
Technical Communications of the
26th International Conference on
Logic Programming

ICLP’10, July 16–19, 2010, Edinburgh, UK

Edited by

Manuel Hermenegildo
Torsten Schaub

LIPIcs – Vo l . 7 – ICLP’10 www.dagstuh l .de/ l i p i c s

Editors
Manuel Hermenegildo Torsten Schaub
School of Computer Science Knowledge Processing and Information Systems
Technical University of Madrid (UPM), Spain Institute for Computer Science
herme@fi.upm.es University of Potsdam, Germany

torsten@cs.uni-potsdam.de

ACM Classification 1998
D.1.6 Logic Programming, D.1.3 Concurrent Programming, D.2.7 Distribution, Maintenance, and
Enhancement, D.3.2 Language Classifications , D.3.3 Language Constructs and Features, D.2.4 Soft-
ware/Program Verification, F.1.1 Models of Computation, F.1.2 Modes of Computation, F.3.2 Semantics
of Programming Languages, F.4.1 Mathematical Logic, F.4.3 Formal Languages, G.3 Probability and
Statistics, H.2.4 Systems, I.2.2 Automatic Programming, I.2.3 Deduction and Theorem Proving, I.2.4
Knowledge Representation Formalisms and Methods, I.2.5 Programming Languages and Software, J.3
Life and Medical Sciences

ISBN 978-3-939897-17-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics gGmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.i

ISBN 978-3-939897-17-0 ISSN 1868-8969 http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

ICLP 2010

Contents

Conference Organization IX

Introduction to the Technical Communications of the 26th ICLP
Manuel Hermenegildo and Torsten Schaub . XI

Invited Papers

Datalog for Enterprise Software: From Industrial Applications to Research
Molham Aref . 1

A Logical Paradigm for Systems Biology
François Fages . 2

Technical Communications

Runtime Addition of Integrity Constraints in an Abductive Proof Procedure
Marco Alberti, Marco Gavanelli, Evelina Lamma . 4

Learning Domain-Specific Heuristics for Answer Set Solvers
Marcello Balduccini . 14

HEX Programs with Action Atoms
Selen Basol, Ozan Erdem, Michael Fink, Giovambattista Ianni 24

Communicating Answer Set Programs
Kim Bauters, Jeroen Janssen, Steven Schockaert, Dirk Vermeir, Martine De Cock 34

Implementation Alternatives for Bottom-Up Evaluation
Stefan Brass . 44

Inductive Logic Programming as Abductive Search
Domenico Corapi, Alessandra Russo, Emil Lupu . 54

Efficient Solving of Time-dependent Answer Set Programs
Timur Fayruzov, Jeroen Janssen, Dirk Vermeir, Chris Cornelis, Martine De Cock 64

Improving the Efficiency of Gibbs Sampling for Probabilistic Logical Models by
Means of Program Specialization

Daan Fierens . 74

Focused Proof Search for Linear Logic in the Calculus of Structures
Nicolas Guenot . 84

Sampler Programs: The Stable Model Semantics of Abstract Constraint Programs
Revisited

Tomi Janhunen . 94

A Framework for Verification and Debugging of Resource Usage Properties:
Resource Usage Verification

Pedro Lopez-Garcia, Luthfi Darmawan, Francisco Bueno . 104
Technical Communications of the 26th International Conference on Logic Programming (ICLP’10).
Editors: M. Hermenegildo, T. Schaub; pp. v–viii

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Contractibility and Contractible Approximations of Soft Global Constraints
Michael Maher . 114

Dedicated Tabling for a Probabilistic Setting
Theofrastos Mantadelis, Gerda Janssens . 124

Tight Semantics for Logic Programs
Luis Moniz Pereira, Alexandre Miguel Pinto . 134

From Relational Specifications to Logic Programs
Joseph Near . 144

Methods and Methodologies for Developing Answer-Set Programs—Project Description
Johannes Oetsch, Joerg Puehrer, Hans Tompits . 154

Tabling and Answer Subsumption for Reasoning on Logic Programs with
Annotated Disjunctions

Fabrizio Riguzzi, Terrance Swift . 162

Subsumer: A Prolog theta-subsumption engine
Jose Santos, Stephen Muggleton . 172

Using Generalized Annotated Programs to Solve Social Network Optimization
Problems

Paulo Shakarian, V.S. Subrahmanian, Maria Luisa Sapino . 182

Abductive Inference in Probabilistic Logic Programs
Gerardo Simari, V.S. Subrahmanian . 192

Circumscription and Projection as Primitives of Logic Programming
Christoph Wernhard . 202

Timed Definite Clause Omega-Grammars
Neda Saeedloei, Gopal Gupta . 212

Doctoral Consortium

Towards a Parallel Virtual Machine for Functional Logic Programming
Abdulla Alqaddoumi . 222

Dynamic Magic Sets for Disjunctive Datalog Programs
Mario Alviano . 226

Bisimilarity in Concurrent Constraint Programming
Andrés A. Aristizábal . 236

Program Analysis for Code Duplication in Logic Programs
Céline Dandois . 241

Program Analysis to Support Concurrent Programming in Declarative Languages
Romain Demeyer . 248

Constraint Answer Set Programming Systems
Christian Drescher . 255

Towards a General Argumentation System based on Answer-Set Programming
Sarah Alice Gaggl . 265

Contents vii

Models for Trustworthy Service and Process Oriented Systems
Hugo A. López . 269

Design and Implementation of a Concurrent Logic Programming Language with
Linear Logic Constraints

Thierry Martinez . 275

Higher-order Logic Learning and λProgol
Niels Pahlavi . 279

Local Branching in a Constraint Programming Framework
Fabio Parisini . 283

Logic Programming Foundations of Cyber-Physical Systems
Neda Saeedloei . 289

Realizing the Dependently Typed Lambda Calculus
Zachary Snow . 294

Structured Interactive Musical Scores
Mauricio Toro-bermudez . 300

Cutting-edge Timing Analysis Techniques
Jakob Zwirchmayr . 303

ICLP 2010

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. IX-X
http://www.floc-conference.org/ICLP-home.html

Conference Organization

Conference Chair

Veronica Dahl

(Simon Fraser University, Canada)

Programme Chairs

Manuel Hermenegildo

(IMDEA Software Institute and U. Politécnica de Madrid, Spain)
Torsten Schaub

(University of Potsdam, Germany)

Doctoral Consortium Chairs

Marcello Balduccini (Kodak Research Labs, USA)
Alessandro Dal Palù (U. degli Studi di Parma, Italy)

Prolog Programming Contest Chair

Tom Schrijvers (K.U. Leuven, Belgium)

Programme Committee

Marı́a Alpuente (Technical U. of Valencia, Spain),
Pedro Cabalar (Coruña University, Spain),
Manuel Carro (Technical U. of Madrid, Spain),
Luc De Raedt (K. U. Leuven, Belgium),
Marina De Vos (University of Bath, UK),
James Delgrande (Simon Fraser University, Canada),
Marc Denecker (KU Leuven, Belgium),
Agostino Dovier (University of Udine, Italy),
Esra Erdem (Sabanci University, Istanbul, Turkey),
Wolfgang Faber (University of Calabria, Italy),
Thom Fruehwirth (University of Ulm, Germany),
Maurizio Gabbrielli (University of Bologna, Italy),
John Gallagher (Roskilde University, Denmark),
Samir Genaim (Complutense University, Spain),
Haifeng Guo (University of Nebraska at Omaha, USA),
Joxan Jaffar (National U. of Singapore, Singapore),
Tomi Janhunen (Helsinki U. of Technology, Finland),
Michael Leuschel (U. of Duesseldorf, Germany),
Alan Mycroft (U. of Cambridge, UK),
Gopalan Nadathur (University of Minnesota, USA),
Lee Naish (Melbourne University, Australia),
Enrico Pontelli (New Mexico State University, USA),
Vitor Santos Costa (University of Porto, Portugal),

X

Tom Schrijvers (K.U. Leuven, Belgium),
Tran Cao Son (New Mexico State University, USA),
Peter J. Stuckey (Melbourne University, Australia),
Terrance Swift (CENTRIA, Portugal),
Peter Szeredi (Budapest U. of Tech. and E., Hungary),
Frank Valencia (École Polytechnique, France),
Wim Vanhoof (University of Namur, Belgium),
Kewen Wang (Griffith University, Australia),
Stefan Woltran (Vienna U. of Technology, Austria),
and Neng-Fa Zhou (City University of New York, USA).

External Reviewers

Mario Alviano, David Baelde, Demis Ballis, Hariolf Betz, Stefano Bistarelli, Francesco Calimeri,
Dario Campagna, Henning Christiansen, Raffaele Cipriano, Michael Codish, Marco Comini, Alvaro
Cortés Calabuig, Céline Dandois, Minh Dao-Tran, Broes De Cat, Stef De Pooter, François Degrave,
Bart Demoen, Inês Dutra, Ozan Erdem, Halit Erdogan, Marc Fontaine, Andrea Formisano, Andrew
Gacek, Sarah Gaggl, Maria Garcia de la Banda, Miguel Gomez-Zamalloa, Gopal Gupta, Rémy
Haemmerlé, Vlaeminck Hanne, Ángel Herranz, Stijn Heymans, Jacob Howe, Aaron Hunter, José
Iborra, Jianmin Ji, Christophe Joubert, Angelika Kimmig, Zeynep Kiziltan, Thomas Krennwallner,
Gergely Lukácsy, Michael Maher, Theofrastos Mantadelis, Jacopo Mauro, Wannes Meert, Maria
Chiara Meo, Robert Mercer, José Morales, Sriraam Natarajan, Jorge Navas, Pascal Nicolas, Car-
los Olarte, Carla Piazza, Alexandre Miguel Pinto, Daniel Plagge, Joerg Puehrer, Frank Raiser,
M.J. Ramı́rez, Francesco Ricca, Fabrizio Riguzzi, Ricardo Rocha, Konstantinos Sagonas, Chiaki
Sakama, Andrew Santosa, Beata Sarna-Starosta, Taisuke Sato, Peter Schachte, Maria I. Sessa, Fer-
nando Silva, Mantas Simkus, Jon Sneyers, Zoltan Somogyi, Harald Sondergaard, Naoyuki Tamura,
Paul Tarau, Ingo Thon, Alwen Tiu, Tansel Uras, Guy Van den Broeck, Martijn van Otterlo, Daniel
Varro, Sven Verdoolaeghe, Zoltán Vámossy, Mark Wallace, Zhe Wang, David Warren, Herbert
Wiklicky, Sebastian Will, Johan Wittocx, Dong Xu, Roland Yap, Jia-Huai You, Damiano Zanardini,
Zhihu Zhang, Zsolt Zombori.

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.i

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. XI-XIV
http://www.floc-conference.org/ICLP-home.html

INTRODUCTION TO THE TECHNICAL COMMUNICATIONS OF THE
26TH INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING

MANUEL HERMENEGILDO 1 AND TORSTEN SCHAUB 2

1 IMDEA Software Institute and U. Politécnica de Madrid, Spain
E-mail address: manuel.hermenegildo@{imdea.org|upm.es}

2 University of Potsdam, Germany
E-mail address: torsten@cs.uni-potsdam.de

The Logic Programming (LP) community, through the Association for Logic Programming
(ALP) and its Executive Committee, decided to introduce for 2010 important changes in the way
the main yearly results in LP and related areas are published. Whereas such results have appeared
to date in standalone volumes of proceedings of the yearly International Conferences on Logic Pro-
gramming (ICLP), and this method –fully in the tradition of Computer Science (CS)– has served
the community well, it was felt that an effort needed to be made to achieve a higher level of com-
patibility with the publishing mechanisms of other fields outside CS.

In order to achieve this goal without giving up the traditional CS conference format a different
model has been adopted starting in 2010 in which the yearly ICLP call for submissions takes the
form of a joint call for a) full papers to be considered for publication in a special issue of the journal,
and b) shorter technical communications to be considered for publication in a separate, standalone
volume, with both kinds of papers being presented by their authors at the conference. Together, the
journal special issue and the volume of short technical communications constitute the proceedings
of ICLP.

The journal proceedings of the 26th International Conference on Logic Programming are the
first of a series of yearly special issues of Theory and Practice of Logic Programming (TPLP) putting
this new model into practice. It contains the papers accepted from those submitted as full papers
(i.e., for TPLP) in the joint ICLP call for 2010. The collection of technical communications for 2010
in hand appears in turn as Volume 7 of the Leibniz International Proceedings in Informatics (LIPIcs)
series, published on line through the Dagstuhl Research Online Publication Server (DROPS). Both
sets of papers were presented by their authors at this 26th ICLP.

Papers describing original, previously unpublished research and not simultaneously submitted
for publication elsewhere were solicited in all areas of logic programming including but not re-
stricted to: Theory (Semantic Foundations, Formalisms, Non-monotonic Reasoning, Knowledge
Representation), Implementation (Compilation, Memory Management, Virtual Machines, Paral-
lelism), Environments (Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing), Language Issues (Concurrency, Objects, Coordination, Mobility, Higher Order,
Types, Modes, Assertions, Programming Techniques), Related Paradigms (Abductive Logic Pro-
gramming, Inductive Logic Programming, Constraint Logic Programming, Answer-Set Program-
ming), and Applications (Databases, Data Integration and Federation, Software Engineering, Natu-
ral Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics).

c© M. Hermenegildo and T. Schaub
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.XI

manuel.hermenegildo@{imdea.org|upm.es}
torsten@cs.uni-potsdam.de
http://www.dagstuhl.de/en/publications/lipics
http://drops.dagstuhl.de/opus/institut_lipics.php?fakultaet=04

XII M. HERMENEGILDO AND T. SCHAUB

Special categories were application papers (where the emphasis was on their impact on the ap-
plication domain) and system and tool papers (where the emphasis was on the novelty, practicality,
usability and general availability of the systems and tools described). In the technical communica-
tions the emphasis was on describing recent developments, new projects, and other materials not
yet ready for publication as full papers. The length limit for full papers was set at 15 pages plus
bibliography for full papers (approximately in line with the length of TPLP technical notes) and for
technical communications at 10 pages total.

In response to the call for papers 104 abstracts were received, 81 of which remained finally as
complete submissions. Of those, 69 were full papers submitted to the TPLP special issue track (21
of them applications or systems papers). The program chairs acting as guest editors organized the
refereeing process with the help of the program committee and numerous external reviewers. Each
paper was reviewed by at least three anonymous referees which provided full written evaluations.
Competition was high and after the first round of refereeing only 25 full papers remained. Of
these, 16 went through a full second round of refereeing with written referee reports. Finally, all 25
papers went through a final, copy-editing round. In the end the special issue contains 17 technical
papers, 6 application papers, and 2 systems and tools papers. During the first phase of reviewing
the papers submitted to the technical communications track were also reviewed by at least three
anonymous referees providing full written evaluations. Also, a number of full paper submissions
were moved during the reviewing process to the technical communications track. Finally, 22 papers
were accepted as technical communications.

The list of the 25 accepted full papers, appearing in the special issue of TPLP, follows:

Regular Papers

Automated Termination Analysis for Logic Programs with Cut
Peter Schneider-Kamp, Jürgen Giesl, Thomas Stroeder, Alexander Serebrenik, René
Thiemann

Transformations of Logic Programs on Infinite Lists
Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Swapping Evaluation: A Memory-Scalable Solution for Answer-On-Demand Tabling
Pablo Chico de Guzmán, Manuel Carro Liñares, David S. Warren

Threads and Or-Parallelism Unified
Vı́tor Santos Costa, Inês Castro Dutra, Ricardo Rocha

CHR(PRISM)-based Probabilistic Logic Learning
Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, Taisuke Sato

Inference with Constrained Hidden Markov Models in PRISM
Henning Christiansen, Christian Theil Have, Ole Torp Lassen, Matthieu Petit

A Translational Approach to Constraint Answer Set Solving
Christian Drescher, Toby Walsh

A Decidable Subclass of Finitary Programs
Sabrina Baselice, Piero Bonatti

INTRODUCTION TO THE TECHNICAL COMMUNICATIONS OF THE 26TH ICLP XIII

Disjunctive ASP with Functions: Decidable Queries and Effective Computation
Mario Alviano, Wolfgang Faber, Nicola Leone

Catching the Ouroboros: On Debugging Non-ground Answer-Set Programs
Johannes Oetsch, Jörg Puehrer, Hans Tompits

Loop Formulas for Description Logic Programs
Yisong Wang, Jia-Huai You, Li-Yan Yuan, Yi-Dong Shen

Towards Closed World Reasoning in Dynamic Open Worlds
Martin Slota, João Leite

A Program-Level Approach to Revising Logic Programs under Answer Set Semantics
James Delgrande

FO(FD): Extending classical logic with rule-based fixpoint definitions
Ping Hou, Broes De Cat, Marc Denecker

A Complete and Terminating Execution Model for Constraint Handling Rules
Hariolf Betz, Frank Raiser, Thom Frühwirth

Decidability Properties for Fragments of CHR
Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, Jon Sneyers

A Declarative Semantics for CLP with Qualification and Proximity
Mario Rodrı́guez-Artalejo, Carlos A. Romero-Dı́az

Application Papers and Systems and Tools Papers
Logic-Based Decision Support for Strategic Environmental Assessment

Marco Gavanelli, Fabrizio Riguzzi, Michela Milano, Paolo Cagnoli

Test Case Generation for Object-Oriented Imperative Languages in CLP
Miguel Gómez-Zamalloa, Elvira Albert, Germán Puebla

Logic Programming for Finding Models in the Logics of Knowledge and its Applications: A Case
Study

Chitta Baral, Gregory Gelfond, Enrico Pontelli, Tran Son

Applying Prolog to Develop Distributed Systems
Nuno P. Lopes, Juan Navarro Perez, Andrey Rybalchenko, Atul Singh

CLP-based Protein Fragment Assembly
Alessandro Dal Palù, Agostino Dovier, Federico Fogolari, Enrico Pontelli

Formalization of Psychological Knowledge in Answer Set Programming and its Application
Marcello Balduccini, Sara Girotto

Testing and Debugging Techniques for Answer Set Solver Development
Robert Brummayer, Matti Järvisalo

The System Kato: Detecting Cases of Plagiarism for Answer-Set Programs
Johannes Oetsch, Jörg Puehrer, Martin Schwengerer, Hans Tompits

XIV M. HERMENEGILDO AND T. SCHAUB

We would like to thank very specially the members of the Program Committee and the ex-
ternal referees for their enthusiasm, hard work, and promptness, despite the higher load of the
two rounds of refereeing plus the copy editing phase. The PC members were: Marı́a Alpuente,
Pedro Cabalar, Manuel Carro, Luc De Raedt, Marina De Vos, James Delgrande, Marc Denecker,
Agostino Dovier, Esra Erdem, Wolfgang Faber, Thom Fruehwirth, Maurizio Gabbrielli, John Gal-
lagher, Samir Genaim, Haifeng Guo, Joxan Jaffar, Tomi Janhunen, Michael Leuschel, Alan Mycroft,
Gopalan Nadathur, Lee Naish, Enrico Pontelli, Vitor Santos Costa, Tom Schrijvers, Tran Cao Son,
Peter J. Stuckey, Terrance Swift, Peter Szeredi, Frank Valencia, Wim Vanhoof, Kewen Wang, Stefan
Woltran, and Neng-Fa Zhou.

We would also like to thank David Basin, Francois Fages, Deepak Kapur, and Molham Aref for
their invited talks and those that helped organize ICLP: Veronica Dahl (General Chair and Work-
shops Chair), Marcello Balduccini and Alessandro Dal Palù (Doctoral Consortium), and Tom Schri-
jvers (Prolog Programming Contest). ICLP’10 was held as part of the 2010 Federated Logic Con-
ference, hosted by the School of Informatics at the U. of Edinburgh, Scotland. Support by the
conference sponsors –EPSRC, NSF, Microsoft Research, Association for Symbolic Logic, Google,
HP, Intel– is also gratefully acknowledged. We are also grateful to Andrei Voronkov for creating
the EasyChair system.

Finally, we would like to thank very specially Ilkka Niemelä, editor in chief of Theory and
Practice of Logic Programming, David Tranah, from Cambridge University Press, Marc Herbstritt,
from LIPIcs, Leibniz Center for Informatics, all the members of the ALP Executive Committee,
and the ALP community in general for having believed in and allowed us to put into practice this
approach which we believe provides compatibility with the publishing mechanisms of other fields
outside CS, without giving up the format and excitement of our conferences.

Manuel Hermenegildo and Torsten Schaub
Program Committee Chairs

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 1
http://www.floc-conference.org/ICLP-home.html

DATALOG FOR ENTERPRISE SOFTWARE: FROM INDUSTRIAL

APPLICATIONS TO RESEARCH (INVITED TALK)

MOLHAM AREF

LogicBlox, Two Midtown Plaza, 1349 West Peachtree Street, N.W., Suite 1880, Atlanta, GA 30309
E-mail address: molham.aref@logicblox.com

LogicBlox is a platform for the rapid development of enterprise applications in the
domains of decision automation, analytics, and planning. Although the LogicBlox platform
embodies several components and technology decisions (e.g., an emphasis on software-as-
a-service), the key substrate and glue is an implementation of the Datalog language. All
application development on the LogicBlox platform is done declaratively in Datalog: The
language is used to query large data sets, but also to develop web and desktop GUIs (with
the help of pre-defined libraries), to interface with solvers, statistics tools, and optimizers
for complex analytics solutions, and to express the overall business logic of the application.
We believe that Datalog is at the sweet spot of the expressiveness/convenience trade-off.
The language is high-level enough to allow fast development for increased productivity, and
expressive enough to support implementing complex applications without a need to resort
to imperative code.

The LogicBlox version of Datalog, LB-Datalog, is heavily influenced by several ideas
and advanced Datalog extensions proposed by the research community. LB-Datalog is a
Datalog with integrity constraints, state and incremental update, default values, higher-
order predicates, existentially quantified head variables, constraint stratification, and more.
Additionally, LogicBlox has active collaborations with several academic researchers who
work on a variety of projects in nearly every aspect of LB-Datalog.

The goal of this talk is to present both the business case for Datalog and the fruitful
interaction of research and industrial applications in the LogicBlox context.

c© M. Aref
CC© Creative Commons Non-Commercial No Derivatives License

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.1

Technical Communications of the International Conference on Logic Programming 2010 (Edinburgh), pp. 2–3
http://www.floc-conference.org/ICLP-home.html

A LOGICAL PARADIGM FOR SYSTEMS BIOLOGY (INVITED TALK)

FRANÇOIS FAGES

EPI Contraintes, INRIA Paris-Rocquencourt,
Domaine de Voluceau, 78150 Rocquencourt, France
E-mail address: Francois.Fages@inria.fr

URL: http://contraintes.inria.fr/

Biologists use diagrams to represent complex systems of interaction between molecu-
lar species. These graphical notations encompass two types of information: interactions
(e.g. protein complexation, modification, binding to a gene, etc.) and regulations (of an
interaction or a transcription). Based on these structures, mathematical models can be de-
veloped by equipping such molecular interaction networks with kinetic expressions leading
to quantitative models of mainly two kinds: ordinary differential equations (ODE) for a
continuous interpretation of the kinetics, and continuous-time Markov chains (CTMC) for
a stochastic interpretation of the kinetics.

The Systems Biology Markup Language (SBML) [8] uses a syntax of reaction rules
with kinetic expressions to define such reaction models in a precise way. Nowadays, an
increasing collection of models of various biological processes is available in this format in
model repositories, such as for instance www.biomodels.net [9], and an increasing collection
of ODE simulation or analysis software platforms are now compatible with SBML.

Since 2002, we investigate the transposition of programming concepts and tools to the
analysis of living processes at the cellular level. Our approach relies on a logical paradigm
for systems biology which consists in making the following identifications:

biological model = quantitative state transition system
biological properties = temporal logic formulae

biological validation = model-checking
model inference = constraint solving

Our modelling software platform Biocham [7] (implemented in Prolog) is founded on this
paradigm [6]. An SBML model can be interpreted in Biocham at three abstraction levels:

• the Boolean semantics (asynchronuous Boolean state transitions on the presence/absence
of molecules),

• the continuous semantics (ODE on molecular concentration),
• the stochastic semantics (CTMC on numbers of molecules).

The Boolean semantics is the most abstract one, it can be used to analyse large interaction
networks without known kinetics. These formal semantics have been related in the frame-
work of abstract interpretation in [5], showing for instance that the Boolean semantics is
an abstraction of the stochastic semantics, i.e. that the possible stochastic behaviors can be

1998 ACM Subject Classification: algorithm, theory,verification.
Key words and phrases: temporal logic, model-checking, systems biology, hybrid systems.

c© F. Fages
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.2

A LOGICAL PARADIGM FOR SYSTEMS BIOLOGY 3

checked in the Boolean semantics, and that if a Boolean behavior is not possible, it cannot
be achieved in the quantitative semantics for any kinetics.

The use of model-checking techniques developed in the last three decades for the analysis
of circuits and programs is the most original feature of Biocham. The temporal logics used
to formalize the properties of the behavior of the system are respectively the Computation
Tree Logic (CTL) for the Boolean semantics, and a quantifier-free Linear Time Logic with
constraints over the reals (LTL(R)) for the quantitative semantics.

Biocham has been used for querying large Boolean models of the cell cycle by symbolic
model-checking [1], formalizing phenotypes in temporal logic [3], searching parameter values
from temporal specification [10], measuring the robustness of a system w.r.t. temporal
properties [11], and developping in this way quantitative models of cell signalling and cell
cycle for cancer therapies [2].

For some time, an important limitation of this approach was due to the logical nature
of temporal logic specifications and their Boolean interpretation by true or false. By gener-
alizing model-checking techniques to temporal logic constraint solving [3, 4], a continuous
degree of satisfaction could be defined for temporal logic formulae, opening the field of
model-checking to optimization in high dimension.

We believe that this mixing of discrete logical and continuous dynamics, pioneered by
constraint logic programming and hybrid systems, and illustrated here in systems biology,
is a deep trend for the future in programming and verification.

References

[1] Nathalie Chabrier and François Fages. Symbolic model checking of biochemical networks. CMSB’03:
First WS on Computational Methods in Systems Biology, LNCS, col. 2602, pages 149–162, Rovereto,
Italy, March 2003. Springer-Verlag.

[2] Elisabetta De Maria, François Fages, and Sylvain Soliman. On coupling models using model-checking:
Effects of irinotecan injections on the mammalian cell cycle. CMSB’09: 7th Int’l.Conf. on Computational
Methods in Systems Biology, LN in BioInformatics Vol. 5688, pp. 142–157. Springer-Verlag, 2009.

[3] François Fages and Aurélien Rizk. On temporal logic constraint solving for the analysis of numerical
data time series. Theoretical Computer Science, 408(1):55–65, November 2008.

[4] François Fages and Aurélien Rizk. From model-checking to temporal logic constraint solving. In CP’2009
LNCS number 5732, pages 319–334. Springer-Verlag, September 2009.

[5] François Fages and Sylvain Soliman. Abstract interpretation and types for systems biology. Theoretical
Computer Science, 403(1):52–70, 2008.

[6] François Fages and Sylvain Soliman. Formal cell biology in BIOCHAM. 8th Int. School on Formal
Methods for the Design of Computer, Communication and Software Systems: Computational Systems
Biology SFM’08, LNCS Vol. 5016, pages 54–80, Bertinoro, Italy, February 2008. Springer-Verlag.

[7] François Fages, Sylvain Soliman, and Aurélien Rizk. BIOCHAM v2.8 user’s manual. INRIA, 2009.
http://contraintes.inria.fr/BIOCHAM.

[8] Michael Hucka et al. The systems biology markup language (SBML): A medium for representation and
exchange of biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[9] Nicolas le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie Courtot, Marco Donizelli, Harish
Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce Shapiro, Jacky L. Snoep, and Michael Hucka.
BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of
biochemical and cellular systems. Nucleic Acid Research, 1(34):D689–D691, January 2006.

[10] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On a continuous degree of satis-
faction of temporal logic formulae with applications to systems biology. CMSB’08: 4th Int’l. Conf. on
Computational Methods in Systems Biology, LNCS Vol. 5307, pages 251–268. Springer-Verlag, 2008.

[11] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. A general computational method
for robustness analysis with applications to synthetic gene networks. Bioinformatics, 12(25):il69–il78,
June 2009.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 4–13
http://www.floc-conference.org/ICLP-home.html

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN

ABDUCTIVE PROOF PROCEDURE

MARCO ALBERTI 1 AND MARCO GAVANELLI 2 AND EVELINA LAMMA 2

1 CENTRIA, DI-FCT, Universidade Nova de Lisboa, Portugal

2 ENDIF, Università di Ferrara, Italy

Abstract. Abductive Logic Programming is a computationally founded representation
of abductive reasoning. In most ALP frameworks, integrity constraints express domain-
specific logical relationships that abductive answers are required to satisfy.

Integrity constraints are usually known a priori. However, in some applications (such as
interactive abductive logic programming, multi-agent interactions, contracting) it makes
sense to relax this assumption, in order to let the abductive reasoning start with incomplete
knowledge of integrity constraints, and to continue without restarting when new integrity
constraints become known.

In this paper, we propose a declarative semantics for abductive logic programming with
addition of integrity constraints during the abductive reasoning process, an operational
instantiation (with formal termination, soundness and completeness properties) and an
implementation of such a framework based on the SCIFF language and proof procedure.

1. Introduction

The philosopher Peirce divides the reasoning schemes of humans into three types: de-
duction (reasoning from causes to effects), induction (synthesizing new rules from examples)
and abduction (making hypotheses on possible causes from known effects).

Abductive Logic Programming [Kak93] is a computational representation of abductive
reasoning that lets one express relationships between effects and possible causes (by means
of a logic program), as well as logical constraints over the hypotheses (integrity constraints).
In ALP possible hypotheses are represented by special predicates (called abducibles) that
are not defined, but can be hypothesized, as long as they satisfy the integrity constraints.
A positive answer to a query posed to an ALP system will typically contain the set of
abducibles that are hypothesized in order for the query to succeed. Such an answer is
called abductive answer in the ALP literature.

Several instances of ALP have been proposed in the literature [Kak90, Fun97, Den98,
Alf99, Wan00], which differ for the logic language (and in particular for the type of ab-
ducibles and of integrity constraints that can be expressed).

While in many applications integrity constraints are known at the beginning of the
reasoning process, it is sometimes useful to relax this assumption.

For instance, the classical application field of abductive reasoning is the diagnosis.
However, in a realistic setting, a doctor does not simply listen to the patient enumerating

Key words and phrases: abduction, semantics, interactive computation, proof procedure.

c© M. Alberti, M. Gavanelli, and E. Lamma
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.4

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN ABDUCTIVE PROOF PROCEDURE 5

all his/her symptoms, but they have a bidirectional and multi-stage interaction: the doctor
asks questions, and refines his/her diagnosis based on the answers of the patient. So, there
is the need to add information dynamically, often in the form of rules, that can rule out
unrealistic sets of explanations.

In multi-agent reasoning, agents that employ abductive reasoning could exchange in-
tegrity constraints by a communication process, and continue operating with the newly
acquired integrity constraints. In contracting, two agents try to reach an agreement and
each agent tries to reach its goals. For example, one agent may want to buy a car, and
the other wants to sell it; the first tries to get a price as low as possible, while the second
has the opposite aim, and they negotiate on the model, the optionals, etc. Of course, each
agent is unwilling to send all of its own knowledge, because the other would exploit it to get
favourable conditions: if the buyer knew all the constraints of the seller, it would be able
to compute the minimum possible price for the seller, and then propose such price. On the
other hand, it is quite natural to tell some of the constraints only when needed, in order to
speedup the negotiation, and avoid lingering on small variations of a meaningless solution.
For instance, in case the buyer asks for a seat for children, the seller could reply: “Ok, but
you cannot install a children seat if you have the airbag”, and the client has to take into
consideration this constraint, when making new proposals. On the other hand, there is no
reason for the seller to state such knowledge immediately from the beginning, as it still does
not know if the buyer is interested at all in children seats.

An abductive reasoner might seek additional integrity constraints (possibly available
from public repositories), depending on its current computation; for example, the number
of integrity constraints could be very vast (as if one has to take into consideration all the
EU rules for contracts), so only those strictly needed should be downloaded. Moreover,
depending on the current state of the derivation one may choose to download regulations
from one server or another: suppose I am deciding whether to buy a good from a service in
Italy or in Portugal; I may first try to get the best price, but then check if the regulations
of that country allow me to do such transaction. I will download the regulations of such
country, check if my transaction is allowed, and, if it is not, I will backtrack and take the
second choice.

Integrity constraints can also be obtained at runtime by means of an automated com-
putational process; for instance, by inductive reasoning. Recently, extensions of Inductive
Logic Programming techniques (ILP for short), and the DPML algorithm in particular
[Lam07b], have been proposed to learn integrity constraints from labelled traces (a data-
base of events recording happened interactions or activities, or a database collecting events
at run-time). The DPML target language is the SCIFF abductive logic language [Alb08],
and this inductive approach has been experimented in various contexts (business processes,
among others; see [Che09, Lam07a]).

Such applications motivate an abductive logic programming framework where some of
the integrity constraints are known in advance, and some are added to the abductive logic
program during the computation.

In this paper we propose a declarative semantics for such an extension, and its imple-
mentation based on the SCIFF abductive logic language [Alb08]. SCIFF is implemented
using Constraint Handling Rules [Frü98]; in particular, integrity constraints are mapped to
CHR constraints. Thanks to the properties of CHR, adding a new constraint at runtime
amounts to the single operation of calling the new constraint, i.e., it can be delegated to
the CHR solver.

6 M. ALBERTI, M. GAVANELLI, AND E. LAMMA

The paper is structured as follows. In Section 2, we propose a declarative semantics of
ALPs with dynamic addition of integrity constraints based on the SCIFF language, and we
show that it exhibits properties of termination, soundness and completeness. In Section 3 we
describe the CHR-based implementation. In Section 4 we show some experimental results.
Discussion of related work and conclusions follow.

2. Runtime addition of integrity constraints in SCIFF

In this section, we give a semantics for the runtime addition of integrity constraints for
the SCIFF abductive logic language; however, the definitions can be easily generalized for
other abductive logic languages.

2.1. SCIFF language

We first provide a brief introduction to the SCIFF language. A complete definition is
available in [Alb08].
SCIFF is a Computational Logic language, whose predicates can be defined or ab-

ducibles, and can contain variables. Variables can be constrained as in Constraint Logic
Programming [Jaf94a].

A SCIFF program P is composed of

• a knowledge base KB;
• a set ICS of static integrity constraints.

A SCIFF knowledge base is a set of clauses of the form: Head← Body, where Head is
an atom built on a defined predicate, and body is a conjunction of literals (built on defined
predicates or abducibles) and CLP constraints.

In SCIFF, integrity constraints have the form: Body → Head, where Body is a con-
junction of abducible atoms, defined atoms and constraints, and Head is a disjunction of
conjunctions of abducible atoms and CLP constraints, or false.
SCIFF computations are goal-directed. A SCIFFGoal has the same syntax of the body

of a clause in the knowledge base.

2.2. Declarative semantics

The declarative semantics for runtime addition of integrity constraints is given in terms
of abductive explanation as follows.

Given a SCIFF program P = 〈KB, ICS〉 and a goal G, a pair 〈∆, θ〉, where ∆ is a
set of abducibles and θ is a substitution, is an abductive explanation for G with additional
integrity constraints ICD iff

(1) KB ∪∆ |= Gθ
(2) KB ∪∆ |= ICS ∪ ICD

where the symbol |= is interpreted, in SCIFF, as in the 3-valued completion seman-
tics [Kun87]. If such conditions hold, we write 〈KB, ICS〉�∆

ICD
G.

Example 2.1.
p(X) ← q(X,Y), a(Y)

q(X,Y) ← r(Y), d(Y)
r(2)

(2.1)

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN ABDUCTIVE PROOF PROCEDURE 7

a(X) → b(X) ∨ c(X) (2.2)

Given the knowledge base in equation (2.1) and the integrity constraint in equation
(2.2), where a/1, b/1, c/1, and d/1 are abducibles, two abductive explanations are possible
for the query p(1): {a(2), b(2), d(2)} and {a(2), c(2), d(2)}.

However, with the additional integrity constraint

c(X), d(X)→ false,

only {a(2), b(2), d(2)} is an abductive explanation.

2.3. Operational semantics

The SCIFF proof-procedure consists of a set of transitions that rewrite a node into one
or more child nodes. It encloses the transitions of the IFF proof-procedure [Fun97], and
extends it in various directions. A complete description of SCIFF proof procedure is in
[Alb08], with proofs of soundness, completeness, and termination.

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,∆〉, where R is the resolvent, CS
is the CLP constraint store, PSIC is a set of implications (called Partially Solved Integrity
Constraints) derived from propagation of integrity constraints, and ∆ is the current set of
abduced literals. The main transitions, inherited from the IFF are:

Unfolding: replaces a (non abducible) atom with its definitions;
Propagation: if an abduced atom a(X) occurs in the condition of an IC (e.g., a(Y)→
p), the atom is removed from the condition (generating X = Y → p);

Case Analysis: given an implication containing an equality in the condition (e.g.,
X = Y → p), generates two children in logical or (in the example, either X = Y
and p, or X 6= Y);

Equality rewriting: rewrites equalities as in the Clark’s equality theory;
Logical simplifications: other simplifications like (true→ A)⇔ A, etc.

SCIFF also includes the transitions of CLP [Jaf94a, Jaf94b] for constraint solving.
To manage the run-time addition of integrity constraints, we extend SCIFF with an

additional transition defined as follows, and we call the resulting proof procedure SCIFFD.

Add-IC: Given a node T ≡ 〈R,CS, PSIC,∆〉 and an integrity constraint ic, transi-
tion addIC generates one node T ′ ≡ 〈R,CS, PSIC ∪ {ic},∆〉.

This transition picks integrity constraints from a queue of dynamic integrity constraints.
The transition is applicable to any node in the proof tree, and it can be executed whenever
the queue is not empty. More integrity constraints can be added to the queue during the
computation.

A successful SCIFFD derivation for an ALP 〈KB, ICS〉, with additional integrity con-
straints ICD and a goal G is a sequence of nodes where

• the root node is 〈G, ∅, ICS , ∅〉
• each node is generated from the previous by a SCIFFD transition
• the leaf node is N ≡ 〈true, CS, PSIC,∆〉

From the leaf node, a substitution θ is derived, that

• replaces all variables in N that are not universally quantified by a ground term;
• satisfies all the constraints in the store CS and the implications in PSIC.

If such a derivation exists, we write 〈KB, ICS〉`〈∆,θ〉ICD
G.

8 M. ALBERTI, M. GAVANELLI, AND E. LAMMA

2.4. Properties

In this section, we state some relevant SCIFFD properties. Due to lack of space, we
omit the proofs, available in a companion technical report [Alb10].

Intuitively, SCIFFD properties can be derived from SCIFF properties, by showing that
a SCIFFD derivation for the program 〈KB, ICS〉 with a finite set of additional integrity
constraints ICD can be transformed into an equivalent one, where a node is the root node
of a SCIFF derivation for the ALP 〈KB, ICS ∪ ICD〉.

The following proofs are based on these formal properties:

Proposition 2.2. Let N2 be the node generated from node N1 by transition T1, and N3 be
the node generated from node N2 by addIC. Then, if N4 is the node generated from node
N1 by addIC, transition T1 is applicable to N4, and the node N5 generated from N4 by T1

is equal to N3, modulo renaming of variables.

N1
T1−→ N2

addIC−→ N3

N1
addIC−→ N4

T1−→ N5

Proposition 2.3. Let D be a SCIFFD derivation that has k applications of the addIC
transition. Then there exists a derivation D′ that has the following properties:

• the first k transitions of D′ are addIC;
• each node of D′, starting the transitions from k + 1 is equal to the corresponding

node of D.

2.4.1. Termination. Being SCIFF based on the 3-valued completion semantics, its termina-
tion is proven, as for SLDNF resolution [Apt91], for acyclic knowledge bases and bounded
goals and implications. Of course, programs may also terminate in other cases as well. Other
abductive proof-procedures are based on other semantics and can address also non-stratified
programs [Lop06].

Intuitively, for SLD resolution a level mapping must be defined, such that the head of
each clause has a higher level than the body. For SCIFF, as well as for the IFF, since it
contains integrity constraints that are propagated forward, the level mapping should also
map atoms in the body of an integrity constraint to higher levels than the atoms in the
head; moreover, this should also hold considering possible unfoldings of literals in the body
of an integrity constraint [Xan03].

Termination is not affected in SCIFFD, as long as the newly added integrity constraints
do not violate the termination conditions.

Proposition 2.4. Let G be a query to an ALP 〈KB, ICS〉, with additional integrity con-
straints ICD, where KBS, ICS ∪ ICD and G are acyclic w.r.t. some level mapping, and
G and all implications in ICS ∪ ICD are bounded w.r.t. the level-mapping. Then, every
SCIFFD derivation for each instance of G is finite.

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN ABDUCTIVE PROOF PROCEDURE 9

2.4.2. Soundness. As usual, the soundness property states that the abductive answer com-
puted in a successful derivation is correct according to the declarative semantics.

Proposition 2.5. Given an ALP 〈KB, ICS〉, if

〈KB, ICS〉`〈∆,θ〉ICD
G

then
〈KB, ICS〉�∆

ICD
Gθ

2.4.3. Completeness. The completeness result states that SCIFFD can compute a subset
of any ground abductive answer that is correct according to the declarative semantics.

Proposition 2.6. Given an ALP 〈KB, ICS〉 and a set ICD of integrity constraints, for any

ground set ∆ such that 〈KB, ICS〉�∆
ICD
G there exist ∆′ and θ such that 〈KB, ICS〉`〈∆

′,θ〉
ICD

G
and ∆′θ ⊆ ∆.

3. Implementation

The SCIFF abductive proof procedure was implemented in Prolog, using extensively the
Constraint Handling Rules [Frü98, Sch04] library. The implementation can be downloaded
from the SCIFF web site [SCI10] and runs on SICStus and SWI Prolog.

Constraint Handling Rules (CHR) is a logic language devoted to define new constraint
solvers; however, it has been used as a general language for many different applications, not
all strictly related to constraints.

A new solver is defined in CHR by means of rules. There exist two main types of rules:
propagation and simplification1. A propagation rule is of the form

label@ Head1, . . . ,Headn ⇒ Guard|Body
and means that, if the optional Guard and the Heads are true, then the Body must be true.
Operationally, whenever a set of constraints are in the store, matching Head1, . . . , Headn,
the Guard is checked; if it evaluates to true, the Body is executed (as a Prolog goal). The
label is optional and serves only as an identifier of the rule.

Simplification rules have a similar syntax:

label@ Head1, . . . ,Headn ⇔ Guard|Body
and they state that if the Guard is true, then the conjunction Head1, . . . , Headn is equiv-
alent to Body. Operationally, if Head1, . . . , Headn are in the store (and Guard is true),
they are removed and substituted by Body.
SCIFF represents most of its data structures as CHR constraints:

• an abducible atom a(X) is represented with the CHR constraint abd(a(X))
• a (partially solved) integrity constraint a(Y), q(Y)→ p(Y) ∨ c(Y) is represented as

the CHR constraint

psic([abd(a(Y)),q(Y)]︸ ︷︷ ︸
Body

, (p(Y) ; abd(c(Y)))︸ ︷︷ ︸
Head

)

The Head can be any Prolog goal (it has the same syntax).

1There are also simpagation rules, that are not logically necessary, but are important for efficiency; we
will not go into details for lack of space.

10 M. ALBERTI, M. GAVANELLI, AND E. LAMMA

The proof tree is explored in a depth-first fashion, using the Prolog stack for this pur-
pose. Transitions are implemented as CHR rules; for example, transition Propagation is
implemented with the following propagation CHR:

propagation @

abd(A1),

psic([abd(A2)|More],Head)

==> psic([A1=A2|More],Head).

Case Analysis handles the equality in the body of a PSIC

case_analysis @

psic([A=B|More],Head)

==> impose A=B

psic(More,Head)

; % Open choice point

impose A and B do not unify

and the logical simplification (true→ A)⇔ A manages implications with empty body:

logic_simplification @ psic([],Head) <=> call(Head).

Thanks to this implementation, adding a new integrity constraint is just a matter of
calling the corresponding CHR constraint: if we want to dynamically add the integrity
constraint (2.2) we execute the goal:

psic([abd(a(X))], (abd(b(X));abd(c(X)))).

In this way, the newly added integrity constraint is automatically subject to all the
applicable transitions. Consider rule propagation: whenever two constraints matching
the rule head (e.g., abd(a(1)) and psic([a(X)],b(X))) are present in the CHR constraint
store, the rule is fired, it generates psic([a(X)=a(1)],b(X)), that triggers case analysis,
which in its turn generates two child nodes:

• one where unification is imposed between the abducible in the CHR constraint store
and the abducible in the partially solved integrity constraint, and a new partially
solved integrity constraint is imposed, with the abducible removed from the body;
• one where disunification between the abducible in the CHR constraint store and the

abducible in the partially solved integrity constraint is imposed.

In the previous example, psic([a(X)=a(1)],b(X)) is rewritten in the first case as X = 1
and b(X) is executed; in the second case by imposing the CLP constraint X 6= 1.

The relevant point, here, is that rule propagation is fired whenever both the constraints
(the abducible and the psic) are in the CHR store, regardless of which one entered the store
first. So, if a partially solved integrity constraint is added by addIC , and some abducible in
its body is already in the store, propagation will occur, as if the partially solved integrity
constraint had been in the constraint store from the beginning of the computation.

4. Experiments

To show the effectiveness of the approach, we tested a simple benchmark problem, that
is a simplified version of a contracting scenario. One agent needs to interact with some
web service, and choose one that is able to provide the expected reply. In this example,

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN ABDUCTIVE PROOF PROCEDURE 11

the agent will tell message m and will expect n as reply. The agent knows the address of a
series of web services, given as facts:

known service(http : //web.address.one/folder1/policy.ruleml).
known service(http : //web.address.two/folder2/policy.ruleml).

In order to find the right service, the agent executes the following goal, where tell is
abducible:

known service(Addr), download ic(Addr), tell(me, S,m), not(tell(S,me,A), A 6= n)

meaning that it will non-deterministically choose a service, download its integrity con-
straints, and then tell message m; it will fail if it gets any reply that is not n.

We generated 252 services, each with one integrity constraint

tell(Client, s, letter1)→ tell(s, Client, letter2)

where letter1 and letter2 are substituted with a ground term corresponding to one of the
25 letters of the alphabet.

We tried the goal on a slow network (mobile phone) and it took 173.350s to find the
right service. As a comparison, a solution that first downloads the IC of all possible services
before starting the solution takes 319.005s.

5. Related work

Among the many works on abduction in CHR by Christiansen and colleagues [Abd00,
Chr05b], we emphasize an inspiring position paper [Chr05a], in which preliminary exper-
iments are shown with integrity constraints mapped to CHR rules. In that work, Chris-
tiansen points out that through meta-rules it is possible to dynamically add integrity con-
straints. Here we extend the idea within the SCIFF framework, which gives us a set of
properties deemed crucial in the computational logic community. The operational seman-
tics of SCIFF is not based on that of CHR, but on the sound and complete semantics of the
IFF [Fun97]: this allowed us to prove those properties also for SCIFF. In this paper, we
extend these proofs for the dynamic addition of integrity constraints, reaching the objective
pointed out by Christiansen, but with soundness and completeness results.

EVOLP [Alf02] is a language to define logic programs able to evolve. A special atom
assert(Rule) can occur in the head or in the body of clauses; in case the stable model se-
mantics assigns value true to some of these literals, the clause Rule is added to the program.
Our instance can be considered as an evolving abductive program, in which only integrity
constraints (and not clauses in the KB) can be added, and based on the three-valued com-
pletion semantics, instead of the stable model semantics. Our language also features CLP
constraints and, as the general CLP framework [Jaf94a], it is parametric with respect to the
specific sort. The proof procedure lets the user choose the associated solver, and two state-
of-the-art solvers are available in the current implementation: CLP(R), on the real values,
and CLP(FD), on finite domains. EVOLP is a component of the ACORDA prospective logic
programming system [Lop06], which also integrates abductive reasoning and preferences, to
support interactive abductive logic programming, among other applications.

We can also easily extend the language in order to incorporate dynamic integrity con-
straints in the body of clauses, or in queries. Operationally, whenever an integrity constraint
is part of the resolvent, the addIC transition would be applied. However, the impact of
such extension on termination must be studied in future work. With reference to nested,

12 M. ALBERTI, M. GAVANELLI, AND E. LAMMA

dynamic ICs, and this extension of the SCIFF language, it is worth to mention that in the
literature, a lot of work was devoted to the treatment of embedded implications (due to
Miller, et al. see [Mil89, Hod94] and McCarty, see [McC88]) based on the logic of Higher-
Order Hereditary Harrop Formulas, a fragment of Intuitionistic logic. In this logic, and the
λ system implemented [Nad88], they allow arbitrary lambda terms with full higher-order
unification, and extend the formula language with arbitrarily nested universal quantifiers
and implications. In our case, we can add integrity constraints at runtime, rather than
program clauses as they do. We can therefore support abductive reasoning in an extended
set of constraints.

In CR-Prolog [Bal03], new (consistency-restoring) rules can be added dynamically,
as a part of an agent’s Observe-Think-Act loop; if some inconsistency is detected then
these constraints can be considered, according to their preferences. The semantics of CR-
Prolog programs is defined as a transformation into abductive logic programs, where each
consistency-restore rule has an abducible associated with it, and holds (only) if such ab-
ducible is abduced. In our framework, dynamically added integrity constraints must be
satisfied, independently of the abductive answer.

6. Conclusions

In this paper we proposed a declarative semantics for abductive logic programs where
additional integrity constraints can be added at runtime, based on the SCIFF language.

We described SCIFFD , an extension of the SCIFF proof procedure that supports
runtime addition of integrity constraints, and we proved formal results of termination,
soundness, and completeness for SCIFFD.

Such an extension can support interesting applications such as interactive abductive
logic programming and contracting in service-oriented architecture.

References

[Abd00] Slim Abdennadher and Henning Christiansen. An experimental CLP platform for integrity con-
straints and abduction. In Henrik Legind Larsen, Janusz Kacprzyk, Slawomir Zadrozny, Troels
Andreasen, and Henning Christiansen (eds.), FQAS, pp. 141–152. Physica-Verlag, Heidelberg,
2000.

[Alb08] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, and Paolo Tor-
roni. Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM
Transactions on Computational Logics, 9(4), 2008.

[Alb10] Marco Alberti, Marco Gavanelli, and Evelina Lamma. Runtime addition of integrity constraints in
SCIFF. Tech. Rep. cs-2010-01, Università degli Studi di Ferrara, Dipartimento di Ingegneria, 2010.
Available at http://www.unife.it/dipartimento/ingegneria/informazione/informatica/rapporti-
tecnici-1.

[Alf99] José Júlio Alferes, Lúıs Moniz Pereira, and Terrance Swift. Well-founded abduction via tabled
dual programs. In D. De Schreye (ed.), ICLP, pp. 426–440. 1999.

[Alf02] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Lúıs Moniz Pereira. Evolving logic
programs. In Sergio Flesca, Sergio Greco, Nicola Leone, and Giovambattista Ianni (eds.), JELIA,
Lecture Notes in Computer Science, vol. 2424, pp. 50–61. Springer, 2002.

[Apt91] Krzysztof R. Apt and Marc Bezem. Acyclic programs. New Generation Computing, 9(3/4):335–
364, 1991.

[Bal03] Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules. In
AAAI Spring 2003 Symposium, pp. 9–18. 2003.

RUNTIME ADDITION OF INTEGRITY CONSTRAINTS IN AN ABDUCTIVE PROOF PROCEDURE 13

[Che09] Federico Chesani, Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio
Storari. Exploiting inductive logic programming techniques for declarative process mining. T.
Petri Nets and Other Models of Concurrency, 2:278–295, 2009.

[Chr05a] Henning Christiansen. Experiences and directions for abduction and induction using constraint
handling rules. In Workshop on abduction and induction AIAI’05. Edinburgh, Scotland, 2005.

[Chr05b] Henning Christiansen and Verónica Dahl. HYPROLOG: A new logic programming language with
assumptions and abduction. In Maurizio Gabbrielli and Gopal Gupta (eds.), ICLP, Lecture Notes
in Computer Science, vol. 3668, pp. 159–173. Springer, 2005.

[Den98] Marc Denecker and Danny De Schreye. SLDNFA: An abductive procedure for abductive logic
programs. J. Log. Program., 34(2):111–167, 1998.

[Frü98] T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic Programming,
37(1-3):95–138, 1998.

[Fun97] T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic programming.
Journal of Logic Programming, 33(2):151–165, 1997.

[Hod94] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic.
Inf. Comput., 110(2):327–365, 1994.

[Jaf94a] J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of Logic Programming,
19-20:503–582, 1994.

[Jaf94b] Joxan Jaffar, Michael Maher, Kim Marriott, and Peter Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 1994.

[Kak90] A. C. Kakas and Paolo Mancarella. On the relation between Truth Maintenance and Abduction.
In T. Fukumura (ed.), Proceedings of the 1st Pacific Rim International Conference on Artificial
Intelligence, PRICAI-90, Nagoya, Japan, pp. 438–443. Ohmsha Ltd., 1990.

[Kak93] A. C. Kakas, R. A. Kowalski, and Francesca Toni. Abductive Logic Programming. Journal of
Logic and Computation, 2(6):719–770, 1993.

[Kun87] Kenneth Kunen. Negation in logic programming. J. Log. Program., 4(4):289–308, 1987.
[Lam07a] Evelina Lamma, Paola Mello, Marco Montali, Fabrizio Riguzzi, and Sergio Storari. Inducing

declarative logic-based models from labeled traces. In Gustavo Alonso, Peter Dadam, and Michael
Rosemann (eds.), BPM, Lecture Notes in Computer Science, vol. 4714, pp. 344–359. Springer,
2007.

[Lam07b] Evelina Lamma, Paola Mello, Fabrizio Riguzzi, and Sergio Storari. Applying inductive logic pro-
gramming to process mining. In Hendrik Blockeel, Jan Ramon, Jude W. Shavlik, and Prasad
Tadepalli (eds.), ILP, Lecture Notes in Computer Science, vol. 4894, pp. 132–146. Springer, 2007.

[Lop06] Gonçalo Lopes and Lúıs Moniz Pereira. Prospective programming with ACORDA. In Empiri-
cally Successful Computerized Reasoning (ESCoR’06) workshop at The 3rd International Joint
Conference on Automated Reasoning (IJCAR’06). Seattle, USA, 2006.

[McC88] L. Thorne McCarty. Clausal intuitionistic logic I - fixed-point semantics. J. Log. Program., 5(1):1–
31, 1988.

[Mil89] Dale Miller. A logical analysis of modules in logic programming. J. Log. Program., 6(1&2):79–108,
1989.

[Nad88] Gopalan Nadathur and Dale Miller. An overview of lambda-prolog. In ICLP/SLP, pp. 810–827.
1988.

[Sch04] T. Schrijvers and B. Demoen. The K.U. Leuven CHR system: implementation and application.
In T. Fruhwirth and M. Meister (eds.), First Workshop on Constraint Handling Rules. 2004.

[SCI10] The SCIFF abductive proof procedure, 2010. http://lia.deis.unibo.it/research/sciff/.
[Wan00] Kewen Wang. Argumentation-based abduction in disjunctive logic programming. J. Log. Program.,

45(1-3):105–141, 2000.
[Xan03] I. Xanthakos. Semantic Integration of Information by Abduction. Ph.D. thesis, Imperial College

London, 2003. Available at http://www.doc.ic.ac.uk/~ix98/PhD.zip.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

http://lia.deis.unibo.it/research/sciff/
http://www.doc.ic.ac.uk/~ix98/PhD.zip
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 14–23
http://www.floc-conference.org/ICLP-home.html

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS

MARCELLO BALDUCCINI 1

1 Intelligent Systems, KRL
Eastman Kodak Company
Rochester, NY 14650-2102 USA
E-mail address: marcello.balduccini@gmail.com

ABSTRACT. In spite of the recent improvements in the performance of Answer Set Programming
(ASP) solvers, when the search space is sufficiently large, it is still possible for the search algorithm
to mistakenly focus on areas of the search space that contain no solutions or very few. When that
happens, performance degrades substantially, even to the point that the solver may need to be ter-
minated before returning an answer. This prospect is a concern when one is considering using such
a solver in an industrial setting, where users typically expect consistent performance. To overcome
this problem, in this paper we propose a technique that allows learning domain-specific heuristics for
ASP solvers. The learning is done off-line, on representative instances from the target domain, and
the learned heuristics are then used for choice-point selection. In our experiments, the introduction of
domain-specific heuristics improved performance on hard instances by up to 3 orders of magnitude
(and 2 on average), nearly completely eliminating the cases in which the solver had to be terminated
because the wait for an answer had become unacceptable.

1. Introduction
In recent years, solvers for Answer Set Programming (ASP) [Gel91, Mar99] have become

amazingly fast. Mostly, that is due to good heuristics that direct the search toward the most promis-
ing areas of the search space, and to learning algorithms that discover features of the search space
on-the-fly (see e.g. [Geb07]). Unfortunately, when the search space is sufficiently large, it is still
possible for the search algorithm to mistakenly focus on areas of the search space that contain no
solutions or very few. When that happens, performance degrades substantially, even to the point
that the solver may need to be terminated before returning an answer. This prospect is a concern
when one is considering using such a solver in an industrial application, in which the solver will act
as part of a black-box from which users typically expect consistent performance. It should be noted
that the phenomenon of performance degradation is often due to the fact that the heuristics used in
choice-point selection are general-purpose, and thus can be side-tracked by peculiar features of a
given domain. To overcome this problem, in this paper we propose a technique that allows learning
domain-specific heuristics for ASP solvers. The technique is mainly aimed at improving the effi-
ciency of the computation of one answer set (as opposed to multiple answer sets of a program) of
consistent programs, but could be extended further. The learning is done off-line, on representative
instances from the target domain. In our experiments, the introduction of domain-specific heuristics
improved performance on hard instances by up to 3 orders of magnitude (and 2 on average), nearly

1998 ACM Subject Classification: I.2.3, I.2.4, I.2.5.
Key words and phrases: answer set programming, solvers, domain-specific heuristics.

c© M. Balduccini
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.14

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 15

completely eliminating the situations in which the solver had to be terminated because the wait for
an answer had become unacceptable.

This paper is organized as follows. In the next section we give some background on ASP. Next, we
discuss the basic search algorithm used in most ASP solvers. Then, in Section 3, we present our
technique for learning domain-specific heuristics. Experimental results are discussed in Section 4.
Finally, in Section 5, we draw conclusions.

2. Answer Set Programming
Let us start by giving some background on ASP. We define the syntax of the language precisely,

but only give the informal semantics of the language in order to save space. We refer the reader to
[Gel91, Nie00] for a specification of the formal semantics. Let Σ be a signature containing constant,
function and predicate symbols. Terms and atoms are formed as usual in first-order logic. A (basic)
literal is either an atom a or its strong (also called classical or epistemic) negation ¬a. The set of
literals formed from Σ is denoted by lit(Σ). A rule is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln
where hi’s and li’s are ground literals and not is the so-called default negation. The intuitive
meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no reason to believe
{lm+1, . . . , ln}, has to believe one of hi’s. The part of the statement to the left of ← is called
head; the part to its right is called body. Symbol← can be omitted if no li’s are specified. Often,
rules of the form h ← not h, l1, . . . , not ln are abbreviated into← l1, . . . , not ln, and called con-
straints. The intuitive meaning of a constraint is that its body must not be satisfied. A rule containing
variables is interpreted as the shorthand for the set of rules obtained by replacing the variables with
all the possible ground terms (called grounding of the rule). A program is a pair 〈Σ,Π〉, where Σ
is a signature and Π is a set of rules over Σ. We often denote programs just by the second element
of the pair, and let the signature be defined implicitly. In that case, the signature of Π is denoted
by Σ(Π). Finally, an answer set (or model) of a program Π is one of the possible collections of
its consequences under the answer set semantics. Notice that the semantics of ASP is defined in
such a way that programs may have multiple answer sets, intuitively corresponding to alternative
views of the specification given by the program. In that respect, the semantics of default negation
allows for a simple way to encode choices. For example, the set of rules {p← not q. q ← not p.}
intuitively states that either p or q hold, and the corresponding programs has two answer sets, {p},
{q}. Because a convenient representation of alternatives is often important in the formalization of
knowledge, the language of ASP has been extended with constraint literals [Nie00], which are ex-
pressions of the form m{l1, l2, . . . , lk}n, where m, n are arithmetic expressions and li’s are basic
literals as defined above. A constraint literal is satisfied whenever the number of literals that hold
from {l1, . . . , lk} is between m and n, inclusive. Using constraint literals, the choice between p and
q, under some set of conditions Γ, can be compactly encoded by the rule 1{p, q}1 ← Γ. A rule
of this form is called choice rule. When solving sets of problems from a given domain of interest,
ASP programs are often divided into a domain description and a problem instance. Intuitively, the
domain description encodes a description of the problem domain and of the solutions, while each
problem instance encodes a different problem from the domain. In this paper we will make the
simplifying assumption (usually satisfied even in practical applications) that the signature of every
problem instance of interest is contained in the signature of the domain description. Another notion
that is important for practical purposes is that of domain predicate. Domain predicates are relations
whose definition is given with rules following syntactic restrictions, in such a way that the definition

16 M. BALDUCCINI

of the relation can be derived from the rules without performing a complete answer set computation
for the containing program. Domain predicates are used by the grounding procedures in order to
determine the ranges of the variables that occur in the program. The precise definition of the syn-
tactic restrictions varies depending on the grounding procedure used. A commonly used definition
is the one given in [Syr98].

3. Learning Domain-Specific Heuristics
The search algorithm used by most ASP solvers (e.g. SMODELS [Nie02], DLV [Cal02], CLASP

[Geb07]) builds upon the DPLL procedure [Dav60, Dav62]. The basic algorithm for the computa-
tion of a single answer set, which we will later refer to as standard algorithm, is show in Figure 1.
The term extended literal, used in the algorithm, identifies a literal l or the expression not l (intu-
itively meaning that l is known not to hold in the answer set, but its complement, l, may or may not
hold). Given an extended literal e, not(e) denotes the expression not l if e = l and it denotes l if
e = not l. The algorithm is based on the idea of growing a particular set of (ground) literals, often

function solve (Π : Program,A : Set of Extended Literals)
B := expand(Π, A);
if (B is answer set of Π) then return B;
if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);
B′ := solve(Π, B ∪ {e});
if (B′ = ⊥) then B′ := solve(Π, B ∪ {not(e)});
return B′;

Figure 1: Basic Search Algorithm for ASP

called partial answer set, until it is either shown to be an answer set of the program, or it becomes
inconsistent. To achieve this, guesses have to be made as to which literals may be in the answer set.

It is not difficult to see how the choices made by choose literal greatly influence the num-
ber of choice points picked by the algorithm, and ultimately its performance. In order to reduce the
chances of choose literalmaking “wrong” selections, modern solvers base literal selection on care-
fully designed heuristics. For example, in SMODELS the selection is roughly based on maximizing
the number of consequences that can be derived after selecting the given extended literal [Nie02].
These techniques work well in a number of cases, but not always. In fact, particular features of the
program can confuse the heuristics. When that happens in the early stage of the search process,
the effect is often disastrous, causing the solver to fail to return an answer in an acceptable amount
of time. Particularly frustrating is the fact that the efficiency of the heuristics may change largely
in correspondence of small elaborations of the program in input. For example, the choose literal
heuristics may make good selections for one problem instance, while they may cause the search to
take an unacceptable amount of time for a not-too-different problem instance.

One way to limit the effect of wrong selections by choose literal is that of allowing the solver to
learn about relevant conflicts at run-time. Once learned, the information about conflicts can be used
for the early pruning of other branches of the search space (e.g. [Geb07]). Although this technique
has proven to be extremely effective, it does not address directly the issue of choose literal making
wrong choices, but rather curbs the problem by making some of those choices impossible after
learning has taken place, or by allowing to quickly backtrack after a wrong choice has been made.

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 17

Furthermore, because the learning occurs at run-time, during the initial phase of the computation in
which learning has not yet occurred, choose literal may once again affect efficiency negatively by
taking the search process in the wrong direction.

A different, more straightforward, way of limiting the wrong selections made by choose literal is
to directly improve the choice-making algorithm. In this paper, we adopt the approach of learning
domain-specific heuristics from a number of sample problems, and of using them for literal selec-
tion in a modified version of choose literal. This technique is suitable for situations in which one is
interested in solving a number of problem instances from a given problem domain. Such situations
are very common in the ASP community – see e.g. the Second Answer Set Programming Competi-
tion [Den09]. Moreover, this is particularly the case in industrial applications, where the application
contains the domain description, and the user describes the instance using some interface (refer e.g.
to [Bal06]), which then automatically encodes the problem instance.

Consider program P1:

P1 =



p← not q. q ← not p.

r.
← p, r.
← q, not s.

u(X)← t(X), not v(X).
v(X)← t(X), not u(X).

t(0). t(1). . . . t(1000).

The program can be viewed as consisting of a domain description and a problem instance: the first
7 rules constitute the former, while the definition of predicate t is the problem instance. A different
problem instance might then define t as {t(5), t(6), t(7)}. In this case, it is obvious that a good
strategy for the selection of the literals consists in first choosing among {p, not p, q, not q} and
only later (if necessary) considering the extended literals formed by u and v.

In general, the domain-specific heuristics for choose literal will be learned – rather than manually
specified – by analyzing the choices made by the standard solver solve when solving representative
problem instances from the domain. This approach is particularly useful in applications in which a
number of problem instances from the same class of problems will have to be solved over time –
for example, in the setting of an industrial application, or in a programming/solver competition in
which benchmarking is involved – and computational power is available off-line to allow learning
the domain-specific heuristics (e.g. before deploying the application, or before submitting the solver
or solutions to a competition).

Let us now describe in more detail our technique for learning and using domain-specific heuristics.
We start with the learning phase. First of all, the algorithm from Figure 1 is modified to maintain a
record of the choice points, and to return the list of choice points together with the answer set, when
one is found. The modified algorithm is shown in Figure 2. In the algorithm, the list of choice points
is stored in variable S. Symbol ◦ represents concatenation. When solvecp is initially invoked, S is
the empty list.

Now we turn our attention to how the information collected by solvecp is used to guide the
domain-specific heuristics. Given the domain description M and a problem instance I that is to
be used to learn the domain-specific heuristics, the decision-sequence of I (denoted by d(I)) is ⊥
if solvecp(I ∪M, ∅, ∅) = ⊥ and S if solvecp(I ∪M, ∅, ∅) = 〈A,S〉 for some A. From now on,
given a decision-sequence d, we denote its nth element by dn. Moreover, given an extended literal

18 M. BALDUCCINI

function solvecp (Π : Program,A : Set of Extended Literals, S : Ordered List of Extended Literals)
B := expand(Π, A);
if (B is answer set of Π) then return 〈B,S〉;
if (B is not consistent or B is complete) then return ⊥;
e := choose literal(Π, B);
〈B′, S′〉 := solve(Π, B ∪ {e}, S ◦ e);
if (B′ 6= ⊥) then return 〈B′, S′〉;
〈B′, S′〉 := solve(Π, B ∪ {not(e)}, S ◦ not(e));
return 〈B′, S′〉;

Figure 2: Search Algorithm for ASP with Explicit Tracking of Choice Points

e, level(e, d) denotes the index i such that di = e (e is guaranteed not to occur at more than one
position by construction of the decision-sequence in solvecp). Intuitively, level(e, d) represents the
level in the decision tree at which e was selected. Notice that, by construction of the sequence of
choice points in solvecp, if d(I) 6= ⊥, then d(I) only enumerates the choice points that led directly
to the answer sets. All the choice points that did not lead directly to it, in the sense that they were
later backtracked upon, are in fact discarded every time the algorithm backtracks.

In order to improve the efficiency of the learned heuristics, we divide the class of problem instances
in subclasses, and associate with each problem instance I an expression σ denoting the subclass
it belongs to. The intuition is that using subclasses allows to further tailor the literal selection
heuristics to the peculiar features of the problem instances. For example, in a planning domain,
σ might be the maximum length of the plan (often called lasttime or maxtime in ASP-based
planning). The subclass of a problem instance I is denoted by σ(I).

Let I denote the set of all problem instances that will be used for the learning of the domain-specific
heuristics. Next, we specify a way to determine how many times an extended literal e was selected
at a certain level of the decision-sequences for the problem instances in I. More precisely, given
a positive integer δ, called the scaling factor, and subclass σ, the occurrence count of an extended
literal e w.r.t. a level l and set of instances I is

oδ,σ(e, l, I) = | { I | I ∈ I ∧ σ(I) = σ ∧ d(I) 6= ⊥ ∧
l − δ/2 ≤ index(e, d(I)) < l + δ/2 } |.

The scaling factor δ allows taking into account all the occurrences of e at a level in the interval
[l − δ/2, l + δ/2). If δ = 1, then only the occurrences of e with level equal to l are considered.
Values of δ greater than 1 can be useful in those cases in which all or most permutations of a
sub-sequence of choice points lead to an answer set.

Let now E = {e1, e2, . . . , ek} be a set of extended literals, representing possible choice points at
some level l of the decision tree. The set of best choice points among E is:

bestδ(l, E, σ, I) = {e | e ∈ E ∧ ∀e′ ∈ E oδ,σ(e, l, I) ≥ oδ,σ(e′, l, I)}.
Intuitively, bestδ(l, E, σ, I) returns the choice points that, if taken at level l, are most likely to lead
to an answer set without backtracking, based on the information collected about the instances of
subclass σ in I. Algorithms for the computation of bestδ(l, E, σ, I) and oδ,σ(e, l, I) are simple and
are omitted to save space.

Function bestδ(l, E, σ, I) encodes the essence of the domain-specific heuristics. Algorithm
choose literal can now be extended to perform literal selection guided by the domain-
specific heuristics. The modified algorithm, choose literal dspec, is shown in Figure 3. In

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 19

function choose literal dspec (Π : Program,
σ : Problem Subclass,
A : Set of Extended Literals,
level : Integer /* Current Level in the Decision Tree */,
T : Set of Extended Literals,
I : Set of Instances,
δ : Integer /* Scaling Factor*/)

L := lit(Σ(Π));
E := L ∪ {not l | l ∈ L};
E′ = ∅;
for each e ∈ E

if (e 6∈ A ∧ not(e) 6∈ A ∧ e 6∈ T) then
E′ := E′ ∪ {e};

end if
end for
B := bestδ(level, E′, σ, I);
if (B 6= ∅) then

chosen := one element of(B);
else

chosen := choose literal(Π, A);
end if

return chosen;

Figure 3: Function for Literal Selection with Domain-Specific Heuristics

choose literal dspec, argument T is the set of extended literals that have previously been selected
by choose literal dspec. If bestδ(level, E′, σ(I), I) is the empty set, then choose literal dspec
falls back to performing standard extended literal selection via choose literal. This is for instances
in which the learned heuristics do not prescribe any extended literal for the current decision level,
or in which all the extended literals that the learned heuristics prescribed have already been tried.
Modifying the standard solver’s algorithm in order to use the domain-specific heuristics for choice-
point selection is rather straightforward. A simple version, which for the most part follows the
well-known iterative version of the SMODELS algorithm, is shown in Figure 4.

4. Experimental Evaluation
In this section we discuss the experiments we ran in order to evaluate our technique for learning

domain-specific heuristics and using them in computing answer sets. To ensure coverage of a wide
variety of cases, we have tested our implementation on both abstract problems and on problems
from industrial applications of ASP. Here we show the results of testing on the task of planning for
the Reaction Control System of the Space Shuttle.

The system used in the experiments is LPARSE+SMODELS, which we modified to obtain implemen-
tations of algorithms solvecp and solve dspec. One complication of the implementation process is
due to the fact that LPARSE often introduces unnamed atoms during the grounding of rules contain-
ing constraint literals, where by unnamed atoms we mean atoms that do not occur in the original
program, and that are assigned an identifier that is only meaningful in the context of the current
computation. Dealing with unnamed atoms is problematic because, in order to be used in the learn-
ing of the domain heuristics, all atoms must be assigned identifiers that are meaningful throughout

20 M. BALDUCCINI

function solve dspec (Π : Program,
σ : Problem Subclass,
I : Set of Instances,
δ : Scaling Factor)

var S : Stack of Sets of Extended Literals;
var B, T : Set of Extended Literals;
var terminate : Boolean;

S := ∅; B := ∅; T := ∅;
terminate := false;
while (terminate = false)

B := expand(Π, B);
if (B is answer set of Π) then

terminate := true;
else

if (B is not consistent or B is complete) then
if (S = ∅) then

B := ⊥;
terminate := true;

else
/* Backtrack */
B := top(S);
S := pop(S);

end if
else

/* Select a choice point */
e := choose literal dspec(Π, σ, B, level, T, I, δ);
T := T ∪ {e};
S := push(B ∪ {not(e)}, S);
B := B ∪ {e};

end if
end if

end while
return B;

Figure 4: Search Algorithm for ASP with Domain-Specific Heuristics for Choice-Point Selection

multiple computations (normally, the atoms’ own string representation satisfies this requirement).
We have thus developed a technique that uses pre-processing and post-processing for the execu-
tion of LPARSE to assign unnamed atoms identifiers satisfying this requirement. Space limitations
prevent us from giving more details on this technique.

It should also be noted that we did not use CLASP for our experiments: although CLASP is based,
like SMODELS, on the DPLL procedure, and thus technically viable for the implementation of our
algorithms, such implementation is complicated by the fact that, in CLASP, literal selection is al-
lowed to select special literals denoting the whole body of a rule. A further complication of the
implementation is due to the use of clause learning in CLASP. Work is ongoing on implementing
solvecp and solve dspec within this solver, and results will be discussed in a longer paper. In the
rest of the discussion, we refer to the implementation of solve dspec within SMODELS as DSPEC.

As described in e.g. [Nog03, Bal06], the RCS is the Shuttle’s system that has primary responsibility
for maneuvering the Shuttle while it is in space. It consists of fuel and oxidizer tanks, valves, and
other plumbing needed to provide propellant to the maneuvering jets of the Shuttle. The RCS also

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 21

includes electronic circuitry, both to control the valves in the fuel lines and to prepare the jets to
receive firing commands.

In order to configure the Shuttle for an orbital maneuver, the RCS must be configured by opening
and closing appropriate valves. This is accomplished by either changing the position of the asso-
ciated switches, or by issuing computer commands. In normal conditions, the procedures for the
configuration of the RCS for a given maneuver are known in advance by the astronauts. However, if
components of the RCS are faulty, then the standard procedures may not be applicable. Moreover,
because of the amount of possible combinations of faults, it is impossible to prepare in advance a
set of configuration procedures for faulty situations. In those cases, ground control needs to care-
fully examine the problem and manually come up with a configuration procedure. The system
described in [Nog03, Bal06] uses a model of the RCS, as well as ASP-based reasoning algorithms,
to provide ground control with a decision-support system that automatically generates configuration
procedures for the RCS and that can be used when faulty components are present (incidentally, the
system can also perform diagnostic reasoning [Bal06]).

A collection of problem instances from the domain of the RCS is publicly available, together with
the ASP encoding of the model of the RCS.1 The interested reader may refer to [Nog03] for a
description of the instances. For our testing, we have selected a set of 425 instances from the
collection, corresponding to the public instances with no electrical faults and 3, 8, and 10 mechanical
faults respectively, for which a plan of length 6 or less (determined by parameter lasttime) was
found in the experiments discussed in [Nog03, Bal06], and we have analyzed the performance of
the solver on planning with maximum lengths ranging between 6 and 10.

The comparison between SMODELS and DSPEC was conducted as follows. First of all, for each
instance we found one plan using SMODELS. Each computation was set up in such a way as to
timeout after 6000 seconds, if no answer set had yet been found. Next, we generated the domain-
specific heuristics. The set of instances used for learning consisted of all the instances for which
our implementation of solvecp found a solution in 50 seconds of less, while the remaining “hard
instances” were used for the evaluation phase. The problem subclasses were defined by the pair
〈lasttime,maneuver〉, where lasttime specifies the maximum plan length and maneuver is the
maneuver that the RCS must be configured for (in our experiments, using the maneuver in the sub-
class definition substantially improved the performance of the learned heuristics). Figure 5 shows
the results of the comparison for the 58 hard instances with 8 mechanical faults and values of last-
time of 9 and 10. The results were obtained with δ = 1. We believe the speedup obtained with
the domain-specific heuristics is remarkable. First of all, out of 32 instances for which the standard
solver timed out before finding a solution, in 28 cases the domain-specific heuristics allowed to find
a solution within the time limit, and in some cases in under 10 seconds. The average speedup is
232.3, with a peak of 1253.1 for an instance for which SMODELS timed out2, and a peak of 544.5
for an instance for which SMODELS did not time out. In 4 cases (out of 32) DSPEC performed worse
than the standard solver. We believe that these outliers can be eliminated if more samples are made
available for learning.

1The files are available from http://www.krlab.cs.ttu.edu/Software/Download/.
2The actual speedup could in fact be higher, since SMODELS timed out. As a test, we have let SMODELS run on some

of these instances for over 60, 000 seconds (16 hours) without getting a solution.

22 M. BALDUCCINI

8 Mechanical Faults

Lasttime/ SMODELS DSPEC Speedup
Instance (sec) (sec) (times)
9 / 025 6000 17.643 340.1
9 / 027 6000 9.597 625.2
9 / 038 125.244 8.616 14.5
9 / 044 1439.027 6.846 210.2
9 / 053 6000 13.599 441.2
9 / 059 85.151 551.806 0.2
9 / 074 6000 8.961 669.6
9 / 075 736.134 3.837 191.9
9 / 087 6000 6000 1.0
9 / 090 6000 14.111 425.2
9 / 093 2451.649 6.477 378.5
9 / 098 114.643 10.529 10.9
9 / 103 52.219 12.544 4.2
9 / 122 6000 4.788 1253.1
9 / 140 6000 11.493 522.1
9 / 165 6000 13.027 460.6
9 / 170 6000 6000 1.0
9 / 179 6000 14.304 419.5
9 / 184 6000 20.254 296.2
9 / 188 6000 6000 1.0
9 / 191 4829.019 8.869 544.5
9 / 199 437.379 7.144 61.2
10 / 013 94.623 21.663 4.4
10 / 022 6000 423.565 14.2
10 / 025 6000 2035.089 2.9
10 / 027 6000 10.248 585.5
10 / 032 2949.169 13.82 213.4
10 / 037 6000 12.218 491.1
10 / 044 6000 18.162 330.4

Lasttime/ SMODELS DSPEC Speedup
Instance (sec) (sec) (times)
10 / 050 72.596 12.521 5.8
10 / 053 1907.445 23.37 81.6
10 / 059 6000 15.163 395.7
10 / 061 266.024 7.756 34.3
10 / 070 519.583 16.343 31.8
10 / 074 6000 13.903 431.6
10 / 077 251.754 7.518 33.5
10 / 087 6000 24.962 240.4
10 / 088 3830.141 18.512 206.9
10 / 092 318.83 11.712 27.2
10 / 093 6000 494.85 12.1
10 / 096 789.351 13.787 57.3
10 / 103 6000 16.781 357.5
10 / 110 6000 255.421 23.5
10 / 113 264.419 6000 0.044
10 / 120 1983.466 20.254 97.9
10 / 140 64.451 6000 0.011
10 / 147 187.8 7.125 26.4
10 / 154 942.008 6000 0.157
10 / 165 6000 30.008 199.9
10 / 166 6000 820.789 7.3
10 / 177 6000 12.605 476.0
10 / 178 6000 6000 1.0
10 / 179 6000 16.74 358.4
10 / 188 5235.985 12.74 411.0
10 / 189 3773.981 11.765 320.8
10 / 190 6000 1010.51 5.9
10 / 194 6000 12.407 483.6
10 / 199 6000 9.452 634.8

Figure 5: Performance Comparison on the RCS Domain. Machine specs: Intel i7 CPU, 2.93GHz,
8GB RAM.

5. Conclusions
In this paper we have demonstrated how domain-specific heuristics for choice-point selection

can be learned and used in ASP solvers. Our experimental evaluation has shown that domain-
specific heuristics can give remarkable speedups, and allow to find answer sets that otherwise cannot
be computed in a reasonable time. In the case of the RCS domain, a large number of the instances for
which the standard solver timed out, could be solver in a matter of seconds using the domain-specific
heuristics, with an average speedup of more than 2 orders of magnitude and peaks of more than 3.
This is the type of consistent performance that makes a solver viable for industrial applications.

We believe that an appealing feature of our approach is that in principle it can be applied to any
solver built around the DPLL procedure. Hence, it is technically possible to apply the same approach
shown here to other ASP solvers, or even to, say, SAT solvers and constraint solvers. Work is
ongoing on implementing our technique within CLASP.

As a final note, we would like to point out that the method used here to learn the domain-specific
heuristics is a very simple instance of policy learning. It will be interesting to investigate how

LEARNING DOMAIN-SPECIFIC HEURISTICS FOR ANSWER SET SOLVERS 23

more sophisticated techniques from reinforcement learning, but also from machine learning and
data mining, can be applied to the learning of the domain-specific heuristics. We expect that doing
so will allow to improve performance of the solvers even further.

References
[Bal06] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer Set Based Design of Knowledge Sys-

tems. Annals of Mathematics and Artificial Intelligence, 2006.
[Cal02] Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovanbattista Ianni,

Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer, and Axel Polleres. The DLV
System. In Sergio Flesca and Giovanbattista Ianni (eds.), Proceedings of the 8th European Conference on Arti-
ficial Intelligence (JELIA 2002). 2002.

[Dav60] Martin Davis and Hillary Putnam. A Computing Procedure for Quantification Theory. Communications of the
ACM, 7:201–215, 1960.

[Dav62] Martin Davis, Geroge Logemann, and Donald Loveland. A Machine program for theorem proving. Communi-
cations of the ACM, 5(7):394–397, 1962.

[Den09] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The Second An-
swer Set Programming Competition. In 10th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR09), pp. 637–654. 2009.

[Geb07] Martin Gebser, B. Kaufmann, A. Neumann, and Torsten Schaub. Conflict-driven answer set solving. In
Manuela M. Veloso (ed.), Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), pp. 386–392. MIT Press, 2007.

[Gel91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9:365–385, 1991.

[Mar99] Victor W. Marek and Miroslaw Truszczynski. The Logic Programming Paradigm: a 25-Year Perspective, chap.
Stable models and an alternative logic programming paradigm, pp. 375–398. Springer Verlag, Berlin, 1999.

[Nie00] Ilkka Niemela and Patrik Simons. Logic-Based Artificial Intelligence, chap. Extending the Smodels System
with Cardinality and Weight Constraints, pp. 491–521. Kluwer Academic Publishers, 2000.

[Nie02] Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1–2):181–234, 2002.

[Nog03] Monica Nogueira. Building Knowledge Systems in A-Prolog. Ph.D. thesis, University of Texas at El Paso, 2003.
[Syr98] Tommi Syrjanen. Implementation of logical grounding for logic programs with stable model semantics. Tech.

Rep. 18, Digital Systems Laboratory, Helsinki University of Technology, 1998.

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 24–33
http://www.floc-conference.org/ICLP-home.html

HEX PROGRAMS WITH ACTION ATOMS

SELEN BASOL 1 AND OZAN ERDEM 1 AND MICHAEL FINK 2 AND GIOVAMBATTISTA IANNI 3

1 Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey
E-mail address: {selenbasol,ozanerdem}@su.sabanciuniv.edu

2 Institut für Informationssysteme, TU-Wien, Favoritenstraße 9-11, 1040 Wien, Austria
E-mail address: fink@kr.tuwien.ac.at

3 Dipartimento di Matematica, Univ. della Calabria, P.te P. Bucci, Cubo 30B, 87036 Rende, Italy
E-mail address: ianni@mat.unical.it

Abstract. hex programs were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. The original
framework, however, does not deal satisfactorily with stateful external environments: the
possibility of predictably influencing external environments has thus not yet been consid-
ered explicitly. This paper lifts hex programs to acthex programs: acthex programs
introduce the notion of action atoms, which are associated to corresponding functions
capable of actually changing the state of external environments. The execution of spe-
cific sequences of action atoms can be declaratively programmed. Furthermore, acthex
programs allow for selecting preferred actions, building on weights and corresponding cost
functions. We introduce syntax and semantics of acthex programs; acthex programs can
successfully be exploited as a general purpose language for the declarative implementation
of executable specifications, which we illustrate by encodings of knowledge bases updates,
action languages, and an agent programming language. A system capable of executing
acthex programs has been implemented and is publicly available.

1. Introduction

hex programs [Eit05], were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. For instance,
a rule like

pointsTo(X,Y)← &hasHyperlink[X](Y), url(X).

1998 ACM Subject Classification: I.2.4 [Knowledge Representation Formalisms and Methods]:
Representation languages; I.2.3 [Deduction and Theorem Proving]: Inference engines, Logic program-
ming, Nonmonotonic reasoning and belief revision; F.4.1 [Mathematical Logic]: Computational logic.

Key words and phrases: Answer Set Programming, Logic programming interoperability, Action languages.
This work was partially supported by the Vienna Science and Technology Fund (WWTF) under grant

ICT08-020, by the Italian Research Ministry (MIUR) under project INTERLINK II04CG8AGG, and by the
Regione Calabria and the EU under POR Calabria FESR 2007-2013 (PIA project of DLVSYSTEM s.r.l.).

c© Basol, Erdem, Fink, and Ianni
C Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.24

HEX PROGRAMS WITH ACTION ATOMS 25

might be devised for obtaining pairs of URLs (X,Y), where X actually links Y on the Web,
and &hasHyperlink is an external predicate construct.

The possibility of accessing multiple external sources of knowledge has no significant
constraint in hex programs: in particular, besides constant values, relational knowledge
(predicate extensions) can flow from external sources to the logic program at hand and
viceversa, and recursion involving external predicates is allowed under reasonable safety
assumptions.

It has been illustrated how hex-programs qualify themselves for actual implementation
of action and/or planning languages. As an example, in [Eit05] it is shown how the so called
code call construct of agent programs as defined in [Eit99] can be embedded in hex-programs
using the notion of external predicate.

As a further example, hex-programs constitute a generalization of description logic
programs as defined in [Eit08]: it is made possible to push additional, hypothetical asser-
tions to an external description logic knowledge base L, and then subsequently query the
augmented knowledge base L′. However, it is not possible to push persistent assertions to L:
in fact, hex-programs do not contemplate the possibility of changing the state of external
sources. For instance, it can be desirable having a program fragment like

new(X) ∨ old(X)← &addToFavorites[X], new(X).

where intuitively &addToFavorites[X] is a) true for all (and only) the values of X which do
not appear in a given external list L of favorite URLs, and b) has the side effect of adding
X to L if X is not already in L. However, one might wonder what the semantics of a
program including the above fragment should be, noticing that &addToFavorites changes
its outcome depending on its state (the list L). Hence, the sequence of state changes due to
&addFavorites would be predictable only if the rule evaluation order in the logic program
at hand is operationally specified and known by the programmers.

Updates on external environments changing their state are desired in a variety of con-
texts, mainly: 1), when the actual execution of a plan is expected: in this setting, a change
in the environment the agent at hand is acting in is implicitly prescribed; also, the order
of execution of plan actions and their effect must be predictable and, indeed, this is the
general setting which logic-based action languages are devised to reason about [Gel93]; 2)
when an answer set solver is interfaced with other (stateful) applications: the latter usually
elaborate on data depending on answer sets computed, which can be then subsequently
exploited for synthetis of new logic programs and evaluation thereof.

In the former case, the logic programming community (and particularly, the nonmono-
tonic reasoning community), has devoted extensive research towards reasoning about actions
and planning, but only a few works (see e.g. [Sub00]) considered the support for actual
execution of agent actions explicitly. In the latter case, applications have been developed
by the Answer Set Programming community usually resorting to handcrafted solutions, like
ad hoc post-parsing of answer sets1, or developing ad hoc libraries for invoking answer set
solvers from other development environments (see, e.g. [Ric03, Pir08]).

Although hex-programs interface well with external sources of knowledge, it turns out
that some structural limitations prevent addressing the issue of having impact on external
environments in a satisfactory way: first, external functions associated to external predicates
are inherently stateless; second, but more importantly, hex-programs are fully declarative:

1An extensive list of known applications of ASP can be found at
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html

26 BASOL, ERDEM, FINK, AND IANNI

this implies that when writing an hex program, it is not predictable whether and in which
order an external function will be evaluated.

To this end, we lift hex programs to acthex programs. acthex programs introduce
the notion of action predicate and action atom. Differently from external predicates, action
predicates have impact on external environments and might trigger state changes and side
effects. Action predicates are associated to corresponding (executable) functions. The
framework allows a) to express and infer a predictable order of execution for action atoms,
b) to express soft (and hard) preferences among a set of possible action atoms, and c)
to actually execute a set of action atoms according to a predictable schedule. It is worth
remarking that acthex programs do not represent an action language in a strict sense. The
main goal of the language is 1) to provide a complementary extension to logic programming
over which existing action, planning and agent languages can be grounded, and 2) to provide
a tighter and semantically sound framework for interfacing logic programs with applications
of arbitrary nature.

2. Syntax and Semantics

Intuitively, acthex programs extend hex programs allowing rules like

#robot [move, D]{b, T}[2 : 1]← direction(D), time(T).

the above can be seen as a rule for scheduling a movement of a given robot in direction
D with execution order T . Action atoms are executed according to execution schedules.
The latter in turn depend on answer sets, which in their generalized form, can contain
action atoms. The order of execution within a schedule can be specified using a precedence
attribute (which in the above rule is set by the variable T); also actions can be associated
with weights and priority levels (the values 2 and 1 above, respectively). Action atoms
allow to specify whether they have to be executed bravely (the b switch above), cautiously
or preferred cautiously, respectively meaning that an action atom a can get executed if it
appears in at least one, all, or all best cost answer sets. We give next the formal syntax and
semantics of the language.

Syntax. Given a finite alphabet Σ, we denote as C, X , G, and A mutually disjoint subsets of
Σ∗ whose elements are respectively called constant names, variable names, external predi-
cate names, and action predicate names. Elements from X (resp., C) are denoted with first
letter in upper case (resp., lower case), while elements from G (resp., A) are prefixed with
“&” (resp. “#”). Note that names in C serve both as constant and predicate names.

Elements from C ∪X are called terms. A higher-order atom (or atom) is a tuple (Y0, Y1,
. . . Yn), where Y0, Y1, . . . Yn are terms; n ≥ 0 is the arity of the atom. Intuitively, Y0 is
the predicate name, and we thus also use the more familiar notation Y0(Y1 . . . Yn). The
atom is ordinary, if Y0 is a constant. For example, (x, type, c), node(X), and D(a, b),
are atoms; the first two are ordinary atoms. An external atom [Eit05] is of the form
&g[Y1, . . . , Yn](X1, . . . , Xm) where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called
input and output lists, respectively), and &g ∈ G is an external predicate name. We
assume that &g has fixed lengths in(&g) = n and out(&g) = m for input and output lists,
respectively. An action atom is of the form #g [Y1, . . . Yn] {o, r} [w : l] where Y1, . . . , Yn is
a list of terms (called input list), and #g is an action predicate name. We assume that
#g has fixed length in(#g) = n for its input list. o ∈ {b, c, cp} is called the action option.

HEX PROGRAMS WITH ACTION ATOMS 27

Depending on the value of o, the action atom is called brave, cautious, preferred cautious,
respectively.

Optional attributes r, w and l range over positive integers and variables2, and are called
action precedence, action weight and action level respectively. For an action atom a, we
denote by pr(a), w(a), and l(a) its precedence, weight, and level, respectively. Concerning
the latter two, we remark that they are reminiscent of the corresponding attributes of
so-called weak constraints, but refrain from further illustration for space reasons.

Example 2.1. The action atom #robot [move, left]{b, 1} may be devised for moving a robot
to the left. Here, we have that in(#robot) = 2. This atom features the option b executed
with precedence 1, while weight and level information are not given.

A rule r is of the form α1∨. . .∨αk ← β1, . . . , βn,not βn+1, . . . ,not βm, where m,n, k ≥ 0,
m ≥ n, α1, . . . αk are atoms or action atoms, and β1, . . . βm are either atoms or exter-
nal atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪ B−(r), where B+(r) =
{β1, . . . , βn} and B−(r) = {not βn+1, . . . ,not βm}. If H(r) = ∅ and B(r) 6= ∅, then r is
a constraint, and if B(r) = ∅, and H(r) 6= ∅, then r is a fact; r is ordinary, if it does
not contain external or action atoms. An acthex program is a finite set P of rules. It is
ordinary, if all rules are ordinary.

Example 2.2. The following is a valid ActHex program:

evening ∨ morning.
#robot[turnAlarm, on]{c, 2} ← evening.

#robot[turnAlarm, off]{c, 2} ← morning.
#robot[move, all]{b, 1} ← &getFuel[](high).

#robot[move, left]{b, 1} ← &getFuel[](low).

Semantics. The semantics of acthex programs generalizes that of hex-programs given in
[Eit05], which in turn generalizes traditional answer-set semantics [Gel91]. In the sequel, let
P be an acthex program. We will assume that P acts in a external environment E, over
which action atoms potentially triggered by P might have some effects. acthex programs
can in practice be exploited in a variety of different environments (e.g. a relational database,
a file system, or the entire Web): we focus here on the semantics of P , and thus we will
make no particular assumption on the nature of E besides assuming it as a finite collection
of data structures of unspecified nature and size (to take the most general view, assume
E as a finite, arbitrarily large, portion of a Turing machine tape surrounded by blanks on
both sides).

The Herbrand base of P , denoted HBP , is the set of all possible ground versions of
atoms, external atoms and action atoms occurring in P obtained by replacing variables
with constants from C. The grounding of a rule r, grnd(r), is defined accordingly, and the
grounding of program P is given by grnd(P) =

⋃
r∈P grnd(r). Unless specified otherwise,

C,X ,G, and A are implicitly given by P .

Example 2.3. Given C = {edge, arc, d, e, 1, 2}, some ground instances of E(X, c) are
edge(d, e), arc(arc, e); #robot [d,N]{b,X} has ground instances #robot [d, e]{b, 1}, #robot
[d, d]{b, 2}.

2We assume here that C contains a finite subset of consecutive integers S = {0, . . . , nmax}.

28 BASOL, ERDEM, FINK, AND IANNI

An interpretation relative to P is any subset I ⊆ HBP containing (ordinary) atoms
and action atoms. We say that I is a model of atom (or action atom) a ∈ HBP , denoted
I |= a, if a ∈ I. With every external predicate name &g ∈ G, we associate an (n+m+1)-
ary Boolean function f&g, assigning each tuple (I, y1, . . . , yn, x1, , . . . , xm) either 0 or 1,
where n= in(&g), m= out(&g), I ⊆ HBP , and xi, yj ∈ C. Similarly, with every action
predicate name #g ∈ A, we associate a (n+2)-ary function f#g with input (E, I, y1, . . . , yn)
and returning a new external environment E′ = f#g(E, I, y1, . . . , yn). Note that functions
that are associated with action atoms do not have output lists. We say that I ⊆ HBP
is a model of a ground external atom a = &g [y1, . . . , yn] (x1, . . . , xm), denoted I |= a, iff
f&g(I, y1 . . . , yn, x1, . . . , xm) = 1.

Intuitively, functions associated with external atoms model (stateless) calls to external
code and/or external sources of knowledge, as originally defined in [Eit05]. The newly
introduced notion here is that of action predicates: action atoms can appear in answer sets or
not depending on whether they are a consequence of the program at hand or not; functions
associated with action predicates serve the purpose of modelling the actual execution of
entailed action atoms, i.e., the respective changes on E.

Example 2.4. We associate with &reach a function f&reach , s.t. f&reach(I,G,A,B) =
1 iff node B is reachable from node A in the graph encoded by means of the binary
predicate G . Let I = {e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d), since
f&reach(I, e, b, d) = 1. Also, let us associate with #insert a function f#insert , and assume
that E contains an encoding of a knowledge base K expressed as a set of facts. When action
atom #insert [edge, arc] {b, 1} needs to be executed, then the function f#insert is called with
inputs (E, I, edge, arc), for an interpretation I. Intuitively, #insert might correspond to
the act of adding to the extension of the predicate edge in K the extension of the predicate
arc in I.

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such that
I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and (iii) I |= r
iff I |= H(r) or I 6|= B(r). We say that I is a model of an acthex program P , denoted
I |= P , iff I |= r for all r ∈ grnd(P). We call P satisfiable, if it has some model. Given
an acthex program P , the FLP-reduct of P with respect to I ⊆ HBP , denoted fP I , is
the set of all r ∈ grnd(P) such that I |= B(r). I ⊆ HBP is an answer set of P iff I is a
minimal model of fP I .

Note that we inherit from the framework of hex programs the adoption of the notion
of reduct as defined by [Fab04] (referred to as FLP-reduct henceforth). The FLP-reduct
is equivalent to the traditional Gelfond-Lifschitz reduct for ordinary programs, and in our
context ensures answer-set minimality, even in the presence of external atoms (see [Eit05]
for details). Let AS(P) be the collection of all the answer sets of program P ; the set of best
models BM(P) contains the answer sets of P minimizing an objective function HP . HP (A)
intuitively weighs an answer set A depending on the weights (and levels) of action atoms
which are contained in A3.

Let a be an action atom of the form #g [y1, . . . yn] {o, r}, and A ∈ AS(P); a is said to
be executable in A, if i) a is brave (i.e., o = b) and a ∈ A, or ii) a is cautious (i.e., o = c)
and a ∈ B for every B ∈ AS(P), or iii) a is preferred cautious (i.e., o = cp) and a ∈ B
for every B ∈ BM(P). Roughly speaking, once an answer set A is chosen as the one to be

3For space reasons, the reader can find the definition of HP at
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/preferences.html

HEX PROGRAMS WITH ACTION ATOMS 29

executed, action atoms to be executed are selected depending on their action option. Note
that, in this respect, the notion of brave executability depends on the answer set at hand
and thus slightly differs from the traditional notion of brave entailment.

Given an answer set A ∈ BM(P), an execution schedule EA,P = [a1, . . . , an] is an
ordered list containing all the action atoms executable in A, such that i < j if pr(ai) <
pr(aj), for each pair of atoms ai, aj appearing in EA,P .

Intuitively, an execution schedule for a program gives an order for the action execution
compatible with the precedences specified in the program. Note that for action atoms with
the same precedence the execution order is not specified.

Given an execution schedule EA,P = [a1, . . . , an], let E0 = E, and for i > 0, Ei =
fai(Ei−1, A, y1, . . . , ym). We define EX(EA,P) = En as the execution outcome of EA,P , and
EX (P) = {EA,P | A ∈ BM(P)}.

In general, given a program P , we consider AS(P), BM(P) and EX (P) as different
facets of the semantics of P . In particular, the execution outcome of P is EX(EA,P) for an
execution schedule EA,P ∈ EX (P) of choice. We simply assume that a deterministic rule
for choosing EA,P is given4.

Example 2.5. Let A1, A2, A3 be three answer sets of a given program Pex2.5, where
A1, A2 ∈ BM(Pex2.5). Let a1 = #insert [e, g1] {b, 1}, a2 = #insert [e, g2] {c, 5}, a3 =
#insert [e, g3] {c, 2}, a4 = #insert [e, g4] {cp, 2}, a5 = #insert [e, g5] {b, 1}, and let A1 =
{a1, a2, a3, a4, a5}, A2 = {a2, a4}, A3 = {a2, a5}.

Since A3 6∈ BM(Pex5), possible choices of answer sets are A1 and A2. If we choose A1,
brave atoms a1, a5, cautious atom a2 and preferred cautious atom a4 are executable since
a1, a5 ∈ A1, where a2 appears in all the answer sets and a4 appears in both A1 and A2 . A1

has two possible execution schedules which are [a1, a5, a4, a2], and [a5, a1, a4, a2].
For the case that A2 is selected, cautious atom a2 and preferred cautious atom a4 are

executable since a2 appears in all answer sets, and a4 appears in A1 and A2. Thus, the only
possible execution schedule for A2 is [a4, a2].

3. Applications of acthex programs

In this section, we provide evidence for the versatility of acthex by discussing several
application scenarios, including encodings of existing action-based KR formalisms.

Action languages. We use action language C [Giu98] as a representative for sketching how
action languages can be reduced to acthex programs. The relationship to logic program-
ming is well-known: we follow a transformation from [Lif99].

The semantics of C is defined in terms of transition diagrams which put in relationship
propositional action and fluent atoms. The possible state evolution specified in transition
diagrams can equivalently be characterized as a logic program expressed in terms of predi-
cates having a time attribute, which are used for encoding truth values of different action
and fluent variables at different times. Not surprisingly, the precedence attribute of action
atoms can intuitively capture the notion of time as in [Lif99].

Consider causal laws defined as either a static law of the form “caused F if L1 ∧ · · · ∧
Lm”, or a dynamic law of the form “caused F if L1∧· · ·∧Lm after Lm+1∧· · ·Ln∧Ln+1∧

4For the sake of efficiency, our implementation executes the first execution schedule obtained from the
first computed answer set: other selection criteria are of course possible.

30 BASOL, ERDEM, FINK, AND IANNI

· · · ∧Lk”, where F is a fluent literal, Li is a fluent literal for 1 ≤ i ≤ n, and respectively an
action name for n+ 1 ≤ i ≤ k. An action description is a set of causal laws.

Given an action description D and a maximum time t, following [Lif99], a dynamic law

l ∈ D of the form above can be translated to the ordinary rule F ′(T + 1) ← not L
′
1(T +

1), . . . , not L
′
m(T + 1), L′m+1(T), . . . , L′k(T), where F ′ is a unary predicate associated to

fluent F , while L′i, L
′
i are unary predicates associated to fluents Li, 1 ≤ i ≤ n, respectively to

actions Li, n+ 1 ≤ i ≤ k, and their complements5. We then put in connection action atoms
with actions by means of rules #Li{o, T} ← Li(T)., n + 1 ≤ i ≤ k, where #Li is a newly
introduced action atom which is responsible of executing the action Li, and o is an action
option. By adding other auxiliary rules (e.g. guessing rules b(T) ∨ b(T) ← T ≤ t for each
action b), and setting o = b, we obtain a program PD whose execution schedules EX (PD)
correspond to so-called histories (paths) of length t in D. An execution plan e ∈ EX (PD)
can then be materially executed. Similarly, preference orderings between actions as in
the language PP and variants thereof [Son06], can be attached to action atoms: for an
ordering L1 < · · · < Ln among actions one can introduce corresponding integer weights
w1 < · · · < wn and rules #Li{O, T}[wi : 1]← Li(T).

Knowledge Base Updates. As another potential usage of acthex programs, we mention
the possibility of updating knowledge bases, e.g., as achieved by the predicates assert and
retract in Prolog. We assume that external environments contain a collection C of knowl-
edge bases accessible by names, and consider abstract action constructs assert(kb, f) and
retract(kb, f), which respectively should add or remove a statement f from a given knowl-
edge base kb. The above can be grounded to acthex programs, introducing action pred-
icates #assertk and #retractk, for k > 06. An atom #assertk[kb, a1, . . . , ak]{o, p}, (resp.
#retractk[kb, a1, . . . , ak]{o, p}) adds to (resp. removes from) the knowledge base kb the
assertion a1| . . . |ak, for ai|aj , being the string concatenation of ai and aj .

For instance, the rule #assert3[kb, “n(”, X, “).”]{b, 1} ← node(X). encodes the possible
addition of facts n(c) for each c such that node(c) ∈ A, for an answer set A. The above
constructs can be fruitfully combined with reasoning over the given knowledge bases: to this
end, we introduce the action atom #execute[kb]{o, p}. Assuming the kb is a valid acthex
program, when such an atom belongs to the current execution schedule, it gets executed by
evaluating kb and the resulting execution schedule. Note that whether #assert, #retract
and #execute actions will be executed depend on reasoning on the program at hand: this
opens a variety of possibilities, e.g. belief revisions, and, in general, observe-think-act
cycles [Kow99]7. Note that the evaluation of programs with this kind of construct might
not terminate in general: this issue is subject of ongoing study.

Translation of Agent Programs. Agent programs can also be realized in the acthex frame-
work. We consider logic-based agent programs as developed in [Sub00], consisting of rules of

5We can assume a constraint← L′i(T), L
′
i(T) is added for each Li. Note that the current implementation

of acthex programs allows for strong negation, by which an atom L
′
(T) can be conveniently modelled as

¬L′(T).
6Our implementation of acthex programs conveniently allows to program and group families of action

atoms, like the above, using variable length parameter lists.
7An example acthex program containing update actions is given at

http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionplugin example1.html

HEX PROGRAMS WITH ACTION ATOMS 31

the form Op0α0 ← χ, [¬]Op1α1, . . . , [¬]Opmαm, governing an agent’s behaviour. The Opi
are deontic modalities, the αi are action status atoms, and χ is a code-call condition.

For instance, Do dial(N) ← in(N, phone(P)), O call(P), intuitively states that the
agent should dial phone number N if she is obliged to call P . In [Sub00], a translation of
an agent program AG(P) to a logic program P is given, such that the answer sets of P
correspond to the so-called reasonable status sets of AG(P). We build on this transformation
and model code-call conditions (which, e.g., provide access to actual sensor readings) using
external atoms as already described in [Eit05]. Similarly, we model Do atoms as action
atoms in our framework using rules of the sort #actionα[. . .]{b} ← Do α. A framework
implementing this translation is available8, featuring a) the translation of agent programs
to acthex programs, b) incorporating the actual execution of Do-able actions and c) an
implementation of message box facilities for agents.

Other applications. acthex programs can be exploited in a variety of other contexts, rang-
ing from database access to interaction with actual web sources. We developed an example9

illustrating how to exploit reasoning in ASP for choosing meeting schedules of two teams.
Events are extracted from actual Google Calendars10 of two teams; meeting dates are se-
lected using ASP reasoning; eventually, the chosen events are posted to the calendars of the
teams using an action atom of the form

#createEvent[Team,Url, “ActHexMeeting”, Date, User, Password]{b, 1}.

4. Implementation Notes

An implementation of acthex programs has been realized and is available11 as an
extension to the dlvhex system12. With respect to the traditional workflow of an answer
set solver, the system computes execution schedules and executes one of it according to: i)
the semantics of acthex programs, ii) the selection policy of execution schedules described
in Section 2, and iii) the associated executable functions provided for action predicates.
The system is equipped with a toolkit enabling users to develop their own libraries of
action predicates: some example libraries are available. In particular, the KBModaddon

library constitutes a generalization of update action atoms as shown in Section 3 (it is, e.g.,
possible to execute arbitrary command line statements, and to assert and retract arbitrary
statements from knowledge bases). An example library allowing access and modification to
Google Calendars is also publicly available.

5. Related Work and Conclusions

Our work has points of contact with some lines of research which can be grouped as
follows. Action languages serve the purpose of providing a declarative language for specify-
ing causal theories [Giu98, McC97], allowing to assert not only the truth of a proposition,
but also that there is a cause for it to be true. In this respect, they provide a formalism
for the declarative representation of dynamic domains and gave rise to logic-based planning

8http://students.sabanciuniv.edu/∼ozanerdem/AgentToHex.html
9http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionplugin example2.html
10http://www.google.com/calendar
11http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
12http://www.kr.tuwien.ac.at/research/systems/dlvhex/

32 BASOL, ERDEM, FINK, AND IANNI

systems such as CCLAC [Giu04] and DLVK [Eit03]. The two systems mentioned are based
on transformations [Lif99, Gel93] to logic programming under the answer set semantics,
however other (nonmonotonic) reasoning engines can be exploited for causal reasoning in
action domains as well (cf, e.g., [Tur96, Kak01, Lin00]).

acthex programs generalize hex programs which in turn generalize ASP programs,
and thus can be similarly used to implement planning systems based on action languages
(as shown in Section 3). When resorting to acthex, however, action atoms also encode
their actual execution, enabling a variety of applications. For instance, this allows for in-
terweaving plan generation and action execution seamlessly within a coherent declarative
framework, which may, e.g., be utilized for an integrated approach to monitoring plan exe-
cution. For instance, [Nie07] extends the action language K towards conditional planning:
building on hex programs, they introduce external function calls in causal rules to im-
port fluent information from an external source. The introduction of action atoms makes it
possible to extend the framework coping with action execution and monitoring their success.

Logic-based agent programming constitutes a further natural application domain for ac-
thex programs: intelligent agents require reasoning and/or planning capabilities for acting
in dynamic environments, and using logic programming for the declarative specification of
a respective observe-think-act cycle [Kow99] is a reasonable choice. acthex may serve as
an implementation layer for agent systems built according to this paradigm. We exem-
plified its suitability providing a transformation of IMPACT agent programs [Sub00] into
corresponding acthex programs.

The evaluation of IMPACT agent programs is restricted to stratified negation in its
current implementation: the given acthex encoding does not require such a restriction
and can handle general agent programs as formally conceived. Similarly, compared to ac-
thex, agent-oriented logic programming languages based on Horn clause languages (e.g.,
DALI [Cos04], or ALP [Dre09]) lack a declarative concept of negation, which is important
from an expressive and practical modelling point of view, for instance to express excep-
tions. On the other hand, most nonmonotonic logic programming based approaches to
agent-oriented programming, (e.g.[Alf06, Alf08, Nie06, Vos05, Lei01]), detach the reasoning
process from the actual execution of an agent’s actions (which often are termed ‘external’)
and only their (expected) effects are taken into account for further deliberation. For such
agent frameworks, acthex can provide the platform for an integrated implementation. In
conclusion, acthex is a declarative logic programming framework including a representa-
tion for actions that are executed and have an impact on an external environment. Formal
properties of the language and further extensions (e.g. parallel execution schedules) are
subject to ongoing work. Corresponding results, as well as a more rigorous treatment of
the given encodings, will be subject of follow-up work and/or an extended version of this
paper.

References

[Alf06] J. J. Alferes, F. Banti, and A. Brogi. An event-condition-action logic programming language. In
JELIA, pp. 29–42. 2006.

[Alf08] J. J. Alferes, A. Gabaldon, and J. Leite. Evolving logic programming based agents with temporal
operators. In IAT, pp. 238–244. 2008.

[Cos04] S. Costantini and A. Tocchio. The DALI logic programming agent-oriented language. In JELIA,
pp. 685–688. 2004.

HEX PROGRAMS WITH ACTION ATOMS 33

[Dre09] C. Drescher, S. Schiffel, and M. Thielscher. A declarative agent programming language based on
action theories. In FroCos, pp. 230–245. 2009.

[Eit99] T. Eiter, V. S. Subrahmanian, and G. Pick. Heterogeneous active agents, I: semantics. Artif. Intell.,
108(1-2):179–255, 1999. doi:http://dx.doi.org/10.1016/S0004-3702(99)00005-3.

[Eit03] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach to
knowledge-state planning, II: The DLVK system. Artif. Intell., 144(1-2):157–211, 2003.

[Eit05] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning
and external evaluations in answer-set programming. In IJCAI, pp. 90–96. 2005.

[Eit08] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set pro-
gramming with description logics for the semantic web. Artif. Intell., 172(12-13):1495–1539, 2008.

[Fab04] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In JELIA, pp. 200–212. 2004.

[Gel91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Comput., 9(3/4):365–386, 1991.

[Gel93] M. Gelfond and V. Lifschitz. Representing action and change by logic programs. JLP, 17:301–322,
1993.

[Giu98] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary
report. In AAAI/IAAI, pp. 623–630. 1998.

[Giu04] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories. AI,
153(1-2):49–104, 2004. doi:http://dx.doi.org/10.1016/j.artint.2002.12.001.

[Kak01] A. C. Kakas, R. Miller, and F. Toni. E-RES: Reasoning about actions, events and observations. In
LPNMR, pp. 254–266. 2001.

[Kow99] R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems. Ann. Math.
Artif. Intell., 25(3-4):391–419, 1999.

[Lei01] J. A. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming agent archi-
tecture. In ATAL, pp. 141–157. 2001.

[Lif99] V. Lifschitz and H. Turner. Representing transition systems by logic programs. In LPNMR, pp.
92–106. 1999.

[Lin00] F. Lin. From causal theories to successor state axioms and strips-like systems. In AAAI/IAAI, pp.
786–791. 2000.

[McC97] N. McCain and H. Turner. Causal theories of action and change. In AAAI/IAAI, pp. 460–465.
1997.

[Nie06] D. Van Nieuwenborgh, M. De Vos, S. Heymans, and D. Vermeir. Hierarchical decision making in
multi-agent systems using answer set programming. In CLIMA VII, pp. 20–40. 2006.

[Nie07] D. Van Nieuwenborgh, T. Eiter, and D. Vermeir. Conditional planning with external functions. In
LPNMR, pp. 214–227. 2007.

[Pir08] G. Pirrotta and A. Provetti. A Java wrapper for answer set programming inferential engines. In
CILC 2008.

[Ric03] F. Ricca. The DLV Java wrapper. In APPIA-GULP-PRODE, pp. 263–274. 2003.
[Son06] T. C. Son and E. Pontelli. Planning with preferences using logic programming. TPLP, 6(5):559–607,

2006.
[Sub00] V. S. Subrahmanian, P. A. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. B. Ross. Het-

erogenous Active Agents. MIT Press, 2000.
[Tur96] H. Turner. Representing actions in default logic: A situation calculus approach. In In Proceedings

of the Symposium in honor of Michael Gelfond’s 50th birthday (also in Common Sense 96). 1996.
[Vos05] M. De Vos, T. Crick, J. A. Padget, M. Brain, O. Cliffe, and J. Needham. LAIMA: A multi-agent

platform using ordered choice logic programming. In DALT, pp. 72–88. 2005.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 34–43
http://www.floc-conference.org/ICLP-home.html

COMMUNICATING ANSWER SET PROGRAMS

KIM BAUTERS 1 AND JEROEN JANSSEN 2 AND STEVEN SCHOCKAERT 1 AND DIRK VERMEIR 2

AND MARTINE DE COCK 3,1

1 Department of Applied Mathematics and Computer Science, Universiteit Gent
Krijgslaan 281, 9000 Gent, Belgium
E-mail address: {kim.bauters,steven.schockaert}@ugent.be

2 Department of Computer Science, Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
E-mail address: {jeroen.janssen,dvermeir}@vub.ac.be

3 Institute of Technology, University of Washington
1900 Commerce Street, WA-98402 Tacoma, USA
E-mail address: mdecock@u.washington.edu

Abstract. Answer set programming is a form of declarative programming that has proven
very successful in succinctly formulating and solving complex problems. Although mecha-
nisms for representing and reasoning with the combined answer set programs of multiple
agents have already been proposed, the actual gain in expressivity when adding commu-
nication has not been thoroughly studied. We show that allowing simple programs to talk
to each other results in the same expressivity as adding negation-as-failure. Furthermore,
we show that the ability to focus on one program in a network of simple programs results
in the same expressivity as adding disjunction in the head of the rules.

1. Introduction

The idea of answer set programming (ASP) is to represent the requirements of a com-
putational problem by a logic program P such that particular minimal models of P , called
answer sets and usually defined using some form of the stable model semantics [Gel88],
correspond to the solutions of the original problem [Lif02]. The research on multi-context
systems has, among other things, been concerned with studying how a group of simple
agents can cooperate to find the solutions of global problems [Roe05, Bre07]. We start with
an introductory example to illustrate how the ideas of multi-context systems can be used
to solve problems in the ASP setting.

Kim Bauters and Jeroen Janssen are funded by a joint Research Foundation-Flanders (FWO) project.
Steven Schockaert is a postdoctoral fellow of the Research Foundation-Flanders (FWO).

c© K. Bauters, J. Janssen, S. Schockaert, D. Vermeir, and M. De Cock
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.34

COMMUNICATING ANSWER SET PROGRAMS 35

Example 1.1. A hotspot network consists of two hotspots H1 and H2. The hotspots are
wired to each other to share an internet connection and provide wireless access to users in
the area. A user U tries to connect to the closest detectable hotspot e.g. H1. Now assume
that H1 is no longer accessible. H1 cannot find this out by itself, nor can it rely on users
telling this since they cannot connect. The rules below illustrate how we can model this
knowledge using the communicating programs we describe in Section 2.2. For compactness,
we abbreviate accessible as a, access as c, problem as p and optimal as o. Consider the
program Pintro with the rules:

H1 :¬a← H2 :p [r1] U :o← H1 :a [r5]

H2 :a← [r2] U :¬o← H2 :a, not H1 :a [r6]

H2 :¬a← H1 :p [r3] U :c← H1 :a [r7]

H2 :p← U :¬o [r4] U :c← H2 :a [r8]

Let H1 = {r1}, H2 = {r2, r3, r4} and U = {r5, r6, r7, r8}. Note how the rules of the
first hotspot H1 differ from those of the second hotspot H2, i.e. they are in different states.
Indeed, the first hotspot H1 cannot rely on the user to tell that there is a problem and
it is not accessible. The second hotspot does not have these restrictions. It is easy to see
that user U can deduce that she has access (r2, r8), though this access is not optimal (r6).
The second hotspot detects this (r4) and concludes that there is a problem, allowing H1 to
derive that it is not accessible (r1).

In this paper we systematically study the effect of adding such kind of communication
to ASP in terms of expressiveness. The communication between ASP programs that we
propose is similar in spirit to the work in [Roe05, Bre07, Buc08]. Studying the expres-
siveness with a focus on simple ASP programs, however, is in contrast to approaches such
as [De05, Van07] that start from expressive ASP variants, which obscures the analysis of
the effect of communication on the expressiveness. A first contribution of this paper is
that communicating simple programs can solve problems at the first level of the polyno-
mial hierarchy and that communicating normal ASP programs do not offer any additional
expressiveness. The second contribution is the introduction of a new, intuitive form of com-
munication that allows for communicating simple ASP programs to solve problems at the
second level of the polynomial hierarchy. The hardness results that we present in this paper
in a sense complement the membership results from [Bre07]. However, our definitions of
communicating ASP and minimality differ slightly, complicating a direct comparison of the
results.

The remainder of this paper is organized as follows. Section 2 recalls the basic concepts
and results from ASP which we use in this paper, and explores the syntax and semantics of
communicating programs. In Section 3 we show that these communicating simple programs
are capable of simulating normal programs that have negation-as-failure. In Section 4 we
introduce focused communicating programs and show how networks of simple agents can
simulate disjunctive ASP programs. Related work is discussed in Section 5 and Section 6
provides some final remarks.

36 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

2. Preliminaries

2.1. Answer set programming

We first recall the basic concepts and results from ASP that are used in this paper.
To define ASP programs, we start from a countable set of atoms and we define a literal
l as an atom a or its classical negation ¬a. If L is a set of literals, we use ¬L to denote
the set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set of literals L is consistent if
L ∩ ¬L = ∅. An extended literal is either a literal or a literal preceded by not which we
call the negation-as-failure operator. For a set of literals L, we use not(L) to denote the set
{not l | l ∈ L}.

A disjunctive rule is an expression of the form γ ← (α ∪ not(β)) where γ is a set
of literals (interpreted as a disjunction, denoted as l1; . . . ; ln) called the head of the rule
and (α ∪ not(β)) (interpreted as a conjunction) is the body of the rule with α and β sets
of literals. A positive disjunctive rule is a disjunctive rule without negation-as-failure in
the body, i.e. with β = ∅. A disjunctive program P is a finite set of disjunctive rules. The
Herbrand base BP of P is the set of atoms appearing in program P . A (partial) interpretation
I of P is any consistent set of literals I ⊆ (BP ∪ ¬BP). I is total iff I ∪ ¬I = BP ∪ ¬BP .

A normal rule is a disjunctive rule with at most one literal l in the head. A normal
program P is a finite set of normal rules. A simple rule is a normal rule without negation-
as-failure in the body. A simple program P is a finite set of simple rules. The immediate
consequence operator TP of a simple program P w.r.t. an interpretation I is defined as

TP (I) = I ∪ {l | ((l← α) ∈ P) ∧ (α ⊆ I)} . (2.1)

We use P ? to denote the fixpoint which is obtained by repeatedly applying TP starting from
the empty interpretation, i.e. the least fixpoint of TP w.r.t. set inclusion. An interpretation
I is an answer set of a simple program P iff I = P ?.

The reduct P I of a disjunctive program P w.r.t. the interpretation I is defined as P I =
{γ ← α | (γ ← α ∪ not(β)) ∈ P, β ∩ I = ∅} . I is an answer set of the disjunctive program
P when I is the minimal model w.r.t. set inclusion of P I . In the specific case of normal
programs, answer sets can also be characterized in terms of fixpoints. Specifically, it is easy
to see that the reduct P I is a simple program. I is an answer set of the normal program P
iff
(
P I
)?

= I, i.e. if I is the answer set of the reduct P I .

2.2. Communicating programs

The underlying intuition of communication between ASP programs is that of a function
call or, in terms of agents, asking questions to other agents. This communication is based
on a new kind of literal ‘Q : l’, as in [Roe05, Bre07]. If the literal l is not in the answer set of
Q then Q : l is false; otherwise Q : l is true. The semantics are closely related to the minimal
semantics in [Bre07] and especially the semantics in [Buc08].

Let P be a finite set of program names. A P-situated literal is an expression of the
form Q : l with Q ∈ P and l a literal. For R ∈ P, a P-situated literal Q : l is called R-local
if Q = R. For a set of literals L, we use Q :L as a shorthand for {Q : l | l ∈ L}. For a set of
P-situated literals X and Q ∈ P, we use X↓Q to denote {l | Q : l ∈ X}, i.e. the projection
of X on Q. A set of P-situated literals X is consistent iff X↓Q is consistent for all Q ∈ P.
By ¬X we denote the set {Q :¬l | Q : l ∈ X} where we define Q :¬¬l = Q : l. An extended
P-situated literal is either a P-situated literal or a P-situated literal preceded by not. For

COMMUNICATING ANSWER SET PROGRAMS 37

a set of P-situated literals X, we use not(X) to denote the set {not Q : l | Q : l ∈ X}. For a
set of extended P-situated literals X we denote by Xpos the set of P-situated literals in X,
i.e. those extended P-situated literals in X that are not preceded by negation-as-failure,
while Xneg = {Q : l | not Q : l ∈ X}.

A P-situated normal rule is an expression of the form Q : l ← (α ∪ not(β)) where
Q : l is a single P-situated literal, called the head of the rule, and (α ∪ not(β)) is called
the body of the rule with α and β sets of P-situated literals. A P-situated normal rule
Q : l← (α∪ not (β)) is called R-local whenever Q = R. A P-component normal program Q
is a finite set of Q-local P-situated normal rules. Henceforth we shall use P to both denote
the set of program names and to denote the set of actual P-component normal programs.
A communicating normal program P is then a finite set of P-component normal programs.

A P-situated simple rule is an expression of the form Q : l← α, i.e. a P-situated normal
rule without negation-as-failure in the body. A P-component simple program Q is a finite
set of Q-local P-situated simple rules. A communicating simple program P is then a finite
set of P-component simple programs.

In the remainder of this paper we drop the P-prefix whenever the set P is clear from
the context. Whenever the name of the component normal program Q is clear, we write l
instead of Q : l for Q-local situated literals. For notational convenience, we write commu-
nicating program for communicating normal program. Finally note that a communicating
normal (simple) program with only one component program trivially corresponds to a nor-
mal (simple) program.

Similar as for a normal program, we can define the Herbrand base for a component
program Q as the set of atoms occurring in Q, which we denote as BQ. The Herbrand base
of a communicating program P is defined as BP =

{
Q :a | Q ∈ P and a ∈

⋃
R∈P BR

}
. We

say that a (partial) interpretation I of a communicating program P is any consistent subset
I ⊆ (BP ∪ ¬BP). Given an interpretation I of a communicating program P, the reduct QI

for Q ∈ P is the component simple program obtained by deleting

• each rule with an extended situated literal not R : l in the body such that R : l ∈ I;
• each remaining extended situated literal of the form not R : l;
• each rule with a situated literal R : l in the body that is not Q-local with R : l /∈ I;
• each situated literal R : l that is not Q-local and such that R : l ∈ I.

The underlying intuition of the reduct is clear. Analogous to the definition of a reduct
of a normal programs [Gel88], the reduct of a communicating program defines a way to
reduce this program relative to some guess I. The reduct of a communicating program is a
communicating simple program that only contains component simple programs Q with Q-
local situated literals. That is, each component simple program Q corresponds to a classical
simple program. We tackle the problem of self-references in [Buc08] by treating Q-local
situated literals in a different way. Since the communication is based on belief and internal
reasoning is based on knowledge, this allows for “mutual influence” as in [Bre07, Buc08]
where the belief of an agent can be supported by the agent itself, via belief in other agents.
Also note that the belief between agents is the belief as identified in [Lif99], i.e. Q : l is
true whenever “¬not Q : l” is true under the syntax and semantics introduced in [Lif99] for
nested logic programs and when treating Q : l as a fresh atom.

Definition 2.1. We say that an interpretation I of a communicating program P is an
answer set of P if and only if we have that ∀Q ∈ P · (Q :I↓Q) =

(
QI
)?

.

38 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Example 2.2. Consider the communicating program Pintro from Example 1.1. It is easy to
see that M = {H1 :¬a,H2 :a,H2 :p, U :¬o, U :c} is the unique answer set of Pintro. Indeed,

we obtain the reducts (H1)
M = {¬a←}, (H2)

M = {a←, p←} and (U)M = {¬o←, c←}
which have the answer sets {¬a} , {a, p} and {¬o, c}, respectively.

3. Simulating Negation-as-Failure with Communication

The addition of communication to ASP programs provides added expressiveness and
an increase in computational complexity, which we illustrate in this section. We show that
a communicating simple program can simulate normal programs, where simple programs
are P-complete and normal programs are NP-complete [Bar03]. Furthermore, we illustrate
that, surprisingly, there is no difference in terms of computational complexity between
communicating simple programs and communicating normal programs.

We start by giving an example of the transformation that allows to simulate (commu-
nicating) normal programs using communicating simple programs. Afterwards, we give a
formal definition of this transformation.

Example 3.1. Consider the communicating normal program E with the rules

Q1 :a← not Q2 :b

Q2 :b← not Q1 :a.

When Q1 = Q2 this example corresponds to a normal program. The transformation we
propose below results in the communicating simple program P = {Q′1, Q′2, N1, N2}:

Q′1 :a← N2 :¬(b)† N1 : (a)† ← Q′1 :a

Q′2 :b← N1 :¬(a)† N2 : (b)† ← Q′2 :b

Q′1 :¬(a)† ← N1 :¬(a)† N1 :¬(a)† ← Q′1 :¬(a)†

Q′2 :¬(b)† ← N2 :¬(b)† N2 :¬(b)† ← Q′2 :¬(b)†.

The transformation creates two types of ‘worlds’, Q′i and Ni with 1 ≤ i ≤ 2, which are
all component programs. Q′i is similar to Qi, although occurrences of extended situated

literals of the form not Qi : l are replaced by Ni : ¬(l)†, with (l)† a fresh literal. The
non-monotonicity associated with negation-as-failure is simulated by introducing the rules

¬(l)† ← Ni :¬(l)† and ¬(l)† ← Q′i :¬(l)† in Q′i and Ni, respectively. Finally, we add rules

of the form (l)† ← Q′i : l to Ni, creating an inconsistency when Ni believes ¬(l)† when Q′i
believes l.

The resulting communicating simple program P is an equivalent program in that its
answer sets correspond to those of the original communicating program, yet without using
negation-as-failure. Indeed, the answer sets of E are {Q1 :a} and {Q2 :b} and the answer sets

of P are
{
Q′1 :a,Q′2 :¬(b)†, N2 :¬(b)†, N1 : (a)†

}
and

{
Q′2 :b,Q′1 :¬(a)†, N1 :¬(a)†, N2 : (b)†

}
.

Note furthermore how this is a polynomial transformation with at most 3 · |Eneg | additional
rules with Eneg as defined in Definition 3.2.

Definition 3.2. Let E = {Q1, . . . , Qn} be a communicating program. The communicating
simple program P = {Q′1, . . . , Q′n, N1, . . . , Nn} with 1 ≤ i, j ≤ n that simulates E is defined

COMMUNICATING ANSWER SET PROGRAMS 39

by

Q′i =
{
l← α′pos ∪

{
Nj :¬(k)† | Qj :k ∈ αneg

}
| (l← α) ∈ Qi

}
(3.1)

∪
{
¬(b)† ← Ni :¬(b)† | Qi :b ∈ Eneg

}
(3.2)

Ni =
{
¬(b)† ← Q′i :¬(b)† | Qi :b ∈ Eneg

}
(3.3)

∪
{

(b)† ← Q′i :b | Qi :b ∈ Eneg
}

(3.4)

with α′pos =
{
Q′j : l | Qj : l ∈ αpos

}
and Eneg =

⋃n
i=1

(⋃
(a←α)∈Qi

αneg

)
.

Recall that both ¬(b)† and (b)† are fresh literals that intuitively correspond to ¬b and
b. We use Q′i+ to denote the rules in Q′i defined by (3.1) and Q′i− to denote the rules in
Q′i defined by (3.2).

Intuitively, the transformation employs the non-monotonic property of the belief under-
lying the situated literals to simulate negation-as-failure. This is obtained from the interplay

between the rules (3.2) and (3.3). As such, we can use the new literal ‘¬(b)†’ instead of the
original extended (situated) literal ‘not b’, allowing us to rewrite the rules as we do in (3.1).
In order to ensure that the simulation works, even when the program we want to simulate
contains true negation, we need to specify some additional bookkeeping (3.4).

As becomes clear from Proposition 3.3 and Proposition 3.4, the above transformation
preserves the semantics of the original program. Since we can easily rewrite any normal
program as a communicating normal program, the importance of this is thus twofold. On
one hand, we reveal that communicating normal programs do not have any additional ex-
pressive power over communicating simple programs. On the other hand, it follows that the
expressiveness of communicating simple programs allows us to solve NP-complete problems,
since finding the answer set of normal programs is an NP-complete problem [Bar03].

Proposition 3.3. Let P = {Q1, . . . , Qn} and let P ′ = {Q′1, . . . , Q′n, N1, . . . , Nn} with P
a communicating program and P ′ the communicating simple program that simulates P as
defined in Definition 3.2. If M is an answer set of P, then M ′ is an answer set of P ′ with
M ′ defined as:

M ′ =
{
Q′i :a | a ∈M↓Qi

, Qi ∈ P
}

∪
{
Q′i :¬(b)† | b /∈M↓Qi

, Qi ∈ P
}

∪
{
Ni :¬(b)† | b /∈M↓Qi

, Qi ∈ P
}

∪
{
Ni : (a)† | a ∈M↓Qi

, Qi ∈ P
}
.

(3.5)

Proposition 3.4. Let P = {Q1, . . . , Qn} and let P ′ = {Q′1, . . . , Q′n, N1, . . . , Nn} with P
a communicating program and P ′ the communicating simple program that simulates P.
Assume that M ′ is an answer set of P ′ and that (M ′)↓Ni

is total w.r.t. BNi for all i ∈
{1, . . . , n}. Then the interpretation M defined as

M =
{
Qi :b | b ∈

((
Q′i+

)M ′)?}
(3.6)

is an answer set of P.

40 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Note that the requirement for M ′ to be a total answer set of P in Ni is necessary in
this last proposition, as demonstrated by the following example.

Example 3.5. Consider the normal program R = {a← not a} which has no answer sets.
The corresponding communicating simple program P = {Q,N} has the following rules:

Q :a← N :¬(a)† N :¬(a)† ← Q :¬(a)†

Q :¬(a)† ← N :¬(a)† N : (a)† ← Q :a.

It is easy to see that I = ∅ is an answer set of P since we have QI = N I = ∅.

4. Focused Communicating Programs

In this section, we extend the semantics of communicating programs in such a way that
it is possible to focus on a single component program. That is, we indicate that we are
not interested in the answer sets of the entire network of component programs, but only in
answer sets of a single component program. The underlying intuition is that of auxiliary
functions or, in terms of agents, a team governed by a leader who forwards (and possibly
amends) the conclusions. We are thus varying the communication mechanism, without
altering the expressiveness of the agents in the network.

Definition 4.1. Let P be a communicating program and Q ∈ P a component program. A
Q-focused answer set of P is any subset-minimal element of

{M↓Q |M an answer set of P} .
If we are only interested in Q-focused answer sets, then P is called a Q-focused commu-
nicating program, denoted as P↓Q. As before, we drop the Q-prefix when the component
program Q is clear from the context.

Example 4.2. Consider the communicating program Pfocus = {Q,R} with the rules

Q = {a←, b←, c← not R :c}
R = {a← not c, c← not a, d← c} .

The communicating program Pfocus has two answer sets, namely M1 = Q :{a, b, c}∪{R :a}
and M2 = Q : {a, b} ∪ R : {c, d}. The only Q-focused answer set of Pfocus is {a, b} since
M1↓Q = {a, b, c} and M2↓Q = {a, b}.

This simple extension is all that is needed to take another step in the complexity hierar-
chy. That is, the complexity of finding the answer sets of a focused communicating program
is ΣP

2 -hard.1 Before we state this result, we first explain that any positive disjunctive pro-
gram can be simulated using focused communicating programs. The underlying intuition
is straightforward. We delegate the disjunction in the head to a new component program
where we simulate the corresponding choice using negation-as-failure. The results of these
component programs are then grouped in an aggregate component program on which we
focus to ensure that we only retain the minimal models that correspond with the answer
sets of the original positive disjunctive program. We start with an example to illustrate the
simulation.

1Recall that ΣP
2 is the class of problems that can be solved in polynomial time on a non-deterministic

machine with an NP oracle, i.e. ΣP
2 = NPNP.

COMMUNICATING ANSWER SET PROGRAMS 41

Example 4.3. Consider the positive disjunctive program D = {a; b←, a← b, b← a}. The
corresponding focused program (Psimulate)↓Q = {Q,R1} has the following rules:

R1 :a← not R1 :b Q :a← R1 :a

R1 :b← not R1 :a Q :b← R1 :b

Q :a← Q :b

Q :b← Q :a

The answer sets of Psimulate are {R1 :a} ∪ Q : {a, b} and {R1 :b} ∪ Q : {a, b}. The unique
answer set of (Psimulate)↓Q is therefore {a, b}, which is also the unique answer set of D.

Definition 4.4. Let D = {r1, . . . , rn, rn+1, . . . , rs} be a positive disjunctive program where
ri = γi ← αi such that |γi | > 1 for i ∈ {1, . . . , n} and |γi | ∈ {0, 1} for i ∈ {n+ 1, . . . , s}.
The focused program that simulates D, P↓Q = {Q,R1, . . . , Rn}, is defined by

Q = {ri | i ∈ {n+ 1, . . . , s}}
∪ {l← {Ri : l} ∪ αi | i ∈ {1, . . . , n} , l ∈ γi} (4.1)

where for i ∈ {1, . . . , n} we have

Ri = {l← not(γi \ {l}) | l ∈ γi} . (4.2)

Proposition 4.5. Let D be a positive disjunctive program and P↓Q the focused communi-
cating program that simulates D. M is an answer set of D iff M is an answer set of P↓Q.

We can thus use focused communicating programs to solve existential-universal quantifi-
able boolean formulae (e.g. by simulating the disjunctive ASP program proposed in [Bar03]).
This can be used as the basis of a proof to show that finding the answer sets of focused
communicating programs is in ΣP

2 .

Corollary 4.6. Deciding whether a Q-focused communicating (simple) program P↓Q with

two or more component programs has an answer set containing a specific literal l is ΣP
2 -hard.

Membership in ΣP
2 can also be shown, thus this problem is ΣP

2 -complete.

5. Related Work

A large body of research has been devoted to combining logic programming with multi-
agent or multi-context ideas for various reasons. Among others, the logic can be used to
describe the (rational) behaviour of the agents in a multi-agent network, as in [Del99]. It
can be used to combine different flavours of logic programming languages [Luo05, Eit08].
It can be used to externally solve tasks for which ASP is not suited, yet remaining in a
declarative framework [Eit06]. It can also be used as a form of cooperation, where multiple
agents or contexts collaborate to solve a difficult problem [De05, Van07].

The approach described in this paper falls into this last category and studies the ex-
pressiveness of the communication component in communicating ASP. In contrast to [De05,
Van07] our approach is based on simple programs and on asking for information instead of
pushing (partial) answer sets to the next ASP program in the network. Like in [De05], but
in contrast with [Van07], we allow circular communication between programs and do not
force a linear network of ASP programs that in turn refine the results of previous steps.

42 K. BAUTERS, J. JANSSEN, S. SCHOCKAERT, D. VERMEIR, AND M. DE COCK

Table 1: Complexity of Communicating Answer Set Programming

no communication with communication focused communication

simple program P-hard NP-hard ΣP
2 -hard

normal program NP-hard NP-hard ΣP
2 -hard

Complexity studies in this setting have been performed but with some notable differ-
ences. For example, [Bre07] generalises towards heterogenous non-monotonic multi-context
systems in which different flavours of logic programming languages work together to solve
a problem.

It is shown that the complexity of verifying whether some literal is contained in some
(resp. all) solutions is in ΣP

k (resp. ΠP
k), where the value of k depends on the underlying

logic that is used.
In [DT09], recursive modular nonmonotonic logic programs (MLP) under the ASP se-

mantics are considered. The main difference between MLP and our simple communication is
that our communication is parameter-less, i.e. the truth of a situated literal is not dependent
on parameters passed by the situated literal to the target component program.

The work in this paper is different from all of the above in that it studies the expressive-
ness of communicating answer set programs with simple rules while varying the mechanisms
for parameter-less communication between the agents.

6. Conclusion

In this paper we have systematically studied the effect of adding communication to
ASP in terms of expressiveness and computational complexity. One of the most interesting
results is that communicating simple programs (without negation-as-failure) are expressive
enough to simulate communicating normal programs (with negation-as-failure). To show
this, we have provided an actual translation of a communication normal ASP program into
an equivalent communicating ASP program with only simple rules. Since normal programs
are a special case of communicating normal programs, and solving normal programs is
known to be NP-complete, this entails that solving communicating simple programs is an
NP-hard problem.

Additionally, we introduce focused communicating programs where we “focus” on the
results of a single component program. The other component programs can still contribute
to solving the problem at hand, but they no longer have a direct influence over the resulting
answer set. Indeed, the component program on which we focus can override any and all
conclusions. Such focused communicating programs can easily be obtained by varying the
parameter-less communication mechanism found in the communicating programs introduced
in the first part of this paper. Focused communicating programs can be used to simulate
programs with disjunctive rules without negation-as-failure and are able to solve problems
in ΣP

2 . Table 1 summarises our main results.

Acknowledgment

The authors wish to thank the anonymous reviewers for their references to related work,
as well as for their comments and suggestions that helped to improve the quality of this

COMMUNICATING ANSWER SET PROGRAMS 43

paper. Special thanks go out to Pascal Nicolas, Claire Lefèvre and Laurent Garcia for their
fruitful discussions that led to new insights.

References

[Bar03] Chitta Baral. Knowledge, Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003.

[Bre07] Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. In Proc. of AAAI07, pp. 385–390. 2007.

[Buc08] Francesco Buccafurri, Gianluca Caminiti, and Rosario Laurendi. A logic language with stable model
semantics for social reasoning. In Proc. of ICLP08, pp. 718–723. 2008.

[De05] Marina De Vos, Tom Crick, Julian Padget, Martin Brain, Owen Cliffe, and Jonathan Needham.
LAIMA: A multi-agent platform using ordered choice logic programming. In Declarative Agent
Languages and Technologies III, pp. 72–88. 2005.

[Del99] Pierangelo Dell’Acqua, Fariba Sadri, and Francesca Toni. Communicating agents. In Proceedings of
the International Workshop on Multi-Agent Systems in Logic Programming. 1999.

[DT09] Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner. Modular nonmonotonic
logic programming revisited. In Proc. of ICLP, pp. 145–159. 2009.

[Eit06] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. dlvhex: A tool for
semantic-web reasoning under the answer-set semantics. In Proceedings of International Workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web Services, pp. 33–39.
2006.

[Eit08] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web. Artifial Intelli-
gence, 172(12–13):1495–1539, 2008.

[Gel88] Michael Gelfond and Vladimir Lifzchitz. The stable model semantics for logic programming. In
Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1081–
1086. 1988.

[Lif99] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic programs.
Ann. Math. Artif. Intell., 25(3-4):369–389, 1999.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138:39–54,
2002.

[Luo05] Jiewen Luo, Zhongzhi Shi, Maoguang Wang, and He Huang. Multi-agent cooperation: A description
logic view. In Proc. of PRIMA05, pp. 365–379. 2005.

[Roe05] Floris Roelofsen and Luciano Serafini. Minimal and absent information in contexts. In Proc. of
IJCAI05, pp. 558–563. 2005.

[Van07] Davy Van Nieuwenborgh, Marina De Vos, Stijn Heymans, and Dirk Vermeir. Hierarchical decision
making in multi-agent systems using answer set programming. In Proc. of CLIMA07. 2007.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 44–53
http://www.floc-conference.org/ICLP-home.html

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION

STEFAN BRASS 1

1 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany
E-mail address: brass@informatik.uni-halle.de

Abstract. Bottom-up evaluation is a central part of query evaluation / program execu-
tion in deductive databases. It is used after a source code optimization like magic sets or
SLDmagic that ensures that only facts relevant for the query can be derived. Then bottom-
up evaluation simply performs the iteration of the standard TP -operator to compute the
minimal model. However, there are different ways to implement bottom-up evaluation
efficiently. Since this is most critical for the performance of a deductive database system,
and since performance is critical for the acceptance of deductive database technology, this
question deserves a thorough analysis. In this paper we start this work by discussing sev-
eral different implementation alternatives. Especially, we propose a new implementation
of bottom-up evaluation called “Push-Method”.

1. Introduction

Deductive databases [Min88, Ull90, Fre91, Ram94, Vag94, Fri95, Ram95] have not yet
been very successful in practice (at least in terms of market share). However, their basic
idea is practically very important: Deductive databases aim at an integrated system of
database and programming language that is based on the declarative paradigm which was
so successful in database languages. Currently, database programming is typically done in
languages like PHP or Java. The programs construct SQL statements, send them to the
database server, fetch the results, and process them. The interface is not very smooth, and
although the situation can be improved with specific database languages like PL/SQL and
server-side procedures / user-defined functions within the DBMS, the language paradigms
remain different. Object-oriented databases were one approach to develop an integrated
system based on a single paradigm, but there the declarativity of the database query part
was sacrificed, and they did not get a significant market share, either. Nevertheless, there
is an obvious demand for integrated database/programming systems, and this demand has
even grown because of object-relational features that need programming inside the database
server, and because of web and XML applications.

One of the reasons why deductive databases were not yet successful is the non-satisfying
performance of many prototypes. This is also related to the impression that most deductive
database prototypes have not really tried to be useful also as a programming platform —
they were concentrated only on recursive query evaluation.

1998 ACM Subject Classification: I.2.3 Logic Programming, H.2.4 Query processing.
Key words and phrases: deductive databases, bottom-up evaluation, implementation.

c© S. Brass
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.44

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION 45

Of course, recursive query evaluation is an important task, because many applications
use tree-structured or graph-structured data. There has been a lot of progress over the years
in this area [Ban86b]. A large part of this work was about source-level optimizations, like
the well-known magic-set method [Ban86a, Bee91] and its many optimizations, including
the SLDMagic-method of the author [Bra00].

However, this all depends on an efficient implementation of bottom-up evaluation. If
one wants to build a new deductive database system which a real chance for acceptance in
practice, one needs to clarify first how bottom-up evaluation should be done. This is not
obvious, and several alternatives will be discussed in this paper.

Note that programming in deductive databases is not the same as programming in
Pure Prolog. In deductive databases one thinks in the direction of the arrow, because they
are based on bottom-up evaluation. For instance left recursion is very natural in this way,
whereas in Prolog it must be avoided.

Top-down systems with tabling (like the XSB system [Sag94]) have a middle position
between Prolog and deductive databases. Currently they have better performance than
systems based on bottom-up evaluation. Our belief is that the bottom-up approach has
still room for improvement in order to deliver competitive performance. In [Bra00] we
proposed a source-level transformation that is for tail-recursions asymptotically faster than
the standard magic set method (and also than the tabling method underlying the XSB
system). It is also interesting because it unifies many improvements which were proposed
for the magic set method over time.

After a source-level transformation like SLDmagic, which solves the problem of goal-
direction, one needs an efficient implementation of bottom-up evaluation. The research
reported in this paper is a step in this direction.

The approach we want to follow is to translate Datalog into C++, which can then be
compiled to machine code. We did first performance tests with the methods described in
this paper, but because of space restrictions, we must refer to

http://www.informatik.uni-halle.de/~brass/botup/

for the results.

2. Basic Framework

There are three types of predicates:

• EDB predicates (“extensional database”), the given database relations,
• IDB predicates (“intensional database”), which are defined by means of rules,
• built-in predicates like <, which usually have an infinite extension, and are defined

by means of program code inside the system.

The purpose of bottom-up evaluation is to compute the extensions of the IDB relations.
Actually, only one of them is the “answer predicate”, the extension of which must be printed,
or otherwise made available to the user.

Bottom-up evaluation works by applying the rules from right to left, so basically it com-
putes the minimal model by iterating the standard TP -operator. Of course, an important
goal is to apply every applicable rule instance only once via rule-ordering and managing
deltas for recursive rules (“seminaive evaluation”). However, slight exceptions are possible,
because there is a tradeoff with the work needed for storing and accessing again intermediate
facts.

46 S. BRASS

Because of the infinite extension, built-in predicates can only be called when certain
arguments are bound (i.e. input arguments, known values). In contrast, a free argument
position permits a variable (output argument). The restrictions for the predicates are
described by binding patterns (modes, adornments), e.g. < can be called for the binding
pattern bb only (every letter in a binding pattern corresponds to an argument position, b
means bound, f means free).

A basic interface for relations is that it is possible to open a cursor (scan, iterator)
over the relation, which permits to loop over all tuples. We assume that for every normal
predicate p, there is a class p_cursor with the following methods:

• void open(): Open a scan over the relation (cursor is placed before the first tuple).
• bool fetch(): Move the cursor to the next tuple. This function must also be called

to access the first tuple. It returns true if there is a first/next tuple, or false, if
the cursor is at the end of the relation.
• T col_i(): Get the value of the i-th column/attribute (with data type T).
• close(): Close the cursor.

For the push method, we will also need

• push(): Save the state of the cursor on a global stack.
• pop(): Restore the state of the cursor.

(A merge join sometimes needs the possibility to return to a saved position in a scan, too.)
A relation may have special access structures (e.g. it might be stored in a B-tree or an
array). Then not only a full scan (corresponding to binding pattern ff . . . f) is possible, but
also scans only over tuples with a given value for certain arguments. We assume that in
such cases there are additional cursor classes called p_cursor_β, with a binding pattern β.
These classes have the same methods as the other cursor classes, only the open-method
has parameters for the bound arguments. E.g. if p is a predicate of arity 3 which permits
especially fast access to tuples with a given value of the first argument, and if this argument
has type int, the class p_cursor_bff would have the method open(int x).

Actually, some access structures can efficiently evaluate small conjunctions with pa-
rameters, e.g. a B-tree over the first argument of p would also support a query of the form
p(X,Y,Z) ∧ X ≥ c1 ∧ X < c2, where c1 and c2 are integer constants or bound variables.
This is not in the focus of the current paper, but a realistic system must be able to make
use of such possibilities.

In addition, we need a possibility to create new tuples for predicates defined by rules
(IDB predicates). We assume that for each predicate p there is a class p with a class method
insert that creates a new tuple in p. Of course, it is possible that the objects of class p
correspond to individual tuples, but since we only use the cursor interface, this is only one
possible implementation.

For seminaive evaluation of recursive programs, additional cursor types are needed
(e.g. p_cursor_diff runs only over tuples generated in the previous step of the fixpoint
iteration), and a method to switch to the next iteration step (class method next_iter of p).

3. Materializing Derived Predicates

The first, most basic method for implementing bottom-up evaluation is to explicitly
create a stored relation for every IDB-prediate. As an example, let us consider

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION 47

q_cursor q1;

q1.open();

while(q1.fetch()) {

int X = q1.col_1();

int Y = q1.col_2();

r_cursor_bff r1; // if there is an index on the first argument

// (and none for the binding pattern bbf)

r1.open(Y);

while(r1.fetch()) {

if(r1.col_2() == 5) {

int Z = r1.col_3();

p::insert(X, Z, 2);

}

}

}

Figure 1: Materializing an IDB-Predicate: p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

We assume that all columns in the examples have type int.
Of course, one option is to use a standard relational database, create a table for every

IDB predicate, and send SQL statements to the database to execute the rules. But using
a separate system for the management of facts causes performance penalties. Furthermore,
for the seminaive evaluation of recursive rules, there is no good and efficient way to manage
the deltas with SQL (the set of tuples newly derived in an iteration). Another interesting
problem is that a good sideways information passing (SIP) strategy in the magic set method
or selection function in the SLDMagic method needs already knowledge about existing
indexes and relation sizes. Therefore it is not a good idea to do query optimization in
two completely separate systems: The chosen SIP strategy/selection function more or less
prescribes the evaluation of the resulting rules. For instance, if one wants to use a merge
join, less “sideways information passing” is possible than with a nested loop/index join.

Therefore, one would do basic rule evaluation in the deductive database system itself,
although it might be possible to use parts of a standard relational system (e.g. the storage
manager). E.g. with a nested loop/index join, the implementation of the above rule would
look as shown in Figure 1.

Of course, the materialization method causes a lot of copying. E.g., disjunctions must
be expressed in standard Datalog with a derived predicate:

p(X, Y) ← q(X, Y).

p(X, Y) ← r(X, Y).

The materialization method would copy all q- and r-facts. This is especially expensive if
the data values X and Y are large (e.g. longer strings). The problem can be reduced by
working only with pointers to the real data values (but that might not make optimal use of
the memory cache in the CPU, because values are more scattered around in memory).

4. Pull-Method

Of course, explicitly materializing every intermediate predicate needs a lot of memory.
Therefore, it is a standard technique in databases to compute tuples only on demand, or

48 S. BRASS

class p_cursor {

public:

void open()

{

q1.open();

q1_more = q1.fetch();

if(q1_more)

r1.open(q1.col_2()); // Assuming again index on first argument

}

bool fetch()

{

while(q1_more) {

while(r1.fetch()) {

if(r1.col_2() == 5)

return true;

}

r1.close();

q1_more = q1.fetch();

if(q1_more)

r1.open(q1.col_2());

}

return false;

}

int col_1() { return q1.col_1(); }

int col_2() { return r1.col_3(); }

int col_3() { return 2; }

private:

q_cursor q1;

r_cursor_bff r1;

bool q1_more;

};

Figure 2: Pull-Method (Lazy Evaluation): p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

actually not even compute the entire tuple, but permit access to its columns (in this way,
possibly large data values do not have to be copied). In order to get such “lazy” evaluation,
one only needs to support the cursor interface for each predicate. Let us consider again

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

If p is nonrecursive, and this is the only rule, and no duplicate elimination is needed, the
code would look as shown in Figure 2.

If duplicate elimination is needed, storing all tuples is necessary (unless the tuples for the
body literals are generated in a fitting sort order). One can then apply the materialization
method, or extend the pull-method by building a hash table of all previously returned
tuples, and adding a check that the derived tuple is new.

An important disadvantage of the pull-method is that it causes recomputation if multi-
ple scans over a predicate are performed. This does not only happen when there are several

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION 49

body literals with the same predicate p, but also when a single p-literal appears in the inner
loop of a nested loop join. However, recomputation is not necessarily something evil that
must be avoided at any price. If the recomputation is not expensive, as in the example with
the predicate describing a disjunction, it is a possible alternative.

Recursion with the pure pull-method is not possible: If one tries to implement recursion
with the recursive opening of cursors, this leads to an infinite recursion even for acyclic
relations since no bindings are passed to the recursive call: Each call does the same work
again. Of course, it is possible to integrate standard seminaive evaluation, but this simply
means to use the materialization method at least once in each recursive cycle.

5. Push-Method

It is also possible to apply the rules strictly from right to left, and move generated facts
immediately to the place where they are needed. In contrast to the materialization method,
a rule is not applied to produce all consequences in the current state, but only a single fact
is derived each time. This reduces the need for intermediate storage and copying, which was
also the main motivation for the pull-method. But here the producer of facts is in control,
not the consumer as in the pull-method.

Of course, usually several facts can be derived with a rule. Therefore, once a fact is
derived, one must store the current state of rule application for later backtracking. Then
control jumps to a rule where this fact matches a body literal. There can be several rules
that might use the produced fact, in which case again a backtrack point is generated.

This method basically works only with rules that have at most one body literal with
IDB-predicate, because then matching facts for the other (EDB) body literals are available
when a fact for the IDB body literal arrives. The SLDMagic method [Bra00] produces such
rules as output of the program transformation, therefore this case is practically interesting.
Furthermore, when there are several body literals with IDB-predicates, it is often possible
to use the materialization or pull method for the predicates of all but one body literal.

The push method is applicable to linear recursion, and that is in fact one of its strengths
(it can be very efficient in this case).

Let us explain how it works. First one creates a variable for every column of an IDB
predicate. Consider again the example rule:

p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

If q is an IDB predicate, r is an EDB-predicate, and all arguments have type int, we get:

int q_1, q_2;

int p_1, p_2, p_3;

In addition, there is a code piece for every body literal with IDB-predicate. Control jumps
to this code piece when a new fact for this predicate was derived. The argument values of
the fact are stored in the above variables. The purpose of the code is to check whether new
facts can be derived with this rule with the given instantiation of the IDB body literal, and
if yes, to store the arguments of the derived fact in the corresponding variables and to jump
to every place where the newly derived fact is used. For the example rule, the code looks
as shown in Figure 3 (there are in fact many optimization possibilities, which we cannot
discuss here for space reasons). Rules with only EDB-predicates in the body act as starting
points. For instance, consider

q(X, Y) ← s(X, Y) ∧ Y ≥ 0.

50 S. BRASS

q: r_cursor_bff r1;

r1.open(q_2); // Assuming index on first arg

while(r1.fetch()) {

if(r1.col_2() == 5) {

p_1 = q_1;

p_2 = r1.col_3();

p_3 = 2;

if(r1.fetch()) {

push_int(q_1);

push_int(q_2);

r1.push();

push_cont(CONT_q);

}

goto p;

}

}

goto backtrack; // if this is the last place where q is used

cont_q:

r1.pop();

q_2 = pop_int();

q_1 = pop_int();

do {

if(r1.col_2() == 5) {

p_1 = q_1;

p_2 = r1.col_3();

p_3 = 2;

if(r1.fetch()) {

push_int(q_1);

push_int(q_2);

r1.push();

push_cont(CONT_q);

}

goto p;

}

} while(r1.fetch());

goto backtrack; // if this is the last place where q is used

backtrack:

if(stack_empty()) return false;

switch(pop_task()) {

case CONT_q; goto cont_q;

...

}

Figure 3: Push-Method: p(X, Z, 2) ← q(X, Y) ∧ r(Y, 5, Z).

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION 51

init:

s_cursor s1;

s1.open();

while(s1.fetch()) {

if(s1.col_2() >= 0) {

q_1 = s1.col_1();

q_2 = s1.col_2();

if(s1.fetch()) {

s1.push();

push_cont(CONT_init);

}

goto q;

}

}

return false; // if this is the last/only initialization rule

cont_init:

s1.pop();

do {

if(s1.col_2() >= 0) {

q_1 = s1.col_1();

q_2 = s1.col_2();

if(s1.fetch()) {

s1.push();

push_cont(CONT_init);

}

goto q;

}

} while(s1.fetch());

return false; // if this is the last/only initialization rule

Figure 4: Push-Method: Initialization with q(X, Y) ← s(X, Y) ∧ Y ≥ 0.

Then for every s-fact, we would fill the variables q_1 and q_2 and jump to the place where
q-facts are used (label q:). Again, this loop is implemented with backtracking.
Note that the push method can be made to fit into the cursor interface: If for instance p

needs to be queried with a cursor, the above code is inside the fetch method. The code
jumps to label p: when a new p-fact is derived, the fetch-method returns true to the
caller. Each call to the fetch-method starts at the label backtrack. In the open-method
the backtrack-stack is initialized with a value that causes a jump to the initialization (init).

6. Pull-Method with Passing of Bindings

In deductive databases, one normally uses first a program transformation like magic
sets, which is responsible for passing bindings from the caller to the callee, so that only
relevant facts are computed when the transformed rules are evaluated strictly bottom-up
(i.e. the entire minimal model of the transformed program is computed). The “magic
predicates” contain values for the input/bound arguments of a predicate. Calls to these

52 S. BRASS

predicates are added as conditions to the rule body, so that the rule can only “fire” when
the result is needed.

With the magic set transformation, all calls to a predicate are put together in one set.
This is good, if there are several calls to a complex predicate with the same input values:
Then the answer is computed only once. But it is also bad, because the results for different
calls to a predicate are all in one set, from which one has to select the result matching the
current input arguments.

The Pull Method works already not completely bottom-up, but is controlled from the
caller (top-down) who requests the next tuple. Therefore it is very natural that the caller
passes all information he has about the required tuples. This would replace the magic set
transformation, but it is not exactly the same, because now there is not one big magic set
for a predicate (and a binding pattern), but for each call there are given values for certain
arguments. This has positive and negative effects: When the call returns, one gets a tuple
with the required values in the given positions, so no further check/selection is necessary.
This is especially important since the pull method repeats computations, so non-matching
tuples would simply be wasted. On the negative side, if the same call appears more than
once, the result is computed repeatedly.

Passing bindings to called predicates fits nicely into the cursor interface, because for
EDB-predicates with special access structures, it is already possible. In this way, this is
also possible for IDB predicates.

For the materialization method and the push method, magic sets (or one of its variants)
works well. However, if one wants to combine the different methods in one program (which
is advisable, since each has its strengths and weaknesses), it would be possible to treat the
magic set specially and to initialize it each time with only a single tuple.

7. Related Work

There are still more variants of bottom-up evaluation proposed in the literature, which
we intend to include in our comparison in a future version of this article:

• In [Liu03], an extreme form of materialization is proposed: Not only facts about
the derived predicates are explicitly stored, but also intermediate results during rule
evaluation. This is combined with a clever selection of data structures.
• In [Wun95], a method similar to the push method is used, but with a materialization

of the derived predicates (our push method avoids this). Similar methods are also
used to propagate changes from base relations to materialized views.
• In [Cod99], bottom-up evaluation is implemented with a meta-interpreter running

in Prolog. An important idea is also how to handle rules where the body of one rule
is prefix of a body of another rule (as generated by the magic set method).

8. Conclusions

Our long-term goal is to develop a deductive database system that supports stepwise
migration from classical SQL. Of course, the system will use our SLDmagic method [Bra00]
for goal-direction, but it also needs an efficient bottom-up engine to run the transformed
program. In this paper, we investigated several implementation variants based on a transla-
tion to C++. In summary, the methods differ in what they materialize (store in memory for
a longer time), what they recompute, and the order in which applicable rule instances are

IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION 53

considered (and also the duration: the pull method has a rule instance “open” for a longer
time). It turned out that the optimal method depends on the input program and also on
the compiler and the hardware, as well as keys and access structures for the relations. But
the push method performed constantly quite well. It has the restriction that it can work
directly only with rules having only a single IDB-literal in the body, but it can be combined
with other methods, or applied in several steps with different components of the program.
Also, the SLDmagic method produces rules with only one IDB-predicate in the body.

The source code and performance results for the tests are available at

http://www.informatik.uni-halle.de/~brass/botup/

Results of future tests will also be posted on this page.

References

[Ban86a] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic sets and other
strange ways to implement logic programs. In Proc. of the 5th ACM Symp. on Principles of
Database Systems (PODS’86), pp. 1–15. ACM Press, 1986.

[Ban86b] Francois Bancilhon and Raghu Ramakrishnan. An amateur’s introduction to recursive query pro-
cessing. In Carlo Zaniolo (ed.), Proceedings of the 1986 ACM SIGMOD international conference
on Management of Data (SIGMOD’86), pp. 16–52. 1986.

[Bee91] Catril Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of Logic Programming,
10:255–299, 1991.

[Bra00] Stefan Brass. SLDMagic — the real magic (with applications to web queries). In W. Lloyd et al.
(eds.), First International Conference on Computational Logic (CL’2000/DOOD’2000), no. 1861
in LNCS, pp. 1063–1077. Springer, Heidelberg, Berlin, 2000.

[Cod99] Michael Codish. Efficient goal directed bottom-up evaluation of logic programs. Journal of Logic
Programming, 38(3):355–370, 1999.

[Fre91] Burkhard Freitag, Heribert Schütz, and Günter Specht. LOLA — A logic language for deductive
databases and its implementation. In Proc. of 2nd Int. Symp. on Database Systems for Advanced
Applications (DASFAA’91), pp. 216–225. World Scientific, 1991.

[Fri95] Oris Friesen, Gilles Gauthier-Villars, Alexandre Lefebvre, and Laurent Vieille. Applications of
deductive object-oriented databases using DEL. In Raghu Ramakrishnan (ed.), Applications of
Logic Databases, pp. 1–22. Kluwer, 1995.

[Liu03] Yanhong A. Liu and Scott D. Stoller. From datalog rules to efficient programs with time and space
guarantees. In Proceedings of the 5th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’03), pp. 172–183. ACM, 2003.

[Min88] Jack Minker. Perspectives in deductive databases. The Journal of Logic Programming, 5:33–60,
1988.

[Ram94] Raghu Ramakrishnan, Divesh Srivastava, S. Sudarshan, and Praveen Seshadri. The CORAL de-
ductive system. The VLDB Journal, 3:161–210, 1994.

[Ram95] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive database systems. The Journal
of Logic Programming, 23:125–149, 1995.

[Sag94] Konstantinos Sagonas, Terrance Swift, and David S. Warren. XSB as an efficient deductive data-
base engine. In Richard T. Snodgrass and Marianne Winslett (eds.), Proc. of the 1994 ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD’94), pp. 442–453. 1994.

[Ull90] Jeffery D. Ullman and Carlo Zaniolo. Deductive databases: Achievements and future directions.
ACM SIGMOD Record, 19:75–82, 1990.

[Vag94] Jayen Vaghani, Kotagiri Ramamohanarao, David Kemp, Zoltan Somogyi, Peter J. Stuckey, Tim S.
Leask, and James Harland. The Aditi deductive database system. The VLDB Journal, 3:245–288,
1994.

[Wun95] Jens E. Wunderwald. Memoing evaluation by source-to-source transformation. In Maurizio Proi-
etti (ed.), Logic Programming Synthesis and Transformation, 5th International Workshop (LOP-
STR’95), no. 1048 in LNCS, pp. 17–32. Springer-Verlag, 1995.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 54–63
http://www.floc-conference.org/ICLP-home.html

INDUCTIVE LOGIC PROGRAMMING AS ABDUCTIVE SEARCH

DOMENICO CORAPI 1 AND ALESSANDRA RUSSO 1 AND EMIL LUPU 1

1 Department of Computing
Imperial College London
180 Queen’s Gate, SW7 2AZ
London, UK
E-mail address: {d.corapi,a.russo,e.c.lupu}@ic.ac.uk

Abstract. We present a novel approach to non-monotonic ILP and its implementation
called tal (Top-directed Abductive Learning). tal overcomes some of the completeness
problems of ILP systems based on Inverse Entailment and is the first top-down ILP sys-
tem that allows background theories and hypotheses to be normal logic programs. The
approach relies on mapping an ILP problem into an equivalent ALP one. This enables the
use of established ALP proof procedures and the specification of richer language bias with
integrity constraints. The mapping provides a principled search space for an ILP problem,
over which an abductive search is used to compute inductive solutions.

Introduction

Inductive Logic Programming (ILP) [Lav94] is a machine learning technique concerned
with the induction of logic theories from positive and negative examples and has been
successfully applied to a wide range of problems [D0̆0]. Its main virtue, the highly expressive
representation language, is also the cause of its high computational complexity. Some ILP
systems attempt to efficiently find a less then perfect hypothesis by using heuristics to
navigate the search space effectively [Qui96], [Ric95]. Others focus on completeness and aim
for perfect accuracy with respect to the examples, searching the space thoroughly for an
optimal solution. Among these xhail [Ray09a] has identified Abductive Logic Programming
(ALP) [Kak92] as a means to deal with incomplete theories and provide semantics for
negation as failure (NAF) [Cla77]. xhail, like other inverse entailment (IE) based systems,
abductively derives a lower bound for the search space that is then generalised. In contrast,
Top-down ILP systems like [Mug08, Bra99, Bos94] construct the hypothesis by specialising
an overly general theory without a lower bound. However existing top-down systems limit
the expressiveness of the language and the possible outcome of the learning (e.g. concepts
learned must be observed in the training data, recursion is not allowed and the use of
negation is limited).

Abductive proof procedures have been extensively employed as part of ILP systems (e.g.
[Esp00]) or extended for inductive reasoning (e.g. [Adé95]). In contrast to these existing ap-
proaches, we propose a novel mechanism that maps an ILP problem into an equivalent ALP

Key words and phrases: Inductive Logic Programming, Abductive Logic Programming, Non-monotonic
Reasoning.

c© D. Corapi, A. Russo, and E. Lupu
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.54

ILP AS ABDUCTIVE SEARCH 55

instance. An ILP task is thus translated into an ALP problem whose solution is translated
back into a solution of the original problem. The resulting top-down ILP system, called tal
(Top-directed Abductive Learning), offers several advantages over existing techniques. tal
is able to handle negation within the learning process and is able to learn non-monotonic
hypotheses, relying on the semantics of the underlying abductive proof procedure employed;
allows expressive language bias specifications that subsume mode declarations and can be
combined with integrity constraints; performs non-observational [Moy03] and multiple pred-
icate learning [Mal98]; and makes use of constraint solving techniques. Non-monotonic ILP
has been successfully applied to bioinformatics [Ray08] and requirement engineering [Alr09]
and as showed in [Cor09] and [Ray09b] can also be employed to perform theory revision.

In the particular case of definite theories, the tal search space includes hypotheses that
are not found by established Inverse Entailment based systems like progol [Mug95] or
alecto [Moy03] and provides a more effective solution to learning interdependent concepts
compared to the state of art ILP systems, e.g. [Kim09, Ray09a]. Though not explored in
depth here, the principled search space characterised by ALP includes abductive solutions
that represent partial inductive solutions, which can be measured in terms of some scoring
function (e.g. accuracy on the given set of examples) thereby enabling the use of heuristic
based search strategies.

The paper is organised as follows. First, we introduce the notation and relevant back-
ground concepts. We then describe the representation underlying the learning system and
discuss the learning mechanism. Then, we present through examples some of the main fea-
tures of the system, and discuss related work. We conclude with final remarks and directions
for future work.

1. Abductive and Inductive Logic Programming

ALP and ILP are extensions of logic programming. They both search for a hypothesis
that is able to account for some given evidence. ALP constructs hypotheses in the form
of ground facts. ILP systems generate rules that are able to discriminate between positive
and negative examples that represent the training data. In general, ILP is regarded as a
machine learning technique and used when a certain knowledge base must be enriched with
rules that are also able to classify new examples. We assume in the following that the reader
is familiar with first-order logic and logic programming [Llo87]. Following Prolog [Sha94]
conventions, predicates, terms and functions are represented with an initial lower case letter
and variables are represented with an initial capital letter.

Definition 1.1. An ALP task is defined as 〈g, T,A, I〉 where T is a normal logic program,
A is a set of abducible facts, I is a set of integrity constraints and g is a ground goal.
∆ ∈ ALP 〈g, T,A, I〉 is an abductive solution for the ALP task 〈g, T,A, I〉, if ∆ ⊆ A, T ∪∆
is consistent, T ∪∆ |= g and T ∪∆ |= I. ALP 〈g, T,A, I〉 denotes the set of all abductive
solutions for the given ALP task.

Note that the abductive task, as defined, deals with ground goals, thus being a specific
case of the setting in [Kak92]. The notion of entailment is not fixed since, as discussed later,
the approach proposed in this paper is not committed to a particular semantics.

Definition 1.2. An ILP task is defined as 〈E,B, S〉 where E is a set of ground positive or
negative literals, called examples, B is a background theory and S is a set of clauses called
language bias. The theory H ∈ ILP 〈E,B, S〉, called hypothesis, is an inductive solution

56 D. CORAPI, A. RUSSO, AND E. LUPU

for the task 〈E,B, S〉, if H ⊆ S, H is consistent with B and B ∪ H |= E. ILP 〈E,B, S〉
denotes the set of all inductive solutions for the given task.

We consider the case where B and H are normal logic programs and E is a set of
ground literals (with positive and negative ground literals representing positive and negative
examples, respectively).

The space of possible solutions is inherently large for all meaningful applications so dif-
ferent levels of constraints are imposed to restrict the search for hypotheses.When possible,
besides the background knowledge about the modelled world, some a priori knowledge on
the structure of the hypothesis can be employed to impose an instance-specific language
bias S. Mode declarations are a common tool to specify a language bias.

Definition 1.3. A mode declaration is either a head or body declaration, respectively
modeh(s) and modeb(s) where s is called a schema. A schema s is a ground literal containing
placemarkers. A placemarker is either ’+type’ (input), ’−type’ (output), ’#type’ (ground)
where type is a constant.

Given a schema s, s∗ is the literal obtained from s by replacing all placemarkers with
different variables X1, ..., Xn; type(s∗) denotes the conjunction of literals t1(X1), ..., tn(Xn)
such that ti is the type of the placemarker replaced by the variable Xi; ground(s∗) is the list
of the variables that replace the ground placemarkers in s, listed in order of appearance left
to right. Similarly inputs(s∗) and outputs(s∗) are, respectively, the lists of the variables
replacing input and output placemarkers in s. For example, for mode declaration m3 in
Sec. 3, s = even(+nat), s∗ = even(X), type(s∗) = nat(X), outputs(s∗) = ground(s∗) = [],
inputs(s∗) = [X].

A rule r is compatible with a set M of mode declarations iff (a) there is a mapping from
each head/body literal l in r to a corresponding head/body declaration m ∈M with schema
s and l is subsumed by s∗; (b) each output placemarker is bound to an output variable; (c)
each input placemarker is bound to an output variable appearing in the body before or
to a variable in the head; (d) each ground placemarker is bound to a ground term; (e) all
variables and terms are of the corresponding type. The use of head variables in output
mode declarations is not discussed here for space constraints.

In the next sections the language bias S is specified in terms of a set M of mode
declarations, and denoted as s(M). Each mode declaration m ∈ M is uniquely identified
by a label idm, called mode declaration identifier.

2. TAL

An ILP problem can be seen as a search for a hypothesis where we choose how many
rules to use and for each rule which predicates to use in the head and in each of the
body conditions and how many body conditions are used. Additionally, different choices
are possible on how arguments are unified or grounded. In this section, we present the
mapping of a set M of mode declarations into a top theory > that constrains the search by
imposing a generality upper bound on the inductive solution. An abductive proof procedure
is instantiated on this top theory together with the background theory. The abductive
derivation identifies the heads of the rules (of a hypothesis solution) and the conditions
needed to cover positive examples and exclude negative examples, ensuring consistency.
The abductive solution is guaranteed to have a corresponding inductive hypothesis H that
is a solution with respect to the examples.

ILP AS ABDUCTIVE SEARCH 57

2.1. Hypothesis representation

We use a list-based representation to encode an inductive solution, as a set of rules,
into a set of facts by mapping each literal in the clauses into instances of its corresponding
mode declaration. This allows the representation of rules as abducible facts. An inductive
hypothesis H ⊆ s(M) is composed of a set of rules {r1, ..., rn}. Each rule r is associated with
an output list, i.e. an ordered list of the variables in r that replace output placemarkers in
body literals or input placemarkers in the head. The output identifier associated with each
of these variables is the position of the variable in the output list. Given a set M of mode
declarations, each rule r of the form l1 ← l2, ..., ln, compatible with M , can be represented
as an ordered list l = [l1, l2, ..., ln] where each li is a tuple (idm, [c1, ..., cp], [o1, ..., oq]); idm
is the identifier of the mode declaration in M that li maps to; each cj is a ground term
replacing a ground placemarker in the mode declaration identified by idm; each ok is an
output identifier and encodes the fact that the kth input variable in li (in order of appearance
left to right) unifies with the variable indicated by ok. We refer to this transformation of a
rule r into a list l as the function l = tM (r).

Example 2.1. Given the following three mode declarations M = {m1 : modeh(p(+any)),
m2 : modeb(q(+any,#any)), m3 : modeb(q(+any,−any))} the rule r = p(X) ←
q(X,Y), q(Y, a), compatible with M , is associated to the output list [X,Y] where X re-
places the input placemarker in m1 and Y replaces the output placemarker in m3. The
output identifier of X is the integer 1 and the output identifier of Y is 2. r is represented as
the list l = [(m1, [], []), (m3, [], [1]), (m2, [a], [2])] = tM (r). The first element of the list asso-
ciates the head p(X) to mode declaration m1. The second element associates the condition
q(X,Y) to mode declaration m3 and links the first and only input variable to X. The third
element of the list associates the condition q(Y, a) to mode declaration m2, links the input
variable to Y and instantiates the second argument to a.

It is easy to see that every possible rule within s(M) can be encoded according to this
representation. Also, it is always possible to derive a unique rule r from a well-formed list
l. We refer to this transformation as r = tM

−1(l).
Rules in a final inductive hypothesis theory H, are associated with a unique rule identi-

fier rid, an integer from 1 to the maximum number, MNR, of rules allowed in H. The abduc-
tive representation ∆ = TM (H) of an hypothesis theory H, is the set of facts rule(rid, l) ∈ ∆,
one for each rule r ∈ H, such that (a) rid is the rule identifier of r; and (b) l = tM (r). The
inverse transformation H = TM

−1(∆) is similarly defined.

2.2. Mapping mode declarations into an abductive top theory

The first computational step in tal is the generation of a top theory > from a set M
of mode declarations, as defined below, where prule and rule are abducible predicates.

Definition 2.2. Given a set M of mode declarations, > = f(M) is constructed as follows:

• For each head declaration modeh(s), with unique identifier idm, the following clause
is in >

s∗ ← type(s∗), prule(RId, [idm, ground(s∗), []]), rule id(RId),
body(RId, inputs(s∗), [idm, ground(s∗), []])

(2.1)

• The following clause is in >
body(RId, , Rule)← rule(RId,Rule) (2.2)

58 D. CORAPI, A. RUSSO, AND E. LUPU

• For each body declaration modeb(s), with identifier idm the following clause is in >
body(RId, Inputs,Rule)← append(Rule, [(idm, ground(s∗), Links)], NRule),

prule(RId,NRule), link variables(inputs(s∗), Inputs, Links), s∗,
type(s∗), append(Inputs, outputs(s∗), Outputs), body(RId,Outputs,NRule)

(2.3)

As previously defined, s∗ contains newly defined variables instead of placemarkers in
the schema s. Since the abductive derivation is instantiated on B ∪ >, for all predicates
appearing in head mode declarations the procedure can both use the partial definition in B
or learn a new clause, unifying the current goal with s∗. s∗ can also be a negative condition
corresponding to a body mode declaration whose schema is a negative literal. rule id(RId)
is true whenever 1 ≤ RId ≤MNR.

body(r, i, c) keeps track of the rules that are built and provides the choice of ex-
tending a partial rule (rule (2.3)) or delivering a rule as final (rule (2.2)). The
first argument is the rule identifier; the second is the list of the outputs collected
from the literals already added to the rule; the third is the list representing a par-
tial rule. link variables([a1, ..., am], [b1, ..., bn], [o1, ..., om]) succeeds if for each element
in the first list ai, there exist an element in the second list bj such that ai uni-
fies with bj and oi = j. append(l1, l2, l3) has the standard Prolog definition [Sha94].
The abducible prule is used to control the search through integrity constraints. For
example, if we are not interested in searching for rules in which two mode declara-
tions i and j appear together in the body, then an integrity constraint of the type
← prule(, R1),member((i, ,), R1),member((j, ,), R1) can be added to I to prune such
solutions in the abductive search.

In order to maintain the well-formedness of our rule’s encoding and avoid trivial states
of the search, a set of fixed integrity constraints If (omitted for brevity) is used in the
abductive search.

2.3. Learning

Definition 2.3. Given an ILP task 〈E,B,M〉, H = TM
−1(∆) is an inductive solution

derived by tal iff ∆ ∈ ALP 〈g,B∪>, I, A〉 where > = f(M), g is the negated conjunction of
the literals in E, I is a set of integrity constraints that includes If and A = {rule/2, prule/2}

Procedurally, an initial translation produces the ALP task introducing the new the-
ory >. An abductive proof procedure derives the abductive hypothesis ∆ that is then
transformed into the final inductive solution.

Theorem 2.4. Let us consider a theory B, a set M of mode declarations, a conjunction of
(possibly negated) literals E, and a set H of rules, such that H ⊆ s(M). Then B∪H `SLDNF

E iff B ∪ > ∪∆ `SLDNF E, where > = f(M) and ∆ = TM (H)

As corollaries of Theorem (2.4), it is possible to establish soundness and completeness
of our tal system based on the properties of the underlying abductive system and on the
soundness and completeness of SLDNF w.r.t. the semantics.

3. Example

The following is a modified version of the well-known example proposed in [Yam97],
where even and odd numbers are both target concepts and learnt from three examples of
odd numbers. The even predicate is partially defined, i.e. base case even(0).

ILP AS ABDUCTIVE SEARCH 59

even(X)← prule(RId, [(m1, [], []]),
nat(X), rule id(RId),
body(RId, [X], [(m1, [], []])

odd(X)← prule(RId, [(m2, [], []]),
nat(X), rule id(RId),
body(RId, [X], [(m2, [], []])

body(RId, , Rule)← rule(RId,Rule)

body(RId, Inputs,Rule)←
append(Rule, [(m3, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links),
even(X), nat(X), body(RId, Inputs,NRule)

body(RId, Inputs,Rule)←
append(Rule, [(m4, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links),
odd(X), nat(X), body(RId, Inputs,NRule)

body(RId, Inputs,Rule)←
append(Rule, [(m5, [], Links)], NRule),
prule(RId,NRule),
link variables(X, Inputs, Links), X = s(Y),
nat(X), nat(Y), append(Inputs, [Y], Outputs),
body(RId,Outputs,NRule)

Figure 1: Top theory > for the even-odd example.

B =


even(0)
nat(0)
nat(s(X))←nat(X)

M =


m1 : modeh(even(+nat))
m2 : modeh(odd(+nat))
m3 : modeb(even(+nat))
m4 : modeb(odd(+nat))
m5 : modeb(+nat = s(−nat))

E =


odd(s(s(s(s(s(0))))))
not odd(s(s(0)))
not odd(s(s(s(s(0)))))

We assume the set I ′ of integrity constraints to restrict the language bias, which es-
tablishes that rules whose head is even(X) or odd(X) cannot have in the body even(X)
or odd(X) literals. The final I is the union of I ′ and If . The set M of mode declarations
is transformed into the top theory > given in Figure 1. The instantiated abductive task
〈E,B∪>, I, {rule/2, prule/2}〉 accepts then as a possible solution the set ∆ translated into
the inductive hypothesis H as follows:1

∆ =

{
rule(1, [(m2, [], []), (m5, [], [1]), (m3, [], [2])])
rule(2, [(m1, [], []), (m5, [], [1]), (m4, [], [2])])

H =

{
odd(X)← X = s(Y), even(Y)
even(X)← X = s(Y), odd(Y)

In the abductive search, the standard Prolog selection rule is adopted that selects clauses
in order of appearance in the program. Since no head of clause in B unifies with the
positive examples, the derivation uses one of the rules defined in >. The selection of the
body literal from the rule results in four derivation branches in the search tree, one for each
of the four “body” clauses whose head unifies with it. A partial abductive hypothesis is
generated, equivalent to the rule odd(X)← X = s(Y), even(Y). At this point, the condition
even(s(s(s(s(0))))), part of the current goal, is not entailed by B so one of the rules in >
is used. It can be seen as an “artificial” example conditional to the partial hypothesis. The
derivation results in the creation of an additional rule in the final hypothesis that defines
the predicate even. The computation continues, thus excluding inconsistent hypotheses and
those that entail also negative examples resulting in the final ∆. Partial rules are derived
and used throughout the search so they can be referenced to define concepts that depend
on them. It is also interesting to observe that the search is guided by the examples and
thus only significant solutions are explored. The inductive solution H for this inductive
problem is either not found by other ILP systems like progol, or derived after a “blind”

1prule abducibles are omitted for brevity.

60 D. CORAPI, A. RUSSO, AND E. LUPU

search as discussed in Sec. 5. The learning is non-observational (i.e. the even predicate is
not observed in the examples). TAL is also able to learn the base case of the recursion. If
the fact even(0) is deleted from B and the mode declaration modeh(even(#nat)) is added
to M , TAL returns three solutions with the same set of examples: the first has the same
definition of odd as in H and defines even(s(s(s(s(0))))) as base case, the second and the
third are the same as in H with even(s(s(0))) and even(0) respectively as base cases.

4. A case study

We employ a case study to compare tal with the only other system capable of solving
the same class of ILP problems xhail2. The following case study, taken from [Ray09a],
represents a simple model of metabolic regulation for the bacterium E. coli and includes a
formulation of the Event Calculus [Sha99] formalism. The target predicate happens is used
to characterise the bacterium feeding mechanism based on the availability of sugar. See
[Ray09a] for a more extensive explanation of the example.

B =


[Type definitions and Event Calculus axioms]
initiates(add(G), available(G), T)←sugar(G), timex(T)
terminates(use(G), available(G), T)←sugar(G), timex(T)
happens(add(lactose), 0)
happens(add(glucose), 0)

I =

{
← happens(use(G), T),
not holdsAt(available(G), T)

E =


holdsAt(available(lactose), 1)
holdsAt(available(lactose), 2)
not holdsAt(available(lactose), 3)

M =


m1 : modeh(happens(use(#sugar),+timex))
m2 : modeb(holdsAt(#fluent,+timex))
m3 : modeb(not holdsAt(#fluent,+timex))

The transformations in Definition 2.2 are applied to the given ILP instance. The ab-
ductive solution for the corresponding ALP problem is:

∆ =

{
rule(1, [(m1, [glucose], []), (m2, [available(glucose)], [1])])
rule(2, [(m1, [lactose], []), (m2, [available(lactose)], [1]), (m3, [available(glucose)], [1])])

equivalent to the inductive hypothesis:

H =

{
happens(use(glucose), T)← holdsAt(available(glucose), T)
happens(use(lactose), T)← holdsAt(available(lactose), T), not holdsAt(available(glucose), T)

As discussed in [Ray09a], xhail generates Kernel Sets that serve as lower bound for
the final hypothesis, through iterations of increasing in size abductive explanations until a
satisfactory solution is found. Intuitively, a Kernel Set is computed in two phases. A first
abductive phase finds the set ∆ of the head of the rules in the Kernel Set and a second
deductive phase constructs the body of the rules by computing all the ground instantiations
of the body mode declarations that are implied by B ∪ ∆. Kernel Sets are generalised in
a final inductive phase. Instead, tal explores candidate solutions in a top-down manner,
backtracking whenever the current solution leads to failure in the abductive derivation. The

2Relying on the results reported in [Ray09a], the computation time for this study appears to differ by
one order of magnitude. [Ray09a] reports that a prototype xhail implementation took a couple of seconds
to compute H on a 1.66 GHz Centrino Duo Laptop PC with 1 GB of RAM, while tal took 30 ms to find
H and 180 ms to explore the whole space of hypotheses limited to two clauses with at most two conditions
on a 2.8 GHz Intel Core 2 Duo iMac with 2 GB of RAM. Unfortunately, xhail is not publicly available so
we are not able to perform an empirical comparison of the performance of the two systems.

ILP AS ABDUCTIVE SEARCH 61

partial hypotheses are already in their final form and are implicitly tested for correctness
whenever a new example is selected in the abductive derivation.

5. Discussion and related work

We have implemented tal in YAP Prolog [Cos08] using a customised implementation
of the asystem [Kak01] that integrates the sldnfa proof procedure with constraint solving
techniques. tal has been tested on various non-monotonic ILP problems like the examples
proposed in [Kim09], [Alr09] and [Ray07]. It has also been used to perform Theory Revision
[Wro96], i.e. to change, according to some notion of minimality, an existing theory [Cor09].
This work is is motivated by the project [Ban08] that seeks to exploit the proposed approach
in the context of learning privacy policies from usage logs. We performed preliminary
experiments in this direction applying an extended version of tal to the Reality Mining
dataset [Eag06] where examples of refused calls were used to learn general rules. A score
based on accuracy and complexity of the rules was employed to prune the search space.

The idea of a top theory as bias for the learning has been initially introduced in toplog
[Mug08], which performs deductive reasoning on the background knowledge extended with
the top theory. Candidate hypotheses are derived from single positive examples and then
the best ones are selected after a hill climbing search. spectre [Bos94] also requires a
user-provided overly general theory that is specialised by unfolding clauses until no neg-
ative examples are covered. hyper [Bra99], specialises an overly general theory, deriving
rules that are subsumed by those in the theory. Thus the number of rules in the final hy-
potheses cannot increase. foil and related approaches like [Coh94] perform an informed hill
climbing search. These systems are not fully non-monotonic since they disallow negation
in the background knowledge or in the hypotheses. In contrast to toplog, tal generates
candidate hypotheses also considering negative examples, excluding a priori solutions that
entail some of the negative examples. In general, we regard tal a generalisation of other
top-down ILP systems. Constraining it to consider only positive examples, the background
theory and mode declarations being definite, would result in the same rule generation mech-
anism as toplog. Different search strategies can be easily implemented by modifying the
abductive procedure. Partial solutions can be associated with a score with respect to the
examples (e.g. the sum of entailed examples over the total). This would enable the use of
informed search techniques and strategies like, for instance, hill climbing or beam search
that can be used to prune the space, exploring the most promising solutions. Similarly to
toplog [Mug08], our approach can also be applied directly to a grammar based language
bias specification, instead of generating the top theory from mode declarations. Systems
based on Inverse Entailment (IE), compute a bottom clause, or set of clauses (e.g. the
Kernel Set) that constrains the search space from the bottom of the generality lattice.
For problems dealing with definite theories our system manages to solve a wider class of
problems than progol, since one single example can generate more than one rule in H.
imparo [Kim09] solves a class of problems whose solutions are not found by other IE based
systems, namely connected theories where body conditions are abductively proved from the
background theory. These problems, that are solved in Imparo by applying Induction on
Failure (IoF), can also be solved by tal, as shown in the example given in this paper. The
IoF mechanism is in our system embedded in the abductive search that always includes in
the search space the generation of a new rule whenever a condition is not entailed by the
current theory. xhail can find hypotheses computed under IoF by exploring non-minimal

62 D. CORAPI, A. RUSSO, AND E. LUPU

abductive explanations but the search is not guided by the background theory and a partial
hypothesis3. This highlights another advantage of tal: the computation of clause heads
in the hypothesis is naturally interleaved with the generation of the body and it does not
take place in a separate phase as in Imparo and xhail. Moreover, all rules are constructed
concurrently and their partial definitions can be used. [Kak00] propose a system for induc-
tive learning of logic programs that compared to tal is limited to observational predicate
learning. Finally, [Adé95] introduces induction in the abductive sldnfa procedure, defining
an extended proof procedure called sldnfai. In contrast, tal defines a general method-
ology and does not commit to a particular proof procedure. Moreover sldnfai does not
allow a fine specification of the language bias, makes no use of constraints on the generated
hypotheses and is limited to function-free definite clauses.

6. Conclusions and further work

We have presented a novel approach to non-monotonic ILP that relies on the trans-
formation of an ILP task into an equivalent ALP task. We showed through an example
how the approach is able to perform non-observational and multi-predicate learning of nor-
mal logic programs by means of a top-down search guided by the examples and abductive
integrity constraints where a partial hypothesis is used in the derivation of new rules. In
contrast, techniques based on IE perform a blind search or are not able to derive a solu-
tion. The mapping into ALP offers several advantages. Soundness and completeness can
be established on the basis of the abductive proof procedure employed. Constraint solving
techniques and optimised ALP implementations can be used and abductive integrity con-
straints on the structure of the rule can be employed. Furthermore, the search space makes
use of partial hypotheses that allows the use of informed search techniques, thus providing
a general framework that can scale to learning problems with large datasets and theories.
We obtained promising result in this direction and we are currently evaluating the use of
heuristics and informed search techniques. We plan to investigate the properties of the
mapping and the relationships with the search space of other ILP techniques.

Acknowledgements

The authors are grateful to Krysia Broda, Robert Craven, Tim Kimber, Jiefei Ma,
Oliver Ray and Daniel Sykes for their useful discussions. This work is funded by the UK
EPSRC (EP/F023294/1) and supported by IBM Research as part of their Open Collabo-
rative Research (OCR) initiative.

References

[Adé95] Hilde Adé and Marc Denecker. Ailp: Abductive inductive logic programming. In IJCAI, pp. 1201–
1209. 1995.

[Alr09] Dalal Alrajeh, Jeff Kramer, Alessandra Russo, and Sebastián Uchitel. Learning operational re-
quirements from goal models. In ICSE, pp. 265–275. 2009.

[Ban08] A. K. Bandara, B. A. Nuseibeh, and B. A. Price et al. Privacy rights management for mobile
applications. In 4th Int. Symp. on Usable Privacy and Security. Pittsburgh, 2008.

3In the “odd/even” example the only way for xhail to find the correct solution is to extend the minimal
abductive solution odd(s(s(s(s(s(0))))) with even(s(s(s(s(0)))) and even(s(s(s(s(s(s(0)))))) that have to be
somehow chosen from a set of infinite candidates.

ILP AS ABDUCTIVE SEARCH 63

[Bos94] H. Boström and P. Idestam-Almquist. Specialization of logic programs by pruning SLD-trees.
GMD-Studien, vol. 237. Gesellschaft für Mathematik und Datenverarbeitung MBH, 1994.

[Bra99] Ivan Bratko. Refining complete hypotheses in ILP. In ILP ’99: 9th Workshop on Inductive Logic
Programming, pp. 44–55. Springer-Verlag, London, UK, 1999.

[Cla77] Keith L. Clark. Negation as failure. In Logic and Data Bases, pp. 293–322. 1977.
[Coh94] William W. Cohen. Grammatically biased learning: Learning logic programs using an explicit

antecedent description language. Artif. Intell., 68(2):303–366, 1994.
[Cor09] D. Corapi, O. Ray, A. Russo, A.K. Bandara, and E.C. Lupu. Learning rules from user behaviour.

In 5th Artif. Intell. Applications and Innovations (AIAI 2009). Thessaloniki, Greece, 2009.
[Cos08] Vı́tor Santos Costa, Lúıs Damas, Rogério Reis, and Rúben Azevedo. Yap user’s manual, 2008.

[D0̆0] Sas̆o Dz̆roski. Relational data mining applications: an overview. pp. 339–360, 2000.
[Eag06] Nathan Eagle and Alex Pentland. Reality mining: sensing complex social systems. Personal and

Ubiquitous Computing, 10(4):255–268, 2006.
[Esp00] Floriana Esposito, Giovanni Semeraro, Nicola Fanizzi, and Stefano Ferilli. Multistrategy theory

revision: Induction and Abduction in INTHELEX. Mach. Learn., 38(1-2):133–156, 2000.
[Kak92] Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic programming. J. Log.

Comput., 2(6):719–770, 1992.
[Kak00] Antonis C. Kakas and Fabrizio Riguzzi. Abductive concept learning. New Generation Comput.,

18(3):243–, 2000.
[Kak01] C. Kakas, Antonis, Bert Van Nuffelen, and Marc Denecker. A-system : Problem solving through

abduction. In 17th International Joint Conference on Artif. Intell., vol. 1, pp. 591–596. IJCAI, inc
and AAAI, Morgan Kaufmann Publishers, Inc, 2001.

[Kim09] Tim Kimber, Krysia Broda, and Alessandra Russo. Induction on failure: Learning connected horn
theories. In LPNMR, pp. 169–181. 2009.

[Lav94] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applications. 1994.
[Llo87] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
[Mal98] D. Malerba, F. Esposito, and F. A. Lisi. Learning recursive theories with ATRE. In H. Prade (ed.),

Proc. of the 13th European Conference on Artif. Intell., pp. 435–439. John Wiley & Sons, 1998.
[Moy03] S Moyle. An investigation into theory completion techniques in inductive logic. Ph.D. thesis, Uni-

versity of Oxford, 2003.
[Mug95] S. Muggleton. Inverse entailment and Progol. New Generation Computing J., 13:245–286, 1995.
[Mug08] Stephen Muggleton, José Carlos Almeida Santos, and Alireza Tamaddoni-Nezhad. Toplog: Ilp

using a logic program declarative bias. In Maria Garcia de la Banda and Enrico Pontelli (eds.),
ICLP, LCNS, vol. 5366, pp. 687–692. Springer, 2008.

[Qui96] J. Ross Quinlan. Learning first-order definitions of functions. J. Artif. Intell. Res. (JAIR), 5:139–
161, 1996.

[Ray07] Oliver Ray. Inferring process models from temporal data with abduction and induction. In 1st
Workshop on the Induction of Process Models. 2007.

[Ray08] Oliver Ray and Chris Bryant. Inferring the function of genes from synthetic lethal mutations.
In 2nd Int. Conf. on Complex, Intelligent and Software Intensive Systems, pp. 667–671. IEEE
Computer Society, 2008.

[Ray09a] Oliver Ray. Nonmonotonic abductive inductive learning. In Journal of Applied Logic, vol. 7, pp.
329–340. 2009.

[Ray09b] Oliver Ray, Ken Whelan, and Ross King. A nonmonotonic logical approach for modelling and
revising metabolic networks. In 3rd Int. Conf. on Complex, Intelligent and Software Intensive
Systems. IEEE Computer Society, 2009.

[Ric95] Bradley L. Richards and Raymond J. Mooney. Automated refinement of first-order horn-clause
domain theories. Machine Learning, 19(2):95–131, 1995.

[Sha94] Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced Programming Techniques.
The MIT Press, 1994.

[Sha99] Murray Shanahan. The event calculus explained. LNCS, 1600, 1999.
[Wro96] Stefan Wrobel. First order theory refinement. In Luc De Raedt (ed.), Advances in Inductive Logic

Programming, pp. 14 – 33. IOS Press, 1996.
[Yam97] Akihiro Yamamoto. Which hypotheses can be found with inverse entailment? In ILP, pp. 296–308.

1997.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 64–73
http://www.floc-conference.org/ICLP-home.html

EFFICIENT SOLVING OF TIME-DEPENDENT

ANSWER SET PROGRAMS

TIMUR FAYRUZOV 1 AND JEROEN JANSSEN 2 AND DIRK VERMEIR 2 AND CHRIS CORNELIS 1

AND MARTINE DE COCK 1,3

1 Dept. of Appl. Math. and Comp. Sc., Ghent University, Krijgslaan 281 (S9), 9000 Gent, Belgium
E-mail address: {timur.fayruzov,chris.cornelis}@ugent.be

2 Dept. of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
E-mail address: {jeroen.janssen,dvermeir}@vub.ac.be

3 Institute of Technology, University of Washington, 1900 Commerce St., Tacoma, WA-98402, USA
E-mail address: mdecock@u.washington.edu

Abstract. Answer set programs with time predicates are useful to model systems whose
properties depend on time, like for example gene regulatory networks. A state of such a
system at time point t then corresponds to the literals of an answer set that are grounded
with time constant t. An important task when modelling time-dependent systems is to find
steady states from which the system’s behaviour does not change anymore. This task is
complicated by the fact that it is typically not known in advance at what time steps these
steady states occur. A brute force approach of estimating a time upper bound tmax and
grounding and solving the program w.r.t. that upper bound leads to a suboptimal solving
time when the estimate is too low or too high. In this paper we propose a more efficient
algorithm for solving Markovian programs, which are time-dependent programs for which
the next state depends only on the previous state. Instead of solving these Markovian
programs for a long time interval {0, . . . , tmax}, we successively find answer sets of parts
of the grounded program. Our approach guarantees the discovery of all steady states and
cycles while avoiding unnecessary extra work.

1. Introduction

Answer Set Programming (ASP) is a form of non-monotonic reasoning based on the
stable-model semantics [Gel88]. The number of ASP application domains is growing fast
(see e.g. [Dwo08, Tra06, Sch09]). Some of these require an adaptation of the general-purpose
solving process to their specific needs to allow for faster answer set computation. One broad
domain of ASP applications uses programs that depend on a parameter that bounds the size
of a solution. Consider e.g. the following time-dependent answer set program, for which the

1998 ACM Subject Classification: I.2.4 [Artificial Intelligence] Relation systems; J.3 [Computer Appli-
cations]: Biology and genetics.

Key words and phrases: answer set programming, time-dependent programs, gene regulation networks.
Jeroen Janssen is funded by a joint Research Foundation-Flanders (FWO) project. Chris Cornelis is a

postdoctoral fellow of the Research Foundation-Flanders (FWO).

c© T. Fayruzov, J. Janssen, D. Vermeir, C. Cornelis, and M. De Cock
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.64

EFFICIENT SOLVING OF TIME-DEPENDENT ANSWER SET PROGRAMS 65

grounding size depends on the parameter tmax. This program uses a non-standard notation
of the form p@T which is equivalent to p(T). The purpose of this notation is described in
Section 3.

Example 1.1. Program P
consists of the following rules:

time(0 . . . tmax).
q@T ← p@(T − 1), time(T), time(T − 1).
v@T ← q@(T − 1), not w@T, time(T), time(T − 1).
w@T ← q@(T − 1), not v@T, r(X), time(T), time(T − 1).
p@T ← time(T).
r(str).

where time(0 . . . tmax) is a shorthand for the facts time@0, time@1, . . . , time@tmax and T is
a time-bound variable. This program describes the behaviour of a system whose properties
depend on time. The answer sets for this program change as the time boundary tmax
increases. When tmax = 0 there is only one answer set1, namely A = {r(str), time(0), p(0)}.
The unique answer set for tmax = 1 is B = A∪{time(1), p(1), q(1)}, which is twice the size of
the previous one. For tmax = 2, negation as failure comes into play, resulting in two different
answer sets C = B∪{time(2), p(2), q(2), v(2)} and D = B∪{time(2), p(2), q(2), w(2)}. For
tmax = 3 there are already four different answer sets:

E = C ∪ {time(3), p(3), q(3), v(3)} G = D ∪ {time(3), p(3), q(3), w(3)}
F = C ∪ {time(3), p(3), q(3), w(3)} H = D ∪ {time(3), p(3), q(3), v(3)}

As this example illustrates, the number of answer sets as well as the size of the answer
sets of a time-dependent program can increase exponentially in the time boundary.

An important task when modelling and simulating a time-dependent system is to find
its steady states. Answer set E in Example 1.1 contains one steady state of the system
described by program P , as time, p, q, and v (and no other time-dependent predicates)
belong to E both for time step 2 and 3.

The main problem in finding these steady states is that it is typically not known in
advance at what time steps they occur. Furthermore a system may converge to several
steady states (e.g. E and F in Example 1.1) or may even oscillate among several states
repeatedly (e.g a cycle between v and w in Example 1.1 that manifests itself in some of the
answer sets of P for tmax = 4), and we may want to find them all. A brute force approach
of estimating a time upper bound and grounding and solving the program w.r.t. that upper
bound may lead to a suboptimal solving time: if the upper bound is estimated too high,
the grounded program is larger than necessary to find the steady states, hence requiring
unnecessary work, and if it is estimated too low, not all steady states are found, meaning
the process needs to be redone for a larger estimate.

In this paper we propose a technique that allows to find all steady states and cycles
efficiently. To this end, we define the notion of Markovian programs, which can be grounded
for one time step at a time. We introduce a way of solving these programs by solving one-
step grounded versions. These programs can be used to model protein interaction networks
as described e.g. in [Fay09]. We proceed by recalling ASP notions in Section 2, formally
defining time-dependent programs and Markovian programs in Section 3, and proposing
a method to solve these programs efficiently in Section 4. We explain the difference with
other approaches in Section 5 and finally conclude in Section 6.

1See Section 2 for preliminaries w.r.t. answer set programming.

66 T. FAYRUZOV, J. JANSSEN, D. VERMEIR, C. CORNELIS, AND M. DE COCK

2. Preliminaries

Answer set programs are built from a signature σ = 〈 γ, υ, π 〉, where γ is a set of
constant symbols, υ is a set of variable symbols, and π =

⋃m
i=1 πi(m ∈ N) is the union

of sets πi of i-ary predicate symbols. We define a set of variable expressions ε containing
expressions of the form t′ ± t′′ where t′ ∈ υ and t′′ ∈ γ. An atom over σ is an object of the
form p(t1, . . . , tn), where p ∈ πn and ti ∈ γ ∪ υ ∪ ε for each i ∈ 1 . . . n. We implicitly assume
that if ti is a symbol starting with a capital, it denotes a variable; otherwise it is a constant.
A literal over σ is either an atom, or an atom preceded by ¬, which denotes classical
negation. Naf-literals over σ, denoting negation-as-failure, are of the form not l, where l is
a literal over σ. For a set of literals X we introduce the notation notX = {not l|l ∈ X}.
For a literal or a naf-literal l, we use vars(l) to denote the set of variables contained in l.
If vars(l) = ∅ then l is called ground.

A rule r over σ is an object of the form l0 ← l1, . . . , lm,not lm+1, . . . ,not ln, where li,
for i ∈ 0 . . . n, are literals over σ. If each li is ground, it is called a ground rule. We refer to
l0 as the head of r, denoted as head(r), to the set {l1, . . . , lm,not lm+1, . . . ,not ln} as the
body of r, denoted as body(r), to {l1, . . . , lm} as the positive part of the body, denoted as
pos(r), and to the set {lm+1, . . . , ln} as the negative part of the body, denoted as neg(r).
We denote Lit(r) = pos(r) ∪ neg(r). If the head of the rule is empty, the rule is called a
constraint2; if the body of the rule is empty, the rule is called a fact.

An answer set program P over a signature σ is a finite set of rules over σ. If all rules in
P are ground, it is called a ground program. The process of grounding constructs a ground
program Gnd(P) from an answer set program P over a signature σ by replacing each rule r
by the set of rules obtained from r by all possible substitutions of the constants of σ for the
variables in r. If any of the predicate arguments takes on a composite form t′± t′′ with t′, t′′

grounded as numbers, they are substituted with the resulting value. A rule r that does not
contain negation-as-failure, i.e. neg(r) = ∅, is called a simple rule. A program that contains
only simple rules is called a simple program.

Turning to the semantics, a set of ground literals I over a signature σ is called an
interpretation if it is consistent, i.e. there is no literal l such that both l ∈ I and ¬l ∈ I. An
interpretation I is a model of a simple rule r iff pos(r) 6⊆ I ∨head(r) ∈ I. An interpretation
that is a model of all rules of a simple program P is called a model of P . The minimal
model of a simple program P is called an answer set of P . If P contains negation-as-failure,
then an interpretation I of P is called an answer set of P iff I is the answer set of the reduct
program P I , where P I = {head(r)← pos(r) | r ∈ P, I ∩ neg(r) = ∅}. The set of all answer
sets of a program P is denoted as AS(P).

3. Theoretical underpinnings

3.1. Time-dependent programs

In the remainder of this paper, we designate certain predicates as time-dependent pred-
icates and denote atoms built with these predicates as p(t1, . . . , tn−1)@θ where θ is called
a time argument. This is a convenience notation that allows to separate the (semantic)

2We do not consider constraints in our formal language, since a constraint ← β can be simulated by a
rule l← not l, β, where l is a literal not occurring in the program.

EFFICIENT SOLVING OF TIME-DEPENDENT ANSWER SET PROGRAMS 67

notion of time from the underlying syntactic representation. This notation is translated to
a conventional atom of the form p(t1, . . . , tn−1, θ) at grounding time.

Definition 3.1 (Time-dependent program). A time-dependent program P is a tuple 〈P, τ 〉
over a signature σ = 〈 γ, υ, π 〉, such that P is an answer set program over σ and τ ⊆ π is a
set of time-dependent predicates. We denote the set of n-ary time-dependent predicates as
τn. We define the set of free time-dependent literals

FP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,θ ∈ υ ∪ ε, p ∈ τn, 1 ≤ n ≤ m

}
and the set of bound time-dependent literals

BP =
⋃{

{p(t1, . . . , tn−1)@θ,¬p(t1, . . . , tn−1)@θ}
∣∣∣∣ t1, . . . , tn−1 ∈ γ ∪ υ ∪ ε,θ ∈ γ, p ∈ τn, 1 ≤ n ≤ m

}
.

The literals from FP contain a variable or a variable expression as the time argument, while
the literals from BP contain a constant as the time argument. The set of time-dependent
literals of a time-dependent program P is defined as Lit(P)τ = FP ∪ BP. It is a subset
of the set of all literals of P, which is defined as Lit(P) =

⋃
r∈P Lit(r). Furthermore, for

l ∈ Lit(P)τ , we use targ(l) to refer to the time argument θ of l. A time-dependent program
P is called well-typed iff

∀r ∈ P · (Lit(P)τ ∩ (pos(r) ∪ neg(r)) 6= ∅)⇒ (head(r) ∈ Lit(P)τ)

Intuitively, if a rule in a well-typed time-dependent program contains a time-dependent
literal in its body, it should contain a time-dependent literal in its head. In the remainder
we will only consider well-typed time-dependent programs.

Definition 3.2 (t-grounding of a time-dependent literal). Let P = 〈P, τ 〉 be a time-
dependent program and t ∈ N. The t-grounding of a literal l ∈ Lit(P), denoted as Gnd(l)t,
is obtained as follows: 1) if l ∈ Lit(P) \ FP then Gnd(l)t = l; 2) if l ∈ FP then the
variable in targ(l) is replaced by t, and in case of a variable expression the resulting value
is calculated. In all cases, the obtained literal Gnd(l)t is subsequently translated to the
conventional ASP notation. For a set of literals L, we define the t-grounding of this set as
Gnd(L)t =

⋃
l∈LGnd(l)t, i.e. we take the pointwise t-grounding of its elements.

Example 3.3. The 2-grounding of literal l = p(X, a)@(T + 1) is Gnd(l)2 = p(X, a, 3).

Definition 3.4 (t-grounding of a rule). Let P = 〈P, τ 〉 be a time-dependent program and
t ∈ N. The t-grounding of a rule r ∈ P is defined as

Gnd(r)t = Gnd(head(r))t ← Gnd(pos(r))t,notGnd(neg(r))t

Definition 3.5 (t-grounding of a time-dependent program). Let P = 〈P, τ 〉 be a time-
dependent program and tmax ∈ N. The tmax-grounding of P is defined as

Gnd(P)tmax = Gnd({Gnd(r)t′ | r ∈ P, t′ ∈ N, t′ ≤ tmax})

Intuitively, to obtain Gnd(P)tmax we instantiate all time-dependent literals with a set
of time points {t′|0 ≤ t′ ≤ tmax} and then ground the resulting program in the conventional
way.

68 T. FAYRUZOV, J. JANSSEN, D. VERMEIR, C. CORNELIS, AND M. DE COCK

Example 3.6. Let P = 〈P, {v, w, q, p, time} 〉 where P is the program from Example 1.1.
Its 2-grounding Gnd(P)2 is obtained by setting tmax = 2 and is defined as

1 : time(0). 9 : v(2) ← q(1), not w(2), time(2), time(1).
2 : time(1). 10 : w(0) ← q(−1), not v(0), r(str), time(0), time(−1).
3 : time(2). 11 : w(1) ← q(0), not v(1), r(str), time(1), time(0).
4 : q(0) ← p(−1), time(0), time(−1). 12 : w(2) ← q(1), not v(2), r(str), time(2), time(1).
5 : q(1) ← p(0), time(1), time(0). 13 : p(0) ← time(0).
6 : q(2) ← p(1), time(2), time(1). 14 : p(1) ← time(1).
7 : v(0) ← q(−1), not w(0), time(0), time(−1). 15 : p(2) ← time(2).
8 : v(1) ← q(0), not w(1), time(1), time(0). 16 : r(str).

Definition 3.7 (State of an answer set). Let P = 〈P, τ 〉 be a time-dependent program
and I be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. Furthermore let
t ∈ N with t ≤ tmax. The state of I at time point t is defined as

It = {l | l ∈ I, targ(l) = t}

Intuitively, the state of answer set I of Gnd(P)tmax at time point t is the set of ground
time-dependent literals in I that were grounded with t in the time argument. Two states
are called equivalent if the only difference between literals in these states is in the values of
the time points (see Example 3.12). We denote state equivalence as It

′
=time I

t′′ .

Example 3.8. Consider the program Gnd(P)2 from Example 3.6. The answer sets of
this program are C and D as defined in Example 1.1. The states of answer set C at
time points 0, 1 and 2 are C0 = {time(0), p(0)}, C1 = {time(1), p(1), q(1)} and C2 =
{time(2), p(2), q(2), v(2)}.

Definition 3.9 (Trajectory of an answer set). Let P = 〈P, τ 〉 be a time-dependent program
and I an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. The trajectory of I is
defined as

T I = 〈 I0 . . . Itmax 〉

Example 3.10. The trajectory of answer set C of program Gnd(P)2 from Example 3.6 is

TC = 〈 {time(0), p(0)}, {time(1), p(1), q(1)}, {time(2), p(2), q(2), v(2)} 〉

Definition 3.11 (Steady state, steady cycle). Let P = 〈P, τ 〉 be a time-dependent program
and I be an answer set of the tmax-grounding Gnd(P)tmax for tmax ∈ N. The state of I
at time point t, with t < tmax, is called a steady state iff It =time I

t+1. The sequence
〈 Ik 〉t1≤k≤t2 , with t1 ∈ N, t2 ∈ N and t1 < t2 ≤ tmax, is called a steady cycle iff It1 =time I

t2 .

Note that to define whether a state is a steady state it is enough to check the next
state, because if it does not change in the next step it will not change in the following steps
as well due to the deterministic nature of the model.

Example 3.12. The 3-grounding Gnd(P)3 of P = 〈P, {v, w, q, p, time} 〉 where P is the
program from Example 1.1, has answer sets E,F,G, and H as defined in Example 1.1.
The states of answer set E are E0 = {time(0), p(0)}, E1 = {time(1), p(1), q(1)}, E2 =
{time(2), p(2), q(2), v(2)}, and E3 = {time(3), p(3), q(3), v(3)}. E2 is a steady state, as
E2 =time E

3.

When solving time-dependent programs, one is usually interested in finding steady
states, steady cycles and trajectories leading to these states, as they can help to verify the
model’s correctness and/or provide new hypotheses about the behaviour of the underlying
system. An important problem is that it is in general impossible to accurately estimate an
upper time bound tmax that suffices to find all steady states. Thus, one should manually

EFFICIENT SOLVING OF TIME-DEPENDENT ANSWER SET PROGRAMS 69

adjust the bound and recompute answer sets over and over, which is very inefficient. In
the following section we narrow down time-dependent programs to Markovian programs
and propose an approach that does not require a time bound estimation for trajectory
computation.

3.2. Markovian programs

In this section we define a subclass of time-dependent programs, called Markovian
programs. This type of time-dependent programs is defined in such a way that every next
state directly depends only on the previous state, and does not depend on any of the future
states (hence the name Markovian). This is a reasonable assumption as real-world models
are normally unaware of any future events and make their decisions based on the information
directly available.

Recall that steady states and steady cycles for a time-dependent program P can be
found by grounding the program for a manually chosen time upper bound tmax (see Defini-
tion 3.5), solving the resulting ground program Gnd(P)tmax to obtain its answer sets, and
verifying whether the answer sets reveal steady states or cycles (see Definition 3.11). The
Achilles’ heel in this procedure is in the manual choice of tmax. Iteratively incrementing it
and repeating the above process until reaching a time point tmax at which a steady state or
cycle is encountered is inefficient, because that would require solving Gnd(P)0, Gnd(P)1,
Gnd(P)2, . . . , Gnd(P)tmax , or, in other words, grounded versions of the original time-
dependent program for time intervals {0, 1},{0, 1, 2},. . .,{0, . . . , tmax}. Instead, we propose
to consecutively solve smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax−1, tmax}. This
approach is more efficient because we ground only for one time step at a time and solve
smaller programs in every iteration. Further in this section we show that by doing so we
obtain the same answer sets as by solving the initial program for interval {0, . . . , tmax}.

Definition 3.13 (Markovian program). A time-dependent program P = 〈P, τ 〉 is called
Markovian iff it satisfies the following conditions for every r ∈ P with head(r) ∈ Lit(P)τ

and t ∈ N:

(1) targ(head(r)) ∈ γ ∪ υ
(2) targ(Gnd(head(r))t) = targ(Gnd(l)t) or targ(Gnd(head(r))t) = targ(Gnd(l)t) + 1

for all l ∈ Lit(r) ∩ Lit(P)τ

Rules in a Markovian program P can be divided into two subsets: a program that
describes temporal relationships P τ = {r|r ∈ P, (head(r) ∪ Lit(r)) ∩ Lit(P)τ 6= ∅} and a
program that describes the rest of the relationships P e = P \ P τ . Program P e can be
interpreted as environmental conditions that are invariant over time. By definition, P e is
independent from the program’s temporal part, thus it can be solved separately to obtain
its answer sets that represent the values of these conditions. Note that if P e does not have
an answer set, then for any tmax ∈ N, Gnd(P)tmax does not have an answer set either.

Example 3.14. Consider Markovian program P and its 2-grounding Gnd(P)2 as defined
in Example 3.6. Here the program P τ contains rules 1-15, while the program P e contains
rule 16. The program Gnd(P)2 has two answer sets, namely C and D as defined in Example
1.1. The unique answer set of P e is {r(str)}.

70 T. FAYRUZOV, J. JANSSEN, D. VERMEIR, C. CORNELIS, AND M. DE COCK

Definition 3.15 (Partial temporal grounding). Let P = 〈P, τ 〉 be a Markovian program
and t ∈ N. The partial temporal grounding of P for time point t is defined as

Pt = {Gnd(r)t|r ∈ P, head(r) ∈ Lit(P)τ , targ(Gnd(head(r))t) = t}

In other words, a partial temporal grounding for a time point t is the set of t-grounded
rules whose head depends on time point t.

Example 3.16. The partial temporal grounding of P built in Example 3.6 for time point
2 is the program P2 that is defined as follows

3 : time(2).
6 : q(2) ← p(1), time(2), time(1).
9 : v(2) ← q(1), not w(2), time(2), time(1).

12 : w(2) ← q(1), not v(2), r(X), time(2), time(1).
15 : p(2) ← time(2).

Assume that the tmax-grounding Gnd(P)tmax of a Markovian program P has an answer
set A. Once A is known, using Definition 3.7, we can straightforwardly find its states at
time points 0, 1, . . . , tmax, i.e., A0, A1, . . . , Atmax . Below we show that it is also possible to
find states of an answer set without prior knowledge of an answer set itself. In particular,
the state At of an (unknown) answer set of Gnd(P)tmax at time point t can be computed
based on knowledge of the state At−1 at time point t− 1, as well as knowledge of an answer
set A−1 of P e. This means that from the answer sets of P e, the set of states at time
point 0 can be found, and from this the set of states at time point 1, etc. This is done by
building P ′t = Pt ∪ {l ← .|l ∈ At−1 ∪ A−1} and then grounding P ′t and transforming it by
replacing literals from At−1 ∪A−1 with true values, which is formally defined in Definition
3.17. Solving the resulting (small) program yields as answer sets the possible states at time
point t given the state At−1 and the environmental conditions A−1.

Definition 3.17 (Partial reduct). Let P be a ground program, I an interpretation of P
and PI = {l ← .|l ∈ I}, such that PI ⊆ P and head(P \ PI) ∩ I = ∅. The partial reduct of
P w.r.t. I is the program RI(P) defined as

RI(P) = {head(r)← (pos(r) \ I),notneg(r). |r ∈ P\PI , neg(r) ∩ I = ∅}

Example 3.18. Assume we known that {time(1), p(1), q(1)} is the state at time point 1
of a (possibly unknown) answer set of program Gnd(P)2 from Example 3.6. We also know
an answer set of P e, namely {r(str)}. Let P2 be the partial temporal grounding of P for
time point 2 as described in Example 3.16. We construct the set I = {time(1), p(1), q(1)}∪
{r(str)} and the program P ′2 = Gnd(P2 ∪ {l← .|l ∈ I}) as follows:

time(2). time(1).
q(2) ← p(1), time(2), time(1). p(1).
v(2) ← q(1), not w(2), time(2), time(1). q(1).
w(2) ← q(1), not v(2), r(str), time(2), time(1). r(str).
p(2) ← time(2).

The partial reduct RI(P ′2) is then defined as

time(2).
q(2) ← time(2). w(2) ← not v(2), time(2).
v(2) ← not w(2), time(2). p(2) ← time(2).

By applying the partial reduct we remove the literals from I that appear positively in rule
bodies as well as the facts that appear as literals in I. The answer sets of the resulting
program are {time(2), p(2), q(2), v(2)} and {time(2), p(2), q(2), w(2)} which correspond to
C2 and D2 with C and D as in Example 1.1.

EFFICIENT SOLVING OF TIME-DEPENDENT ANSWER SET PROGRAMS 71

SK
Rum1

Slp1

Cdc2/Cdc13*

PP

Wee1/Mik1

Cdc25

Ste9 Cdc2/Cdc13

Start

Figure 1: The gene regulatory network of Fission Yeast that can be modelled using Mar-
kovian programs (illustration from [Dav08]).

The theorem below states that instead of computing answer sets of a Markovian program
Gnd(P)tmax directly, we can compute answer sets of smaller programs for every time step
0 ≤ t′ ≤ tmax consecutively and obtain the same result. This fact has as an important
implication that we can arrive at answer sets of a Markovian program without considering
tmax at all, which allows to impose another stopping condition. This is the technique that
is used to implement an algorithm for computing steady states explained in the following
section.

Theorem 3.19. Let P = 〈P, τ 〉 be a Markovian program and Gnd(P)tmax be a tmax-
grounding of P for tmax ∈ N, then

AS(Gnd(P)tmax) =

{
B−1 ∪ . . . ∪Btmax

∣∣∣∣ B−1 ∈ AS(P e), , Bt ∈ AS(RB
t−1∪B−1

(P ′t)),
t ∈ 0 . . . tmax

}
with P ′t = Gnd(Pt ∪ {l← .|l ∈ Bt−1 ∪B−1}).

4. Practical application

The results from the previous section give rise to an algorithm for finding all steady
states and cycles of Markovian programs. It can be summarized as:

(1) Solve program P e with the environmental conditions and initialize t = 0.
(2) Obtain the partial temporal grounding for t and find the system’s states at time t.
(3) Update the list of trajectories with the new states found in step (2).
(4) Increment t.
(5) If any of the trajectories did not reach steady state or cycle, go to step (2).

This algorithm can be applied to model gene regulatory networks. An example regu-
latory network of Fission Yeast is presented in Figure 1, where nodes stand for genes and
proteins, pointed edges define the activation of one node by another and blunt edges define
the inhibition of one node by another. The semantics of the network can be expressed as
a program P , while the actual network structure can be defined independently in a sepa-
rate program P ′ as described in [Fay09]. The resulting program is a Markovian program
P = 〈P ∪P ′, τ 〉. A trajectory in the network is found w.r.t. an initial state of the network.
The state of the network is defined as a combination of states of its nodes, where the state

72 T. FAYRUZOV, J. JANSSEN, D. VERMEIR, C. CORNELIS, AND M. DE COCK

of a node is defined as active(a, T) or inhibited(a, T) where a is a protein and T is a time
variable, i.e. active, inhibited ∈ τ . Looking at the network it is not possible to estimate
how many time steps it would take to find all network steady states, and setting the time
boundary too high would result in significant computation overheads, while the approach
we propose does not involve an explicit time boundary and thus avoids these overheads.
Solving the program with the algorithm outlined above allows to obtain trajectories and all
steady states and cycles of the network that are reported in [Dav08].

5. Related work

In Section 4 we proposed a method to find all steady states of a Markovian program
efficiently. However, our approach is not the only way to deal with the problem. Gebser
et al. have recently proposed an incremental program solving approach and a specially
constructed solver iclingo that allows for solving incremental programs [Geb08]. Even
though this solver, when used for Markovian programs, terminates as soon as the first
steady state is encountered, and hence unlike our approach does not find all steady states,
Gebser et al.’s proposal is relevant to our work. An incremental program includes a special
incremental parameter k and consists of three parts (base, cumulative and volatile) that
allow to reduce the efforts required for solving this type of programs. Due to the space
limitation we refer to [Geb08] for details. The advantage of this approach compared to the
usual solving process is that it reduces the effort of computing the answer set for unknown
k.

If we regard the incremental parameter k as time, we can simulate a Markovian program
P = 〈P, τ 〉 by putting P e in the base part and P τ in the cumulative part. However,
implementing the volatile part is not straightforward. Given the set τ of time-dependent
predicates we can write rules to capture steady states or cycles and define a constraint over
the occurrence of such a state or cycle in the volatile part, as illustrated below.

Example 5.1. Let P = 〈P, τ 〉 be a Markovian program over a signature σ = 〈 γ, υ, π 〉 and
τ = {u, v} where u, v ∈ π are unary time-dependent predicates. We define an incremental
program P ′ from P as explained above, i.e. by putting P e in the base part of P ′ and P τ in
the cumulative part of P ′. The exact contents of P e and P τ do not matter for the sake of
this example. Next, we add the following set of rules to the cumulative part of P ′:

int(0..k − 1).
h(k) ← not u(k), not u(k − T1), not v(k), not v(k − T1), int(T1).
h(k) ← u(k), u(k − T1), not v(k), not v(k − T1), int(T1).
h(k) ← v(k), v(k − T1), not u(k), not u(k − T1), int(T1).
h(k) ← v(k), v(k − T1), u(k), u(k − T1), int(T1).

Finally, we initialize the volatile part of P ′ with the rule ← noth(k). Intuitively, the
appearance of h(k) in an answer set of P ′ indicates that a steady state or cycle is found.
The constraint in the volatile part only allows answer sets that contain h(k).

However, there are two pitfalls associated with the above encoding. First, the number
of rules that needs to be added to the cumulative part grows exponentially with the number
and the arity of time-dependent predicates; recall that we do not only need all combinations
of time-dependent predicates, but also all their possible groundings. Secondly, the solver
terminates as soon as the first steady state is encountered, and hence does not generate
all steady states of the program. It is not obvious how to encode the program in order to
deal with these problems. For these reasons, the approach we propose in this paper is a

EFFICIENT SOLVING OF TIME-DEPENDENT ANSWER SET PROGRAMS 73

more suitable candidate to tackle the steady state search problem in Markovian programs.
Applying a meta-procedure similar to the algorithm from Section 4 is not a solution as the
incremental program still cannot find all steady states that stem from the same initial state
without adjusting the termination condition h(k).

Action languages [Gel92], another set of formalisms applicable to solve time-dependent
programs, provide a high-level description language that can be adopted to model time-
dependent systems. However, they suffer from the same drawback as incremental programs:
it is not possible to define a set of constraints that allows to find all steady states and cycles.

6. Conclusions

In this paper, we introduced time-dependent answer set programs, which are useful to
model systems like gene regulatory networks whose behaviour depends on time. An impor-
tant task when modelling such systems is to find their steady states and cycles. Unfortu-
nately, it is typically not known in advance at what time steps these steady states manifest
themselves. A brute force approach of estimating a time upper bound and grounding and
solving the program w.r.t. that upper bound may lead to a bad solving time: if the upper
bound’s estimate is too high, the grounded program is larger than necessary to find the
steady states, hence requiring unnecessary work, and if it is too low, not all steady states
(if any) are found and the process needs to be redone for a larger estimate.

We proposed an efficient algorithm for solving Markovian programs, i.e. time-dependent
programs for which the next state of the program depends only on the previous state of the
program. This is a reasonable assumption as real-world models are normally unaware of any
future events and make their decisions based on the information directly available. Instead
of solving Markovian programs for some long time interval {0, . . . , tmax} we consecutively
solve smaller programs for intervals {0, 1}, {1, 2},. . ., {tmax − 1, tmax}, which can be done
more efficiently. We showed that by doing so we obtain the same answer sets as by solving
the initial program for interval {0, . . . , tmax}. We successfully applied our algorithm to find
the steady states of a gene regulatory network for fission yeast.

References

[Dav08] Maria I. Davidich and Stefan Bornholdt. Boolean network model predicts cell cycle sequence of
fission yeast. PLoS ONE, 3(2), 2008.

[Dwo08] Steve Dworschak, Susanne Grell, Victoria J. Nikiforova, Torsten Schaub, and Joachim Selbig.
Modeling biological networks by action languages via answer set programming. Constraints, 13(1-
2):21–65, 2008.

[Fay09] Timur Fayruzov, Martine De Cock, Chris Cornelis, and Dirk Vermeir. Modeling protein interaction
networks with answer set programming. In BIBM, pp. 99–104. 2009.

[Geb08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Sven
Thiele. Engineering an incremental asp solver. In ICLP, pp. 190–205. 2008.

[Gel88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. pp.
1070–1080. MIT Press, 1988.

[Gel92] Michael Gelfond and Vladimir Lifschitz. Representing actions in extended logic programming. In
JICSLP, pp. 559–573. 1992.

[Sch09] Torsten Schaub and Sven Thiele. Metabolic network expansion with answer set programming. In
ICLP, pp. 312–326. 2009.

[Tra06] Nam Tran. Reasoning and hypothesizing about signaling networks. Ph.D. thesis, Arizona State
University, 2006.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 74–83
http://www.floc-conference.org/ICLP-home.html

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING FOR

PROBABILISTIC LOGICAL MODELS BY MEANS OF PROGRAM

SPECIALIZATION

DAAN FIERENS

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001
Heverlee, Belgium
E-mail address: Daan.Fierens@cs.kuleuven.be

Abstract. There is currently a large interest in probabilistic logical models. A popu-
lar algorithm for approximate probabilistic inference with such models is Gibbs sampling.
From a computational perspective, Gibbs sampling boils down to repeatedly executing cer-
tain queries on a knowledge base composed of a static part and a dynamic part. The larger
the static part, the more redundancy there is in these repeated calls. This is problematic
since inefficient Gibbs sampling yields poor approximations.
We show how to apply program specialization to make Gibbs sampling more efficient. Con-
cretely, we develop an algorithm that specializes the definitions of the query-predicates with
respect to the static part of the knowledge base. In experiments on real-world benchmarks
we obtain speedups of up to an order of magnitude.

1. Introduction

In the field of artificial intelligence there is a large interest in probabilistic logical models
(probabilistic extensions of logic programs and first-order logical extensions of probabilistic
models such as Bayesian networks) [3, 10, 5]. Probabilistic inference with such a model is
the task of answering various questions about the probability distribution specified by the
model, usually conditioned on certain observations (the evidence). A variety of inference
algorithms is being used. A popular algorithm for approximate probabilistic inference is
Gibbs sampling [2, 11]. Gibbs sampling works by drawing samples from the considered
probability distribution conditioned on the evidence. These samples can be used to compute
an approximate answer to the probabilistic questions of interest. It is important that the
process of drawing samples is efficient because the more samples can be drawn per time-unit,
the more accurate the answers will be (i.e., the closer to the correct answer).

Computationally, Gibbs sampling boils down to repeatedly executing the same queries
on a knowledge base composed of a static part (the evidence and background knowledge)
and a highly dynamic part that changes at runtime because of the sampling. The more
evidence, the larger the static part of the knowledge base, so the more redundancy there

1998 ACM Subject Classification: I.2.2, G.3, D.1.6.
Key words and phrases: probabilistic logical models, probabilistic logic programming, program special-

ization, Gibbs sampling.
This research is supported by Research Foundation-Flanders (FWO Vlaanderen), GOA/08/008 ‘Proba-

bilistic Logic Learning’ and Research Fund K.U.Leuven.

c© Daan Fierens
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.74

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 75

is in these repeated calls. Since it is important that the sampling process is efficient, this
redundancy needs to be reduced as much as possible. In this paper we show how to do this
by applying program specialization to the definitions of the query-predicates: we specialize
these definitions with respect to the static part of the knowledge base. While a lot of work
about logic program specialization is about exploiting static information about the input
arguments of queries (partial deduction [6]), we instead exploit static information about the
knowledge base on which the queries are executed.

While the above applies to all kinds of probabilistic logical models and programs, we will
focus on models that are first-order logical or “relational” extensions of Bayesian networks
[3, 5]. Concretely, we use the general framework of parameterized Bayesian networks [10].

The contributions of this paper are the following. First, we show how to represent
parameterized Bayesian networks in Prolog (Section 3). Second, we show how to implement
Gibbs sampling in Prolog and show that doing this efficiently poses challenges from the logic
programming point of view (Section 4). Third, we develop an algorithm for specializing the
considered logic programs with respect to the evidence (Section 5). Fourth, we perform
experiments on real-world benchmarks to investigate the influence of specialization on the
efficiency of Gibbs sampling. Our results show that specialization yields speedups of up to
an order of magnitude and that these speedups grow with the data-size (Section 6). The
latter two are the main contributions of this paper, the first two are minor contributions.

We first give some background on probability theory and Bayesian networks.

2. Preliminaries: Probability Theory and Bayesian Networks

In probability theory [8] one models the world in terms of random variables (RVs).
Each state of the world corresponds to a joint state of all considered RVs. We use upper
case letters to denote single RVs and boldface upper case letters to denote sets of RVs. We
refer to the set of possible states of an RV X (i.e. the set of values that X can take) as the
range of X, denoted range(X). We consider only discrete RVs, i.e. RVs with a finite range.

A probability distribution on a finite set S is a function that maps each x ∈ S to a
number P (x) ∈ [0, 1] such that

∑
x∈S P (x) = 1. A probability distribution for an RV X is a

probability distribution on the set range(X). A conditional probability distribution (CPD)
for an RV X conditioned on a set of other RVs Y is a function that maps each possible
joint state of Y to a probability distribution for X.

Syntactically, a Bayesian network [8] for a set of RVs X is a set of CPDs: for each
X ∈ X there is one CPD for X conditioned on a (possibly empty) set of RVs called the
parents of X. Intuitively, the CPD for X specifies the direct probabilistic influence of X’s
parents on X. The probability distribution for X conditioned on its parents pa(X), as
determined by the CPD for X, is denoted P (X | pa(X)).

Semantically, a Bayesian network represents a probability distribution P (X) on the set
of all possible joint states of X. Concretely, P (X) is the product of all the CPDs in the
Bayesian network: P (X) =

∏
X∈X P (X | pa(X)). It can be shown that P (X) is a proper

probability distribution provided that the parent relation is acyclic (the parent relation is
often visualized as a directed acyclic graph but given the CPDs this graph is redundant).

76 DAAN FIERENS

3. Parameterized Bayesian Networks

Bayesian networks essentially use a propositional representation. Several ways of lifting
them to a first-order representation have been proposed [3, Ch.6,7,13] [5]. There also exist
several probabilistic extensions of logic programming, such as PRISM, Independent Choice
Logic and ProbLog [3, Ch.5,8]. Both kinds of probabilistic logical models (probabilistic logic
programs and the extensions of Bayesian networks) essentially serve the same purpose. In
this paper we focus on the Bayesian network approach. Our main motivation for this choice
is that this paper is about Gibbs sampling and this has been well-studied in the context
of Bayesian networks. There are many different representation languages for first-order
logical or “relational” extensions of Bayesian networks. We use the general framework of
parameterized Bayesian networks [10]. While this framework is perhaps not a full-fledged
knowledge representation language, it does offer a representation that is suited to implement
probabilistic inference algorithms on.

We now briefly introduce parameterized Bayesian networks. Like Bayesian networks use
RVs, parameterized Bayesian networks use so-called parameterized RVs [10]. Parameterized
RVs have a number of typed parameters ranging over certain populations. When each
parameter in a parameterized RV is instantiated or “grounded” to a particular element of
its population we obtain a regular or “concrete” RV. To each parameterized RV we associate
a parameterized CPD (see below) with the same parameters as the parameterized RV.

Syntactically, a parameterized Bayesian network is a set of parameterized CPDs, one for
each parameterized RV. Semantically, a parameterized Bayesian network B, in combination
with a given population for each type, specifies a probability distribution. Let X denote the
set of all concrete RVs obtained by grounding all parameterized RVs in B with respect to
their populations. The probability distribution specified by B is the following distribution on
the set of all possible joint states of X: P (X) =

∏
X∈X P (X | pa(X)), where P (X | pa(X))

denotes the probability distribution for X as determined by its parameterized CPD.
Rather than providing a formal discussion of parameterized Bayesian networks we show

how they can be represented in Prolog (as far as we know this has not been done before).
To deal with parameterized RVs in Prolog we associate to each of them a unique pred-

icate: for a parameterized RV with n parameters we use a (n+1)-ary predicate, the first n
arguments correspond to the parameters, the last argument represents the state of the RV.
We refer to these predicates as state predicates.

Syntactically a parameterized Bayesian network is a set of parameterized CPDs. To
deal with parameterized CPDs we also associate to each of them a unique predicate, the
last argument now represents a probability distribution on the range of the associated RV.
We refer to these predicates as CPD-predicates. In this paper we assume that each CPD-
predicate is defined by a decision list. A decision list is an ordered set of rules such that
there is always at least one rule that applies, and of all rules that apply only the first one
fires (in Prolog this is achieved by putting a cut at the end of each body and having a last
clause with true as the body).

Example 3.1. Consider a university domain. Suppose that we use the following parame-
terized RVs: level (with a parameter from the population of courses), iq and graduates (each
with a student parameter) and grade (with a student parameter and a course parameter).
To represent the state of the RVs we use the state predicates level/2, iq/2, graduates/2
and grade/3. The meaning of for instance level/2 is that the atom level(C,L) is true if the
parameterized RV level for the course C is in state L .

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 77

To represent parameterized CPDs we use CPD-predicates cpd level/2, cpd iq/2, cpd grade/3
and cpd graduates/2. If the level RVs for instance do not have parents, their parameterized
CPD could be defined as follows.

cpd_level(_C,[intro:0.4,advanced:0.6]).

Note that we use lists like [intro:0.4,advanced:0.6] to represent probability distribu-
tions. The other parameterized CPDs could for instance be defined as follows.

cpd_iq(_S,[high:0.5,low:0.5]).

cpd_grade(S,C,[a:0.7,b:0.2,c:0.1]) :- iq(S,high), level(C,intro), !.

cpd_grade(S,C,[a:0.2,b:0.2,c:0.6]) :- iq(S,low), level(C,advanced), !.

cpd_grade(S,C,[a:0.3,b:0.4,c:0.3]).

cpd_graduates(S,[yes:0.2,no:0.8]) :- grade(S,_C,c), !.

cpd_graduates(S,[yes:0.5,no:0.5]) :- findall(C,grade(S,C,a),L),

length(L,N), N<2, !.

cpd_graduates(S,[yes:0.9,no:0.1]).

In the bodies of the clauses defining the CPD-predicates we allow the use of state pred-
icates (e.g. iq/2 and level/2 in the clauses for cpd grade/3) and of background predicates,
but not of CPD-predicates. With background predicates we mean auxiliary predicates that
do not depend on the state of RVs (this includes built-ins such as length/2). We assume
that the definitions of the background predicates are available in a background knowledge
base. We also allow the use of meta-predicates (such as findall/3) but not of predicates
with side-effects (such as assert/1).

When we know the population for each type (e.g. we know the set of students and
the set of courses) we also know the set of concrete RVs X. Suppose that in addition we
also know the state of these concrete RVs because we are given a knowledge base with
facts defining the state predicates (e.g. a fact grade(s1, c1, a) indicates that student s1 has
grade ‘a’ for course c1). We can then obtain the probability distribution for a concrete RV
conditioned on its parents by simply calling the associated CPD-predicate on this knowledge
base. For instance, we obtain the probability that the student s1 will graduate conditioned
on her grades by calling cpd graduates(s1, Distribution). We refer to this as calling the
CPD for that concrete RV. Since we represent each parameterized CPD as a decision list it
is guaranteed that this always returns exactly one probability distribution.1

As we explain in the next section, calling a CPD is an operation that needs to be
performed frequently during probabilistic inference. Another such operation is setting a
concrete RV to a given state. This is done by modifying the corresponding fact in the
knowledge base (e.g. the fact grade(s1, c1, a) is turned into grade(s1, c1, b) [4]).

4. Probabilistic Inference with Parameterized Bayesian Networks

Given the population for each type, a parameterized Bayesian network defines a prob-
ability distribution P (X) on the set of all possible joint states of the concrete RVs X. In a
typical inference scenario, the state of a subset of all these RVs is observed. This informa-
tion is called the evidence. Probabilistic inference is the task of answering certain questions

1Some CPD-predicates are defined by non-ground facts (e.g. cpd level/2). This does not cause problems
because we always call CPD-predicates with all arguments except the last instantiated.

78 DAAN FIERENS

about the probability distribution P (X) conditioned on the evidence. The most common
inference task is to compute marginal probabilities. A marginal probability is the probabil-
ity that a particular RV is in a particular state. For instance, given the level of all courses
and the grades of all students for all courses (the evidence), we might want to compute
for each student the probability that she has a high IQ. In theory such probabilities can
be computed by performing a series of sum and product operations on the probability dis-
tributions specified by the parameterized CPDs. Unfortunately, for real-world population
sizes this is computationally intractable (inference with Bayesian networks is NP-hard [8]).
Hence, one often uses approximate probabilistic inference instead. An important class of
approximate inference algorithms are Monte Carlo algorithms that draw samples from the
given distribution conditioned on the evidence. Various algorithms are being used, a very
popular one is Gibbs sampling [2, 11].

Let O denote the set of all observed concrete RVs (i.e. the RVs for which we have
evidence), and U the set of all unobserved ones (U = X \O). Below we assume that we
need to compute marginal probabilities for all unobserved RVs. Pseudocode for the Gibbs
sampling algorithm is shown in Figure 1. We now explain this further.

procedure gibbs sampling(O,U) procedure resample(U)
1 for each O ∈ O 1 call the CPD for U
2 set O to its known state 2 for each u ∈ range(U)
3 for each U ∈ U 3 set U to state u
4 set U to random state ∈ range(U) 4 for each child X of U
5 initialize all counters for U 5 call the CPD for X
6 repeat until enough samples 6 calculate Presample(U)
7 for each U ∈ U 7 sample unew from Presample(U)
8 resample(U) 8 set U to unew

9 compute estimates from counters 9 increment counter for (U, unew)

Figure 1: The Gibbs sampling algorithm (left) and its resample procedure (right).

Before the start of the sampling process all observed RVs are instantiated to their
known state and all unobserved RVs are instantiated to a random state. In terms of our
implementation in Prolog, this is done by creating a knowledge base defining all the state
predicates: for each RV ∈ O ∪U there is one fact for the corresponding state predicate.
Before we start sampling, we also create a number of counters: for each U ∈ U and each
u ∈ range(U) we create a counter to store the number of samples in which U is in state u.
All counters are initialized to zero.

Let us now consider the sampling process itself. To create one sample, we visit (in an
arbitrary but fixed order) all unobserved RVs. When we visit an RV U , we “resample” it.
The idea is to sample the new state from the probability distribution for U conditioned
on the current state of all other RVs. For details on how to construct this distribution
Presample(U) we refer to Bidyuk and Dechter [1], here we focus on the main computations
that this requires (see the resample procedure in Figure 1): first we need to call the CPD
for U , then we loop over all possible states of U and for each state u we set U to u and call
the CPDs of each of the children of U .Based on the information returned by all these CPD-
calls it is straightforward to construct the distribution Presample(U). We then randomly
sample a state from this distribution, set U to this new state and increment the appropriate
counter for U .

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 79

The above is done for all unobserved RVs, yielding one sample.2 Note that observed RVs
are clamped to their known state, hence the generated sample is guaranteed to be consistent
with the evidence. This entire procedure is repeated N times, yielding N samples. It is
then straightforward to construct an estimate of all required marginal probabilities based
on the computed counts. For instance, the estimated probability that student s1 has a high
IQ conditioned on the evidence is the number of samples in which the RV iq for s1 was in
the state ‘high’, divided by N .

The higher the number of samples N , the closer the estimated marginal probabilities
will be to their correct values [1, 4]. Gibbs sampling is often used by giving the sampling
process a fixed time to run before computing the estimates. In this case, the less time it
takes to draw a single sample, the more samples can be drawn in the given time, so the
higher the accuracy of the estimates. In other words: any gain in efficiency of the sampling
process might lead to a gain in accuracy of the estimates. Hence it is crucial to implement
the sampling process as efficiently as possible.

The Gibbs sampling algorithm uses several operations, but there is one operation that
we clearly found to be the computational bottleneck, namely calling the CPDs. This oper-
ation occurs inside several nested loops (see line 5 of the resample procedure in Figure 1)
and is hence performed many times. The knowledge base on which these CPD-queries are
called is highly dynamic: the state of the unobserved RVs changes continuously because
they are being resampled. This is only one part of the knowledge base, however. The part
that is about the observed RVs (the evidence) stays constant during the entire sampling
process. This static part of the knowledge base causes redundancy in the repeated calls of
the CPD-queries since part of the computations are performed over and over again. The
more evidence we have, the larger the redundancy. In many practical cases, the amount
of evidence is considerable and hence the redundancy can be large. Since we want the
sampling process to be as efficient as possible, this redundancy needs to be removed. In the
next section we show how this can be done by means of program specialization.

5. Applying Logic Program Specialization to Parameterized CPDs

The idea is to specialize the definitions of the CPD-predicates with respect to the static
part of the knowledge base. Recall that we define each CPD-predicate in Prolog by means of
a decision list (Example 3.1). Our specialization approach is a source-to-source transforma-
tion that takes three inputs: 1) the decision lists for all the CPD-predicates, 2) the evidence
(i.e. the observed RVs with their observed states), and 3) the background knowledge base.
The output of the transformation is a specialized version of the decision lists. The trans-
formation is such that Gibbs sampling produces exactly the same sequence of samples with
the specialized decision lists as with the original ones (but in a more efficient way).

We use the term CPD-query to refer to any atom for a CPD-predicate with the last
argument uninstantiated and all other arguments instantiated to elements of the proper pop-
ulations. For instance, cpd grade(s, c,Distribution) is a CPD-query if s is in the considered
population of students and c in the population of courses. All calls to CPD-predicates that
occur during Gibbs sampling are calls of CPD-queries. Moreover, there is only a fixed set
of CPD-queries that are ever called during Gibbs sampling: by examining the resample
procedure (Figure 1) one can see that the only CPD-queries that are ever called are those

2In practice we use a slight variation of this procedure which includes a number of common optimizations
(such as making use of the ‘support network’ [3, Ch.7]).

80 DAAN FIERENS

associated to an unobserved RV (line 1 of resample) or to an RV with an unobserved
parent (line 5). As long as the specialized decision lists that we construct behave exactly
the same with respect to this fixed set of CPD-queries as the original decision lists do, Gibbs
sampling will indeed produce exactly the same samples with specialization as without.

There is a lot of existing work on transformation or specialization of logic programs that
has the same end-goal as our work, namely transforming a given program to an “equivalent”
but more efficient program [9]. However, we are not aware of any work that considers the
same setting as we do, namely that of executing a fixed set of queries on a knowledge
base with a static and a dynamic part, and specializing with respect to the static part. In
particular, this setting makes our work different from the work on partial deduction for logic
programs [6, 7]. In our setting, we know all input arguments of the queries but we know
only part of the knowledge base on which they will be executed. In contrast, in the partial
deduction setting, one knows only some of the input arguments of the queries but one knows
the entire knowledge base. Hence, existing off-the-shelve systems for partial deduction (see
e.g. Leuschel et al. [7]) are, as far as we see, not optimal for our setting.

Our specialization algorithm is shown in Figure 2. The main idea is the following.
The CPD-predicates are defined in terms of the state predicates. The evidence is a partial
interpretation of these state predicates (specifying the known state for a subset O of all
concrete RVs). We want to specialize the definitions of the CPD-predicates with respect to
this evidence. Since the evidence is defined at the ground level but the definitions of the
CPD-predicates are at the non-ground level, we first (partially) ground these definitions
before we specialize them. We now explain this further.

procedure specialize(U,O,o) procedure spec decision list(D, q,U,O,o)
1 for each CPD-predicate p 1 if D is non-empty
2 let D be the decision list for p 2 let C be the first clause in D
3 for each q ∈ AllQueries(p,U,O) and Drest be the other clauses in D
4 spec decision list(D, q,U,O,o) 3 Cq = ground head(C, q)

4 let Head be the head and Bq the body of Cq

5 Body=specialize body(Bq,U,O,o)
6 if Body = true
7 assert fact(Head)
8 else
9 if Body 6= false
10 assert clause(Head,Body)
11 spec decision list(Drest, q,U,O,o)

Figure 2: The specialization algorithm for the decision lists that define the CPD-predicates
(U are the unobserved RVs, O the observed RVs and o their observed values).

The outer-loop of our algorithm (line 1 of the specialize procedure in Figure 2) is
over all the CPD-predicates: we specialize each CPD-predicate p in turn. To do so, we first
collect all CPD-queries for p. As explained before, the only CPD-queries that we need are
the ones associated to an RV that is unobserved or has an unobserved parent. The set of all
such CPD-queries is denoted AllQueries(p,U,O) (line 3 of the specialize procedure). We
then loop over this set: for each CPD-query q we apply the spec decision list procedure.
We explain this procedure by means of an example.

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 81

Example 5.1. Let p be cpd graduates/2, let the decision list D that defines p be the same
as given earlier in Example 3.1, and let the CPD-query q be cpd graduates(s1, Distr). The
spec decision list procedure starts by processing the first clause C in D:

cpd_graduates(S,[yes:0.2,no:0.8]) :- grade(S,_C,c), !.

First we ground the head variables of C with respect to q (line 3 of spec decision list)
yielding the clause Cq:

cpd_graduates(s1,[yes:0.2,no:0.8]) :- grade(s1,_C,c), !.

Next, we apply the function specialize body to the body of Cq (line 5), yielding Body
(see Example 5.2). There are three possible cases.

• If Body equals true, we assert a fact cpd_graduates(s1,[yes:0.2,no:0.8]) (line
7). We can discard the remaining clauses in D with respect to q (these clauses will
never be reached for q since only the first applicable clause in a decision list fires).
• If Body equals false, we discard Cq and continue with the next clause in D (line 11).
• Otherwise, we assert a clause of the form
cpd_graduates(s1,[yes:0.2,no:0.8]) :- Body, !.

(line 10) and we again continue with the next clause in D (line 11).

The function specialize body (Figure 2) is rather involved. For details we refer to
the full paper [4]. We now give a very simple example.

Example 5.2. Let Bq, the body to be specialized, be grade(s1,C,c) (this is the situation
of our previous example). First we ground the free variable C, yielding a disjunction B1,
namely grade(s1,c1,c) ; ... ; grade(s1,cn,c). Then we specialize each of the literals
in B1 with respect to the evidence. Consider the first literal, grade(s1,c1,c). If we have
evidence that s1 obtained grade ‘c’ for course c1 then we replace the literal by true, if we
have different evidence we replace it by false, if we have no evidence we leave it unchanged.
Doing this for each literal yields a specialized disjunction B2. Finally, we simplify B2 using
logical propagation rules (e.g. a disjunction is true if one if its disjuncts is true).

From the perspective of efficiency of the specialization process (time needed for spe-
cializing) our algorithm is not optimal: the specialization time can easily be reduced, for
instance by more closely integrating the different steps of specialize body. However, in
our experiments we observed that the specialization time is negligible as compared to the
runtime of Gibbs sampling with the specialized decision lists (see the full paper [4]). Hence,
we keep our specialization algorithm as simple as possible, rather than complicating it in or-
der to reduce specialization time. This also makes it easier to see that specialization indeed
preserves the semantics of the CPD-predicates (and hence that Gibbs sampling produces
the same sequence of samples as without specialization).

6. Experiments

We now experimentally analyze the influence of specializing the definitions of the CPD-
predicates on the efficiency of the Gibbs sampling algorithm.

We test our algorithms on three common real-world datasets: IMDB, UWCSE and
WebKB. We obtained a parameterized Bayesian network for each dataset by means of
machine learning. We use two inference scenarios. The first is ‘prediction’ : there is one
parameterized RV that we want to predict, all concrete RVs associated to that parameterized
RV are unobserved, all others are observed. For each dataset we do multiple experiments,

82 DAAN FIERENS

each time with a different parameterized RV as the prediction target. The second scenario
is ‘missing data’ : a random fraction f of all concrete RVs is unobserved (‘missing’), the
others are observed. We use several values of f , ranging from 5% to 50%. For each value
we repeat each experiment 5 times, each time with different unobserved RVs. We report
the mean and standard deviation of the runtime across these 5 repetitions. More details
about our experimental setup are given in the full paper [4].

We report the runtime of our Gibbs sampling algorithm in minutes. The runtime
without specialization is the runtime of Gibbs sampling with parameterized CPDs that
have not been grounded or specialized. The runtime with specialization is the sum of the
specialization time and the runtime of Gibbs sampling with the specialized CPDs. Recall
that both settings produce exactly the same sequence of samples.

The results for the ‘missing data’ scenario are shown in Figure 3. Using specialization
always yields a speedup. The magnitude of the speedup of course greatly depends on the
amount of evidence. On WebKB, the dataset that is by far the most computationally
demanding, we get a speedup of an order of magnitude when there are 5% unobserved RVs.
On the smaller datasets (IMDB and UWCSE), the speedups are more modest.

0

5

10

IM
D

B
ru

nt
im

e

5% 15% 25% 35% 50%
1

2

3

IM
D

B
sp

ee
du

p

5% 15% 25% 35% 50%

0

40

80

120

U
W

C
SE

ru
nt

im
e

5% 15% 25% 35% 50%
1

2

3

4

U
W

C
SE

sp
ee

du
p

5% 15% 25% 35% 50%

0

2000

4000

6000

W
eb

K
B

ru
nt

im
e

5% 10% 15% 20% 25%

percentage unobserved RVs

3

6

9

W
eb

K
B

sp
ee

du
p

5% 10% 15% 20% 25%

percentage unobserved RVs

Figure 3: Results for the ‘missing data’ scenario. Left subgraphs show the runtime without
(upper line) and with specialization (lower line); right subgraphs show the corre-
sponding speedup-factor achieved due to specialization. Error bars indicate the
standard deviation.

The results for the ‘prediction’ scenario are shown in Table 1. For half of the prediction
targets, specialization yields significant speedups of a factor 4 to 7. For the other targets, the
speedup is small to negligible (≤ 1.5). These are mostly cases where the state predicate that
forms the computational bottleneck (e.g. because it is involved in a findall) is unobserved
and hence cannot be specialized on.

In the above results (especially for the ‘missing data’ scenario), the speedups are the
lowest on the smallest dataset (IMDB) and the highest on the largest one (WebKB). This
suggest a correlation between the speedup due to specialization and the data-size. To
investigate this, we performed additional experiments in which we varied the size of the
datasets (see the full paper [4]). We found a clear trend: the larger the dataset, the higher

IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 83

Table 1: Results for the ‘prediction’ scenario: runtime without specialization, runtime with
specialization and speedup-factor achieved due to specialization.

Data/Target No spec. Spec. Speedup Data/Target No spec. Spec. Speedup
IMDB/1 16.1 14.9 1.08 UWCSE/3 12.2 2.1 5.87
IMDB/2 2.6 1.7 1.51 UWCSE/4 71.8 15.8 4.55
UWCSE/1 75.1 17.4 4.31 WebKB/1 2628 406 6.48
UWCSE/2 10.9 10.4 1.05

the speedup. This is a positive result: speedups are more necessary on large datasets than
on small ones.

7. Conclusions

We considered the task of performing approximate probabilistic inference with prob-
abilistic logical models by means of Gibbs sampling. We used the general framework of
parameterized Bayesian networks. We showed how to represent the considered models and
how to implement a Gibbs sampling algorithm for such models in Prolog. We argued that
program specialization is suited to make this algorithm more efficient (which can in turn
make the obtained inference answers more accurate) and introduced a concrete special-
ization algorithm. We experimentally investigated the influence of specialization on the
efficiency of Gibbs sampling. Our results show that specialization yields speedups of up to
an order of magnitude and that these speedups grow with the data-size.

References

[1] B. Bidyuk and R. Dechter. Cutset sampling for Bayesian networks. Journal of Artificial Intelligence
Research, 28:1–48, 2007.

[2] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
[3] L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton. Probabilistic Inductive Logic Programming.

Springer, 2008.
[4] D. Fierens. Improving the efficiency of Gibbs sampling for probabilistic logical models by means of

program specialization. Technical Report CW-581, Department of Computer Science, Katholieke Uni-
versiteit Leuven, 2010. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW581.abs.html.

[5] D. Fierens, J. Ramon, M. Bruynooghe, and H. Blockeel. Learning directed probabilistic logical models:
Ordering-search versus structure-search. Annals of Mathematics and Artificial Intelligence, 54(1):99–
133, 2008.

[6] M. Leuschel and M. Bruynooghe. Logic program specialisation through partial deduction: Control
issues. Theory and Practice of Logic Programming, 2(4-5):461–515, 2002.

[7] M. Leuschel, S.J. Craig, M. Bruynooghe, and W. Vanhoof. Specialising interpreters using offline partial
deduction. In Program Development in Computational Logic, volume 3094 of Lecture Notes in Computer
Science, pages 340–375. Springer, 2004.

[8] R.E. Neapolitan. Learning Bayesian Networks. Prentice Hall, New Jersey, 2003.
[9] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and techniques. Journal

of Logic Programming, 19-20:261–320, 1994.
[10] D. Poole. First-order probabilistic inference. In Proceedings of the 17th International Joint Conference

on Artificial Intelligence (IJCAI 1997), pages 985–991. Morgan Kaufmann, 2003.
[11] V. Santos Costa. On the implementation of the CLP(BN) language. In Proceedings of the 12th Interna-

tional Symposium on Practical Aspects of Declarative Languages (PADL 2010), volume 5937 of Lecture
Notes in Artificial Intelligence, pages 234–248. Springer, 2010.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 84–93
http://www.floc-conference.org/ICLP-home.html

FOCUSED PROOF SEARCH FOR LINEAR LOGIC

IN THE CALCULUS OF STRUCTURES

NICOLAS GUENOT 1

1 Laboratoire d’Informatique (LIX), École Polytechnique
rue de Saclay, 91128 Palaiseau cedex, France
E-mail address: nguenot@lix.polytechnique.fr

Abstract. The proof-theoretic approach to logic programming has benefited from the
introduction of focused proof systems, through the non-determinism reduction and control
they provide when searching for proofs in the sequent calculus. However, this technique was
not available in the calculus of structures, known for inducing even more non-determinism
than other logical formalisms. This work in progress aims at translating the notion of
focusing into the presentation of linear logic in this setting, and use some of its specific
features, such as deep application of rules and fine granularity, in order to improve proof
search procedures. The starting point for this research line is the multiplicative fragment
of linear logic, for which a simple focused proof system can be built.

1. Introduction

The foundational principle of logic programming is the description of computation as a
proof search process in some logical deductive system. It is therefore natural to implement
logic programming languages in the framework of the sequent calculus, where the theory of
proof objects is well-developped and analytic systems are available. This approach has been
successful in extending logic programming to richer fragments of logic than Horn clauses,
such as hereditary Harrop formulas [Mil91]. However, this required the definition of normal
forms for proofs, reducing the search space and providing more structure, first with uniform
proofs and then with focused proof systems [And92], initially designed for linear logic and
later extended to both intuitionistic and classical logics [Lia09]. The focusing result is now
considered an important part of proof theory, and is very much related to the broader and
very active study of polarities in linear logic as well as other logics.

Proof Search in the Calculus of Structures. The deep inference methodology has been
introduced to overcome the intrisic limitations of the sequent calculus, and design logical
formalisms with nice symmetry properties. The most important by-product of this research
line is the calculus of structures [Gug07], which generalises the sequent calculus by allowing
inference rules to be applied deep inside formulas, as illustrated below:

(A⊗ (1⊗ C)) OD
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A⊗ ((B OB⊥)⊗ C)) OD
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A⊗ (B O (B⊥ ⊗ C))) OD

Key words and phrases: proof theory, focusing, proof search, deep inference, linear logic.

c© N. Guenot
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.84

FOCUSED PROOF SEARCH IN THE CALCULUS OF STRUCTURES 85

There are several benefits to use this formalism, including the ability to produce proofs
exponentially shorter than in the sequent calculus [Bru09], and also a large variety of design
choices which allow the definition of several systems for the same logic easily, emphasizing
different viewpoints.

However, the freedom given by the calculus of structures in the way of building proofs
and using inference rules has an important drawback: the non-determinism involved in
the process of proof construction is even greater than it is in the sequent calculus, mostly
because of the possible choices regarding the depth of the next inference rule application.
Thus, we cannot use directly such a system, and proof search requires the use of specific
techniques [Kah06]. The goal of our project is then to get control over non-determinism
using the focusing technique, which has to be adapted to this new setting.

Translating the Notion of Focusing. There is no such thing as a formal definition for the
notion of focusing. The idea of this technique is mostly induced by the definition of focused
sequent calculi, and their proof of completeness, although there is an intuition behind the
methodology: invertible inference rules should be applied first, and a sequence of inference
rules of the same polarity should always be applied as a group. In order to devise a focused
proof system in the calculus of structures, we have to conform to this intuition, so that the
result offers proportionately the same features as focusing does in the sequent calculus.

Outline of the Paper. We start with a quick survey of the usual focused sequent calculus
MLLF for multiplicative linear logic, and then present the main contribution of this paper,
the focused MLSF system in the calculus of structures, that we prove sound and complete.
Finally, we discuss the design of this system, other possible choices as well as extensions to
larger fragments of linear logic.

2. The MLLF Sequent Calculus

We work in the setting of linear logic [Gir87], and more precisely in the multiplicative
fragment of this logic. This is a very small and simple logic, where no contraction nor
weakening can happen, with two connectives : a conjunction ⊗ and a disjunction O, dual
to each other. Negation can be pushed to the atoms using De Morgan’s laws, and we use
two sets to represent atoms and their negation, with a bijection a 7→ a⊥ between them.

The focused sequent calculus MLLF presented in Figure 1 is a simple restriction of the
usual system [And92], where no particular mechanism is required to handle non-linear parts
of the context. In this system, simple sequents are replaced with two kinds of sequents,
distinguished by the different arrows used to annotate them. Then, inference rules require
the definition of three classes of formulas:

A+ ::= A⊗A | 1 | a A− ::= AOA | ⊥ | a⊥ A∗ ::= A+ | a⊥

Remark 2.1. We consider atoms to be positive and their negations to be negative. This
is arbitrary, since any atomic bias respecting the duality of negation can be used [Mil07].

Annotations are used to enforce that all available O formulas are decomposed before
any ⊗ formula, and that nested ⊗ are treated hereditarily. Another consequence of the
syntactic restrictions is that whenever a positive atom is encoutered during a synchronous
phase, the identity rule must close the branch. Finally, the management rules of decision,
exclusion and release are meant to control annotations, and require to assume that the
conclusive sequent of the proof is of the shape `⇑Γ.

86 N. GUENOT

Synchronous Phase Asynchronous Phase

`Γ ⇓A `∆ ⇓B
⊗ −−−−−−−−−−−−−−−−−−−−
`Γ,∆ ⇓A⊗B

id −−−−−−−−−
`a⊥ ⇓ a

1 −−−−−
`⇓1

`Γ ⇑A,B,∆
O −−−−−−−−−−−−−−−−−
`Γ ⇑AOB,∆

`Γ ⇑∆
⊥ −−−−−−−−−−−−
`Γ ⇑ ⊥,∆

Management Rules

`Γ ⇓A+
D −−−−−−−−−−
`Γ, A+⇑

`Γ, A∗ ⇑∆
E −−−−−−−−−−−−−
`Γ ⇑A∗,∆

`Γ ⇑A−
R −−−−−−−−−−
`Γ ⇓A−

Figure 1: Inference rules for system MLLF

Once this system has been defined, it is necessary to prove that it can be used to replace
the usual systems. This is the actual focusing result, which was originally established in
the broader case of full linear logic.

Theorem 2.2 (Andreoli, 1992). The MLLF system is sound and complete with respect to
multiplicative linear logic.

Searching for proofs in this calculus is much simpler than in unfocused systems, since
important points of non-determinism are isolated : context splitting induced by the ⊗ rule is
a possible point of backtracking, while asynchronous rules cannot induce any backtracking
since they are invertible. Moreover, the choice of the next formula to be treated is also
controlled using the decision rule, which is the most important source of non-determinism
in practice, since context splitting can be implemented in a lazy way [Cer00]. The grouping
of choices in the synchronous phase reduces the search space, so that the proof construction
process is still efficient, while following a uniform strategy.

3. The MLSF Focused Calculus of Structures

The starting point for the definition of a focused system in the calculus of structures is
the existing system LS for linear logic [Str03], where the multiplicative fragment MLS is very
small, using only two inference rules : the identity rule i↓ and the switch rule s. There is no
rule for the O, since there is no meta-level connective such as the comma, but we make the
treatment of units explicit here, although it is implicit in LS, because we are concerned with
proof search. The equational theory only treats associativity and commutativity. Then, a
complete proof in LS is a derivation that ends with a 1 alone as a premise.

Adapting the focusing technique to the calculus of structures requires to define a syntax
that enforces the correct shape for proofs through annotations added to the usual system.
The resulting system is called MLSF, and its equational theory and inference rules are given
in Figure 2. Beyond annotations, it uses the same classes of formulas as MLLF. It also uses
a global flag, that can be either 0 or 1 to indicate that we are in a decision or focusing phase
respectively. Indeed, the structure of phases is different from the sequent calculus: the
asynchronous and synchronous phases are merged into the focusing phase, and the decision
phase corresponds to the application of the decision rule.

FOCUSED PROOF SEARCH IN THE CALCULUS OF STRUCTURES 87

Syntactic Congruence

AOB ≡ B OA
A⊗B ≡ B ⊗A

AO (B O C) ≡ (AOB) O C
A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C

the flag n = 0/1 on a structure
indicates the phase it belongs to,
by reflecting the number of down
arrows in the structure.

Focusing Phase

ξ{[A∗ O ⇓B]⊗ C)}1
s −−−−−−−−−−−−−−−−−−−−−−−
ξ{A∗ O ⇓(B ⊗ C)}1

ξ{⇓1}1
ai −−−−−−−−−−−−−−−
ξ{a⊥ O ⇓a}1

ξ{⇓A}1
f −−−−−−−−−−−−−−
ξ{⊥O ⇓A}1

ξ{A}0
b −−−−−−−−−−−−−
ξ{⇓1⊗A}1

Management Rules

ξ{⇓A+}1
d −−−−−−−−−−
ξ{A+}0

ξ{A−}0
r −−−−−−−−−−
ξ{⇓A−}1

Figure 2: Congruence and inference rules for system MLSF

Although it is built on the same idea as focused proof systems in the sequent calculus,
there are several important differences, due to the deep inference setting, that should be
explained concerning MLSF and its proof construction dynamics:

• The proof search process is a sequence of focusing phases, delimited by applications
of the decision rule d. A focusing phase represents the interaction between a positive
formula and another formula in its surrounding context. As would be done during
an asynchronous phase, some ⊥ formulas can be erased in such a focusing phase.
• The switch rule s implements lazy splitting within the proof-theoretic framework,

so that branching is decomposed into the stepwise distribution of formulas in the
context to different sides of a ⊗ connective. Thus, formulas are moved hereditarily
within a compound ⊗ structure, and we obtain a uniform translation of the focusing
idea into the calculus of structures, in the sense that it provides proportionately the
same restriction as in the sequent calculus, although it is a weaker normal form.
• An important consequence of the focusing result is the natural definition of synthetic
connectives [Zei08]. Here, the definition of positive synthetic connectives is clear,
but there is no equivalent on the negative side. However, this corresponds to the
asymmetry of focusing, that emphasizes the importance of the positives. Indeed, the
reason we decompose negatives first is simply that a part of them should be treated
before the next positive connective to be chosen. It is even impossible to observe
negative synthetic connectives in the conclusive sequent of a proof, since they are
built during the proof construction process. The MLSF system acknowledges this
fact by orienting proof search with the help of positives only, and defining deduction
steps in terms of interaction between a positive formula and its context.

Soundness is a trivial result for such a system, since all of its rules are sound once the
annotations have been removed. Then, completeness can be proved by using a translation
from proofs in MLLF to proofs in our system in the calculus of structures. This requires to
define a translation from both kinds of sequents to structures with annotations.

88 N. GUENOT

Definition 3.1. The translation J·KS from MLLF sequents to MLSF structures is defined
using the translation J·KF from multisets of formulas to structures, as follows:

J`Γ ⇑∆KS = JΓKF O J∆KF
J`Γ ⇓AKS = JΓKF O ⇓JAKF

JA1, · · · , AnKF = A1 O · · ·OAn

The translation of sequent calculus focused proofs into our system is not as easy as the
translation of formulas. Indeed, the differences in the way phases are organised and the
decomposition of ⊗ splitting induce a different shape of proofs. Therefore, we have to use
an intermediate system, called MLSFs , where the s and f rules are replaced with the following
variants, closer to the sequent calculus:

ξ{A}0
fs −−−−−−−−−−−−
ξ{⊥OA}0

ξ{[A• O ⇓B]⊗ C)}1
ss −−−−−−−−−−−−−−−−−−−−−−−
ξ{A• O ⇓(B ⊗ C)}1

where A• ::= A∗ | A∗ OA•

This system relaxes the restriction on the f rule, so that ⊥ can be erased anywhere, between
two focusing phases, and the switch rule is more general. We now prove completeness for
this system and we will then show how to translate these proofs into MLSF proofs.

Lemma 3.2. For any proof a sequent `M in MLLF, there is a proof of J`MKS in MLSFs .

Proof. By translation of a given proof Π in MLLF to a proof in the focused system MLSFs ,
using a case analysis and an induction on the height of this proof tree. The base case
happens when translating axiomatic rule instances, for which the resulting derivation should
end with the premise ⇓1.

(i) The case of a 1 rule is immediate, since the conclusion is ⇓1.
(ii) An identity rule id is directly translated as an identity ai rule:

id −−−−−−−−−
`a⊥ ⇓ a

−→
(⇓1)1

ai −−−−−−−−−−−−
[a⊥ O ⇓a]1

The inductive cases use the proofs produced by applying the induction hypothesis,
which can be plugged into the derivation being build, because of the deep inference setting
— and this is done in accordance to the global flag. In the following, we make explicit the
use of the syntactic congruence by using a fake ≡ rule whenever a structure is rewritten into
another. Moreover, we must be cautious when translating the ⊗ rule since there are two
different cases, depending on the polarity of the formulas on both sides of the ⊗ connective
being decomposed.

(iii) If there is at least one positive structure on one side of the ⊗, we can use it to apply
a decision d rule in the end of the proof:

��
��

��
�???????

ΠA

`Γ ⇓A
��

��
��

�???????
ΠB

`∆ ⇓B+⊗ −−−−−−−−−−−−−−−−−−−−−−−−
`Γ,∆ ⇓A⊗B+

−→

−
ΛB

∥∥∥∥∥∥
[∆ O ⇓B+]1

d −−−−−−−−−−−−−
[∆ OB+]0

b −−−−−−−−−−−−−−−−−−−−
[∆ O (⇓1⊗B+)]1

ΛA

∥∥∥∥∥∥
[∆ O ([Γ O ⇓A]⊗B+)]1

ss −−−−−−−−−−−−−−−−−−−−−−−−−−−
[Γ O ∆ O ⇓(A⊗B+)]1

FOCUSED PROOF SEARCH IN THE CALCULUS OF STRUCTURES 89

(iv) In the other case, there are negative structures on both sides of the ⊗, and focusing
enforces the use of the release rule:

��
��

��
�???????

ΠA

`Γ ⇑A−
R −−−−−−−−−−
`Γ ⇓A−

��
��

��
�???????

ΠB

`∆ ⇑B−
R −−−−−−−−−−−
`∆ ⇓B−⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−

`Γ,∆ ⇓A− ⊗B−

−→

−
ΛB

∥∥∥∥∥∥
[∆ OB−]0

b −−−−−−−−−−−−−−−−−−−−
[∆ O (⇓1⊗B−)]1

ΛA

∥∥∥∥∥∥
[∆ O ([Γ OA−]⊗B−)]0

r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[∆ O ([Γ O ⇓A−]⊗B−)]1

ss −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[Γ O ∆ O ⇓(A− ⊗B−)]1

(v) The O rule is not really translated since it has no effect on the translation:

��
��

��
??????Π

′

`Γ ⇑A,B,∆
O −−−−−−−−−−−−−−−−−
`Γ ⇑AOB,∆

−→

−
Λ′

∥∥∥∥∥∥
[Γ OAOB O ∆]0≡ −−−−−−−−−−−−−−−−−−−−−−

[Γ O [AOB] O ∆]0

(vi) The ⊥ rule is simply translated as a fs rule:

��
��

��
??????Π

′

`Γ ⇑∆
O −−−−−−−−−−−−
`Γ ⇑ ⊥,∆

−→

−
Λ′

∥∥∥∥∥∥
[Γ O ∆]0

fs −−−−−−−−−−−−−−−
[Γ O⊥O ∆]0

(vii) The decision rules D and d are used the same way in both systems:

��
��

��
??????Π

′

`Γ ⇓A+
D −−−−−−−−−−
`Γ, A+⇑

−→

−
Λ′

∥∥∥∥∥∥
[Γ O ⇓A+]1

d −−−−−−−−−−−−−
[Γ OA+]0

(viii) The exclusion rule E is not translated at all, since not required:

��
��

��
??????Π

′

`Γ, A∗ ⇑∆
E −−−−−−−−−−−−−
`Γ ⇑A∗,∆

−→
−

Λ′
∥∥∥∥∥∥

[Γ OA∗ O ∆]0

(ix) The release rules R and r are also used the same way in both systems:

��
��

��
??????Π

′

`Γ ⇑A−
R −−−−−−−−−−
`Γ ⇓A−

−→

−
Λ′

∥∥∥∥∥∥
[Γ OA−]0

r −−−−−−−−−−−−−
[Γ O ⇓A−]1

90 N. GUENOT

Finally, we can establish the focusing result, which states that the MLSF proof system
is sound and complete, by using our translations. Unfortunately, this result does not allow
a comparison with the sequent calculus on the level of focusing, since it is difficult to give
a formal account of the reduction of the proof search space induced by both systems. The
benefits of our focusing restriction are yet to be further studied.

Theorem 3.3. MLSF is sound and complete with respect to multiplicative linear logic.

Proof. Soundness is immediately obtained by removing arrows from inference rules in MLSF,
leaving us with the rules of MLS, and trivialised management rules with the same structure
as premise and conclusion. Completeness is obtained in two steps. First, given a sequent
calculus proof Π of `M we produce a proof Λ of J`MKS in MLSFs using Lemma 3.2. Then
we have to produce a proof of J`MKS in MLSF, by modifying Λ.

Because of the shape of sequent calculus proofs, all instances of fs in Λ are located below
an instance of d in the surrounding context. It is thus possible to permute all instances of
fs above the associated decision rule, turning them into instances of f, as follows:

ξ{Γ O ⇓A+ O ∆}1
d −−−−−−−−−−−−−−−−−−−−−
ξ{Γ OA+ O ∆}0

fs −−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ O⊥OA+ O ∆}0

−→
ξ{Γ O ⇓A+ O ∆}1

f −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ O⊥O ⇓A+ O ∆}1

d −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ O⊥OA+ O ∆}0

Then, we have to reorganise sequences of ss instances into sequences of s instances. Again,
because of the shape of sequent calculus proofs, we know that instances of ss, if they cannot
be read as simple instances of s, follow a precise scheme where the reaction rule is applied
above a sequence of ss instances. We can thus rewrite the derivation as follows:

ξ{ζ{AOB∗ O C−}}1
r −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ζ{AOB∗ O ⇓C−}}1

s∗s −−−−−−−−−−−−−−−−−−−−−−−−−−−−ξ{[AOB∗] O ⇓ζ{C−}}1
−→

ξ{ζ{AOB∗ O C−}}0
r −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ζ{AO ⇓[B∗ O C−]}}1

s∗s −−−−−−−−−−−−−−−−−−−−−−−−−−−−ξ{AO ⇓ζ{B∗ O C−}}1
d −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{AO ζ{B∗ O C−}}0

r −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{AO ζ{B∗ O ⇓C−}}1

s∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{[AOB∗] O ⇓ζ{C−}}1

By a simple induction on the size of the structure being moved deep inside the context ζ{·},
we can replace all instances of ss with instances of s. Therefore, Λ can be turned into a
proof Λ′ of J`MKS in MLSF.

4. Variations and Extensions

The system we devised corresponds to one possible design choice among many others.
It has been chosen because of its simplicity, and its use of the important feature of lazy
splitting introduced by the deep inference methodology. This is probably an important
feature from the viewpoint of logic programming, since it allows for clean proof-theoretic
foundations for the context sharing implementation technique. However, it is unclear which
are the features that could further improve proof search procedures with respect to this
programming consideration, and if they would be compatible with the design choices we
made so far. We discuss now some variations of the MLSF system, as well as its extension
to larger fragments of the logic and stronger normal forms.

FOCUSED PROOF SEARCH IN THE CALCULUS OF STRUCTURES 91

Complete ⊗ Decomposition. An alternative to the current design of the switch rule s is
the use of a maximality condition, imposing that all elements of the immediate surrounding
context are moved inside the ⊗ structure, along with a one-step splitting variation of the
switch rule, as follows:

ξ{[AO ⇓C]⊗ [B O ⇓D]}2
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{[AOB] O ⇓(C ⊗D)}1

However, this would require to extend the global flag to a general counter, which would
track the number of down arrows in the structure. More importantly, this would betray
the idea of small-step rules decomposition that comes as a benefit when using the calculus
of structures. Such a complete decomposition does not fit the deep inference methodology,
since it is impossible to obtain negative synthetic connectives using this approach, unless
we mimick sequent calculus proofs.

Separate Asynchronous Phase. It is possible to use another annotation to control the
asynchronous rules, thus splitting the focusing phase into asynchronous and synchronous
phases, as it is done in the sequent calculus. However, the asynchronous phase would still
be directed by the future synchronous phase, since we must ensure that all required negative
structures have been treated before we start treating a positive. Such a design would require
to relate these two new phases through the interaction of annotated formulas, as can be
done with the following alternative rules:

ξ{[⇑A∗ O ⇓B]⊗ C)}
s −−−−−−−−−−−−−−−−−−−−−−−−
ξ{⇑A∗ O ⇓(B ⊗ C)}

ξ{⇓1}
ai −−−−−−−−−−−−−−−
ξ{⇑a⊥ O ⇓a}

ξ{A}
f −−−−−−−−−−−−−
ξ{⇑⊥OA}

With such an extension of the annotations, we have to extend the global flag, so that the
presence of up arrows is tracked too. This complicates the managment rules, and does not
provide any benefit compared to MLSF if we only allow for one up arrow in a structure.
Then, multiple up arrows would allow for a compromise between small-step and big-step
splitting of the ⊗, but it requires to use extend the use of down arrows too. In order to
allow medium-step splitting, it seems simpler to use the MLSFs intermediate system used in
the completeness proof, where a group of structures can be moved inside a positive.

Extension to the Additives. Using the additive connectives N and ⊕ in the setting of
our focused calculus of structures yields new design choices that should be studied carefully.
An intuitive way of extending the system would be to add the two following rules:

ξ{[⇓AOB] N [⇓AO C]}2
a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{⇓AO (B N C)}1
ξ{⇓A}1

o −−−−−−−−−−−−−−−−
ξ{⇓[A⊕B]}1

The focused rule for the ⊕ is perfectly fine, but the rule for N is more problematic. Indeed,
the duplication of the down arrow implies that the global flag has to count these arrows,
as considered for the alternate switch rule. Moreover, the treatment of the left and right
branches of the N are now interleaved, although a unique active positive structure provides
us with a stronger normal form. Therefore, the following rule should be considered:

ξ{[⇓AOB] N [AO C]}1
a −−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{⇓AO (B N C)}1
This rule corresponds to the viewpoint of slices on the additives, each slice being treated
separately. Moreover, this fits the idea that a focusing phase represents the interaction
between a positive structure and only one of the element of its context — its context being
more structured here than a simple multiset created by O.

92 N. GUENOT

Multi-focusing. The usual notion of focusing can be extended to provide a stronger
normal form, by handling multiple focused formulas [Cha08]. This idea seems quite natural
in the setting of MLSF, where the global flag can be extended into a counter, as mentioned
above. There are three different ways of using multiple arrows in such a system:

• Parallel focusing: when arrows are located in different subformulas of a conjunction
connective, they represent the parallel focusing of different branches in the sequent
calculus. It is easy to handle multiple arrows in this case, but it is unclear how this
could yield a stronger normal form.
• Multi-focusing: the use of multiple focusing arrows with the same O context is more

tricky. This is the case corresponding to the notion of multi-focusing in the sequent
calculus, and it is difficult to know if two given positive structures can be focused
at the same time — näıve maximal multi-focusing is not complete.
• Nested focusing: it seems easy to handle cases where an arrow annotates a positive

structure located deep inside another focused structure. Moreover, this suggests
an extension of synthetic connectives to disconnected layers of positive connectives,
which could be interesting in the search for a stronger normal form.

5. Conclusion and Future Work

The MLSF system presented here is a first step in the larger project of extracting
the focusing notion out of its sequent calculus roots. This is a prototype that should be
further studied and improved, since although we know there are some benefits in using the
calculus of structures as an host formalism for proof search and logic programming — for
instance, lazy splitting and shorter proofs —, it is yet unclear how to gain control over its
overwhelming non-determinism, especially for larger logics, such as full linear logic or even
classical logic [Brü03].

The next step in this research project is to design a focused proof system for the
multiplicative-additive fragment of linear logic in the calculus of structures, and solve there
the problem of controlling duplications of focused formulas. Then, it might not be more
difficult to accomodate the exponentials, since they do not quite fit the focusing categories
in the sequent calculus — they are located at the interface between polarity groups.

In order to assess the benefits of the deep inference methodology in the definition of
proof search procedures, it also seems necessary to experiment with our system. Thus, a
prototype implementation of such a focused system should be carried out, so that it can be
compared to other proof search software developed on top of the focusing approach [Bae07].
Choosing among the many possible designs requires to get experience with proof search in
the calculus of structures, and it might even be needed to develop specific variants of the
usual focusing, so that the dynamics of deep inference proof search can be used with full
power — indeed, it would be useless to try to mimick the proof search behaviour of the
sequent calculus, while the benefits are in the proofs that cannot be written in a shallow
way. Finally, the study of deep inference proof methods raises the question of its status: is
it only a way to implement more efficient proof search procedures with clean semantics, or
will it yield new features to be used in logic programming languages ?

FOCUSED PROOF SEARCH IN THE CALCULUS OF STRUCTURES 93

Acknowledgements

This work has benefited from useful comments and suggestions of the anonymous reviewers,
and fruitful discussions with Kaustuv Chaudhuri about the design of focused systems.

References

[And92] J-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Com-
putation, 2(3):297–347, 1992.

[Bae07] D. Baelde and D. Miller. Least and greatest fixed points in linear logic. In N. Dershowitz and
A. Voronkov (eds.), LPAR’07, LNCS, vol. 4790, pp. 92–106. 2007.

[Brü03] K. Brünnler. Deep Inference and Symmetry in Classical Proofs. Ph.D. thesis, Technische Universität
Dresden, 2003.

[Bru09] P. Bruscoli and A. Guglielmi. On the proof complexity of deep inference. ACM Transactions on
Computational Logic, 10(2):1–34, 2009.

[Cer00] I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient resource management for linear logic proof
search. Theoretical Computer Science, 232(1-2):133–163, 2000.

[Cha08] K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via multi-focusing. In G. Ausiello,
J. Karhumäki, G. Mauri, and L. Ong (eds.), Fifth IFIP International Conference on Theoretical
Computer Science, vol. 273, pp. 383–396. 2008.

[Gir87] J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gug07] A. Guglielmi. A system of interaction and structure. ACM Transactions on Computational Logic,

8(1):1–64, 2007.
[Kah06] O. Kahramanoğulları. Nondeterminism and Language Design in Deep Inference. Ph.D. thesis, Tech-

nische Universität Dresden, 2006.
[Lia09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics.

Theoretical Computer Science, 410(46):4747–4768, 2009.
[Mil91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic

programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
[Mil07] D. Miller and A. Saurin. From proofs to focused proofs : a modular proof of focalization in linear

logic. In J. Duparc and T. A. Henzinger (eds.), CSL’07, LNCS, vol. 4646, pp. 405–419. 2007.
[Str03] L. Straßburger. Linear Logic and Noncommutativity in the Calculus of Structures. Ph.D. thesis,

Technische Universität Dresden, 2003.
[Zei08] N. Zeilberger. Focusing and higher-order abstract syntax. In G. Necula and P. Wadler (eds.),

POPL’08, pp. 359–369. 2008.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 94–103
http://www.floc-conference.org/ICLP-home.html

SAMPLER PROGRAMS: THE STABLE MODEL SEMANTICS OF

ABSTRACT CONSTRAINT PROGRAMS REVISITED

TOMI JANHUNEN

Aalto University School of Science and Technology
Department of Information and Computer Science
PO Box 15400, FI-00076 Aalto, Finland
E-mail address: Tomi.Janhunen@tkk.fi

Abstract. Abstract constraint atoms provide a general framework for the study of aggre-
gates utilized in answer set programming. Such primitives suitably increase the expressive
power of rules and enable more concise representation of various domains as answer set
programs. However, it is non-trivial to generalize the stable model semantics for programs
involving arbitrary abstract constraint atoms. For instance, a nondeterministic variant of
the immediate consequence operator is needed, or the de�nition of stable models cannot
be stated directly using primitives of logic programs. In this paper, we propose sampler
programs as a relaxation of abstract constraint programs that better lend themselves to
the program transformation involved in the de�nition of stable models. Consequently, the
declarative nature of stable models can be restored for sampler programs and abstract
constraint programs are also covered if decomposed into sampler programs. Moreover, we
study the relationships of the classes of programs involved and provide a characterization
in terms of abstract but essentially deterministic computations. This result indicates that
all nondeterminism related with abstract constraint atoms can be resolved at the level of
program reduct when sampler programs are used as the intermediate representation.

1. Introduction

The stable model semantics [Gel88] of logic programs, also known as the answer set
semantics, constitutes the semantical cornerstone of answer set programming (ASP). Un-
doubtedly, the simple and intuitive de�nition of stable models [Lif08] has played a major
role in the success of ASP during the past two decades. Applications that emerged in
the meantime demonstrate that knowledge engineers have easily grasped the essentials of
rules subject to stable models. Nevertheless, the practise of ASP has led to a rich body of
extensions to the basic syntax of normal logic programs such as strong negation [Gel90], dis-
junctions [Gel91], and various kinds of aggregates, which have also appeared in other similar
disciplines. Extensions in the last category typically enable concise expression of a particular
combinatorial condition involving a set of atoms or objects. Examples of aggregates sup-
ported by contemporary ASP solvers include the cardinality and weight constraints [Sim99]
and the sum, count, and max aggregates [Del03]. To get a concrete idea of their power,

1998 ACM Subject Classi�cation: I.2.4, F.4.1.
Key words and phrases: stable models, abstract constraints, program reduction, translation, choice rules.
This research has been partially funded by the Academy of Finland under project #122399.

c© T. Janhunen
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.94

SAMPLER PROGRAMS 95

consider a sum aggregate 500 ≤ sum{Y : capacity(X,Y) : in(X) : disk(X)} formalizing
the su�ciency of disk space selected for a particular PC con�guration. Such an aggregate
requires no updates when the number of disks for con�guring PCs is changed.

The study of aggregates has recently lifted to the level of abstract constraint atoms which
nicely capture a variety of important aggregates. However, it is non-trivial to generalize sta-
ble models for arbitrary abstract constraint atoms as witnessed by the number of proposals
in this respect. Only the interpretation of special cases, viz. monotone [Mar08] and convex
abstract constraints [Liu06], is unanimous. As regards the general case, abstract computa-
tions, i.e., sequences of interpretations associated with a program, have been proposed as a
semantical basis [Liu10]. A key justi�cation is that persistent deterministic computations
essentially capture stable models of normal logic programs. This interconnection suggests an
alternative way of de�ning the semantics of abstract constraint programs, but computations
bring along nondeterminism and other degrees of freedom that pre-empt a conclusive se-
mantical de�nition. Besides, the declarative nature of stable models is jeopardized because
the outcome of a computation potentially depends on the entire sequence.

Our hypothesis is that abstract constraint programs lack a natural counterpart of the
Gelfond-Lifschitz reduct [Gel88] which plays a key role in the de�nition of stable models.
For instance, in case of a normal logic program P , a stable model M is de�ned as the least
model of PM , i.e., the program P reduced with respect to M . Attempts to generalize this
idea for abstract constraint programs become intricate because the reduced program cannot
be directly represented as an abstract constraint program. For instance, the representation
proposed in [She07] requires new atoms and it e�ectively produces a positive normal program.
Alternatively, propositional (default) logic has been used to formalize the reduct [She09a].

In this paper, we address the aforementioned de�ciency related to reducts by proposing
a completely new class of programs, viz. sampler programs. They form a relaxation of
abstract constraint programs so that a reasonable notion of a reduct can be established
within the class of sampler programs. This class of programs is introduced as follows.
First, in Section 2, we recall a much simpler class of choice logic programs [Soi99] designed
for modelling product con�gurations. The syntax is based on a slight extension of normal
rules�enabling a straightforward generalization of stable models. Nevertheless, it provides
us with insights into how stable models can be lifted to the case of sampler programs as
carried out in Section 3. The relationship of sampler programs and choice logic programs is
then explored in terms of translations in Section 4. The translations presented in this case
indicate that choice logic programs and sampler programs are equally expressive [Jan06].

In the second part of this paper, we apply the theory developed for sampler programs to
abstract constraint programs, which are �rst recalled in Section 5. The idea is to decompose
abstract constraint atoms into sets of samplers systematically. In this way, we are able to
de�ne stable models in the context of abstract constraint programs in a traditional way
[Gel88] using the notions of a program reduct and the least model. This aspect restores the
declarative nature of stable models and makes our approach original due to its simplicity.
The semantics obtained in this way coincides with the one proposed in [She07, She09a,
She09b]. Moreover, motivated by the computation-based approach [Liu10], we propose a
notion of canonical computations for abstract constraint programs in Section 6. The novelty
is that all nondeterminism can be handled globally via the de�nition of stable models, and
resorting to nondeterministic variants of the immediate consequence operator or conditional
satisfaction [Son07b] can be avoided altogether. A comparison with related work is carried
out in Section 7. Finally, we present our conclusions in Section 8.

96 T. JANHUNEN

2. Choice Logic Programs (CLPs)

In this section, we introduce the class of choice logic programs [Soi99] that suit well for
nondeterministic speci�cations. A choice logic program (CLP) P is a set of choice rules

a1 | . . . | al ← b1, . . . , bm,∼c1, . . . ,∼cn (2.1)

where l ≥ 0, m ≥ 0, n ≥ 0, and a1, . . . , al, b1, . . . , bm, and c1, . . . , cn are propositional atoms,
or just atoms for short. A rule is normal, i� l = 1, and an integrity constraint (IC), i� l = 0.
A fact is a normal rule with l = 1, m = 0, and n = 0, and thus written brie�y as a1 ←.

The signature of a CLP P , denoted by At(P), is the set of atoms appearing in its rules.
An interpretation I ⊆ At(P) of P determines which atoms of At(P) are true (a ∈ I) and
which false (a 6∈ I). A positive literal b is satis�ed in an interpretation, denoted I |= b, i�
b ∈ I. A negative literal ∼c is satis�ed in I, denoted I |= ∼c, i� c 6∈ I. A conjunction
l1, . . . , ln of literals is satis�ed in I, denoted I |= l1, . . . , ln, i� I |= l1, . . . , and I |= ln. A
disjunction a1 | . . . | al of atoms is satis�ed in I, denoted I |= a1 | . . . | al, i� I |= ai holds
for some i ∈ {1, . . . , l}. A choice rule of the form (2.1) is satis�ed in I i� I |= b1, . . . , bm
and I |= ∼c1, . . . ,∼cn imply I |= a1 | . . . | al. An interpretation M ⊆ At(P) for a CLP P is
called a model of P , denoted by M |= P , i� every choice rule (2.1) of P is satis�ed by M .

De�nition 2.1 (Reduct [Soi99]). The reduct PM of a CLP P with respect to an interpre-
tation M ⊆ At(P) contains a positive rule a ← b1, . . . , bm for each choice rule (2.1) such
that (i) a ∈ {a1, . . . , al}, (ii) M |= a, and (iii) M |= ∼c1, . . . ,∼cn.

The reduced program PM is a positive normal program having rules of the form a ←
b1, . . . , bm where m ≥ 0. Such a program P has a unique ⊆-minimal model, also known as
the least model of P hereafter denoted by LM(P). Stable models are de�ned as follows.

De�nition 2.2 (Stable Model [Soi99]). An interpretationM ⊆ At(P) is a stable model of a
CLP P i� M |= P and M = LM(PM). The set of stable models of P is denoted by SM(P).

This de�nition coincides with [Gel88] when l = 1 for every rule (2.1). Moreover, any ICs
contained in P do not contribute to PM and their satisfaction is enforced by the condition
M |= P above. In fact, this condition implies M |= PM , and thus also LM(PM) ⊆ M , but
the converse does not hold in general. Consider, e.g., the CLP P = {← b,∼c} andM = {b}.

Example 2.3. We note that P = {a | b | c← ∼d} has seven stable models {a}, {b}, {c},
{a, b}, {a, c}, {b, c}, {a, b, c}. To verify the last but one model, i.e., M = {b, c}, we observe
that M |= P and PM = {b←; c←}1 so that LM(PM) = {b, c} coincides with M .

Let us stress that a choice rule {a1, . . . , al} ← b1, . . . , bm,∼c1, . . . ,∼cn in the style of
smodels [Sim02] can be captured with a1 | . . . | al | e← b1, . . . , bm,∼c1, . . . ,∼cn and e←.

3. Sampler Programs (SPs)

Our next objective is to develop the theory of sampling atoms, or samplers for short,
and to propose a completely new class of logic programs based on them.

De�nition 3.1 (Sampler). A sampling atom, or a sampler for short, π is a triple 〈D,L,G〉
where the domain πD = D of π is a �nite set of atoms and L ⊆ G ⊆ D. The sets L and G
are the least and the greatest satis�er of π, also denoted by πL and πG, respectively.

1For clarity, semicolons are used to separate rules in programs.

SAMPLER PROGRAMS 97

The basic intuition behind a sampler π is that it provides a compact representation for
the set of literals {a | a ∈ πL} ∪ {∼a | a ∈ πD \ πG}. Therefore, we de�ne that π is satis�ed
in an interpretation I, denoted by I |= π, i� πL ⊆ I ∩πD ⊆ πG. This de�nition justi�es the
name of the new primitive: the projection of I with respect to πD can be viewed as a sample
of the interpretation I. In order to satisfy π, the sample must be in the range determined
by πL and πG, i.e., a superset of πL and a subset of πG. The set of satis�ers of a sampler π,
denoted πS, is {S ⊆ πD | πL ⊆ S ⊆ πG}. A sampler π is called exact, if πL = πG, and then
abbreviated as a pair 〈D,S〉 where S = L = G. Thus positive and negative literals based
on an atom a are captured by primitive exact samplers of the forms 〈{a}, {a}〉 and 〈{a}, ∅〉.

We assign a disjunctive interpretation to any set of samplers Π = {π1, . . . , πk}, i.e.,
I |= Π i� I |= πj for some 1 ≤ j ≤ k. A sampler program (SP) P is a set of sampling rules of
the form Π← Π1, . . . ,Πn where Π and each Πi with 1 ≤ i ≤ n is such a set. In this notation,
a singleton {π} can be abbreviated by π whereas primitive exact samplers 〈{a}, {a}〉 and
〈{a}, ∅〉 are abbreviated by a and ∼a, respectively. The set of head samplers that appear
in some rule head Π of P is denoted by HeadS(P). Likewise, we de�ne the set BodySS(P)
of sampler sets Π that occur in the rule bodies of P . A sampling rule Π ← Π1, . . . ,Πn is
satis�ed in an interpretation I i� I |= Π1, . . . , I |= Πn imply I |= Π. Intuitively speaking,
the body conditions Π1, . . . ,Πn correspond to sets of samples taken of I. If at least one
sample in each set Πi produces the expected outcome, the same must hold for the head Π.

Example 3.2. Consider an in�nite SP P having rules {p0, q0} ← and {pi+1, qi+1} ← {pi, qi}
for all i ≥ 0. Here each atom a denotes a primitive exact sampler 〈{a}, {a}〉. The latter
rules correspond to choice rules pi+1|qi+1 ← pi and pi+1|qi+1 ← qi for each i ≥ 0. Thus the
�alternating� interpretation M = {p0, q1, p2, q3, . . .} is a model of P among others.

De�nition 3.3 (Reduct). For an SP P and an interpretation M ⊆ At(P), the reduct of

(1) a sampler π = 〈D,L,G〉, denoted πM , is the sampler 〈G,L,G〉, if M |= π,
(2) a set Π of samplers, denoted ΠM , is the sampler set {πM | π ∈ Π and M |= π}, and
(3) a sampler program P , denoted by PM , contains for all Π ← Π1, . . . ,Πn ∈ P such

thatM |= Π1, . . . ,M |= Πn, and for all π ∈ Π such thatM |= π, a reduced sampling
rule 〈S, S〉 ← ΠM

1 , . . . ,Π
M
n where the exact satis�er S = M ∩ πG belongs to πS.

The goal of the de�nition of πM is to partially evaluate negative default literals in L =
{∼a | a ∈ D \G} with respect to M |= π. For the same reason, we also have πL ⊆ S ⊆ πG
for the satis�er S in the last item. Thus M |= P implies M |= PM . The rules of a reduced
SP PM are all positive in the following sense: their heads comprise of single sampling atoms
π satisfying πD = πL = πG and their bodies involve only sampling atoms π with πD = πG.
Positive SPs share a number of properties with their counterparts amongst normal programs.

Proposition 3.4 (Properties of Positive SPs). Let P and Q be two positive SPs.

(1) If M1 |= P and M2 |= P are two models of P , then also M1 ∩M2 |= P .
(2) The program P has a unique ⊆-minimal model, i.e., the least model LM(P) of P

which coincides with
⋂
{M ⊆ At(P) |M |= P}.

(3) The least model LM(P) is the least �xed point lfp(TP) of the immediate consequence
operator TP de�ned for any I ⊆ At(P) by TP (I) =⋃

{S | π ← Π1, . . . ,Πn ∈ P, πS = {S}, and I |= Π1, . . . , I |= Πn}.

Example 3.5. Consider a positive SP P with one sampling rule 〈{a}, {a}〉 ← 〈{a}, ∅, {a}〉.
The interpretation M1 = ∅ is not a model of P but M2 = {a} is the least one.

98 T. JANHUNEN

We conclude that SPs provide a reasonable generalization of normal programs and CLPs.
Accordingly, the de�nition of stable models (De�nition 2.2) is applicable to SPs as such.

Example 3.6. For the sampler program P and interpretation M from Example 3.2, the
reduct PM is the positive SP {p0 ←; q1 ← p0; p2 ← q1; q3 ← p2; . . .}. Thus M is stable
as M |= P and LM(PM) = M . In Example 3.5, M2 = {a} is uniquely stable as PM2 = P .

4. Relationship of CLPs and SPs

Let us begin by explaining how choice programs can be viewed as a special case of
sampler programs. In this respect, we can fully exploit the conciseness of samplers and
abbreviations introduced so far. A choice rule r of the form (2.1) can be rewritten as

TrSP(r) = {a1, . . . , al} ← 〈{b1, . . . , bm}, {b1, . . . , bm}〉, 〈{c1, . . . , cn}, ∅〉. (4.1)

In particular, the head of (4.1) is a shorthand for {〈{a1}, {a1}〉, . . . , 〈{al}, {al}〉} by the
notational conventions introduced above�not to be confused with the head of an smodels
choice rule. The correctness of the program level transformation TrSP(P) =

⋃
r∈P TrSP(r)

is formulated below. We omit the proof of this and subsequent theorems for space reasons.

Theorem 4.1 (Correctness of TrSP). For any CLP P , SM(P) = SM(TrSP(P)).

Transforming SPs into CLPs is of equal interest. Due to the disjunctive interpretation
of sets of sampling atoms, a set of choice rules is required to represent a sampling rule
r = Π ← Π1, . . . ,Πn in general. The length of the resulting CLP, denoted by TrCLP(r) in
the sequel, can be kept polynomial with respect to ‖r‖ using new atoms.

De�nition 4.2. A sampling rule Π← Π1, . . . ,Πn with Π = {π1, . . . , πl} is translated into

(1) a normal rule si ← πL,∼(πD \ πG) for each π ∈ Πi;
(2) a choice rule h1| . . . |hl ← s1, . . . , sn;
(3) for each πi ∈ Π, an integrity constraint ← (πi)L, s1, . . . , sn,∼hi,∼((πi)D \ (πi)G);
(4) a normal rule a← hi for each πi ∈ Π and a ∈ (πi)L;
(5) a choice rule c1 | . . . | ck | e← hi with {c1, . . . , ck} = (πi)G \ (πi)L for each πi ∈ Π;
(6) and an integrity constraint ← hi, b for each πi ∈ Π and b ∈ (πi)D \ (πi)G.

In the above, h1, . . . , hl and s1, . . . , sn are new atoms corresponding to samplers π1, . . . , πl
in the head Π and the sets Π1, . . . ,Πn in the body, respectively. The atom e in (5) is new.

The rules of Item 1 evaluate sampler sets Π1, . . . ,Πn in the body. The rule of Item 2
is a skeleton of the original sampling rule. The application of head samplers is enforced by
the integrity constraints of Item 3 (cf. De�nition 3.3). The rules in Items 4�6 enforce the
satisfaction of a single head sampler πi ∈ Π once applied. The translation of an entire SP P
is TrCLP(P) = (

⋃
r∈P TrCLP(r))∪{e←}. To formulate the correctness of TrCLP, we need to

map any interpretation M ⊆ At(P) to an interpretation ExtP (M) ⊆ At(TrCLP(P)) which
includes (i) M as such, (ii) the atom s associated with Π ∈ BodySS(P) i� M |= Π, (iii) the
atom h associated with π ∈ HeadS(P) i� M |= π and M |= Π1, . . . ,M |= Πn, and (iv) e.

Theorem 4.3 (Faithfulness of TrCLP). Let P be any SP and TrCLP(P) its translation into a
CLP. (i) If M ∈ SM(P), then N = ExtP (M) ∈ SM(TrCLP(P)). (ii) If N ∈ SM(TrCLP(P)),
then its projection M = N ∩At(P) belongs to SM(P) and N = ExtP (M).

Due to new atoms, any SP P and TrCLP(P) are visibly equivalent [Jan06] but not strongly
equivalent [Lif01]. To conclude, SPs may provide more compact representations than CLPs.

SAMPLER PROGRAMS 99

5. Abstract Constraint Programs (ACPs)

The objective of this section is to show how SPs can be exploited to de�ne the semantics
of abstract constraint programs in the general case [Bla08]. Our strategy is to extend the
stable model semantics by decomposing abstract constraint atoms into sets of samplers.

De�nition 5.1. An abstract constraint atom π, or an ac-atom for short, has the form
〈D, {S1, . . . , Sk}〉 where the domain πD = D is a �nite set propositional atoms and each set
Sj ⊆ D where 1 ≤ j ≤ k is a satis�er in the set πS = {S1, . . . , Sk} of satis�ers.

The idea is that an interpretation M satis�es an abstract constraint atom π i� the
projection M ∩ πD ∈ πS. An abstract constraint program (ACP) consists of rules of the
form π ← π1, . . . , πn where π and each πi is an abstract constraint atom. Certain subclasses
have been identi�ed: An ac-atom is monotone [Mar08] i� S1 ∈ πS and S1 ⊆ S2 ⊆ πD imply
S2 ∈ πS. Furthermore, an ac-atom is convex [Liu06] i� S1 ∈ πS, S1 ⊆ S2 ⊆ S3, and S3 ∈ πS
imply S2 ∈ πS. The rules of monotone ACPs and convex ACPs solely consist of monotone
and convex ac-atoms, respectively. It is clear that monotone ACPs specialize convex ones.

We are now ready to address the semantics of ACPs from the perspective of SPs. Con-
sider two samplers π and π′ such that πD = (π′)D. We say that π extends π′ i� (π′)S ⊆ πS,
i.e., πL ⊆ (π′)L and (π′)G ⊆ πG. Intuitively speaking, the range of π is greater than or
equal to that of π′, denoted π′ ≤ π. Samplers which are ≤-maximal provide a basis for the
decomposition of ac-atoms and they also guarantee the uniqueness of decompositions.

De�nition 5.2 (Decomposition). An ac-atom π = 〈D, {S1, . . . , Sk}〉 is decomposed into a
set of samplers DS(π) = {π1, . . . , πm} such that (πj)D = D, (πj)L ∈ πS, and (πj)G ∈ πS for
each 1 ≤ j ≤ m,

⋃m
i=1 (πj)S = πS, and each πj ∈ DS(π) is ≤-maximal within DS(π).

We observe that 1 ≤ m ≤ k holds for the cardinality m of DS(π). If m = 1, then

k = 2|G\L|, which shows that DS(π) can provide exponentially more succinct representation
of π. If m = k, then each Si, 1 ≤ i ≤ k, corresponds to an exact sampler 〈D,Si〉 of its own.
The decomposition of ac-atoms preserves satisfaction under classical semantics, i.e., I |= π
i� I |= DS(π) holds for any ac-atom π and any interpretation I of π. If an ac-atom π is
monotone, then DS(π) includes a sampler π′ = 〈D,Si, D〉 for the domain D = πD and each
⊆-minimal satis�er Si ∈ πS. Thus we obtain DS(〈{a}, {∅, {a}}〉) = {〈{a}, ∅, {a}〉}. On the
other hand, if π is convex, then DS(π) contains a sampler π′ = 〈D,Si, Sj〉 for each pair of
a ⊆-minimal satis�er Si ∈ πS and a ⊆-maximal satis�er Sj ∈ πS such that Si ⊆ Sj . Note
that for monotone ac-atoms π, the domain D = πD is the unique ⊆-maximal element in πS.

As regards a rule π0 ← π1, . . . , πn involving ac-atoms, it can be modularly decomposed
into a sampling rule DS(π0) ← DS(π1), . . . ,DS(πn). The respective decomposition of an
entire ACP P is denoted by DS(P). Stable models generalize for ACPs via De�nition 2.2.

De�nition 5.3 (Stable Models of ACPs). Given an ACP P , an interpretation M ⊆ At(P)
of P is a stable model of P i� M |= P and M = LM(DS(P)M).

The reduct DS(P)M is a positive SP for which the least model is well-de�ned according
to Proposition 3.4. In addition, the condition M |= P is equivalent to M |= DS(P) as
classical models are preserved by decomposition. Hence we have SM(P) = SM(DS(P)) for
any ACP P in general. It is also possible to combine De�nitions 2.1 and 3.3 in order to
generalize the Gelfond-Lifschitz reduct for ACPs. For an entire ACP P , we can de�ne PM as
DS(P)M so that De�nition 2.2 becomes directly applicable to ACPs. For an individual rule
π0 ← π1, . . . , πn ∈ P such that M |= π1, . . . ,M |= πn and M |= π0 under the assumption

100 T. JANHUNEN

that M |= P , the reduct DS(P)M contains a reduced rule 〈S, S〉 ← DS(π1)
M , . . . ,DS(πn)M

with S = M ∩ πG for every ≤-maximal sampler π ∈ DS(π0) such that M |= π. When
the reduction takes place, an ac-atom πi is mapped into DS(πi)

M which is not generally
representable as an ac-atom due to �xed domains. A convex ACP is illustrated below.

Example 5.4. Consider an ACP P with the following rules:

〈{a}, {∅, {a}}〉 ←; 〈{b}, {∅, {b}}〉 ←; 〈{c}, {∅, {c}}〉 ←;
〈∅, ∅〉 ← 〈{a, b, c}, {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}〉.

The �rst monotone rule expresses the free choice of a and it decomposes into 〈{a}, ∅, {a}〉 ←.
The rules for b and c are analogous. The last rule captures a cardinality constraint [Sim99]
← 1{a, b, c}2 with a convex ac-atom. If decomposed, 6 samplers 〈{a, b, c}, L,G〉 where L ⊆
G, L ∈ {{a}, {b}, {c}} and G ∈ {{a, b}, {a, c}, {b, c}} result. The models of P are M1 = ∅
and M2 = {a, b, c}. For M1, we obtain only 〈∅, ∅〉 ← to PM1 so that M1 ∈ SM(P). The
reduct PM2 contains rules 〈{a}, {a}〉 ←, 〈{b}, {b}〉 ←, and 〈{c}, {c}〉 ←. ThusM2 ∈ SM(P).

6. Characterization Based on Computations

The stable models of ACPs have been characterized in terms of abstract computa-
tions, e.g., in the monotone case [Mar08, Liu06]. In what follows, we review the de�-
nition of computations for arbitrary ACPs [Liu10] but using ordinals as indices. Given
an interpretation I ⊆ At(P) of an ACP P , the set P (I) of supporting rules of P is
{π ← π1, . . . , πn ∈ P | I |= π1, . . . , I |= πn}. Moreover, the set HAt(P) of head atoms of P
is
⋃
{πD | π ← π1, . . . , πn ∈ P}. Computations associated with P are sequences of interpre-

tations 〈Iα〉 indexed by ordinals α. Their properties are formalized using a nondeterministic
immediate consequence operator Tnd

P that assigns to any interpretation I ⊆ At(P) a set of
interpretations J ⊆ HAt(P (I)) such that J |= Heads(P (I)) where Heads(P (I)) is the set of
heads of the rules in P (I). Persistent computations 〈Iα〉 meet the following criteria [Liu10]:

(R) Revision: For every ordinal α, the interpretation Iα+1 is grounded in Iα and P , i.e.,
Iα+1 ∈ Tnd

Q (Iα) for some program Q ⊆ P (Iα).

(P) Persistence of beliefs: The sequence 〈Iα〉 starts from I0 = ∅ and it is monotonically
increasing, i.e., Iα ⊆ Iα+1 for all ordinals α, and Iβ =

⋃
α<β Iα for limit ordinals β.

(C) Convergence: The limit I∞ that de�nes the result of the computation 〈Iα〉 is a
supported model of P , i.e., it satis�es the �xed-point condition I∞ ∈ Tnd

P (I∞).
(Pr) Persistence of reasons: There is a sequence 〈Pα〉 of programs such that for all ordinals

α, the program Pα ⊆ P (Iα), Pα ⊆ Pα+1, and Iα+1 ∈ Tnd
Pα

(Iα).

Item (P) and Knaster-Tarski lemma guarantee that the limit I∞ =
⋃
α Iα exists. It is de�ned

as a stable model of P in [Liu10]. De�nition 5.3 leads to another class of computations.

De�nition 6.1 (Canonical Computations for ACPs). Given an ACP P and an interpreta-
tionM ⊆ At(P), the canonicalM -computation for P is a sequence 〈Iα〉 such that (i) I0 = ∅,
(ii) Iα+1 = TDS(P)M (Iα) for each ordinal α, and (iii) Iβ =

⋃
α<β Iα for limit ordinals β.

The operator TDS(P)M is monotone and compact since the rules of DS(P)M have the

form 〈S, S〉 ← DS(π1)
M , . . . ,DS(πn)M and the samplers involved have �nite domains. Thus,

given a canonicalM -computation 〈Iα〉 for an ACP P andM ⊆ At(P), we know that (i) 〈Iα〉
is monotonically increasing, (ii) the limit Iω = lfp(TDS(P)M), and (iii) Iω = TDS(P)M (Iω).

SAMPLER PROGRAMS 101

Corollary 6.2 (Characterization). For an ACP P , an interpretation M ⊆ At(P) is a stable
model of P i� M |= P and M = Iω for the result Iω of the canonical M -computation 〈Iα〉.

Theorem 6.3 (Properties of Canonical Computations). Let P be an ACP and M ⊆ At(P)
a model of P such that Iω = M for the limit Iω of the canonical M -computation 〈Iα〉. Then
〈Iα〉 satis�es (R), (P), (C), and (Pr) when Pα and Q in (Pr) and (R), respectively, are
substituted by Pα(M) = {π ← π1, . . . , πn ∈ P (M) | Iα |= DS(π1)

M , . . . , Iα |= DS(πn)M}.

The characterization above is limited to the �successful cases�, i.e., when the result turns
out to be a stable model. The properties of canonical M -computations are not semantically
important when M 6|= P or Iω 6= M . In both cases, the interpretation M is disquali�ed
as a stable model. It is nevertheless clear that (P) holds even for failing computations.
Finally, we note that the semantics based on De�nition 5.3 can be stricter than the one
based on abstract computations. As shown in [She09a], there is a persistent computation
and a stable model M = {p(−1), p(1), p(2)} for an ACP with p(1) ←; p(−1) ← p(2); and
p(2)← π where the ac-atom π corresponds to a sum aggregate Sum({X | p(X)}) ≥ 1 based
on the domain πD = D = {p(−1), p(1), p(2)}. In our approach, the reduct PM consists of
p(1)←, p(−1)← p(2), and p(2)← 〈D, {p(2)}, D〉 which indicate the instability of M .

7. Comparison with Previous Approaches

This research was initially motivated by the notions of computations proposed for ACPs.
In view of the results presented in [Liu10], we have lifted the notion of M -computations,
originally proposed for normal programs, to the case of ACPs. One of our key design
decisions was to push all nondeterminism involved in abstract computations to the notion of a
program reduct�much in the spirit of choice logic programs [Soi99] covered by De�nition 2.1.
Corollary 6.2 indicates that each stable model M of an ACP P is generated by a unique
computation satisfying the criteria of [Liu10] by Theorem 6.3. As noted above, those criteria
lead to a weaker notion of stability if directly generalized for ACPs. Stability notions based
on additional criteria [Liu10] depart from the traditional �xed-point de�nition [Gel88].

The alternative interpretation of ac-atoms as sampler sets led us to an approach which
is closely related to the one presented in [She07]. In this work, the counterpart of a sampler
π = 〈D,L,G〉 is an abstract L-pre�xed power set of the form L] (G \ L), i.e., the set
of sets {L ∪K | K ⊆ G \ L} which coincides with πS. These structures are merely used
as a compact representation of ac-atoms rather than new primitives for logic programs.
Moreover, the generalization of the Gelfond-Lifschitz reduct for an ACP P takes place at
a lower level of abstraction: the Shen-You reduct PM [She07] is formulated as a positive
normal logic program and new atoms become a necessity. The way in which ac-atoms are
decomposed as sets of samplers (cf. De�nition 5.2) pave the way for a tight interconnection.

Theorem 7.1. For an ACP P and an interpretation M ⊆ At(P), M ∈ SM(P) i� there is
a unique minimal model N of the Shen-You reduct PM such that M = N ∩At(P).

This result covers also rules of the form π ← π1, . . . , πn which have arbitrary ac-atoms in
their heads. Further interconnections can be reported from [She09a] for ACPs con�ning to a
limited syntax, i.e., rules of the form a← π1, . . . , πn. Given this restriction, stable models of
[Den01, Son07b] coincide with models obtained as minimal models of PM . By Theorem 7.1
the same observation can be made for stable models conforming to De�nition 5.3. The
iterative construction of stable models in [Son07b] is analogous to canonicalM -computations

102 T. JANHUNEN

introduced by us. A di�erence is that using SPs, a �xed reduct PM = DS(P)M of an ACP
P can be formalized and there is no need to parameterize the construction of M otherwise.
In this respect, the approaches in [Son07b, Son07a] resort to conditional satisfaction. There
are further consequences of the relationships pointed above. First of all, the semantics
of monotone ACPs is captured in the standard way [Mar08] in our approach. The case
of convex ACPs [Liu06] is also covered as illustrated by Example 5.4. We also observe
that cardinality and weight rules of the smodels system [Sim99] essentially lead to convex
constraints. Finally, the notions based on minimal models [Del03, Fab04, Fer05] are prone to
self-supporting stable models as shown in [She09a]. We avoid such models by Theorem 7.1.

As the last comparison, we address the program transformation trm(·) from [Pel03].
The idea is to map sets of classical literals FD〈L,G〉 = {b | b ∈ L} ∪ {¬c | c ∈ D \G} which
satisfy an ac-atom π = 〈D, {S1, . . . , Sk}〉 and are ⊆-minimal in this respect. Given a rule
a← π, each set FD〈L,G〉 gives rise to one normal rule a← L,∼(D\G) in the translation. This

is analogous to translating ≤-maximal samplers π′ = 〈D,L,G〉 ∈ DS(π) using TrCLP(·) from
De�nition 4.2. However, since new atoms are not introduced, the translation trm(·) may
create an exponential number of normal rules already for rules of the form a ← π1, . . . , πn
with several ac-atoms in the rule body. A further aspect is that rules π ← π1, . . . , πn
involving proper ac-atoms π in their heads are not covered at all.

8. Conclusions

In this paper, we propose samplers as new building blocks of logic programs. The
respective class of sampler programs (SPs) is designed using a conceptually simpler class of
choice logic programs (CLPs) as a starting point. Based on the intuitions provided by CLPs,
the stable model semantics (De�nition 2.2) extends for SPs in a natural way. As witnessed
by De�nition 3.3, the notion of a program reduct [Gel88, Soi99] carries over for SPs so
that, in particular, the resulting program is a (positive) SP. The availability of polynomial,
faithful, and modular (PFM) translation functions TrSP and TrCLP suggests that CLPs and
SPs have the same expressive power in the sense of [Jan06] but SPs may provide more
concise representation due to samplers and the disjunctive interpretation of sampler sets.

The second main theme of this paper is the application of SPs in order to de�ne the
semantics of abstract constraint programs (ACPs). Notably, this class of programs lacks a
natural counterpart of Gelfond-Lifschitz reduction [Gel88] which would yield ACPs as its
outcome. In pursuit of a simple semantical de�nition, we propose an approach in which
ACPs are interpreted as SPs using the decomposition of ac-atoms as sampler sets as basis.
The decomposition method DS(·) is highly modular since each ac-atom π can be locally
decomposed into DS(π) independently of other ac-atoms in the program. The combination
of De�nitions 2.2, 3.3, and 5.2 enables the de�nition of stable models for ACPs as given in
De�nition 5.3: M ∈ SM(P) i�M |= P andM = LM(DS(P)M). The new logic programming
primitives proposed in this paper, samplers, play a key role in this streamlined de�nition.
The de�nition is stated without a reference to other logics such as propositional or default
logics in contrast with [She07, She09a]. Nevertheless, the semantics of ACPs originally
proposed in [She07] is supported by our results (Theorem 7.1). In view of computations, we
established in Corollary 6.2 that each M ∈ SM(P) has a unique deterministic computation,
i.e., the canonical M -computation, associated with it. By these observations, we conclude
that SPs form an interesting class of logic programs between CLPs and ACPs.

SAMPLER PROGRAMS 103

Acknowledgement

The author would like to thank Martin Gebser for his comments on a draft of this paper.

References

[Bla08] H. Blair, V. Marek, and J. Remmel. Set based logic programming. Annals of Mathematics and

Arti�cial Intelligence, 52(1):81�105, 2008.
[Del03] T. Dell'Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive

logic programming: Semantics, complexity, and implementation in dlv. In Proc. IJCAI-03, pp.
847�852. Morgan Kaufmann, 2003.

[Den01] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics for logic
programs with aggregates. In Proc. ICLP'01, LNCS, vol. 2237, pp. 212�226. Springer, 2001.

[Fab04] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In Proc. JELIA'04, LNCS, vol. 3229, pp. 200�212. Springer, 2004.

[Fer05] P. Ferraris. Answer sets for propositional theories. In Proc. LPNMR'05, LNCS, vol. 3662, pp.
119�131. Springer, 2005.

[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. ICLP'88,
pp. 1070�1080. 1988.

[Gel90] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proc. ICLP'90, pp. 579�
597. The MIT Press, 1990.

[Gel91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Computing, 9(3/4):365�385, 1991.

[Jan06] T. Janhunen. Some (in)translatability results for normal logic programs and propositional theories.
Journal of Applied Non-Classical Logics, 16(1�2):35�86, 2006.

[Lif01] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM Transactions

on Computational Logic, 2(4):526�541, 2001.
[Lif08] Vladimir Lifschitz. Twelve de�nitions of a stable model. In Proc. ICLP'08, LNCS, vol. 5366, pp.

37�51. Springer, 2008.
[Liu06] L. Liu and M. Truszczynski. Properties and applications of programs with monotone and convex

constraints. Journal of Arti�cial Intelliegence Research, 27:299�334, 2006.
[Liu10] L. Liu, E. Pontelli, T. C. Son, and M. Truszczynski. Logic programs with abstract constraint

atoms: The role of computations. Arti�cial Intelligence, 174:295�315, 2010.
[Mar08] V. Marek, I. Niemelä, and M. Truszczynski. Logic programs with monotone abstract constraint

atoms. Theory and Practice of Logic Programming, 8(2):167�199, 2008.
[Pel03] N. Pelov, M. Denecker, and M. Bruynooghe. Translation of aggregate programs to normal logic

programs. In Proc. ASP'03, CEUR Workshop Proceedings, vol. 78. 2003.
[She07] Y.-D. Shen and J.-H. You. A generalized Gelfond-Lifschitz transformation for logic programs with

abstract constraints. In Proc. AAAI'07, pp. 483�488. AAAI Press, 2007.
[She09a] Y.-D. Shen and J.-H. You. A default approach to semantics of logic programs with constraint

atoms. In Proc. LPNMR'09, LNCS, vol. 5753, pp. 277�289. Springer, 2009.
[She09b] Y.-D. Shen, J.-H. You, and L.-Y. Yuan. Characterizations of stable model semantics for logic

programs with arbitrary constraint atoms. Theory and Practice of Logic Programming, 9(4):529�
564, 2009.

[Sim99] P. Simons. Extending the stable model semantics with more expressive rules. In Proc. LPNMR'99,
LNCS, vol. 1730, pp. 305�316. Springer, 1999.

[Sim02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.
Arti�cial Intelligence, 138(1�2):181�234, 2002.

[Soi99] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product
con�guration. In Proc. PADL'99, LNCS, vol. 1551, pp. 305�319. Springer, 1999.

[Son07a] T. C. Son and E. Pontelli. A constructive semantic characterization of aggregates in answer set
programming. Theory and Practice of Logic Programming, 7(3):355�375, 2007.

[Son07b] T. C. Son, E. Pontelli, and P. H. Tu. Answer sets for logic programs with arbitrary abstract
constraint atoms. Journal of Arti�cial Intelligence Research, 29:353�389, 2007.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 104–113
http://www.floc-conference.org/ICLP-home.html

A Framework for Verification and Debugging of Resource Usage Properties

RESOURCE USAGE VERIFICATION

PEDRO LOPEZ-GARCIA 1,2 AND LUTHFI DARMAWAN 3 AND FRANCISCO BUENO 3

E-mail address: pedro.lopez@imdea.org,luthfi@clip.dia.fi.upm.es,bueno@fi.upm.es

1 IMDEA Software, Madrid, Spain

2 Spanish Research Council (CSIC), Spain

3 Technical University of Madrid (UPM), Spain

Abstract. We present a framework for (static) verification of general resource usage
program properties. The framework extends the criteria of correctness as the conformance
of a program to a specification expressing non-functional global properties, such as upper
and lower bounds on execution time, memory, energy, or user defined resources, given as
functions on input data sizes. A given specification can include both lower and upper
bound resource usage functions, i.e., it can express intervals where the resource usage
is supposed to be included in. We have defined an abstract semantics for resource usage
properties and operations to compare the (approximated) intended semantics of a program
(i.e., the specification) with approximated semantics inferred by static analysis. These
operations include the comparison of arithmetic functions (e.g., polynomial, exponential
or logarithmic functions). A novel aspect of our framework is that the static checking of
assertions generates answers that include conditions under which a given specification can
be proved or disproved. For example, these conditions can express intervals of input data
sizes such that a given specification can be proved for some intervals but disproved for
others. We have implemented our techniques within the Ciao/CiaoPP system in a natural
way, so that the novel resource usage verification blends in with the CiaoPP framework
that unifies static verification and static debugging (as well as run-time verification and
unit testing).

1. Introduction and Motivation

The conventional understanding of software correctness is absence of errors or bugs,
expressed in terms of conformance of all possible executions of the program with a func-
tional specification (like type correctness) or behavioral specification (like termination or
possible sequences of actions). However, in an increasing number of computing applications
additional observables play an essential role. For example, embedded systems must control

1998 ACM Subject Classification: D.1.6 [Programming Techniques]: Logic Programming; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Assertion Checkers, Formal Methods; D.2.5 [Soft-
ware Engineering]: Testing and Debugging. General Terms: Performance, Verification.

Key words and phrases: Program Verification and Debugging, Cost Analysis, Resource Usage Analysis,
Complexity Analysis.

This research has been partially funded by the EU 7th. FP NoE S-Cube 215483, FET IST-231620 HATS,
MICINN TIN-2008-05624 DOVES and CM project P2009/TIC/1465 PROMETIDOS .

c© P. Lopez-Garcia, L. Darmawan, and F. Bueno
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.104

RESOURCE USAGE VERIFICATION 105

and react to the environment, which also establishes constraints about the system’s behav-
ior such as resource usage and reaction times. Therefore, it is necessary for these systems
to extend the criteria for correctness with new aspects which include non-functional global
properties such as maximum execution time and usage of memory, energy, or other types
of resources.

In this paper we propose techniques that extend the capacity of debugging and verifi-
cation systems based on static analysis [3, 2, 6], when dealing with a quite general class of
properties related to resource usage, including upper and lower bounds on execution time,
memory, energy, and user-defined resources (the latter in the sense of [8]). Such bounds are
given as functions on input data sizes (see [8] for the different metrics that can be used to
measure data sizes, such as list length, term depth, or term size). The proposed extension
has been implemented in the CiaoPP framework, that unifies static verification and static
debugging (as well as run-time verification and unit testing). For example, For example, it
extends the capacity of CiaoPP to certify programs with resource consumption assurances
and also to efficiently check such certificates.

We define an abstract semantics for resource usage properties and operations to com-
pare the (approximated) intended semantics of a program (i.e., the specification, given as
assertions in the program) with approximated semantics inferred by static analysis. These
operations include the comparison of arithmetic functions (e.g., polynomial, exponential
or logarithmic functions). In traditional static checking, for each property of (part of) an
assertion, the possible outcomes are true (property proved to hold), false (property proved
not to hold), and unknown (the analysis cannot prove true or false). However, it is very
common that cost functions have intersections, so that for a given interval of input data
sizes, one of them is smaller than the other one, but for another interval it is the other way
around. Thus, a novel aspect of the resource verification and debugging approach that we
propose is that the answers of the checking process go beyond these classical outcomes and
typically include conditions under which the truth or falsity of the property can be proved.
Such conditions can be parameterized by attributes of inputs, such as input data size or
value ranges. For example, it may be possible to say that the outcome is true if the input
data size is in a given range and false if it is in another one.

Example 1.1. Consider an assertion which declares an upper bound (ub) on the resource
usage, in terms of resolution steps, of the classical fibonacci program such as:

:- check comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2, int(N))-1000).

meaning that the computation of any call to fib(N,F) with the first argument bound to an
integer and the second one a free variable should take at most 2x− 1000 resolution steps, x
being the size of the first argument (i.e., the actual value of N, since it has to be an integer
number). This is true only for x ≥ 10, and maybe programmers have tried the program only
with big numbers, and then generalized their observations in the above assertion. We will
see how the CiaoPP system, with our approach, is able to inform the programmer that this
idea is wrong. Indeed, as we will see, the output of our assertion checking implementation
within the CiaoPP system is:

:- false comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2,int(N))-1000).

in interval [0, 10] for int(N).

:- true comp fib(N,F): (int(N), var(F)) + steps_ub(exp(2,int(N))-1000).

in interval [11, +inf] for int(N).

106 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

meaning that the system has proved that the assertion is false for values of the input
argument N in the interval [0, 10], and true for N in the interval [11,∞). This is because in
the interval [0, 10], the lower bound on resolution steps inferred by the analysis is greater
than the upper bound expressed in the assertion, and in the interval [11,∞), the upper
bound inferred by the analysis is less than the upper bound in the assertion.

In our approach, user specifications (i.e., assertions) can include for example lower and
upper bounds, and even asymptotic values of the resource usage of the computation (given
as functions on input data sizes). Moreover, a given specification can include both lower
and upper bound resource usage functions, i.e., it can express intervals where the resource
usage is supposed to be included in.

The most related work we are aware of presents a method for comparison of cost
functions inferred by the COSTA system for Java bytecode [1]. The method proves whether
a cost function is smaller than another one for all the values of a given initial set of input
data sizes. The result of this comparison is a boolean value. However, as mentioned before,
in our approach the result is in general a set of subsets (intervals) in which the initial set
of input data sizes is partitioned, so that the result of the comparison is different for each
subset. The method in [1] also differs from ours in that comparison is syntactic, using a
method similar to what was already being done in the CiaoPP system: performing a function
normalization and then using some syntactic comparison rules. However, in this work we go
beyond these syntactic comparison rules. Moreover, we present an application for which cost
function comparison is instrumental and which is not covered in the cited work: verification
of resource usage properties. This implies extending the criteria of correctness and defining
a resource usage (abstract) semantics and conditions under which a program is correct or
incorrect with respect to an (approximated) intended semantics.

In the following, we describe, in Section 2, how to extend and use the CiaoPP verification
framework, that we take as starting point, for the verification of general resource usage
program properties. In Section 3 we explain the technique that we have developed for
resource usage function comparison. Section 4 summarizes our conclusions.

2. A Framework for Verification of Resource Usage Properties

The verification and debugging framework of CiaoPP [6] uses abstract interpretation-
based analyses, which are provably correct and also practical, in order to statically compute
semantic approximations of programs. These semantic approximations are compared with
(partial) specifications, in the form of assertions that are written by the programmer, in
order to detect inconsistencies or to prove such assertions.

Both program verification and debugging compare the actual semantics [[P]] of a pro-
gram P with an intended semantics for the same program, which we will denote by I. In the
framework, both semantics are given in the form of (safe) approximations. The abstract
approximation [[P]]α of the concrete semantics [[P]] of the program is actually computed
and compared directly to the (also approximate) specification, which is safely assumed to
be also given as an abstract value Iα. Program verification is then performed by comparing
Iα and [[P]]α. We refer the reader to [3, 5, 6] for a detailed description of the foundations,
such as conditions for safely prove partial correctness or incorrectness, and implementation
issues of the framework. In this paper we concentrate on defining the main elements of the
framework required for its application to resource usage properties.

RESOURCE USAGE VERIFICATION 107

Resource usage semantics. Given a program p, let Cp be the set of all calls to p. The
concrete resource usage semantics of a program p, for a particular resource of interest, [[P]],
is a set of pairs (p(t̄), r) such that t̄ is a tuple of terms, p(t̄) ∈ Cp is a call to predicate p
with actual parameters t̄, and r is a number expressing the amount of resource usage of the
computation of the call p(t̄). Such a semantic object can be computed by a suitable oper-
ational semantics, such as SLD-resolution, adorned with the computation of the resource
usage. We abstract away such computation, since it will in general be dependent on the
particular resource r refers to. The concrete resource usage semantics can be defined as a
function [[P]] : Cp 7→ R where R is the set of real numbers (note that depending on the type
of resource we can take other set of numbers, e.g., the set of natural numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v̄) : c(v̄),Φ, inputp, sizep)

where p(v̄) : c(v̄) is an abstraction of a set of calls. v̄ is a tuple of variables and c(v̄) is an
abstraction representing a set of tuples of terms which are instances of v̄. c(v̄) is an element
of some abstract domain expressing instantiation states. Φ is an abstraction of the resource
usage of the calls represented by p(v̄) : c(v̄). We refer to it as a resource usage interval
function for p, defined as follows:

• A resource usage bound function for p is a monotonic arithmetic function, Ψ : S 7→
R∞, for a given subset S ⊆ Rk, where R is the set of real numbers, k is the number
of input arguments to predicate p and R∞ is the set of real numbers augmented
with the special symbols ∞ and −∞. We use such functions to express lower and
upper bounds on the resource usage of predicate p depending on input data sizes.
• A resource usage interval function for p is an arithmetic function, Φ : S 7→ RI,

where S is defined as before and RI is the set of intervals of real numbers, such
that Φ(n̄) = [Φl(n̄),Φu(n̄)] for all n̄ ∈ S, where Φl(n̄) and Φu(n̄) are resource usage
bound functions that denote the lower and upper endpoints of the interval Φ(n̄)
respectively for the tuple of input data sizes n̄. Although n̄ is typically a tuple of
natural numbers, we do not want to restrict our framework. We require that Φ be
well defined so that ∀n̄ (Φl(n̄) ≤ Φu(n̄)).

inputp is a function that takes a tuple of terms t̄ and returns a tuple with the input
arguments to p. This function can be inferred by using existing mode analysis or can
be given by the user by means of assertions. sizep(t̄) is a function that takes a tuple of
terms t̄ and returns a tuple with the sizes of those terms under a given metric. The metric
used for measuring the size of each argument of p can be automatically inferred (based on
type analysis information) or can be given by the user by means of assertions [8].

Example 2.1. Consider for example the naive reverse program in Figure 1, with the clas-
sical definition of predicate append. The first argument of nrev is declared input, and the
two first arguments of append are consequently inferred to be also input. The size measure
for all of them is inferred to be list-length. Then, we have that:
inputnrev((x, y)) = (x), inputapp((x, y, z)) = (x, y),
sizenrev((x)) = (length(x)) and sizeapp((x, y)) = (length(x), length(y)).

In order to make the presentation simpler, we will omit the inputp and sizep functions
in abstract tuples, with the understanding that they are present in all such tuples.

108 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

:- module(reverse, [nrev/2], [assertions]).

:- use_module(library(’assertions/native_props’)).

:- entry nrev(A,B) : (ground(A), list(A), var(B)).

nrev([],[]).

nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).

Figure 1: A module for naive reverse.

Intended meaning. The intended approximated meaning Iα of a program is an abstract
semantic object with the same kind of tuples: (p(v̄) : c(v̄),Φ, inputp, sizep), which are given
in the form of assertions. The basic form of resource usage assertions is:1

:- comp Pred [: Precond] + ResUsage.

which expresses that for any call to Pred, if Precond is satisfied in the calling state, then
ResUsage should also be satisfied for the computation of Pred. ResUsage defines in general
an interval of numbers for the particular resource usage of the computation of the call to
Pred (i.e., ResUsage is satisfied by the computation of the call to Pred if the resource usage
of such computation is in the defined interval).

Example 2.2. In the program of Figure 1 one could use the assertion:

:- comp nrev(A,B): (ground(A), list(A), var(B))

+ resource(ub, steps, 1+exp(length(A), 2)).

to express that for any call to nrev(A,B) with the first argument bound to a ground list
and the second one a free variable, an upper bound (ub) on the number of resolution steps

performed by the computation is 1 + n2, where n = length(A). In this case, the interval
approximating the number of resolution steps is [0, 1 + n2]. Since the number of resolution
steps cannot be negative, the minimum of the interval is zero. If we assume that the resource
usage can be negative, the interval would be (−∞, 1 + n2]. If we had a lower bound (lb)
instead of an upper bound in the assertion, the interval would be [1 + n2,∞).

Such an assertion describes a tuple in Iα which is given by (p(v̄) : c(v̄),Φ, inputp, sizep),
where p(v̄) : c(v̄) is defined by Pred and Precond, and Φ is defined by ResUsage. The
information about inputp and sizep is implicit in ResUsage. The concretization of Iα,
γ(Iα), is the set of all pairs (p(t̄), r) such that t̄ is a tuple of terms and p(t̄) is an instance of
Pred that meets precondition Precond, and r is a number that meets the condition expressed
by ResUsage (i.e., r lies in the interval defined by ResUsage) for some assertion.

Example 2.3. The assertion in Example 2.2 captures the following concrete semantic
tuples:

(nrev([a,b,c,d,e,f,g],X), 35) (nrev([],Y), 1)

but it does not capture the following ones:

(nrev([A,B,C,D,E,F,G],X), 35) (nrev(W,Y), 1)

(nrev([a,b,c,d,e,f,g],X), 53) (nrev([],Y), 11)

those in the first line above because they correspond to calls which are outside the scope
of the assertion (i.e., they do not meet the precondition Precond); those on the second line

1Assertions may be prefixed with a status indicating that it is to be checked, or that it has been already
checked, detected to be false or detected to be true. Omitting this prefix means “to be checked” [9].

RESOURCE USAGE VERIFICATION 109

(which will never occur on execution) because they violate the assertion (i.e., they meet the
precondition Precond, but do not meet the condition expressed by ResUsage).

Partial correctness: comparing the abstract semantics. During verification / debug-
ging within our framework, we need to compare an abstract semantics inferred by analysis
with an intended abstract semantics. We give here some ideas about how to do it, and refer
the reader to [7] for a complete formalization of the abstract semantics and comparison
operations.

Given a program p and an intended resource usage semantics I, where I : Cp 7→ R, we
say that p is partially correct w.r.t. I if for all p(t̄) ∈ Cp we have that (p(t̄), r) ∈ I, where r
is precisely the amount of resource usage of the computation of the call p(t̄). We say that p
is partially correct with respect to a tuple of the form (p(v̄) : cI(v̄),ΦI) if for all p(t̄) ∈ Cp
such that r is the amount of resource usage of the computation of the call p(t̄), it holds
that: if p(t̄) ∈ γ(p(v̄) : cI(v̄)) then r ∈ ΦI(s̄), where s̄ = sizep(inputp(t̄)). Finally, we say
that p is partially correct with respect to Iα if:

• For all p(t̄) ∈ Cp, there is a tuple (p(v̄) : cI(v̄),ΦI) in Iα such that p(t̄) ∈ γ(p(v̄) :
cI(v̄)), and
• p is partially correct with respect to every tuple in Iα.

Let (p(v̄) : c(v̄),Φ) and (p(v̄) : cI(v̄),ΦI) be tuples expressing an abstract seman-
tics [[P]]α inferred by analysis and an intended abstract semantics Iα, respectively, such

that cI(v̄) v c(v̄),2 and for all n̄ ∈ S (S ⊆ Rk), Φ(n̄) = [Φl(n̄),Φu(n̄)] and ΦI(n̄) =
[Φl
I(n̄),Φu

I (n̄)]. We have that:

(1) If for all n̄ ∈ S, Φl
I(n̄) ≤ Φl(n̄) and Φu(n̄) ≤ Φu

I (n̄), then p is partially correct with
respect to (p(v̄) : cI(v̄),ΦI).

(2) If for all n̄ ∈ S Φu(n̄) < Φl
I(n̄) or Φu

I (n̄) < Φl(n̄), then p is incorrect with respect to
(p(v̄) : cI(v̄),ΦI).

However, for simplicity, in this paper we assume that one of the endpoints of the interval
is always the maximum (resp., minimum) of the possible values, i.e., ∀n̄ (Φu

I (n̄) =∞) (resp.,

Φl
I(n̄) = −∞ or Φl

I(n̄) = 0, depending on the resource). Thus, one of the resource usage
bound function comparisons in each of the two cases above is always trivial. Therefore, we
will be faced with only one such comparison, between two resource usage bound functions,
each denoting either a lower bound (l) or an upper bound (u).

For the particular case where resource usage bound functions depend on one argument,
the result of the resource usage bound function comparison in our approach is in general a
set of intervals of input data sizes for which a function is less, equal, or greater than another.
This allows us to give intervals of input data sizes for which a program p is partially correct
(or incorrect).

3. Resource Usage Bound Function Comparison

Given two resource usage bound functions (one of them inferred by the static analysis
and the other one given in an assertion/specification present in the program), Ψ1(n) and
Ψ2(n), n ∈ R the objective of this operation is to determine intervals for n in which
Ψ1(n) > Ψ2(n), Ψ1(n) = Ψ2(n), or Ψ1(n) < Ψ2(n).

2Note that the condition cI(v̄) v c(v̄) can be checked using the CiaoPP capabilities for comparing program
state properties such as types.

110 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

Our approach consists in defining f(n) = Ψ1(n) − Ψ2(n) and finding the roots of the
equation f(n) = 0. Assume that the equation has m roots, n1, . . . , nm. These roots are
intersection points of Ψ1(n) and Ψ2(n). We consider the intervals S1 = [0, n1), S2 = (n1, n2),
Sm = . . . (nm−1, nm), Sm+1 = (nm,∞). For each interval Si, 1 ≤ i ≤ m, we select a value
vi in the interval. If f(vi) > 0 (respectively f(vi) < 0), then Ψ1(n) > Ψ2(n) (respectively
Ψ1(n) < Ψ2(n)) for all n ∈ Si.

Since our resource analysis is able to infer different types of functions (e.g., polynomial,
exponential and logarithmic), it is also desirable to be able to compare all of these func-
tions. For polynomial functions there exist powerful algorithms for obtaining roots. For the
other functions, we have to approximate them using polynomials. In this case, we should
guarantee that the error falls in the safe side when comparing the corresponding resource
usage bound functions.

3.1. Comparing Polynomial Functions

There are general methods for finding roots of polynomial equations. Root equation
finding of polynomial functions can be done analytically until polynomial order four. For
higher order polynomial functions, numerical methods must be used. According to the
fundamental theorem of algebra, a polynomial equation of order m has m roots, whether
real or complex numbers. Numerical methods exist that allow computing all these roots
(although the complex numbers are not needed in our approach).

For this purpose in our implementation we have used the GNU Scientific Library [4],
which offers a specific polynomial function library that uses analytical methods for find-
ing roots of polynomials up to order four, and uses numerical methods for higher order
polynomials.

3.2. Approximation of Non-Polynomial Functions

There are two non-polynomial resource usage functions that the CiaoPP analyses can
infer: exponential and logarithmic. For approximating these functions we use Taylor series.

Exponential function approximation using polynomials. This approximation is car-
ried out using these formulae:

ex ≈ Σ∞n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . for all x

ax = ex ln a ≈ 1 + x ln a+
(x ln a)2

2!
+

(x ln a)3

3!
+ . . .

In our implementation these series are limited up to order 8. This decision has been taken
based on experiments we have carried out that show that higher orders do not bring a
significant difference in practice. Also, in our implementation, the computation of the
factorials is done separately and the results are kept in a table in order to reuse them.

Logarithmic function approximation using polynomials. Unfortunately this approx-
imation cannot be done in a straightforward way as previously. A Taylor series for this
function for whole interval does not exist, the series only holds for interval −1 < x < 1.
One possibility to work within this restriction is using range reduction [10].

RESOURCE USAGE VERIFICATION 111

Figure 2: Case 1. xi > xpi (since e′ > e). A safe approximate root found is xsafe.

3.3. Safety of the Approximation

Since the roots obtained for function comparison are in some cases approximations of
the real roots, we must guarantee that their values are safe, i.e., that they can be used
for verification purposes, in particular, for safely checking the conditions in (1) and (2)
(page 109.) Assume for example that we are going to safely check whether Φu(x) ≤ Φu

I (x)
(where Φu and Φu

I are resource usage bound functions, the former is a result of program
analysis and the latter an assertion declared in the program). In this case, we define
f(x) = Φu

I (x) − Φu(x), so that we can safely say that if f(x) > 0, then Φu(x) ≤ Φu
I (x).

Assume also that Φl
I is not given in the assertion, meaning that the specification does not

state any lower bound for the resource usage (i.e., the lower endpoint of any resource usage
interval is −∞, which means that Φl

I(x) ≤ Φl(x) is always true). We can then safely state
that the assertion is true for all x such that f(x) > 0. In the same way, if we define
f(x) = Φl(x) − Φu

I (x) we can safely say that if f(x) > 0 then, Φu
I (x) < Φl(x), proving

that the assertion is false for all x such that f(x) > 0. We can reason similarly in the
comparisons involving a lower bound in the assertion (Φl

I). Thus, we focus exclusively on
safely determining values for x such that f(x) > 0, where f(x) is conveniently defined in
each case. Let us see how it can be performed.

In general, we approximate f(x) using a polynomial P (x), so that f(x) = P (x) + −e,
with e being an approximation error. Let the roots of equation f(x) = 0 be x0, ..., xn. Using
a root finding algorithm on equation P (x) = 0, we obtain the roots xp0, ..., xpn, so that we
have P (xpi) = 0, and therefore f(xpi) ∈ [−e,+e]. Then, we have to determine, for each
approximated root xpi, 1 ≤ i ≤ n, a value ε such that f(xpi+ε) > 0 and xi ∈ [xpi−ε, xpi+ε].
We do this by first determining the relative position of xpi and xi (i.e., whether xpi is “to
the right” or “to the left” of xi) and then starting an iterative process that increments (or
decrements) xpi by some δ until we have that, after m iterations, f(xpi +m δ) > 0.

Determining the relative position of the exact root. To determine the relative po-
sition of the exact root and its approximated value we use the gradient of f(x) around
x = xpi. For determining the gradient we use the values of e = f(xpi) and e′ = f(xpi + δ′),

112 P. LOPEZ-GARCIA, L. DARMAWAN, AND F. BUENO

with δ′ > 0 a relatively small number. Whether the approximated root is greater or less
than the exact root depends on the following conditions:

(1) if e < 0 and e′ > e then xi > xpi
(2) if e > 0 and e′ > e then xi < xpi
(3) if e > 0 and e′ < e then xi > xpi
(4) if e < 0 and e′ < e then xi < xpi
From Figure 2 we can see the rationale behind the first case (the other cases follow an

analogous reasoning). If e′ > e then f(x) is increasing, but, since e < 0, then f(x) > 0 can
only occur for values of x greater than xpi. Therefore, xi > xpi. In such cases we use a
positive value of δ for the iterative process. When xi < xpi we use a negative value of δ.
Iterative process for computing the safe root. Once we have determined the relative
position of the exact root and its approximated value, we first set up the appropriate sign
for δ, where |δ| is a relatively small number: δ < 0 if the iteration should go to the left
(xi < xpi), or δ > 0 if it should go to the right (xi > xpi). Then we iterate on the addition
xpi = xpi + δ until f(xpi) > 0 (if e < 0) or f(xpi) < 0 (if e > 0). Such an iteration is
apparent in the following pseudo-code:

1: xsafe ← xpi
2: if f(xpi) < 0 then
3: while f(xsafe) < 0 do xsafe ← xsafe+ δ
4: end while
5: else (f(xpi) > 0)
6: while f(xsafe) > 0 do xsafe ← xsafe+ δ
7: end while
8: end if
9: return xsafe

Example 3.1. Consider again the assertion in Example 1.1 in Section 1, which declares
an upper bound on resource usage given by function Φu

I (x) = 2x − 1000. Let the analysis

infer a lower bound Φl(x) = 1.45 × 1.62x − 1. Their intersection occurs at x ≈10.22.
However, the root obtained by our root finding algorithm is x ≈ 10.89. By doing an
iterative approximation from 10.89 to the left, we finally obtain a safe approximate root of
x ≈10.18.

Note that usually (as in the above example), resource usage functions are on variables
which range on natural numbers. Because of this, the iterative approximation process for
safe roots can be substituted by simply taking the closest natural number to the left or
right of the approximated root (depending on the gradient) to obtain a safe value. In the
previous example, we will simply take 10, without any iteration.

It turns out that the analysis also infers an upper bound given by function Φu(x) =
1.45 × 1.62x − 1. Thus, the output of our assertion checking for the fibonacci program
will be that of Example 1.1, showing extra conditions (an interval of integers) on which the
assertion can be proved false, on one hand, and another condition (the rest of the range of
the positive integer numbers) on which it can be proved true, on the other hand.

4. Conclusions

We have proposed a method for extending how a framework for verification/debugging
(implemented in the CiaoPP system) deals with specifications about the resource usage of

RESOURCE USAGE VERIFICATION 113

programs. We have provided a formalization which blends in with the previous framework
for verification of functional or program state properties. A key aspect of the framework is
to be able to compare mathematical functions. We have proposed a method which is safe,
in the sense that the results of verification/debugging cannot go wrong. In the case where
the resource usage functions being compared depend on one variable (which represents some
input argument size) our method reveals particular numerical intervals for such variable,
if they exist, which might result in different answers to the verification problem: a given
specification might be proved for some intervals but disproved for others. Our current
method computes such intervals with precision for polynomial and exponential resource
usage functions, and in general for functions that can be approximated by polynomials.
Moreover, we have proposed an iterative post-process to safely tune up the interval bounds
by taking as starting values the previously computed roots of the polynomials.

References

[1] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost functions in resource
analysis. In 1st International Workshop on Foundational and Practical Aspects of Resource Analysis
(FOPARA’09), Lecture Notes in Computer Science. Springer, 2009. To appear.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A
Static Analyzer for Large Safety-Critical Software. In Proc. of PLDI’03. ACM Press, 2003.

[3] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and G. Puebla.
On the Role of Semantic Approximations in Validation and Diagnosis of Constraint Logic Programs. In
Proc. of the 3rd. Int’l WS on Automated Debugging–AADEBUG, pages 155–170. U. Linköping Press,
May 1997.

[4] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi. GNU
Scientific Library Reference Manual. Network Theory Ltd, 2009. Library and Manual also available at
http://www.gnu.org/software/gsl/.

[5] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifications, and an
Extensible Assertion Language for Program Validation and Debugging. In The Logic Programming
Paradigm: a 25–Year Perspective, pages 161–192. Springer-Verlag, 1999.

[6] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program Debugging, Verifi-
cation, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor). Science
of Comp. Progr., 58(1–2), 2005.

[7] P. López-Garćıa, L. Darmawan, F. Bueno, and M. Hermenegildo. Towards a Framework for Resource
Usage Verification and Debugging in the CiaoPP System. Technical Report CLIP1/2010.0, Techni-
cal University of Madrid (UPM), School of Computer Science, UPM, February 2010. Available at
http://cliplab.org/papers/resource-verif-10-tr.pdf.

[8] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Resource Bounds Analysis
for Logic Programs. In ICLP’07, number 4670 in LNCS, pages 348–363, 2007.

[9] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visualization Tools for
Constraint Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag, September 2000.

[10] Jyri Ylostalo. Function approximation using polynomials. Signal Processing Magazine, 23:99–102, Sep-
tember 2006.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 114–123
http://www.floc-conference.org/ICLP-home.html

CONTRACTIBILITY AND CONTRACTIBLE APPROXIMATIONS

OF SOFT GLOBAL CONSTRAINTS

MICHAEL J. MAHER 1,2

1 NICTA, Locked Bag 6016, The University of New South Wales, Sydney, NSW 1466, Australia

2 School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW
2052, Australia
E-mail address: michael.maher@nicta.com.au

Abstract. We study contractibility and its approximation for two very general classes
of soft global constraints. We introduce a general formulation of decomposition-based
soft constraints and provide a sufficient condition for contractibility and an approach to
approximation. For edit-based soft constraints, we establish that the tightest contractible
approximation cannot be expressed in edit-based terms, in general.

1. Introduction

Soft constraints are useful for addressing problems that might be overconstrained. Open
global constraints [1, 11, 14] allow variables to be added to the global constraint during exe-
cution, which is vital when we want to interleave problem construction and problem solving.
Contractible approximations of global constraints are a necessary part of implementing open
versions of the constraint. In this paper we investigate contractibility [13] and contractible
approximations [14] of soft constraints in the sense of Petit et al [18] for the purpose of
implementing versions that are dynamic, or open, in the sense of Barták [1]. Contractibility
of soft constraints was studied in [15] but approximations have not been investigated.

We investigate two general classes of soft constraints based, respectively, on decompo-
sitions and edit-distance. We improve on several results of [15] and establish new results
for these classes. While hard constraints seem to be amenable to tight contractible approx-
imation, at least in the cases studied so far [14], we show that soft constraints are much less
so.

Section 2 provides some preliminaries on open global constraints and contractibility. In
section 3 we introduce a very general class of decomposition-based soft constraints, repeat
the definition of edit-based soft constraints from [15] and explore some consequences of

1998 ACM Subject Classification: D.1.6 Logic Programming; D.3.2 Language Classifications, Constraint
and logic languages; D.3.3 Language Constructs and Features, Constraints .

Key words and phrases: constraint logic programming, global constraints, open constraints, soft
constraints.

NICTA is funded by the Australian Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program.

c© M.J. Maher
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.114

CONTRACTIBLE APPROXIMATIONS 115

these definitions. Section 4 investigates contractible approximations for soft constraints in
these two classes.

2. Background

The reader is assumed to have a basic knowledge of constraint logic programming,
CSPs, global constraints, and filtering, as might be found in [9, 19, 2].

For the purposes of this paper, a global constraint is a relation over a single sequence of
variables. Other arguments of a constraint are considered parameters and are assumed to

be fixed before execution. A sequence of variables will be denoted by ~X or [X1, . . . , Xn]. We
make no a priori restriction on the variables that may participate in the sequence except
that, in common with most work on global constraints, we assume that no variable appears
more than once in a single constraint.

We assume that each use of a global constraint has a static type T that assigns, for

every position i of its argument, a set of values. Thus every variable Xi in ~X has a static
type T (Xi) of values that it may take. This is distinct from the domain D(X) of a variable
X, which changes during execution. We always have D(X) ⊆ T (X).

We formalize the semantics of a global constraint C as a formal language LC . A
word d1d2 . . . dn appears in LC iff the constraint C([X1, X2, . . . , Xn]) has a solution X1 =
d1, . . . Xn = dn. Thus, for example, the semantics of AllDifferent is {a1 . . . an | ∀i, j i 6=
j → ai 6= aj , n ∈ N} and the semantics of Regular(A, ~X) is L(A), the language accepted
by A. When it is convenient, we will describe languages with Kleene regular expressions.

We will need the following definitions later. Let P (L) = {w | ∃u wu ∈ L} denote the
set of prefixes of a language L, called the prefix-closure of L. We say L is prefix-closed if
P (L) = L.

Constraint logic programming supports the generation of new variables and new con-
straints during execution. Use of open constraints pre-supposes additional capabilities to
add variables to an open constraint and to close an open constraint. In this paper we will
abstract away the details of the language mechanisms that provide these capabilities so that
we can focus on the filtering/propagation for open constraints.

There are three models of open constraint that have been proposed [1, 11, 14]. In this
paper we follow the model of Barták [1] as refined in [13]: the collection of variables forms
a sequence, to which variables may be added at the right-hand end only.

We take filtering to refer to any function f that reduces domains, that is, ∀X f(D)(X) ⊆
D(X). A filtering algorithm f for a constraint C is sound if every solution of C in D also
appears in f(D). We say a domain D defines an assignment if ∀X |D(X)| = 1; in that case
the assignment maps each X to the element of D(X). We say filtering performs complete
checking if, whenever D defines an assignment, the result of filtering with a constraint C
is D iff the assignment satisfies C. Soundness and complete checking can be considered
minimal requirements for filtering methods [20].

Consistency conditions like domain consistency are inappropriate for open constraints
because some of the variables in an open constraint will be unspecified during part of the
execution. The counterpart of domain consistency is open D-consistency, defined in [14].

During execution, we may extend an open constraint C(~X) with an extra variable Y to

C(~XY). We would like to do filtering on the smaller constraint without knowing whether
it will be extended by Y , or further, and without creating a choicepoint. When we can do

116 M.J. MAHER

this, we have a kind of monotonicity property of C, called contractibility [13], which can be
characterized as follows.

Definition 2.1. We say a constraint C(~X) is contractible iff LC is prefix-closed.

Any filtering method satisfying the minimal requirements discussed above requires con-
tractibility to guarantee that closed filtering is sound for an open constraint. This refines a
result of [13].

Theorem 2.2. Let C be a constraint, and consider a sound filtering method that performs
complete checking. It is always sound to interleave filtering and the addition of new variables
iff C is contractible.

Consequently, for contractible constraints, filtering does not need to be undone if the
list is lengthened. That is, algorithms for filtering a closed contractible constraint are valid
also for the corresponding open constraint.

Conversely, any constraint C that is not contractible might need to undo the effects of
filtering if the list is lengthened. Barták [1] proposed an implementation approach to avoid
this effect. Essentially, a propagator for a contractible approximation of C is used until C is
closed, when a propagator for C is used. The importance of contractible approximations lies
in this ability to provide filtering for open uncontractible constraints. Tight approximations
can yield best-possible filtering [14].

Theorem 2.3. Let Capp be the tightest contractible approximation to C, and suppose we

have closed propagators for Capp and C that maintain domain consistency wrt ~X. Then
Barták’s proposal maintains open D-consistency for C.

3. Contractibility of Soft Constraints

We consider “soft” global constraints in the style of [18]. In such constraints there is
a violation measure, which measures the degree to which an assignment to the variables
violates the associated “hard” constraint, and solutions are assignments that satisfy an

upper bound on the violation measure. Thus such soft constraints have the form m(~X) ≤ Z,

where m is the violation measure1. We refer to the hard constraint as C(~X) and the

corresponding soft constraint as Cs(~X,Z).
We say that a function f is an accumulation function if it maps sequences of values to

a single value. We say f is non-decreasing if for every sequence of values ~X and value Y ,

f(~X) ≤ f(~XY). Addressing the contractability of such constraints is made easier by the
following characterization [13].

Proposition 3.1. A soft constraint m(~X) ≤ Z is contractible iff m is a non-decreasing
accumulation function.

Consequently, we will also call such functions m contractible. Thus, to evaluate whether
or not soft constraints are contractible we must consider the form of the violation measure,
and whether it forms a contractible function.

1Also called violation cost [18].

CONTRACTIBLE APPROXIMATIONS 117

Definition 3.2. A violation measure for a sublanguage L of a language L′ is a function
m which maps L′ to the non-negative real numbers, such that if w ∈ L then m(w) = 0.
m is proper for L if for all words w ∈ L′, m(w) = 0 iff w ∈ L. A violation measure for a

constraint C(~X) is a violation measure for LC as a sublanguage of the static type T (~X).

For example, a use of AllDifferent might give the set Z of integers as the static
type of each variable. A violation measure might then be the number of disequalities

Xi 6= Xj , i 6= j violated by a valuation for ~X, or the number of variables equal to another
variable, or the minimum absolute value of the sum over i of values ci such that ∀j j 6= i→
Xi + ci 6= Xj . It is easy to see that each of these defines a violation measure. The third is
not a proper violation measure because, for example, the word 11233 gives rise to values of
ci of −1,−1, 0, 1, 1. Thus m(11233) = 0 but 11233 6∈ LC .

Proper violation measures for a language L are a refinement of the characteristic func-
tion of L, and can be considered more intuitive than non-proper measures. Most violation
measures in the literature are proper for their intended language. Although any function
from words to non-negative reals can be considered a proper violation measure by appro-
priate choice of language L, in practice the hard constraint determines L and the violation
measure is then designed to be proper. A non-proper measure can be considered misleading
because a word w that violates the language L can have a violation measure of 0. We admit
non-proper violation measures mainly because contractible approximations considered in
Section 4 can be non-proper.

There are three broad classes of violation measures [15]: those based on constraint
decomposition, edit distance, and graph properties. We address the first two classes in the
following subsections. The richness of the graph property framework [3] makes it difficult
to obtain general results on contractibility.

3.1. Decomposition-based Violation Measures

Many hard constraints can be decomposed into elementary constraints, whether natu-
rally (such as the decomposition of AllDifferent into disequalities) or by design, as in [5].
Violation measures can be constructed by combining the violations of each elementary con-
straint. We define a general class of decomposition-based violation measures that includes
as special cases: primal graph based violation costs [18], decomposition-based violation
measures of [10], the value-based violation measure for GCC [18, 10], the measures used
for the soft Sequence constraint [16] and the soft Cumulative constraint [17], and the
class of decomposition-based measures discussed in [15]. We begin with several definitions.

A weighted set is a pair (S,w) where S is a set and w is a function mapping each
element of S to a non-negative real number or ∞. Values not in S have weight 0. If
these are the only values of weight 0 we say (S,w) is proper. A weighted set is a minor
generalization of a multiset. A weighted set (S1, w1) is a sub-weighted set of weighted set
(S2, w2) if, for every element s ∈ S1, w1(s) ≤ w2(s). Union of weighted sets is defined by
(S1, w1) ∪ (S2, w2) = (S1 ∪ S2, w1 + w2). When a weighted set contains expressions with
variables that are subject to substitution, the application of a substitution might unify
elements of the set. Hence, (S,w)θ denotes (Sθ,w′) where w′(s) is the sum of w1(s

′) over
all s′ ∈ S such that s′θ ≡ s.

We need to carefully formalize the notion of decomposition. Decomposition is a function

that maps a constraint C with a given type T and a sequence of variables ~X to a tuple

118 M.J. MAHER

(~X, ~U, T ′, S, w) where T ′ is an extension of T , ~U is a collection of new variables, T (~U) is
their corresponding types, and (S,w) is a proper weighted set of elementary constraints

over ~X ~U such that C(~X) ↔ ∃~U T ′(~U) ∧
∧

s∈S s. The weights are used only to emphasize
some constraints in a decomposition over others; in particular, the infinite weight allows us
to specify elementary constraints that must not be violated. An unweighted decomposition
is one where all constraints in S have the same, non-zero weight. In that case, we may

omit w. We write decomp(C(~X)) to express the weighted set (S,w), or simply S when the
decomposition is unweighted. This definition of decomposition is very broad, perhaps too

broad, since it allows the set of elementary constraints to vary radically as the length of ~X
changes.

An error function e maps an elementary constraint and a valuation to a non-negative
real number, representing the amount of error (or violation) of the constraint by the val-
uation. We require that e(v, c) = 0 iff c is satisfied by v. We extend e to weighted
sets of constraints by defining e(v, (S,w)) = (S′, w′) where S′ = {e(v, s) | s ∈ S} and
w′(x) =

∑
v(s)=xw(s).

A combining function maps a set of numbers and a weighting function to a single num-
ber. A combining function comb is monotonic if, whenever (S1, w1) is a sub-weighted set of
(S2, w2), comb(S1, w1) ≤ comb(S2, w2). The function comb is disjunctive if for all weighted
sets of reals (S,w), comb(S,w) = 0 iff S = {0}. Counting non-zero values, summation, sum
of squares, and maximization are examples of monotonic, disjunctive combining functions;
product and minimization are neither monotonic nor disjunctive.

Definition 3.3. A decomposition-based violation measure m for a constraint C(~X) with

type T is based on a decomposition (~X, ~U, T ′, S, w) of C(~X), an error function e, and a

combining function comb and is defined by, for each valuation v of ~X,

m(C(v(~X))) = min
v′

comb(e(v′,decomp(C(~X))))

where we minimize over all extensions v′ of v to ~U that satisfy T ′.

This definition was inspired by the formulation of hierarchical constraints in [6, 7]. The
decomposition measures of [18, 10] can be obtained when the error function e(v, c) returns 0
if v satisfies c and 1 otherwise, and the combining function is summation. The value-based
measures of [18, 10, 16, 17] also use summation as the combining function, but use an error
function that returns the amount by which the constraint c is violated by the valuation v.
If we use maximization or the sum of squares in place of summation we have new violation
measures similar to the worst-case-better and least-squares-better comparators of [6, 7].
Clearly many violation measures are available for a constraint by making different choices
for the decomposition and the error and combining functions.

There is a powerful sufficient condition for a decomposition-based violation measure to
be proper.

Proposition 3.4. Let m be a decomposition-based violation measure for a constraint C. If
comb is disjunctive then m is proper for LC .

We say that one formula (~X, ~U, T1, S1, w1) is covered by another formula (~W, ~V , T2, S2, w2)

if there is a substitution θ that maps ~X into ~W and ~U into ~V ∪ ~W ∪ Σ, where Σ is a set

of constants, such that T1(~X) = T2(~Xθ), (S1, w1)θ is a sub-weighted set of (S2, w2) and

T2(~Uθ) ⊆ T1(~U).

CONTRACTIBLE APPROXIMATIONS 119

Example 3.5. The decomposition of AllDifferent(~X) into a set of disequalities is for-

malized as (~X, ∅, T, S, w) where S is the set of disequalities and w gives every disequality a

weight of 1. It is clear that the decomposition of AllDifferent(~X) is covered by that of

AllDifferent(~XY) where the substitution is the identity.
Contiguity is implemented in [12] essentially by the decomposition

Contiguity(~X)↔ ∃~L, ~R,X0, Xn+1

n∧
i=1

C ′(Xi−1, Ri−1, Li, Xi, Ri, Li+1, Xi+1)

for a constraint C ′. This decomposition is formalized as (~X, ~L~RX0Xn+1, T, S, w) where T
gives all variables a type of {0, 1}, S is the set of C ′ constraints, and w gives every constraint
a weight of 1. Alternatively, if contiguity is more important for variables nearer the right

end of the sequence ~X, we might weight each C ′ constraint by the largest index of a variable

appearing in it. The decomposition of Contiguity(~XY) covers that of Contiguity(~X)

where the substitution is the identity on ~X, ~L, and ~R.

We can now provide a sufficient condition for a soft constraint with a decomposition-
based violation measure to be contractible.

Proposition 3.6. Let Cs be a soft constraint with a decomposition-based violation measure

defined using a monotonic combining function. Let (~X, ~U, T1, S1, w1) be the decomposition

of C(~X) and (~XY, ~V , T2, S2, w2) be the decomposition of C(~XY). If (~X, ~U, T1, S1, w1) is

covered by (~XY, ~V , T2, S2, w2) via a substitution that is the identity on ~X then Cs is con-
tractible.

It follows that the constraints in Example 3.5 are contractible. Covering is only a
sufficient condition for contractibility, as the following example demonstrates.

Example 3.7. Consider the definition of a rising sawtooth relation rs on variables ~X. In
such a relation, the subsequence of values in even numbered positions forms a non-decreasing
sequence, and every value in odd numbered positions is greater than its immediately adja-
cent neighbours. This relation can be decomposed into elementary constraints as follows.
The decomposition is defined recursively, but notably requires two recursive cases, corre-
sponding to the distinction between odd and even length sequences.

decomp(rs([])) = true
decomp(rs([X1])) = true
decomp(rs([X1, X2])) = X1 ≥ X2

decomp(rs([X1, . . . , X2n, X2n+1])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n

decomp(rs([X1, . . . , X2n, X2n+1, X2n+2])) =
decomp(rs([X1, . . . , X2n])) ∧X2n+1 ≥ X2n+2 ∧X2n+2 ≥ X2n

Consider the soft constraint derived from this decomposition by counting the number of
violations. It is clear that the sufficient condition of Proposition 3.6 does not apply be-
cause there is no covering. Nevertheless, we can verify that a decomposition-based soft

rs constraint is contractible. Note first that when ~X has even length decomp(rs(~X)) ⊆
decomp(rs(~XY)) and consequently the violation measure is non-decreasing in this case.

When ~X has odd length the relationship is less obvious. However, we know that

¬(X2n+1 ≥ X2n)→ ¬(X2n+1 ≥ X2n+2) ∨ ¬(X2n+2 ≥ X2n)

120 M.J. MAHER

Hence, any valuation for the variables that gives rise to a violation of X2n+1 ≥ X2n will also
give rise to a violation of X2n+1 ≥ X2n+2, or X2n+2 ≥ X2n, or both. Thus the violation
measure is non-decreasing in this case also. Since the violation measure is non-decreasing,
the decomposition-based soft rs constraint is contractible.

Similarly, the violation measures derived from summing the amount of violation or
taking the maximum amount of violation of any elementary constraint lead to contractible
soft rs constraints.

This example demonstrates a major limitation of the sufficient condition in Proposition
3.6: it addresses only the syntactic structure of the decomposition. However some con-
straints, such as rs, require reasoning about the semantics of the elementary constraints in
order to recognise that the decomposition-based soft constraint is contractible. (For rs we
exploited the knowledge that ≥ forms a total order.)

3.2. Edit-based Violation Measures

The edit-based violation measures use a notion of edit distance, which is the minimum
number of edit operations required to transform a word into a word of LC . There are many
possible edit operations but the common ones are: to substitute one letter for another,
to insert a letter, to delete a letter, and to transpose two adjacent letters2. This class
includes the variable-based violation measures [18, 10], the object-based measures of [3], and
edit-based measures from [10].

Let α, β, γ, δ be non-negative weights for the edit operations substitution, insertion,
deletion and transposition, respectively, and let ns, ni, nd, nt be the number of the respective
operations used in an edit. Then, for any language L, we define mL(w) = minedits αns +
βni + γnd + δnt to be the minimum, over all edits that transform the word w to an element
of L, of the weighted sum of the edit operations.

Definition 3.8. An open edit-based violation measure for a sublanguage L of L′ is a
weighted edit distance mP (L) for P (L). An open edit-based violation measure m for L
is proper if m(w) = 0 iff w ∈ P (L) for every w ∈ L′.

We can characterize when an open edit-based violation measure is proper. Roughly, m
is improper iff some edits have zero cost and these are able to edit some w ∈ L′\P (L) to
w′ ∈ P (L).

Proposition 3.9. Let m be an open edit-based violation measure for L where P (L) is a
sublanguage of L′, with weights α, β, γ and δ.

m is proper iff one of the following conditions holds:

• min{α, β, γ, δ} > 0
• α = 0, min{β, γ} > 0 and L′ ∩ SameLength(P (L)) ⊆ P (L)
• β = 0, min{α, γ, δ} > 0 and L′ ∩ SubSeq(P (L)) ⊆ P (L)
• γ = 0 and L′ ⊆ P (L)
• δ = 0, min{α, β, γ} > 0 and L′ ∩ Perm(P (L)) ⊆ P (L)
• α = β = 0, γ > 0 and L′ ⊆ Shorter(P (L))
• β = δ = 0, min{α, γ} > 0 and L′ ∩ Subset(P (L)) ⊆ P (L)

2Edit distance based on these operations is known as Damerau-Levenshtein distance.

CONTRACTIBLE APPROXIMATIONS 121

where, for any language L,
SameLength(L) is the set of all words of the same length as a word of L,
Shorter(L) is the set of all words the same length or shorter than a word of L,
Perm(L) is the set of all permutations of words of L,
SubSeq(L) is the set of all subsequences of a word of L, and
Subset(L) is set of all words whose letters form a submultiset of the letters of a word of L.

In many cases, edit-based violation measures are contractible. This is a slight strength-
ening of a theorem of [15].

Theorem 3.10. Let Cs be a soft constraint with an open edit-based violation measure.
Suppose min{α, β, γ} ≤ δ.

Then Cs is contractible.

An example from [15] shows that if δ < min{α, β, γ} then an edit-based soft constraint
might be uncontractible. Thus Theorem 3.10 cannot be strengthened further without im-
posing extra conditions on Cs.

4. Contractible Approximations of Soft Constraints

As with hard constraints, when a soft constraint is uncontractible we can use a con-
tractible approximation while the constraint is open.

We reformulate the notion of tight approximation for soft constraints of the form

m(~X) ≤ Z as follows. A violation measure m1 is an approximation of the violation mea-
sure m if, for all words ~a, m1(~a) ≤ m(~a). We order violation measures with the pointwise
extension of the ordering on the reals: m1 ≤ m2 iff ∀~a m1(~a) ≤ m2(~a). A contractible
approximation m1 to a violation measure m is tight if, for all contractible functions m2,
if m1 ≤ m2 ≤ m then m2 = m1. Given two contractible approximations m1 and m2 to a
violation measure m, we say m2 is tighter than m1 if m1 ≤ m2. We write m∗ to denote the
tightest contractible approximation of m.

We can characterize the tightest contractible approximation of a violation measure,
independent of how the violation measure is formulated.

Proposition 4.1. Let m be a violation measure. The tightest contractible approximation

to m is characterized by m∗(~a) = inf~bm(~a~b), where the infimum is taken over all finite

sequences ~b.

4.1. Decomposition-based Violation Measures

One way to obtain a contractible approximation is to ignore parts of a decomposition

that cause incontractibility. A weakening of a decomposition of a constraint C(~X) is a func-

tion that, for every sequence ~X, maps the decomposition (~X, ~U, T ′, S, w) to (~X, ~U, T ′, S′, w′)
where (S′, w′) is a sub-weighted set of (S,w). For this weakened decomposition we can apply
the sufficient condition of Proposition 3.6.

Proposition 4.2. Consider a decomposition-based violation measure m for a constraint

C(~X) and a weakening W of the decomposition. Suppose m is defined via a monotonic

combining function. If, for every sequence ~X, the weakening of the decomposition of C(~X)

is covered by the weakening of the decomposition of C(~XY) via a substitution that is the

122 M.J. MAHER

identity on ~X then the measure m′ defined by using the weakened decompositions is a con-
tractible approximation of m.

This result shows an approach to finding a contractible approximation to C(~X), but it
provides no guarantee of finding a useful approximation. Like Proposition 3.6, it follows a
syntactic approach and has the same inherent weakness.

4.2. Edit-based Violation Measures

Recall that an edit-based violation measure m is contractible if δ ≥ min{α, β, γ} (The-
orem 3.10). If δ < min{α, β, γ} then m might be uncontractible and we must consider
contractible approximations. We can provide generic contractible approximations for edit-
based soft constraints by modifying the weights to accord with the sufficient condition of
Theorem 3.10.

Proposition 4.3. Let m be an open edit-based violation measure for a constraint C with
weights α, β, γ, δ where δ < min{α, β, γ}. Then the following violation measures are con-
tractible approximations of m for C.

(1) m1 based on weights δ, β, γ, δ
(2) m2 based on weights α, δ, γ, δ
(3) m3 based on weights α, β, δ, δ
(4) m4 defined by m4(w) = max{m1(w),m2(w),m3(w)}

Clearly m4 is the tightest of these approximations, and might be sufficient in practice.
However, in general, this approximation is not tight, as the following example shows.

Example 4.4. Let L = (abc)∗, so that P (L) = L∪La∪Lab. Let α = β = γ = 4 and δ = 1.
Consider w = bbb(abc)3ca. Two kinds of edits are needed, addressing the initial b’s and the
trailing ca. Then m(w) = 12 from substituting for the first and third b, and deleting the
last c. m(wb) = 10 using the same substitutions and two transpositions on c. Thus m is
not contractible.

The tightest approximation to m has m∗(w) = 10. Now consider the approximations
in Proposition 4.3. If we reduce α to 1 then m1(w) = 4 by applying four substitutions. If
we reduce β to 1 then m2(w) = 8 by inserting a and c around each initial b and inserting
ab before the last c. If we reduce γ to 1 then m3(w) = 4 by deleting the three b’s and the
last c. Thus m4(w) = 8.

This shows that m4 is not the tightest contractible approximation to m, since m4(w) 6=
m∗(w).

The question now arises: how to express m∗ in edit-based terms so that a closed prop-

agator for m(~X) ≤ Z might be adapted to implement m∗(~X) ≤ Z. Disappointingly, this
turns out to be impossible, in general.

Theorem 4.5. There is an open edit-based violation measure m for a language L such
that its tightest contractible approximation cannot be expressed as a proper (not necessarily
open) edit-based violation measure on any language.

The language and violation measure demonstrating this claim are those from Example
4.4. Given that the language is so simple, we can expect that many uncontractible edit-based
violation measures cannot be tightly approximated by a contractible edit-based violation
measure. This contrasts markedly with work on hard constraints, where tight contractible

CONTRACTIBLE APPROXIMATIONS 123

approximations of several uncontractible hard constraints can be formulated in terms of
the original hard constraint [14, 15]. It suggests that the edit-based implementation of the
closed constraint is not a suitable basis for implementing the tight approximation.

5. Conclusions

We have investigated violation measures for soft constraints based on decomposition
and edit-distance. We defined a class of decomposition-based violation measures that gen-
eralizes several previous works. For both forms of violation measures we identified sufficient
conditions for constraints to be proper and strengthened results of [15] on when they are
contractible. Finally, we found that the edit-based framework is not expressive enough to
represent tight contractible approximations, in general.

Acknowledgements

Thanks to the referees for their comments, which helped improve this paper.

References

[1] R. Barták, Dynamic Global Constraints in Backtracking Based Environments, Annals of Operations
Research 118, 101–119, 2003.

[2] N. Beldiceanu, M. Carlsson and J.-X. Rampon, Global Constraint Catalog, SICS Technical Report
T2005:08. Current version available at http://www.emn.fr/x-info/sdemasse/gccat/

[3] N. Beldiceanu and T. Petit, Cost Evaluation of Soft Global Constraints, CPAIOR, 80–95, 2004.
[4] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan and T. Walsh, SLIDE: a useful special case of the

CardPath constraint, ECAI 2008, 475–479, 2008.
[5] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper and T. Walsh, Decompositions of All Differ-

ent, Global Cardinality and Related Constraints, IJCAI 2009: 419–424.
[6] A. Borning, B. Freeman-Benson and M. Wilson, Constraint Hierarchies, Lisp and Symbolic Computation

5, 3, 223–270, 1992.
[7] A. Borning, M.J. Maher, A. Martindale and M. Wilson, Constraint Hierarchies and Logic Programming,

ICLP, 149–164, 1989.
[8] S. Brand, N. Narodytska, C.-G. Quimper, P.J. Stuckey and T. Walsh, Encodings of the Sequence

Constraint, CP 2007, LNCS 4741, Springer, 210–224.
[9] R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

[10] W-J. van Hoeve, G. Pesant and L-M. Rousseau, On Global Warming: Flow-Based Soft Global Con-
straints, Journal of Heuristics, 12(4-5), 347–373, 2006.

[11] W-J. van Hoeve and J-C. Régin, Open Constraints in a Closed World, CPAIOR’06, LNCS 3990,
Springer, 244–257, 2006.

[12] M.J. Maher, Analysis of a Global Contiguity Constraint, Proc. Workshop on Rule-Based Constraint
Reasoning and Programming, 2002.

[13] M.J. Maher, Open Contractible Global Constraints, IJCAI 2009, 578–583.
[14] M.J. Maher, Open Constraints in a Boundable World, CPAIOR 2009, LNCS 5547, 163–177.
[15] M.J. Maher, SOGgy Constraints: Soft Open Global Constraints, CP 2009, LNCS 5732, 584–591, 2009.
[16] M. Maher, N. Narodytska, C.-G. Quimper and T. Walsh, Flow-based propagators for the SEQUENCE

and related global constraints, CP 2008, LNCS 5202, 159–174.
[17] T. Petit and E. Poder, The Soft Cumulative Constraint, Research Report TR09/06/info, Ecole des

Mines de Nantes, 2009.
[18] T. Petit, J-C. Régin and C. Bessière, Specific Filtering Algorithms for Over-constrained Problems, CP

2001, LNCS 2239, Springer, 451–463.
[19] F. Rossi, P. van Beek and T. Walsh (Eds), Handbook of Constraint Programming, Elsevier, 2006.
[20] C. Schulte and G. Tack, Weakly Monotonic Propagators, CP 2009, LNCS 5732, 723–730, 2009.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 124–133
http://www.floc-conference.org/ICLP-home.html

DEDICATED TABLING FOR A PROBABILISTIC SETTING

THEOFRASTOS MANTADELIS 1 AND GERDA JANSSENS 1

1 Departement Computerwetenschappen, Katholieke Universiteit Leuven
Celestijnenlaan 200A - bus 2402, 3001 Heverlee, Belgium
E-mail address: {Theofrastos.Mantadelis,Gerda.Janssens}@cs.kuleuven.be

Abstract. ProbLog is a probabilistic framework that extends Prolog with probabilistic
facts. To compute the probability of a query, the complete SLD proof tree of the query
is collected as a sum of products. ProbLog applies advanced techniques to make this
feasible and to assess the correct probability. Tabling is a well-known technique to avoid
repeated subcomputations and to terminate loops. We investigate how tabling can be used
in ProbLog. The challenge is that we have to reconcile tabling with the advanced ProbLog
techniques. While standard tabling collects only the answers for the calls, we do need the
SLD proof tree. Finally we discuss how to deal with loops in our probabilistic framework.
By avoiding repeated subcomputations, our tabling approach not only improves the execu-
tion time of ProbLog programs, but also decreases accordingly the memory consumption.
We obtain promising results for ProbLog programs using exact probability inference.

1. Introduction

ProbLog [4] is a probabilistic framework that extends Prolog with probabilistic facts
and answers several kinds of probabilistic queries. While the framework includes different
inference methods, we focus for this paper on the exact probability inference method.

The implementation of ProbLog [8] is based on the use of tries [5] and reduced ordered
binary decision diagrams (ROBDDs) [1, 2]. The execution of ProbLog programs uses SLD-
resolution to collect all the proofs for a query. ProbLog gathers for each successful proof of
the query the list of probabilistic facts the proof uses and compactly represents all proofs in
a trie. Such a trie is then considered to be a sum of products (a disjunction of conjunctions
of probabilistic facts). ROBDDs are used to solve the disjoint sum problem and to obtain
the correct probability of the query.

The challenge is to find out how tabling can be combined with the ProbLog execution
mechanism. Tabling mechanisms are available in XSB [11], YAP [12] and other Prolog
systems. The basic idea is to collect the answers of a tabled subgoal in a table and, when
the subgoal is re-encountered, to reuse the tabled answers instead of computing them. As a
consequence of this memoization, tabling ensures termination of programs with the bounded
term-size property, i.e. programs where the size of subgoals and answers produced during
an evaluation is less than some fixed number. In the case of ProbLog, tabling answers is
not sufficient, as the proofs are needed too. Also loops have to be dealt with correctly.

1998 ACM Subject Classification: I.2.2, I.2.8, D.1.6, G.3.
Key words and phrases: Tabling, Loop Detection, Probabilistic Logical Programming, ProbLog.

c© T. Mantadelis and G. Janssens
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.124

DEDICATED TABLING FOR A PROBABILISTIC SETTING 125

The PRISM [14] assumptions such as exclusiveness and no loops imply that PRISM
computations are simpler, in the sense that they do not have to deal with the disjoint sum
problem. PRISM contains a linear tabling system [15]. Only when PRISM is executing
its learning algorithms, is its tabling extended to do something special, namely to build
support graphs which represent the shared structure of explanations for an observed goal.
The support graphs play a central role in efficient EM learning of PRISM programs. The
proofs ProbLog needs to compute are somewhat similar to these explanations.

This paper extends our early work [9]. The contributions of this paper are the identifi-
cation of the necessary tabling mechanism for ProbLog programs and their implementation
while respecting the current ProbLog optimizations, such as the exploitation of tries and
the optimized translation of tries into ROBDDs.

ProbLog’s motivating link discovery applications and other typical ProbLog programs
have only ground goals. In order to table them, we represent the SLD proof tree as nested
tries. We implemented a light-weight dedicated tabling for ground goals that supports
nested tries and obtained impressive time improvements for some classes of programs. By
the virtue of the nested tries, we also realize suffix sharing and thus a substantial memory
compaction. By adding loop detection, path-finding programs, typical for link discovery,
also benefit from the memoization.

The paper is structured as follows. First, we briefly introduce ProbLog and its relevant
implementation details in Section 2. We present the nested tries and identify the necessary
tabling support in Section 3. Transforming the nested tries to a sum of products efficiently is
in Section 4. Section 5 contains the experimental evaluation. Related work and conclusions
are in Sections 6 and 7 respectively.

2. ProbLog

ProbLog [4] is essentially an extension of Prolog where facts are labeled with proba-
bilities1 that they belong to a randomly sampled program. As such, a ProbLog program
specifies a probability distribution over all its possible non-probabilistic subprograms. The
success probability of a query is defined as the probability that it succeeds in such a random
subprogram. ProbLog follows the distribution semantics [13]. We use the ProbLog program
from Example 2.1 to describe how ProbLog calculates the exact probability of a query. The
graph in Figure 1 is represented by the probabilistic facts edge/2. The rest of the program
is normal Prolog code for finding a path in a graph. Consider the query path(1,4).

Example 2.1 (Program path/2).
path(X, Y):- path(X, Y, [X]).

path(X, Y, P):- edge(X, Z), Y \== Z, \+ member(Z, P), path(Z, Y, [Z|P]).

path(X, Y, _):- edge(X, Y).

ProbLog first uses SLD-resolution to collect all the proofs of a query. Actually, ProbLog
gathers for each successful proof of the query the list of probabilistic facts the proof uses.
For the path(1,4) query, ProbLog collects eight successful proofs and for each proof a list
of probabilistic edge/2 facts as shown in Figure 2. ProbLog uses a trie to represent such a
set of lists. The trie of a query is built during SLD-resolution: as soon as a successful proof
is found, it is added to the trie. We use proofs for SLD-refutations as well as for lists of
probabilistic facts. The trie for our example is given in Figure 2.

1Probabilistic facts are mutually independent random variables.

126 T. MANTADELIS AND G. JANSSENS

0.9::edge(1, 2). 0.9::edge(2, 1). 0.2::edge(5, 4).

0.4::edge(6, 5). 0.4::edge(5, 6). 0.2::edge(4, 5).

0.8::edge(2, 3). 0.8::edge(3, 2). 0.7::edge(1, 6).

0.5::edge(2, 6). 0.5::edge(6, 2). 0.7::edge(6, 1).

0.7::edge(5, 3). 0.7::edge(3, 5).

0.6::edge(3, 4). 0.6::edge(4, 3).

Figure 1: Graph of Example 2.1.

edge(1,2),edge(2,3),edge(3,5),edge(5,4)

edge(1,2),edge(2,3),edge(3,4)

edge(1,2),edge(2,6),edge(6,5),edge(5,3),edge(3,4)

edge(1,2),edge(2,6),edge(6,5),edge(5,4)

edge(1,6),edge(6,2),edge(2,3),edge(3,5),edge(5,4)

edge(1,6),edge(6,2),edge(2,3),edge(3,4)

edge(1,6),edge(6,5),edge(5,3),edge(3,4)

edge(1,6),edge(6,5),edge(5,4)

Figure 2: The successful proofs and the respective trie for path(1,4) of Example 2.1.

Now, think of the edge/2 facts as Boolean random variables indicating whether the
facts are in the logic program. As a consequence, each proof corresponds to a conjunction
of random variables and as a whole the trie represents a disjunction of conjunctions of
probabilistic facts, also known as a sum of products. ProbLog needs to assess the probability
of the sum of products, which has been shown to be #P-Hard [17]. ProbLog transforms the
trie into a ROBDD in two steps. First, starting from the trie, a so-called ROBDD script
is generated. Secondly, the ROBDD script is executed by a ROBDD package. From the
ROBDD, ProbLog calculates the success probability (0.53864 for our example) of the query
by a bottom-up dynamic programming algorithm over the ROBDD structure [8].

As argued in [8], representing the proofs compactly in a trie establishes prefix sharing
and this turns out to be indispensable for the typical ProbLog mining applications. This
prefix sharing can be clearly seen in Figure 2. In this paper we show how our tabling also
establishes suffix sharing and thus further reduces the memory consumption.

3. Memoization by Tabling

Typical ProbLog goals are ground; indeed, in a probabilistic framework, one is interested
in the probability that a goal can be proven, rather than in what the answers are. While
our work can be generalized for non-ground goals, we focus on ground goals for this paper.

ProbLog collects all the SLD-refutations of a query as lists of probabilistic facts in a
trie. Our tabling builds a forest of SLG-trees [3], one for the original query and one for
each tabled subgoal. For each tabled goal, we need to memoize its contribution to the trie:
we break up a single trie into a set of nested tries. The nested trie of a goal represents the
successful proofs of the goal just as a normal trie does, but the parts of the trie that are
contributed by other tabled subgoals are replaced by a reference to the trie of that subgoal.

Consider the query ?-p,q. for the program of Figure 3a. The SLD-tree and the cor-
responding trie are in Figure 3b. Tabling the predicate q/0 avoids recomputation during
resolution and results in the forest of SLG-trees and the nested tries shown in Figure 3c.
Note that the nested trie for the subgoal q is denoted by t(q) and t(/) denotes the trie of
the topquery.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 127

0.1::p1. 0.3::q1.
0.7::p2. 0.2::q2.
p:-p1. q:-q1.
p:-p2. q:-q2.

(a) Tabling q/0. (b) SLD-tree and trie. (c) SLG-trees and the nested tries.

Figure 3: Example of SLD-resolution and SLG-resolution trees and tries.

When ProbLog uses tabling while proving the topquery, it constructs a set of nested
tries. This set of nested tries is equivalent with the trie that a non-tabled program would
generate: it contains all the information about the complete successful proofs, the SLD-
refutations, of the topquery. In the non-tabled evaluation, repeated subcomputations give
rise to tries with repeated suffixes. The use of nested tries such as t(q) establishes suffix-
sharing which reduces substantially the memory consumption of ProbLog.

Tabling uses a suspension/resumption mechanism to built a forest of SLG-trees. Tabling
keeps in its tables an entry for each tabled subgoal that contains the nested trie of the
subgoal. When ProbLog encounters the first instance of a tabled subgoal, the generator
subgoal, tabling suspends the resolution of the parent goal, creates an entry for the subgoal
with an empty nested trie, and starts proving it. As soon as a successful proof for the
subgoal is found, it is added to its nested trie. Note that if the subgoal fails, no proof will
be added and the nested trie will remain empty.

We eagerly collect the proofs for the generator goals. For programs without loops,
tabling deals completely with a tabled subgoal before the parent goal is resumed and it is
known whether the subgoal failed or succeeded. If a tabled subgoal fails, resumption of the
parent goal fails its current proof. If the tabled subgoal succeeds then, on resumption of
the parent goal, a reference to the nested trie of the tabled subgoal is added to the current
proof of the parent goal. For subsequent occurrences of tabled subgoals, the consumer
subgoals, tabling avoids recomputation by adding a reference to the appropriate nested trie
in the current proof.

An attentive reader might indeed have noticed that the path program of Example 2.1
is a version that encodes loop detection explicitly by using absent/2. That version does
not benefit from tabling as all the calls to path are different. The path/2 program in
Example 3.1 has no code to detect loops. We use this program and the graph of Figure 4a
to explain how tabling should support loop handling in a probabilistic framework.

Example 3.1 (Program path/2 without loop detection).
0.1::edge(1, 2). 0.5::edge(1, 3). 0.7::edge(3, 1).

0.3::edge(2, 3). 0.2::edge(3, 2). 0.6::edge(2, 4).

path(X, Y):- edge(X, Z), Y \== Z, path(Z, Y).

path(X, Y):- edge(X, Y).

For the query path(1,4) on this graph with the program of Example 2.1, we collect
the following two proofs: edge(1,2), edge(2,4) and edge(1,3), edge(3,2), edge(2,4).
While proving the query path(1,4) with the program of Example 3.1, one will enter in
infinite loops, such as the one between nodes 2 and 3 due to edge(2,3) and edge(3,2). The

128 T. MANTADELIS AND G. JANSSENS

(a) Graph of Example 3.1. (b) SLG-trees with goal suspension.

Figure 4: Graph and SLG-trees of Example 3.1.

SLD-tree for path(1,4) is indeed infinite. The SLG-trees are in Figure 4b with backward
arcs indicating the detected loops.

In the presence of loops, tabling normally uses a completion mechanism to ensure that
all answers are returned to all consumers. For our ground ProbLog goals, this boils down
to returning information about failure or success and in case of success the nested trie. A
simple way to achieve this for consumer goals that give rise to a loop, is to assume that the
generator goal will succeed and add the reference to the partially completed nested trie to
the parent goal proof. Although a nested trie represents all the proofs for the subgoal, we
do not need its final value to re-use it, as we put a reference to it in the other tries.

Now, our nested tries no longer only contain successful proofs. We optimistically as-
sumed success for consumer goals giving rise to a loop. If none of the goals involved in
the loop has a finite successful proof, they all fail. In this case, the nested tries contain
references to failed subgoals. We deal with this during the ROBDD script generation step.

We have built a light-weight tabling prototype which allow us to experiment without
having to change the ProbLog implementation. A program transformation is used to add
tabling specific predicate calls that manipulate the extra tabling data structures. In this
transformation we use findall to implement the eager proof collection for generator goals.

We implemented SLG tabling with suspension and resumption. As we have ground
goals, we do not collect answers for goals, but their success or failure. Due to the prob-
abilistic context, we need a special mechanism to construct a nested trie for each tabled
subgoal, as we do not want to lose the prefix sharing required by ProbLog. Also note that
ProbLog needs all the successful proofs, whereas clever normal tabling would stop after one
successful proof for a ground goal.

For consumer goals that give rise to a loop, our optimistic approach assumes success
of the goal, but in the end the goal might fail. Our nested tries then contain references to
failed subgoals. This failure needs to be detected during the BDD script generation step.

4. Extracting the Boolean Formula from the Set of Nested Tries

Tabling computes for the original query a set of nested tries, which contain all the
proofs of the query. As mentioned in Section 2, the ROBDD script generation step of
ProbLog extracts all collected proofs from the Trie and generates a Boolean formula that
expresses the proofs as a sum of products. In this section we are going to describe how to
generate the Boolean formula from the set of nested tries. A naive implementation would
have a performance cost similar to that of the non-tabled SLD resolution. We use dynamic

DEDICATED TABLING FOR A PROBABILISTIC SETTING 129

programming to implement a top down traversal of the nested tries with loop detection.
While generating the formula, we want to preserve the prefix sharing present in the tries
and to exploit the suffix sharing. Dynamic programming enables the re-usage of completely
unfolded tries, while re-usage of partially unfolded tries can be realized by introducing an
ancestor subset check.

Starting from the nested trie of the original query, we reconstruct its proofs as a normal
trie by unfolding the nested tries, but we also establish suffix sharing. To unfold a reference
to another nested trie t(g), we replace in the partial trie the reference by the nested trie
itself. For each branch of the partial trie, we keep an ancestor list: initially it is empty
and each time we unfold a reference to a t(g), the g is added. In programs without loops, a
nested trie t(g) is unfolded only once, dynamic programming makes the other occurrences of
references to t(g) reuse the first unfolding and as such we now have tries with suffix sharing.

For programs with loops, we start from a finite representation of the infinite SLD-tree.
The ancestor list enables us to detect loops during unfolding. Loops typically give rise to
proofs that do not contribute to the final probability.

When unfolding detects a loop, we can prune the current proof: either because is a
failing proof or because it gives rise to non-minimal proofs. If pruning results in an empty
trie, which encodes failure, we can prune the parent branch. Figure 5 shows the nested
tries, that contain infinite loops, for the query of Example 3.1.

Figure 5: Nested tries of Example 3.1.

We have to be careful not to miss proofs because of the dynamic programming mem-
oization. During unfolding, a nested trie typically occurs in different proofs. Its position
in the SLD tree determines whether it gives rise to a loop or not. Consider t(p(3, 4)) of
Figure 5, suppose we first encounter its occurrence annotated with 1. The two proofs this
occurrence gives rise to, have loops and thus they are pruned. But, the second occurrence
annotated with 2 belongs to a proof without a loop.

The t(p(3, 4)) example shows that re-using results for nested tries that introduced loops,
is not safe as different occurrences might give rise to different proofs. Actually, it depends
on the context of the occurrence of the nested trie, in particular on the ancestor list of
the occurrence. In order to improve suffix sharing, we start from the following observation.
When two occurrences of a reference to a nested trie have exactly the same ancestor list, then
obviously the unfolding of the references will introduce exactly the same loops. Generally,
the occurrence of a goal will introduce at least the same loops as a previous occurrence,
when the ancestor list of the previous occurrence is a subset of the current ancestor list.

5. Experiments

Our tabling directly interacts with the first two execution steps of ProbLog, SLD-
resolution and ROBDD script generation. The third step is affected indirectly. It is well-
known that ROBDD packages use heuristics while constructing a ROBDD and that their
behaviour depends on the input, i.e. different inputs describing the same Boolean formula

130 T. MANTADELIS AND G. JANSSENS

Memory SLD/SLG ROBDD Script ROBDD Script
(Bytes) resolution generation execution

Day non-tab tab non-tab tab non-tab tab non-tab tab

1 352 912 0 0 0 0 5 5
2 1048 2148 0 0 0 0 5 5

13 184941472 15744 115400 2 2584 4 802 37
14 554824408 16980 380011 3 7938 4 2380 36

167 - 206088 - 25 - 89 - 9728
1600 - 1977276 - 262 - 3587 - -

Table 1: Results for the weather program.

can give rise to different results and/or execution times. We address the following questions:
(1) How does our tabling implementation perform both in time and in space for the SLD-
resolution? (2) How do the nested tries compare with their flatten equivalents during the
ROBDD script generation and the ROBDD script execution? (3) How do the nested tries
with loops perform and what are the effects of the ancestor subset check?

Our benchmarks represent two typical categories of problems. Our weather benchmark
is an example of a {Hidden} Markov Model (HMM). The value of the current time state
depends on the value of the previous time state. It is well known that time series problems,
when naively implemented, are of exponential complexity. Using tabling for this type of
problems we expect significant improvement as memoization reduces the complexity of the
problem’s SLD-resolution to linear. The size of the weather problem is determined by the
“Day” argument.

From the link discovery [4] applications, we took a graph benchmark, namely a number
of graphs from the biomine database [16]. This benchmark expresses connections between
various types of objects such as genes, proteins, tissues, etc and predicts relationships among
them. We use the program of Example 2.1 for the non-tabled version and the program of
Example 3.1 for the tabled version. For our experiments we used the first sample of graphs
and the queries of [4]. The size is determined by the number of edges of the graph and the
interconnectivity between the nodes. As these graphs are cyclic, loop handling is necessary.

All the experiments are done on an IntelR CoreTM2 Duo CPU at 3.00GHz with 2GB
of RAM memory running Ubuntu 8.04.2 Linux under a usual load. The reported times are
the averages of five runs from which we dropped the best and worst, and all times are in
milliseconds. For the SLD resolution and the ROBDD script generation, we used a time-
out of 1 hour, while for the ROBDD script execution we used a 1 minute time-out (for our
benchmarks most ROBDDs either will be built within one minute or run out of memory).

For weather, figure 6a shows that the SLD-resolution execution times of the non-tabled
version are exponential with respect to the “Day” argument, while the tabled version is
linear. Figure 6b shows the scaling of the SLD-resolution for queries that the non-tabled
version fails to compute, as it exceeds the available memory. In Table 1, we see that the
tabled version manages to compute “Day 167”, while the non-tabled version stops at “Day
14”. The tabled version is limited by the ROBDD script execution step that generates the
ROBDD using a state-of-the-art ROBDD tool. For weather, the tabled version outperforms
the non-tabled version in all stages including the ROBDD script execution. The memory
usage to represent the proofs goes from exponential to linear for the tabled version as shown
in Figure 6c. In Figure 6d we see the gain in memory is similar to the gain in time. This
can be explained by the suffix sharing in the nested tries.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 131

(a) SLD versus SLG resolution (b) SLG resolution

(c) SLD versus SLG resolution (d) SLG resolution

Figure 6: SLD/SLG-resolution times and memory consumption for the weather program.

In the graph benchmark, we study the benefits of tabling in combination with loop
handling. As shown in Figure 7a, the tabled version has a significant performance improve-
ment for the SLD-resolution. Figure 7b shows that increasing the number of edges in the
graph affects the SLG-resolution linearly. Table 2 displays the results of the graph bench-
mark. The effect of tabling on the memory usage is a bit different now. Using nested tries
for tabling favours suffix sharing rather than prefix sharing. It seems that in some graphs
prefix sharing is more important for memory compaction than suffix sharing. However,
in bigger graphs, the nested tries are again improving significantly memory consumption.
That the tabled version requires to construct the nested tries even for goals that fail or
succeed without probabilistic facts, introduces a significant minimum memory cost.

Unfortunately, we notice in Figure 7c that all the versions behave exponentially when
summing up the SLD/SLG-resolution times and the ROBDD script generation times. Fig-
ure 7d presents the times for generating the ROBDD scripts from the nested tries with loops
and the performance gain of the ancestor subset check. While the tabled version without
the ancestor subset check underperformed the non-tabled in total time, the version with
the ancestor subset check has significant performance gains in all cases.

6. Related Work

This paper investigates a dedicated form of tabling: memoization of all the proofs for
ground goals in nested tries. Our work is similar to the PRISM [15, 14] tabling mechanism,
as both mechanisms are restricted to grounded goals and both are memorising all the proofs.

132 T. MANTADELIS AND G. JANSSENS

(a) SLD versus SLG resolution (b) SLG resolution

(c) SLD/SLG-resolution & ROBBD script generation (d) ROBBD script generation

Figure 7: Graph program results.

Memory SLD/SLG ROBDD Script ROBDD Script
Edges (Kilobytes) resolution generation execution

n
on

-t
ab

ta
b

n
on

-t
ab

ta
b

n
on

-t
ab

ta
b

n
o-

an
c

n
on

-t
ab

ta
b

n
o-

an
c

800 < 1 192 19 17 0 22 37 3 3 4
1000 32 239 245 20 1 107 258 36 33 37
1200 3303 286 18928 25 28 1982 16844 119 214 196
1400 39020 333 255546 28 473 7832 335853 455 454 278
1600 - 380 - 33 - 145669 - - 26789 -
1800 - 426 - 37 - 1523948 - - - -

Table 2: Results for the graph program.

One could compare ProbLog’s nested tries with PRISM support graphs. The differences
are that PRISM assumes the exclusiveness condition for the proofs, while ProbLog does
not, and that ProbLog requires the handling of loops as it is intended for link discovery in
graphs. Another example of tabling that needs the memoization of proofs, is in the scope
of justification [6]. Note that tabling in justification keeps only one proof [10] instead of all
the proofs, and that it requires tabling of non-grounded goals. Finally, [7] proposes tabling
for another ProbLog inference method, namely Monte Carlo sampling.

DEDICATED TABLING FOR A PROBABILISTIC SETTING 133

7. Conclusions and Future Work

We successfully identified the requirements for a tabling mechanism for ProbLog and
we realized a light-weight implementation of such a mechanism. Our experiments have
shown that tabling is definitely beneficial for the SLD-resolution step, where the memory
and time consumption can go from exponential to linear. Nested tries establish prefix
and suffix sharing. We presented how loop handling can be performed using the nested
tries. Tabling also affects the next ROBDD related steps of ProbLog. For benchmarks
without loops, tabling further reduces the execution times, as these steps also benefit from
the compaction by the sharing. In the graph benchmark, we see that tabling improves the
overall performance of the system. While the improvement for SLD resolution is remarkable,
the work is partly transferred to the ROBDD script generation step. In the presence of loops,
the ancestor subset check is indispensable. We want to extend tabling for non-ground goals
and use tabling for approximate inference methods.

Acknowledgements: This research is supported by GOA/08/008 “Probabilistic Logic
Learning”.

References

[1] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Computers, 27(6):509–516, 1978.
[2] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers,

35(8):677–691, 1986.
[3] Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic programs. Journal

of the ACM, 43(1):20–74, 1996.
[4] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic prolog and its appli-

cation in link discovery. In Proceedings of IJCAI, pages 2462–2467, 2007.
[5] Edward Fredkin. Trie Memory. Communications of the ACM, 3:490–499, 1962.
[6] Hai-Feng Guo, C. R. Ramakrishnan, and I. V. Ramakrishnan. Speculative beats conservative justifica-

tion. In Proceedings of ICLP, pages 150–165, 2001.
[7] Angelika Kimmig, Bernd Gutmann, and Vı́tor Santos Costa. Trading memory for answers: Towards

tabling ProbLog. In Proceedings of SRL, 2009.
[8] Angelika Kimmig, Vı́tor Santos Costa, Ricardo Rocha, Bart Demoen, and Luc De Raedt. On the efficient

execution of ProbLog programs. In Proceedings of ICLP, pages 175–189, 2008.
[9] Theofrastos Mantadelis and Gerda Janssens. Tabling relevant parts of SLD proofs for ground goals in

a probabilistic setting. In Proceedings of CICLOPS, 2009.
[10] Giridhar Pemmasani, Hai-Feng Guo, Yifei Dong, C. R. Ramakrishnan, and I. V. Ramakrishnan. Online

justification for tabled logic programs. In LNCS: Logic Programming, pages 500–501, 2003.
[11] Prasad Rao, Konstantinos F. Sagonas, Terrance Swift, David S. Warren, and Juliana Freire. XSB: A

system for effciently computing wfs. In Proceedings of LPNMR, pages 431–441, 1997.
[12] Ricardo Rocha, Fernando Silva, and Vı́tor Santos Costa. A Tabling Engine for the Yap Prolog System.

In Proceedings of AGP, 2000.
[13] Taisuke Sato. A statistical learning method for logic programs with distribution semantics. In Proceed-

ings of ICLP, pages 715–729. MIT Press, 1995.
[14] Taisuke Sato and Yoshitaka Kameya. Parameter learning of logic programs for symbolic-statistical

modeling. JAIR, 15:391–454, 2001.
[15] Taisuke Sato and Yoshitaka Kameya. Statistical abduction with tabulation. In Computational Logic:

Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 567–587, 2002.
[16] Petteri Sevon, Lauri Eronen, Petteri Hintsanen, Kimmo Kulovesi, and Hannu Toivonen. Link discovery

in graphs derived from biological databases. In Proceedings of DILS, pages 35–49, 2006.
[17] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing,

8(3):410–421, 1979.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 134–143
http://www.floc-conference.org/ICLP-home.html

TIGHT SEMANTICS FOR LOGIC PROGRAMS

LUÍS MONIZ PEREIRA 1 AND ALEXANDRE MIGUEL PINTO 1

1 Centro de Inteligência Arti�cial (CENTRIA)
Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
E-mail address: lmp@di.fct.unl.pt

E-mail address: amp@di.fct.unl.pt

Abstract. We de�ne the Tight Semantics (TS), a new semantics for all NLPs complying
with the requirements of: 2-valued semantics; preserving the models of SM; guarantee of
model existence, even in face of Odd Loops Over Negation (OLONs) or in�nite chains;
relevance; cumulativity; and compliance with the Well-Founded Model.

When complete models are unnecessary, and top-down querying (à la Prolog) is desired,
TS provides the 2-valued option that guarantees model existence, as a result of its relevance
property. Top-down querying with abduction by need is rendered available too by TS. The
user need not pay the price of computing whole models, nor that of generating all possible
abductions, only to �lter irrelevant ones subsequently.

A TS model of a NLP P is any minimal model (MM) M of P that further satis�es
P̂�the program remainder of P�in that each loop in P̂ has a MM contained in M , whilst
respecting the constraints imposed by the MMs of the other loops so-constrained too.

The applications a�orded by TS are all those of Stable Models, which it generalizes,
plus those permitting to solve OLONs for model existence, plus those employing OLONs
for productively obtaining problem solutions, not just �ltering them (like Integrity Con-
straints).

1. Introduction and Motivation

The semantics of Stable Models (SM) [Gel88] is a cornerstone for some of the most
important results in logic programming of the past three decades, providing increased logic
programming declarativity and a new paradigm for program evaluation. When needing
to know the 2-valued truth-value of all literals in a normal logic program (NLP) for the
problem being solved, the solution is to produce complete models. In such cases, tools like
SModels [Syr01] or DLV [Leo02] may be adequate enough, as they can indeed compute �nite
complete models according to the SM semantics and its extensions to Answer Sets [Lif92]
and Disjunction. However, lack of some important properties of the base SM semantics, like
relevance, cumulativity and guarantee of model existence�enjoyed by, say, Well-Founded
Semantics [Gel91] (WFS)�somewhat reduces its applicability and practical ease of use
when complete models are unnecessary, and top-down querying (à la Prolog) would be
su�cient. In addition, abduction by need top-down querying is not an option with SM,

Key words and phrases: Normal Logic Programs, Relevance, Cumulativity, Stable Models, Well-Founded
Semantics, Program Remainder.

c© L. M. Pereira and A. M. Pinto
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.134

TIGHT SEMANTICS FOR LPS 135

creating encumbrance in required pre- and post-processing, because needless full abductive
models are generated. The user should not pay the price of computing whole models, nor
that of generating all possible abductions and then �ltering irrelevant ones, when not needed.
Finally, one would like to have available a semantics for that provides a model for every NLP.

WFS in turn does not produce 2-valued models though these are often desired, nor does
it guarantee 2-valued model existence.

To overcome these limitations, we present the Tight Semantics (TS), a new 2-valued
semantics for NLPs which guarantees model existence; preserves the models of SM; enjoys
relevance and cumulativity; and complies with the WFM. TS also deals with in�nite chains
[Fag94], pro�ering an alternative to SM-based Answer-Set Programming.

TS supersedes our previous RSM semantics [Per05], which we have recently found want-
ing in capturing our intuitively desired models in some examples, and because TS relies on
a clearer, simpler way of tackling the di�cult problem of assigning a semantics to every
NLP while a�ording the aforementioned properties, via adapting better known formal LP
methods than RSM's reductio ad absurdum stance.

A TM of an NLP P is any minimal model (MM) M of P that further satis�es P̂�the

program remainder of P�in that each loop in P̂ has a MM contained in M, whilst respecting
the constraints imposed by the MMs of the other loops so-constrained too.

A couple of examples bring out the need for a semantics supplying all NLPs with models,
and permitting models otherwise eliminated by Odd Loops Over default Negation (OLONs):

Example 1.1. Jurisprudential reasoning. A murder suspect not preventively detained
is likely to destroy evidence, and in that case the suspect shall be preventively detained:

likely_destroy_evidence(suspect) ← not preventive_detain(suspect)
preventive_detain(suspect) ← likely_destroy_evidence(suspect)

There is no SM, and a single TM = {preventive_detain(suspect)}. This jurispruden-
tial reasoning is carried out without need for a suspect to exist now. Should we wish, TS's
cumulativity allows adding the model literal as a fact.

Example 1.2. A joint vacation problem. Three friends are planning a joint vacation.
First friend says �I want to go to the mountains, but if that's not possible then I'd rather
go to the beach�. The second friend says �I want to go traveling, but if that's not possible
then I'd rather go to the mountains�. The third friend says �I want to go to the beach, but
if that's not possible then I'd rather go traveling�. However, traveling is only possible if the
passports are OK. They are OK if they are not expired, and they are expired if they are not
OK. We code this information as the NLP:

beach ← not mountain
mountain ← not travel
travel ← not beach, passport_ok
passport_ok ← not expired_passport
expired_passport ← not passport_ok

The �rst three rules contain an odd loop over default negation through beach,mountain,
and travel; and the rules for passport_ok and expired_passport form an even loop over
default negation. Henceforth we will abbreviate the atoms' names. This program has a
single SM: {e_p,m}. But looking at the rules relevant for p_ok we �nd no irrefutable
reason to assume e_p to be true. TS allows p_ok to be true, yielding three other models
besides the SM: TM1 = {b,m, p_ok}, TM2 = {b, t, p_ok}, and TM3 = {t,m, p_ok}.

136 L. M. PEREIRA AND A. M. PINTO

The even loop has two minimal models: {p_ok} and {e_p}. Assuming the �rst MM,
the odd loop has three MMs corresponding to TM1, TM2, and TM3 above. Assuming the
second MM (where e_p is true), the OLON has only one MM: the SM mentioned above
{e_p,m}, also a TM.

The applications a�orded by TS are all those of SM, plus those requiring solving OLONs
for model existence, and those where OLONs are employed for the production of solutions,
not just used as Integrity Constraints (ICs). Model existence is essential in applications
where knowledge sources are diverse (like in the semantic web), and where the bringing
together of such knowledge (automatically or not) can give rise to OLONs that would other-
wise prevent the resulting program from having a semantics, thereby brusquely terminating
the application. A similar situation can be brought about by self-, mutual- and external
updating of programs, where unforeseen OLONs would stop short an ongoing process. Cod-
ing of ICs via odd loops, commonly found in the literature, can readily be transposed to IC
coding in TS, as explained in the sequel.

Paper structure. After background notation and de�nitions, we usher in the desider-
ata for TS, and only then formally de�ne TS, exhibit examples, and prove its properties.
Conclusions, and future work close the paper.

2. Background Notation and De�nitions

De�nition 2.1. Normal Logic Program. A Normal Logic Program (NLP) P is a (possi-
bly in�nite) set of logic rules, each of the form H ← B1, . . . , Bn, not C1, . . . , not Cm where
H, the Bi and the Cj are atoms, and each rule stands for all its ground instances. H is the
head of the rule, denoted by head(r), and body(r) denotes set {B1, . . . , Bn, not C1, . . . , not Cm}
of all the literals in the body of r. heads(P) denotes {head(r) : r ∈ P}. Throughout, `not '
signals default negation. Abusing notation, we write not S to denote {not s : s ∈ S}. If the
body of a rule is empty, we say its head is a fact and may write the rule just as H.

Throughout too, we consider MMs of programs, and write MMP (M) to denote M is a
minimal model of P . When both MMP (M) and M ⊆ heads(P) hold, then MN denotes the
union ofM with the negations of heads of P absent inM ; i.e.,MN = M∪not (heads(P)\M).
We dub MN a completed minimal model of P .

De�nition 2.2. Rule dependencies. Given an NLP P build a dependency graph G(P)
such that the rules of P are the nodes of G(P), and there is an arc, labeled �positive�,
from a node r2 to a node r1 if head(r2) appears in the body of r1; or labeled �negative� if
not head(r2) appears in the body of r1.

We say a rule r1 directly depends on r2 (written as r1 ← r2) i� there is a direct arc in
G(P) from r2 to r1. By transitive closure we say r1 depends on r2 (r1 � r2) i� there is a
path in G(P) from r2 to r1.

Dependencies through default negation play a major role in the sequel and so we also
need to de�ne the following: we say a rule r1 directly depends negatively on r2 (written
as r1 ← −r2) i� not head(r2) appears in the body of r1. By transitive closure we say r1
depends negatively on r2 (r1 � −r2) i� r1 directly depends negatively on r2 or r1 depends
on some r3 which directly depends negatively on r2.

TIGHT SEMANTICS FOR LPS 137

De�nition 2.3. RelP (a) � Relevant part of NLP P for the positive literal a. The
Relevant part of a NLP P for some positive literal a, RelP (a) is de�ned as

RelP (a) =
⋃
{r, r′ ∈ P : r � r′ ∧ head(r) = a}

Intuitively, RelP (a) is just the set of rules with head a and the rules in the call-graph
for a.

De�nition 2.4. Loop in P . We say a subset PL of rules of P is a loop i� for every
two rules r1 and r2 in PL there is a path from r1 to r2 in G(P) and vice-versa. I.e.,
∀r1,r2∈PL

r1 � r2 ∧ r2 � r1. We write Loop(PL) to denote that PL is a Loop.

De�nition 2.5. Program Remainder [Bra01]. The program remainder P̂ is guaranteed
to exist for every NLP, and is computed by applying to P the positive reduction (which
deletes the not b from the bodies of rules where b has no rules), the negative reduction

(which deletes rules that depend on not a where a is a fact), the success (which deletes
facts from the bodies of rules), and the failure (which deletes rules that depend on atoms
without rules) transformations, and then eliminating also the unfounded sets [Gel91] via a
loop detection transformation. The loop detection is computationally equivalent to �nding
the strongly connected components [Tar72] in the G(P) graph, as per de�nition 2.2, and is
known to be of polynomial time complexity.

De�nition 2.6. Program Division. Let P be an NLP and I ⊆ heads(P)∪not heads(P)
a consistent interpretation of P . P : I denotes the subset of P remaining after performing
this sequence of steps:

(1) delete rules with not a in the body where a ∈ I � similar to negative reduction
(2) delete all a in the bodies of rules where a ∈ I � similar to success
(3) delete all not a in the bodies of rules where not a ∈ I

The rationale behind program division is to obtain the subset of P remaining after
considering all literals in I true. Step 1 eliminates the rules of P which are already satis�ed
(in a classical way) by the literals in I. Step 2 is similar to success but deletes all positive
literals a from the bodies of rules where a ∈ I. Step 3 is a negative counterpart of step 2;
one could dub it negative success. Thus, steps 2 and 3 are slightly more credulous that the
original success.

3. Desiderata

Intuitively desired semantics. Usually, both the default negation not and the← in rules
of Logic Programs re�ect some asymmetry in the intended MMs, e.g., in a program with
just the rule a ← not b, although it has two MMs: {a}, and {b}, the only intended one
is {a}. This is a�orded by the syntactic asymmetry of the rule, re�ected in the one-way
direction of the ←, coupled with the intended semantics of default negation. Thus, a fair
principle underlying the rationale of a reasonable semantics would be to accept an atom in
a model only if there exist rules in a program, at least one, with it as head. This principle
rejects {b} as a model of program a← not b.

When rules form loops, the syntactic asymmetry disappears and, as far as the loop only
is concerned, MMs can re�ect the intended semantics of the loop. That is the case, e.g.,
when we have just the rules a ← not b and b ← not a; both {a} and {b} are the intended

138 L. M. PEREIRA AND A. M. PINTO

models. However, loops may also depend on other literals with which they form no loop.
Those asymmetric dependencies should have the same semantics as the single a ← not b
rule case described previously.

So, on the one side, asymmetric dependencies should have the semantics of a single
a← not b rule; and the symmetric dependencies (of any loop) should subscribe to the same
MMs semantics as the a ← not b and b ← not a set of rules. Intuitively, a good semantics
should cater for both the symmetric and asymmetric dependencies as described.

Desirable formal properties. By design, our TS bene�ts from number of desirable prop-
erties of LP semantics [Dix95], namely: guarantee of model existence; relevance; and cu-
mulativity. We recapitulate them here for self-containment. Guarantee of model existence
ensures all programs have a semantics. Relevance permits simple (object-level) top-down
querying about truth of a query in some model (like in Prolog) without requiring production
of a whole model, just the part of it supporting the call-graph rooted on the query. Formally:

De�nition 3.1. Relevance. A semantics Sem for logic programs is said Relevant i� for
every program P , a ∈ Sem(P)⇔ a ∈ Sem(RelP (a)).

Relevance ensures any partial model supporting the query's truth can always be ex-
tended to a complete model; relevance is of the essence to abduction by need, in that only
abducibles in the call-graph need be considered for abduction.

Cumulativity signi�es atoms true in the semantics can be added as facts without thereby
changing it; thus, lemmas can be stored. Formally:

De�nition 3.2. Cumulativity. A semantics Sem is Cumulative i� the semantics of P
remains unchanged when any atom true in the semantics is added to P as a fact:

Cumulative(Sem)⇔ ∀P∀a,b_a ∈ Sem(P) ∧ b ∈ Sem(P)⇒ a ∈ Sem(P ∪ {b})

Neither of these three properties are enjoyed by SMs, the de facto standard semantics
for NLPs. The core reason SM semantics fails to guarantee model existence for every NLP
is that the stability condition it imposes on models is impossible to be complied with by
OLONs.

Example 3.3. Stable Models semantics misses Relevance and Cumulativity.

c← not c c← not a
a← not b b← not a

This program's unique SM is {b, c}. However, P ∪ {c} has two SMs {a, c}, and {b, c}
rendering b no longer true in the SM semantics, which is the intersection of its models. SM
semantics lacks Cumulativity. Also, though b is true in P according to SM semantics, b is
not true in RelP (b) = {a← not b; b← not a}, shows SM semantics lacks Relevance.

In fact, the ASP community uses the SM semantics inability to assign a model to OLONs
as a means to impose ICs, such as a← not a,X, where the OLON over a prevents X from
being true in any model.

TS goes beyond the SM standard, not just because in complying with all the above
3 properties, but also in being a model conservative extension of the SMs semantics, in
this sense: A semantics is a model conservative extension of another when it provides at
least the same models as the latter, for programs where the latter's are de�ned, and further
provides semantics to programs for which the latter's are not de�ned. Another way of
couching this is: new desired models are provided which the semantics being extended

TIGHT SEMANTICS FOR LPS 139

was failing to produce, but all the latter's produced ones are nevertheless provided by the
model-conservative extension.

While encompassing the above properties, TS still respects the Well-Founded Model
(WFM) like SM does: every TS model complies with the true and the false atoms in the
WFM of a program. Formally:

De�nition 3.4. Well-Founded Model of a Normal Logic Program P . Following
[Bra01], the true atoms of the WFM of P (the irrefutably true atoms of P) are the facts

of P̂ , the remainder of P (their de�nition 5.17). Moreover, the true or unde�ned literals of

P are just the heads of rules of P̂ ; and the computation of P̂ can be done in polynomial

time. Thus, we shall write WFM+(P) to denote the set of facts of P̂ , and WFM+u(P) to

denote the set of heads of rules of P̂ . Also, since the false atoms in the WFM of P are just

the atoms of P with no rules in P̂ , we write WFM−(P) to denote those false atoms.

De�nition 3.5. Interpretation M of P respects the WFM of P . An interpretation
M respects the WFM of P i� M contains the set of all the true atoms of the WFM of P ,
and it contains no false atoms of the WFM of P . Formally:

RespectWFMP (M)⇔WFM+(P) ⊆M ⊆WFM+u(P)

TS's WFM compliance, besides keeping with SM's compliance (i.e. the WFM approx-
imates the SM), is important to TS for a speci�c implementation reason too. Since WFS
enjoys relevance and polynomial complexity, one can use it to obtain top-down�in present
day tabled implementations�the residual or remainder program that expresses the WFM,
and then apply TS to garner its 2-valued models, foregoing the need to generate complete
models.

For program a← not a, the only Tight Model (TM) is {a}. In the TS, OLONs are not
ICs. ICs are enforced employing rules for the special atom falsum, of the form falsum← X,
where X is the body of the IC one wishes to prevent being true. This does not preclude
falsum from �guring in some models. From a theoretical standpoint it means the TS
semantics does not a priori include a built-in IC compliance mechanism. ICs can be dealt
with in two ways, either by (1) a syntactic post-processing step, as a model �test stage� after
their �generate stage�; or by (2) embedding IC compliance in the query-driven computation,
whereby the user conjoins query goals with not falsum. If inconsistency examination is
desired, like in case (1), models including falsum can be discarded a posteriori. Thus,
TS clearly separates OLON semantics from IC compliance, and frees OLONs for a wider
knowledge representation usage.

4. Tight Semantics

The rationale behind tightness follows the intuitively desired semantics principles de-

scribed in section 3. On the one side any TM M is necessarily an MM of P̂ which guarantees
that no atoms with no rules are in M . This is in accordance with the principle of intuitively
desired semantics for asymmetric dependencies, and is also what guarantees that TMs re-
spect the WFM, as proved in the sequel. On the other side, implementing the intuitively
desired semantics for symmetric dependencies, the TS imposes each TM to have the internal
loop congruency of tightness: the semantics for each loop is its MMs, as long as a chosen
MM for it is compatible (via program division) with the model for the whole program, while
the rest ML of the original model M is itself Tight.

140 L. M. PEREIRA AND A. M. PINTO

De�nition 4.1. Tight Model. Let P be an NLP, and M a minimal model of P̂ , such

that MN is a completed minimal model of P . Let P̂L denote a Loop(P̂L) strictly contained

in P̂ ; and given MM
P̂L

(ML), let ML denote (M \ML) ∪ {ML ∩ heads(P : MLN
)}. We say

M is tight in P � TightP (M) � i�

∃P̂L ⇒ ∃ML : MLN
⊆MN ∧ TightP :MLN

(ML)

The Tight Semantics of P � TS(P) � is the intersection of all its Tight Models.

Example 4.2. Mixed loops 1. Let P be

a← k k ← not t t← a, b
a← not b b← not a

P̂ coincides with P , so its MMs are M1 = {a, k} with M1N = {a, not b, k, not t}; M2 = {a, t}
with M2N = {a, not b, not k, t}; and M3 = {b, t} with M3N = {not a, b, not k, t}. Of these,
only M1N and M3N are Tight. M1 in particular is also an SM. To see that M2N is not
Tight notice that there are three loops in P : PL1 = {a ← not b; b ← not a}, PL2 = {a ←
k; k ← not t; t ← a, b}, PL3 = {a ← k; k ← not t; t ← a, b; b ← not a}. The MMs of
PL1 are ML11 = {a} with ML11N = {a, not b}, and ML12 = {b} with ML12N = {not a, b}.
Dividing P by ML11N we get P : ML11N = {a ← k; k ← not t; t ← b}. ML11

is now

({a, t} \ {a})∪ {{a} ∩ heads({a← k; k ← not t; t← b})} = {t} ∪ {a} = {a, t}. But {a, t} is
not Tight in P : ML11N since it is not even an MM of it.

Example 4.3. Di�erence between TS and RSM semantics. Let P be

a← not b, c
b← not c, not a
c← not a, b

TS accepts both M1 = {a} and M2 = {b, c} as TMs, whereas the RSM semantics [Per05]
only accepts M1. Neither are SMs.

Example 4.4. Mixed loops 2. Let P be

a← not b
b← not c, e
c← not a
e← not e, a

In this case, TS, like the RSM semantics, accepts all minimal models: M1 = {a, b, e},
M2 = {a, c, e}, and M3 = {b, c}.

Example 4.5. Quasi-Strati�ed Program. Let P be

d← not c
c← not b
b← not a
a← not a

The unique TS is {a, c}, and there are no SMs. In this case it is quite easy to see how
the Tightness works: {a} is necessarily the unique MM of a ← not a. Dividing the whole
program by {a} we get {d ← not c; c ← not b}. Its unique TM is {c} providing the global
model {a, c} together with the {a} model for a← not a.

TIGHT SEMANTICS FOR LPS 141

5. Properties of the Tight Semantics

Forthwith, we prove some properties of TS, namely: guarantee of model existence,
relevance, cumulativity, model-conservative extension of SMs, and respect for the Well-
Founded Model. The de�nitions involved are to be found in section 3.

Theorem 5.1. Existence. Every Normal Logic Program has a Tight Model.

Proof. Let P be an NLP. P̂ is guaranteed to exist. So are MMs of any given NLP, in

particular, for P̂ too. If P̂ has no loops, then every MM of P̂ is trivially Tight. In particular,

if P̂ has no loops it means P̂ is strati�ed and the unique TM is its unique MM.

Consider now P̂ has loops, and that PL is any such loop in P̂ . Assume P̂ has no TMs.
In this case, for every PL there is no ML ⊆ MLN

such that TightP :MLN
(ML) holds. Since

for every PL it is always possible to compute an ML and its respective MLN
, the tightness

condition must fail because TightP :MLN
(ML) fails. But any PL which does not depend on

any other rule outside PL is una�ected by any program division P : ML′N
where ML′ is

an MM of some other PL′ . Hence the hypothetical failure of tightness in holding of ML in
P : MLN

must be because all MLs of all PL are not Tight in some PL′′′ = PL′′ ∪ PL such
that PL depends on PL′′ and vice-versa. I.e., for all ML of PL, TightPL′′′ :MLN

(ML) must not

hold. Since it is always possible to compute ML = (M \ML) ∪ {ML ∩ heads(PL′′′ : MLN
)}

it must be the case that for every ML′′ of each PL′′ , ML′′ ∪ML is not a consistent MM of
PL′′ ∪ PL, which is an absurdity because consistent MMs of any given program are always
guaranteed to exist.

Theorem 5.2. Relevance of Tight Semantics. The Tight Semantics is relevant.

Proof. According to de�nition 3.1 a semantics Sem is relevant i� a ∈ Sem(P) ⇔ a ∈
Sem(RelP (a)) for all atoms a. Since the TS of a program P � TS(P) � is the intersection
of all its TMs, relevance becomes a ∈ TS(P)⇔ a ∈ TS(RelP (a)) for TS.
⇒: We assume a ∈ TS(P), so we can take any M such that TMP (M) holds, and

conclude a ∈ M . Assuming, by contradiction, that a /∈ TS(RelP (a)) then there is at least
one TM of RelP (a) where a is false. Let us write Ma to denote such TM of RelP (a) where

a /∈ Ma. Since all TMs of P are MMs of P̂ we have two possibilities: 1) a is a fact in P̂
� in this case there is a rule (a fact) for a and hence this fact rule is in RelP (a) forcing

a ∈Ma; 2) a is not a fact in P̂ � by de�nition of TM a can be in M only if a is the head of
a rule and there is some MM ML ⊆ M of a loop PL ⊆ P such that a ∈ ML. Since a must
be the head of a rule in loop, that loop is, by de�nition, in RelP (a). Since M is Tight in P ,
by de�nition so must be each and every of its subset MMs of loops; i.e., a ∈Ma.
⇐: Assume a ∈ TS(RelP (a)). Take the whole P ⊇ RelP (a). Again, a will be in every

TM of P because a is in all TMs of RelP (a), and, by de�nition, every TM of P always
contains one TM of RelP (a).

Theorem 5.3. Cumulativity of Tight Semantics. The Tight Semantics is cumulative.

Proof. By de�nition 4.1, the semantics of a program P is the intersection of its TMs. So,
a ∈ TS(P) ⇔ ∀TMP (M)a ∈ M . For the TS semantics cumulativity becomes expressed by
∀a,b(a ∈ TS(P) ∧ b ∈ TS(P))⇒ a ∈ TS(P ∪ {b})

Let us assume a ∈ TS(P) ∧ b ∈ TS(P). Since both a ∈ TS(P) and b ∈ TS(P), we
know that whichever TM M and ML ⊆M such that a ∈ML, b ∈ TS(P : MLN

) holds; and
in that case P : MLN

= (P ∪ {a}) : MLN
. Hence, b ∈ TS(P ∪ {a}).

142 L. M. PEREIRA AND A. M. PINTO

Theorem 5.4. Stable Models Extension. Any Stable Model is a TM of P .

Proof. Assume M is a SM of P . Then M = least(P/M) where the division P/M deletes
all rules with not a in the body where a ∈M , and then deletes all remaining not b from the
bodies of rules. The program division P : M performs exactly the same step as the P/M
one, but then only deletes the not b such that not b ∈ MN . Moreover, the P/M division is
performed using the whole M at once, whilst the P : M considers not the whole M but only
partial MLN

s of M . Tightness requires consistency amongst the several individual MLN
s

whilst the M = least(P/M) stability condition requires consistency throughout the whole
M . We can thus say the division P/M performs all the steps the P : M division does, and
then some. In this sense the M = least(P/M) stability condition demands from M all that
Tightness does and even more. Hence, a model passing the stability condition is bound to
be also a TM.

Theorem 5.5. Tight Semantics respects the Well-Founded Model. Every Tight

Model of P respects the Well-Founded Model of P � ∀M :TMP (M)RespectWFMP (M).

Proof. Take any TM M of P . Since all TMs are MMs of P̂ , M must contain all the facts of

P̂ , i.e., M ⊇WFM+(P). Also MMs of P̂ are bound to be a subset of the heads of rules of

P̂ , hence M ⊆WFM+u(P).

Due to lack of space, the complexity analysis of this semantics is left out of this paper.
Nonetheless, a brief note is due. Tight Model existence is guaranteed for every NLP, whereas
�nding if there are any SMs for an NLP is NP-complete. Since TS enjoys relevance, the
computational scope of Brave Reasoning can be restricted to RelP (a) only, instead of the
whole P . Nonetheless, we conjecture that Brave reasoning � �nding if there is any model
of the program where some atom a is true � is a Σ2

P -hard task. This is so because each
relevant branch in the call-graph can be a loop. Traversing the entire call-graph is in itself
an NP-complete task. For each loop, the TS requires the computation of a minimal model
� another NP-complete task. Hence the conjectured Σ2

P -hardness. Still, from a practical
standpoint, having to traverse only the relevant call-graph for brave reasoning, instead of
considering the whole program, can have a signi�cant impact in the performance of concrete
applications. By the same token, cautious reasoning (�nding out if some atom a is in all
models) in the TS should have the complementary complexity of brave reasoning: co-Σ2

P -
complete.

One common objection to these kind of semantics concerns the notion of support. Tight
models are not supported, considering the classical notion of support. However, we abide
by a more general notion of support: an atom is supported i� there is at least one rule with
it as head and all the literals in the body of the rule which do not depend on the head are
also true. This loop support is a generalization of the classical support. This ensures the
truth assignment to atoms in, say, a loop L2 which depends asymmetrically on loop L1, is
consistent with the truth assignments in loop L1 and that these take precedence over L2 in
their truth labeling. As a consequence of the loop support requirement, Tight model comply
with the WFM of the loops they asymmetrically depend on.

TIGHT SEMANTICS FOR LPS 143

6. Conclusions, Future and Ongoing Topics, and Similar Work

Having de�ned a more general 2-valued semantics for LPs much remains in store, and
to be explored and reported, in the way of properties, complexity, comparisons, implemen-
tation, and applications. We hope the concepts and techniques newly introduced here might
be adopted by other logic programming semantics approaches and systems.

We de�ned TS, a semantics for all NLPs complying with the express requirements of:
2-valued semantics, preserving the models of SM, guarantee of model existence (even in face
of odd loops over negation or in�nite chains), relevance, cumulativity, and WFM respect.

Relevancy condones top-down querying and avoids the need to compute whole models. It
also permits abduction by need, avoiding much useless consideration of irrelevant abducibles.

That TS includes the SM semantics and that it always exists and admits top-down
querying is a novelty making us look anew at 2-valued semantics use in KRR, contrasting
its use to other semantics employed heretofore for KRR, even though SM has already been
compared often enough [Bar03].

A current avenue of further work already being taken follows the line of thought we
laid out in [Per09] by partitioning an NLP into layers, a generalization of strata, to further
segment the program and thus reduce the combinatorics of the Tightness test. Although not
reducing the theoretical complexity class of the Tightness test, in practical implementations
the syntactical partitioning of layering can have a substantial impact on performance.

References

[Bar03] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-
versity Press, 2003.

[Bra01] S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up computation of the
well-founded model. TPLP, 1(5):497�538, 2001.

[Dix95] J. Dix. A Classi�cation-Theory of Semantics of Normal Logic Programs: I, II. Fundamenta Infor-
maticae, XXII(3):227�255, 257�288, 1995.

[Fag94] F. Fages. Consistency of Clark's completion and existence of stable models. Methods of Logic in
Computer Science, 1:51�60, 1994.

[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP, pp.
1070�1080. MIT Press, 1988.

[Gel91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.
J. of ACM, 38(3):620�650, 1991.

[Leo02] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7:499�562, 2002.

[Lif92] Vladimir Lifschitz and Thomas Y. C. Woo. Answer sets in general nonmonotonic reasoning (pre-
liminary report). In KR, pp. 603�614. 1992.

[Per05] L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In G. Dias
et al. (ed.), Progress in AI, LNCS, vol. 3808, pp. 29�42. Springer, 2005.

[Per09] L. M. Pereira and A. M. Pinto. Layer supported models of logic programs. In E. Erdem, F. Lin,
and T. Schaub (eds.), Procs. 10th LPNMR, LNAI, vol. 5753, pp. 450�456. Springer, 2009.
URL http://centria.di.fct.unl.pt/\simlmp/publications/online-papers/LSMs.

pdf(longversion)

[Syr01] Tommi Syrjänen and Ilkka Niemelä. The smodels system. In T. Eiter et al. (ed.), LPNMR 2001,
LNAI, vol. 2173. Springer-Verlag, 2001.

[Tar72] R. Tarjan. Depth-�rst search and linear graph algorithms. SIAM J. Computing, 1(2):146�160, 1972.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 144–153
http://www.floc-conference.org/ICLP-home.html

FROM RELATIONAL SPECIFICATIONS

TO LOGIC PROGRAMS

JOSEPH P. NEAR 1

1 Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
32 Vassar St. Cambridge, MA, USA

Abstract. This paper presents a compiler from expressive, relational specifications to
logic programs. Specifically, the compiler translates the Imperative Alloy specification
language to Prolog. Imperative Alloy is a declarative, relational specification language
based on first-order logic and extended with imperative constructs; Alloy specifications are
traditionally not executable. In spite of this theoretical limitation, the compiler produces
useful prototype implementations for many specifications.

1. Introduction

This paper presents a compiler from declarative, relational specifications to Prolog
programs, eliminating the need for manual implementation. I express specifications in Im-
perative Alloy [28], a language based on the combination of first-order logic with transitive
closure and the standard imperative programming constructs. My compiler transforms
these specifications to Prolog for execution. Prolog represents an appropriate target lan-
guage, since it supports nondeterminism and provides a database for storing global relations;
the compiler uses these features to simulate Alloy’s relational operators, quantifiers, and
classical negation.

The existing Alloy Analyzer is designed for the verification and animation of specifi-
cations. My compiler is intended to complement the Analyzer by executing specifications.
Animators perform their analyses within a fixed universe of predetermined size, while ex-
ecution engines allow the creation of new objects. In practice, animators typically deal
with models containing tens of objects, while execution engines must handle hundreds or
thousands. In this case, this increased scalability comes at the cost of analysis: the Alloy
Analyzer is designed to check all cases within a small bound, while my compiler executes a
single, potentially large, case. In exchange, the compiler provides efficiency: most specifi-
cations can be executed fast enough to serve as prototype implementations.

Along with the Alloy Analyzer, my compiler provides end-to-end support for speci-
fying and implementing programs. The Alloy language provides the expressive logic and
relational constructs needed to express complex properties of programs and data; the An-
alyzer supports the animation and verification of program specifications; and the compiler
presented in this paper allows for the efficient execution of those specifications.

Key words and phrases: logic programming, specification languages, executable specifications.

c© J.P. Near
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.144

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 145

2. The Alloy Language

Alloy [16] is a modeling language based on first-order relational logic with transitive
closure. It is designed to be simple but expressive, and to be amenable to automatic
analysis. Imperative Alloy [28] adds imperative constructs, including assignment to global
relations, sequential composition, and loops. The Alloy Analyzer is a tool for automatic
analysis of Alloy models. While this analysis is bounded, it does allow for incremental,
agile development of models; and the small-scope hypothesis [4]—which claims that most
inconsistent models have counterexamples within small bounds—means that modelers may
have high confidence in the results. The sacrifice of completeness in favor of automation is
in line with the lightweight formal methods philosophy [17].

Alloy’s universe is made up of uninterpreted atoms, each of which belongs to one of
the disjoint sets defined using signatures. Signatures also may define global relations in the
form of fields. As an example, consider a filesystem made up of file and directory nodes.

sig Data {}
abstract sig INode {}
sig DirNode extends INode { files: Name →INode }
sig FileNode extends INode { data: dynamic Data }

Directory and file nodes extend nodes, which are abstract, meaning that the file and direc-
tory nodes exhaustively partition the set of nodes. The “ files ” relation contains 3-tuples of
type DirNode→Name→INode, while “data” is a mutable relation of type FileNode→Data.
A representation of path names as linked lists of names can be defined similarly.

sig Name {}
abstract sig FilePath { name: Name }
sig DirName extends FilePath { dnext: FilePath }
sig FileName extends FilePath {}

Given a path name and a filesystem, a logical operation is to navigate through the
filesystem to the node corresponding to the path name. I define a single step of this
operation as an action in Imperative Alloy, using a singleton signature with mutable fields
to hold pointers into the path name and the filesystem, as well as some temporary data.

one sig MVar {
path: dynamic FilePath, current: dynamic INode, mdata: dynamic Data

}
action navigate {

MVar.path := MVar.path.dnext;

MVar.current := (MVar.path.name).(MVar.current.files) }
In defining navigation, I have used both imperative (field update and sequencing) and
declarative (Alloy’s generalized relational join) features of the language. Now, I can define
reading from and writing to the filesystem by repeating “navigate” until the file node is
reached and then either reading to or writing from the temporary storage.

action read {
loop { navigate[] } && after MVar.current in FileNode;

MVar.mdata := MVar.current.data

}

146 J.P. NEAR

action write {
loop { navigate[] } && after MVar.current in FileNode;

let file = MVar.current | file .data := MVar.mdata

}
Given both actions, the user might wish to verify that writing to the filesystem and

then reading from it produces the written data. I can define this property as an assertion
to be checked by the Alloy Analyzer. In addition to the first-order quantifiers “some” and
“no,” I use the temporal quantifier “always” to indicate that the property must hold in
all possible executions of the action. I use “before” and “after” to represent pre- and
post-conditions on the action. The overall property states that for all starting nodes in the
filesystem, it is always the case that if I begin at that node and write to the filesystem,
remember the written data, reset the current node, and read from the filesystem, then the
read data will match the remembered data.

one sig Temp { tdata: dynamic Data }
assert readMatchesPriorWrite {
all n: INode |
always |
before (MVar.current = n && no f: FileNode | f.data = MVar.mdata) &&

write; Temp.tdata := MVar.mdata, MVar.current := n;

read ⇒ after (Temp.tdata = MVar.mdata) }
For more information on Alloy, refer to [16]; for more on Imperative Alloy, see [28].

3. Compiling Alloy Specifications

Any execution strategy for the Alloy language must allow relations as first-class val-
ues, nondeterminism, imperative constructs, and both relational and logical operators. I
begin with Alloy’s global relations, whose representation as dynamic predicates in Prolog
I demonstrate using the filesystem from Section 2. For each signature, I generate a unary
predicate representing membership in the signature and a predicate for each relation. I
represent the existence of a single atom in each singleton signature by generating a fact.

:- dynamic sigName/1, sigFilePath/1, sigDirName/1, sigFileName/1,

sigINode/1, sigDirNode/1, sigRootNode/1, sigFileNode/1,

sigData/1, sigMVar/1, data/3, path/3, current/3,

mdata/3, name/2, dnext/2, files/3.

sigRootNode(gensym62).

sigMVar(gensym63).

Relational values in Alloy may be thought of as sets of tuples. In Prolog, I can represent
each tuple using a term; to represent the set of tuples in a relation, an expression may yield
multiple instantiations of that term—one for each tuple in the Alloy relation. For example,
I compile the expression representing the next element in a path as follows.

MVar.path.dnext → sigMVar(MVar), path(T0, MVar, Path),

dnext(Path, O)

The Prolog expression yields values by instantiating a member of the “MVar” signature,
looking up a Path in the field of that “MVar,” and then instantiating the free variable O

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 147

based on the next element of that path. The other relational operators can similarly be
compiled into expressions involving Prolog’s logical connectives.

I compile formulas involving relations to comparisons between their possible instan-
tiations: r1 ⊆ r2, for example, assuming that r1 and r2 are binary relations, becomes
forall(r1(A,B), r2(A,B)). Another option is to enumerate each relation’s tuples explic-
itly (e.g. in a list or in the global database); this strategy may make lookup faster, but it
forces the enumeration of the relational value of each subexpression, making the complex
use of relational operators expensive.

Imperative Alloy also differs from Prolog in its imperative constructs: field update,
sequential composition, and loops are notions built into the language. Sequencing and
looping are easy to simulate in Prolog, and side effects can be expressed using assert

and retract. Since Imperative Alloy’s semantics call for side effects to interact well with
nondeterminism, I have defined assertl to assert a list of terms, and then retract them
upon backtracking, allowing side effects to be undone.

The combination of lazy evaluation and side effects means that a relation’s value may
depend on the value another relation had in the past. My prototype implementation there-
fore keeps track of the history of each global relation by adding an argument to each relation
representing a time-step; the compiler passes the current time-step to called relations to in-
stantiate the call’s other arguments with the relation’s value at that time-step. The “addr”
relation, for example, has the type Time→Name→Addr, so I compile a reference to it to
addr(T, N, A), placing the time argument in the first position because most Prolog sys-
tems index on that argument. Parts of a relation’s history upon which no “current” values
depend may be eliminated in a process analogous to garbage collection.

This infrastructure makes compiling field assignments straightforward. I translate an
update of the form o.f := e by compiling e at the current time-step, then using assertl

to update the global relation f . The first two arguments to f in the update are the next
time-step and o; the remaining arguments are the free variables of the result of compiling e,
and the body is the expression to which e compiles. I compile the full action for navigating
the filesystem, for example, into a Prolog predicate as follows.

action navigate {
MVar.path := MVar.path.dnext;

MVar.current := (MVar.path.name).(MVar.current.files)

}
→
navigate(T0, T1) :-

T2 is T0 + 1, sigMVar(Mv),

assertl([((path(T2, Mv, Path) :- sigMVar(Mv2), path(T0, Mv2, Var3), dnext(Var3, Path))),

((data(T2, Var6, Var7) :- data(T0, Var6, Var7))),

((current(T2, Var8, Var9) :- current(T0, Var8, Var9))),

((mdata(T2, Var10, Var11) :- mdata(T0, Var10, Var11)))]),

T1 is T2 + 1, sigMVar(Mv3),

assertl([((current(T1, Mv3, Var22) :-

sigMVar(Mv4), path(T2, Mv4, Var15), name(Var15, Var21),

sigMVar(Mv5), current(T2, Mv5, Var20), files(Var20, Var21, Var22))),

((data(T1, Var24, Var25) :- data(T2, Var24, Var25))),

((path(T1, Var26, Var27) :- path(T2, Var26, Var27))),

((mdata(T1, Var28, Var29) :- mdata(T2, Var28, Var29)))]).

148 J.P. NEAR

I compile each update in the navigation action to a call to assertl in Prolog and sequence
them using conjunction. In both cases, the update itself is the first element in the list passed
to assertl, and I form it by compiling the expression on the update action’s right-hand
side, then placing the result in the body of a rule defining the relation specified on the
assignment’s left-hand side. I also increment the current time-step so that the updated rule
will be the sole definition of the relation at that time-step. The other elements passed to
assertl represent the frame condition: in this new time-step, the other mutable relations
do not change, so I generate rules to delegate these relations to their previous definitions.

I compile the action for reading from the filesystem in a similar way, except for its loop
and declarative post-condition. I compile loops to nondeterministic repetition of an action,
which I implement using the loop predicate. The post-condition checks that the current
node is a file using the subset operator; in Prolog, this requires checking that the right-hand
side of the “in” formula succeeds for every possible instantiation of the left-hand side.

action read {
loop { navigate[] } && after MVar.current in FileNode;

MVar.mdata := MVar.current.data

}
→
read(T3, T4) :-

loop(T3, T5, navigate, []),

forall((sigMVar(Mv), current(T5, Mv, Var33)), sigFileNode(Var33)),

T4 is T5 + 1, sigMVar(Var39),

assertl([((mdata(T4, Var39, Var38) :-

sigMVar(Var35), current(T5, Var35, Var37), data(T5, Var37, Var38))),

((data(T4, Var40, Var41) :- data(T5, Var40, Var41))),

((path(T4, Var42, Var43) :- path(T5, Var42, Var43))),

((current(T4, Var44, Var45) :- current(T5, Var44, Var45)))]).

Finally, I compile the action for writing to the filesystem. Except for the “let” formula, it
is nearly identical to that for reading.

action write {
loop { navigate[] } && after MVar.current in FileNode;

let file = MVar.current | file .data := MVar.mdata

}
→
write(T6, T7) :-

loop(T6, T8, navigate, []),

forall((sigMVar(Var47), current(T8, Var47, Var49)), sigFileNode(Var49)),

sigMVar(Var51), current(T8, Var51, File), T7 is T8 + 1,

assertl([((data(T7, File, Var55) :- sigMVar(Var54), mdata(T8, Var54, Var55))),

((path(T7, Var56, Var57) :- path(T8, Var56, Var57))),

((current(T7, Var58, Var59) :- current(T8, Var58, Var59))),

((mdata(T7, Var60, Var61) :- mdata(T8, Var60, Var61)))]).

This collection of predicates represents a simplified model of a filesystem that can be ex-
ecuted by a Prolog system; combined with a tool like FUSE (Filesystem in User Space),
it can be used as a prototype implementation to store real data and be tested on an ac-
tual system. The user may add features slowly, using the Alloy Analyzer to verify their
correctness.

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 149

CE :: expression→ time→ (Prolog expression, [variable])
CE(a, t) =̂ (∅, [A])

(a ∈ vars)

CE(f, t) =̂ (f(A1, A2, ..., An), [A1, A2, ..., An])
(f ∈ r) where f has arity n; A1, ..., An are fresh variables

CE(f, t) =̂ (f(A1, A2, ..., An, t), [A1, A2, ..., An])
(f ∈ rd) where f has arity n; A1, ..., An are fresh variables

CE(e1 → e2, t) =̂ ((E1, E2), [A1, ..., An, B1, ..., Bn])
CE(e1.e2, t) =̂ ((An = B1, E1, E2), [A1, ..., An−1, B2, ..., Bn])

where CE(e1, t) = (E1, [A1, ..., An])
and CE(e2, t) = (E2, [B1, ..., Bn])

CE(e1 + e2, t) =̂ ((A1 = B1, ..., An = Bn, E1;A1 = C1, ..., An = Cn, E2), [A1, ..., An])
CE(e1 − e2, t) =̂ ((A1 = B1, ..., An = Bn, E1, A1 = C1, ..., An = Cn, \+E2), [A1, ..., An])
CE(e1&e2, t) =̂ ((A1 = B1, ..., An = Bn, E1, A1 = C1, ..., An = Cn, E2), [A1, ..., An])

where CE(e1, t) = (E1, [B1, ..., Bn])
and CE(e2, t) = (E2, [C1, ..., Cn])

Figure 1: Rules for Compiling Alloy Expressions into Prolog

4. Implementing the Compiler

My compiler transforms a complete Alloy specification into a Prolog program. In Alloy,
sets are represented as unary relations; scalars, then, are singleton sets. For an Alloy
expression whose value is an n-ary relation, my compiler produces a Prolog expression with
n free variables; each possible instantiation of those free variables represents one tuple of the
original relation. My compiler therefore produces a 2-tuple (e, v) containing the compiled
Prolog expression e and a list of free variables v. I present the set of compilation rules for
expressions in Figure 1; r represents the set of global relations in the original Alloy model,
while rd is the set of dynamic relations.

Two issues make compiling expressions tricky. First, the translation requires a repre-
sentation of the time-step at which the expression is being evaluated. My implementation
represents time-steps using integers; each global relation accepts one of these time-steps as
its first argument and instantiates its other arguments to the values of the relation at that
time-step. Second, some relational operators (e.g. difference) require the use of the cut or
negation-as-failure. These impure elements restrict the contexts in which the compilation
produces useful programs: the Alloy expression !(i < j), for example, produces the Prolog
expression \+ (I<J), which will not correctly instantiate I or J.

Compiling Alloy formulas is straightforward, since Alloy’s logical connectives map di-
rectly to those of Prolog. The equality and subset operators are the most interesting: since
expressions evaluate to relations, both logical operators must examine all instantiations of
the expressions’ free variables generated by the resulting Prolog expressions. Figure 2 con-
tains the rules for compiling formulas; again, the rules require the time at which the formula
is being evaluated. Actions are compiled into formulas sequenced using conjunction. The

150 J.P. NEAR

CM :: formula→ time→ Prolog expression
CM (e1 ∈ e2, t) =̂ forall((E1), (B1 = C1, ..., Bn = Cn, E2))
CM (e1 = e2, t) =̂ forall((E1), (B1 = C1, ..., Bn = Cn, E2)),

forall((E2), (B1 = C1, ..., Bn = Cn, E1))
where CE(e1, t) = (E1, [B1, ..., Bn])

and CE(e2, t) = (E2, [C1, ..., Cn])

CM (f1&&f2, t) =̂ CM (f1, t) , CM (f2, t)
CM (f1 || f2, t) =̂ CM (f1, t) ; CM (f2, t)

CM (!f, t) =̂ \+ CM (f, t)

CM (all x: ite |f, t) =̂ forall((x = A,E), CM (f, t))
CM (some x:ite|f, t) =̂ x = A,E,CM (f, t)

where CE(e, t) = (E, [A])

Figure 2: Rules for Compiling Alloy Formulas into Prolog

CA :: action→ time→ time→ Prolog expression
CA(o.f :=e, t, t′) =̂ t′ is t + 1,

assertl((f(o,A1, ..., An, t
′) :- E)),

assertl((f(O,B1, ..., Bn, t
′) :-

dif(O, o), f(O,B1, ..., Bn, t))),
∀̄r : relations | assertl((r(O′, C1, ..., Ck, t

′) :-

r(O′, C1, ..., Ck, t)).
where CE(e, t) = (E, [A1, ..., An])

CA(a1 ; a2, t, t
′) =̂ CA(a1, t, T

′′), CA(a2, T
′′, t′)

where T ′′ is a fresh variable

CA(a1&&a2, t, t
′) =̂ CA(a1, t, t

′) , CA(a2, t, t
′)

CA(a1 || a2, t, t′) =̂ CA(a1, t, t
′) ; CA(a2, t, t

′)
CA(action[e1, ..., en], t, t′) =̂ action(e1, ..., an, t, t

′)
CA(loop {act[e1,...,en]}, t, t′) =̂ E1,...,En, loop(t, t′, act, [V1, ..., Vn])

where CE(ei, t) = (Ei, [Vi]) and
loop(T, T, F, Args).

loop(T, Tp, F, Args) :-

append(Args, [T, T1], A),

apply(F, A), loop(T1, Tp, F, Args).

Figure 3: Rules for Compiling Alloy Actions into Prolog

rule for field assignment updates the global relation f at the object o and time step t + 1
with the results of the right-hand side expression e. The next two lines of the rule express
the frame condition: first, that the values of the relation f at objects other than o do not
change, and second, that the values of the relations not being updated do not change. I
use the “meta” quantifier ∀̄ to represent quantification over the (static) set of relations in a
given specification. Figure 3 contains the complete set of rules for compiling actions.

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 151

5. Related Work

As a notation, Imperative Alloy is similar to existing specification languages that sup-
port modeling dynamic systems [27, 23, 1, 5, 31, 20, 11, 9]; some of these notations also have
associated analysis and animation tools. The novelty of this work is in the combination,
using a single notation, of analysis and execution.

Most similar to my own work is an approach that translates Z specifications into Pro-
log [10], but produces relatively inefficient programs. Similarly, PVS has been translated
to LISP [8] for execution, but the translation places restrictions on the PVS language.
Squander [29] animates Alloy specifications embedded in Java programs, but provides the
same level of performance as the Alloy Analyzer. My technique, on the other hand, pro-
duces programs that are fast enough to serve as prototype implementations. Notations
for Abstract State Machines [22], rule-based transition systems [32, 30], concurrent object
interactions [24], and the Maude language [7] have been translated to Prolog, but these
are less expressive than Imperative Alloy. A Prolog translation also exists [25] from de-
scription logic, which has expressive power similar to that of Alloy. Many non-automated
approaches [14, 21, 12] have been proposed, but the possibility of introducing errors during
manual translation makes these unattractive, and most still require further refinement—
even after a manual translation effort—for efficient execution.

Animation of expressive specifications is a well-studied topic. The toolkit supporting
the B method [2] and tools for JML [6] and Z [19] all support animating specifications.
However, many of these tools do not allow animation of the most expressive parts of the
language, require a concrete instantiation of the initial state, and use constraint-solving
approaches that do not scale as well as Prolog’s search. By separating verification and
animation from execution, my approach can provide both analysis and verification (using
the Alloy Analyzer) and efficient execution (using my Prolog compiler).

The addition of constraints [18], more expressive logics [26, 15], more efficient execution
strategies [3], and classical negation to logic programming [13] has made logic programming
much more expressive; these advances may present an alternate approach to achieving the
goal of a single language for specification and implementation.

6. Conclusions & Future Work

I have presented a compiler from the expressive, relational, first-order specification
language Alloy to Prolog, making the process of implementing a specification automatic.
Together with the Alloy Analyzer, this compiler represents a complete end-to-end solution
for specifying and implementing programs. The Analyzer provides for the animation and
verification of specifications, and the compiler I have presented in this paper allows for their
execution.

My experience with this toolchain has identified two key areas for future work. First,
the compiler does not yet identify parts of input specifications that may be troublesome
to execute. Some Alloy constructs, such as negation and quantification, can make the
resulting Prolog program impossible to execute. Specifications that make extensive use of
these constructs do not seem to occur often in practice, but a warning message from the
compiler would be useful to the user in case they do.

Second, performance of the compiled specifications is not yet optimal. With better
knowledge of the strengths and weaknesses of the particular Prolog implementation the

152 J.P. NEAR

compiler targets, I should be able to generate more appropriate code. Moreover, the com-
piler itself may be able to detect code that will perform poorly and signal a warning. I
have already encountered cases requiring refinement of the specification in order to obtain
efficient code; a profiling tool for a future version of the compiler might be able to suggest
refinement in these cases.

Even without these improvements, my compiler produces useful prototype implementa-
tions for most specifications. My larger goal is to enable a single language to express systems
at all levels of abstraction, from high-level requirements to low-level implementation. An
implementation of such a language would naturally need to target several execution en-
gines; more expressive features, such as first-order quantifiers, can be handled by the Alloy
Analyzer, while low-level language features run at full speed. Of primary importance is
the middle ground between these: the largest benefit to programmers comes from the use
of expressive constructs in ways that can be identified and optimized by the compiler. By
compiling Alloy to Prolog, I have shown that this middle ground is achievable: even the
most expressive language constructs can be used in executable programs.

Acknowledgements

I am deeply grateful to Daniel Jackson, without whose guidance this work would not have
been possible; to Eunsuk Kang, Rishabh Singh, and Jean Yang, who provided thoughtful
comments on an early draft of this paper; and to the anonymous reviewers, who aided in
the clarification of many points. This research was funded in part by the National Science
Foundation under grants 0541183 (Deep and Scalable Analysis of Software), and 0707612
(CRI: CRD – Development of Alloy Tools, Technology and Materials), and by the Northrop
Grumman Cybersecurity Research Consortium under the Secure and Dependable Systems
by Design project.

References

[1] J.R. Abrial. The B-book: assigning programs to meanings. Cambridge Univ Pr, 1996.
[2] J.R. Abrial, M.K.O. Lee, D. Neilson, PN Scharbach, and I. Sørensen. The B-method. In Proceedings of

the 4th International Symposium of VDM Europe on Formal Software Development, volume 2, pages
398–405. Springer, 1991.

[3] H. Ait-Kaci. Warren’s abstract machine: a tutorial reconstruction. Citeseer, 1991.
[4] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the ”small

scope hypothesis”. In In Popl ’02: Proceedings Of The 29th Acm Symposium On The Principles Of
Programming Languages, 2002.

[5] E. Börger and R.F. Stärk. Abstract state machines: a method for high-level system design and analysis.
Springer Verlag, 2003.

[6] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. Symbolic animation of JML specifications. Lecture
notes in computer science, 3582:75, 2005.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and JF Quesada. Maude:
specification and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

[8] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, testing, and animating
PVS specifications. Computer Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep.,
Mar, 2001.

[9] G. Dennis, F.S.H. Chang, and D. Jackson. Modular verification of code with SAT. In Proceedings of the
2006 international symposium on Software testing and analysis, page 120. ACM, 2006.

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 153

[10] AJJ Dick, PJ Krause, and J. Cozens. Computer aided transformation of Z into Prolog. In Z User
Workshop: proceedings of the Fourth Annual Z User Meeting, Oxford, 15 December 1989, page 71.
Springer Verlag, 1990.

[11] MR Frias, JP Galeotti, CGL Pombo, and NM Aguirre. DynAlloy: upgrading alloy with actions. In
Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages 442–450,
2005.

[12] N.E. Fuchs. Specifications are (preferably) executable. Software Engineering Journal, 7(5):323–334,
1992.

[13] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Logic programming, page 597.
MIT Press, 1990.

[14] A. M. Gravell and P. Henderson. Why execute formal specifications? pages 165–184, 1991.
[15] J.S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Information

and Computation, 110(2):327–365, 1994.
[16] D. Jackson. Software Abstractions: logic, language, and analysis. The MIT Press, 2006.
[17] D. Jackson and J. Wing. Lightweight formal methods. Lecture Notes in Computer Science, 2021:1–1,

2001.
[18] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages 111–119. ACM New York, NY,
USA, 1987.

[19] X. Jia. An approach to animating Z specifications. COMPSAC-NEW YORK-, pages 108–108, 1995.
[20] C.B. Jones. Systematic software development using VDM. Prentice Hall New York, 1990.
[21] A. Kans and C. Hayton. Using ABC to prototype VDM specifications. ACM SigPLAN Notices, 29(1):27–

36, 1994.
[22] A. Kappel. Executable specifications based on dynamic algebras. In Logic Programming and Automated

Reasoning, pages 229–240. Springer.
[23] Butler Lampson. 6.826 class notes, 2009. (http://web.mit.edu/6.826/www/notes/).
[24] P. Letelier, P. Sánchez, and I. Ramos. Prototyping a requirements specification through an automatically

generated concurrent logic program. Practical Aspects of Declarative Languages, pages 31–45.
[25] G. Lukácsy and P. Szeredi. Efficient description logic reasoning in prolog: The dlog system. Theory and

Practice of Logic Programming, 9(03):343–414, 2009.
[26] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic pro-

gramming. Annals of Pure and Applied Logic, 51(1-2):125–157, 1991.
[27] C. Morgan. The specification statement. ACM Transactions on Programming Languages and Systems

(TOPLAS), 10(3):403–419, 1988.
[28] J. Near and D. Jackson. An Imperative Extension to Alloy. Abstract State Machines, Alloy, B and Z,

pages 118–131, 2010.
[29] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson. Agile specifications. In Proceeding

of the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages
and applications, pages 999–1006. ACM, 2009.

[30] B. Schätz. Formalization and Rule-Based Transformation of EMF Ecore-Based Models. Software Lan-
guage Engineering, pages 227–244, 2009.

[31] JM Spivey. The Z notation: a reference manual. 1992.
[32] Daniel Varro and Dniel Varr. Automated program generation for and by model transformation systems.

In Applied Graph Transformation (AGT’02), pages 161 - 174., 2002.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 154–161
http://www.floc-conference.org/ICLP-home.html

METHODS AND METHODOLOGIES FOR DEVELOPING

ANSWER-SET PROGRAMS—PROJECT DESCRIPTION

JOHANNES OETSCH, JÖRG PÜHRER, AND HANS TOMPITS

Technische Universität Wien,
Institut für Informationssysteme 184/3,
Favoritenstraße 9–11, A–1040 Vienna, Austria
E-mail address: {oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract. Answer-set programming (ASP) is a well-known formalism for declarative
problem solving, enjoying a continuously increasing number of diverse applications. How-
ever, arguably one of the main challenges for a wider acceptance of ASP is the need of
tools, methods, and methodologies that support the actual programming process. In this
paper, we review the main goals of a project, funded by the Austrian Science Fund (FWF),
which aims to address this aspect in a systematic manner. The project is planned for a
duration of three years and started in September 2009. Generally, the focus of research will
be on methodologies for systematic program development, program testing, and debugging.
In particular, in working on these areas, special emphasis shall be given to the ability of
the developed techniques to respect the declarative nature of ASP. To support a sufficient
level of usability, solutions are planned to be compatible not only for the core language
of ASP but also for important extensions thereof that are commonly used and realised in
various answer-set solvers. Ultimately, the methods resulting from the project shall form
the basis of an integrated development environment (IDE) for ASP that is envisaged to
combine straightforward as well as advanced techniques, realising a convenient tool for
developing answer-set programs.

1. Introduction

Answer-set programming (ASP), in its most important incarnation as logic programming
under the answer-set semantics [Gel88, Gel91a], is a well-known paradigm for declarative
problem solving whose underlying idea is that problems are solved by encoding them in
terms of programs such that the solutions of a given problem are determined by the models
of the associated program. Hence, the models of the latter provide the “answers” of the
input problems—this stands in contrast to traditional logic-based knowledge representa-
tion where proofs constitute an answer to a problem. The development of sophisticated
answer-set solvers (see, e.g., Denecker et al. [Den09] for a recent overview), led to success-
ful applications in diverse fields like planning [Gel02], diagnosis [Eit99, Gel01], symbolic
model checking [Hel03], bioinformatics [Pal09, Erd09b, Erd09a], e-tourism [Iel09], patient
monitoring [Mil09], music composition [Boe08, Boe09], and many others.

Key words and phrases: answer-set programming, program development, testing, debugging.
This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.

c© J. Oetsch, J. Pührer, and H. Tompits
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.154

METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 155

Although ASP is regarded as a programming paradigm, it currently offers only limited
support for developing programs, compared to other programming languages for which a
large number of tools and development methodologies exists. Indeed, ASP research so far
concentrated, by and large, on (i) formal properties of the answer-set semantics, (ii) issues
related to using it for knowledge representation and reasoning, and (iii) the development
of ASP solvers. These endeavours led to the acceptance of ASP as a viable approach for
declarative knowledge representation, but in order to achieve a wider acceptance of ASP
among practising software and knowledge engineers, tools and methods for supporting the
programmer in developing programs are needed. Although already more than a decade
ago, De Schreye and Denecker [DS99] identified this need as being vital towards practica-
bility of computational logic formalisms in general, only recently increased efforts in this
direction have started in the ASP community—particularly on debugging and modularity
aspects [Bra05, Pon09, Syr06, Bra07, Mik07, Geb08]. The awareness of these engineering-
oriented requirements is also reflected by the launch of the SEA workshop series on Software
Engineering for Answer-Set Programming in 2007.1

In this paper, we review the main goals of the project “Methods and Methodologies
for Developing Answer-Set Programs” which we started in September 2009. It aims to
address the above mentioned engineering requirements for ASP in a systematic manner and
is hosted by the Knowledge-Based Systems Group of the Institute of Information Systems
at the Vienna University of Technology. Funding is provided by the Austrian Science Fund
(FWF) and the planned duration of the project is three years. It comprises two researcher
positions and is lead by Hans Tompits.

Generally, the focus of research of the project will be on methodologies for systematic
program development, program testing, and debugging. We want to study both abstract
concepts that underlie the tasks emerging when programming in ASP as well as to develop
concrete tools realising the researched techniques. In particular, special emphasis shall
be given to the ability of the developed techniques to respect the declarative nature of
ASP. Furthermore, the theoretical line of research will also involve aspects of decidability
and complexity, and, concerning the development of tools, we plan to incorporate proof-
of-concept implementations of the theoretical formalisms and approaches that will emerge
from our research into an integrated development environment (IDE). The evolution of this
system shall be subject to continuous evaluation in the context of laboratory courses on
logic programming (such courses are held each semester at our institute).

We also plan research cooperations with different ASP groups, in particular with those
at the University of Potsdam (Germany), Aalto University (Finland; incorporating the
former Helsinki University of Technology), the University of Bath (U.K.), and the University
of Calabria (Italy).

The next section provides a more detailed discussion of our research agenda.

2. Project objectives

2.1. Systematic program development

We want to investigate methods which support the systematic development of programs.
In standard programming languages, incremental and iterative program development are

1See sea07.cs.bath.ac.uk and sea09.cs.bath.ac.uk.

156 J. OETSCH, J. PÜHRER, AND H. TOMPITS

well-known techniques. In the first method, a program is divided into subparts by function-
ality and developed one by one, whilst in the second method, a complex program is devel-
oped by iteratively refining the functionalities of less complex versions of it. We plan to study
incremental and iterative development methods in the context of ASP. Here, the notion of a
conservative extension [Gel91b, Gel96], which was introduced as a theoretical basis for the
enhancement of a logic program by adding further rules, can be abstracted by considering
program extensions in terms of operators prescribing how a program can be enhanced along
with a binary correspondence relation between a program and its enhancement. The role of
such a correspondence relation is to reflect the property to be preserved when enhancing the
original program. The issue of program correspondence has been the subject of extensive
research in the recent past [Lif01, Ino04, Eit05, Oik06, Oet07, Eit07, Fin08, Oet08, Tru09]
and a project, also funded by the FWF, was conducted at our research group on this topic
and successfully finished in 2008.2

A crucial aspect for the issue of incremental program development, where larger pro-
grams are composed from smaller program parts, is the question of program modularity
(cf., e.g., the work of Brogi et al. [Bro94] about logic programs without negation). We
want to analyse how different notions of a program module can be used to compose com-
plex programs or how such notions can be extended or refined. An interesting concept
in this regard is the notion of a DLP-function [Jan09], having its roots in early work on
lp-functions [Gel96], which, roughly speaking, is a logic program together with an interface
specifying the input, output, and local atoms of that program. DLP-functions are assigned
with an extension of the answer-set semantics admitting a compositional semantics, i.e., the
semantics of a modularised program is given as the union (suitably defined) of the semantics
of its modules. For the software support methods that will be developed in this project, we
will investigate how they can be refined to module-based versions.

We also want to develop techniques that support developers during the intermediate
coding process. In particular, we are interested in methods that provide the user with
suggestions on how to proceed when writing a program, which are computed from the
current state of the program and the desired behaviour that is captured by the specification
of a program. A potential instance of a tool providing suggestions is an intelligent code-
completion technique that offers a selection of potential endings for a rule that is currently
edited. From a methodological point of view, suggestion techniques seem especially valuable
in combination with a test-driven development approach [Bec02]. We want to analyse the
suitability of development approaches where test cases are formulated in advance and then
used to directly support the coding process.

2.2. Testing methodologies

Though crucial for the quality of conventional software, there is little work on testing
methodologies for logic programs. We want to address this issue by analysing how prominent
methods from software testing [Mye79, Het91], like black-box testing or white-box testing,
can be adapted to ASP. We recall that the idea of black-box testing is to derive test cases
from the specification of a component but to abstract from the internal structure of the
component—indeed, as the name suggests, it is only used as a “black box”. Important
in this context is how test cases can be derived from specifications and how to rate the
quality of a suite of test cases with respect to their ability to detect unimplemented or

2See http://www.kr.tuwien.ac.at/research/projects/eq/ for details about this project.

METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 157

faultily implemented parts of a specification. Complementary to black-box testing, white-
box testing is based on the structure of a component: For conventional languages, white-box
testing aims at deriving test cases that cover possible paths through a software component.
As one of the first results within our project, we developed, jointly with Ilkka Niemelä
and Tomi Janhunen from Aalto University, different coverage metrics for ASP, along with
their mutual relationships, and laid down basic techniques for test automation using ASP
itself [Nie10].

2.3. Debugging

Complementing the development and testing aspects, we want to study methods to
debug answer-set programs, i.e., techniques supporting the programmer in localising and
fixing program errors. Initial research in this direction is already available [Bra05, Pon09,
Syr06, Bra07, Geb08] but further investigation is needed.3 Especially, as we want to de-
velop debugging techniques for ASP that are applicable in real-world scenarios, debugging
methodologies for non-ground programs are needed—most debugging methods studied so
far concentrate on propositional programs only, however. To address this issue, we extended
the meta-programming technique of Gebser et al. [Geb08] to the non-ground case [Oet10].
Moreover, we intend to consider not only the core language of answer-set programs but also
cover important language extensions like weak constraints, aggregates, or choice rules.

Analogous to techniques for providing suggestions during the immediate coding process,
we want to investigate similar features for program debugging as well. Advice on how to
fix a program can be of different nature, e.g., proposals to remove specific constraints that
eliminate desired answer sets.

Another important issue we want to address is local debugging in connection with
modular-programming concepts. We want to clarify how the search for errors can be re-
stricted to suspicious program components and how program parts can be individually
debugged, yielding correctness of the overall program.

2.4. Specifications for answer-set programs

Most of the methods we are aiming at require information about the intended behaviour
of a program under consideration. For instance, for localising a bug in an erroneous pro-
gram, a debugging system needs to be aware of what the correct semantics of the program
is, in order to classify wrong behaviour. Thus, respective methods for specifying program
properties are needed. This point is important despite the widely held view that, because
of the declarative nature of ASP, logic programs can be seen as specifications themselves,
which, in turn, would eliminate the ubiquitous gap between specification and programming,
as argued by Baral [Bar03]. However, since the process of developing answer-set programs
is not as straightforward as the latter point of view might suggest, it may prove helpful
to describe the desired behaviour of a program in a way that is easier to achieve than the
program itself. This may be done, e.g., in the form of sample test cases, or formally defined
program properties, that only describe certain aspects of the intended semantics, vis-a-vis a
full specification as represented by a complete program. In any case, there is certainly some

3It is also worthwhile to mention here the work of Wittocx et al. [Wit09] on debugging ID-logic theories,
i.e., first-order theories with inductive definitions.

158 J. OETSCH, J. PÜHRER, AND H. TOMPITS

subtlety in using declarative descriptions for a declarative language which requests paying
close attention to the practicability of studied specification formalisms.

2.5. Implementation

Complementing our theoretical investigations, we also plan to develop prototype imple-
mentations of our techniques. Towards providing effective support for developers, we want
to incorporate these into an integrated development environment (IDE). A few systems for
developing answer-set programs have been introduced so far [Per07, Sur07], but, despite
providing useful utilities, they are still in an early state of development and leave much
room for improvement. Besides the envisaged functionalities for specification, testing, and
debugging, our IDE should also allow customary functions like providing a code editor,
syntax checking, and syntax highlighting, which are rather trivial from a theoretical point
of view but handy in use. Moreover, we want to guarantee interoperability with most of
the available popular solvers. The IDE will be subject to continuous evaluation within the
laboratory courses on logic programming we teach regularly at our university, and it will
be made publicly available for, e.g., other universities and their teaching needs.

3. Conclusion

Providing intelligent development methodologies and tools constitutes a natural next
step in the evolution of ASP and will hopefully have a positive impact on this field as a whole.
Furthermore, with such techniques at hand, both expert as well as novice programmers will
have an enhanced access to powerful declarative problem-solving machineries.

For further information about the project, see

http://www.kr.tuwien.ac.at/research/projects/mmdasp/.

References

[Bar03] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press, Cambridge, England, UK, 2003.

[Bec02] Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional, Boston, MA,
USA, 2002.

[Boe08] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. Automatic composition of melodic
and harmonic music by answer set programming. In Maria Garcia de la Banda and Enrico Pontelli
(eds.), Proceedings of the 24th International Conference on Logic Programming (ICLP’08), Udine,
Italy, December 9-13, 2008, Lecture Notes in Computer Science, vol. 5366, pp. 160–174. Springer,
Berlin-Heidelberg, Germany, 2008.

[Boe09] Georg Boenn, Martin Brain, Marina De Vos, and John Fitch. ANTON: Composing logic and
logic composing. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
542–547. Springer, Berlin-Heidelberg, Germany, 2009.

[Bra05] Martin Brain and Marina De Vos. Debugging logic programs under the answer-set semantics. In
Proceedings of the 3rd Workshop on Answer Set Programming: Advances in Theory and Imple-
mentation (ASP’05), Bath, UK, July 27-29, 2005, CEUR Workshop Proceedings, vol. 142. CEUR-
WS.org, Aachen, Germany, 2005.

METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 159

[Bra07] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits, and Stefan Woltran.
Debugging ASP programs by means of ASP. In Chitta Baral, Gerhard Brewka, and John S. Schlipf
(eds.), Proceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), Tempe, AZ, USA, May 15-17, 2007, Lecture Notes in Computer Science,
vol. 4483, pp. 31–43. Springer, Berlin-Heidelberg, Germany, 2007.

[Bro94] Antonio Brogi, Paolo Mancarella, Dino Pedreschi, and Franco Turini. Modular logic programming.
ACM Transactions on Programming Languages and Systems, 16(4):1361–1398, 1994.

[Den09] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The
second answer set programming competition. In Esra Erdem, Fangzhen Lin, and Torsten Schaub
(eds.), Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer
Science, vol. 5753, pp. 637–654. Springer, Berlin-Heidelberg, Germany, 2009.

[DS99] Daniel De Schreye and Marc Denecker. Assessment of some issues in CL-theory and program
development. In Krzysztof R. Apt, Victor Marek, Miroslaw Truszczynski, and David S. Warren
(eds.), The Logic Programming Paradigm: A 25 Years Perspective, Artificial Intelligence Series,
pp. 195–208. Springer, Berlin-Heidelberg, Germany, 1999.

[Eit99] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of the
dlv system. AI Communications, 12(1–2):99–111, 1999.

[Eit05] Thomas Eiter, Hans Tompits, and Stefan Woltran. On solution correspondences in answer-set
programming. In Leslie Pack Kaelbling and Alessandro Saffiotti (eds.), Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland, UK,
July 30-August 5, 2005, pp. 97–102. Professional Book Center, Denver, CO, USA, 2005.

[Eit07] Thomas Eiter, Michael Fink, and Stefan Woltran. Semantical characterizations and complexity
of equivalences in answer set programming. ACM Transactions on Computational Logic, 8(3):17,
2007.

[Erd09a] Esra Erdem. PHYLO-ASP: Phylogenetic systematics with answer set programming. In Esra Er-
dem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the 10th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, Septem-
ber 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp. 567–572. Springer, Berlin-
Heidelberg, Germany, 2009.

[Erd09b] Esra Erdem, Ozan Erdem, and Ferhan Türe. HAPLO-ASP: Haplotype inference using answer
set programming. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
573–578. Springer, Berlin-Heidelberg, Germany, 2009.

[Fin08] Michael Fink. Equivalences in answer-set programming by countermodels in the logic of here-and-
there. In Maria Garcia de la Banda and Enrico Pontelli (eds.), Proceedings of the 24th International
Conference on Logic Programming (ICLP’08), Udine, Italy, December 9-13, 2008, Lecture Notes
in Computer Science, vol. 5366, pp. 99–113. Springer, Berlin-Heidelberg, Germany, 2008.

[Geb08] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-programming technique
for debugging answer-set programs. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the
23rd AAAI Conference on Artificial Intelligence (AAAI’08), Chicago, IL, USA, July 13-17, 2008,
pp. 448–453. AAAI Press, Menlo Park, CA, USA, 2008.

[Gel88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In
Proceedings of the 5th International Conference on Logic Programming (ICLP’88), Seattle, WA,
USA, August 15-19, 1988, pp. 1070–1080. The MIT Press, 1988.

[Gel91a] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

[Gel91b] Michael Gelfond and Halina Przymusińska. Definitions in epistemic specifications. In Wiktor
Marek, Anil Nerode, and V. S. Subrahmanian (eds.), Proceedings of the 1st International Workshop
on Logic Programming and Non-monotonic Reasoning (LPNMR’91), Washington, D.C., USA,
July 23, 1991, pp. 245–259. MIT Press, Cambridge, MA, USA, 1991.

[Gel96] Michael Gelfond and Halina Przymusińska. Towards a theory of elaboration tolerance: Logic pro-
gramming approach. Journal on Software and Knowledge Engineering, 6(1):89–112, 1996.

160 J. OETSCH, J. PÜHRER, AND H. TOMPITS

[Gel01] Michael Gelfond, Marcello Balduccini, and Joel Galloway. Diagnosing physical systems in A-prolog.
In Thomas Eiter, Wolfgang Faber, and Miros law Truszczyński (eds.), Proceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01), Vi-
enna, Austria, September 17-19, 2001, Lecture Notes in Computer Science, vol. 2173, pp. 213–225.
Springer, Berlin-Heidelberg, Germany, 2001.

[Gel02] Michael Gelfond. The USA-Advisor: A case study in answer set programming. In Sergio Flesca,
Sergio Greco, Nicola Leone, and Giovambattista Ianni (eds.), Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA’02), Cosenza, Italy, September, 23-26, 2002,
Lecture Notes in Computer Science, vol. 2424, pp. 566–568. Springer, Berlin-Heidelberg, Germany,
2002.

[Hel03] Keijo Heljanko and Ilkka Niemelä. Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming, 3(4-5):519–550, 2003.

[Het91] William C. Hetzel and Bill Hetzel. The Complete Guide to Software Testing. John Wiley & Sons,
Inc., New York, NY, USA, 1991.

[Iel09] Salvatore Maria Ielpa, Salvatore Iiritano, Nicola Leone, and Francesco Ricca. An ASP-based sys-
tem for e-tourism. In Esra Erdem, Fangzhen Lin, and Torsten Schaub (eds.), Proceedings of the
10th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
Potsdam, Germany, September 14-18, 2009, Lecture Notes in Computer Science, vol. 5753, pp.
368–381. Springer, Berlin-Heidelberg, Germany, 2009.

[Ino04] Katsumi Inoue and Chiaki Sakama. Equivalence of logic programs under updates. In José Júlio
Alferes and João Alexandre Leite (eds.), Proceedings of the 9th European Conference on Logics
in Artificial Intelligence (JELIA’04), Lisbon, Portugal, September 27-30, 2004, Lecture Notes in
Computer Science, vol. 3229, pp. 174–186. Springer, Berlin-Heidelberg, Germany, 2004.

[Jan09] Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran. Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research, 35:813–857, 2009.

[Lif01] Vladimir Lifschitz, David Pearce, and Agust́ın Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2(4):526–541, 2001.

[Mik07] Artur Mikitiuk, Eric Moseley, and Miros law Truszczyński. Towards debugging of answer-set pro-
grams in the language PSpb. In Proceedings of the 2007 International Conference on Artificial
Intelligence (ICAI’07), Las Vegas, NV, USA, June 25-28, 2007, vol. II, pp. 635–640. CSREA
Press, 2007.

[Mil09] Alessandra Mileo, Davide Merico, and Roberto Bisiani. Non-monotonic reasoning supporting wire-
less sensor networks for intelligent monitoring: The SINDI system. In Esra Erdem, Fangzhen Lin,
and Torsten Schaub (eds.), Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture
Notes in Computer Science, vol. 5753, pp. 585–590. Springer, Berlin-Heidelberg, Germany, 2009.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley & Sons, New York, NY, USA, 1979.
[Nie10] Ilkka Niemelä, Tomi Janhunen, Johannes Oetsch, Jörg Pührer, and Hans Tompits. On testing

answer-set programs. In Proceedings of the 19th European Conference on Artificial Intelligence
(ECAI’10), Lisbon, Portugal, August 16-20. 2010. To appear.

[Oet07] Johannes Oetsch, Hans Tompits, and Stefan Woltran. Facts do not cease to exist because they are
ignored: Relativised uniform equivalence with answer-set projection. In Proceedings of the 22nd
Conference on Artificial Intelligence (AAAI’07), Vancouver, BC, Canada, July 22-26, 2007, pp.
458–464. AAAI Press, Menlo Park, CA, USA, 2007.

[Oet08] Johannes Oetsch and Hans Tompits. Program correspondence under the answer-set semantics: The
non-ground case. In Maria Garcia de la Banda and Enrico Pontelli (eds.), Proceedings of the 24th
International Conference on Logic Programming (ICLP’08), Udine, Italy, December 9-13, 2008,
Lecture Notes in Computer Science, vol. 5366, pp. 591–605. Springer, Berlin-Heidelberg, Germany,
2008.

[Oet10] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the Ouroboros: Towards debugging
non-ground answer-set programs. Theory and Practice of Logic Programming. Special Issue on the
2010 International Conference on Logic Programming, 2010.

METHODS AND METHODOLOGIES FOR DEVELOPING ANSWER-SET PROGRAMS 161

[Oik06] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic programs. In Gerhard
Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso (eds.), Proceedings of the 17th Euro-
pean Conference on Artificial Intelligence (ECAI’06), Riva del Garda, Italy, August 28-September
1, 2006, pp. 412–416. IOS Press, Amsterdam, The Netherlands, 2006.

[Pal09] Alessandro Dal Palù, Agostino Dovier, and Enrico Pontelli. Logic programming techniques in
protein structure determination: Methodologies and results. In Esra Erdem, Fangzhen Lin, and
Torsten Schaub (eds.), Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’09), Potsdam, Germany, September 14-18, 2009, Lecture
Notes in Computer Science, vol. 5753, pp. 560–566. Springer, Berlin-Heidelberg, Germany, 2009.

[Per07] Simona Perri, Francesco Ricca, Giorgio Terracina, Daniela Cianni, and Pierfrancesco Veltri. An
integrated graphic tool for developing and testing DLV programs. In Marina De Vos and Torsten
Schaub (eds.), Proceedings of the 1st International Workshop on Software Engineering for Answer
Set Programming (SEA’07), Tempe, AZ, USA, May 14, 2007, CEUR Workshop Proceedings, vol.
281, pp. 71–85. CEUR-WS.org, Aachen, Germany, 2007.

[Pon09] Enrico Pontelli, Tran Cao Son, and Omar El-Khatib. Justifications for logic programs under answer
set semantics. Theory and Practice of Logic Programming, 9(1):1–56, 2009.

[Sur07] Adrian Sureshkumar, Marina De Vos, Martin Brain, and John Fitch. APE: An AnsProlog* environ-
ment. In Marina De Vos and Torsten Schaub (eds.), Proceedings of the 1st International Workshop
on Software Engineering for Answer Set Programming (SEA’07), Tempe, AZ, USA, May 14, 2007,
CEUR Workshop Proceedings, vol. 281, pp. 71–85. CEUR-WS.org, Aachen, Germany, 2007.

[Syr06] Tommi Syrjänen. Debugging inconsistent answer-set programs. In Proceedings of the 11th Inter-
national Workshop on Nonmonotonic Reasoning (NMR’06), Lake District, U.K., May 30-June 1,
2006, IfI Technical Report Series, vol. IfI-06-04, pp. 77–83. Institut für Informatik, Technische
Universität Clausthal, Clausthal-Zellerfeld, Germany, 2006.

[Tru09] Miros law Truszczyński and Stefan Woltran. Relativized hyperequivalence of logic programs for
modular programming. Theory and Practice of Logic Programming, 9(6):781–819, 2009.

[Wit09] Johan Wittocx, Hanne Vlaeminck, and Marc Denecker. Debugging for model expansion. In Patri-
cia M. Hill and David Scott Warren (eds.), Proceedings of the 25th International Conference on
Logic Programming (ICLP’09), Pasadena, CA, USA, July 14-17, 2009, Lecture Notes in Computer
Science, vol. 5649, pp. 296–311. Springer, Berlin-Heidelberg, Germany, 2009.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 162–171
http://www.floc-conference.org/ICLP-home.html

TABLING AND ANSWER SUBSUMPTION FOR REASONING ON

LOGIC PROGRAMS WITH ANNOTATED DISJUNCTIONS

FABRIZIO RIGUZZI 1 AND TERRANCE SWIFT 2

1 ENDIF – Università di Ferrara, Via Saragat 1, Ferrara, Italy
E-mail address: fabrizio.riguzzi@unife.it

2 CENTRIA – Universidade Nova de Lisboa, Quinta da Torre 2829-516, Caparica, Portugal
E-mail address: tswift@cs.suysb.edu

Abstract. The paper presents the algorithm “Probabilistic Inference with Tabling and
Answer subsumption” (PITA) for computing the probability of queries from Logic Pro-
grams with Annotated Disjunctions. PITA is based on a program transformation tech-
niques that adds an extra argument to every atom. PITA uses tabling for saving intermedi-
ate results and answer subsumption for combining different answers for the same subgoal.
PITA has been implemented in XSB and compared with the ProbLog, cplint and CVE
systems. The results show that in almost all cases, PITA is able to solve larger problems
and is faster than competing algorithms.

Introduction

Languages that are able to represent probabilistic information have a long tradition
in Logic Programming, dating back to [Sha83, van86]. With these languages, it is pos-
sible to model domains which contain uncertainty, situation often appearing in the real
world. Recently, efficient systems have started to appear for performing reasoning with
these languages [DR07, Kim08]

Logic Programs with Annotated Disjunction (LPADs) [Ven04] are a particularly inter-
esting formalism because of the simplicity of their syntax and semantics, along with their
ability to model causation [Ven09]. LPADs share with many other languages a distribu-
tion semantics [Sat95]: a theory defines a probability distribution over logic programs and
the probability of a query is given by the sum of the probabilities of the programs where
the query is true. In LPADs the distribution over logic programs is defined by means of
disjunctive clauses in which the atoms in the head are annotated with a probability.

Various approaches have appeared for performing inference on LPADs. [Rig07] proposed
cplint that first finds all the possible explanations for a query and then makes them
mutually exclusive by using Binary Decision Diagrams (BDDs), similarly to what has been
proposed for the ProbLog language [DR07]. [Rig08] presented SLGAD resolution that
extends SLG resolution by repeatedly branching on disjunctive clauses. [Mee09] discusses
the CVE algorithm that first transforms an LPAD into an equivalent Bayesian network and
then performs inference on the network using the variable elimination algorithm.

Key words and phrases: Probabilistic Logic Programming, Tabling, Answer Subsumption, Logic Pro-
grams with Annotated Disjunction, Program Transformation.

c© F. Riguzzi and T. Swift
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.162

fabrizio.riguzzi@unife.it
tswift@cs.suysb.edu

TABLING AND ANSWER SUBSUMPTION FOR LPADS 163

In this paper, we present the algorithm “Probabilistic Inference with Tabling and An-
swer subsumption” (PITA) for computing the probability of queries from LPADs. PITA
builds explanations for every subgoal encountered during a derivation of the query. The
explanations are compactly represented using BDDs that also allow an efficient computa-
tion of the probability. Since all the explanations for a subgoal must be found, it is very
useful to store such information so that it can be reused when the subgoal is encountered
again. We thus propose to use tabling, which has recently been shown useful for probabilis-
tic logic programming in [Kam00, Rig08, Kim09, Man09]. This is achieved by transforming
the input LPAD into a normal logic program in which the subgoals have an extra argument
storing a BDD that represents the explanations for its answers. Moreover, we also exploit
answer subsumption to combine different explanations for the same answer. PITA is tested
on a number of datasets and compared with cplint, CVE and ProbLog [Kim08]. The
algorithm was able to successfully solve more complex queries than the other algorithms in
most cases, and it was also almost always faster.

The paper is organized as follows. Section 1 briefly recalls tabling and answer subsump-
tion. Section 2 illustrates syntax, semantics and inference for LPADs. Section 3 presents
PITA, Section 4 describes the experiments and Section 5 concludes the paper.

1. Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals. If a subgoal is encountered more than once, the
evaluation reuses information from the table rather than re-performing resolution against
program clauses. Although the idea is simple, it has important consequences. First, tabling
ensures termination of programs with the bounded term size property. A program P has the
bounded term size property if there is a finite function f : N → N such that if a query term
Q to P has size size(Q), then no term used in the derivation of Q has size greater than
f(size(Q)). This makes it easier to reason about termination than in basic Prolog. Second,
tabling can be used to evaluate programs with negation according to the Well-Founded
Semantics (WFS) [van91]. Third, for queries to wide classes of programs, such as datalog
programs with negation, tabling can achieve the optimal complexity for query evaluation.
And finally, tabling integrates closely with Prolog, so that Prolog’s familiar programming
environment can be used, and no other language is required to build complete systems. As
a result, a number of Prologs now support tabling, including XSB, YAP, B-Prolog, ALS,
and Ciao. In these systems, a predicate p/n is evaluated using SLDNF by default: the
predicate is made to use tabling by a declaration such as table p/n that is added by the
user or compiler.

This paper makes use of a tabling feature called answer subsumption. Most formulations
of tabling add an answer A to a table for a subgoal S only if A is a not a variant (as a
term) of any other answer for S. However, in many applications it may be useful to order
answers according to a partial order or (upper semi-)lattice. In the case of a lattice, answer
subsumption may be specified by means of a declaration such as table p(,or/3 - zero/1)).
where a lattice is defined on the second argument by providing a bottom element (returned
by zero/1) and a join operation (or/3). With the previous declaration, if a table contains
an answer p(a,E1) and a new answer p(a,E2) were derived, the answer p(a,E1) is replaced
by p(a,E3), where E3 is obtained by or(E1, E2, E3). Answer subsumption over arbitrary

164 F. RIGUZZI AND T. SWIFT

upper semi-lattices is implemented in XSB for stratified programs [Swi99]; in addition, the
mode-directed tabling of B-Prolog can also be seen as a form of answer subsumption.

2. Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions [Ven04] consists of a finite set of anno-
tated disjunctive clauses of the form h1 : α1 ; . . . ; hn : αn ← b1, . . . , bm. In such a clause
h1, . . . hn are logical atoms and b1, . . . , bm are logical literals, {α1, . . . , αn} are real numbers
in the interval [0, 1] such that

∑n
j=1 αj ≤ 1. h1 : α1 ; . . . ; hn : αn is called the head

and b1, . . . , bm is called the body. Note that if n = 1 and α1 = 1 a clause corresponds to
a normal program clause, sometimes called a non-disjunctive clause. If

∑n
j=1 αj < 1, the

head of the annotated disjunctive clause implicitly contains an extra atom null that does
not appear in the body of any clause and whose annotation is 1 −

∑n
j=1 αj . For a clause

C of the form above, we define head(C) as {(hi : αi)|1 ≤ i ≤ n} if
∑n

i=1 αi = 1 and as
{(hi : αi)|1 ≤ i ≤ n} ∪ {(null : 1 −

∑n
i=1 αi)} otherwise. Moreover, we define body(C) as

{bi|1 ≤ i ≤ m}, hi(C) as hi and αi(C) as αi.
If LPAD T is ground, a clause represents a probabilistic choice between the non-

disjunctive clauses obtained by selecting only one atom in the head. If T is not ground,
it can be assigned a meaning by computing its grounding, ground(T). The semantics of
LPADs, given in [Ven04], requires the ground program to be finite, so the program must
not contain function symbols if it contains variables.

By choosing a head atom for each ground clause of an LPAD we get a normal logic pro-
gram called a possible world of the LPAD (instance in [Ven04]). A probability distribution
is defined over the space of possible worlds by assuming independence between the choices
made for each clause.

More specifically, an atomic choice is a triple (C, θ, i) where C ∈ T , θ is a substitution
that grounds C and i ∈ {1, . . . , |head(C)|}. (C, θ, i) means that, for ground clause Cθ, the
head hi(C) was chosen. A set of atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈
κ ⇒ i = j, i.e., only one head is selected for a ground clause. A composite choice κ is a
consistent set of atomic choices. The probability P (κ) of a composite choice κ is the product
of the probabilities of the individual atomic choices, i.e. P (κ) =

∏
(C,θ,i)∈κ αi(C).

A selection σ is a composite choice that, for each clause Cθ in ground(T), contains an
atomic choice (C, θ, i) in σ. We denote the set of all selections σ of a program T by ST .
A selection σ identifies a normal logic program wσ defined as follows: wσ = {(hi(C) ←
body(C))θ|(C, θ, i) ∈ σ}. wσ is called a possible world (or simply world) of T . Since
selections are composite choices, we can assign a probability to possible worlds: P (wσ) =
P (σ) =

∏
(C,θ,i)∈σ αi(C).

We consider only sound LPADs in which every possible world has a total well-founded
model. In this way, the uncertainty is modeled only by means of the disjunctions in the
head and not by the features of the semantics. In the following we write wσ |= φ to mean
that the closed formula φ is true in the well-founded model of the program wσ.

The probability of a closed formula φ according to an LPAD T is given by the sum of
the probabilities of the possible worlds where the formula is true according to the WFS:
P (φ) =

∑
σ∈ST ,wσ |=φ P (σ). It is easy to see that P satisfies the axioms of probability.

Example 2.1. The following LPAD encodes the dependency of a person’s sneezing on his
having the flu or hay fever:

TABLING AND ANSWER SUBSUMPTION FOR LPADS 165

�� ���� ��ciao
3

2
1

a0a�� ���� ��ciao
1

3

2

a1a
XC1∅ XC2∅

(a) MDD.

�� ���� ��ciao
0

1
a0a�� ���� ��ciao

1

0

a1a
XC1∅1 XC2∅1

(b) BDD.

Figure 1: Decision diagrams for Example 2.1.

C1 = strong sneezing(X) : 0.3 ; moderate sneezing(X) : 0.5 ← flu(X).
C2 = strong sneezing(X) : 0.2 ; moderate sneezing(X) : 0.6 ← hay fever(X).
C3 = flu(david).
C4 = hay fever(david).

If the LPAD contains function symbols, its semantics can be given by following the
approach proposed in [Poo00] for assigning a semantics to ICL programs with function
symbols. A similar result can be obtained using the approach of [Sat95]. In a forthcoming
extended version of this paper we discuss how this can be done.

In order to compute the probability of a query, we can first find a covering set of explana-
tions and then compute the probability from them. A composite choice κ identifies a set of
possible worlds ωκ that contains all the worlds relative to a selection that is a superset of κ,
i.e., ωκ = {wσ|σ ∈ ST , σ ⊇ κ}. Similarly we can define the set of possible worlds associated
to a set of composite choices K: ωK =

⋃
κ∈K ωκ. Given a closed formula φ, we define the

notion of explanation and of covering set of composite choices. A finite composite choice κ is
an explanation for φ if φ is true in every world of ωκ. In Example 2.1, the composite choice
{(C1, {X/david}, 1)} is an explanation for strong sneezing(david). A set of choices K is
covering with respect to φ if every world wσ in which φ is true is such that wσ ∈ ωK . In Ex-
ample 2.1, the set of composite choices L1 = {{(C1, {X/david}, 1)}, {(C2, {X/david}, 1)}}
is covering for strong sneezing(david). Moreover, both elements of L1 are explanations, so
L1 is a covering set of explanations for the query strong sneezing(david).

We associate to each ground clause Cθ appearing in a covering set of explanations a
multivalued variable XCθ with values {1, . . . , head(C)}. Each atomic choice (C, θ, i) can
then be represented by the propositional equation XCθ = i. If we conjoin equations for a
single explanation and disjoin expressions for the different explanations we obtain a Boolean
function that assumes value 1 if the values assumed by the multivalued variables correspond
to an explanation for the goal. Thus, if K is a covering set of explanations for a query φ,
the probability of the Boolean formula f(X) =

∨
κ∈K

∧
(C,θ,i)∈κXCθ = i taking value 1 is

the probability of the query, where X is the set of all ground clause variables.
For example, the covering set of explanations L1 translates into the function f(X) =

(XC1∅ = 1) ∨ (XC2∅ = 1). Computing the probability of f(X) taking value 1 is equivalent
to computing the probability of a DNF formula which is an NP-hard problem. In order to
solve it as efficiently as possible we use Decision Diagrams, as proposed by [DR07].

A Multivalued Decision Diagram (MDD) [Tha78] represents a function f(X) taking
Boolean values on a set of multivalued variables X by means of a rooted graph that has one
level for each variable. Each node has one child for each possible value of the multivalued
variable associated to the level of the node. The leaves store either 0 or 1. For example,
the MDD corresponding to the function for L1 is shown in Figure 1(a). MDDs represent a
Boolean function f(X) by means of a sum of disjoint terms, thus the probability of f(X)

166 F. RIGUZZI AND T. SWIFT

can be computed by means of a dynamic programming algorithm that traverses the MDD
and sums up probabilities.

Decision diagrams can be built with various software packages that provide highly
efficient implementation of Boolean operations. However, most packages are restricted to
work on Binary Decision Diagram (BDD), i.e., decision diagrams where all the variables are
Boolean [Bry86]. To work on MDD with a BDD package, we must represent multivalued
variables by means of binary variables. Various options are possible, we found that the
following, proposed in [DR08], gives the best performance. For a variable X having n
values, we use n− 1 Boolean variables X1, . . . , Xn−1 and we represent the equation X = i
for i = 1, . . . n− 1 by means of the conjunction X1 ∧X2 ∧ . . .∧Xi−1 ∧Xi, and the equation
X = n by means of the conjunction X1 ∧ X2 ∧ . . . ∧ Xn−1. The BDD representation of
the function for L1 is given in Figure 1(b). The Boolean variables are associated with the

following parameters: P (X1) = P (X = 1), . . . , P (Xi) = P (X=i)∏i−1
j=1(1−P (Xj))

.

3. Program Transformation

The first step of the PITA algorithm is to apply a program transformation to an LPAD
to create a normal program that contains calls for manipulating BDDs. In our implemen-
tation, these calls provide a Prolog interface to the CUDD1 C library and use the following
predicates2

• init, end : for the allocation and deallocation of a BDD manager, a data structure
used to keep track of the memory for storing BDD nodes;
• zero(-BDD), one(-BDD), and(+BDD1, +BDD2, -BDDO), or(+BDD1, +BDD2,

-BDDO), not(+BDDI, -BDDO): Boolean operations between BDDs;
• add var(+N Val, +Probs, -Var): addition of a new multi-valued variable with N Val

values and parameters Probs;
• equality(+Var, +Value, -BDD): BDD represents Var=Value, i.e. that the variable

Var is assigned Value in the BDD;
• ret prob(+BDD, -P): returns the probability of the formula encoded by BDD.

add var(+N Val,+Probs,-Var) adds a new random variable associated to a new instantia-
tion of a rule with N Val head atoms and parameters list Probs. The auxiliary predicate
get var n/4 is used to wrap add var/3 and avoid adding a new variable when one already
exists for an instantiation. As shown below, a new fact var(R,S,Var) is asserted each time
a new random variable is created, where R is an identifier for the LPAD clause, S is a list
of constants, one for each variable of the clause, and Var is an integer that identifies the
random variable associated with clause R under grounding S. The auxiliary predicates has
the following definition
get var n(R,S, Probs, V ar)←

(var(R,S, V ar)→ true ;
length(Probs, L), add var(L,Probs, V ar), assert(var(R,S, V ar))).

where R, S and Probs are input arguments while Var is an output argument.
The PITA transformation applies to clauses, literals and atoms.

• If h is an atom, PITAh(h) is h with the variable BDD added as the last argument.
• If bj is an atom, PITAb(bj) is bj with the variable Bj added as the last argument.

1http://vlsi.colorado.edu/~fabio/
2BDDs are represented in CUDD as pointers to their root node.

http://vlsi.colorado.edu/~fabio/

TABLING AND ANSWER SUBSUMPTION FOR LPADS 167

In either case for an atom a, BDD(PITA(a)) is the value of the last argument of PITA(a),

• If bj is negative literal ¬aj , PITAb(bj) is the conditional
(PITA′b(aj) → not(BNj , Bj); one(Bj)), where PITA′b(aj) is aj with the variable
BNj added as the last argument.

In other words, the BDD BNj for a is negated if it exists (i.e. PITA′b(aj) succeeds);
otherwise the BDD for the constant function 1 is returned.

A non-disjunctive fact Cr = h is transformed into the clause
PITA(Cr) = PITAh(h)← one(BDD).

A disjunctive fact Cr = h1 : α1 ; . . . ; hn : αn. where the parameters sum to 1, is
transformed into the set of clauses PITA(Cr)

PITA(Cr, 1) = PITAh(h1)← get var n(r, [], [α1, . . . , αn], V ar),
equality(V ar, 1, BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← get var n(r, [], [α1, . . . , αn], V ar),

equality(V ar, n,BDD).
In the case where the parameters do not sum to one, the clause is first transformed into
h1 : α1 ; . . . ; hn : αn ; null : 1 −

∑n
1 αi. and then into the clauses above, where the list

of parameters is [α1, . . . , αn, 1 −
∑n

1 αi] but the (n + 1)-th clause (the one for null) is not
generated.

The definite clause Cr = h← b1, b2, . . . , bm. is transformed into the clause
PITA(Cr) = PITAh(h)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BDD).
The disjunctive clause

Cr = h1 : α1 ; . . . ; hn : αn ← b1, b2, . . . , bm.
where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)
PITA(Cr, 1) = PITAh(h1)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, 1, B), and(BBm, B,BDD).

. . .
P ITA(Cr, n) = PITAh(hn)← PITAb(b1), P ITAb(b2), and(B1, B2, BB2), . . . ,

P ITAb(bm), and(BBm−1, Bm, BBm),
get var n(r, V C, [α1, . . . , αn], V ar),
equality(V ar, n,B), and(BBm, B,BDD).

where V C is a list containing each variable appearing in Cr. If the parameters do not sum
to 1, the same technique used for disjunctive facts can be applied.

Example 3.1. Clause C1 from the LPAD of Example 2.1 is translated into
strong sneezing(X,BDD) ← flu(X,B1), get var n(1, [X], [0.3, 0.5, 0.2], V ar),

equality(V ar, 1, B), and(B1, B,BDD).
moderate sneezing(X,BDD) ← flu(X,B1), get var n(1, [X], [0.3, 0.5, 0.2], V ar),

equality(V ar, 2, B), and(B1, B,BDD).
while clause C3 is translated into
flu(david,BDD) ← one(BDD).

In order to answer queries, the goal solve(Goal,P) is used, which is defined by

168 F. RIGUZZI AND T. SWIFT

solve(Goal, P) ← init, retractall(var(, ,)),
add bdd arg(Goal,BDD,GoalBDD),
(call(GoalBDD)→ ret prob(BDD,P) ; P = 0.0),
end.

Moreover, various predicates of the LPAD should be declared as tabled. For a predicate p/n,
the declaration is table p(1,..., n,or/3-zero/1), which indicates that answer subsumption is
used to form the disjunct of multiple explanations: At a minimum, the predicate of the goal
should be tabled; as in normal programs, tabling may also be used for to ensure termination
of recursive predicates, or to reduce the complexity of evaluations.

PITA is correct for range restricted, bounded term-size and fixed-order dynamically
stratified LPADs. A formal presentation with all proofs and supporting definitions will be
reported in a forthcoming extended version of this paper.

4. Experiments

PITA was tested on programs encoding biological networks from [DR07], a game of dice
from [Ven04] and the four testbeds of [Mee09]. PITA was compared with the exact version
of ProbLog [DR07] available in the git version of Yap as of 19/12/2009, with the version
of cplint [Rig07] available in Yap 6.0 and with the version of CVE [Mee09] available in
ACE-ilProlog 1.2.20. All experiments were performed on Linux machines with an Intel Core
2 Duo E6550 processor (2333 MHz) and 4 GB of RAM.

The biological network problems compute the probability of a path in a large graph
in which the nodes encode biological entities and the links represents conceptual relations
among them. Each programs in this dataset contains a deterministic definition of path plus
a number of links represented by probabilistic facts. The programs have been sampled from
a very large graph and contain 200, 400, . . ., 5000 edges. Sampling has been repeated ten
times, so overall we have 10 series of programs of increasing size. In each test we queried
the probability that the two genes HGNC 620 and HGNC 983 are related.

We used the definition of path of [Kim08] that performs loop checking explicitly by
keeping the list of visited nodes:

path(X,Y) ← path(X,Y, [X], Z).
path(X,Y, V, [Y |V]) ← edge(X,Y).
path(X,Y, V 0, V 1) ← edge(X,Z), append(V 0, S, V 1),

¬member(Z, V 0), path(Z, Y, [Z|V 0], V 1).
This definition gave better results than the one without explicit loop checking. We are
currently investigating the reasons for this unexpected behavior.

We ran PITA, ProbLog and cplint on the graphs in sequence starting from the smallest
program and in each case we stopped after one day or at the first graph for which the
program ended for lack of memory3. In PITA, we used the group sift method for automatic
reordering of BDDs variables4. Figure 2(a) shows the number of subgraphs for which each
algorithm was able to answer the query as a function of the size of the subgraphs, while
Figure 2(b) shows the execution time averaged over all and only the subgraphs for which
all the algorithms succeeded. PITA was able to solve more subgraphs and in a shorter time

3CVE was not applied to this dataset because the current version can not handle graph cycles.
4For each experiment, we used either group sift automatic reordering or no reordering of BDDs variables

depending on which gave the best results.

TABLING AND ANSWER SUBSUMPTION FOR LPADS 169

500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Edges

G
r
a
p
h
s

ProbLog
cplint
PITA

(a) Number of successes.

500 1000 1500 2000 2500 3000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Size

T
im

e
 (

s)

ProbLog
cplint
PITA

(b) Execution times.

Figure 2: Biological graph experiments.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

N

T
i
m
e

(
s
)

cplint
CVE
PITA

Figure 3: Three sided die.

than cplint and ProbLog. For PITA the vast majority of time for larger graphs was spent
on BDD maintenance.

The second problem models a game in which a die with three faces is repeatedly thrown
until a 3 is obtained. This problem is encoded by the program

on(0, 1) : 1/3 ; on(0, 2) : 1/3 ; on(0, 3) : 1/3.
on(N, 1) : 1/3 ; on(N, 2) : 1/3 ; on(N, 3) : 1/3←
N1 is N − 1, N1 ≥ 0, on(N1, F),¬on(N1, 3).

Form the above program, we query the probability of on(N,1) for increasing values of N.
Note that this problem can also be seen as computing the probability that a Hidden Markov
Model (HMM) is in state 1 at time N , where the HMM has three states of which 3 is an
end state.

In PITA, we disabled automatic variable reordering. The execution times of PITA,
CVE and cplint are shown in Figure 3. In this problem, tabling provides an impressive
speedup, since computations can be reused often.

The four datasets of [Mee09], containing programs of increasing size. served as a final
suite of benchmarks. bloodtype encodes genetic inheritance of blood type, growingbody
and growinghead contains programs with growing bodies and heads respectively, and uwcse

encodes a university domain. In PITA we disabled automatic reordering of BDDs variables

170 F. RIGUZZI AND T. SWIFT

20 40 60 80
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of persons in family

T
im

e
 (

s)

cplint
CVE
PITA

(a) bloodtype.

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

N

T
im

e
 (

s)

cplint
CVE
PITA

(b) growingbody.

Figure 4: Datasets from [Mee09].

5 10 15 20
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
im

e
 (

s)

cplint
CVE
PITA

(a) growinghead.

0 5 10 15
10

−4

10
−2

10
0

10
2

10
4

Number of PhD students

T
im

e
 (

s)

cplint
CVE
PITA

(b) uwcse.

Figure 5: Datasets from [Mee09].

for all datasets except for uwcse where we used group sift. The execution times of cplint,
CVE and PITA are shown respectively in Figures 4(a), 4(b), 5(a) and 5(b)5. PITA was
faster than cplint in all domains and faster than CVE in all domains except growingbody.

5. Conclusion and Future Works

This paper presents the algorithm PITA for computing the probability of queries from
an LPAD. PITA is based on a program transformation approach in which LPAD disjunctive
clauses are translated into normal program clauses.

The experiments substantiate the PITA approach which uses BDDs together with
tabling with answer subsumption. PITA outperformed cplint, CVE and ProbLog in scal-
ability or speed in almost all domains considered.

5For the missing points at the beginning of the lines a time smaller than 10−6 was recorded. For the
missing points at the end of the lines the algorithm exhausted the available memory.

TABLING AND ANSWER SUBSUMPTION FOR LPADS 171

References

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. on Comput.,
35(8):677–691, 1986.

[DR07] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and its application in
link discovery. In International Joint Conference on Artificial Intelligence, pp. 2462–2467. 2007.

[DR08] L. De Raedt, B. Demoen, D. Fierens, B. Gutmann, G. Janssens, A. Kimmig, N. Landwehr, T. Man-
tadelis, W. Meert, R. Rocha, V. Santos Costa, I. Thon, and J. Vennekens. Towards digesting the
alphabet-soup of statistical relational learning. In NIPS*2008 Workshop on Probabilistic Program-
ming. 2008.

[Kam00] Y. Kameya and T. Sato. Efficient EM learning with tabulation for parameterized logic programs.
In Computational Logic, LNCS, vol. 1861, pp. 269–284. Springer, 2000.

[Kim08] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt. On the efficient execution
of ProbLog programs. In International Conference on Logic Programming, LNCS, vol. 5366, pp.
175–189. Springer, 2008.

[Kim09] A. Kimmig, B. Gutmann, and V. Santos Costa. Trading memory for answers: Towards tabling
ProbLog. In International Workshop on Statistical Relational Learning. KU Leuven, Leuven, Bel-
gium, 2009.

[Man09] T. Mantadelis and G. Janssens. Tabling relevant parts of SLD proofs for ground goals in a prob-
abilistic setting. In Colloquium on Implementation of Constraint and Logic Programming Systems.
2009.

[Mee09] W. Meert, J. Struyf, and H. Blockeel. CP-Logic theory inference with contextual variable elimination
and comparison to BDD based inference methods. In International Conference on Inductive Logic
Programming. KU LEuven, Leuven, Belgium, 2009.

[Poo00] D. Poole. Abducing through negation as failure: stable models within the independent choice logic.
J. Log. Program., 44(1-3):5–35, 2000.

[Rig07] F. Riguzzi. A top down interpreter for LPAD and CP-logic. In Congress of the Italian Association
for Artificial Intelligence, LNAI, vol. 4733, pp. 109–120. Springer, 2007.

[Rig08] F. Riguzzi. Inference with logic programs with annotated disjunctions under the well founded seman-
tics. In International Conference on Logic Programming, LNCS, vol. 5366, pp. 667–771. Springer,
2008.

[Sat95] T. Sato. A statistical learning method for logic programs with distribution semantics. In Interna-
tional Conference on Logic Programming, pp. 715–729. 1995.

[Sha83] E. Y. Shapiro. Logic programs with uncertainties: a tool for implementing rule-based systems. In
International Joint conference on Artificial intelligence, pp. 529–532. Morgan Kaufmann Publishers
Inc., 1983.

[Swi99] T. Swift. Tabling for non-monotonic programming. Ann. Math. Artif. Intell., 25(3-4):201–240, 1999.
[Tha78] A. Thayse, M. Davio, and J. P. Deschamps. Optimization of multivalued decision algorithms. In

International Symposium on Multiple-Valued Logic, pp. 171–178. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1978.

[van86] M H van Emden. Quantitative deduction and its fixpoint theory. J. Log. Program., 30(1):37–53,
1986.

[van91] A. van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sets and well-founded semantics for general
logic programs. J. ACM, 38(3):620–650, 1991.

[Ven04] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions. In
International Conference on Logic Programming, LNCS, vol. 3131, pp. 195–209. Springer, 2004.

[Ven09] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A language of causal probabilistic events
and its relation to logic programming. Theory Pract. Log. Program., 9(3):245–308, 2009.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 172–181
http://www.floc-conference.org/ICLP-home.html

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE

JOSÉ SANTOS 1 AND STEPHEN MUGGLETON 1

1 Department of Computing, Imperial College London
E-mail address: {jcs06,shm}@doc.ic.ac.uk

Abstract. State-of-the-art θ-subsumption engines like Django (C) and Resumer2 (Java)
are implemented in imperative languages. Since θ-subsumption is inherently a logic prob-
lem, in this paper we explore how to efficiently implement it in Prolog.

θ-subsumption is an important problem in computational logic and particularly relevant
to the Inductive Logic Programming (ILP) community as it is at the core of the hypotheses
coverage test which is often the bottleneck of an ILP system. Also, since most of those
systems are implemented in Prolog, they can immediately take advantage of a Prolog based
θ-subsumption engine.

We present a relatively simple (≈ 1000 lines in Prolog) but efficient and general θ-
subsumption engine, Subsumer. Crucial to Subsumer’s performance is the dynamic and
recursive decomposition of a clause in sets of independent components. Also important are
ideas borrowed from constraint programming that empower Subsumer to efficiently work
on clauses with up to several thousand literals and several dozen distinct variables.

Using the notoriously challenging Phase Transition dataset we show that, cputime wise,
Subsumer clearly outperforms the Django subsumption engine and is competitive with
the more sophisticated, state-of-the-art, Resumer2. Furthermore, Subsumer’s memory
requirements are only a small fraction of those engines and it can handle arbitrary Prolog
clauses whereas Django and Resumer2 can only handle Datalog clauses.

1. Introduction and motivation

Current state-of-the-art ILP systems are usually developed in Prolog, e.g. Aleph [Sri07]
and ProGolem [Mug09], mainly because many of the algorithms needed for an ILP system
are already built-in in a Prolog engine (e.g. unification, backtracking, SLD-resolution).

However, for complex learning problems where predicates are highly non-determinate
and the target concept size is large (> 10 literals), the Prolog’s built-in SLD-resolution
is inadequate. In these situations there is a combinatorial explosion of alternative variable
bindings and consequently it will often take too long for the Prolog engine to decide whether
the given goal succeeds. This is unacceptable for an ILP system as there will be, typically,
tenths to hundredths of thousands such complex goals (i.e. putative hypothesis) that need
to be evaluated before a final theory is proposed.

The subsumption problem at the culprit of the ILP bottleneck has not received much
attention because, for many ILP applications, Prolog’s built-in resolution seems to suffice.
However, due to the non-determinism explosion highlighted above, ILP researchers often

1998 ACM Subject Classification: I.2.3 Deduction and Theorem Proving.
Key words and phrases: Theta-subsumption, Prolog, Inductive Logic Programming.

c© J. Santos and S. Muggleton
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.172

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE 173

have to bound the maximum hypotheses length and recall (i.e. number of solutions per
predicate) to relatively small values, which may be preventing better theories to be found.

In the last few years two efficient subsumption engines, Django [Mal04] and Resumer2
[Kuz08], were developed. However these are complex engines, around 10.000 lines of source
code each, implemented in C and Java respectively, making them unpractical to use within a
Prolog based ILP system. More importantly, both those engines require substantial amounts
of memory, sometimes 10x more memory than the ILP system itself for the same data. This
limits considerably their applicability given that, for challenging problems, the ILP system
already consumes a sizeable portion of the system’s resources.

The motivation for Subsumer was to develop a simple, lightweight, fully general Prolog
subsumption engine that could be easily integrated from any Prolog application and, in
particular, Prolog implementations of ILP systems.

2. The θ-subsumption problem

θ-subsumption [Rob65] is an approximation to logical implication. While implication
is undecidable in general θ-subsumption is a NP-complete problem [Kap86]. A clause Cθ-
subsumes a clause D (C `θ D) if and only if there exists a substitution θ such that Cθ ⊆ D.

Example 2.1 (θ-subsumption).
C : h(X0)← l1(X0, X1), l1(X0, X2), l1(X0, X3), l2(X1, X2), l2(X1, X3)
D : h(c0)← l1(c0, c1), l1(c0, c2), l2(c1, c2)
Cθ subsumes D with θ = {X0/c0, X1/c1, X2/c2, X3/c2}.

The θ-subsumption problem is thus, given two clauses, C and D, find a substitution θ
such that all literals of C can be mapped into a subset of the literals of D.

The standard algorithm for θ-subsumption is based on Prolog’s SLD-resolution [Kow71].
Within SLD-resolution all mappings from the literals in C onto the literals in D (for the
same predicate symbol) are constructed left-to-right in a depth-first search manner. Note
that the order of the literals in C has a significant impact on SLD-resolution (in)efficiency.

2.1. θ-subsumption time complexity

LetN andM be the lengths of clauses C andD. The standard θ-subsumption algorithm
has complexity O(MN) as we need to map each literal of C (ranging from 1..N) to a literal
in D (ranging from 1..M).

In practice, since SLD-resolution tests the consistency of the matching while construct-
ing the substitution (thus bounding other variables) and not just at the end, for clauses C
with too many literals (i.e. M ≈ N) the subsumption problem may become overconstrained
and thus be easier than when M is a fraction of N .

Let V be the set of distinct variables in C, and T the set of distinct terms in D. The
θ-subsumption problem is then equivalent to do a mapping from V to T . This approach

has complexity O(|T ||V |) which is generally better than O(MN) since usually the clauses
we are interested have |T | << M and |V | << N . Django, Resumer2 and Subsumer all use
this latter mapping.

174 J. SANTOS AND S. MUGGLETON

1. solve_component(VarsInComp, VarsConstr)

2. if VarsInComp is empty then

3. return true

4. Let V = most_promising_free_variable(VsInComp, VsConstr)

5. Let SubVsInComps = decomp_comp(VsInComp, VsConstr, V)

6. Let V_Neighbours = free vars sharing a literal with V

7. for each value Val in V’s domain

8. do

9. V=Val;

9. Let NVsConstr = update_vars_domains(V_Neighbours, VsConstr)

10. for each component VComp in SubVsInComps

11. do

12. solve_component(VComp, NVsConstr)

13. done

14. done

15. return false

16. end solve

Figure 1: Pseudo-code for Subsumer’s main algorithm

3. Subsumer: A Prolog θ-subsumption engine

Subsumer is a publicly available (http://ilp.doc.ic.ac.uk/Subsumer), simple (≈
1000 lines of Prolog) fully general θ-subsumption engine with the expected behaviour from
a Prolog implementation as it does not need to keep state. The Subsumer library exports
a predicate, theta subsumes(+subsumer,+subsumee), that either fails or succeeds. In
case of success the variables in the subsumer clause are bound with the corresponding
terms/variables of the subsumee and all possible solutions are returned by backtracking.

3.1. Main algorithm

Subsumer’s main algorithm (Fig 1) works by at each iteration finding the most “promis-
ing” free (i.e still unbound) variable, V , to bound from the current component. Note that
a component is defined solely by the variables appearing on it. The current heuristic is
to pick the variable with smallest domain. Then the current component is decomposed
assuming V has been bound (line 5). The components are returned in increasing order of
their number of variables. In that way smaller components, which in principle are easier
to test, are evaluated before longer ones. This can speed up the overall subsumption test
significantly in case no solution is found for those smaller components.

In line 7 we iterate over the possible values for V ’s domain and in line 9 update its
neighbour variables domain. This neighbour variable domain update is the most expen-
sive part of Subsumer’s algorithm but, due to space restrictions, we will be not be able
to go into detail here. Essentially, it is implemented with a sophisticated indexing and
back-indexing datastructure, that allows efficient assignment of a value to a variable and
respective propagation of its new value to its direct interacting variables.

Each time the domain for a neighbour of V becomes inconsistent we have to backtrack
and assign a different value to V . Although this can be particularly lengthy and get to
several levels of deep recursion before a backtracking occurs, it works well in practice.

Also note that this algorithm is natural to parallelize. The natural place is the “for
each loop” in line 8 where we could evaluate several components in parallel. This type of

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE 175

parallelization has the peculiar property of possibly achieving superlinear (in the number
of cores) speedups in case the subsumption test fails. This is because if a thread evaluating
a component fails, all the other component evaluation threads running in parallel can stop
immediately as there will be no solution for the whole clause. Unfortunately, however,
implementing this parallel algorithm is not easy with current Prolog compilers 1.

3.2. Datastructures

The subsumer clause, C = h ← b1, .., .., bn is represented as a list of literals. The hy-
pothesis is preprocessed to gather all the distinct (upon variable renaming) calling patterns
for the existing predicate symbols. E.g. l1(X0), X1 and l1(X1, X2) have the same calling
pattern but l1(X0, X1) and l1(X0, X0) are distinct.

The subsumee clause, D = e ← g1, .., .., gn is given as a list of ground literals rep-
resenting everything known to be true about e (it is the ground bottom clause of e with
recall set to infinity). The example is preprocessed so that we just keep for each distinct
predicate symbol ps/a (i.e. PredicateName/Arity) its available list of values V al(ps/a), that
is the predicate symbol domain. For instance, we would compactly represent clause D in
Example 2.1, as {l1/2 : [〈c0, c1〉, 〈c0, c2〉], l2/2 : [〈c0, c2〉]}.

The space needed to store clause’s D related information is thus: O(
∑N

1 V al(ps/ai))
where N is the number of distinct predicate symbols in D. A necessary condition for
subsumption is that all distinct predicate symbols in C also exist in D.

The variables are extracted from C and their initial domain is computed. The initial
domain for a variable is the intersection of its individual domains in each of the unique calling
patterns it occurs. For instance, we the initial domains for clause C when subsuming clause
D in Example 2.1, is X0 ∈ {c0}, X1 ∈ {c1}, X2 ∈ {c2}, X3 ∈ {c2}.

All direct pairwise variable interactions are also stored. A variable v1 directly inter-
acts with another variable v2 iff they share the same literal in C. For instance, we have
the following variable interactions for clause C in Example 2.1: X0 : {X1, X2, X3}, X1 :
{X0, X2, X3}, X2 : {X0, X1}, X3 : {X0, X3}.

We also have a datastructure that, for each variable, holds the indexs of the literals
where the variable occurs in the clause (clause’s head being index 1). For the same clause
C from Example 2.1 we then have X0 : [1, 2, 3, 4], X1 : [2, 5, 6], X2 : [3, 5], X3 : [4, 6].

3.3. Clause decomposition

The dominant factor for reduced time complexity in Subsumer is clause decomposition.
Let H = h ← b1, .., bi, .., bN and suppose literal bi succeeds ki > 0 times. The worst
case number of predicate calls is

∏N
1 ki which, assuming an average branching factor, b, of

solutions per literal leads to a O(bN) time complexity. For non-determinate clauses (i.e.
clauses having literals with b > 1) this becomes untractable for relatively small N .

However, when the clause is decomposable in K groups of independent literals the
complexity drops from O(bN) to

∑K
1 O(bNgi), which is O(bmaxNgi). The worst case is now

only exponential in the size of the longest group rather than the whole clause size.

1There are two problems: efficiency and transparency. From our experience, managing the threads
explicitly in YAP is inefficient and also obfuscates the structure of the algorithm underneath. The ideal
situation would be for Prolog compilers to have native parallel versions of list processing libraries (predicate
checklist/2 in library(apply macros) is the relevant one here).

176 J. SANTOS AND S. MUGGLETON

The reasoning is then applied recursively to the newly found subcomponents. This idea,
named once-transformation, was initially presented in [Cos03]. In Subsumer we implement
a variant of it with several important differences. In the once-transformation the clause
was transformed and independent literals were embedded in once/1 calls. The transformed
clause was then called by the Prolog engine. In our approach, the clause is not transformed
and our unit of evaluation are the distinct logical variables in a component, not a literal.

Two clause components are independent if, and only if, they do not share any (free)
variable. Note that a clause is only satisfiable if all its components are. Thus if one compo-
nent has no solutions then there is no solution for the whole clause. Equally importantly,
the different solutions (θ-substitutions) of a component do not impact the solutions of the
remaining components meaning that we can safely skip to the next component as soon as
a solution for the current component has been found.

Example 3.1. h(X)← a(X,Y), b(X,Z), c(Y,A), d(Y,B), e(Z,C), f(Z,D)

In Example 3.1 all variables are connected and thus the whole clause is a single com-
ponent. However, when variable X becomes bound, literals a(x, Y), c(Y,A), d(Y,B) belong
to one component and literals b(x, Z), e(Z,C), f(Z,D) to another. They are independent
of each other as they do not share any common variable. This type of decomposition,
when the head variables are assumed ground, is called the cut-transformation in [Cos03].
Resumer2 does this level of decomposition whereas Django does not do any form of clause
decomposition.

In Subsumer this decomposition is applied recursively. If variable Y becomes bound
next, then component a(x, y), c(y,A), d(y,B) can be further divided into two components
c(y,A) and d(y,B). Literal a(x, y) no longer appears as it is now fully ground and thus no
longer belongs to a component.

Also significantly, in Subsumer the independent components are created dynamically
rather than statically at the beginning of clause evaluation. Although this has an overhead,
it allows to choose the variable with the smallest domain (or another promising heuristic) as
the splitting variable rather than, as in the once-transformation, an arbitrary variable where
no information about its goodness exist. The costs of doing the decomposition dynamically
should be more than offset by minimizing early the domain of the variable used.

3.4. Related engines

There are only two other subsumption engines comparable with Subsumer in terms of
the complexity of clauses they can handle: Django [Mal04] and Resumer2 [Kuz08].

Common to the three engines are algorithms inspired by the constraint satisfaction
framework. All do some custom form of arc-consistency and propagate constraints. Django
and Resumer2 require particularly large quantities of memory as they perform determinate
matching between the literals in the subsumer clause and the literals in the subsumee prior
of starting its normal non-determinate matching.

Determinate matching is an idea originally presented in [Kie94], where signatures (fin-
gerprints) of a literal are computed taking into account its neighbours (i.e. variables and
literals it interacts). If the same unique fingerprint exists on both clauses for a given pair
of literals these can be safely matched. Django computes these signatures with second level
neighbours whereas Resumer2 uses only first level neighbours. This explains partially why

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE 177

Django requires even more memory than Resumer2. Subsumer does not perform any form
of determinate matching.

Django default variable ordering heuristic is the minimal variable domain divided by
the number of variable interactions. In Resumer2 each variable is assigned a weight equal
to its number of interactions divided by its domain size and then variables are selected with
probability proportional to their weight. Subsumer uses simply minimal variable domain.
Django also has a meta layer where it tries to adapt its heuristics to the underlying dataset.
Resumer2 main novelty on the other side is a randomized restart mechanism inspired by
SAT solvers, where if it finds itself stuck for a long time in a subsumption test, it restarts
subsumption with a different variable ordering. This is an interesting idea whose impact
we will investigate in the next section.

Finally, Subsumer can deal with arbitrary Prolog clauses whereas both Resumer2 and
Django can handle only Datalog clauses (i.e. Prolog clauses with no function symbols).

4. Empirical evaluation

In this section we extensively compare Django, Resumer2 and Subsumer. The goal
is to compare running times and memory requirements for the three engines on a very
challenging benchmark for θ-subsumption engines. In the sections below when we refer to
examples we mean the subsumee clauses and by hypotheses we mean the subsumer clauses.
This analogy is due to the direct translation of clauses’ roles to an ILP system.

All the datasets, subsumption engines and scripts to replicate these experiments can
be found at http://ilp.doc.ic.ac.uk/Subsumer.

4.1. Datasets

The datasets selected to compare the subsumption engines are instances of the Phase
Transition (PT) problem [Gio00]. This artificial problem was originally developed to be a
challenge for relational learners like ILP systems. In an ILP system the task is to induce a
theory (i.e. target concept) that, together with provided background knowledge, entails a
set of positive examples (of the target concept) but no negative examples.

The PT problem is a collection of noise free datasets of varying difficulty each charac-
terized by two parameters, the target concept size, M ∈ [5..30], and the distinct number
of terms, L ∈ [12..38], present in a subsumee clause. Furthermore each instance is highly
non-determinate with 100 solutions per distinct predicate symbol/arity. For each instance
there are 200 positive and 200 negative examples evenly divided between train and test
and there exists at least one single clause (the target concept) that perfectly discriminates
between the positive and negative examples (i.e. has 100% accuracy).

The instances belong to three major regions: Yes, No and Phase Transition. In the Yes
region the probability that a randomly generated clause will cover an arbitrary example is
close to 1, in the No region is close to 0 and in the narrow Phase Transition (PT) region
the probability drops abruptly from 1 to 0.

We selected 43 datasets from the set of 702 possible PT instances (range(M)∗range(L) =
26 ∗ 27 = 702) as they are good representatives of the three regions. 12 instances are from
the Yes region, 15 from the No region and 16 from the PT region. These are the same
instances that were used in [Bot03] but there to highlight the difficulty of learning concepts
from the PT and No regions for a relational learning system.

178 J. SANTOS AND S. MUGGLETON

4.2. Subsumees/Examples

Each example is a single (saturated) clause with all facts known to be true about it.
All the 400 examples per dataset instance were used. From the subsumption engine

perspective all examples are equal, there is no distinction between positive or negative
examples. However, since our hypotheses are biased to cover positive examples, it is a
better challenge if subsumee clauses that are less likely to be covered are also included.

Due to the nature of the PT dataset all the examples for a particular instance have the
same size (i.e. number of literals) and the number of distinct predicate symbols is equal to
the concept size, M . The number of distinct terms in an example is L. The arity of all
predicate symbols is three with the first argument being always the term from the head.
All terms in the examples are constants with no function symbols.

Below is a small excerpt of an example for dataset id=3 (m=18,l=16). The full example
has 801 literals.

p(d0)← br0(d0, d0 9, d0 5), br0(d0, d0 9, d0 3), br0(d0, d0 9, d0 2), . . . ,
br3(d0, d0 0, d0 11), br3(d0, d0 0, d0 1), br4(d0, d0 9, d0 6), . . . ,
br7(d0, d0 0, d0 3), br7(d0, d0 0, d0 15), br7(d0, d0 0, d0 13).

The examples length range from 501 literals (m=5, l=15) to 2921 literals (m=29, l=24).
These instances are from the Yes and No region respectively.

4.3. Subsumers/Hypotheses

The clauses used as subsumers (i.e. hypotheses) were generated using the concept of
assymmetric relative minimal generalizations (ARMG) [Mug09]. Essentially the ARMG
algorithm receives a clause C and an example e as input and returns a reduced clause Rc,
where all literals from C responsible for not entailing e are pruned.

The hypotheses generation algorithm employed receives a list of positive examples and
computes the iterative ARMG of all of them. The iterative ARMG of a list of examples is
found by computing the (variablized) bottom clause for the first example and then, using
it as the start clause, iteratively apply the ARMG algorithm to the remaining examples.

The more examples used to construct an ARMG the smaller (and more general) it will
be. Furthermore an ARMG will at least entail all the examples used in its construction.

In order to create the ARMGs we used 10 randomly selected lists of 6, 7, 8, 9 and 10
positive only examples 2 , yielding 50 varying length hypotheses (10 hypotheses are ARMGs
with 6 positive examples, ..., 10 hypotheses are ARMGs with 10 positives).

Below is a small excerpt of an hypothesis, an ARMG of 6 positive examples, for dataset
id=3 (m=8,l=16). The full hypothesis has 59 literals.

p(A)← br0(A,B,C), br0(A,B,D), br0(A,E, F), br0(A,E,G), br0(A,E,H), . . . ,
br1(A,E,O), br1(A,E,N), br1(A,E,L), br1(A,E, J), br2(A, J,K), . . . ,
br4(A,H,Q), br4(A,D,F), br4(A,D,C), br5(A, I,N), br6(A, J,Q).

2We did not want to mix positive and negative examples in the ARMG. The reason is that we know
this dataset is noise free and since an ARMG, by construction, covers the examples used to create it, the
resulting clauses would be shorter and thus less difficult to test for subsumption.

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE 179

Note that, since our hypotheses are not random -they are biased towards covering posi-
tive examples- in the Yes, No and Phase transition regions the probabilities for subsumption
are not necessarily close to 1, 0 and 0.5. Nevertheless, it is still relevant to divide the dataset
in these three regions as the subsumption tests have a region related difficulty (e.g. longer
clauses with more terms in examples and variables in hypotheses).

The hypotheses length vary significantly within each instance (e.g. from 59 to 121
literals for m=17,l=14) but the extremes are 29 literals (m=14, l=24) and 626 literals
(m=26, l=12). These instances are both from the PT region. The length of the examples
and hypotheses is just a rough indication of the subsumption problem difficulty. Other
important factors are: ratio between those lengths, distinct terms in the examples, distinct
variables in the hypotheses, distinct predicate symbols.

4.4. Subsumption engines

We used Subsumer, Django [Mal04] and Resumer2 [Kuz08]. Older subsumption en-
gines based on determinate matching [Kie94] and maximal clique search [Sch96] were not
tested as we could no longer find them publicly available. However, in [Mal04] they were
tested against Django and it clearly outperformed those older engines by several orders of
magnitude (speedups between 150x to 1200x).

As for Resumer2, we will also test a variant, which we name Resumer1, that has ran-
domized restarts turned off. This experiment is interesting because it directly tests the
importance of randomized restarts in this benchmark. Furthermore, by comparing the rel-
ative performance of Resumer1 to Resumer2, we can roughly estimate the gains we would
obtain if we were to implement randomized restarts in top of Subsumer.

We compiled Django with gcc 4.1.2, Resumer2 (and Resumer1) with Sun’s Java 1.6 and
Subsumer with YAP6 Prolog [dS06], all with full optimizations enabled. All experiments
were performed in a Athlon Opteron processor 1222 running at 3.0 GHz with 4 GB RAM
and a 64 bit build of Linux.

4.5. Results and discussion

A first point to mention is that the four subsumption engines returned the same list
of subsumed examples for each instance. This was expected as otherwise there would be
at least one faulty implementation. Nevertheless, this is strong evidence that all engines
correctly implement θ-subsumption. Notice that each instance consists of 50 (hypotheses)
* 400 (examples) = 20.000 subsumption tests.

Analyzing Table 13 the first conclusion is that Django consumes too much memory. It
consumes so much memory that in only 14 of the 43 datasets it did not crash for exceeding
the 4Gb memory limit. It could not solve a single dataset from the No region, the most
difficult one. Also, from a CPU time perspective, Django is clearly behind Resumer1/2 and
Subsumer by up to 2 orders of magnitude for the few datasets it managed to finish.

The interesting comparison is between Resumer1/2 and Subsumer. Resumer1 is faster
than Subsumer but the difference is merely, on average, 5%. Also relevant, standard devi-
ation in Subsumer’s running times are about half of Resumer1’s. More importantly, Sub-
sumer’s memory requirements are only a small fraction (1/8 to 1/10) of either Resumer.

3Note that the PT and Overall columns favor Django as, naturally, we can just take into account the
datasets where Django successfully finished.

180 J. SANTOS AND S. MUGGLETON

Table 1: Average CPU times (seconds) and memory (megabytes) for problems in each region
of the Phase Transition dataset

Phase Transition dataset region
Yes No PT Overall

Engine CPU RAM CPU RAM CPU RAM CPU RAM
Django 4,404 2,248 N/A N/A 78,736 3,037 15,023 2,361
Resumer1 99 608 544 1,167 225 749 301 855
Resumer2 75 578 154 1,136 120 875 119 883
Subsumer 190 75 442 141 292 92 316 105

Resumer2 is clearly best on all regions. It is followed by Resumer1 though Subsumer
manages to outperform Resumer1 in the No region by 23%. Notice that randomized restarts
are particularly helpful in this region and are solely responsible for the almost 4 times
speedup that Resumer2 has over Resumer1. In the easiest Yes region, Subsumer is about 2
times slower than either Resumer and randomized restarts have almost no impact. In the
PT region Resumer1 outperforms Subsumer by 30% and Resumer2 outperforms both by
about 2 times showing that, again, randomized restarts are important. Randomized restarts
are more helpful as the difficulty of the subsumption test increases. This is as expected as,
for simple instances, randomized restarts do not have time to occur.

Overall, Resumer2 clearly outperforms Resumer1 being, on average, 2.5 times faster
than it. Also the standard deviation for a subsumption test in Resumer2 decreased consid-
erably comparing with Resumer1. Notably, this is achieved without increasing the memory
footprint. This result is further evidence to Resumer2’s authors claim in [Kuz08] that
randomized restarts are helpful to reduce expected subsumption time.

We did a further experiment to test to which extent dynamic clause decomposition is
important to Subsumer. We disabled it and analyzed how Subsumer performed using only
the cut transformation. Although for the Yes and PT regions dynamic clause decomposition
turned out to be mainly overhead (10%-25% slower), for all the problems in the No region
it proved essential. Without it Subsumer would get stuck. It is in the No region that
Subsumer outperforms Resumer1 and this is due to dynamic clause decomposition.

To test the importance of the particular compilers used, in a separate experiment we
compiled Resumer1 with GNU Java compiler (gcj 4.3.3) also with full optimizations enabled.
This gcj version of Resumer1 took 2.5 times longer and required 25% more memory than
Resumer1 compiled with Sun’s JVM. Subsumer compiled with SWI-Prolog (5.6.59) takes
5.5 times longer than with YAP6. Compilers significantly influence running times.

5. Conclusions and future directions

Our subsumption engine comparison on the challenging PT problem showed that Sub-
sumer clearly outperformed Django both in time and memory and that it is competitive
with Resumer2 without randomized restarts. Furthermore, Subsumer requires only ≈ 1/8
of Resumer2’s memory and can handle arbitrary Prolog clauses. We also confirmed the
importance of randomized restarts as previously pointed out in [Kuz08]. This is incentive
to implement a randomized restart strategy in a future version of Subsumer.

Also worth investigating is the impact of our θ-subsumption engine embedded in a
Prolog based ILP system. Could ILP systems then tackle problems they cannot now?

SUBSUMER: A PROLOG θ-SUBSUMPTION ENGINE 181

Besides the ILP community, we expect that other related research communities, e.g
automated theorem proving, can also profit from our Prolog subsumption engine.

From a strict performance perspective, there would be gains in relaxing Subsumer’s
auto-imposed constraint of having no state. Namely, often hypotheses are related and have
many identical literals, much of the datastructures could be computed once and, at the
expense of some memory, running times could be significantly improved.

As for the θ-subsumption problem itself, it is worth verifying if it could be entirely
mapped to a constraint satisfaction problem or a sub-graph isomorphism matching problem.
If so, one can then use existing state-of-the-art solvers for those problems and check whether
they are any better than custom engines like Resumer2 or Subsumer.

Acknowledgments

We thank Ondrej Kuzelka and Filip Zelezný for kindly providing Resumer2 and Django
and, specially, for fruitful discussions that improved both Resumer2 and Subsumer. The
first author thanks Wellcome Trust for his Ph.D. scholarship. The second author thanks
the Royal Academy of Engineering and Microsoft for funding his present 5 year Research
Chair. We are also indebted to three anonymous referees for valuable comments.

References

[Bot03] Marco Botta, Attilio Giordana, Lorenza Saitta, and Michèle Sebag. Relational learning as search
in a critical region. Journal of Machine Learning Research, 4:431–463, 2003.

[Cos03] Vı́tor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda
Janssens, Jan Struyf, Henk Vandecasteele, and Wim Van Laer. Query transformations for improving
the efficiency of ILP systems. Journal of Machine Learning Research, 4:465–491, 2003.

[dS06] Anderson Faustino da Silva and Vı́tor Santos Costa. The design and implementation of the YAP
compiler: An optimizing compiler for logic programming languages. In Sandro Etalle and Miroslaw
Truszczynski (eds.), ICLP, LNCS, vol. 4079, pp. 461–462. Springer, 2006.

[Gio00] Attilio Giordana and Lorenza Saitta. Phase transitions in relational learning. Machine Learning,
41(2):217–251, 2000.

[Kap86] Deepak Kapur and Paliath Narendran. NP-completeness of the set unification and matching prob-
lems. In Jörg H. Siekmann (ed.), CADE, LNCS, vol. 230, pp. 489–495. Springer, 1986.

[Kie94] Jrg-Uwe Kietz and Marcus Lbbe. An efficient subsumption algorithm for Inductive Logic Program-
ming. Proc. 11th Int. Conf. on Machine Learning, pp. 130–138. Morgan Kaufmann, 1994.

[Kow71] Robert A. Kowalski and Donald Kuehner. Linear resolution with selection function. Artif. Intell.,
2(3/4):227–260, 1971.

[Kuz08] Ondrej Kuzelka and Filip Zelezný. A restarted strategy for efficient subsumption testing. Fundam.
Inform., 89(1):95–109, 2008.

[Mal04] Jérôme Maloberti and Michèle Sebag. Fast theta-subsumption with constraint satisfaction algo-
rithms. Machine Learning, 55(2):137–174, 2004.

[Mug09] Stephen Muggleton, Jose Santos, and Alireza Tamaddoni-Nezhad. Progolem: a system based on
relative minimal generalisation. In Luc De Raedt (ed.), Proceedings of the 19th International Con-
ference on ILP, LNCS, vol. 5989, pp. 131–148. Springer, 2009.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23–
41, 1965.

[Sch96] Tobias Scheffer, Ralf Herbrich, and Fritz Wysotzki. Efficient theta-subsumption based on graph
algorithms. In S. Muggleton (ed.), ILP workshop, LNCS, vol. 1314, pp. 212–228. Springer, 1996.

[Sri07] Ashwin Srinivasan. The Aleph Manual. University of Oxford, 2007.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 182–191
http://www.floc-conference.org/ICLP-home.html

USING GENERALIZED ANNOTATED PROGRAMS TO SOLVE SOCIAL

NETWORK OPTIMIZATION PROBLEMS

PAULO SHAKARIAN 1 AND V.S. SUBRAHMANIAN 1 AND MARIA LUISA SAPINO 2

1 Univestiy of Maryland
College Park, MD
E-mail address: {pshak,vs}@cs.umd.edu

2 Università di Torino
Torino, Italy
E-mail address: mlsapino@di.unito.it

Abstract. Reasoning about social networks (labeled, directed, weighted graphs) is be-
coming increasingly important and there are now models of how certain phenomena (e.g.
adoption of products/services by consumers, spread of a given disease) “diffuse” through
the network. Some of these diffusion models can be expressed via generalized annotated
programs (GAPs). In this paper, we consider the following problem: suppose we have a
given goal to achieve (e.g. maximize the expected number of adoptees of a product or
minimize the spread of a disease) and suppose we have limited resources to use in trying
to achieve the goal (e.g. give out a few free plans, provide medication to key people in the
SN) - how should these resources be used so that we optimize a given objective function
related to the goal? We define a class of social network optimization problems (SNOPs)
that supports this type of reasoning. We formalize and study the complexity of SNOPs
and show how they can be used in conjunction with existing economic and disease diffusion
models.

1. Introduction

There is a rapid proliferation of different types of graph data in the world today.
These include social network data (FaceBook, Flickr, YouTube, etc.), cell phone network
data [NE08] collected by virtually all cell phone vendors, email network data (such as
those derived from the Enron corpus or Gmail logs), as well as information on disease net-
works [FC08, And79]. In addition, the World Wide Consortium’s RDF standard is also a
graph-based standard for encoding semantic information contained in web pages. There
has been years of work on analyzing how various properties of nodes in such networks “dif-
fuse” through the network - different techniques have been invented in different academic
disciplines including economics [Jac05, Sch78], infectious diseases [FC08], sociology [Gra78]
and computer science [Kem03].

1998 ACM Subject Classification: I.2.4 Knowledge Representation Formalisms and Methods.
Key words and phrases: annotated logic programming, optimization queries, social networks.
Some of the authors of this paper were funded in part by AFOSR grant FA95500610405, ARO grant

W911NF0910206 and ONR grant N000140910685.

c© P. Shakarian, V.S. Subrahmanian, and M.L. Sapino
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.182

USING GAPS TO SOLVE SOCIAL NETWORK OPTIMIZATION PROBLEMS 183

Many of these methods focus on modeling a specific type of diffusion in an SN and
often, they only rely on the network topology [Wat99, Cow04, Ryc08], rather than on
properties of vertices, and the nature of the relationships between vertices. In this paper,
we first argue that Generalized Annotated Programs (GAPs) [Kif92b, Kif92a, Thi93] and
their variants [Ven04, Kra04, Lu96, Lu93, Dam99] form a convenient method to express
many diffusion models. Next, unlike most existing work in social networks which focus on
learning diffusion models, we focus on reasoning with previously learned diffusion models
(expressed via GAPs). In particular, if we wish to achieve certain goals based on a social
network, how best can we achieve these goals? Two examples are given below.

• (Q1) Cell phone plans. A cell phone company is promoting a new cell phone
plan - as a promotion, it is giving away k free plans to existing customers. Which k
people should they pick so as to maximize the (expected) number of plan adoptees
predicted by a cell phone plan adoption diffusion model they have learned from their
past promotions?
• (Q2) Medication distribution plan. A government combating a disease spread

by physical contact has limited stocks of free medication to give away. Based on
a diffusion model of how the disease spreads (e.g. kids might be more susceptible
than adults, those previously inoculated against the disease are safe, etc.), they want
to find the k people who maximally spread the disease (so that they can provide
immediate treatment to these k people in an attempt to halt the disease’s spread).

Both the above problems are instances of a class of queries that we call SNOP queries.
They differ from queries studied in the past in quantitative (both probabilistic and anno-
tated) logic programming in two fundamental ways: (i) They are specialized to operate on
graph data, (ii) They optimize complex kinds of objective functions. Neither of these has
been studied before by any kind of quantitative logic programming framework, though work
on optimizing objective functions in the context of different types of semantics (minimal
model and stable model semantics) has been studied before[Leo04]. And of course, con-
straint logic programming[Apt03] has also extensively studied optimization issues as well in
logic programming - however, here, optimization and constraint solving is embedded in the
constraint logic program, whereas in our case, they are part of the query over an annotated
logic program.

This paper is organized as follows. In Section 2, we provide an overview of GAPs (past
work), define a social network, and explain how GAPs can represent some types of diffusion
in SNs. Section 3 formally defines different types of social network optimization problems
and provides results on their computational complexity. Finally, section 4 shows how our
framework can represent several existing diffusion models for social networks including one
each from economics, epidemiology, and computer science.

2. Technical Preliminaries

In this section, we first formalize social networks, then briefly overview generalized
annotated logic programs (GAPs)[Kif92b] and then describe how GAPs can be used to
represent concepts related to diffusion in SNs. Throughout this paper, we assume the
existence of two arbitrary but fixed disjoint sets VP,EP of vertex and edge predicate symbols
respectively. Each vertex predicate symbol has arity 1 and each edge predicate symbol has
arity 2.

184 P. SHAKARIAN, V.S. SUBRAHMANIAN, AND M.L. SAPINO

Definition 2.1. A social network (S) is a 5-tuple (V,E, `vert, `edge, w) where:

(1) V is a set whose elements are called vertices.
(2) E ⊆ V× V is a multi-set whose elements are called edges.
(3) `vert : V→ 2VP is a function, called vertex labeling function.
(4) `edge : E→ EP is a function, called edge labeling function. 1

(5) w : E× EP→ [0, 1] is a function, called weight function.

We now present a brief example of an SN that will be used throughout this paper.

Example 2.2. Let us return to the cell phone example (query (Q1)). Figure 1 shows
a toy SN the cell phone company might use. Here, we might have VP = {male, female,
adopters, temp adopter, non adptr} denoting the sex and past adoption behavior of each
vertex; EP might be the set {phone, email, IM} denoting the types of interactions between
vertices. w(v1, v2, ep) denotes the percentage of communications of type ep ∈ EP initiated
by v1 that were with v2 (measured either w.r.t. time or bytes). The function `vert is shown
in the figure by the shape (denoting past adoption status) and shading (male/female). The
type of edges (bold for phone, dashed for email, dotted for IM) is used to illustrate `edge.

Figure 1: Example cellular network.

It is important to note that our defini-
tion of social networks is much broader than
that used by several researchers[And79, FC08,
Jac05, Kem03] who often do not consider ei-
ther `edge or `vert — these can have a signifi-
cant impact on what we do with such networks.
Note. We note that each social network must
satisfy various integrity constraints. In Ex-
ample 2.2, it is clear that `vert(V) should in-
clude at most one of male, female and at most
one of adopters, temp adopter,non adptr. We
assume the existence of some integrity con-
straints to ensure this kind of semantic in-
tegrity – they can be written in any reason-
able syntax to express ICs – in the rest of this
paper, we assume that social networks have
associated ICs and that they satisfy them. In
our example, we will assume ICs ensuring that a vertex can be marked with at most one of
male/female and at most one of adopters, temp adopter, non adptr.

We now recapitulate the definition of generalized annotated logic programs from [Kif92b].
We assume the existence of a set AVar of variable symbols ranging over the unit real interval
[0, 1] and a set F of function symbols each of which has an associated arity. We start by
defining annotations.

Definition 2.3 (annotation term). (i) Any member of [0, 1] ∪ AVar is an annotation.
(ii) If f is an n-ary function symbol over [0, 1] and t1, . . . , tn are annotations, then so is
f(t1, . . . , tn).

We define a separate logical language whose constants are members of V and whose
predicate symbols consist of VP ∪ EP. We also assume the existence of a set V of variable

1Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be multiple
edges between two vertices labeled with different predicate symbols.

USING GAPS TO SOLVE SOCIAL NETWORK OPTIMIZATION PROBLEMS 185

symbols ranging over the constants (vertices). No function symbols are present. Terms and
atoms are defined in the usual way (cf. [Llo87]). If A = p(t1, . . . , tn) is an atom and p ∈ VP
(resp. p ∈ EP), then A is called a vertex (resp. edge) atom.

Definition 2.4 (annotated atom/GAP-rule/GAP). If A is an atom and µ is an annotation,
then A : µ is an annotated atom. If A0 : µ0, A1 : µ1, . . . , An : µn are annotated atoms, then

A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn

is called a GAP rule. When n = 0, the above GAP-rule is called a fact. A generalized
annotated program Π is a finite set of GAP rules.

Every social network SN = (V,E, `vert, `edge, w) can be represented by the GAP ΠSN =
{q(v) : 1 ← | v ∈ V ∧ q ∈ `vert(v)} ∪ {ep(V1, V2) : w(V1, V2, ep) ← | (V1, V2) ∈ E ∧
`edge(V1, V2) = ep}.

Definition 2.5 (embedded social network). A social network SN is said to be embedded
in a GAP Π iff ΠSN ⊆ Π.

We see immediately from the definition of ΠSN that all social networks can be repre-
sented as GAPs. When we augment ΠSN with other rules — such as rules describing how
certain properties diffuse through the social network, we get a GAP Π ⊇ ΠSN that captures
both the structure of the SN and the diffusion principles. Here is a small example of such
a GAP.

Example 2.6. The GAP Πcell might consist of ΠSN using the social network of Figure 1
plus the GAP-rules:

(1) will adopt(V) : 0.8×X + 0.2← adopter(V) : 1 ∧ male(V) : 1∧
IM(V, V ′) : 0.3 ∧ female(V ′) ∧ will adopt(V ′) : X.

(2) will adopt(V) : 0.9×X + 0.1← adopter(V) : 1 ∧ male(V) : 1∧
IM(V, V ′) : 0.3 ∧ male(V ′) ∧ will adopt(V ′) : X.

(3) will adopt(V) : 1← temp adopter(V) : 1 ∧ male(V) : 1 ∧ email(V ′, V) : 1∧ female(V ′) :
1 ∧ will adopt(V ′) : 1.

Rule (1) says that if V is a male adopter and V ′ is female and the weight of V ’s instant
messages to V ′ is 0.3 or more, and we previously thought that V would be an adopter with
confidence X, then we can infer that V will adopt the new plan with confidence 0.8×X+0.2.
The other rules may be similarly read.

GAPs have a formal semantics that can be immediately used. An interpretation I is
any mapping from the set of all grounds atoms to [0, 1]. The set I of all interpretations can
be partially ordered via the ordering: I1 � I2 iff for all ground atoms A, I1(A) ≤ I2(A). I
forms a complete lattice under the � ordering.

Definition 2.7 (satisfaction/entailment). An interpretation I satisfies a ground annotated
atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. I satisfies the ground GAP-rule AA0 ←
AA1 ∧ . . . ∧ AAn (denoted I |= AA0 ← AA1 ∧ . . . ∧ AAn) iff either (i) I satisfies AA0

or (ii) there exists an 1 ≤ i ≤ n such that I does not satisfy AAi. I satisfies a non-ground
atom (rule) iff I satisfies all ground instances of it. GAP Π entails AA, denoted Π |= AA,
iff every interpretation I that satisfies all rules in Π also satisfies AA.

As shown by [Kif92b], we can associate a fixpoint operator with any GAP Π that maps
interpretations to interpretations.

186 P. SHAKARIAN, V.S. SUBRAHMANIAN, AND M.L. SAPINO

Definition 2.8. Suppose Π is any GAP and I an interpretation. The mapping TΠ that
maps interpretations to interpretations is defined as TΠ(I)(A) = sup{µ | A : µ ← AA1 ∧
. . . ∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n, I |= AAi}.

[Kif92b] show that TΠ is monotonic and has a least fixpoint lfp(TΠ). Moreover, they
show that Π entails A : µ iff µ ≤ lfp(TΠ)(A) and hence lfp(TΠ) precisely captures the
ground atomic logical consequences of Π.

Thus, we see that any social network S can be represented as a GAP ΠS . We will
show (in Section 4) that many existing diffusion models of ΠS can be expressed as a GAP
Π ⊇ ΠS by adding some GAP-rules describing the diffusion process to ΠS .

3. Social Network Optimization (SNOP) Queries

In this section, we develop a formal syntax and semantics for optimization in social
networks, taking advantage of the above embedding of SNs into GAPs. We see from queries
(Q1),(Q2) that a SNOP-query looks for a set V′ of vertices and has the following compo-
nents: (i) an aggregate operator, (ii) an integer k ≥ 0, (iii) a set of conditions that each
vertex in V′ must satisfy, and (iv) a goal atom g(V) where g is a vertex predicate and V is
a variable.
Aggregates. It is clear that in order to express queries like (Q1),(Q2), we need aggregate
operators which are mappings agg : FM([0, 1]) → R (R is the set of reals) where FM(X)
denotes the set of all finite multisets that are subsets of X. Relational DB aggregates like
SUM,COUNT,AVG,MIN,MAX are all aggregate operators which can take a finite multiset of
reals as input and return a single real.

Aggregates may be monotonic or not. We first define a partial ordering v on multi-sets
of numbers as follows. X1 v X2 iff there exists an injective mapping β : X1 → X2 such
that (∀x1 ∈ X1)x1 ≤ β(x1). The aggregate agg is monotonic (resp. anti-monotonic) iff
whenever X1 v X2, it is the case that agg(X1) ≤ agg(X2) (resp. agg(X2) ≤ agg(X1)).
Vertex condition. A vertex condition is a conjunction V C of annotated vertex atoms
containing at most one variable.

Thus, in our example, male(V) : 1 ∧ adopter(V) : 1 is a conjunctive vertex condition,
but male(V) : 1 ∧ email(V, V ′) : 1 is not. We are now ready to define a SNOP-query.

Definition 3.1 (SNOP-query). A SNOP-query is a 4-tuple (agg, V C, k, g(V)) where agg
is an aggregate, V C is a vertex condition, k ≥ 0 is an integer, and g(V) is a goal atom.

If we return to our cell phone example, we can set agg = SUM, k = 3 (for example),
V C = true and the goal to be adopter(V). Here, the goal is to find a set X of annotated
ground atoms of the form adopter(v) : µ such that X’s cardinality is 3 or less and such that
SUM{µ | adopter(v) : µ ∈ X} is maximized. Here, the SUM is applied to a multiset rather
than a set.

Definition 3.2 (pre-answer/value). Suppose an SN S = (V,E, `vert, `edge, w) is embedded
in a GAP Π. A pre-answer to the SNOP query Q = (agg, V C, k, g(V)) w.r.t. Π is any
set V′ ⊆ V such that: (i) |V′| ≤ k, (ii) for all vertices v′ ∈ V′, lfp(T{Π∪{g(v′):1← | v′∈V′}) |=
V C[V/v′]. We use pre ans(Q) to denote the set of all pre-answers to query Q.

The value, value(V′), of a pre-answer V′ is agg({lfp(TΠ∪{g(v′):1← | v′∈V′})(g(V)) | V ∈
V}) — here, the aggregate is applied to a multi-set rather than a set. We also note that we

USING GAPS TO SOLVE SOCIAL NETWORK OPTIMIZATION PROBLEMS 187

can define value as a mapping from interpretations to reals based on a SNOP query. We
say value(I) = agg({I(g(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the company
is considering giving free plans. The value of this set (value(V′)) is computed as follows.
Find the least fixpoint of TΠ′ where Π′ is Π expanded with annotated atoms of the form
adopter(V ′) : 1 for each vertex V ′ ∈ V′. For each vertex V ∈ V (the entire set of vertices,
not just V′ now), we now find the confidence assigned by the least fixpoint. Summing up
these confidences gives us a measure of the expected number of plan adoptees.

Definition 3.3 (answer). Suppose an SN S = (V,E, `vert, `edge, w) is embedded in a GAP
Π and Q = (agg, V C, k, g(V)) is a SNOP-query. A pre-answer V′ is an answer to the SNOP-
query Q iff the SNOP-query has no other pre-answer V′′ such that value(V′′) > value(V′).2

The answer set, ans(Q), to the SNOP-query Q = (agg, V C, k, g(V)) w.r.t. Π is the set
of all answers to Q.

Example 3.4. Consider the GAP Πcell with the social network from Figure 1 embed-
ded and the SNOP-query Qcell = (SUM, true, 3, will adopt). The sets V′1 = {v15, v19, v6}
and V′2 = {v15, v18, v6} are both pre-answers. In the case of V′1, two applications of
the TΠ operator yield a fixpoint where the vertex atoms formed with will adopt in set
{v15, v19, v6, v12, v18, v7, v10} are annotated with 1. For V2, only one application of TΠ is
required to reach a fixpoint, and the corresponding set of vertices (where the vertex atom
formed with will adopt is annotated with 1) is {v15, v6, v12, v18, v7, v10}. As these are the
only vertex atoms formed with will adopt that have a non-zero annotation after reaching
the fixed point, we know that value(V′1) = 7 and value(V′2) = 6. As value(V′1) > value(V′2),
it is easy to see that V′1 is an answer to this SNOP-query.

Theorem 3.5. Answering SNOP-queries is NP-Hard.3

Under some reasonable conditions, the problem of answering SNOP-queries is also in
NP.

Theorem 3.6. If both the aggregate function agg and the functions in F are polynomially
computable, then the problem of finding an answer to a SNOP-query is in NP4.

Most common aggregate functions like SUM, AVERAGE, Weighted average, MIN,
MAX, COUNT are all polynomially computable. Moreover, the assumption that the func-
tions in F are polynomially computable is also reasonable. The counting problem version
of SNOP-query answering seeks to find the number of answers to a SNOP query. Unfortu-
nately, this problem is #P -complete under the same assumptions.

2Throughout this paper, we only treat maximization problems - minimizing an objective function f is
the same as maximizing −f .

3Proof Sketch: Due to space constraints, we only explain the hardness result by reducing SET COVER
to the problem of answering SNOP queries. Given a SET COVER problem instance consisting of a set S, a
family H = {H1, . . . , Hmax} of subsets of S, and a positive integer K, we can reduce this problem instance
to a SNOP query by polynomially constructing a graph whose vertices correspond to the members of S and
to the Hi’s - there is an edge from an s ∈ S to Hi iff s ∈ Hi. All edges have a weight of 1. Every vertex
v ∈ S has an associated propositional symbol marked set to “true.” There is only one label and all edges
are labeled with it and there are no integrity constraints. We have a GAP consisting of one rule marked(v) :
1 ← marked(v′) : 1 ∧ (v′, v, label) : 1. If we now consider the SNOP-query (SUM, true,K,marked(v)), we
see that solutions to the SNOP-query (which cause certain Hi’s to get marked) correspond precisely to a
solution of the SET COVER problem.

4By abuse of notation, we refer to the obvious decision problem associated with answering SNOP-queries.

188 P. SHAKARIAN, V.S. SUBRAHMANIAN, AND M.L. SAPINO

Theorem 3.7. The counting version of the SNOP query answering problem is #P-complete.

Although the counting version of the query is #P -hard, finding the union of all answers
to a SNOP query is no harder than a SNOP query. We shall refer to this problem as SNOP-
ALL - and it reduces both to and from a regular SNOP query5.

4. Applying SNOPs to Real Diffusion Problems

In this section, we briefly show how SNOPs may be used to solve two diffusion problems
- one each in economics and disease spread.
The Jackson-Yariv Diffusion Model [Jac05]. In this framework, a set of agents is
associated with each vertex in an undirected graph G′ = (V′,E′). Each agent has a default
behavior (A) and a new behavior (B). Suppose di denotes the degree of a vertex vi. [Jac05]
use a function g : {0, . . . , |V| − 1} → [0, 1] to describe how the number of neighbors of v
affects the benefits to v for adopting behavior B. For instance, g(3) specifies the benefits
(in adopting behavior B) that accrue to an arbitrary vertex v ∈ V′ that has three neighbors.
Let πi denote the fraction of neighbors of vi that have adopted behavior B; Let constants
bi and ci be the benefit and cost for vertex vi to adopt behavior B, respectively. [Jac05]

state that node vi switches to behavior B iff bi
ci
· g(di) · πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to describe
the spread of the new plan. In this case, behavior B would be the use of the new plan. The
associated SNOP-query would ask to simply find the nodes given a free plan that would
maximize use of the plan in the network. Cost and benefit could be computed from factors
such as income, time invested in switching plans, etc.

Given a Jackson-Yariv model consisting of G′ = (V′,E′) and g, we can set up an SN
(V′,E′′, `vert, `edge, w) as follows. We define E′′ = {(x, y), (y, x) | (x, y) ∈ E′}. We have a
single edge predicate symbol edge and `edge assigns 1 to all edges in E′′. Our associated
GAP ΠJY now consists of ΠSN plus the single rule:

B(Vi) : bbi
ci
· g(

∑
j

Ej) ·
∑

j Xj∑
j Ej
c ←

∧
Vj |(Vj ,Vi)∈E′′

(edge(Vj , Vi) : Ej ∧B(Vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠSN for a social
network SN) precisely encodes the Jackson-Yariv semantics.
The Kempe-Kleinberg-Tardos Framework.[Kem03] If we take the above construction,

and for each vi replace the
∑

j Xj∑
j Ej

in the head with a monotone threshold function, fi, we have

embedded the general framework of [Kem03], of which the [Jac05] model is a special case.
It is important to note that the framework of [Kem03] captures a wide variety of diffusion
models seen in social sciences and interacting particle systems. These include the “linear
threshold model” - which is based on models in social science made popular by [Sch78] and
[Gra78] and the “independent cascade model,” introduced in [JG01]. However, this work
provides a further generalization, as we allow for multiple properties to be “activated” on
the vertices, permit labeled edges signifying different relationships, and provide a rule-based

5Our proofs of this statement rely on two constructions. First, a regular SNOP query, where the answer
must be of size k, can be solved with k successive SNOP-ALL queries. Likewise, a SNOP-ALL query can be
answered by solving |V| SNOP queries. Details are omitted due to lack of space.

USING GAPS TO SOLVE SOCIAL NETWORK OPTIMIZATION PROBLEMS 189

framework which can allow for learned diffusion models. Additionally, [Kem03] does not
solve SNOP queries with complex aggregates.
The SIR Model of Disease Spread. The SIR (susceptible, infectious, removed) model
of disease spread [And79] is a classic disease model which labels each vertex in a graph
G = (V,E) (of humans) with susceptible if it has not had the disease but can receive it from
one of its neighbors, infectious if it has caught the disease and trec units of time have not
expired, and removed where the vertex can no longer catch or transmit the disease. The
SIR model assumes that a vertex v that is infected can transmit the disease to any of its
neighbors v′ with a probability pv,v′ for trec units of time. We would like to “find k vertices
that would maximize the expected number of vertices that become infected”. These are
obviously good candidates to treat with appropriate medications.

Let S = (V,E, `vert, `edge, w) be an SN where each edge is labeled with the predicate
symbol e and w(v, v′, e) = pv,v′ . We use the predicate inf to designate the initially infected
vertices. In order to create a GAP ΠSIR capturing the SIR model of disease spread, we
first define trec predicate symbols rec1, . . . , rectrec where reci(v) intuitively means that node
v was infected i days ago. Hence, rectrec(v) means that v is “removed.” We embed S into
GAP ΠSIR by adding the following diffusion rules. If trec > 1, we add a non-ground rule
for each i = {2, . . . , trec} - starting with trec:

reci(V) : R ← reci−1(V) : R

rec1(V) : R ← inf(V) : R

inf(V) : (1−R) · PV ′,V · (PV ′ −R′) ← rectrec(V) : R ∧ e(V ′, V) : PV ′,V ∧
inf(V ′) : PV ′ ∧ rectrec(V

′) : R′.

The first rule says that if a vertex is in its (i− 1)’th day of recovery with certainty R in
the j’th iteration of the TΠSIR

operator, then the vertex is i days into recovery (with the
same certainty) in the j + 1’th iteration of the operator. Likewise, second rule intuitively
encodes the fact that if a vertex became infected with certainty R in the j’th iteration of
the TΠSIR

operator, then the vertex is one day into recovery in the j+ 1’th iteration of the
operator with the same certainty. The last rule says that if a vertex V ′ has been infected
with probability PV ′ and there is an edge from V ′ to V in the social network (weighted with
probability PV ′,V), and the vertex V ′ has recovered with certainty R′, given the probability

1−R that V is not already recovered, (and hence, cannot be re-infected)6, then the certainty
that the vertex V gets infected is (1 − R) · PV ′,V · (PV ′ − R′). Here, PV ′ − R′ is one way
of measuring the certainty that V ′ has recovered (difference of the probability that it was
infected and the probability it has recovered) and PV ′,V is the probability of infecting the
neighbor.

To see how this GAP works, we execute a few iterations of the TΠSIR
operator and show

the fixpoint that it reaches on a toy sample graph shown in Figure 2. In this graph, the
initial infected vertices are those shown in a shaded circle. The transmission probabilities
weight the edges in the graph.

6Note that the SIS (Susceptible-Infectious-Susceptible) model [Het76], where an individual becomes sus-
ceptible to disease after recovering (as opposed to SIR, where an individual acquires immunity) can be easily
represented by a modification to the described construction. Simply change the annotation function in the
head of the third rule to PV ′,V · (PV ′ − R′). In this way, we do not consider the probability that vertex V

is immune.

190 P. SHAKARIAN, V.S. SUBRAHMANIAN, AND M.L. SAPINO

0.2

0.1 0.05

0.3 0.4 0.3

0.2

0.1 c i

d

h g

b a

f

Shaded vertices are infected.
Edges are bi-directional,
 trec =2

inf(a):1, inf(c):1, inf(d):1
rec1(a):1, rec1(c):1, rec1(d):1, inf(b):0.2, inf(d):0.3,
inf(f):0.3, inf(g):0.05, inf(i):0.1
rec2(a):1, rec2(c):1, rec2(d):1, rec1(b):0.2,
rec1(d):0.3, rec1(f):0.3, rec1(g):0.05, rec1(i):0.1
inf(g):0.08
rec2(b):0.2, rec2(d):0.3, rec2(f):0.3, rec2(g):0.05,
rec2(i):0.1, rec1(g):0.08
rec2(g):0.08

1
2

3

4

5

Figure 2: Left: Sample network for disease spread. Right:
annotated atoms entailed after each applica-
tion of TΠSIR

(maximum, non-zero annotations
only).

The SNOP-query is (SUM, true, k, inf)
to count the number of infected
vertices in the least fixpoint of
TΠ. This query says “find the
k vertices in the social network
which, if infected, would cause
the maximal number of ver-
tices to become infected in the
future.” However, the above
set of rules can be easily used
to express other things. For in-
stance, an epidemiologist may
not be satisfied with only one
set of k vertices that can cause
the disease to spread to the
maximum extent - as there may be another, disjoint set of k vertices that could cause
the same effect. Note that a single set of vertices may still be sufficient for other appli-
cations, such as viral marketing. The epidemiologist may want to find all members of the
population, that if in a group of size k could spread the disease to a maximum extent. This
can be answered using a SNOP-ALL query, described in Section 3.

5. Conclusion

In this paper, we described how General Annotated Logic Programs can be used to
represent a variety of diffusion models in social networks. Based on this formulation, we
presented the social network optimization problem (SNOP) - which queries the GAP for
a set of nodes that cause a given phenomenon to spread through the social network to a
maximum extent - shown here to be NP-Complete. We also showed how several well-known
diffusion models can be represented in our framework. In future work, we intend to explore
heuristic approaches for large sub-classes of SNOPs to answer queries on real-world datasets.

6. Acknowledgments

Some of the authors of this paper were funded in part by AFOSR grant FA95500610405,
ARO grant W911NF0910206 and ONR grant N000140910685.

References

[And79] Roy M. Anderson and Robert M. May. Population biology of infectious diseases: Part i. Nature,
280(5721):361, 1979.

[Apt03] K. Apt. Principles of constraint programming. Cambridge University Press, 2003.
[Cow04] Robin Cowan and Nicolas Jonard. Network structure and the diffusion of knowledge. Journal of

Economic Dynamics and Control, 28(8):1557 – 1575, 2004. doi:DOI:10.1016/j.jedc.2003.04.002.
URL http://www.sciencedirect.com/science/article/B6V85-4B3K2R3-2/2/

16e1c8fae6818c11bb45325c9b3ea4a1

[Dam99] C. Damasio, L. Pereira, and T. Swift. Coherent well-founded annotated logic programs. In Proc.
Intl. Conf. on Logic Programming and Non-Monotonic Reasoning, pp. 262–276. Springer Lecture
Notes in Computer Science Vol. 1730, 1999.

USING GAPS TO SOLVE SOCIAL NETWORK OPTIMIZATION PROBLEMS 191

[FC08] H. Cruz F.C. Coelho, C. Codeco. Epigrass: A tool to study disease spread in complex networks.
Source Code for Biology and Medicin, 3(3), 2008.

[Gra78] Mark Granovetter. Threshold models of collective behavior. The American Journal of Sociology,
83(6):1420–1443, 1978. doi:10.2307/2778111.
URL http://dx.doi.org/10.2307/2778111

[Het76] Herbert W. Hethcote. Qualitative analyses of communicable disease models. Mathematical
Biosciences, 28(3-4):335 – 356, 1976. doi:DOI:10.1016/0025-5564(76)90132-2.
URL http://www.sciencedirect.com/science/article/B6VHX-4771JSV-9/2/

701b5ad988380270c29b4ab5dcd67bbe

[Jac05] M. Jackson and L. Yariv. Diffusion on social networks. In Economie Publique, vol. 16, pp. 69–82.
2005.

[JG01] E. Muller J. Goldenberg, B. Libai. Talk of the network: A complex systems look at the underlying
process of word-of-mouth. Marketing Letters, 12(3):211, 2001.

[Kem03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 137–146. ACM, New York, NY, USA, 2003. doi:
http://doi.acm.org/10.1145/956750.956769.

[Kif92a] M. Kifer and E. L. Lozinskii. A logic for reasoning with inconsistency. J. Autom. Reasoning,
9(2):179–215, 1992.

[Kif92b] Michael Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming and
its applications. J. Log. Program., 12(3&4):335–367, 1992.

[Kra04] Stanislav Krajci, Rastislav Lencses, and Peter Vojts. A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems, 144(1):173 – 192, 2004. doi:DOI:10.1016/j.fss.2003.10.019.
URL http://www.sciencedirect.com/science/article/B6V05-49YH3XJ-2/2/

1a631467fa197cb0a6f6ae93c1db1a59

[Leo04] Nicola Leone, Francesco Scarcello, and V.S. Subrahmanian. Optimal models of disjunctive logic pro-
grams: Semantics, complexity, and computation. IEEE Transactions on Knowledge and Data Engi-
neering, 16:487–503, 2004. doi:http://doi.ieeecomputersociety.org/10.1109/TKDE.2004.1269672.

[Llo87] John W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc., 1987.
[Lu93] J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and annotated logics. In Multiple-Valued

Logic, 1993., Proceedings of The Twenty-Third International Symposium on, pp. 48–53. 1993. doi:
10.1109/ISMVL.1993.289582.

[Lu96] J. Lu. Logic programs with signs and annotations. Journal of Logic and Computation, 6(6):755–778,
1996.

[NE08] A. Pentland N. Eagle and D. Lazer. Mobile phone data for inferring social network structure. In
Proc. 2008 Intl. Conference on Social and Behavioral Computing, pp. 79–88. Springer Verlag, 2008.

[Ryc08] Jan Rychtář and Brian Stadler. Evolutionary dynamics on small-world networks. International
Journal of Computational and Mathematical Sciences, 2(1), 2008.
URL www.waset.org

[Sch78] Thomas C. Schelling. Micromotives and Macrobehavior. W.W. Norton and Co., 1978.
[Thi93] K. Thirunarayan and M. Kifer. A theory of nonmonotonic inheritance based on annotated logic.

Artificial Intelligence, 60(1):23–50, 1993.
[Ven04] J. Venneksn, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated disjunctions. In

Proc. Intl. Conf. on Logic Programming, pp. 431–445. Springer Lecture Notes in Computer Science
Vol. 3132, 2004.

[Wat99] Duncan J. Watts. Networks, dynamics, and the small-world phenomenon. The American Journal
of Sociology, 105(2):493–527, 1999.
URL http://www.jstor.org/stable/2991086

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 192–201
http://www.floc-conference.org/ICLP-home.html

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS

GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Department of Computer Science and UMIACS
University of Maryland College Park
College Park, MD 20742, USA
E-mail address, Gerardo Simari: gisimari@cs.umd.edu
E-mail address, V.S. Subrahmanian: vs@cs.umd.edu

ABSTRACT. Action-probabilistic logic programs (ap-programs) are a class of probabilistic logic pro-
grams that have been extensively used during the last few years for modeling behaviors of entities.
Rules in ap-programs have the form “If the environment in which entity E operates satisfies certain
conditions, then the probability that E will take some action A is between L and U”. Given an
ap-program, we are interested in trying to change the environment, subject to some constraints, so
that the probability that entity E takes some action (or combination of actions) is maximized. This
is called the Basic Probabilistic Logic Abduction Problem (Basic PLAP). We first formally define
and study the complexity of Basic PLAP and then provide an exact (exponential) algorithm to solve
it, followed by more efficient algorithms for specific subclasses of the problem. We also develop
appropriate heuristics to solve Basic PLAP efficiently.

1. Introduction
Action probabilistic logic programs (ap-programs for short) [Khu07] are a class of the exten-

sively studied family of probabilistic logic programs (PLPs) [Ng92, Ng93, KI04]. ap-programs
have been used extensively to model and reason about the behavior of groups and an application
for reasoning about terror groups based on ap-programs has users from over 12 US government
entities [Gil08]. ap-programs use a two sorted logic where there are “state” predicate symbols and
“action” predicate symbols1 and can be used to represent behaviors of arbitrary entities (ranging
from users of web sites to institutional investors in the finance sector) because they consist of rules
of the form “if a conjunction C of atoms is true in a given state S, then entity E (the entity whose
behavior is being modeled) will take action A with a probability in the interval [L,U].”

In this kind of application, it is essential to avoid making probabilistic independence assump-
tions, since the approach involves finding out what probabilistic relationships exist and then exploit
these findings in the forecasting effort. For instance, Figure 1 shows a small set of rules automati-
cally extracted from data [Asa08] about Hezbollah’s past. Rule 1 says that Hezbollah uses kidnap-
pings as an organizational strategy with probability between 0.5 and 0.56 whenever no political sup-
port was provided to it by a foreign state (forstpolsup), and the severity of inter-organizational
conflict involving it (intersev1) is at level “c”. Rules 2 and 3, also about kidnappings, state that

1998 ACM Subject Classification: I.2.3: Logic Programming, Probabilistic Reasoning.
Key words and phrases: Probabilistic Logic Programming, Imprecise Probabilities, Abductive Inference.
1Action atoms only represent the fact that an action is taken, and not the action itself; they are therefore quite dif-

ferent from actions in domains such as AI planning or reasoning about actions, in which effects, preconditions, and
postconditions are part of the specification. We assume that effects and preconditions are generally not known.

c© Gerardo I. Simari and V.S. Subrahmanian
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.192

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 193

r1. kidnap(1) : [0.50, 0.56]← forstpolsup(0) ∧ intersev1(c).
r2. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ demorg(0).
r3. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ elecpol(0).
r4. tlethciv(1) : [0.49, 0.55]← demorg(1).
r5. tlethciv(1) : [0.71, 0.77]← elecpol(1) ∧ intersev2(c).

Figure 1: A small set of rules modeling Hezbollah.

this action will be performed with probability between 0.8 and 0.86 when no external support is
solicited by the organization (extsup) and either the organization does not advocate democratic
practices (demorg) or electoral politics is not used as a strategy (elecpol). Similarly, Rules 4
and 5 refer to the action “civilian targets chosen based on ethnicity” (tlethciv). The first one
states that this action will be taken with probability 0.49 to 0.55 whenever the organization advo-
cates democratic practices, while the second states that the probability rises to between 0.71 and
0.77 when electoral politics are used as a strategy and the severity of inter-organizational conflict
(with the organization with which the second highest level of conflict occurred) was not negligible”
(intersev2). ap-programs have been used extensively by terrorism analysts to make predictions
about terror group actions [Gil08, Man08].

Suppose, rather than predicting what action(s) a group would take in a given situation or envi-
ronment, we want to determine what we can do in order to induce a given behavior by the group.
For example, a policy maker might want to understand what we can do so that a given goal (e.g.,
the probability of Hezbollah using kidnappings as a strategy is below some percentage) is achieved,
given some constraints on what is feasible. The probabilistic logic abduction problem (PLAP) deals
with finding how to reach a new (feasible) state from the current state such that the ap-program as-
sociated with the group and the new state jointly entail that the goal will be true within a given
probability interval.

In this paper, we first briefly recall ap-programs and then formulate PLAP theoretically. We
then develop a host of complexity results for PLAP under varying assumptions. We then describe
both exact and heuristic algorithms to solve the PLAP problem. We briefly describe a prototype
implementation and experiments showing that our algorithm is feasible to use even when the ap-
program contains hundreds of rules. A brief note on related work before we begin; almost all
past work on abduction in such settings have been devised under various independence assump-
tions [Poo97, Poo93]. We are aware of no work to date on abduction in possible worlds-based
probabilistic logic systems such as those of [Hai84], [Nil86], and [Fag90] where independence as-
sumptions are not made.

2. Preliminaries
We now overview the syntax and semantics of ap-programs from [Khu07]. We assume the ex-

istence of a logical alphabet that consists of a finite set Lcons of constant symbols, a finite set Lpred
of predicate symbols (each with an associated arity) and an infinite set Lvar of variable symbols;
function symbols are not allowed. Terms, atoms, and literals are defined in the usual way [Llo87].
We assume that Lpred is partitioned into disjoint sets: Lact of action symbols and Lsta of state sym-
bols. Thus, if t1, . . . , tn are terms, and p is an n-ary action (resp. state) symbol, then p(t1, . . . , tn),
is called an action (resp. state) atom.

194 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Definition 2.1. A (ground) action formula is defined as: (i) a (ground) action atom is a (ground)
action formula; (ii) if F and G are (ground) action formulas, then ¬F , F ∧G, and F ∨G are also
(ground) action formulas.

The set of all possible action formulas is denoted by formulas(BLact), where BLact is the
Herbrand base associated with Lact, Lcons, and Lvar.

Definition 2.2. If F is an action formula and µ = [α, β] ⊆ [0, 1], then F : µ is called an annotated
action formula (or ap-formula), and µ is called the ap-annotation of F .

Definition 2.3. A world is any finite set of ground action atoms. A state is any finite set of ground
state atoms.

It is assumed that all actions in the world are carried out more or less in parallel and at once,
given the temporal granularity adopted along with the model. Contrary to (related but essentially
different) approaches such as stochastic planning, we are not concerned here with reasoning about
the effects of actions. We now define ap-rules.

Definition 2.4. If F is an action formula, B1, . . . , Bn are state atoms, and µ is an ap-annotation,
then F : µ ← B1 ∧ . . . ∧ Bm is called an ap-rule. If this rule is named r, then Head(r) denotes
F : µ and Body(r) denotes B1 ∧ . . . ∧ Bn.

Intuitively, the rule specified above says that if B1, . . . , Bm are all true in a given state, then
there is a probability in the interval µ that the action combination F is performed by the entity
modeled by the ap-rule.

Definition 2.5. An action probabilistic logic program (ap-program for short) is a finite set of ap-
rules. An ap-program Π′ such that Π′ ⊆ Π is called a subprogram of Π.

Figure 1 shows a small portion of an ap-program we derived automatically to model Hezbol-
lah’s actions. Henceforth, we use Heads(Π) to denote the set of all annotated formulas appearing
in the head of some rule in Π. Given a ground ap-program Π, we will use sta(Π) (resp., act(Π)) to
denote the set of all state (resp., action) atoms that appear in Π.

Example 2.6. Coming back to the ap-program in Figure 1, the following are examples of worlds:

{kidnap(1)}, {kidnap(1), tlethciv(1)}, {}
The following are examples of states:

{forstpolsup(0), elecpol(0)}, {extsup(1), elecpol(1)}, {demorg(1)}.

We useW to denote the set of all possible worlds, and S to denote the set of all possible states.
It is clear what it means for a state to satisfy the body of a rule [Llo87].

Definition 2.7. Let Π be an ap-program and s a state. We say that s satisfies the body of a rule
F : µ← B1 ∧ . . . ∧ Bm if and only if {B1, . . . , BM} ⊆ s.

Similarly, we define what it means for a world to satisfy a ground action formula:

Definition 2.8. Let F, F1, F2 be ground action formulas and w a world. We say that w satisfies F
if and only if:
− if F ≡ a, for some atom a ∈ BLact , then a ∈ w;
− if F ≡ F1 ∧ F2, then w satisfies F1 and w satisfies F2;
− if F ≡ F1 ∨ F2, then w satisfies F1 or w satisfies F2;
− if F ≡ ¬F ′, for some action formula F ′ ∈ formulas(BLact), then w does not satisfy F ′.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 195

Finally, we will use the concept of reduction of an ap-program w.r.t. a state:

Definition 2.9. Let Π be an ap-program and s a state. The reduction of Π w.r.t. s, denoted Πs, is
the set {F : µ | s satisfies Body and F : µ ← Body is a ground instance of a rule in Π}. Rules in
this set are said to be relevant in state s.

The semantics of ap-programs uses possible worlds in the spirit of [Hai84, Nil86, Fag90].
Given an ap-program Π and a state s, we can define a set LC (Π, s) of linear constraints associated
with s. Each world wi expressible in the language Lact has an associated variable vi denoting the
probability that it will actually occur. LC (Π, s) consists of the following constraints.
(1) For each Head(r) ∈ Πs of the form F : [`, u], we have constraint ` ≤

∑
wi∈W ∧wi|=F vi ≤ u.

(2) LC (Π, s) contains the constraint
∑

wi∈W vi = 1.
(3) All variables are non-negative.
(4) LC (Π, s) contains only the constraints described in 1− 3.
While [Khu07] provides a more formal model theory for ap-programs, we merely provide the defi-
nition below. Πs is consistent iff LC (Π, s) is solvable over R.

Definition 2.10. Let Π be an ap-program, s a state, and F : [`, u] a ground action formula. Πs

entails F : [`, u], denoted Πs |= F : [`, u] iff [`′, u′] ⊆ [`, u] where:
`′ = minimize

∑
wi∈W ∧wi|=F vi subject to LC (Π, s).

u′ = maximize
∑

wi∈W ∧wi|=F vi subject to LC (Π, s).

The following is an example of LC (Π, s) and entailment of an ap-formula.

Example 2.11. Consider ap-program Π from Figure 1 and state s2 from Figure 2. The set of
possible worlds is as follows: w0 = {}, w1 = {kidnap(1)}, w2 = {tlethciv(1)}, and
w3 = {kidnap(1),tlethciv(1)}. Suppose we use pi to denote the variable associated with
the probability of world wi; LC (Π, s2) then consists of the following constraints:

0.5 ≤ p1 + p3 ≤ 0.56
0.49 ≤ p2 + p3 ≤ 0.55
p0 + p1 + p2 + p3 = 1

One possible solution to this set of constraints is p0 = 0, p1 = 0.51, p2 = 0.05, and p3 = 0.44;
another possible distribution is p0 = 0.5, p1 = 0, p2 = 0, and p3 = 0.5; yet another one is p0 = 0,
p1 = 0.45, p2 = 0.11, and p3 = 0.44. Finally, formula kidnap(1)∧tlethciv(1) (satisfied only
by world w3) is entailed with probability in the interval [0, 0.55], meaning that one cannot assign a
probability greater than 0.55 to this formula (this example shows that, contrary to what one might
think, the interval [0, 1] is not necessarily a solution).

Note that representing a set of distributions is not possible in many other approaches to proba-
bilistic reasoning, such as Bayesian networks [Pea88], Poole’s Independent Choice Logic [Poo97]
and related formalisms such as [Poo93]. However, this is a key capability for our approach, as we
specifically require a formalism that is not forced to make assumptions about the probabilistic de-
pendence (or independence) of the events we are reasoning about. On the other hand, it is certainly
possible to extend our approach in such a way that the key aspects of Bayesian networks and related
formalisms are directly expressible, as was shown in [Ng93] when probabilistic logic programs
were introduced.

196 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)}
s2 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(1)}
s3 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(0)}
s4 = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}
s5 = {forstpolsup(0), intersev1(c), intersev2(c), elecpol(0), extsup(1), demorg(0)}

Figure 2: A small set of possible states

3. The Probabilistic Logic Abduction Problem
Suppose s is a state (the current state), G is a goal (an action formula), and [`, u] ⊆ [0, 1] is a

probability interval. The basic PLAP problem requires finding a new state s′ such that Πs′ entails
G : [`, u]. However, s′ must be reachable from s. For this, we merely assume the existence of
a reachability predicate reach specifying direct reachability from one state to another. reach∗ is
the reflexive transitive closure of reach and unReach is its complement. We will investigate, in
Section 4.2 below, one way in which reach can be specified; when available, knowledge of action
effects and preconditions can be encoded into this predicate.

Example 3.1. Suppose, for simplicity, that the only state predicate symbols are those that appear in
the rules of Figure 1, and consider the set of states in Figure 2. Then, some examples of reachability
are the following: reach(s1, s2), reach(s1, s3), reach(s2, s1), reach(s4, s1), ¬reach(s2, s5), and
¬reach(s3, s5). Note that, if state s5 is reachable, then the ap-program is inconsistent, since both
rules 1 and 2 are relevant in that state.

We can now state the Basic PLAP problem formally:
Basic PLAP Problem.
Input: An ap-program Π, a state s, a reachability predicate reach and a ground ap-formulaG : [`, u].
Output: “Yes” if there exists a state s′ such that reach∗(s, s′) and Πs′ |= G : [`, u], and “No”
otherwise.

Example 3.2. Consider once again the program in the running example and the set of states from
Figure 2. If the goal is kidnap(1) : [0, 0.6] (we want the probability of Hezbollah using kidnappings
to be at most 0.6) and the current state is s4, then the problem is solvable because Example 3.1
shows that state s1 can be reached from s4, and Πs1 |= kidnap(1) : [0, 0.6].

The following result shows the intractability of Basic PLAP in the general case.

Proposition 3.3. Basic PLAP is EXPTIME-complete.

Moreover, this problem is likely to be intractable even under simplifying assumptions.

Proposition 3.4. Let Lsta be such that |Lsta| ≤ c′ for some constant c′ ∈ N; the Basic PLAP
problem under this assumption is NP-hard.

Proposition 3.5. Let Lact be such that |Lact| ≤ c′ for some constant c′ ∈ N; the Basic PLAP
problem under this assumption is NP-hard.

The above results reveal that the complexity of PLAP is caused by two factors. (P1) We need
to find a subprogram Π′ of Π such that when the body of all rules in that subprogram is deleted, the
resulting subprogram entails the goal, and (P2) Decide if there exists a state s′ such that Π′ = Πs

and s is reachable from the initial state.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 197

4. Algorithms for PLAP

In this section, we leverage the above intuition to develop an algorithm for PLAP under the
assumption that all goals are of the form F : [0, u] (ensure that F ’s probability is less than or equal
to u) or F : [`, 1] (ensure that F ’s probability is at least `). Finally, we develop a heuristic algorithm.

4.1. Answering Threshold Goals

A threshold goal is an annotated action formula of the form F : [0, u] or F : [`, 1]. In this
section, we study how we can devise a better algorithm for Basic PLAP when only threshold goals
are considered. This is a reasonable approach, since threshold goals can be used to express the
desire that certain formulas (actions) should only be entailed with a certain maximum probability
(upper bound) or should be entailed with at least a certain minimum probability (lower bound). The
tradeoff lies in the fact that we lose the capacity to express both desires at once. We start by inducing
equivalence classes on subprograms that limit the search space, helping address problem P1.

Definition 4.1. Let Π be a ground ap-program and F be a ground action formula. We say that
subprograms Π1,Π2 ⊆ Π are equivalent given F , written Π1 ∼F Π2, iff Π1 |= F : [`, u] ⇔
Π2 |= F : [`, u] for any `, u ∈ [0, 1]. Furthermore, states s1 and s2 are equivalent given F , written
s1 ∼F s2, iff reach(s1, s2), reach(s2, s1), and Πs1 ∼F Πs2 .

Example 4.2. Let Π be the ap-program from Figure 1, formula F = kidnap(1), Π1 = {r1},
Π2 = {r2, r3} Π3 = {r1, r4} Π4 = {r1, r5}, and Π5 = {r2, r3, r5}. Here, Π1 ∼F Π3, Π1 ∼F Π4,
Π3 ∼F Π4, and Π2 ∼F Π5. For instance, we can see that Π1 ∼F Π3 because the probability
with which kidnap(1) is entailed is given by rule r1; rule r4 is immaterial in this case. Clearly,
Π1 6∼F Π2 since F is entailed with different probabilities in each case.

Next, consider the states from Figure 2 and the reachability predicate from Example 3.1. Since
we have that reach(s1, s2), reach(s2, s1), Π1 is relevant in s1, and Π3 is relevant in s2, we can
conclude that s1 ∼F s2.

Relation ∼, both between states and between subprograms, is clearly an equivalence relation.
The following lemma specifies a way to construct equivalence classes.

Lemma 4.3. Let Π be an ap-program and G be an action formula. Consider two subprograms
Π′,Π′′ ⊆ Π such that Π′ = Πa ∪ Π′p (resp., Π′′ = Πa ∪ Π′′p), where Πa is a set of rules whose
heads have formulas F such that F ∧G 6|= ⊥ and Π′p (resp., Π′′p) contains rules whose heads have
formulas H such that H ∧G |= ⊥. Then, Π′ ∼G Π′′.

Lemma 4.4. Let Π be a consistent ap-program and G : [`G, uG] be a threshold goal. If there exists
a rule r ∈ Π such that Head(r) = F : [`F , uF] and: either (1) if uG = 1, F |= G, and `G ≤ `F ; or
(2) if `G = 0, G |= F , and uG ≥ uF ; then, Π |= G : [`G, uG].

The algorithm in Figure 3 first tries to leverage Lemma 4.4 and only proceeds if this is not
possible. The way in which the algorithm partitions Π is partly based on Lemma 4.3.

Proposition 4.5. Given an ap-program Π, a state s ∈ S, and an annotated action formulaG : [`, u],
Algorithm simpleAnnPLAP correctly computes a solution to Basic PLAP. Its worst case running
time is in O

(
2|Π| + 2|Lsta| + 2|Lact|

)
.

We now present an example of how this algorithm works.

198 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Algorithm 1: simpleAnnPLAP(Π, s, G : [`G, uG])

(1) Select rules of the form r : F : [`r, ur] ← s1 ∧ . . . ∧ sn such that F ∧ G 6|= ⊥; call all such rules active
rules, and the complement set passive rules, denoted active(Π, G : [`G, uG]) and passive(Π, G : [`G, uG]).

(2) If Lemma 4.4 is applicable, return true if there exists a consistent Π′ ⊆ candAct(Π, G : [`G, uG]) ∪
passive(Π, G : [`G, uG]) such that:

(a) if uG = 1, then at least one rule r ∈ Π′ must have head F : [`F , uF] such that F |= G and `G ≤ `F ;
if `G = 0), at least one rule r ∈ Π′ must have head F : [`F , uF] such that G |= F and uG ≥ uF ;

(b) state s′ for which Πs′ = Π′ is such that reach∗(s, s′).
(3) Otherwise, for each rule ri : F : [`r, ur]← s1 ∧ . . . ∧ sn do:

(a) If `G = 0, F |= G, and `r > uG then add ri to set conf(Π, G : [`G, uG])
(b) Otherwise (i.e., uG = 1), if G |= F and ur < `G then add ri to set conf(Π, G : [`G, uG]).

(4) Let candAct(Π, G : [`G, uG]) = active(Π, G : [`G, uG]) \ conf(Π, G : [`G, uG]);
(5) Consider the set candAct(Π, G : [`G, uG]) ∪ passive(Π, G : [`G, uG]) and, for each pair of rules of the form

ri : Fi : [`ri , uri] ← si1 ∧ . . . ∧ sin and rj : Fj : [`rj , urj] ← sj1 ∧ . . . ∧ sjm such that Fi : [`ri , uri] and
Fj : [`rj , urj] are mutually inconsistent, add the pair (ri, rj) to a set called inc(Π).

(6) Return true if there exists a set of rules Π′ ⊆ candAct(Π, G : [`G, uG])∪ passive(Π, G : [`G, uG]) such that
Π′ ∩ candAct(Π, G : [`G, uG]) 6= ∅, no pair {r1, r2} ⊆ Π′ belongs to inc(Π), and:

(a) Π′ |= G : [`G, uG];
(b) ∃ state s′ for which Πs′ = Π′ such that reach∗(s, s′);

(7) If Step 6 is not possible, return false;

Figure 3: An algorithm to solve Basic PLAP assuming a threshold goal.

Example 4.6. Suppose Π is the ap-program of Figure 1, the goal is kidnap(1) : [0, 0.6] (abbrevi-
ated with G : [0, 0.6] from now on) and the state is that of Example 3.2, scurr = {forstpolsup(1),
intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}; note that Πscurr = {r2, r5}
and that clearly Πscurr 6|= kidnap(1) : [0, 0.6]. Step 1 of simpleAnnPLAP is simple in this case,
since all the heads of rules in Π are atomic – therefore passive(Πscurr , G : [0, 0.6]) = ∅, and the
set of active rules contains all the rules in Π. The following step checks for the applicability of
Lemma 4.4; clearly rule r1 satisfies the conditions and we only need to verify that some subpro-
gram containing it is reachable. Assuming the same reachability predicate outlined in Example 3.1,
s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)} is
reachable from scurr; this corresponds to choosing subprogram Π′ = {r1}. The only other possibil-
ities are to make both r1 and r4, or r1 and r5 relevant.

4.2. An Improved PLAP Algorithm

In this section, we show that if we assume reachability/unreachability is specified in a syntactic
manner rather than in a very general manner as presented earlier, we can come up with some good
heuristics to solve Basic PLAP.

Definition 4.7. Let F and G be first-order formulas over Lsta and Lvar with connectives ∧, ∨, and
¬, and such that the set of variables over F is equal to those over G; all variables are assumed to
be universally quantified with scope over both F and G. A reachability constraint is of the form
F 6↪→ G; we call F the antecedent and G the consequent of the constraint, and its semantics is:

unReach(s1, s2)⇔ s1 |= F and s2 |= G

where s1 and s2 are states in S .

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 199

Algorithm 2: simpleAnnPLAP-Heur-RC(Π, s, G : [`G, uG],RC)

(1) Execute Steps 1, 3, 4, and 5 of simpleAnnPLAP
(2) Let goalState, goalStateAct, goalStateConf, and goalStateInf be logical formulas over Lsta and Lvar;
(3) Initialize goalState to null, goalStateAct to ⊥, and goalStateConf, goalStateInc to >;
(4) for each rule ri ∈ candAct(Π, G : [`G, uG]) with Head(ri) = F : [`F , uF] do

if [(uG = 1) and (F |= G and `G ≤ `F)] or [(`G = 0) and (G |= F and uG ≥ uF)]
then set goalStateAct := goalStateAct ∨ getStateFormula(ri);

(5) for each rule ri ∈ conf(Π, G : [`G, uG]) do
set goalStateConf := goalStateConf ∧ ¬getStateFormula(ri);

(6) for each pair of rules (ri, rj) ∈ inc(Π) do
set goalStateInc := goalStateInc ∧ ¬(getStateFormula(ri) ∧ getStateFormula(rj));

(7) set goalState := goalStateAct ∧ goalStateConf ∧ goalStateInc;
// goalState describes the states that satisfy the goal

(8) return decideReachability(s, goalState, RC);

Figure 4: A heuristic algorithm based on Lemma 4.4 to solve Basic PLAP assuming threshold goals
and that state reachability is expressed as a set RC of reachability constraints.

Reachability constraints simply state that if the antecedent is satisfied in a certain state, then
no states that satisfy the consequent are reachable from it. We now present an example of a set of
reachability constraints.

Example 4.8. Consider again the setting and ap-program from Figure 1. The following are exam-
ples of reachability constraints2:

forstpolsup(1) 6↪→ intersev1(c)

intersev1(c) ∨ intersev2(c)) ∧ demorg(0) 6↪→ demorg(1)

Algorithm simpleAnnPLAP-Heur-RC (Figure 4) takes advantage of the structure added by the
presence of reachability constraints. The algorithm starts out by executing the steps of simpleAn-
nPLAP that compute the sets active, passive, candAct, conf, and inc. It then builds formulas gener-
ated by reachability constraints that any solution state must satisfy; the algorithm uses a subroutine
formula(s) which returns a formula that is a conjunction of all the atoms in state s and the negations
of those not in s. In Step 4, the formula describes the fact that at least one of the states that make
relevant “candidate active” rules (as described in Algorithm simpleAnnPLAP) must be part of the
solution; similarly, Step 5 builds a formula ensuring that none of the conflicting active rules can
be relevant if the problem is to have a solution. Finally, Step 6 describes the constraints associated
with making relevant rules that are probabilistically inconsistent. Noticeably absent are the “pas-
sive” rules from the previous algorithm; such rules impose no constraints on the solution. The last
two steps put subformulas together into a conjunction of constraints, and the algorithm must decide
if there exist any states that model formula goalState and are eventually reachable from s. Eventual
reachability can be decided by means of a SAT-based method as follows: if the current state does not
satisfy goalState, it starts by initializing formula Reachable which will be used to represent the set
of eventually reachable states at each step. The initial formula describes state s, and the algorithm
then proceeds to select all the constraints whose antecedents are entailed by Reachable. Once we
have this set, Reachable is updated to the conjunction of the negations of all the consequents of
constraints in the set. We are done whenever either Reachable models goalState, or the old version
of Reachable is modeled by the new one (no new reachable states exist).

2If available, knowledge of action effects and preconditions can be represented with similar constraints.

200 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

600

800

1,000

1,200

1,400

1,600

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times for Reachability

Naïve

SAT based

0

200

400

600

800

1,000

1,200

1,400

1,600

5 10 15

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Ground Environment Atoms

Running Times for Reachability

Naïve

SAT based

Figure 5: 5 rules, 25 ground
action atoms, 5
reachability con-
straints, and atomic
queries.

100

150

200

250

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times: 10% Conflicting Rules

Naïve

SimpleAnn

0

50

100

150

200

250

4 6 8 10 12

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Rules

Running Times: 10% Conflicting Rules

Naïve

SimpleAnn

Figure 6: 10% goal-conf.
rules, 25 action
atoms, 5 state
atoms (ground),
and atomic queries.

1,500

2,000

2,500

3,000

3,500

4,000

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times: Heuristic Algorithms

SimpleAnn Heur

SimpleAnn HeurRC

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

100 200 300 400 500

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Rules

Running Times: Heuristic Algorithms

SimpleAnn Heur

SimpleAnn HeurRC

Figure 7: Larger ap-
programs; 25
action atoms,
5 state atoms
(ground), and 5
reach. constr.

5. Experimental Results
We conducted experiments using a prototype JAVA implementation consisting of roughly 2,500

lines of code. All experiments were run on multiple multi-core Intel Xeon E5345 processors at
2.33GHz, 8GB of memory, running the Scientific Linux distribution of the GNU/Linux operating
system, kernel version 2.6.9-55.0.2.ELsmp.3 Numbers reported are averages over at least 20 runs.
No. of State Atoms. In Figure 5 we show the running times of the different approaches to deciding
reachability; the naive approach becomes intractable very quickly, while the (still exact) SAT-based
algorithm approach has negligible cost for these runs.
No. of Rules. Figure 6 reports the running times of the SimpleAnn rule selection algorithm vs. the
naive approach for programs in which 10% of the rules were forced to be in probabilistic conflict
with the goal. This experiment shows how SimpleAnn leverages the presence of these rules, greatly
reducing its running time w.r.t. that of the naive algorithm.

Finally, Figure 7 shows the running times for the SimpleAnn heuristic step (that is, assuming
the algorithm only tries to apply the heuristic and pessimistically returns false otherwise) and the
SimpleAnn-HeurRC algorithm for larger programs. It is interesting to see the different shapes of
the curves: as programs get larger, the SAT formulas associated with SimpleAnn-HeurRC become
larger as well, leading to the gradual increase in the running time; on the other hand, we can see that
the strategy of only focusing on certain “heuristic rules” pays off for the SimpleAnn heuristic step,
but there is a spike in running time when the size grows from 400 to 500 rules. This is likely due to
the appearance of more such rules, which means that the algorithm has many more subprograms to
verify for entailment of the goal.

6. Related Work and Conclusions
Abduction has been extensively studied in diagnosis [Con91], reasoning with non-monotonic

logics [Eit95], probabilistic reasoning [Pea91, Poo97], argumentation [Koh02], planning [Esh88],
and temporal reasoning [Esh88]; furthermore, it has been combined quite naturally with different
variants of logic programs [Den02]. David Poole et al. combined probabilistic and non-monotonic
reasoning, leading to the development of the Independent Choice Logic [Poo97]. Though this model
is related to our work, it makes general assumptions of pairwise independence of probabilties of
events; other related models are based on the class of graphical models including Bayesian Networks

3We note that this implementation makes use of only one processor and one core.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 201

(BNs). The main difference between graphical model-based work and our work is that we make no
assumptions on the dependence or independence of probabilities of events.

While AI planning may seem relevant, there are several differences. First, we are not assum-
ing knowledge of the effects of actions; second, we assume the existence of a probabilistic model
underlying the behavior of the entity being modeled. In this framework, we want to find a state
such that when the atoms in the state are added to the ap-program, the resulting combination entails
the desired goal with a given probability. While the italicized component of the previous sentence
can be achieved within planning, it would require a state space that is exponentially larger than the
one we use (the search space would be the set of all sets of atoms that are jointly entailed by any
subprogram of the ap-program and any state).

To the best of our knowledge, this is the first paper that tackles the problem of abductive rea-
soning in probabilistic logic programming under no independence assumptions, in the tradition
of [Ng92] for probabilistic logic programming, and [Hai84, Nil86, Fag90] for probabilistic logic.

Acknowledgements. The authors were funded in part by AFOSR grant FA95500610405 and ARO
grant W911NF0910206.

References
[Asa08] V Asal, J Carter, and J Wilkenfeld. Ethnopolitical violence and terrorism in the middle east. In J Hewitt,

J Wilkenfeld, and T Gurr (eds.), Peace and Conflict 2008. Paradigm, Boulder, CO, 2008.
[Con91] Luca Console and Pietro Torasso. A spectrum of logical definitions of model-based diagnosis. Comput. Intell.,

7(3):133–141, 1991.
[Den02] Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In Computational Logic: Logic Pro-

gramming and Beyond, Part I, pp. 402–436. Springer-Verlag, London, UK, 2002.
[Eit95] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J. ACM, 42(1):3–42, 1995.
[Esh88] Kave Eshghi. Abductive planning with event calculus. In ICLP/SLP, pp. 562–579. 1988.
[Fag90] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about probabilities. Information

and Computation, 87(1/2):78–128, 1990.
[Gil08] Jim Giles. Can conflict forecasts predict violence hotspots? New Scientist, (2647), 2008.
[Hai84] T. Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25 (3):198–212, 1984.
[Khu07] Samir Khuller, Maria Vanina Martinez, Dana S. Nau, Amy Sliva, Gerardo I. Simari, and V. S. Subrahmanian.

Computing most probable worlds of action probabilistic logic programs: scalable estimation for 10ˆ30,000
worlds. AMAI, 51(2-4):295–331, 2007.

[KI04] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic logic programming with the power
of maximum entropy. Artif. Intell., 157(1-2):139–202, 2004.

[Koh02] J. Kohlas, D. Berzati, and R. Haenni. Probabilistic argumentation systems and abduction. AMAI, 34(1-3):177–
195, 2002.

[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.
[Man08] A. Mannes, M. Michael, A. Pate, A. Sliva, V. S. Subrahmanian, and J. Wilkenfeld. Stochastic opponent mod-

elling agents: A case study with Hezbollah. In Huan Liu and John Salerno (eds.), Proc. of IWSCBMP. 2008.
[Ng92] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and Computation,

101(2):150–201, 1992.
[Ng93] Raymond T. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional

probabilities in deductive databases. J. Autom. Reasoning, 10(2):191–235, 1993.
[Nil86] Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988.
[Pea91] Judea Pearl. Probabilistic and qualitative abduction. In AAAI Spring Symposium on Abduction, pp. 155–158.

AAAI Press, Stanford, CA, 1991.
[Poo93] David Poole. Probabilistic horn abduction and bayesian networks. Artif. Intell., 64(1):81–129, 1993.
[Poo97] David Poole. The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell., 94(1-

2):7–56, 1997.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 202–211
http://www.floc-conference.org/ICLP-home.html

CIRCUMSCRIPTION AND PROJECTION

AS PRIMITIVES OF LOGIC PROGRAMMING

CHRISTOPH WERNHARD

Technische Universität Dresden
E-mail address: christoph.wernhard@tu-dresden.de

Abstract. We pursue a representation of logic programs as classical first-order sentences.
Different semantics for logic programs can then be expressed by the way in which they
are wrapped into – semantically defined – operators for circumscription and projection.
(Projection is a generalization of second-order quantification.) We demonstrate this for
the stable model semantics, Clark’s completion and a three-valued semantics based on the
Fitting operator. To represent the latter, we utilize the polarity sensitiveness of projection,
in contrast to second-order quantification, and a variant of circumscription that allows to
express predicate minimization in parallel with maximization. In accord with the aim of an
integrated view on different logic-based representation techniques, the material is worked
out on the basis of first-order logic with a Herbrand semantics.

Introduction

The multitude of semantics for logic programs is traditionally specified by a multitude
of techniques: different rule languages, consequence operators, syntactic transformations
like reduct and completion, and notions of model, two- and three-valued, for example. This
makes it difficult to uncover relationships and transfer results between the semantics. It lets
the long-term goal of a single logic-based system in which a variety of logic programming
methods is simultaneously available appear quite fanciful. This work aims towards a unified
and integrated view on different semantics for logic programs. We show a framework in
which a logic program is represented by a classical first-order sentence, and several semantics
for logic programs can be characterized by applying two further logic operators that are
defined in terms of classical semantics: circumscription and projection.

A key observation is that semantics for logic programs involve circumscription in a way
such that only certain occurrences of a predicate are affected, while others – basically those
in the scope of negation as failure – stay unminimized. Indeed, as shown in [Lin91] and
described in [Lif08], the stable models semantics can be characterized accordingly in terms
of circumscription. From this point of view, the purpose of a rule syntax is just to indicate
which occurrences are to be circumscribed. The alternative pursued here is to replace
each “original” predicate symbol by two replicas, one of them used in occurrences where
circumscription should take effect. The formula then is classical, permitting for example
simplifications that preserve classical equivalence.

Projection, a generalization of second-order quantification, can be used to control the
interaction between the replicas. In general, projection is applied in the context of this work
to express operations in a semantic way that are typically specified in syntactical terms, like

c© C. Wernhard
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.202

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 203

systematic renaming of predicate symbols and completion construction, where we refine a
semantic characterization in [Lee06].

We apply our framework to the stable model semantics, Clark’s completion and a three-
valued semantics based on the Fitting operator. The first two are distinguished just by
the choice of circumscribed predicate occurrences, reflecting the characterization of Clark’s
completion in terms of stable models with negation as failure in the head described in
[Ino98]. The independence of syntactic constructions lets our framework quite naturally
cover extensions of normal logic programs, including disjunctive heads and negation as
failure in the head. In accord with the long-term goal of a unified logic-based knowledge
processing system, the material in the paper is worked out for first-order logic with a
Herbrand semantics, extended by circumscription and projection.

The paper is structured as follows: After notation and the used classical semantics
have been specified in Sect. 1, projection and circumscription are introduced in Sect. 2.
A view of logic programs as classical first-order sentences is described in Sect. 3. On
this basis, it is shown in Sect. 4 how semantics for logic programs are expressed in terms of
circumscription and projection. Specifically, the stable model semantics, Clark’s completion,
and a three-valued semantics based on the Fitting operator are considered. In Sect. 5, the
new characterization of the latter is related to the traditional definition, and a similar
characterization of partial stable models is sketched. In the conclusion, further potential
applications of this framework and a view on computational aspects are indicated.

Please note that this paper is a short version of [Wer10a], which includes additional
technical material such as proofs showing correspondence of the discussed and traditional
characterizations, and a further notational variant of the described framework that might
facilitate its application to prove properties of semantics for logic programs.

1. Notation and Preliminaries

Symbolic Notation. We use the following symbols, also with sub- and superscripts, to
stand for items of types as indicated in the following list (precise definitions of the types
are given later on), considered implicitly as universally quantified in definition, proposition
and theorem statements: F,G,H – Formula; A – Atom; L – Literal; S – Set of ground
literals (also called literal scope); M – Consistent set of ground literals; I, J,K – Structure;
β – Variable assignment. We write the positive (negative) literal with atom A as +A (−A).

The complement of literal L is written L̃. The set of complements of a given set S of

literals (i.e. {L̃|L∈S}) is written S̃. We assume a fixed first-order signature with at least
one constant symbol. The sets of all ground terms, all ground literals, all positive ground
literals, and all negative ground literals – with respect to this signature – are denoted
by TERMS, ALL, POS, NEG, respectively. Variables are x, y, z, also with subscripts.
The sequence x1, . . . , xn, where n is the arity of predicate symbol p, is abbreviated by xp.

Formulas. We assume that a formula is constructed from first-order literals and the logic
operators shown in the left column of Tab. 1. That is, we consider formulas of first-order
logic, extended by an operator for syntactic equality (

.
=) and the two operators project

and raise, discussed in Sect. 2. As meta-level notation with respect to this syntax, we
use versions of the binary connectives with arbitrary integers ≥ 0 as arity, sequences of

204 C. WERNHARD

Table 1: The Satisfaction Relation

〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= >
〈I, β〉 6|= ⊥
〈I, β〉 |= ¬F iffdef 〈I, β〉 6|= F
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ TERMS it holds that 〈I, β t
x〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ TERMS such that 〈I, β t
x〉 |= F

〈I, β〉 |= t1
.
= t2 iffdef t1β = t2β

〈I, β〉 |= projectS(F) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊆ I
〈I, β〉 |= raiseS(F) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊂ I ∩ S

variables as quantifier arguments, and omitting of universal quantifiers. A sentence is a
formula without free variables. A clausal sentence is a sentence ∀x1 . . . xn F , where F is a
conjunction with arbitrary arity of disjunctions (clauses) with arbitrary arity of literals.

Classical Semantics. We use a notational variant of the framework of Herbrand interpre-
tations: An interpretation is a pair 〈I, β〉, where I is a structure, that is, a set of ground
literals that contains for all ground atoms A exactly one of +A or −A, and β is a variable
assignment, that is, a mapping of the set of variables into TERMS. Formula F with all free
variables replaced by their image in β is denoted by Fβ; the variable assignment that maps
x to ground term t and all other variables to the same values as β is denoted by β t

x . As
explicated in [Wer08], the structure component I of an interpretation 〈I, β〉 represents a
structure in the conventional sense used in model theory, and, moreover, an interpretation
represents a second-order interpretation [Ebb84], if predicate variables are considered as
distinguished predicate symbols. The satisfaction relation between interpretations and for-
mulas is defined by the clauses in Tab. 1. Entailment and equivalence are straightforwardly
defined in terms of it. Entailment: F1 |= F2 holds if and only if for all 〈I, β〉 such that
〈I, β〉 |= F1 it holds that 〈I, β〉 |= F2. Equivalence: F1 ≡ F2 if and only if F1 |= F2 and
F2 |= F1.

2. Projection, Literal Scopes and Circumscription

The project operator, defined semantically in Tab. 1, is applied in the context of this
paper to provide semantic characterizations of operations and properties that are typi-
cally defined in syntactic terms: Clark’s completion, extracting the subformula with the
“converse rules” from Clark’s completion, systematic renaming of predicate symbols, and
independence of a formula from given predicate symbols. The formula projectS(F) is called
the projection of formula F onto literal scope S. The forgetting in F about S is a variant
of projection, where the scope is considered complementary:

Definition 1 (Forgetting). forgetS(F) def= projectALL−S(F).

We call a set of ground literals in the role as argument to projection a literal scope. When
specifying literal scopes, we let a set of predicate symbols stand for the set of all ground
instances of literals whose predicate symbol is in the set.

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 205

As an intuitive special case of projection, consider a literal scope S that contains the
same atoms in positive as well as negative literals. The condition J ∩S ⊆ I in the definition
of project is then equivalent to J ∩ S = I ∩ S, that is, structures I and J are required
to be equal as far as members of S are considered, but unrelated otherwise. Projection is
a generalization of second-order quantification: if S is the set of all ground literals with
a predicate symbol other than p, then projectS(F) (or equivalently forget{p}(F)) can be
expressed by the second-order formula ∃p F .

Beyond second-order quantification, the condition J ∩S ⊆ I in the definition of project
encodes a different effect on literals depending on whether they are positive or negative
(w.r.t. to formulas that do not contain ¬). Hence, this variant of projection is also
termed literal projection. Consider for example, forget{+q,−q}((+p ∨−q) ∧ (+q ∨−r)) which

is equivalent to (+p∨−r), and, in contrast, forget{+q}((+p ∨−q) ∧ (+q ∨−r)) which is equiv-

alent to ((+p ∨−q) ∧ (+p ∨−r)), where −q is retained. In the context of this paper, these
effects are applied to specify a three-valued semantics for logic programs. Further ma-
terial on projection can be found in [Wer08]. The other “nonstandard” operator defined
in Tab. 1 is raise, which we apply to define scope-determined circumscription [Wer10b], a
generalization of predicate circumscription [McC80]:

Definition 2 (Scope-Determined Circumscription). circS(F) def= F ∧ ¬raiseS(F).

The argument S is also a literal scope, which then provides a uniform interface for ex-
pressions combining projection and circumscription. Superficially, raise is very similar to
project: Consider Tab. 1. The definition of project is equivalent to J ∩ S ⊆ I ∩ S. Just by
replacing the subset relation (⊆) with strict subset (⊂), the definition of raise is obtained.
If F is a sentence over disjoint sets of predicate symbols P , Q and Z, then the parallel
predicate circumscription of P in F with fixed Q and varied Z [Lif94], traditionally writ-
ten CIRC[F ;P ;Z], is expressed as circ(P∩POS)∪Q(F). Recall that in specifications of literal
scopes, we let a set of predicate symbols stand for the set of all ground instances of literals
whose predicate symbol is in the set. The scope (P ∩POS)∪Q thus is the set of all positive
ground literals with a circumscribed predicate symbol, and all ground literals with a fixed
predicate symbol. While circumscription traditionally just allows to express predicate mini-
mization, scope-determined circumscription symmetrically permits to express maximization
by scopes containing just negative ground literals with predicate symbols to be maximized.
In the context of this paper, parallel minimization and maximization is applied to specify
a three-valued semantics for logic programs.

3. Logic Programs as Classical Sentences

A logic program is typically understood as a set of rules of the form:

A1 | . . . |Ak | notAk+1 | . . . | notAl ← Al+1, . . . , Am, notAm+1, . . . , notAn. (3.1)

This involves logic operators which do not belong to classical first-order logic. To represent
a logic program as a classical first-order sentence, we assume that the set of all predicate
symbols can be partitioned into predicate groups, that is, disjoint sets of equal cardinality.
The idea is that each “original predicate symbol” is replicated once in each group. The
respective copy of the “original symbol” p in predicate group P is then written pP . If
P and Q are two predicate groups, we say that pP and pQ are corresponding predicate
symbols, assuming that they have the same arity, which we also call arity of p. We transfer

206 C. WERNHARD

the notation pP to atoms and literals: AP (LP) stands for an atom (literal) whose predicate
symbol is in predicate group P . Formally, the partitioning into predicate groups can be
modeled by means of a total ordering <pred on predicate symbols such that p denotes the

position of pP within predicate group P sorted according to <pred. Corresponding predicate
symbols then have the same positions within their respective group. The set of all such
positions p is written PREDS.

Definition 3 (Predicate Groups C,F ,O). The symbols C,F ,O denote three different pred-
icate groups.

Predicate groups C,F ,O are used to express logic programs. Roughly, the group indicates
whether a predicate occurrence should be circumscribed (group C), should be fixed with
respect to circumscription (group F), or is yet open (group O), that is, further operations
are applied that place it into group C or F at a later stage.

Definition 4 (Rule Clause, Raw Rule Clause). (i) A rule clause is a clause of the form

+AC1 ∨. . .∨+ACk ∨ −AFk+1 ∨. . .∨ −AFl ∨ −ACl+1 ∨. . .∨ −ACm ∨+AFm+1 ∨. . .∨+AFn ,

where n ≥ m ≥ l ≥ k ≥ 0.
(ii) A raw rule clause is like a rule clause, except that the literals with indexes from l + 1
to m are from predicate group O instead of C.

Based on Def. 4, a logic program can be understood as a clausal sentence with rule clauses
or raw rule clauses. In both cases, a logic program is then just a classical first-order sentence
that meets certain restrictions. ([Raw] rule clauses can contain universal variables.) When
we say that a [raw] rule clause corresponds to a rule of the form (3.1), we assume that the
[raw] rule clause has predicate symbols from groups as indicated by matching (3.1) with
Def. 4.

The head of a [raw] rule clause is the disjunction of those of its literals whose index is
less or equal to l, its body is the conjunction of the complements of its literals with index
greater than l. A [raw] rule clause can express a normal rule (if k = l = 1), integrity
constraint (if k = l = 0), disjunctive rule (if k = l > 1) and a rule with negation as failure
in the head (if l > k). The class of rules in general extended disjunctive programs (GEDP)
considered in [Ino98] is however strictly more general: In rules of the form (3.1), GEDP
would allow also negated atoms in place of the atoms Ai, for i ∈ {1, . . . , n}.

Predicate Renaming. Definition 6 below gives a semantic account of systematically re-
placing predicate symbols from one group P by their correspondents from another group Q.
First we define of shorthands for formulas that will be used at several places in the sequel.

Definition 5 (Predicate Inclusion). Let P,Q be predicate groups. (i) P ≤ Q def=
∀x

∧
p∈PREDS(−pP (xp) ∨ +pQ(xp)); (ii) P = Q def= (P ≤ Q) ∧ (Q ≤ P); (iii) P < Q def=

(P ≤Q) ∧ ¬(Q≤P).

Definition 6 (Predicate Renaming in Terms of Projection). Let P,Q, P be predicate
groups. Then renameP\Q(F) def= forgetP (F ∧ P =Q). Notation rename[P1\P2, ..., Pn−1\Pn](F)
is a shorthand for renamePn−1\Pn

(...(renameP1\P2
(F))...).

The formula renameP\Q(F) is equivalent to F with all occurrences of predicate symbols
from P replaced by their respective corresponding predicate symbols from Q.

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 207

4. Semantics for Logic Programs via Circumscription and Projection

Based on the representation of a logic program as a clausal first-order sentence with raw
rule clauses, three well-known semantics for logic programs – the stable model semantics,
the classical models of Clark’s completion, and the three-valued minimal models obtained
with the Fitting operator – can be characterized in terms of circumscription and projection:

Definition 7 (Semantics For Logic Programs). Let F be a formula over C ∪ F ∪ O.
(i) ans-stable(F) def= renameF\C(circ(C∩POS)∪F (renameO\C(F))).
(ii) ans-completion(F) def= renameF\C(circ(C∩POS)∪F (renameO\F (F))).
(iii) ans-fitting(F) def= circ(C∩POS)∪(F∩NEG)(C ≤ F ∧ renameO\C(F) ∧ F ∗),
where F ∗ = rename[C\O, F\C, O\F](forgetC∩POS(circ(C∩POS)∪O∪F (F))).

The definientia are formulas of first-order logic extended with project (recall that rename is
a shorthand for a formula with project) and circ as additional operators. For ans-stable and
ans-completion, the involved projection could also be expressed as second-order quantifica-
tion, as indicated in Sect. 2, and the involved scope-determined circumscription corresponds
to parallel predicate circumscription of C with fixed F . For ans-fitting, in contrast, proper
generalizations of second-order quantification and parallel predicate circumscription are uti-
lized: The scope C ∩ POS of the forgetting is just about positive literals with a predicate
from C. The scope (C∩POS)∪(F∩NEG) of the outer circumscription expresses minimization
of C in parallel with maximization of F .

Semantics for logic programs are usually specified in terms of sets of atoms (answer
sets), or “partial interpretations”, that is, consistent sets of literals, representing a three-
valued assignment of atoms to truth values: true (false) for the atoms of positive (negative)
literals in the set, and undefined for the remaining atoms. In contrast, semantics for logic
programs are specified in Def. 7 as classical models. For ans-stable, such a classical model
〈I, β〉 corresponds to the answer set {A | +AC ∈ I}. Predicates from F are not considered
for the answer set, reflecting that F is forgotten by the outer rename. For ans-fitting, 〈I, β〉
corresponds to the partial interpretation {+A | +AC ∈ I} ∪ {−A|−AF ∈ I}.

The characterization of stable models in terms of circumscription (Def. 7.i) originates
from [Lin91] and is described as “definition F” in [Lif08] for logic programs over C ∪ F
(in our notation). We use the third group O for mapping to other semantics. In [Fer07]
a characterization of stable models in terms of a formula translation that is similar to
predicate circumscription has been presented. Roughly, it differs from circumscription in
that only certain occurrences of predicates are circumscribed. In this respect it is like
the approach pursued here. However, in [Fer07] these occurrences are identified by their
syntactic position within formulas from a fragment of classical propositional logic – to
the effect, that classically equivalent programs might not be equivalent when considered
as logic programs. For a formal proof of the correspondence of ans-stable to the original
characterization of stable models [Gel88] and variants of it see [Wer10a].

Equivalence of ans-completion to the syntactically defined Clark’s completion [Cla78] is
shown in [Wer10a] along the approach of [Lee06], but generalized to first-order logic and
refined by utilizing predicate groups: Head literals are distinguished by placing them in C,
which allows to prove equivalence of semantic and syntactic characterizations, whereas the
related Proposition 4 in [Lee06] just makes the weaker statement that the semantically
defined completion of F1 is equivalent to the syntactically defined Clark’s completion of F2

for some F2 that is equivalent to F1.

208 C. WERNHARD

The formula F in Def. 7 is over C ∪ F ∪ O. In ans-stable and ans-completion, it is
subjected to renaming the predicate symbols from O to either C or F , respectively, which
is actually the only difference between these semantics. For F that are just over C ∪ F
both semantics are identical. The characterization of Clark’s completion in terms of stable
models of programs with negation as failure in the head, described by means of a program
transformation in [Ino98], thus can be rendered by the following equivalence:

If F is over C ∪ F ∪ O, then ans-completion(F) ≡ ans-stable(renameO\F (F)). (4.1)

Based on a fixed-point characterization of the models of Clark’s completion as so-called
supported models [Apt88], it has been shown in [Mar92] that a stable model of a normal
logic program (i.e. with rules of the form (3.1) where k = l = 1) is also a minimal model
of its Clark completion. For more general classes of logic programs, analogous properties
can be proven on the basis of Def. 7: If F is over C ∪ F ∪ O and F ≡ forget(F,O ∩ POS),
then ans-stable(F) |= ans-completion(F) and, if in addition, F ≡ forget(F,F ∩ NEG), then
ans-stable(F) |= circC∩POS(ans-completion(F)) [Wer10a].

5. Three-Valued Semantics Based on the Fitting Operator

In [Fit85] a consequence operator Φ (Fitting operator) is introduced which is applied to
construct three-valued interpretations M , represented by consistent sets of ground literals.
For a ground program F with rules of the form (3.1), constrained by k = l = 1 (i.e. normal
rules), the value of the Fitting operator can be described as follows: The body of a rule is
true with respect to M , if and only if each of its literals is contained in M . It is false with
respect to M if and only if the complement of at least one of its literals is in M . For a given
M , the Fitting operator yields the union of (1.) the set of all positive literals +A such that
there exists a rule of F with head +A whose body is true with respect to M , and (2.) the
set of all negative literals −A such all rules of F with head +A have a body that is false
with respect to M . The minimal fixed point (minimal w.r.t. set inclusion of the consistent
literal sets M) of the Fitting operator then represents a (partial) model, the result of the
program, and thus might be called “answer set” according to “Fitting’s semantics”.

To show that ans-fitting (Def. 7.iii) corresponds to this semantics, we reconstruct it
in our framework. We use interpretations over the union of the two predicate groups C
and F to represent the consistent literal sets expressing three-valued or interpretations.
Structures I such that

〈I, β〉 |= C ≤ F (5.1)

(assignment β is irrelevant for (5.1) since C ≤ F does not contain free variables) are mapped
with the following one-to-one correspondence to such literal setsM : litset(I) def= {+A | +AC ∈
I} ∪ {−A | −AF ∈ I}; and litset−1(M) def= {+AC | +A ∈ M} ∪ {−AC | +A /∈ M} ∪
{+AF | −A /∈ M} ∪ {−AF | −A ∈ M}. Minimization with respect to set inclusion
of the literal sets M can be expressed by scope-determined circumscription with scope
S = (C ∩ POS) ∪ (F ∩ NEG), since litset(I) ⊆ litset(J) if and only if I ∩ S ⊆ J . The scope
S effects that predicates from C are minimized, and, in parallel, predicates from F are
maximized, which can not be directly expressed by conventional predicate circumscription.

The Fitting operator is – like the original form of Clark’s completion – applied to normal
logic programs, that is, sets of rules of the form (3.1) where k = l = 1. Such a program
corresponds to a clausal sentence with rule clauses that are over F except possibly for a
single positive literal over C. For Clark’s completion, in a first “preprocessing” step, such a

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 209

sentence is transformed to an equivalent, possibly nonclausal, sentence of a second particular
form, which is then the basis for the proper completion transformation. A suitable such
second form will be specified in Def. 8 below. We call it normal completion input sentence,
since any clausal sentence with rule clauses constrained by k = l = 1 is equivalent to such
a sentence, obtainable by straightforward rewriting with equivalences, including

+p(t1, . . . , tn) ∨G ≡ ∀x1 . . . xn +p(x1, . . . , xn) ∨ ¬x1
.
= t1 ∨ . . . ∨ ¬xn

.
= tn ∨G, (5.2)

where x1, . . . , xn are variables not occurring in t1, . . . , tn, G.

Definition 8 (Normal Completion Input Sentence). A sentence F is called a normal com-
pletion input sentence if it is over C ∪ P , with P being a set of predicate symbols not in
C, and is of the form ∀x (

∧
p∈PREDS(+pC(xp) ∨ Gp(xp))), where (1.) x is x1, . . . , xk, with

k being the maximal arity of all members of PREDS, (2.) Gp(xp) are formulas whose free
variables are in xp, (3.) Gp(xp) does not contain predicate symbols from C.

In traditional terminology, a subformula +pC(xp) of a normal completion input sentence
corresponds to a head, and Gp(xp) to the negated disjunction of all bodies of clauses with
head +pC(xp). For a normal completion input sentence F over C∪F , Clark’s completion of F
can then be defined as renameF\C(F ∧ F ∗), where F ∗ is the syntactic completion addendum
of F , defined as follows:

Definition 9 (Syntactic Completion Addendum). Let F be a normal completion input
sentence with syntactic constituents as specified in Def. 8. The following sentence is called
the syntactic completion addendum of F : ∀x (

∧
p∈PREDS(−pC(xp) ∨ ¬Gp(xp))).

Let F be a normal completion input sentence over C ∪ F ∪ O. Recall the definition of
ans-fitting (Def. 7.iii):

ans-fitting(F) def= circ(C∩POS)∪(F∩NEG)(C ≤ F ∧ renameO\C(F) ∧ F ∗),
where F ∗ = rename[C\O, F\C, O\F](forgetC∩POS(circ(C∩POS)∪O∪F (F))). The outer circumscrip-

tion has the scope S discussed above in this section, and thus effects minimization to the
smallest models with respect to the three-valued view of interpretations. The argument
formula of this circumscription consists of three conjuncts. The first one is (5.1) which
excludes interpretations without a consistent three-valued correspondence. The other ones
correspond to the positive and negative consequences, respectively, of the Fitting operator.

Assume that the normal completion input sentence F has been obtained in a “pre-
processing” step, as outlined above, from an equivalent clausal sentence with raw clauses,
representing a conjunction F0 of rules of the form (3.1), constrained by k = l = 1, and
such that all heads have just mutually distinct variables as argument terms (in presence
of equivalence (5.2) the last condition is w.l.o.g.). Let p be some member of PREDS. The
formula Gp(xp) is then a constituent of F as specified in Def. 8. The second conjunct
renameO\C(F) is the original logic program, with O renamed to C, as in ans-stable. It can
be shown that 〈I, β〉 |= C ≤F ∧ renameO\C(¬Gp(xp)) if and only if there is a rule R with
head predicate p in F0 such that the body of its ground instance Rβ is true with respect
to litset(I). The subformulas (+pC(xp)∨ renameO\C(¬Gp(xp))) in renameO\C(F) then allow

to infer positive literals with predicate pC , corresponding to positive consequences of the
Fitting operator.

Analogously, 〈I, β〉 |= C ≤ F ∧ rename[F\C, O\F](Gp(xp)) if and only if for all rules R
with head predicate p in F0 it holds that the body of the ground instance Rβ is false with

210 C. WERNHARD

respect to litset(I). Subformulas of the form (−pF (xp) ∨ rename[F\C, O\F](Gp(xp))) then

allow to infer negative literals with predicate pF , corresponding to negative consequences
of the Fitting operator. Sentence F ∗ is the universally quantified conjunction of these
subformulas, for each predicate p from PREDS. It is equivalent to the syntactic completion
addendum of F (Def. 9), subjected to switching group assignments C and F , and renaming
O to F . This switching and renaming is expressed by rename applied to [C\O, F\C, O\F].
As shown in [Wer10a], the circumscription in F ∗ is equivalent to Clark’s completion of F .
The forgetting about C ∩ POS serves to extract an equivalent to the syntactic completion
addendum from the completion, according to the following theorem proven in [Wer10a]:

Theorem 5.1 (Semantic Extraction of the Completion Addendum). Let F be a completion
input sentence and F ∗ its completion. Then forgetC∩POS(F ∗) is equivalent to the syntactic
completion addendum of F .

Literal projection is utilized there to preserve the negative literals from C in the addendum,
but forget about the positive literals from C in the original formula, and with them the
whole original formula.

A further prominent semantics for logic programs with three-valued models is the partial
stable model semantics. In [Jan06] a characterization of partial stable models as stable
models of a translated program is given (tracing back to earlier work [Sch95]). Based
on a reconstruction of the syntactic transformation Tr(P) of [Jan06] in terms of rename,
and on the characterization of stable models by ans-stable, partial stable models can be
characterized in our framework as shown in the following definition. The three-valued (i.e.
partial) interpretations are represented there in the same way as shown above for the Fitting
semantics.

Definition 10. Let F be a formula over C ∪ F ∪ O. Let C′ and F ′ be two additional
predicate groups, different from each other and from C,F ,O.

ans-partial-stable(F) def= rename[C′\C,F ′\F](circ((C∪F)∩POS)∪C′∪F ′(C ≤ F ∧ F1 ∧ F2)),

where F1 = rename[O\C,F\F ′](F) and F2 = rename[O\C,F\C′,C\F](F).

6. Conclusion

We investigated a representation of logic programs as classical first-order sentences that
are wrapped into the semantically defined additional operators circumscription and projec-
tion, in different ways, rendering different established semantics of logic programs. The
generality of our framework indicates interesting spaces that have yet to be explored: Our
characterizations of semantics for logic programs apply to broad formula classes. The scopes
of circumscription and projection in the characterizations of semantics could be modified,
or additional applications of projection could be merged in, to express, for example, models
that are “stable only with respect to some atoms”, and to restrict answer sets to atoms that
are relevant for the user [Eit08, Geb09].

A computational approach to the processing of operators for circumscription and pro-
jection is “elimination”, analogous to second-order quantifier elimination: Computing for
a given formula that involves the operator (second-order quantifier, resp.) an equivalent
formula without the operator (second-order quantifier, resp.). Indeed, methods for the
computation of circumscription and projection can essentially be considered as methods for

CIRCUMSCRIPTION AND PROJECTION AS PRIMITIVES OF LOGIC PROGRAMMING 211

second-order quantifier elimination [Gab08, Wer08, Wer09]. Our framework thus indicates
that methods for processing logic programs could be seen in this context: On one hand,
established methods for second-order quantifier elimination might be applied to process
logic programs, which might be especially interesting for nonground programs. On the
other hand, known efficient techniques for processing logic programs with specific semantics
get embedded in a wider context when seen as particular efficient second-order quantifier
elimination methods for constrained inputs.

Acknowledgements. I am obliged to anonymous referees of an earlier version for sug-
gestions to improve the presentation and bringing important related works [Mar92, Sch95,
Jan06] to attention.

References

[Apt88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In Jack Minker
(ed.), Foundations of deductive databases and logic programming, pp. 89–148. Morgan Kaufmann,
San Francisco, 1988.

[Cla78] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker (eds.), Logic and Databases, pp.
292–322. Plenum Press, New York, 1978.

[Ebb84] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, New York, 1984.
[Eit08] T. Eiter and K. Wang. Semantic forgetting in answer set programming. Artif. Int., 172:1644–1672,

2008.
[Fer07] P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In IJCAI-07, pp. 372–379.

2007.
[Fit85] M. Fitting. A Kripke-Kleene semantics for logic programs. J. of Logic Prog., 2(4):295–312, 1985.
[Gab08] D. M. Gabbay, R. A. Schmidt, and A. Sza las. Second-Order Quantifier Elimination: Foundations,

Computational Aspects and Applications. College Publications, London, 2008.
[Geb09] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected Boolean search

problems. In CPAIOR 2009, pp. 71–86. 2009.
[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In ICLP/SLP

1988, pp. 1070–1080. 1988.
[Ino98] K. Inoue and Chiaki Sakama. Negation as failure in the head. J. of Logic Prog., 35(1):39–78, 1998.
[Jan06] T. Janhunen, I. Niemelä, D. Seipel, Patrik Simons, and Jia-Huai You. Unfolding partiality and

disjunctions in stable model semantics. ACM Trans. on Comput. Logic, 7(1):1–37, 2006.
[Lee06] J. Lee and F. Lin. Loop formulas for circumscription. Artificial Intelligence, 170:160–185, 2006.
[Lif94] V. Lifschitz. Circumscription. In Handbook of Logic in AI and Logic Programming, vol. 3, pp.

298–352. Oxford University Press, Oxford, 1994.
[Lif08] V. Lifschitz. Twelve definitions of a stable model. In ICLP 2008, pp. 37–51. 2008.
[Lin91] F. Lin. A Study of Nonmonotonic Reasoning. Ph.D. thesis, Stanford University, 1991.
[Mar92] W. Markek and V. S. Subrahmanian. The relationship between stable, supported, default and

autoepistemic semantics for general logic programs. Theor. Computer Science, 103:365–386, 1992.
[McC80] John McCarthy. Circumscription – a form of non-monotonic reasoning. Artif. Int., 13:27–39, 1980.
[Sch95] J. S. Schlipf. The expressive powers of the logic programming semantics. J. of Computer and

System Sciences, 51(1):64–86, 1995.
[Wer08] C. Wernhard. Literal projection for first-order logic. In JELIA 08, pp. 389–402. 2008.
[Wer09] C. Wernhard. Tableaux for projection computation and knowledge compilation. In TABLEAUX

2009, pp. 325–340. 2009.
[Wer10a] C. Wernhard. Circumscription and projection as primitives of logic programming – ex-

tended version. Tech. rep., TU Dresden, 2010. Available from http://cs.christophwernhard.com/
papers/logprog2010extended.pdf.

[Wer10b] C. Wernhard. Literal projection and circumscription. In FTP’09, CEUR Proc., vol. 556. 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 212–221
http://www.floc-conference.org/ICLP-home.html

TIMED DEFINITE CLAUSE ω-GRAMMARS

NEDA SAEEDLOEI 1 AND GOPAL GUPTA 1

1 Department of Computer Science
University of Texas at Dallas, Richardson, TX 75080, USA
E-mail address: {nxs048000,gupta@utdallas.edu}

Abstract. We propose timed context-free grammars (TCFGs) and show how parsers for
such grammars can be developed using definite clause grammars (DCGs) coupled with
constraints over reals (CLP(R)). Timed context-free grammars describe timed context-
free languages (TCFLs). We next extend timed context-free grammars to timed context-
free ω-grammars (ω-TCFGs for brevity) and incorporate co-inductive logic programming in
DCGs to obtain parsers for them. Timed context-free ω-grammars describe timed context-
free languages containing infinite-sized words, and are a generalization of timed ω-regular
languages recognized by timed automata. We show a practical application of ω-TCFGs to
the well-known generalized railroad crossing problem.

Introduction

Using timed automata is a popular approach to designing, specifying and verifying real-
time systems [Alu90, Alu94]. Timed and hybrid automata provide the foundational basis
for cyber-physical systems (CPS) that are currently receiving a lot of attention [Lee08,
Gup06]. Timed automata are ω-automata [Tho90] extended with clocks (or stop-watches).
Transitions from one state to another are made not only on the alphabet symbols of the
language, but also on constraints imposed on clocks (e.g., at least 2 units of time must
have elapsed). A timed automaton recognizes a sequence of timed words, where a timed
word is made of symbols from the alphabet of the language the automaton accepts (a
regular language), paired with a time-stamp indicating the time that symbol was seen.
Since finite automata are equivalent to regular languages it seems natural to think of timed
automata as being equivalent to timed regular languages. However, regular expressions
are unsuitable for many complex (and useful) applications; in many situations one needs
context-free languages. For real-time systems this means that timed regular languages may
not be powerful enough, and one has to resort to TCFLs.

In this paper we propose timed grammars as a simple and natural method for describing
timed languages. Timed grammars describe words that have real-time constraints placed
on the times at which the words’ symbols appear. Note that previous approaches to deal-
ing with time typically have discretized time, which resulted in frameworks that cannot
model problems faithfully. Lack of a framework that models real-time systems and other
continuous physical quantities has been perceived as a problem by the research community
[Lee08, Gup06].

Key words and phrases: Constraint Logic Programming over reals, Co-induction, Context-Free Gram-
mars, ω-Grammars.

c© N. Saeedloei and G. Gupta
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.212

TIMED DEFINITE CLAUSE ω-GRAMMARS 213

We extend the concept of context-free grammars to timed context-free grammars and
timed context-free ω-grammars. Informally, a timed context-free grammar is obtained by
associating clock constraints with terminal and non-terminal symbols of the productions
of a CFG. The timed language accepted by a timed CFG contains those strings that are
accepted by the underlying untimed grammar but which also satisfy the timing constraints
imposed by the associated clock constraints. The language accepted by a timed ω-CFG
(ω-TCFG) contains timed strings that are infinite in size. Such languages are useful for
modeling complex CPS including real-time systems [Sae] that run forever.

In this paper we describe timed grammars, and show how DCGs together with CLP(R)
and co-induction can be used to develop an effective and elegant method for parsing them.
We also illustrate timed grammars through examples, in particular we show how the con-
troller component of the generalized railroad crossing problem of Lynch and Heitmeyer
[Hei94] can be specified naturally using timed grammars. Introducing ω-TCFGs and their
logic programming realization is the main contribution of this paper. Note that pushdown
timed automata (PTA) have been introduced in the past; however, to the best of our knowl-
edge, ours is the first attempt to (i) develop the notion of timed grammars, and (ii) develop
practical methods for parsing these timed grammars. We assume that the reader is fa-
miliar with constraint logic programming over reals (CLP(R)) [Jaf94]. We next present an
overview of co-inductive logic programming (co-LP).

1. Co-inductive Logic Programming

The traditional declarative and operational semantics for logic programming (LP) is
inadequate for various programming practices such as programming with infinite data struc-
tures and corecursion [Bar96]. Recently co-induction [Bar96] has been introduced into logic
programming by Simon et al [Sim06a, Sim06b] to overcome this problem. Co-inductive LP
can be used for reasoning about unfounded sets, behavioral properties of (interactive) pro-
grams, elegantly proving liveness properties in model checking, type inference in functional
programming, representing and verifying properties of Kripke structures and ω-automata,
etc. [Gup07, Sim07].

Co-induction is the dual of induction and corresponds to the greatest fixed-point (gfp)
semantics. Simon et al’s work gives an operational semantics—similar to SLD resolution—
for computing the greatest fixed-point of a logic program. This operational semantics (called
co-SLD resolution) relies on the co-inductive hypothesis rule and systematically computes
elements of the gfp of a program (w.r.t. a query) via backtracking. It is briefly described
below. The semantics is limited only to regular proofs, i.e., those cases where the infinite
behavior is obtained by infinite repetition of a finite number of finite behaviors.

In the co-inductive LP (co-LP) paradigm the declarative semantics of the predicate is
given in terms of infinitary Herbrand (or co-Herbrand) universe, infinitary Herbrand (or co-
Herbrand) base [Llo87], and maximal models (computed using greatest fixed-points) [Sim06a].
The operational semantics under co-induction is identical to Prolog’s operational semantics,
except for the following addition [Sim06a]: a predicate call p(t̄) succeeds if it unifies with
one of its ancestor calls. Thus, every time a call is made, it has to be remembered. This set
of ancestor calls constitutes the co-inductive hypothesis set. Under co-LP, infinite rational
answers can be computed, and infinite rational terms are allowed as arguments of predicates.
Infinite terms are represented as solutions to unification equations, and the occurs check is
omitted during the unification process: for example, X = [1 | X] represents the binding

214 N. SAEEDLOEI AND G. GUPTA

of X to an infinite list of 1’s. Thus, in co-SLD resolution, given a single clause (note the
absence of a base case)

p([1 | X]) :- p(X).

the query ?- p(A). succeeds in two resolution steps with the (infinite) answer: A = [1 |

A] which is a finite representation of the infinite answer: A = [1, 1, 1,]. Now for
a slightly more non-trivial example, consider the program P1 below:

bit(0). stream([]).

bit(1). stream([H| T]) :- bit(H), stream(T).

A call to ?- stream(X). in a standard LP system will systematically generate all finite bit
streams one by one starting from the [] stream. Suppose now we remove the base case and
obtain the program P2:

bit(0).

bit(1). stream([H| T]) :- bit(H), stream(T).

Under co-inductive semantics, posing the query ?- stream(X). will produce infinite sized
streams as answers, e.g., X = [0, 0, 0 | X], X = [1, 1, 1 | X], X = [0, 1, 0 | X],
etc.

2. Timed Context-free ω-Grammars

A timed grammar is a grammar extended with real-valued variables.1 These variables
model the clocks in the grammar. All clocks advance at the same rate (identical to the
rate at which a wall clock advances). Clock constraints are used to restrict the kind of
strings generated by the underlying untimed grammar. Clocks may be reset to zero when
a particular symbol of the language is seen. Informally, timed grammars are collections of
production rules in which clock expressions (clock constraints and resets) can appear after
both the terminal and non-terminal symbols on the right hand side. The timed language
accepted by a timed grammar consists of strings that can be derived from rules of the
grammar and that satisfy the clock constraints appearing in that grammar. Since CFGs
are suitable for describing a large class of complex applications, we consider timed CFGs
only (though, in general, one could have timed versions of context-sensitive grammars,
as well as timed Turing machines). We use a timed CFG to describe a timed language by
generating each string of that language in a manner similar to a CFG. Informally, during the
derivation, the right hand side of a rule can be substituted for a non-terminal symbol only
if the timing constraints accompanying that non-terminal symbol are satisfied. Similarly,
a terminal symbol cannot be generated if its accompanying clock constraint is violated.
Timed context-free grammars extend CFGs with:

• A fixed number of clocks, which may be reset to zero. Clock names are global to all
the production rules, i.e., all occurrences of a clock name c refer to the same clock.
• Clock resets, which are written within curly braces and can appear after a terminal

or a non-terminal symbol on the right hand side of a production rule. Resetting
the clock after a terminal symbol a, denoted a{c := 0} where c is the clock, is used
to remember the time at which a has been seen; while resetting the clock after a
non-terminal symbol B, is used to remember the time at which the last terminal
symbol in the string that is reduced to B has been seen.

1Grammars extended with real-valued variables can be used to model other cyber-physical phenomenon,
however, in this paper our focus is on real-time systems.

TIMED DEFINITE CLAUSE ω-GRAMMARS 215

• Clock constraints, which are put in the timed grammar in exactly the same manner
as clock resets, i.e., within curly braces; however, they are used to indicate the
timing constraints between the time stamps of the various symbols that appear in
an accepted string. For example a{c < 2} indicates that the symbol a must appear
within two units of time since the clock c was reset.

Each terminal as well as non-terminal symbol appearing on the right hand side of a pro-
duction rule maybe followed by curly braces that enclose a non-empty sequence of clock
resets and clock constraints. Before we formally define timed grammars, let us consider
some examples.

Example 2.1. Consider a language in which each sequence of a’s is followed by a sequence
of an equal number of b’s, with each accepted string having at least two a’s and two b’s. For
each pair of equinumerous sequences of a’s and b’s, the first symbol b must appear within
5 units of time from the first symbol a and the final symbol b must appear within 20 units
of time from the first symbol a. The grammar annotated with clock expressions is shown
below: c is a clock which is reset when the first symbol a is seen.

1. S → R S
2. R→ a {c := 0} T b {c < 20}
3. T → a T b
4. T → a b {c < 5}

Note that, for example, in the first production (S → R S), the sets of clock constraints
associated with R and S are empty, and are therefore omitted. Note also that in the above
grammar, the first rule is co-inductive (i.e., a recursive rule with no base case). Thus, this
grammar is an ω-grammar.

Example 2.2. The following grammar describes a language in which sequences of a’s are
followed by a final symbol b, which must appear within 5 units of time from the last symbol
a.

S → a {c := 0} S
S → b {c < 5}

Example 2.3. With a slight change in the timed grammar in the previous example we can
capture a language in which sequences of a’s are followed by a final symbol b that appears
within 5 units of time from the first symbol a. The timed grammar for this timed language
is as follows.

S → a {c := 0} R
R→ a R
R→ b {c < 5}

Note the difference in how the clocks are reset in the last two examples. The clock c in
Example 2.2 is reset on every occurrence of the symbol a; while in Example 2.3 the clock c
is reset only on the first occurrence of symbol a.

Definition 2.4. A timed context-free grammar is a 6-tuple G = 〈V, T,C,E,R, S〉, where

• V is a finite set of non-terminal symbols;
• T is a finite set of terminal symbols, disjoint from V , which is the alphabet of the

language defined by the grammar;
• C is a finite set of clock identifiers;

216 N. SAEEDLOEI AND G. GUPTA

• E is a set of clock expressions over C (clock constraints and clock resets);
• R is a finite set of productions of the form A → (aδ)∗, where A ∈ V , a ∈ (V ∪ T),

and δ denotes a (possibly empty) collection of clock expressions from E (* denotes
Kleene closure);
• S ∈ V is a special symbol called the start symbol.

The set E of clock expressions is limited to expressions of the form {c := 0} and {c ∼ x},
where c is a free variable, x is a constant, and ∼∈ {=, <,≤, >,≥}.

Definition 2.5. A timed context-free language (TCFL) is a set of timed strings. A timed
string is a sequence of pairs of the form (a, ta) where a is a symbol from the alphabet,
and ta is the time at which the symbol a was seen (by time we mean wall clock or physical
time). If (a, ta) is immediately followed by (b, tb) in a timed string, then tb > ta, i.e., two
or more symbols cannot appear at the same instant.

We now formally define the language generated by a timed context-free grammar
G = 〈V, T, C,E,R, S〉. Note that because time flows linearly we only consider left to right
derivations. Note also that because clocks may reset during a derivation, the reset times
have to be recorded as part of the state. We could carry this state locally with each step
of the derivation; however, to keep the exposition below simple we maintain this state as a
global entity, which is accessed during each step of the derivation. For each clock c, reset(c)
denotes the wall clock time at which clock c was last reset. The wall clock is treated as a
global variable whose value can be read at any time. We consider two cases, one where we
reduce using a production that has a terminal symbol occurring in the leftmost position on
its RHS, and the other where this production has a non-terminal symbol as the leftmost
symbol in the RHS.
Case I: If A → aσB is a production of R, where a ∈ T , σ is set of clock expressions
(possibly empty) from E, and B is in (V ∪ T ∪ E)∗, then AγF yields (a, ta)BγF , written
AγF ⇒

G
(a, ta)BγF , where F is in (V ∪T ∪E)∗, γ is set of clock expressions (possibly empty)

from E associated with non-terminal symbol A, and for each clock expression k ∈ σ:

• if k = {c := 0}, then reset(c) = ta, i.e., we record that the clock c was reset at wall
clock time ta.
• if k = {c ∼ x}, then ta − reset(c) ∼ x must hold. If this clock constraint does not

hold, then the derivation fails.

Case II: If A → DσB is a production of R, where D ∈ V, σ is set of clock expressions
(possibly empty) from E, and B is in (V ∪ T ∪ E)∗, then AγF ⇒

G
DσBγF , where F is in

(V ∪ T ∪ E)∗, and γ is set of clock expressions (possibly empty) from E associated with
non-terminal symbol A.
If two sets of clock expressions, γ and σ, appear next to each other during a derivation,
they are replaced by γ ∪ σ.

Definition 2.6. Suppose that α1, α2, . . . , αm are strings in (V ∪T ∪E∪(T ×R+))∗, m ≥ 1,
and

α1 ⇒
G
α2, α2 ⇒

G
α3, . . . , αm−1 ⇒

G
αm.

TIMED DEFINITE CLAUSE ω-GRAMMARS 217

Then we say that α1
∗⇒
G
αm, or α1 derives αm in grammar G. Alternatively, α

∗⇒
G
β if β

follows from α by application of zero or more productions of R. Note that α
∗⇒
G
α for each

string α. If it is clear which grammar G is involved, we use ⇒ for ⇒
G

and
∗⇒ for

∗⇒
G

.

Definition 2.7. The language generated by G [denoted L(G)] is

{w | w = (w1, t1), (w2, t2), . . . , (wn, tn) where wi ∈ T, ti ∈ R+, t1 < t2 · · · < tn, and S
∗⇒
G
w}.

That is, a timed string is in L(G) if:

(1) The timed string (timed word) consists of a sequence of pairs; the first element of
each pair is a terminal symbol and the second is a real number.

(2) The timed string can be derived from S and satisfies the time constraints imposed
by the grammar.

We call L a timed context-free language (TCFL) for some timed CFG G, if L = L(G).

As mentioned before, timed context-free ω-grammars (ω-TCFG) are CFGs with co-recursive
grammar rules (i.e., recursive rules with no base cases). ω-TCFGs generate TCFLs with
infinite sized words.

Adding clocks to a context-free grammar results in a grammar which is not context-free
any more, rather it is context-sensitive. Intuitively, this is easy to see, as whether a non-
terminal symbol can be reduced depends not only on if a matching production exists but
also that the clock constraints associated with the non-terminal are consistent with the past
clock resets. In other words a pushdown timed automaton would not be able to recognize
a TCFG, because an extra component is needed to save the information about various
clocks which are used in the TCFG. Thus, a TCFL cannot be recognized by a push down
automaton. We conjecture that TCFGs are equivalent to linear bounded automata (LBA).
A linear bounded automaton is a nondeterministic Turing machine which, instead of having
potentially infinite tape for storage, is restricted to the portion of the tape containing the
input x plus the two tape squares holding the end-markers.

Example 2.8. Consider the timed ω-grammar of Example 2.1. Consider a timed word

(a, 2), (a, 4), (b, 5), (b, 10), . . .

Below we give the initial segment of the derivation of this timed word. The global state will
record the time at which clock c is reset; c will be set to the value 2 when the first symbol
a is seen.

S ⇒ R S
⇒ a {c := 0} T b {c < 20} S
⇒ (a, 2) T b {c < 20} S
⇒ (a, 2) a b {c < 5} b {c < 20} S
⇒ (a, 2) (a, 4) b {c < 5} b {c < 20} S
⇒ (a, 2) (a, 4) (b, 5) b {c < 20} S
⇒ (a, 2) (a, 4) (b, 5) (b, 10) S . . .

218 N. SAEEDLOEI AND G. GUPTA

3. Modeling ω-TCFGs with Co-inductive CLP(R)

To model and reason about ω-TCFGs we should be able to handle the fact that: (i)
the underlying language is context-free, (ii) accepted strings are infinite, and (iii) clock
constraints are posed over continuously flowing time. All three aspects can be elegantly
handled within LP. It is well known that the definite clause grammar (DCG) facility of Pro-
log allows one to obtain parsers for context-free grammars (and even for context-sensitive
grammars) with minimal effort. By extending LP with co-induction, one can develop lan-
guage processors that recognize infinite strings. DCGs extended with co-induction can act
as recognizers for ω-grammars. Further, incorporation of co-induction and CLP(R) into
the DCG allows modeling of time aspects of ω-TCFGs. Once an ω-TCFG is modeled as a
co-inductive CLP(R) program, it can be used to (i) check whether a particular timed string
will be accepted or not; and, (ii) systematically generate all possible timed strings that can
be accepted (note that a CLP(R) system will represent time-stamps of terminal symbols
as variables in the output, with constraints imposed on them). The LP realization of the
system based on co-induction and CLP(R) can also be used to verify system properties by
posing appropriate queries.

We have developed a system that takes an ω-TCFG and converts it into a DCG aug-
mented with co-induction and CLP(R). The resulting co-inductive constraint logic program
acts as a parser for the ω-TCFL recognized by the ω-TCFG. The general method of this
system is outlined next (the system is shown in http://www.utdallas.edu/~nxs048000/

tGrammar.yap). The method takes an ω-TCFG as input and generates a parser as a collec-
tion of DCG rules (one rule per production in the ω-TCFG), where each rule is extended
with clock expressions. For simplicity of presentation the method is explained for a timed
grammar with one clock, but it can handle any number of clocks in a similar manner. We
assume c is the clock; Ti, and To are used to remember the last wall clock time this clock
was reset, and to pass on this clock’s value to the next step in the derivation respectively.
T , and Tn are used to represent the wall clock time, and the new wall clock time after each
step in the derivation respectively. The method replaces every component of the timed
grammar with its corresponding timed component as follows.

• A non-terminal symbol s is replaced with predicate s(T, T i, Tn, To);
• A terminal symbol a is replaced with [(a, ta)], where ta is the wall clock time at

which the symbol a appeared;
• A clock constraint of the form {c ∼ x}, where ∼∈ {=, <,≤, >,≥} is replaced with
{{T − Ti ∼ x}};
• A clock reset of the form {c := 0} is replaced with {{Ti = T}} or {{To = T}}

(depending on where it appears in the production).

Note that everything within curly braces in DCG’s is treated as a standard Prolog code,
i.e., curly braces would be simply dropped and the code within them would be executed.
Constraint solving is done using the CLP(R) system (after dropping a pair of braces; since it
is the convention in most CLP(R) systems to put constraints inside a pair of curly braces).

For each production in the timed grammar, the method replaces each component (start-
ing with the left hand side) with its corresponding timed component as explained above,
advances the clock if necessary, passes on the wall clock time and last reset time to the
next component, and repeats this step until the end of production rule is reached. If T
represents the wall clock time, then time is advanced by posting the constraint T ′ > T
where T ′ represents the current wall clock time. Advancing the clock is necessary since the

TIMED DEFINITE CLAUSE ω-GRAMMARS 219

underlying assumption is that multiple symbols of the timed string are not seen at the same
instant. if (a, t1) is immediately followed by (b, t2) in a timed string, then t2 > t1. Thus the
wall clock should be advanced after each symbol in the timed string.

To illustrate the process, we describe the logic programming rendering of the timed
ω-grammar shown in Example 2.1 in section 2.

:- coinductive(s/6).

s(T, Ti, Tn, To) --> r(T, Ti, T1, To1), {{T2 > T1}}, s(T2, To1, Tn, To).

r(T, Ti, Tn, To) --> [(a, T)], {{Ti = T, T1 > T}}, t(T1, Ti, T2, To),

{{Tn > T2}}, [(b, Tn)], {{Tn - To < 20}}.

t(T, Ti, Tn, To) --> [(a, T)], {{T1 > T}}, t(T1, Ti, T2, To), {{Tn > T2}},

[(b, Tn)].

t(T, Ti, Tn, To) --> [(a, T)], {{Tn > T}}, [(b, Tn)], {{Tn - Ti < 5, To = Ti}}.

Note that the predicates s, r, and t are defined as DCG rules; therefore, two arguments (for
the difference lists) will be added to each of them by a Prolog compiler. The first explicit
argument of these predicates is the wall clock time; Tn is the new wall clock time after
each predicate call. The pair of arguments, Ti and To, represent the clock c of the timed
grammar. In fact, a pair of arguments have to be added for each clock that is used in the
grammar (in the current example there is only one clock). The first argument of this pair
is used to remember the last wall clock time this clock was reset, while the second one is
used to pass on this clock’s value to the next predicate call. Given this program one can
pose queries to it to check if a timed string satisfies the timing constraints imposed in the
timed grammar. Alternatively, one can generate possible legal timed strings. Finally, one
can verify properties of this timed language (e.g., checking the simple property that all the
a’s are generated within 5 units of time, in any timed string that is accepted).

The co-inductive termination of predicate s/6 will depend only on the two arguments
(for the difference lists) that are added by the Prolog compiler, i.e., the wall-clock time
and other arguments will be ignored when checking if the s/6 predicate is cyclical. In the
Co-LP system we have used for our work 2, one can declare the arguments w.r.t. which
a predicate should behave co-inductively. Only those arguments will be employed by the
system for determining co-inductive termination for that predicate. For truly co-inductive
termination, the constraints induced in a given cycle in the grammar should also be taken
into account: one must ensure that if a cycle P is part of an accepting string, then the
constraints generated in one traversal of cycle P must be entailed by those generated in the
next traversal of P. This is indeed the case for practical timed systems, where all clocks
involved are reset in every accepting cycle. Due to this resetting, the same constraints
are repeated in every such cycle and therefore co-inductive termination is justified w.r.t.
constraints also.

Next we illustrate applications of our co-inductive CLP(R) realization of ω-TCFGs by
using it for the controller component of the GRC problem with two tracks.

4. Timed ω-Grammar for GRC

Informally, the GRC problem [Hei94] describes a railroad crossing system with several
tracks and an unspecified number of trains traveling through the tracks in both directions.
There is a gate at the railroad crossing that should be operated in a way that guarantees
the safety and utility properties. The safety property stipulates that the gate must be down

2The interpreter for Co-LP that we have used is based on YAP, and can be found in http://www.

utdallas.edu/~nxs048000/co-lp.yap

220 N. SAEEDLOEI AND G. GUPTA

Figure 1: The controller for the GRC with two tracks

while one or more trains are in the crossing. The utility property states that the gate must
be up when there is no train in the crossing. The system is composed of three subsystems:
a gate, a set of tracks and an overall controller. We show a timed context-free ω-grammar
for the controller component of the GRC system with two tracks. The behavior of the
controller can be expressed graphically via a timed push down automaton (Figure 1), and
described using the ω-TCFG shown below:

C → approach {c := 0} L exit {c := 0} raise {c < 1} C
C → approach {c := 0} L N exit {c := 0} raise {c < 1} C
L→ lower {c < 1}
L→ approach lower {c < 1} exit
N → approach exit
N → approach exit N
N → exit approach
N → exit approach N

The logic programming rendering of this ω-TCFG is presented below.

c(T, Ti, Tn, To) --> [(approach, T)], {{Ti = T, T1 > T}}, l(T1, Ti, T2, To1),

{{T3 > T2}}, [(exit, T3)], {{To2 = T3, T4 > T3}},

[(raise, T4)], {{T4 - To2 <1, T5 > T4}}, c(T5, T5, Tn, To).

c(T, Ti, Tn, To) --> [(approach, T)], {{Ti = T, T1 > T}}, l(T1, Ti, T2, To1),

{{T3 > T2}}, n(T3, To1, T4, To2), {{T5 > T4}},

[(exit, T5)], {{To3 = T5, T6 > T5}}, [(raise, T6)],

{{T6 - To3 < 1, T7 > T6}}, c(T7, T7, Tn, To).

l(T, Ti, Tn, To) --> [(lower, T)], {{T - Ti < 1, To = Ti, Tn = T}}.

l(T, Ti, Tn, To) --> [(approach, T)], {{T1 > T}}, [(lower, T1)],

{{T1 - Ti < 1, Tn > T1}}, [(exit, Tn)], {{To = Ti}}.

n(T, Ti, Tn, To) --> [(approach, T)], {{Tn > T}}, [(exit, Tn)], {{To = Ti}}.

n(T, Ti, Tn, To) --> [(approach, T)], {{T1 > T}}, [(exit, T1)], {{T2 > T1}},

n(T2, Ti, Tn, To).

n(T, Ti, Tn, To) --> [(exit, T)], {{Tn > T}}, [(approach, Tn)], {{To = Ti}}.

n(T, Ti, Tn, To) --> [(exit, T)], {{T1 > T}}, [(approach, T1)], {{T2 > T1}},

n(T2, Ti, Tn, To).

The ω-TCFGs for gate and track components of the GRC problem along with their corre-
sponding logic programs can be generated in a similar manner.

TIMED DEFINITE CLAUSE ω-GRAMMARS 221

5. Conclusions and Future Work

In this paper we have extended context-free grammars with clocks and clock expressions.
The resulting grammars, called timed CFGs, are means of describing complex languages
consisting of timed words, where a timed word is a symbol from the alphabet of the language
the grammar generates, paired with the time that symbol was seen. As a result, timed CFGs
are suitable for specifying systems whose behavior can be described by recursive structures
with time constraints. We have developed a system for generating parsers for timed context-
free ω-grammars using the DCG facility of logic programming coupled with CLP(R) and
co-induction. We have applied our method of generating parsers for ω-TCFGs to the GRC
problem with two tracks, and presented a simple timed context-free ω-grammar for the
controller component of this problem.

To conclude, a combination of constraint over reals, co-induction, and the language
processing capabilities of logic programming provides an elegant and expressive formalism
for describing real-time, hybrid, and cyber-physical systems. In fact, our framework is a
general framework that can be used for handling not only time but other continuous physical
quantities as well.

Acknowledgment

The authors would like to thank D. T. Huynh, Kevin Hamlen, and Feliks Kluźniak for
discussions.

References

[Alu90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In ICALP, Lecture Notes
in Computer Science, vol. 443, pp. 322–335. Springer, 1990.

[Alu94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[Bar96] Jon Barwise and Lawrence Moss. Vicious circles: on the mathematics of non-wellfounded phenom-
ena. Center for the Study of Language and Information, Stanford, CA, USA, 1996.

[Gup06] Rajesh Gupta. Programming models and methods for spatiotemporal actions and reasoning in
cyber-physical systems. In NSF Workshop on CPS. 2006.

[Gup07] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya. Coinductive logic pro-
gramming and its applications. In ICLP, pp. 27–44. Springer, 2007.

[Hei94] Constance L. Heitmeyer and Nancy A. Lynch. The generalized railroad crossing: A case study in
formal verification of real-time systems. In IEEE RTSS, pp. 120–131. 1994.

[Jaf94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[Lee08] Edward A. Lee. Cyber-physical systems: Design challenges. In ISORC. 2008.
[Llo87] J. W. Lloyd. Foundations of logic programming / J.W. Lloyd. Springer-Verlag, Berlin, New York,

2nd edn., 1987.
[Sae] Neda Saeedloei and Gopal Gupta. Logic programming foundations of cyber-physical systems. In

Preparation.
[Sim06a] L. Simon. Coinductive Logic Programming. Ph.D. thesis, University of Texas at Dallas, Richardson,

Texas, 2006.
[Sim06b] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic programming. In

ICLP, pp. 330–345. 2006.
[Sim07] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic programming: Extending logic

programming with coinduction. In ICALP, pp. 472–483. 2007.
[Tho90] Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics (B), pp. 133–192. MIT Press, 1990.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 222–225

http://www.floc-conference.org/ICLP-home.html

TOWARDS A PARALLEL VIRTUAL MACHINE FOR FUNCTIONAL

LOGIC PROGRAMMING

ABDULLA ALQADDOUMI

New Mexico State University, Computer Science Department,
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA
E-mail address: aalqaddo@cs.nmsu.edu

Abstract. Functional logic programming is a multi-paradigm programming that com-
bines the best features of functional programming and logic programming. Functional
programming provides mechanisms for demand-driven evaluation, higher order functions
and polymorphic typing. Logic programming deals with non-determinism, partial informa-
tion and constraints. Both programming paradigms fall under the umbrella of declarative
programming. For the most part, the current implementations of functional logic languages
belong to one of two categories: (1) Implementations that include the logic programming
features in a functional language. (2) Implementations that extend logic languages with
functional programming features. In this paper we describe the undergoing research ef-
forts to build a parallel virtual machine that performs functional logic computations. The
virtual machine will tackle several issues that other implementations do not tackle: (1)
Sharing of sub-terms among different terms especially when such sub-terms are evaluated
to more than one value (non-determinism). (2) Exploitation of all forms of parallelism
present in computations. The evaluation strategy used to evaluate functional logic terms
is needed narrowing, which is a complete and sound strategy.

1. Introduction

Functional logic programming is a multi-paradigm programming that combines the
best features of functional programming and logic programming. Functional programming
provides mechanisms for demand-driven evaluation, higher order functions and polymor-
phic typing. Logic programming deals with non-determinism, partial information and con-
straints. Both programming paradigms fall under the umbrella of declarative programming.

For the most part, the current implementations of functional logic languages belong
to one of two categories: (1) Implementations that include the logic programming features
in a functional language. (2) Implementations that extend logic languages with functional
programming features. Interested readers are referred to [Han07] for a survey on such
languages and implementations.

In this paper we describe the undergoing research efforts to build a parallel virtual
machine that performs functional logic computations. The virtual machine will tackle sev-
eral issues that other implementations do not tackle: (1) Sharing of sub-terms among
different terms especially when such sub-terms are evaluated to more than one value (non-
-determinism). (2) Exploitation of all forms of parallelism present in computations. The

Key words and phrases: functional logic programming; term rewriting system; non-determinism; needed
narrowing; and-parallelism; or-parallelism.

c© A. Alqaddoumi
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.222

TOWARDS A PARALLEL VIRTUAL MACHINE FOR FUNCTIONAL LOGIC PROGRAMMING 223

evaluation strategy used to evaluate functional logic terms is needed narrowing [Ant00],
which is a complete and sound strategy.

2. Progress and Research Objectives

2.1. Types of Parallelism

Functional logic computations can exploit and-parallelism, or-parallelism or both. And-
parallelism arises when two or more sub-terms need computation in order to compute their
ancestor term. Computing such sub-terms simultaneously will decrease the waiting time
of their parent. And-parallelism is usually independent, but when the computation of
such sub-terms simultaneously involves a shared variable, it becomes dependent. In case
of dependencies, synchronization of terms is required. Or-parallelism arises when a choice
operator ”?” or a variable need computation. The choice operator, ”?”, and logic or extra
variables represent non-determinisim in functional logic computations. Equation (1) below
is an example of non-deterministic operation using the choice operator. In this case, ”coin”
can be replaced by either 0 or 1. The computation of a choice operator in parallel can be
done by invoking as many processes as there are arguments and locally for each process,
its argument will rewrite the choice with its selected argument. The same thing is true for
logic or extra variables.
coin = 0 ? 1 (1)

2.2. Research Objectives

The goal of my research is to implement a parallel virtual machine that will execute
functional logic programs efficiently, specifically for the functional logic language, Curry
[Han06]. Curry is a functional logic language that seamlessly integrates the logic and
functional features. The evaluation strategy used in the virtual machine will be based on
needed narrowing. Needed narrowing is based on the concept that only needed arguments
of a term must be selected and evaluated to rewrite the term. Needed arguments can be
decided by using definitional trees. For more details about needed narrowing, please refer
to [Ant00]. For more details about definitional trees, please refer to [Ant92]. Computing
normal forms of terms may involve computation of several sub-terms at the same time
(and-parallelism). This is called don’t-know non-determinism, because the strategy does
not know which sub-term to execute first. A sequential evaluation strategy will compute
the sub-terms one after the other. When choices or variables are encountered during the
computation of some term, the system can try all such alternatives that will replace the
choice or logic variable in order to compute the term in hand (or-parallelism). This is
called don’t-care non-determinism, because the system will not care which alternative of
the choice or variable was chosen to compute the term. Our virtual machine will exploit
both (and-parallelism and or-parallelism).

224 A. ALQADDOUMI

2.3. Progress

The system is implemented for the time being in Ruby. The current implementation
includes basic libraries and parsing of expressions with sharing. Ruby supports the use of
threads. The evaluation strategy will select needed sub-terms after each rewriting step and
different threads will compute those needed sub-terms simultaneously. The first stage of
the implementation that is done in Ruby will be used as proof of correctness and the final
version of the virtual machine will be developed in C or Java to improve its efficiency.

3. Future Work

Computation of choice operations or logic variables as mentioned earlier leads to non-
determinism and having more than one term to rewrite the current choice or variable.
Such terms could possibly be shared between more than one parent-term. Therefore, the
information about the option that rewrites the term must be global in the whole graph.
This will ensure all solutions obtained are correct. We will present several solutions that
can ensure the correctness of the solutions obtained from terms where choices or variables
are shared within them. All the solutions are based on needed narrowing as a strategy for
instantiating variables.
double x = x + x (2)

double coin (3)

In equation (2) the operation ”double” will be rewritten as a plus operation. The
argument of ”double” must be represented as one shared argument between the first and
second arguments of plus. In (1) we defined the non-deterministic operation coin that can
be rewritten as 0 or 1. In the evaluation of (3), the correct computation must yield the
values 0 or 2. If there was no implementation of sharing, equation (3) would be rewritten
as ”coin + coin”. Such term would evaluate to any of the four values, 0, 1, 1, or 2.

3.1. Stack Copying

This evaluation strategy will perform computations of deterministic terms normally.
When a non-deterministic term is encountered (choice or variable), separate contexts of
the graph will be managed by different processes. There will be as many environments as
the number of the arguments of the choice or the variable. This solution is inspired from
strategies of implementing or-trees in logic programming [Gup01]. This approach will be
very expensive in terms of memory but optimizations can be done. The other main drawback
is the re-computation of terms. In the evaluation of (3), two separate environments will be
created to accommodate each argument of the operation ”coin”: ”double 0” and ”double 1”.
Note that in case non-deterministic terms appear on both sides of the tree, re-computations
of such non-deterministic terms may not be avoidable.

3.2. Fingerprinting

This evaluation strategy is built on replacing choices or variables with sets. These
sets will contain all the arguments of the choice or values of the variable’s domain. Each
element of the set will be tagged with a unique fingerprint that will identify the origin of
the element. The fingerprint consists of two parts, parent and position tags. Whenever a
set contributes in other computations, compatibility of fingerprints will be checked to avoid

TOWARDS A PARALLEL VIRTUAL MACHINE FOR FUNCTIONAL LOGIC PROGRAMMING 225

inconsistency. Two terms are said to be incompatible if they have the same parent tag but
different position tag. The drawback of such approach is the overhead of bookkeeping of
fingerprints and the compatibility tests performed.

In the evaluation of (3), the following set will be created to replace the non–deterministic
operation ”coin”: {0A1, 1A2}. The first element of the set, ”0”, will be tagged with the
fingerprint A1, and the second element of the set, ”1”, will be tagged with the fingerprint
A2. The ”plus” operation will perform the compatibility check between the two sets: {0A1,
1A2} and {0A1, 1A2}. The resulting set will become {0A1 + 0A1 , 0A1 + 1A2, 1A2 + 0A1,
1A2 + 1A2} ==> {0A1 + 0A1, 1A2 + 1A2} ==> {0A1, 2A2}. The two stroked options refer
to incompatibility between the elements and hence removed. Note that the compatibility
test is performed before the operation is applied to avoid any unnecessary computations.

3.3. Promotion of Choice or Variable (Bubbling)

This evaluation strategy will promote non-deterministic operations. When a choice or
a variable is encountered, the choice or variable will be promoted to take the place of its
parent(s) and make as many copies of the parent(s) as the number of the arguments of the
choice or variable. In case a choice has more than one parent, a nearest common ancestor
between such parents will be computed and the spine that connects both parents with the
common ancestor will be copied. All copies of the spine will be identical in their arguments
except for the argument that had the choice which will be replaced by one of the choice
arguments. Eventually the choice will reach the root of the graph. A rewriting of (3) in
this case will be ”double coin ==> (double 0) ? (double 1) ==> (0 + 0) ? (1 + 1) ==>

0 ? 2”. Use of Promotion is inspired from [Ant07, Jan94, Lop97].

References

[Ant92] Sergio Antoy. Definitional trees. In In Proc. of the 3rd International Conference on Algebraic and
Logic Programming, pp. 143–157. Springer LNCS, 1992.

[Ant00] Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing strategy. J. ACM,
47(4):776–822, 2000.

[Ant07] Sergio Antoy, Daniel W. Brown, and Su-Hui Chiang. Lazy context cloning for non-deterministic
graph rewriting. Electron. Notes Theor. Comput. Sci., 176(1):3–23, 2007.

[Gup01] Gopal Gupta, Enrico Pontelli, Khayri A.M. Ali, Mats Carlsson, and Manuel V. Hermenegildo.
Parallel execution of prolog programs: a survey. ACM Trans. Program. Lang. Syst., 23(4):472–602,
2001.

[Han06] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2). 2006. Available at
http://www.informatik.uni-kiel.de/~curry.

[Han07] M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International Conference
on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS 4670, 2007.

[Jan94] Sverker Janson. AKL - A Multiparadigm Programming Language. Ph.D. thesis, Uppsala University,
SICS, 1994.

[Lop97] Ricardo Lopes and Vitor Santos Costa. The BEAM: Towards a first EAM implementation, 1997.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 226–235

http://www.floc-conference.org/ICLP-home.html

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS

MARIO ALVIANO

Department of Mathematics, University of Calabria — 87036 Rende (CS), Italy
E-mail address: alviano@mat.unical.it

Abstract. Answer set programming (ASP) is a powerful formalism for knowledge rep-
resentation and common sense reasoning that allows disjunction in rule heads and non-
monotonic negation in bodies. Magic Sets are a technique for optimizing query answering
over logic programs and have been originally defined for standard Datalog, that is, ASP

without disjunction and negation. Essentially, the input program is rewritten in order to
identify a subset of the program instantiation which is sufficient for answering the query.

Dynamic Magic Sets (DMS) are an extension of this technique to ASP. The optimization
provided by DMS can be exploited also during the nondeterministic phase of ASP systems.
In particular, after some assumptions have been made during the computation, parts of the
program may become irrelevant to a query (because of these assumptions). This allows for
dynamic pruning of the search space, which may result in exponential performance gains.

DMS has been implemented in the DLV system and experimental results confirm the
effectiveness of the technique.

Introduction

Answer set programming (ASP) is a powerful formalism for knowledge representation
and common sense reasoning [Bar03]. Allowing disjunction in rule heads and nonmonotonic
negation in bodies, ASP can express every query belonging to the complexity class ΣP

2

(NPNP); the same expressive power is preserved even if negation is restricted to be used in
a stratified way [Eit94].

Magic Sets are a technique for optimizing query answering over logic programs. ASP

computations are typically characterized by two phases, namely program instantiation and
answer set search. Program instantiation is deterministic and transforms the input program
into an equivalent one with no variables. Answer set search is nondeterministic in general
and works on the instantiated program.

Magic Sets have been originally defined for standard Datalog, that is, ASP without
disjunction and negation. Essentially, the input program is rewritten in order to identify
a subset of the program instantiation which is sufficient for answering the query. The

1998 ACM Subject Classification: Logic and constraint programming.
Key words and phrases: answer set programming, decidability, magic sets, disjunctive logic programs.
Thanks: The author is grateful to Wolfgang Faber, Gianluigi Greco and Nicola Leone for the fundamental

contribution in achieving the results summarized in this article and reported in [Alv09]. This research has
been partly supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 within the PIA
project of DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN.

c© M. Alviano
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.226

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 227

restriction of the instantiation is obtained by means of additional “magic” predicates, whose
extensions represent relevant atoms w.r.t. the query.

An attempt to extend the method to (disjunctive) ASP has been done in [Gre03].
Magic set predicates of [Gre03] have a deterministic definition and, consequently, have the
same extension in each answer set. Actually, this extension can always be computed during
program instantiation, and so we call the technique of [Gre03] Static Magic Sets (SMS).

In the context of (disjunctive) ASP, there is no reason for having a deterministic defi-
nition of magic predicates. Indeed, while Datalog programs admit exactly one answer set,
ASP programs can have several answer sets, each one representing a different, plausible
scenario. Since atoms relevant in one scenario could be irrelevant in another (or also in
each other), one expects that Magic Sets should capture this aspect and provide a dynamic
optimization to the answer set search.

Our principal contributions concerning Magic Sets for ASP are stated below.

• We have defined Dynamic Magic Sets (DMS). With DMS, ASP computations can
exploit the information provided by magic set predicates also during the nondeter-
ministic answer set search, allowing for potentially exponential performance gains
w.r.t. SMS. Indeed, the definition of our magic set predicates depends on the as-
sumptions made during the computation, identifying the atoms that are relevant in
the current (partial) scenario.

• We have established the correctness of DMS by proving that the transformed pro-
gram is query-equivalent to the original program and we have highlighted a strong
relationship between magic sets and unfounded sets: The atoms that are relevant
w.r.t. an answer set are either true or form an unfounded set.

• We have implemented DMS in the DLV system and compared the performance of
DLV with no magic sets, with SMS, and with DMS. The experimental results show
that in many cases DMS yields a significant performance benefit. The system is
available at http://www.dlvsystem.com/magic/.

The remainder of the paper is structured as follows. In Section 1, syntax and semantics
of ASP are briefly mentioned. Dynamic Magic Sets for stratified ASP programs are intro-
duced in Section 2. In Section 3, the implemented prototype system is briefly presented,
while experimental result are discussed in Section 4. Finally, in Section 5, we draw our
conclusion and discuss about future work we intend to address.

1. Answer Set Programming

In this section, we recall syntax and semantics of disjunctive ASP with stratified nega-
tion, the language for which we will introduce Dynamic Magic Sets in Section 2.2.

1.1. Syntax

A term is either a variable or a constant. If p is a predicate of arity k ≥ 0, and t1, . . . , tk
are terms, then p(t1, . . . , tk) is an atom1. A literal is either an atom p(t̄) (a positive literal),
or an atom preceded by the negation as failure symbol not p(t̄) (a negative literal). A rule
r is of the form

p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

1We use the notation t̄ for a sequence of terms, for referring to atoms as p(t̄).

228 M. ALVIANO

where p1(t̄1), . . . , pn(t̄n), q1(s̄1), . . . , qm(s̄m) are atoms and n ≥ 1, m ≥ j ≥ 0. The
disjunction p1(t̄1) v · · · v pn(t̄n) is the head of r, while the conjunction q1(s̄1), . . . , qj(s̄j),
not qj+1(s̄j+1), . . . , not qm(s̄m) is the body of r. Moreover, H(r) denotes the set of head
atoms, while B(r) denotes the set of body literals. We also use B+(r) and B−(r) for
denoting the set of atoms appearing in positive and negative body literals, respectively, and
Atoms(r) for the set H(r) ∪ B+(r) ∪ B−(r). Rules are assumed to be safe, that is, each
variable appearing in a rule r also appears in B+(r). A rule r is positive (or negation-free)
if B−(r) = ∅, a fact if both B(r) = ∅ and |H(r)| = 1.

A program P is a finite set of rules; if all rules in it are positive, then P is a positive
program. Stratified programs constitute another interesting class of programs. A predicate
p appearing in the head of a rule r depends on each predicate q such that an atom q(s̄)
belongs to B(r); if q(s̄) belongs to B+(r), p depends on q positively, otherwise negatively.
A program is stratified if each cycle of dependencies involves only positive dependencies.

1.2. Semantics

Given a predicate p, a defining rule for p is a rule r such that some atom p(t̄) belongs
to H(r). If all defining rules of a predicate p are facts, then p is an EDB predicate; otherwise
p is an IDB predicate2. Given a program P, the set of rules having some IDB predicate in
head is denoted by IDB(P), while EDB(P) denotes the remaining rules, that is, EDB(P) =
P \ IDB(P).

The set of constants appearing in a program P is the universe of P and is denoted by
UP

3, while the set of ground atoms constructible from predicates in P with elements of UP

is the base of P, denoted by BP . We call a term (atom, rule, or program) ground if it does
not contain any variable. A ground atom p(t̄) (resp. a ground rule rg) is an instance of an
atom p(t̄′) (resp. of a rule r) if there is a substitution ϑ from the variables in p(t̄′) (resp. in
r) to UP such that p(t̄) = p(t̄′)ϑ (resp. rg = rϑ). Given a program P, Ground(P) denotes
the set of all instances of the rules in P.

An interpretation I for a program P is a subset of BP . A positive ground literal p(t̄)
is true w.r.t. an interpretation I if p(t̄) ∈ I; otherwise, it is false. A negative ground literal
not p(t̄) is true w.r.t. I if and only if p(t̄) is false w.r.t. I. The body of a ground rule rg is
true w.r.t. I if and only if all the body literals of rg are true w.r.t. I, that is, if and only if
B+(rg) ⊆ I and B−(rg)∩I = ∅. An interpretation I satisfies a ground rule rg ∈ Ground(P)
if at least one atom in H(rg) is true w.r.t. I whenever the body of rg is true w.r.t. I. An
interpretation I is a model of a program P if I satisfies all the rules in Ground(P).

Given an interpretation I for a program P, the reduct of P w.r.t. I, denoted Ground(P)I ,
is obtained by deleting from Ground(P) all the rules rg with B−(rg) ∩ I = ∅, and then by
removing all the negative literals from the remaining rules. The semantics of a program P
is then given by the set AS(P) of the answer sets of P, where an interpretation M is an
answer set for P if and only if M is a subset-minimal model of Ground(P)M .

Given a ground atom p(t̄) and a program P, p(t̄) is a cautious (resp. brave) consequence
of P, denoted by P |=c p(t̄) (resp. P |=b p(t̄)), if p(t̄) ∈ M for each (resp. some) M ∈

2
EDB and IDB stand for Extensional Database and Intensional Database, respectively.

3If P has no constants, then an arbitrary constant is added to UP .

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 229

AS(P). Given a query Q = g(t̄)? (an atom)4, Ansc(Q,P) (resp. Ansb(Q,P)) denotes
the set of all the substitutions ϑ for the variables of g(t̄) such that P |=c g(t̄)ϑ (resp.
P |=b g(t̄)ϑ). Two programs P and P ′ are cautious-equivalent (resp. brave-equivalent)
w.r.t. a query Q, denoted by P≡c

QP
′ (resp. P≡b

QP
′), if Ansc(Q,P ∪F) = Ansc(Q,P ′ ∪F)

(resp. Ansb(Q,P ∪F) = Ansb(Q,P ′∪F)) is guaranteed for each set of facts F defined over
the EDB predicates of P and P ′.

2. Magic Sets Techniques

In this section, we first briefly discuss about Magic Sets in the literature; we then
introduce Dynamic Magic Sets, our proposal for extending the standard technique to ASP.

2.1. Overview of the Existing Literature

The Magic Set method is a strategy for simulating the top-down evaluation of a query by
modifying the original program by means of additional rules, which narrow the computation
to what is relevant for answering the query.

The key idea of Magic Sets is to materialize the binding information for IDB predicates
that would be propagated during a top-down computation, like for instance the one adopted
by Prolog. According to this kind of evaluation, all the rules r such that g(t̄′) ∈ H(r)
(where g(t̄′)ϑ = Q for some substitution ϑ) are considered in a first step. Then, the atoms
in Atoms(rϑ) different from Q are considered as new queries and the procedure is iterated.
Note that during this process the information about bound (i.e. non-variable) arguments in
the query is “passed” to the other atoms in the rule. Moreover, it is assumed that the rule
is processed in a certain sequence, and processing an atom may bind some of its arguments
for subsequently considered atoms, thus “generating” and “passing” bindings. Therefore,
whenever an atom is processed, each of its argument is considered to be either bound (b)
or free (f).

The specific propagation strategy adopted in a top-down evaluation scheme is called
sideways information passing strategy (SIPS), which is just a way of formalizing a partial
ordering over the atoms of each rule together with the specification of how the bindings
originate and propagate [Bee91, Gre03].

The first attempt to extend Magic Sets to disjunctive Datalog programs is due to
[Gre03]. Magic predicates of [Gre03] identify a sizeable superset of all the atoms relevant to
answer the given query. An important observation is that this set is defined in a determin-
istic way, which means that assumptions during the computation cannot be exploited for
restricting the relevant part of the program. In terms of bottom-up systems, this implies
that the optimization affects only the grounding portion of the solver. For this reason, we
refer to the method of [Gre03] as Static Magic Sets (SMS).

Intuitively, it would be beneficial to also have a form of conditional relevance, exploiting
also relevance for assumptions.5 In the following, we propose a novel Magic Set method
that guarantees semantic equivalence and also allows for the exploitation of conditional or
dynamic relevance, overcoming a major drawback of SMS.

4More complex queries can still be expressed using appropriate rules. We assume that each constant
appearing in Q also appears in P; if this is not the case, then we can add to P a fact p(t̄) such that p is a
predicate not occurring in P and t̄ are the arguments of Q.

5Experimental evidence for this intuition is provided in Section 4.

230 M. ALVIANO

2.2. Dynamic Magic Sets

Our proposal to extend Magic Sets to (disjunctive) ASP relies on the observation that
atoms relevant in one answer set could be irrelevant in another (or also in each other). DMS
capture this aspect, providing a dynamic optimization to the answer set search.

In order to properly describe the proposed Magic Set method, we need some additional
definition and notation. First, we can materialize the binding information for IDB predicates
by means of adorned atoms.

Definition 2.1 (Adorned atom). Let p(t1, . . . , tk) be an atom and α = α1 · · ·αk a string
of the alphabet {b, f}. Then pα(t1, . . . , tk) is the adorned version of p(t1, . . . , tk) in which
ti is considered either bound if αi is b, or free if αi is f.

Adorned atoms are then associated with magic atoms, which will be used for identifying
those atoms that are relevant for answering the input query.

Definition 2.2 (Magic atom). For an adorned atom pα(t̄), let magic(pα(t̄)) be its magic
version defined as the atom magic pα(t̄′), where t̄′ is obtained from t̄ by eliminating all
arguments corresponding to an f label in α, and where magic pα is a new predicate symbol
(for simplicity denoted by attaching the prefix “magic ” to the predicate symbol pα).

Finally, we formally define SIPS for (disjunctive) ASP rules.

Definition 2.3 (SIPS). A SIPS for a rule r w.r.t. a binding α for an atom p(t̄) ∈ H(r) is

a pair (≺
pα(t̄)
r , f

pα(t̄)
r), where:

(1) ≺
pα(t̄)
r is a strict partial order over the atoms in Atoms(r), such that:

(a) p(t̄) ≺
pα(t̄)
r q(s̄), for all atoms q(s̄) ∈ Atoms(r) different from p(t̄);

(b) for each pair of atoms q(s̄) ∈ (H(r) \ {p(t̄)}) ∪ B−(r) and b(z̄) ∈ Atoms(r),

q(s̄) ≺
pα(t̄)
r b(z̄) does not hold; and,

(2) f
pα(t̄)
r is a function assigning to each atom q(s̄) ∈ Atoms(r) a subset of the variables

in s̄—intuitively, those made bound when processing q(s̄).

The Dynamic Magic Set method is reported in Figure 1. The algorithm exploits a set
S for storing all the adorned predicates to be used for propagating the binding of the query
and, after all the adorned predicates are processed, outputs a rewritten program DMS(Q,P)
consisting of a set of modified and magic rules, stored by means of the sets modifiedRulesQ,P

and magicRulesQ,P , respectively.
The computation starts by initializing S and modifiedRulesQ,P to the empty set (step

1). Then, the function BuildQuerySeed(Q,P, S) is used for storing the query seed
magic(gα(t̄)) in magicRulesQ,P , where α is a string having a b in position i if ti is a
constant, or an f if ti is a variable. In addition, BuildQuerySeed(Q,P, S) adds the
adorned predicate magic gα into the set S.

The core of the algorithm (steps 2–9) is repeated until the set S is empty, i.e., until
there is no further adorned predicate to be propagated. In particular, an adorned predicate
pα is removed from S (step 3), and its binding is propagated in each rule of the form

r : p(t̄) v p1(t̄1) v · · · v pn(t̄n) :− q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

(with n ≥ 0) having an atom p(t̄) in the head (note that the rule r is processed as often as
head atoms with predicate p occur; steps 4–8).

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 231

Input: A stratified program P, and a query Q = g(t̄)?

Output: The optimized program DMS(Q,P).

var S: set of adorned predicates; modifiedRulesQ,P ,magicRulesQ,P : set of rules;

begin

1. S := ∅; modifiedRulesQ,P := ∅; magicRulesQ,P := {BuildQuerySeeds(Q,P, S)};
2. while S 6= ∅ do

3. pα := an element of S; S := S \ {pα};
4. for each rule r ∈ P and for each atom p(t̄) ∈ H(r) do

5. ra:=Adorn(r, pα, S);

6. magicRulesQ,P := magicRulesQ,P

S

Generate(ra);

7. modifiedRulesQ,P := modifiedRulesQ,P

S

{Modify(ra) };
8. end for

9. end while

10. DMS(Q,P):=magicRulesQ,P ∪ modifiedRulesQ,P ∪ EDB(P);

11. return DMS(Q,P);

end.

Figure 1: Dynamic Magic Set algorithm (DMS) for stratified programs.

Adornment. The function Adorn(r, pα, S) implements the adornment of the rule r w.r.t.

an (adorned) head atom pα(t̄) according to a fixed SIPS (≺
pα(t̄)
r , f

pα(t̄)
r) (step 5). In par-

ticular, a variable X of an IDB atom6 q(s̄) in r is bound if and only if either:

(1) X ∈ f
pα(t̄)
r (q(s̄)) with q(s̄) = p(t̄); or,

(2) X ∈ f
pα(t̄)
r (b(z̄)) for an atom b(z̄) ∈ B+(r) such that b(z̄) ≺

pα(t̄)
r q(s̄) holds.

Therefore, Adorn(r, pα, S) produces an adorned disjunctive rule ra from an adorned pred-
icate pα and a suitable unadorned rule r (according to the bindings defined in (1) and (2)
above), by inserting all newly adorned predicates in S. Hence, the rule ra is of the form

ra : pα(t̄) v pα1
1 (t̄1) v · · · v pαn

n (t̄n) :− q
β1

1 (s̄1), . . . , q
βj

j (s̄j), not q
βj+1

j+1 (s̄j+1), . . . , not q
βm
m (s̄m).

Generation. The adorned rules are then used to generate magic rules defining magic predi-
cates, which represent the atoms relevant for answering the input query (step 6). The bodies
of magic rules contain the atoms required for binding the arguments of some atom, following

the adopted SIPS. More specifically, if qβi

i (s̄i) is an adorned atom (i.e., βi is not the empty
string) in an adorned rule ra having pα(t̄) in head, Generate(ra) produces a magic rule r∗

such that (i) H(r∗) = {magic(qβi

i (s̄i))} and (ii) B(r∗) is the union of {magic(pα(t̄))} and

the set of all the atoms q
βj

j (s̄j) ∈ Atoms(r) such that qj(s̄j) ≺
α
r qi(s̄i).

Modification. Subsequently, magic atoms are added to the bodies of the adorned rules in
order to limit the range of the head variables, thus avoiding the inference of facts which are
irrelevant for the query. The resulting rules are called modified rules (step 7).

A modified rule r′ is obtained from an adorned rule ra by adding to its body a magic
atom magic(pα(t̄)) for each atom pα(t̄) ∈ H(ra) and by stripping off the adornments of the
original atoms. Hence, the function Modify(ra) constructs a rule r′ of the form

r′ : p(t̄) v p1(t̄1) v · · · v pn(t̄n) :− magic(pα(t̄)), magic(pα1
1 (t̄1)), . . . , magic(pαn

n (t̄n)),
q1(s̄1), . . . , qj(s̄j), not qj+1(s̄j+1), . . . , not qm(s̄m).

Finally, after all the adorned predicates have been processed, the algorithm outputs the
program DMS(Q,P) (steps 10–11).

6EDB atoms are always adorned with the empty string.

232 M. ALVIANO

2.3. Query Equivalence Results

We conclude the presentation of the DMS algorithm by sketching the correctness proof
presented in [Alv09], to which we refer for the details. Throughout this section, we use the
well established notion of unfounded set for disjunctive programs with negation defined in
[Leo97]. Since we deal with total interpretations, represented as the set of atoms interpreted
as true, the definition of unfounded set can be restated as follows.

Definition 2.4 (Unfounded sets). Let I be an interpretation for a program P, and X ⊆ BP

be a set of ground atoms. Then X is an unfounded set for P w.r.t. I if and only if for each
ground rule rg ∈ Ground(P) with X ∩ H(rg) 6= ∅, either (1.a) B+(rg) 6⊆ I, or (1.b)
B−(rg) ∩ I 6= ∅, or (2) B+(rg) ∩ X 6= ∅, or (3) H(rg) ∩ (I \ X) 6= ∅.

Intuitively, conditions (1.a), (1.b) and (3) check if the rule is satisfied by I regardless of
the atoms in X, while condition (2) assures that the rule can be satisfied by taking the atoms
in X as false. Therefore, the next theorem immediately follows from the characterization
of unfounded sets in [Leo97].

Theorem 2.5. Let I be an interpretation for a program P. Then, for any answer set
M ⊇ I of P, and for each unfounded set X of P w.r.t. I, M ∩ X = ∅ holds.

We now prove the correctness of the DMS strategy by showing that it is sound and
complete. In both parts of the proof, we exploit the following set of atoms.

Definition 2.6 (Killed atoms). Given a model M for DMS(Q,P), and a model N ⊆ M

of Ground(DMS(Q,P))M , the set killedM
Q,P(N) of the killed atoms w.r.t. M and N is

defined as:

{ p(t̄) ∈ BP \ N | either p is EDB, or some magic(pα(t̄)) belongs to N }.

Thus, killed atoms are either false instances of some EDB predicate, or false atoms
which are relevant for Q (since a magic atom exists in N). Therefore, we expect that these
atoms are also false in any answer set for P containing M ∩ BP .

Proposition 2.7. Let M be a model for DMS(Q,P), and N ⊆ M a model of the reduct
Ground(DMS(Q,P))M . Then killedM

Q,P(N) is an unfounded set for P w.r.t. M ∩ BP .

The soundness of the algorithm for stratified programs is proved by the next lemma.

Lemma 2.8. Let Q be a query over a stratified program P. Then, for each answer set M ′

of DMS(Q,P), there is an answer set M of P such that, for every substitution ϑ, Qϑ ∈ M

if and only if Qϑ ∈ M ′.

Proof. Consider the program P ∪ (M ′ ∩BP), that is, the program obtained by adding to P
a fact for each atom in M ′ ∩BP . Since P is stratified, there is at least an answer set M for
P ∪ (M ′∩BP). Clearly M ⊇ M ′∩BP ; moreover, we can show that M is an answer set of P
as well (by following [Alv09]). Thus, since Qϑ belongs either to M ′ or to killedM ′

Q,P(M ′),
for every substitution ϑ, the claim follows by Proposition 2.7.

For proving the completeness of the algorithm we provide a construction for passing
from an interpretation for P to one for DMS(Q,P).

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 233

Definition 2.9 (Magic variant). Let I be an interpretation for P. We define an interpreta-
tion var∞Q,P(I) for DMS(Q,P), called the magic variant of I w.r.t. Q and P, as the fixpoint
of the following sequence:

var0
Q,P(I) = EDB(P)

vari+1
Q,P(I) = vari

Q,P(I) ∪ {p(t̄) ∈ I | some magic(pα(t̄)) belongs to vari
Q,P(I)}

∪ {magic(pα(t̄)) | ∃ r∗g ∈ Ground(DMS(Q,P)) such that
magic(pα(t̄)) ∈ H(r∗g) and B+(r∗g) ⊆ vari

Q,P(I)}, ∀i ≥ 0

By definition, for a magic variant var∞Q,P(I) of an interpretation I for P, var∞Q,P(I) ∩
BP ⊆ I holds. More interesting, the magic variant of an answer set for P is in turn an
answer set for DMS(Q,P) preserving the truth/falsity of Qϑ, for every substitution ϑ.

Lemma 2.10. For each answer set M of P, there is an answer set M ′ of DMS(Q,P)
(which is the magic variant of M) such that, for every substitution ϑ, Qϑ ∈ M if and only
if Qϑ ∈ M ′.

Proof. We can show that M ′ = var∞Q,P(I) is an answer set of DMS(Q,P). Thus, since Qϑ

belongs either to M ′ or to killedM ′

Q,P(M ′), for every substitution ϑ, the claim follows by
Proposition 2.7.

From the above lemma, together with Lemma 2.8, the correctness of the Magic Set
method with respect to query answering directly follows.

Theorem 2.11. Let Q be a query over a stratified program P. Then both DMS(Q,P)≡b
QP

and DMS(Q,P)≡c
QP hold.

3. Implementation

DMS has been implemented and integrated into the core of the DLV [Leo04] system.
The DMS algorithm is applied automatically by default when the user invokes DLV with
-FB (brave reasoning) or -FC (cautious reasoning) together with a (partially) bound query.
Magic Sets are not applied by default if the query does not contain any constant. The
user can modify this default behaviour by specifying the command-line options -ODMS (for
applying Magic Sets) or -ODMS- (for disabling magic sets). If a completely bound query
is specified, DLV can print the magic variant of the answer set (not displaying magic
predicates), which witnesses the truth (for brave reasoning) or the falsity (for cautious
reasoning) of the query, by specifying the command-line option --print-model.

An executable of the DLV system supporting the Magic Set optimization is available
at http://www.dlvsystem.com/magic/.

4. Experimental Results

In order to evaluate the impact of the proposed method, we have compared DMS both
with the traditional DLV evaluation without Magic Sets and with the SMS rewriting. We
considered several benchmarks, including an application scenario that has received consid-
erable attention in recent years, the problem of answering user queries over possibly in-
consistent databases originating from integration of autonomous sources. Below, we briefly
discuss Conformant Plan Checking, a representative benchmark of our experimentation.

234 M. ALVIANO

G

S

 0

 100

 200

 300

 400

 500

 0 15000 30000 45000 60000

E
x
ec

u
ti

o
n
 t

im
e

(s
)

Instance size (number of states)

No Magic Sets (DLV)
Static Magic Sets (SMS)

Dynamic Magic Sets (DMS)

Figure 2: Conformant Plan Checking : instance structure and average execution time.

Definition 4.1 (Conformant Plan Checking [Gol96]). A state transition diagram and a
plan are given. A plan is a sequence of nondeterministic actions, and is conformant if all
its possible executions lead from an initial state S to a goal state G.

In our experiments, the shape of transition diagrams is as shown in Figure 2. A successor
state is guessed for each state in the input diagram, so that the plan is conformant if G is
reachable from S in each answer set of the program

trans(X, Y) v trans(X, Z) :− ptrans(X, Y, Z).
reach(X, Y) :− trans(X, Y).
reach(X, Y) :− reach(X, Z), trans(Z, Y).

The experiments have been performed on a 3GHz Intel R© Xeon R© processor system with
4GB RAM under the Debian 4.0 operating system with a GNU/Linux 2.6.23 kernel. The
DLV prototype used has been compiled using GCC 4.3.3. For each instance, we have
allowed a maximum running time of 600 seconds (10 minutes) and a maximum memory
usage of 3GB.

As shown in Figure 2, DMS has an exponential speed-up over both DLV and SMS. In
this case, the exponential computational gain of DMS over DLV and SMS is due to the
dynamic optimization of the answer set search phase resulting from our magic sets definition.
Indeed, DMS include nondeterministic relevance information that can be exploited also
during the nondeterministic search phase of DLV, dynamically disabling parts of the ground
program. In particular, after having made some choices, parts of the program may no longer
be relevant to the query, but only because of these choices, and the magic atoms present in
the ground program can render these parts satisfied, which means that they will no longer
be considered in this part of the search.

5. Conclusion

The Magic Set method is one of the most well-known techniques for the optimization of
positive recursive Datalog programs due to its efficiency and its generality. In our work, we
have extended the technique to (disjunctive) ASP. The main novelty of the proposed Magic
Set method is the dynamic optimization of the answer set search. Indeed, with DMS, ASP

computations can exploit the information provided by magic set predicates also during the
nondeterministic answer set search, allowing for potentially exponential performance gains
with respect to unoptimized evaluations.

DYNAMIC MAGIC SETS FOR DISJUNCTIVE DATALOG PROGRAMS 235

We have established the correctness of DMS for stratified ASP programs by proving that
the transformed program is query-equivalent to the original program. A strong relationship
between magic sets and unfounded sets has been highlighted: The atoms that are relevant
w.r.t. an answer set are either true or form an unfounded set.

DMS has been implemented in the DLV system. Experiments on the implemented pro-
totype system evidenced that our implementation can outperform the standard evaluation
in general also by an exponential factor. This is mainly due to the optimization of the
model generation phase, which is specific of our Magic Set technique.

Our research has been focused on ASP with stratified negation, because the concept of
“relevance” can be extended quite easily for this class of programs. Conversely, if recursion
over negation is allowed, an inconsistency may arise in some part of the program apparently
not related to the query. A first step forward in extending DMS to programs with unstrat-
ified negation has been done in [Alv10], in which the technique presented in this paper has
been proved to be correct for super-consistent ASP, a large class of programs including
odd-cycle-free programs (that is, programs in which no cycle of dependencies involves an
odd number of negative dependencies). Analysing the possibility to extend DMS to a larger
class of unstratified ASP programs is a challenge we intend to address in the future.

Acknowledgement

The author wishes to thank Wolfgang Faber for his care in checking this work and for
the fruitful discussions without which the results herein summarized could not be achieved.

References

[Alv09] Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic Sets for Disjunctive
Datalog Programs. Tech. Rep. 09/2009, Department of Mathematics, University of Calabria, Italy,
2009. http://www.wfaber.com/research/papers/TRMAT092009.pdf.

[Alv10] Mario Alviano and Wolfgang Faber. Dynamic Magic Sets for Super-Consistent Answer Set Programs.
In 3rd Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP10). 2010.
To appear.

[Bar03] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press, 2003.

[Bee91] Catriel Beeri and Raghu Ramakrishnan. On the power of magic. 10(1–4):255–259, 1991.
[Eit94] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Adding Disjunction to Datalog. In Proceedings

of the Thirteenth ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS-94), pp. 267–278. ACM Press, 1994.

[Gol96] Robert P. Goldman and Mark S. Boddy. Expressive Planning and Explicit Knowledge. In Proceedings
AIPS-96, pp. 110–117. AAAI Press, 1996.

[Gre03] Sergio Greco. Binding Propagation Techniques for the Optimization of Bound Disjunctive Queries.
IEEE Transactions on Knowledge and Data Engineering, 15(2):368–385, 2003.

[Leo97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive Stable Models: Unfounded Sets,
Fixpoint Semantics and Computation. 135(2):69–112, 1997.

[Leo04] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV System for Knowledge Representation and Reasoning. 2004. To ap-
pear. Available via http://www.arxiv.org/ps/cs.AI/0211004.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 236–240

http://www.floc-conference.org/ICLP-home.html

BISIMILARITY IN CONCURRENT CONSTRAINT PROGRAMMING

ANDRÉS A. ARISTIZÁBAL P.

CNRS, LIX École Polytechnique and INRIA Team COMÈTE
Route de Saclay 91128 Palaiseu Cedex, France.
E-mail address: andresaristi@lix.polytechnique.fr

URL: http://www.lix.polytechnique.fr/∼andresaristi/

Abstract. In this doctoral work we aim at developing a new approach to labelled se-
mantics and equivalences for the Concurrent Constraint Programming (CCP) which will
enable a broader capture of processes behavioural equivalence. Moreover, we work towards
exploiting the strong connection between first order logic and CCP. Something which will
allow us to represent logical formulae in terms of CCP processes and verify its logical equiv-
alence by means of our notion of bisimilarity. Finally, following the lines of the Concurrecy
Workbench we plan to implement a CCP Workbench based on our theoretical structure.

Motivations

Concurrency is concerned with the fundamental aspects of systems consisting of multi-
ple computing agents, usually called processes, that interact among each other. Bisimilarity
is a central behavioural equivalence in concurrency theory as it elegantly captures our in-
tuitive notion of process equivalence; two processes are equivalent if they can match each
other’s moves. In fact, several concurrent formalisms such as CCS [Mil80] and the π-calculus
[Mil99] are equipped with semantic, axiomatic, verification and, in general, reasoning tech-
niques for bisimilarity.

Concurrent Constraint Programming (CCP) [Sar90] is a well-established declarative
formalism for concurrency. Its basic intuitions arise mostly from first-order logic. In CCP
processes can interact by adding (or telling) partial information in a medium, a so-called
store. Partial information is represented by constraints (e.g., x > 42) on the shared variables
of the system. The other way in which processes can interact is by asking partial information
to the store. This provides the synchronization mechanism of the model; asking agents are
suspended until there is enough information in the store to answer their query.

Despite the relevance of bisimilarity on the behavioural theory of processes, there have
been few attempts to define a proper notion of bisimilarity equivalence for CCP. Apart from
the rich reasoning techniques that are typically derived from this equivalence, the close ties
between CCP and logic may provide with a novel characterization of logic equivalence in
terms of bisimilarity.

1998 ACM Subject Classification: D.1.3, D.3.2, D.3.3, F.1.1, F.1.2, F.3.2, F.4.0.
Key words and phrases: Concurrent Constraint Programming, Concurrency, Behavioural Equivalence,

Bisimilarity, Process Calculi, Operational Semantics, Labelled Semantics.

c© A. Aristizábal
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.236

BISIMILARITY IN CONCURRENT CONSTRAINT PROGRAMMING 237

1. Goals

We aim to provide CCP with an appropriate notion of bisimilarity and its derived
reasoning techniques. Furthermore, we plan to use the close connection between CCP and
first order logic to give a characterization of logical equivalence in terms of bisimilarity.
Finally, we plan to implement an automated tool for verifying bisimilarity equivalence of
CCP processes along the lines of the Concurrency Workbench [Cle93] .

2. Current Work

Like in other process algebras, in CCP processes are represented as syntactic terms re-
flecting their structure. For example, tell(c) represents the process that adds the constraint
c to the store and ask(c).P is a process that asks if c can be derived from the information
in the store and if so, it executes the process P . The composite term P ‖ Q represents the
execution of the processes P and Q in parallel.

In [Sar91] the authors gave an operational semantics for CCP which we will refer to
as reduction semantics. Intuitively, a reduction 〈P, S〉 → 〈P ′, S′〉 represents a one-step
evolution of the process-store configuration 〈P, S〉 to 〈P ′, S′〉.

We use |= to denote an entailment relation specifying interdependencies between con-
straints (e.g. x > 10 |= x > 5). We follow the well-established notion of barbed bisimilarity
for the π-calculus [Mil99] and introduce the corresponding notion for CCP:

Definition 2.1. (Barbed bisimilarity) A barbed bisimulation is a symmetric relation R

s.t., 〈P, Sp〉 R 〈Q, Sq〉 implies that:

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 R 〈Q′, S′

q〉, and
(ii) Sp |= Sq.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are barbed bisimilar, written 〈P, Sp〉∼̇B〈Q, Sq〉, if there is
a barbed bisimulation R s.t. 〈P, Sp〉 R 〈Q, Sq〉.

Unfortunately, there are barbed bisimilar processes that when placed in a given context
are not longer equivalent. Roughly, a context C[·] is a process term with a single hole · such
that replacing · with a process gives a well-formed process. E.g., by taking P = ask(x >

0).tell(y = 0) and Q = ask(x > 10).tell(y = 1) and C[·] = tell(x > 5) ‖ · we can verify that

P ∼̇B Q but C[P] ˙6∼B C[Q]. Thus, we define:

Definition 2.2. (Barbed Congruence) We say that P and Q are barbed congruent, written
P ∼B Q, if for all contexts C[·], 〈C[P], true〉∼̇B〈C[Q], true〉.

The above definition is rather unsatisfactory because of the quantification over all pos-
sible contexts. To deal with this we define a labelled transition semantics. Intuitively, a

transition 〈P, S〉
α
−→ 〈P ′, S′〉 labelled with a constraint α, represents the minimal constraint

α that needs to be added to the store S to evolve from 〈P, S〉 into 〈P ′, S′〉.
Our work builds on a similar CCP labelled semantics introduced in [Sar90]. The notion

of bisimilarity in [Sar90] is, however, over-discriminating; e.g., it distinguishes P = ask(x <

10).tell(y = 0) ‖ ask(x < 10).tell(y = 0) from Q = ask(x < 5).tell(y = 0) ‖ ask(x <

10).tell(y = 0) which are clearly equivalent. Our notion of bisimilarity is defined thus:

Definition 2.3. (Strong bisimilarity) A strong bisimulation is a symmetric relation R s.t.,
〈P, Sp〉 R 〈Q, Sq〉 implies that:

238 A. ARISTIZÁBAL

(i) if 〈P, Sp〉
α
−→ 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq ∧ α〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 R 〈Q′, S′

q〉
and

(ii) Sp |= Sq.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are strong bisimilar, written 〈P, Sp〉∼̇〈Q, Sq〉, if there exists
a strong bisimulation R such that 〈P, Sp〉 R 〈Q, Sq〉.

The main result we have obtained so far that the above notion fully captures barbed
congruence but without quantification over all possible contexts: I.e., we state:

Theorem 2.4. 〈P, Sp〉∼̇〈Q, Sq〉 if and only if 〈P, Sp〉 ∼B 〈Q, Sq〉.

Acknowledgement

This work is supervised by Catuscia Palamidessi and Frank Valencia in collaboration
with Filippo Bonchi in the context of the INRIA project FORCES.

References

[Bon08] Filippo Bonchi. Abstract semantics by observable contexts. In ICGT ’08: Proceedings of the 4th in-

ternational conference on Graph Transformations, pp. 478–480. Springer-Verlag, Berlin, Heidelberg,
2008. doi:http://dx.doi.org/10.1007/978-3-540-87405-8 38.

[Cle93] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency workbench: A
semantics-based tool for the verification of concurrent systems. ACM Trans. Program. Lang. Syst.,
15(1):36–72, 1993.

[Mil80] Robin Milner. A Calculus of Communicating Systems, Lecture Notes in Computer Science, vol. 92.
Springer, 1980.

[Mil99] Robin Milner. Communicating and mobile systems: the π-calculus. Cambridge University Press,
New York, NY, USA, 1999.

[Sar90] Vijay A. Saraswat and Martin C. Rinard. Concurrent constraint programming. In POPL, pp. 232–
245. 1990.

[Sar91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic foundations of concurrent
constraint programming. In POPL, pp. 333–352. 1991.

BISIMILARITY IN CONCURRENT CONSTRAINT PROGRAMMING 239

Appendix A. Proof of Theroem 2.4

Firstly we show out new definitions and lemmas to proof our main theorem.

Another alternative definition for the barbed congruence is what we will name as a
saturated barbed bisimilarity. This will be rather important since its definition is a bit
more specific towards CCP than a barbed congruece, therefore is easier to relate with the
strong bisimilarity we will define later on.

Definition A.1. (Saturated barbed bisimilarity). A saturated barbed bisimulation is a
symmetric binary relation R on tuples of processes and stores satisfying the following:
〈P, Sp〉 R 〈Q, Sq〉 implies that:

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 R 〈Q′, S′

q〉.
(ii) Sp |= Sq.
(iii) ∀S′〈P, Sp ∧ S′〉 R 〈Q, Sq ∧ S′〉.

We say that 〈P, Sp〉 and 〈Q, Sq〉 are saturated barbed bisimilar, written 〈P, Sp〉∼̇SB〈Q, Sq〉,
if there exists a saturated barbed bisimulation R such that 〈P, Sp〉 R 〈Q, Sq〉.

We did not report neither the reduction semantics nor the labelled semantics for lack of
space. In order to prove our main theorem we assume that the two following lemmas hold.

Lemma A.2. (Soundness of labelled semantics). If 〈P, Sp〉
α
−→ 〈P ′, S′

p〉, then 〈P, Sp ∧α〉 →
〈P ′, S′

p〉.

Lemma A.3. (Completeness of labelled semantics). If 〈P, Sp ∧ x〉 → 〈P ′, S′

p〉 then ∃y, z

s.t. 〈P, Sp〉
y
−→ 〈P ′, S′′

p 〉 and (y ∧ z = x) ∧ (S′′

p ∧ z = S′

p).

Corollary A.4. 〈P, Sp〉
true
−−→ 〈P ′, S′

p〉 if and only if 〈P, Sp〉 → 〈P ′, S′

p〉

Theorem A.5. 〈P, Sp〉∼̇〈Q, Sq〉 ⇒ ∀S′〈P, Sp ∧ S′〉∼̇〈Q, Sq ∧ S′〉

Proof. We take a strong bisimulation R = {(〈P, Sp ∧ S′〉, 〈Q, Sq ∧ S′〉) s.t. 〈P, Sp〉∼̇〈Q, Sq〉}

(i) 〈P, Sp ∧ S′〉
α
−→ 〈P ′, S′

p〉
By Lemma A.2 〈P, Sp ∧ S′ ∧ α〉 → 〈P ′, S′

p〉.

By Lemma A.3 〈P, Sp〉
y
−→ 〈P ′, S′′

p 〉 and (y ∧ z = S′ ∧ α) ∧ (S′′

p ∧ z = S′

p). Since
〈P, Sp〉∼̇〈Q, Sq〉, then 〈Q, Sq ∧ y〉 → 〈Q′, S′′

q 〉 s.t. 〈P ′, S′′

p 〉∼̇〈Q′, S′′

q 〉. Note that all
reductions are preserved when adding constraints to the store, therefore from 〈Q, Sq ∧
y〉 → 〈Q′, S′′

q 〉 we can derive that 〈Q, Sq ∧ y ∧ z〉 → 〈Q′, S′′

q ∧ z〉. This means that
〈Q, Sq ∧S′∧α〉 → 〈Q′, S′′

q ∧z〉. Now we have that 〈P ′, S′

p〉 = 〈P ′, S′′

p ∧z〉 R 〈Q′, S′′

q ∧z〉,
because 〈P ′, S′′

p 〉∼̇〈Q′, S′′

q 〉.
(ii) Sp ∧ S′ |= Sq ∧ S′ since Sp |= Sq by 〈P, Sp〉∼̇〈Q, Sq〉 and S′ = S′.

Now we state the lemmas which will enable us to prove our main theorem.

Lemma A.6. 〈P, Sp〉∼̇〈Q, Sq〉 ⇒ 〈P, Sp〉∼̇SB〈Q, Sq〉.

Proof. There exists a saturated barbed bisimulation S s.t. S = {(〈P, Sp〉, 〈Q, Sq〉) s.t.
〈P, Sp〉∼̇〈Q, Sq〉} if the following conditions are fulfilled:

240 A. ARISTIZÁBAL

(i) if 〈P, Sp〉 → 〈P ′, S′

p〉 then ∃〈Q′, S′

q〉 : 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P ′, S′

p〉 S 〈Q′, S′

q〉.

Suppose that 〈P, Sp〉 → 〈P ′, S′

p〉 then by Corollary A.4 〈P, Sp〉
true
−−→ 〈P ′, S′

p〉. Since
〈P, Sp〉∼̇〈Q, Sq〉 then 〈Q, Sq∧true〉 → 〈Q′, S′

q〉 then 〈Q, Sq〉 → 〈Q′, S′

q〉 and 〈P, Sp〉∼̇〈Q, Sq〉
then 〈P, Sp〉 S 〈Q, Sq〉

(ii) Sp |= Sq. Since P ∼̇Q (Condition (ii)).
(iii) ∀S′〈P, Sp ∧ S′〉 R 〈Q, Sq ∧ S′〉. By Theorem A.5

Lemma A.7. 〈P, Sp〉∼̇SB〈Q, Sq〉 ⇒ 〈P, Sp〉∼̇〈Q, Sq〉.

Proof. There exists a strong bisimulation R s.t. R = {(〈P, Sp〉, 〈Q, Sq〉) s.t. 〈P, Sp〉∼̇SB〈Q, Sq〉}
and if the following conditions are fulfilled:

(i) if 〈P, Sp〉
α
−→ 〈P ′, S′′

p 〉 then ∃〈Q′, S′′

q 〉 : 〈Q, Sq ∧ α〉 → 〈Q′, S′′

q 〉 and 〈P ′, S′′

p 〉 R 〈Q′, S′′

q 〉.

Suppose that 〈P, Sp〉
α
−→ 〈P ′, S′

p〉 then by Lemma A.2 〈P, Sp ∧ α〉 → 〈P ′, S′

p〉. Since
〈P, Sp〉∼̇SB〈Q, Sq〉 then 〈Q, Sq ∧ α〉 → 〈Q′, S′

q〉 s.t. 〈P ′, S′

p〉∼̇SB〈Q
′, S′

q〉 then 〈P ′, S′

p〉
R 〈Q′, S′

q〉
(ii) Sp |= Sq. Since P ∼̇SBQ (Condition (ii)).

Theorem 2.4

Proof. By Lemma A.6 and Lemma A.7.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 241–247

http://www.floc-conference.org/ICLP-home.html

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC

PROGRAMS

CÉLINE DANDOIS

University of Namur
Faculty of Computer Science
rue Grandgagnage 21
B-5000 Namur (Belgium)
E-mail address: cda@info.fundp.ac.be

URL: http://www.fundp.ac.be/info

Abstract. In this PhD project, we deal with the issue of code duplication in logic pro-
grams. In particular semantical duplication or redundancy is generally viewed as a possible
seed of inconvenience in all phases of the program lifecycle, from development to mainte-
nance. The core of this research is the elaboration of a theory of semantical duplication,
and of an automated program analysis capable of detecting such duplication and which
could steer, to some extent, automatic refactoring of program code.

1. Introduction and problem description

Program understanding or program comprehension refers to the process of acquiring
knowledge about the structure and the functioning of a computer program [Rug96]. Such
knowledge proves useful in support of a variety of software-engineering related activities
including documentation, corrective and adaptive maintenance, migration and evolution
of existing software systems [Sto06]. As a research area, program comprehension spans
several subfields ranging from cognitive science and software psychology [Cou83, Shn93],
over the development of abstract comprehension models [Bro83, Sol84, Sne98] and software
visualization techniques [Bal96, JTS98] to using program analysis to (partially) automate
program comprehension.

In this project, we will investigate program analysis techniques that allow to detect
duplication within the source code of a given program. In its most general form, the notion
of duplication refers to code fragments that are related in the sense that they subsume
the same functionality. Note that this definition covers not only code fragments that are
textually similar (“copy-paste programming”) but also code fragments that are function-

ally similar but possibly implemented in a different way. Since duplication constitutes an
existential and non-trivial program property, the discovery of duplication is obviously an
undecidable problem that can nevertheless be approximated by using program analysis.

1998 ACM Subject Classification: D.1.6, D.2.7, F.3.2.
Key words and phrases: logic programming, program comprehension, static program analysis, code du-

plication, code clone, software engineering.

c© C. Dandois
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.241

242 C. DANDOIS

Detailed knowledge about duplication in a program is valuable for various reasons :

• Several studies show that software in which code duplication is present is more error-

prone and difficult to understand and maintain than software without duplication
[Kos06, Wal07a]. Hence the presence of certain forms of duplication is generally
considered a bad smell [Fow99] and believed to have a negative impact on software
evolution [Gei06]. Although there is some disagreement as to know whether du-
plication removal is always beneficial [Kap06], there seems to be a consensus that
duplication should at the very least be detected [SD02, Joh94, Man06, JM96, Fow99].

• From a purely technical viewpoint, duplication reflects redundancy in the source code
since it contains distinct code fragments that are semantically equivalent. Although
removing such redundancy may offer a practical interest (e.g. code compaction that
aims at decreasing the executable program size [Bes03]), it also raises an interest-
ing theoretical question [Kos06] whether and to what extend program code can be
normalized – i.e. being brought into a form such that it contains as few duplica-
tion as possible – in a sense similar to the normalization of relational databases
[Kho02, Lee95].

• Identifying duplication in a program allows to steer advanced analyses and transfor-
mations on the program code such as refactoring [Fow99], cliche recognition [Rug96],
aspect mining [JZ08, AK07], virus detection [Wal07b] and plagiarism detection
[Lan04]. In addition, an analysis for detecting duplication could be integrated in the
code development process in such a way that the creation of duplicates of a certain
size is avoided from the beginning [Lag97].

2. Background and overview of the existing literature

No consensus exists in the literature about an exact definition of code duplication. One
also finds the notion of code clones, although this notion sometimes describes textually
similar fragments, sometimes refers to a more general case of duplication [Kos06, Wal07a].
The scope of the proposed definition often depends on the detection technique.

This lack of standardization about code duplication is clearly addressed in three impor-
tant recent papers which constitute complete overviews of this domain: [Kos06], [Roy07]
and [Roy09]. In addition to code duplication terminology, they treat the reasons for code
duplication and its consequences, they give the general code duplication detection process,
they describe, then evaluate and compare, the existing detection techniques and tools, they
talk about visualization, removal, avoidance and management of duplication, they explain
evolution and quality analyses based on duplication, they synthesize the applications and
related research for code duplication detection, and finally, they expose the open problems
in this research field.

Among the vast amount of research done about code duplication during the last decade,
to the best of our knowledge, the problem has not received much attention in a logic
programming setting. The majority of the results have indeed been reported upon in the
context of imperative and object-oriented languages, as showed in the above references. In
the functional paradigm, even if it has not really more success than the logic paradigm,
some works are emerging. We can point [Li09] which presents the tool Wrangler, able of

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 243

detecting duplication, among other things, in Erlang programs. [Bro10] is another work,
complementing the latter, which proposes a code duplication detection technique for Haskell,
built into the framework of the Haskell Refactorer (HaRe). Some language-independent
detection tools exist but, as experimented in [Roy09], such tools lose in precision what they
gain with their versatility since they cannot be tuned for the target language.

Furthermore, despite the fact that useful techniques and tools have been developed,
most of these code duplication detection techniques are based on the text, syntax and struc-

ture of a particular programming language. As such, they are capable of detecting dupli-
cated syntactical programming constructs (real duplication in the terminology of [Roy07])
rather than duplicated program logic within the source code of a program [Kos06, Roy07].
Nevertheless, concentrating on the program logic or the computations performed by the
program rather than its syntactical appearance is deemed essential [Kos06, Roy07] if du-
plication detection techniques are to become more powerful, more generally applicable and
independent of particular programming language constructs.

3. Goal of the research

The cornerstone of this project is to study duplication in programs written in a logic
programming language. Compared with other programming paradigms, logic program-
ming languages have an arguably simple syntax and a small, clear and well-defined seman-
tics. These characteristics make the development of a duplicated-code analysis both more
manageable (less dependent on cumbersome syntax) and at the same time more powerful.
Indeed, a logic program basically specifies a number of relations that hold between data
objects rather than the algorithms to compute certain results as is the case in an impera-
tive language. Consequently, rather than comparing syntactical algorithmic constructs, one
can directly compare control- and data-flow relations, in particular when the program is
augmented with mode information [Sma00].

4. Current status of the research

This project is still in its infancy and no result have been produced yet. For the
moment, we focus on the dissection of the state of the art and we familiarize with some
previous recent work realized inside our research group. Indeed, in [Van05], an initial study
was made on the concept of code duplication in logic programs and the outline for a basic
code duplication analysis of logic programs has been reported upon in [Van08]. The current
project presents the natural continuation of both papers. The first ideas extracted from
these works were presented at the GRASCOMP 2010 Contact Day, as a hotbed for future
development.

5. Open issues and expected achievements

Although promising, devising a duplicated-code analysis for logic programs remains a
daunting and non-trivial task. Finding duplication between the data-flow relations exhib-
ited by a program is equivalent to finding isomorphic subgraphs in the data-flow graph
of a program which is known to be NP-hard [Kri01, Kom01]. Consequently, sophisticated
algorithms guided by heuristics will be necessary in order to make the analysis scalable to
medium- and large-size programs. Topics of interest that will be studied in this project

244 C. DANDOIS

include the following:

• Elaborate a theory of duplication in logic programs, including a classification of
different kinds of duplication. On the one hand, this will allow to formally define
what duplication is about and to state and prove certain results on analyses that
try to detect duplicated code. On the other hand, these results could pave the way
to develop a theory of normalization of logic programs by removing redundancies.
A possible starting point for the latter topic is [Deg07] in which a first attempt
was made to define a normal form in the restricted setting of Mercury [Som96] pro-
grams. However, [Deg07] does not deal with a number of important issues such as
the normalization of data terms and predicate arguments.

• Based on the theory developed above, we will aim at developing an analysis that is
able to detect duplication into a logic program up to a certain degree. Issues that
need to be taken into account include precision (maximize the number of real du-
plicates while possibly minimizing the number of false positives), granularity (what
is considered a useful duplicate), and scalability of the analysis. With respect to
granularity, it seems that the notion of a useful duplicate may depend on the con-
text of the analysis or the transformation aimed for. Hence, it seems desirable to
design an analysis that can be parameterized with respect to the characteristics of
the duplication it should search for.

• We will study the relation with advanced programming analysis and transformation
techniques. A first topic of interest is automatically detecting opportunities for
refactoring source code. Preliminary work on refactoring of logic programs [Ser08,
Van05] has showed that a number of interesting refactorings can effectively be based
on knowledge about duplication in a program. Nevertheless, the exact coupling
between duplication in a program and the possibilities for automatic refactoring
remains an open problem.

Another topic of interest is the automatic detection of cross-cutting concerns,
sometimes called aspect-mining [Kic96, AK07]. Basically, a cross-cutting concern is
a functionality of the program that is implemented by a set of semantically similar
code fragments that are scattered through the source code of a program (a typical ex-
ample being the “logging” functionality within an application). Recent research has
showed that duplication detection techniques can be beneficial for aspect-mining
but stronger techniques capable of finding semantically related program code are
necessary [Bru05, AK07].

Finally, since a logic program can be seen as a set of relations capturing data-flow infor-
mation, we expect our research on automatically finding duplication within logic programs
to be beneficial for analyses trying to find semantically related code in other programming
languages and paradigms.

Acknowledgement

This PhD research is done under the supervision of Professor Wim Vanhoof.

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 245

References

[AK07] Kim Mens Andy Kellens and Paolo Tonella. A survey of automated code-level aspect mining
techniques. Transactions on Aspect-Oriented Software Development, 4(4640):143–162, 2007.

[Bal96] Thomas Ball and Stephen G. Eick. Software visualization in the large. IEEE Computer, 29(4):33–
43, 1996.

[Bes03] Árpád Beszédes, Rudolf Ferenc, Tibor Gyimóthy, André Dolenc, and Konsta Karsisto. Survey of
code-size reduction methods. ACM Computing Surveys, 35(3):223–267, 2003. doi:http://doi.acm.
org/10.1145/937503.937504.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs. International Jour-

nal of Man-Machine Studies, 18(6):543–554, 1983.
[Bro10] Christopher Brown and Simon Thompson. Clone detection and elimination for haskell. In PEPM

’10: Proceedings of the 2010 ACM SIGPLAN workshop on Partial evaluation and program manip-

ulation, pp. 111–120. ACM Press, 2010.
[Bru05] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwé. On the use of clone

detection for identifying crosscutting concern code. IEEE Trans. Software Eng, 31(10):804–818,
2005. doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2005.114.

[Cou83] Neal S. Coulter. Software science and cognitive psychology. IEEE Transactions on Software Engi-

neering, 9(2):166–171, 1983.
[Deg07] François Degrave and Wim Vanhoof. Towards a normal form for mercury programs. In Andy

King (ed.), LOPSTR, Lecture Notes in Computer Science, vol. 4915, pp. 43–58. Springer, 2007.
doi:http://dx.doi.org/10.1007/978-3-540-78769-3 4.

[Fow99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring: improving

the design of existing code. Object Technology Series. Addison-Wesley, 1999.
[Gei06] Reto Geiger, Beat Fluri, Harald Gall, and Martin Pinzger. Relation of code clones and change

couplings. In Luciano Baresi and Reiko Heckel (eds.), Fundamental Approaches to Software En-

gineering, 9th International Conference, FASE 2006 March 27-28, 2006, Proceedings, Lecture

Notes in Computer Science, vol. 3922, pp. 411–425. Springer, 2006. doi:http://dx.doi.org/10.1007/
11693017 31.

[JM96] Claude Leblanc Jean Mayrand and Ettore M. Merlo. Experiment on the automatic detection
of function clones in a software system using metrics. In Proceedings of the 12th International

Conference on Software Maintenance (ICSM ’96), pp. 244–253. 1996.
[Joh94] John Howard Johnson. Substring matching for clone detection and change tracking. In Proceedings

of the International Conference on Software Maintenance (ICSM ’94), pp. 120–126. 1994. doi:
10.1109/ICSM.1994.336783.

[JTS98] Marc H. Brown John T. Stasko, John B. Domingue and Blaine A. Price. Software Visualization:

Programming As a Multimedia Experience. Cambridge, Mass: MIT Press, 1998.
[JZ08] Yuehua Lin Jing Zhang, Jeff Gray and Robert Tairas. Aspect mining from a modelling perspective.

Int. J. of Computer Applications in Technology, 31:74–82, 2008.
URL http://www.inderscience.com/link.php?id=17720

[Kap06] Cory Kapser and Michael W. Godfrey. Cloning considered harmful. In Proceedings of the 13th

Working Conference on Reverse Engineering (WCRE2006), pp. 19–28. IEEE Computer Society,
2006. doi:http://doi.ieeecomputersociety.org/10.1109/WCRE.2006.1.

[Kho02] V. V. Khodorovskii. On normalization of relations in relational databases. Program. Comput.

Softw., 28(1):41–52, 2002. doi:http://dx.doi.org/10.1023/A:1013759617481.
[Kic96] G. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es), 1996.
[Kom01] Raghavan Komondoor and Susan Horwitz. Using slicing to identify duplication in source code. In

Proceedings of the 8th International Symposium on Static Analysis (SAS). Springer-Verlag, Paris,
France, 2001.
URL http://www.cs.wisc.edu/~raghavan/sas01.pdf

[Kos06] Rainer Koschke. Survey of research on software clones. In Rainer Koschke, Ettore Merlo, and
Andrew Walenstein (eds.), Duplication, Redundancy, and Similarity in Software, Dagstuhl Semi-

nar Proceedings, vol. 06301. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.
URL http://drops.dagstuhl.de/opus/volltexte/2007/962

246 C. DANDOIS

[Kri01] Jens Krinke. Identifying similar code with program dependence graphs. In Proceedings Eigth Work-

ing Conference on Reverse Engineering (WCRE’01), pp. 301–309. IEEE Computer Society, 2001.
doi:10.1109/WCRE.2001.957835.

[Lag97] Bruno Laguë, Daniel Proulx, Jean Mayrand, Ettore Merlo, and John P. Hudepohl. Assessing the
benefits of incorporating function clone detection in a development process. In ICSM, pp. 314–321.
1997.

[Lan04] Thomas Lancaster and Culwin Finta. A comparison of source code plagiarism detection engines.
Computer Science Education, 14(2):101–112, 2004.

[Lee95] Heeseok Lee. Justifying database normalization: a cost/benefit model. Inf. Process. Manage.,
31(1):59–67, 1995. doi:http://dx.doi.org/10.1016/0306-4573(94)E0011-P.

[Li09] Huiqing Li and Simon Thompson. Clone detection and removal for erlang/otp within a refactor-
ing environment. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN workshop on Partial

evaluation and program manipulation, pp. 169–178. ACM Press, 2009.

[Man06] Zoltán Ádám Mann. Three public enemies: Cut, copy, and paste. IEEE Computer, 39(7):31–35,
2006. doi:http://doi.ieeecomputersociety.org/10.1109/MC.2006.246.

[Roy07] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Tech. rep., 2007. TR
2007-541 School of Computing Queen’s University at Kingston Ontario, Canada.

[Roy09] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

[Rug96] Spencer Rugaber. Program understanding. Encyclopedia of Computer Science and Technology,
1996.

[SD02] Stéphane Ducasse Serge Demeyer and Oscar Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.
URL http://www.iam.unibe.ch/~scg/OORP

[Ser08] Alexander Serebrenik, Tom Schrijvers, and Bart Demoen. Improving prolog programs: Refactoring
for prolog. TPLP, 8(2):201–215, 2008. doi:http://dx.doi.org/10.1017/S1471068407003134.

[Shn93] Ben Shneiderman. Software psychology: Sparks of innovation in human-computer interaction,
1993.

[Sma00] J.-G. Smaus, P. Hill, and A. King. Mode analysis domains for typed logic programs. In A. Bossi
(ed.), LOPSTR. Springer-Verlag, 2000.
URL http://www.cs.kent.ac.uk/pubs/2000/1011

[Sne98] Gregor Snelting. Concept Analysis — A New Framework for Program Understanding. In SIG-

PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE),
pp. 1–10. ACM Press, Montreal, Canada, 1998.

[Sol84] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE Transactions

on Software Engineering, 10(5):595–609, 1984. Special Issue on Software Reusability.
[Som96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an efficient purely

declarative logic programming language. Journal of Logic Programming, 29(1–3), 1996.
[Sto06] Margaret-Anne D. Storey. Theories, tools and research methods in program comprehension: past,

present and future. Software Quality Journal, 14(3):187–208, 2006. doi:http://dx.doi.org/10.1007/
s11219-006-9216-4.

[Van05] W. Vanhoof. Searching semantically equivalent code fragments in logic programs. In S. Etalle and
Springer-Verlag (eds.), Proceedings of LOPSTR 2004, LLNCS, vol. 3573. 2005.

[Van08] W. Vanhoof and F. Degrave. An algorithm for sophisticated code matching in logic programs. In
M. Garcia de la Banda, E. Pontelli, and Springer-Verlag (eds.), Proceedings of ICLP 2008, LLNCS,
vol. 5366. 2008.

[Wal07a] Andrew Walenstein, Mohammad El-Ramly, James R. Cordy, William S. Evans, Kiarash Mahdavi,
Markus Pizka, Ganesan Ramalingam, and Jürgen Wolff von Gudenberg. Similarity in programs.
In Rainer Koschke, Ettore Merlo, and Andrew Walenstein (eds.), Duplication, Redundancy, and

Similarity in Software, no. 06301 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
2007.
URL http://drops.dagstuhl.de/opus/volltexte/2007/968

PROGRAM ANALYSIS FOR CODE DUPLICATION IN LOGIC PROGRAMS 247

[Wal07b] Andrew Walenstein and Arun Lakhotia. The software similarity problem in malware analysis.
In Rainer Koschke, Ettore Merlo, and Andrew Walenstein (eds.), Duplication, Redundancy, and

Similarity in Software, no. 06301 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
2007.
URL http://drops.dagstuhl.de/opus/volltexte/2007/964

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 248–254

http://www.floc-conference.org/ICLP-home.html

PROGRAM ANALYSIS TO SUPPORT CONCURRENT

PROGRAMMING IN DECLARATIVE LANGUAGES

ROMAIN DEMEYER

University of Namur - Faculty of Computer Science
Rue Grandgagnage 21, 5000 Namur (Belgium)
E-mail address: rde@info.fundp.ac.be

Abstract. In recent years, manufacturers of processors are focusing on parallel archi-
tectures in order to increase performance. This shift in hardware evolution is provoking
a fundamental turn towards concurrency in software development. Unfortunately, de-
veloping concurrent programs which are correct and efficient is hard, as the underlying
programming model is much more complex than it is for simple sequential programs. The
goal of this research is to study and to develop program analysis to support and improve
concurrent software development in declarative languages. The characteristics of these lan-
guages offer opportunities, as they are good candidates for building concurrent applications
while their simple and uniform data representation, together with a small and formally
defined semantics makes them well-adapted to automatic program analysis techniques. In
our work, we focus primarily on developing static analysis techniques for detecting race
conditions at the application level in Mercury and Prolog programs. A further step is to
derive (semi-) automatically the location and the granularity of the critical sections using
a data-centric approach.

1. Introduction and Problem Description

Since the mid-70s, the power of the microprocessor, which is the basic component
of the computer responsible for instruction execution and data processing, has increased
constantly. For decades, we have witnessed a dramatic and continuous growth of clock
speed, which is one of the main factors determining the performance of processors [Olu05].
Recently, however, this growth appears to have stabilized. Indeed, the manufacturers en-
counter several physical problems, notably the impossibility to dissipate the heat and a
too high power consumption [Sut05]. Instead of driving clock speeds and straight-line in-
struction throughput ever higher, processor manufacturers are, for these reasons, turning
to hyperthreading and multicore architectures, i.e. processors with multiple identical units
of calculation [Her06, Sut05, Lu08].

This hardware revolution is going to change fundamentally the way people write soft-
ware. Indeed, to benefit from the power of the new processors, software must be able to
exploit their innate parallelism, which is not the case for traditional software which is, in

1998 ACM Subject Classification: D.1.3 [Programming Techniques]: Concurrent Programming; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming Languages–Program Analysis; D.1.6
[Programming Techniques]: Logic Programming.

Key words and phrases: Program Analysis – Concurrent Programming – Logic Languages – Abstract
Interpretation .

c© R. Demeyer
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.248

PROGRAM ANALYSIS TO SUPPORT CONCURRENT PROG. IN DECLARATIVE LANGU. 249

most cases, written following the sequential model of programming. In this new context,
software must be designed following the concurrency model [Her06, Her08, Mat04, Mag99,
BA90, Hug08] of programming: the application is made of a set of interacting processes

that are executed, at least conceptually, in parallel and often in a shared memory space
[Don08].

Unfortunately, developing concurrent programs that are correct and efficient is really
hard, as potential bugs related to concurrent execution are difficult to detect and to isolate.
Indeed, the underlying programming model is much more complex than it is for simple
sequential programs [Lu08, BA90, Gro07, AZ08]. What makes concurrent programming
hard in any language is that one has to deal with the interactions between processes and
the nondeterministic interleaving of executions, especially if these processes handle shared
memory. That is how undesirable phenomena, which are called race conditions, occur: two
or more threads attempt to change a shared piece of data at (almost) the same time and
the final value of the data depends simply in what order threads access it [Hug08]. These
race conditions occur because of a bad synchronization between threads [Lu08, BA90].

To avoid errors, so-called critical sections have to be identified in the source code
and mutual exclusion between execution of these sections must be guaranteed, using for
example locks [BA90] or software transactional memories (STM) [Sha97, Lar06, Jon07,
Har05, Har03, Mul06, Mik07, Kel05]. Whatever the way in which this mutual exclusion is
ensured, a crucial point is to determine the location and the size of the critical sections. On
the one hand, if they are too small or badly located, it can introduce race conditions at the
application level. One the other hand, it is essential to keep the critical section as small as
possible in order not to loose more performance than necessary and to avoid inter-blocking
[Gro07]. Moreover, ensuring mutual exclusion is far from trivial. Locks are not composable
[Har05] – i.e. correctly protected pieces of codes can’t be simply reused to form larger
correctly protected operations – and using them can lead to deadlocks, livelocks, priority
inversion [BA90, Ho05, Eng03, Nai07, Bec08] or security breaks [Tip06, Che04, How09].
While STM avoid these issues, their implementation is complex and irreversible operations,
like i/o operations, are traditionnaly prohibited inside the atomic blocks [Gro07, Men08,
Har09, Dal09, Luc08, Boe09].

Obviously, programmers desperately need a higher-level programming model for con-
currency than what languages offer today [Sut05]. Logic programming languages are known
to be particularly well-adapted to parallelism [Tic91] but program analysis is needed as it
can be used to detect race conditions and other bugs related to concurrency. It can also be
used to (help to) determine the appropriate location and granularity of the critical sections.

2. Background and Overview of the Existing Literature

The interest of program analysis to support concurrent programming is increasingly
prevalent with the actual multicore crisis. In the context of explicit parallelism – where the
programmer decides where and how to integrate the parallelism in his program, classical
analysis tools target to detect race conditions [McC06, Pra06]. Some of these tools are on
the base of transformation programs methods, the goal of which is to combine conceptual
advantages of STM with those of locks [McC06, Pra06, Hic06]. But these tools are only
able to detect low-level race conditions – i.e. simple reading and writing of a memory space.
These tools are not able to detect the errors that occur at the level of the logic of the

250 R. DEMEYER

application. For example, bad utilisation of critical sections can lead to violate an invariant
related to a data structure of the application.

Recently, the problem has caught the attention in the context of declarative languages
and very recent works are targeting race conditions detection in these languages [Chr10,
Cla09]. In the context of object-oriented languages, [Bec08] proposes to use typestate
specifications [Del04] and linear logic [Gir87] to express invariant related to an object and the
input and output conditions of its methods. The goal is to statically detect race conditions
involving these objects at the application level on the basis of the specified behaviour. A
related work [Har06] presents a dynamic analysis for STM in Haskell which ensures that an
invariant will not be violated during an execution.

A still more ambitious but complex objective is to (semi-)automatically determine the
location and the size of the critical sections. Recent work [Vaz06, McC06] has proposed a
data-centric approach to synchronize threads which consists of a two-step procedure: first,
the programmer associates synchronization constraints to the data structures that must
be accessed atomically; second, these information are used to complete, through program
transformation, the source code with the adequate locking mechanism where the synchro-
nisation is necessary. One main advantage of this approach is the control of the granularity
of the concurrent system.

Despite numerous works about concurrency, we are far from being able to detect all
kind of errors related to concurrent programming [Vaz06, Lu08]. In most cases, analysis is
able to detect synchronization mistakes related to only one variable. Moreover, it generally
does not deliver pertinent informations about the way one can correct it [Lu08]. Test case

generation to expose concurrency errors must also be considered, but has to cope with
a high complexity issue: the number of possible interleaving to consider is exponential
[Tay92, Yan97]. This imposes to explore subtle methods to produce pertinent tests in
practice [Lu08, Qad04].

Although the primary goal of these program analysis is to assist the programmer in
writing concurrent programs, they can also be useful to guide so-called implicit parallelism

transformation that aim at the automatic parallelisation of programs [Cos08]. This field is
particularly active in the context of logic languages [Bon08, Gup01, Cha08, Mou08, Cas08,
Cas07]. In this kind of code analysis, the detection and the exploitation of the parallelism
is made completely automatically, often at compilation time, without clear contribution of
the programmer.

3. Goal of the Research

The goal of this research is to study and to develop program analysis to support and
improve concurrent software development in declarative languages. In contrast with more
classic imperative ones, declarative languages allow to describe the logic behind a solution
instead of having to describe the step-by-step process of how this solution must be computed
by the computer. Declarative languages are mostly pure – i.e. they do not allow programs to
provoke side-effects [Hen96] – which is known to increase the productivity of the developers
and the reliability of the programs, and makes these languages good candidates to use for
building concurrent applications. Moreover, their simple and uniform data representation,
together with a small and formally defined semantics, makes these languages well-adapted
to automatic program analysis techniques. In our work, we focus primarily on Mercury.

PROGRAM ANALYSIS TO SUPPORT CONCURRENT PROG. IN DECLARATIVE LANGU. 251

Mercury [Som96] is a modern logic programming language, which is designed to develop
modular and reliable large-size software applications.

4. Current Status of the Research

This research is still in its beginning. For the moment, we focus on the dissection of
the state of the art and we familiarize with the very large field of concurrency by reading
papers, books and by trying to make constructive contacts with other researcher working
on related projects. We are trying to figure out in what directions it is the most valuable
to guide the research. Since the latter is highly related to logic programming, the ICLP
Doctoral Consortium would be an excellent opportunity, not only to acquire a profound
complement to the state of the art, but also to get in touch with both experts and other
PhD students working on related topics and to exchange point of views and opinions about
my future work. It goes without doubt that the consortium would be a valuable experience
from which we will be able to take full advantage in pursuing our project.

5. Open Issues and Expected Achievements

We plan to develop static analysis techniques for detecting race conditions at the ap-
plication level in Mercury in first phase, Prolog in a following phase, languages that are
particularly well-suited for concurrency [Bon08, Tan07, Wan08]. Such an analysis can be
done based on the location of the critical sections and a abstract specification of the be-
haviour of the shared data. We study how a very expressive formalism, such as linear
temporal logic [Pnu77], can be used for this behavioural specification.

Also in the context of declarative languages, a further step is to derive (semi-) auto-
matically the location and the granularity of the critical section, possibly by extending a
data-centric approach as suggested by recent work [Vaz06, McC06]. The particular type
representation in declarative languages, like Mercury, is expected to fit well with such an
analysis and to open new perspectives compared to traditional imperative languages.

Further elements of interest are the automatic generation of test cases targeted to
detecting concurrency bugs and how our techniques can be used to advance research on
implicit parallelism [Cos08] in declarative languages.

Acknowledgements

This PhD research is under the supervision of Professor Wim Vanhoof.

References

[AZ08] Abdallah Deeb I. Al Zain, Kevin Hammond, Jost Berthold, Phil Trinder, Greg Michaelson, and
Mustafa Aswad. Low-pain, high-gain multicore programming in Haskell: coordinating irregular
symbolic computations on multicore architectures. In DAMP ’09: Proceedings of the 4th workshop

on Declarative aspects of multicore programming, pp. 25–36. ACM, New York, NY, USA, 2008.
doi:http://doi.acm.org/10.1145/1481839.1481843.

[BA90] M. Ben-Ari. Principles of concurrent and distributed programming. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1990.

252 R. DEMEYER

[Bec08] Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic blocks
and typestate. In Gail E. Harris (ed.), OOPSLA, pp. 227–244. ACM, 2008.
URL http://doi.acm.org/10.1145/1449764.1449783

[Boe09] Hans-J. Boehm. Transactional memory should be an implementation technique, not a program-
ming interface. Tech. Rep. HPL-2009-45, Hewlett Packard Laboratories, 2009.
URL http://www.hpl.hp.com/techreports/2009/HPL-2009-45.html;http://www.hpl.hp.com/

techreports/2009/HPL-2009-45.pdf

[Bon08] Paul Bone. Calculating likely parallelism within dependant conjunctions for logic programs. Octo-
ber, 2008.

[Cas07] Amadeo Casas, Manuel Carro, and Manuel V. Hermenegildo. Annotation algorithms for unre-
stricted independent and-parallelism in logic programs. In Andy King (ed.), LOPSTR, Lecture

Notes in Computer Science, vol. 4915, pp. 138–153. Springer, 2007.
URL http://dx.doi.org/10.1007/978-3-540-78769-3_10

[Cas08] Amadeo Casas, Manuel Carro, and Manuel V. Hermenegildo. A high-level implementation of non-
deterministic, unrestricted, independent and-parallelism. In Maria Garcia de la Banda and Enrico
Pontelli (eds.), ICLP, Lecture Notes in Computer Science, vol. 5366, pp. 651–666. Springer, 2008.
URL http://dx.doi.org/10.1007/978-3-540-89982-2

[Cha08] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and Gabriele Keller. Partial
vectorisation of Haskell programs. In M. Hermenegildo (ed.), Workshop on Declarative Aspects of

Multicore Programming. 2008.
[Che04] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security & Privacy, 2(6):76–79,

2004.
URL http://doi.ieeecomputersociety.org/10.1109/MSP.2004.111

[Chr10] Maria Christakis and Konstantinos Sagonas. Static detection of race conditions in erlang. In Practi-

cal Aspects of Declarative Languages : PADL 2010, no. 5937 in Lecture Notes in Computer Science,
pp. 119–133. Springer-Verlag, 2010.

[Cla09] Koen Claessen, Micha l Pa lka, Nicholas Smallbone, John Hughes, Hans Svensson, Thomas Arts, and
Ulf Wiger. Finding race conditions in erlang with quickcheck and pulse. In ICFP ’09: Proceedings

of the 14th ACM SIGPLAN international conference on Functional programming. ACM, New York,
NY, USA, 2009.

[Cos08] Vitor Santos Costa. On supporting parallelism in a logic programming system. In Manuel
Hermenegildo (ed.), Workshop on Declarative Aspects of Multicore Programming. 2008.

[Dal09] Luke Dalessandro and Mickael L. Scott. Strong isolation is a weak idea. 2009. doi:http://transact09.
cs.washington.edu/33 paper.pdf.

[Del04] Robert Deline and Manuel Fahndrich. Typestates for objects. In In Proc. 18th ECOOP, pp. 465–
490. Springer, 2004.

[Don08] M. R. C. Van Dongen. Thread programming, 2008.
[Eng03] Dawson Engler and Ken Ashcraft. Racerx: Effective, static detection of race conditions and dead-

locks, 2003.
[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gro07] Dan Grossman. The transactional memory / garbage collection analogy. ACM SIGPLAN Notices,

42, 2007.
[Gup01] Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and Manuel V. Hermenegildo.

Parallel execution of prolog programs: a survey. ACM Transactions on Programming Languages

and Systems, 23(4):472–602, 2001.
[Har03] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Proceedings of the

18th annual ACM SIGPLAN conference on Object-oriented programing, systems, languages, and

applications, pp. 388 – 402. 2003.
[Har05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory

transactions. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on Princi-

ples and practice of parallel programming, pp. 48–60. ACM, New York, NY, USA, 2005. doi:
http://doi.acm.org/10.1145/1065944.1065952.

[Har06] Tim Harris and Simon Peyton-Jones. Transactional memory with data variants. In First ACM SIG-

PLAN Workshop on Languages, Compilers, and Hardware Support for Transactional Computing

(TRANSACT’06). Ottawa, 2006.

PROGRAM ANALYSIS TO SUPPORT CONCURRENT PROG. IN DECLARATIVE LANGU. 253

[Har09] Tim Harris. Language constructs for transactional memory. SIGPLAN Notices, 44(1):1–1, 2009.
doi:http://doi.acm.org/10.1145/1594834.1480883.

[Hen96] Fergus Henderson, Thomas Conway, Zoltan Somogyi, David Jeffery, Peter Schachte, Simon Taylor,
and Chris Speirs. The Mercury language reference manual. Tech. rep., 1996.

[Her06] Maurice Herlihy. The art of multiprocessor programming. In PODC ’06: Proceedings of the twenty-

fifth annual ACM symposium on Principles of distributed computing, pp. 1–2. ACM, New York,
NY, USA, 2006. doi:http://doi.acm.org/10.1145/1146381.1146382.

[Her08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.
URL http://www.worldcat.org/isbn/0123705916

[Hic06] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock inference for atomic sections.
In Proceedings of the First ACM SIGPLAN Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing. 2006.
[Ho05] Alex Ho, Steven Smith, and Steven Hand. On deadlock, livelock, and forward progress. Tech. Rep.

UCAM-CL-TR-633, University of Cambridge Computing Laboratory, 2005.
[How09] Michael Howard. Basic training: Improving software security by eliminating the CWE top 25

vulnerabilities. IEEE Security & Privacy, 7(3):68–71, 2009. doi:http://dx.doi.org/10.1109/MSP.
2009.69.

[Hug08] Cameron Hughes and Tracey Hughes. Professional Multicore Programming: Design and Implemen-

tation for C++ Developers. Wrox Press Ltd., Birmingham, UK, UK, 2008.
[Jon07] Simon Peyton Jones. Beautiful concurrency. In Andy Oram and Greg Wilson (eds.), Beautiful Code,

pp. 385–406. O’Reilly & Associates, Inc., Sebastopol, CA 95472, 2007. Ch. 24.
[Kel05] Richard Kelsey, Jonathan Rees, and Mike Sperber. The incomplete scheme 48 reference manuel

release 1.3, April 2005.
[Lar06] James Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool, 2006.
[Lu08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics. In Susan J. Eggers and James R. Larus (eds.),
ASPLOS, pp. 329–339. ACM, 2008.
URL http://doi.acm.org/10.1145/1346281.1346323

[Luc08] Victor Luchangco. Against lock-based semantics for transactional memory. In Friedhelm Meyer
auf der Heide and Nir Shavit (eds.), SPAA, pp. 98–100. ACM, 2008.
URL http://dblp.uni-trier.de/db/conf/spaa/spaa2008.html#Luchangco08

[Mag99] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs. John Wiley & Sons,
Inc., New York, NY, USA, 1999.

[Mat04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel programming.
Addison-Wesley Professional, 2004.

[McC06] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchronization inference
for atomic sections. ACM SIGPLAN Notices, 41(1):346–358, 2006.

[Men08] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Richard L. Hudson,
Bratin Saha, and Adam Welc. Single global lock semantics in a weakly atomic stm. SIGPLAN

Notices, 43(5):15–26, 2008. doi:http://doi.acm.org/10.1145/1402227.1402235.
[Mik07] Leon Mika. Software transactional memory in Mercury, October 2007.
[Mou08] Paulo Moura, Ricardo Rocha, and Sara C. Madeira. Thread-based competitive or-parallelism. In

Maria Garcia de la Banda and Enrico Pontelli (eds.), ICLP, Lecture Notes in Computer Science,
vol. 5366, pp. 713–717. Springer, 2008.
URL http://dx.doi.org/10.1007/978-3-540-89982-2

[Mul06] Ulrich Muller. Introducing the atomic keyword into c/c++ using assembler code instrumentation
and software transactional memory, 2006.

[Nai07] Lee Naish. Resource-oriented deadlock analysis. In Verónica Dahl and Ilkka Niemelä (eds.), ICLP,
Lecture Notes in Computer Science, vol. 4670, pp. 302–316. Springer, 2007.
URL http://dx.doi.org/10.1007/978-3-540-74610-2_21

[Olu05] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue, 3(7):26–29, 2005.
doi:http://doi.acm.org/10.1145/1095408.1095418.

[Pnu77] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer

Science. IEEE, 1977.

254 R. DEMEYER

[Pra06] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. LOCKSMITH: context-sensitive correla-
tion analysis for race detection. ACM SIGPLAN Notices, 41(6):320–331, 2006.

[Qad04] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. ACM SIGPLAN Notices,
39(6):14–24, 2004.

[Sha97] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing, 10(2):99–116,
1997.

[Som96] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mercury, an
efficient purely declarative logic programming language, 1996.

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr.

Dobb’s Journal, 30(3), 2005.
[Tan07] Jrme Tannier. Parallel Mercury. Tech. rep., Facults Universitaires Notre-Dame de la Paix, 2007.

Mmoire fin d’tudes.
[Tay92] R. N. Taylor, D. L. Levine, and C. D. Kelly. Structural testing of concurrent programs. IEEE

Trans. on Softw. Eng., 18(3):206, 1992.
[Tic91] Evan Tick. Parallel logic programming. MIT Press, Cambridge, MA, USA, 1991.
[Tip06] Harold F. Tipton and Micki Krause (eds.). Information security management handbook. Auerbach

Publications, Boca Raton, FL, USA, 5th edn., 2006.
URL http://www.loc.gov/catdir/enhancements/fy0659/2003061151-d.html

[Vaz06] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints with data
in an object-oriented language. ACM SIGPLAN Notices, 41(1):334–345, 2006.

[Wan08] Peter Wang. Parallel Mercury. October, 2008.
[Yan97] Cheer-Sun Yang and Lori L. Pollock. The challenges in automated testing of multithreaded pro-

grams. In In Proceedings of the 14th International Conference on Testing Computer Software, pp.
157–166. 1997.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 255–264

http://www.floc-conference.org/ICLP-home.html

CONSTRAINT ANSWER SET PROGRAMMING SYSTEMS

CHRISTIAN DRESCHER 1

1 Institute of Information Systems,
Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vienna, Austria
E-mail address: christian.drescher@student.tuwien.ac.at

Abstract. We present an integration of answer set programming and constraint process-
ing as an interesting approach to constraint logic programming. Although our research
is in a very early stage, we motivate constraint answer set programming and report on
related work, our research objectives, preliminary results we achieved, and future work.

1. Introduction

Constraint satisfaction problems (CSP) are combinatorial problems defined as a set
of variables whose value must satisfy a number of limitations, and are subject to intense
research. Problems that has been successfully modelled as a CSP stem from a variety
of areas, for example, artificial intelligence, operations research, electrical engineering and
telecommunications.

There are several approaches to representing and solving constraint satisfaction prob-
lems: constraint programming (CP; [Ros06]), answer set programming (ASP; [Bar03]),
propositional satisfiability checking (SAT; [Bie09]), its extension to satisfiability modulo
theories (SMT; [Nie06]), and many more. Each has its particular strengths: for example,
CP systems support global constraints, ASP systems permit recursive definitions and offer
default negation, whilst SAT solvers often exploit very efficient implementations. In many
applications it would often be helpful to exploit the strengths of multiple approaches. Con-
sider the problem of timetabling at an university (cf. [Jär09]). To model the problem, we
need to express the mutual exclusion of events (for instance, we cannot place two events in
the same room at the same time). A straightforward representation of such constraint with
clauses and rules uses quadratic space. In contrast, global constraints such as all-different
typically supported by CP systems can give a much more concise encoding. On the other
hand, there are features which are hard to describe in traditional constraint programming,
like the temporary unavailability of a particular room. However, this is easy to represent
with non-monotonic rules such as those used in ASP. Such rules also provide a flexible
mechanism for defining new relations on the basis of existing ones. This makes answer
set programming an attractive approach to declarative problem solving. Indeed, ASP has
been shown as the computational embodiment of non-monotonic reasoning (NMR; [Rei87]),
adequate for common-sense reasoning and modelling of dynamic and incomplete knowledge.

As a primary candidate for an effective tool for knowledge representation and reasoning,
ASP combines an expressive language with high-performance solving capacities. Largely

Key words and phrases: answer set programming, constraint logic programming, constraint processing.

c© C. Drescher
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.255

256 C. DRESCHER

based on SAT technology, modern ASP solvers offer an efficiency and scalability which in
practice remain largely unmatched to date [Geb07a], able to encode all search problems
within the first three levels of the polynomial hierarchy [Dre08]. Particularly of relevance
here is the fact that clause learning is known to be more general and potentially more power-
ful than traditional learning in constraint solvers [Kat05]. Unlike SAT, however, ASP offers
a uniform modelling language admitting variables. In fact, grounding non-propositional
specifications is addressed in SAT anew for each application while ASP centralized this
task in its grounders [Syr, Geb07c]. Answer set programming has been shown to be useful
in numerous application scenarios, like bioinformatics [Bar04], crypto analysis [Aie01], con-
figuration [Soi99], database integration [Leo05], diagnosis [Eit99], hardware design [Erd],
model checking [Hel03], planing [Lif02], preference reasoning [Bre96], semantic web [Eit08],
and – as a highlight among these applications – the high-level control of the space shut-
tle [Nog01].

However, as some CSP are more naturally modelled by using non-propositional con-
structs, like resources or functions over finite domains, in particular global constraints, the
need to handle constraints beyond pure ASP is increasing. This naturally leads to the
combination of ASP with constraint processing [Dec03] techniques, and is target of our
research activity. A key contribution of our work is a novel approach to constraint logic
programming (CLP; [Jaf94]) centred around ASP as both a declarative specification lan-
guage and an efficient reasoning engine, enhanced with specialised propagators sufficient to
solve interesting constraint satisfaction problems.

This research summary is organized as follows. We start by giving the necessary back-
ground and an overview of the existing literature. In turn, we formulate our objectives in
Section 3. Section 4 gives a brief overview of the current status of our research and Sec-
tion 5 presents some preliminary results. The last part summarises open questions which
are target to our future work.

2. Background

2.1. Answer Set Programming

A (normal) logic program Π over a set of primitive propositions A is a finite set of rules
of the form

a0 ← a1, . . . , am, not am+1, . . . , not an (2.1)

where 0 ≤ m ≤ n and ai ∈ A is an atoms for 0 ≤ i ≤ n. A literal â is an atom a

or its default negation not a. For a rule r, let head(r) = a0 be the head of r and
body(r) = {a1, . . . , am, not am+1, . . . , not an} the body of r. Furthermore, define body(r)+ =
{a1, . . . , am} and body(r)− = {am+1, . . . , an}. The set of atoms occurring in a logic pro-
gram Π is denoted by atom(Π), and the set of bodies in Π is body(Π) = {body(r) | r ∈
Π}. For regrouping bodies sharing the same head a, define body(a) = {body(r) | r ∈
Π, head(r) = a}.

The semantics of a program is given by its answer sets. A set X ⊆ A is an answer set
of a logic program Π over A, if X is the ⊆-minimal model of the reduct [Gel88]

ΠX = {head(r)← body(r)+ | r ∈ Π, body(r)− ∩X = ∅}.

CONSTRAINT ANSWER SET PROGRAMMING SYSTEMS 257

A rule r of the form (2.1) can be seen as a constraint on the answer sets of a program,
stating that if a1, . . . , am are in the answer set and none of am+1, . . . , an are included, then
a0 must be in the set. The answer sets are the key objects of interest in this paradigm and,
hence, the task of ASP systems is to compute answer sets for programs. Such a system
differs substantially from traditional logic programming systems, such as Prolog, which are
goal-directed backward chaining query evaluation systems.

The semantics of important extensions to normal logic programs, such as choice rules,
integrity and cardinality constraints, is given through program transformations that intro-
duce additional propositions (cf. [Sim02]). A choice rule allows for the non-deterministic
choice over atoms in {h1, . . . , hk} and has the following form:

{h1, . . . , hk} ← a1, . . . , am, not am+1, . . . , not an (2.2)

An integrity constraint

← a1, . . . , am, not am+1, . . . , not an (2.3)

is a short hand for a rule with an unsatisfiable head, and thus forbids its body to be satisfied
in any answer set. A cardinality constraint

← k{a1, . . . , am, not am+1, . . . , not an} (2.4)

is interpreted as no k literals of the set {a1, . . . , am, not am+1, . . . , not an} are included in an
answer set. [Sim02] provides a transformation that needs just O(nk) rules. Alternatively,
modern ASP solvers also incorporate specialised propagators for cardinality constraints that
run in O(n).

Although the answer set semantics are propositional, atoms inA and can be constructed
from a first-order signature ΣA = (FA,VA,PA), where FA is a set of function symbols
(including constant symbols), VA is a denumerable collection of (first-order) variables, and
PA is a set of predicate symbols. The logic program over A is then obtained by a grounding
process, systematically substituting all occurrences of variables VA by terms in T (FA),
where T (FA) denotes the set of all ground terms over FA. Atoms in A are formed from
predicate symbols PA and terms in T (FA).

ASP systems usually use a generate-and-test [Bar03] technique to model a problem, by
producing the space of solution candidates in the generate component and defining rules
that filter invalid solutions in the test component. Typically, solutions are computed by
applying conflict-driven nogood learning (CDNL; [Geb07b]). This combines search and
propagation by recursively assigning the value of a proposition and using unit-propagation
to determine logical consequences [Mit05].

2.2. Constraint Satisfaction Problem

The classic definition of a constraint satisfaction problem is as follows (cf. [Ros06]).
A CSP is a triple (V, D, C) where V is set variables V = {v1, . . . , vn}, D is an set of
(finite) domains D = {D1, . . . , Dn} such that each variable vi has an associated domain
dom(vi) = Di, and C is a set of constraints. A constraint c is a pair (RS , S) where RS is
a k-ary relation on the variables in S ⊆ V k, called the scope of c. In other words, RS is a
subset of the Cartesian product of the domains of the variables in S. To access the relation
and the scope of c define range(c) = RS and scope(c) = S. For a (constraint variable)
assignment A : V →

⋃
v∈V dom(v) and a constraint c = (RS , S) with S = (v1, . . . , vk),

258 C. DRESCHER

define A(S) = (A(v1), . . . , A(vk)), and call c satisfied if A(S) ∈ range(c). Given this, define
the set of constraints satisfied by A as satC(A) = {c | A(scope(c)) ∈ range(c), c ∈ C}.

A binary constraint c has |scope(c)| = 2. For example, v1 6= v2 ensures that v1 and
v2 take different values. A global (or n-ary) constraint c has parametrized scope. For
example, the all-different constraint ensures that a set of variables, {v1, . . . , vn} take all
different values. This can be decomposed into O(n2) binary constraints, vi 6= vj for i < j.
However, such decomposition can hinder inference [Wal00]. An assignment A is a solution
for a CSP iff it satisfies all constraints in C.

2.3. Constraint Programming

Constraint programming is a natural paradigm for solving constraint satisfaction prob-
lems. CP systems usually use a constrain-and-generate technique in which an initial deter-
ministic phase assigns a domain to each of the constraint variables and imposes a number of
constraints, then a non-deterministic phase generates and explores the solution space. Var-
ious heuristics affecting, for instance, the variable selection criteria and the ordering of the
attempted values, can be used to guide the search. Each time a variable is assigned a value,
a deterministic propagation stage is executed, pruning the set of values to be attempted for
the other variables, i.e., enforcing a certain type of local consistency.

A binary constraint c is called arc consistent iff when a variable v1 ∈ scope(c) is
assigned any value d1 ∈ dom(v1), there exists a consistent value d2 ∈ dom(v2) for the
other variable v2. An n-ary constraint c is hyper-arc consistent or domain consistent iff
when a variable vi ∈ scope(c) is assigned any value di ∈ dom(vi), there exist compatible
values in the domains of all the other variables dj ∈ dom(vj) for all 1 ≤ j ≤ n, j 6= i such
that (d1, . . . , dn) ∈ range(c).

The concepts of bound and range consistency are defined for constraints on ordered
intervals. Let min(Di) and max(Di) be the minimum value and maximum value of the
domain Di. A constraint c is bound consistent iff when a variable vi is assigned di ∈
{min(dom(vi)), max(dom(vi))} (i.e. the minimum or maximum value in its domain), there
exist compatible values between the minimum and maximum domain value for all the other
variables in the scope of the constraint. Such an assignment is called a bound support. A
constraint is range consistent iff when a variable is assigned any value in its domain, there
exists a bound support. Notice that range consistency is in between domain and bound
consistency.

2.4. Constraint Logic Programming

Constraint logic programming is a programming paradigm that naturally merges tradi-
tional constraint programming and logic programming. The goal is to bring advantages of
logic programming based knowledge representation techniques to constraint programming.

Formally, a constraint logic program Π is defined as logic programs over an extended
alphabet distinguishing regular and constraint atoms, denoted by A and C, respectively,
such that head(r) ∈ A for each r ∈ Π. Observe that a constraint logic program without
constraints is in fact a (normal) logic program. Constraint atoms are identified with con-
straints via a function γ : C → C. For sets of constraints, define γ(C ′) = {γ(c) | c ∈ C ′} for
C ′ ⊆ C. Similar to (normal) logic programs, the atoms in A and C can be constructed from
a multi-sorted, first-order signature Σ = (FA ∪ FC ,VA ∪ VC ,PA ∪ PC), where FA ∪ FC is a

CONSTRAINT ANSWER SET PROGRAMMING SYSTEMS 259

finite set of function symbols (including constant symbols), VA is a denumerable collection
of regular variable symbols, VC ⊆ T (FA) is a set of constraint variable symbols, and PA∪PC
is a finite set of predicate symbols, where PA and PC are disjoint. While the atoms in A are
formed as discussed before, the ones in C are constructed from predicate symbols PC and
(FC ,VC)-terms. This definition follows Gebser et. al. [Geb09c] and tolerates occurrences of
similar ground terms in atoms of both A and C.

An integration of constraint and logic programming has been studied mainly from the
point of view of extending Prolog implementations by allowing, e.g., constraints on finite
domains in the rules and by integrating the necessary constraint solvers into the logic
programming system. Although a Prolog-based CLP approach follows the constrain-and-
generate technique from constraint programming systems, it has many advantages, including
recursive definitions.

However, this significantly differs from our approach where the rules have a declarative
semantics and can be understood themselves as constraints on solutions for the program.

2.5. Constraint Answer Set Programming

We extend the answer set semantics to constraint logic programs and define the con-
straint reduct as

ΠA = {head(r)← body(r)|A | r ∈ Π,

γ(body(r)+|C) ⊆ satC(A), γ(body(r)−|C) ∩ satC(A) = ∅}.

Then, a set X ⊆ A is a constraint answer set of Π with respect to A, if X is an answer
set of ΠA. An open question which is target to intensive research is how to efficiently
incorporate answer set programming engines and constraint processing, i.e., how to generate
assignments and enforce satisfaction (or violation, respectively) of constraints in γ(C). We
identified three different approaches: (1) translation-based techniques, (2) integration of
constraint solvers, and (3) usage of additional propagators, such as aggregates.

Translation-based Techniques. Generally, in a translation-based approach all parts of the
model are mapped into a single constraint language for which highly efficient off-the-shelf
solvers are available. Previous work has mostly focussed on the translation of specific types
of constraints to SAT. For example, pseudo-Boolean constraints (linear constraints over
Boolean variables), including the special case of Boolean cardinality constraints, have been
Booleanised such that a SAT solver can compete with the best existing native pseudo-
Boolean solvers [Eén06, Sin05, Bai03, Bai06, Bai09]. Integer linear constraints have also
been translated to SAT by transforming all constraints into primitive comparisons, of the
form v ≤ c, and encoding each of these by a different Boolean variable for each integer
variable v and integer value c [Tam06].

Although efficient, these results have a number of limitations. First, the types of con-
straints dealt with are limited. Second, the techniques proposed are not necessarily com-
patible, thus making the translation of a heterogeneous constraint model difficult in both
practice and theory. The latter is faced in [Hua08] presenting translation techniques to
SAT at language level by systematically Booleanising a general constraint language, rather
than specialised constraint types. However, this comes with the price of weaker encodings
in terms of propagation power and loss of explicit domain knowledge and structure. It re-
mains a difficult task to define universal SAT encodings that are both compact and enforce
a strong type of consistency on the original model.

260 C. DRESCHER

ASP is put forward as a constraint programming paradigm in [Nie99a], also showing
that answer set programming embeds SAT but provides a more expressive framework from
a knowledge representation point of view. An empirical comparison of the performance of
ASP and CLP systems on solving combinatorial problems in [Dov09] proves ASP encodings
to be more compact, more declarative, and highly competitive. However, techniques for
translating constraint variables and constraint propagation algorithms to ASP received few
attention in our context. A first study on introducing high-level statements for multi-
valued propositions into the language of ASP was conducted in [Geb09a]. As we shall see,
a translational approach to constraint answer set solving [Dre10b] offers an efficient way to
seamlessly combine the propagators of all constraints, through the unit-propagation of an
ASP solver. In particular, queueing of propagators becomes irrelevant as all constraints are
always propagated at once. Another major strength is that the unified conflict resolution
framework can exploit constraint interdependencies, which may lead to faster propagation
between constraints.

Hybrid Approach. In a hybrid system, theory-specific solvers interact in order to compute
solutions to the whole constraint model, similar to satisfiability modulo theories. Hence, the
key idea of an integrative approach is to incorporate constraint predicates into propositional
formulas, and extending an ASP solver’s decision engine for a more high-level proof proce-
dure. This becomes increasingly attractive in constraint answer set programming when the
variables in a constraint model have significantly large domains, and therefore, computing
the ground instantiation has huge memory requirements [Pal09]. Related work was con-
ducted in [Geb09c, Bas, Mel08b, Mel08a]. While Gelfond et. al. [Bas, Mel08b, Mel08a] view
ASP and CP solvers as blackboxes, Gebser et. al. [Geb09c] embed a CP solver into an ASP
solver adding support for advanced backjumping and conflict-driven learning techniques.
However, the computational impact compared to traditional CP is limited, first, because
their methods lack support for global constraints, and second, the communication between
the ASP and CP solvers with respect to learning constraint interdependencies is restricted.
Balduccini [Bal09] added support for global constraints but sees constraint answer set pro-
gramming largely as a CSP specification language. In particular, his approach does not
allow constraint literals in the body of a rule, which does not coincide with our general
notion of constraint logic programming.

Formulation of Additional Propagators. Little attention is paid to constraint answer set
programming through decomposition to ASP with usage of additional propagators, such
as aggregates. Aggregations and other forms of set constructions have been shown to be
useful extensions to ASP [Del]. In fact, a lack of aggregation capabilities may lead to an
exponential growth in the number of rules required to model a CSP [Bar03]. Therefore, it is
common to most ASP solvers to incorporate specialised algorithms, for instance, the treat-
ment of cardinality constraints (2.4), and their generalisation to weight constraints [Nie99b].
Work on a generic framework which provides an elegant treatment of such extensions was
conducted in [Elk] where external constraint propagators are employed for their handling.
However, it does not carry over to modern ASP solving technology based on conflict-driven
learning. A first comprehensive approach to integrating specialised algorithms for weight
constraint rules into CDNL is presented in [Geb09b].

CONSTRAINT ANSWER SET PROGRAMMING SYSTEMS 261

3. Research Objective

We want to put forward constraint answer set programming as a novel approach to
constraint (logic) programming. Therefore, we (1) investigate efficient encodings of propa-
gation algorithms in answer set programming, (2) study the integration of techniques from
constraint processing into answer set programming engines, and (3) define a modelling lan-
guage for constraint logic programming under answer set semantics, that can be accepted by
the community. Furthermore, we (4) want to implement our techniques in state-of-the-art
systems.

4. State of the Research

Our research is in a very early stage. In a Master’s project we introduced a novel,
translation-based approach to constraint answer set solving [Dre10b] that allows for learning
constraint interdependencies to improve propagation between constraints. As part of a
Master’s thesis we also started an investigation of symmetry-breaking in the context of
answer set programming to eliminate symmetric parts of the search space and, thereby,
simplify the solution process [Dre10a].

5. Preliminary Results

In our translational approach to constraint answer set solving, a constraint logic pro-
gram is compiled into a logic program by adding an ASP decomposition of all constraints
comprised in the constraint logic program. The constraint answer sets can then be ob-
tained by applying the same algorithms as for calculating answer sets, e.g. CDNL. Since
all variables will be shared between constraints, nogood learning techniques as in CDNL
exploit constraint interdependencies. This can improve propagation between constraints.
We identify a number of choices of how to decompose constraints on multi-valued proposi-
tions, e.g. constraint variables, in answer set programming. Namely, we propose a direct,
support, range, and bound representation of constraints [Dre10b] each generically encoding a
propagation algorithm in ASP (using rule types 2.1–2.4) that achieves, e.g., arc, range and
bound consistency on the original constraint (or its binary decomposition, respectively),
using unit-propagation. In particular, we present the following results:

Theorem 5.1. Enforcing arc consistency on the binary decomposition of the original con-
straint prunes more values from the variables domain than unit-propagation on its direct
encoding.

Theorem 5.2. Unit-propagation on the support encoding enforces arc consistency on the
binary decomposition of the original constraint.

Theorem 5.3. Unit-propagation on the range encoding enforces range consistency on the
original constraint.

Theorem 5.4. Unit-propagation on the bound encoding enforces bound consistency on the
original constraint.

We illustrate our approach on an encoding of the global all-different constraint en-
forcing, e.g., bound consistency by pruning Hall intervals [Lec96]. Surprisingly, a very
simple decomposition into ASP can simulate a complex propagation algorithm like from

262 C. DRESCHER

Leconte’s [Lec96] with a similar overall complexity of reasoning. Our techniques were for-
mulated as preprocessing and can be applied to any ASP system without changing its
source code, which allows for programmers to select the solvers that best fit their needs.
We have empirically evaluated their performance on benchmarks from CSP and found them
outperforming integrated constraint answer set programming systems as well as pure CP
solvers.

However, many CSP exhibit symmetries which can frustrate a search algorithm to fruit-
lessly explore independent symmetric subspaces. We have investigated symmetry-breaking
in the context of answer set programming [Dre10a]. In particular, we propose a reduc-
tion from symmetry detection of disjunctive logic programs to the automorphisms of a
coloured digraph. Our techniques are formulated as a completely automated flow that (1)
starts with a logic program, (2) detects all of its permutational symmetries, (3) represents
all symmetries implicitly and always with exponential compression, (4) adds symmetry-
breaking constraints that do not affect the existence of answer sets. We have empirically
evaluated symmetry-breaking on difficult CSP and got promising results. In many cases,
symmetry-breaking lead to significant pruning of the search space and yield solutions to
problems which are otherwise intractable. We also observe a significant compression of the
solution space which makes symmetry-breaking attractive whenever all solutions have to be
post-processed.

6. Future Work

Regarding symmetry-breaking answer set solving, it is often reasonable to assume that
the symmetries for a problem are known. For particular symmetries, there are more efficient
breaking methods, for instance, the global value precedence constraint (cf. [Wal06]).

Therefore, future work concerns, but is not limited to, the integration of further con-
straints useful in constraint answer set programming. In particular, we are interested in
decompositions of constraints using the full range of propagators available in state-of-the-
art ASP systems, and if necessary, extending ASP solving by further useful algorithms that
make constraint answer set programming an efficient approach to constraint logic program-
ming.

Acknowledgements

The author wishes to acknowledge the continuing support of Thomas Eiter, Torsten
Schaub, and Toby Walsh.

References

[Aie01] L. Aiello and F. Massacci. Verifying security protocols as planning in logic programming. ACM
Transactions on Computational Logic, 2(4):542–580, 2001.

[Bai03] O. Bailleux and Y. Boufkhad. Efficient CNF encoding of boolean cardinality constraints. In Pro-
ceedings of CP’03, pp. 108–122. Springer, 2003.

[Bai06] O. Bailleux, Y. Boufkhad, and O. Roussel. A translation of pseudo boolean constraints to SAT.
Journal of Satisfiability, 2(1-4):191–200, 2006.

[Bai09] O. Bailleux, Y. Boufkhad, and O. Roussel. New encodings of pseudo-boolean constraints into CNF.
In Proceedings of SAT’09, pp. 181–194. Springer, 2009.

CONSTRAINT ANSWER SET PROGRAMMING SYSTEMS 263

[Bal09] M. Balduccini. CR-prolog as a specification language for constraint satisfaction problems. In Pro-
ceedings of LPNMR’09, pp. 402–408. Springer, 2009.

[Bar03] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-
versity Press, 2003.

[Bar04] C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and M. Berens. A knowledge based approach
for representing and reasoning about signaling networks. In Proceedings of ISMB/ECCB’04, pp.
15–22. 2004.

[Bas] S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and constraint
solving. In Proceedings of ICLP’05, pp. 52–66. Springer.

[Bie09] A. Biere, M. Heule, H. van Maaren, and T. Walsh (eds.). Handbook of Satisfiability. IOS Press,
2009.

[Bre96] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. In Proceedings of
KR’96, pp. 86–97. Morgan Kaufmann Publishers, 1996.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[Del] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions in disjunctive logic

programming: Semantics, complexity, and implementation in DLV. In Proceedings of IJCAI’93,
pp. 847–852. Morgan Kaufmann Publishers.

[Dov09] A. Dovier, A. Formisano, and E. Pontelli. An empirical study of constraint logic programming
and answer set programming solutions of combinatorial problems. Journal of Experimental and
Theoretical Artificial Intelligence, 21(2):79–121, 2009.

[Dre08] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Ostrowski, and T. Schaub. Conflict-
driven disjunctive answer set solving. In Proceedings of KR’08, pp. 422–432. AAAI Press, 2008.

[Dre10a] C. Drescher, O. Tifrea, and T. Walsh. Symmetry-breaking answer set solving. In Proceedings of
ICLP’10 Workshop ASPOCP. 2010. To appear.

[Dre10b] C. Drescher and T. Walsh. A translational approach to constraint answer set solving. In Proceedings
of ICLP’10. Cambridge University Press, 2010. To appear.

[Eén06] N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on Satisfia-
bility, Boolean Modeling and Computation, 2:1–26, 2006.

[Eit99] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system. AI
Communications, 12(1-2):99–111, 1999.

[Eit08] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set pro-
gramming with description logics for the semantic web. Artificial Intelligence, 172(12-13):1495–
1539, 2008.

[Elk] I. Elkabani, E. Pontelli, and T. Son. Smodels with CLP and its applications: A simple and effective
approach to aggregates in ASP. In Proceedings of ICLP’04, pp. 73–89. Springer.

[Erd] E. Erdem and M. Wong. Rectilinear Steiner tree construction using answer set programming. In
Proceedings of ICLP’04, pp. 386–399. Springer.

[Geb07a] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer set solver.
In Proceedings of LPNMR’07, pp. 260–265. Springer, 2007.

[Geb07b] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving. In
Proceedings of IJCAI’07, pp. 386–392. AAAI Press/The MIT Press, 2007.

[Geb07c] M. Gebser, T. Schaub, and S. Thiele. GrinGo: A new grounder for answer set programming. In
Proceedings of LPNMR’07, pp. 266–271. Springer, 2007.

[Geb09a] M. Gebser, H. Hinrichs, T. Schaub, and S. Thiele. xpanda: A (simple) preprocessor for adding
multi-valued propositions to ASP. In Proceedings of WLP’09. 2009.

[Geb09b] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of weight con-
straint rules in conflict-driven ASP solvers. In Proceedings of ICLP’09, pp. 250–264. Springer,
2009.

[Geb09c] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Proceedings of ICLP’09,
pp. 235–249. Springer, 2009.

[Gel88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings
of ICLP’88, pp. 1070–1080. The MIT Press, 1988.

[Hel03] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models. Theory and Practice
of Logic Programming, 3(4-5):519–550, 2003.

264 C. DRESCHER

[Hua08] J. Huang. Universal booleanization of constraint models. In Proceedings of CP’08, pp. 144–158.
Springer, 2008.

[Jaf94] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Programming,
19-20:503–581, 1994.

[Jär09] M. Järvisalo, E. Oikarinen, T. Janhunen, and I. Niemelä. A module-based framework for multi-
language constraint modeling. In Proceedings of LPNMR’09, pp. 155–169. Springer, 2009.

[Kat05] G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings of AAAI’05, pp.
390–396. AAAI Press, 2005.

[Lec96] M. Leconte. A bounds-based reduction scheme for constraints of difference. In CP’96, Second
International Workshop on Constraint-based Reasoning. 1996.

[Leo05] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter, W. Faber, M. Fink, G. Gottlob,
R. Rosati, D. Lembo, M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki, and W. Staniszkis. The
INFOMIX system for advanced integration of incomplete and inconsistent data. In Proceedings of
SIGMOD’05, pp. 915–917. 2005.

[Lif02] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-2):39–54,
2002.

[Mel08a] V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint solving techniques.
In Proceedings of FLOPS’08, pp. 15–31. Springer, 2008.

[Mel08b] V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287, 2008.

[Mit05] D. Mitchell. A SAT solver primer. Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[Nie99a] I. Niemelä. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[Nie99b] I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight constraint rules. In
Proceedings of NMR’99, pp. 317–333. Springer, 1999.

[Nie06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
53(6):937–977, 2006.

[Nog01] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-prolog decision support
system for the space shuttle. In Proceedings of PADL’01, pp. 169–183. Springer, 2001.

[Pal09] A. D. Palù, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with constraints using
lazy grounding. In Proceedings of ICLP’09, pp. 115–129. Springer, 2009.

[Rei87] R. Reiter. Nonmonotonic reasoning. Annual Review of Computer Science, 2:147–187, 1987.
[Ros06] F. Rossi, P. van Beek, and T. Walsh (eds.). Handbook of Constraint Programming. Elsevier, 2006.
[Sim02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model semantics.

Artificial Intelligence, 138(1-2):181–234, 2002.
[Sin05] C. Sinz. Towards an optimal cnf encoding of boolean cardinality constraints. In Proceedings of

CP’05, pp. 827–831. Springer, 2005.
[Soi99] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in product

configuration. In Proceedings of PADL’99, pp. 305–319. Springer, 1999.
[Syr] T. Syrjänen. Lparse 1.0 user’s manual.
[Tam06] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear csp into sat. In

Proceedings of CP’06, pp. 590–603. Springer, 2006.
[Wal00] T. Walsh. SAT v CSP. In Proceedings of CP’00, pp. 441–456. Springer, 2000.
[Wal06] T. Walsh. Symmetry breaking using value precedence. In Proceedings of ECAI’06, pp. 168–172.

IOS Press, 2006.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 265–269

http://www.floc-conference.org/ICLP-home.html

TOWARDS A GENERAL ARGUMENTATION SYSTEM BASED ON

ANSWER-SET PROGRAMMING

SARAH ALICE GAGGL

Institute of Information Systems 184/2,
Vienna University of Technology,
Favoritenstrasse 9-11,
A-1040 Vienna,
Austria
E-mail address: gaggl@dbai.tuwien.ac.at

URL: http://www.dbai.tuwien.ac.at/staff/gaggl/

Abstract. Within the last years, especially since the work proposed by Dung in 1995,
argumentation has emerged as a central issue in Artificial Intelligence. With the so called
argumentation frameworks (AFs) it is possible to represent statements (arguments) to-
gether with a binary attack relation between them. The conflicts between the statements
are solved on a semantical level by selecting acceptable sets of arguments. An increasing
amount of data requires an automated computation of such solutions. Logic Programming
in particular Answer-Set Programming (ASP) turned out to be adequate to solve problems
associated to such AFs. In this work we use ASP to design a sophisticated system for the
evaluation of several types of argumentation frameworks.

Introduction and Problem Description

Argumentation systems provide a formal way of dealing with conflicting knowledge. In
particular argumentation frameworks (AFs) introduced by Dung [11] in 1995 are used to
represent statements together with a relation denoting rebuttals between them, where the
internal structure of the statements is of no interest for the evaluation of the framework.
Several semantics have been defined to solve the inherent conflicts between the statements by
selecting acceptable subsets of them. The most recognized of them are the stable, preferred
and grounded semantics. The following example illustrates the definition and graphical
representation of an AF.

Example 1. Let the AF F = (A, R) be defined as follows, A = {a, b, c, d} is the set of
arguments, and R = {(a, b), (b, c), (b, d), (c, d)} is the attack relation between the arguments.
Let now S = {a, c} be a set of acceptable arguments (also called a solution of F wrt a given
semantics). Such an AF can be represented as a directed graph as shown in Figure 1.

1998 ACM Subject Classification: D.1.6 Logic Programming, I.2.4 Knowledge Representation Formalisms
and Methods.

Key words and phrases: Argumentation, Implementation, Answer-Set Programming.
This work was supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.

c© S. A. Gaggl
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.265

266 S. A. GAGGL

a b

d

c

Figure 1: The argumentation framework F from Example 1.

Lets have a closer look why the set S represents a solution for our framework. The
argument a is not attacked by any argument, hence it can be clearly viewed as acceptable.
The argument b is only attacked by a, and as we accepted a, we can not also accept b,
because two arguments attacking each other would not lead to a meaningfull solution.
Whereas, we can say the argument c is defended by a against the attack from b and thus
can be included into the solution. Finally, the argument d is also defended by a against the
attack from b, but it is still attacked by c which already is part of the solution. Hence, d

cannot be contained in S.

Within the last years, AFs became a main research area in Artificial Intelligence (AI).
Recently two textbooks on argumentation [8, 22] and a special issue on argumentation
in AI [7] have been published. Furthermore the Conference on Computational Models of
Argument (COMMA) is held every second year.

The increasing interest in this topic resulted in the fact that Dung’s approach has been
extended and generalized continuously according to specific application scenarios like Multi-
Agent Systems and Law Research. On the one hand, various semantics like semi-stable [9]
or ideal semantics [12] have been introduced to adjust to the specific scenarios, on the other
hand, the framework in itself has been adapted by modifying the notion of rebuttal [1],
introducing new relations between the statements [2] or augmenting them with priorities
[6].

For small instances it is quite easy to evaluate the frameworks under different seman-
tics, but an increasing amount of data requires a sophisticated system for the evaluation.
Argumentation problems are in general intractable, for instance deciding if an argument is
contained in some preferred extensions is known to be NP -complete. Therefore, developing
dedicated algorithms for the different reasoning problems is non-trivial. A promising way to
implement such systems is to use a reduction method, where the given problem is translated
into another language, for which sophisticated systems already exist. Logic Programming
methods, in particular Answer-Set Programming (ASP) [17] turned out to be a promising
direction for this aim, since it not only allows for a concise representation of concepts inher-
ent to argumentation semantics, but also offers sophisticated off-the-shelves solvers which
can be used as core computation engines (like Smodels, DLV, clasp or GnT [10]).

1. Background and Overview of the Existing Literature

Previous work has demonstrated that Logic Programming is adequate to encode ar-
gumentation problems. Dung has already mentioned in [11] the strong relation between
argumentation and Logic Programming. Nieves et. al. proposed in [21] an encoding schema

GENERAL ARGUMENTATION SYSTEM BASED ON ASP 267

to represent AFs as logic programs, and they showed how different semantics for logic pro-
grams can be used to compute different forms of extensions using this particular schema.
Furthermore, Nieves et. al proposed in [21] an approach to compute preferred extensions by
means of logic programs which requires a recompilation of the encoding for each particular
AF. Similarly, [24] also provide ASP encodings for different semantics. In contrast to our
work, their encodings for complete and stable semantics are based on labelings, whereas for
grounded, preferred and semi-stable semantics they use a meta-programming technique ap-
plying additional translations for each AF into normal logic programs. One major difference
of our system ASPARTIX [15] to this work is that it uses a fixed query for all semantics,
which requires the actual instance just as an input database. For the concrete queries, we
refer to [15] and for the ideal semantics to [16].

2. Goal of the Research

We want to provide a system for argumentation frameworks which is capable to deal
with a broad range of argumentation semantics and generalizations of AFs. We turn our at-
tention especially on a user-friendly implementation which does not require any background
knowledge on Logic Programming or ASP. Hence, the user just needs to set up the input
database, consisting of problem instance, and select the desired evaluation. We believe
that this system can be useful for researchers for analysing and comparing argumentation
systems, as well as a versatile decision support system. Especially, we will exploit ASP
for more advanced problems. On the one hand, we plan to make use of the rich syntax
of ASP (e.g., weak constraints, aggregates, weight constraints, etc.) to deal with weights
on arguments or attacks [14, 19]; on the other hand, we want to combine our encodings
in order to represent reasoning problems where several semantics come into play (e.g. the
coherence problem [13] which decides whether for a given AF F every preferred extension
of F is also a stable extension of F).

3. Current Status of the Research

In [15] we presented the first version of ASPARTIX, an ASP tool, which makes use of
DLV [18]. This system was designed to compute the basic semantics defined by Dung in
[11] such as admissible, complete, preferred, grounded and stable semantics. Additionally
we provide encodings for semi-stable [9] and ideal semantics [12]. Furthermore, ASPAR-
TIX can be used to evaluate Preference-based Argumentation Frameworks [1], Value-based
Argumentation Frameworks [6], and Bipolar Argumentation Frameworks [2]. All necessary
programs to run ASPARTIX are available at

http://www.dbai.tuwien.ac.at/research/project/argumentation/systempage/

Currently we are focusing on the encodings of the next generation of argumentation se-
mantics and extensions. Recently, we incorporated the SCC-recursive cf2 semantics [5]
into ASPARTIX. Further encodings include the resolution-based semantics due to Baroni
and Giacomin [4] as well as some generalizations of AFs like AFs with Recursive Attacks
(AFRAs) [3], Extended AF (EAF) [20] and Dynamic AFs (DAFs) [23].

268 S. A. GAGGL

4. Preliminary Results Accomplished

With the system ASPARTIX, we provide ASP encodings for most of the semantics
and frameworks proposed so far. As stated in [15], the encodings are adequate from a
complexity point of view. One major advantage of ASPARTIX is that it is independent
from the concrete AF to process. It serves as an interpreter which takes an AF given as
input. Although there is no advantage of the interpreter approach from a theoretical point of
view (as long as the reductions are polynomial-time computable), there are several practical
ones. The interpreter is easier to understand, easier to debug, and easier to extend.

5. Open Issues and Expected Achievements

Future work includes a comparison between the different ASP solver and systems wrt
our encodings. Especially we will perform run-time tests with the grounders Lparse and
Gringo and the solvers Smodels, claspD, GnT2 as well as the system DLV [10]. Preliminary
tests showed that our system is capable to deal with frameworks of more than 150 arguments.

As another direction of future work, we will offer a web application of ASPARTIX
including a graphical representation of the problem instance and the solution. Hence,
researchers can use our system without downloading or installation of any program or ASP
solver.

References

[1] Leila Amgoud and Claudette Cayrol. A Reasoning Model Based on the Production of Acceptable
Arguments. Ann. Math. Artif. Intell., 34(1-3):197–215, 2002.

[2] Leila Amgoud, Claudette Cayrol, Marie-Christine Lagasquie, and Pierre Livet. On Bipolarity in Argu-
mentation Frameworks. International Journal of Intelligent Systems, 23:1–32, 2008.

[3] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni Guida. Encompassing Attacks
to Attacks in Abstract Argumentation frameworks. In Claudio Sossai and Gaetano Chemello, editors,
Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning

with Uncertainty (ECSQARU 2009), volume 5590 of Lecture Notes in Computer Science, pages 83–94,
2009.

[4] Pietro Baroni and Massimiliano Giacomin. Resolution-Based Argumentation Semantics. In Philippe
Besnard, Sylvie Doutre, and Anthony Hunter, editors, Proceedings of the 2nd Conference on Compu-

tational Models of Argument (COMMA 2008), volume 172 of Frontiers in Artificial Intelligence and

Applications, pages 25–36. IOS Press, 2008.
[5] Pietro Baroni, Massimiliano Giacomin, and Giovanni Guida. SCC-Recursiveness: A General Schema

for Argumentation Semantics. Artif. Intell., 168(1-2):162–210, 2005.
[6] Trevor J. M. Bench-Capon. Persuasion in Practical Argument Using Value-based Argumentation frame-

works. J. Log. Comput., 13(3):429–448, 2003.
[7] Trevor J. M. Bench-Capon and Paul E. Dunne. Special Issue on Argumentation in Artificial Intelligence.

Artificial Intelligence, 171(10-15):619–641, 2007. Argumentation in Artificial Intelligence.
[8] Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT Press, 2008.
[9] Martin Caminada. Semi-Stable Semantics. In Paul E. Dunne and Trevor J. M. Bench-Capon, editors,

Proceedings of the 1st Conference on Computational Models of Argument (COMMA 2006), volume 144
of Frontiers in Artificial Intelligence and Applications, pages 121–130. IOS Press, 2006.

[10] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw Truszczynski. The
Second Answer Set Programming Competition. In Esra Erdem, Fangzhen Lin, and Torsten Schaub,
editors, Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic

Reasoning, (LPNMR 2009), volume 5753 of LNCS, pages 637–654. Springer, 2009.
[11] Phan M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Rea-

soning, Logic Programming and n-Person Games. Artif. Intell., 77(2):321–358, 1995.

GENERAL ARGUMENTATION SYSTEM BASED ON ASP 269

[12] Phan M. Dung, Paolo Mancarella, and Francesca Toni. Computing Ideal Sceptical Argumentation.
Artif. Intell., 171(10-15):642–674, 2007.

[13] Paul E. Dunne and Trevor J. M. Bench-Capon. Coherence in Finite Argument Systems. Artif. Intell.,
141(1/2):187–203, 2002.

[14] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons, and Michael Wooldridge. Incon-
sistency Tolerance in Weighted Argument Systems. In Carles Sierra, Cristiano Castelfranchi, Keith S.
Decker, and Jaime Simão Sichman, editors, Proceedings of the 8th International Joint Conference on

Autonomous Agents and Multiagent Systems, (AAMAS 2009), pages 851–858, 2009.
[15] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran. Answer-Set Programming Encodings for Argumentation

Frameworks. Accepted for publication in Argument and Computation, 2010; a short version appeared
as Technical Report, Technische Universität Wien, DBAI-TR-2008-62.

[16] Wolfgang Faber and Stefan Woltran. Manifold Answer-Set Programs for Meta-Reasoning. In LPNMR,
pages 115–128, 2009.

[17] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Comput., 9(3/4):365–386, 1991.

[18] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and
Francesco Scarcello. The DLV System for Knowledge Representation and Reasoning. ACM Trans. Com-

put. Log., 7(3):499–562, 2006.
[19] Diego C. Mart́ınez, Alejandro J. Garćıa, and Guillermo R. Simari. An Abstract Argumentation Frame-

work with Varied-strength attacks. In Proceedings of the 11h International Conference on Principles of

Knowledge Representation and Reasoning, (KR 2008), pages 135–144, 2008.
[20] Sanjay Modgil. Reasoning about Preferences in Argumentation Frameworks. Artif. Intell., 173(9-

10):901–934, 2009.
[21] Juan C. Nieves, Mauricio Osorio, and Ulises Cortés. Preferred Extensions as Stable Models. Theory and

Practice of Logic Programming, 8(4):527–543, 2008.
[22] Iyad Rahwan and Guillermo R. Simari. Argumentation in Artificial Intelligence. Springer Publishing

Company, Incorporated, 2009.
[23] Nicolas D. Rotstein, Martin O. Maguillansky, Alejandro J. Garcia, and Guillermo R. Simari. An Ab-

stract Argumentation Framework for Handling Dynamics. In Proceedings of the 12th International

Workshop on Non-Monotonic Reasoning (NMR’08), pages 131–139, Sydney, Australia, September 2008.
[24] Toshiko Wakaki and Katsumi Nitta. Computing Argumentation Semantics in Answer Set Programming.

In Hiromitsu Hattori, Takahiro Kawamura, Tsuyoshi Idé, Makoto Yokoo, and Yohei Murakami, editors,
New Frontiers in Artificial Intelligence (JSAI 2008), Conference and Workshops, volume 5447 of LNCS,
pages 254–269. Springer, 2008.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 270–276

http://www.floc-conference.org/ICLP-home.html

MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED

SYSTEMS

HUGO A. LÓPEZ 1

Programming, Logic and Semantics group, IT University.
Rued Langgaards Vej 7, 2300 Copenhagen, Denmark
E-mail address: lopez@itu.dk

URL: http://www.itu.dk/~hual/

Abstract. Service and process-oriented systems promise to provide more effective busi-
ness and work processes and more flexible and adaptable enterprise IT systems. However,
the technologies and standards are still young and unstable, making research in their the-
oretical foundations increasingly important. Our studies focus on two dichotomies: the
global/local views of service interactions, and their imperative/declarative specification.
A global view of service interactions describes a process as a protocol for interactions, as
e.g. an UML sequence diagram or a WS-CDL choreography. A local view describes the
system as a set of processes, e.g. specified as a π -calculus or WS-BPEL process, imple-
menting each participant in the process. While the global view is what is usually provided
as specification, the local view is a necessary step towards a distributed implementation. If
processes are defined imperatively, the control flow is defined explicitly, e.g. as a sequence
or flow graph of interactions/commands. In a declarative approach processes are described
as a collection of conditions they should fulfill in order to be considered correct. The two
approaches have evolved rather independently from each other. Our thesis is that we can
provide a theoretical framework based on typed concurrent process and concurrent con-
straint calculi for the specification, analysis and verification of service and process oriented
system designs which bridges the global and local view and combines the imperative and
declarative specification approaches, and can be employed to increase the trust in the de-
veloped systems. This article describes our main motivations, results and future research
directions.

1. Introduction

As recently pointed out by the ICT theme of EU Seventh Framework Programme (FP7),
the need of trustworthy and pervasive services infrastructure is considered one of the three
mayor challenges in ICT for the next ten years. The “future internet” proposes questions
in terms of scalability, mobility, flexibility, security, trust and robustness to the more than
thirty years old current Internet architecture. A vast landscape of application and ever-
changing requirements and environments must be supported, and new ways of interaction
must be devised, coping with safety and reliability in their coordination methods.

1998 ACM Subject Classification: F.3.2: Semantics of Programming Languages, F.4.3: Formal
Languages.

Key words and phrases: Concurrent Constraint Calculi, Session Types, Logic, Service and Process ori-
ented computing.

c© H. A. López
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.270

MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 271

The line of research investigating such questions has been constantly expanding since
the early nineties, both combining approaches from the academia and the industry. As re-
sult of such efforts, its been normally hard to differentiate between similar derived fields, like
Business Processes, Workflow technologies and Service Oriented Computing. A Business
Process is the set of steps executed in order to fulfill a (business) goal. Business processes
have always been at the hearth of companies interests, and the obvious goal has been to
develop better, cheaper, and faster processes, incrementing the profits of the company.
Workflows came as an initial response for the need of proper descriptions of business pro-
cesses, providing a framework for the specification and automation of processes by means of
activities respecting a business logic. They aim at integrating coarse-grained components
and have a single place where the business logic is specified. Furthermore, Service Oriented
Computing (SOC) opens a new different horizon by distributing the places where the busi-
ness logic is defined: now, small process units (services) can be shared between different
organizations, so each of them can fulfill their business goals by reusing and outsourcing
services.

Giving the intrinsic complexity when analyzing services in distributed environments,
one normally use different abstractions to describe and analyse services. One of such ab-
stractions deals with the the study of the concurrent nature of services. Process calculi are
formal languages conceived for the description and analysis of concurrent systems. As such,
the goal of a process calculus is to provide a rigorous framework where complex systems can
be accurately analyzed, including reasoning techniques (type systems, specification logics)
to verify essential properties of a system. The term structured communications [9] refers to
the branch of process calculi devoted to the analysis of interactions between services. On a
calculus for structured communications, one considers the computation within a service as
an atomic activity, and focus the core of the analysis in the interactions between services.

One of the most important aspects when modelling services relate to the notion of
trustworthiness, or the extent to which users believe that the systems behave correctly. A
safe system is one in which a property considered harmful for the life of the system would
never happen, like for instance the disclosure of the private credentials of the manager to a
thief.

Despite of being such a young trend, different but interrelated views for the analysis
of service oriented systems have been proposed. We can enclose such approaches in two
dichotomies: global/local views of services, and imperative/declarative specifications. In
the first dichotomy, either one describe the system as the exchange of messages between
different participants, or one consider the system as the composition of the local behaviours
of each participant. In this first view, known as choreography [4, 5], one consider the system
as a whole, taking care only of the interfaces that participants use when interacting to the
outside world. In the second view, known as orchestration [14, 5], one model the system
as perceived by the eyes of each participant (so-called end-point), sending and receiving
messages but not knowing which other actors are present in a communication. As recently
presented, choreographies and orchestrations can be operationally correspondent, and one
can either project a choreography to generate distributed orchestrations that implements
it, or lift a process specification done in an orchestrated manner to describe its respective
choreography [5].

As a simple example of such duality, take a simplified version of an online booking
scenario: Here, the customer interacts with the airline company AC using its service ob, such
interaction will be labelled by an identifier (referred here as a session). The customer and

272 H. A. LÓPEZ

AC can interact in more than one manner, requiring sessions to be unique and independent
from each other. In this case, we will use sessions labelled k1, k2 to identify the direction
of the communication: k1 from Customer to the AC and k2 for its dual. Once sessions are
established, the customer will request the company about a flight offer with his booking
data, along the session key k1. The airline company will process the customer request and
will send a reply back with an offer using the session key k2. The customer will eventually
accept the offer, sending back an acknowledgment to the airline company using k1. The
description of this protocol in a choreographic way will describe the sequence of interactions
between Customer and AC, for instance: Customer → AC : ob(k1, k2) will create sessions
k1 and k2 between Customer and AC, and Customer → AC : k1〈booking, x〉 will describe
the communication of the booking value using the session key k1 from Customer to AC.
The rest of the specification representing this protocol can be described as follows:

Customer → AC : ob(k1, k2).

Customer → AC : k1〈booking, x〉.

AC → Customer : k2〈offer, y〉.

Customer → AC : k1〈accept, z〉

In an orchestrated version of the above example, one might consider the system as the
concurrent execution of processes implementing the actions for Customer and AC. Here,
processes will communicate via session establishment and message passing, among other
actions. Following the notation from [9], the concurrent execution of request ob(k) in P

and accept ob(k) in P will create a session k between P and Q, whereas k![booking]; P in
parallel with k?(x) in Q will use a previously established session k to communicate the data
contained in booking from P to Q. The specification of the example is coded below, using
‖ to denote parallel composition of processes, (νx) P as the creation of a new resource x

local to P , and 0 the termination of a process:

Customer = request ob(k1, k2) in (k1![booking]; k2?(y) in (k1![accept];0))

AC = accept ob(k1, k2) in (k1?(x) in (ν offer)k2![offer]; k1?(z) in 0)

System = Customer ‖ AC

Here, the communication will be structured if we can provide guarantees about the
use of sessions along the life of the protocol. For instance, considering the choreographic
specification of the example given above, we can guarantee that the usage of sessions will
require first an interaction using k1, followed by k2 and finalized by k1. It is obvious that
such guarantees become harder to express in architectures with thousands of services, which
is the case of service oriented architectures.

The second dichotomy here considered refers to the approach used to construct the
models. Descriptions can have imperative or declarative flavors: In an imperative approach,
one explicitly define the control flow of commands. Typical representatives of this approach
are based on process calculi, and come with behavioral equivalences and type disciplines as
their main analytic tools [18, 10, 2, 9, 21]. On the contrary, in a declarative approach the

MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 273

focus drifts to the specification of the set of constraints (causality relations, time constraints,
quality of service) processes should fulfill in order to be considered correct [17, 20, 12,
15]. Even if these two trends address similar concerns, we find that they have evolved
rather independently from each other. Returning to our example, we might consider the
specifications above presented imperative specifications, whereas a declarative specification
will let parts of the process unspecified. For instance, we could relax the specification given
above by accepting any implementation of AC that complies with an ordering of actions
where it first receives the booking data, and eventually (that is, immediately or in an
unspecified sequence of interactions) returns a booking offer. Such a policy can be observed
better on a logical formalization, as for instance a formula in Linear Temporal Logic [13].

2. A unifying framework for structured communications

This research has as a main objective to leverage the trustworthiness level of a system
by providing a clear methodology of specification and verification of structured commu-
nications. Our goal is to give characterizations of services, both at the operational and
logical level. This is done by relating the way services are specified, both from their global
and local viewpoints. Figure 1 illustrates the approach for the specification and verifica-
tion of structured communications. A specification of a choreography C can be projected
to the parallel composition of end points Pi with an index i corresponding to each of the
participants involved in choreography. Similarly, every choreographic specification in C cor-
responds to a formula in a modal logic representing the interactions between agents; such
a correspondence is described in the figure as the bijection GL between C and φC . GL not
only provides a logical characterization of a process; it also allows for partial specification:
Given a logical formula, one can see if there is a process in C that can satisfy φC .

A similar reasoning is provided for orchestrations: Starting with i-indexed parallel com-
position implementing each participant Pi (denoted

∏
i[[Pi]]), one is interested in describing

the behaviour of its composition. Such description is embedded in the bijection LL between
the orchestration in

∏
i[[Pi]] and its logical counterpart in

⋂
i[[χi]]. Moreover, a formula repre-

senting the global behaviour of a choreography can be projected to a corresponding formula
describing the behaviour of a set of orchestrations. Such a mapping can be observed in the
diagram as the function LP from φC to

⋂
i[[χi]].

C oo GL //

EPP

��

φC

LP

��

[[C]]utccs

yy

e

99sssssssssss

ee
f

%%KKKKKKKKKXX

LTL

55

∏
i[[Pi]] oo

LL

//
⋂

i[[χi]]

Figure 1: Methodology for the verification of structured communcations

Finally, one can observe an interesting relation when comparing languages of structured
communications and other models of concurrency. CC refers to the Concurrent Constraint

274 H. A. LÓPEZ

family of languages [19] and its timed extensions, such as timed CC (tcc) [6] and universal
tcc (utcc) [16]. We can see CC languages as part of the declarative approaches for the
analysis of choreographies: First, differently from the classical approach where a value is
assigned to each system variable (store-as-valuation), in CC languages the store represents
a constraint on the possible values of variables at one point in the life of the system.
Second, it allows one to consider both the declarative flavour of logics and the execution
of processes both in a single framework: the satisfaction of a formula allows the system
to proceed, and the execution/inhibition of a process in the interaction is only defined by
the amount of information available in the store. Timed extensions of the CC family refine
the notion of store-as-constraint, describing the system as sequences of input-output stimuli
between a set of processes and a store. These extensions give us enough modelling power
to express declarative and imperative information in the same framework. The encodings
between a choreography model and a timed CC specification are depicted by the function
e, the corresponding mapping between a timed CC model and an orchestration model are
depicted by the bijective function f ; finally, the correspondence between an CC model and
its logical counterpart is given by means of Linear Temporal Logic (LTL) [13].

3. Overview of Completed and Current Work

The evolution of this research project can be divided in three mayor research areas:
First, we started by equipping CC languages with primitives for the analysis of structured
communications, namely the treatment of mobile data and access control of information
flow. A recent addition to the familiy of CC languages, known as Universal Timed CCP
(utcc) introduces the possibility of universally quantify over predicates in the constraint
store. utcc is presented as a candidate for representing mobility and security, both im-
portant concepts when talking about structured communications. However, the universal
quantification in utcc is completely unrestricted. This means that in the proposed represen-
tations of link mobility and security protocols in utcc, every agent may guess channel names
and encrypted values by universal quantification. It is thus necessary to enforce a restriction
on the allowed processes to make sure that this is not possible. We proposed utccs , an
extension of universal tcc with a type system for constraints used as patterns in process
abstractions, which essentially allows us to distinguish between universally abstractable in-
formation and secure (non-leakable information) in predicates. We also proposed a novel
notion of abstraction under local knowledge, which gives a general way to model that a
process (principal) knows a key and can use it to decrypt a message encrypted with this
key without revealing the key [8].

Second, we related CC and orchestration languages. We exploited utcc to give a
declarative interpretation to the language of orchestrations at [9]. This way, services can be
analyzed in a declarative framework where time is defined explicitly, and their behaviour
compared to formulae in LTL. We do so by giving an operationally correspondent encoding
of the language in [9] into utcc. Moreover, the selected language is prone to timed exten-
sions: as we show in [11] an orchestration language can be benefitted from the inclussion
of timed information on the duration of sessions, declarative preconditions within session
establishment constructs, and session abortion primitives.

Finally, we filled the gap between choreographic models and logical specifications. Start-
ing with an extension of Hennesy-Milner logic [7], we introduced GL, a global logic for the

MODELS FOR TRUSTWORTHY SERVICE AND PROCESS ORIENTED SYSTEMS 275

study of choreographies. GL describes properties over the transitions of a given chore-
ography. As for structured communications, GL places special on the main elements of
interactions in the choreography, namely the participants involved in a communication, the
sessions used in an interaction and the effects on the variables by a given communication.
The logic is equipped with a proof system that allows for verification of properties among
participants in a choreography. With GL, one can see the state of a choreography as a
formula in the logic, and one can check for satisfaction of desirable properties by relating a
logical formula wrt a choreographic specification [3].

4. Open Issues

The research being done to the moment constitutes just seminal steps on the path
towards a verification framework of structured commmunications. Our main concerns re-
late to establishing a relation between the model of end-points and logical frameworks for
the specification of sessions. In [1], Berger et al. presented proof systems characterizing
May/Must testing preorders and bisimilarities over typed π -calculus processes. The con-
nection between types and logics in such system comes in handy to restrict the shape of
the processes one might be interested. In particular, being the synchronization methods in
orchestration languages of similar nature as the ones present in the π calculus, one might
consider such work as a suitable proof system for the calculus of end points. Our next
step will focus on relating GL to orchestrations, both by providing a corresponding logic for
the analysis of orchestration and by making the logical projection between global and local
formulae. If successful, this research will contribute by providing a basis for logical speci-
fications and model checking of structured communications. Finally, we want to continue
the research on representing both global and local process views in concurrent constraint
calculi, aiming at a unified representation of both views within the same formal model.

Acknowledgments

This research owes much to Thomas Hildebrandt for his indispensable guidance, and
to Marco Carbone for the many insightful discussions profiling this topic of research. The
research has been partially supported by the Computer Supported Mobile Adaptive Business
Processes (www.CosmoBiz.org) project and the Trustworthy Pervasive Healthcare Services
(www.Trustcare.dk) project, supported by the Danish Research Agency (grant no.: 274-06-
0415 and grant no.: 2106-07-0019).

References

[1] M. Berger, K. Honda, and N. Yoshida. Completeness and logical full abstraction in modal logics for
typed mobile processes. In L. Aceto, editor, ICALP’08, number 5126 in LNCS, pages 99–111. Springer-
Verlag, Berlin Germany, 2008.

[2] M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara,
and D. Sangiorgi. SCC: a service centered calculus. Proceedings of WS-FM, 4184:38–57, 2006.

[3] M. Carbone, T. Hildebrandt, and H. A. López. Towards a modal logic for the global calculus.
In K. Honda and A. Mycroft, editors, Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES), 2010.
[4] M. Carbone, K. Honda, and N. Yoshida. A calculus of global interaction based on session types. In 2nd

Workshop on Developments in Computational Models (DCM), ENTCS, 2006.

276 H. A. LÓPEZ

[5] M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming for web
services. In 16th European Symposium on Programming (ESOP), volume 4421 of LNCS, pages 2–17,
Braga, Portugal, March 2007. Springer, Berlin Heidelberg.

[6] F. de Boer, M. Gabbrielli, and M. Meo. A Timed Concurrent Constraint Language. Information and

Computation, 161(1):45–83, 2000.
[7] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency. In Proceedings of the 7th

Colloquium on Automata, Languages and Programming, pages 299–309. Springer-Verlag London, UK,
1980.

[8] T. Hildebrandt and H. A. López. Types for Secure Pattern Matching with Local Knowledge in Universal
Concurrent Constraint Programming . In International Conference on Logic Programming (ICLP),
volume 5649 of Lecture Notes in Computer Science, pages 417–431. Springer, Berlin Heidelberg, 2009.

[9] K. Honda, V. Vasconcelos, and M. Kubo. Language Primitives and Type Discipline for Structured
Communication-Based Programming. In 7th European Symposium on Programming (ESOP): Program-

ming Languages and Systems, pages 122–138. Springer-Verlag London, UK, 1998.
[10] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In Proc. of 16th

European Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer Science,
pages 33–47. Springer, 2007.

[11] H. A. López, C. Olarte, and J. A. Pérez. Towards a Unified Framework for Declarative Structured
Communications. In Programming Language Approaches to Concurrency and Communication-cEntric

Software (PLACES’2009), volume 17 of EPTCS, pages 1–15, 2010.
[12] K. M. Lyng, T. Hildebrandt, and R. R. Mukkamala. The Resultmaker Online Consultant: From Declar-

ative Workflow Management in Practice to LTL. In Proc. of 1st Intl. Workshop on Dynamic and Declar-

ative Business Processes (DDBP), Munich, Germany, 2008.
[13] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Specification. Springer,

1992.
[14] J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing. Journal of

Software and Systems Modeling, May 2006.
[15] A. K. Nørgaard, L. Pedersen, and P. Strøiman. Method for generating a workflow on a computer, and

a computer system adapted for performing the method. Patent, 05 2005. US 6895573.
[16] C. A. Olarte and F. D. Valencia. Universal concurrent constraint programming: Symbolic semantics

and applications to security. In 23rd Annual ACM Symposium on Applied Computing (SAC), 2008.
[17] M. Pesic and W. van der Aalst. A Declarative Approach for Flexible Business Processes Management.

Lecture Notes in Computer Science, 4103:169, 2006.
[18] F. Puhlmann and M. Weske. Using the Pi-Calculus for Formalizing Workflow Patterns. BPM, 3649:153–

168, 2005.
[19] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
[20] W. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow Language.

Lecture Notes in Computer Science, 4184:1, 2006.
[21] H. Vieira, L. Caires, and J. Seco. The Conversation Calculus: A Model of Service-Oriented Computation.

In Programming languages and systems: 17th European Symposium on Programming (ESOP), page 269,
Budapest, Hungary, 2008. Springer-Verlag New York.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 277–280

http://www.floc-conference.org/ICLP-home.html

DESIGN AND IMPLEMENTATION OF A CONCURRENT LOGIC

PROGRAMMING LANGUAGE WITH LINEAR LOGIC CONSTRAINTS

THIERRY MARTINEZ

EPI Contraintes, INRIA Paris-Rocquencourt, BP105, 78153 Le Chesnay Cedex, France

1. Introduction

Prolog is originally rooted in logic with the elegant mapping: “programs = formulas,
execution = proof search”. Constraint logic programming extends Prolog to program in
a richer structure than mere Herbrand terms. The underlying constraint solving engine
requires either to be built-in or to add coroutines mechanisms that are not in the scope
of logical reading. Implementations add other non-logical features, like assert/retract, and
mutable variables, to mimic imperative programming style.

The concurrent constraint programming language enjoys logical semantics and is expres-
sive enough to describe constraint propagators [Sar93]. Agents tell constraints as messages
and are synchronised by asking whether the messages entail some constraints. The exe-
cution pursues once the guard is entailed. The suspension is therefore a transient state,
captured by using linear-logic implication ⊸ [Fag01]. Furthermore, reading constraints as
resources in linear logic allows semantics to capture the non-monotonous traits of imperative
programming like mutability. LCC enjoys the mapping “programs = linear-logic formulas,
execution = logical deduction”: observables are the logical consequences of a program, by
opposition to the logical resolution in the Prolog settings.

My thesis aims at designing a practical language as close as possible to the linear con-
current constraint (LCC) theory. The main contribution is a new operational semantics
which behaves as an angelic scheduler with a tractable algorithmic complexity. This opera-
tional semantics is sound and complete with respect to the logical semantics and allows the
construction of a rich language over a very simple kernel.

The second section presents the kernel, the third describes the operational semantics
and the last section describes the state of the implementation work and its perspectives.

2. Kernel syntax and logical semantics

The four rules of the syntax are given below with their reading in linear logic. We recall
that the ! modality introduces unlimited resources.
[[forall x1 . . . xn(x.p(x1, . . . ,xn)⇒ a)]] = !∀x1 . . . xn(p(x, x1, . . . , xn) ⊸ [[a]]) (ask)
[[exists x(a)]] = ∃x([[a]]) (hiding)
[[x.p(x1, . . . ,xn)]] = p(x, x1, . . . , xn) (tell)
[[a a′]] = [[a]]⊗ [[a′]] (parallel composition)

c© T. Martinez
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.277

278 T. MARTINEZ

This syntax is a subset of the syntax of modular LCC agents [Hae07]: constraints are
restricted to be single linear tokens (i.e., linear-logic predicates without any non-logical
axiom) and all asks are persistent (interpreted with the ! modality). The variable which
precedes the dot in linear tokens is called the module variable. It is worth noticing that
the kernel restricts all the arguments of the constraints guarding asks to be universally
quantified. On the opposite, the module variable is never universally quantified.

I proved that modular LCC is as expressive as CHR as far as logical semantics and
original operational semantics are concerned [Mar10]. However, CHR implementations trade
completeness for committed-choice. Several refinements for controlling the scheduler in
CHR have been proposed, taking into account the order of the rules in the program [Duc03],
priority annotations [Kon07] or probabilities [Frü02]. None of these refinements are captured
by logical semantics. The next section proposes a tractable operational semantics which is
correct and complete with respect to the linear-logic reading and such that this kernel is as
expressive as the whole modular LCC language.

3. Angelic operational semantics

The observable of interest is the set of all the constraints which are logical consequences
of the program. This observable raises naturally in the correctness theorem of the traditional
operational semantics [Fag01]. Operationally, it is the set of entailed constraints, leading to
observable side-effects.

I propose the concept of derivation nets which generalises Palamidessi’s SOS seman-
tics [Bes97] for reducing scheduling non-determinism: derivations are represented as a po-
tentially infinite multihypergraph where vertices are agents and edges are derivation steps.
The derivations of the traditional LCC operational semantics correspond to interpretation
as Petri-net. Strategies for reducing non-determinism are expressible as vertex sharing.
There exist sharings, like the sharing of all ask instances, which allow each edge to be
checked in polynomial time. Other tractable sharings should be investigated.

The angelic semantics contrasts with the usual committed-choice execution model. Con-
current languages differ by the expressive power of their guards: single channel matching
for π-calculus, multiple-head matching for Join-calculus, multiple-head Prolog checking for
CHR. Our CHRat [Fag08] proposition for generalising guards relies on extra-logical CHR
propagations for consuming heads only once the entailment is checked. The angelic seman-
tics overcomes this difficulty and allows the kernel to be restricted to the simplest form
of guards while providing the most general expressive power: the two linear-logic formulas
∀~x(c ⊗ c′ ⊸ a) and ∀~x(c ⊸ (c′ ⊸ a)) have the same constraints for consequences since
the non-consumption of c′ cannot be observed, and computation can be triggered after the
consumption of c to check that c′ is entailed.

Since the kernel forces asks to universally quantify over all the arguments appearing
in guards, LCC agents of the form x.p(v) ⇒ A (for any variables x and v and sub-agent
A) should be translated in the kernel syntax. A natural translation is forall v′(x.p(v′)⇒
exists k(eq.check(v, v′, k) (k.true() ⇒ A))) where the token eq.check(v, v′, k) refers to an
agent implementing value comparison (that we suppose defined in the standard library).
Since there is no observable side-effects between the consumption of x.p(v′) and the execu-
tion of A, angelic semantics ensures that consumptions of x.p(v′) for v 6= v′ are not observed.
Therefore the proposed translation preserves the semantics. However, trying to consume all

A CONCURRENT LOGIC PROGRAMMING LANGUAGE WITH LINEAR LOGIC CONSTRAINTS 279

the tokens x.p(v′) is inefficient compared to usual argument indexing mechanisms present
in CHR implementations for example.

An illustration of the expressive power of angelism is that the indexing of linear tokens
with respect to their arguments is user-implementable, as soon as tokens are indexed with
respect to their module variable (which is a weaker hypothesis for the implementation since
the module variable is distinguished and is never universally quantified). Suppose an agent
M implementing maps (e.g. with hash-tables, AVL or other custom structures) associating
a fresh variable xv to each value v: for a map m, the agent M is supposed to react to
the tokens m.get(v, x) by unifying x with xv. Indexing tokens x.p(v) with respect to v in
the map m is performed by the agent forall v(x.p(v)⇒ exists xv(m.get(v, xv) xv.p())).
Then, agents of the form exists xv(m.get(v, xv) (xv.p() ⇒ A)) have the same logical
consequences as x.p(v) ⇒ A: consuming xv.p() supposes that x.p(v) has been consumed,
while x.p(v) can still be consumed by other asks, preventing xv.p() to appear in the store.

4. The SiLCC project and perspectives

The implementation aims to build a compiler for the kernel and to reconstruct the
full LCC language on top of it. A prototype has been implemented with a library for full
LCC over Herbrand domain 1. Transient asks (without the ! modality) are encoded with
token consumption and complex guards are decomposed to elementary asks. E.g., the ask
forall x(m.p(x) m.q(x)→ a) is compiled to the following kernel agent:

exists t(t.transient()
forall x(m.p(x)⇒

forall y(m.q(y)⇒
exists k(eq.check(x, y, k)

(k.true()⇒ t.transient()⇒ a)))))

where the token t.transient() translates the non-persistency of the original ask. More evolved
syntactic sugars have been implemented for sequentiality, conditionals, pattern-matching on
Herbrand terms and records, etc., so that usual programming idioms can be expressed easily
on top of the mono-paradigm simple kernel.

LCC can express sequentiality and non-monotonous traits for imperative programming,
closures and modules. Asks allow LCC agents to wait for some logical consequence, therefore
LCC enjoys a reflexive mechanism allowing LCC agents to observe (the consequences of)
their own accessible stores, since these stores are proved to be equal to the set of logical
consequences by the correctness and completeness theorem of the operational semantics.
However, the canonical encoding of constraint propagators as LCC agents have terminal
stores for observable of interest: terminal stores cannot be reflectively observed by any
agent, for the mere fact that they are terminal. We should investigate more involved
encoding of constraint propagators such that relevant observables would be the accessible
stores. Moreover, constraint programming involves search tree exploration: how to express
search is still open. Our work on formalising search strategies as pattern-matching [Mar09]
initiates a better understanding of the distinction between search trees and search heuristics
in the settings of a modeling language. We still have to investigate how to encode trees and
heuristics in LCC, possibly with similar control mechanism encoding as for sequentiality.

1The compiler together with a reasonable documentation and examples are available for download:
http://contraintes.inria.fr/˜tmartine/silcc

http://contraintes.inria.fr/~tmartine/silcc

280 T. MARTINEZ

References

[Bes97] E. Best, F.S. de Boer, and C. Palamidessi. Partial order and SOS semantics for linear constraint
programs. In Proceedings of Coordination, Lecture Notes in Computer Science, vol. 1282, pp. 256–
273. Springer-Verlag, 1997.

[Duc03] Gregory J. Duck, Peter J. Stuckey, Mar̀ıa Garc̀ıa de la Banda, and Christian Holzbaur. Extending
arbitrary solvers with constraint handling rules. In Proceedings of PPDP’03, International Confer-
ence on Principles and Practice of Declarative Programming, Uppsala, Sweden, pp. 79–90. ACM
Press, 2003.

[Fag01] François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint programming: oper-
ational and phase semantics. Information and Computation, 165(1):14–41, 2001. doi:10.1006/inco.
2000.3002.

[Fag08] François Fages, Cleyton Mario de Oliveira Rodrigues, and Thierry Martinez. Modular CHR with
ask and tell. In Thom Frühwirth and Tom Schrĳvers (eds.), Proceedings of the fifth Constraint
Handling Rules Workshop CHR’08. 2008.

[Frü02] Thom Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic constraint handling
rules. In WFLP 2002, 11th International Workshop on Functional and (Constraint) Logic Program-
ming, Selected Papers, vol. 76, pp. 115–130. 2002. doi:DOI:10.1016/S1571-0661(04)80789-8.

[Hae07] Rémy Haemmerlé, François Fages, and Sylvain Soliman. Closures and modules within linear
logic concurrent constraint programming. In V. Arvind and Sanjiva Prasad (eds.), Proceedings
of FSTTCS 2007, IARCS Annual Conference on Foundations of Software Technology and Theoret-
ical Computer Science, Lecture Notes in Computer Science, vol. 4855, pp. 544–556. Springer-Verlag,
2007. doi:10.1007/978-3-540-77050-3 45.

[Kon07] Leslie De Koninck, Tom Schrĳvers, and Bart Demoen. User-definable rule priorities for CHR. In
Proceedings of PPDP’07, International Conference on Principles and Practice of Declarative Pro-
gramming, Wroclaw, Poland, pp. 25–36. ACM Press, 2007.

[Mar09] Julien Martin, Thierry Martinez, and François Fages. On the specification of search tree heuristics
by pattern-matching in a rule-based modelling language. In Proceedings of the Eighth International
Workshop on Constraint Modelling and Reformulation, associated to CP’09, pp. 73–86. 2009.

[Mar10] Thierry Martinez. Semantics-preserving translations between linear concurrent constraint program-
ming and constraint handling rules. In Proceedings of PPDP’10, International Conference on Prin-
ciples and Practice of Declarative Programming, Edinburgh, UK (to appear). 2010.

[Sar93] Vĳay A. Saraswat. Concurrent constraint programming. ACM Doctoral Dissertation Awards. MIT
Press, 1993.

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 281–285

http://www.floc-conference.org/ICLP-home.html

HIGHER-ORDER LOGIC LEARNING AND λPROGOL

NIELS PAHLAVI 1

1 Department of Computing, Imperial College London
180 Queen’s Gate, London, United Kingdom
E-mail address: niels.pahlavi@imperial.ac.uk

URL: http://www.doc.ic.ac.uk/~namdp05/

Abstract. We present our research produced about Higher-order Logic Learning (HOLL),
which consists of adapting First-order Logic Learning (FOLL), like Inductive Logic Pro-
gramming (ILP), within a Higher-order Logic (HOL) context. We describe a first working
implementation of λProgol, a HOLL system adapting the ILP system Progol and the HOL
formalism λProlog. We compare λProgol and Progol on the learning of recursive theories
showing that HOLL can, in these cases, outperform FOLL.

Introduction, Problem Description and Background

Much of logic-based Machine Learning research is based on First-order Logic (FOL) and
Prolog, including Inductive Logic Programming (ILP). As such, learning higher-order theo-
ries is not possible for such a system, and even some first-order tasks are not handled well,
like “learning first-order recursive theories” which “is a difficult learning task” in a normal
ILP setting [Mal03]. Yet, [Far08] describes HOL as “a natural extension of first-order logic
(FOL) which is simple, elegant, highly expressive, and practical” and recommends its use
as an “attractive alternative to first-order logic”. HOL, which allows for quantification over
predicates and functions, is intrinsically more expressive than FOL, would give sounder log-
ical foundations, and “has generally been under-exploited” [Llo03] in logic-based Machine
Learning. According to [Llo03], “the logic programming community needs to make greater
use of the power of higher-order features and the related type systems and the use of HOL
in Computational Logic is illustrated: functional languages, like Haskell98; Higher-order
programming introduced with λProlog [Mil98]; integrated functional logic programming
languages like Curry or Escher; or the higher-order logic interactive theorem proving envi-
ronment “HOL”. It is also used in IBAL and for Deep Transfer Learning.

The use of HOL in ILP would allow to consider the learning of higher-order predicates;
but it would also make the learning of first-order learning theories sounder, more natural and
more intuitive through the use of higher-order predicates in background knowledge. More
generally, the expressivity of HOL would make it possible to represent mathematical proper-
ties like symmetry, reflexivity or transitivity, which would allow to handle equational reason-
ing and functions within a logic-based framework. We could also represent such properties
in the following fashion (in the case of symmetry) : R@X@Y ⇐ [sym@R,R@Y@X], and,

Key words and phrases: Inductive Logic Programming, Progol, Higher-order Logic, Higher-order Logic
Learning, λProlog.

c© N. Pahlavi
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.281

282 N. PAHLAVI

abduce for example that the move of the bishop in chess is symmetric: sym@bishop move.
About the use of probability in a logic-based setting, [Ng08] advocates for probability to
be captured directly in the theory itself, which can be done naturally and directly with
HOL, as opposed to almost all approaches having a clear separation between the logical
statements and the probabilities.

λProlog [Mil98] is a higher-order logic programming language handling scoping over
names and procedures, the use of lambda terms as data structures and higher-order pro-
gramming. It is based on Higher-order Horn Clauses (HOHC) (introduced in [Nad90] where
a theorem proving procedure for HOHC based on Huet’s unification algorithm in typed
λ-calculus [Hue75] is also outlined), which are “a generalization of Horn clauses to a higher-
order logic” obtained “by supplanting first-order terms with the terms of a typed λ-calculus
and by permitting quantification over function and predicate symbols”.

1. Goal of the Research and Overview of the existing Literature

The goal of my PhD research is, therefore, to develop Higher-order Logic Learning
(HOLL), which consists of generalizing logic-based Machine Learning, and particularly ILP,
from the first-order to the higher-order context. We have already made a first working
implementation of λProgol, a HOLL system adapting the ILP system Progol and the HOL
formalism λProlog. We decided to choose Higher-order Horn Clauses (HOHC) [Nad90] as
a HOL formalism, since it is one of the logical foundations of λProlog. As a ILP system,
we chose to adapt Progol [Mug95], which is a popular and efficient implementation.

We also want to determine whether HOLL can outperform First-order Logic Learning
(FOLL), assessing how the power of expressivity of HOL can be used to improve significantly
the learning capacity and efficiency of FOLL, and study the trade-off that there may be
between learnability and searching costs (the use of Henkin semantics as in [Wol94], seems
to alleviate these and maintain the structure of the search space). ILP seems to be rather
intuitively adaptable to a HOL formalism and we aim at developing a theory of HOLL as
well.

There have been attempts to use HOL for logic-based Machine Learning such as by
Harao starting in [Har90], Feng and Muggleton, and Furukawa and Goebel [Fur96]. They
provide different higher-order extensions of least general generalization to handle higher-
order terms in a normal ILP setting, whereas we use λProlog, a HOL framework, as a
logical foundation to extend first-order ILP to a higher-order context. The main similar
work is [Llo03] by Lloyd and Ng, where higher-order machine learning is also developed. It
details a learning system, called ALKEMY . A main difference is that Lloyd’s approach is
not based on Logic Programming and therefore on ILP. According to Flach, “it is almost a
rational reconstruction of what ILP could have been, had it used Escher-style HOL rather
than Prolog”; whereas we intend, through the use of higher-order Horn clauses to keep the
Horn clauses foundations of LP and ILP and to extend it.

2. Current Status of the Research and Preliminary Results

λProgol, a λProlog adaptation of the popular and efficient ILP system Progol was in-
troduced in [Pah09a] and [Pah09b] along with its algorithm adapting closely and intuitively
Progol and Mode-Directed Inverse Entailment. A first working implementation of λProgol
has since been made, tested, is described in [Pah10] and is available at [Pah]. Our first

HIGHER-ORDER LOGIC LEARNING AND λPROGOL 283

Figure 1: Left: Comparison between Progol and λProgol on the Ancestor example. Right:
Part (around one third) of the Romanov dynasty tree used in the experiments

choice of implementation was based on λProlog but revealed to be too inconvenient and
inefficient to use; instead the current implementation is in Prolog, which is more convenient
and more efficient; a requirement is the use of a λProlog interpreter, which was implemented
using a depth-first approach.

Initial promising results have been obtained so far about learning recursive theories.
In order to stress the difference in the learnability of a given problem between HOLL
and FOLL, and to ensure fairness and soundness, standard λProgol was compared against
standard Progol, whose algorithms are almost the same.

One of the results (used in [Mal03]) consists of learning the predicate ancestor given
a genealogical tree defined by facts for the predicates parent and married as background
knowledge and positive and negative examples of the predicate ancestor; for λProgol, the
higher-order predicate trans, which “given a predicate of two arguments, constructs its
transitive closure” is added to the background knowledge. The genealogical tree used for
this experiment is described in Fig.1 and contains 119 members over 11 relations of the
Romanov Russian dynasty.

To compare the two systems, we created files containing positive and negative exam-
ples of ancestor. These files contain an equal number of positive and negative examples
generated randomly. We then compared the respective predicative accuracy of Progol and

284 N. PAHLAVI

λProgol on these examples by doing a leave-one-out cross-validation. The results of this
experiment are shown in Fig.1.

For Progol, which has to learn the definition recursively, the larger the input and the
smaller the number of examples, the smaller the probability to learn the definition correctly.
Hence the difficulty to learn and the observation that the accuracy seems to decrease with
the number of examples. On the other hand, λProgol learns the correct definition in all
the cases, which is ancestor@X@Y⇐ [trans@parent@X@Y]. This definition is non recursive
and can be learned from any given positive example. On this example consisting of learning
a recursive definition from large data with few examples, we have showed that HOLL can
outperform FOLL. This result along with similar others are available at [Pah].

3. Expected Achievements and Open Issues

We intend to continue the tests and comparisons of λProgol against already existing
ILP systems to determine how HOLL may outperform FOLL as it was shown above. We
aim to present theoretical results for HOLL. ILP theory seems to be rather intuitively
adaptable within a HOL framework. For λProgol, we will have to prove that higher-order
inverse entailment is possible and to generalize correctness and complexity results for the
Progol Bottom Clause and Search algorithms. In [Wol94], a model-theoretic semantics
for HOHC is provided. We also want to investigate tasks and discoveries not learnable
by first-order ILP. It could be of interest to look at HOL theorem provers, or integrated
functional logic programming languages and Mathematical Discovery. Further objectives
may be to investigate abduction within λProgol, active learning, introduce Probability and
adapt Probabilistic Logic Learning (that I have studied during my MSc, [Mug06b] and
[Mug06a]) within HOL, look at applications such as Bioinformatics, where ILP has been
successfully applied, and consider other logics within λProlog.

Acknowledgement

I mostly wish to thank my supervisor Stephen Muggleton and Imperial College London
for allowing me to pursue my PhD in great conditions. I am also grateful to NICTA for
having given me the opportunity to visit their Canberra Research Laboratory for a month
and thoroughly interact and discuss my work with Kee Siong Ng, John Lloyd and Scott
Sanner.

References

[Far08] W. Farmer. The seven virtues of simple type theory. J. Applied Logic, 2008.
[Fur96] K. Furukawa, M. Imai, and R. Goebel. Hyper least general generalization and its application to

higher-order concept learning. Tech. report, Keio University, 1996.
[Har90] M. Harao. Analogical reasoning based on higher-order unification. In ALT. 1990.
[Hue75] G. Huet. A unification algorithm for typed λcalculus. Theor. Comp. Sci., 1975.
[Llo03] J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
[Mal03] D. Malerba. Learning recursive theories in the normal ILP setting. Fundam. Inform., 57(1):39–77,

2003.
[Mil98] Dale Miller. λProlog: An Introduction to the Language and its Logic. 1998.
[Mug95] S.H. Muggleton. Inverse entailment and Progol. New Generation Computing, 13:245–286, 1995.

URL http://www.doc.ic.ac.uk/\~shm/Papers/InvEnt.pdf

HIGHER-ORDER LOGIC LEARNING AND λPROGOL 285

[Mug06a] S.H. Muggleton and N. Pahlavi. The Complexity of Translating BLPs to RMMs. In Proceedings
of the 16th International Conference on Inductive Logic Programming. Springer-Verlag, 2006.

[Mug06b] S.H. Muggleton and N. Pahlavi. Stochastic Logic Programs: A Tutorial. In L. Getoor and
B. Taskar (eds.), Statistical Relational Learning. MIT Press, 2006.

[Nad90] G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 1990.
[Ng08] K. S. Ng, J. W. Lloyd, and W. T. B. Uther. Probabilistic modelling, inference and learning using

logical theories. Ann. Math. Artif. Intell., 54(1-3):159–205, 2008.
[Pah] N. Pahlavi. λProgol Homepage. http://www.doc.ic.ac.uk/˜namdp05/.
[Pah09a] N. Pahlavi and S. Muggleton. Higher-order Logic Learning. 19th International Conference on

Inductive Logic Programming. 2009. (Poster).
[Pah09b] N. Pahlavi and S. Muggleton. Higher-order Logic Learning and λProgol. IJCAI09 Workshop on

Abductive and Inductive Knowledge Development. 2009.
[Pah10] N. Pahlavi and S. Muggleton. Can HOLL outperform FOLL? In Proceedings of the 20th Interna-

tional Conference on Inductive Logic Programming. 2010. To Appear.
[Wol94] D. A. Wolfram. A semantics for λProlog. Theor. Comp. Sci., pp. 277–289, 1994.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 286–288

http://www.floc-conference.org/ICLP-home.html

LOCAL BRANCHING IN A CONSTRAINT PROGRAMMING

FRAMEWORK

FABIO PARISINI

DEIS, University of Bologna,
V.le Risorgimento 2, 40136, Bologna, Italy
E-mail address: fabio.parisini@unibo.it

Local branching is a general purpose heuristic method which searches locally around the
best known solution by employing tree search. It has been successfully used in Mixed Integer
Programming (MIP) where local branching constraints are used to model the neighborhood
of an incumbent solution and improve the bound.

The neighborhoods are obtained by linear inequalities in the MIP model so that MIP
searches for the optimal solution within the Hamming distance of the incumbent solution.
The linear constraints representing the neighborhood of incumbent solutions are called local
branching constraints and are involved in the computation of the problem bound. Local
branching is a general framework to effectively explore solution subspaces, making use of
the state-of-the-art MIP solvers.

The local branching framework is not specific to MIP: it can be integrated in any tree
search strategy. In our research work we propose the integration of the local branching
framework in Constraint Programming (CP).

The local branching technique, as introduced in [Fis03], is a complete search method
designed for providing solutions of better and better quality in the early stages of search
by systematically defining and exploring large neighborhoods. On the other hand, the idea
has been used mainly in an incomplete manner since [Fis03]: linear constraints defining
large neighborhoods are iteratively added and the neighborhoods are explored, generally in
a non-exhaustive way. When this is done within a local search method, the overall algo-
rithm follows the spirit of both large neighborhood search [Sha98] and variable neighborhood

search [Mla97]. The main peculiarity of local branching is that the neighborhoods and their
exploration are general purpose.

Integration of local search and CP aided tree search has been long advocated in the
literature. See for instance Chapter 9 in [Mil03] and more recently the use of propagation
within a large neighborhood search algorithm [Per04], the use of local search to speed up
complete search [Sel06] and Beck’s solution-guided multi-point constructive search [Bec07].
The technique which resembles most to our work is the latter which makes use of the existing
solutions to guide the search.

We argue that integrating local branching in CP merges the advantages of the inten-
sification and diversification mechanisms specific to local search methods, with constraint
propagation that speeds up the neighborhood exploration by removing infeasible variable
value assignments.

Key words and phrases: Local Branching, LDS, Local Search, Tree Search, Constraint Programming.

c© F. Parisini
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.286

LOCAL BRANCHING IN A CONSTRAINT PROGRAMMING FRAMEWORK 287

Integrating local branching in CP is not simply a matter of implementation but instead
requires significant extensions to the original search strategy. The main extensions to the
traditional MIP approach we have developed follow:

• First, using a linear programming solver for computing the bound of each neighbor-
hood is not computationally affordable in CP. We have therefore studied a lighter
way to compute the bound of the neighborhood which is efficient, effective and
incremental, using the additive bounding technique.

• Second, we developed a cost-based filtering algorithm for the local branching con-
straint by extracting reduced-costs out of additive bounding.

• Third, we have studied a CP-tailored diversification technique that can push the
search arbitrarily far from the current incumbent solution. This technique allows us
to explore large sections of a big diversification space, using CP-specific modeling
elements.

All these aspects have been thoroughly tested on a set of instances of the Asymmetric
Traveling Salesman Problem with Time Windows [Asc95], having as first term of comparison
a pure CP approach, using the same model and cost based filtering as our CP local branching
implementation. Our experimental results demonstrate the practical value of integrating
local branching in CP. The results can be summarized as follows: (i) on small-size instances
where pure CP proves optimality, we find the optimal solution in a shorter time and prove
optimality quicker, (ii) on medium-size instances, we can prove optimality where CP fails,
(iii) on large-size instances, where both methods fail to prove optimality, we obtain a better
solution quality within the same time limit. Moreover, we obtain even better results when
compared with Limited Discrepancy Search (pure and enriched with bound computation)
and with pure local search.

The first results are encouraging, but much research work still has to be done. In
particular, the diversification technique we have developed for escaping the local minima of
Local Branching is very promising and its study is just at an initial phase. This technique
works on the best solution found during Local Branching iterations, named as reference
solution, and performs a diversification search by explicitely setting difference constraints
on a subset of the problem variables. For example, if we have the reference solution x̄

having values x̄1 = 4, x̄2 = 2, x̄3 = 5, x̄4 = 1, x̄5 = 2 we can perform diversification by
simply setting constraints like x2 6= 2, x3 6= 5, x5 6= 2 and executing a normal CP search
using the reduced variables domains.

This diversification approach has a very strong potentiality for CP Based Local Branch-
ing, as the capability of effectively setting difference constraints is something natural in Con-
straint Programming framework, while it is not in MIP; using this kind of diversification
approach exploits CP specific peculiarities, still mantaining the Local Branching framework
completely general. We are also working on the definition of problem independent criteria
to help the selection process of the variables to set difference constraints for (currently the
best results are given by random choices); tests needs to be done to understand how many
constraints is better to set on different kinds of problem instances.

Moreover a similar approach can be used for intensification processes, by using a ref-
erence solution x̄ as guide and setting equality constraints of the kind xi = x̄i on a subset
of variables to explore the neighborhood of x̄; we can easily explore portions of the search
space which are quite far in terms of discrepancy from the reference solution x̄, reaching dis-
crepancy values that we could never reach with Limited Discrepancy Search (LDS) [Har95].

288 F. PARISINI

In practice, when dealing with a problem instance modeled by n domain variables, we can
explore portions of the search space up to a discrepancy value of k by setting n−k equality
constraints and performing a normal CP search on the remaining k variables, having a much
reduced search space.

It is immediate to observe that both the intensification and the diversification techniques
that we are studying are based on strong randomization elements, i.e. the choice of the
variables to set constraints for; this is absolutely normal in a setting where we give up
on performing a complete search to obtain the optimal solution because of the extreme
complexity of the problem instances.

The intensification and diversification techniques that we have briefly outlined above
must be carefully studied and tested over real problem instances. Many parameters have
to be tuned, like the number of equality or difference constraints to set, the relation of this
number with the problem size, whether it is opportune to set both equality and difference
constraints together, but above all if there is an effective and general way to select the best
variables to set constraints for. This kind of work is very interesting as intensification and
diversification techniques are basic elements of many search techniques, first of all in the
neighborhood and diversification searches within Local Branching, but in general any time
we have to perform a tree search in CP.

References

[Asc95] N. Ascheuer. Hamiltonian path problems in the on-line optimization of flexible manufacturing sys-

tems. Ph.D. thesis, Technische Universität Berlin, 1995.
[Bec07] J. C. Beck. Solution-guided multi-point constructive search for job shop scheduling. J. Artif. Intell.

Res. (JAIR), 29:49–77, 2007.
[Fis03] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.
[Har95] W. Harvey and M.L. Ginsberg. Limited discrepancy search. In Proc. of IJCAI-95, pp. 607–615.

Morgan Kaufmann, 1995.
[Mil03] M. Milano. Constraint and Integer Programming: Toward a Unified Methodology. Kluwer Academic

Publishers, 2003.
[Mla97] N. Mladenovic and P. Hansen. Variable neighbourhood search. Computers and Operations Research,

24:1097–1100, 1997.
[Per04] L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighbourhood search. Proc. of CP-04,

LNCS, 3258:468–481, 2004.
[Sel06] M. Sellmann and C. Ansotegui. Disco - novo - gogo: integrating local search and complete search

with restarts. In Proc. of AAAI-06, pp. 1051–1056. AAAI Press, 2006.
[Sha98] P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems.

Proc. of CP-98, LNCS, 1520:417–431, 1998.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 289–293

http://www.floc-conference.org/ICLP-home.html

LOGIC PROGRAMMING FOUNDATIONS OF CYBER-PHYSICAL

SYSTEMS

NEDA SAEEDLOEI 1

1 Department of Computer Science
University of Texas at Dallas
Richardson, TX 75080, USA
E-mail address: neda.saeedloei@student.utdallas.edu

Abstract. Cyber-physical systems (CPS) are becoming ubiquitous. Almost every device
today has a controller that reads inputs through sensors, does some processing and then
performs actions through actuators. These controllers are discrete digital systems whose
inputs are continuous physical quantities and whose outputs control physical (analog)
devices. Thus, CPS involve both digital and analog data. In addition, CPS are assumed
to run forever, and many CPS may run concurrently with each other. we will develop
techniques for faithfully and elegantly modeling CPS. Our approach is based on using
constraint logic programming over reals, co-induction, and coroutining.

1. Introduction and Problem Description

Cyber-physical systems (CPS) are becoming ubiquitous. Almost every device today
has a controller that reads inputs through sensors, does some processing and then performs
actions through actuators. Examples include controller systems in cars (Anti-lock Brake
System, Cruise Controllers, Collision Avoidance, etc.), automated manufacturing, smart
homes, robots, etc. These controllers are discrete digital systems whose inputs are contin-
uous physical quantities (e.g., time, distance, acceleration, temperature, etc.) and whose
outputs control physical (analog) devices. Thus, CPS involve both digital and analog data.
In addition, CPS are assumed to run forever, and many CPS may run concurrently with
each other [Lee08, Gup06].

CPS have the following four characteristics [Lee08, Gup06]: (i) they perform discrete
computations, (ii) they deal with continuous quantities, (iii) they are concurrent, and (iv)
they run forever. Due to fundamentally discrete nature of computation, researchers have
had difficulty dealing with continuous quantities in computations (typical approaches dis-
cretize continuous quantities, e.g., time). Likewise, modeling of perpetual computations is
not well understood (only recently, techniques such as co-induction [Sim07, Gup07] have
been introduced to formally model rational, infinite computations). Concurrency is reason-
ably well understood, but when combined with continuous quantities and with perpetual
computations, CPS become extremely hard to model faithfully. In this research work we will
develop techniques for faithfully and elegantly modeling CPS for which no good formalisms
exist within computer science.

Key words and phrases: Cyber-Physical Systems, Constraint Logic Programming over reals, Co-induction,
Coroutining.

c© N. Saeedloei
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.289

290 N. SAEEDLOEI

2. Background and Overview of the Existing Literature

CPS are highly complex systems for which today’s computing and networking technolo-
gies do not provide adequate foundations. In fact, Edward Lee states [Lee08]:

Cyber-physical systems are integrations of computation with physical pro-
cesses. Embedded computers and networks monitor and control the phys-
ical processes, usually with feedback loops where physical processes affect
computation and vice versa. In the physical world, the passage of time is in-
exorable and concurrency is intrinsic. Neither of these properties is present
in today’s computing and networking abstractions.

Lee goes on to argue that “the mismatch between these abstractions and properties of
physical processes impede technical progress.” Thus according to Lee, a major challenge is
to find the right abstractions for CPS. Similarly, Rajesh Gupta [Gup06] urges researchers
“to achieve the goal of semantic support for location and time at all levels,” and address
the following technical problems for CPS:

(1) “How do we capture location (and timing) information into CPS models that allows
for validation of the logical properties of a program against the constraints imposed
by its physical (sensor) interaction.”

(2) “What are useful models for capturing faults and disconnections within the coupled
physical-computational system? ...”

(3) “What kind of properties that can be verified, ...”
(4) “What programming model is best suited for CPS applications ...”

3. Goal of the Research

The goal of our research is to develop techniques for faithfully and elegantly modeling
cyber-physical systems. our approach is based on using logic programming for modeling
computations, constraint logic programming for modeling continuous physical quantities,
co-induction for modeling perpetual execution and coroutining for modeling concurrency in
CPS. CPS are thus represented as coroutined co-inductive constraint logic programs which
are subsequently used to elegantly verify cyber-physical properties of the system relating to
safety, liveness and utility. This logic program can also be used for automatically generating
implementation code for the CPS.

4. Current Status of the Research and Preliminary Results Accomplished

We assume that most CPS are state machines (finite automata) that control physical
systems. In our formalism, state machines are modeled as logic programs [Llo87, Ste94],
physical quantities are represented as continuous quantities (i.e., not discretized) and the
constraints imposed on them by CPS physical interactions are faithfully modeled with
constraint logic programming over reals (CLP(R)) [Jaf94]. By considering co-inductive logic
programming [Bar96, Gup07], we are able to model the non-terminating nature of CPS,
and finally concurrency will be handled by allowing coroutining within logic programming
computations.

Hybrid automata (of which timed automata and pushdown timed automata are in-
stances) constitute the foundations for CPS. We have developed a general framework based
on constraint logic programming and co-induction for modeling/verifying CPS [Sae10b].

LOGIC PROGRAMMING FOUNDATIONS OF CYBER-PHYSICAL SYSTEMS 291

The formalism that are used in this framework are timed automata and pushdown timed
automata (PTA) which can be computationally modeled by combination of co-inductive
logic programming (or Co-LP) and CLP(R). These can be generalized to hybrid automata
and pushdown hybrid automata. We have developed a general method of converting timed
automata and PTA to co-inductive CLP(R) programs. The method takes the description of
a pushdown timed automaton (timed automaton) and generates a co-inductive constraint
logic program over reals. We have shown how a co-inductive CLP(R) rendering of a push-
down timed automaton can be used to verify safety and liveness properties of complex
timed systems. We have illustrated the effectiveness of our approach by showing how the
well-known generalized railroad crossing (GRC) problem [Hei94] can be naturally modeled,
and how its various safety and utility properties can be elegantly verified.

We have also developed timed grammars as a simple and natural formalism for describ-
ing timed languages. Timed grammars describe words that have real-time constraints placed
on the times at which the words’ symbols appear. Timed grammars can be generalized to
hybrid grammars to model other types of continuous phenomena.

We extended the concept of context-free grammars (CFGs) to timed context-free gram-
mars (TCFGs) and timed context-free ω-grammars (ω-TCFGs for brevity) [Sae10a]. In-
formally, a timed context-free grammar is obtained by associating clock constraints with
terminal and non-terminal symbols appearing in the productions of a CFG. Timed context-
free grammars describe timed context-free languages (TCFLs). A TCFL contains those
strings that are accepted by the underlying untimed CFG but which also satisfy the timing
constraints imposed by the associated clock constraints. Timed context-free ω-grammars
describe timed context-free languages containing infinite-sized words, and are a generaliza-
tion of timed ω-regular languages recognized by timed automata.

The words in a timed language consist of a sequence of symbols from the alphabet of
the language the grammar accepts paired with the time-stamp indicating the time that
symbol was seen. Timed languages are useful for modeling complex real-time, hybrid and
cyber-physical systems.

We have shown how DCGs together with CLP(R) and co-induction can be used to
develop efficient and elegant parsers for timed grammars. We have developed a system that
takes an ω-TCFG and converts it into a DCG augmented with co-induction and CLP(R).
The resulting co-inductive constraint logic program acts as a parser for the ω-TCFL recog-
nized by the ω-TCFG. We have applied our general method of converting timed grammars
to DCGs to the GRC problem with two tracks and presented simple timed context-free ω-
grammar for controller, gate, and track components of this problem. The logic programming
rendering of these ω-grammars are also generated by our system.

5. Open Issues and Expected Achievements

Our research group has done significant amount of work over the last few years to model
CPS. However, most of it was focused on verifying on properties of systems [Sae10b, Sae10a,
Ban10, Gup07]. Also, we were focused on solving the harder problems of logically modeling
continuous quantities and perpetual nature of these systems. The concurrency aspect re-
ceived less attention. As part of my research, I will continue my work on specification and
verification of CPS but focus also on concurrency exhibited by CPS as well as generation
their implementation from specifications in a provably correct manner. Research will be
pursued along the following lines:

292 N. SAEEDLOEI

Timed π-calculus: I am studying the extension of π-calculus with continuous time.
π-calculus [San02] is a well known formalism for modeling concurrency. Theoretically, the π-
calculus can model concurrency, message exchange as well as infinite computation (through
the infinite replication operator ’ !’), however, it does not deal with modeling of continuous
quantities. I am developing an executable operational semantics of π-calculus in which con-
currency is modeled by coroutining in logic programming (realized via delay declarations of

Prolog [Ste94]) and infinite computations by co-induction [Saeon]. This operational seman-
tics will be extended with continuous real time, which will be modeled with CLP(R). The
executable operational semantics thus realized will automatically lead to an implementa-
tion of the timed π-calculus. The timed π-calculus will be used to model the GRC more
faithfully and to verify its safety and utility properties. There is past work on developing
executable operational semantics of the π-calculus (but not timed π-calculus) [Yan], that is
based on logic programming, but it falls short as it is unable to model perpetual processes
and infinite replication since co-inductive logic programming is a recent concept developed
by our group.

Generating Implementation: Thus far we have seen how a cyber-physical system
can be specified and its cyber-physical properties verified. We would like to use the spec-
ification to also generate the implementation code automatically. This way we can ensure
that the implementation is faithful to the (verified) specification.

In order to generate the implementation code, the actions to be taken in the situation
that a constraint in not met has to be specified as well. For example considering the
GRC problem, what happens if the crossing-gate does not close within 2 units of time
since the approach signal of a train was received). That is, normal situations as well as
error situations have to be covered. Once the error situations are also specified, then it is
relatively straightforward to generate the implementation along with all the exceptions and
failsafe checks. Thus, research will be conducted on automatically deriving implementation
of CPS from their verified specifications.

Real-life Applications: The modeling and implementation infrastructure we develop
will be tested on real-life applications. These applications will come from manufacturing
companies.

Acknowledgment

I would like to thank my dissertation advisor, Prof. Gupta, for his constant guidance,
support and advice.

References

[Ban10] Ajay Bansal, Neda Saeedloei, and Gopal Gupta. Automated planning under realtime constraints.
In Florida AI Research Symposium. To appear, 2010.

[Bar96] Jon Barwise and Lawrence Moss. Vicious circles: on the mathematics of non-wellfounded phenom-
ena. Center for the Study of Language and Information, Stanford, CA, USA, 1996.

[Gup06] Rajesh Gupta. Programming models and methods for spatiotemporal actions and reasoning in
cyber-physical systems. In NSF Workshop on CPS. 2006.

[Gup07] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya. Coinductive logic pro-
gramming and its applications. In ICLP, pp. 27–44. Springer, 2007.

[Hei94] Constance L. Heitmeyer and Nancy A. Lynch. The generalized railroad crossing: A case study in
formal verification of real-time systems. In IEEE RTSS, pp. 120–131. 1994.

LOGIC PROGRAMMING FOUNDATIONS OF CYBER-PHYSICAL SYSTEMS 293

[Jaf94] Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In ISORC. 2008.
[Llo87] J. W. Lloyd. Foundations of logic programming / J.W. Lloyd. Springer-Verlag, Berlin ; New York

:, 2nd edn., 1987.
[Sae10a] Neda Saeedloei and Gopal Gupta. Timed definite clause omega-grammars. In Leibniz International

Proceedings in Informatics. To appear, 2010.
[Sae10b] Neda Saeedloei and Gopal Gupta. Verifying complex continuous real-time systems with coinductive

clp(r). In Languages and Automata Theory. To appear, 2010.
[Saeon] Neda Saeedloei and Gopal Gupta. Timed pi-calculus and its applications. In preparation.
[San02] Davide Sangiorgi and David Walker. The pi-Calculus. Cambridge University Press, 2002.
[Sim07] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic programming: Extending logic

programming with coinduction. In ICALP, pp. 472–483. 2007.
[Ste94] Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.): advanced programming techniques.

MIT Press, Cambridge, MA, USA, 1994.
[Yan] Ping Yang, C. R. Ramakrishnan, and Scott A. Smolka. A logical encoding of the pi-calculus: Model

checking mobile processes using tabled resolution. In VMCAI 2003, pp. 116–131.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 294–299

http://www.floc-conference.org/ICLP-home.html

REALIZING THE DEPENDENTLY TYPED λ-CALCULUS

ZACHARY SNOW 1

1 Department of Computer Science and Engineering
University of Minnesota
4-192 EE/CS Building
200 Union Street SE
Minneapolis, MN 55455
E-mail address: snow@cs.umn.edu

Abstract. Dependently typed λ-calculi such as the Edinburgh Logical Framework (LF)
can encode relationships between terms in types and can naturally capture correspondences
between formulas and their proofs. Such calculi can also be given a logic programming
interpretation: the system is based on such an interpretation of LF. We have considered
whether a conventional logic programming language can also provide the benefits of a
Twelf-like system for encoding type and term dependencies through dependent typing,
and whether it can do so in an efficient manner. In particular, we have developed a sim-
ple mapping from LF specifications to a set of formulas in the higher-order hereditary
Harrop (hohh) language, that relates derivations and proof-search between the two frame-
works. We have shown that this encoding can be improved by exploiting knowledge of the
well-formedness of the original LF specifications to elide much redundant type-checking
information. The resulting logic program has a structure that closely follows the original
specification, thereby allowing LF specifications to be viewed as meta-programs that gen-
erate hohh programs. We have proven that this mapping is correct, and, using the Teyjus
implementation of λProlog, we have shown that our translation provides an efficient means
for executing LF specifications, complementing the ability the Twelf system provides for
reasoning about them. In addition, the translation offers new avenues for reasoning about
such specifications, via reasoning over the generated hohh programs.

1. Introduction and problem description

There is significant and growing interest in tools for specifying and reasoning about
formal systems. These systems, such as programming languages and logics are typically
defined in terms of a rules-based operational semantics. This leads to one obvious technique
for specification: through the use of predicate logics, and languages like Prolog. In this
setting we can encode expressions in the formal system as terms in the language, and use
predicates to define the operational semantics. The systems that we might wish to specify
can have a rich structure, for instance they may include a notion of binding or abstraction,
and require operations like capture-avoiding substitutions and properties like α-equivalence.
Implementing these features anew, for each logic or language that one wishes to specify, is
time consuming and error prone, and so might benefit from language integration. Therefore

1998 ACM Subject Classification: Languages, Theory.
Key words and phrases: logical frameworks, logic programming.

c© Z. Snow
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.294

REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 295

logics or languages that embody these notions are often preferred, and have been widely
used in the specification, and particularly the implementation, of such systems [Wha05].

Moving in a different direction, we might think of encoding properties of terms, and re-
lationships between terms, not through explicit predicate definitions, but instead implicitly

through types. Dependent types, like those provided by the dependently typed λ-calculus,
provide powerful and natural methods for expressing these kinds of constraints. Further-
more, analyzing such specification for properties of correctness can often be reduced to type
checking. This approach, distinct from that of predicate encodings, has also found wide-
spread adoption in specifying and implementing formal systems, as well [Nec97, Ler06].

But specification is only the first goal. Given a specification of a formal system, we
can think of doing several things: we can reason over the specifications, and thereby prove
various properties about the logic or language being specified. We can also animate the
specifications: for instance, having specified a language and its operational semantics, we
might execute the specification in order to evaluate programs written in that language. The
latter possibility actually benefits from the former; whereas traditionally we might specify
and reason in one language, and then implement in another, here we execute exactly the
same program about which we have reasoned. This handily removes the question of whether
the implementation matches the specification.

Therefore our focus has been on problems associated with specifying formal systems
using dependently typed languages, and then efficiently animating these specifications. In
particular, we have sought to leverage existing work in the realm of efficient implementa-
tions of predicate logics when doing so, by designing translations from dependently typed
languages to predicate logics.

2. Background and overview of the existing literature

As we have described, we can think of using various languages for specifying systems.
On the one hand, we have higher order predicate logics like hohh, a logic based on Horn
clauses, in which terms are those of the λ-calculus, but with support for handling the binding
structure inherent in such terms. λProlog [Nad88] is a higher order logic programming
language based on hohh, and extended in various ways (for instance, with a module system
that supports programming in the large, with ad hoc polymorphism, and with facilities
for interacting with the outside world). Furthermore, λProlog admits an efficient compiled
implementation, as realized by the Teyjus system [Gac08]. Finally, there has already been
work in analyzing and reasoning over programs written in λProlog [Gac09b, Bae10a], and
there exist tools [Gac09a, Bae10b] for reasoning over it, both interactively and automatically,
as well.

On the other hand, we have logics and languages founded on the dependently typed
λ-calculus, for instance the The Edinburgh Logical Framework (LF) [Har93]. Twelf [Pfe99]
is an implementation of LF that allows for reasoning over such specifications, and animating
them. In and of itself, LF is strictly a specification language; it has no operational semantics
of its own. However, one can apply the Curry-Howard Isomorphism [How80] to realize a
logic programming interpretation of LF. In this context one defines types that correspond
to judgments; then searching for an inhabitant of such a type corresponds to searching for
a proof of the given judgment. Constructors for the type play the role of inference rules
for constructing derivations of the judgment. And the discovered inhabitant, called a proof

term, is itself a proof of the relevant judgment.

296 Z. SNOW

Twelf animates specifications in an interpreted fashion. There has already been research
into improving this implementation by way of optimization (e.g., [Pie06, Pie03], which have
proved quite fruitful. In the end, however, the existing implementation of Twelf suffers due
to its interpreted nature, and we find that it cannot be used on many realistically sized
programs.

3. Goal of the research

The specific goal of my research as described herein has been to develop an efficient
implementation of logic programming search for LF specifications, in particular through
translation to λProlog, so that they may be executed using the Teyjus system. In addition,
an important aspect of this work has been to ensure that this translation is transparent, so
that the structure of the LF specification is clear from the structure of the generated logic
program. This facilitates an understanding of the translation that allows the programmer
to view LF specifications as a meta-programs, and enables reasoning over LF specifications
using existing tools for reasoning over hohh programs.

4. Current status of the research

We have developed several translations from LF specifications into hohh. The problem
of translating an LF specification into equivalent hohh has been investigated by Felty [Fel89,
Fel90] — in this context, “equivalence” should be understood to mean the following: if an LF
judgment has a derivation under a particular LF specification, then the translated judgment
has a derivation under the translated specification in hohh. However this translation is not
suitable for the purposes of logic programming, as it assumes that the proof term is already
known, whereas when animating specifications this is exactly what is not known. Thus,
taking inspiration from this translation we have developed our “simplified” translation that
is suitable for logic programming.

Next we have improved this translation in two ways. First, the simplified translation
is inefficient in that there are redundancies in proof search, that can be avoided through
various observations about the nature of valid LF specifications. Indeed, this aspect of LF
specifications, (that is, that they contain significant amounts of redundant typing informa-
tion) has been investigated by, e.g., Reed [Ree08], for the purpose of limiting the size of
proof terms, which can become quite large. Addressing these redundancies is critical to the
usefulness of the translation as an implementation mechanism for a separate reason: these
redundancies can lead to inefficiencies, and even asymptotic changes in the complexity of
algorithms implemented in specifications. Second, the simplified translation generates hohh

logic programs that are relatively opaque, in the sense that it is not obvious that the logic
program corresponds to the original specification. This is largely due to the fact that the
simplified translation does not make much use of the rich type system afforded us by hohh.

We address these issues in a second, “optimized” translation. We first develop a tech-
nique for identifying and eliminating redundancies in proof search. And we improve the
transparency of the translation by making a deeper use of the type system of hohh, to, for
instance, reflect the non-dependent aspects of LF types as hohh types. Our final translation
includes these optimizations, along with a few others, and results in a translation that is ef-
ficient and transparent. Because the generated λProlog programs share the same structure
as the original LF specification we can view LF specifications as meta-programs. What’s

REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 297

more, as we’ve proved that our various translations are equivalent to LF, it is possible to
reason over the resulting logic programs in order to reach conclusions about the properties
of the original specification. And finally, we’ve developed a system that implements the
translation.

Our implementation, named Parinati [Sno10] and written in Objective Caml, is released
under the GNU General Public License version 3. Given a valid LF specification written
in the concrete sytnax of Twelf, along with various types for which inhabitants should be
sought, it generates a λProlog program that can be compiled and run using the Teyjus
system.

5. Preliminary results accomplished

Preliminary experimental results comparing the efficiency of our implementation with
that of Twelf are quite good: we have obtained an increase in efficiency of anywhere from 2
times to over 100 times in many cases. What’s more, for sufficiently large problem sizes our
implementation is almost always more efficient in terms of running time, apparently due to
the extreme memory consumption that Twelf can exhibit — this is characteristic of certain
kinds of interpreted implementations [Bri94] of logic programming search, including Twelf.

Beyond various performance metrics we have also demonstrated the transparency of
the translation. In fact, our translation generates λProlog programs that almost exactly
matches code that might be written “by hand”, and the underlying structure of the original
LF specification is completely clear. As already described, this allows the programmer to
view the LF specification as a kind of meta-program for generating λProlog, and furthermore
allows for reasoning over the resulting program as a method for reasoning over the original
LF specification. What’s more, this transparency is not only enabling, it is also elucidating:
the generated hohh program is easier to reason about because it highlights those types that
could have logical importance, and elides those that do not.

6. Open issues and expected achievements

There are a number of possible directions to take this work. First, there are still some
examples in which our implementation is only as efficient, or even less efficient, than that
of Twelf. We have begun a series of experiments to determine what factors are causing this
slowdown, which we believe to be due to differences in the treatment of occurs checking
between the two systems. Next, the efficiency of the implementation depends on our ability
to accurately identify and eliminate redundancies. Any improvements we might make to
this identification process should lead to performance increases.

Much of our work has been on optimizing our translation to λProlog; however, a differ-
ent approach is to compile directly to, for instance, the Teyjus virtual machine’s instruction
set. By employing such an approach we might avoid some of the thorny questions as-
sociated with redundancy elimination. More generally, direct compilation could allow us
to regain opportunities for those improvements that might be lost by translating first to
λProlog and then relying on its implementation that is not specially optimized to treat LF-
specific programs. However, this would clearly eliminate the possibility of treating LF as a
meta-programming language for writing complex λProlog programs, as the requirement of
transparency could not be fulfilled.

298 Z. SNOW

Twelf has several extensions aimed at the practicalities of programming. One particu-
larly useful extension is the ability to use metavariables in the type for which an inhabitant
is to be sought; these are instantiated during search. While the translation we have de-
scribed includes this extension, we have not yet fully understood the theoretical aspects of
it in terms of correctness of the translated programs.

Finally, we have only begun to understand how our translation fares when the purpose
is to reason over an LF specification by analyzing the resulting hohh program. In the
future we could apply existing tools to both LF specifications and their hohh counterparts
generated by the translation, to judge the relative merits of reasoning in either system.

Acknowledgements

This work has been supported by the NSF grants CCR-0429572 and CCF-0917140.
Opinions, findings, and conclusions or recommendations expressed in this papers are those
of the authors and do not necessarily reflect the views of the National Science Foundation.

References

[Bae10a] David Baelde, Dale Miller, and Zach Snow. Focused inductive theorem proving, 2010. Accepted
for publication at IJCAR’10.

[Bae10b] David Baelde, Zach Snow, and Alexandre Viel. The Tac system, 2010.
[Bri94] Pascal Brisset and Olivier Ridoux. The architecture of an implementation of lambda-prolog: Pro-

log/mali. In ILPS Workshop: Implementation Techniques for Logic Programming Languages. 1994.
[Fel89] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Programming

Language. Ph.D. thesis, University of Pennsylvania, 1989.
[Fel90] Amy Felty and Dale Miller. Encoding a dependent-type λ-calculus in a logic programming lan-

guage. In Mark Stickel (ed.), Proceedings of the 1990 Conference on Automated Deduction, LNAI,
vol. 449, pp. 221–235. Springer, 1990.

[Gac08] Andrew Gacek, Steven Holte, Gopalan Nadathur, Xiaochu Qi, and Zach Snow. The Teyjus system
– version 2, 2008. Available from http://teyjus.cs.umn.edu/.

[Gac09a] Andrew Gacek. Abella, 2009. Available from http://abella.cs.umn.edu/.
[Gac09b] Andrew Gacek. A Framework for Specifying, Prototyping, and Reasoning about Computational

Systems. Ph.D. thesis, University of Minnesota, 2009.
[Har93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of

the ACM, 40(1):143–184, 1993.
[How80] William A. Howard. The formulae-as-type notion of construction, 1969. In J. P. Seldin and R. Hind-

ley (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp.
479–490. Academic Press, New York, 1980.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a
proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones (eds.), POPL, pp. 42–54.
ACM, 2006.

[Nad88] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International Logic Pro-

gramming Conference, pp. 810–827. MIT Press, Seattle, 1988.
URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf

[Nec97] George C. Necula. Proof-carrying code. In Conference Record of the 24th Symposium on Principles

of Programming Languages 97, pp. 106–119. ACM Press, Paris, France, 1997.
[Pfe99] Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-logical framework

for deductive systems. In H. Ganzinger (ed.), 16th Conference on Automated Deduction (CADE),
no. 1632 in LNAI, pp. 202–206. Springer, Trento, 1999.

[Pie03] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern unification. In 19th Inter-

national Conference on Automated Deduction, pp. 473–487. Springer-Verlag, 2003.

REALIZING THE DEPENDENTLY TYPED λ-CALCULUS 299

[Pie06] Brigitte Pientka. Eliminating redundancy in higher-order unification: A lightweight approach. In
Ulrich Furbach and Natarajan Shankar (eds.), IJCAR, Lecture Notes in Computer Science, vol.
4130, pp. 362–376. Springer, 2006.

[Ree08] Jason Reed. Redundancy elimination for LF. Electron. Notes Theor. Comput. Sci., 199:89–106,
2008. doi:http://dx.doi.org/10.1016/j.entcs.2007.11.014.

[Sno10] Zach Snow. Parinati, 2010. Available from http://www.cs.umn.edu/~snow/parinati.
[Wha05] Michael William Whalen. Trustworthy translation for the requirements state machine language

without events. Ph.D. thesis, Minneapolis, MN, USA, 2005. Adviser-Heimdahl, Mats Per.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 300–302

http://www.floc-conference.org/ICLP-home.html

STRUCTURED INTERACTIVE MUSICAL SCORES

MAURICIO TORO-BERMÚDEZ 1

1 Université de Bordeaux 1, Laboratoire Bordelais de Recherche en Informatique, Bâtiment A30.
351, cours de la Libération F-33405 Talence cedex, France.
URL: http://www.labri.fr/perso/mtoro/

Abstract. Interactive Scores is a formalism for the design and performance of interactive
scenarios that provides temporal relations (TRs) among the objects of the scenario. We
can model TRs among objects in Time Stream Petri nets, but it is difficult to represent
global constraints. This can be done explicitly in the Non-deterministic Timed Concurrent
Constraint (ntcc) calculus. We want to formalize a heterogeneous system that controls in
one subsystem the concurrent execution of the objects using ntcc, and audio and video
processing in the other. We also plan to develop an automatic verifier for ntcc.

Introduction

Interactive Scores (IS) are currently used for the design and performance of Electroa-
coustic music [All08a] and live spectacles [Bal09] (e.g., interactive theater plays and inter-
active museums). Both applications are based on Petri nets [All08b]. The main purpose of
IS is to provide temporal relations; for instance, precedence between two objects and rela-
tions between their durations. Recently, we extended IS to support conditional branching
together with temporal relations [TB10]. It is now possible to represent loops and choices.

We can model temporal relations in Time Stream Petri nets (TSPN) [Sen95], but it is
difficult to represent global constraints involving (possibly) all the objects of the scenario.
Instead, in Concurrent Constraint Programming (ccp) [Sar92] there are agents that reason
about partial information contained in a constraint store; thus, global constraints are inher-
ent in ccp. However, there is not discrete time in ccp, which makes it difficult to represent
reactive systems.

There are some IS models based on extensions of ccp with discrete time. An ex-
ample is the Non-deterministic Timed Concurrent Constraint (ntcc) model of IS [Nie02,
All06]. Ntcc is an extension of ccp for non-determinism, asynchrony and discrete time. In
the declarative view, ntcc processes can be interpreted as linear temporal logic formulae
[Pnu77]. The ntcc model includes an inference system in this logic to verify properties of
ntcc models. This inference procedure was proved to be of exponential time complexity.
Nevertheless, we believe practical automatic verification could be envisioned for useful sub-
sets of ntcc via model checking (see [Fal06]). At present, there is no such automatic verifier
for ntcc.

1998 ACM Subject Classification: D. Software, D.1 Programming techniques, D.1.3 Concurrent program-
ming, D.1.5 Logic programming.

Key words and phrases: ntcc, ccp, interactive scores, temporal relations, faust, ntccrt, heterogeneous
systems, automatic verification.

c© M. Toro
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.300

STRUCTURED INTERACTIVE SCORES 301

Automated verification for ntcc will provide information about the correctness of the
system to computer scientists, and will provide important properties about the scenario to
its designers and users; for instance, reachability and liveness. We plan to augment ntcc

models of IS with these features.

1. Current and future work

Functional AUdio STream (Faust) [Orl04] is a programming language for signal pro-
cessing with formal semantics and Ntccrt [TB09] is a real-time capable interpreter for ntcc.
We implemented a signal processing prototype where Faust and Ntccrt interact together.
In the future, we want to define formal semantics to describe a heterogeneous system that
includes three subsystems: (i) one based on ntcc to control discrete events from the user
and to synchronize the objects of the scenario, (ii) another one based on Faust to process
audio and video, and finally (iii) one in charge to load and play audio and video files.

At the time of this writing, there are no formal semantics of a heterogeneous system that
synchronizes concurrent objects, handles global constraints, and controls audio and video
streams. Modeling this kind of systems will be useful in other domains such as machine
musical improvisation [Ass04] and music video games. An advantage over the existing
implementations of these systems will be verification.

In the proof system of ntcc, we can prove properties like “10 time units (TUs) after
the event eA, during the next 4 TUs, the stream B is the result of applying a gain filter
to the stream A”. However, real-time audio processing cannot be implemented in Ntccrt
because it requires to simulate 44100 TUs per second to process a 44.1 kHz sound. If we
replace some ntcc processes by Faust plugins, we can execute such system efficiently, but
we cannot verify that the properties of the system hold.

There are two open issues: (i) how to prove that a Faust plugin that replaces a ntcc

process respect the temporal properties proved for the process, and (ii) whether an im-
plementation of Interactive Scores in Ntccrt can be as efficient as the existing Petri nets
implementation, or as one using synchronous languages such as Signal [Gau87], although
the performance results from Ntccrt are promising1.

Acknowledgement

I wish to acknowledge fruitful discussions with my supervisors Myriam Desainte-Catherine
and Camilo Rueda. I also want to thank them for helping me writing this article and for
guiding my current research.

References

[All06] Antoine Allombert, Gérard Assayag, M. Desainte-Catherine, and Camilo Rueda. Concurrent con-
straint models for interactive scores. In Proc. of SMC ’06. 2006.

[All08a] Antoine Allombert, G. Assayag, and M. Desainte-Catherine. Iscore: a system for writing interaction.
In Proc. of DIMEA ’08, pp. 360–367. ACM, New York, NY, USA, 2008.

[All08b] Antoine Allombert, Myriam Desainte-Catherine, J. Larralde, and Gérard Assayag. A system of
interactive scores based on qualitative and quantitative temporal constraints. In Proc. of Artech

2008. 2008.

1We ran a prototype of a score with conditional branching in Ntccrt. The score contains 500 temporal
objects. The average duration of each time-unit was 30 ms, which is compatible with real-time interaction.

302 M. TORO

[Ass04] G. Assayag and Sholomo Dubnov. Using factor oracles for machine improvisation. Soft Comput.,
8(9):604–610, 2004.

[Bal09] P. Baltazar, A. Allombert, R. Marczak, J.M. Couturier, M. Roy, A. Sèdes, and M. Desainte-
Catherine. Virage : Une reflexion pluridisciplinaire autour du temps dans la creation numerique.
In in Proc. of JIM. 2009.

[Fal06] Moreno Falaschi and Alicia Villanueva. Automatic verification of timed concurrent constraint pro-
grams. Theory Pract. Log. Program, 6(4):265–300, 2006.

[Gau87] Thierry Gautier, Paul Le Guernic, and Löic Besnard. Signal: A declarative language for synchronous
programming of real-time systems. In Proc. of FPCA ’87. 1987.

[Nie02] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal concurrent constraint programming: Deno-
tation, logic and applications. Nordic Journal of Comp., 1, 2002.

[Orl04] Y. Orlarey, D. Fober, and S. Letz. Syntactical and semantical aspects of faust. Soft Comput.,
8(9):623–632, 2004.

[Pnu77] A. Pnueli. The temporal logic of programs. In In Proc. of the 18th IEEE Symposium on the Foun-

dations of Computer Science (FOCS-77), pages 46-57. IEEE, IEEE Computer Society Press, 1977.

1977.
[Sar92] Vijay A. Saraswat. Concurrent Constraint Programming. MIT Press, 1992.
[Sen95] Patrick Senac, Pierre de Saqui-Sannes, and Roberto Willrich. Hierarchical time stream petri net:

A model for hypermedia systems. In in Proc. of the 16th International Conference on Application

and Theory of Petri Nets, pp. 451–470. Springer-Verlag, London, UK, 1995.
[TB09] Mauricio Toro-B., Carlos Agón, Gérard Assayag, and Camilo Rueda. Ntccrt: A concurrent con-

straint framework for real-time interaction. In Proc. of ICMC 09. 2009.
[TB10] Mauricio Toro-B., Myriam Desainte-Catherine, and P. Baltazar. A model for interactive scores with

temporal constraints and conditional branching. In Proc. of Journées d’informatique musical (JIM)

’10 (to appear). 2010.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 303–305

http://www.floc-conference.org/ICLP-home.html

CUTTING-EDGE TIMING ANALYSIS TECHNIQUES

JAKOB ZWIRCHMAYR 1

1 Vienna University of Technology,
Argentinierstrasse 8,
1040 Vienna, Austria
E-mail address: jakob@complang.tuwien.ac.at

URL: http://www.complang.tuwien.ac.at

Abstract. This text gives an overview about my current research in timing analysis
at the Vienna University of Technology. After a short introduction to the topic follows
the description of an approach relying on CLP, the implicit path enumeration technique

(IPET). This technique is also used in a tool developed at the institute of Computer
Languages (TuBound). Current timing analysis tools suffer from a few flaws worth further
investigation in order to achieve better results than current state-of-the-art timing analysis
tools.

Introduction

These days embedded software systems (ESS) are found in many devices we rely on in
our daily lives. In many cases extensive testing gives us sufficient confidence in the product
and it can be sold and used the way it was intended to. On the other hand, we rely on ESS
that control very crucial mechanisms and functionality in devices and machines our safety
and lives depend upon every day. Examples of such ESS usually come from the avionics
and automotive industry, e.g. the technologies fly-by-wire and drive-by-wire. There are
no mechanical links between the control column and the steering gear of an aircraft and
the steering wheel and the wheels of a car [Kov10], or the system that is responsible for
the proper functioning of the airbag in a car. These systems are considered safety-critical
hard real-time systems (RTS). The airbag control software is required to compute and open
the airbag fast enough if sensor data matches an accident condition. In this case, correct
functioning of the ESS is not a matter of comfort and convenience but a matter of life
and death. It is crucial to abide to certain resource bounds, e.g. memory consumption
and time consumption. Guaranteeing program execution within a certain time bound is
crucial for safety-critical hard RTS, i.e. guarantee that under no circumstances the time-
bound is exceeded. The worst-case execution time (WCET) must in all cases be below the
computed bound. The WCET-bound should be as precise as possible as overestimation
usually implicates higher costs or redesign of the component. As a consequence, WCET
underestimation is certainly not an option.

Key words and phrases: Verification, timing analysis, hard real-time systems, static analysis, worst-case
execution time, loop-invariants, nested loop, symbolic computation, satisfiability modulo theories.

c© J. Zwirchmayr
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.303

304 J. ZWIRCHMAYR

1. Background

Precision and performance of WCET analysis tools depend on the undecidable problem
of identifying and separating feasible and infeasible program paths [Kov10]. Therefore
WCET analyzers often require manual user intervention, often in the form of source- or
binary-code annotations. Typical code elements that require user interaction (annotations)
are loop constructs (upper bound on loop iterations) and recursive procedures (upper bound
on recursion depth) [Pra09b]. There are two major problems due to this fact:

• Annotating binary code is tedious and even on source code level complications can
occur, e.g. annotations in external components. Therefore, a fully automated pro-
cedure that infers this information is preferred.

• Manual annotations prevent the tool from formally establishing safety and accuracy
of the analysis: the tool has to rely on a trusted annotation base, there are no
guarantees that the user provided annotations are safe [Pra09b].

2. Goals

The Cutting-edge Timing Analysis Techniques CeTAT project is a cooperation between
the Institute of Computer Languages and the Institute of Computer Engineering, at Vienna
University of Technology. Some aspects of the problems of state-of-the-art WCET tools
summarized in the previous sections can be overcome: there are approaches to verify the
trusted annotation base supplied by the user. For example, the tool TuBound includes
a bounded model checker that can be used to verify loop bounds inferred by the tool or
provided by the user. The annotations are instrumented into the program as assertions
that can be verified by the model checker. Nevertheless, there are complex loop constructs
where such tools cannot find an upper bound on the number of loop iterations, preventing
thus accurate WCET analysis.

The WCET community would benefit greatly from a common annotation language,
such that tools can share information. Most tools have their own style of storing inferred
information. Moreover, for easier tool comparison, a common annotation language would
be helpful. Identifying (in)feasible paths is a complex task. Nevertheless there are various
approaches in the area of symbolic computation (theorem proving) and termination analysis
that are able to handle complex nested loops that would require manual annotations for
most WCET tools. Our research aims at combining traditional timing analysis techniques
and state-of-the-art approaches that use satisfiability modulo theories (SMT) to tackle the
problem of complex nested loops [Gul09] with methods from symbolic computation and
theorem proving.

CUTTING-EDGE TIMING ANALYSIS TECHNIQUES 305

3. Current status

I joined the CeTAT project group in March 2010. There is a good foundation of research
in various directions of WCET analysis and the techniques we want to incorporate in order
to pursue research in the CeTAT project. This includes in particular:

• Beyond Loop Bounds: Comparing Formative Annotation Languages for WCET
Analysis [Kir10]. This work presents a survey of state-of-the-art annotation lan-
guages considered formative for the field. According to [Kir10], the precision, gen-
erality and efficiency of WCET analysis tools depend much on the expressiveness
and usability of annotation languages.

• Constraint Solving for High-Level WCET Analysis [Pra09a]. The authors present
the results achieved by their tool TuBound at the WCET tool-challenge 2008.
TuBound is a constraint logic based approach for loop analysis developed at Vi-
enna University of Technology.

• ABC: Algebraic Bound Computation for Loops. Presents a software tool for au-
tomatically computing symbolic upper bounds on the number of iterations of pro-
gram loops [Bla09]. The authors of [Bla09] combine static analysis of programs with
symbolic summation techniques to derive loops invariant relations among program
variables.

As a starting point for the project we are currently investigating WCET benchmarks
that contain loops that were not handled by TuBound in the tool challenge. It will be
necessary to identify techniques that yield good usability, scalability, runtime performance,
and most important, WCET results. Based on the results of our experimental evaluations
we will design a new tool that outperforms current state-of-the-art tools in this respect.

References

[Bla09] Regis Blanc, Thomas Henzinger, Thibaud B. Hottelier, and Laura Kovacs. Abc: Algebraic bound
computation for loops. In LPAR-16 – 16th International Conference on Logic for Programming

Artificial Intelligence and Reasoning. 2009. Unpublished.
[Gul09] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. Tech. Rep. MSR-TR-2009-

146, Microsoft Research, 2009.
[Kir10] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht Kadlec. Beyond

loop bounds: Comparing formative annotation languages for worst-case exeution time analysis.
Software and Systems Modeling, 2010.

[Kov10] Dr. Laura Ildiko Kovacs. Cutting-edge timing analysis techniques for safety-critical real-time sys-
tems (cetat), 2010. Project description.

[Pra09a] A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint solving for high-level WCET analysis.
ArXiv e-prints, 2009.

[Pra09b] Adrian Prantl, Jens Knoop, Raimund Kirner, Albrecht Kadlec, and Markus Schordan. From trusted
annotations to verified knowledge. In Niklas Holsti (ed.), 9th Intl. Workshop on Worst-Case Ex-

ecution Time (WCET) Analysis. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
Dagstuhl, Germany, 2009.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

	10003.Inhaltsverzeichnis.2616
	iclp2010-titlepage-toc-organization
	iclp2010-organisation

	10003.HermengildoManuel.2615
	10003.ArefMolham.2576
	10003.FagesFrancois.2577
	10003.AlbertiMarco.2578
	1. Introduction
	2. Runtime addition of integrity constraints in SCIFF
	2.1. SCIFF language
	2.2. Declarative semantics
	2.3. Operational semantics
	2.4. Properties

	3. Implementation
	4. Experiments
	5. Related work
	6. Conclusions
	References

	10003.BalducciniMarcello.2579
	10003.BasolSelen.2580
	10003.BuatersKim.2581
	10003.BrassStefan.2582
	10003.CorapiDomenico.2583
	10003.FayruzovTimur.2584
	10003.FierensDaan.2585
	10003.GuenotNicolas.2586
	10003.JanhunenTomi.2587
	10003.Lopez_GarciaPedro.2588
	10003.MaherMichael.2589
	10003.MantadelisTheofratos.2590
	10003.PereiraLuis.2591
	10003.NearJoseph.2592
	10003.OetschJohannes.2593
	10003.RiguzziFabrizio.2594
	Introduction
	1. Tabling and Answer Subsumption
	2. Logic Programs with Annotated Disjunctions
	3. Program Transformation
	4. Experiments
	5. Conclusion and Future Works
	References

	10003.SantosJose.2595
	10003.ShakaranPaulo.2596
	10003.SimariGerardo.2597
	10003.WernhardChristoph.2598
	10003.SaeedloeiNeda.2599
	10003.AlqaddoumiAbdulla.2600
	10003.AlvianoMario.2601
	10003.AristizabalAndres.2602
	10003.DandoisCeline.2603
	10003.DemeyerRomain.2604
	10003.DrescherChristian.2605
	10003.GagglSarah.2606
	10003.LopezHugo.2607
	10003.MartinezThierry.2608
	1. Introduction
	2. Kernel syntax and logical semantics
	3. Angelic operational semantics
	4. The SiLCC project and perspectives
	References

	10003.PahlaviNiels.2609
	10003.ParisiniFabio.2610
	10003.SaeedloeiNeda.2611
	10003.SnowZachary.2612
	10003.BermudezMauricio.2613
	10003.ZwichmayrJakob.2614
	iclp2010-frontmatter-complete.pdf
	iclp2010-frontmatter
	iclp2010-organization

