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INTRODUCTION TO THE TECHNICAL COMMUNICATIONS OF THE
26TH INTERNATIONAL CONFERENCE ON LOGIC PROGRAMMING

MANUEL HERMENEGILDO ! AND TORSTEN SCHAUB ?

! IMDEA Software Institute and U. Politécnica de Madrid, Spain
E-mail address: manuel .hermenegildo@{imdea.org|upm.es}

2 University of Potsdam, Germany
E-mail address: torsten@cs.uni-potsdam.de

The Logic Programming (LP) community, through the Association for Logic Programming
(ALP) and its Executive Committee, decided to introduce for 2010 important changes in the way
the main yearly results in LP and related areas are published. Whereas such results have appeared
to date in standalone volumes of proceedings of the yearly International Conferences on Logic Pro-
gramming (ICLP), and this method —fully in the tradition of Computer Science (CS)- has served
the community well, it was felt that an effort needed to be made to achieve a higher level of com-
patibility with the publishing mechanisms of other fields outside CS.

In order to achieve this goal without giving up the traditional CS conference format a different
model has been adopted starting in 2010 in which the yearly ICLP call for submissions takes the
form of a joint call for a) full papers to be considered for publication in a special issue of the journal,
and b) shorter technical communications to be considered for publication in a separate, standalone
volume, with both kinds of papers being presented by their authors at the conference. Together, the
journal special issue and the volume of short technical communications constitute the proceedings
of ICLP.

The journal proceedings of the 26th International Conference on Logic Programming are the
first of a series of yearly special issues of Theory and Practice of Logic Programming (TPLP) putting
this new model into practice. It contains the papers accepted from those submitted as full papers
(i.e., for TPLP) in the joint ICLP call for 2010. The collection of technical communications for 2010
in hand appears in turn as Volume 7 of the Leibniz International Proceedings in Informatics (LIPIcs)
series, published on line through the Dagstuhl Research Online Publication Server (DROPS). Both
sets of papers were presented by their authors at this 26th ICLP.

Papers describing original, previously unpublished research and not simultaneously submitted
for publication elsewhere were solicited in all areas of logic programming including but not re-
stricted to: Theory (Semantic Foundations, Formalisms, Non-monotonic Reasoning, Knowledge
Representation), Implementation (Compilation, Memory Management, Virtual Machines, Paral-
lelism), Environments (Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing), Language Issues (Concurrency, Objects, Coordination, Mobility, Higher Order,
Types, Modes, Assertions, Programming Techniques), Related Paradigms (Abductive Logic Pro-
gramming, Inductive Logic Programming, Constraint Logic Programming, Answer-Set Program-
ming), and Applications (Databases, Data Integration and Federation, Software Engineering, Natu-
ral Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics).
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Special categories were application papers (where the emphasis was on their impact on the ap-
plication domain) and system and tool papers (where the emphasis was on the novelty, practicality,
usability and general availability of the systems and tools described). In the technical communica-
tions the emphasis was on describing recent developments, new projects, and other materials not
yet ready for publication as full papers. The length limit for full papers was set at 15 pages plus
bibliography for full papers (approximately in line with the length of TPLP technical notes) and for
technical communications at 10 pages total.

In response to the call for papers 104 abstracts were received, 81 of which remained finally as
complete submissions. Of those, 69 were full papers submitted to the TPLP special issue track (21
of them applications or systems papers). The program chairs acting as guest editors organized the
refereeing process with the help of the program committee and numerous external reviewers. Each
paper was reviewed by at least three anonymous referees which provided full written evaluations.
Competition was high and after the first round of refereeing only 25 full papers remained. Of
these, 16 went through a full second round of refereeing with written referee reports. Finally, all 25
papers went through a final, copy-editing round. In the end the special issue contains 17 technical
papers, 6 application papers, and 2 systems and tools papers. During the first phase of reviewing
the papers submitted to the technical communications track were also reviewed by at least three
anonymous referees providing full written evaluations. Also, a number of full paper submissions
were moved during the reviewing process to the technical communications track. Finally, 22 papers
were accepted as technical communications.

The list of the 25 accepted full papers, appearing in the special issue of TPLP, follows:

Regular Papers

Automated Termination Analysis for Logic Programs with Cut
Peter Schneider-Kamp, Jiirgen Giesl, Thomas Stroeder, Alexander Serebrenik, René
Thiemann

Transformations of Logic Programs on Infinite Lists
Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Swapping Evaluation: A Memory-Scalable Solution for Answer-On-Demand Tabling
Pablo Chico de Guzmdn, Manuel Carro Lifiares, David S. Warren

Threads and Or-Parallelism Unified
Vitor Santos Costa, Inés Castro Dutra, Ricardo Rocha

CHR(PRISM)-based Probabilistic Logic Learning
Jon Sneyers, Wannes Meert, Joost Vennekens, Yoshitaka Kameya, Taisuke Sato

Inference with Constrained Hidden Markov Models in PRISM
Henning Christiansen, Christian Theil Have, Ole Torp Lassen, Matthieu Petit

A Translational Approach to Constraint Answer Set Solving
Christian Drescher, Toby Walsh

A Decidable Subclass of Finitary Programs
Sabrina Baselice, Piero Bonatti
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Disjunctive ASP with Functions: Decidable Queries and Effective Computation
Mario Alviano, Wolfgang Faber, Nicola Leone

Catching the Ouroboros: On Debugging Non-ground Answer-Set Programs
Johannes Oetsch, Jorg Puehrer, Hans Tompits

Loop Formulas for Description Logic Programs
Yisong Wang, Jia-Huai You, Li-Yan Yuan, Yi-Dong Shen

Towards Closed World Reasoning in Dynamic Open Worlds
Martin Slota, Jodo Leite

A Program-Level Approach to Revising Logic Programs under Answer Set Semantics
James Delgrande

FO(FD): Extending classical logic with rule-based fixpoint definitions
Ping Hou, Broes De Cat, Marc Denecker

A Complete and Terminating Execution Model for Constraint Handling Rules
Hariolf Betz, Frank Raiser, Thom Friihwirth

Decidability Properties for Fragments of CHR
Maurizio Gabbrielli, Jacopo Mauro, Maria Chiara Meo, Jon Sneyers

A Declarative Semantics for CLP with Qualification and Proximity
Mario Rodriguez-Artalejo, Carlos A. Romero-Diaz

Application Papers and Systems and Tools Papers

Logic-Based Decision Support for Strategic Environmental Assessment
Marco Gavanelli, Fabrizio Riguzzi, Michela Milano, Paolo Cagnoli

Test Case Generation for Object-Oriented Imperative Languages in CLP
Miguel Gomez-Zamalloa, Elvira Albert, Germdn Puebla

Logic Programming for Finding Models in the Logics of Knowledge and its Applications: A Case
Study
Chitta Baral, Gregory Gelfond, Enrico Pontelli, Tran Son

Applying Prolog to Develop Distributed Systems
Nuno P. Lopes, Juan Navarro Perez, Andrey Rybalchenko, Atul Singh

CLP-based Protein Fragment Assembly
Alessandro Dal Palni, Agostino Dovier, Federico Fogolari, Enrico Pontelli

Formalization of Psychological Knowledge in Answer Set Programming and its Application
Marcello Balduccini, Sara Girotto

Testing and Debugging Techniques for Answer Set Solver Development
Robert Brummayer, Matti Jirvisalo

The System Kato: Detecting Cases of Plagiarism for Answer-Set Programs
Johannes Oetsch, Jorg Puehrer, Martin Schwengerer, Hans Tompits
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We would like to thank very specially the members of the Program Committee and the ex-
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two rounds of refereeing plus the copy editing phase. The PC members were: Maria Alpuente,
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We would also like to thank David Basin, Francois Fages, Deepak Kapur, and Molham Aref for
their invited talks and those that helped organize ICLP: Veronica Dahl (General Chair and Work-
shops Chair), Marcello Balduccini and Alessandro Dal Palti (Doctoral Consortium), and Tom Schri-
jvers (Prolog Programming Contest). ICLP’10 was held as part of the 2010 Federated Logic Con-
ference, hosted by the School of Informatics at the U. of Edinburgh, Scotland. Support by the
conference sponsors —EPSRC, NSF, Microsoft Research, Association for Symbolic Logic, Google,
HP, Intel- is also gratefully acknowledged. We are also grateful to Andrei Voronkov for creating
the EasyChair system.

Finally, we would like to thank very specially Ilkka Niemeld, editor in chief of Theory and
Practice of Logic Programming, David Tranah, from Cambridge University Press, Marc Herbstritt,
from LIPIcs, Leibniz Center for Informatics, all the members of the ALP Executive Committee,
and the ALP community in general for having believed in and allowed us to put into practice this
approach which we believe provides compatibility with the publishing mechanisms of other fields
outside CS, without giving up the format and excitement of our conferences.

Manuel Hermenegildo and Torsten Schaub
Program Committee Chairs

This work is licensed under the Creative Commons Attribution Non-Commercial No Derivatives
License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/


http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 1
http://www.floc-conference.org/ICLP-home.html

DATALOG FOR ENTERPRISE SOFTWARE: FROM INDUSTRIAL
APPLICATIONS TO RESEARCH (INVITED TALK)

MOLHAM AREF

LogicBlox, Two Midtown Plaza, 1349 West Peachtree Street, N.W., Suite 1880, Atlanta, GA 30309
E-mail address: molham.aref@logicblox.com

LogicBlox is a platform for the rapid development of enterprise applications in the
domains of decision automation, analytics, and planning. Although the LogicBlox platform
embodies several components and technology decisions (e.g., an emphasis on software-as-
a-service), the key substrate and glue is an implementation of the Datalog language. All
application development on the LogicBlox platform is done declaratively in Datalog: The
language is used to query large data sets, but also to develop web and desktop GUIs (with
the help of pre-defined libraries), to interface with solvers, statistics tools, and optimizers
for complex analytics solutions, and to express the overall business logic of the application.
We believe that Datalog is at the sweet spot of the expressiveness/convenience trade-off.
The language is high-level enough to allow fast development for increased productivity, and
expressive enough to support implementing complex applications without a need to resort
to imperative code.

The LogicBlox version of Datalog, LB-Datalog, is heavily influenced by several ideas
and advanced Datalog extensions proposed by the research community. LB-Datalog is a
Datalog with integrity constraints, state and incremental update, default values, higher-
order predicates, existentially quantified head variables, constraint stratification, and more.
Additionally, LogicBlox has active collaborations with several academic researchers who
work on a variety of projects in nearly every aspect of LB-Datalog.

The goal of this talk is to present both the business case for Datalog and the fruitful
interaction of research and industrial applications in the LogicBlox context.
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A LOGICAL PARADIGM FOR SYSTEMS BIOLOGY (INVITED TALK)

FRANCOIS FAGES

EPI Contraintes, INRIA Paris-Rocquencourt,
Domaine de Voluceau, 78150 Rocquencourt, France
E-mail address: Francois.Fages@inria.fr

URL: http://contraintes.inria.fr/

Biologists use diagrams to represent complex systems of interaction between molecu-
lar species. These graphical notations encompass two types of information: interactions
(e.g. protein complexation, modification, binding to a gene, etc.) and regulations (of an
interaction or a transcription). Based on these structures, mathematical models can be de-
veloped by equipping such molecular interaction networks with kinetic expressions leading
to quantitative models of mainly two kinds: ordinary differential equations (ODE) for a
continuous interpretation of the kinetics, and continuous-time Markov chains (CTMC) for
a stochastic interpretation of the kinetics.

The Systems Biology Markup Language (SBML) [8] uses a syntax of reaction rules
with kinetic expressions to define such reaction models in a precise way. Nowadays, an
increasing collection of models of various biological processes is available in this format in
model repositories, such as for instance www.biomodels.net [9], and an increasing collection
of ODE simulation or analysis software platforms are now compatible with SBML.

Since 2002, we investigate the transposition of programming concepts and tools to the
analysis of living processes at the cellular level. Our approach relies on a logical paradigm
for systems biology which consists in making the following identifications:

biological model = quantitative state transition system
biological properties = temporal logic formulae
biological validation = model-checking
model inference = constraint solving

Our modelling software platform Biocham [7] (implemented in Prolog) is founded on this
paradigm [6]. An SBML model can be interpreted in Biocham at three abstraction levels:

e the Boolean semantics (asynchronuous Boolean state transitions on the presence/absence
of molecules),

e the continuous semantics (ODE on molecular concentration),

o the stochastic semantics (CTMC on numbers of molecules).

The Boolean semantics is the most abstract one, it can be used to analyse large interaction
networks without known kinetics. These formal semantics have been related in the frame-
work of abstract interpretation in [5], showing for instance that the Boolean semantics is
an abstraction of the stochastic semantics, i.e. that the possible stochastic behaviors can be

1998 ACM Subject Classification: algorithm, theory,verification.
Key words and phrases: temporal logic, model-checking, systems biology, hybrid systems.
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checked in the Boolean semantics, and that if a Boolean behavior is not possible, it cannot
be achieved in the quantitative semantics for any kinetics.

The use of model-checking techniques developed in the last three decades for the analysis
of circuits and programs is the most original feature of Biocham. The temporal logics used
to formalize the properties of the behavior of the system are respectively the Computation
Tree Logic (CTL) for the Boolean semantics, and a quantifier-free Linear Time Logic with
constraints over the reals (LTL(R)) for the quantitative semantics.

Biocham has been used for querying large Boolean models of the cell cycle by symbolic
model-checking [1], formalizing phenotypes in temporal logic [3], searching parameter values
from temporal specification [10], measuring the robustness of a system w.r.t. temporal
properties [11], and developping in this way quantitative models of cell signalling and cell
cycle for cancer therapies [2].

For some time, an important limitation of this approach was due to the logical nature
of temporal logic specifications and their Boolean interpretation by true or false. By gener-
alizing model-checking techniques to temporal logic constraint solving [3, 4], a continuous
degree of satisfaction could be defined for temporal logic formulae, opening the field of
model-checking to optimization in high dimension.

We believe that this mixing of discrete logical and continuous dynamics, pioneered by
constraint logic programming and hybrid systems, and illustrated here in systems biology,
is a deep trend for the future in programming and verification.
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ABSTRACT. Abductive Logic Programming is a computationally founded representation
of abductive reasoning. In most ALP frameworks, integrity constraints express domain-
specific logical relationships that abductive answers are required to satisfy.

Integrity constraints are usually known a priori. However, in some applications (such as
interactive abductive logic programming, multi-agent interactions, contracting) it makes
sense to relax this assumption, in order to let the abductive reasoning start with incomplete
knowledge of integrity constraints, and to continue without restarting when new integrity
constraints become known.

In this paper, we propose a declarative semantics for abductive logic programming with
addition of integrity constraints during the abductive reasoning process, an operational
instantiation (with formal termination, soundness and completeness properties) and an
implementation of such a framework based on the SCIFF language and proof procedure.

1. Introduction

The philosopher Peirce divides the reasoning schemes of humans into three types: de-
duction (reasoning from causes to effects), induction (synthesizing new rules from examples)
and abduction (making hypotheses on possible causes from known effects).

Abductive Logic Programming [Kak93] is a computational representation of abductive
reasoning that lets one express relationships between effects and possible causes (by means
of a logic program), as well as logical constraints over the hypotheses (integrity constraints).
In ALP possible hypotheses are represented by special predicates (called abducibles) that
are not defined, but can be hypothesized, as long as they satisfy the integrity constraints.
A positive answer to a query posed to an ALP system will typically contain the set of
abducibles that are hypothesized in order for the query to succeed. Such an answer is
called abductive answer in the ALP literature.

Several instances of ALP have been proposed in the literature [Kak90l [Fun97, [Den98|
Alf99, Wan00], which differ for the logic language (and in particular for the type of ab-
ducibles and of integrity constraints that can be expressed).

While in many applications integrity constraints are known at the beginning of the
reasoning process, it is sometimes useful to relax this assumption.

For instance, the classical application field of abductive reasoning is the diagnosis.
However, in a realistic setting, a doctor does not simply listen to the patient enumerating

Key words and phrases: abduction, semantics, interactive computation, proof procedure.
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all his/her symptoms, but they have a bidirectional and multi-stage interaction: the doctor
asks questions, and refines his/her diagnosis based on the answers of the patient. So, there
is the need to add information dynamically, often in the form of rules, that can rule out
unrealistic sets of explanations.

In multi-agent reasoning, agents that employ abductive reasoning could exchange in-
tegrity constraints by a communication process, and continue operating with the newly
acquired integrity constraints. In contracting, two agents try to reach an agreement and
each agent tries to reach its goals. For example, one agent may want to buy a car, and
the other wants to sell it; the first tries to get a price as low as possible, while the second
has the opposite aim, and they negotiate on the model, the optionals, etc. Of course, each
agent is unwilling to send all of its own knowledge, because the other would exploit it to get
favourable conditions: if the buyer knew all the constraints of the seller, it would be able
to compute the minimum possible price for the seller, and then propose such price. On the
other hand, it is quite natural to tell some of the constraints only when needed, in order to
speedup the negotiation, and avoid lingering on small variations of a meaningless solution.
For instance, in case the buyer asks for a seat for children, the seller could reply: “Ok, but
you cannot install a children seat if you have the airbag”, and the client has to take into
consideration this constraint, when making new proposals. On the other hand, there is no
reason for the seller to state such knowledge immediately from the beginning, as it still does
not know if the buyer is interested at all in children seats.

An abductive reasoner might seek additional integrity constraints (possibly available
from public repositories), depending on its current computation; for example, the number
of integrity constraints could be very vast (as if one has to take into consideration all the
EU rules for contracts), so only those strictly needed should be downloaded. Moreover,
depending on the current state of the derivation one may choose to download regulations
from one server or another: suppose I am deciding whether to buy a good from a service in
Italy or in Portugal; I may first try to get the best price, but then check if the regulations
of that country allow me to do such transaction. I will download the regulations of such
country, check if my transaction is allowed, and, if it is not, I will backtrack and take the
second choice.

Integrity constraints can also be obtained at runtime by means of an automated com-
putational process; for instance, by inductive reasoning. Recently, extensions of Inductive
Logic Programming techniques (ILP for short), and the DPML algorithm in particular
[LamO07b], have been proposed to learn integrity constraints from labelled traces (a data-
base of events recording happened interactions or activities, or a database collecting events
at run-time). The DPML target language is the SCIFF abductive logic language [AIb0S],
and this inductive approach has been experimented in various contexts (business processes,
among others; see [Che09, Lam07al).

Such applications motivate an abductive logic programming framework where some of
the integrity constraints are known in advance, and some are added to the abductive logic
program during the computation.

In this paper we propose a declarative semantics for such an extension, and its imple-
mentation based on the SCIFF abductive logic language [AIbO§]. SCIFF is implemented
using Constraint Handling Rules [ET1i98]; in particular, integrity constraints are mapped to
CHR constraints. Thanks to the properties of CHR, adding a new constraint at runtime
amounts to the single operation of calling the new constraint, i.e., it can be delegated to
the CHR solver.
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The paper is structured as follows. In Section [2] we propose a declarative semantics of
ALPs with dynamic addition of integrity constraints based on the SCIFF language, and we
show that it exhibits properties of termination, soundness and completeness. In Section 3| we
describe the CHR-based implementation. In Section [4] we show some experimental results.
Discussion of related work and conclusions follow.

2. Runtime addition of integrity constraints in SCIFF

In this section, we give a semantics for the runtime addition of integrity constraints for
the SCIFF abductive logic language; however, the definitions can be easily generalized for
other abductive logic languages.

2.1. SCIFF language

We first provide a brief introduction to the SCIFF language. A complete definition is
available in [AIbOS].

SCIFF is a Computational Logic language, whose predicates can be defined or ab-
ducibles, and can contain variables. Variables can be constrained as in Constraint Logic
Programming [Jaf94al.

A SCIFF program P is composed of

e a knowledge base KB;
e a set ZCg of static integrity constraints.

A SCIFF knowledge base is a set of clauses of the form: Head < Body, where Head is
an atom built on a defined predicate, and body is a conjunction of literals (built on defined
predicates or abducibles) and CLP constraints.

In SCIFF, integrity constraints have the form: Body — Head, where Body is a con-
junction of abducible atoms, defined atoms and constraints, and Head is a disjunction of
conjunctions of abducible atoms and CLP constraints, or false.

SCIFF computations are goal-directed. A SCIFF Goal has the same syntax of the body
of a clause in the knowledge base.

2.2. Declarative semantics

The declarative semantics for runtime addition of integrity constraints is given in terms
of abductive explanation as follows.

Given a SCIFF program P = (KB,ZCg) and a goal G, a pair (A,#), where A is a
set of abducibles and @ is a substitution, is an abductive explanation for G with additional
integrity constraints ZCp iff

(1) KBUA EGo

(2) KBUA ’:ICS UZCp
where the symbol |= is interpreted, in SCIFF, as in the 3-valued completion seman-
tics [Kun87]. If such conditions hold, we write (KB,ZC S>|=§CDQ .

Example 2.1.
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a(X) — bX)Ve(X) (2.2)
Given the knowledge base in equation (2.1)) and the integrity constraint in equation
(2.2), where a/1, b/1, ¢/1, and d/1 are abducibles, two abductive explanations are possible
for the query p(1): {a(2),b(2),d(2)} and {a(2),¢(2),d(2)}.
However, with the additional integrity constraint

c(X),d(X) — false,
only {a(2),b(2),d(2)} is an abductive explanation.

2.3. Operational semantics

The SCIFF proof-procedure consists of a set of transitions that rewrite a node into one
or more child nodes. It encloses the transitions of the IFF proof-procedure [Fun97], and
extends it in various directions. A complete description of SCIFF proof procedure is in
[AIbO§|, with proofs of soundness, completeness, and termination.

Each node of the proof is a tuple T'= (R, C'S, PSIC, A), where R is the resolvent, C'S
is the CLP constraint store, PSIC is a set of implications (called Partially Solved Integrity
Constraints) derived from propagation of integrity constraints, and A is the current set of
abduced literals. The main transitions, inherited from the IFF are:

Unfolding: replaces a (non abducible) atom with its definitions;

Propagation: if an abduced atom a(X) occurs in the condition of an IC (e.g., a(Y') —
p), the atom is removed from the condition (generating X =Y — p);

Case Analysis: given an implication containing an equality in the condition (e.g.,
X =Y — p), generates two children in logical or (in the example, either X =Y
and p, or X #Y);

Equality rewriting: rewrites equalities as in the Clark’s equality theory;

Logical simplifications: other simplifications like (true — A) < A, etc.

SCIFF also includes the transitions of CLP [Jaf94al [Jaf94b] for constraint solving.
To manage the run-time addition of integrity constraints, we extend SCIFF with an
additional transition defined as follows, and we call the resulting proof procedure SCIFF p.

Add-IC: Given a node T'= (R,CS, PSIC,A) and an integrity constraint ic, transi-
tion addIC generates one node T = (R, C'S, PSIC U {ic}, A).

This transition picks integrity constraints from a queue of dynamic integrity constraints.
The transition is applicable to any node in the proof tree, and it can be executed whenever
the queue is not empty. More integrity constraints can be added to the queue during the
computation.

A successful SCIFFp derivation for an ALP (KB,ZCg), with additional integrity con-
straints ZCp and a goal G is a sequence of nodes where

e the root node is (G,0,ZCg, 0)
e each node is generated from the previous by a SCIFFp transition
e the leaf node is N = (true, C'S, PSIC, A)

From the leaf node, a substitution # is derived, that

e replaces all variables in N that are not universally quantified by a ground term;

e satisfies all the constraints in the store C'S and the implications in PSIC.

If such a derivation exists, we write (ICB,ICS>F<I%’§>Q .
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2.4. Properties

In this section, we state some relevant SCIFF p properties. Due to lack of space, we
omit the proofs, available in a companion technical report [AIb10].

Intuitively, SCIFFp properties can be derived from SCIFF properties, by showing that
a SCIFFp derivation for the program (KB,ZCg) with a finite set of additional integrity
constraints ZCp can be transformed into an equivalent one, where a node is the root node
of a SCIFF derivation for the ALP (KB,ZCs UZCp).

The following proofs are based on these formal properties:

Proposition 2.2. Let No be the node generated from node Ny by transition Ty, and N3 be
the node generated from node No by addlC. Then, if Ny is the node generated from node
N1 by addIC, transition Ty is applicable to N4, and the node N5 generated from Ny by Ty
is equal to N3, modulo renaming of variables.
Iy Ny
aﬂg

ddIC
Ny a—) N3
T

N1 N4 —>N5

Proposition 2.3. Let D be a SCIFFp derivation that has k applications of the addIC
transition. Then there exists a derivation D’ that has the following properties:

e the first k transitions of D' are addIC;
e cach node of D', starting the transitions from k + 1 is equal to the corresponding
node of D.

2.4.1. Termination. Being SCIFF based on the 3-valued completion semantics, its termina-
tion is proven, as for SLDNF resolution [Apt91], for acyclic knowledge bases and bounded
goals and implications. Of course, programs may also terminate in other cases as well. Other
abductive proof-procedures are based on other semantics and can address also non-stratified
programs [Lop06].

Intuitively, for SLD resolution a level mapping must be defined, such that the head of
each clause has a higher level than the body. For SCIFF, as well as for the IFF, since it
contains integrity constraints that are propagated forward, the level mapping should also
map atoms in the body of an integrity constraint to higher levels than the atoms in the
head; moreover, this should also hold considering possible unfoldings of literals in the body
of an integrity constraint [Xan03].

Termination is not affected in SCIFF p, as long as the newly added integrity constraints
do not violate the termination conditions.

Proposition 2.4. Let G be a query to an ALP (KB,ZCg), with additional integrity con-
straints ZCp, where KBg, ICs UZCp and G are acyclic w.r.t. some level mapping, and
G and all implications in ZCg UZCp are bounded w.r.t. the level-mapping. Then, every
SCIFFp derivation for each instance of G is finite.
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2.4.2. Soundness. As usual, the soundness property states that the abductive answer com-
puted in a successful derivation is correct according to the declarative semantics.

Proposition 2.5. Given an ALP (KB,ZCg), if
A0
(KB,ICs)-50”'G
then
(KB,ICs)F2, GO

2.4.3. Completeness. The completeness result states that SCIFFp can compute a subset
of any ground abductive answer that is correct according to the declarative semantics.

Proposition 2.6. Given an ALP (KB,ZCg) and a set ZCp of integrity constraints, for any
ground set A such that (/C&ICS)l:%cDQ there exist A" and 6 such that </CB,IC5>|—<I%];9>Q

and A'§ C A.

3. Implementation

The SCIFF abductive proof procedure was implemented in Prolog, using extensively the
Constraint Handling Rules [Fru98, [Sch04] library. The implementation can be downloaded
from the SCIFF web site [SCI10] and runs on SICStus and SWI Prolog.

Constraint Handling Rules (CHR) is a logic language devoted to define new constraint
solvers; however, it has been used as a general language for many different applications, not
all strictly related to constraints.

A new solver is defined in CHR by means of rules. There exist two main types of rules:
propagation and simpliﬁcationﬂ A propagation rule is of the form

label@ Head,...,Head, = Guard|Body

and means that, if the optional Guard and the Heads are true, then the Body must be true.
Operationally, whenever a set of constraints are in the store, matching Heady, ..., Head,,
the Guard is checked; if it evaluates to true, the Body is executed (as a Prolog goal). The
label is optional and serves only as an identifier of the rule.

Simplification rules have a similar syntax:

label@ Heady, ..., Head, < Guard|Body

and they state that if the Guard is true, then the conjunction Heady, ..., Head, is equiv-
alent to Body. Operationally, if Head;, ..., Head,, are in the store (and Guard is true),
they are removed and substituted by Body.
SCIFF represents most of its data structures as CHR constraints:
e an abducible atom a(X) is represented with the CHR constraint abd (a(X))
e a (partially solved) integrity constraint a(Y),q(Y) — p(Y) V ¢(Y) is represented as
the CHR constraint

psic( [abd(a(Y)),q(¥)1, ( p(Y) ; abd(c(Y)) ))
Body Head

The Head can be any Prolog goal (it has the same syntax).

IThere are also simpagation rules, that are not logically necessary, but are important for efficiency; we
will not go into details for lack of space.
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The proof tree is explored in a depth-first fashion, using the Prolog stack for this pur-
pose. Transitions are implemented as CHR rules; for example, transition Propagation is
implemented with the following propagation CHR:
propagation @
abd (A1),
psic([abd(A2) |More] ,Head)
==> psic([A1=A2|More] ,Head) .
Case Analysis handles the equality in the body of a PSIC
case_analysis @
psic([A=B|More] ,Head)
==> impose A=B
psic(More,Head)
;% Open choice point
impose A and B do not unify
and the logical simplification (true — A) < A manages implications with empty body:
logic_simplification @ psic([],Head) <=> call(Head).
Thanks to this implementation, adding a new integrity constraint is just a matter of

calling the corresponding CHR, constraint: if we want to dynamically add the integrity
constraint we execute the goal:
psic( [abd(a(X))], (abd(b(X));abd(c(X))) ).

In this way, the newly added integrity constraint is automatically subject to all the
applicable transitions. Consider rule propagation: whenever two constraints matching
the rule head (e.g., abd(a(1)) and psic([a(X)],b(X))) are present in the CHR constraint
store, the rule is fired, it generates psic([a(X)=a(1)],b(X)), that triggers case analysis,
which in its turn generates two child nodes:

e one where unification is imposed between the abducible in the CHR constraint store
and the abducible in the partially solved integrity constraint, and a new partially
solved integrity constraint is imposed, with the abducible removed from the bodys;

e one where disunification between the abducible in the CHR constraint store and the
abducible in the partially solved integrity constraint is imposed.

In the previous example, psic([a(X)=a(1)],b(X)) is rewritten in the first case as X =1
and b(X) is executed; in the second case by imposing the CLP constraint X # 1.

The relevant point, here, is that rule propagation is fired whenever both the constraints
(the abducible and the psic) are in the CHR store, regardless of which one entered the store
first. So, if a partially solved integrity constraint is added by addIC, and some abducible in
its body is already in the store, propagation will occur, as if the partially solved integrity
constraint had been in the constraint store from the beginning of the computation.

4. Experiments

To show the effectiveness of the approach, we tested a simple benchmark problem, that
is a simplified version of a contracting scenario. One agent needs to interact with some
web service, and choose one that is able to provide the expected reply. In this example,
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the agent will tell message m and will expect n as reply. The agent knows the address of a
series of web services, given as facts:

known_service(http : / /web.address.one/ folderl/policy.ruleml).
known_service(http : //web.address.two/ folder2/policy.ruleml).

In order to find the right service, the agent executes the following goal, where tell is
abducible:

known_service( Addr), download_ic(Addr), tell(me, S, m), not(tell(S,me, A), A # n)

meaning that it will non-deterministically choose a service, download its integrity con-
straints, and then tell message m; it will fail if it gets any reply that is not n.
We generated 252 services, each with one integrity constraint

tell(Client, s, letter;) — tell(s, Client, letters)

where letter; and letters are substituted with a ground term corresponding to one of the
25 letters of the alphabet.

We tried the goal on a slow network (mobile phone) and it took 173.350s to find the
right service. As a comparison, a solution that first downloads the IC of all possible services
before starting the solution takes 319.005s.

5. Related work

Among the many works on abduction in CHR by Christiansen and colleagues [Abd00),
Chr05b], we emphasize an inspiring position paper [Chr05a)], in which preliminary exper-
iments are shown with integrity constraints mapped to CHR rules. In that work, Chris-
tiansen points out that through meta-rules it is possible to dynamically add integrity con-
straints. Here we extend the idea within the SCIFF framework, which gives us a set of
properties deemed crucial in the computational logic community. The operational seman-
tics of SCIFF is not based on that of CHR, but on the sound and complete semantics of the
IFF [Fun97]: this allowed us to prove those properties also for SCIFF. In this paper, we
extend these proofs for the dynamic addition of integrity constraints, reaching the objective
pointed out by Christiansen, but with soundness and completeness results.

EVOLP [AIf02] is a language to define logic programs able to evolve. A special atom
assert(Rule) can occur in the head or in the body of clauses; in case the stable model se-
mantics assigns value true to some of these literals, the clause Rule is added to the program.
Our instance can be considered as an evolving abductive program, in which only integrity
constraints (and not clauses in the KB) can be added, and based on the three-valued com-
pletion semantics, instead of the stable model semantics. Our language also features CLP
constraints and, as the general CLP framework [Jaf94a], it is parametric with respect to the
specific sort. The proof procedure lets the user choose the associated solver, and two state-
of-the-art solvers are available in the current implementation: CLP(R), on the real values,
and CLP(FD), on finite domains. EVOLP is a component of the ACORDA prospective logic
programming system [Lop06], which also integrates abductive reasoning and preferences, to
support interactive abductive logic programming, among other applications.

We can also easily extend the language in order to incorporate dynamic integrity con-
straints in the body of clauses, or in queries. Operationally, whenever an integrity constraint
is part of the resolvent, the addIC transition would be applied. However, the impact of
such extension on termination must be studied in future work. With reference to nested,
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dynamic ICs, and this extension of the SCIFF language, it is worth to mention that in the
literature, a lot of work was devoted to the treatment of embedded implications (due to
Miller, et al. see [Mil89 [Hod94] and McCarty, see [McC88]) based on the logic of Higher-
Order Hereditary Harrop Formulas, a fragment of Intuitionistic logic. In this logic, and the
A system implemented [Nad88]|, they allow arbitrary lambda terms with full higher-order
unification, and extend the formula language with arbitrarily nested universal quantifiers
and implications. In our case, we can add integrity constraints at runtime, rather than
program clauses as they do. We can therefore support abductive reasoning in an extended
set of constraints.

In CR-Prolog [Bal03], new (consistency-restoring) rules can be added dynamically,
as a part of an agent’s Observe-Think-Act loop; if some inconsistency is detected then
these constraints can be considered, according to their preferences. The semantics of CR-
Prolog programs is defined as a transformation into abductive logic programs, where each
consistency-restore rule has an abducible associated with it, and holds (only) if such ab-
ducible is abduced. In our framework, dynamically added integrity constraints must be
satisfied, independently of the abductive answer.

6. Conclusions

In this paper we proposed a declarative semantics for abductive logic programs where
additional integrity constraints can be added at runtime, based on the SCIFF language.

We described SCIFFp , an extension of the SCIFF proof procedure that supports
runtime addition of integrity constraints, and we proved formal results of termination,
soundness, and completeness for SCIFFp.

Such an extension can support interesting applications such as interactive abductive
logic programming and contracting in service-oriented architecture.
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ABSTRACT. In spite of the recent improvements in the performance of Answer Set Programming
(ASP) solvers, when the search space is sufficiently large, it is still possible for the search algorithm
to mistakenly focus on areas of the search space that contain no solutions or very few. When that
happens, performance degrades substantially, even to the point that the solver may need to be ter-
minated before returning an answer. This prospect is a concern when one is considering using such
a solver in an industrial setting, where users typically expect consistent performance. To overcome
this problem, in this paper we propose a technique that allows learning domain-specific heuristics for
ASP solvers. The learning is done off-line, on representative instances from the target domain, and
the learned heuristics are then used for choice-point selection. In our experiments, the introduction of
domain-specific heuristics improved performance on hard instances by up to 3 orders of magnitude
(and 2 on average), nearly completely eliminating the cases in which the solver had to be terminated
because the wait for an answer had become unacceptable.

1. Introduction

In recent years, solvers for Answer Set Programming (ASP) [Gel91, Mar99] have become
amazingly fast. Mostly, that is due to good heuristics that direct the search toward the most promis-
ing areas of the search space, and to learning algorithms that discover features of the search space
on-the-fly (see e.g. [Geb07]). Unfortunately, when the search space is sufficiently large, it is still
possible for the search algorithm to mistakenly focus on areas of the search space that contain no
solutions or very few. When that happens, performance degrades substantially, even to the point
that the solver may need to be terminated before returning an answer. This prospect is a concern
when one is considering using such a solver in an industrial application, in which the solver will act
as part of a black-box from which users typically expect consistent performance. It should be noted
that the phenomenon of performance degradation is often due to the fact that the heuristics used in
choice-point selection are general-purpose, and thus can be side-tracked by peculiar features of a
given domain. To overcome this problem, in this paper we propose a technique that allows learning
domain-specific heuristics for ASP solvers. The technique is mainly aimed at improving the effi-
ciency of the computation of one answer set (as opposed to multiple answer sets of a program) of
consistent programs, but could be extended further. The learning is done off-line, on representative
instances from the target domain. In our experiments, the introduction of domain-specific heuristics
improved performance on hard instances by up to 3 orders of magnitude (and 2 on average), nearly
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completely eliminating the situations in which the solver had to be terminated because the wait for
an answer had become unacceptable.

This paper is organized as follows. In the next section we give some background on ASP. Next, we
discuss the basic search algorithm used in most ASP solvers. Then, in Section 3, we present our
technique for learning domain-specific heuristics. Experimental results are discussed in Section 4.
Finally, in Section 5, we draw conclusions.

2. Answer Set Programming

Let us start by giving some background on ASP. We define the syntax of the language precisely,
but only give the informal semantics of the language in order to save space. We refer the reader to
[Gel91, Nie0O0] for a specification of the formal semantics. Let X be a signature containing constant,
function and predicate symbols. Terms and atoms are formed as usual in first-order logic. A (basic)
literal is either an atom a or its strong (also called classical or epistemic) negation —a. The set of
literals formed from ¥ is denoted by lit(X). A rule is a statement of the form:

hi V ... V hp<+1li,....lp,not lyyq,...,n0t [,

where h;’s and [;’s are ground literals and not is the so-called default negation. The intuitive
meaning of the rule is that a reasoner who believes {l1,...,l,,} and has no reason to believe
{lm+1,-.-,0n}, has to believe one of h;’s. The part of the statement to the left of «+ is called
head; the part to its right is called body. Symbol < can be omitted if no I;’s are specified. Often,
rules of the form h < not h,ly,...,not [, are abbreviated into < [y, ...,not l,, and called con-
straints. The intuitive meaning of a constraint is that its body must not be satisfied. A rule containing
variables is interpreted as the shorthand for the set of rules obtained by replacing the variables with
all the possible ground terms (called grounding of the rule). A program is a pair (3, II), where X
is a signature and 11 is a set of rules over >. We often denote programs just by the second element
of the pair, and let the signature be defined implicitly. In that case, the signature of II is denoted
by X(II). Finally, an answer set (or model) of a program II is one of the possible collections of
its consequences under the answer set semantics. Notice that the semantics of ASP is defined in
such a way that programs may have multiple answer sets, intuitively corresponding to alternative
views of the specification given by the program. In that respect, the semantics of default negation
allows for a simple way to encode choices. For example, the set of rules {p < not ¢. ¢ < not p.}
intuitively states that either p or ¢ hold, and the corresponding programs has two answer sets, {p},
{q}. Because a convenient representation of alternatives is often important in the formalization of
knowledge, the language of ASP has been extended with constraint literals [Nie00], which are ex-
pressions of the form m{ly,ls, ..., }n, where m, n are arithmetic expressions and [;’s are basic
literals as defined above. A constraint literal is satisfied whenever the number of literals that hold
from {l1,...,lx} is between m and n, inclusive. Using constraint literals, the choice between p and
g, under some set of conditions I', can be compactly encoded by the rule 1{p,q}1 < I'. A rule
of this form is called choice rule. When solving sets of problems from a given domain of interest,
ASP programs are often divided into a domain description and a problem instance. Intuitively, the
domain description encodes a description of the problem domain and of the solutions, while each
problem instance encodes a different problem from the domain. In this paper we will make the
simplifying assumption (usually satisfied even in practical applications) that the signature of every
problem instance of interest is contained in the signature of the domain description. Another notion
that is important for practical purposes is that of domain predicate. Domain predicates are relations
whose definition is given with rules following syntactic restrictions, in such a way that the definition
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of the relation can be derived from the rules without performing a complete answer set computation
for the containing program. Domain predicates are used by the grounding procedures in order to
determine the ranges of the variables that occur in the program. The precise definition of the syn-
tactic restrictions varies depending on the grounding procedure used. A commonly used definition
is the one given in [Syr98].

3. Learning Domain-Specific Heuristics

The search algorithm used by most ASP solvers (e.g. SMODELS [Nie02], DLV [Cal02], CLASP
[Geb07]) builds upon the DPLL procedure [Dav60, Dav62]. The basic algorithm for the computa-
tion of a single answer set, which we will later refer to as standard algorithm, is show in Figure 1.
The term extended literal, used in the algorithm, identifies a literal [ or the expression not [ (intu-
itively meaning that / is known not to hold in the answer set, but its complement, /, may or may not
hold). Given an extended literal e, not(e) denotes the expression not [ if e = [ and it denotes [ if
e = not [. The algorithm is based on the idea of growing a particular set of (ground) literals, often

function solve ( II: Program, A : Set of Extended Literals )
B := expand(Il, A);
if (B is answer set of II) then return B;
if (B is not consistent or B is complete) then return L;
e := choose_literal (I, B);
B’ := solve(Il, BU{e});
if (B'=_1) then B’ := solve(Il, BU{not(e)});
return B’;

Figure 1: Basic Search Algorithm for ASP

called partial answer set, until it is either shown to be an answer set of the program, or it becomes
inconsistent. To achieve this, guesses have to be made as to which literals may be in the answer set.

It is not difficult to see how the choices made by choose_literal greatly influence the num-
ber of choice points picked by the algorithm, and ultimately its performance. In order to reduce the
chances of choose _literal making “wrong” selections, modern solvers base literal selection on care-
fully designed heuristics. For example, in SMODELS the selection is roughly based on maximizing
the number of consequences that can be derived after selecting the given extended literal [Nie02].
These techniques work well in a number of cases, but not always. In fact, particular features of the
program can confuse the heuristics. When that happens in the early stage of the search process,
the effect is often disastrous, causing the solver to fail to return an answer in an acceptable amount
of time. Particularly frustrating is the fact that the efficiency of the heuristics may change largely
in correspondence of small elaborations of the program in input. For example, the choose_literal
heuristics may make good selections for one problem instance, while they may cause the search to
take an unacceptable amount of time for a not-too-different problem instance.

One way to limit the effect of wrong selections by choose_literal is that of allowing the solver to
learn about relevant conflicts at run-time. Once learned, the information about conflicts can be used
for the early pruning of other branches of the search space (e.g. [Geb07]). Although this technique
has proven to be extremely effective, it does not address directly the issue of choose _literal making
wrong choices, but rather curbs the problem by making some of those choices impossible after
learning has taken place, or by allowing to quickly backtrack after a wrong choice has been made.
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Furthermore, because the learning occurs at run-time, during the initial phase of the computation in
which learning has not yet occurred, choose_literal may once again affect efficiency negatively by
taking the search process in the wrong direction.

A different, more straightforward, way of limiting the wrong selections made by choose_literal is
to directly improve the choice-making algorithm. In this paper, we adopt the approach of learning
domain-specific heuristics from a number of sample problems, and of using them for literal selec-
tion in a modified version of choose_literal. This technique is suitable for situations in which one is
interested in solving a number of problem instances from a given problem domain. Such situations
are very common in the ASP community — see e.g. the Second Answer Set Programming Competi-
tion [Den09]. Moreover, this is particularly the case in industrial applications, where the application
contains the domain description, and the user describes the instance using some interface (refer e.g.
to [Bal06]), which then automatically encodes the problem instance.

Consider program P;:
.

p < not q. g < not p.
.

—p,r.

Pl — < g,not s.

u(X) « t(X),not v(X).
v(X) + ¢(X),not u(X).

[ £(0). £(1). ... £(1000).

The program can be viewed as consisting of a domain description and a problem instance: the first
7 rules constitute the former, while the definition of predicate ¢ is the problem instance. A different
problem instance might then define ¢ as {¢(5), ¢(6), ¢(7)}. In this case, it is obvious that a good
strategy for the selection of the literals consists in first choosing among {p,not p,q,not ¢} and
only later (if necessary) considering the extended literals formed by  and v.

In general, the domain-specific heuristics for choose_literal will be learned — rather than manually
specified — by analyzing the choices made by the standard solver solve when solving representative
problem instances from the domain. This approach is particularly useful in applications in which a
number of problem instances from the same class of problems will have to be solved over time —
for example, in the setting of an industrial application, or in a programming/solver competition in
which benchmarking is involved — and computational power is available off-line to allow learning
the domain-specific heuristics (e.g. before deploying the application, or before submitting the solver
or solutions to a competition).

Let us now describe in more detail our technique for learning and using domain-specific heuristics.
We start with the learning phase. First of all, the algorithm from Figure 1 is modified to maintain a
record of the choice points, and to return the list of choice points together with the answer set, when
one is found. The modified algorithm is shown in Figure 2. In the algorithm, the list of choice points
is stored in variable .S. Symbol o represents concatenation. When solvecp is initially invoked, S is
the empty list.

Now we turn our attention to how the information collected by solvecp is used to guide the
domain-specific heuristics. Given the domain description M and a problem instance I that is to
be used to learn the domain-specific heuristics, the decision-sequence of I (denoted by d(I)) is L
if solvecp(I U M,0,0) = L and S if solvecp(I U M, (,0) = (A, S) for some A. From now on,
given a decision-sequence d, we denote its n'” element by d,,. Moreover, given an extended literal
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function solvecp ( II: Program, A : Set of Extended Literals, S : Ordered List of Extended Literals )
B := expand(Il, A);
if (B is answer set of II) then return (B,S);
if (B is not consistent or B is complete) then return 1 ;
e := choose_literal (I, B);
(B',S’)y := solve(ll, Bu{e}, Soe);
if (B’ # 1) then return (B’ S’);
(B',S") := solve (Il, BU({not(e)}, Sonot(e));
return (B',S");

Figure 2: Search Algorithm for ASP with Explicit Tracking of Choice Points

e, level(e, d) denotes the index i such that d; = e (e is guaranteed not to occur at more than one
position by construction of the decision-sequence in solvecp). Intuitively, level(e, d) represents the
level in the decision tree at which e was selected. Notice that, by construction of the sequence of
choice points in solvecp, if d(I) # L, then d(I) only enumerates the choice points that led directly
to the answer sets. All the choice points that did not lead directly to it, in the sense that they were
later backtracked upon, are in fact discarded every time the algorithm backtracks.

In order to improve the efficiency of the learned heuristics, we divide the class of problem instances
in subclasses, and associate with each problem instance I an expression ¢ denoting the subclass
it belongs to. The intuition is that using subclasses allows to further tailor the literal selection
heuristics to the peculiar features of the problem instances. For example, in a planning domain,
o might be the maximum length of the plan (often called lasttime or maztime in ASP-based
planning). The subclass of a problem instance I is denoted by o (I).

Let Z denote the set of all problem instances that will be used for the learning of the domain-specific
heuristics. Next, we specify a way to determine how many times an extended literal e was selected
at a certain level of the decision-sequences for the problem instances in Z. More precisely, given
a positive integer 9, called the scaling factor, and subclass o, the occurrence count of an extended
literal e w.r.t. a level [ and set of instances Z is
o506, L) =|{I|IT€Z No(l)=0c Nd(I)#LA
Il —6/2 <index(e,d(I)) <l+d/2}].

The scaling factor § allows taking into account all the occurrences of e at a level in the interval
[l —6/2,1+6/2). If 6 = 1, then only the occurrences of e with level equal to [ are considered.
Values of § greater than 1 can be useful in those cases in which all or most permutations of a
sub-sequence of choice points lead to an answer set.

Let now E = {ej,ea,...,ex} be a set of extended literals, representing possible choice points at
some level [ of the decision tree. The set of best choice points among E is:

bests(l, E,0,I) = {e|le € E AN Ve € E 05,(e,1,T) > 05,(¢',1,T)}.

Intuitively, best;s(l, E, o, T) returns the choice points that, if taken at level [, are most likely to lead
to an answer set without backtracking, based on the information collected about the instances of
subclass o in Z. Algorithms for the computation of bests(l, E, o,Z) and 05 (e, [, Z) are simple and
are omitted to save space.

Function bests(l, E,0,7) encodes the essence of the domain-specific heuristics. Algorithm
choose_literal can now be extended to perform literal selection guided by the domain-
specific heuristics. The modified algorithm, choose_literal_dspec, is shown in Figure 3. In
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function choose_literal_dspec ( II: Program,
o : Problem Subclass,
A : Set of Extended Literals,
level : Integer /* Current Level in the Decision Tree */,
T : Set of Extended Literals,
T : Set of Instances,
6 : Integer /* Scaling Factor®/ )

L = lit(3(1D));
E:=LU{not l|leL};
E' =0;
foreach ec E
if (e ANAnot(e) g ANegT) then
E = F U{e};
end if
end for
B := bests(level, E',0,T);
if (B#0) then
chosen := one_element_of(B);
else
chosen := choose_literal(11, A);
end if

return chosen;

Figure 3: Function for Literal Selection with Domain-Specific Heuristics

choose_literal _dspec, argument T is the set of extended literals that have previously been selected
by choose _literal_dspec. If bests(level, E',o(I),T) is the empty set, then choose_literal_dspec
falls back to performing standard extended literal selection via choose _literal. This is for instances
in which the learned heuristics do not prescribe any extended literal for the current decision level,
or in which all the extended literals that the learned heuristics prescribed have already been tried.
Modifying the standard solver’s algorithm in order to use the domain-specific heuristics for choice-
point selection is rather straightforward. A simple version, which for the most part follows the
well-known iterative version of the SMODELS algorithm, is shown in Figure 4.

4. Experimental Evaluation

In this section we discuss the experiments we ran in order to evaluate our technique for learning
domain-specific heuristics and using them in computing answer sets. To ensure coverage of a wide
variety of cases, we have tested our implementation on both abstract problems and on problems
from industrial applications of ASP. Here we show the results of testing on the task of planning for
the Reaction Control System of the Space Shuttle.

The system used in the experiments is LPARSE+SMODELS, which we modified to obtain implemen-
tations of algorithms solvecp and solve_dspec. One complication of the implementation process is
due to the fact that LPARSE often introduces unnamed atoms during the grounding of rules contain-
ing constraint literals, where by unnamed atoms we mean atoms that do not occur in the original
program, and that are assigned an identifier that is only meaningful in the context of the current
computation. Dealing with unnamed atoms is problematic because, in order to be used in the learn-
ing of the domain heuristics, all atoms must be assigned identifiers that are meaningful throughout
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function solve_dspec ( II: Program,
o : Problem Subclass,
T : Set of Instances,
6 : Scaling Factor )
var S: Stack of Sets of Extended Literals;
var B,T: Set of Extended Literals;
var terminate : Boolean;

S:=0; B:=0; T:=0;
terminate := false;
while (terminate = false)
B := expand(11, B);
if (B is answer set of II) then
terminate := true;

else
if (B is not consistent or B is complete) then
if (S=10) then
B:.=1;
terminate := true;
else
/* Backtrack =*/
B :=top(S);
S :=pop(S);
end if
else
/* Select a choice point =/
e := choose_literal_dspec(Il, o, B, level, T, Z,§);
T :=TU{e};
S := push(B U {not(e)}, S);
B :=BU{e};
end if
end if
end while
return B;

Figure 4: Search Algorithm for ASP with Domain-Specific Heuristics for Choice-Point Selection

multiple computations (normally, the atoms’ own string representation satisfies this requirement).
We have thus developed a technique that uses pre-processing and post-processing for the execu-
tion of LPARSE to assign unnamed atoms identifiers satisfying this requirement. Space limitations
prevent us from giving more details on this technique.

It should also be noted that we did not use CLASP for our experiments: although CLASP is based,
like SMODELS, on the DPLL procedure, and thus technically viable for the implementation of our
algorithms, such implementation is complicated by the fact that, in CLASP, literal selection is al-
lowed to select special literals denoting the whole body of a rule. A further complication of the
implementation is due to the use of clause learning in CLASP. Work is ongoing on implementing
solvecp and solve_dspec within this solver, and results will be discussed in a longer paper. In the
rest of the discussion, we refer to the implementation of solve_dspec within SMODELS as DSPEC.

As described in e.g. [Nog03, Bal06], the RCS is the Shuttle’s system that has primary responsibility
for maneuvering the Shuttle while it is in space. It consists of fuel and oxidizer tanks, valves, and
other plumbing needed to provide propellant to the maneuvering jets of the Shuttle. The RCS also
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includes electronic circuitry, both to control the valves in the fuel lines and to prepare the jets to
receive firing commands.

In order to configure the Shuttle for an orbital maneuver, the RCS must be configured by opening
and closing appropriate valves. This is accomplished by either changing the position of the asso-
ciated switches, or by issuing computer commands. In normal conditions, the procedures for the
configuration of the RCS for a given maneuver are known in advance by the astronauts. However, if
components of the RCS are faulty, then the standard procedures may not be applicable. Moreover,
because of the amount of possible combinations of faults, it is impossible to prepare in advance a
set of configuration procedures for faulty situations. In those cases, ground control needs to care-
fully examine the problem and manually come up with a configuration procedure. The system
described in [Nog03, Bal06] uses a model of the RCS, as well as ASP-based reasoning algorithms,
to provide ground control with a decision-support system that automatically generates configuration
procedures for the RCS and that can be used when faulty components are present (incidentally, the
system can also perform diagnostic reasoning [Bal06]).

A collection of problem instances from the domain of the RCS is publicly available, together with
the ASP encoding of the model of the RCS.! The interested reader may refer to [Nog03] for a
description of the instances. For our testing, we have selected a set of 425 instances from the
collection, corresponding to the public instances with no electrical faults and 3, 8, and 10 mechanical
faults respectively, for which a plan of length 6 or less (determined by parameter lasttime) was
found in the experiments discussed in [Nog03, Bal06], and we have analyzed the performance of
the solver on planning with maximum lengths ranging between 6 and 10.

The comparison between SMODELS and DSPEC was conducted as follows. First of all, for each
instance we found one plan using SMODELS. Each computation was set up in such a way as to
timeout after 6000 seconds, if no answer set had yet been found. Next, we generated the domain-
specific heuristics. The set of instances used for learning consisted of all the instances for which
our implementation of solvecp found a solution in 50 seconds of less, while the remaining “hard
instances” were used for the evaluation phase. The problem subclasses were defined by the pair
(lasttime, maneuver), where lasttime specifies the maximum plan length and maneuver is the
maneuver that the RCS must be configured for (in our experiments, using the maneuver in the sub-
class definition substantially improved the performance of the learned heuristics). Figure 5 shows
the results of the comparison for the 58 hard instances with 8 mechanical faults and values of last-
time of 9 and 10. The results were obtained with § = 1. We believe the speedup obtained with
the domain-specific heuristics is remarkable. First of all, out of 32 instances for which the standard
solver timed out before finding a solution, in 28 cases the domain-specific heuristics allowed to find
a solution within the time limit, and in some cases in under 10 seconds. The average speedup is
232.3, with a peak of 1253.1 for an instance for which SMODELS timed outz, and a peak of 544.5
for an instance for which SMODELS did not time out. In 4 cases (out of 32) DSPEC performed worse
than the standard solver. We believe that these outliers can be eliminated if more samples are made
available for learning.

IThe files are available from http://www.krlab.cs.ttu.edu/Software/Download/.

2The actual speedup could in fact be higher, since SMODELS timed out. As a test, we have let SMODELS run on some
of these instances for over 60, 000 seconds (16 hours) without getting a solution.
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8 Mechanical Faults
Lasttime/ | SMODELS | DSPEC | Speedup Lasttime/ | SMODELS | DSPEC | Speedup
Instance (sec) (sec) (times) Instance (sec) (sec) (times)
9/025 6000 17.643 340.1 107050 72.596 | 12.521 5.8
9/027 6000 9.597 | 6252 107053 1907.445 23.37 81.6
9/038 125.244 8.616 14.5 107059 6000 | 15.163 395.7
9/044 1439.027 6.846 | 210.2 10/ 061 266.024 7.756 343
9/053 6000 13.599 | 441.2 107070 519.583 | 16.343 31.8
9/059 85.151 | 551.806 0.2 10/074 6000 | 13.903 | 431.6
9/074 6000 8.961 669.6 107077 251.754 7.518 33.5
9/075 736.134 3.837 191.9 107087 6000 | 24962 | 2404
9/087 6000 6000 1.0 10/088 | 3830.141 18.512 | 206.9
9/090 6000 14.111 4252 107092 31883 | 11.712 27.2
9/093 2451.649 6477 | 3785 107093 6000 | 494.85 12.1
9/098 114.643 10.529 10.9 107096 789.351 13.787 57.3
9/103 52.219 12.544 4.2 107103 6000 | 16.781 357.5
9/122 6000 4788 | 1253.1 10/110 6000 | 255.421 23.5
9/140 6000 11.493 522.1 10/113 264.419 6000 | 0.044
9/165 6000 13.027 | 460.6 107120 1983.466 | 20.254 97.9
9/170 6000 6000 1.0 10/ 140 64.451 6000 | 0.011
9/179 6000 14.304 | 419.5 10/ 147 187.8 7.125 26.4
9/184 6000 20.254 | 296.2 10/ 154 942.008 6000 | 0.157
9/188 6000 6000 1.0 10/ 165 6000 | 30.008 199.9
9/191 4829.019 8.869 | 544.5 10/ 166 6000 | 820.789 7.3
9/199 437.379 7.144 61.2 10/ 177 6000 | 12.605 | 476.0
10/013 94.623 21.663 4.4 10/178 6000 6000 1.0
10/022 6000 | 423.565 14.2 10/ 179 6000 16.74 | 3584
10/025 6000 | 2035.089 2.9 10/188 | 5235.985 12.74 | 411.0
107027 6000 10.248 | 585.5 10/189 | 3773.981 11.765 320.8
10/032 | 2949.169 13.82 | 2134 107190 6000 | 1010.51 5.9
10/037 6000 12.218 | 491.1 10/ 194 6000 | 12.407 | 483.6
10/ 044 6000 18.162 | 3304 10/ 199 6000 9452 | 634.8

Figure 5: Performance Comparison on the RCS Domain. Machine specs: Intel i7 CPU, 2.93GHz,
8GB RAM.

5. Conclusions

In this paper we have demonstrated how domain-specific heuristics for choice-point selection
can be learned and used in ASP solvers. Our experimental evaluation has shown that domain-
specific heuristics can give remarkable speedups, and allow to find answer sets that otherwise cannot
be computed in a reasonable time. In the case of the RCS domain, a large number of the instances for
which the standard solver timed out, could be solver in a matter of seconds using the domain-specific
heuristics, with an average speedup of more than 2 orders of magnitude and peaks of more than 3.
This is the type of consistent performance that makes a solver viable for industrial applications.

We believe that an appealing feature of our approach is that in principle it can be applied to any
solver built around the DPLL procedure. Hence, it is technically possible to apply the same approach
shown here to other ASP solvers, or even to, say, SAT solvers and constraint solvers. Work is
ongoing on implementing our technique within CLASP.

As a final note, we would like to point out that the method used here to learn the domain-specific
heuristics is a very simple instance of policy learning. It will be interesting to investigate how
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more sophisticated techniques from reinforcement learning, but also from machine learning and
data mining, can be applied to the learning of the domain-specific heuristics. We expect that doing

so will

allow to improve performance of the solvers even further.
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ABSTRACT. HEX programs were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. The original
framework, however, does not deal satisfactorily with stateful external environments: the
possibility of predictably influencing external environments has thus not yet been consid-
ered explicitly. This paper lifts HEX programs to ACTHEX programs: ACTHEX programs
introduce the notion of action atoms, which are associated to corresponding functions
capable of actually changing the state of external environments. The execution of spe-
cific sequences of action atoms can be declaratively programmed. Furthermore, ACTHEX
programs allow for selecting preferred actions, building on weights and corresponding cost
functions. We introduce syntax and semantics of ACTHEX programs; ACTHEX programs can
successfully be exploited as a general purpose language for the declarative implementation
of executable specifications, which we illustrate by encodings of knowledge bases updates,
action languages, and an agent programming language. A system capable of executing
ACTHEX programs has been implemented and is publicly available.

1. Introduction

HEX programs [Eit05], were originally introduced as a general framework for extending
declarative logic programming, under the stable model semantics, with the possibility of
bidirectionally accessing external sources of knowledge and/or computation. For instance,

a rule like
pointsTo(X,Y) < &hasHyperlink[ X|(Y), url(X).
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might be devised for obtaining pairs of URLs (X, Y'), where X actually links Y on the Web,
and &hasHyperlink is an external predicate construct.

The possibility of accessing multiple external sources of knowledge has no significant
constraint in HEX programs: in particular, besides constant values, relational knowledge
(predicate extensions) can flow from external sources to the logic program at hand and
viceversa, and recursion involving external predicates is allowed under reasonable safety
assumptions.

It has been illustrated how HEX-programs qualify themselves for actual implementation
of action and/or planning languages. As an example, in [Eit05] it is shown how the so called
code call construct of agent programs as defined in [Eit99] can be embedded in HEX-programs
using the notion of external predicate.

As a further example, HEX-programs constitute a generalization of description logic
programs as defined in [Eit08]: it is made possible to push additional, hypothetical asser-
tions to an external description logic knowledge base L, and then subsequently query the
augmented knowledge base L'. However, it is not possible to push persistent assertions to L:
in fact, HEX-programs do not contemplate the possibility of changing the state of external
sources. For instance, it can be desirable having a program fragment like

new(X) V old(X) < &addToF avorites[X], new(X).

where intuitively &addToF avorites[X] is a) true for all (and only) the values of X which do
not appear in a given external list L of favorite URLs, and b) has the side effect of adding
X to L if X is not already in L. However, one might wonder what the semantics of a
program including the above fragment should be, noticing that &addToFavorites changes
its outcome depending on its state (the list L). Hence, the sequence of state changes due to
&addFavorites would be predictable only if the rule evaluation order in the logic program
at hand is operationally specified and known by the programmers.

Updates on external environments changing their state are desired in a variety of con-
texts, mainly: 1), when the actual execution of a plan is expected: in this setting, a change
in the environment the agent at hand is acting in is implicitly prescribed; also, the order
of execution of plan actions and their effect must be predictable and, indeed, this is the
general setting which logic-based action languages are devised to reason about [Gel93]; 2)
when an answer set solver is interfaced with other (stateful) applications: the latter usually
elaborate on data depending on answer sets computed, which can be then subsequently
exploited for synthetis of new logic programs and evaluation thereof.

In the former case, the logic programming community (and particularly, the nonmono-
tonic reasoning community), has devoted extensive research towards reasoning about actions
and planning, but only a few works (see e.g. [Sub00]) considered the support for actual
execution of agent actions explicitly. In the latter case, applications have been developed
by the Answer Set Programming community usually resorting to handcrafted solutions, like
ad hoc post-parsing of answer sets!, or developing ad hoc libraries for invoking answer set
solvers from other development environments (see, e.g. [Ric03, Pir08]).

Although HEX-programs interface well with external sources of knowledge, it turns out
that some structural limitations prevent addressing the issue of having impact on external
environments in a satisfactory way: first, external functions associated to external predicates
are inherently stateless; second, but more importantly, HEX-programs are fully declarative:

LAn extensive list of known applications of ASP can be found at
http://www.kr.tuwien.ac.at/research/projects/WASP/showcase.html
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this implies that when writing an HEX program, it is not predictable whether and in which
order an external function will be evaluated.

To this end, we lift HEX programs to ACTHEX programs. ACTHEX programs introduce
the notion of action predicate and action atom. Differently from external predicates, action
predicates have impact on external environments and might trigger state changes and side
effects. Action predicates are associated to corresponding (executable) functions. The
framework allows a) to express and infer a predictable order of execution for action atoms,
b) to express soft (and hard) preferences among a set of possible action atoms, and c)
to actually execute a set of action atoms according to a predictable schedule. It is worth
remarking that ACTHEX programs do not represent an action language in a strict sense. The
main goal of the language is 1) to provide a complementary extension to logic programming
over which existing action, planning and agent languages can be grounded, and 2) to provide
a tighter and semantically sound framework for interfacing logic programs with applications
of arbitrary nature.

2. Syntax and Semantics

Intuitively, ACTHEX programs extend HEX programs allowing rules like
#robot[move, DI{b, T}[2 : 1] < direction(D), time(T).

the above can be seen as a rule for scheduling a movement of a given robot in direction
D with execution order T'. Action atoms are executed according to execution schedules.
The latter in turn depend on answer sets, which in their generalized form, can contain
action atoms. The order of execution within a schedule can be specified using a precedence
attribute (which in the above rule is set by the variable T'); also actions can be associated
with weights and priority levels (the values 2 and 1 above, respectively). Action atoms
allow to specify whether they have to be executed bravely (the b switch above), cautiously
or preferred cautiously, respectively meaning that an action atom a can get executed if it
appears in at least one, all, or all best cost answer sets. We give next the formal syntax and
semantics of the language.

Syntazx. Given a finite alphabet X, we denote as C, X, G, and A mutually disjoint subsets of
>* whose elements are respectively called constant names, variable names, external predi-
cate names, and action predicate names. Elements from X (resp., C) are denoted with first
letter in upper case (resp., lower case), while elements from G (resp., A) are prefixed with
“&” (resp. “#”). Note that names in C serve both as constant and predicate names.
Elements from CUX are called terms. A higher-order atom (or atom) is a tuple (Yo, Y1,
..Y,), where Yp,Yy,...Y, are terms; n > 0 is the arity of the atom. Intuitively, Y} is
the predicate name, and we thus also use the more familiar notation Yy(Y7...Y,). The
atom is ordinary, if Yj is a constant. For example, (z,type,c), node(X), and D(a,b),
are atoms; the first two are ordinary atoms. An external atom [Eit05] is of the form
&glYr, ..., Yol(Xq, ..., X;n) where Y7, ..., Y, and X,..., X,, are two lists of terms (called
input and output lists, respectively), and &g € G is an external predicate name. We
assume that &g has fixed lengths in(&g) = n and out(&g) = m for input and output lists,
respectively. An action atom is of the form #g[Y7,...Y,]{o,r}[w : ] where Y7,...,Y,, is
a list of terms (called input list), and #g¢ is an action predicate name. We assume that
#g has fixed length in(#g) = n for its input list. o € {b,¢,¢,} is called the action option.
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Depending on the value of o, the action atom is called brave, cautious, preferred cautious,
respectively.

Optional attributes r, w and [ range over positive integers and variables?, and are called
action precedence, action weight and action level respectively. For an action atom a, we
denote by pr(a),w(a), and I(a) its precedence, weight, and level, respectively. Concerning
the latter two, we remark that they are reminiscent of the corresponding attributes of
so-called weak constraints, but refrain from further illustration for space reasons.

Example 2.1. The action atom #robot[move, left]{b, 1} may be devised for moving a robot
to the left. Here, we have that in(#robot) =2. This atom features the option b executed
with precedence 1, while weight and level information are not given.

A rule 7 is of the form a1 V.. .Vag < b1, ..., Bn, not Bpit, - .., not By, where m,n, k > 0,
m > n, ai,...q are atoms or action atoms, and fSi,...05,, are either atoms or exter-
nal atoms. We define H(r) = {a1,...,ax} and B(r) = BT (r) U B~ (r), where Bt (r) =
{B1,...,Bn} and B~ (r) = {not Bpt1,...,n0t B }. If H(r) = 0 and B(r) # (), then r is
a constraint, and if B(r) = 0, and H(r) # 0, then r is a fact; v is ordinary, if it does
not contain external or action atoms. An ACTHEX program is a finite set P of rules. It is
ordinary, if all rules are ordinary.

Example 2.2. The following is a valid ACTHEX program:

evening V morning.
#robot[turnAlarm, on]{c, 2} + evening.
#robot[turnAlarm, of fl{c,2} < morning.
#robot[move, all]{b,1} < &getFuel[|(high).
#robotmove, le ft|{b, 1} «+ &get Fuel[](low).

Semantics. The semantics of ACTHEX programs generalizes that of HEX-programs given in
[Eit05], which in turn generalizes traditional answer-set semantics [Gel91]. In the sequel, let
P be an ACTHEX program. We will assume that P acts in a external environment E, over
which action atoms potentially triggered by P might have some effects. ACTHEX programs
can in practice be exploited in a variety of different environments (e.g. a relational database,
a file system, or the entire Web): we focus here on the semantics of P, and thus we will
make no particular assumption on the nature of E besides assuming it as a finite collection
of data structures of unspecified nature and size (to take the most general view, assume
E as a finite, arbitrarily large, portion of a Turing machine tape surrounded by blanks on
both sides).

The Herbrand base of P, denoted HBp, is the set of all possible ground versions of
atoms, external atoms and action atoms occurring in P obtained by replacing variables
with constants from C. The grounding of a rule r, grnd(r), is defined accordingly, and the
grounding of program P is given by grnd(P) = (J,cp grnd(r). Unless specified otherwise,
C,X,G, and A are implicitly given by P.

Example 2.3. Given C = {edge, arc,d,e, 1,2}, some ground instances of F(X, c) are
edge(d, e), arc(arc,e); #robotld, N|{b, X} has ground instances #robot [d,e]{b, 1}, #robot
[d, d]{b,2}.

2We assume here that C contains a finite subset of consecutive integers S = {0, ..., Nmas }-
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An interpretation relative to P is any subset I C HBp containing (ordinary) atoms
and action atoms. We say that I is a model of atom (or action atom) a € HBp, denoted
I = a, if a € I. With every external predicate name &g € G, we associate an (n+m-+1)-
ary Boolean function fg4, assigning each tuple (I,y1,...,¥Yn,Z1,,...,%m) either 0 or 1,
where n =in(&g), m =out(&g), I € HBp , and z;,y; € C. Similarly, with every action
predicate name #g € A, we associate a (n+2)-ary function fu, with input (E,1,y1,...,yn)

and returning a new external environment E' = fu (E,I,y1,...,ys). Note that functions
that are associated with action atoms do not have output lists. We say that I C HBp
is a model of a ground external atom a = &g [y1,...,yn] (T1,..., %), denoted I = a, iff

Jeeg(L,y1 -3 Yns @15 oy T) = 1.

Intuitively, functions associated with external atoms model (stateless) calls to external
code and/or external sources of knowledge, as originally defined in [Eit05]. The newly
introduced notion here is that of action predicates: action atoms can appear in answer sets or
not depending on whether they are a consequence of the program at hand or not; functions
associated with action predicates serve the purpose of modelling the actual execution of
entailed action atoms, i.e., the respective changes on F.

Example 2.4. We associate with &reach a function fgreqch, St fereach(I, G, A, B) =
1 iff node B is reachable from node A in the graph encoded by means of the binary
predicate G . Let I = {e(b,c),e(c,d)}. Then, I is a model of &reachle,b](d), since
fecreach (1, €,b,d) = 1. Also, let us associate with #insert a function fynsert, and assume
that E contains an encoding of a knowledge base K expressed as a set of facts. When action
atom #insert [edge, arc] {b, 1} needs to be executed, then the function fupser is called with
inputs (F,1,edge,arc), for an interpretation I. Intuitively, #insert might correspond to
the act of adding to the extension of the predicate edge in K the extension of the predicate
arcin I.

Let r be a ground rule. We define (i) I = H(r) iff there is some a € H(r) such that
I'Ea, (i) I EB(r)iff  Eaforalla € BT (r) and I £ a for alla € B~(r), and (iii) I = r
iff I = H(r) or I = B(r). We say that I is a model of an ACTHEX program P, denoted
I = P,iff I =7 forall r € grnd(P). We call P satisfiable, if it has some model. Given
an ACTHEX program P, the FLP-reduct of P with respect to I C HBp , denoted fP! | is
the set of all r € grnd(P) such that I = B(r). I C HBp is an answer set of P iff I is a
minimal model of fP’.

Note that we inherit from the framework of HEX programs the adoption of the notion
of reduct as defined by [Fab04] (referred to as FLP-reduct henceforth). The FLP-reduct
is equivalent to the traditional Gelfond-Lifschitz reduct for ordinary programs, and in our
context ensures answer-set minimality, even in the presence of external atoms (see [Eit05]
for details). Let AS(P) be the collection of all the answer sets of program P; the set of best
models BM(P) contains the answer sets of P minimizing an objective function Hp. Hp(A)
intuitively weighs an answer set A depending on the weights (and levels) of action atoms
which are contained in A3

Let a be an action atom of the form #g¢ [y1,...yn]{0,r}, and A € AS(P); a is said to
be executable in A, if i) a is brave (i.e., 0 = b) and a € A, or ii) a is cautious (i.e., 0 = ¢)
and a € B for every B € AS(P), or iii) a is preferred cautious (i.e., 0 = ¢,) and a € B
for every B € BM(P). Roughly speaking, once an answer set A is chosen as the one to be

3For space reasons, the reader can find the definition of Hp at
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/preferences.html



HEX PROGRAMS WITH ACTION ATOMS 29

executed, action atoms to be executed are selected depending on their action option. Note
that, in this respect, the notion of brave executability depends on the answer set at hand
and thus slightly differs from the traditional notion of brave entailment.

Given an answer set A € BM(P), an execution schedule Eqxp = [a1,...,ay] is an
ordered list containing all the action atoms executable in A, such that i < j if pr(a;) <
pr(a;), for each pair of atoms a;, a; appearing in F4 p.

Intuitively, an execution schedule for a program gives an order for the action execution
compatible with the precedences specified in the program. Note that for action atoms with
the same precedence the execution order is not specified.

Given an execution schedule E4 p = [a1,...,ay], let Ey = E, and for ¢ > 0, E; =
fai(Eic1, A y1, .., ym). We define EX(E4 p) = E, as the ezecution outcome of E4 p, and
EX(P) = {Eap | A€ BM(P)}.

In general, given a program P, we consider AS(P), BM(P) and EX(P) as different
facets of the semantics of P. In particular, the execution outcome of P is EX(E4 p) for an
execution schedule E4 p € EX(P) of choice. We simply assume that a deterministic rule
for choosing F 4 p is given?.

Example 2.5. Let Ay, Ay, Az be three answer sets of a given program P..o 5, where
A1, Ay € BM(P.p25). Let ay = #insertle,g1]{b,1}, aa = Finsertle,g2|{c,5}, az =
#insert e, g3] {c,2}, as = #insert e, ga] {cp,2}, a5 = F#insertle,gs]{b,1}, and let A; =
{a1,a2,a3,a4,a5}, Az = {ag, a4}, Az = {a2,as5}.

Since A3 & BM(P,y5), possible choices of answer sets are Ay and Ay. If we choose Ay,
brave atoms a1, as, cautious atom as and preferred cautious atom a4 are executable since
ai,as € Ay, where as appears in all the answer sets and a4 appears in both Ay and As . A
has two possible execution schedules which are [a1, a5, aq, as], and [as, a1, a4, az).

For the case that As is selected, cautious atom ao and preferred cautious atom a4 are
executable since ao appears in all answer sets, and a4 appears in A; and As. Thus, the only
possible execution schedule for Ay is [ay4, as).

3. Applications of ACTHEX programs

In this section, we provide evidence for the versatility of ACTHEX by discussing several
application scenarios, including encodings of existing action-based KR formalisms.

Action languages. We use action language C [Giu98] as a representative for sketching how
action languages can be reduced to ACTHEX programs. The relationship to logic program-
ming is well-known: we follow a transformation from [Lif99].

The semantics of C is defined in terms of transition diagrams which put in relationship
propositional action and fluent atoms. The possible state evolution specified in transition
diagrams can equivalently be characterized as a logic program expressed in terms of predi-
cates having a time attribute, which are used for encoding truth values of different action
and fluent variables at different times. Not surprisingly, the precedence attribute of action
atoms can intuitively capture the notion of time as in [Lif99].

Consider causal laws defined as either a static law of the form “caused F if L1 A--- A
Ly, , or a dynamic law of the form “caused F if L1 A---AL,, after L1 A+ Ly ALpii A

4For the sake of efficiency, our implementation executes the first execution schedule obtained from the
first computed answer set: other selection criteria are of course possible.
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-+« A Lp”, where F' is a fluent literal, L; is a fluent literal for 1 < ¢ < n, and respectively an
action name for n + 1 < i < k. An action description is a set of causal laws.

Given an action description D and a mazimum time t, following [Lif99], a dynamic law
I € D of the form above can be translated to the ordinary rule F'(T + 1) + not L} (T +
1), ... ,not L, (T +1), ma1(T), ..., Li(T), where F' is a unary predicate associated to

fluent F, while L/, ZQ are unary predicates associated to fluents L;, 1 < i < n, respectively to
actions L;, n+1 < i < k, and their complements®. We then put in connection action atoms
with actions by means of rules #L;{o,T} < L;(T)., n+ 1 < i < k, where #L; is a newly
introduced action atom which is responsible of executing the action L;, and o is an action
option. By adding other auxiliary rules (e.g. guessing rules b(T) V b(T) < T < t for each
action b), and setting o = b, we obtain a program Pp whose execution schedules EX(Pp)
correspond to so-called histories (paths) of length ¢ in D. An execution plan e € EX(Pp)
can then be materially executed. Similarly, preference orderings between actions as in
the language PP and variants thereof [Son06], can be attached to action atoms: for an
ordering L; < --- < L, among actions one can introduce corresponding integer weights
wy < -+ < wy, and rules #L; {0, T} w; : 1] <= L;i(T).

Knowledge Base Updates. As another potential usage of ACTHEX programs, we mention
the possibility of updating knowledge bases, e.g., as achieved by the predicates assert and
retract in Prolog. We assume that external environments contain a collection C' of knowl-
edge bases accessible by names, and consider abstract action constructs assert(kb, f) and
retract(kb, f), which respectively should add or remove a statement f from a given knowl-
edge base kb. The above can be grounded to ACTHEX programs, introducing action pred-

icates #assert;, and #retracty, for k > 0°. An atom #asserti[kb,aq,...,ax]{o,p}, (resp.
#retracty[kb,aq,...,a]{o,p}) adds to (resp. removes from) the knowledge base kb the
assertion ap| ... |ag, for a;|a;, being the string concatenation of a; and a;.

For instance, the rule #assertslkb, “n(”, X, “).”]{b, 1} < node(X). encodes the possible
addition of facts n(c) for each ¢ such that node(c) € A, for an answer set A. The above
constructs can be fruitfully combined with reasoning over the given knowledge bases: to this
end, we introduce the action atom #execute[kb]{o,p}. Assuming the kb is a valid ACTHEX
program, when such an atom belongs to the current execution schedule, it gets executed by
evaluating kb and the resulting execution schedule. Note that whether #assert, #retract
and #execute actions will be executed depend on reasoning on the program at hand: this
opens a variety of possibilities, e.g. belief revisions, and, in general, observe-think-act
cycles [Kow99]”. Note that the evaluation of programs with this kind of construct might
not terminate in general: this issue is subject of ongoing study.

Translation of Agent Programs. Agent programs can also be realized in the ACTHEX frame-
work. We consider logic-based agent programs as developed in [Sub00], consisting of rules of

"We can assume a constraint < L;(T),ZQ(T) is added for each L;. Note that the current implementation
of ACTHEX programs allows for strong negation, by which an atom f,(T) can be conveniently modelled as
=L'(T).

60ur implementation of ACTHEX programs conveniently allows to program and group families of action
atoms, like the above, using variable length parameter lists.

TAn example ACTHEX program containing update actions is given at
http://wuw.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionplugin_examplel.html
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the form Opgagy < X, [7|Op1aa, ..., [7]Opmam, governing an agent’s behaviour. The Op;
are deontic modalities, the a; are action status atoms, and x is a code-call condition.

For instance, Do dial(N) < in(N,phone(P)), O call(P), intuitively states that the
agent should dial phone number N if she is obliged to call P. In [Sub00], a translation of
an agent program AG(P) to a logic program P is given, such that the answer sets of P
correspond to the so-called reasonable status sets of AG(P). We build on this transformation
and model code-call conditions (which, e.g., provide access to actual sensor readings) using
external atoms as already described in [Eit05]. Similarly, we model Do atoms as action
atoms in our framework using rules of the sort #action,|...][{b} <+ Do a. A framework
implementing this translation is available®, featuring a) the translation of agent programs
to ACTHEX programs, b) incorporating the actual execution of Do-able actions and ¢) an
implementation of message box facilities for agents.

Other applications. ACTHEX programs can be exploited in a variety of other contexts, rang-
ing from database access to interaction with actual web sources. We developed an example’
illustrating how to exploit reasoning in ASP for choosing meeting schedules of two teams.
Events are extracted from actual Google Calendars!® of two teams; meeting dates are se-
lected using ASP reasoning; eventually, the chosen events are posted to the calendars of the
teams using an action atom of the form

#create Event[Team, Url, “ActHexMeeting”, Date, U ser, Password|{b, 1}.

4. Implementation Notes

An implementation of ACTHEX programs has been realized and is available!! as an
extension to the dlvhex system!?. With respect to the traditional workflow of an answer
set solver, the system computes execution schedules and executes one of it according to: i)
the semantics of ACTHEX programs, ii) the selection policy of execution schedules described
in Section 2, and i) the associated executable functions provided for action predicates.
The system is equipped with a toolkit enabling users to develop their own libraries of
action predicates: some example libraries are available. In particular, the KBModaddon
library constitutes a generalization of update action atoms as shown in Section 3 (it is, e.g.,
possible to execute arbitrary command line statements, and to assert and retract arbitrary
statements from knowledge bases). An example library allowing access and modification to
Google Calendars is also publicly available.

5. Related Work and Conclusions

Our work has points of contact with some lines of research which can be grouped as
follows. Action languages serve the purpose of providing a declarative language for specify-
ing causal theories [Giu98, McC97], allowing to assert not only the truth of a proposition,
but also that there is a cause for it to be true. In this respect, they provide a formalism
for the declarative representation of dynamic domains and gave rise to logic-based planning

8http ://students.sabanciuniv.edu/~ozanerdem/AgentToHex.html

9http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin/actionpluginwexampleQ.html
10.

11
12

http://www.google.com/calendar
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
http://wuw.kr.tuwien.ac.at/research/systems/dlvhex/
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systems such as CCLAC [Giu04] and DLV* [Eit03]. The two systems mentioned are based
on transformations [Lif99, Gel93] to logic programming under the answer set semantics,
however other (nonmonotonic) reasoning engines can be exploited for causal reasoning in
action domains as well (cf, e.g., [Tur96, Kak01, Lin00]).

ACTHEX programs generalize HEX programs which in turn generalize ASP programs,
and thus can be similarly used to implement planning systems based on action languages
(as shown in Section 3). When resorting to ACTHEX, however, action atoms also encode
their actual execution, enabling a variety of applications. For instance, this allows for in-
terweaving plan generation and action execution seamlessly within a coherent declarative
framework, which may, e.g., be utilized for an integrated approach to monitoring plan exe-
cution. For instance, [Nie07] extends the action language K towards conditional planning:
building on HEX programs, they introduce external function calls in causal rules to im-
port fluent information from an external source. The introduction of action atoms makes it
possible to extend the framework coping with action execution and monitoring their success.

Logic-based agent programming constitutes a further natural application domain for AC-
THEX programs: intelligent agents require reasoning and/or planning capabilities for acting
in dynamic environments, and using logic programming for the declarative specification of
a respective observe-think-act cycle [Kow99] is a reasonable choice. ACTHEX may serve as
an implementation layer for agent systems built according to this paradigm. We exem-
plified its suitability providing a transformation of IMPACT agent programs [Sub00] into
corresponding ACTHEX programs.

The evaluation of IMPACT agent programs is restricted to stratified negation in its
current implementation: the given ACTHEX encoding does not require such a restriction
and can handle general agent programs as formally conceived. Similarly, compared to AC-
THEX, agent-oriented logic programming languages based on Horn clause languages (e.g.,
DALI [Cos04], or ALP [Dre09]) lack a declarative concept of negation, which is important
from an expressive and practical modelling point of view, for instance to express excep-
tions. On the other hand, most nonmonotonic logic programming based approaches to
agent-oriented programming, (e.g.[Alf06, Alf08, Nie06, Vos05, Lei01]), detach the reasoning
process from the actual execution of an agent’s actions (which often are termed ‘external’)
and only their (expected) effects are taken into account for further deliberation. For such
agent frameworks, ACTHEX can provide the platform for an integrated implementation. In
conclusion, ACTHEX is a declarative logic programming framework including a representa-
tion for actions that are executed and have an impact on an external environment. Formal
properties of the language and further extensions (e.g. parallel execution schedules) are
subject to ongoing work. Corresponding results, as well as a more rigorous treatment of
the given encodings, will be subject of follow-up work and/or an extended version of this

paper.
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ABSTRACT. Answer set programming is a form of declarative programming that has proven
very successful in succinctly formulating and solving complex problems. Although mecha-
nisms for representing and reasoning with the combined answer set programs of multiple
agents have already been proposed, the actual gain in expressivity when adding commu-
nication has not been thoroughly studied. We show that allowing simple programs to talk
to each other results in the same expressivity as adding negation-as-failure. Furthermore,
we show that the ability to focus on one program in a network of simple programs results
in the same expressivity as adding disjunction in the head of the rules.

1. Introduction

The idea of answer set programming (ASP) is to represent the requirements of a com-
putational problem by a logic program P such that particular minimal models of P, called
answer sets and usually defined using some form of the stable model semantics [Gel88],
correspond to the solutions of the original problem [Lif02]. The research on multi-context
systems has, among other things, been concerned with studying how a group of simple
agents can cooperate to find the solutions of global problems [Roe05, Bre07]. We start with
an introductory example to illustrate how the ideas of multi-context systems can be used
to solve problems in the ASP setting.
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Example 1.1. A hotspot network consists of two hotspots H; and H,. The hotspots are
wired to each other to share an internet connection and provide wireless access to users in
the area. A user U tries to connect to the closest detectable hotspot e.g. H;. Now assume
that H; is no longer accessible. H; cannot find this out by itself, nor can it rely on users
telling this since they cannot connect. The rules below illustrate how we can model this
knowledge using the communicating programs we describe in Section 2.2. For compactness,
we abbreviate accessible as a, access as ¢, problem as p and optimal as o. Consider the
program Pjp4, with the rules:

Hi:—a <+ Hy:p [r1] U:.o+— Hj:a [r5]
Hso:a + [r2] U:—-0<+ Hs:a,not Hi:a [r6]
Hy:—a <+ Hyi:p [r3] U:c+ Hi:a [r7]
Hoy:p—U:—o [r4] U:c+— Hs:a [r8]

Let Hy = {r1}, Hy = {r2,r3,r4} and U = {r5,r6,r7,r8}. Note how the rules of the
first hotspot H; differ from those of the second hotspot Hs, i.e. they are in different states.
Indeed, the first hotspot H; cannot rely on the user to tell that there is a problem and
it is not accessible. The second hotspot does not have these restrictions. It is easy to see
that user U can deduce that she has access (r2, r8), though this access is not optimal (r6).
The second hotspot detects this (r4) and concludes that there is a problem, allowing H; to
derive that it is not accessible (r1).

In this paper we systematically study the effect of adding such kind of communication
to ASP in terms of expressiveness. The communication between ASP programs that we
propose is similar in spirit to the work in [Roe05, Bre07, Buc08]. Studying the expres-
siveness with a focus on simple ASP programs, however, is in contrast to approaches such
as [De05, Van07] that start from expressive ASP variants, which obscures the analysis of
the effect of communication on the expressiveness. A first contribution of this paper is
that communicating simple programs can solve problems at the first level of the polyno-
mial hierarchy and that communicating normal ASP programs do not offer any additional
expressiveness. The second contribution is the introduction of a new, intuitive form of com-
munication that allows for communicating simple ASP programs to solve problems at the
second level of the polynomial hierarchy. The hardness results that we present in this paper
in a sense complement the membership results from [Bre07]. However, our definitions of
communicating ASP and minimality differ slightly, complicating a direct comparison of the
results.

The remainder of this paper is organized as follows. Section 2 recalls the basic concepts
and results from ASP which we use in this paper, and explores the syntax and semantics of
communicating programs. In Section 3 we show that these communicating simple programs
are capable of simulating normal programs that have negation-as-failure. In Section 4 we
introduce focused communicating programs and show how networks of simple agents can
simulate disjunctive ASP programs. Related work is discussed in Section 5 and Section 6
provides some final remarks.
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2. Preliminaries

2.1. Answer set programming

We first recall the basic concepts and results from ASP that are used in this paper.
To define ASP programs, we start from a countable set of atoms and we define a literal
[ as an atom a or its classical negation —a. If L is a set of literals, we use =L to denote
the set {—l |l € L} where, by definition, =—a = a. A set of literals L is consistent if
LN~—L = 0. An extended literal is either a literal or a literal preceded by not which we
call the negation-as-failure operator. For a set of literals L, we use not(L) to denote the set

{not 1|l e L}.
A disjunctive rule is an expression of the form v <+ (a U not(8)) where 7 is a set
of literals (interpreted as a disjunction, denoted as ly;...;1l,) called the head of the rule

and (o Unot(f5)) (interpreted as a conjunction) is the body of the rule with o and /3 sets
of literals. A positive disjunctive rule is a disjunctive rule without negation-as-failure in
the body, i.e. with 8 = (0. A disjunctive program P is a finite set of disjunctive rules. The
Herbrand base Bp of P is the set of atoms appearing in program P. A (partial) interpretation
I of P is any consistent set of literals I C (Bp U —Bp). I is total iff I U—I = Bp U -Bp.
A normal rule is a disjunctive rule with at most one literal [ in the head. A normal
program P is a finite set of normal rules. A simple rule is a normal rule without negation-
as-failure in the body. A simple program P is a finite set of simple rules. The immediate
consequence operator Tp of a simple program P w.r.t. an interpretation I is defined as

Tp(I)=TU{l| (I +a) € P)A(a CI)}. (2.1)

We use P* to denote the fixpoint which is obtained by repeatedly applying Tp starting from
the empty interpretation, i.e. the least fixpoint of Tp w.r.t. set inclusion. An interpretation
I is an answer set of a simple program P iff I = P*.

The reduct P! of a disjunctive program P w.r.t. the interpretation I is defined as P! =
{v+al|(y+ aUnot(p)) e P,ANI=10}. I is an answer set of the disjunctive program
P when I is the minimal model w.r.t. set inclusion of P!. In the specific case of normal
programs, answer sets can also be characterized in terms of fixpoints. Specifically, it is easy
to see that the reduct P! is a simple program. I is an answer set of the normal program P
iff (PI)* =1, i.e. if I is the answer set of the reduct P’.

2.2. Communicating programs

The underlying intuition of communication between ASP programs is that of a function
call or, in terms of agents, asking questions to other agents. This communication is based
on a new kind of literal ‘Q:[’, as in [Roe05, Bre07]. If the literal [ is not in the answer set of
Q@ then @:1 is false; otherwise @Q:[ is true. The semantics are closely related to the minimal
semantics in [Bre07] and especially the semantics in [Buc08].

Let P be a finite set of program names. A P-situated literal is an expression of the
form @Q:1 with Q € P and [ a literal. For R € P, a P-situated literal Q:[ is called R-local
if @ = R. For a set of literals L, we use @: L as a shorthand for {Q:l |l € L}. For a set of
P-situated literals X and @ € P, we use X to denote {l | Q:l € X}, i.e. the projection
of X on Q). A set of P-situated literals X is consistent iff X is consistent for all @ € P.
By =X we denote the set {Q:—l | Q:l € X} where we define Q:—-—l = Q:l. An extended
P-situated literal is either a P-situated literal or a P-situated literal preceded by not. For
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a set of P-situated literals X, we use not(X) to denote the set {not Q:1|Q:l € X}. For a
set of extended P-situated literals X we denote by X the set of P-situated literals in X,
i.e. those extended P-situated literals in X that are not preceded by negation-as-failure,
while X6 = {Q:1 | not Q:1l € X}.

A P-situated normal rule is an expression of the form @ : 1 < (a U not(f)) where
@ :1 is a single P-situated literal, called the head of the rule, and (a U not(3)) is called
the body of the rule with « and [ sets of P-situated literals. A P-situated normal rule
Q:l < (aUnot (B)) is called R-local whenever Q = R. A P-component normal program Q
is a finite set of ()-local P-situated normal rules. Henceforth we shall use P to both denote
the set of program names and to denote the set of actual P-component normal programs.
A communicating normal program P is then a finite set of P-component normal programs.

A P-situated simple rule is an expression of the form Q) :1 < «, i.e. a P-situated normal
rule without negation-as-failure in the body. A P-component simple program @ is a finite
set of Q-local P-situated simple rules. A communicating simple program P is then a finite
set of P-component simple programs.

In the remainder of this paper we drop the P-prefix whenever the set P is clear from
the context. Whenever the name of the component normal program @ is clear, we write [
instead of @ :1 for Q-local situated literals. For notational convenience, we write commu-
nicating program for communicating normal program. Finally note that a communicating
normal (simple) program with only one component program trivially corresponds to a nor-
mal (simple) program.

Similar as for a normal program, we can define the Herbrand base for a component
program () as the set of atoms occurring in (), which we denote as Bgy. The Herbrand base
of a communicating program P is defined as Bp = {Q:a |Q €P and a € Upep BR}. We
say that a (partial) interpretation I of a communicating program P is any consistent subset
I C (Bp U—Bp). Given an interpretation I of a communicating program P, the reduct Q!
for @Q € P is the component simple program obtained by deleting

e each rule with an extended situated literal not R:[ in the body such that R:l € I;
e cach remaining extended situated literal of the form not R:I;

e each rule with a situated literal R:l in the body that is not Q-local with R:[ ¢ I;
e cach situated literal R:[ that is not (J-local and such that R:l € I.

The underlying intuition of the reduct is clear. Analogous to the definition of a reduct
of a normal programs [Gel88], the reduct of a communicating program defines a way to
reduce this program relative to some guess I. The reduct of a communicating program is a
communicating simple program that only contains component simple programs () with Q-
local situated literals. That is, each component simple program () corresponds to a classical
simple program. We tackle the problem of self-references in [Buc08] by treating (-local
situated literals in a different way. Since the communication is based on belief and internal
reasoning is based on knowledge, this allows for “mutual influence” as in [Bre07, Buc08]
where the belief of an agent can be supported by the agent itself, via belief in other agents.
Also note that the belief between agents is the belief as identified in [Lif99], i.e. @ : 1 is
true whenever “—not Q:1” is true under the syntax and semantics introduced in [Lif99] for
nested logic programs and when treating Q:1 as a fresh atom.

Definition 2.1. We say that an interpretation I of a communicating program P is an
answer set of P if and only if we have that VQ € P - (Q:1,g) = (QI)*.
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Example 2.2. Consider the communicating program Pjnsr, from Example 1.1. It is easy to
see that M = {Hy:—a,Hy:a,Hy:p,U:—0,U :c} is the unique answer set of Pjniro. Indeed,
we obtain the reducts (H) = {-a <}, (H2)™ = {a +,p <} and (U)M = {-0 +,c «}
which have the answer sets {—a},{a,p} and {—o,c}, respectively.

3. Simulating Negation-as-Failure with Communication

The addition of communication to ASP programs provides added expressiveness and
an increase in computational complexity, which we illustrate in this section. We show that
a communicating simple program can simulate normal programs, where simple programs
are P-complete and normal programs are NP-complete [Bar03]. Furthermore, we illustrate
that, surprisingly, there is no difference in terms of computational complexity between
communicating simple programs and communicating normal programs.

We start by giving an example of the transformation that allows to simulate (commu-
nicating) normal programs using communicating simple programs. Afterwards, we give a
formal definition of this transformation.

Example 3.1. Consider the communicating normal program £ with the rules
Q1:a < not Qa2:b
Q2:b <+ not Q1:a.

When @1 = Q- this example corresponds to a normal program. The transformation we
propose below results in the communicating simple program P = {Q}, Q5, N1, Na}:

Q:a — Ny:—(b)f Ni:(a)' + Qf:a
Qb < Ni:=(a) Np:(b)' < Qb:b
QL ()t « Ni:=(a)t Ny : ﬂ<a)* — Q:im(a)f
Qy:=(b)  No:=(b) Na:=(b)" = Qb:=(b).

The transformation creates two types of ‘worlds’, @} and N; with 1 < i < 2, which are
all component programs. @) is similar to @;, although occurrences of extended situated
literals of the form not Q; : | are replaced by N : —(1)T, with (I)7 a fresh literal. The
non-monotonicity associated with negation-as-failure is simulated by introducing the rules
()"« N;: =)' and ()T + Q}: =) in Q! and Nj;, respectively. Finally, we add rules
of the form ()7 + Q. :1 to Nj, creating an inconsistency when N; believes —(1)" when Q;
believes [.

The resulting communicating simple program P is an equivalent program in that its
answer sets correspond to those of the original communicating program, yet without using
negation-as-failure. Indeed, the answer sets of £ are {Q1:a} and {Q2:b} and the answer sets

of P are {Q}:a,Q:=(0)f, No:=(0)', Ni:(@)f } and {@:b,Q1:~(0)T, Ni:~(@)f, Na: (0)}
Note furthermore how this is a polynomial transformation with at most 3 - |Eeg | additional
rules with &,ee as defined in Definition 3.2.

Definition 3.2. Let £ = {Q1,...,Q»} be a communicating program. The communicating
simple program P = {Q},...,Q, N1,..., N, } with 1 <i,j < n that simulates & is defined
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by
Q= {mapos { Nji(k)! | Qjik € aneg ) | (1= 0) € Qi} (3.1)
U {ﬁ ®) | Q;: beé’neg} (3.2)
Ny = {=0) « Qim ()*!Qi:besneg} (3.3)
U {(b) eQi:lei:begneg} (3.4)

with aj,,, = {Q; 1] Qj:le ozpos} and Eneg = U4 (U(a(—a)EQi Oéneg) .

Recall that both —(b)! and (b)' are fresh literals that intuitively correspond to —b and
b. We use Qi+ to denote the rules in @} defined by (3.1) and Q,— to denote the rules in
Q) defined by (3.2).

Intuitively, the transformation employs the non-monotonic property of the belief under-
lying the situated literals to simulate negation-as-failure. This is obtained from the interplay
between the rules (3.2) and (3.3). As such, we can use the new literal ‘—(b)!” instead of the
original extended (situated) literal ‘not b’, allowing us to rewrite the rules as we do in (3.1).
In order to ensure that the simulation works, even when the program we want to simulate
contains true negation, we need to specify some additional bookkeeping (3.4).

As becomes clear from Proposition 3.3 and Proposition 3.4, the above transformation
preserves the semantics of the original program. Since we can easily rewrite any normal
program as a communicating normal program, the importance of this is thus twofold. On
one hand, we reveal that communicating normal programs do not have any additional ex-
pressive power over communicating simple programs. On the other hand, it follows that the
expressiveness of communicating simple programs allows us to solve NP-complete problems,
since finding the answer set of normal programs is an NP-complete problem [Bar03].

Proposition 3.3. Let P = {Q1,...,Qn} and let P' = {Q},...,Q}, N1,..., Ny} with P
a communicating program and P’ the communicating simple program that simulates P as
defined in Definition 3.2. If M is an answer set of P, then M’ is an answer set of P with
M’ defined as:

={Qj:a|a€ My, Q; <P}
0 Q-0 b ¢ Mg, Qi P}
U N0 b ¢ Mg, Qi € P}
u {N (a)TyaeMmi,Qiep}.

Proposition 3.4. Let P = {Q1,...,Qn} and let P’ = {Q},...,Q}, N1,..., N} with P
a communicating program and P’ the communicating simple program that simulates P.
Assume that M' is an answer set of P' and that (M') . is total w.r.t. By, for all i €
{1,...,n}. Then the interpretation M defined as

={Qubbe ((Q;+)M')*} (3.6)

s an answer set of P. m

(3.5)
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Note that the requirement for M’ to be a total answer set of P in N; is necessary in
this last proposition, as demonstrated by the following example.

Example 3.5. Consider the normal program R = {a < not a} which has no answer sets.
The corresponding communicating simple program P = {Q, N} has the following rules:

Q:a <+ N:=(a)' N:=(a)! + Q:=(a)!
Q:—(a) + N:=(a)! N:(a)! + Q:a.

It is easy to see that I = () is an answer set of P since we have Q! = NI = (.

4. Focused Communicating Programs

In this section, we extend the semantics of communicating programs in such a way that
it is possible to focus on a single component program. That is, we indicate that we are
not interested in the answer sets of the entire network of component programs, but only in
answer sets of a single component program. The underlying intuition is that of auxiliary
functions or, in terms of agents, a team governed by a leader who forwards (and possibly
amends) the conclusions. We are thus varying the communication mechanism, without
altering the expressiveness of the agents in the network.

Definition 4.1. Let P be a communicating program and ) € P a component program. A
Q-focused answer set of P is any subset-minimal element of

{Mq | M an answer set of P}.

If we are only interested in @)-focused answer sets, then P is called a Q-focused commu-
nicating program, denoted as Pyg. As before, we drop the Q-prefix when the component
program ( is clear from the context.

Example 4.2. Consider the communicating program Ppocys = {Q, R} with the rules
Q ={a<+,b<,c+ not R:c}
R = {a < not ¢,c < not a,d < c}.

The communicating program Pye,s has two answer sets, namely M; = Q:{a,b,c} U{R:a}
and My = @Q:{a,b} UR:{c,d}. The only Q-focused answer set of Pyocys is {a,b} since
My, = {a,b,c} and My = {a,b}.

This simple extension is all that is needed to take another step in the complexity hierar-
chy. That is, the complexity of finding the answer sets of a focused communicating program
is EQP -hard.! Before we state this result, we first explain that any positive disjunctive pro-
gram can be simulated using focused communicating programs. The underlying intuition
is straightforward. We delegate the disjunction in the head to a new component program
where we simulate the corresponding choice using negation-as-failure. The results of these
component programs are then grouped in an aggregate component program on which we
focus to ensure that we only retain the minimal models that correspond with the answer
sets of the original positive disjunctive program. We start with an example to illustrate the
simulation.

1Recall that Y% is the class of problems that can be solved in polynomial time on a non-deterministic
machine with an NP oracle, i.e. £5 = NPNP.
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Example 4.3. Consider the positive disjunctive program D = {a;b <, a < b,b < a}. The
corresponding focused program (Pgimulate) | = {@, I1} has the following rules:

Ri:a <+ not R1:b Q:a+ Ry:a
Ri:b+ not Ry:a Q:b<+ Ri:b
Q:a+ Q:b
Q:b+—Q:a

The answer sets of Pgjmulate are {R1:a} U Q:{a,b} and {R1:b} UQ : {a,b}. The unique
answer set of (Psimulate) 1o 1s therefore {a, b}, which is also the unique answer set of D.

Definition 4.4. Let D = {r1,...,7n, "n+t1,...,7s} be a positive disjunctive program where
ri = i < «; such that |y;| > 1 fori e {1,...,n} and |v;| € {0,1} fori € {n+1,...,s}.
The focused program that simulates D, Pig = {Q, R1,..., Ry}, is defined by

Q={rilie{n+1,...,s}}

U{l(—{Ri:l}Uai|i€{1,...,n},l€%} (4.1)
where for i € {1,...,n} we have
R ={l < not(v; \{l}) |l €r}. (4.2)

Proposition 4.5. Let D be a positive disjunctive program and P|q the focused communi-
cating program that simulates D. M is an answer set of D iff M is an answer set of P)g.m

We can thus use focused communicating programs to solve existential-universal quantifi-
able boolean formulae (e.g. by simulating the disjunctive ASP program proposed in [Bar03]).
This can be used as the basis of a proof to show that finding the answer sets of focused
communicating programs is in E2P .

Corollary 4.6. Deciding whether a Q-focused communicating (simple) program Piq with
two or more component programs has an answer set containing a specific literal [ is 25 -hard.
Membership in Ezp can also be shown, thus this problem is Eg—complete. [

5. Related Work

A large body of research has been devoted to combining logic programming with multi-
agent or multi-context ideas for various reasons. Among others, the logic can be used to
describe the (rational) behaviour of the agents in a multi-agent network, as in [Del99]. It
can be used to combine different flavours of logic programming languages [Luo05, Eit08§].
It can be used to externally solve tasks for which ASP is not suited, yet remaining in a
declarative framework [Eit06]. It can also be used as a form of cooperation, where multiple
agents or contexts collaborate to solve a difficult problem [De05, Van07].

The approach described in this paper falls into this last category and studies the ex-
pressiveness of the communication component in communicating ASP. In contrast to [De05,
Van07] our approach is based on simple programs and on asking for information instead of
pushing (partial) answer sets to the next ASP program in the network. Like in [De05], but
in contrast with [Van07], we allow circular communication between programs and do not
force a linear network of ASP programs that in turn refine the results of previous steps.
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Table 1: Complexity of Communicating Answer Set Programming

Nno communication Wwith communication focused communication
simple program P-hard NP-hard 25 -hard
normal program NP-hard NP-hard E2P -hard

Complexity studies in this setting have been performed but with some notable differ-
ences. For example, [Bre07] generalises towards heterogenous non-monotonic multi-context
systems in which different flavours of logic programming languages work together to solve
a problem.

It is shown that the complexity of verifying whether some literal is contained in some
(resp. all) solutions is in Z‘]'z (resp. H}:), where the value of k depends on the underlying
logic that is used.

In [DT09], recursive modular nonmonotonic logic programs (MLP) under the ASP se-
mantics are considered. The main difference between MLP and our simple communication is
that our communication is parameter-less, i.e. the truth of a situated literal is not dependent
on parameters passed by the situated literal to the target component program.

The work in this paper is different from all of the above in that it studies the expressive-
ness of communicating answer set programs with simple rules while varying the mechanisms
for parameter-less communication between the agents.

6. Conclusion

In this paper we have systematically studied the effect of adding communication to
ASP in terms of expressiveness and computational complexity. One of the most interesting
results is that communicating simple programs (without negation-as-failure) are expressive
enough to simulate communicating normal programs (with negation-as-failure). To show
this, we have provided an actual translation of a communication normal ASP program into
an equivalent communicating ASP program with only simple rules. Since normal programs
are a special case of communicating normal programs, and solving normal programs is
known to be NP-complete, this entails that solving communicating simple programs is an
NP-hard problem.

Additionally, we introduce focused communicating programs where we “focus” on the
results of a single component program. The other component programs can still contribute
to solving the problem at hand, but they no longer have a direct influence over the resulting
answer set. Indeed, the component program on which we focus can override any and all
conclusions. Such focused communicating programs can easily be obtained by varying the
parameter-less communication mechanism found in the communicating programs introduced
in the first part of this paper. Focused communicating programs can be used to simulate
programs with disjunctive rules without negation-as-failure and are able to solve problems
in XF. Table 1 summarises our main results.
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IMPLEMENTATION ALTERNATIVES FOR BOTTOM-UP EVALUATION
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ABSTRACT. Bottom-up evaluation is a central part of query evaluation / program execu-
tion in deductive databases. It is used after a source code optimization like magic sets or
SLDmagic that ensures that only facts relevant for the query can be derived. Then bottom-
up evaluation simply performs the iteration of the standard Tp-operator to compute the
minimal model. However, there are different ways to implement bottom-up evaluation
efficiently. Since this is most critical for the performance of a deductive database system,
and since performance is critical for the acceptance of deductive database technology, this
question deserves a thorough analysis. In this paper we start this work by discussing sev-
eral different implementation alternatives. Especially, we propose a new implementation
of bottom-up evaluation called “Push-Method”.

1. Introduction

Deductive databases [Min88, Ull90, Fre91, Ram94, Vag94, Fri95, Ram95] have not yet
been very successful in practice (at least in terms of market share). However, their basic
idea is practically very important: Deductive databases aim at an integrated system of
database and programming language that is based on the declarative paradigm which was
so successful in database languages. Currently, database programming is typically done in
languages like PHP or Java. The programs construct SQL statements, send them to the
database server, fetch the results, and process them. The interface is not very smooth, and
although the situation can be improved with specific database languages like PL/SQL and
server-side procedures / user-defined functions within the DBMS, the language paradigms
remain different. Object-oriented databases were one approach to develop an integrated
system based on a single paradigm, but there the declarativity of the database query part
was sacrificed, and they did not get a significant market share, either. Nevertheless, there
is an obvious demand for integrated database/programming systems, and this demand has
even grown because of object-relational features that need programming inside the database
server, and because of web and XML applications.

One of the reasons why deductive databases were not yet successful is the non-satisfying
performance of many prototypes. This is also related to the impression that most deductive
database prototypes have not really tried to be useful also as a programming platform —
they were concentrated only on recursive query evaluation.
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Of course, recursive query evaluation is an important task, because many applications
use tree-structured or graph-structured data. There has been a lot of progress over the years
in this area [Ban86b]. A large part of this work was about source-level optimizations, like
the well-known magic-set method [Ban86a, Bee91] and its many optimizations, including
the SLDMagic-method of the author [Bra00].

However, this all depends on an efficient implementation of bottom-up evaluation. If
one wants to build a new deductive database system which a real chance for acceptance in
practice, one needs to clarify first how bottom-up evaluation should be done. This is not
obvious, and several alternatives will be discussed in this paper.

Note that programming in deductive databases is not the same as programming in
Pure Prolog. In deductive databases one thinks in the direction of the arrow, because they
are based on bottom-up evaluation. For instance left recursion is very natural in this way,
whereas in Prolog it must be avoided.

Top-down systems with tabling (like the XSB system [Sag94]) have a middle position
between Prolog and deductive databases. Currently they have better performance than
systems based on bottom-up evaluation. Our belief is that the bottom-up approach has
still room for improvement in order to deliver competitive performance. In [Bra00] we
proposed a source-level transformation that is for tail-recursions asymptotically faster than
the standard magic set method (and also than the tabling method underlying the XSB
system). It is also interesting because it unifies many improvements which were proposed
for the magic set method over time.

After a source-level transformation like SLDmagic, which solves the problem of goal-
direction, one needs an efficient implementation of bottom-up evaluation. The research
reported in this paper is a step in this direction.

The approach we want to follow is to translate Datalog into C++, which can then be
compiled to machine code. We did first performance tests with the methods described in
this paper, but because of space restrictions, we must refer to

http://wuw.informatik.uni-halle.de/ brass/botup/
for the results.

2. Basic Framework

There are three types of predicates:

e EDB predicates (“extensional database”), the given database relations,

e IDB predicates (“intensional database”), which are defined by means of rules,

e built-in predicates like <, which usually have an infinite extension, and are defined
by means of program code inside the system.

The purpose of bottom-up evaluation is to compute the extensions of the IDB relations.
Actually, only one of them is the “answer predicate”, the extension of which must be printed,
or otherwise made available to the user.

Bottom-up evaluation works by applying the rules from right to left, so basically it com-
putes the minimal model by iterating the standard Tp-operator. Of course, an important
goal is to apply every applicable rule instance only once via rule-ordering and managing
deltas for recursive rules (“seminaive evaluation”). However, slight exceptions are possible,
because there is a tradeoff with the work needed for storing and accessing again intermediate
facts.



46 S. BRASS

Because of the infinite extension, built-in predicates can only be called when certain
arguments are bound (i.e. input arguments, known values). In contrast, a free argument
position permits a variable (output argument). The restrictions for the predicates are
described by binding patterns (modes, adornments), e.g. < can be called for the binding
pattern bb only (every letter in a binding pattern corresponds to an argument position, b
means bound, f means free).

A basic interface for relations is that it is possible to open a cursor (scan, iterator)
over the relation, which permits to loop over all tuples. We assume that for every normal
predicate p, there is a class p_cursor with the following methods:

e void open(): Open a scan over the relation (cursor is placed before the first tuple).

e bool fetch(): Move the cursor to the next tuple. This function must also be called
to access the first tuple. It returns true if there is a first/next tuple, or false, if
the cursor is at the end of the relation.

o T col_i(): Get the value of the i-th column/attribute (with data type T').

e close(): Close the cursor.

For the push method, we will also need

e push(): Save the state of the cursor on a global stack.
e pop(): Restore the state of the cursor.

(A merge join sometimes needs the possibility to return to a saved position in a scan, too.)
A relation may have special access structures (e.g. it might be stored in a B-tree or an
array). Then not only a full scan (corresponding to binding pattern ff...f) is possible, but
also scans only over tuples with a given value for certain arguments. We assume that in
such cases there are additional cursor classes called p_cursor_f, with a binding pattern 5.
These classes have the same methods as the other cursor classes, only the open-method
has parameters for the bound arguments. E.g. if p is a predicate of arity 3 which permits
especially fast access to tuples with a given value of the first argument, and if this argument
has type int, the class p_cursor_bff would have the method open(int x).

Actually, some access structures can efficiently evaluate small conjunctions with pa-
rameters, e.g. a B-tree over the first argument of p would also support a query of the form
pX,Y,Z) A X>c1 A X < cg, where ¢; and ¢y are integer constants or bound variables.
This is not in the focus of the current paper, but a realistic system must be able to make
use of such possibilities.

In addition, we need a possibility to create new tuples for predicates defined by rules
(IDB predicates). We assume that for each predicate p there is a class p with a class method
insert that creates a new tuple in p. Of course, it is possible that the objects of class p
correspond to individual tuples, but since we only use the cursor interface, this is only one
possible implementation.

For seminaive evaluation of recursive programs, additional cursor types are needed
(e.g. p_cursor_diff runs only over tuples generated in the previous step of the fixpoint
iteration), and a method to switch to the next iteration step (class method next_iter of p).

3. Materializing Derived Predicates

The first, most basic method for implementing bottom-up evaluation is to explicitly
create a stored relation for every IDB-prediate. As an example, let us consider

pX, Z, 2) + qX, Y) AN r(Y, 5, Z).
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g_cursor qi;
ql.open();
while(ql.fetch()) {
int X = ql.c0l1_10);
int Y = ql.col_2Q);
r_cursor_bff rl; // if there is an index on the first argument
// (and none for the binding pattern bbf)
rl.open(Y);
while(rl.fetch()) {
if(rt.col_20) == 5) {
int Z = r1.col_3Q);
p::insert(X, Z, 2);

Figure 1: Materializing an IDB-Predicate: p(X, Z, 2) < qX, Y) A r(Y, 5, Z2).

We assume that all columns in the examples have type int.

Of course, one option is to use a standard relational database, create a table for every
IDB predicate, and send SQL statements to the database to execute the rules. But using
a separate system for the management of facts causes performance penalties. Furthermore,
for the seminaive evaluation of recursive rules, there is no good and efficient way to manage
the deltas with SQL (the set of tuples newly derived in an iteration). Another interesting
problem is that a good sideways information passing (SIP) strategy in the magic set method
or selection function in the SLDMagic method needs already knowledge about existing
indexes and relation sizes. Therefore it is not a good idea to do query optimization in
two completely separate systems: The chosen SIP strategy/selection function more or less
prescribes the evaluation of the resulting rules. For instance, if one wants to use a merge
join, less “sideways information passing” is possible than with a nested loop/index join.

Therefore, one would do basic rule evaluation in the deductive database system itself,
although it might be possible to use parts of a standard relational system (e.g. the storage
manager). E.g. with a nested loop/index join, the implementation of the above rule would
look as shown in Figure 1.

Of course, the materialization method causes a lot of copying. E.g., disjunctions must
be expressed in standard Datalog with a derived predicate:

pX, V) +« qX, Y).

pX, V) « rX, V).
The materialization method would copy all g- and r-facts. This is especially expensive if
the data values X and Y are large (e.g. longer strings). The problem can be reduced by
working only with pointers to the real data values (but that might not make optimal use of
the memory cache in the CPU, because values are more scattered around in memory).

4. Pull-Method

Of course, explicitly materializing every intermediate predicate needs a lot of memory.
Therefore, it is a standard technique in databases to compute tuples only on demand, or
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class p_cursor {

public:
void open()
{
ql.openQ);
ql_more = gl.fetch();
if (q1_more)
ri.open(ql.col_2()); // Assuming again index on first argument
}
bool fetch()
{
while(ql_more) {
while(rl.fetch()) {
if(rl.col_2() == 5)
return true;
}
rl.close();
ql_more = gl.fetch();
if (q1_more)
rl.open(ql.col_20));
}
return false;
}

int col_1() { return gql.col_1Q); }
int col_2() { return r1.col_3(); }
int col_3() { return 2; }

private:
q_cursor qil;
r_cursor_bff ri;
bool ql_more;

};

Figure 2: Pull-Method (Lazy Evaluation): p(X, Z, 2) «+ q(X, Y) A r(Y, 5, Z).

actually not even compute the entire tuple, but permit access to its columns (in this way,

possibly large data values do not have to be copied). In order to get such “lazy” evaluation,

one only needs to support the cursor interface for each predicate. Let us consider again
pX, Z, 2) < qX, V) A (Y, 5, Z).

If p is nonrecursive, and this is the only rule, and no duplicate elimination is needed, the

code would look as shown in Figure 2.

If duplicate elimination is needed, storing all tuples is necessary (unless the tuples for the
body literals are generated in a fitting sort order). One can then apply the materialization
method, or extend the pull-method by building a hash table of all previously returned
tuples, and adding a check that the derived tuple is new.

An important disadvantage of the pull-method is that it causes recomputation if multi-
ple scans over a predicate are performed. This does not only happen when there are several
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body literals with the same predicate p, but also when a single p-literal appears in the inner
loop of a nested loop join. However, recomputation is not necessarily something evil that
must be avoided at any price. If the recomputation is not expensive, as in the example with
the predicate describing a disjunction, it is a possible alternative.

Recursion with the pure pull-method is not possible: If one tries to implement recursion
with the recursive opening of cursors, this leads to an infinite recursion even for acyclic
relations since no bindings are passed to the recursive call: Each call does the same work
again. Of course, it is possible to integrate standard seminaive evaluation, but this simply
means to use the materialization method at least once in each recursive cycle.

5. Push-Method

It is also possible to apply the rules strictly from right to left, and move generated facts
immediately to the place where they are needed. In contrast to the materialization method,
a rule is not applied to produce all consequences in the current state, but only a single fact
is derived each time. This reduces the need for intermediate storage and copying, which was
also the main motivation for the pull-method. But here the producer of facts is in control,
not the consumer as in the pull-method.

Of course, usually several facts can be derived with a rule. Therefore, once a fact is
derived, one must store the current state of rule application for later backtracking. Then
control jumps to a rule where this fact matches a body literal. There can be several rules
that might use the produced fact, in which case again a backtrack point is generated.

This method basically works only with rules that have at most one body literal with
IDB-predicate, because then matching facts for the other (EDB) body literals are available
when a fact for the IDB body literal arrives. The SLDMagic method [Bra00] produces such
rules as output of the program transformation, therefore this case is practically interesting.
Furthermore, when there are several body literals with IDB-predicates, it is often possible
to use the materialization or pull method for the predicates of all but one body literal.

The push method is applicable to linear recursion, and that is in fact one of its strengths
(it can be very efficient in this case).

Let us explain how it works. First one creates a variable for every column of an IDB
predicate. Consider again the example rule:

p(X, Z, 2) < q(X, Y) A r(Y, 5, Z).
If q is an IDB predicate, r is an EDB-predicate, and all arguments have type int, we get:
int q_1, q_2;
int p_1, p_2, p_3;
In addition, there is a code piece for every body literal with IDB-predicate. Control jumps
to this code piece when a new fact for this predicate was derived. The argument values of
the fact are stored in the above variables. The purpose of the code is to check whether new
facts can be derived with this rule with the given instantiation of the IDB body literal, and
if yes, to store the arguments of the derived fact in the corresponding variables and to jump
to every place where the newly derived fact is used. For the example rule, the code looks
as shown in Figure 3 (there are in fact many optimization possibilities, which we cannot
discuss here for space reasons). Rules with only EDB-predicates in the body act as starting
points. For instance, consider

qX, ) « sX, ) A Y > 0.
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q: r_cursor_bff ril;
rl.open(q_2); // Assuming index on first arg
while(rl.fetch()) {
if(rl.col_20) == 5) {

p_-1 =q_1;
p_2 = rl.col_30);
p_3 = 2;

if (r1.fetch()) {
push_int(q_1);
push_int(q_2);
rl.push();
push_cont (CONT_q) ;
}
goto p;
}
}
goto backtrack; // if this is the last place where q is used
cont_q:
rl.popQ);
q_2 = pop_int();
g_1 = pop_int();
do {
if(r1.col_2() == 5) {
p-1=4q.1;
p_2 = r1.col_30);
p_3 = 2;
if (r1.fetch()) {
push_int(q_1);
push_int(q_2);
rl.pushQ;
push_cont (CONT_q) ;

3
goto p;
3
} while(ril.fetch());
goto backtrack; // if this is the last place where q is used
backtrack:
if (stack_empty()) return false;
switch(pop_task()) {
case CONT_q; goto cont_q;

¥

Figure 3: Push-Method: p(X, Z, 2) «+ q(X, Y) A r(Y, 5, 2).
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init:
s_cursor si;
sl.open();
while(sl.fetch()) {
if(s1.col_2() >= 0) {
g_1 = sl.col_10);
q_2 = s1.col_2Q);
if (sl.fetch()) {
sl.push();
push_cont (CONT_init);
X
goto q;
3
b
return false; // if this is the last/only initialization rule
cont_init:

s1.pop(Q);
do {
if(sl.co0l_2() >= 0) {
g_1 = s1.co0l_10;
g_2 = s1.c0l_20);
if(s1.fetch()) {
sl.push();
push_cont (CONT_init);
}
goto q;
}

} while(sl.fetch());
return false; // if this is the last/only initialization rule

Figure 4: Push-Method: Initialization with q(X, Y) + s(X, Y) A Y > 0.

Then for every s-fact, we would fill the variables q_1 and q_2 and jump to the place where
g-facts are used (label q:). Again, this loop is implemented with backtracking.

Note that the push method can be made to fit into the cursor interface: If for instance p
needs to be queried with a cursor, the above code is inside the fetch method. The code
jumps to label p: when a new p-fact is derived, the fetch-method returns true to the
caller. Each call to the fetch-method starts at the label backtrack. In the open-method
the backtrack-stack is initialized with a value that causes a jump to the initialization (init).

6. Pull-Method with Passing of Bindings

In deductive databases, one normally uses first a program transformation like magic
sets, which is responsible for passing bindings from the caller to the callee, so that only
relevant facts are computed when the transformed rules are evaluated strictly bottom-up
(i.e. the entire minimal model of the transformed program is computed). The “magic
predicates” contain values for the input/bound arguments of a predicate. Calls to these
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predicates are added as conditions to the rule body, so that the rule can only “fire” when
the result is needed.

With the magic set transformation, all calls to a predicate are put together in one set.
This is good, if there are several calls to a complex predicate with the same input values:
Then the answer is computed only once. But it is also bad, because the results for different
calls to a predicate are all in one set, from which one has to select the result matching the
current input arguments.

The Pull Method works already not completely bottom-up, but is controlled from the
caller (top-down) who requests the next tuple. Therefore it is very natural that the caller
passes all information he has about the required tuples. This would replace the magic set
transformation, but it is not exactly the same, because now there is not one big magic set
for a predicate (and a binding pattern), but for each call there are given values for certain
arguments. This has positive and negative effects: When the call returns, one gets a tuple
with the required values in the given positions, so no further check/selection is necessary.
This is especially important since the pull method repeats computations, so non-matching
tuples would simply be wasted. On the negative side, if the same call appears more than
once, the result is computed repeatedly.

Passing bindings to called predicates fits nicely into the cursor interface, because for
EDB-predicates with special access structures, it is already possible. In this way, this is
also possible for IDB predicates.

For the materialization method and the push method, magic sets (or one of its variants)
works well. However, if one wants to combine the different methods in one program (which
is advisable, since each has its strengths and weaknesses), it would be possible to treat the
magic set specially and to initialize it each time with only a single tuple.

7. Related Work

There are still more variants of bottom-up evaluation proposed in the literature, which
we intend to include in our comparison in a future version of this article:

e In [Liu03], an extreme form of materialization is proposed: Not only facts about
the derived predicates are explicitly stored, but also intermediate results during rule
evaluation. This is combined with a clever selection of data structures.

e In [Wun95], a method similar to the push method is used, but with a materialization
of the derived predicates (our push method avoids this). Similar methods are also
used to propagate changes from base relations to materialized views.

e In [Cod99], bottom-up evaluation is implemented with a meta-interpreter running
in Prolog. An important idea is also how to handle rules where the body of one rule
is prefix of a body of another rule (as generated by the magic set method).

8. Conclusions

Our long-term goal is to develop a deductive database system that supports stepwise
migration from classical SQL. Of course, the system will use our SLDmagic method [Bra00]
for goal-direction, but it also needs an efficient bottom-up engine to run the transformed
program. In this paper, we investigated several implementation variants based on a transla-
tion to C++. In summary, the methods differ in what they materialize (store in memory for
a longer time), what they recompute, and the order in which applicable rule instances are
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considered (and also the duration: the pull method has a rule instance “open” for a longer
time). It turned out that the optimal method depends on the input program and also on
the compiler and the hardware, as well as keys and access structures for the relations. But
the push method performed constantly quite well. It has the restriction that it can work
directly only with rules having only a single IDB-literal in the body, but it can be combined
with other methods, or applied in several steps with different components of the program.
Also, the SLDmagic method produces rules with only one IDB-predicate in the body.
The source code and performance results for the tests are available at

http://www.informatik.uni-halle.de/"brass/botup/
Results of future tests will also be posted on this page.
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ABSTRACT. We present a novel approach to non-monotonic ILP and its implementation
called TAL (Top-directed Abductive Learning). TAL overcomes some of the completeness
problems of ILP systems based on Inverse Entailment and is the first top-down ILP sys-
tem that allows background theories and hypotheses to be normal logic programs. The
approach relies on mapping an ILP problem into an equivalent ALP one. This enables the
use of established ALP proof procedures and the specification of richer language bias with
integrity constraints. The mapping provides a principled search space for an ILP problem,
over which an abductive search is used to compute inductive solutions.

Introduction

Inductive Logic Programming (ILP) [Lav94] is a machine learning technique concerned
with the induction of logic theories from positive and negative examples and has been
successfully applied to a wide range of problems [DGO]. Its main virtue, the highly expressive
representation language, is also the cause of its high computational complexity. Some ILP
systems attempt to efficiently find a less then perfect hypothesis by using heuristics to
navigate the search space effectively [Qui96], [Ric95]. Others focus on completeness and aim
for perfect accuracy with respect to the examples, searching the space thoroughly for an
optimal solution. Among these XHAIL [Ray09a] has identified Abductive Logic Programming
(ALP) [Kak92] as a means to deal with incomplete theories and provide semantics for
negation as failure (NAF) [Cla77]. XHAIL, like other inverse entailment (IE) based systems,
abductively derives a lower bound for the search space that is then generalised. In contrast,
Top-down ILP systems like [Mug08, Bra99, Bos94] construct the hypothesis by specialising
an overly general theory without a lower bound. However existing top-down systems limit
the expressiveness of the language and the possible outcome of the learning (e.g. concepts
learned must be observed in the training data, recursion is not allowed and the use of
negation is limited).

Abductive proof procedures have been extensively employed as part of ILP systems (e.g.
[Esp00]) or extended for inductive reasoning (e.g. [Adé95]). In contrast to these existing ap-
proaches, we propose a novel mechanism that maps an ILP problem into an equivalent ALP

Key words and phrases: Inductive Logic Programming, Abductive Logic Programming, Non-monotonic
Reasoning.
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instance. An ILP task is thus translated into an ALP problem whose solution is translated
back into a solution of the original problem. The resulting top-down ILP system, called TAL
(Top-directed Abductive Learning), offers several advantages over existing techniques. TAL
is able to handle negation within the learning process and is able to learn non-monotonic
hypotheses, relying on the semantics of the underlying abductive proof procedure employed;
allows expressive language bias specifications that subsume mode declarations and can be
combined with integrity constraints; performs non-observational [Moy03] and multiple pred-
icate learning [Mal98]; and makes use of constraint solving techniques. Non-monotonic ILP
has been successfully applied to bioinformatics [Ray08] and requirement engineering [Alr09]
and as showed in [Cor09] and [Ray09b] can also be employed to perform theory revision.

In the particular case of definite theories, the TAL search space includes hypotheses that
are not found by established Inverse Entailment based systems like PROGOL [Mug95] or
ALECTO [Moy03] and provides a more effective solution to learning interdependent concepts
compared to the state of art ILP systems, e.g. [Kim09, Ray09a]. Though not explored in
depth here, the principled search space characterised by ALP includes abductive solutions
that represent partial inductive solutions, which can be measured in terms of some scoring
function (e.g. accuracy on the given set of examples) thereby enabling the use of heuristic
based search strategies.

The paper is organised as follows. First, we introduce the notation and relevant back-
ground concepts. We then describe the representation underlying the learning system and
discuss the learning mechanism. Then, we present through examples some of the main fea-
tures of the system, and discuss related work. We conclude with final remarks and directions
for future work.

1. Abductive and Inductive Logic Programming

ALP and ILP are extensions of logic programming. They both search for a hypothesis
that is able to account for some given evidence. ALP constructs hypotheses in the form
of ground facts. ILP systems generate rules that are able to discriminate between positive
and negative examples that represent the training data. In general, ILP is regarded as a
machine learning technique and used when a certain knowledge base must be enriched with
rules that are also able to classify new examples. We assume in the following that the reader
is familiar with first-order logic and logic programming [Llo87]. Following Prolog [Sha94]
conventions, predicates, terms and functions are represented with an initial lower case letter
and variables are represented with an initial capital letter.

Definition 1.1. An ALP task is defined as (g, T, A, I) where T is a normal logic program,
A is a set of abducible facts, I is a set of integrity constraints and g is a ground goal.
A € ALP(g,T, A, I) is an abductive solution for the ALP task (¢,7,A,I),if AC A, TUA
is consistent, TUA =g and TUA = I. ALP(g,T, A, I) denotes the set of all abductive
solutions for the given ALP task.

Note that the abductive task, as defined, deals with ground goals, thus being a specific
case of the setting in [Kak92]. The notion of entailment is not fixed since, as discussed later,
the approach proposed in this paper is not committed to a particular semantics.

Definition 1.2. An ILP task is defined as (F, B, S) where E is a set of ground positive or
negative literals, called examples, B is a background theory and S is a set of clauses called
language bias. The theory H € ILP(E,B,S), called hypothesis, is an inductive solution
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for the task (E, B,S), if H C S, H is consistent with B and BUH = E. ILP(E,B,S)
denotes the set of all inductive solutions for the given task.

We consider the case where B and H are normal logic programs and F is a set of
ground literals (with positive and negative ground literals representing positive and negative
examples, respectively).

The space of possible solutions is inherently large for all meaningful applications so dif-
ferent levels of constraints are imposed to restrict the search for hypotheses.When possible,
besides the background knowledge about the modelled world, some a priori knowledge on
the structure of the hypothesis can be employed to impose an instance-specific language
bias S. Mode declarations are a common tool to specify a language bias.

Definition 1.3. A mode declaration is either a head or body declaration, respectively
modeh(s) and modeb(s) where s is called a schema. A schema s is a ground literal containing
placemarkers. A placemarker is either *+type’ (input), *—type’ (output), '#type’ (ground)
where type is a constant.

Given a schema s, s* is the literal obtained from s by replacing all placemarkers with
different variables X7, ..., X,,; type(s*) denotes the conjunction of literals t1(X71), ..., tn(Xp)
such that ¢; is the type of the placemarker replaced by the variable X;; ground(s™*) is the list
of the variables that replace the ground placemarkers in s, listed in order of appearance left
to right. Similarly inputs(s*) and outputs(s*) are, respectively, the lists of the variables
replacing input and output placemarkers in s. For example, for mode declaration m3 in
Sec. 3, s = even(+nat), s* = even(X), type(s*) = nat(X), outputs(s*) = ground(s*) = ],
inputs(s*) = [X].

A rule 7 is compatible with a set M of mode declarations iff (a) there is a mapping from
each head/body literal [ in r to a corresponding head /body declaration m € M with schema
s and [ is subsumed by s*; (b) each output placemarker is bound to an output variable; (c)
each input placemarker is bound to an output variable appearing in the body before or
to a variable in the head; (d) each ground placemarker is bound to a ground term; (e) all
variables and terms are of the corresponding type. The use of head variables in output
mode declarations is not discussed here for space constraints.

In the next sections the language bias S is specified in terms of a set M of mode
declarations, and denoted as s(M). Each mode declaration m € M is uniquely identified
by a label id,,, called mode declaration identifier.

2. TAL

An ILP problem can be seen as a search for a hypothesis where we choose how many
rules to use and for each rule which predicates to use in the head and in each of the
body conditions and how many body conditions are used. Additionally, different choices
are possible on how arguments are unified or grounded. In this section, we present the
mapping of a set M of mode declarations into a top theory T that constrains the search by
imposing a generality upper bound on the inductive solution. An abductive proof procedure
is instantiated on this top theory together with the background theory. The abductive
derivation identifies the heads of the rules (of a hypothesis solution) and the conditions
needed to cover positive examples and exclude negative examples, ensuring consistency.
The abductive solution is guaranteed to have a corresponding inductive hypothesis H that
is a solution with respect to the examples.
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2.1. Hypothesis representation

We use a list-based representation to encode an inductive solution, as a set of rules,
into a set of facts by mapping each literal in the clauses into instances of its corresponding
mode declaration. This allows the representation of rules as abducible facts. An inductive
hypothesis H C s(M) is composed of a set of rules {r1, ..., r, }. Each rule r is associated with
an output list, i.e. an ordered list of the variables in r that replace output placemarkers in
body literals or input placemarkers in the head. The output identifier associated with each
of these variables is the position of the variable in the output list. Given a set M of mode
declarations, each rule r of the form Iy < lo, ..., [, compatible with M, can be represented
as an ordered list [ = [11, 15, ..., 15] where each 1; is a tuple (idp, [c1, ..., ¢p], [01, ..., 04]); idm,
is the identifier of the mode declaration in M that [; maps to; each ¢; is a ground term
replacing a ground placemarker in the mode declaration identified by id,,; each of is an
output identifier and encodes the fact that the k** input variable in /; (in order of appearance
left to right) unifies with the variable indicated by og. We refer to this transformation of a
rule 7 into a list [ as the function | = tj/(r).

Example 2.1. Given the following three mode declarations M = {m1 : modeh(p(+any)),
m2 : modeb(q(+any, #any)), m3 : modeb(q(+any, —any))} the rule r = p(X) <«
q(X,Y),q(Y,a), compatible with M, is associated to the output list [X,Y] where X re-
places the input placemarker in m1 and Y replaces the output placemarker in m3. The
output identifier of X is the integer 1 and the output identifier of Y is 2. r is represented as
the list [ = [(m1,[],[]), (m3,[], [1]), (m2, [a], [2])] = tar(r). The first element of the list asso-
ciates the head p(X) to mode declaration m1. The second element associates the condition
q(X,Y) to mode declaration m3 and links the first and only input variable to X. The third
element of the list associates the condition ¢(Y,a) to mode declaration m2, links the input
variable to Y and instantiates the second argument to a.

It is easy to see that every possible rule within s(M) can be encoded according to this
representation. Also, it is always possible to derive a unique rule r from a well-formed list
I. We refer to this transformation as r = t5;71(1).

Rules in a final inductive hypothesis theory H, are associated with a unique rule identi-
fier r;q, an integer from 1 to the maximum number, MNR, of rules allowed in H. The abduc-
tive representation A = Ty (H) of an hypothesis theory H, is the set of facts rule(r;q, 1) € A,
one for each rule r € H, such that (a) r;q is the rule identifier of r; and (b) [ = tps(r). The
inverse transformation H = Ty~ 1(A) is similarly defined.

2.2. Mapping mode declarations into an abductive top theory

The first computational step in TAL is the generation of a top theory T from a set M
of mode declarations, as defined below, where prule and rule are abducible predicates.

Definition 2.2. Given a set M of mode declarations, T = f(M) is constructed as follows:
e For each head declaration modeh(s), with unique identifier id,,, the following clause
isin T
s* < type(s*), prule(RId, [id,, ground(s*), []]), rule_id(RId),
body(RId, inputs(s*), [id,, ground(s*), []])
e The following clause is in T
body(RId, _, Rule) < rule(RId, Rule) (2.2)

(2.1)
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e For each body declaration modeb(s), with identifier id,, the following clause is in T

body(RId, Inputs, Rule) < append(Rule, [(idy,, ground(s*), Links)], N Rule),
prule(RId, N Rule), link_variables(inputs(s*), Inputs, Links), s*, (2.3)
type(s*), append(Inputs, outputs(s*), Outputs), body(RId, Outputs, N Rule)

As previously defined, s* contains newly defined variables instead of placemarkers in
the schema s. Since the abductive derivation is instantiated on B U T, for all predicates
appearing in head mode declarations the procedure can both use the partial definition in B
or learn a new clause, unifying the current goal with s*. s* can also be a negative condition
corresponding to a body mode declaration whose schema is a negative literal. rule_id(RId)
is true whenever 1 < RId < M NR.

body(r,i,c) keeps track of the rules that are built and provides the choice of ex-
tending a partial rule (rule (2.3)) or delivering a rule as final (rule (2.2)). The
first argument is the rule identifier; the second is the list of the outputs collected
from the literals already added to the rule; the third is the list representing a par-
tial rule. link_variables([ay, ..., am],[b1, .., bn], [01, ..., 0m]) succeeds if for each element
in the first list a;, there exist an element in the second list b; such that a; uni-
fies with b; and o; = j. append(li,l2,l3) has the standard Prolog definition [Sha94].
The abducible prule is used to control the search through integrity constraints. For
example, if we are not interested in searching for rules in which two mode declara-
tions ¢ and j appear together in the body, then an integrity constraint of the type
« prule(_, R1), member((i, -, -), R1), member((j, -, -), R1) can be added to I to prune such
solutions in the abductive search.

In order to maintain the well-formedness of our rule’s encoding and avoid trivial states
of the search, a set of fixed integrity constraints I; (omitted for brevity) is used in the
abductive search.

2.3. Learning

Definition 2.3. Given an ILP task (E,B, M), H = Tj; '(A) is an inductive solution
derived by TAL iff A € ALP (g, BUT, I, A) where T = f(M), g is the negated conjunction of
the literals in E, I is a set of integrity constraints that includes Iy and A = {rule/2, prule/2}

Procedurally, an initial translation produces the ALP task introducing the new the-
ory T. An abductive proof procedure derives the abductive hypothesis A that is then
transformed into the final inductive solution.

Theorem 2.4. Let us consider a theory B, a set M of mode declarations, a conjunction of
(possibly negated) literals E, and a set H of rules, such that H C s(M). Then BUH FgrpNF
E if BUTUAVFsLpNF E, where T = f(M) and A = Ty (H)

As corollaries of Theorem (2.4), it is possible to establish soundness and completeness
of our TAL system based on the properties of the underlying abductive system and on the
soundness and completeness of SLDNF w.r.t. the semantics.

3. Example

The following is a modified version of the well-known example proposed in [Yam97],
where even and odd numbers are both target concepts and learnt from three examples of
odd numbers. The even predicate is partially defined, i.e. base case even(0).
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even(X) < prule(RId, [(m1,[],[]]), body(RId, Inputs, Rule) <
nat(X), rule_id(RId), append(Rule, [(m4, [], Links)], N Rule),
body(R1d, [X], [(m1, [, ) prule(RId, NRulc),
link_variables(X, Inputs, Links),
odd(X) + prule(RId,[(m2,]],]]), odd(X), nat(X), body(RId, Inputs, N Rule)
nat(X), ruleid(RId),
body(RId, [X], [(m2,][],[]]) body(RId, Inputs, Rule) +
append(Rule, [(m5, [], Links)], N Rule),
body(RId, -, Rule) < rule(RId, Rule) prule(RId, N Rule),
body(RId, Inputs, Rule) link_variables(X, Inputs, Links), X = s(Y),
append(Rule, [(m3,[], Links)], N Rule), nat(X), nat(Y'), append(Inputs, [Y], Outputs),
prule(RId, N Rule), body(RId, Outputs, N Rule)

link_variables(X, Inputs, Links),
even(X),nat(X), body(RId, Inputs, N Rule)

Figure 1: Top theory T for the even-odd example.

ml : modeh(even(+nat))
{ even(0) m2 : modeh(odd(+nat)) { odd(s(s(s(s(s(0))))))
B =14 nat(0) M = ¢ m3: modeb(even(+nat)) E = ¢ not odd(s(s(0)))
nat(s(X))nat(X) m4 : modeb(odd(+nat)) not odd(s(s(s(s(0)))))
mb : modeb(+nat = s(—nat))

We assume the set I’ of integrity constraints to restrict the language bias, which es-
tablishes that rules whose head is even(X) or odd(X) cannot have in the body even(X)
or odd(X) literals. The final I is the union of I’ and Iy. The set M of mode declarations
is transformed into the top theory T given in Figure 1. The instantiated abductive task
(E,BUT,I,{rule/2,prule/2}) accepts then as a possible solution the set A translated into
the inductive hypothesis H as follows:"

A { rule(1, [(m2, 1], ), (m5, [], [1]), (m3, ], [2])]) - { 0dd(X) < X = s(Y), even(Y)

rule(2,[(m1, [],]]), (m5, [], [1]), (m4, ], [2])]) even(X) + X = s(Y), 0dd(Y)
In the abductive search, the standard Prolog selection rule is adopted that selects clauses
in order of appearance in the program. Since no head of clause in B unifies with the
positive examples, the derivation uses one of the rules defined in T. The selection of the
body literal from the rule results in four derivation branches in the search tree, one for each
of the four “body” clauses whose head unifies with it. A partial abductive hypothesis is
generated, equivalent to the rule odd(X) < X = s(Y), even(Y’). At this point, the condition
even(s(s(s(s(0))))), part of the current goal, is not entailed by B so one of the rules in T
is used. It can be seen as an “artificial” example conditional to the partial hypothesis. The
derivation results in the creation of an additional rule in the final hypothesis that defines
the predicate even. The computation continues, thus excluding inconsistent hypotheses and
those that entail also negative examples resulting in the final A. Partial rules are derived
and used throughout the search so they can be referenced to define concepts that depend
on them. It is also interesting to observe that the search is guided by the examples and
thus only significant solutions are explored. The inductive solution H for this inductive
problem is either not found by other ILP systems like PROGOL, or derived after a “blind”

1prule abducibles are omitted for brevity.
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search as discussed in Sec. 5. The learning is non-observational (i.e. the even predicate is
not observed in the examples). TAL is also able to learn the base case of the recursion. If
the fact even(0) is deleted from B and the mode declaration modeh(even(#nat)) is added
to M, TAL returns three solutions with the same set of examples: the first has the same
definition of odd as in H and defines even(s(s(s(s(0))))) as base case, the second and the
third are the same as in H with even(s(s(0))) and even(0) respectively as base cases.

4. A case study

We employ a case study to compare TAL with the only other system capable of solving
the same class of ILP problems XHAIL?. The following case study, taken from [Ray09a],
represents a simple model of metabolic regulation for the bacterium E. coli and includes a
formulation of the Event Calculus [Sha99] formalism. The target predicate happens is used
to characterise the bacterium feeding mechanism based on the availability of sugar. See
[Ray09a] for a more extensive explanation of the example.

[Type definitions and Event Calculus axioms]
initiates(add(G), available(G), T)<sugar(G), timex(T')
B = ( terminates(use(G), available(G), T)+sugar(G), timex(T) I = {
happens(add(lactose), 0)
happens(add(glucose), 0)

+ happens(use(G),T),
not holdsAt(available(G),T)

holdsAt(available(lactose), 2) m2 : modeb(holds At(# fluent, +timex))

holdsAt(available(lactose), 1) ml : modeh(happens(use(#sugar), +timezx))
E= M =
not holdsAt(available(lactose), 3) m3 : modeb(not holdsAt(# fluent, +timez))

The transformations in Definition 2.2 are applied to the given ILP instance. The ab-
ductive solution for the corresponding ALP problem is:

)

_ { rule(1, [(m1, [glucose], []), (M2, [available(glucose)], [1]
), (m3, [available(glucose)], [1])])

b [1
rule(2, [(m1, [lactose], []), (m2, [available(lactose)], [1]

equivalent to the inductive hypothesis:

| happens(use(glucose), T) < holdsAt(available(glucose), T)
| happens(use(lactose), T) <+ holdsAt(available(lactose), T),not holdsAt(available(glucose), T)

As discussed in [Ray09a], XHAIL generates Kernel Sets that serve as lower bound for
the final hypothesis, through iterations of increasing in size abductive explanations until a
satisfactory solution is found. Intuitively, a Kernel Set is computed in two phases. A first
abductive phase finds the set A of the head of the rules in the Kernel Set and a second
deductive phase constructs the body of the rules by computing all the ground instantiations
of the body mode declarations that are implied by B U A. Kernel Sets are generalised in
a final inductive phase. Instead, TAL explores candidate solutions in a top-down manner,
backtracking whenever the current solution leads to failure in the abductive derivation. The

2Relying; on the results reported in [Ray09a], the computation time for this study appears to differ by
one order of magnitude. [Ray09a] reports that a prototype XHAIL implementation took a couple of seconds
to compute H on a 1.66 GHz Centrino Duo Laptop PC with 1 GB of RAM, while TAL took 30 ms to find
H and 180 ms to explore the whole space of hypotheses limited to two clauses with at most two conditions
on a 2.8 GHz Intel Core 2 Duo iMac with 2 GB of RAM. Unfortunately, XHAIL is not publicly available so
we are not able to perform an empirical comparison of the performance of the two systems.
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partial hypotheses are already in their final form and are implicitly tested for correctness
whenever a new example is selected in the abductive derivation.

5. Discussion and related work

We have implemented TAL in YAP Prolog [Cos08] using a customised implementation
of the AsysTEM [Kak01] that integrates the SLDNFA proof procedure with constraint solving
techniques. TAL has been tested on various non-monotonic ILP problems like the examples
proposed in [Kim09], [Alr09] and [Ray07]. It has also been used to perform Theory Revision
[Wro96], i.e. to change, according to some notion of minimality, an existing theory [Cor09].
This work is is motivated by the project [Ban08] that seeks to exploit the proposed approach
in the context of learning privacy policies from usage logs. We performed preliminary
experiments in this direction applying an extended version of TAL to the Reality Mining
dataset [Eag06] where examples of refused calls were used to learn general rules. A score
based on accuracy and complexity of the rules was employed to prune the search space.

The idea of a top theory as bias for the learning has been initially introduced in TOPLOG
[Mug08], which performs deductive reasoning on the background knowledge extended with
the top theory. Candidate hypotheses are derived from single positive examples and then
the best ones are selected after a hill climbing search. SPECTRE [Bos94] also requires a
user-provided overly general theory that is specialised by unfolding clauses until no neg-
ative examples are covered. HYPER [Bra99|, specialises an overly general theory, deriving
rules that are subsumed by those in the theory. Thus the number of rules in the final hy-
potheses cannot increase. FOIL and related approaches like [Coh94] perform an informed hill
climbing search. These systems are not fully non-monotonic since they disallow negation
in the background knowledge or in the hypotheses. In contrast to TOPLOG, TAL generates
candidate hypotheses also considering negative examples, excluding a priori solutions that
entail some of the negative examples. In general, we regard TAL a generalisation of other
top-down ILP systems. Constraining it to consider only positive examples, the background
theory and mode declarations being definite, would result in the same rule generation mech-
anism as TOPLOG. Different search strategies can be easily implemented by modifying the
abductive procedure. Partial solutions can be associated with a score with respect to the
examples (e.g. the sum of entailed examples over the total). This would enable the use of
informed search techniques and strategies like, for instance, hill climbing or beam search
that can be used to prune the space, exploring the most promising solutions. Similarly to
TOPLOG [Mug08], our approach can also be applied directly to a grammar based language
bias specification, instead of generating the top theory from mode declarations. Systems
based on Inverse Entailment (IE), compute a bottom clause, or set of clauses (e.g. the
Kernel Set) that constrains the search space from the bottom of the generality lattice.
For problems dealing with definite theories our system manages to solve a wider class of
problems than PROGOL, since one single example can generate more than one rule in H.
IMPARO [Kim09] solves a class of problems whose solutions are not found by other IE based
systems, namely connected theories where body conditions are abductively proved from the
background theory. These problems, that are solved in Imparo by applying Induction on
Failure (IoF), can also be solved by TAL, as shown in the example given in this paper. The
IoF mechanism is in our system embedded in the abductive search that always includes in
the search space the generation of a new rule whenever a condition is not entailed by the
current theory. XHAIL can find hypotheses computed under IoF by exploring non-minimal
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abductive explanations but the search is not guided by the background theory and a partial
hypothesis®. This highlights another advantage of TAL: the computation of clause heads
in the hypothesis is naturally interleaved with the generation of the body and it does not
take place in a separate phase as in IMPARO and XHAIL. Moreover, all rules are constructed
concurrently and their partial definitions can be used. [Kak00] propose a system for induc-
tive learning of logic programs that compared to TAL is limited to observational predicate
learning. Finally, [Adé95] introduces induction in the abductive SLDNFA procedure, defining
an extended proof procedure called SLDNFAI. In contrast, TAL defines a general method-
ology and does not commit to a particular proof procedure. Moreover SLDNFAI does not
allow a fine specification of the language bias, makes no use of constraints on the generated
hypotheses and is limited to function-free definite clauses.

6. Conclusions and further work

We have presented a novel approach to non-monotonic ILP that relies on the trans-
formation of an ILP task into an equivalent ALP task. We showed through an example
how the approach is able to perform non-observational and multi-predicate learning of nor-
mal logic programs by means of a top-down search guided by the examples and abductive
integrity constraints where a partial hypothesis is used in the derivation of new rules. In
contrast, techniques based on IE perform a blind search or are not able to derive a solu-
tion. The mapping into ALP offers several advantages. Soundness and completeness can
be established on the basis of the abductive proof procedure employed. Constraint solving
techniques and optimised ALP implementations can be used and abductive integrity con-
straints on the structure of the rule can be employed. Furthermore, the search space makes
use of partial hypotheses that allows the use of informed search techniques, thus providing
a general framework that can scale to learning problems with large datasets and theories.
We obtained promising result in this direction and we are currently evaluating the use of
heuristics and informed search techniques. We plan to investigate the properties of the
mapping and the relationships with the search space of other ILP techniques.
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ABSTRACT. Answer set programs with time predicates are useful to model systems whose
properties depend on time, like for example gene regulatory networks. A state of such a
system at time point ¢ then corresponds to the literals of an answer set that are grounded
with time constant ¢. An important task when modelling time-dependent systems is to find
steady states from which the system’s behaviour does not change anymore. This task is
complicated by the fact that it is typically not known in advance at what time steps these
steady states occur. A brute force approach of estimating a time upper bound t,,., and
grounding and solving the program w.r.t. that upper bound leads to a suboptimal solving
time when the estimate is too low or too high. In this paper we propose a more efficient
algorithm for solving Markovian programs, which are time-dependent programs for which
the next state depends only on the previous state. Instead of solving these Markovian
programs for a long time interval {0, ..., tmaz}, We successively find answer sets of parts
of the grounded program. Our approach guarantees the discovery of all steady states and
cycles while avoiding unnecessary extra work.

1. Introduction

Answer Set Programming (ASP) is a form of non-monotonic reasoning based on the
stable-model semantics [Gel88]. The number of ASP application domains is growing fast
(see e.g. [Dwo08, Tra06, Sch09]). Some of these require an adaptation of the general-purpose
solving process to their specific needs to allow for faster answer set computation. One broad
domain of ASP applications uses programs that depend on a parameter that bounds the size
of a solution. Consider e.g. the following time-dependent answer set program, for which the
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grounding size depends on the parameter ¢,,,,. This program uses a non-standard notation
of the form p@QT which is equivalent to p(7"). The purpose of this notation is described in
Section 3.

Example 1.1. Program P
consists of the following rules:

time(0. .. tmax)-

qQT «—  pQ(T — 1), time(T), time(T — 1).

v@QT —  qQ(T — 1), not wQT, time(T), time(T — 1).
wQT — qQ(T — 1), not v@QT, r(X), time(T), time(T — 1).
p@QT «—  time(T).

r(str).

where time(0. .. tyq,) is a shorthand for the facts time@0, time@1, . .., timeQt,,q, and T is
a time-bound variable. This program describes the behaviour of a system whose properties
depend on time. The answer sets for this program change as the time boundary t,,q.
increases. When .4, = 0 there is only one answer set!, namely A = {r(str), time(0), p(0)}.
The unique answer set for ¢4, = 1is B = AU{time(1),p(1),q(1)}, which is twice the size of
the previous one. For t,,,, = 2, negation as failure comes into play, resulting in two different
answer sets C' = BU{time(2),p(2),q(2),v(2)} and D = BU{time(2),p(2),q(2),w(2)}. For
tmaz = 3 there are already four different answer sets:

E = CU{time(3),p(3).4(3),0(3)} G = DU {time(3),p(3),q(3),w(3)}
F = CU{time(3),p(3).q(3),w(3)} H = DU {time(3),p(3).q(3),0(3)}

As this example illustrates, the number of answer sets as well as the size of the answer
sets of a time-dependent program can increase exponentially in the time boundary.

An important task when modelling and simulating a time-dependent system is to find
its steady states. Answer set F in Example 1.1 contains one steady state of the system
described by program P, as time,p,q, and v (and no other time-dependent predicates)
belong to E both for time step 2 and 3.

The main problem in finding these steady states is that it is typically not known in
advance at what time steps they occur. Furthermore a system may converge to several
steady states (e.g. E and F' in Example 1.1) or may even oscillate among several states
repeatedly (e.g a cycle between v and w in Example 1.1 that manifests itself in some of the
answer sets of P for ¢,,4, = 4), and we may want to find them all. A brute force approach
of estimating a time upper bound and grounding and solving the program w.r.t. that upper
bound may lead to a suboptimal solving time: if the upper bound is estimated too high,
the grounded program is larger than necessary to find the steady states, hence requiring
unnecessary work, and if it is estimated too low, not all steady states are found, meaning
the process needs to be redone for a larger estimate.

In this paper we propose a technique that allows to find all steady states and cycles
efficiently. To this end, we define the notion of Markovian programs, which can be grounded
for one time step at a time. We introduce a way of solving these programs by solving one-
step grounded versions. These programs can be used to model protein interaction networks
as described e.g. in [Fay09]. We proceed by recalling ASP notions in Section 2, formally
defining time-dependent programs and Markovian programs in Section 3, and proposing
a method to solve these programs efficiently in Section 4. We explain the difference with
other approaches in Section 5 and finally conclude in Section 6.

1See Section 2 for preliminaries w.r.t. answer set programming.
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2. Preliminaries

Answer set programs are built from a signature o = (~v,v,7), where v is a set of
constant symbols, v is a set of variable symbols, and = = |J*; mi(m € N) is the union
of sets m; of i-ary predicate symbols. We define a set of variable expressions e containing
expressions of the form ¢’ 4+t where t' € v and t” € v. An atom over o is an object of the
form p(t1,...,t,), where p € m, and t; € yUvUe for each ¢ € 1...n. We implicitly assume
that if ¢; is a symbol starting with a capital, it denotes a variable; otherwise it is a constant.
A literal over o is either an atom, or an atom preceded by =, which denotes classical
negation. Naf-literals over o, denoting negation-as-failure, are of the form not [, where [ is
a literal over o. For a set of literals X we introduce the notation not X = {not!|l € X}.
For a literal or a naf-literal [, we use vars(l) to denote the set of variables contained in .
If vars(l) = () then [ is called ground.

A rule r over ¢ is an object of the form Iy < {1,...,l,notly11,...,no0tl,, where [;,
for i € 0...n, are literals over o. If each [; is ground, it is called a ground rule. We refer to
lo as the head of r, denoted as head(r), to the set {l1,...,lm,n0t Ly 11,...,n0tl,} as the
body of r, denoted as body(r), to {l1,...,ln} as the positive part of the body, denoted as
pos(r), and to the set {ly+1,...,ln} as the negative part of the body, denoted as neg(r).
We denote Lit(r) = pos(r) Uneg(r). If the head of the rule is empty, the rule is called a
constraint?; if the body of the rule is empty, the rule is called a fact.

An answer set program P over a signature o is a finite set of rules over o. If all rules in
P are ground, it is called a ground program. The process of grounding constructs a ground
program Gnd(P) from an answer set program P over a signature o by replacing each rule r
by the set of rules obtained from r by all possible substitutions of the constants of ¢ for the
variables in 7. If any of the predicate arguments takes on a composite form ¢’ &=t with ¢/, "
grounded as numbers, they are substituted with the resulting value. A rule r that does not
contain negation-as-failure, i.e. neg(r) = (), is called a simple rule. A program that contains
only simple rules is called a simple program.

Turning to the semantics, a set of ground literals I over a signature o is called an
interpretation if it is consistent, i.e. there is no literal [ such that both [ € [ and =l € I. An
interpretation I is a model of a simple rule r iff pos(r) € I'V head(r) € I. An interpretation
that is a model of all rules of a simple program P is called a model of P. The minimal
model of a simple program P is called an answer set of P. If P contains negation-as-failure,
then an interpretation I of P is called an answer set of P iff I is the answer set of the reduct
program P!, where P! = {head(r) < pos(r) | r € P,I1 Nneg(r) = 0}. The set of all answer
sets of a program P is denoted as AS(P).

3. Theoretical underpinnings

3.1. Time-dependent programs

In the remainder of this paper, we designate certain predicates as time-dependent pred-
icates and denote atoms built with these predicates as p(ti,...,t,—1)@Q8 where 6 is called
a time argument. This is a convenience notation that allows to separate the (semantic)

2We do not consider constraints in our formal language, since a constraint < 8 can be simulated by a
rule [ < not [, 5, where [ is a literal not occurring in the program.
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notion of time from the underlying syntactic representation. This notation is translated to
a conventional atom of the form p(¢1,...,t,-1,0) at grounding time.

Definition 3.1 (Time-dependent program). A time-dependent program P is a tuple ( P, 7)
over a signature o = (v, v, ), such that P is an answer set program over o and 7 C 7 is a
set of time-dependent predicates. We denote the set of n-ary time-dependent predicates as
7. We define the set of free time-dependent literals

_ tl,...,tnfle’YUUUE,
Fp —U{{p(t17-~-Jn—l)@eﬁp(tl’"'7%—1)@9}‘ bevUeperm,l<n<m }

and the set of bound time-dependent literals

BP = U {{p(tla s 7tn*1)@0’ _‘p(tl’ e ’tnil)@e}

The literals from Fp contain a variable or a variable expression as the time argument, while
the literals from Bp contain a constant as the time argument. The set of time-dependent
literals of a time-dependent program P is defined as Lit(P)” = Fp U Bp. It is a subset
of the set of all literals of P, which is defined as Lit(P) = |J,.p Lit(r). Furthermore, for
l € Lit(P)", we use t44(l) to refer to the time argument 6 of [. A time-dependent program
P is called well-typed iff

Vr € P - (Lit(P)" N (pos(r) Uneg(r)) # 0) = (head(r) € Lit(P)")

t1,...,tp—1 € yUv Ug,
ev,pem,l1<n<m |’

Intuitively, if a rule in a well-typed time-dependent program contains a time-dependent
literal in its body, it should contain a time-dependent literal in its head. In the remainder
we will only consider well-typed time-dependent programs.

Definition 3.2 (t-grounding of a time-dependent literal). Let P = (P,7) be a time-
dependent program and ¢ € N. The t-grounding of a literal [ € Lit(P), denoted as Gnd(l)¢,
is obtained as follows: 1) if [ € Lit(P) \ Fp then Gnd(l); = l; 2) if | € Fp then the
variable in tq,4(l) is replaced by ¢, and in case of a variable expression the resulting value
is calculated. In all cases, the obtained literal Gnd(l); is subsequently translated to the
conventional ASP notation. For a set of literals L, we define the t-grounding of this set as
Gnd(L); = ;e Gnd(l)¢, i.e. we take the pointwise ¢-grounding of its elements.

Example 3.3. The 2-grounding of literal [ = p(X,a)Q(T + 1) is Gnd(l)2 = p(X, a, 3).
Definition 3.4 (t-grounding of a rule). Let P = ( P,7) be a time-dependent program and
t € N. The t-grounding of a rule r € P is defined as

Gnd(r); = Gnd(head(r)): < Gnd(pos(r)):, not Gnd(neg(r)):

Definition 3.5 (t-grounding of a time-dependent program). Let P = ( P,7) be a time-
dependent program and ¢, € N. The ¢,,4.-grounding of P is defined as

Gnd(P) = Gnd({Gnd(r)y |7 € P,t' € N,t' < tmaz})
Intuitively, to obtain Gnd(P),,,,. we instantiate all time-dependent literals with a set

of time points {t'|0 < ' < t;4s} and then ground the resulting program in the conventional
way.

t'maw
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Example 3.6. Let P = ( P, {v,w, q,p,time} ) where P is the program from Example 1.1.
Its 2-grounding Gnd(P); is obtained by setting t,,q, = 2 and is defined as

1: time(0). 9: wv(2) — q(1),not w(2), time(2), time(1).

2:  time(1). 10:  w(0) <~ q(—1),not v(0), r(str), time(0), time(—1).
3:  time(2). 11:  w(l) <+~ ¢q(0),not v(1), r(str), time(1), time(0).

4: q(0) <~ p(=1),time(0), time(—1). 12 w(2) <+~ q(1),notv(2),r(str), time(2), time(1).

5: q(1) <~ p(0), time(1), time(0). 13: p(0) «—  time(0).

6: q(2) —  p(1), time(2), time(1). 14: p(1) —  time(1).

7: v(0) <+~ q(—1),not w(0), time(0), time(—1). 15: p(2) +—  time(2).

8: w(l) <+~ q(0), not w(l), time(1), time(0). 16 :  r(str).

Definition 3.7 (State of an answer set). Let P = (P,7) be a time-dependent program
and [ be an answer set of the t,4,-grounding Gnd(P),,,, for e € N. Furthermore let
t € N with ¢t < t,,42- The state of I at time point ¢ is defined as

I'={l|1€Ityy(l) =t}

Intuitively, the state of answer set I of Gnd(P)y,,,. at time point ¢ is the set of ground
time-dependent literals in I that were grounded with ¢ in the time argument. Two states
are called equivalent if the only difference between literals in these states is in the values of
the time points (see Example 3.12). We denote state equivalence as [ ¢ =time 1 ¢

Example 3.8. Consider the program Gnd(P)s from Example 3.6. The answer sets of
this program are C' and D as defined in Example 1.1. The states of answer set C at
time points 0, 1 and 2 are C° = {time(0),p(0)}, C' = {time(1),p(1),q(1)} and C? =

{time(2),p(2),¢(2), v(2)}.
Definition 3.9 (Trajectory of an answer set). Let P = ( P, 7) be a time-dependent program

and I an answer set of the t,,4,-grounding Gnd(P) for tyer € N. The trajectory of 1 is
defined as

tmaac
Th = (19, [tmer)
Example 3.10. The trajectory of answer set C' of program Gnd(P)s from Example 3.6 is

T = {{time(0),p(0)}, {time(1),p(1), q(1)}, {time(2),p(2), a(2), v(2)} )

Definition 3.11 (Steady state, steady cycle). Let P = ( P, 7) be a time-dependent program
and I be an answer set of the t,,4,-grounding Gnd(P),,,, for tp.: € N. The state of I
at time point ¢, with ¢ < tqe, is called a steady state iff I' =, I'*'. The sequence
(I* )y, <k<ty, With t1 € N, to € Nand t1 < t2 < tyaq, is called a steady cycle iff 1 =40 2.

Note that to define whether a state is a steady state it is enough to check the next
state, because if it does not change in the next step it will not change in the following steps
as well due to the deterministic nature of the model.

Example 3.12. The 3-grounding Gnd(P)s of P = ( P,{v,w,q,p,time} ) where P is the
program from Example 1.1, has answer sets E, F,G, and H as defined in Example 1.1.
The states of answer set E are EY = {time(0),p(0)}, B! = {tzme( ),p(1),q(1)}, E? =
{time(2),p(2),q(2), v(2)}, and E® = {time(3),p(3),q(3),v(3)}. E? is a steady state, as
E2 —time Es-

When solving time-dependent programs, one is usually interested in finding steady
states, steady cycles and trajectories leading to these states, as they can help to verify the
model’s correctness and/or provide new hypotheses about the behaviour of the underlying
system. An important problem is that it is in general impossible to accurately estimate an
upper time bound ¢,,,, that suffices to find all steady states. Thus, one should manually
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adjust the bound and recompute answer sets over and over, which is very inefficient. In
the following section we narrow down time-dependent programs to Markovian programs
and propose an approach that does not require a time bound estimation for trajectory
computation.

3.2. Markovian programs

In this section we define a subclass of time-dependent programs, called Markovian
programs. This type of time-dependent programs is defined in such a way that every next
state directly depends only on the previous state, and does not depend on any of the future
states (hence the name Markovian). This is a reasonable assumption as real-world models
are normally unaware of any future events and make their decisions based on the information
directly available.

Recall that steady states and steady cycles for a time-dependent program P can be
found by grounding the program for a manually chosen time upper bound t,,4, (see Defini-
tion 3.5), solving the resulting ground program Gnd(P);, .. to obtain its answer sets, and
verifying whether the answer sets reveal steady states or cycles (see Definition 3.11). The
Achilles’ heel in this procedure is in the manual choice of ¢,,4,. Iteratively incrementing it
and repeating the above process until reaching a time point t,,,, at which a steady state or
cycle is encountered is inefficient, because that would require solving Gnd(P)g, Gnd(P)1,
Gnd(P)2, ..., Gnd(P)4,,,.., or, in other words, grounded versions of the original time-
dependent program for time intervals {0,1},{0,1,2},...,{0, ..., tmaz}. Instead, we propose
to consecutively solve smaller programs for intervals {0, 1}, {1,2},..., {tmaz — 1, tmaz }. This
approach is more efficient because we ground only for one time step at a time and solve
smaller programs in every iteration. Further in this section we show that by doing so we
obtain the same answer sets as by solving the initial program for interval {0, ..., tmnaz}-

Definition 3.13 (Markovian program). A time-dependent program P = ( P,7) is called
Markovian iff it satisfies the following conditions for every r € P with head(r) € Lit(P)”
and t € N:
(1) targ(head(r)) € yUwv
(2) targ(Gnd(head(r)):) = targ(Gnd(l);) or targ(Gnd(head(r)):) = targ(Gnd(l);) + 1
for all I € Lit(r) N Lit(P)™

Rules in a Markovian program P can be divided into two subsets: a program that
describes temporal relationships P™ = {r|r € P, (head(r) U Lit(r)) N Lit(P)™ # 0} and a
program that describes the rest of the relationships P¢ = P\ P". Program P° can be
interpreted as environmental conditions that are invariant over time. By definition, P¢€ is
independent from the program’s temporal part, thus it can be solved separately to obtain
its answer sets that represent the values of these conditions. Note that if P¢ does not have
an answer set, then for any ¢, € N, Gnd(P) does not have an answer set either.

tmax

Example 3.14. Consider Markovian program P and its 2-grounding Gnd(P), as defined
in Example 3.6. Here the program P7 contains rules 1-15, while the program P¢ contains
rule 16. The program Gnd(P)y has two answer sets, namely C' and D as defined in Example
1.1. The unique answer set of P€ is {r(str)}.
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Definition 3.15 (Partial temporal grounding). Let P = ( P,7) be a Markovian program
and t € N. The partial temporal grounding of P for time point ¢ is defined as

P, = {Gnd(r)|r € P, head(r) € Lit(P)", tqq(Gnd(head(r)):) = t}

In other words, a partial temporal grounding for a time point ¢ is the set of t-grounded
rules whose head depends on time point .

Example 3.16. The partial temporal grounding of P built in Example 3.6 for time point
2 is the program P» that is defined as follows

3:  time(2).

6: q(2) «— p(1), time(2), time(1).

9: w(2) — q(1),not w(2), time(2), time(1).

12: w(2) —  q(1),notv(2),r(X), time(2), time(1).
15: p(2) —  time(2).

Assume that the t,,q.-grounding Gnd(P)y,,,. of a Markovian program P has an answer
set A. Once A is known, using Definition 3.7, we can straightforwardly find its states at
time points 0, 1, ..., tymaz, i.€., A2, AL, ..., Almez Below we show that it is also possible to
find states of an answer set without prior knowledge of an answer set itself. In particular,
the state A of an (unknown) answer set of Gnd(P);,,,, at time point ¢ can be computed
based on knowledge of the state A*~! at time point ¢t — 1, as well as knowledge of an answer
set A~1 of P¢. This means that from the answer sets of P¢, the set of states at time
point 0 can be found, and from this the set of states at time point 1, etc. This is done by
building P/ = P,U{l + .[l € A1 U A~'} and then grounding P} and transforming it by
replacing literals from A*~! U A~! with true values, which is formally defined in Definition
3.17. Solving the resulting (small) program yields as answer sets the possible states at time
point ¢ given the state A'~! and the environmental conditions A~

Definition 3.17 (Partial reduct). Let P be a ground program, I an interpretation of P
and P; = {l < .|l € I}, such that P; C P and head(P \ P;) NI ={). The partial reduct of
P w.r.t. I is the program R!(P) defined as

RI(P) = {head(r) « (pos(r) \ I),not neg(r). |r € P\P;,neg(r)NI =0}

Example 3.18. Assume we known that {time(1),p(1),q(1)} is the state at time point 1
of a (possibly unknown) answer set of program Gnd(P)s2 from Example 3.6. We also know
an answer set of P¢, namely {r(str)}. Let P» be the partial temporal grounding of P for
time point 2 as described in Example 3.16. We construct the set I = {time(1),p(1),q(1)}U
{r(str)} and the program Pj = Gnd(P, U {l + .|l € I'}) as follows:

time(2). time(1).
q(2) «— p(1),time(2), time(1). p(1).
v(2) — q(1),not w(2), time(2), time(1). q(1).
w(2) — q(1),notv(2), r(str), time(2), time(1). r(str).
p(2) «—  time(2).
The partial reduct R!(P}) is then defined as
time(2).
q(2) —  time(2). w(2) < notw(2),time(2).
v(2) <+~  notw(2),time(2). p(2) <« time(2).

By applying the partial reduct we remove the literals from I that appear positively in rule
bodies as well as the facts that appear as literals in I. The answer sets of the resulting
program are {time(2),p(2),q(2),v(2)} and {time(2),p(2),¢(2),w(2)} which correspond to
C? and D? with C and D as in Example 1.1.
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Figure 1: The gene regulatory network of Fission Yeast that can be modelled using Mar-
kovian programs (illustration from [Dav08]).

The theorem below states that instead of computing answer sets of a Markovian program
Gnd(P)y,,.. directly, we can compute answer sets of smaller programs for every time step
0 < t' < tynas consecutively and obtain the same result. This fact has as an important
implication that we can arrive at answer sets of a Markovian program without considering
tmaz at all, which allows to impose another stopping condition. This is the technique that
is used to implement an algorithm for computing steady states explained in the following
section.

Theorem 3.19. Let P = (P,7) be a Markovian program and Gnd(P)
grounding of P for tya. € N, then

be a tmaz-

tmaac

AS(Gnd(P);,..) = {B—l U e | BTLE AS(PY), B € AS(RFUET (P))), }

t€0... .t
with P} = Gnd(P, U{l + .|l € Bt u B~ 1}).

4. Practical application

The results from the previous section give rise to an algorithm for finding all steady
states and cycles of Markovian programs. It can be summarized as:

(1) Solve program P¢ with the environmental conditions and initialize ¢ = 0.

(2) Obtain the partial temporal grounding for ¢ and find the system’s states at time .

(3) Update the list of trajectories with the new states found in step (2).

(4) Increment t.

(5) If any of the trajectories did not reach steady state or cycle, go to step (2).

This algorithm can be applied to model gene regulatory networks. An example regu-
latory network of Fission Yeast is presented in Figure 1, where nodes stand for genes and
proteins, pointed edges define the activation of one node by another and blunt edges define
the inhibition of one node by another. The semantics of the network can be expressed as
a program P, while the actual network structure can be defined independently in a sepa-
rate program P’ as described in [Fay09]. The resulting program is a Markovian program
P = (PUP' 7). A trajectory in the network is found w.r.t. an initial state of the network.
The state of the network is defined as a combination of states of its nodes, where the state
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of a node is defined as active(a,T’) or inhibited(a,T) where a is a protein and 7' is a time
variable, i.e. active,inhibited € 7. Looking at the network it is not possible to estimate
how many time steps it would take to find all network steady states, and setting the time
boundary too high would result in significant computation overheads, while the approach
we propose does not involve an explicit time boundary and thus avoids these overheads.
Solving the program with the algorithm outlined above allows to obtain trajectories and all
steady states and cycles of the network that are reported in [Dav08].

5. Related work

In Section 4 we proposed a method to find all steady states of a Markovian program
efficiently. However, our approach is not the only way to deal with the problem. Gebser
et al. have recently proposed an incremental program solving approach and a specially
constructed solver iclingo that allows for solving incremental programs [Geb08]. Even
though this solver, when used for Markovian programs, terminates as soon as the first
steady state is encountered, and hence unlike our approach does not find all steady states,
Gebser et al.’s proposal is relevant to our work. An incremental program includes a special
incremental parameter k and consists of three parts (base, cumulative and volatile) that
allow to reduce the efforts required for solving this type of programs. Due to the space
limitation we refer to [Geb08] for details. The advantage of this approach compared to the
usual solving process is that it reduces the effort of computing the answer set for unknown
k.

If we regard the incremental parameter k as time, we can simulate a Markovian program
P = (P,7) by putting P° in the base part and P” in the cumulative part. However,
implementing the volatile part is not straightforward. Given the set 7 of time-dependent
predicates we can write rules to capture steady states or cycles and define a constraint over
the occurrence of such a state or cycle in the volatile part, as illustrated below.

Example 5.1. Let P = ( P,7) be a Markovian program over a signature o = (v, v, 7 ) and
7 = {u,v} where u,v € 7w are unary time-dependent predicates. We define an incremental
program P’ from P as explained above, i.e. by putting P¢ in the base part of P’ and P7 in
the cumulative part of P/. The exact contents of P¢ and P™ do not matter for the sake of
this example. Next, we add the following set of rules to the cumulative part of P’:

int(0..k — 1

h(k() ) <+~ notu(k),not u(k — T1),not v(k), not v(k — T1), int(T1).
h(k) <+~  u(k),u(k — T1),not v(k), not v(k — T1), int(Th).

h(k) «—  v(k),v(k —Ti),not u(k),not u(k — T1), int(T1).

h(k) w(k)olk — 1), u(k), u(k — T1), int(T7).

Finally, we initialize the volatile part of P’ with the rule + not h(k). Intuitively, the
appearance of h(k) in an answer set of P’ indicates that a steady state or cycle is found.
The constraint in the volatile part only allows answer sets that contain h(k).

However, there are two pitfalls associated with the above encoding. First, the number
of rules that needs to be added to the cumulative part grows exponentially with the number
and the arity of time-dependent predicates; recall that we do not only need all combinations
of time-dependent predicates, but also all their possible groundings. Secondly, the solver
terminates as soon as the first steady state is encountered, and hence does not generate
all steady states of the program. It is not obvious how to encode the program in order to
deal with these problems. For these reasons, the approach we propose in this paper is a
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more suitable candidate to tackle the steady state search problem in Markovian programs.
Applying a meta-procedure similar to the algorithm from Section 4 is not a solution as the
incremental program still cannot find all steady states that stem from the same initial state
without adjusting the termination condition h(k).

Action languages [Gel92], another set of formalisms applicable to solve time-dependent
programs, provide a high-level description language that can be adopted to model time-
dependent systems. However, they suffer from the same drawback as incremental programs:
it is not possible to define a set of constraints that allows to find all steady states and cycles.

6. Conclusions

In this paper, we introduced time-dependent answer set programs, which are useful to
model systems like gene regulatory networks whose behaviour depends on time. An impor-
tant task when modelling such systems is to find their steady states and cycles. Unfortu-
nately, it is typically not known in advance at what time steps these steady states manifest
themselves. A brute force approach of estimating a time upper bound and grounding and
solving the program w.r.t. that upper bound may lead to a bad solving time: if the upper
bound’s estimate is too high, the grounded program is larger than necessary to find the
steady states, hence requiring unnecessary work, and if it is too low, not all steady states
(if any) are found and the process needs to be redone for a larger estimate.

We proposed an efficient algorithm for solving Markovian programs, i.e. time-dependent
programs for which the next state of the program depends only on the previous state of the
program. This is a reasonable assumption as real-world models are normally unaware of any
future events and make their decisions based on the information directly available. Instead
of solving Markovian programs for some long time interval {0, ..., tnq} We consecutively
solve smaller programs for intervals {0,1}, {1,2},..., {tmaz — 1, tmaz }, which can be done
more efficiently. We showed that by doing so we obtain the same answer sets as by solving
the initial program for interval {0, ..., ¢4, . We successfully applied our algorithm to find
the steady states of a gene regulatory network for fission yeast.
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ABSTRACT. There is currently a large interest in probabilistic logical models. A popu-
lar algorithm for approximate probabilistic inference with such models is Gibbs sampling.
From a computational perspective, Gibbs sampling boils down to repeatedly executing cer-
tain queries on a knowledge base composed of a static part and a dynamic part. The larger
the static part, the more redundancy there is in these repeated calls. This is problematic
since inefficient Gibbs sampling yields poor approximations.

We show how to apply program specialization to make Gibbs sampling more efficient. Con-
cretely, we develop an algorithm that specializes the definitions of the query-predicates with
respect to the static part of the knowledge base. In experiments on real-world benchmarks
we obtain speedups of up to an order of magnitude.

1. Introduction

In the field of artificial intelligence there is a large interest in probabilistic logical models
(probabilistic extensions of logic programs and first-order logical extensions of probabilistic
models such as Bayesian networks) [3, 10, 5|. Probabilistic inference with such a model is
the task of answering various questions about the probability distribution specified by the
model, usually conditioned on certain observations (the evidence). A variety of inference
algorithms is being used. A popular algorithm for approximate probabilistic inference is
Gibbs sampling [2, 11]. Gibbs sampling works by drawing samples from the considered
probability distribution conditioned on the evidence. These samples can be used to compute
an approximate answer to the probabilistic questions of interest. It is important that the
process of drawing samples is efficient because the more samples can be drawn per time-unit,
the more accurate the answers will be (i.e., the closer to the correct answer).

Computationally, Gibbs sampling boils down to repeatedly executing the same queries
on a knowledge base composed of a static part (the evidence and background knowledge)
and a highly dynamic part that changes at runtime because of the sampling. The more
evidence, the larger the static part of the knowledge base, so the more redundancy there
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is in these repeated calls. Since it is important that the sampling process is efficient, this
redundancy needs to be reduced as much as possible. In this paper we show how to do this
by applying program specialization to the definitions of the query-predicates: we specialize
these definitions with respect to the static part of the knowledge base. While a lot of work
about logic program specialization is about exploiting static information about the input
arguments of queries (partial deduction [6]), we instead exploit static information about the
knowledge base on which the queries are executed.

While the above applies to all kinds of probabilistic logical models and programs, we will
focus on models that are first-order logical or “relational” extensions of Bayesian networks
[3, 5]. Concretely, we use the general framework of parameterized Bayesian networks [10].

The contributions of this paper are the following. First, we show how to represent
parameterized Bayesian networks in Prolog (Section 3). Second, we show how to implement
Gibbs sampling in Prolog and show that doing this efficiently poses challenges from the logic
programming point of view (Section 4). Third, we develop an algorithm for specializing the
considered logic programs with respect to the evidence (Section 5). Fourth, we perform
experiments on real-world benchmarks to investigate the influence of specialization on the
efficiency of Gibbs sampling. Our results show that specialization yields speedups of up to
an order of magnitude and that these speedups grow with the data-size (Section 6). The
latter two are the main contributions of this paper, the first two are minor contributions.

We first give some background on probability theory and Bayesian networks.

2. Preliminaries: Probability Theory and Bayesian Networks

In probability theory [8] one models the world in terms of random wvariables (RVs).
Each state of the world corresponds to a joint state of all considered RVs. We use upper
case letters to denote single RVs and boldface upper case letters to denote sets of RVs. We
refer to the set of possible states of an RV X (i.e. the set of values that X can take) as the
range of X, denoted range(X). We consider only discrete RVs, i.e. RVs with a finite range.

A probability distribution on a finite set S is a function that maps each z € S to a
number P(z) € [0,1] such that ) o P(x) = 1. A probability distribution for an RV X is a
probability distribution on the set range(X). A conditional probability distribution (CPD)
for an RV X conditioned on a set of other RVs Y is a function that maps each possible
joint state of Y to a probability distribution for X.

Syntactically, a Bayesian network [8] for a set of RVs X is a set of CPDs: for each
X € X there is one CPD for X conditioned on a (possibly empty) set of RVs called the
parents of X. Intuitively, the CPD for X specifies the direct probabilistic influence of X’s
parents on X. The probability distribution for X conditioned on its parents pa(X), as
determined by the CPD for X, is denoted P(X | pa(X)).

Semantically, a Bayesian network represents a probability distribution P(X) on the set
of all possible joint states of X. Concretely, P(X) is the product of all the CPDs in the
Bayesian network: P(X) = [[xcx P(X | pa(X)). It can be shown that P(X) is a proper
probability distribution provided that the parent relation is acyclic (the parent relation is
often visualized as a directed acyclic graph but given the CPDs this graph is redundant).
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3. Parameterized Bayesian Networks

Bayesian networks essentially use a propositional representation. Several ways of lifting
them to a first-order representation have been proposed [3, Ch.6,7,13] [5]. There also exist
several probabilistic extensions of logic programming, such as PRISM, Independent Choice
Logic and ProbLog [3, Ch.5,8]. Both kinds of probabilistic logical models (probabilistic logic
programs and the extensions of Bayesian networks) essentially serve the same purpose. In
this paper we focus on the Bayesian network approach. Our main motivation for this choice
is that this paper is about Gibbs sampling and this has been well-studied in the context
of Bayesian networks. There are many different representation languages for first-order
logical or “relational” extensions of Bayesian networks. We use the general framework of
parameterized Bayesian networks [10]. While this framework is perhaps not a full-fledged
knowledge representation language, it does offer a representation that is suited to implement
probabilistic inference algorithms on.

We now briefly introduce parameterized Bayesian networks. Like Bayesian networks use
RVs, parameterized Bayesian networks use so-called parameterized RVs [10]. Parameterized
RVs have a number of typed parameters ranging over certain populations. When each
parameter in a parameterized RV is instantiated or “grounded” to a particular element of
its population we obtain a regular or “concrete” RV. To each parameterized RV we associate
a parameterized CPD (see below) with the same parameters as the parameterized RV.

Syntactically, a parameterized Bayesian network is a set of parameterized CPDs, one for
each parameterized RV. Semantically, a parameterized Bayesian network B, in combination
with a given population for each type, specifies a probability distribution. Let X denote the
set of all concrete RVs obtained by grounding all parameterized RVs in B with respect to
their populations. The probability distribution specified by B is the following distribution on
the set of all possible joint states of X: P(X) = [[ycx P(X | pa(X)), where P(X | pa(X))
denotes the probability distribution for X as determined by its parameterized CPD.

Rather than providing a formal discussion of parameterized Bayesian networks we show
how they can be represented in Prolog (as far as we know this has not been done before).

To deal with parameterized RVs in Prolog we associate to each of them a unique pred-
icate: for a parameterized RV with n parameters we use a (n+1)-ary predicate, the first n
arguments correspond to the parameters, the last argument represents the state of the RV.
We refer to these predicates as state predicates.

Syntactically a parameterized Bayesian network is a set of parameterized CPDs. To
deal with parameterized CPDs we also associate to each of them a unique predicate, the
last argument now represents a probability distribution on the range of the associated RV.
We refer to these predicates as CPD-predicates. In this paper we assume that each CPD-
predicate is defined by a decision list. A decision list is an ordered set of rules such that
there is always at least one rule that applies, and of all rules that apply only the first one
fires (in Prolog this is achieved by putting a cut at the end of each body and having a last
clause with true as the body).

Example 3.1. Consider a university domain. Suppose that we use the following parame-
terized RVs: level (with a parameter from the population of courses), iq and graduates (each
with a student parameter) and grade (with a student parameter and a course parameter).
To represent the state of the RVs we use the state predicates level/2, iq/2, graduates/2
and grade/3. The meaning of for instance level /2 is that the atom level(C, L) is true if the
parameterized RV level for the course C is in state L .
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To represent parameterized CPDs we use CPD-predicates cpd_level /2, cpd_iq/2, cpd_grade/3
and cpd_graduates/2. If the level RVs for instance do not have parents, their parameterized
CPD could be defined as follows.

cpd_level(_C, [intro:0.4,advanced:0.6]).

Note that we use lists like [intro:0.4,advanced:0.6] to represent probability distribu-
tions. The other parameterized CPDs could for instance be defined as follows.

cpd_iq(_S, [high:0.5,10w:0.5]).

0.2,c:0.1]) :- iq(S,high), level(C,intro), !.
0.2,c:0.6]) :- iq(S,low), level(C,advanced), !.
0.4,c:0.3]).

cpd_grade(S,C,[a:0.7,b:
cpd_grade(S,C,[a:0.2,b:
cpd_grade(S,C,[a:0.3,b:

b b

cpd_graduates(S, [yes:0.2,n0:0.8]) :- grade(S,_C,c), !.

cpd_graduates(S, [yes:0.5,n0:0.5]) :- findall(C,grade(S,C,a),L),
length(L,N), N<2, !.

cpd_graduates(S, [yes:0.9,n0:0.1]).

In the bodies of the clauses defining the CPD-predicates we allow the use of state pred-
icates (e.g. iq/2 and level/2 in the clauses for cpd_grade/3) and of background predicates,
but not of CPD-predicates. With background predicates we mean auxiliary predicates that
do not depend on the state of RVs (this includes built-ins such as length/2). We assume
that the definitions of the background predicates are available in a background knowledge
base. We also allow the use of meta-predicates (such as findall/3) but not of predicates
with side-effects (such as assert/1).

When we know the population for each type (e.g. we know the set of students and
the set of courses) we also know the set of concrete RVs X. Suppose that in addition we
also know the state of these concrete RVs because we are given a knowledge base with
facts defining the state predicates (e.g. a fact grade(sl,cl, a) indicates that student sl has
grade ‘a’ for course cl). We can then obtain the probability distribution for a concrete RV
conditioned on its parents by simply calling the associated CPD-predicate on this knowledge
base. For instance, we obtain the probability that the student s1 will graduate conditioned
on her grades by calling cpd_graduates(sl, Distribution). We refer to this as calling the
CPD for that concrete RV. Since we represent each parameterized CPD as a decision list it
is guaranteed that this always returns exactly one probability distribution.!

As we explain in the next section, calling a CPD is an operation that needs to be
performed frequently during probabilistic inference. Another such operation is setting a
concrete RV to a given state. This is done by modifying the corresponding fact in the
knowledge base (e.g. the fact grade(sl,cl,a) is turned into grade(sl,cl,b) [4]).

4. Probabilistic Inference with Parameterized Bayesian Networks

Given the population for each type, a parameterized Bayesian network defines a prob-
ability distribution P(X) on the set of all possible joint states of the concrete RVs X. In a
typical inference scenario, the state of a subset of all these RVs is observed. This informa-
tion is called the evidence. Probabilistic inference is the task of answering certain questions

1Some CPD-predicates are defined by non-ground facts (e.g. cpd_level/2). This does not cause problems
because we always call CPD-predicates with all arguments except the last instantiated.
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about the probability distribution P(X) conditioned on the evidence. The most common
inference task is to compute marginal probabilities. A marginal probability is the probabil-
ity that a particular RV is in a particular state. For instance, given the level of all courses
and the grades of all students for all courses (the evidence), we might want to compute
for each student the probability that she has a high IQ. In theory such probabilities can
be computed by performing a series of sum and product operations on the probability dis-
tributions specified by the parameterized CPDs. Unfortunately, for real-world population
sizes this is computationally intractable (inference with Bayesian networks is NP-hard [8]).
Hence, one often uses approzimate probabilistic inference instead. An important class of
approximate inference algorithms are Monte Carlo algorithms that draw samples from the
given distribution conditioned on the evidence. Various algorithms are being used, a very
popular one is Gibbs sampling [2, 11].

Let O denote the set of all observed concrete RVs (i.e. the RVs for which we have
evidence), and U the set of all unobserved ones (U = X \ O). Below we assume that we
need to compute marginal probabilities for all unobserved RVs. Pseudocode for the Gibbs
sampling algorithm is shown in Figure 1. We now explain this further.

procedure GIBBS_SAMPLING(O, U) procedure RESAMPLE(U)

1 for each O € O 1 call the CPD for U

2 set O to its known state 2 for each u € range(U)

3 for each U € U 3 set U to state u

4 set U to random state € range(U) 4 for each child X of U
5 initialize all counters for U 5 call the CPD for X
6 repeat until enough samples 6 calculate Presample(U)

7 for each U € U 7 sample Upey from Presgmpie(U)
8 RESAMPLE(U) 8 set U t0 Unew

9 9

compute estimates from counters increment counter for (U7 unew)

Figure 1: The Gibbs sampling algorithm (left) and its RESAMPLE procedure (right).

Before the start of the sampling process all observed RVs are instantiated to their
known state and all unobserved RVs are instantiated to a random state. In terms of our
implementation in Prolog, this is done by creating a knowledge base defining all the state
predicates: for each RV € O U U there is one fact for the corresponding state predicate.
Before we start sampling, we also create a number of counters: for each U € U and each
u € range(U) we create a counter to store the number of samples in which U is in state w.
All counters are initialized to zero.

Let us now consider the sampling process itself. To create one sample, we visit (in an
arbitrary but fixed order) all unobserved RVs. When we visit an RV U, we “resample” it.
The idea is to sample the new state from the probability distribution for U conditioned
on the current state of all other RVs. For details on how to construct this distribution
P, esample(U) we refer to Bidyuk and Dechter [1], here we focus on the main computations
that this requires (see the RESAMPLE procedure in Figure 1): first we need to call the CPD
for U, then we loop over all possible states of U and for each state u we set U to u and call
the CPDs of each of the children of U.Based on the information returned by all these CPD-
calls it is straightforward to construct the distribution Presgmpie(U). We then randomly
sample a state from this distribution, set U to this new state and increment the appropriate
counter for U.



IMPROVING THE EFFICIENCY OF GIBBS SAMPLING USING PROGRAM SPECIALIZATION 79

The above is done for all unobserved RVs, yielding one sample.? Note that observed RVs
are clamped to their known state, hence the generated sample is guaranteed to be consistent
with the evidence. This entire procedure is repeated N times, yielding N samples. It is
then straightforward to construct an estimate of all required marginal probabilities based
on the computed counts. For instance, the estimated probability that student sl has a high
IQ conditioned on the evidence is the number of samples in which the RV iq for s1 was in
the state ‘high’, divided by N.

The higher the number of samples IV, the closer the estimated marginal probabilities
will be to their correct values [1, 4]. Gibbs sampling is often used by giving the sampling
process a fixed time to run before computing the estimates. In this case, the less time it
takes to draw a single sample, the more samples can be drawn in the given time, so the
higher the accuracy of the estimates. In other words: any gain in efficiency of the sampling
process might lead to a gain in accuracy of the estimates. Hence it is crucial to implement
the sampling process as efficiently as possible.

The Gibbs sampling algorithm uses several operations, but there is one operation that
we clearly found to be the computational bottleneck, namely calling the CPDs. This oper-
ation occurs inside several nested loops (see line 5 of the RESAMPLE procedure in Figure 1)
and is hence performed many times. The knowledge base on which these CPD-queries are
called is highly dynamic: the state of the unobserved RVs changes continuously because
they are being resampled. This is only one part of the knowledge base, however. The part
that is about the observed RVs (the evidence) stays constant during the entire sampling
process. This static part of the knowledge base causes redundancy in the repeated calls of
the CPD-queries since part of the computations are performed over and over again. The
more evidence we have, the larger the redundancy. In many practical cases, the amount
of evidence is considerable and hence the redundancy can be large. Since we want the
sampling process to be as efficient as possible, this redundancy needs to be removed. In the
next section we show how this can be done by means of program specialization.

5. Applying Logic Program Specialization to Parameterized CPDs

The idea is to specialize the definitions of the CPD-predicates with respect to the static
part of the knowledge base. Recall that we define each CPD-predicate in Prolog by means of
a decision list (Example 3.1). Our specialization approach is a source-to-source transforma-
tion that takes three inputs: 1) the decision lists for all the CPD-predicates, 2) the evidence
(i.e. the observed RVs with their observed states), and 3) the background knowledge base.
The output of the transformation is a specialized version of the decision lists. The trans-
formation is such that Gibbs sampling produces exactly the same sequence of samples with
the specialized decision lists as with the original ones (but in a more efficient way).

We use the term CPD-query to refer to any atom for a CPD-predicate with the last
argument uninstantiated and all other arguments instantiated to elements of the proper pop-
ulations. For instance, cpd_grade(s, ¢, Distribution) is a CPD-query if s is in the considered
population of students and ¢ in the population of courses. All calls to CPD-predicates that
occur during Gibbs sampling are calls of CPD-queries. Moreover, there is only a fixed set
of CPD-queries that are ever called during Gibbs sampling: by examining the RESAMPLE
procedure (Figure 1) one can see that the only CPD-queries that are ever called are those

2In practice we use a slight variation of this procedure which includes a number of common optimizations
(such as making use of the ‘support network’ [3, Ch.7]).
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associated to an unobserved RV (line 1 of RESAMPLE) or to an RV with an unobserved
parent (line 5). As long as the specialized decision lists that we construct behave exactly
the same with respect to this fixed set of CPD-queries as the original decision lists do, Gibbs
sampling will indeed produce exactly the same samples with specialization as without.

There is a lot of existing work on transformation or specialization of logic programs that
has the same end-goal as our work, namely transforming a given program to an “equivalent”
but more efficient program [9]. However, we are not aware of any work that considers the
same setting as we do, namely that of executing a fixed set of queries on a knowledge
base with a static and a dynamic part, and specializing with respect to the static part. In
particular, this setting makes our work different from the work on partial deduction for logic
programs [6, 7]. In our setting, we know all input arguments of the queries but we know
only part of the knowledge base on which they will be executed. In contrast, in the partial
deduction setting, one knows only some of the input arguments of the queries but one knows
the entire knowledge base. Hence, existing off-the-shelve systems for partial deduction (see
e.g. Leuschel et al. [7]) are, as far as we see, not optimal for our setting.

Our specialization algorithm is shown in Figure 2. The main idea is the following.
The CPD-predicates are defined in terms of the state predicates. The evidence is a partial
interpretation of these state predicates (specifying the known state for a subset O of all
concrete RVs). We want to specialize the definitions of the CPD-predicates with respect to
this evidence. Since the evidence is defined at the ground level but the definitions of the
CPD-predicates are at the non-ground level, we first (partially) ground these definitions
before we specialize them. We now explain this further.

procedure sPECIALIZE(U, O, 0) procedure SPEC_DECISION_LIST(D, ¢, U, O, o)
1 for each CPD-predicate p 1 if D is non-empty
2 let D be the decision list for p 2 let C' be the first clause in D
3 for each g € AllQueries(p, U, O) and D,..s; be the other clauses in D
4 SPEC_DECISION_LIST(D, ¢, U, 0,0) 3 Cy; = GROUND_HEAD(C, q)
4 let Head be the head and B, the body of C|,
5 Body=SPECIALIZE_BODY(B,, U, O, 0)
6 if Body = true
7 ASSERT_FACT(H ead)
8 else
9 if Body # false
10 ASSERT_CLAUSE(H ead, Body)
11 SPEC_DECISION_LIST(Dy.cst, ¢, U, O, 0)

Figure 2: The specialization algorithm for the decision lists that define the CPD-predicates
(U are the unobserved RVs, O the observed RVs and o their observed values).

The outer-loop of our algorithm (line 1 of the SPECIALIZE procedure in Figure 2) is
over all the CPD-predicates: we specialize each CPD-predicate p in turn. To do so, we first
collect all CPD-queries for p. As explained before, the only CPD-queries that we need are
the ones associated to an RV that is unobserved or has an unobserved parent. The set of all
such CPD-queries is denoted AllQueries(p, U, O) (line 3 of the SPECIALIZE procedure). We
then loop over this set: for each CPD-query ¢ we apply the SPEC_DECISION_LIST procedure.
We explain this procedure by means of an example.
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Example 5.1. Let p be e¢pd_graduates/2, let the decision list D that defines p be the same
as given earlier in Example 3.1, and let the CPD-query ¢ be cpd_graduates(sl, Distr). The
SPEC_DECISION_LIST procedure starts by processing the first clause C' in D:

cpd_graduates(S, [yes:0.2,n0:0.8]) :- grade(S,_C,c), !.

First we ground the head variables of C' with respect to ¢ (line 3 of SPEC_DECISION_LIST)
yielding the clause Cy:

cpd_graduates(sl, [yes:0.2,n0:0.8]) :- grade(sl,_C,c), !.

Next, we apply the function SPECIALIZE_BODY to the body of C; (line 5), yielding Body
(see Example 5.2). There are three possible cases.

e If Body equals true, we assert a fact cpd_graduates(si, [yes:0.2,n0:0.8]) (line
7). We can discard the remaining clauses in D with respect to ¢ (these clauses will
never be reached for ¢ since only the first applicable clause in a decision list fires).

o If Body equals false, we discard Cy; and continue with the next clause in D (line 11).

e Otherwise, we assert a clause of the form
cpd_graduates(si, [yes:0.2,n0:0.8]) :- Body, !.

(line 10) and we again continue with the next clause in D (line 11).

The function SPECIALIZE_BODY (Figure 2) is rather involved. For details we refer to
the full paper [4]. We now give a very simple example.

Example 5.2. Let By, the body to be specialized, be grade(s1,C,c) (this is the situation
of our previous example). First we ground the free variable C, yielding a disjunction B,
namely grade(sl,cl,c) ; ... ; grade(sl,cn,c). Then we specialize each of the literals
in By with respect to the evidence. Consider the first literal, grade(s1,c1,c). If we have
evidence that s1 obtained grade ‘c’ for course cl then we replace the literal by true, if we
have different evidence we replace it by false, if we have no evidence we leave it unchanged.
Doing this for each literal yields a specialized disjunction Bs. Finally, we simplify By using
logical propagation rules (e.g. a disjunction is true if one if its disjuncts is true).

From the perspective of efficiency of the specialization process (time needed for spe-
cializing) our algorithm is not optimal: the specialization time can easily be reduced, for
instance by more closely integrating the different steps of SPECIALIZE_BODY. However, in
our experiments we observed that the specialization time is negligible as compared to the
runtime of Gibbs sampling with the specialized decision lists (see the full paper [4]). Hence,
we keep our specialization algorithm as simple as possible, rather than complicating it in or-
der to reduce specialization time. This also makes it easier to see that specialization indeed
preserves the semantics of the CPD-predicates (and hence that Gibbs sampling produces
the same sequence of samples as without specialization).

6. Experiments

We now experimentally analyze the influence of specializing the definitions of the CPD-
predicates on the efficiency of the Gibbs sampling algorithm.

We test our algorithms on three common real-world datasets: IMDB, UWCSE and
WebKB. We obtained a parameterized Bayesian network for each dataset by means of
machine learning. We use two inference scenarios. The first is ‘prediction’: there is one
parameterized RV that we want to predict, all concrete RVs associated to that parameterized
RV are unobserved, all others are observed. For each dataset we do multiple experiments,
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each time with a different parameterized RV as the prediction target. The second scenario
is ‘missing data’: a random fraction f of all concrete RVs is unobserved (‘missing’), the
others are observed. We use several values of f, ranging from 5% to 50%. For each value
we repeat each experiment 5 times, each time with different unobserved RVs. We report
the mean and standard deviation of the runtime across these 5 repetitions. More details
about our experimental setup are given in the full paper [4].

We report the runtime of our Gibbs sampling algorithm in minutes. The runtime
without specialization is the runtime of Gibbs sampling with parameterized CPDs that
have not been grounded or specialized. The runtime with specialization is the sum of the
specialization time and the runtime of Gibbs sampling with the specialized CPDs. Recall
that both settings produce exactly the same sequence of samples.

The results for the ‘missing data’ scenario are shown in Figure 3. Using specialization
always yields a speedup. The magnitude of the speedup of course greatly depends on the
amount of evidence. On WebKB, the dataset that is by far the most computationally
demanding, we get a speedup of an order of magnitude when there are 5% unobserved RVs.
On the smaller datasets (IMDB and UWCSE), the speedups are more modest.
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Figure 3: Results for the ‘missing data’ scenario. Left subgraphs show the runtime without

(upper line) and with specialization (lower line); right subgraphs show the corre-
sponding speedup-factor achieved due to specialization. Error bars indicate the
standard deviation.

The results for the ‘prediction’ scenario are shown in Table 1. For half of the prediction
targets, specialization yields significant speedups of a factor 4 to 7. For the other targets, the
speedup is small to negligible (< 1.5). These are mostly cases where the state predicate that
forms the computational bottleneck (e.g. because it is involved in a findall) is unobserved
and hence cannot be specialized on.

In the above results (especially for the ‘missing data’ scenario), the speedups are the
lowest on the smallest dataset (IMDB) and the highest on the largest one (WebKB). This
suggest a correlation between the speedup due to specialization and the data-size. To
investigate this, we performed additional experiments in which we varied the size of the
datasets (see the full paper [4]). We found a clear trend: the larger the dataset, the higher
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Table 1: Results for the ‘prediction’ scenario: runtime without specialization, runtime with
specialization and speedup-factor achieved due to specialization.

Data/Target No spec. Spec. Speedup ‘ Data/Target No spec. Spec. Speedup

IMDB/1 161 149 108 | UWCSE/3 12.2 2.1 5.87
IMDB/2 2.6 1.7 1.51 | UWCSE/4 718 158  4.55
UWCSE/1 751 174 431 | WebKB/1 2628 406  6.48
UWCSE/2 109 104  1.05

the speedup. This is a positive result: speedups are more necessary on large datasets than
on small ones.

7. Conclusions

We considered the task of performing approximate probabilistic inference with prob-
abilistic logical models by means of Gibbs sampling. We used the general framework of
parameterized Bayesian networks. We showed how to represent the considered models and
how to implement a Gibbs sampling algorithm for such models in Prolog. We argued that
program specialization is suited to make this algorithm more efficient (which can in turn
make the obtained inference answers more accurate) and introduced a concrete special-
ization algorithm. We experimentally investigated the influence of specialization on the
efficiency of Gibbs sampling. Our results show that specialization yields speedups of up to
an order of magnitude and that these speedups grow with the data-size.
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ABSTRACT. The proof-theoretic approach to logic programming has benefited from the
introduction of focused proof systems, through the non-determinism reduction and control
they provide when searching for proofs in the sequent calculus. However, this technique was
not available in the calculus of structures, known for inducing even more non-determinism
than other logical formalisms. This work in progress aims at translating the notion of
focusing into the presentation of linear logic in this setting, and use some of its specific
features, such as deep app