073 2073 2067 1071 1066 98 106

EXI-Telecomp 100% 100% 100% 100% 100% 99% 102%
9933 19807 19808 9932 9931 111 137

EXI-weblog 100% 100% 100% 100% 100% 100% 100%
8504 16997 16997 8504 8504 44 58

JST_gene.chr1 100% 99% 100% 99% 100% 430% 396%
9176 14718 14103 7840 7206 917 1062

JST_snp.chr1 100% 98% 101% 97% 101% 382% 347%
23509 41444 37425 22805 19111 2571 2980

medline 165% 150% 240% 141% 222% 145% 141%
395754 493136 158984 326638 113932 122270 88109

NCBI_gene.chr1 100% 93% 110% 91% 116% 148% 137%
16038 15504 9839 11606 5912 4237 3764

NCBI_snp.chr1 100% 100% 100% 100% 100% 100% 100%
404704 809394 809394 404704 404704 61 83

sprot39.dat 102% 60% 269% 67% 237% 102% 102%
1724689 2394532 586523 1484814 376067 328469 257376

treebank 101% 99% 106% 99% 107% 104% 103%
1292198 1455300 1171666 1246195 1039933 1073301 510683
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the reverse hybrid dag, i.e., after building the dag there is less profit from canonization. An
interesting document that has always been challenging with respect to compression [6] is
medline: with 165% it has the largest increase within the dag column. This means that many
permutations of the same subtree sequences exist. This could be because these bibliography
entries have been entered manually by different persons, each having their own preferences
of ordering sibling lists. Observe also that every single compressor has an increase of at least
140% for the medline document. Similar to this is the 1998statistics document: here the dag
only increases by 118%, but all others increase by 210% or more. Thus, there are not many
subtrees with precisely the same subtrees (possibly in different orders), but, there is a large
number of repetitions of subsequences of sibling lists, in particular of prefix subsequences
(viz. the highest increases of rbdag and bdag).

In summary, Figure 4 shows the average sizes for the different compressors for Corpus I
and Corpus II, respectively. For Corpus I, all compressors, except bdag (91%) and hdag
(93%), show an improvement of the compression ratio. DS (118%) and TR (124%), which
already give very high compression ratios, also have high increases. The biggest increases,
however, are seen for rbdag (134%) and rhdag (130%). For Corpus II, we see that there
is almost no difference in the case of bdag and hdag. Again, DS (121%) and TR (123%)
improve on their already high compression ratios, while rbdag (117%) and rhdag (120%)
achieve improvements as well.

Finally, we also tried a different canonizer: It assigns to every subtree t a number i(t) such
that for every pair of subtrees t1, t2 it holds that i(t1) = i(t2) if and only if the unordered
trees of t1 and t2 are equal. The children t1, . . . , tn of a subtree t are then sorted with respect
to i(t1), . . . , i(tn). While this algorithm runs a lot faster than sorting the whole subtrees, the
compression ratios only change very slightly.

6 Conclusions

In this paper we showed that the minimal unordered dag of a tree can be exponentially smaller
than the minimal (ordered) dag of that tree. Furthermore, we proved that this difference is
exponential at most, thus providing matching upper and lower bounds for the ratio of the
ordered and unordered dag size of a tree. These results hold for both size measures: number
of nodes and the number of multi-edges. It would be interesting in the future to investigate
also the number of “collapsed” edges, where multi-edges between the same pair of nodes are
collapsed to a single edge. For the unordered dag, this size measure makes sense, since one
only needs to store the number of multi-edges between two nodes and these numbers can be
stored succinctly in binary notation. Another interesting theoretical research problem is to
compute the average size of the unordered dag, where the average is taken with respect to
the uniform distribution on all trees of size n. The corresponding average for ordered dags
was analysed in [10] and the asymptotic growth rate Θ(n/

√
logn) was derived using tools

from analytic combinatorics, see also [5]. We conjecture that the average unordered dag size
has the same asymptotic growth. Related to this, one might study the average values of the
ratios αN and αE for which we only derived worst case bounds.

In the second part of this paper, we have experimentally evaluated the difference of sibling
orders for different compressors. Within the compressors that are based on dags, the biggest
impact of ignoring order is observed for the reverse binary dag (thus, the minimal dag of the
first-child/previous-sibling-encoded tree); the biggest difference is a better compression in
the unordered setting by a factor of 3.7. Within the RePair-variants DS and TreeRePair,
DS features the larger difference, with a factor of 191 for one document. Such a massive
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improvement due to ignoring document order could be useful in practice: it could mean that
the entire tree structure of a document that is Terabytes large, can be conveniently stored
(and queried) in main memory, while the data values would be stored on secondary memory.

It would be interesting to consider trees with ordered and unordered nodes. For XML
documents this can be done via XML Schema Definition. JSON very naturally provides this
possibility: its two primitives are lists (= ordered) and sets of key-value pairs (= unordered).
We expect that canonization of unordered nodes will improve compression. In the future, we
would like to find also a method that combines features of the compressors presented here,
and is guaranteed to compress equally well or better than each of the the compressors.

References
1 S. Abiteboul, P. Bourhis, and V. Vianu. Highly expressive query languages for unordered

data trees. Theory of Computing Systems, 57(4):927–966, 2015.
2 A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
3 A. Boiret, V. Hugot, J. Niehren, and R. Treinen. Logics for unordered trees with data

constraints on siblings. In Proceedings of LATA 2015, volume 8977 of Lecture Notes in
Computer Science, pages 175–187. Springer, 2015.

4 I. Boneva, R. Ciucanu, and S. Staworko. Schemas for unordered XML on a DIME. Theory
of Computing Systems, 57(2):337–376, 2015.

5 M. Bousquet-Mélou, M. Lohrey, S. Maneth, and E. Noeth. XML compression via directed
acyclic graphs. Theory of Computing Systems, 57(4):1322–1371, 2015.

6 P. Buneman. Private Communication, 2005.
7 P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proceedings

of VLDB 2003, pages 141–152. Morgan Kaufmann, 2003.
8 S. R. Buss. Alogtime algorithms for tree isomorphism, comparison, and canonization. In

Proceedings of KGC 1997, volume 1289 of Lecture Notes in Computer Science, pages 18–33.
Springer, 1997.

9 P. J. Downey, R. Sethi, and R. Endre Tarjan. Variations on the common subexpression
problem. Journal of the ACM, 27(4):758–771, 1980.

10 P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations on the common subexpression
problem. In Proceedings of ICALP 1990, volume 443 of Lecture Notes in Computer Science,
pages 220–234. Springer, 1990.

11 M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth. Constructing small tree grammars
and small circuits for formulas. Technical report, arXiv.org, 2014. http://arxiv.org/abs/
1407.4286.

12 D. E. Knuth. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison-
Wesley, 1968.

13 N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proceedings of DCC
1999, pages 296–305. IEEE Computer Society, 1999.

14 H. Liefke and D. Suciu. XMILL: an efficient compressor for XML data. In Proceedings of
ACM SIGMOD Conference 2000, pages 153–164. ACM, 2000.

15 M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150–1167, 2013.

16 F. Neven and T. Schwentick. XML schemas without order. Unpublished manuscript, 1999.
17 J. M. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathemat-

ical Inequalities. MAA Problem Books Series. Cambridge University Press, 2004.
18 S. Sundaram and S. Kumar Madria. A change detection system for unordered XML data

using a relational model. Data & Knowledge Engineering, 72:257–284, 2012.

http://arxiv.org/abs/1407.4286
http://arxiv.org/abs/1407.4286


M. Lohrey, S. Maneth, and C. P. Reh 18:17

19 Gabriel Valiente. Algorithms on Trees and Graphs. Springer, 2002.
20 S. Zhang, Z. Du, and J. Tsong-Li Wang. New techniques for mining frequent patterns in

unordered trees. IEEE Transactions on Cybernetics, 45(6):1113–1125, 2015.

ICDT 2017





Dynamic Complexity under Definable Changes∗

Thomas Schwentick1, Nils Vortmeier2, and Thomas Zeume3

1 TU Dortmund University, Dortmund, Germany
thomas.schwentick@tu-dortmund.de

2 TU Dortmund University, Dortmund, Germany
nils.vortmeier@tu-dortmund.de

3 TU Dortmund University, Dortmund, Germany
thomas.zeume@tu-dortmund.de

Abstract
This paper studies dynamic complexity under definable change operations in the DynFO frame-
work by Patnaik and Immerman. It is shown that for changes definable by parameter-free first-
order formulas, all (uniform) AC1 queries can be maintained by first-order dynamic programs.
Furthermore, many maintenance results for single-tuple changes are extended to more powerful
change operations: (1) The reachability query for undirected graphs is first-order maintainable
under single tuple changes and first-order defined insertions, likewise the reachability query for
directed acyclic graphs under quantifier-free insertions. (2) Context-free languages are first-order
maintainable under Σ1-defined changes. These results are complemented by several inexpress-
ibility results, for example, that the reachability query cannot be maintained by quantifier-free
programs under definable, quantifier-free deletions.
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1 Introduction

In the setting of Dynamic Complexity, a database D is being changed and an update program
P tries to answer a standing query q after each change. The program usually consists of
logical formulas which can make use of additional, auxiliary relations which in turn need to
be updated after each change. Dynamic Complexity can be seen as a logic-based counterpart
of Dynamic Algorithms, where algorithms use auxiliary data structures to keep track of
properties of structures like graphs under change operations. The Dynamic Complexity
framework was introduced in [23] and a similar framework, FOIES, in [8].

In Dynamic Complexity, one usually allows first-order logic formulas as update mechanism
for the auxiliary relations. This is in line with the database-oriented framework, since first-
order logic correspond to database languages like relational algebra. Just as in Dynamic
Algorithms, for most investigations the possible change operations are limited to insertions
and deletions of single tuples. The class of queries maintainable in this fashion is called
DynFO. This line of research has seen recent progress, particular with respect to the question
whether the reachability query can be maintained in DynFO for directed graphs [2, 3].
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Although the restriction to single-tuple changes can be justified by the need to concentrate
on the basic phenomena of dynamic maintainability of queries, it is also clear that from a
more practical perspective one would be interested in more complex change operations at
a time. One approach is to specify changes by “∆-relations”, e.g., by sets of tuples to be
inserted or deleted. This is basically the viewpoint of Incremental View Maintenance (see
for example [15]). However, it is clear that arbitrary ∆-relations can make the auxiliary
relations useless.

In this work, we consider a different extension of the single-tuple-change paradigm that is
inspired by SQL update queries (for a theoretical view at SQL updates we refer to [1]). We
model such queries by replacement queries which can modify several relations at a time by
first-order formulas that can use tuples of elements as parameters. Similar but slightly weaker
frameworks were introduced in [17, 28], but these papers did not study maintainability under
such complex changes.

Contributions. The generalized setting yields a huge range of research questions, e.g., all
previously studied questions in Dynamic Complexity in combination with replacement queries
of varying expressiveness, and this paper can only start to investigate a few of them.

We are mainly interested in positive results. In Section 4 we study first-order definable
insertion queries (supplementing the single tuple changes). It turns out that the reachability
query can still be maintained in DynFO for undirected graphs under first-order definable
insertions (Theorem 3) and for directed acyclic graphs under quantifier-free insertions
(Theorem 5). In Section 5, we investigate parameter-free replacement queries. We show that
all queries that can be expressed in uniform AC1 (and thus all queries that can be computed
with logarithmic space) can be maintained in DynFO under first-order definable parameter-
free replacement queries (Theorem 7). In Section 6, we show that many maintainability
results for formal languages [23, 13] carry over to quantifier-free or Σ1-definable replacement
queries (Theorems 8 and 9).

It is notoriously difficult to prove inexpressibility results in Dynamic Complexity. One
would expect that allowing more general change operations simplifies such results. In Section 7,
we confirm this intuition to some extent and present cases where general replacement queries
disable certain kinds of update programs to maintain queries that are maintainable under
single-tuple changes.

Some proofs are omitted due to space constraints and can be found in the full version of
this paper [24].

Related work. In addition to the related work mentioned already above, several other
prior results for Dynamic Complexity under more general changes have been obtained. The
reachability query for directed graphs has been studied under deletions of sets of edges
and nodes that form an anti-chain in [5] and under insertions of sets of tuples that are
cartesian-closed in [8]. Hesse observed that the maintenance procedure for this query under
single tuple changes from [3] can deal with the replacement of the set of outgoing edges of
a node (or, alternatively, the set of incoming edges). Edge contractions have been studied
in [26]. Koch considered more general sets of changes in [19], though only for non-recursive
queries.

Implementations of work on Dynamic Complexity are reported in [22] and [19].
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2 Preliminaries

As much of the original motivation for the investigation of dynamic complexity came from
incremental view maintenance (cf. [9, 6, 23]), it is common to consider logical structures as
relational databases and to use notation from relational databases.

A (relational) schema τ consists of a set τrel of relation symbols, accompanied by an arity
function Ar : τrel → N, and a set τconst of constant symbols. In this work, a domain is a finite
set. A database D over schema τ with domain D assigns to every relation symbol R ∈ τrel a
relation of arity Ar(R) over D and to every constant symbol c ∈ τconst an element (called
constant) from D. A τ -structure S is a pair (D,D) where D is a domain and D is a database
with domain D over schema τ . By dom(S) we refer to D. For a relation symbol R ∈ τ and
a constant symbol c ∈ τ we denote by RS and cS the relation and constant, respectively,
that are assigned to those symbols in S. A k-ary query q on τ -structures is a mapping that
assigns a subset of Dk to every τ -structure over domain D and is closed under isomorphisms.

We represent graphs as structures over a schema that contains a single binary relation E.
The reachability query qReach maps graphs to their transitive closure relation.

In Section 6 we consider databases that represent words over some alphabet Σ. In a
nutshell, the positions of a word correspond to elements of the domain and the letters at
positions are indicated by unary relations. More formally, words are represented by databases
with an immutable linear order on their domain and one unary relation Rσ for every σ ∈ Σ.
For simplicity, we always assume that the domain of such a database is of the form {1, . . . , n}
and the linear order ist just the natural order. At any point in time, an element of the domain
is allowed to be in at most1 one relation Rσ. However, elements need not to be in any relation
Rσ and, in this case, they do not correspond to a position with a symbol but rather to the
empty word ε. Thus, we first associate with every position i an element wi ∈ Σε, where by
Σε we denote the set Σ ∪ {ε}, and say that the database represents the string w = w1 · · ·wn.
As an example, the database with domain {1, 2, 3, 4, 5} and Ra = {2, 4}, Rb = {1} represents
the string baa. As a further convenience, we assume that databases have constants min and
max that represent the smallest and the largest element, 1 and n, respectively.2 We will not
allow the linear order, min or max to be modified by change operations. In this paper, we
will rarely distinguish between a database and the string it represents.

We use several notions from finite model theory (see, e.g., [20]). By qd(ϕ), we denote the
quantifier-rank of a first-order formula ϕ, that is, its maximum nesting depth of quantifiers.
We denote the set of rank-k types of tuples of arity ` by FO[k, `] (cf. [20, Definition 3.14]).
The existential fragment of first-order logic is denoted by Σ1.

3 Dynamic Programs with Complex Changes

In this section we lift the definitions from [25] to more general change operations. We
first define (general) change operations, then we adapt the definition of dynamic programs
presented in [25] to those more complex changes.

1 There are ways to get rid of this requirement, but we keep it for simplicity.
2 This assumption can be avoided by, e.g., using additional prefix and suffix relations in the proof of
Theorem 8, in the spirit of [13].
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Change Operations. The change operations that we consider in this paper are based on
queries. In their most general form, they can modify a given database over schema τ by
replacing some of its relations with the results of first-order-defined queries on the database.
These queries are allowed to use parameters.

To this end, a replacement rule ρR for relation R is of the form replace R by µR(p̄; x̄).
Here, R is a relation symbol and µR(p̄; x̄) is a first-order formula over τ , where the tuple
x̄ has the same arity as R and p̄ is another tuple of variables, called the parameter tuple.
A replacement query ρ(p̄) is a set of replacement rules for distinct relations with the same
parameter tuple p̄. In the case of replacement queries ρ that consist of a single replacement
rule, we usually do not distinguish between ρ and its single replacement formula µR.

For a database D, a change operation δ = (ρ, ā) consists of a replacement query and a
tuple of elements of (the domain of) D with the same arity as the parameter tuple of ρ. We
often use the more concise notation ρ(ā) and refer to change operations simply as changes.

The result δ(D) of an application of a change operation δ = (ρ, ā) to a database D is
defined in a straightforward way: each relation R in D, for which there is a replacement rule ρR
in ρ, is replaced by the relation resulting from evaluating µR, that is, by {b̄ | D |= µR(ā; b̄)}.

If a replacement query has no parameters we say that it is parameter-free.

I Example 1.
(a) As a first example, we consider directed graph structures, that is, structures with a

single binary relation E. Let, for some graph G, δ1 = (ρ1, u) be the change operation
with replacement query µE(p;x, y) = E(x, y) ∨ (x = p) and node u. Then, in δ1(G),
there is an edge from u to every node of G.

(b) We recall that words over the alphabet Σ = {a, b, c} are represented by databases with
a linear order on their domain and one unary relation Rσ for every σ ∈ Σ. Let D be
a database representing a word w and i an element of D. Let δ2 = (ρ2, i) be a change
operation, where the replacement query ρ2 consists of the rules replace Ra by µRa(p;x)
and replace Rb by µRb(p;x) with µRa(p;x) =

(
(x < p) ∧Rb(x)

)
∨
(
¬(x < p) ∧Ra(x)

)
and µRb(p;x) =

(
(x < p) ∧ Ra(x)

)
∨
(
¬(x < p) ∧ Rb(x)

)
. Then, δ2(D) represents the

word obtained from w by swapping a and b symbols on all positions before i and leaving
all other positions unchanged.

Some of our investigations will focus on (syntactically) restricted replacement queries that
either only remove or only insert tuples to relations. For an insertion rule ρR, the replacement
formula µR(p̄; x̄) has the form R(x̄)∨ϕR. Similarly, deletion rules have replacement formulas
µR(p̄; x̄) of the form R(x̄)∧ϕR. In [1], the change operations replace, insert, delete and modify
have been studied, in particular with respect to their expressive power. These operations are
captured by our change operations3.

Another syntactic restriction to be studied extensively in this work are the quantifier-free
replacement queries, that allow only quantifier-free change formulas to be used. A special case
of quantifier-free changes are the single tuple changes. We refer by insert p̄ into R to the inser-
tion query replace R by µR(p̄; x̄), where µE(p̄; x̄) = R(x̄)∨ (p̄ = x̄) and by delete p̄ from R

to the deletion query replace R by µR(p̄; x̄), where µR(p̄; x̄) = R(x̄) ∧ ¬(p̄ = x̄). As men-
tioned before, single tuple changes are the best studied change operations in previous work
on dynamic complexity. To emphasize the difference we sometimes refer to arbitrary (not
single-tuple) change operations as complex changes. For any schema τ we denote by ∆τ the

3 In [1] the domain of the database can be infinite.
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set of single-tuple replacement queries for the relations (with symbols) in τ . In the case of
graphs, we simply write ∆E . In case of strings over some alphabet Σ, we write ∆Σ.

Dynamic Programs. We now introduce dynamic programs, closely following the exposition
in [25]. Inputs in dynamic complexity are represented as relational structures as defined in
Section 2. The domain is fixed from the beginning, but the database in the initial structure
is empty. This initially empty structure is then modified by a sequence of change operations.

The goal of a dynamic program is to answer a given query for the database that results
from any change sequence. To this end, the program can use an auxiliary data structure
represented by an auxiliary database over the same domain. Depending on the exact setting,
the auxiliary database might be initially empty or not.

A dynamic program P operates on an input database I over a schema τin and updates
an auxiliary database A over a schema4 τaux, both sharing the same domain D which is fixed
during a computation. We call (D, I,A) a state and consider it as one relational structure.
The relations of I and A are called input and auxiliary relations, respectively.

A dynamic program has a set of update rules that specify how auxiliary relations are
updated after a change. An update rule for updating an auxiliary relation T after a
replacement query ρ(p̄) is of the form on change ρ(p̄) update T (x̄) as ϕT (p̄, x̄) where the
update formula ϕT is over τin ∪ τaux.

The semantics of a dynamic program is as follows. When a change operation δ = ρ(ā)
is applied to the input database I, then the new state S of P is obtained by replacing the
input database by δ(I) and by defining each auxiliary relation T via T def= {b̄ | (I,A) |=
ϕT (ā, b̄)}. For a change operation δ we denote the updated state by Pδ(S). For a sequence
α = (δ1, . . . , δk) we write Pα(S) for the state obtained after successively applying δ1, . . . , δk
to S.

A dynamic query is a tuple (q,∆) where q is a query over schema τin and ∆ is a set of
replacement queries. The dynamic program P maintains a dynamic query (q,∆) with k-ary
q if it has a k-ary auxiliary relation Q that, after each change sequence over ∆, contains the
result of q on the current input database. More precisely, for each non-empty5 sequence α
of changes and each empty input structure I∅, relation Q in Pα(S∅) and q(α(I∅)) coincide.
Here, S∅ = (I∅,A∅), where A∅ denotes the empty auxiliary structure over the domain of I∅.

The class of dynamic queries (q,∆) that can be maintained by a dynamic program with
update formulas from first-order logic is called DynFO. We also say that the query q

can be maintained in DynFO under change operations ∆. The class of dynamic queries
maintainable by quantifier-free update formulas is called DynProp.

The following very simple example shows how the transitive closure of a directed graph
subject to single edge insertions can be maintained in this set-up.

I Example 2. Let qReach be the reachability query that returns all pairs (u, v) of a graph,
for which there is a path from u to v. The dynamic query (qReach, {insert p̄ into E}) can be
maintained by a dynamic program that uses one auxiliary relation T , which always contains
the transitive closure of the edge relation E. Its only update rule is given by the formula
ϕT (p1, p2;x, y) = T (x, y) ∨

(
T (x, p1) ∧ T (p2, y)

)
. J

4 To simplify the exposition, we will usually not mention schemas explicitly and always assume that all
structures we talk about are compatible with respect to the schemas at hand.

5 This technical restriction ensures that we can handle, e.g., Boolean queries with a yes-result on empty
structures without initialization of the auxiliary relations. Alternatively, one could use an extra formula
to compute the query result from the auxiliary (and input) structure.
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Our general framework follows [23] and thus does not allow inserting new elements into
or removing existing elements from the domain as in the FOIES framework [8]. The step
from Dynamic Complexity to FOIES can be done by adding two more change operations,
add(x) and remove(x). Our results of Section 4 easily carry over, and those of Section 6
carry over if, say, new elements are always added at the end of the string. Since add(x)
and remove(x) have parameters, they do not quite fit into the parameter-free framework of
Section 5. However, Theorem 7 survives if parameter-free remove queries are allowed.

Complex Change Operations and Initialization of Dynamic Programs. In the presence
of complex replacement queries, the initialization of the auxiliary relations requires some
attention. In the original setting of Patnaik and Immerman, the input database is empty at
the beginning, and the auxiliary relations are initialized by first-order formulas evaluated
on this (empty) initial input database. Since tuples can be inserted only one-by-one, the
auxiliary relations can be adapted slowly and it can be ensured that, e.g., always a linear
order [23] or arithmetic [10] on the active domain is available.

For complex changes, the situation is more challenging for a dynamic program: as an
example, in the setting of strings, the first change could insert all positions of the domain into
relation Ra and thus let the database represent the word an, if n is the size of the underlying
domain. To enable the dynamic program to answer whether the string is in some language
after this change, it needs some suitable (often: non-empty) initial values of the auxiliary
relations. Since in this paper, we are mainly interested in the maintenance of queries and not
so much in the specific complexity of the initialization, we do not define variants of DynFO
with different power of initialization, but rather follow a pragmatic approach: whenever
initialization is required, we say that the query can be maintained with suitable initialization
and specify in the context what is actually needed. In all cases, it is easy to see that the
initialization of the auxiliary relations can be computed in polynomial time.

An alternative approach would be to restrict the semantics of replacement queries to
elements of the active domain of the current database and to allow the activation of elements
only via tuple insertions.

4 Reachability and Definable Insertions

In this section, we study the impact of first-order definable complex change operations on the
(binary) reachability query qReach. We present positive cases, where previous maintainability
results survive under such stronger change operations. Negative results, where such operations
destroy previous maintainability results, are given in Section 7.

In the classical DynFO setting with single-tuple change operations it was shown early
on that qReach can be maintained in DynFO for two important graph classes: undirected
graphs and directed, acyclic graphs (dags). It turns out that these results still hold in the
presence of complex insertions: first-order insertions for undirected graphs and quantifier-free
insertions for dags. In fact, in both cases basically the same auxiliary relations can be used
as in the case of single-tuple changes.

We first show that for undirected graphs, the reachability query can be maintained in
DynFO, for first-order insertions and the set ∆E of single-edge insertions and deletions. We
follow the convention from [14] that modifications for undirected graphs are symmetric in the
sense that if an edge (a, b) is inserted then so is the edge (b, a) (and likewise for deletions).

I Theorem 3. Let ∆ be a finite set of first-order insertion queries. Then (qReach,∆ ∪∆E)
can be maintained in DynFO for undirected graphs.
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We use the approach for maintaining qReach for undirected graphs under single-edge
insertions and deletions from [23, Theorem 4.1] and maintain a spanning forest and (essen-
tially) its transitive closure relation. The crucial observation for extending this approach to
first-order insertions is that, after such an insertion, between each pair of nodes in a (new)
connected component, there is a connecting path that uses only a bounded number of newly
inserted edges. This allows the update of the spanning forest and its transitive closure in a
first-order definable way.

The observation is stated more precisely next. For two connected nodes u, v in a graph
G′ = δ(G) that is obtained from a graph G by an insertion δ, we define6 the bridge distance
bd(u, v) as the minimal number d, such that there is a path from u to v in G′ that uses d
edges that were newly inserted by δ.

I Lemma 4. For each first-order insertion query ρ there is a constant m ∈ N such that for
each undirected graph G, each change δ = ρ(ā) and all nodes u and v of G that are connected
in δ(G) it holds bd(u, v) ≤ m.

We informally refer to this property as the bridge boundedness property.

Proof. The proof makes use of the result by Feferman-Vaught that the depth k first-order
type of the disjoint union of two structures is determined by the depth k first-order types of
these two structures [11, 12] (see also [21]).

Let µ(p̄; x̄) be the first-order formula underlying ρ and k its quantifier-rank. Let ` be the
arity of p̄, m′ the number of FO[k, 1]-types of undirected graphs and m = `+m′.

Let G be an undirected graph and let δ = ρ(ā) for some tuple ā of nodes of G. Let u, v
be two nodes that are connected by some path π of the form u = w0, w1, . . . , wr = v in δ(G)
with q bridges, that is, edges that are not in G. Our goal is to show that there exists such
a path with at most m bridges. Thus, if q ≤ m, there is nothing to prove, so we assume
q > m. It suffices to show that there is a path from u to v with fewer than q bridges. Let
(u1, v1), . . . , (uq, vq) be the bridges in π. If for some i, the nodes ui and vi are in the same
connected component of G (before the application of δ), we can replace the bridge (ui, vi) by
a path of “old” edges resulting in an overall path with q − 1 bridges. Similarly, if ui and
uj are in the same connected component of G, for some i < j, we can shortcut π by a path
from ui to uj inside G. Therefore, we can assume that, for every i, the nodes ui and vi are
in different connected components of G, and likewise ui and uj for i < j.

We show that in this case there are i, j with i < j such that µ defines an edge between
ui and vj , and therefore a path with fewer bridges can be constructed by shortcutting the
path π with the edge (ui, vj). By the choice of m there must be two nodes ui and uj , with
i < j, in distinct connected components of G that do not contain any element from ā, such
that ui and uj have the same FO[k, 1]-type in their respective connected components. By
Feferman-Vaught, it follows that (ui, vj , ā) and (uj , vj , ā) have the same FO[k, `+ 2]-types
and therefore, since µ defines an edge between uj and vj , it also defines one between ui
and vj . J

Proof. Proof of Theorem 3 The dynamic program presented in [23, Theorem 4.1] maintains
the transitive closure of undirected graphs under single-edge changes with the help of auxiliary
relations F and PV . The binary relation F is a spanning forest of the input graph G and
(u, v, w) ∈ PV means that w is a node in the path from u to v in F . Observe that two nodes
u and v are connected in an undirected graph if and only if (u, u, v) ∈ PV holds.

6 Since G and δ will be always clear from the context, we do not add them as parameters to this notation.
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We show how to maintain the relation F and PV under FO insertions. For the moment
we assume a predefined linear order ≤ on the domain to be present. Let ρ be an insertion
query and m the bound on the number of bridges by Lemma 4. Let G be an undirected
graph and δ = ρ(ā) an insertion, F a spanning forest of G and PV as described above. We
show how to FO-define the auxiliary relations F ′ and PV ′ for the modified graph G′ = δ(G).

We first describe a strategy to define F ′ and then argue that it can be implemented by a
first-order formula. Let C ′ be a (new) connected component in δ(G). We call the smallest
node of C ′ with respect to ≤ the queen u0 of C ′. For each connected component C of G
that is a subgraph of C ′, we define its queen level as the (unique) number bd(u, u0), for
nodes u ∈ C. A bridge in C ′ is inserted into F ′ if for a connected component C of G of
some level i it is the lexicographically smallest edge with respect to ≤ that connects C with
some component of level i− 1. This clearly defines a spanning forest. The chosen edges can
be defined by a first-order formula because, for each number h, there are formulas θh(x, y)
expressing that bd(x, y) ≤ h.

Since the construction of F ′ ensures that each path in F ′ from a node to the queen of
its connected component only contains at most m new edges, and thus each path in F ′

contains at most 2m new edges, it is straightforward to extend the update formula for PV ′
from [23, Theorem 4.1].

It remains to show how the assumption of a predefined linear order can be eliminated.
For a change sequence α, we denote by Aα the set of parameters used in α. When applying
α to an initially empty graph, a linear order on Aα can be easily constructed as in the case
of single-tuple changes [10]. The remaining nodes in V \ Aα behave very similarly. More
precisely, one can show by induction on |α|, that for all nodes a ∈ V and b, b′ ∈ V −Aα it
holds (a, b) ∈ E ⇔ (a, b′) ∈ E (and likewise for (b, a) and (b′, a)).

The dynamic program for maintaining qReach for undirected graphs now maintains the
relations F and PV as described above, yet restricted to the induced (and ordered) subgraph
of G on Aα. The transitive closure can be defined from those relations and the edge relation
by a simple case distinction.

Two nodes a, a′ ∈ Aα are connected by a path if and only if there is a path from a to a′
in F or if there are nodes b, b′ ∈ Aα and a node c ∈ V \ Aα such that there are paths
from a to b and from a′ to b′ in F as well as edges (b, c) and (b′, c).
Two nodes a ∈ Aα and b ∈ V \A are connected by a path if and only if there is a node
a′ ∈ Aα such that there is a path from a to a′ in F and an edge (a′, b).
Finally, two nodes a, a′ ∈ V \Aα are connected if and only if there is an edge (a, a′) or
there is an edge (a, b) for some b ∈ Aα (and therefore also an edge (a′, b)). J

Now we turn to the other graph class, acyclic graphs, for which DynFO maintainability
under complex insertions (and single-edge deletions) is preserved; albeit (we are able to show
that) only for quantifier-free insertions. In [23, Theorem 4.2], edge insertions are only allowed
if they do not add cycles. Of course, given the transitive closure of the current edge relation
it can be easily checked by a first-order formula (a guard), whether a new edge closes a cycle.
We will see that this is also possible for the complex insertions we consider.

I Theorem 5. Let ∆ be a finite set of quantifier-free insertion queries. Then (qReach,∆∪∆E)
can be maintained in DynFO for directed, acyclic graphs. Furthermore, for each quantifier-
free insertion, there is a first-order guard which checks whether the insertion destroys the
acyclicity of the graph.

As in the case of undirected graphs, the proof relies on a bridge boundedness property.
This property allows extending the technique for maintaining the transitive closure relation of
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acyclic graphs under single tuple changes used in [23] and [7] to quantifier-free insertions. As
in [23] and [7] no further auxiliary relations besides the transitive closure relation are needed.
In Section 7 we show that the transitive closure relation does not suffice for maintaining
qReach for acyclic graphs subjected to Σ1-definable insertions7.

In the following lemma, the bridge distance bd is defined just as above. However, we can
no longer assume that bridges connect (formerly) different connected components, therefore
the lemma only holds for quantifier-free insertions. The proof can be found in the full version
of this paper.

I Lemma 6. For each quantifier-free insertion query ρ there is a constant m ∈ N such that
for each directed, acyclic graph G and each change δ = ρ(ā) it holds that δ(G) has a cycle
with at most m bridges, or for all nodes u and v of G with a path from u to v in δ(G), it
holds bd(u, v) ≤ m.

Proof. Proof of Theorem 5 In [23, Theorem 4.2] and [7, Theorem 3.3], dynamic programs are
given that maintain the transitive closure of acyclic graphs under single-edge modification,
using only the transitive closure as auxiliary relation. Thanks to Lemma 6, these programs
can be easily extended. Indeed, since the number of bridges of cycles created by the insertion,
and, if the graph remains acyclic, the bridge distance between two path-connected nodes are
bounded by a constant, a guard formula and an update formula for the transitive closure
can be constructed in a straightforward manner. J

5 Parameter-free Changes

In this section we consider replacement queries without parameters on ordered databases.
It turns out that in this case a large class of queries can be maintained in DynFO: all
queries that can be expressed in uniform AC1 and thus, in particular, all queries that can be
answered in logarithmic space. This result exploits the fact that for a fixed set of replacement
queries without parameters there is only a constant number of possible changes to a structure.

An ordered database D contains a built-in linear order ≤ on its domain that is not modified
by any changes. One might suspect that parameter-free replacement queries are not very
powerful, especially when they are applied to the initially empty input database. However,
thanks to the linear order, one can actually construct every finite graph with relatively
simple replacement queries (and similarly for other kinds of databases). For instance, one
can cycle through all pairs of nodes in lexicographic order. If (u, v) is the current maximal
pair, operation keep can move to (u, v + 1) (inserting it into E) while leaving (u, v) in E and
drop can move to (u, v + 1) while taking (u, v) out from E.

The update programs constructed in this section use, as additional auxiliary relation, a
binary BIT-relation containing all pairs (i, j) of numbers, for which the i-th bit of the binary
representation of j is 1. Here, we identify elements of an ordered database with numbers. In
the following, the minimal element with respect to ≤ is considered as 0.

By AC1 we denote the class of problems that can be decided by a uniform8 family of
circuits of “and”, “or” and “not” gates with polynomial size, depth O(logn) and unbounded
fan-in. We show the following theorem.

7 Indeed, the graphs G and G′ used in the proof of Theorem 10(b) show that the following lemma fails
already for Σ1-insertions.

8 For concreteness: first-order uniform [18].
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I Theorem 7. Let q be an AC1 query over ordered databases and ∆ a finite set of parameter-
free first-order definable replacement queries. Then (q,∆) is in DynFO with suitable initial-
ization.

Proof. We first explain the idea underlying the proof.
It uses the characterization of AC1 by iterated first-order formulas. More precisely, we

use the equality AC1 = IND[logn] from [18, Theorem 5.22], where IND[t(n)] is the class
of problems that can be expressed by applying a first-order formula O(t(n)) times and n
is the size of the domain9. We only give an example and refer to [18, Definition 4.16] for a
formal definition. Consider the formula ϕTC(x, y) = (x = y)∨E(x, y)∨∃z

(
R(x, z)∧R(z, y)

)
.

When applying the formula to a graph and an empty relation R it defines the relation R1 of
paths of length 1, applying it to R def= R1 defines the paths of length 2; in general applying
the formula to R def= Ri defines the paths of length 2i. Thus logn-fold application of ϕTC
defines the transitive closure relation of a graph with n vertices and therefore qReach is in
IND[logn].

Let q be a query in AC1 and let k be such that q can be evaluated by k logn applications
of a formula ϕq.

The program P uses a technique inspired from prefetching, which was called squirrel
technique in [31]. At any point t in time10, it starts a thread θβ , for each possible future
sequence β of 2 logn change operations.

Within the next logn steps (i.e. changes), it compares whether the actual change sequence
α is the prefix of β of length logn. If not, thread θβ is abandoned, as soon as α departs
from β. For each of these logn steps, θβ simulates two change operations of β and applies
them to the graph Gt at time t, consecutively. After logn steps, that is, at time t+ logn,
thread θβ has computed β(Gt).

During the next logn steps until time t+ 2 logn, θβ evaluates q on β(Gt) by repeatedly
applying the formula ϕq, k times for each single step. Again, if the actual change sequence
departs from β then θβ is abandoned. However, if β is the actual change sequence from time
t to t+ 2 logn, the thread θβ does not stop and has the correct query result q(β(Gt)) at time
t+ 2 logn.

We note that, although the time window in the above sketch stretches over 2 logn change
operations from time t to t+ 2 logn, the actual sequences whose effect on the current graph
is precomputed are never longer than logn. This is because the application of all 2 logn
operations of a sequence takes until time t+ logn and by that time the first logn of these
operations already lie in the past.

Of course, P uses a lot of prefetching. However, this is possible, because only a constant
number, d = |∆|, of change operations is available at any time (and there are no parameters).
Thus, there are only d2 logn = 22 log d logn = n2 log d many different change sequences, each of
which can be encoded by a tuple of arity 2 log d over the domain.

This explains how P can give correct answers for all times t ≥ 2 logn. All previous time
points have to be dealt with by the initialization. This initialization also equips the program
with the BIT relation. Clearly, the initialization can be computed in AC1, and therefore
also in polynomial time. More details of this proof can be found in the full version of this
paper. J

9 In the setting of [18], first-order formulas may use built-in relations ≤ and BIT. The relation ≤ is also
present here, the relation BIT can be generated by a suitable initialization, see [18, Exercise 4.18].

10We count the occurrence of one change as one time step.
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6 Formal Languages and Σ1-definable Change Operations

In this section, we consider the membership problem for formal languages and how it can be
maintained, for regular and context-free languages, under certain kinds of complex changes.

The problem of maintaining formal languages dynamically has been studied intensely
in the context of single insertions to and deletions from the relations Rσ (cf. Section 2). In
that setting, the class of regular languages is exactly the class of languages maintainable in
DynProp11 and all context-free languages can be maintained in DynFO [13]. All regular,
some context-free, and even some non-context-free languages can be maintained in DynFO
with only unary auxiliary relations [16], but this is not possible for all context-free languages
[30, 27].

Here, we consider the problem of maintaining formal languages under first-order definable
change operations. We assume that only replacement queries are used whose application
results in structures where each position is in at most one Rσ relation. For a given formal
language L we denote the membership query for L as qL.

We prove that regular and context-free languages can be maintained dynamically for
large classes of change operations: all regular languages can be maintained in DynProp
under quantifier-free change operations and all context-free languages can be maintained
in DynFO under Σ1-definable (and, dually, Π1-definable) change operations. A setting, in
which language membership can be maintained with respect to simple changes but not with
respect to definable change operations is exhibited in Section 7. For quantifier-free change
operations, the results are obtained by generalizations of the techniques of [13].

I Theorem 8. Let L be a regular language and ∆ a finite set of quantifier-free replacement
queries. Then (qL,∆) can be maintained in DynProp with suitable initialization.

Proof. Let L be a regular language of strings over alphabet Σ and A = (Q,Σ, γ, s, F ) a
corresponding deterministic finite automaton with set Q of states, transition function12 γ,
initial state s, and set F of accepting states. In [13, Proposition 3.3], the main auxiliary
relations are of the form Sq,r(i, j) where q, r are states of A and i, j are positions of the
string under consideration. The intended meaning of Sq,r is that (i, j) ∈ Sq,r if and only if
γ∗(q, wi+1 · · ·wj−1) = r.13 Notice that wi and wj are not relevant for determining whether
(i, j) ∈ Sq,r.

In the presence of quantifier-free change operations it suffices to maintain binary auxiliary
relations of the form Sfq,r, where f : Σε → Σε is a relabeling function. The intended meaning
is that (i, j) ∈ Sfq,r if and only if γ∗(q, f(wi+1 · · ·wj−1)) = r, where f is extended to strings
in the straightforward way.14 Clearly, Sq,r = Sid

q,r.
For simplicity we show how to update Sfq,r for replacement queries of the form ρ(p) with

one parameter p. The general case works analogously, but is notationally more involved.
A replacement query with one parameter basically consists of one quantifier free formula
µσ(p;x), for each element σ ∈ Σ.

11 So, only using quantifier-free update formulas.
12 Since in this paper δ denotes change operations, we use γ for transition functions.
13The relations Sq,r were actually named Rq,r in [13], but we want to avoid confusion with the Rσ

relations. Since [13] did not use constants min and max, it used further auxiliary relations of the form Ir
and Fq that contain all positions i with γ∗(s, w1 · · ·wi−1) = r, and γ∗(q, wi+1 · · ·wn) ∈ F , respectively.

14 It should be noted that f need not be a homomorphism since f(ε) 6= ε is allowed.
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We show how the relations Sfq,r can be maintained by quantifier-free update formulas
φfq,r(p;x, y). Then the (Boolean) query relation can be updated by the formula∨

q,r∈Q,r′∈F
ψs,q(min) ∧ φidq,r(p;x, y)(min,max) ∧ ψr,r′(max),

where ψq,r(x) is a formula that expresses that δ(q, wx) = r.
Intuitively, each formula µσ(p;x) determines whether position x carries σ after the change.

Whether this is the case only depends on (1) the current symbol at position x, (2) the current
symbol at position p, and (3) on the relative order of x and p. Thus, the impact of a change
can be described as follows: some relabeling function f← is applied at all positions x < p,
some change might occur at position p and some relabeling function f→ is applied at all
positions x > p. More precisely, from ρ one can derive, for each15 τ ∈ Σε, relabeling functions
fτ←, fτ→ and a symbol σ(τ) such that the update formula for a relation Sfq,r can be described
by the formula

φfq,r(p;x, y) = x < y ∧
∨
τ∈Σε

(
Rτ (p) ∧

(
(p ≤ x ∧Rf◦f

τ
→

q,r (x, y)) ∨ (p ≥ y ∧Rf◦f
τ
←

q,r (x, y))∨

(
x < p < y ∧

∨
q′,r′

(Rf◦f
τ
←

q,q′ (x, p) ∧ χq′,f(σ(τ)),r′ ∧R
f◦fτ→
r′,r (p, y))

)))
,

where formulas of the form χq′,a,r′ are defined as > if δ(q′, a) = r′ and ⊥, otherwise.
The initialization of the relations Sfq,r is straightforward. If, for a relabeling function f ,

f(ε) = σ then a pair (i, j) is in Sfq,r if and only if γ∗(q, σj−i−1) = r. J

We next turn to context-free languages. The ideas underlying the proof of Theorem 8 can
be adapted to show that the result from [13], that (membership for) context-free languages
can be maintained in DynFO under simple change operations, survives under quantifier-free
change operations. Through some little extra effort, this can be extended to Σ1-definable
change operations (and dually, Π1-definable change operations).

I Theorem 9. Let L be a context-free language and ∆ a finite set of Σ1-definable replacement
queries. Then (qL,∆) can be maintained in DynFO with suitable initialization.

The proof of Theorem 9 can be found in the full version of this article. It first shows how
context-free languages can be maintained under quantifier-free changes, basically combining
the idea of the proof of Theorem 8 with that of [13, Theorem 4.1]. Then it shows how the
case of Σ1-definable changes can be reduced to the quantifier-free case.

7 Inexpressibility Results

We finally turn to inexpressibility results. It is notoriously difficult to show that a query
cannot be maintained by a DynFO program. Indeed, there are no inexpressibility results for
DynFO besides those that follow from the easy observation that every query that can be
maintained in DynFO under single-tuple insertions is computable in polynomial time.

We expect that it should be easier to prove inexpressibility results for DynFO in the
presence of first-order definable change operations. However, we have no results of this form
yet. But the following results confirm that, unsurprisingly, complex change operations can

15 Since the schema is clear from the context, we use τ here to denote a symbol from Σ.
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make it harder to maintain a query. We give two examples where allowing complex changes
destroy a previous maintainability result, Theorems 10 and 13, and one example, Theorem 12
where we are able to show an inexpressibility result in the presence of complex deletions but
not yet for single-tuple changes.

Towards our first result, we recall that the reachability query can be maintained under
single-tuple insertions with the transitive closure of the edge relation as only auxiliary relation
and that this does not hold if one allows single-tuple deletions [4]. We show next that the
transitive closure also does not suffice in the presence of single-tuple insertions and one
complex insertion query.

For general directed graphs, a parameter-free and quantifier-free insertion query suffices,
for acyclic graphs a parameter-free insertion query defined by an existential formula suffices.
The latter result should be contrasted with Theorem 5.

I Theorem 10.
(a) There is a quantifier-free and parameter-free insertion query ρ such that

(qReach, {insert p̄ into E, ρ}) cannot be maintained in DynFO on ordered directed
graphs, if all auxiliary relations besides the query relation and the linear order are unary.

(b) There exists an Σ1-definable and parameter-free insertion query ρ′, for which the above
statement holds even restricted to acyclic, directed graphs.

Proof. For ease of presentation, we first give a proof for unordered directed graphs.
The proof follows an approach that has been used often before and that was made precise

in [30]. We say that a k-ary query q is expressed by a formula ϕ(x̄) with help relations of
schema τ , if, for every database D, there is a τ -structure H over the same domain such that
for every k-tuple ā over the domain of D it holds16: ā ∈ q(D) if and only if (D, H) |= ϕ(ā).

The proof is by contradiction and proceeds in the same way in both cases, (a) and (b).
Our goal is to show that, under the assumption that there is a dynamic program for (a)
or (b), the transitive closure of path graphs, that is, graphs that consist of a single directed
path, can be expressed with unary help relations, contradicting the following lemma from [30],
which is not hard to prove with the help of locality arguments.

I Lemma 11 ([30, Lemma 4.3.2]). The transitive closure of path graphs cannot be expressed
by a first-order formula with unary help relations.

We refer to Figure 1 for an illustration of the following high-level sketch. We start
from an arbitrary path graph G0 and equip it with some unary relations C0, C1, C2. From
G0, C0, C1, C2 we define a graph G in a first-order fashion, whose simple directed paths have
length at most 2, so the transitive closure relation TC of G is definable by a first-order
formula. Finally, the crucial step happens: the change operation δ transforms G into a
graph G′ = δ(G) with the property that qReach(G0) can be defined from qReach(G′) by a
first-order formula. We can conclude that qReach(G0) can be defined by a first-order formula
with the help of suitable unary help relations, since all steps from G0 to G′ are first-order
definable, TC is first-order definable from G, and we assume that there is a dynamic program
that computes qReach(G′) from G, TC and some unary auxiliary relations. This contradicts
Lemma 11.

16This notion should not be confused with definability of the query q in existential second-order logic. In
the latter case, the relations can be chosen depending on ā, but here the relations need to “work” for all
tuples ā.
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Figure 1 The graphs from the proof of Theorem 10(a).

For (a), we use the insertion query ρ = µE(x, y) def= E(x, y)∨
(
E(x, x)∧E(y, y)∧E(y, x)

)
that adds all edges (x, y) for which there is an edge (y, x) and both x and y have self-loops.
We assume that there is a DynFO-program P that maintains the reachability query on
directed graphs under insertion queries {insert p̄ into E, ρ}. We further assume that P
uses (only) unary auxiliary relations B1, . . . , Bk, for some k, besides the binary relation Q
intended to store the query result. We show how to construct from P a first-order formula
ϕ that expresses the reachability query qReach for simple paths with unary help relations
B1, . . . , Bk, C0, C1, C2, contradicting Lemma 11.

Let G0 = (V0, E0) be a simple path with V0 = {v0, . . . , vn}, for which we want to
define qReach using unary help relations B1, . . . , Bk, C0, C1, C2. Let C0, C1, C2 be defined
by Ci = {vj | 0 ≤ j ≤ n, j ≡3 i} where ≡3 denotes modulo 3 equivalence. From G0 and
C0, C1, C2 we define the following graph G with nodes v0, . . . , vn. The graph G has an edge
from vertex v to w if one of the following cases holds:

v ∈ C0, w ∈ C1 and (v, w) is an edge in G0,
v ∈ C1, w ∈ C2 and (w, v) is an edge in G0,
v ∈ C2, w ∈ C0 and (v, w) is an edge in G0, or
v ∈ C1 ∪ C2 and v = w.

We observe that the graph G can be first-order defined from G0 and C0, C1, C2.
Let δ def= ρ and17 G′ def= δ(G). The graphs G0, G and G′ for n = 11 are depicted in

Figure 1. By our assumption, the update formula ψ = φQδ (x1, x2) of P for the query relation
Q and operation δ defines the reachability query for δ(G) = G′ with the help of suitable
auxiliary relations B1, . . . , Bk and the transitive closure TC of the edge relation of G.

Altogether, G = f(G0, C0, C1, C2), for some first-order definable function f , TC is first-
order definable from G, G′ = δ(G), qReach(G′) is first-order definable from G, TC and
B1, . . . , Bk, and therefore

qReach(G0) = qReach(G′) \ {(w, v) | v ∈ C1, w ∈ C2, (v, w) is an edge in G0}

is first-order definable from G0, C0, C1, C2, and B1, . . . , Bk, contradicting Lemma 11, as
desired.

The proof for (b) and the extension to ordered graphs can be found in the full version of
this paper. J

We now turn towards inexpressibility by quantifier-free update formulas. Very likely
quantifier-free update formulas are too weak to maintain qReach even under single-tuple

17 Since ρ is parameter-free, the insertion query ρ and its corresponding change operation δ are basically
the same.
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changes. Yet only restricted inexpressibility results have been obtained so far. The query
qReach cannot be maintained in DynProp under single-tuple changes when the auxiliary
relations are at most binary or when the initialization is severely restricted [32]. For the more
general alternating reachability query quantifier-free update formulas do not suffice [13]. The
next result shows that qReach cannot be maintained in DynProp, even if besides single-edge
insertions only a single, very simple deletion query is allowed.

I Theorem 12. There is a quantifier-free deletion query ρ with one parameter such that
(qReach,∆E ∪ {ρ}) cannot be maintained in DynProp.

Proof. For the proof, we combine the standard tool for obtaining inexpressibility results
for DynProp, the Substructure Lemma [32, 13], with a combinatorial technique based on
upper and lower bounds of Ramsey numbers [29].

The intuition behind the Substructure Lemma is as follows. When updating an auxiliary
tuple d̄ after a quantifier-free change parameterized by p̄, a quantifier-free update formula only
has access to d̄ and p̄. Thus, if a change operation changes a tuple inside a substructure A of
a state S of a dynamic program, the auxiliary data of A is not affected by any information
from outside of A. In particular, two isomorphic substructures A and B remain isomorphic,
when corresponding changes are applied to them. The Substructure Lemma is formally
stated in [32, Lemma 2]. Even though the lemma is phrased for single-tuple changes only,
the same proof, using the intuition explained above, extends to quantifier-free replacement
queries.

For the actual proof, we assume, towards a contradiction, that there is a quantifier-free
dynamic program P over schema τ of arity k that maintains qReach under the quantifier-free
deletion ρ(p) = µ(p;x, y) def= E(x, y) ∧ ¬E(p, x) which deletes an edge (x, y) if there is an
edge (p, x). Our goal is to construct a graph G such that not all change sequences of length
k + 1 can be maintained, no matter the initial auxiliary data.

Let n be a sufficiently large number, to be specified later. The vertex set of the graph is
of the form {s, t} ∪A ∪C, for some disjoint sets A and C, with |C| = n. The set A contains
a node for every subset of size k + 1 of C, that is, A def= {aX | X ⊆ C and |X| = k + 1}.
Let B be a subset of A, to be specified later.

The graph has the following edges:
(a) For each aX ∈ A there is an edge (s, aX).
(b) For each aX ∈ B there is an edge (aX , t).
(c) There is an edge (c, aX) for nodes c ∈ C, aX ∈ A if c 6∈ X.

Intuitively, the nodes in C control how edges from A to t can be removed. Each node
c ∈ C is connected to a subset A′ ⊆ A, and thus applying a change ρ(c) will result in
removing all edges (aX , t) for all aX ∈ A′. The graph is constructed in such a way that
(?) for a change sequence α = (ρ(c1), . . . , ρ(ck+1)) with |{c1, . . . , ck+1}| = k + 1 it holds

(s, t) ∈ qReach(α(G)) if and only if a{c1,...,ck+1} ∈ B.

To see this, observe that after applying changes ρ(c1), . . . , ρ(ck+1), all edges (aX , t) are
deleted, for which {c1, . . . , ck+1} 6⊆ X. Thus at most the edge (a{c1,...,ck+1}, t) is still present.
However, this edge was at all present in the graph if and only if a{c1,...,ck+1} ∈ B.

For choosing the size of C and the set B, we employ the combinatorial Lemma 2 from [29].
The lemma guarantees that, depending on the schema τ ∪ {cs, ct}, there is an n0 such that
for every n > n0 there is some m such that the following holds.
(S1) For every state S of the dynamic program for G, and each set C with at least n vertices

of G with a linear order <, there is a subset C ′ of C of size at least m such that the k-ary
auxiliary data on C ′ is <-monochromatic in the structure (S, s, t), i.e. all <-ordered

ICDT 2017



19:16 Dynamic Complexity under Definable Changes

k-tuples over C ′ have the same quantifier-free type (including their relationships to the
interpretations s, t of the constants cs, ct).

(S2) There is a subset B of A such that for every subset Ĉ of C of size m, there are
(k + 1)-element sets Y = {c1, . . . , ck+1}, Y ′ = {c′1, . . . , c′k+1} ⊆ Ĉ with aY ∈ B and
aY ′ /∈ B.

We outline how the graph G is used to obtain a contradiction. Let S be a state of the
dynamic program for the graph G with |C| = n > n0 and let < be a linear order. Choose B
as described above and a subset C ′ of C of size |C ′| = m that is <-monochromatic in (S, s, t).
Choose Y = {c1, . . . , ck+1}, Y ′ = {c′1, . . . , c′k+1} ⊆ C ′ with aY ∈ B and aY ′ /∈ B. By the
Substructure Lemma from [32] generalized to quantifier-free changes, the dynamic program
P yields the same result for the tuple (s, t) for the change sequences (ρ(c1), . . . , ρ(ck+1))
and (ρ(c′1), . . . , ρ(c′k+1)) since C ′ is <-monochromatic. Yet the result should be different due
to (?) and aY ∈ B, aY ′ /∈ B. This is a contradiction. J

Finally, we turn to lower bounds for the maintenance of languages. We exhibit an
example that illustrates that maintaining regular languages under full first-order replacement
queries might be hard: there is a regular language L that can be maintained in DynFO
under single-tuple changes with nullary auxiliary relations, but there is a relatively simple
replacement query, for which this no longer holds. This is no general hardness result, as
we only allow very restricted auxiliary relations, but it demonstrates the barrier of our
techniques. The proof of the following result can be found in the full version of this paper.

I Theorem 13. There is a regular language L over some alphabet Σ and a replacement
query ρ, such that (qL,∆Σ) can be maintained in DynFO with nullary auxiliary relations,
but not (qL,∆Σ ∪ {ρ}).

8 Conclusion

In this paper, we studied the maintainability of queries in the Dynamic Complexity setting
under first-order defined replacement queries. The main insight of this study is that many
maintainability results carry over from the single-tuple world to settings with more general
change operations. We were actually quite surprised to see that so many positive results
survive this transition. However, many questions remain open, for instance: To which
extent can the reachability query for (undirected or acyclic) graphs be maintained under
definable deletions? What about reachability for unrestricted directed graphs under definable
insertions? What about other queries? Are binary auxiliary relations sufficient in Theorem 3?

We were less surprised by the fact that stronger change operations can yield inexpressibility,
but even these results required some care. Our main contribution in that respect is the proof
that DynProp cannot maintain the reachability query under quantifier-free replacement
queries.

From Theorem 7 about parameter-free changes and its proof, we take another insight
regarding inexpressibility proofs: the squirrel technique is quite powerful to prepare an
update program for a non-constant (i.e., logarithmic) number of changes. Inexpressibility
proofs need to take that into account and to argue “around it”.
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Abstract
We consider the evaluation of first-order queries over classes of databases with local bounded
expansion. This class was introduced by Nešetřil and Ossona de Mendez and generalizes many well
known classes of databases, such as bounded degree, bounded tree width or bounded expansion.
It is known that over classes of databases with local bounded expansion, first-order sentences
can be evaluated in pseudo-linear time (pseudo-linear time means that for all ε there exists an
algorithm working in time O(n1+ε)). Here, we investigate other scenarios, where queries are
not sentences. We show that first-order queries can be enumerated with constant delay after a
pseudo-linear preprocessing over any class of databases having locally bounded expansion. We
also show that, in this context, counting the number of solutions can be done in pseudo-linear
time.
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1 Introduction

Query evaluation is a fundamental task in databases and a vast literature is devoted to the
complexity of this problem. Given a database D and a query q the goal is to compute the
set q(D) of all solutions for q over D. Unfortunately, the set q(D) might be way bigger
than the database itself as the number of solutions could be exponential in the arity of the
query. It can therefore be unrealistic to compute all solutions, even for small queries. One
could imagine many scenarios to overcome this situation. We could for instance only want to
compute the number of solutions or just compute the k most relevant solutions relative to
some ranking function.

We consider here the complexity of the enumeration of the set q(D), i.e. generating one
by one all the solutions for q over D. In this context two parameters play an important role.
The first one is the preprocessing time, i.e. the time it takes to produce the first solution. The
second one is the delay, i.e. the maximum time between the output of any two consecutive
solutions. An enumeration algorithm is then said to be efficient if these two parameters are
small. For the delay, the best we can hope for is constant time: depending only on the query
and independent from the size of the database. For the preprocessing time an ideal goal
would be linear time: linear in the size of the database with a constant factor depending on
the query. When both are achieved we say that the query can be enumerated with constant
delay after linear preprocessing.
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20:2 Constant Delay Enumeration over Databases with Local Bounded Expansion

Constant delay enumeration after linear preprocessing cannot be achieved for all queries.
However, for restricted classes of queries and databases several efficient enumeration algo-
rithms have been obtained. This is the case for instance for first-order (FO) queries over
databases with bounded degree [3, 11], monadic second-order (MSO) queries over databases
with bounded tree-width [2, 13] and FO queries over databases with bounded expansion [12].
Bounded expansion is a large class of databases as it contains in particular all structures
excluding at least one minor (planarity, bounded tree-width etc.) and all structures of
bounded degree [16].

In some scenarios only pseudo-linear preprocessing time has been achieved. A query can
be enumerated with constant delay after a pseudo-linear preprocessing time if for all ε there
exists an enumeration procedure with constant delay and preprocessing time in O(||D||1+ε).
This is the case for FO queries over databases with low degree [4].

A special case of enumeration is when the query is boolean. In this case the preprocessing
computes the answer to the query. In order to be able to enumerate queries of a given
language efficiently, it is therefore necessary to be able to solve the boolean case efficiently.

It has been shown recently that boolean FO queries could be computed in pseudo-
linear time over nowhere dense databases [9]. Nowhere dense is an important class of
databases generalizing bounded expansion [16]. Amongst classes of databases closed under
sub-databases, Nowhere dense is the largest possible class enjoying efficient evaluation for
FO queries [14].

It’s a major open problem to show that over nowhere dense databases the boolean case
can be extended to a constant delay enumeration for FO queries of higher arities.

In this paper we make one step towards solving this problem, extending the bounded
expansion result to databases having local bounded expansion. Local bounded expansion lies
strictly between bounded expansion and nowhere dense. It requires that for all r the class of
neighbors of radius r has bounded expansion. It contains for instance all databases having
local bounded tree-width, or excluding locally a minor. It strictly extends bounded expansion
as there exist classes of local bounded tree-width that do not have bounded expansion [7].

For FO queries over a class of databases with local bounded expansion we provide:
an enumeration procedure with constant delay after pseudo-linear preprocessing,
a pseudo-linear time algorithm counting the number of solutions.

Our proof for enumeration follows a classical scheme. Our first ingredient is Gaifman’s
theorem, decomposing a formula into local ones with distance constraints. In order to
evaluate the local formulas we would need to compute local neighborhoods. However this
would not be linear as each neighborhood may be of linear size and we have linearly many
of them. Our second key ingredient is the result that one can compute in pseudo-linear
time a representative “cover” of the database by means of neighborhoods [9]. Because these
neighborhoods have bounded expansion we can use the bounded expansion case in order to
evaluate the local formulas. It remains to take care of the distance constraints and this is
the main technical contribution of this paper.

The paper is organized as follows. We start by giving a new proof of the boolean case in
Section 5. We then extend it to constant delay enumeration in Section 6 and to counting in
Section 7.

Related work. Our presentation for the model checking, Section 5, uses the same tricks
that were used in [7] to lift the model checking from the bounded tree-width case to the local
bounded tree-width case. The model checking results presented in Section 5 were already
obtained in [5] with a very similar argument. We give the proofs again here for completeness
and in order to fix the notations.
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An algorithm for counting in linear time the number of solutions for FO queries over
classes of databases with “nice” local bounded tree-width was presented in [6]. The restriction
“nice” requires that the neighborhood cover can be computed in linear time and that one
part of the cover intersects only a constant number of other parts. It is more restrictive
than the one we use, given by [9], and is designed to make the counting easy with a simple
exclusion/inclusion argument. This argument does not seem to extend to the cover we have
and our algorithm for counting, presented in Section 7, is done by induction on the number
of free variables.

In [10] a labeling scheme was presented for first-order queries over graphs with “nice”
local bounded tree-width. If constant delay enumeration may be derived from the labeling
scheme, this one is computed in polynomial time while we aim for pseudo-linear time. It
is unclear whether this result can be generalized to classes of graphs with local bounded
expansion using the tools we develop in this paper.

2 Preliminaries

For a positive integer k, [k] denotes the set {1, · · · , k}. Thereafter, ε will always denote an
element of R+, p, r, s, i, j and k positive integers and f a function of N→ N.

Databases and First-Order queries. A relational signature σ is a tuple (R1, . . . , Rs) where
each Ri is a relational symbol of arity ri. By database, we mean a finite structure over a
relational signature σ, that is a tuple D = (D,RD

1 , . . . , R
D
s ), where D, the domain of D, is a

finite set and for each i, RD
i is a subset of Dri . If D is a database and A ⊆ D a subset of its

universe, we denote by D[A] the database given by the substructure of D induced by A. We
fix a classical encoding of structures as input, see for example [1]. We denote by ||D|| the
size of (the encoding of) D. Without loss of generality we assume that the domain D comes
with a linear order. If not, we arbitrarily choose one, for instance the one induced by the
encoding of D. This order induces a lexicographical order among the tuples over D.

A query is a first-order (FO) formula built from atomic formulas, “x = y” andRi(x1, . . . , xri),
and closed under boolean combinations, ∧,∨,¬, existential and universal quantifications,
∃,∀. We write q(x) if x are the free variables of q. The length of x is called the arity of the
query. Queries of arity 0 are called sentences. The size of q is written |q|.

We write D |= q(ā) to denote the fact that ā is a solution for q over D. We write q(D)
to denote the set of tuples a such that D |= q(a).

Given a database D and a sentence q, the problem of testing whether D |= q or not is
called the model checking problem. It may be restricted to a class C of databases.

Model of computation and complexity. As usual when dealing with linear time, we use
Random Access Machines (RAM) with addition and uniform cost measure as a model of
computation.

All problems encountered in this paper have two inputs, a database D and a query q.
However they play different roles as ||D|| is large while |q| is small. We therefore consider
the data complexity point of view. We say that a problem is linear time if it can be solved
in time O(||D||). Here, and in the rest of the paper, the constants hidden behind the “big
O” depend on q. We say that a problem is pseudo-linear time if, for all ε, it can be solved
in time O(||D||1+ε). In this case the constant factor also depends on ε. If a subroutine of
a procedure depending on ε produces an output of size O(||D||ε) we will then say that the
output is pseudo-constant.

ICDT 2017



20:4 Constant Delay Enumeration over Databases with Local Bounded Expansion

Neighborhoods and bounded expansion. Fix a database D of domain D. The Gaifman
graph of D is the non-directed graph which set of vertices is D and which edges are the pairs
{a, b} such that a and b occur in a tuple of some relation of D. Given two elements a and b
of D, the distance between a and b is the length of a shortest path between a and b in the
Gaifman graph of D. The notion of distance extends to tuples in the usual way.

Given a positive integer r, the r-neighborhood of a in D is the substructure of D induced
by the elements of D at distance at most r from a. It is denoted by ND

r (a). Similarly we
define ND

r (ā) as the union of the r-neighborhoods of the elements of ā.
Given a graph G with a linear order on its vertices, and two of its vertices a, b, we say

that b is weakly r-accessible from a if there exists a path of length at most r between a and
b such that b is smaller than all vertices of the path.

A class of graphs C has bounded expansion if for all r, there is a constant Nr, such that
for all graphs G of C, there is a linear order on the vertices of G, such that for all vertex
a of G, the number of vertices weakly r-accessible from a is bounded by Nr [16]. This is a
robust class of graphs with many equivalent definitions [16]. The precise definition will not
be important for this paper as we will use this notion via its known algorithmic properties,
in particular the fact that constant-delay enumeration algorithms exists for any class of
databases with bounded expansion, see Section 3.

It is easy to see that if C has bounded expansion then the class of all subgraphs of all
graphs of C also has bounded expansion.

A class C of graphs has local bounded expansion if, for any radius r, the class Cr of all
subgraphs of all r-neighborhoods of all graphs in C, has bounded expansion [16].

A class C of databases has (local) bounded expansion if the class of their Gaifman graphs
has the same property.

Normal form for FO queries. We will make use of Gaifman Normal Form and Gaifman
Locality Theorem for FO queries. This is rather classical in this context.

For all r there exists FO queries distr(y, x̄) expressing the fact that y is at distance at
most r from x̄. A query q(x̄) is said to be r-local if all its quantifications are relative to
elements at distance at most r from one of its free variables x̄. This can be achieved using
quantifications of the form ∃y distr(y, x̄) ∧ · · · and ∀y distr(y, x̄)→ · · · .

It is known as Gaifman Normal Form that for any FO query there is an r such that the
query is equivalent to a boolean combination of r-local queries and sentences of the form

∃x1 . . . xk

( ∧
1≤i≤j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k
ψ(xi)

)
,

where ψ is r-local. A proof can be found for example in [15].
For r-local queries q(x̄) it is convenient to refine this normal form in order to know which

of the free variables are close together. Any r-local query q(x) is equivalent to a disjunction
of the form:

∨
(x1;...;xp)∈P (x)

α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp), (1)

where:
P (x) is the set of partitions of x.
αi(xi) is r-local.
τr(x1; . . . ;xp) express the fact that the distance between xi and xj is bigger than 2r and
that no refinement of P has this property. We will sometime refer to τr as a distance type.
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Note that this implies that each αi is (r|xi|)-local around any of its free variables, hence in
particular the first one. Notice also that in (1) the disjunction is strict: no two outputs can
satisfy two disjuncts. We will use this fact later to reduce our attention to a single disjunct.

Counting and enumeration. The counting problem is, given a database D and a query q,
to compute the number of solutions to q over D, i.e. the size of q(D), noted #q(D).

We will now focus on the enumeration problem. An enumeration algorithm for a database
D and a query q is divided into two consecutive phases:

a preprocessing phase,
an enumeration phase, outputting one by one and without repetitions the set q(D).

The preprocessing time of the enumeration algorithm is the time taken by the preprocessing
phase. Its delay is the maximum time between any two consecutive outputs.

One can view an enumeration algorithm as a compression algorithm computing a repre-
sentation of q(D) together with a streaming decompression algorithm. We aim for constant
delay and pseudo-linear preprocessing time enumeration algorithms. By this we mean that
for all ε, there is a preprocessing phase working in time O(||D||1+ε) and an enumeration phase
with constant delay. Note that the multiplicative constants, for both the preprocessing phase
and the delay, may depend on q and on ε.

All our enumeration procedures will output their tuples in lexicographical order. We will
see that this is useful for queries in disjunctive normal form.

For the sake of readability, in the reminder of the paper, we only consider classes of
graphs. All results and proofs can be easily adapted to the database case using standard
techniques.

3 Main results

We will build on several known results over classes of databases with bounded expansion.
The first is a linear time model checking algorithm for sentences:

I Theorem 1 (Dvorak-Kral-Thomas [5]). Let C be a class of graphs with bounded expansion.
Then the model checking problem for FO queries over C can be solved is linear time.

The second one solves the unary query case:

I Theorem 2 (Dvorak-Kral-Thomas [5]). Let C be a class of graphs with bounded expansion
and let q(x) be a query with one free variable. We can compute the set q(G) in linear time.

For queries with bigger arities, we cannot hope to evaluate their output in linear time
anymore. A constant delay enumeration algorithm after linear preprocessing time has been
obtained by Kazana and Segoufin in [12]. We present their result using a stronger statement
than enumeration that will be useful for us later. Here ≥ is the lexicographical order on
tuples over the domain. Recall that the constant factor depends on the query.

I Theorem 3 (Kazana-Segoufin [12]). Let C be a class of graphs with bounded expansion.
Then there is an algorithm such that for all graph G in C, and for any FO query q, after a
preprocessing in linear time, on input any tuple a, the algorithm computes in constant time
the minimal tuple b such that:

b ≥ a
G |= q(b)

If there is no such tuple (i.e. a is bigger than all solutions), it outputs Null.

ICDT 2017
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Our first result extends Theorem 3 to classes with local bounded expansion, replacing
linear preprocessing time with pseudo-linear preprocessing time:

I Theorem 4. Let C be a class of graphs with local bounded expansion. Then there is an
algorithm such that for all graph G in C, and for any FO query q, after a preprocessing
in pseudo-linear time, on input any tuple a, the algorithm computes in constant time the
minimal tuple b such that:

b ≥ a
G |= q(b)

If there is no such tuple (i.e. a is bigger than all solutions), it outputs Null.

It immediately yields the constant delay enumeration after pseudo-linear preprocessing
time.

I Corollary 5. The enumeration of first-order query over class of graphs with local bounded
expansion can be done with constant delay, after pseudo-linear preprocessing. Moreover the
output tuples are given in lexicographiacal order.

Our second result shows that counting the number of solutions can be done in pseudo-linear
time.

I Theorem 6. Let C be a class of graphs with local bounded expansion and q(x) be a first-order
query. Then for all graph G in C, we can compute #q(G) in pseudo-linear time.

Our proof works by induction on the arity of the query. It uses a partition of the database
into representative neighborhoods that we describe next. It then combines this partition
with the bounded expansion case.

4 Neighborhood covers and partitions

Because of the definition of local bounded expansion it is natural to examine the neighborhoods
of our graphs. However, the sum of the sizes of all neighborhoods could be quadratic in the
size of the input, which is too big as we aim for pseudo-linear time algorithms. To overcome
this we selects some representative neighborhoods that cover the entire graph. The result
presented here actually works for the more general notion of nowhere dense1 graphs and is
based on [9].

A (r, s)-neighborhood cover of a graph G is a set T of bags U1, . . . , Uω such that:
∀a ∈ G, ∃λ ≤ ω NG

r (a) ⊆ Uλ
∀λ ≤ ω, ∃a ∈ G Uλ ⊆ NG

s (a)

The size of the cover T is the sum of the bag sizes: ||T || =
∑
λ≤ω
||Uλ||. Its degree is the

number δ(T ) := maxa∈G |{λ ≤ ω | a ∈ Uλ}|.

I Theorem 7 (Grohe et al. [9]). Let C be a nowhere-dense class of graphs. Then for all integer
s and for all graph G in C, we can compute in pseudo-linear time a (s, 2s)-neighborhood
cover of G with a pseudo-constant degree. In particular the size of the neighborhood cover is
pseudo-linear.

1 Nowhere dense requires that for all r, the number of weakly r-accessible nodes is pseudo-constant,
instead of constant for bounded expansion.
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Let A be a set of vertices of G. The s-kernel of A is the setKs(A) := {a ∈ A |NG
s (a) ⊆ A}.

We deduce from a (s, 2s)-neighborhood cover of G a partition of the vertices of G as
follows:

Pλ := KG
s (Uλ) \

⋃
µ<λ

KG
s (Uµ).

It follows from the definitions that the Pλ form a partition of the vertices of G. Moreover,
modulo an extra linear preprocessing time, given an element a we have access in constant
time to the unique λ such that a ∈ Pλ. This is a consequence of the following simple lemma.

I Lemma 8. For all graph G, for all set A of vertices of G, and for all integer s, KG
s (A) is

computable in time O(s · ‖A‖).

Proof. We prove the lemma by induction on s.
If s = 1, let L be a list initialized empty. Then for each element a of A, we go through
every neighbor of a. If we find one that is not in A, we add a to L and we go to the
following element of A. At the end, we have KG

1 (A) = A \ L.
If s = i+ 1, from KG

i+1(A) = KG
1 (KG

i (A)) we get KG
s (A) is in time O(s · ||A||). J

In the following sections, we will often say: compute T = {(U1, P1), . . . , (Uω, Pω)} that is
the (s, 2s)-neighborhood cover paired with the s-kernel partition.

The previous observations can be synthesized in the following corollary.

I Corollary 9. Let C be a class of graphs with local bounded expansion. Then for all graph
G in C and for all integer s, we can compute in pseudo-linear time a (s, 2s)-neighborhood
cover with pseudo-constant degree and the associated s-kernel partition.

If a (s, 2s)-neighborhood cover can be computed efficiently on any nowhere dense class
of graphs, a key property of the covers that works only for the local bounded expansion
case is that all Uλ are in a class of graphs with bounded expansion. This is because each
Uλ is included in the 2s-neighborhood of some point and the later has bounded expansion
by definition. We can therefore enumerate any FO query on each Uλ using Theorem 3 in
time O(||Uλ||), for a total time O(

∑
λ≤ω
||Uλ||), that is pseudo-linear. We will use this property

implicitly in the rest of the paper. Note that this does not solve the general case as some
solutions may have parts in different Uλ.

5 Model-Checking

Since every class of graphs with local bounded expansion is nowhere dense, we already
know that the model checking problem of first-order queries over graphs with local bounded
expansion can be done in pseudo-linear time [9]. Before that, another proof specific to local
bounded expansion was given in [5]. In order to illustrate the tools presented in the previous
sections, we give a new proof of this result. As in [5], it is based on the ideas of Grohe and
Frick for graphs with local bounded tree-width [7].

I Theorem 10. Let C be a class of graphs with local bounded expansion. Given a graph G
in C and a FO sentence q, we can decide in pseudo-linear time whether G |= q.

The rest of this section is devoted to the proof of Theorem 10. Fix G in C and a FO
sentence q. In view of Gaifman Normal Form, we can assume wlog, that q is of the form:

q := ∃x1 . . . xk

( ∧
1≤i≤j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k
ψ(xi)

)
,

where ψ is r-local for some r.

ICDT 2017
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Our strategy is as follows: we will first compute the set of nodes satisfying ψ and then
test whether k of them are far apart from each other. The next lemma takes care of the first
step.

I Lemma 11. Let C be a class of graphs with local bounded expansion. For all graph G in
C, for all integer r, and for all unary and r-local FO query ψ, we can compute ψ(G) in
pseudo-linear time.

Proof. Recall that Cs denotes the class of all subgraphs of s-neighborhoods of graphs from
C. Fix r, ψ a unary and r-local query and G ∈ C.

We first compute T = {(U1, P1), . . . , (Uω, Pω)}, a (2r, 4r)-neighborhood cover paired with
the 2r-kernel partition. This can be done in pseudo linear time by Corollary 9. We can then
view the Pλ as new unary predicates.
∀λ ≤ ω, we set ψλ(x) := ψ(x) ∧ Pλ(x). Because ψ is r-local, ψ(G) is the disjoint union

of all ψλ(Uλ). By definition, Uλ ∈ C4r which has bounded expansion. Consequently, it
is possible to compute ψλ(Uλ) in time O(||Uλ||) by Theorem 2. Therefore, we are able to

compute the set ψ(G) in time O
(

ω∑
λ=1
||Uλ||

)
= O(||T ||) that is pseudo-linear in the size

of G. J

Now we want to find k elements far apart in ψ(G). We use a trick found in [7].

I Lemma 12. Let C be a class of graphs with local bounded expansion. For all graph G in C,
for all integer r and k, and for all set A of vertices of G, we can decide in pseudo-linear
time whether A contains a subset of k elements that are pairwise at distance more than 2r.

Proof. We proceed as follows:
We first compute T = {(U1, P1), . . . , (Uω, Pω)}, a (2r, 4r)-neighborhood cover paired with

the 2r-kernel partition as in Corollary 9.
Let L be a list, initialized as empty.
While A is not empty and |L| < k, we select (and remove) an element a in A.
If for all b in L we have: (b ∈ Pλ ⇒ a 6∈ Uλ) then we add a in L. Notice that every b

belongs to some Pλ, and hence N2r(b) ⊆ Uλ. If furthermore a 6∈ Uλ then a and b must be at
distance more than 2r.

At the end, we have tree different cases:
1st case, |L| = 0. Then A = ∅.
2nd case, |L| = k. Then we are done because all elements of L are far apart from each
other by construction.
3rd case, |L| = m, with 0 < m < k. Let L = {b1, · · · , bm}. Notice that A ⊆
NG

4r(b1, . . . , bm). We can see that H := NG
4r(b1, . . . , bm) is in C4rm. Therefore, from

Theorem 1 it is possible to check in linear time if:

H |= ∃ x1, . . . , xk
∧

1≤i≤k
A(xi) ∧

∧
1≤i<j≤k

dist(xi, xj) > 2r. J

Theorem 10 now easily follows from Lemma 11 and Lemma 12.

6 Enumeration

In this section we provide a constant delay enumeration procedure for FO queries over graphs
with local bounded expansion. We actually prove a stronger result as stated in Theorem 4.
Let G be a graph, q a FO query and a any tuple from G, not necessarily in q(G). We denote
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by FOLWq(a) the smallest tuple b ∈ q(G) such that b is bigger than a in the lexicographical
order i.e. b ≥ a. If there is no such b, we say that FOLWq(a) = Null.

In the rest of this section we show that for any class C with local bounded expansion,
given G ∈ C and q, after a pseudo-linear time preprocessing, we can compute FOLWq(a) in
constant time. Recall that this means that given ε there is a preprocessing algorithm working
in time O(||G||1+ε) computing a structure that can then be used to compute FOLWq(a) from
a in constant time. All constants depend on q and ε. This proves Theorem 4. We proceed
by induction on the arity of the query.
I Remark 1. Assume q is q1 ∨ q2. Then FOLWq(a) is the smallest tuple among FOLWq1(a)
and FOLWq2(a). Hence if q is a disjunction of queries, it is enough to prove Theorem 4 on
each of the disjunct to get the result for q.

Thanks to Gaifman Normal Form, we can assume that the query is a boolean combination
of r-local formulas and sentences. By Theorem 10 the sentences can be precomputed during
the preprocessing phase. We are then left with a r-local query (any boolean combination of
r-local queries is a r-local query). Moreover, in view of Remark 1 and Gaifman Theorem for
local queries, we can assume without loss of generality that our query q has the form:

q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

where the αi and τr satisfy the conditions described in Section 2.
We start with some examples in order to illustrate the difficulty of the task. Assume that

the query returns the pairs of blue-red nodes that are sufficiently far apart:

q(x, y) := dist(x, y) > 2r ∧B(x) ∧R(y).

Given a blue node a and a node b we can compute FOLWq(a, b) as follows.
During the preprocessing phase, thanks to Corollary 9, we compute in pseudo-linear

time a (2r, 4r)-cover with its associated partition {(U1, P1), . . . , (Uω, Pω)}. Given a the λ
such that a ∈ Pλ can then be obtained in constant time. Assume we could compute in
pseudo-linear time a structure that, given λ and b, returns in constant time the smallest red
node c ≥ b outside of Uλ. With this, from a ∈ Pλ we have that q(a, c) holds and therefore
FOLWq(a, b) ≤ c. It remains to test whether there is also a node c′ ≥ b within Uλ that is far
from a. As we are within Uλ, we can invoke Theorem 3 and compute the smallest such c′ in
constant time after a preprocessing linear in ||Uλ||. As we don’t know a, and therefore λ, in
advance, we perform that preprocessing for all λ, for a total time linear in O(Σλ||Uλ||), which
is pseudo linear. The minimum element among c and c′ is then the desired FOLWq(a, b).
Unfortunately we cannot afford to construct the structure returning c from λ and b because
this is a function with two parameters that can potentially have a quadratic size. We will
see in the proof (this is essentially Claim 13 and Claim 14 bellow) that we can compute in
pseudo-linear time a subset of this function that is sufficient for our needs.

The situation is even worse for higher arities. To see this, assume the query is now

q(x1, x2, x3) := B(x1) ∧ Y (x2) ∧R(x3) ∧
∧

1≤i<j≤3
dist(xi, xj) > 2r.

Given a blue node a, a yellow node a′ that are both far apart, and a node b, we are
looking for FOLWq(aa′, b).

Let’s see what happens when extending the previous reasoning. Given a and a′ we derive
in constant time λ and λ′ such that a ∈ Pλ and a′ ∈ Pλ′ . As above we could get in constant
time the smallest red node c ≥ b outside of Uλ. But if this node is certainly far from a it
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might be close to a′. We can then imagine precomputing the smallest red node c ≥ b outside
of Uλ ∪ Uλ′ , a ternary function. Again, we will see that we can compute in pseudo-linear
time a subset of this function good enough for us. It remains to test whether there is also a
node c′ ≥ b within Uλ ∪ Uλ′ that is far from a and a′. We could use again Theorem 3, but
we would need a preprocessing linear in Σλ,λ′(||Uλ ∪ Uλ′ ||), which is unfortunately quadratic.
To overcome this problem we introduce an intermediate bag Vλ between Pλ and Uλ together
with a more complex algorithm based on the positions of a and a′ in all the bags we have,
that we will describe below.

We now turn to the formal details.

Base case. Assume q is unary. Because q is also r-local, by Lemma 11 we can compute
q(G) during the preprocessing phase. In order to compute FOLWq(a) for all a ∈ G, we go
through all vertices of G starting from the maximal one. For each vertex a, if a ∈ q(G) then
we set FOLWq(a) = a. If a 6∈ q(G) and a is the maximal element, we set FOLWq(a) to Null.
In all remaining cases, we set FOLWa(a) to FOLWq(b), where b is the successor of a in the
linear order on the vertices.

Inductive case. Assume now that q(x̄, y) is an r-local query of arity k + 1. Let q′(x̄) be
the query ∃y q(x̄, y).

We claim that, modulo a pseudo-linear preprocessing, given a tuple ā such that G |= q′(ā)
and a vertex b, we can compute in constant time the smallest b′ ≥ b such G |= q(a, b),
outputing Null if no such b′ exists.

Before proving the claim we show that it implies the constant time computation of
FOLWq. Let amin be the minimal element of G. Let ab be a tuple. Let a′ = FOLWq′(a). By
induction, a′ can be computed in constant-time. If a′ is Null we output Null and we are done.
If a′ > a then we apply the claim with a′ and amin and we are done. If a′ = a then we apply
the claim with a and b. If b′ is not Null, then ab′ is the desired tuple. If b′ = Null then let a′
be the successor of a in the lexicographical order and a′′ = FOLWq′(a′). We apply again the
claim for a′′ and amin and we are done. All this clearly takes constant time.

In the rest of this section we prove the claim. Recall that q(x̄, y) is of the form:

q(x, y) = α1(x1, y) ∧ . . . ∧ αp(xp) ∧ τr(x1, y; . . . ;xp).

Let w̄ = x2 ∪ . . . ∪ xp. We have:

q(x, y) = q1(x1, y) ∧ q2(w̄) ∧ τr(x1, y; . . . ;xp).

We will distinguish two cases, depending whether x1 is empty or not. Let k be the arity
of q.

Elements far away

We assume here that x1 is empty. By Lemma 11 we can precompute in pseudo-linear time
the set L of nodes satisfying q1. It remains to compute from a, and b the smallest element of
L that is at distance 2r from a and is greater than b.

We compute a (4r, 8r)-neighborhood cover and the associated 4r-kernel partition according
to Corollary 9. We then compute the 2r-neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2r(Pλ) = Vλ and NG
2r(Vλ) ⊆ Uλ.

We define for all vertex b and all set I ⊆ {1, . . . , ω} such that |I| ≤ k the function.

NEXT(b, I) = min
{
b′ | b′ ≥ b ∧ b′ 6∈

⋃
λ∈I

Vλ ∧ b′ ∈ L
}
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The domain of this function is too big (recall that ω is linear in ||G||) so we cannot
compute it. Fortunately, computing only a small part of it will be good enough for our needs.
For each vertex b we define by induction the following set SC(b) of elements I ⊆ {1, . . . , ω}
with |I| ≤ k:

For all b in G and for all λ with b ∈ Vλ, we add {λ} to SC(b).
For all b in G, for all I, and for all λ, if |I| < k and I ∈ SC(b) and NEXT(b, I) ∈ Vλ,
then we add {I ∪ {λ}} to SC(b).

Our aim is to compute all NEXT(b, I) for all b and I ∈ SC(b). We first show that it will
be enough to compute in constant time NEXT(b, I) for all b and I.

I Claim 13. Given a vertex b, a set I, and NEXT(c, J) for all vertices c > b and sets
J ∈ SC(c), then we can compute NEXT(b, I) in constant time.

Proof. Case 1, b ∈ L and b 6∈
⋃
λ∈I

Vλ, then b is NEXT(b, I).

Case 2, b 6∈ L or b ∈
⋃
λ∈I

Vλ, then let c be the smallest element of L strictly bigger than b.

If there is no such c then NEXT(b, I) = Null, otherwise:
Case 2.1, c 6∈

⋃
λ∈I

Vλ, then c is NEXT(b, I).

Case 2.2, c ∈ Vλ with λ ∈ I. Therefore {λ} ∈ SC(c). Let J be a maximal (for
inclusion) subset of I in SC(c). Since {λ} ∈ SC(c), we know that J is non empty.
We claim that NEXT(c, J) = NEXT(b, I). To see this, assume that NEXT(c, J) ∈ Vµ
with µ ∈ I hence |J | < k, then by definition of SC(c), J ∪ {µ} ∈ SC(c) and J was
not maximal. Moreover, by definition of NEXT(c, J), every point between c and
NEXT(c, J) is either not in L or in one of the V we want to avoid. As all nodes
between b and c are not in L, the claim follows. J

We now show that SC(b) is small for all b and that we can compute all of NEXT(b, I)
for all b and I ∈ SC(b).

I Claim 14. For all integer b, |SC(b)| is a pseudo-constant. Moreover, it is possible to
compute all NEXT(b, I) for all vertex b and set I ∈ SC(b) in pseudo-linear time.

Proof. We first prove that for all b ∈ G, |SC(b)| is a pseudo-constant. Then we use Claim 13
in order to prove that we can compute these pointers by induction.

By SCl(b) we denote the subset of SC(b) of elements I with |I| ≤ l. Let d be the
degree of our cover. We have that for all b ∈ G, |SC1(b)| = d. For the same reason,
we have that |SCl+1(b)| = O(d · |SCl(b)|). Therefore, we have that for all b ∈ G,
|SC(b)| = |SCk(b)| ≤ O(dk). Since d is pseudo-constant, |SC(b)| is also pseudo-constant.
We compute the pointers for b from bmax to bmin downwards, respectively the biggest and
the smallest element of G. Given a b in G, assume we have computed NEXT(c, J) for all
c > b and J ∈ SC(c). We then compute NEXT(b, I) for I ∈ SC(b) using Claim 13.
Here, every pointer was computed in constant time. Since there is only a pseudo-linear
number of them, the time required to compute them all is pseudo-linear. J

With these two claims, we are now ready to conclude the case where x̄1 is empty. The
preprocessing phase consists of the following steps:

1st step: compute a (4r, 8r)-neighborhood cover and the associated 4r-kernel partition
according to Corollary 9.
2nd step: compute the 2r-neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2r(Pλ) = Vλ and NG
2r(Vλ) ⊆ Uλ.
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3rd step: compute L := q2(G). This can be done in pseudo-linear time by Lemma 11.
4th step: compute NEXT(b, I) for all b and I ∈ SC(b). This can be done in pseudo-linear
time by Claim 14.
5th step: ∀1 ≤ l ≤ k, ∀λ ≤ ω, perform on Uλ the preprocessing phase for the formula:

ϕλ,l(x1, . . . , xl, y) := Vλ(y) ∧ L(y) ∧
∧
i≤l

dist(xi, y) > 2r.

This can be done in time O(||Uλ||) by Theorem 3 because Uλ ∈ C8r.
This is the end of the preprocessing. The total time needed is pseudo-linear.

Now we are given (a, ak+1) a tuple of elements of G, such that G |= ∃y q(a, y).
Let λ1, . . . , λk be such that ai ∈ Pλi

and I := {λ1, . . . , λk}.
Let b0 = NEXT(ak+1, I).
For all 1 ≤ i ≤ k, let c̄i be the elements of a that falls into Uλi

and mi = |c̄i|. Using
Theorem 3 we compute in constant-time

bi = min{y | y ∈ Vλi
∧ y ≥ ak+1 ∧ ϕλi,mi

(c̄i, y)} .

We return the minimum element among the bi, 0 ≤ i ≤ k.

This is clearly constant time. To see that this is correct, let c be the correct answer.
If c ∈ Vλi for some i ∈ I then ϕλi,mi gives us bi that is the smallest y ∈ Vλi satisfying q2

and is at distance greater than 2r from the elements of a present in Uλ. Those that are not
in Vλi

must be at distance greater than 2r from bi since NG
2r(Vλi

) ⊆ Uλi
. Hence c = bi.

Otherwise, i.e. c 6∈ Vλi
for all i ∈ I. Then the NEXT( · , I) pointers give us b0 that is the

smallest element satisfying q2 that is not in one of the Vλi
. Therefore dist(b0, a) > 2r. Hence

c = b0.
This concludes the first case.

Elements nearby

Assume now that x1 contains at least one variable, say x1. Therefore, for all tuples (a, b)
such that G |= q(a, b), we have that dist(a1, b) < 2kr. This makes the second case much
easier.

The preprocessing phase contains several steps.
1st step: compute a (4rk, 8rk)-neighborhood cover and the associated 4rk-kernel partition
according to Corollary 9.
2nd step: compute the 2rk neighborhood Vλ of each Pλ. We now have
T := {(P1, V1, U1), . . . , (Pω, Vω, Uω)} such that NG

2rk(Pλ) = Vλ and NG
2rk(Vλ) ⊆ Uλ.

3rd step: ∀1 ≤ l < k, ∀λ ≤ ω, perform the preprocessing phase on Uλ of the formula:

ϕλ,l(x̄1, y, x
′
1, . . . , x

′
l) := Vλ(y) ∧ q1(x̄1, y) ∧

∧
i<l

dist(x′i, y) > 2r.

This can be done in time O(||Uλ||) by Theorem 3 because Uλ ∈ C8kr.
This is the end of the preprocessing. The total time needed is pseudo-linear.

Now we are given (a, ak+1) a tuple of elements of G, such that G |= ∃y q(a, y). Let a1 be
the elements of a corresponding to x̄1 and a1 the first of them.

Let λ be such that a1 ∈ Pλ.
Let c̄ := (aj ∈ ā | aj ∈ Uλ ∧ aj 6∈ a1) and m = |c̄|
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We return b := min{b′ | b′ ∈ Uλ ∧ b′ ≥ ak+1 ∧ Uλ |= ϕλ,m(ā1, b
′, c̄)}. This can be done

in constant time by Theorem 3.

All this is done in constant time. It is correct because by assumption the answer b must
be in Vλ, satisfy q1(ā1, b) and be at distance greater than 2r from the elements of w̄.

The elements of w̄ that are not in Uλ must satisfy this last condition since b ∈ Vλ and
NG

2rk(Vλ)
⊆ Uλ. It remains to consider the elements of w̄ that are in Uλ, that is c̄. Then ϕλ,m(a1, y, c̄)
gives us exactly what we want.

This concludes the second case and therefore the proof.

Besides constant delay enumeration, Theorem 4 has another interesting immediate
corollary. Modulo a pseudo-linear time preprocessing we can test, given a tuple a in constant
time, whether it belong to q(G) or not:

I Corollary 15. Let C be a class of databases with local bounded expansion. Then for all
graph G in C, after a pseudo-linear time preprocessing, we can, given a tuple a, decide in
constant time whether it belongs to q(G) or not.

7 Counting

In this section we consider the counting problem which is to compute, given G and q, the
size of q(G), denoted by #q(G). We aim at computing #q(G) in time pseudo-linear.
I Remark 2. Assume q is q1 ∨ q2 and that q1 and q2 have no common solution, i.e. the
disjunction is strict. Then #q(G) = #q1(G) + #q2(G). Hence if q is a strict disjunction of
queries, it is enough to prove Theorem 6 on each of the disjunct to get the result for q.

Again we will build on the bounded expansion case:

I Theorem 16 (Kazana, Segoufin [12]). Let C be a class of graphs with bounded expansion
and q(x) be a FO query. Then, for all graph G in C, we can compute #q(G) in linear time.

The rest of the section is dedicated to the proof of Theorem 6.

Thanks to Gaifman Normal Form, we can assume that the query is a boolean combination
of r-local formulas and sentences. By Theorem 10 the sentences can be precomputed during
the preprocessing phase. We are then left with a r-local query (any boolean combination of
r-local queries is a r-local query). Moreover, in view of Remark 2 and Gaifman Theorem for
local queries, we can assume without loss of generality that our query q has the form:

q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

where the αi and τr satisfies the conditions described in Section 2.
The proof goes by induction on p, which is the number of connected components of the

distance -type τ .
We first give a small example in order to give a hint of how the induction works.
Consider again the query returning the pairs of blue-red nodes that are far apart:

q(x, y) := dist(x, y) > 2r ∧B(x) ∧R(y).

In this case, there are two connected components. In order to count the number of
solutions, we multiply the number of blue nodes by the number of red nodes and we subtract
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from the result the number of blue-red nodes that are at distance smaller than 2r. Those
three numbers correspond to the number of solutions of three queries with only one connected
component in their distance type each, hence we can proceed by induction. This is essentially
what we do in the general case.

We now give the details. We start with the base case followed by the inductive case.
Let G ∈ C, and q(x) = α1(x1) ∧ . . . ∧ αp(xp) ∧ τr(x1; . . . ;xp)

If p = 1. In this case, if a ∈ q(G), then NG
r (a) ⊆ NG

2rk(a1).
1st step: compute a (2rk, 4rk)-neighborhood cover and the associated 2rk-kernel partition
according to Corollary 9. We now have:
T := {(P1, U1), . . . , (Pω, Uω)} such that NG

2rk(Pλ) ⊆ Uλ.
2nd step: for all λ ≤ ω, let ϕλ(x) := q(x) ∧ x1 ∈ Pλ.
We have that q(G) =

⋃
1≤i≤ω

ϕλ(Uλ). Moreover, the union is disjoint. Therefore:

#q(G) =
ω∑
i=1

#ϕλ(Uλ) .

Since for all λ, Uλ ∈ C4kr, we can compute #ϕλ(Uλ) in time ||Uλ|| using Theorem 16.
Therefore, we can compute #q(G) in total time O(

ω∑
i=1

(‖Uλ‖)) = O(||T ||), that is

pseudo-linear in the size of G.

If p > 1. Let w̄ = (x2, . . . , xp). Consider the following three queries:

q1(x1) := α1(x1) ∧ τr(x1),
q2(w̄) := α2(x2) ∧ . . . ∧ αp(xp) ∧ τr(x2; . . . ;xp),

q3(x̄, w̄) := q1(x1) ∧ q2(w̄) ∧ dist(x1, w̄) ≤ 2r.

We have that

G |= q(ab)⇐⇒ q1(a) ∧ q2(b) ∧ dist(a, b) > 2r,

hence

q(G) = q1(G)× q2(G) \ {a, b ∈ G | q1(a) ∧ q2(b) ∧ dist(a, b) ≤ 2r},

which is

q(G) = q1(G)× q2(G) \ q3(G).

Since

q3(G) ⊆ q1(G)× q2(G),

it follows that

#q(G) = #q1(G) ·#q2(G)−#q3(G).

It is easy to see that both q1 and q2 have less than p connected components in their
distance type. Therefore, by the induction assumption we can compute #q1(G) and #q2(G)
in pseudo linear time. We now have to compute #q3(G).

We say that (x′1; . . . ;x′p′) ∈ Π(x1; . . . ;xp) if and only if:
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(x′1, . . . , x′p′) is a partition of x with p′ < p,
x1 ( x′1,
∀1 < j ≤ p′, there is a i > 1 such that x′j = xi.

Basically, x′1 is the collapse of x1 and at least one of the xi. The other xi remain unaltered.

Given (x′1; . . . ;x′p′), we define:
α′1(x′1) =

∧
i∈I

αi(xi) where I := {i ≤ p | xi ⊂ x′1},

α′j(x′j) = αi(xi) where xi = x′j ∀1 < j ≤ p′.
It follows from those definitions that:

q3(x) =
∨

(x′
1;...;x′

p′ )∈Π(x1;...;xp)

α′1(x1) ∧ . . . ∧ α′p′(x′p′) ∧ τr(x′1; . . . ;x′p′).

Moreover these disjunctions are strict. Therefore, with Remark 2:

#q3(G) =
∑

(x′
1;...;x′

p′ )∈Π(x1;...;xp)

#
(
α′1(x1) ∧ . . . ∧ α′p′(x′p′) ∧ τr(x′1; . . . ;x′p′)

)
.

Since every query present here has less than p connected components in its distance
type, we can by induction count the number of solutions for each of them in pseudo-linear
time. There is only a constant number of queries involved in this sum, therefore #q3(G) is
computable in pseudo-linear time.

As #q1(G) and #q2(G) are already computed, we can compute #q(G) = #q1(G) ·
#q2(G)−#q3(G).

The total time needed was pseudo-linear. This concludes the proof.

8 Conclusion

We have shown how to efficiently process first-order queries over classes of graphs with locally
bounded expansion. We did not explicitly mention the constant factors. These are not very
good. Even in the bounded expansion case the constant factor is a tower of exponentials
which height depends on the size of the query. Moreover, an elementary constant factor is
not reachable (unless FPT = AW[∗]) even for unranked trees [8].

The results state the existence of an enumeration procedure for all ε. A uniform version
of this statement would require that the procedure is computable from ε. It is indeed the
case if the class of local bounded expansion is “effective”, see [16] for the precise definition.

An improvement of our work will be to extend the results for the counting and enumeration
problems to nowhere-dense structures. On those structures, the model checking can be done
in pseudo-linear time [9]. There is therefore hope to find good algorithms for the other
problems. However, this remains future work.
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Abstract
Representation systems have been widely used to capture different forms of incomplete data in
various settings. However, existing representation systems are not expressive enough to handle the
more complex scenarios of missing data that can occur in practice: these could vary from missing
attribute values, missing a known number of tuples, or even missing an unknown number of
tuples. In this work, we propose a new representation system called m-tables, that can represent
many different types of missing data. We show that m-tables form a closed, complete and strong
representation system under both set and bag semantics and are strictly more expressive than
conditional tables under both the closed and open world assumptions. We further study the
complexity of computing certain and possible answers in m-tables. Finally, we discuss how to
“interpret” m-tables through a novel labeling scheme that marks a type of generalized tuples as
certain or possible.
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Table 1 Table R.

Name DOB State Salary
William Smith 6/5/1976 CA 100000 certain tuple

John Doe ? ? ? two records may be missing
? ? WI ? up to 50 employee records may be missing
? ? PA ? unknown number of employee records may be missing

Querying over incomplete databases has been widely studied in the literature [1, 22].
The standard approach is to model an incomplete database using a formal representation
system, M , that can succinctly describe the incomplete database, and then query over M .
For example, conditional tables (c-tables) [16], a widely used representation system, are
expressive enough to efficiently capture the result of any relational algebra query over the
incomplete database represented by the c-table (such a representation system is called strong
for relational algebra). However, c-tables can only represent missing attribute values under
the so-called closed world assumption, and under the open world assumption (where they
can represent an unknown number of missing tuples, but in a very limited manner) they are
not closed for the selection operator. Other representation systems, such as v-tables or Codd-
tables are even less expressive than c-tables. We note here that, to the best of our knowledge,
none of the existing representation systems can represent incomplete databases consisting of
zero tuples (the zero information incomplete database), or tuples with cardinality constraints
(including possibly infinite cardinality). A different approach than using representation
systems is to compute certain answers: a tuple is considered to be a certain answer if it is in
the result of executing a given query over every possible instance of the incomplete database.
However, such an approach loses information about the incomplete database.

To give a more concrete example, consider a practical scenario of a user running analytical
queries over a column store database that consists of information about a company’s employees
in various states. Due to missing values in the database and due to node failures during query
execution, the data required to process the analytical queries may not be completely available.
A toy version of a resulting incomplete database is shown in Table 1. The last column in
table R indicates whether the tuple is certainly part of the table or not and if not, what
constraints are placed on the missing data. The first tuple is definitely part of the dataset.
The second tuple indicates that we may be missing two employees, both with name ‘John
Doe’. We could be missing up to fifty employees from the state of Wisconsin as indicated by
the third tuple, and the fourth tuple indicates that we could be missing an unknown number
of tuples from the state of Pennsylvania. None of the existing representation systems can
handle the last three types of missing data.

Contributions. We summarize below the contributions of this work:
1. We present in detail a new representation system called m-tables (Section 3). To construct

our new representation we use several ideas, among which is the use of annotations in the
form of polynomials (similar to provenance polynomials [13]). We give several examples
of how m-tables can be used to express various types of missing data that can arise in
practice (Section 3.3).

2. We show (in Section 4) that m-tables are a strong representation system for positive
relational algebra RA+ (which includes selection, projection, join, union and renaming)
under both set and bag semantics. This means that we can efficiently compute a new
m-table that represents the result of a RA+ query over underlying m-tables. We should
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emphasize here that an important feature of m-tables is that it can capture bag semantics,
in contrast to other representation systems and current approaches, where operations
under bag semantics are not clearly defined [15].

3. We prove that m-tables are strictly more expressive than c-tables, under both the closed
and open world assumptions (Section 5). We also perform a detailed study of the
expressive power of m-tables (also Section 5).

4. Given a query result as an m-table, interpreting the semantics to determine whether a
tuple is a certain or a possible answer is not an easy task. We thus propose a labeling
scheme (Section 6) that interprets the annotations and labels a type of "generalized"
tuples with either certain or possible labels, along with other possible information. We
show that, as a consequence of the labeling process, we can study the complexity of
computing the certain and possible tuples of an m-table representation.

2 Background

In this section, we present the necessary background on representation systems of incomplete
data. We will focus on c-tables, a representation system that will be of interest to us. We
further provide an overview of semiring algebras and provenance semirings [13].

2.1 Representation Systems
We assume that a relational instance is defined over a countably infinite domain D. For
the sake of simplicity, we will present the definitions over a relational schema with a single
relation with attribute set U ; the definitions extend in a straightforward way to any database
schema. We use the convention that a tuple is a function t : U → D, and we let DU denote
the set of all possible tuples with schema U .

An incomplete database I is any set of finite instances I ⊆ DU (an instance of an
incomplete database refers to a possible completion of the incomplete database). The
standard definition of a complete database corresponds to a singleton set {I}. Representation
systems can concisely describe an incomplete database: a representation system consists of a
set of elementsM, and a function Mod that maps each M ∈M to an incomplete database I.
For a query q ∈ L, where L is a query language, we define the answer of q on the incomplete
database I as q(I) = {q(I) | I ∈ I}. In this work, we will mainly focus on positive Relational
Algebra, or RA+, which contains queries that are formed using the selection, projection, join,
union and renaming, and the full Relational Algebra, RA, which additionally uses difference.

IDefinition 1 (Closure). A representation system is closed under a query language L if for any
query q ∈ L and any M ∈M, there exists some M ′ ∈M such that q(Mod(M)) = Mod(M ′).
We further say that it is strong for L if M ′ is computable.

In addition to the closure property, we are interested in representation systems where we
can efficiently perform the following tasks [14, 24]:
Instance Membership. Given an instance I and M ∈M, is I ∈ Mod(M)?
Tuple Membership. Given a tuple t ∈ DU and M ∈ M, does there exist some instance

I ∈ Mod(M) such that t ∈ I?
Tuple Certainty. Given a tuple t ∈ DU and M ∈M, does t ∈ I for every I ∈ Mod(M)?

We should mention here that tuple and instance membership, as well as tuple certainty,
can be extended to be defined with respect to a given query q. For example, for tuple
membership we can ask whether for a given tuple t, M ∈ M and a query q, there exists
I ∈ q(Mod(M)) such that t ∈ I.

ICDT 2017
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A B C
10 2 y x = 100 ∨ y = 210
40 x x x 6= 100

Figure 1 Example of a c-table.

Conditional Tables. A conditional table, or c-table, is expressed as (S, φ), where S is a
table that contains variables along with constant values from D, and φ is a function that
associates a local condition φs (a boolean combination of equalities involving variables and
constants) with each tuple s ∈ S.

As an example c-table, consider C(A,B,C) with two tuples, t1 and t2. t1 = (10, 2, y)
with conditions (x = 100 ∨ y = 210) and t2 = (40, x, x) with condition (x 6= 100).

Let v denote a valuation that maps the variables in a c-table to values in D. Under
the closed world assumption (CWA), a c-table C = (S, φ) represents: ModC(C) = {I |
∃ valuation v s.t. I = {v(t) | t ∈ S, v satisfies φt}}. The CWA for missing data assume that
all information about an incomplete database is modeled by its representation. Alternatively,
a c-table can be defined under the open world assumption (OWA), where an instance of
an incomplete database can contain any number of tuples, not necessarily justified by the
presence of a tuple in its representation. Under OWA: ModO(C) = {I | ∃ valuation v s.t. I ⊇
{v(t) | t ∈ S, v satisfies φt}}. c-tables form a closed and strong representation system for
RA [16] under CWA. However, c-tables are not closed even for RA+ under OWA. We will
present a detailed comparison of c-tables with m-tables in Section 3.

2.2 Semiring Algebras and Provenance

A commutative monoid is a structure (M,+M , 0M ) where +M is an associative and commut-
ative binary operation and 0M is the identity for +M . A commutative semiring is a structure
(K,+K , ·K , 0K , 1K), where (K,+K , 0K) and (K, ·K , 1K) are commutative monoids, ·K is dis-
tributive over +K , and a ·K 0K = 0K ·K a = 0K . Examples of commutative semirings are the
natural number semiring (N,+, ·, 0, 1) and the boolean semiring (B,∨,∧,⊥,>). A semiring
homomorphism is a mapping h : K → K ′ where K, K ′ are semirings and h(0K) = 0K′ ,
h(1K) = 1K′ , h(a+K b) = h(a) +K′ h(b), h(a ·K b) = h(a) ·K′ h(b).

The work on provenance semirings [13, 4, 12, 18] established the theoretical foundations
and implementations for representing, computing and querying annotated relations. Many
applications need to manipulate some “property” of tuples. These properties, viewed as
annotations, and operations on these tuple annotations together form the semiring algebraic
structure. These semiring structures adequately capture enough information for a variety of
applications including obtaining what and how [5] provenance information. In particular, the
how provenance of result tuples is captured by annotations from the provenance semiring,
(N[X],+, ·, 0, 1), where N[X] represents the multivariate polynomials with indeterminates
from X (a set of provenance tokens that we use to annotate input tuples).

Let U be a finite set of attributes and (K,+, ·, 0, 1) be a commutative semiring. A
K-relation is a function R : DU → K, whose support, supp(R) = {t | R(t) 6= 0} is finite. The
+ operation in the semiring represents alternate derivations for the same tuple, and the ·
operation represents the joint use of data to obtain the tuple. 1 represents a tuple that is
present in the result and 0 represents the absence of that tuple. We refer the reader to [13]
for details on how to execute relational algebra queries over K-relations.
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3 How to Represent Missing Data

In this section, we develop a representation system, called m-tables, which allows us to
represent relational data with missing tuples. Although there exists extensive literature on
representation systems for incomplete and uncertain data (from c-tables [16], to more recent
research [14, 24]), existing representation systems cannot represent and operate on missing
data that may consist of zero to any number of tuples. Consider the following example.

I Example 2. Let R(A,B,C) be a ternary relation, and suppose that the domain D is the
natural numbers N. Our goal is to represent the incomplete database I that contains all
instances that satisfy the following conditions:

The tuple (1, 2, 3) must be included in any instance.
The tuple (2, 3, 4) may be present in an instance; if present, its multiplicity should be 2.
Any other tuple, if present, must be of the form (x, y, 3), where x, y ∈ D and 3 ≤ x ≤ 10.

{R(1, 2, 3), R(2, 3, 4), R(2, 3, 4), R(4, 5, 3)} and {R(1, 2, 3), R(4, 5, 3), R(5, 5, 3)} are possible
instances of I, but {R(2, 3, 4), R(4, 5, 3)} and {R(1, 2, 3), R(2, 3, 4), R(4, 5, 3)} are not. Ob-
serve that an instance in I is a bag, and not a set. Each possible instance of this incomplete
database I can contain zero to any number of tuples of the form (x, y, 3), and this cannot
be represented by a c-table (under either open or closed world semantics), v-table or other
representation system.

An incomplete database like I is not only of theoretical interest, since it can be the result
of answering a query over a partitioned database (can also be a column store), where some
partition has failed during evaluation (additionally, some columns may be unavailable for
processing). Example 2 will be the running example throughout this section.

3.1 Basic Definitions
In this section, we define the components of an m-table in a bottom-up manner and then
proceed to discuss m-table semantics. Informally, the construction involves two requirements.
First, we need to represent ‘missing’ values along with the associated domain and cardinality
constraints; we also need to encode correlation constraints between the missing values. Second,
we require that the representation allows for systematic propagation of the constraints of
missing values through the algebraic operators. To achieve this, we define a schema over the
missing values (encoding correlations) with cardinality constraints defined over the schema
elements. Next, we observe that propagating the schema information along with domain
constraints is akin to propagating the provenance information for tuples. So, we introduce
suitable annotations for tuples and propagate these annotations using machinery from [13].

We now begin the construction of m-tables. Let U denote the set of possible attribute
names and D denote the set of all constants. D represents the domain of all the attributes.

Missing values. The first component is a distinguished symbol m, which represents any
missing value. Define D̂ = D ∪ {m}. This notation is similar in spirit to other types of
representation systems; the difference in our setting is that m can potentially represent
multiple possible values, or even no values at all, instead of exactly one. One should think of
m as representing a set or a bag (depending on the semantics) of possible values.

We introduce the notion of an extended tuple t̂ ∈ D̂U , where U ⊆ U, to represent tuples
in the representation M ∈ M. This notation is meant to distinguish from a tuple t in an
instance of an incomplete database. Notice that the distinguished symbol m can only be part
of a tuple t̂ and not t. We define m(t̂) = {A ∈ U | t̂[A] = m} and m̄(t̂) = {A ∈ U | t̂[A] 6= m}.
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In other words, m(t̂) includes the attributes in the tuple that have a missing value instead
of a constant value. For example, to represent the incomplete database in Example 2, we
introduce three extended tuples: t̂1 = (1, 2, 3), t̂2 = (2, 3, 4) and t̂3 = (m,m, 3).

The set of extended tuples is not enough by itself to represent the incomplete database I
of Example 2. Indeed, there is no way to distinguish that (1, 2, 3) is a certain tuple, in the
sense that it appears in all instances, and (2, 3, 4) is a possible tuple with multiplicity 2, in
the sense that it appears in some instances. Furthermore, we want to ensure that for the
tuple (m,m, 3), the first m can only take values between 3 and 10, which is not yet captured.
We thus augment the table with annotations.

However, simply annotating tuples with domain conditions will not be sufficient. A
structure is necessary to encode correlations between different missing values that appear in
different tuples or attributes of the same tuple. For instance, consider the tuple t̂3 = (m,m, 3);
consider another relation S(C,D,E) with tuples ŝ1 = (3, 4, 5) and ŝ2 = (3, 9, 10). If t̂3 were
to be joined with the relation S on attribute C, then we will have two tuples in the result:
r1 = (m,m, 3, 4, 5) and r2 = (m,m, 3, 9, 10). Observe that m(r̂1) = m(r̂2) = {A,B}; the
pairs of m values across tuples are not independent and are bound by the values taken by
m(t̂3). To capture this, we need to relate annotations to the m values in the tuples; we do so
by introducing a second component, a database schema Σ = {T1(U1), T2(U2), . . . , TN (UN )},
where Ui ⊆ U for each i = 1, . . . , N .

For the running example, we need a schema that allows the presence of the tuple (2, 3, 4)
(with multiplicity 2) to be toggled and allows the tuple (m,m, 3) to take on multiple values
for m. We construct the schema Σ = {T1(), T2(A,B)}. Observe that relation T1 has no
attributes: this means that T1 will behave like a boolean variable depending on whether T1
is empty or contains the empty tuple () (this is also because of the additional cardinality
constraints that we introduce next).

An instantiation of Σ determines an instance of the incomplete database. The size of
the possible instantiations of Σ are constrained by two vectors, min = (min1, . . . ,minN )
and max = (max1, . . . ,maxN ), where mini,maxi ∈ N ∪ {∞}. The number of tuples in
every instantiation of Ti ∈ Σ are lower bounded by mini and upper bounded by maxi.
For our running example, we add the cardinality constraints min1 = 0,max1 = 1 and
min2 = 0,max2 =∞. The constraints enforce that T1 behaves like a boolean variable and
T2 can be instantiated to anything.

We next introduce annotations that capture all necessary properties of an extended tuple;
as we will argue in the next section, annotations are also necessary to make the representation
system complete for SPJU queries.

Annotations. To construct a suitable set of annotations for m-tables, we first need to
define two new kinds of expressions. The first kind has expressions of the form αi(U),
where i = 1, . . . , N corresponds to the relation Ti(Ui) of the schema Σ, with U ⊆ U and
|U | = |Ui|. The condition |U | = |Ui| is sufficient, since as we will see in the next section,
applying a renaming operator can change the attributes in αi. We define K = {αi(U) |
Ti(Ui) ∈ Σ, U ⊆ U, |U | = |Ui|}. In the preceding definition, not requiring Ui = U allows the
reuse of α expressions across multiple attributes and tables.

The second kind of expressions are symbolic equations, which will be used to capture
selection and join conditions in query evaluation. We define E = {[x op y] | x, y ∈ D∪U, op ∈
{=, <,>,≤,≥, 6=}}.

For example, if A,B ∈ U and D = N, both [A = B] and [A > 3] are valid expressions
in E . This definition is similar to the technique used in [4] to capture provenance for
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queries with aggregates. We will use the above expressions to annotate each extended tuple.
Formally, let K̂ be the polynomial semiring with variables from K ∪ E and coefficients from
N: (N[K ∪ E ],+, ·, 0, 1). We can then define a K̂-relation R that maps each extended tuple
in D̂U to an element in the semiring K̂. The coefficients from N in the polynomial enable
the annotations to handle both set and bag semantics.

I Example 3. Continuing the running example, the annotation for the tuple (1, 2, 3) is 1
(the tuple is certain). The annotation for the tuple (2, 3, 4) is 2 ·α1(), with α1() operating like
a boolean variable. Alternately, we could have had two (2, 3, 4) tuples, each with annotation
α1(). Finally, the annotation for the tuple (m,m, 3) is α2(A,B) · [A ≤ 10] · [A ≥ 3]. Intuitively,
for each instance of the relation T2(A,B), we first filter the tuples using the conditions of
the expressions [A ≤ 10] and [A ≥ 3]. The result will define a set of valuations from (A,B)
to (D,D); each such valuation will correspond to a tuple in the possible world.

An annotation R(t̂) ∈ N[K ∪ E ] has a natural interpretation as a query in RA+. We first
write the polynomial R(t̂) in the following canonical form1: R(t̂) =

∑n
k=1(

∏
ki
αki

(Uki
) ·∏

kj
θkj ) where, θkj ∈ E . We can now interpret each monomial in R(t̂) as a query, which

involves a renaming operation (to match attributes in αi and Ti), followed by a natural
join, followed by a selection condition specified by the equations θkj

and followed by a
projection on m(t̂). Formally, for the k-th monomial in R(t̂), we associate the query:

qk(R(t̂)) = πm(t̂)

(
σ∧

kj
θkj

(
./ki (ρAki

/Ui
Tki)

))
. The result of this query will be a relation

defined over the attributes in m(t̂). To obtain the final query associated with R(t̂), we first
extend this definition over all attributes in U , and then take the union over all monomials.
Formally, we map each annotation R(t̂) to:

q(R(t̂)) def=
n⋃
k=1

(
πm̄(t̂){t̂(A)} × qk(R(t̂))

)
(1)

The query q(R(t̂)) returns a relation (set or bag) defined over the attribute set U . In the
case where R(t̂) = 1, q(R(t̂)) is the constant query that returns a relation with an empty
tuple ().

I Example 4. For the tuples t̂2, t̂3 we have q2 = q(R(t̂2)) = (πA,B,C{t̂2} × π()(T1)) ∪
(πA,B,C{t̂2} × π()(T1)) and q3 = q(R(t̂3)) = πC{t̂3} × πA,B(σA≥3∧A≤10(T2)). Since t̂2 has
two monomials, α1() +α1(), in its annotation, its final annotation is a union over the queries
of each of its monomials.

We could equivalently define an annotation directly as a query in RA+. The choice to
use semirings instead is because they form a more compact annotation and work seamlessly
for both set and bag semantics. For instance, the simple annotation 100 · α1() would have to
be written as a union of 100 expressions T1.

The query q(γ) may not be well-defined for a given polynomial γ, since a selection
condition θkj

or a projection operator may include an attribute that does not appear in
any of the αki terms. For example, the annotation α2(A,B) · [C = 1] for the tuple (m,m, 3)
would correspond to the query πC{t̂3} × πA,B(σC=1(T2)), which is not a valid expression.

It is easy to see that an annotation R(t̂) is valid if and only if for every monomial∏
ki
αki

(Aki
) ·
∏
kj
θkj

in the annotation the following hold: (1) m(t̂) ⊆
⋃
ki
Aki

, and (2) for
any θkj = [x1 op x2] such that xi ∈ U, xi ∈

⋃
ki
Aki .

1 A monomial with coefficient > 1 can be easily split into multiple monomials, thus conforming to the
canonical form. For example, the annotation 2 · α1() can be written as α1() + α1().
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Table 2 The m-table for the running example.

A B C
1 2 3 1
2 3 4 2 · α1()
m m 3 α2(A,B) · [A ≤ 10] · [A ≥ 3]

I Definition 5 (m-proper). A K̂-relation R over a set of attributes U is m-proper if for every
extended tuple t̂ ∈ D̂U , R(t̂) is a valid annotation.

Using the conditions for a valid annotation, given a K̂-relation, we can efficiently determine
whether it is m-proper. We now formally define m-tables.

I Definition 6. A set of m-tables, or an m-multitable, is a tuple (R,Σ,min,max) such that:
1. each Rj ∈ R is an m-proper K̂-relation, where K̂ is the polynomial semiring (N[K ∪
E ],+, ·, 0, 1) (recall that the elements of K are constructed from the elements of Σ),

2. Σ = {T1(U1), . . . , TN (UN )} is a database schema,
3. min,max ∈ (N ∪ {∞})N are vectors of cardinality constraints.

To define a singlem-table for a relationR, we can simply write it asM = (R,Σ,min,max).
As discussed before, the cardinality constraints mini,maxi provide a lower and upper

bound on the cardinality of an instance of the relation Ti ∈ Σ. In the case where mini = 0
and maxi = ∞ for every i, we say that the m-table is free and for simplicity we omit
min,max from the m-table definition. We denote byMf the set of all free m-tables. When
mini = maxi = 1 for every i, we can equivalently view each relation Ti as a function from
attributes to values in D; as we will see later, this will allow us to capture the semantics of
c-tables. We denote byMc the set of all such m-tables. Finally, we define an m 6 =-table as
an m-table where the expressions in the annotation are restricted to use only =, 6=.

For our running example, the final m-table M = (R,Σ,min,max) will have Σ =
{T1(), T2(A,B)} and min1 = min2 = 0, max1 = 1,max2 = ∞. The annotated relation R
can be seen in Table 2.

3.2 Semantics
We present here the semantics of m-tables. Given M = (R,Σ,min,max), we formally define
the incomplete database Mod(M) that it represents under both set and bag semantics.

To explain the semantics behind m-tables, we draw a parallel with c-tables. For a c-table
C, each possible instance of the incomplete database is produced by computing v(C) for
a valuation v over the variables in the c-table. In m-tables, instead of a valuation, we will
use an instance T on the schema Σ, which satisfies the cardinality constraints; each such
instance will produce a possible instance I of the incomplete database: M [T] in Mod(M).
Under set semantics, the instance I will be a set, and under bag semantics it will be a bag.

We start by looking at a single extended tuple t̂ with annotation R(t̂), for some R ∈ R
with attribute set U . Let J = q(R(t̂))(T). As we discussed in the previous section, each
tuple v ∈ J can be equivalently viewed as a total function v : U → D. We say that v(t̂) is an
instantiation of the extended tuple t̂.

I Definition 7 (Derivation Set/Bag). Let t̂ be an extended tuple with a valid annotation
R(t̂). The derivation set (bag) of t̂ for a set (bag) instance T of Σ is defined as q(R(t̂))(T).
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I Example 8. Consider the schema Σ and the cardinality constraints of our running example.
Consider the following set instance T of Σ: T = {T2(2, 4), T2(3, 4), T1()}. Then, the derivation
set of the tuple (1, 2, 3) with annotation 1 is {(1, 2, 3)}. For the tuple t̂2 = (2, 3, 4) with
annotation 2 · α1(), the derivation set w.r.t. T will be {(2, 3, 4)}. Notice that because of
the set semantics, the coefficient 2 in the annotation is effectively ignored. Finally, for
t̂3 = (m,m, 3) with annotation α2(A,B) · [A ≤ 10] · [A ≥ 3], we compute q3(T) = {(3, 4, 3)}.

If we switch to bag semantics, we can start with a bag instance of the schema Σ:
T = {T2(2, 4), T2(3, 4), T2(3, 4), T1()}. The derivation bag of (1, 2, 3) will be as before
{(1, 2, 3)}. For the tuple t̂2 = (2, 3, 4) with annotation 2 · α1(), the derivation bag w.r.t. T
will now be {(2, 3, 4), (2, 3, 4)}. Observe that the coefficient 2 is now critical for the correct
interpretation. Finally for t̂3 = (m,m, 3) with annotation α2(A,B) · [A ≤ 10] · [A ≥ 3], we
compute q3(T) = {(3, 4, 3), (3, 4, 3)} as its derivation bag.

I Definition 9 (m-table Semantics). Let M = (R,Σ,min,max) be an m-multitable. For
R ∈ R, define the query QR

def=
⋃
t̂:R(t̂) 6=0 q(R(t̂)). The instantiation ofM under a (set or bag)

instance T of Σ is M [T] = {QR(T) | R ∈ R}. Under set (bag) semantics, the incomplete
database ModS(M) (ModB(M)) that is represented by M is

ModS/B(M) = {M [T] | ∀i = 1, . . . , N : TTi is a set/bag, mini ≤ |TTi | ≤ maxi},

In other words, for each instance T, we construct a possible world of the incomplete
database by taking the union of all the derivation sets (or bags) for each extended tuple (w.r.t.
T) in the annotated relation. This of course is equivalent to computing the query QR(T)
for each R ∈ R. To construct the incomplete database, we compute all possible worlds that
correspond to every instance of Σ that satisfies the cardinality constraints min,max of the
m-table. We present next an example that sheds more light on the semantics of m-tables.

I Example 10. Consider the binary relation R(A,B) along with two different schemas:
Σ1 = {T1(A,B)} and Σ2 = {T2(A), T3(B)}.

Consider first the free m-table M1 = ({R1},Σ1), where R1 contains the tuple (m,m)
with annotation α1(A,B). It is easy to see that ModS(M1) is the set of all possible instances
of R over the domain D, otherwise known as the no-information instance.

Second, consider the free m-table M2 = ({R2},Σ2), where R2 contains, again, a single
tuple (m,m) with annotation α2(A) · α3(B). Observe now that the incomplete data-
base ModS(M2) does not include all possible instances, since for example, the instance
{(1, 1), (1, 2), (2, 1)} can not be produced from M2.

3.3 Examples and Applications
In this section, we show how to use m-tables to represent different types of missing data
that occur in a practical setting. Recall our original motivation: we have a cluster of nodes
executing relational queries. Suppose that one of the tables in this cluster is R(A1, . . . , Ak),
and that during the execution of a query, several nodes become unresponsive. We look at
three different cases:

Missing Arbitrary Data. We are certain about several tuples in the table R, but we are
missing an arbitrary part, for which we have no information. To represent this instance, our
underlying m-table schema needs a single relation: Σ = {T1(A1, . . . , Ak)}. For the annotated
relation, we first include in R all the certain tuples with annotation 1. Then, we introduce
one more tuple (m,m, . . . ,m) with annotation α1(A1, . . . , Ak).
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Missing Data in Range-Partitioned Databases. In this scenario, table R is initially range-
partitioned across different nodes in the cluster using an attribute, say A1. We construct
an m-table for this case as follows. For each responsive node, we add the tuples in the
nodes as certain tuples with annotation 1. Our underlying schema is the same as before:
Σ = {T1(A1, . . . , Ak)}. Let [xi, yi] be the range of each missing node i. We then add a tuple
(m,m, . . . ,m) with annotation α1(A1, . . . , Ak) ·

∑
i([A1 ≥ xi] · [A1 ≤ yi]).

Missing Data in Column Stores. Suppose that the table R is stored in columnar format.
In this case, the columns may not be sharded, but observe that all columns may not be
accessed at the same time. A particular node may be accessed several times during query
processing while stitching the columns together. One of these accesses might fail and result
in a missing column. Let’s say we are missing the column corresponding to attribute A1. We
can use m-tables to represent this type of missing data as follows. Every tuple will be of the
form (m, a2, . . . , ak), where ai ∈ D and will have annotation αj(A1), where we introduce a
distinguished unary relation Tj for every tuple. Moreover, we add cardinality constraints
such that minj = maxj = 1.

4 RA+ Algebra for m-tables

In this section we present the specifics of executing operators in the positive relational
algebra (RA+) over m-tables, thus proving that m-tables form a strong representation
system for RA+ under both set and bag semantics. Recall that an m-multitable M is a
tuple ({R1, . . . , R`},Σ,min,max), where each Ri is an m-proper K̂-relation. Thus, in order
to define relational operators over m-tables we will need to modify the standard algebra
operators over K-relations. We next present how each operator works.

Selection. Let R : D̂U → K̂ and let θ be a selection predicate of the form (A op x), where
A ∈ U , x ∈ D and op ∈ {=, <,>,≤,≥, 6=}. Then, the selection σθR : D̂U → K̂ is defined as

(σθR)(t̂) =
{
R(t̂) · [A op x] if t̂(A) = m,

R(t̂) · [t̂(A) op x] otherwise.

Observe that if t̂(A) 6= m, we can immediately evaluate the condition by checking whether
the expression (t̂(A) op x) is true or not. If it is true, then (σθR)(t̂) = R(t̂); otherwise
(σθR)(t̂) = 0. These semantics coincide with the algebra on K-relations. When t̂(A) = m,
the attribute value is unknown and the extended tuple t̂ may potentially satisfy the selection
predicate. Thus, we need to keep the expression uninterpreted as part of the annotation.
The case where the condition is of the form (A op B) is similar and thus omitted.

Projection. Let R : D̂U → K̂ and U ′ ⊆ U . The projection πU ′R : D̂U ′ → K̂ is defined as
(πU ′R)(t̂) =

∑
t′:R(t′)6=0∧t̂=t′ on U ′ R(t′).

Union. Let R1, R2 : D̂U → K̂. Then the union R1 ∪ R2 : D̂U → K̂ is defined as
(R1 ∪R2)(t̂) = R1(t̂) +R2(t̂).

Renaming. Let R : D̂U → K̂ and let β : U → U ′ be a bijection. To define the semantics for
the renaming operator ρβ , we need to rename the attributes in the annotation as well. For
this, we define β(αi(A)) = αi(β(A)) and also β([x op y]) = [β(x) op β(y)]. (The function β
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A B C
a1 b1 50 1
a2 b2 400 1
a3 b3 30 1

(a) Table R.

A C D
a1 3 450 1
a2 3 m α1(D)
a3 3 100 α2()
m m m α3(A,C,D) · [D > 100]

(b) Table S.

./

π(A,C)

R(A,B,C)

π(A,D)

σC=3

S(A,C,D)

(c) Query Plan.

Figure 2 The initial m-tables R,S and the query plan for the running example.

behaves as the identity function for constants and attributes not in U .) For an annotation
R(t̂), we now define β(R(t̂)) as the result of applying β to each element of the polynomial.
We can now define ρβR to be a K̂-relation over U ′ such that: (ρβR)(t̂) = β(R(t̂ ◦ β)).

Cartesian Product. Let Ri : D̂Ui → K̂ for i = 1, 2 and let t̂|Ui represent the restriction of
the tuple t̂ to the attributes of Ui. Then R1×R2 : D̂U1∪U2 → K̂ is defined as (R1×R2)(t̂) =
R1(t̂1) ·R2(t̂2) where, t̂i = t̂|Ui, i = 1, 2. An important point is that we assume w.l.o.g. that
R1, R2 do not share any attributes in the annotations that are not in U1∪U2. If this happens,
it is easy to rename these attributes such that there is no conflict.

We should note here that we defined the cartesian product instead of a natural join
operator for simplicity of presentation: the natural join can be easily defined as a sequence
of renaming, cartesian product, selection and projection.

Given a query Q ∈ RA+, and an m-multitable M = ({R1, . . . , R`},Σ,min,max), let us
define by Q̄(M) the tuple ({Q(R1, . . . , R`)},Σ,min,max). Here we should note that we have
not yet shown that Q̄(M) is a valid m-table; for this, we need to prove that Q(R1, . . . , R`) is
an m-proper K̂-relation. Before we do this, we first give a detailed example of applying the
algebraic operations we defined to m-tables.

I Example 11. We illustrate querying over m-tables through an example. Consider the
m-multitable M = ({R,S},Σ,min,max). R is a complete relation (i.e. all annotations are
1), S has missing data, Σ = {T1(D), T2(), T3(A,C,D)}, min = (1, 0, 0) and max = (1, 1,∞).
We present tables R and S in Figures 2a and 2b, respectively, with the initial annotations for
the extended tuples. Observe that we have appended multiple extended tuples to relation S
to represent its missing data. The relational query to be executed on the database is given
in Figure 2c and the results obtained after applying the K̂-relational algebra operators are
presented in Figure 3.

I Lemma 12. Let M = ({R1, . . . , R`},Σ,min,max) be an m-multitable, and Q be a query
in RA+. Denote R′ = Q(R1, . . . , R`). Then
1. R′ is an m-proper K̂-relation
2. QR′ = Q(QR1 , . . . ,QR`

) under both set and bag semantics, i.e., the incomplete database
represented by R′ and the resulting incomplete database after applying query Q are the
same.

I Corollary 13. The RA+ operations defined for m-multitables map m-multitables to m-
multitables, and thus form a well-defined algebra over m-multitables.
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A C D
a1 3 450 1
a2 3 m α1(D)
a3 3 100 α2()
m m m α3(A,C,D) · [D > 100] · [C = 3]

(a) Step 1: S′ = σC=3(S).

A D
a1 450 1
a2 m α1(D)
a3 100 α2()
m m α3(A,C,D) · [D > 100] · [C = 3]

(b) Step 2: S′′ = πA,D(S′).

A C
a1 50 1
a2 400 1
a3 30 1

(c) Step 3: R′ = πA,C(R).

A’ D
a1 450 1
a2 m α1(D)
a3 100 α2()
m m α3(A′, C′, D) · [D > 100] · [C′ = 3]

(d) Step 4.1: S′′ = ρ{A→A′,C→C′}(S′′).

A C A’ D
a1 50 a1 450 1
a2 400 a2 m α1(D)
a3 30 a3 100 α2()
a1 50 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a1]
a2 400 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a2]
a3 30 m m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a3]

(e) Steps 4.2, 4.3: Result = σA=A′ (R′ × S′′).

A C D label φ

a1 50 450 1 certain T
a2 400 m α1(D) certain T
a3 30 100 α2() possible T
a1 50 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a1] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a1)
a2 400 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a2] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a2)
a3 30 m α3(A′, C′, D) · [D > 100] · [C′ = 3] · [A′ = a3] possible (D > 100) ∧ (C′ = 3) ∧ (A′ = a3)

(f) Step 4.4: Projection along with application of SimpleLabel algorithm.

Figure 3 Execution of the query plan over m-tables and obtaining m-labeled tuples.

I Theorem 14. The m-multitables form a strong representation system for positive relational
algebra for both set and bag semantics. Moreover, evaluating a positive relational algebra
query on m-multitables has polynomial data complexity.

We conclude this section by observing that one can apply all the known optimizations
on relational algebra plans when querying m-tables, since the standard algebraic identities
under bag semantics are preserved (see also Appendix, for more details).

5 The Expressive Power of m-tables

In this section, we discuss the expressive power of m-tables. We first compare the expressive-
ness of m-tables to c-tables under both the closed and open world assumption. Then, we
characterize the set of incomplete databases that can be expressed through m-tables. Our
results in this section hold only for the case of set semantics.
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m-tables versus c-tables. Our first result shows that the class of m 6 =-tables inMc can
capture precisely the expressiveness of c-tables under CWA.

I Theorem 15. The c-tables under CWA and the m6 =-tables inMc have the same expressive
power, that is:
1. For every c-table C, there exists an m 6 =-table M ∈Mc such that ModS(M) = ModC(C);
2. For every m 6 =-table M ∈Mc, there exists a c-table C such that ModC(C) = ModS(M).

The detailed proof of this statement is given in the Appendix. As we discussed earlier,
m-tables are strictly more expressive than c-tables under closed world semantics, since
c-tables under CWA cannot express incomplete databases with arbitrarily large instances.

Under the open world assumption, c-tables can express incomplete databases with
arbitrarily large instances.

I Proposition 16. For every c-table C, there exists an m6 =-table M s.t. ModS(M) =
ModO(M).

It turns out that general m-tables are strictly more expressive than c-tables under OWA,
in the sense that there exists an m-table M such that ModS(M) is not expressible through a
c-table under OWA. Indeed, consider the following example.

I Example 17. Let M = (R, {T1(A)}, (0), (∞)), where R(A,B) is a binary K̂-relation that
consists of a single extended tuple (m, 1) with annotation α1(A). Suppose there exists a
c-table C such that ModS(M) = ModO(C). Since the instance {(1, 1)} belongs in ModS(M),
it must also belong in ModO(C). But then {(1, 1), (1, 2)} must also belong in ModO(C);
however, this contradicts that C expresses ModS(M), since (1, 2) cannot belong in any
instance of ModS(M).

To summarize, m-tables can express a strictly larger class of incomplete databases in
comparison to c-tables under both the closed and open world assumption.

Characterizing the Expressiveness. Following [14], we define N = {I | I ⊆ DU , I finite} as
the zero-information incomplete database. Each subset of N forms an incomplete database;
our goal is to characterize the subsets of N which are representable by m-tables. We also
define ZU = {{t} | t ∈ DU} as the incomplete database that represents the set of all relations
with exactly one tuple.

I Definition 18 ([14]). Let L be a query language. An incomplete database I is L-definable
if there exists a query Q ∈ L such that I = Q(ZU ). We further say that a representation
system is L-complete if it can represent any L-definable incomplete database.

We are primarily interested in RA-definable and RA+-definable incomplete databases.
We start by applying a result of [14], which shows that an incomplete database I is RA-
definable if and only if I is representable by a c-table under CWA. Combining this with
Theorem 15, we obtain that m6 =-tables inMc (as c-tables) capture exactly the incomplete
databases that are expressed through an RA query over ZU :

I Corollary 19. m 6 =-tables are RA-complete; every m 6 =-table inMc is RA-definable.

This result characterizes the expressivity of m-tables using ZU as the starting point; it
turns out that a small fragment of m-tables is enough to capture all of RA over ZU . To
understand the true expressive power of m-tables, we need to use N as the starting point.
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I Proposition 20. For every m-table M , there exists a query Q ∈ RA s.t. ModS(M) =
Q(N ).

The above proposition tells us that every m-table can be expressed as a relational query
over N . For the construction in the proof, which is presented in the Appendix, we need the
difference operator to define the appropriate query Q.

I Theorem 21. The set of incomplete databases expressed by free m-tables and by Q(N ),
for Q ∈ RA+, are the same, that is:
1. For every free m-table M , there exists a query Q ∈ RA+ such that ModS(M) = Q(N ).
2. For every Q ∈ RA+, there exists a free m-table M such that ModS(M) = Q(N ).

In other words, free m-tables capture exactly the incomplete databases that can be
constructed by computing a positive relational algebra query over N . As for general m-tables,
we have shown that they describe a subset of the incomplete databases that can be computed
through a relational algebra query over N . It is not clear whether the converse holds, that
is, if every incomplete database I = Q(N ), where Q ∈ RA, can be represented by m-tables.
We leave this as part of future work.

6 Labeling Schemes

Interpreting the semantics of an m-table, and in particular the annotation R(t̂) for each
extended tuple t̂ can be non-trivial. Additionally, given an m-table it is not immediately
clear whether a tuple is certain or possible in the corresponding incomplete database. To
address this issue, we describe a way to interpret an m-table, under set semantics, such that
it tells the user which tuples are certain, and which tuples are possible (and under which
conditions). We would like to emphasize that the labeling in this section is done only under
set semantics.

6.1 Semantics of Labels
We first propose a labeling scheme for missing data. Each tuple t̂, following the structure of
m-tables, will be an extended tuple that takes values from D̂ = D ∪ {m} and every extended
tuple will be associated with one of certain and possible labels. Formally, we define:

I Definition 22 (Labeling). An m-labeled tuple is a triple of the form (t̂, λ, φ) such that:
t̂ : U → D̂ is an extended tuple,
λ ∈ {certain, possible},
φ is a conjunction of expressions (x op y), where x, y ∈ U∪D and op ∈ {=, <,>, 6=,≥,≤}.

An m-labeling scheme is a finite set of m-labeled tuples.

By viewing the attributes in φ as variables, we can view φ as a logical formula over U.
Given an assignment v : U→ D that satisfies φ, we obtain an instantiation v ◦ t̂ of the tuple
t̂, where v(t̂[A]) = v(A) if A ∈ m(t̂), otherwise v(t̂[A]) = t̂[A]. We say that the set of all such
instantiations is the expansion of (t̂, φ) and we denote it as D(t̂, φ). Note that if φ is not
satisfiable, then D(t̂, φ) = ∅. Also, if m(t̂) = ∅ (so t̂ has only constants) and φ = T (i.e. the
boolean formula φ is always true), we simply have D(t̂, φ) = {t̂}.

Let I be an incomplete database, and let pos(I) =
⋃
I∈I I denote the set of all possible

tuples in I. Recall that for t ∈ DU , we say that t is certain in I if for every I ∈ I we have
t ∈ I; and that t is possible in I if there exists I ∈ I such that t ∈ I. We next generalize
the definitions of certainty and possibility for extended tuples. We say that (t̂, φ) is certain
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in I if for every I ∈ I we have D(t̂, φ) ∩ I 6= ∅. We also say that (t̂, φ) is possible in I if
D(t̂, φ) ⊆ pos(I). Observe that if t̂ takes only values from D and φ = T, then the above
definitions collapse to the standard definitions of possible and certain tuples.

We will focus on m-labeling schemes with the following property: for any (t̂, certain, φ), we
have that φ = T. In other words, every extended tuple with label certain has no constraints
on its possible values. In this case we simplify the notation of an m-labeled tuple to (t̂, certain)
and its expansion to D(t̂): we call this a simple m-labeling scheme.

I Definition 23 (Soundness). Let I be an incomplete database, and S a simple m-labeling
scheme. S is c-sound w.r.t. I if for every (t̂, certain, φ) ∈ S, (t̂, φ) is certain in I. S is
p-sound w.r.t. I if for every (t̂, possible, φ) ∈ S, (t̂, φ) is possible in I.

If S is both c-sound and p-sound, we simply say that S is sound. A sound labeling scheme
is a conservative under-approximation of an incomplete database.

I Definition 24 (Completeness). Let I be an incomplete database, and S a simple m-
labeling scheme. S is c-complete w.r.t. I if for every (t̂,T) that is certain in I, there exists
(t̂′, certain) ∈ S such that D(t̂′) ⊆ D(t̂). S is p-complete w.r.t. I if for every t ∈ pos(I), there
exists (t̂, λ, φ) ∈ S such that t ∈ D(t̂, φ).

Analogous to the definition of soundness, a complete labeling scheme is a conservative
over-approximation of an incomplete database. A sound and complete labeling scheme
captures exactly both the generalized possible and certain tuples.

I Example 25. Suppose we are given any incomplete database I for the relation R(A,B,C).
Consider the m-labeling scheme S that consists only of a single tuple: ((m,m,m), possible,T).
We first claim that this is a c-sound labeling. This trivially holds, since S contains no
extended tuples with a certain tuple. We also claim that S is p-complete. Indeed, the
expansion of ((m,m,m),T) is D(A,B,C), and thus any tuple in pos(I) will also belong in
D((m,m,m),T). This construction implies that we can always construct a trivial c-sound
and p-complete labeling scheme for any incomplete database.

As we will see shortly, it is computationally hard to construct a sound and complete
m-labeling for every incomplete database and RA+ query. However, we will show that a
sound and complete simple m-labeling is possible for a particular case of incomplete databases
that are defined through m-tables. We should emphasize here that an m-labeling scheme is
not a representation system of I, since we cannot reconstruct I from S.

6.2 A Simple Label Inference Algorithm
We describe a simple procedure that, given an m-table M , constructs a c-sound and p-
complete simple m-labeling scheme for ModS(M). We can use this procedure, together
with the completeness of m-tables for RA+, to construct a c-sound and p-complete simple
m-labeling for Q(I) over an incomplete database I that is represented by an m-table.

The algorithm SimpleLabel is given in Algorithm 1. The intuition for the inference
procedure is that, an extended tuple t̂ is certain only in the case where there exists a monomial
that has no constraints in E , and further, the lower bounds on the cardinalities of αi’s (mini’s)
are at least 1 (line 5).

If the tuple is labeled as possible, we compute the formula φ in lines 10-13 by taking
the conjunction of the expressions in E . Figure 3 shows the resulting labels after applying
SimpleLabel on the final result of the running example of Section 4.
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Algorithm 1 SimpleLabel.
1: S ← ∅
2: for each t̂ ∈ R s.t. R(t̂) 6= 0 do
3: Let R(t̂) =

∑n
k=1

∏
ik
αik (Aik ) ·

∏mk

j=1 θj
4: for k = 1, . . . , n do
5: if ∃ik s.t. minik = 0 or mk > 0 then
6: λ← possible
7: else
8: λ← certain
9: end if
10: φ← T
11: for all θj = [x op y] do
12: φ← φ ∧ (x op y)
13: end for
14: S ← S ∪ {(t̂, λ, φ)}
15: end for
16: end for
17: return S

I Proposition 26. Given an m-table M , SimpleLabel computes in polynomial time (data
complexity) a c-sound and p-complete simple m-labeling scheme S w.r.t. to ModS(M).

From the previous proposition, we see that SimpleLabel provides conservative labeling,
i.e., if a tuple is marked as certain, then it is definitely so, but all certain tuples may not be
identified. Even though SimpleLabel does not produce sound and complete labelings, we
can prove several interesting properties if we restrict the expressive power of m-tables.

I Lemma 27. Let M = ({R},Σ,min,max) be an m-table such that, for every i = 1, . . . , N
we have maxi =∞. Then, SimpleLabel produces a p-sound m-labeling scheme.

This lemma tells us that whenever there is no upper bound on the size of the relations in
Σ, we can efficiently construct a p-sound and p-complete labeling scheme, and thus capture
exactly the possible tuples.

I Lemma 28. Let M = ({R},Σ,min,max) be an m-table such that, for every i = 1, . . . , N
we have mini = 0. Then, SimpleLabel produces a c-certain m-labeling scheme.

Lemma 28 is the analogue of Lemma 27: if the size of each relation in Σ is lower bounded
by 0, then we obtain a c-certain and c-sound m-labeling and thus compute exactly the certain
answers. Combining the two lemmas:

I Theorem 29. If M = ({R},Σ) is a free m-table, then SimpleLabel produces a sound
and complete m-labeling scheme w.r.t. ModS(M).

6.3 Certainty and Possibility in m-tables

I Proposition 30. Let M be a free m6 =-table. Then, the following tasks can be completed
in polynomial time data complexity: (1) tuple certainty, (2) tuple possibility, and (3) tuple
q-possibility and q-certainty for q ∈ RA+.
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Regarding arbitrary m6 =-tables, in the Appendix, we show why SimpleLabel fails to
produce a p-sound labeling scheme when the upper cardinality constraints are different than
∞, and why it fails to obtain a c-certain labeling when the lower cardinality constraints
are different than 0. We conclude with two results on the complexity of tuple certainty and
possibility for general m6 = tables.

I Proposition 31. Tuple possibility in m6 =-tables is NP-complete (data complexity).

I Proposition 32. Tuple certainty in m6 =-tables is coNP-complete (data complexity).

7 Related Work

Incomplete databases have been extensively studied in various contexts; we refer the reader
to [1, 25] for a survey and to [22] for a broad perspective on this area.

Numerous models for uncertain information are discussed and compared in [14]. Condi-
tional tables (c-tables) [16, 17] are considered one of the most expressive representation system
for representing incomplete databases. The RAprop model [24] has also been shown to be closed,
complete and as expressive as c-tables. We have provided a detailed comparison of m-tables
with c-tables in Section 3 and we have shown that m-tables are strictly more expressive than
c-tables (and thus than the RAprop as well). In [2, 3], the focus is on providing complexity
and decidability results for querying over incomplete databases and we have utilized results
from [2] to show complexity results for obtaining certain answers with m-tables.

The use of many-valued logic to handle missing information has been proposed in [6, 9, 26];
this is complementary to our work, and adding multi-valued logic into m-tables should be
interesting future work. Our definitions of certain and possible answers are similar to the
certain answers defined in [6, 23]; however, the notion of certainty and possibility in our work
is defined for extended tuples that represent a set of tuples and not just for single tuples. In
this context, our work is also related to the partial results work of [19], where the idea is to
execute a given query on an incomplete database in the usual way, and then provide insights
into the possible anomalies of the result tuples by labeling the tuples and attribute values
with potential errors. They do not focus on developing a formal framework to provide all
possible results and they lack a systematic approach to obtain labels for ‘partial’ results.

Querying over incomplete databases under the open world assumption has been explored
in [21] and [8]. In both these pieces of work, the focus is on decidability results on whether
complete queries can be obtained over possibly incomplete data, with constraints on the
missing data. However, our focus is on obtaining a representation system that provides all
possible results, while trying to label certain answers.

An extended tuple with all ‘m’ values is similar to the idea proposed in [10], where they
introduce a tuple with all attribute values as ‘open’ to represent an unknown number of
missing tuples. However, their work does not extend beyond the ‘open’ value; their focus is
not on obtaining a representation system or to identify certain answers.

Queries over data integrated (DI) sources have a similar scenario where, frequently, some
subset of the information will be uncertain or not available [7, 11, 20, 21]. Solution approaches
proposed in this context use schema information of the sources to improve the answers. Our
work can be seen as complementary to the work done in this area and our work is applicable
in DI scenarios as well.

ICDT 2017



21:18 m-tables: Representing Missing Data

8 Conclusion

In this paper, we proposed a new representation system called m-tables, which can represent
various forms of missing data and generalizes many existing representation systems. We
showed that m-tables form a closed and strong representation system for both set and bag
semantics, and are strictly more expressive than c-tables. Further, we propose a simple
labeling algorithm that labels tuples as certain or possible by interpreting the annotations of
the m-table. One immediate line for future work is to extend m-table semantics to aggregate
and group by operations. Another interesting direction is to use the annotations and labeling
scheme to “repair” a result when missing data becomes available in the future.
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Abstract
We study the classic NP-Hard problem of finding the maximum k-set coverage in the data stream
model: given a set system of m sets that are subsets of a universe {1, . . . , n}, find the k sets that
cover the most number of distinct elements. The problem can be approximated up to a factor
1− 1/e in polynomial time. In the streaming-set model, the sets and their elements are revealed
online. The main goal of our work is to design algorithms, with approximation guarantees as
close as possible to 1− 1/e, that use sublinear space o(mn). Our main results are:

Two (1 − 1/e − ε) approximation algorithms: One uses O(ε−1) passes and Õ(ε−2k) space1
whereas the other uses only a single pass but Õ(ε−2m) space.
We show that any approximation factor better than (1−(1−1/k)k) in constant passes requires
Ω(m) space for constant k even if the algorithm is allowed unbounded processing time2. We
also demonstrate a simple single-pass, (1−ε) approximation algorithm using Õ(ε−2mk) space.

We also study the maximum k-vertex coverage problem in the dynamic graph stream model. In
this model, the stream consists of edge insertions and deletions of a graph on N vertices. The
goal is to find k vertices that cover the most number of distinct edges.

We show that any constant approximation in constant passes requires Ω(N) space for constant
k whereas Õ(ε−2N) space is sufficient for a (1− ε) approximation and arbitrary k in a single
pass.
For regular graphs, we show that Õ(ε−3k) space is sufficient for a (1 − ε) approximation in
a single pass. We generalize this to a (κ − ε) approximation when the ratio between the
minimum and maximum degree is bounded below by κ.
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Digital Object Identifier 10.4230/LIPIcs.ICDT.2017.22

1 Introduction

The maximum set coverage problem is a classic NP-Hard problem that has a wide range of
applications including facility and sensor allocation [33], information retrieval [6], influence
maximization in marketing strategy design [29], and the blog monitoring problem where
we want to choose a small number of blogs that cover a wide range of topics [41]. In this
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1 Õ(·) suppresses polylog factors.
2 Note that limk→∞(1− (1− 1/k)k) = 1− 1/e.
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problem, we are given a set system of m sets that are subsets of a universe [n] := {1, . . . , n}.
The goal is to find the k sets whose union covers the largest number of distinct elements. For
example, in the application considered by Saha and Getoor [41], the universe corresponds to
n topics of interest to a reader, each subset corresponds to a blog that covers some of these
topics, and the goal is to maximize the number of topics that the reader learns about if she
can only choose k blogs.

It is well-known that the greedy algorithm, which greedily picks the set that covers
the most number of uncovered elements, is a 1− 1/e approximation. Furthermore, unless
P = NP , this approximation factor is the best possible [24].

The maximum vertex coverage problem is a special case of this problem in which the
universe corresponds to the edges of a given graph and there is a set corresponding to each
node of the graph that contains the subset of edges that are incident to that node. For this
problem, algorithms based on linear programming are known to achieve a 3/4 approximation
for general graphs [1] and a 8/9 approximation for bipartite graphs [15]. Assuming P 6= NP ,
there does not exist a polynomial-time approximation scheme. Recent work has focused on
finding purely combinatorial algorithms for this problem [14].

Streaming Algorithms. Unfortunately, for both problems, the aforementioned greedy and
linear programming algorithms do not scale well to massive data sets. This has motivated a
significant research effort in designing algorithms that could handle large data in modern
computation models such as the data stream model and the MapReduce model [34, 10]. In
the data stream model, the k-set coverage problem and the related set cover problem have
received a lot of attention in recent research [26, 18, 9, 45, 23, 7].

Two variants of the data stream model are relevant to our work. In the streaming-set model
[41, 25, 23, 40, 44, 31], the stream consists of m sets S1, . . . , Sm and each Si is encoded as the
list of elements in that set along with a unique ID for the set. For simplicity, we assume that
ID(Si) = i. In the dynamic graph stream model [2, 3, 4, 5, 27, 28, 25, 13, 20, 8, 32, 37, 36],
relevant to the maximum vertex coverage problem, the stream consists of insertions and
deletions of edges of the underlying graph. For a recent survey of research in graph streaming,
see [35]. Note that any algorithm for the dynamic graph stream model can also be used in
the streaming-set model; the streaming-set model is simply a special case in which there are
no deletions and edges are grouped by endpoint.

1.1 Related Work
Maximum Set Coverage. Saha and Getoor [41] gave a swap based 1/4 approximation
algorithm that uses a single pass and Õ(kn) space. At any point, their algorithm stores k sets
explicitly in the memory as the current solution. When a new set arrives, based on a specific
rule, their algorithm either swaps it with the set with the least contribution in the current
solution or does nothing and moves on to the next set in the stream. Subsequently, Ausiello
et al. [9] gave a slightly different swap based algorithm that also finds a 1/4 approximation
using one pass and the same space. Yu and Yuan [45] claimed an Õ(n) space, single-pass
algorithm with an approximation factor around 0.3 based on the aid of computer simulation.

Recently, Badanidiyuru et al. [10] gave a generic single-pass algorithm for maximizing a
monotone submodular function on the stream’s objects subject to the cardinality constraint
that at most k objects are selected. Their algorithm guarantees a 1/2 − ε approximation.
At a high level, based on a rule that is different from [41, 9] and a guess of the optimal
value, their algorithm decides if the next object (which is a set in our case) is added to the
current solution. The algorithm stops when it reaches the end of the stream or when k
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objects have been added to the solution. In the k-set coverage problem, the rule requires
knowing the coverage of the current solution. As a result, a careful adaptation to the k-set
coverage problem uses Õ(ε−1n) space. For constant ε, this result directly improves upon
[41, 9]. Subsequently, Chekuri et al. [19] extended this work to non-monotone submodular
function maximization under constraints beyond cardinality.

The set cover problem, which is closely related to the k-set coverage problem, has been
studied in [41, 26, 18, 23, 7]. See [7] for a comprehensive summary of results and discussion.

Maximum Vertex Coverage. The streaming k-vertex coverage problem was studied by
Ausiello et al. [9]. They first observed that simply outputting the k vertices with highest
degrees is a 1/2 approximation; this can easily be done in the streaming-set model. The
main results of their work were Õ(kN)-space algorithms that have better approximation for
special types of graph. Their results include a 0.55 approximation for regular graphs and a
0.6075 approximation for regular bipartite graphs. Note that their paper only considered
the streaming-set model whereas our results for maximum vertex coverage will consider the
more challenging dynamic graph stream model.

1.2 Our Contributions
Maximum k-set coverage. Our main goal is to achieve the 1− 1/e approximation that is
possible in the non-streaming or offline setting.

We present polynomial time data stream algorithms that achieve a 1− 1/e− ε approx-
imation for arbitrarily small ε. The first algorithm uses one pass and Õ(ε−2m) space
whereas the second algorithm uses O(ε−1) passes and Õ(ε−2k) space. We consider both
algorithms to be pass efficient but the second algorithm uses much less space at the cost
of using more than one pass. We note that storing the solution itself requires Ω(k) space.
Thus, we consider Õ(ε−2k) space to be surprisingly space efficient.
For constant k, we show that Ω(m) space is required by any constant pass (randomized)
algorithm to achieve an approximation factor better than (1− (1−1/k)k) with probability
at least 0.99; this holds even if the algorithm is permitted exponential time. To the best
of our knowledge, this is the first non-trivial space lower bound for this problem. However,
with exponential time and Õ(ε−2mk) space we observe that a 1 − ε approximation is
possible in a single pass.

For a slightly worse approximation, a 1/2− ε approximation in one pass can be achieved
using Õ(ε−3k) space. This follows by building on the result of Badanidiyuru et al. [10]. How-
ever, we provide a simpler algorithm and analysis. Finally, we design a 1/3− ε approximation
algorithm for the budgeted maximum set coverage problem using one pass and Õ(n) space.
In this version, each set S has a cost wS in the interval [0, L]. The goal is to find a collection
of sets whose total cost does not exceed L that cover the most number of distinct elements.
Khuller et al. [30] presented a polynomial time and 1−1/e approximation algorithm based on
the greedy algorithm and an enumeration technique. Our results are summarized in Figure 1.

Shortly after our submission, in an independent work, Bateni et al. [12] presented a
single-pass, Õ(ε−3m) space algorithm that finds a 1−1/e−ε approximation for the maximum
k-set coverage problem. We note that our approach also works in their edge arrival model in
which the stream reveals the set-element relationships one at a time.

Maximum k-vertex coverage. Compared to the most relevant previous work [9], we study
this problem in a more general model, i.e., the dynamic graph stream model. We manage
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Upper/Lower bound Number of passes Space Approximation Constraint
U O

(
ε−1) Õ(ε−2k) 1− 1/e− ε C

U 1 Õ(ε−3k) 1/2− ε C
U 1 Õ(ε−2m) 1− 1/e− ε C
U 1 Õ(ε−2mk) 1− ε C
U 1 Õ(ε−1n) 1/3− ε B
L constant Ω(mk−2) (1− (1− 1/k)k) + ε C

Figure 1 Summary of results for MaxSetCoverage, C: cardinality, B: budgeted.

Upper/Lower bound Number of passes Space Approximation
U 1 Õ(ε−2N) 1− ε
U 1 Õ(ε−3k) κ− ε
L 1 Ω(Nκ3/k) κ+ ε

Figure 2 Summary of results for MaxVertexCoverage. κ is ratio of lowest degree to highest degree.

to achieve a better approximation and space complexity for general graphs even when
comparing to their results for special types of graph. Our results are summarized in Figure
2. In particular, we show that

Õ(ε−2N) space is sufficient for a 1 − ε approximation (or a 3/4 − ε approximation if
restricted to polynomial time) and arbitrary k in a single pass. The algorithms in [9] use
Õ(kN) space and achieve an approximation worse than 0.61 even for special graphs.
Any constant approximation in constant passes requires Ω(N) space for constant k.
For regular graphs, we show that Õ(ε−3k) space is sufficient for 1− ε approximation in a
single pass. We generalize this to an κ − ε approximation when the ratio between the
minimum and maximum degree is bounded below by κ. We also extend this result to
hypergraphs.

Our techniques. On the algorithmic side, our basic approach is a “guess, subsample, and
verify” framework. At a high level, suppose we design a streaming algorithm for approximate
k-coverage that assumes a priori knowledge of a good guess of the optimal coverage. We show
that it is a) possible to run same algorithm on a subsampled universe defined by a carefully
chosen hash function and b) remove the assumption that a good guess was already known.

If the guess is at least nearly correct, running the algorithm on the subsampled universe
results in a small space complexity. However, there are two main challenges. First, an
algorithm instance with a wrong guess could use too much space. We simply terminate
those instances. The second issue is more subtle. Because the hash function is not fully
independent, we appeal to a special version Chernoff bound. The bound needs not guarantee
a good approximation unless the guess is near-correct. To this end, we use the F0 estimation
algorithm to verify the coverage of the solutions. Finally, we return the solution with
maximum estimate coverage. This framework allows us to restrict the analysis solely to the
near-correct guess. The analysis is, therefore, significantly simpler.

Some of our other algorithmic ideas are inspired by previous works. The “thresholding
greedy” technique was inspired by [18, 22, 11]. However, the analysis is different for our
problem. Furthermore, to optimize the number of passes, we rely on new observations.

Another algorithmic idea in designing one-pass space-efficient algorithm is to treat the
sets differently based on their contributions. During the stream, we immediately add the sets
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with large contributions to the solution. We store the contribution of each remaining sets
explicitly and solve the remaining problem offline. Har-Peled et al. [26] devised a somewhat
similar strategy but the details are different.

For the k-vertex coverage problem, we show that simply running the streaming cut-
sparsifier algorithm is sufficient and optimal up to a polylog factor. The novelty is to treat it
as an interesting corner case of a more space-efficient algorithm for near regular graphs, i.e.,
κ is bounded below.

One of the novelties is proving the lower bound via a randomized reduction from the
k-party set disjointness problem.

2 Algorithms for maximum k-set coverage

In this section, we design various algorithms for approximating MaxSetCoverage in the
data stream model. Our main algorithmic results in this section are two 1 − 1/e − ε

approximation algorithms. The first algorithm uses one pass and Õ(ε−2m) space whereas
the second algorithm uses O(ε−1) passes and Õ(ε−2k) space. We also briefly explore some
other trade-offs in a subsequent subsection.

Notation. If A is a collection of sets, then C(A) denotes the union of these sets.

2.1 (1 − 1/e− ε) approximation in one pass and Õ(ε−2m) space
Approach. The algorithm adds sets to the current solution if the number of new elements
they cover exceeds some threshold. The basic algorithm relies on an estimate z of the
optimum coverage OPT. The threshold for including a new set in the solution is that it
covers at least z/k new elements. Unfortunately, this threshold is too high to ensure that
we selected sets that achieve the required 1− 1/e− ε approximation and we may want to
revisit adding a set, say S, that was not added when it first arrived. To facilitate this, we
will explicitly store the subset of S that were uncovered when S arrived in a collection of sets
W . By the fact that S was not added immediately, we know that this subset is not too large.
At the end of the pass, we continue augmenting out current solutions using the collection W .

Technical Details. For the time being, we suppose that the algorithm is provided with an
estimate z such that OPT ≤ z ≤ 4 OPT. The algorithm uses C to keep track of the elements
that have been covered so far. Upon seeing a new set S, the algorithm stores S \C explicitly
in W if S covers few new elements. Otherwise, the algorithm adds S to the solution and
updates C immediately. At the end of the stream, if there are fewer than k sets in the
solution, we use the greedy approach to find the remaining sets from W .

The basic algorithm maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the
(at most k) sets in the current solution and C is the the union of the corresponding sets. We
also maintain a collection of sets W described above. The algorithm proceeds as follows:
1. Initialize C = ∅, I = ∅, W = ∅.
2. For each set S in the stream:

a. If |S \ C| < z/k then W ←W ∪ {S \ C}.
b. If |S \ C| ≥ z/k then I ← I ∪ {ID(S)} and C ← C ∪ S.

3. Post-processing: Greedily add k − |I| sets from W and update I and C appropriately.

I Lemma 1. There exists a single-pass, O (k logm+mz/k · logn)-space algorithm that finds
a 1− 1/e approximation of MaxSetCoverage.
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Proof. We observe that storing the set of covered elements C requires at most OPT logn =
O(z logn) bits of space. For each set S such that S \ C is stored explicitly in W, we need
O (z/k · logn) bits of space. Storing I requires O(k logm) space. Thus, the algorithm uses
the space claimed since k < m.

After the algorithm added the ith set S to the solution, let ai be the number of new
elements that S covers and bi be the total number of covered elements so far. Furthermore,
for i > 0, let ci = OPT−bi. Define a0 := b0 := 0 and c0 := OPT. At the end of the
stream, suppose |I| = j. Then, cj ≤ OPT−zj/k ≤ OPT(1 − 1/k)j . Now, we consider
the sets that were added in post-processing. We then proceed with the usual inductive
argument to show that ci ≤ (1 − 1/k)i OPT for i > j. Before the algorithm added the
(i+ 1)th set for i ≥ j, there must be a set that covers at least ci/k new elements. Therefore,
ci+1 = ci − ai+1 ≤ ci(1 − 1/k) ≤ OPT(1 − 1/k)i+1. The approximation follows since
ck ≤ OPT(1− 1/k)k ≤ 1/e ·OPT. J

Following the approach outlined in Section 2.3 we may assume z = O(ε−2k logm) and
that OPT ≤ z ≤ 4 OPT .

I Theorem 2. There exists a single-pass, Õ(ε−2m) space algorithm that finds a 1− 1/e− ε
approximation of MaxSetCoverage with high probability.

Remark. After the initial submission of this paper, we observed that a slight modification
of the above algorithm can be used to attain a 1 − 1/(4b) approximation for any b > 1 if
we are permitted unlimited post-processing time and increase the space by a factor of b.
Specifically, we increase the threshold for when to add a set immediately to the solution from
z/k to bz/k and then find the optimal set of k − |I| sets from W to add in post-processing.
For example, setting b = 4ε−1 yields a 1− ε approximation using Õ(ε−3m) space. See the
full version for further details [38].

2.2 (1 − 1/e− ε) approximation in O(ε−1) passes and Õ(ε−2k) space
Approach. Our second algorithm is based on the standard greedy approach but instead
of adding the set that increases the coverage of the current solution the most at each set,
we add a set if the number of new elements covered by this set exceeds a certain threshold.
This threshold decreases with each pass in such a way that after only O(ε−1) passes, we
have a good approximate solution but the resulting algorithm may use too much space. We
will fix this by first randomly subsampling each set at different rates and running multiple
instantiations of the basic algorithm corresponding to different rates of subsampling.

The basic “decreasing threshold” approach has been used before in different contexts
[11, 18, 22]. The novelty of our approach is in implementing this approach such that the
resulting algorithm uses small space and a small number of passes. For example, a direct
implementation of the approach by Badanidiyuru and Vondrák [11] in the streaming model
may require O(ε−1 log(m/ε)) passes and O(n) space3.

Technical Details. We will assume that we are given an estimate z of OPT such that
OPT ≤ z ≤ 4 OPT. We will later remove this assumption. We start by designing a
(1− 1/e− ε) approximation algorithm that uses Õ(k + z) space and O(ε−1) passes. We will
subsequently use a sampling approach to reduce the space to Õ(ε−2k).

3 Note that their work addressed the more general problem of maximizing sub-modular functions.
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As with the previous algorithm, the basic algorithm in this section also maintains
maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in the
current solution and C is the the union of the corresponding sets. The algorithm proceeds as
follows:
1. Initialize C = ∅ and I = ∅
2. For j = 1 to 1 + dlogα(4e)e where α = 1 + ε:

a. Make a pass over the stream. For each set S in the stream:
i. If |I| < k and |S \ C| ≥ z/k

(1+ε)j−1 then I ← I ∪ {ID(S)} and C ← C ∪ S.

I Lemma 3. There exists an O(ε−1)-pass, O(k logm+ z logn)-space algorithm that finds a
1− 1/e− ε approximation of MaxSetCoverage.

To analyze the algorithm, we introduce some notation. After the ith set was picked, let ai
be the number of new elements covered by this set and let bi be the total number of covered
elements so far. Furthermore, let ci = OPT−bi. We define a0 := 0 and b0 := 0.

I Lemma 4. Suppose the algorithm picks k′ sets. For 0 ≤ i ≤ k′ − 1, ai+1 ≥ ci/(αk).

Proof. Suppose the algorithm added the (i+ 1)th set S during the jth pass. Consider the
set of covered elements C just before the algorithm added the set S.

We first consider the case where j = 1. Then, the algorithm only adds S if

|S \ C| ≥ z/k ≥ OPT /k ≥ ci/k ≥ ci/(αk) .

Now, we consider the case where j > 1. Note that just before the algorithm added
S, there must exist a set S′ (which could be S) that had not been already added where
|S′ \ C| ≥ ci/k. This follows because the optimum collection of k sets covers at least ci
elements that are currently uncovered and hence one of these sets must cover at least ci/k
new elements. But since S′ had not already been added, we know that S′ was not added
during the first j − 1 passes and thus, |S′ \ C| < z/(kαj−2). Therefore,

z/(kαj−2) > |S′ \ C| ≥ ci/k

and in particular, z/(kαj−1) > ci/(kα). Since the algorithm picked S, we have ai+1 =
|S \ C| ≥ z/(kαj−1) ≥ ci/(kα) as required. J

Proof of Lemma 3. It is immediate that the number of passes is O(ε−1). The algorithm
needs to store the sets I and C. Since |C| ≤ z, the total space is O(k logm+ z logn).

To argue about the approximation factor, we first prove by induction that we always have
ci ≤

(
1− 1

αk

)i OPT for i ≤ k′. Trivially, c0 ≤ (1− 1
αk )0 OPT. Suppose ci ≤ (1− 1

αk )i OPT.
Then, according to Lemma 4, ai+1 ≥ ci/(αk). Thus,

ci+1 = ci − ai+1 ≤ ci −
ci
αk

= ci

(
1− 1

αk

)
≤ OPT

(
1− 1

αk

)i+1
.

Suppose the final solution contains k sets. Then

ck ≤
(

1− 1
αk

)k
OPT ≤ e−1/α OPT ≤ (1/e+ ε) OPT .

As a result, the final solution covers bk = OPT−ck ≥ (1− 1/e− ε) OPT.
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Suppose the collection of sets S chosen by the algorithm contains fewer than k sets. We
define S̃ := S \ C(S) to be the set of elements in S that are not covered by the final solution.
For each set S in the optimum solution O, if S is unpicked, then |S̃| ≤ z/(4ek). Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ z

4e ≤ |C(S)|+ OPT
e

.

Hence, |C(S)| ≥ (1− 1/e) OPT. J

Following the approach outlined in Section 2.3 we may assume z = O(ε−2k logm) and
that OPT ≤ z ≤ 4 OPT .

I Theorem 5. There exists an O(1/ε)-pass, Õ(ε−2k) space algorithm that finds a 1− 1/e− ε
approximation of MaxSetCoverage with high probability.

2.3 Removing Assumptions via Guessing, Sampling, and Sketching
In this section, we address the fact that in the previous two sections we assumed a priori
knowledge of a constant approximation of the maximum number of elements that could be
covered and that this optimum was of size O(ε−2k logm).

Addressing both issues are interrelated and are based on a subsampling approach. The
basic idea is to run the above algorithms on a new instance formed by removing occurrences of
certain elements in [n] from all the input sets. The goal is to reduce the maximum coverage to
min(n,O(ε−2k logm)) while ensuring that a good approximation in the subsampled instance
corresponds to a good approximation in the original instance. In the rest of this section we
will assume that k = o(ε2n/ logm) since otherwise this bound is trivial.

Subsampling. Assume we know a value v that satisfies OPT /2 ≤ v ≤ OPT. Let c be some
sufficiently large constant and set λ = cε−2k logm. Let h : [n] → {0, 1} be drawn from a
family of 2λ-wise independent hash functions where

p := Pr [h(e) = 1] = λ/v.

The space to store h is Õ(ε−2k). For any set S that is a subset of [n], we define

S′ := {e ∈ S : h(e) = 1}.

We use the following Chernoff bound for limited independent random variables.

I Theorem 6 (Schmidt et al. [42]). Let X1, . . . , Xn be boolean random variables. Let
X =

∑n
i=1 Xi and µ = E [X]. Suppose µ ≤ n/2. If Xi are dγµe-wise independent, then

Pr [|X − µ| ≥ γµ] ≤ exp
(
−bmin(γ, γ2) · µ/3c

)
.

The next lemma and its corollary will allow us to argue that approximating the maximum
coverage amongst the elements {e ∈ [n] : h(e) = 1} gives only a slightly weaker approximation
of the maximum coverage amongst the original set of elements.

I Lemma 7. With high probability4, for all collections of k sets S1, . . . , Sk in the stream,
|S′1 ∪ . . . ∪ S′k| = |S1 ∪ . . . ∪ Sk|p± εvp .

4 We consider 1− 1/poly(m) or 1− 1/poly(n) as high probability.
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Proof. Fix any collection of k sets S1, . . . , Sk. Let D = |S1∪ . . .∪Sk| and D′ = |S′1∪ . . .∪S′k|.
We first observe that since k = o(ε2n/ logm), we may assume that λ = o(n).

µ := E [D′] = pD ≤ pOPT < 2pv = 2λ ≤ n/2.

Appealing to the Chernoff bound with limited independence Theorem 6, we have

Pr [|D′ − µ| ≥ εvp] = Pr [|D′ − µ| ≥ γDp] ≤ exp
(
−bmin(γ, γ2) · µ/3

⌋
)

where γ = εv/D since the hash function was dγµe = dεvpe-wise independent. But note that

exp
(
−bmin(γ, γ2) · µ3 c

)
= exp

(
−bmin(1, γ) · εvp3 c

)
≤ exp

(
−b12 ·

ck logm
3 c

)
≤ 1
m10k

where we use the fact that γ = εv/D ≥ ε/2 because D ≤ OPT ≤ 2v. The lemma follows by
taking the union bound over all

(
m
k

)
collections of k sets. J

In particular, the following corollary establishes that a 1/t approximation when restricted
to elements in {e ∈ [n] : h(e) = 1} yields a (1/t− 2ε) approximation and at most pOPT(1 +
ε) = O(ε−2k logm) of these elements can be covered by k sets.

I Corollary 8. Let OPT′ be optimum number of elements that can be covered from {e ∈ [n] :
h(e) = 1}. Then,

pOPT(1 + ε) ≥ OPT′ ≥ pOPT(1− ε)

Furthermore if U1, . . . , Uk satisfies |U ′1 ∪ . . . ∪ U ′k| ≥ pOPT(1− ε)/t for t ≥ 1 then

|U1 ∪ . . . ∪ Uk| ≥ OPT(1/t− 2ε) .

Proof. The fact that OPT′ ≥ pOPT(1− ε) follows by applying Lemma 7 to the optimum
solution. According to Lemma 7, for all collections of k sets U1, . . . , Uk, we have

|U ′1 ∪ . . . ∪ U ′k| = |U1 ∪ . . . ∪ Uk|p± εvp ≤ pOPT(1 + ε)

which implies the first inequality.
Now, suppose |U ′1∪. . .∪U ′k| ≥ pOPT(1−ε)/t. Since |U ′1∪. . .∪U ′k|−εvp ≤ |U1∪. . .∪Uk|p,

we deduce that |U1 ∪ . . . ∪ Uk| ≥ OPT(1− ε)/t− εv ≥ OPT(1/t− 2ε). J

Hence, since we know v such that OPT /2 ≤ v ≤ OPT, then we know that

(1− ε)λ ≤ OPT′ ≤ 2(1 + ε)λ (1)

with high probability according to Corollary 8. Then, by setting z = 2(1 + ε)λ, we ensure
that OPT′ ≤ z ≤ 4 OPT′.

Guessing v and F0 Sketching. We still need to address how to compute v such that
OPT /2 ≤ v ≤ OPT. The natural approach is to make dlog2 ne guesses for v corresponding to
1, 2, 4, 8 . . . since one of these will be correct.5 We then perform multiple parallel instantiations
of the algorithm corresponding to each guess. This increases the space by a factor of O(logn).

5 The number of guesses can be reduced to dlog2 ke if the size of the largest set is known since this gives a
k approximation of OPT. The size of the large set can be computed in one additional pass if necessary.
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But how do we determine which instantiation corresponds to the correct guess? The most
expedient way to deal with this question is to sidestep the issue as follows. Instantiations
corresponding to guesses that are too small may find it is possible to cover ω(ε−2k logm)
elements so we will terminate any instantiation as soon as it covers more than O(ε−2k logm)
elements. Note that by Corollary 8 and Equation 1, we will not terminate the instantiation
corresponding to the correct guess.

Among the instantiations that are not terminated we simply return the best solution. To
find the best solution we want to estimate |∪i∈ISi|, i.e., the coverage of the corresponding sets
before the subsampling. To compute this estimate in small space we can use the F0-sketching
technique. For the purposes of our application, we can summarize the required result as
follows:

I Theorem 9 (Cormode et al. [21]). There exists an Õ(ε−2 log δ−1)-space algorithm that,
given a set S ⊆ [n], can construct a data structureM(S), called an F0 sketch of S, that has
the property that the number of distinct elements in a collection of sets S1, S2, . . . , Sr can be
approximated up to a 1 + ε factor with probability at least 1 − δ given the collection of F0
sketchesM(S1),M(S2), . . . ,M(Sr).

For the algorithms in the previous section we can maintain a sketchM(C) of the set of
covered elements in Õ(ε−2 log δ−1) space and from this can estimate the desired coverage.
We set δ ← Θ(1/n · logn) so that coverages of all non-terminated instances are estimated up
to a factor (1 + ε) with high probability.

2.4 Other Algorithmic Results
In this final subsection, we briefly review some other algorithmic results for MaxSetCoverage,
either with different trade-offs or for a “budgeted” version of the problem.

2.4.1 (1 − ε) approximation in one pass and Õ(ε−2m) space
In the previous subsection, we gave a single-pass 1− 1/e− ε approximation using Õ(ε−2m)
space. Here we observe that if we are permitted Õ(ε−2mk) space and unlimited post-
processing time then a 1− ε approximation can be achieved directly from the F0 sketches.

Specifically, in one pass we construct the F0 sketches of all m sets,M(S1), . . . ,M(Sm)
where the failure probability of the sketches is set to δ = 1/(nmk). Thus, at the end of
the stream, one can 1 + ε approximate the coverage |Si1 ∪ . . . ∪ Sik | for each collection of k
sets Si1 , . . . , Sik with probability at least 1− 1/(nmk). Since there are at most

(
m
k

)
≤ mk

collections of k sets, appealing to the union bound, we could guarantee that the coverages
of all of the collections of k sets are preserved up to a 1 + ε factor with probability at least
1− 1/n. The space to store the sketches is Õ(ε−2mk).

I Theorem 10. There exists a single-pass, Õ(ε−2mk)-space algorithm that finds a 1 − ε
approximation of MaxSetCoverage with high probability .

2.4.2 (1/2 − ε) approximation in one pass and Õ(ε−3k) space
We next observe that it is possible to achieve a 1/2− ε approximation using a single pass and
Õ(ε−3k) space. Consider the following simple single-pass algorithm that uses an estimate z
of OPT such that OPT ≤ z ≤ (1 + ε) OPT. As with previous algorithms, the basic algorithm
in this section also maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at
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most k) sets in the current solution and C is the the union of the corresponding sets. The
algorithm proceeds as follows:
1. Initialize C = ∅ and I = ∅.
2. For each set S in the stream:

a. If |S \ C| ≥ z/(2k) and |I| < k then I ← I ∪ {ID(S)} and C ← C ∪ S.

The described algorithm is a 1/2− ε approximation. To see this, if the solution consists
of k sets, then the final solution obviously covers at least z/2 ≥ OPT /2 elements. Now we
consider the case in which the collection of sets S chosen by the algorithm contains fewer
than k sets. We define S̃ := S \ C(S) to be the set of elements in S that are not covered
by the final solution. For each set S in the optimum solution O, if S is unpicked, then
|S̃| ≤ z/(2k). Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ z

2

≤ |C(S)|+ OPT(1 + ε)
2 .

and thus |C(S)| ≥ 1−ε
2 OPT.

We note that the above algorithm uses O(k logm + z logn) space but we can use an
argument similar to that used in Section 2.3 to reduce this to Õ(ε−3k). The only difference
is since we need z such that OPT′ ≤ z ≤ (1 + ε) OPT′ we will guess v in powers of 1 + ε/4
and set λ = 16cε−2k logm. Then Equation 1, becomes (1− ε/4)λ ≤ OPT′ ≤ (1 + ε/4)2λ and
hence z = (1 + ε/4)2λ is a sufficiently good estimate.

I Theorem 11. There exists a single-pass, Õ(ε−3k) space algorithm that finds a 1/2 − ε
approximation of MaxSetCoverage with high probability.

2.4.3 Budgeted Maximum Coverage
In this variation, each set S has a cost wS ∈ [0, L]. The problem asks to find the collection
of sets whose total cost is at most L that covers the most number of distinct elements. For
I ⊆ [n], we use w(I) to denote

∑
i∈I wSi .

We present the algorithm assuming knowledge of an estimate z such that OPT ≤
z ≤ (1 + ε) OPT; this assumption can be removed by running the algorithm for guesses
1, (1 + ε), (1 + ε)2, . . . for z and returning the best solution found. The basic algorithm
maintains I ⊆ [m], C ⊆ [n] where I corresponds to the ID’s of the (at most k) sets in the
current solution and C is the the union of the corresponding sets. The algorithm proceeds as
follows:
1. Initialize C = ∅ and I = ∅
2. For each set S in the stream:

a. If |S \ C| ≥ 2z
3 ·

wS

L then:
i. If w(I) + wS > L: Terminate and return:

I ←

{
I if |C| ≥ |S|
{ID(S)} if |C| < |S|

ii. I ← I ∪ {ID(S)} and C ← C ∪ S.

I Lemma 12. If the clause in line 2ai is never satisfied, then thealgorithm returns a 1/3− ε
approximation.
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Proof. Suppose the collection of sets chosen by the algorithm is S. We define S̃ := S \ C(S)
to be the set of elements in S that are not covered by the final solution. For each set S in
the optimum solution O, if S is unpicked, then |S̃| ≤ 2z/3 · wS/L. Therefore,

OPT =

∣∣∣∣∣ ⋃
S∈O∩S

S

∣∣∣∣∣+

∣∣∣∣∣∣
⋃

S∈O\S

S̃

∣∣∣∣∣∣ ≤ |C(S)|+
∑

S∈O\S

∣∣S̃∣∣ ≤ |C(S)|+ 2z
3

≤ |C(S)|+ 2 OPT(1 + ε)
3 ,

and thus |C(S)| ≥ 1−2ε
3 OPT. J

I Lemma 13. If the clause in line 2ai is satisfied at some point, then the algorithm returns
a 1/3 approximation.

Proof. Suppose the clause is satisfied when the set S is being considered. Then

|S \ C|+ |C| ≥ 2z
3 ·

wS + w(I)
L

≥ 2z
3

where we used the fact that wS + w(I) > L. The claim then follows immediately. J

I Theorem 14. There exists a single-pass, Õ(ε−1n)-space algorithm that finds a 1/3 − ε
approximation of budgeted MaxSetCoverage.

3 Algorithms for Maximum k-Vertex Coverage

In this section, we present algorithms for the maximum k-vertex coverage problem. We present
our results in terms of hypergraphs for full generality. The generalization to hypergraphs can
also be thought of as a natural “hitting set" variant of maximum coverage, i.e., the stream
consists of a sequence of sets and we want to pick k elements in such a way to maximize the
number of sets that include a picked element.

Notation. Given a hypergraph G and a subset of nodes S, we define CG(S) to be the
number of edges that contain at least one node in S. Recall that the maximum k-vertex
coverage problem is to approximate the maximum value of CG(S) over all sets S containing
k nodes. We use EG and VG to denote the set of edges and nodes of the hypergraph G

respectively.
The size of a cut (S, V \S) in a hypergraph G, denoted as δG(S), is defined as the number

of hyperedges that contain at least one node in both S and V \ S. In the case that G is
weighted, δG(S) denotes the total weight of the cut. A core idea to our approach is to use
hypergraph sparsification:

I Definition 15 (ε-sparsifier). Given a hypergraph G = (V,E), we say that a weighted
subgraph H = (V,E′) is an ε-sparsifier for G if for all S ⊆ V , δG(S) ≈ε δH(S).

Any graph on N nodes has an ε-sparsifier with only Õ(ε−2N) edges [43]. Similarly,
any hypergraph in which the maximum size of the hyperedges is bounded by d (rank d

hypergraphs) has an ε-sparsifier with only Õ(ε−2dN) edges. Furthermore, an ε-sparsifier
can be constructed in the dynamic graph stream model using one pass and Õ(ε−2dN) space
[25, 27].

First, we show that it is possible to approximate all the coverages by constructing a
sparsifier of a slightly modified graph. In particular, we construct the sparsifier H of the
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graph G′ with an extra node v, i.e., VG′ = VG ∪ {v}, and for every hyperedge e ∈ EG, we
put the hyperedge e ∪ {v} in EG′ . It is easy to see that for all S that is a subset of VG,
CG(S) = δG′(S). Therefore, it is immediate that we could 1 + ε approximate all the coverages
in G by constructing the sparsifer of G′.

I Theorem 16. There exists a single-pass, Õ(ε−2dN)-space algorithm that finds a 1 − ε
approximation of MaxVertexCoverage of rank d hypergraphs with high probability.

The above theorem assumes unbounded post-processing time. If k is constant, the
post-processing will be polynomial. For larger k, if we still require polynomial running
time then, after constructing the ε-sparsifier H, we could either use the (1 − (1 − 1/d)d)
approximation algorithm via linear programming [1] or the folklore (1− 1/e) approximation
greedy algorithm.

3.1 Algorithm for Near-Regular Hypergraphs
In this subsection, we show that is possible to reduce the space used to Õ(ε−3dk) in the case
of hypergraphs that are regular or nearly regular. Define κ ≤ 1 to be the ratio between the
smallest degree and the largest degree; for a regular hypergraph κ = 1. We show that a
(κ− ε) approximation is possible using Õ(ε−3dk) space for rank d hypergraphs. This also
implies a (1− ε) approximation for regular hypergraphs.

I Theorem 17. There exists a single-pass, Õ(ε−3dk)-space algorithm that finds a (κ − ε)
approximation of MaxVertexCoverage of hypergraphs of rank d with high probability .

Proof. Suppose we uniformly sample a set S of k nodes. Let LS(y) = max(0, |y ∩ S| − 1).
Then the coverage of S satisfies

CG(S) =
∑
y∈EG

I[S ∩ y 6= ∅] =
∑
y∈EG

(|S ∩ y| − LS(y)) ≥ kt1 −
∑
y∈EG

LS(y) .

where the last inequality follows since every node in S covers at least t1 hyperedges.
Let ξy(j) denote the event that j nodes in the hyperedge y are in S and let |y| denote

the number of nodes in y. We have

E [LS(y)] =
|y|∑
j=1

(j − 1) Pr [ξy(j)] =

 |y|∑
j=0

j Pr [ξy(j)]

− 1 + Pr [ξy(0)] .

The sum
∑|y|
j=0 j Pr [ξy(j)] is the expected value of the hypergeometric distribution and

therefore it evaluates to |y|k/N . Furthermore,

Pr [ξy(0)] =
k−1∏
i=0

(
1− |y|

N − i

)
≤
(

1− |y|
N

)k
≤ exp

(
−k|y|
N

)
≤ 1− k|y|

N
+ 1

2

(
k|y|
N

)2
.

The last inequality follows from taking the first three terms of the Taylor’s expansion.
Hence,

E [LS(y)] ≤ k|y|
N
− 1 + 1− k|y|

N
+ 1

2

(
k|y|
N

)2
= 1

2

(
k|y|
N

)2
.

Hence, if N ≥ 4kd/ε, then∑
y∈EG

E [LS(y)] ≤ 1
2
∑
y∈EG

(
k|y|
N

)2
≤ 1

2d
(
k

N

)2 ∑
y∈EG

|y| ≤ 1
2d
(
k

N

)2
Nt2 ≤

1
8εkt2.
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By an application of Markov’s inequality,

Pr

 ∑
y∈EG

LS(y) ≥ εkt2

 ≤ 1/8 .

Thus, if we sample O(logN) sets of k nodes in parallel, with high probability, there is a sample
set S of k nodes satisfying

∑
y∈EG

LS(y) ≤ εkt2 which implies that CG(S) ≥ kt1 − εkt2 ≥
(κ− ε) OPT. If N ≤ 4kd/ε, we simply construct the sparsifier of G′ as described above to
achieve a 1− ε approximation. J

4 Lower Bounds

In this section, we prove space lower bounds for data stream algorithms that approximate
MaxSetCoverage or MaxVertexCoverage. In particular, these imply that improving over an
(1 − 1/e) approximation of MaxSetCoverage with constant passes and constant k requires
Ω(m) space. Recall that, still assuming k is constant, we designed a constant-pass algorithm
that returned a (1−1/e−ε) approximation using Õ(ε−2k) space. For constant k, we also show
that improving over a κ approximation (where κ is the ratio between the lowest degree and
the highest degree) for MaxVertexCoverage requires Ω(Nκ3) space. Our algorithm returned
a κ− ε approximation using Õ(ε−3k) space.

Approach. We prove both bounds by a reduction from r-player set-disjointness in com-
munication complexity. In this problem, there are r players where the ith player has a set
Si ⊆ [u]. It is promised that exactly one of the following two cases happens.

Case 1 (NO instance): All the sets are pairwise disjoint.
Case 2 (YES instance): There is a unique element e ∈ [u] such that e ∈ Si for all i ∈ [r].

The goal of the communication problem is the rth player answers whether the input is a
YES instance or a NO instance correctly with probability at least 0.9. We shall denote this
problem by DISJr(u).

The communication complexity of the above problem in p-round, one-way model (where
each round consists of player 1 sending a message to player 2, then player 2 sending a
message to player 3 and so on) is Ω(u/r) [17] even if the players may use public randomness.
This implies that in any randomized communication protocol, the maximum message sent
by a player contains Ω(u/(pr2)) bits. Without loss of generality, we could assume that
|S1 ∪ S2 ∪ . . . ∪ Sr| ≥ u/4 via a padding argument.

I Theorem 18. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that finds a
(1+ ε)(1− (1−1/k)k) approximation of MaxSetCoverage with probability at least 0.99 requires
Ω(m/k2) space even when all the sets have the same size.

Proof. Recall that (1 + ε)(1 − (1 − 1/k)k) ≥ 1 − 1/e + O(ε). Our proof is a reduction
from DISJk(m). Consider a sufficiently large n where k divides n. For each i ∈ [m], let Pi
be a random partition of [n] into k sets V i1 , . . . , V ik of equal size. Each partition is chosen
independently and the players agree on these partitions using public randomness before
receiving the input.

For each player j, if i ∈ Sj , then she puts V ij in the stream. According to the aforemen-
tioned assumption, the stream consists of at least m/4 sets.

If the input is a NO instance, then for each i ∈ [m], there is at most one set V ij in the
stream. Hence, the stream consists of independent random sets of size n/k. Therefore, for each
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e ∈ [n] and any k sets V i1j1
, . . . , V ikjk

in the stream, Pr
[
e ∈ V i1j1

∪ . . . ∪ V ikjk

]
= 1− (1− 1/k)k.

By an application of Chernoff bound for negatively correlated boolean random variables [39],

Pr
[∣∣∣∣∣|V i1j1

∪ . . . ∪ V ikjk
| −

(
1−

(
1− 1

k

)k)
n

∣∣∣∣∣ > ε

(
1−

(
1− 1

k

)k)
n

]

≤ 3 exp
(
−ε2

(
1−

(
1− 1

k

)k)
n

3

)
≤ 3 exp

(
−ε2(1− 1/e)n/3

)
≤ 1
m10+k .

The last inequality holds when n is a sufficiently large multiple of kε−2 logm. Therefore,
the maximum coverage in this case is at most (1 + ε)(1− (1− 1/k)k)n with probability at
least 1− 1/m10 by taking the union bound over all

(
m
k

)
≤ mk possible k sets.

If the input is a YES instance, then clearly, the maximum coverage is n. This is because
there exists i ∈ [m] such that i ∈ S1 ∩ . . . ∩ Sk and therefore V i1 , . . . , V ik are in the stream.

Therefore, any constant pass and O(s)-space algorithm that finds a (1+2ε)(1−(1−1/k)k)
approximation of the maximum coverage with probability at least 0.99 implies a protocol to
solve the k-party disjointness problem using O(s) bits of communication. Thus, s = Ω(m/k2)
as required. J

Consider the sets S1, . . . , Sr ⊆ [u] that satisfy the unique intersection promise as in
DISJr(u). Let X be the r by u matrix in which the row Xi is the characteristic vector of Si.
Suppose there are r′ = Ω(r2) players. Chakrabarti et al. [16] showed that if each entry of
X is given to a unique player and the order in which the entries are given to the players is
random, then the players need to use Ω(u/r) bits of communication to tell whether the sets
is a YES instance or a NO instance with probability at least 0.9. Thus, in any randomized
protocol, the maximum message sent by a player contains Ω(u/r3) bits. Hence, using the
same reduction and assuming constant k, we show that the same lower bound holds even for
random order stream.

I Theorem 19. Assuming n = Ω(ε−2k logm), any constant-pass algorithm that finds a
(1+ ε)(1− (1−1/k)k) approximation of MaxSetCoverage with probability at least 0.99 requires
Ω(m/k3) space even when all the sets have the same size and arrive in random order.

Next, we prove a lower bound for the k-vertex coverage problem for graphs where the
ratio between the minimum degree and the maximum degree is at least κ. We show that for
constant k, beating κ approximation for constant κ requires Ω(N) space.

Since κ can be smaller than any constant, this also establishes that Ω(N) space is required
for any constant approximation of MaxVertexCoverage.

I Theorem 20. For ε > 0, any constant-pass algorithm that finds a (κ+ ε) approximation
of MaxVertexCoverage with probability at least 0.99 requires Ω(Nκ3/k) space.

Proof. Initially, assume k = 1. We consider the multi-party set disjointness problem
DISJt(N ′) where t = 1/κ and N ′ = N/t. Here, there are t players and the input sets are
subsets of [N ′]. We consider a bipartite graph where the set of possible nodes are L ∪ R
where L = {ui}i∈[N ′] and R = {vi,j}i∈[N ′],j∈[t]. Note that this graph has (t+ 1)N ′ = Θ(N)
nodes. However we only consider a node to exist if the stream contains an edge incident to
that node.

The j-th player defines a set of edges on this graph based on their set Sj as follows. If
i ∈ Sj she puts the edge between ui and vi,j . If S1, . . . , St is a YES instance, then there
must be a node ui that has degree t. If A is a NO instance, then every node in the graph

ICDT 2017
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has degree at most 1. Hence the ratio of minimum degree to maximum degree is at least
1/t = κ as required.

Thus, for k = 1, a 1/t approximation with probability at least 0.99 on a graph of N
nodes implies a protocol to solve DISJt(N ′). Therefore, the algorithm requires Ω(Nκ3)
space. For general k, we make k copies of the above construction to deduce the lower bound
Ω(Nκ3/k). J

Acknowledgements. We thank Sagar Kale for discussions of related work.

References

1 Alexander A. Ageev and Maxim Sviridenko. Approximation algorithms for maximum cov-
erage and max cut with given sizes of parts. In IPCO, volume 1610 of Lecture Notes in
Computer Science, pages 17–30. Springer, 1999.

2 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In ICML, volume 37 of JMLR Workshop and
Conference Proceedings, pages 2237–2246. JMLR.org, 2015.

3 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In SODA, pages 459–467. SIAM, 2012.

4 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In PODS, pages 5–14. ACM, 2012.

5 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in dynamic
graph streams. In APPROX-RANDOM, volume 8096 of Lecture Notes in Computer Science,
pages 1–10. Springer, 2013.

6 Aris Anagnostopoulos, Luca Becchetti, Ilaria Bordino, Stefano Leonardi, Ida Mele, and
Piotr Sankowski. Stochastic query covering for fast approximate document retrieval. ACM
Trans. Inf. Syst., 33(3):11:1–11:35, 2015.

7 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming
complexity of the set cover problem. In STOC, pages 698–711. ACM, 2016.

8 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In SODA, pages
1345–1364. SIAM, 2016.

9 Giorgio Ausiello, Nicolas Boria, Aristotelis Giannakos, Giorgio Lucarelli, and Vangelis Th.
Paschos. Online maximum k-coverage. Discrete Applied Mathematics, 160(13-14):1901–
1913, 2012.

10 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In KDD,
pages 671–680. ACM, 2014.

11 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In SODA, pages 1497–1514. SIAM, 2014.

12 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost optimal
streaming algorithms for coverage problems. CoRR, abs/1610.08096, 2016.

13 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E.
Tsourakakis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-
pass dynamic streams. In STOC, pages 173–182. ACM, 2015.

14 Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Georgios Stamoulis. A 0.821-
ratio purely combinatorial algorithm for maximum k-vertex cover in bipartite graphs. In
LATIN, volume 9644 of Lecture Notes in Computer Science, pages 235–248. Springer, 2016.



A. McGregor and H.T. Vu 22:17

15 Bugra Caskurlu, Vahan Mkrtchyan, Ojas Parekh, and K. Subramani. On partial vertex
cover and budgeted maximum coverage problems in bipartite graphs. In IFIP TCS, volume
8705 of Lecture Notes in Computer Science, pages 13–26. Springer, 2014.

16 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. Electronic Colloquium on Computational Com-
plexity (ECCC), 18:62, 2011.

17 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In IEEE Conference on
Computational Complexity, pages 107–117. IEEE Computer Society, 2003.

18 Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass complexity of
semi-streaming set cover. In SODA, pages 1365–1373. SIAM, 2016.

19 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submod-
ular function maximization. In ICALP (1), volume 9134 of Lecture Notes in Computer
Science, pages 318–330. Springer, 2015.

20 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
SODA, pages 1326–1344. SIAM, 2016.

21 Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data
streams using hamming norms (how to zero in). IEEE Trans. Knowl. Data Eng., 15(3):529–
540, 2003.

22 Graham Cormode, Howard J. Karloff, and Anthony Wirth. Set cover algorithms for very
large datasets. In CIKM, pages 479–488. ACM, 2010.

23 Yuval Emek and Adi Rosén. Semi-streaming set cover - (extended abstract). In ICALP
(1), volume 8572 of Lecture Notes in Computer Science, pages 453–464. Springer, 2014.

24 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
25 Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge connectivity

in dynamic graph streams. In PODS, pages 241–247. ACM, 2015.
26 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards tight bounds

for the streaming set cover problem. In PODS, pages 371–383. ACM, 2016.
27 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.

Single pass spectral sparsification in dynamic streams. In FOCS, pages 561–570. IEEE
Computer Society, 2014.

28 Michael Kapralov and David P. Woodruff. Spanners and sparsifiers in dynamic streams. In
PODC, pages 272–281. ACM, 2014.

29 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11:105–147, 2015.

30 Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem.
Inf. Process. Lett., 70(1):39–45, 1999.

31 Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In
6th Innovations in Theoretical Computer Science, 2015.

32 Christian Konrad. Maximum matching in turnstile streams. In ESA, volume 9294 of Lecture
Notes in Computer Science, pages 840–852. Springer, 2015.

33 Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular
functions. In AAAI, pages 1650–1654. AAAI Press, 2007.

34 Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy
algorithms in mapreduce and streaming. TOPC, 2(3):14, 2015.

35 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,
2014.

ICDT 2017



22:18 Better Streaming Algorithms for the Maximum Coverage Problem

36 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph in
dynamic graph streams. In MFCS (2), volume 9235 of Lecture Notes in Computer Science,
pages 472–482. Springer, 2015.

37 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting
triangles in data streams. In PODS, pages 401–411. ACM, 2016.

38 Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage
problem. CoRR, abs/1610.06199, 2016. URL: http://arxiv.org/abs/1610.06199.

39 Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via
an extension of the chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

40 Jaikumar Radhakrishnan and Saswata Shannigrahi. Streaming algorithms for 2-coloring
uniform hypergraphs. In Algorithms and Data Structures - 12th International Symposium,
WADS 2011, New York, NY, USA, August 15-17, 2011. Proceedings, pages 667–678, 2011.
doi:10.1007/978-3-642-22300-6_57.

41 Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application
to multi-topic blog-watch. In SDM, pages 697–708. SIAM, 2009.

42 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

43 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

44 He Sun. Counting hypergraphs in data streams. CoRR, abs/1304.7456, 2013. URL: http:
//arxiv.org/abs/1304.7456.

45 Huiwen Yu and Dayu Yuan. Set coverage problems in a one-pass data stream. In SDM,
pages 758–766. SIAM, 2013.

http://arxiv.org/abs/1610.06199
http://dx.doi.org/10.1007/978-3-642-22300-6_57
http://arxiv.org/abs/1304.7456
http://arxiv.org/abs/1304.7456

	p00-frontmatter
	Preface
	Organization

	p01-feier
	Introduction
	Preliminaries
	From MDDLog via Simple MDDLog to CSPs
	FO- and MDLog-Rewritability of Boolean MDDLog Programs
	Shape of Rewritings and Obstructions for MMSNP sentences
	Datalog-Rewritability of Boolean MDDLog Programs and Canonical Datalog Programs
	Datalog-Rewritability of Boolean MDDLog Programs
	Canonical Datalog-Rewritings

	Non-Boolean MDDLog Programs
	Deciding Rewritability
	Canonical Datalog-Rewritings
	Shape of Rewritings and Obstructions

	Ontology-Mediated Queries
	Discussion

	p01-ZZZ-Blank
	p02-marx
	p02-ZZZ-Blank
	p03-milo
	p03-ZZZ-Blank
	p04-afrati
	Introduction
	GYM: A Multiround Join Algorithm
	Log-GTA: Log-depth GHDs

	Related Work
	Preliminaries
	Generalized Hypertree Decompositions
	MapReduce and Cost Model
	Assumptions
	Basic Relational Operations in MR

	Distributed Yannakakis
	Serial Yannakakis Algorithm
	DYM-n
	DYM-d

	GYM
	Log-GTA
	Extending to D'
	Two Transformation Operations
	Log-GTA

	C-GTA (Constant-depth GHD Transformation Algorithm)
	Conclusions and Future Work

	p05-amarilli
	Introduction
	Preliminaries and Problem Statement
	Unknown Data Values under Constraints
	Possible World Semantics
	Probability Distribution
	Top-k Queries

	An Algorithm for Interpolation and Top-k
	Total Orders
	General Constraint Sets

	Hardness and Approximations
	Hardness of Exact Computation
	Complexity of Approximate Computation

	Tractable Cases
	Splitting Lemma
	Tree-Shaped Constraints

	Other Variants
	Related Work
	Conclusion

	p06-amarilli
	Introduction
	Preliminaries
	Approaches for Tractability
	Tractable Queries on All Instances
	Tractability on Treelike Instances
	Restricted Queries on Treelike Instances

	Conjunctive Queries on Treelike Instances
	ICG-Datalog on Treelike Instances
	Compilation to Automata
	Provenance Cycluits
	From Cycluits to Circuits and Probability Bounds
	Conclusion

	p06-ZZZ-Blank
	p07-barcelo
	Introduction
	Preliminaries
	Query by example and definability for CQs
	A relaxation of the homomorphism test
	A characterization of the k-pebble tests for CQs
	The complexity of the k-pebble tests for CQs
	Evaluating the result of TW(k)-explanations

	Desynchronizing the direct product
	Combining both relaxations

	Conjunctive regular path queries
	The QBE and definability tests for CRPQs
	Relaxing the QBE and definability tests for CRPQs

	Future work

	p07-ZZZ-Blank
	p08-berkholz
	Introduction
	Preliminaries
	Hanf Normal Form for FO+MOD
	Answering Boolean FO+MOD Queries Under Updates
	Technical Lemmas on Types and Spheres Useful for Handling Non-Boolean Queries
	Testing Non-Boolean FO+MOD Queries Under Updates
	Representing Databases by Coloured Graphs
	Counting Results of FO+MOD Queries Under Updates
	Enumerating Results of FO+MOD Queries Under Updates
	Conclusion

	p09-bova
	Introduction
	Preliminaries
	Construction of Structures
	Construction of B and B'
	A Treats B and B' Differently
	B and B' are FOk-Indistinguishable

	Existential Positive Logic
	Main Theorems and Consequences

	p10-burdick
	Introduction and Summary of Results
	Weighted Repairs and Consistent Answers
	Certain Links and Entity-Linking Frameworks
	Concrete Entity-Linking Frameworks Based on Lzero
	Collective Entity-Linking Frameworks

	Comparing the Expressive Power of Entity-Linking Frameworks
	Adding Preference Constraints
	Concluding Remarks

	p11-cao
	Introduction
	Problem Formulation
	Efficient Algorithms in R2
	The Warm-up Algorithms
	Reducing Dec-RMS to Interval Coverage
	An Approximating Algorithm for RMS

	The Decision Algorithm for Dec-k-RMS
	The Algorithm

	Optimization Algorithms
	An Exact Algorithm for k-RMS
	An O(n log n) Time Exact Algorithm for RMS


	NP-Hardness
	IVC on Normalized PSLG
	Reduction to Dec-RMS

	Algorithms in High Dimensions
	The Problem RMS
	The Problem k-RMS

	Related Work

	p11-ZZZ-Blank
	p12-deep
	Introduction
	Notation and Framework
	Preliminaries
	The Pricing Framework
	Arbitrage Conditions

	Answer-Dependent Pricing
	How to Find a Pricing Function
	Conflict Sets
	A Characterization of Arbitrage-Free APS 

	Explicit Constructions of Pricing Functions
	Information Gain as a Pricing Function

	A Tradeoff for Arbitrage-Free APS

	Instance-Independent Pricing
	Serendipitous Arbitrage
	How to Find a Pricing Function
	The Partition Lattice
	A Characterization of Arbitrage-Free QPS

	Construction of Pricing Functions From Answer-Dependent Prices
	Construction of Pricing Functions From Uncertainty Measures

	Computing the Pricing Function
	Support Sets
	The Complexity of Entropy-Based Pricing

	Related Work
	Conclusion

	p13-freydenberger
	Introduction
	Preliminaries
	Document Spanners
	Primitive Spanner Representations
	Spanner Algebras
	Some Results on Automata-Based Spanners

	Word Equations and ECreg

	SpLog: A Logic for Spanners
	Expressing Relations in SpLog
	Selectable Relations
	Extended Example: Relations for Approximate Matching
	Efficient Conversion of vsf-Regex to SpLog
	A Normal Form for SpLog

	Using EC-Inexpressibility to Prove Non-Selectability
	Conclusions and Further Directions

	p13-ZZZ-Blank
	p14-garofalakis
	Introduction
	Safe Zone Design
	Safe Zone Specification
	Safe Zone Representation and Composition
	Functional Analysis For Safe Zone Functions

	Maximum Distance
	Preservation Of Maximum Distance Under Composition

	Maximality
	Preservation Of Maximality Under Composition

	Safe Zones For Boolean Functions
	Monitoring Quantiles

	Safe Zones For Separable Sums
	Dominating Index
	Alignment
	Safe Zones For Inner Product

	Related Work
	Conclusions

	p15-gogacz
	Introduction
	Preliminaries
	Main result and consequences
	Consequences

	Characterization of H(Q)
	Lower bounds
	Colorings
	Vector space colorings
	Group systems

	Tightness
	General conjunctive queries
	Set semantics

	Evaluation
	Conclusion and future work

	p15-ZZZ-Blank
	p16-Itzhaky
	Introduction
	Running Example
	Verification of SmpSL Programs
	The SQL fragment SmpSQL
	Data model of SmpSQL
	Queries in SmpSQL
	Data-manipulating commands in SmpSQL

	The script language SmpSL
	Data model of SmpSL
	SmpSL programs

	Verification of SmpSL programs
	SQL and FO
	Hoare verification of SmpSL programs and weakest precondition
	The specification logic FO2BD and decidability of verification


	FO2 Reasoning
	The bounded model property of FO2
	Finite satisfiability using a SAT solver
	Skolemized Scott Normal Form
	The CNF formula


	Experimental Results
	Details of our tools
	Example applications
	Examining scalability

	Discussion

	p17-kimelfeld
	Introduction
	Preliminaries
	Categoricity
	Preliminary Insights
	p-Categoricity
	Proof of Hardness

	c-Categoricity
	g-Categoricity
	Intractable Schemas
	Transitive Priority

	Concluding Remarks

	p18-lohrey
	Introduction
	Preliminaries
	Multi-graphs, Dags, and Trees
	Sizes of Dags versus Unordered Dags
	Lower Bounds for alpha_E and alpha_N
	Upper Bound for alpha_E
	Upper Bound for alpha_N
	Summary of the Results for alpha_N and alpha_E

	Experimental Results
	Tree Compressors
	Corpora of XML Documents
	Experimental Setup
	Compression of Canonical versus Original Tree

	Conclusions

	p18-ZZZ-Blank
	p19-schwentick
	Introduction
	Preliminaries
	Dynamic Programs with Complex Changes
	Reachability and Definable Insertions
	Parameter-free Changes
	Formal Languages and Sigma1-definable Change Operations
	Inexpressibility Results
	Conclusion

	p20-segoufin
	Introduction
	Preliminaries
	Main results
	Neighborhood covers and partitions
	Model-Checking
	Enumeration
	Counting
	Conclusion

	p21-sundarmurthy
	Introduction
	Background
	Representation Systems
	Semiring Algebras and Provenance

	How to Represent Missing Data
	Basic Definitions
	Semantics
	Examples and Applications

	RA+ Algebra for m-tables
	The Expressive Power of m-tables
	Labeling Schemes
	Semantics of Labels
	A Simple Label Inference Algorithm
	Certainty and Possibility in m-tables

	Related Work
	Conclusion

	p22-mcgregor
	Introduction
	Related Work
	Our Contributions

	Algorithms for maximum k-set coverage
	(1-1/e-epsilon) approximation in one pass and O (epsilon-2 m) space
	(1-1/e-epsilon) approximation in O(epsilon-1) passes and O (epsilon-2 k) space
	Removing Assumptions via Guessing, Sampling, and Sketching
	Other Algorithmic Results
	1-epsilon approximation in one pass and O (epsilon-2 m) space
	1/2-epsilon approximation in one pass and O (epsilon-3 k) space
	Budgeted Maximum Coverage


	Algorithms for Maximum k-Vertex Coverage
	Algorithm for Near-Regular Hypergraphs

	Lower Bounds




