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Preface

The 12th Conference on the Theory of Quantum Computation, Communication, and Cryp-
tography was organized by the Université Pierre et Marie Curie and the Paris Centre for
Quantum Computing from the 14th to the 16th of June 2017. Quantum computation,
quantum communication, and quantum cryptography are subfields of quantum information
processing, an interdisciplinary field of information science and quantum mechanics. The
TQC conference series focuses on theoretical aspects of these subfields. The objective of the
conference is to bring together researchers so that they can interact with each other and
share problems and recent discoveries.

A list of the previous editions of TQC follows:
TQC 2016, Freie Universität Berlin, Germany
TQC 2015, Université libre de Bruxelles, Belgium
TQC 2014, National University of Singapore, Singapore
TQC 2013, University of Guelph, Canada
TQC 2012, The University of Tokyo, Japan
TQC 2011, Universidad Complutense de Madrid, Spain
TQC 2010, University of Leeds, UK
TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada
TQC 2008, University of Tokyo, Japan
TQC 2007, Nara Institute of Science and Technology, Nara, Japan
TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, and a poster session. Con-
tributed talks were solicited for two tracks: Conference Track and Workshop Track. The
accepted submissions to the Conference Track appear in these Proceedings, as well as a
selection of some that were accepted to the Workshop Track. The papers in these proceedings
are listed in their order of submission.

The invited talks were given by David Gosset (IBM), Stephen Jordan (National Institute
of Standards and Technology / University of Maryland), Stephen Piddock (University of
Bristol), and Barbara Terhal (Delft University of Technology).

The conference was possible thanks to generous donations from Microsoft, CryptoWorks21,
Paris Centre for Quantum Computing, Laboratoire d’Informatique de Paris 6, as well as
the Institute of Physics. I am indebted to the members of the Program Committee and all
subreviewers for their precious contribution in reviewing the submissions. I also wish to
thank the members of the Local Organizing Committee, especially Damian Markham, for
their considerable efforts in organizing the conference. I would like to thank Marc Herbstritt
and Michael Wagner (Dagstuhl Publishing) for their technical help. Finally, I would like to
thank the members of the Steering Committee for offering me this opportunity and for their
support, and I also thank all contributors and participants.

Mark M. Wilde
October 2017
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A Single Entangled System Is an Unbounded
Source of Nonlocal Correlations and of Certified
Random Numbers∗

Florian J. Curchod1, Markus Johansson†2, Remigiusz Augusiak‡3,
Matty J. Hoban§4, Peter Wittek¶5, and Antonio Acín6

1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and
Technology, Barcelona, Spain

2 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and
Technology, Barcelona, Spain

3 Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
4 School of Informatics, University of Edinburgh, Edinburgh, UK
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Technology, Barcelona, Spain
6 ICREA–Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain

and ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Barcelona, Spain

Abstract
The outcomes of local measurements made on entangled systems can be certified to be random
provided that the generated statistics violate a Bell inequality. This way of producing randomness
relies only on a minimal set of assumptions because it is independent of the internal functioning
of the devices generating the random outcomes. In this context it is crucial to understand
both qualitatively and quantitatively how the three fundamental quantities – entanglement, non-
locality and randomness – relate to each other. To explore these relationships, we consider
the case where repeated (non projective) measurements are made on the physical systems, each
measurement being made on the post-measurement state of the previous measurement. In this
work, we focus on the following questions: Given a single entangled system, how many nonlocal
correlations in a sequence can we obtain? And from this single entangled system, how many
certified random numbers is it possible to generate? In the standard scenario with a single
measurement in the sequence, it is possible to generate non-local correlations between two distant
observers only and the amount of random numbers is very limited. Here we show that we can
overcome these limitations and obtain any amount of certified random numbers from a single
entangled pair of qubit in a pure state by making sequences of measurements on it. Moreover,
the state can be arbitrarily weakly entangled. In addition, this certification is achieved by near-
maximal violation of a particular Bell inequality for each measurement in the sequence. We also
present numerical results giving insight on the resistance to imperfections and on the importance
of the strength of the measurements in our scheme.
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Keywords and phrases Randomness certification, Nonlocality, Entanglement, Sequences of meas-
urements

Digital Object Identifier 10.4230/LIPIcs.TQC.2017.1

1 Introduction

Bell’s theorem [4] has shown that the predictions of quantum mechanics demonstrate non-
locality. That is, they cannot be described by a theory in which there are objective properties
of a system prior to measurement that satisfy the no-signalling principle (sometimes referred
to as “local realism"). Thus, if one requires the no-signaling principle to be satisfied at the
operational level then the outcomes of measurements demonstrating non-locality must be
unpredictable [4, 19, 15]. This unpredictability, or randomness, is not the result of ignorance
about the system preparation but is intrinsic to the theory.

Although the connection between quantum non-locality (via Bell’s theorem) and the
existence of intrinsic randomness is well known [4, 19, 5, 15] it was analyzed in a quantitative
way only recently [17, 7]. It was shown how to use non-locality (probability distributions
that violate a Bell inequality) to certify the unpredictability of the outcomes of certain
physical processes. This was termed device-independent randomness certification, because
the certification only relies on the statistical properties of the outcomes and not on how they
were produced. The development of information protocols exploiting this certified form of
randomness, such as device-independent randomness expansion [17, 7, 23] and amplification
protocols [8, 12], followed.

Entanglement is a necessary resource for quantum non-locality, which in turn is required
for randomness certification. It is thus crucial to understand qualitatively and quantitatively
how these three fundamental quantities relate to one another. In our work, we focus on asking
how many observers in a sequence can be nonlocally correlated and how much certifiable
randomness can be obtained from a single entangled state as a resource that is measured
repeatedly. An important step to answer this question was recently made in [22], in which it
was shown that nonlocality generated by a maximally entangled state can be shared between
any number of distant observers, however, at the cost of exponentially diminishing the
amount of nonlocality, as measured by the violation of the CHSH Bell inequality, between all
the observers. Here we answer a significantly more demanding question that such correlations
can be made arbitrarily close to extremal for each observer, a crucial property for randomness
certification. In this particular sense we show that the nonlocality does not need to be
diminished, as for each observer the generated correlations violate a particular Bell inequality
(almost) maximally.

For randomness certification, progress has been made for entangled states shared between
two parties, Alice (A) and Bob (B), in the standard scenario where each party makes a
single measurement on his share of the system and then discards it. An argument adapted
from Ref. [10] shows that either of the two parties, A or B can certify at most 2log2d bits
of randomness [2], where d is the dimension of the local Hilbert space the state lives in,
which in turn implies a bound of 4log2d bits when the two outputs are combined. This
demonstrates a fundamental limitation for device-independent randomness certification in
the standard scenario. The main goal of our work is to show that this limitation on the
amount of certifiable random bits from one quantum state can be lifted. To do this we will
consider the sequential scenario, where sequences of measurements can be applied to each
local system. Our main result is to prove that an unbounded amount of random bits can be
certified in this scenario.

http://dx.doi.org/10.4230/LIPIcs.TQC.2017.1


F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acín 1:3

Imagine the following situation where, contrary to the device-independent approach that
we follow in this article, one has perfect control over the functioning of the device generating
randomness. An entangled state initially prepared in the Pauli-Z basis, i.e., a σz eigenstate
|0〉 or |1〉, is measured in the Pauli-X, or σx basis |±〉 = |0〉+|1〉√

2 . The outcome of this
measurement is perfectly random and the post-measurement state is now one of the two
eigenstates of the Pauli-X basis |±〉. If the device now measures this new state in the original
Pauli-Z basis, the outcome of this new measurement is again random and one of the σz
eigenstates is obtained. A device alternating between measurements in those two orthogonal
basis thus allows one to obtain any amount of random bits from a single state as input.

Of course, this way of generating randomness can never be trusted, as one can always
design a classical device (with deterministic outcomes – a local model) that has the same
behavior as the device we described, i.e., their outputs are indistinguishable. To certify
randomness one needs the generation of non-local correlations, that can not be simulated
with classical resources. But is it nevertheless possible to use this idea of measuring a
state repeatedly, in a scheme exploiting non-locality, to obtain more random numbers
and beat the bounds on randomness certification? Clearly, certifying more randomness
by making sequences of measurements on the same state depends on whether one is able
to produce sequences of non-local correlations between distant observers, as otherwise no
additional randomness can be certified. One of the obstacles to this is that if local (projective)
measurements are used to generate the non-local correlations, the entanglement in the state
is destroyed. Then the post-measurement state is separable and thus cannot be further used
to generate nonlocality or to certify randomness. A challenge is therefore to come up with
measurements that do not destroy all the entanglement in the state but nevertheless generate
non-local correlations. With such measurements the post-measurement state will still be a
potential resource for the generation of more non-local correlations and certified randomness.

Bell tests with sequences of measurements have received less attention in the literature
than the standard ones with a single measurement round despite the novel features in this
scenario [13], as for example the phenomenon known as hidden nonlocality [18]. In our work
we show that they prove useful in the task of randomness certification, which also provides
another example [2] where general measurements can overcome limitations of projective
ones. More precisely, we describe a scheme where any number m of random bits are certified
using a sequence of n > m consecutive measurements on the same system. This work thus
shows that the bound of 4log2d random bits in the standard scenario can be overcome in
the sequential scenario, where it is impossible to establish any bound. The unbounded
randomness is certified by a near-maximal violation of a particular Bell inequality for each
measurement in the sequence. Moreover, for any finite amount of certified randomness, our
scheme has a finite (yet very small) noise robustness. Our results show that

This paper is an extended version of [9], where the main results are already included.
The rest of the paper is organized as follows. In section 2, we describe the sequential scenario
that allows for multiple measurements on the same state. In section 3, we generalize the
concept of guessing probabilities – that allow to certify upper bounds on the predictive power
of an adversary trying to guess the random numbers – to the sequential scenario and obtain
new results on their continuity properties. In section 4 we introduce the main ingredients we
will use in our scheme, in particular we introduce a family of measurements on two qubit
states that allow us to retain some entanglement in the post-measurement states. In section
5 we describe our scheme that allows for the generation of nonlocal correlations between any
number of distant observers and any amount of certified random numbers. In section 6 we
present numerical results on the relation between the amount of violation of the family of
inequalities introduced in [1] and the amount of randomness that can be certified from it. In
section 7 we obtain numerical results to understand the relation between the strength of the

TQC 2017
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⇢AB

A

B

a

b1 b2 b3

x

y1 y3y2

⇢AB

Sequential Bell test

Standard Bell test

Figure 1 The standard scenario, where parties A and B make a single quantum measurement
on their share of the state and discard it versus the sequential scenario where the second party B
makes multiple measurements on his share.

measurement and the amount of randomness that can be certified from it. We conclude in
section 8 with additional remarks and potential future work.

2 The sequential measurements scenario

Before presenting our results, let us introduce the scenario we work in. We carry over many
of the features from the standard scenario except now we allow party B to make multiple
measurements in a sequence on his share of the state. One can visualize this as in Fig. 1
where B is split up into several Bs, each one corresponding to a measurement made on the
state and labeled by Bi, i ∈ {1, 2, .., n}, where n is the total number of measurements made
in the sequence. Each Bi makes one measurement and the post-measurement state is sent
to Bi+1. We organize the Bobs such that Bi is doing his measurement before Bj for i < j.
Thus in principle Bj can receive the information about the inputs and outputs of previous
measurements Bi for all i < j.

3 Randomness certification: from the standard to the sequential
scenario

To quantify the randomness produced in the setup, we put the above scenario in the setting
of non-local guessing games (e.g. Refs. [1, 16, 11, 2]). Let us consider an additional adversary
Eve (E) who is in possession of a quantum system potentially correlated to the one of A
and B. The global state is denoted ρABE . We assume that at each round of the experiment,
E is the one preparing the state ρABE and distributes ρAB = TrEρABE to A and B. This
state will be used to make the measurements in the sequence and the aim of E is to try to
guess B’s outcomes by using measurements on her share of the state ρABE . The parties
A and Bis, having no knowledge about the state or the real measurements made on it,
see their respective devices as black boxes that receive some classical input x ∈ {0, 1} and
yi ∈ {0, 1}, y1, y2, .., yn ≡ ~y, respectively, and that generate a classical output a ∈ {±1}
and bi ∈ {±1}, (b1, b2, .., bn) ≡ ~b, respectively (see Fig. 1). They generate statistics from
multiple runs of the experiment to obtain the observed probability distribution Pobs with
elements pobs(a,~b|x, ~y). This distribution Pobs lives inside the set of quantum correlations
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Qn obtained from measurements on quantum states in a sequence as we described. This set
is convex and thus can be described in terms of its extreme points, denoted Pext, and any
Pobs can be written as Pobs =

∑
ext
qextPext, where

∑
ext
qext = 1 and every qext ≥ 0.

From studying the outcome statistics only we can bound E’s predictive power by allowing
her to have complete knowledge of how Pobs is decomposed into extreme points, i.e., she knows
the probability distribution qext over extreme points Pext. This predictive power is quantified
via the device-independent guessing probability (DIGP) [1] where we fix the particular input
string y0

1 , y
0
2 , .., y

0
n ≡ ~y0 for which E has to guess the outputs ~b. The DIGP, denoted by

G(~y0, Pobs), is then calculated as the optimal solution to the following optimization problem
[11, 16]:

G(~y0, Pobs) = max
{qext,Pext}

∑
ext

qext max
~b

pext(~b|~y0)

subject to:

pext(~b|~y0) =
∑
a

pext(a,~b|x, ~y0), ∀x (1)

Pobs =
∑
ext

qextPext, Pext ∈ Qn. (2)

The operational meaning of this quantity is clear: Eve has a complete description of the
observed correlations in terms of extreme points. She then guesses the most probable
outcome for each extreme point. The standard scenario with a single measurement round
can also be represented in this formalism by simply considering that ~b = b and ~y(0) = y(0).
To quantify the amount of bits of randomness that is certified, we use the min entropy
H(~y0, Pobs) = − log2 G(~y0, Pobs) which returns m bits of randomness if G(~y0, Pobs) = 2−m.
The amount of bits of randomness quantified in this way is the figure of merit in this work
and our goal is to obtain as many bits as possible from a single system.

We will now derive some general properties of the guessing probability (2) in the form
of theorems 3 and 4. Let us stress here that these results are not limited to the guessing
probability used in this work but are general properties of guessing probabilities. A more
detailed discussion and an introduction to the topic of guessing probabilities and their use in
randomness certification can be found in the appendices, as well as the proofs of the theorems
that we discuss here.

For a single measurement on each system (i.e. a sequence of n = 1 measurement), which
corresponds to the standard Bell scenario and Q ≡ Q1 the set of quantum correlations for a
single measurement on each subsystem we have that:

I Proposition 1. The function G(y0, Pobs) on the set of quantum distributions Q is continu-
ous in the interior of Q.

I Proposition 2. The function G(y0, Pobs) is continuous in any extremal point of Q.

The proofs of these two propositions are based mostly on general properties of concave
functions [20] and of concave roof extensions in particular [6], and can be found in section
B of the appendices. In other words the guessing probability for a single measurement is
continuous everywhere except possibly on some points that lie on the surface of the quantum
set but that are not extremal. An example of this can be obtained from the measurements
described in [17] for a state with arbitrarily little entanglement. The joint conditional
probability distribution (introduced below, see (6)) corresponding to those measurements
made on such a state has G(y0, Pobs) = 1/2 and is at the same time arbitrarily close to a
joint conditional probability distribution corresponding to measurements on a product state
with G(y0, Pobs) = 1, i.e., a local point. The key is that this local point is not extremal, it

TQC 2017



1:6 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

lies somewhere on the surface of the local (and quantum) set but can be decomposed into
other extremal (local) points, i.e. is not a vertex of the local polytope. Discontinuities of
G(y0, Pobs) can thus appear only at the boundary between extremal points and non-extremal
points lying on the surface of the set, and in the rest of the set it is continuous.

In general – and in particular in our work – the optimization problem (2) can be relaxed
to an optimization where instead of insisting on Pobs =

∑
ext
qextPext (2), one only imposes

that the observed statistics Pobs give a particular Bell inequality violation [17]. The optimal
solution to this new problem is an upper bound to the optimal solution of (2). Crucially,
this relaxation often gives non trivial bounds as shown in our case for example. From now
on, every time we refer to a guessing probability we refer to this relaxation of the problem to
a particular Bell inequality violation.

Now we consider a Bell expression I with its maximal value tmax on the quantum set
Q. We define the hyperplane Ht to contain the elements of Q for which the value of I is
t ≤ tmax and further we define the restriction G(y0, Pobs)t of G(y0, Pobs) to the intersection
of Ht with Q and let maxG(y0, Pobs)t be the maximum of the guessing probability on this
intersection. From Propositions (1) and (2) we can show that:

I Theorem 3. If the intersection of Htmax with Q is a single (thus extremal) point, there
exists a tc < tmax such that G(y0, Pobs)t is a continuous function of t for tc ≤ t ≤ tmax

The proof of this theorem can be found in section C of the appendices. In the other case, if the
intersection of Htmax with Q has more than one point, it also contains a set of non-extremal
points of Q and therefore a discontinuity of G(y0, Pobs)t at tmax can not be ruled out by
theorem (3). In other words, if the violation of a particular Bell inequality I is achieved by a
unique quantum point (as for example the following (5)), the guessing probability close to
that point is continuous.

Until now, we have considered the continuity properties of the guessing probability in the
standard scenario with a single measurement in the sequence. Now we would like to extend
those results to the guessing probability in the sequential measurement scenario with n ≥ 2
measurements being made on the subsystems. Remember that we split party B into many
Bi, so that party Bi makes the ith measurement on the system. The measurement setting
of Bi is yi and its outcome bi (see Fig. 1). In our work, we will always take yi ∈ {0, 1}
and bi ∈ {0, 1}, but the following results can be generalized to any number of inputs and
outcomes (they may even be different for each measurement in the sequence).

Now consider the joint conditional probability distributions P iobs(a, bi|x, y1, ..., yi, b1, ...,

bi−1) between A and each Bi, that is the joint conditional probability distribution between A
and Bi conditioned on what happened before the ith measurement, namely the input choices
y1, ..., yi−1 and the outcomes b1, ..., bi−1 that were obtained before measurement i. There are
n of those joint conditional probability distributions living in Q that can be obtained directly
from the whole probability distribution for the sequence Pobs(a~b|x~y) living in Qn. Now
suppose that we play, for each distribution P iobs(a, bi|x, y1, ..., yi, b1, ..., bi−1), a Bell game Ii
such that Ii(Pi(a, bi|x, y1, ..., yi, b1, ..., bi−1)) = ti ≤ tmax

i , where tmax
i is the maximum of Ii

over the set Q.

I Theorem 4. Suppose that each joint conditional probability distribution P iobs(a, bi|x, y1, ...,

yi, b1, ..., bi−1) between A and Bi in the sequence is such that Ii(Pi(a, bi|x, y1, ..., yi, b1, ...,

bi−1)) = ti and consider the limit where each ti → tmax
i . Suppose also that for each i,

Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) attains its smallest possible value at ti = tmax

i . Then
if the maximal value tmax

i of each Ii is achieved in a unique quantum point in Q:

G(~y0, Pobs(a~b|x~y))→
n∏
i=1

Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) (3)
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where Gi(y0
i , P

i
obs(a, bi|x, y1, ..., yi, b1, ..., bi−1)) is the (non sequential) relaxed guessing prob-

ability (2) of an adversary E trying to guess outcome bi for input y0
i from the observed joint

probability distribution P iobs(a, bi|x, y1, ..., yi, b1, ..., bi−1)). The proof of this theorem can be
found in appendices D and E. In other words, if each measurement in the sequence taken
separately – thus not seen as in a sequence – leads to correlations close enough to the unique
maximal violation of inequality Ii between A and Bi only, and if this maximal violation
corresponds to the minimal possible guessing probability for bi, then the guessing probability
for the whole sequence tends to the product of the individual guessing probabilities of the
outcomes bi.

Before presenting our results, it is worth explaining why the causal constraints imposed by
the sequential scenario make it stronger than standard Bell tests with one measurement in the
sequence. At first sight, one could be tempted to group all the measurements in the sequence
into a single box receiving an input string ~yn to output another string ~bn, as in a standard
Bell test. However, in general a sequence of measurements can not be represented as a single
measurement. To understand this, note that in the sequential scenario the outcome bi can
depend only on variables produced in its past, namely the input choices y1, y2, ..., yi and the
outcomes b1, b2, ..., bi−1 that were previously obtained. However, in the single measurement
scenario, the measurement box receives all inputs and produces all outputs at once. In
particular, outcome bi can now be a function of input choices yj>i and outcomes bj>i that are
produced in the future. That is, such a big box may violate the physical constraints coming
from the sequential arrangement and the assumption that signaling from the future to the
past is impossible. These additional causality constraints further limit Eve’s predictability
with respect to a standard Bell test and are responsible of the unbounded amount of certified
randomness.

4 Making non-destructive measurements on qubit states

Alice and Bob share the pure two-qubit state

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (4)

that for all θ ∈]0, π/2[ is entangled. In Ref. [1], a family of Bell inequalities was introduced:

Iθ = β〈B0〉+ 〈A0B0〉+ 〈A1B0〉 + 〈A0B1〉 − 〈A1B1〉 (5)

where β = 2 cos(2θ)/[1 + sin2(2θ)]1/2, 〈By〉 = p(b = +1|y) − p(b = −1|y) and 〈AxBy〉 =
p(a = b|xy)− p(a 6= b|xy) for x, y ∈ {0, 1}. This family of inequalities has the following two
useful properties: first, its maximal quantum violation, Imax

θ = 2
√

2
√

1 + β2/4, is obtained
by measuring the state (4) with measurements:

A0 = cosµσz + sinµσx, B0 = σz,

A1 = cosµσz − sinµσx, B1 = σx, (6)

where tanµ = sin(2θ). Second, when maximally violated, the inequality certifies one bit of
local randomness on Bob’s side for his second measurement choice y0 = 1: G(y0 = 1, Pmax

obs ) =
1/2 [1]. These observations are possible because the maximal violation is uniquely achieved
by the probability distribution Pmax

obs that arises from the previously-described state and
measurements (4) and (6). Therefore, for the maximal violation, Pmax

obs = Pext in (2) and the
guessing probability for input choice y0 = 1 is equal to 1/2.

However, in general we may not get correlations that maximally violate our Bell inequality
but give a violation that is only close to maximal. In section 3 we have shown how to make
conclusions about the guessing probability for non-maximal violations. In particular, we
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1:8 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

showed that for any Bell inequality with a unique point of maximal violation, the guessing
probability is a continuous function of the value of the inequality close to the maximal
violation. This implies in the particular case we are studying that:

Iθ → Imaxθ ⇒ G(y0 = 1, Pobs)→
1
2 . (7)

In section 6, we also provide a numerical upper bound on the guessing probability G(y0 =
1, Pobs) by a concave function of the value of Iθ.

Bell inequalities (5) are the first main ingredient in our sequential construction below.
The second one is the use of general, non-projective measurements. Indeed, if B1 performs
a projective measurement on the shared entangled state, the resulting post-measurement
state, now shared between Alice and B2, is separable and thus useless for randomness
production. Consequently, one needs to consider non-projective measurements to retain
some entanglement in the system for the subsequent measurements. For this purpose, let
us introduce the following two-outcome quantum measurement (written in the formalism of
Kraus operators):

M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓| (8)

corresponding to the two outcomes {±1}. This measurement σ̂x(ξ) ≡ {M†+1M+1,M
†
−1M−1}

can be understood as a generalization of the projective measurement σx. It varies from being
projective (for ξ = 0) to being non-interacting (for ξ = π/4). One can verify that measuring
an entangled state (4) for ξ ∈]0, π/4] (non-projective measurement) the post-measurement
state still retains some entanglement, irrespectively of the outcome. Therefore, by tuning
the parameter ξ we are able to vary the destruction of the entanglement of the state at
the gain of extracting information from it (cf. Ref. [22]): the closer to being a projective
measurement, the lower the entanglement in the post-measurement state, but the bigger the
violation of the initial Bell inequality.

5 A scheme for an unbounded amount of nonlocal correlations and
certified random numbers

We now combine the previous observations to demonstrate our main result. First, let us
recall that, as shown in [1], one can obtain one bit of randomness from any pure entangled
two qubit state, irrespective of the amount of entanglement in it. Moreover, one can verify
that approximately one random bit can be certified if the measurements are close to the
ones in Eq. (6) (in the sense that σ̂x(ξ) is close to a measurement of σx for B1 in Eq. (6))
since Iθ is then close to Imax

θ in Eq. (7). Second, the measurement in Eq. (8) is only close to
projective for ξ close to zero and leaves entanglement in the post-measurement state between
Alice and Bob which is thus still useful for randomness certification. By repeated use of
these two properties we can certify the production of an unbounded amount of random bits
from a single pair of entangled qubits. We now formally describe this process in which Alice
makes a single measurement on her share of the state, whereas Bob makes a sequence of n
measurements on his.

Each Bi chooses between measurements of σz and σ̂x(ξi) (8) for inputs yi = 0 and yi = 1,
respectively, with outcomes bi ∈ {±1}. The parameter ξi is fixed before the beginning of
the experiment. The initial entangled state shared between Alice and Bob, before B1’s
measurement, is |ψ(1)(θ1)〉 (see Eq. (4) with θ = θ1). If the first non-projective measurement
of the operator σ̂x(ξ1) is made by B1 on the initial state |ψ(1)(θ1)〉, the post-measurement
state is of the form

|ψ(2)
b1

(θ1, ξ1)〉 = U b1A (θ1, ξ1)⊗ V b1B (θ1, ξ1)(c|00〉+ s|11〉) , (9)
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where c = cos(θb1(θ1, ξ1)) and s = sin(θb1(θ1, ξ1)) and the two unitaries, U b1A (θ1, ξ1) and
V b1B (θ1, ξ1), and angle θb1(θ1, ξi) ∈]0, π/4] depend on the first outcome b1 and the angles θ1
and ξ1.

After his measurement, B1 applies the unitary (V b1B )†, conditioned on his outcome b1, on
the post-measurement state going to B2. This allows B2 to use the same two measurements
σ̂(ξ2) and σz independently of the outcome b1 since the unitary (V b1B ) is canceled in (9). This
last procedure will be applied by each Bi after his measurement, before sending the post-
measurement state to the next Bi+1. If the system passed through only the non-projective
measurements, the state received by Bi can be one of 2i−1 potential states, depending on
all of the previous Bj ’s (j < i) outcomes (one for each combination ~bi−1 ≡ (b1, b2, .., bi−1) of
outcomes obtained by the previous Bj , these can be computed before the beginning of the
experiment). Any of these states can be written as:

|ψ(i)
~bi−1
〉 = U

~bi−1
A ⊗ 1B

[
cos(θ~bi−1

)|00〉+ sin(θ~bi−1
)|11〉

]
, (10)

where the angles θ~bi−1
and the matrix U

~bi−1
A both depend on the outcomes ~bi−1, on the

initial angle θ1 and the angles ξj of the previous Bj ’s with j < i. In the notation, we will
always omit the dependence on the angles θ1 and ξ1, ξ2, .., ξj since these are fixed before
the beginning of the experiment. For each of these different potential states with angle
θ~bi−1

, Alice adds two measurements to her input choices, where for k ∈ {0, 1}, these are

measurements of the observables A
~bi−1
k which are defined as

U
~bi−1
A

[
cos(µ~bi−1

)σz + (−1)k sin(µ~bi−1
)σx

]
(U

~bi−1
A )†, (11)

where tan(µ~bi−1
) = sin(2θ~bi−1

), depending on the specific state |ψ(i)
~bi−1
〉 (10).

We are now ready to describe how the scheme certifies randomness. The measurement
operator σ̂x(ξi) can be made arbitrarily close to σx by choosing ξi sufficiently small. This
brings the outcome statistics for measurements σ̂x(ξi), σz on Bob’s side and A

~bi−1
0 ,A

~bi−1
1 on

Alice’s side on the state in Eq. (10), arbitrarily close to the statistics for the measurements in
Eq. (6) and a state of the form in Eq. (4), for θ = θ~bi−1

. Therefore, the inequality Iθ~bi−1
for

Alice and Bi as defined in (5) can be made arbitrarily close to its maximal violation. This in
turn guarantees that the guessing probability, G(y0

i = 1, Pobs) can be made arbitrarily close
to 1/2. Note that this guessing probability does not only describe the instances when Alice
chooses the measurements A

~bi−1
j . Since Eve does not know Alice’s measurement choices in

advance she cannot use a strategy that gives higher predictive power for the instances when
Alice chooses other measurements. Finally, by making G(y0

i = 1, Pobs) sufficiently close to
1/2 for each i (by choosing each ξi sufficiently close to 0) the DIGP G(y0

1 , y
0
2 , .., y

0
n, Pobs) can,

by continuity, be made arbitrarily close to 2−n (see theorem 4 of section 3.)
At the end, Bob can produce m random bits by a suitably chosen sequence σ̂x(ξi),

i ∈ {1, 2, .., n}, of n > m measurements. The certification only requires that each Bi
occasionally chooses the projective measurement σz so that the whole statistics can be
obtained. Note that Bob can choose σz with probability γi and σ̂x(ξi) with probability
1 − γi for γi as close to zero as he wants. Finally, note that the value of each inequality
Iθ~bi−1

between each Bi and A can be made as close as wanted to the maximal value Imax
θ~bi−1

.
Therefore, we can certify randomness for each measurement Bi in the sequence at the expense
of increasing the number of measurements that Alice chooses from.

This protocol can also be used to certify any finite amount of randomness with some
small but strictly non-zero noise robustness. Indeed, assume the goal is to certify m random
bits. One can then run the protocol for m′ > m bits. By continuity, when adding a small but
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finite amount of noise the protocol will certify m random bits. Of course, the noise robustness
tends to zero with the number of certified random bits. However, we expect this to be the
case for any protocol. This conjecture is based on the following argument: each measurement
of a particle of finite dimension can produce only a finite amount of randomness. Thus, to
get unbounded randomness, an infinite number of measurements are needed. Moreover, a
measurement that is very close to non-interacting is unlikely to produce nonlocal correlations
and is thus useless to certify randomness. It therefore appears quite likely that, in the infinite
limit, any sequence of local measurements that are useful for randomness certification will
destroy all the entanglement in the state, so that the resulting noise resistance tends to zero.
We therefore expect that, while quantitative improvements over our protocol in terms of
noise robustness can be expected, from a qualitative point of view it goes as far as possible.

6 Numerical bounds on the amount of violation of the family of Bell
inequalities of [1] and the certified randomness

Let us now explain some numerical results that should provide some quantitative intuition
on the relation between the amount of violation of the family of inequalities (5) and the
amount of random bits certified by this violation. This allows one to evaluate how close the
value Iθ of the inequalities (5) should be to the maximal one Imaxθ in order to certify close
to one perfect random bit from the statistics for one measurement n = 1.

Let us consider the following two-parameter class of Bell inequalities:

Iα,β := β〈B0〉+ α(〈A0B0〉+ 〈A1B0〉) + 〈A0B1〉 − 〈A1B1〉 ≤ β + 2α (12)

where α ≥ 1 and β ≥ 0 such that αβ < 2. For α = 1 the above class reproduces the family
of Bell inequalities (5) with β = 2 cos(2θ)/[1 + sin2(2θ)]1/2. In [1] it was proved that the
maximal quantum value Imax

α,β for these inequalities is given by:

Imax
α,β =

√
(1 + α2)(4 + β2). (13)

Now, we conjecture that the following inequality is satisfied by Iαβ :

I2
α,β + (2− αβ)2〈B1〉2 ≤ (1 + α2)(4 + β2). (14)

We have numerically evaluated this inequality for various values of α and β by maximizing
its left-hand side over general one-qubit measurements Ai = ~mi · ~σ and Bi = ~ni · ~σ with
~mi, ~ni ∈ R3 such that |~mi| = |~ni| = 1 for i = 0, 1, and two-qubit pure entangled states that
can always be written as

|ψ〉 = cos t|00〉+ sin t|11〉 (15)

with t ∈ [0, π/2] now being independent of β. The obtained values were always smaller than
or equal to the right-hand side of (14). Notice that in the case of Bell scenarios with two
dichotomic measurements one can always optimize expression like the above one over qubit
measurements and states (see e.g. Ref. [1]).

From (14), it is easy to obtain an upper bound on the expectation value:

|〈B1〉| ≤

√
(1 + α2)(4 + β2)− I2

α,β

2− αβ =

√
(Imax
α,β )2 − I2

α,β

2− αβ , (16)

which, due to the fact that the right-hand side of the above is a concave function in Iα,β ,
implies an upper bound on the guessing probability:

G(y0 = 1, Pobs) ≤
1
2 +

√
(Imax
α,β )2 − I2

α,β

2(2− αβ) ≡ f(Iαβ). (17)
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Figure 2 Our numerical upper bounds on the guessing probability in function of the violation of
Iθ for θ = π

4 ,
π
8 ,

π
16 , where Iθ=π

4
= CHSH. One can see that these are tight both at the maximal

violation of the inequality and at its local bound.

In the particular case of maximal violation of the inequality Iαβ (12) – which saturates
inequality (14), this bound implies that the outcome of the first Bob’s measurement is
completely unpredictable, G(y0 = 1, Pobs) = 1/2. Our numerical bound is thus tight at the
maximal quantum violation of the inequality, but also when Iαβ attains its classical value
2α+ β, for which G(y0 = 1, Pobs) = 1. In general, however, the bound (17) is not tight. Still,
it provides a good bound on the guessing probability in terms of the amount of violation of
Iαβ (12) and thus also of the family of inequalities Iθ (5) we were using in our scheme.

For example, one can insert the maximal quantum value Imax
θ (13) in (16) or in (17) and

get that 〈B1〉 = 0 or G(y0 = 1, Pobs) = 1
2 , which coincides with the certification of one perfect

local random bit for input y0 = 1 on Bob’s side for the maximal violation of Iθ. Since the
probability distribution of maximal violation is unique, the point is necessarily an extreme
point [1], so we can directly use the observed probability distribution Pobs to bound the
eavesdropper’s predictive power (as an extreme point allows only for one decomposition:
itself).

Let us finally consider the case of α = 1 and β = 2 cos(2θ)/[1 + sin2(2θ)]1/2, which
results in the Bell inequality (5) considered in the main text. Figure 3 presents the bound
(17) for three values of θ, in particular for θ = π/4 which corresponds to the CHSH Bell
inequality. This should provide one with an intuition of how close quantitatively to the
maximal violation Imaxθ the observed value Iθ should be in order to get close to one perfect
local bit of randomness (G(y = 1, Pobs)→ 1/2) for a state with a given angle θ.

7 The amount of certified randomness as a function of the strength
of the measurement

We know already that the violation of a Bell inequality certifies the existence of randomness in
the outcomes of the measurements. The other way is also true, namely that if the solution of
the optimization problem (2) gives a solution G(y0, Pobs) < 1 then the observed behavior Pobs
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1:12 Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

is necessarily nonlocal. On a purely qualitative level, certified randomness in the outcomes is
equivalent to nonlocal correlations.

In this section we analyze with the help of numerical tools the dependency of the certified
randomness from the violation of the family of Bell inequalities (5) on the strength parameter
ξ of the measurements σ̂x(ξ) = cos(2ξ)σx (8). For example, what is the maximal value of
the parameter ξ – i.e. the minimal strength of the measurement –such that we can generate
nonlocal correlations (and thus randomness) from this measurement on an entangled state
of the form |ψ(θ)〉 (4)? Do less entangled states need stronger measurement to unveil their
nonlocal behavior?

To answer these questions, we have been using semi-definite programing (SDP) techniques
as explained in [3, 16] to obtain numerical upper bounds on the guessing probabilities
(2). One can find the computational details – presented in a pedagogical way – online
at https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.
ipynb. Here we work in the standard scenario with only one measurement n = 1 in the
sequence. We used states of the form (4):

|ψ(θ)〉 = cos(θ)|00〉+ sin(θ)|11〉 (18)

and measurements (6):

A0 = cosµσz + sinµσx, B0 = σz,

A1 = cosµσz − sinµσx, B1 = σ̂x(ξ) = cos(2ξ)σx, (19)

where tan(µ) = sin(2θ). These measurements correspond to the ones in our scheme for an
unbounded amount of randomness and where the second measurement y = 1 of B is the
tunable version σ̂x(ξ) ≡ {M†+1M+1,M

†
−1M−1} of Eq. (8):

M±1(ξ) = cos ξ|±〉〈±|+ sin ξ|∓〉〈∓|, (20)

with ξ ∈ [0, π4 ]. For example, if the parameter ξ = 0, the four (projective) measurements in
Eq. (19) on any quantum state |ψ(θ)〉 with angle θ (18) generates a behavior P θobs leading
to the maximal violation of the inequality Iθ (5) for the same value of θ. This implies that
extremal nonlocal correlations are generated and from the results of [1] we know that one
perfect random bit – equivalently G(y0 = 1, P θobs) = 1

2 – is produced. This corresponds to
the strongest (projective) version of the measurements. Now, as we increase the parameter
ξ > 0 of B’s y = 1 measurement, σ̂x(ξ) gets weaker, the generated correlations cease to be
extremal and less than one random bit is produced. At some point, at a particular value ξθmax
the measurement of B is so weak that we expect the generated correlations to become local.
This exact value might depend on the amount of entanglement θ in the state. The bounds
obtained by SDP indicate that this dependency on the angle θ of the maximal value ξθmax is
relatively small. As we vary the angle θ, the minimal required strength of the measurement
to generate a nonlocal behavior P θobs stays within a narrow interval: ξθmax ∈ [0.519, 0.576] for
θ ∈ [ π32 ,

π
4 ].

We now present the results in the form of a graph (see Fig.3). A complete tables with
our results for the different states and bounds on the guessing probabilities can be found in
the appendices F.

As expected the amount of certified randomness for each state |ψ(θ)〉 is one bit when the
measurement is projective (for ξ = 0) as the correlations are the extremal ones described in [1]
regardless of the entanglement θ in the state. As ξ increases the lower bounds on the certified
randomness rapidly decreases, with a more rapid decrease for smaller θ. Interestingly, and up
to (high) numerical precision, for all values of θ the bounds reach zero certified randomness
around the same value ξmax ∈ [0.519, 0.576]. This indicates, again up to numerical precision,

https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.ipynb
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Figure 3 Lower bounds on the amount of randomness certified from the quantum state (4) with
angles θ = 0, π

32 ,
π
16 ,

π
8 ,

π
4 as function of the strength of the measurement ξ. The measurement is

projective for ξ = 0 – which certifies the maximal amount of randomness – and is non interacting
with the system when ξ = π

4 . It is intriguing to see that for the cases of π
32 ≤ θ ≤

π
4 considered the

generated behavior become local in a small interval ξmax ∈ [0.519, 0.576].

that all the generated P θobs become local – or stop generating randomness – around this
critical value.

In the end, we are interested primarily in the amount of certified randomness from P θobs
close to the maximal violation of Iθ, corresponding to ξ → 0. There, the SDP solutions
indicate that the correlations resisting the best to the weakening of the measurement ξ > 0
are the ones coming from the measurements made on the maximally entangled state. Indeed,
if the bounds are close to the actual values of certified randomness it is quite clear from the
numerical results that the more the state is entangled (θ → π

4 ) the better it resists. The
less entangled states (θ → 0) appear to generate exponentially less randomness when the
parameter ξ increases, or equivalently when the correlations cease to be extremal. This tells
us that even though our scheme certifies an unbounded amount of randomness from states
|ψ(θ)〉 with any nonzero amount of entanglement, i.e. any θ > 0, it is preferential from a
practical point of view to use the maximally entangled state as the initial state.

8 Conclusion

We have presented a scheme for certifying an unbounded amount of random bits from a
single pair of entangled qubits in the scenario where one of the qubits is subjected to a
sequence of measurements. The measurements do not completely destroy the entanglement
but map the state to another pure entangled two-qubit state (with reduced entanglement).
Our main result made use of the fact that every measurement in Bob’s sequence generated
an almost-maximally non-local output distribution (in the sense of violating some Bell
inequality almost maximally). In Ref. [22], a sequence of non-local correlations is obtained
from a single pair of qubits, showing that the nonlocality of a state can be shared between
many parties. While it also considers sequences of measurements, one can show that the
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correlations obtained in their work do not generate more certified randomness than the simple
standard single measurement scenario. Indeed, the maximum of randomness is achieved
when all but one measurements do not interact with the particle and their scheme is thus
optimal when coinciding with a single measurement one. In our work, we overcome this
limitation by producing (almost) extremal correlations for each measurement in the sequence,
which is a fundamental property of potential further use for many other device-independent
quantum information tasks (in particular for randomness certification). Our work is in many
respects a proof-of-principle result: First, it requires an exponentially increasing number
of measurements on Alice’s side, namely

∑n
i=1 2i = 2(2n − 1) measurement choices for n

measurements in the sequence. Second, the result is based on a continuity argument and
there is no control on the noise robustness. All these issues deserve further investigation.
Finally, it is worth exploring how to design device-independent randomness generation
protocols involving sequences of measurements. However, the sequential scenario is much
more demanding from an implementation point of view, because it requires quantum non-
demolition measurements. It is then unclear whether with present or near future technology
sequential protocols will provide a significant practical advantage over simpler protocols
based on standard Bell tests. However, the first experimental works observing non-local
correlations in the sequential scenario have recently been reported [21, 14]. In any case, the
main implications of our work are fundamental: It shows that a single pair of pure entangled
qubits is a potentially unbounded source of certifiable random bits when performing sequences
of measurements on it.

We have also provided numerical results that gives us an insight on the resistance to
imperfections of a potential protocol that implements our scheme. For a single measurement
in the sequence, we have given numerical bounds on how the certified randomness diminishes
as the generated correlations cease to be extremal. Second, we have also explored how the
certified randomness diminishes when the strength of the measurement is lowering. This
allows us to expect that any potential protocol trying to implement our scheme for a finite
amount of randomness starting from a single entangled system has an advantage using a
maximally entangled one. It is clear from our numerical results that this state offers the best
resistance to imperfections. So, while it is true that even arbitrarily little entangled states
are a source of unbounded certified randomness, more entanglement offers an advantage in
terms of resistance to imperfections.

It would also be interesting to explore whether an unbounded amount of randomness
can be obtained versus a post-quantum adversary E, only constrained by the no-signaling
condition, trying to guess the outcomes of the measurements. Or, on the contrary, is the
amount of certified randomness against no-signaling adversaries bounded also in the sequential
scenario? Our conjecture is that the amount of randomness that can be certified is limited in
this case. Indeed, the fact that the no-signaling set – consisting of all correlations constrained
only by the no-signaling conditions – does not have a continuous set of extremal points (it is
a polytope) makes it impossible to obtain a sequence of extremal probability distributions in
a sequence as the one that we could obtain in the quantum case. A different approach thus
needs to be taken. It is really the fact that the quantum set has curved boundaries made of
extremal quantum behaviors that allowed us to derive the results of this paper.
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A The guessing probability

We start our appendices with the following discussion, which is a summary of the work
done in deriving the device-independent guessing probability (DIGP) [17, 1, 16, 11]. A
conditional probability distribution that is the outcome distribution for some measurement
on a quantum state is called a quantum distribution. For example, a distribution P with
elements p(ab|xy) is quantum if there exist at least one quantum state, i.e., a positive
semi-definite hermitian unit trace matrix ρ and at least one set of measurements, i.e., a set of
positive semi-definite hermitian matrices Ma|x, Mb|y satisfying

∑
aMa|x =

∑
bMb|y = 1 such

that p(ab|xy) = Tr(Ma|x⊗Mb|y · ρ). We will often abuse notation and refer to a distribution
by its elements p(ab|xy) when there is no confusion in doing so.

The set Q of quantum distributions is convex and a distribution in Q that cannot be
decomposed as a convex combination of other distributions is called extremal in Q. For
a non-extremal distribution P (ab|xy) there is in general more than one possible convex
decomposition.

A non-extremal distribution p(ab|xy) with a convex decomposition p(ab|xy) =∑
λ qλpλ(ab|xy) can be constructed by sampling the different distributions pλ(ab|xy) with

probability qλ. In this case knowledge about the convex decomposition chosen changes the
ability of an eavesdropper to correctly guess the outcomes a and/or b.

Without knowledge of the decomposition, or for extremal distributions, the probability
of correctly guessing the outcome of measurement y0 is maxb p(b|y0), the probability of the
most likely outcome. With knowledge of the decomposition p(ab|xy) =

∑
λ qλpλ(ab|xy), the

probability is larger or equal to maxb p(b|y0)∑
λ

qλ max
b
pλ(b|y0) ≥ max

b

∑
λ

qλpλ(b|y0) = max
b
p(b|y0). (21)

For a given observed non-extremal distribution Pobs, it is possible that it was produced by an
agent Eve that has larger predictive power than an agent which only observes the outcomes.

We now want to consider the optimal probability for the agent Eve to correctly guess
an outcome b of measurement y0 given a distribution pobs(ab|xy) and control over its
decomposition in extremal points. If the set of quantum distributions is closed there exist one
or several optimal ways to decompose the given distribution that maximizes this probability.
If the set is not closed but open or semi-open, there may not exist a maximum and the
relevant quantity is instead the supremum value of Eves probability to correctly guess the
outcome. Since maxb p(b|y0) is a continuous function on the set of probability distributions
it follows that the supremum value of

∑
λ qλ maxb pλ(b|y0) as a function of all possible

decompositions, indexed by λ, on an open or semi-open set of distributions is the same as
the maximum value on the closure of the set. Therefore, in this case we can consider the
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closure of the set and express the probability as an optimization over the extremal points of
this closed set.

With this disclaimer, the maximal probability for the agent Eve to correctly guess
an outcome b of measurement y0 given a distribution pobs(ab|xy) and control over the
decomposition is the DIGP G(y0, Pobs)

G(y0, Pobs) = max
qλ,pλ(ab|xy)

∑
λ

qλ max
b
pλ(b|y0). (22)

where λ is labelling the convex decompositions of pobs(ab|xy) in terms of extremal distributions
pλ(ab|xy). Note that if Q is not closed a given extremal point may not belong to the set but
only to its closure. For any open interval of Q the function G(y0, Pobs) is a concave function
[17]. Therefore this kind of maximization is called a concave roof construction.

The guessing probability can be approximated by a hierarchy of semidefinite programming
(SDP) relaxations [16, 3]. We used Ncpol2sdpa [24] to generate the relaxations for verifying
some of the analytical results. We relied on the arbitrary-precision variant of the SDPA
family of solvers [25] for obtaining important numerical values, and the solver Mosek1 in all
other cases.

B Continuity of the guessing probability in interior and extremal
points of Q

The guessing probability as a function on the space of probability distributions is not every-
where continuous. An example of this is that the family of Bell-inequalities of Ref. [1] that
certifies one bit of randomness for measurements on a state with arbitrarily little entangle-
ment. The probability distribution corresponding to such a state and the measurements
in Eq. 6 has G(y0, Pobs) = 1/2 and is at the same time arbitrarily close to a distribution
corresponding to measurements on a product state with G(y0, Pobs) = 1, i.e., a distribution
which can be prepared by a local deterministic procedure. There is thus a discontinuity where
the guessing probability jumps from 1/2 to 1. The key to understanding this discontinuity
is that the local deterministic distribution is not extremal while the quantum distribution
in the neighbouring point is extremal. As seen in Eq. 21, the guessing probability is given
by different functions depend ing on whether a distribution can be decomposed into other
distributions or not, i.e., if it is extremal or not. This means discontinuities can appear at
the boundary between extremal points and non-extremal points.

We will now show that discontinuities can only appear at such boundaries between
extremal and non-extremal points in the boundary ∂Q of the quantum set Q. To do this we
use the property of the guessing probability described in Eq. 21, together with some general
properties of concave functions and in particular concave roof constructions.

We want to show that the following propositions are true:

I Proposition 5. The function G(y0, Pobs) on the set of quantum distributions Q is continu-
ous in the interior of Q.

I Proposition 6. The function G(y0, Pobs) is continuous in any extremal point of Q.

Proposition 1 is trivial. The guessing probability G(y0, Pobs) is concave by definition and
any concave function is continuous on an open subset of its domain [20]. In particular this
means that G(y0, Pobs) is continuous in the interior of Q. Note that if Q is open, i.e. has no
boundary, there can thus not exist any discontinuity.

1 http://mosek.com/
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To address proposition 2 we consider the restriction G(y0, Pobs)∂Q of G(y0, Pobs) to the
boundary ∂Q of the quantum set. First we note that the function G(y0, Pobs)∂Q by definition
is continuous on any open set of extremal points since maxb p(b|y) is a continuous function.
Next we observe that the boundary ∂Q can be decomposed into a collection of open sets of
extremal points and a collection {Si} of closed connected possibly overlapping sets where
each set is the closure of a maximal open connected subset. A maximal open connected
subset M of the non-extremal points is an open set such that any other open connected set
of non-extremal points which contains M is M itself. Therefore, each set Si is the convex
hull of the set of extremal points in its closure.

Any closed set Si has a boundary ∂Si with the rest of ∂Q which can be decomposed
in the same way into open sets of extremal points and closed connected sets Sij that are
closures of maximal open connected sets of non-extremal points. The boundary ∂Sij of Sij
with the rest of ∂Si is in turn decomposable in the same way.

Continuing this successive decomposition of the boundary ∂Q we will eventually reach
sets Sijk... that are one dimensional simplexes, or alternatively sets with only extremal points
in the boundary. On sets of these two types G(y0, Pobs) is a continuous function. To see this
we introduce the following terminology, and use a theorem from Ref. [6].

A function for which all discontinuities are such that the function takes the higher value
at a closed set and the lower value at an open set is called upper semi-continuous.

The function G(y0, Pobs)S defined on a closed convex set S can be viewed as an extension
of G(y0, Pobs)∂S to the interior of S. This extension is called the concave roof extension.

I Theorem 7. Let C be a compact set and K = co(C) be the convex hull of C. If F : C → R
is bounded, upper semi-continuous, and concave on C, then the concave roof extension
F̂ : K → R of F to K is upper semi-continuous [6].

The guessing probability is bounded and concave by definition. If the boundary of S
has only extremal points it follows that G(y0, Pobs)∂S is continuous in ∂S and by theorem
7 G(y0, Pobs)S is upper semi-continuous on S. Moreover, since G(y0, Pobs)S is concave it
cannot have an upper semi-continuous discontinuity between the boundary and the interior.
If S is a one-dimensional simplex we can, if necessary, restrict the domain of the guessing
probability to a one dimensional subspace and make the same argument.

Next we consider discontinuities between S and an open set of extremal points.

I Lemma 8. Any discontinuity of G(y0, Pobs) between a closed set and an open set of
extremal points is upper semi-continuous.

Proof. If the boundary point of the closed set is extremal the G(y0, Pobs) is continuous since
maxb p(b|y0) is continuous. Next consider a non-extremal boundary point of the closed set.
G(y0, Pobs) in the non-extremal point is always greater or equal to maxb P (b|y0) by Eq. 21.
Thus any discontinuity is upper semi-continuous. J

If there is a discontinuity of G(y0, Pobs) on the boundary of S it is, by lemma 8 , upper
semi-continuous and at a set of non-extremal points.

By repeated application of Theorem 7 and lemma 8 we can conclude that G(y0, Pobs)∂Q
is upper semi-continuous on ∂Q and that G(y0, Pobs) is upper semi-continuous on Q. Since
G(y0, Pobs) is concave there cannot be an upper semi-continuous discontinuity between the
boundary ∂Q and the interior of Q. Thus the only discontinuities are between non-extremal
points in closed subsets of ∂Q and extremal points in open subsets of ∂Q.
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C Bounds on the guessing probability as a function of a Bell
inequality: Continuity at a unique point of maximal violation

We have described the guessing probability as a function on set of quantum distributions,
but it is sometimes useful to consider it as a function of the violation of some given Bell
inequality I. A Bell expression is a linear function on the space of distributions and the set
of distributions for which it takes a given value t is a hyper-plane Ht. The different values of
the Bell expression thus defines a family of parallel hyperplanes.

On each hyperplane Ht we can consider the restriction G(y0, Pobs)t of G(y0, Pobs) to the
intersection of Ht with Q and take its maximum maxG(y0, Pobs)t on this intersection. This
maximum is the highest probability for Eve to guess the outcome of y0 for any distribution
P ∈ Q such that I(P ) = t. The function maxG(y0, Pobs)t can have a discontinuity at t = tc
only if Htc intersects with a point in Q at which G(y0, Pobs) is discontinuous.

Let us consider a Bell expression I and its maximal value tmax on Q. If the intersection
of Htmax and Q is a single extremal point it follows from Propositions 1 and 2 that there is
a tc 6= tmax such that for the range tc ≤ t ≤ tmax for which maxG(y0, Pobs)t is a continuous
function of t.

If the intersection of Htmax and Q contains more than one extremal point it also contains
a set of non-extremal points of ∂Q and G(y0, Pobs) could have a discontinuity between this
set and an open set of extremal points. This discontinuity could lead to a discontinuity of
the function maxG(y0, Pobs)t at tmax.

D Guessing probability for a sequence

So far, we have discussed the continuity properties of the guessing probability in the standard
scenario, where one single measurement Ma|x is made on Alice’s side and Mb|y on Bob’s. The
goal of this section is to extend these properties to the case where sequential measurements
Mai|xi and Mbi|yi are performed by each party, where i labels the position of a particular
measurement in the sequence.

Let us consider a sequence of measurements σ̂(ξi) chosen by Bob and denote (ξ1, ξ2, . . . , ξn)
≡ ~ξ. The convex decomposition of the observed outcome distribution that gives Eve
optimal probability to correctly guess the sequence of outcomes ~bn of the measurements
(y0

1 , y
0
2 , . . . , y

0
n) ≡ ~y0

n is a function of ~ξ. The guessing probability G(~y0
n, Pobs) is thus given by

G(~y0
n, Pobs) =

∑
λξ̄

qλ~ξ max
~bn

pλ~ξ(b1|y0
1) · pλ~ξ(b2|y0

2 , y
0
1 , b1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (23)

where the extremal distributions pλ~ξ(bn|yn . . . ) and weights qλ~ξ of the optimal convex
decomposition are functions of ~ξ as indicated by the index λ~ξ. Let us assume that a term
which appears in the convex combination is

qλ~ξpλ~ξ(b1|y0
1) . . . pλ~ξ(bn|~y

0
n
~bn−1). (24)

Thus we assume that it corresponds to the most probable sequence of outcomes ~bn for a
specific distribution indexed by λ~ξ.

Given that Eve has chosen the optimal convex decomposition for guessing the outcomes
of ~y0

n we consider her probability of correctly guessing the outcome of y0
m for 1 ≤ m ≤ n

given a particular sequence of previous outcomes ~bm−1. It is given by∑
λ~ξ

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1), (25)
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where kλ~ξ is the probability that the distribution indexed by λ~ξ will be sampled given the
sequence of previous outcomes ~bm−1

kλ~ξ =
qλ~ξpλ~ξ(b1|y0

1) . . . pλ~ξ(bm−1|~y0
m−1

~bm−2)∑
λ~ξ
qλ~ξpλ~ξ(b1|y0

1). . .pλ~ξ(bm−1|~y0
m−1

~bm−2)
. (26)

The probability in Eq. 25 is larger or equal to 1/dm, where dm is the number of possible
outputs bm, but is lower or equal to G(y0

m, Pobs), the maximal probability that Eve could
guess the outcome of y0

m correctly given that she had chosen an optimal strategy for this and
not the optimal strategy for guessing the outcomes of the sequence ~y0

n. Thus if G(y0
m, Pobs)

is close to 1/dm so is the expression in Eq. 25.

E Arbitrarily close to n random bits for n measurements

We want to prove that G(~y0
n, Pobs) can be made arbitrarily close to 2−n by making G(y0

m, Pobs)
sufficiently close to 1/2 for each 1 ≤ m ≤ n.

The proof relies on the fact that if a convex combination of a collection of numbers xi
equals a, i.e.,

∑
i kixi = a where

∑
ki = 1, and if xi ≥ a for each i, it follows that for every

i either ki = 0 or xi = a.
From this follows that when G(y0

m, Pobs) is very close to 1/2 either maxbm pλ~ξ(bm|~y
0
m
~bm−1)

in Eq. 25 is very close to 1/2 or kλ~ξ is very close to zero for each λ~ξ. To see this more clearly
we construct the following bound

kλ~ξ max
bm

pλ~ξ(bm|~y
0
m
~bm−1) ≤ G(y0

m, Pobs)−
∑
λ′ 6=λ

kλ′
~ξ

max
bm

pλ′
~ξ
(bm|~y0

m
~bm−1)

≤ G(y0
m, Pobs)− 1/2(1− kλ~ξ)

where we used maxbm pλ′~ξ(bm|~y
0
m
~bm−1) ≥ 1/2 for each λ′~ξ and

∑
λ′ 6=λ kλ′~ξ

= 1−kλ~ξ . It follows
that

G(y0
m, Pobs)− 1/2 ≥ kλ~ξ [max

bm
pλ~ξ(bm|~y

0
m
~bm−1)− 1/2],

and given Eq. (26) this implies

G(y0
m, Pobs)− 1/2 ≥ qλ~ξpλ~ξ(b1|y0

1) . . . pλ~ξ(bm−1|~y0
m−1

~bm−2)[max
bm

pλ~ξ(bm|~y
0
n
~bm−1)− 1/2].

Thus for sufficiently small G(y0
m, Pobs) − 1/2 either maxbm pλ~ξ(bm|~y

0
m
~bm−1) − 1/2 can be

made arbitrarily small, or the probability qλ~ξpλ~ξ(b1|y0
1) . . . pλ~ξ(bm−1|~y0

m−1
~bm−2) that the

distribution labelled by λ~ξ is sampled when y0
m is measured is made arbitrarily small.

The argument can be made for any Bm. For B1, it follows that either pλ~ξ(b1|y0
1) is made

arbitrarily close to 1/2 or qλ~ξ is made arbitrarily close to 0. For B2, it follows that either
pλ~ξ(b2|y0

2y
0
1b1) is made arbitrarily close to 1/2 or qλ~ξpλ~ξ(b1|y0

1) is made arbitrarily close to
zero. Given the second option and that pλ~ξ(b1|y0

1) is made arbitrarily close to 1/2 it is implied
that that qλ(~ξ) is made arbitrarily close to 0. If on the other hand pλ~ξ(b1|y0

1) is not very close
to 1/2 it follows that qλ~ξ is made arbitrarily close to zero by the preceding argument.

By induction it is clear that either the term in Eq. 24 satisfies that pλ~ξ(b1|y0
1) . . .

pλ~ξ(bn|~y
0
n
~bn−1) can be made arbitrarily close to 2−n or alternatively qλ~ξ is made arbitrarily

small. Since the same is true for every λ~ξ in Eq. 23 it follows that G(~y0
n, Pobs) can be made

arbitrarily close to 2−n.
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Note that the above argument can be straightforwardly extended to the case where the
number of outputs di for each Bi can be different from 2. Thus, in this case G(~y0

n, Pobs) can
be made arbitrarily close to

∏n
i=1 d

−1
i by making G(y0

m, Pobs) sufficiently close to 1/dm for
each 1 ≤ m ≤ n.

F Our programs to obtain lower bounds on the certified randomness

In this section of the appendices we give the tables of results for section 7. We remind
the reader that the computational details – exposed in a pedagogical way – of our results
can be found online at: https://github.com/peterwittek/ipython-notebooks/blob/master/
Unbounded_randomness.ipynb.
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Table 1 θ = π
4 , the maximally entangled

state.

ξ ] random bits
0.000 1.000
0.013 0.962
0.027 0.925
0.040 0.890
0.053 0.855
0.067 0.822
0.080 0.790
0.093 0.759
0.106 0.729
0.120 0.700
0.133 0.673
0.146 0.647
0.160 0.622
0.173 0.598
0.186 0.575
0.200 0.554
0.213 0.533
0.226 0.514
0.240 0.494
0.253 0.473
0.266 0.452
0.280 0.430
0.293 0.409
0.306 0.387
0.319 0.365
0.333 0.342
0.346 0.320
0.359 0.298
0.373 0.276
0.386 0.254
0.399 0.233
0.413 0.211
0.426 0.190
0.439 0.170
0.453 0.150
0.466 0.130
0.479 0.111
0.493 0.093
0.506 0.075
0.519 0.058
0.532 0.042
0.546 0.027
0.559 0.012
0.572 0.000

Table 2 θ = π
8 .

ξ ] random bits
0.000 1.000
0.013 0.941
0.027 0.884
0.040 0.830
0.053 0.779
0.067 0.729
0.080 0.682
0.093 0.637
0.106 0.595
0.120 0.555
0.133 0.519
0.146 0.485
0.160 0.453
0.173 0.424
0.186 0.396
0.200 0.371
0.213 0.348
0.226 0.327
0.240 0.307
0.253 0.289
0.266 0.273
0.280 0.258
0.293 0.243
0.306 0.229
0.319 0.214
0.333 0.200
0.346 0.186
0.359 0.171
0.373 0.157
0.386 0.143
0.399 0.129
0.413 0.115
0.426 0.102
0.439 0.089
0.453 0.077
0.466 0.064
0.479 0.053
0.493 0.041
0.506 0.031
0.519 0.021
0.532 0.012
0.546 0.004
0.559 0.000
0.572 0.000
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Table 3 θ = π
16 .

ξ ] random bits
0.000 1.000
0.013 0.896
0.027 0.800
0.040 0.714
0.053 0.641
0.067 0.577
0.080 0.521
0.093 0.473
0.106 0.429
0.120 0.391
0.133 0.356
0.146 0.325
0.160 0.297
0.173 0.271
0.186 0.248
0.200 0.227
0.213 0.207
0.226 0.190
0.240 0.174
0.253 0.159
0.266 0.146
0.280 0.134
0.293 0.122
0.306 0.112
0.319 0.103
0.333 0.095
0.346 0.087
0.359 0.078
0.373 0.070
0.386 0.062
0.399 0.055
0.413 0.047
0.426 0.040
0.439 0.034
0.453 0.027
0.466 0.021
0.479 0.016
0.493 0.011
0.506 0.007
0.519 0.003
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000

Table 4 θ = π
32 .

ξ ] random bits
0.000 1.000
0.013 0.823
0.027 0.706
0.040 0.619
0.053 0.551
0.067 0.493
0.080 0.444
0.093 0.400
0.106 0.362
0.120 0.328
0.133 0.297
0.146 0.269
0.160 0.244
0.173 0.221
0.186 0.200
0.200 0.181
0.213 0.163
0.226 0.147
0.240 0.133
0.253 0.119
0.266 0.107
0.280 0.095
0.293 0.085
0.306 0.076
0.319 0.067
0.333 0.059
0.346 0.052
0.359 0.046
0.373 0.040
0.386 0.035
0.399 0.030
0.413 0.025
0.426 0.021
0.439 0.017
0.453 0.013
0.466 0.009
0.479 0.006
0.493 0.004
0.506 0.002
0.519 0.000
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000
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Abstract
An important task in quantum physics is the estimation of local quantities for ground states of
local Hamiltonians. Recently, [Ambainis, CCC 2014] defined the complexity class PQMA[log], and
motivated its study by showing that the physical task of estimating the expectation value of a
local observable against the ground state of a local Hamiltonian is PQMA[log]-complete. In this
paper, we continue the study of PQMA[log], obtaining the following results.

The PQMA[log]-completeness result of [Ambainis, CCC 2014] requires O(logn)-local observ-
ables and Hamiltonians. We show that simulating even a single qubit measurement on ground
states of 5-local Hamiltonians is PQMA[log]-complete, resolving an open question of Ambainis.
We formalize the complexity theoretic study of estimating two-point correlation functions
against ground states, and show that this task is similarly PQMA[log]-complete.
PQMA[log] is thought of as “slightly harder” than QMA. We justify this formally by exploiting
the hierarchical voting technique of [Beigel, Hemachandra, Wechsung, SCT 1989] to show
PQMA[log] ⊆ PP. This improves the containment QMA ⊆ PP [Kitaev, Watrous, STOC 2000].
A central theme of this work is the subtlety involved in the study of oracle classes in which
the oracle solves a promise problem. In this vein, we identify a flaw in [Ambainis, CCC 2014]
regarding a PUQMA[log]-hardness proof for estimating spectral gaps of local Hamiltonians. By
introducing a “query validation” technique, we build on [Ambainis, CCC 2014] to obtain
PUQMA[log]-hardness for estimating spectral gaps under polynomial-time Turing reductions.
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1 Introduction

The use of computational complexity theory to study the inherent difficulty of computational
problems has proven remarkably fruitful over the last decades. For example, the theory of
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2:2 The Complexity of Simulating Local Measurements on Quantum Systems

the study of a quantum analogue of NP, known as Quantum Merlin Arthur1 (QMA), was
started in 1999 by the seminal “quantum Cook-Levin theorem” of Kitaev [19], which showed
that estimating the ground state energy of a given k-local Hamiltonian is QMA-complete for
k ≥ 5. Here, a k-local Hamiltonian2 H can be thought of as a quantum constraint satisfaction
system in which each quantum clause acts non-trivially on k qubits. The “largest total weight
of satisfiable clauses” is given by the ground state energy of H, i.e. the smallest eigenvalue of
H. Physically, the ground state energy and its corresponding eigenvector, the ground state,
are motivated in that they represent the energy level and state of a given quantum system
at low temperature, respectively. For this reason, since Kitaev’s work [19], a number of
physically motivated problems have been shown complete for QMA (see, e.g., [5] and [14] for
surveys), a number of which focus on estimating ground state energies of local Hamiltonians.

In recent years, however, new directions in quantum complexity theory involving other
physical properties of local Hamiltonians have appeared. For example, Brown, Flammia
and Schuch [6] (also Shi and Zhang [25]) introduced a quantum analogue of #P, denoted
#BQP, and showed that computing the ground state degeneracy or density of states of local
Hamiltonians is #BQP-complete. Gharibian and Kempe [12] introduced cq-Σ2, a quantum
generalization of Σp2, and showed that determining the smallest subset of interaction terms
of a given local Hamiltonian which yields a frustrated ground space is cq-Σ2-complete (and
additionally, cq-Σ2-hard to approximate). Gharibian and Sikora [13] showed that determining
whether the ground space of a local Hamiltonian has an “energy barrier” is QCMA-complete,
where QCMA [2] is Merlin-Arthur (MA) with a classical proof and quantum prover. Finally,
and most relevant to this work, Ambainis [3] introduced PQMA[log], which is the class of
decision problems decidable by a polynomial time Turing machine with logarithmically
many queries to a QMA oracle (i.e. a quantum analogue of PNP[log]). He showed that
PQMA[log] captures the complexity of a very natural physical problem: “Simulating” a local
measurement against the ground state of a local Hamiltonian (more formally, computing the
expectation value of a given local observable against the ground state).

It is worth noting here that, given a local Hamiltonian, often one is not necessarily
interested in a description of the entire ground state [14]. Rather, one may be interested in
local quantities such as the evaluation of a local observable or of a correlation function. This
makes PQMA[log] a well-motivated complexity class, whose study we continue here.

Our results (summarized under three headings)

1. PQMA[log]-completeness of estimating local quantities. We begin with the study of two
physically motivated problems. The first, APX-SIM, was formalized by Ambainis [3] (formal
definitions in Section 2): Given a k-local Hamiltonian H and an l-local observable A, estimate
the expectation value of the measurement A against the ground state of H, i.e. estimate
〈A〉 := 〈ψ|A |ψ〉 for |ψ〉 a ground state of H. The second problem, which we introduce here
and denote APX-2-CORR, is defined similarly to APX-SIM, except one is given observables
A and B, and asked to estimate the two-point correlation function 〈A⊗B〉 − 〈A〉〈B〉.

Previously, Ambainis [3] showed that APX-SIM is PQMA[log]-complete for O(logn)-local
Hamiltonians and O(logn)-local observables. From a physical standpoint, however, it is

1 More accurately, QMA is Merlin-Arthur (MA) with a quantum proof and quantum verifier.
2 H ∈ C2n×2n

is a Hermitian matrix with a succinct description H =
∑

i
Hi, where each local clause

Hi ∈ C2k×2k

acts non-trivially on k qubits. Implicitly, if Hi acts on a subset Si ⊆ [n] of qubits
non-trivially, then more accurately one writes Hi ⊗ I[n]\Si

. We write H =
∑

i
Hi for simplicity.
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typically desirable to have O(1)-local Hamiltonians and observables, and whether PQMA[log]-
hardness holds in this regime was left as an open question. We thus first ask: Is APX-SIM
still hard for an O(1)-local Hamiltonian and 1-local observables?

A priori, one might guess that simulating 1-local measurements might not be difficult —
for example, the ground state energy of a 1-local Hamiltonian can be estimated efficiently.
Yet, this intuition is incorrect: By embedding a 3-SAT instance φ into a 3-local Hamiltonian,
and using the ability to repeatedly locally measure observable Z against single qubits of the
ground state, we can extract a solution to φ! Thus, the 1-local observable case is at least
NP-hard. Indeed, we show it is much harder, resolving Ambainis’s open question.

I Theorem 1.1. Given a 5-local Hamiltonian H on n qubits and a 1-local observable A,
estimating 〈A〉 (i.e. APX-SIM) is PQMA[log]-complete.

Thus, measuring just a single qubit of a local Hamiltonian H’s ground state with a fixed
single-qubit observable A (in our construction, A is independent of H) is harder than QMA
(assuming QMA 6= PQMA[log], which is likely as otherwise co-QMA ⊆ QMA).

Using similar techniques, we also show APX-2-CORR is PQMA[log]-complete.

I Theorem 1.2. Given a 5-local Hamiltonian H on n qubits and a pair of 1-local observables
A and B, estimating 〈A⊗B〉 − 〈A〉〈B〉 (i.e. APX-2-CORR) is PQMA[log]-complete.

2. An upper bound on the power of PQMA[log]. Since PQMA[log] is thought of as “slightly
harder” than QMA (note QMA ⊆ PQMA[log]), we next ask: How much harder than QMA
is PQMA[log]? Recall that QMA ⊆ PP [20, 26, 23] (note [26] actually shows the stronger
containment QMA ⊆ A0PP). Here, PP is the set of promise problems solvable in probabilistic
polynomial time with unbounded error. Our next result shows that PQMA[log] is “not too
much harder” than QMA in the following rigorous sense.

I Theorem 1.3. PQMA[log] ⊆ PP.

3. Estimating spectral gaps and oracles for promise problems. A central theme in this
work is the subtlety involved in the study of oracle classes in which the oracle solves a
promise problem (such as PQMA[log]), as opposed to a decision problem (such as PNP[log],
where PNP[log] is PQMA[log] except with an NP oracle). As discussed in “Proof techniques and
discussions” below, the issue is that a P machine cannot in general determine if the query it
makes to a QMA oracle satisfies the promise gap of the oracle. For queries which violate
this promise, the oracle is allowed to give an arbitrary answer. We observe that this point
appears to have been missed in [3], rendering a claimed proof that determining the spectral
gap of a given O(logn)-local Hamiltonian H is PUQMA[log]-hard incorrect. (PUQMA[log] is
PQMA[log] except with a Unique QMA oracle. Unique QMA is roughly QMA with a unique
accepting quantum witness in the YES case.) Our last result both shows how to overcome
this difficulty (at the expense of obtaining a “slightly weaker” hardness claim involving a
Turing reduction, whereas [3] claimed hardness under a mapping reduction), and improves
the locality of H to O(1).

I Theorem 1.4. Given a 4-local Hamiltonian H, estimating its spectral gap (i.e. the problem
SPECTRAL-GAP) is PUQMA[log]-hard under polynomial time Turing reductions.

Proof techniques and discussion

1. PQMA[log]-completeness for estimating local quantities. The proofs of our first two
PQMA[log]-hardness results (Theorem 1.1 and Theorem 1.2) are similar, so we focus on APX-
SIM here. Intuitively, our aim is simple: To design our local Hamiltonian H so that its

TQC 2017
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ground state encodes a so-called history state3 [19] |ψ〉 for a given PQMA[log] instance, such
that measuring observable Z on the designated “output qubit” of |ψ〉 reveals the answer
of the computation. At a high level, this is achieved by combining a variant of Kitaev’s
circuit-to-Hamiltonian construction [19] (which forces the ground state to follow the P circuit)
with Ambainis’s “query Hamiltonian” [3] (which forces the ground state to encode correctly
answered queries to the QMA oracle). Making this rigorous requires developing a few ideas,
including: A careful analysis of Ambainis’s query Hamiltonian’s ground space when queries
violating the promise gap of the oracle are allowed (Lemma 3.1), a simple but useful corollary
(Cor. 2.3) of Kempe, Kitaev, and Regev’s Projection Lemma [18] (Corollary 2.3, showing
that any low energy state of H must be close to a valid history state), and application of
Kitaev’s unary encoding trick [19] to bring the locality of the Hamiltonian H down to O(1)
(Lemma 3.2).

Next, to show containment of APX-2-CORR in PQMA[log] (Theorem 1.2), a natural
approach would be to run Ambainis’s PQMA[log] protocol for APX-SIM independently for
each term 〈A ⊗ B〉, 〈A〉, and 〈B〉. However, if a cheating prover does not send the same
ground state |ψ〉 for each of these measurements, soundness of the protocol can be violated.
To circumvent this, we exploit a trick of Chailloux and Sattath [7] from the setting of QMA(2):
we observe that the correlation function requires only knowledge of the two-body reduced
density matrices { ρij } of |ψ〉. Thus, a prover can send classical descriptions of the { ρij }
along with a “consistency proof” for the QMA-complete Consistency problem [22].

2. An upper bound on the power of PQMA[log]. We now move to our third result, which is
perhaps the most technically involved. To show PQMA[log] ⊆ PP (Theorem 1.3), we exploit
the technique of hierarchical voting (used by Beigel, Hemachandra, and Wechsung [4] to
show PNP[log] ⊆ PP), in conjunction with the QMA strong amplification results of Marriott
and Watrous [23]. The intuition is best understood in the context of PNP[log] [4]. There,
the PP machine first attempts to guess the answers to each NP query by picking random
assignments to the SAT formula φi representing query i, in the hope of guessing a satisfying
assignment for φi. Since such a guess can succeed only if φi is satisfiable, it can be seen that
the lexicographically largest string y∗ attainable by this process must be the correct query
string (i.e. string of query answers). The scheme then uses several rounds of “hierarchical
voting,” in which lexicographically smaller query strings reduce their probability of being
output to the point where y∗ is guaranteed to be the “most likely” query string output. While
the quantum variant of this scheme we develop is quite natural, its analysis is markedly more
involved than the classical setting due to both the bounded-error nature of QMA and the
possibility of “invalid queries” violating the QMA promise gap. (For example, it is no longer
necessarily true that the lexicographically largest obtainable y∗ is a “correct” query string.)

3. Estimating spectral gaps and oracles for promise problems. Finally, we discuss our
fourth result and the theme of “invalid queries”. Assume that all calls by the PQMA[log]

machine to the QMA oracle Q are for an instance (H, a, b) of the Local Hamiltonian Problem
(LH): Is the ground state energy of H at most a (YES case), or at least b (NO case), for
b− a ≥ 1/poly(n)? Unfortunately, a P machine cannot in general tell whether the instance
(H, a, b) it feeds to Q satisfies the promise conditions of LH (i.e. the ground state energy

3 A history state can be seen as a quantum analogue of the “tableaus” which appear in the proof of the
Cook-Levin theorem, i.e. a history state encodes the history of a quantum computation. In contrast to
tableaus, however, the history encodes information in quantum superposition.
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may lie in the interval (a, b)). If the promise is violated, we call such a query invalid, and
in this case Q is allowed to either accept or reject. This raises the issue of how to ensure a
YES instance (or NO instance) of a PQMA[log] problem is well-defined. To do so, we stipulate
(see, e.g., Definition 3 of Goldreich [16]) that the P machine must output the same answer
regardless of how any invalid queries are answered by the oracle. As mentioned earlier, this
point appears to have been missed in [3], where all queries were assumed to satisfy the LH
promise. This results in the proofs of two key claims of [3] being incorrect. The first claim
was used in the proof of PQMA[log]-completeness for APX-SIM (Claim 1 in [3]); we provide
a corrected statement and proof in Lemma 3.1 (which suffices for the PQMA[log]-hardness
results in [3] regarding APX-SIM to hold).

The error in the second claim (Claim 2 of [3]), wherein PUQMA[log]-hardness of determining
the spectral gap of a local Hamiltonian is shown, appears arguably more serious. The
construction of [3] requires a certain “query Hamiltonian” to have a spectral gap, which
indeed holds if the PQMA[log] machine makes no invalid queries. However, if the machine
makes invalid queries, this gap can close, and it is not clear how one can recover PQMA[log]-
hardness under mapping reductions. To overcome this, we introduce a technique of “query
validation”: Given a query to the QMA oracle, we would like to determine if the query is
valid or “far” from valid. While it is not clear how a P machine alone can perform such
“query validation”, we show how to use a SPECTRAL GAP oracle to do so, allowing us
to eliminate “sufficiently invalid” queries. Combining this idea with Ambainis’s original
construction [3], we show Theorem 1.4, i.e. PUQMA[log]-hardness for SPECTRAL-GAP for
O(1)-local Hamiltonians. Since our “query validation” requires a polynomial number of calls
to the SPECTRAL-GAP oracle, this result requires a polynomial-time Turing reduction.
Whether this can be improved to a mapping reduction is left as an open question.

Significance. The problems studied here explore the line of research recently initiated by
Ambainis [3] on PQMA[log], and focus on central problems for local Hamiltonian systems. The
complexity theoretic study of such problems is appealing in that it addresses the original
motivation of celebrated physicist Richard Feynman in proposing quantum computers [10],
who was interested in avenues for simulating quantum systems. Indeed, hardness results, such
as Kitaev’s Cook-Levin theorem, rigorously justify Feynman’s intuition that such simulation
problems are “hard”. Our work (e.g. Theorem 1.1), in particular, strongly supports this view
by demonstrating that even some of the “simplest” and most natural simulation tasks, such
as measuring a single qubit (!) of a ground state, can be harder than QMA.

Our work on the complexity of estimating spectral gaps (Theorem 1.4) further highlights
another theme: The subtleties which must be carefully treated when studying oracle classes
for promise problems (such as PQMA[log]). As quantum complexity theory commonly focuses
on such promise problems, we believe this theme would potentially be of interest to a broader
computer science audience.

Open questions. Although we resolve one of the open questions from [3], there are others
we leave open, along with some new ones. Do our results for APX-SIM and APX-2-
CORR hold for more restricted classes of Hamiltonians, such as 2-local Hamiltonians, local
Hamiltonians on a 2D lattice, or specific Hamiltonian models of interest (see e.g. [9, 24] for
QMA-completeness results for estimating ground state energies of the spin-1/2 Heisenberg
anti-ferromagnet)? Is SPECTRAL-GAP PUQMA[log]-complete or PQMA[log]-complete (recall
SPECTRAL-GAP ∈ PQMA[log], and [3] and our work together show PUQMA[log]-hardness)?
What is the relationship between PQMA[log] and PUQMA[log]? Finally, what is the complexity
of other physical tasks “beyond” estimating ground state energies?
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Organization. Section 2 gives notation, formal definitions, and a corollary of the Projection
Lemma. Section 3 shows various lemmas regarding Ambainis’s query Hamiltonian. Section 4
proves Theorem 1.1. As the proof of Theorem 1.2 uses techniques similar to Theorem 1.1, we
defer its proof to the full version of this article. Section 5 shows Theorem 1.3. Theorem 1.4
is given in Section 6. Full proofs of selected claims are deferred to the full version.

2 Preliminaries

Notation. For x ∈ { 0, 1 }n, |x〉 ∈ (C2)⊗n denotes the computational basis state labeled by
x. Let X be a complex Euclidean space. Then, L (X ) and D (X ) denote the sets of linear and
density operators acting on X , respectively. For subspace S ⊆ X , S⊥ denotes the orthogonal
complement of S. For Hermitian operator H, λ(H) and λ(H|S) denote the smallest eigenvalue
of H and the smallest eigenvalue of H restricted to space S, respectively. The spectral
and trace norms are defined ‖A‖∞ := max{‖A |v〉‖2 : ‖|v〉‖2 = 1} and ‖A‖tr := Tr

√
A†A,

respectively, where := denotes a definition. We set [m] := { 1, . . . ,m }.

Definitions and lemmas. PP [15] is the set of decision problems for which there exists
a polynomial-time probabilistic Turing machine which accepts any YES instance with
probability > 1/2, and accepts any NO instance with probability ≤ 1/2.

PQMA[log], defined by Ambainis [3], is the set of decision problems decidable by a
polynomial-time deterministic Turing machine with the ability to query an oracle for a
QMA-complete problem (e.g. the 2-local Hamiltonian problem (2-LH) [18]) O(logn) times,
where n is the size of the input. 2-LH is defined as: Given a 2-local Hamiltonian H and
inverse polynomially separated thresholds a, b ∈ R, decide whether λ(H) ≤ a (YES-instance)
or λ(H) ≥ b (NO-instance). Note that the P machine is allowed to make queries which
violate the promise gap of 2-LH, i.e. with λ(H) ∈ (a, b); in this case, the oracle can output
either YES or NO. The P machine is nevertheless required to output the same final answer
(i.e. accept or reject) regardless of how such “invalid” queries are answered [16].

For any P machineM makingm queries to a QMA oracle, we use the following terminology
throughout this article. A valid (invalid) query satisfies (violates) the promise gap of the
QMA oracle. A correct query string y ∈ { 0, 1 }m encodes a sequence of correct answers to all
of the m queries. Note that for any invalid query of M , any answer is considered “correct”,
yielding the possible existence of multiple correct query strings. An incorrect query string is
one which contains at least one incorrect query answer.

We now recall the definition of APX-SIM.

I Definition 2.1 (APX-SIM(H,A, k, l, a, b, δ) (Ambainis [3])). Given a k-local Hamiltonian
H, an l-local observable A, and real numbers a, b, and δ such that a− b ≥ n−c and δ ≥ n−c′ ,
for n the number of qubits H acts on and c, c′ > 0 some constants, decide:

If H has a ground state |ψ〉 satisfying 〈ψ|A |ψ〉 ≤ a, output YES.
If for any |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, it holds that 〈ψ|A |ψ〉 ≥ b, output NO.

Next, we briefly review Kitaev’s circuit-to-Hamiltonian construction from the “quantum
Cook-Levin theorem” [19]. Given a quantum circuit U = UL · · ·U1 consisting of 1- and
2-qubit gates Ui and acting on registers Q (proof register) and W (workspace register), this
construction maps U to a 5-local Hamiltonian H = Hin +Hout +Hprop +Hstab. Here, we
use two key properties of Hin +Hprop +Hstab. First, the null space of Hin +Hprop +Hstab
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is spanned by history states, which for any |ψ〉 have form

|ψhist〉 =
L∑
t=0

Ut · · ·U1 |ψ〉Q |0 · · · 0〉W |t〉C , (1)

where C is a clock register keeping track of time [19]. Second, we use the following lower
bound4 on the smallest non-zero eigenvalue of Hin +Hprop +Hstab:

I Lemma 2.2 (Lemma 3 (Gharibian, Kempe [12])). The smallest non-zero eigenvalue of
∆(Hin + Hprop + Hstab) is at least π2∆/(64L3) ∈ Ω(∆/L3), for ∆ ∈ R+ and L ≥ 1.
construction.

A useful fact for complex unit vectors |v〉 and |w〉 is (see, e.g., Equation 1.33 of [11]):

‖|v〉〈v| − |w〉〈w|‖tr = 2
√

1− |〈v|w〉|2 ≤ 2 ‖|v〉 − |w〉‖2 . (2)

Next, let V denote a QMA verification circuit acting onM proof qubits with completeness c
and soundness s. If one runs V on “proof” ρ = I/2M , then for a YES instance, V accepts with
probability ≥ c/2M (since I/2M can be viewed as “guessing” a correct proof with probability
≥ 1/2M ), and in a NO instance, V accepts with probability ≤ s (see, e.g., [23, 27]). The
class PQP is defined analogously to BQP, except in the YES case, the verifier accepts with
probability > 1/2, and in the NO case, the verifier accepts with probability ≤ 1/2.

A corollary of the Projection Lemma. Finally, we give a simple but useful corollary of the
Projection Lemma of Kempe, Kitaev, Regev [18]. The Projection Lemma, along with the
proof of Corollary 2.3, are given in the full version.

I Corollary 2.3. Let H = H1 + H2 be the sum of two Hamiltonians operating on some
Hilbert space H = S + S⊥. The Hamiltonian H1 is such that S is a zero eigenspace and
the eigenvectors in S⊥ have eigenvalue at least J > 2 ‖H2‖∞. Let K := ‖H2‖∞. Then, for
any δ ≥ 0 and vector |ψ〉 satisfying 〈ψ|H |ψ〉 ≤ λ(H) + δ, there exists a |ψ′〉 ∈ S such that

|〈ψ|ψ′〉|2 ≥ 1−
(
K+
√
K2+δ(J−2K)
J−2K

)2
.

3 Ambainis’s Query Hamiltonian

We now show various results regarding Ambainis’s “query Hamiltonian” [3], which intuitively
aims to have its ground space contain correct answers to a sequence of QMA queries. Let U
be a PQMA[log] computation, and let Hi,y1···yi−1

Yi
be the 2-local Hamiltonian corresponding to

the ith query made by U given that the answers to the previous i− 1 queries are given by
y1 · · · yi−1. (Without loss of generality, we may assume Hi,y1···yi−1

Yi
� 0 by adding multiples

of the identity and rescaling.) The oracle query made at step i corresponds to an input
(Hi,y1···yi−1
Yi

, ε, 3ε) to 2-LH, for ε > 0 a fixed inverse polynomial. Then, Ambainis’s [3]
O(log(n))-local query Hamiltonian H acts on X ⊗ Y, where X = (Xi)⊗m = (C2)⊗m and
Y = ⊗mi=1Yi, such that Xi is intended to encode the answer to query i with Yi encoding the

4 This bound is stated as Ω(∆/L3) in [12]; the constant π2/64 can be derived from the analysis therein.
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ground state of the corresponding query Hamiltonian Hi,y1···yi−1
Yi

. Specifically,

H =
m∑
i=1

1
4i−1

∑
y1,...,yi−1

i−1⊗
j=1
|yj〉〈yj |Xj

⊗
(

2ε |0〉〈0|Xi
⊗ IYi + |1〉〈1|Xi

⊗Hi,y1···yi−1
Yi

)
=:

m∑
i=1

1
4i−1

∑
y1,...,yi−1

My1···yi−1 . (3)

Recall from Section 2 that a sequence of query answers y = y1 · · · ym ∈ { 0, 1 }m is correct
if it corresponds to a possible execution of U . Since U can make queries to its QMA oracle
which violate the QMA promise gap, the set of correct y is generally not a singleton. However,
we henceforth assume without loss of generality that U makes at least one valid query (i.e.
which satisfies the QMA promise gap). For if not, then a P machine can solve such an
instance by simulating the PQMA[log] machine on all possible (polynomially many) query
strings y ∈ { 0, 1 }m. If U corresponds to a YES (NO) instance, then all query strings lead
to accept (reject), which the P machine can verify. We now prove the following about H.

I Lemma 3.1. Define for any x ∈ { 0, 1 }m the space Hx1···xm
:=
⊗m

i=1 |xi〉〈xi| ⊗ Yi. Then,
there exists a correct query string x ∈ { 0, 1 }m such that the ground state of H lies in Hx1···xm

.
Moreover, suppose this space has minimum eigenvalue λ. Then, for any incorrect query
string y1 · · · ym, any state in Hy1···ym

has energy at least λ+ ε
4m .

As discussed in Section 1, Claim 1 of [3] proved a similar statement under the assumption
that the correct query string x is unique. In that setting, [3] showed the ground state of H
is in Hx, and that for all query strings y 6= x, the space Hy has energy at least λ+ ε

4m−1 .
However, in general invalid queries must be allowed, and in this setting this claim no longer
holds — two distinct correct query strings can have eigenvalues which are arbitrarily close if
they contain queries violating the promise gap. The key observation we make here is that
even in the setting of non-unique x, a spectral gap between the ground space and all incorrect
query strings can be shown. The proof is deferred to the full version of this article.

The next lemma converts H from an O(logn)-local Hamiltonian to an O(1)-local one.
Its proof uses Kitaev’s unary encoding trick [19], and is given in the full version.

I Lemma 3.2. For any x ∈ { 0, 1 }m, let x̂ denote its unary encoding. Then, for any
PQMA[log] circuit U acting on n bits and making m ≥ 1 queries to a QMA oracle, there exists
a mapping to a 4-local Hamiltonian H ′ acting on space (C2)⊗2m−1 ⊗Y such that there exists
a correct query string x = x1 · · ·xm satisfying:
1. The ground state of H ′ lies in subspace |x̂〉〈x̂| ⊗ Y.
2. For any state |ψ〉 in subspace |x̂′〉〈x̂′| ⊗ Y where either x̂′ is not a unary encoding of a

binary string x′ or x′ is an incorrect query string, one has 〈ψ|H ′ |ψ〉 ≥ λ(H ′) + ε/4m, for
inverse polynomial ε.

3. For all strings x′ ∈ { 0, 1 }m, H ′ acts invariantly on subspace |x̂′〉〈x̂′| ⊗ Y.
4. The mapping can be computed in time polynomial in n (recall m ∈ O(logn)).

4 Measuring 1-local observables

Proof of Theorem 1.1. Containment in PQMA[log] was shown for k, l ∈ O(logn) in [3]; we
show PQMA[log]-hardness. Let U ′ be an arbitrary PQMA[log] circuit for instance Π, such that
U ′ acts on workspace register W and query result register Q. Suppose U ′ consists of L′ gates
and makes m = c log(n) queries, for c ∈ O(1) and n the input size. Without loss of generality,
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U ′ can be simulated with a similar unitary U which treats Q as a proof register which it
does not alter at any point: Namely, U does not have access to a QMA oracle, but rather
reads bit Qi whenever it desires the answer to the ith query. Thus, if a correct query string
y1 · · · ym corresponding to an execution of U ′ on input x is provided in Q as a “proof”, then
the output statistics of U ′ and U are identical. We can also assume that Q is encoded not in
binary, but in unary. Thus, Q consists of 2m − 1 ∈ poly(n) bits. For simplicity, however, in
our discussion we will speak of m-bit query strings y = y1 · · · ym in register Q.

Next, we map U to a 5-local Hamiltonian H1 via a modification of the circuit-to-
Hamiltonian construction of Kitaev [19], such thatH1 acts on registersW (workspace register),
Q (proof register), and C (clock register). Recall (Section 2) that Kitaev’s construction
outputs Hamiltonian terms Hin +Hprop +Hstab +Hout. Set H1 = ∆(Hin +Hprop +Hstab)
for ∆ to be set as needed. It is crucial that Hout be omitted from H1, as we require our final
Hamiltonian H to enforce a certain structure on the ground space regardless of whether the
computation should accept or reject. The job of “checking the output” is instead delegated
to the observable A. Formally, H1 has a non-trivial null space, which is its ground space,
consisting of history states |ψhist〉 (Equation (1)) which simulate U on registers W and Q.
These history states correctly simulate U ′ assuming that Q is initialized to a correct proof.

To thus enforce that Q is initialized to a correct proof, let H2 be our variant of Ambainis’s
query Hamiltonian from Lemma 3.2, such that H2 acts on registers Q and Q′ (where for
clarity Q = (C2)⊗2m−1 (recall m ∈ O(logn)) and Q′ = Y from Lemma 3.2). Hence, our final
Hamiltonian is H = H1 + H2, which is 5-local since H1 is 5-local. Suppose without loss
of generality that U ’s output qubit is W1, which is set to |0〉 until the final time step, in
which the correct output is copied to it. Then, set observable A = (I + Z)/2 such that A
acts on qubit W1. Set a = 1 − 1/(L + 1), and b = 1 − 1/2L for L the number of gates in
U . Fix η ≥ max(‖H2‖∞ , 1) (such an η can be efficiently computed by applying the triangle
inequality and summing the spectral norms of each term of H2 individually). Set ∆ = L3ηγ

for γ a monotonically increasing polynomial function of L to be set as needed. Finally, set
δ = 1/∆. This completes the construction.

Correctness. Suppose Π is a YES instance. Then, by Lemma 3.2, the ground space of H2
is the span of states of the form |x̂〉Q ⊗ |φ〉Q′ where x̂ is a correct query string encoded in
unary. Fix an arbitrary such ground state |x̂〉Q ⊗ |φ〉Q′ . Note that setting Q to x̂ in this
manner causes U to accept with certainty. Consider the history state |ψhist〉 on registers W ,
C, Q, and Q′ (Q and Q′ together are the “proof register”, and the contents of Q′ are not
accessed by U), which lies in the ground space of H1. Since U can read but does not alter
the contents of Q, the history state has the tensor product form |ψ′hist(x)〉W,C ⊗ |x̂〉Q ⊗ |φ〉Q′
for some |ψ′hist(x)〉W,C , i.e. the action of H2 on the history state is unaffected. We conclude
that |ψ′hist(x)〉W,C ⊗ |x̂〉Q ⊗ |φ〉Q′ is in the ground space of H. Moreover, since U accepts x̂,
the expectation of this state against A is 1− 1/(L+ 1).

Conversely, suppose we have a NO instance Π, and consider any |ψ〉 satisfying 〈ψ|H |ψ〉 ≤
λ(H) + δ. By Lemma 2.2, the smallest non-zero eigenvalue of ∆H1 is at least J =
π2∆/(64L3) = π2ηγ/64. Recalling that δ = 1/∆, apply Corollary 2.3 to obtain that there
exists a valid history state |ψ′〉 on W , C, Q, and Q′ such that |〈ψ|ψ′〉|2 ≥ 1−O(γ−2L−6),
which by Equation (2) implies

‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖tr ≤
c

γL3 (4)

for some constant c > 0. By definition, such a history state |ψ′〉 simulates U given “quantum
proof” |φ〉Q,Q′ in registers Q and Q′, i.e. |ψ′〉 =

∑
t Ut · · ·U1 |0 · · · 0〉W |t〉C |φ〉Q,Q′ . By
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Equation (4) and the Hölder inequality, |Tr(H |ψ〉〈ψ|)− Tr(H |ψ′〉〈ψ′|)| ≤ c
γL3 ‖H‖∞ =: γ′.

Thus, 〈ψ′|H |ψ′〉 ≤ λ(H) + (δ + γ′).
We now analyze the structure of |φ〉Q,Q′ . By Lemma 3.2, the ground space G of H2 is

contained in the span of states of the form |x̂〉Q ⊗ |φ′〉Q′ where x̂ is a correct query string
encoded in unary. Since the ground spaces of H1 and H2 have non-empty intersection, i.e.
history states acting on “quantum proofs” from G (which lie in the null space of H1 and
obtain energy λ(H2) against H2), we know λ(H) = λ(H2). Thus, since H1 � 0,

〈ψ′|H2 |ψ′〉 ≤ 〈ψ′|H |ψ′〉 ≤ λ(H2) + (δ + γ′). (5)

Write |φ〉 = α |φ1〉 + β |φ2〉 for |φ1〉 ∈ Span { | x̂〉Q ⊗ | φ′〉Q′ | correct query string x } and
|φ2〉 ∈ Span { | x̂〉Q ⊗ | φ′〉Q′ | incorrect query string x } (|φ1〉, |φ2〉 normalized), α, β ∈
C, |α|2 + |β |2 = 1. Since any history state |ψ′〉, for any amplitudes αx and unit vectors
|φ′x〉, has form

∑
t,x αxUt · · ·U1 |0 · · · 0〉W |t〉C |x̂〉Q |φ′x〉Q′ =

∑
x αx |ψ′hist(x)〉W,C |x̂〉Q |φ

′
x〉Q′

(i.e. for any fixed x, |x̂〉Q is not altered), and since H2 is block-diagonal with respect to
strings in Q, by Equation (5) and Lemma 3.2 we have

λ(H2) + (δ + γ′) ≥ 〈ψ′|H2 |ψ′〉 = |α|2 〈φ1|H2 |φ1〉+ |β |2 〈φ2|H2 |φ2〉

≥ |α|2 λ(H2) + |β |2
(
λ(H2) + ε

4m
)
,

which implies |β |2 ≤ 4m(δ + γ′)/ε. Thus, defining |ψ′′〉 as the history state for “proof”
|φ1〉Q,Q′ , we have that ‖|ψ〉〈ψ| − |ψ′′〉〈ψ′′|‖tr is at most

‖|ψ〉〈ψ| − |ψ′〉〈ψ′|‖tr + ‖|φ〉〈φ| − |φ1〉〈φ1|‖tr ≤
c

γL3 + 2
√

4m(δ + γ′)
ε

, (6)

which follows from the triangle inequality and the structure of the history state. Observe
now that increasing γ by a polynomial factor decreases δ + γ′ by a polynomial factor. Thus,
set γ as a large enough polynomial in L such that

c

γL3 + 2
√

4m(δ + γ′)
ε

≤ 1
2L. (7)

Since U rejects any correct query string (with certainty) in the NO case, and since |ψ′′〉
is a valid history state whose Q register is a superposition over correct query strings (all
of which must lead to reject), we conclude that 〈ψ′′|A |ψ′′〉 = 1. Moreover, we have
that |Tr(A |ψ〉〈ψ|)− Tr(A |ψ′′〉〈ψ′′|)| ≤ ‖A‖∞ ‖|ψ〉〈ψ| − |ψ′′〉〈ψ′′|‖tr ≤

1
2L , where the first

inequality follows from Hölder’s inequality, and the second by Equations (6) and (7). We
conclude that 〈ψ|A |ψ〉 ≥ 1− 1/(2L), completing the proof. J

5 PQMA[log] is in PP

We now prove Theorem 1.3. Our approach is to develop a variant of the hierarchical voting
scheme used in the proof of PNP[log] ⊆ PP [4] which uses the strong error reduction technique
of Marriott and Watrous [23]. We also require a more involved analysis than present in [4],
since QMA is a class of promise problems, not decision problems.

Proof of Theorem 1.3. Let Π be a P machine which makes m = c logn queries to an oracle
for 2-LH, for c ∈ O(1) and n the input size. . Without loss of generality, we assume all queries
involve Hamiltonians on M qubits (M some fixed polynomial in n). Define q := (M + 2)m.
We give a PQP computation simulating Π; since PQP = PP [27], this yields the claim. Let
V denote the verification circuit for 2-LH. The PQP computation is (intuition to follow):
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1. For i from 1 to m:
a. Prepare ρ = I/2M ∈ D

(
(C2)⊗M

)
.

b. Run V on the ith query Hamiltonian Hi,y1···yi−1
Yi

(see Equation (3)) and proof ρ, and
measure the output qubit in the standard basis. Set bit yi to the result.

2. Let y = y1 · · · ym be the concatenation of bits set in Step 1(b).
3. For i from 1 to nc − 1:

a. If |y | < i, then with probability 1− 2−q, set y = #, and with probability 2−q, leave y
unchanged.

4. If y = #, output a bit in { 0, 1 } uniformly at random. Else, run Π on query string y and
output Π’s answer.

Intuition. In Step 1, one tries to determine the correct answer to query i by guessing a
satisfying quantum proof for verifier V . Suppose for the moment that V has zero error, i.e.
has completeness 1 and soundness 0, and that Π only makes valid queries. Then, if Step
1(b) returns yi = 1, one knows with certainty that the query answer should be 1. And, if the
correct answer to query i is 0, then Step 1(b) returns yi = 0 with certainty. Thus, analogous
to the classical case of an NP oracle (as done in [4]), it follows that the lexicographically
largest query string y∗ obtainable by this procedure must be the (unique) correct query
string (note that y∗ 6= 1m necessarily5). Thus, ideally one wishes to obtain y∗, simulate Π
on y∗, and output the result. To this end, Step 3 ensures that among all values of y 6= #,
y∗ is more likely to occur than all other y 6= y∗ combined. We now make this intuition
rigorous (including in particular the general case where V is not zero-error and Π makes
invalid queries).

Correctness. To analyze correctness of our PQP computation, it will be helpful to refine
our partition of the set of query strings { 0, 1 }m into three sets:

(Correct query strings) Let A ⊆ { 0, 1 }m denote the set of query strings which
correspond to correctly answering each of the m queries. Note we may have |A| > 1 if
invalid queries are made.
(Incorrect query strings) Let B ⊆ { 0, 1 }m \ A denote the set of query strings such
that for any y ∈ B, all bits of y which encode an incorrect query answer are set to 0
(whereas the correct query answer would have been 1, i.e. we failed to “guess” a good
proof for this query in Step 1).
(Strongly incorrect query strings) Let C = { 0, 1 }m \(A∪B) denote the set of query
strings such that for any y ∈ C, at least one bit corresponding to an incorrect query
answer is set to 1 (whereas the correct query answer would have been 0). Such an error
can only arise due to the bounded-error of our QMA verifier in Step 1(b).

Let Y be a random variable corresponding to the query string y obtained at the end of
Step 3. To show correctness, we claim that it suffices to show that ∆ := Pr[Y ∈ A]−Pr[Y ∈
B ∪ C] > 0. To see this, let p1, p2, and p3 denote the probability that after Step 3, y = #,
y ∈ A, and y ∈ B∪C, respectively. Then, p1 +p2 +p3 = 1, and let p2−p3 = ∆ > 0. Suppose
now that the input to Π is a YES instance. Then, our protocol outputs 1 with probability at
least p1

2 + p2 = 1−p2−p3
2 + p2 = 1+∆

2 > 1
2 . If the input is a NO instance, the protocol outputs

5 Under the assumptions that V has zero error and Π makes only valid queries, y∗ = 1m can only be
obtained by this procedure if all queries are for YES instances of 2-LH. If, on the other hand, query i is
a NO query, then a correct proof cannot be guessed (since it does not exist), and so y∗i = 0 necessarily.
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1 with probability ≤ p1
2 + p3 = 1−∆

2 < 1
2 . We hence have a PQP computation, as desired.

We thus now show that ∆ > 0.
To ease the presentation, we begin by making two assumptions (to be removed later):

(i) V is zero-error and (ii) Π makes only valid queries. In this case, assumption (i) implies
C = ∅ (i.e. all incorrect query strings belong to B), and (ii) implies A is a singleton (i.e.
there is a unique correct query string y∗). Thus, here ∆ = Pr[Y ∈ A]− Pr[Y ∈ B].

To begin, note that for any y ∈ { 0, 1 }m, we have

Pr[Y = y] = Pr[y chosen in Step 2 ] ·
(

1
2q

)(nc−1)−|y|
, (8)

where |y | denotes the non-negative integer represented by string y. Let HW(x) denote the
Hamming weight of x ∈ { 0, 1 }m. Since each query corresponds to a verifier on M proof
qubits, we have for (the unique) y∗ ∈ A that

Pr[y∗ chosen in Step 2 ] ≥ 2−M ·HW(y∗) ≥ 2−Mm (9)

(recall from Section 2 that setting ρ = I/2M simulates “guessing” a correct proof with
probability at least 1/2M ). It follows by Equations (8) and (9) that

∆ ≥
(

1
2q

)(nc−1)−|y∗ |
 1

2Mm
−
∑
y∈B

(
1
2q

)|y∗ |−|y|
≥

(
1
2q

)(nc−1)−|y∗ | [ 1
2Mm

− (2m)
(

1
2q

)]
≥
(

1
2q

)(nc−1) 1
2Mm

[
1− 1

2m

]
, (10)

where the first inequality follows since Pr[y chosen in Step 2 ] ≤ 1, the second since y ∈ B if
and only if |y | < |y∗ |, and the third since q = (M + 2)m. Thus, ∆ > 0 as desired.

Removing assumption (i). We now remove the assumption that V is zero error. In this
case, A is still a singleton; let y∗ ∈ A. We can now also have strongly incorrect query strings,
i.e. C 6= ∅ necessarily. Assume without loss of generality that V acts on M proof qubits, and
by strong error reduction [23] has completeness c := 1− 2−p(n) and soundness s := 2−p(n),
for p a polynomial to be chosen as needed. Then, since V can err, Equation (9) becomes

Pr[y∗ chosen in Step 2 ] ≥
( c

2M
)HW(y∗)

(1− s)m−HW(y∗) = 1
2M

HW(y∗)
em ln(1− 1

2p )

≥ 1
2Mm

(
1− m

2p − 1

)
, (11)

where the equality follows by the definitions of c and s, and the second inequality by applying
the Maclaurin series expansion of ln(1 + x) for |x| < 1 and the fact that et ≥ 1 + t for all
t ∈ R. Thus, the analysis of Equation (10) yields that

Pr[Y ∈ A]− Pr[Y ∈ B] ≥
(

1
2q

)(nc−1) 1
2Mm

[
1− 1

2m −
m

2p − 1

]
, (12)

i.e. the additive error introduced when assumption (i) is dropped scales as ≈ 2−p. Crucially,
Equation (12) holds for all y ∈ B even with assumption (i) dropped since the analysis of
Equation (10) used only the trivial bound Pr[y chosen in Step 2 ] ≤ 1 for any y ∈ B.

Next, we upper bound the probability of obtaining y ∈ C in Step 2. For any fixed y ∈ C,
suppose the first bit on which y and y∗ disagree is bit j. Then, bits j of y and y∗ must be
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1 and 0, respectively. This means 0 is the correct answer for query j. By the soundness
property of V , the probability of obtaining 1 on query j (and hence that of obtaining y in
Step 2) is at most 2−p. Thus,

∆ ≥
(

1
2q

)(nc−1) 1
2Mm

[
1− 1

2m −
m

2p − 1

]
− 2m

2p . (13)

We conclude that setting p to a sufficiently large fixed polynomial ensures ∆ > 0, as desired.

Removing assumption (ii). We now remove the assumption that Π only makes valid queries,
which is the most involved step. Here, A is no longer necessarily a singleton. The naive
approach would be to let y∗ denote the lexicographically largest string in A, and attempt
to run a similar analysis as before. Unfortunately, this no longer necessarily works for the
following reason. For any invalid query i, we do not have strong bounds on the probability
that V accepts in Step 1(b); in principle, this value can lie in the range (2−p, 1 − 2−p).
Thus, running the previous analysis with the lexicographically largest y∗ ∈ A may cause
Equation (13) to yield a negative quantity. We hence require a more delicate analysis.

We begin by showing the following lower bound.

I Lemma 5.1. Define ∆′ := Pr[Y ∈ A]− Pr[Y ∈ B]. Then,

∆′ ≥
(

1
2q

)(nc−1) 1
2Mm

[
1− 1

2m −
m

2p − 1

]
.

Proof of Lemma 5.1. For any string y ∈ { 0, 1 }m, let Iy ⊆ { 1, . . . ,m } denote the indices
of all bits of y set by invalid queries. We call each such i ∈ Iy a divergence point. Let py,i
denote the probability that (invalid) query i (defined given answers to queries 1 through
i− 1) outputs bit yi, i.e. py,i denotes the probability that at divergence point i, we go in the
direction of bit yi. We define the divergence probability of y ∈ { 0, 1 }m as py = Πi∈Iypy,i, i.e.
py is the probability of answering all invalid queries as y did.

The proof now proceeds by giving an iterative process, Γ(i), where 1 ≤ i ≤ |A| denotes the
iteration number. Each iteration defines a 3-tuple (y∗i−1, y

∗
i , By∗i ) ∈ { 0, 1 }m×{ 0, 1 }m×P(B),

where P(X) denotes the power set of set X. Set ∆′i := Pr[Y ∈ { y∗1 , . . . , y∗i }] − Pr[Y ∈
By∗1 ∪ · · · ∪By∗i ], where it will be the case that {By∗

i
}|A|
i=1 is a partition of B. Thus, we have

∆′ ≥ ∆′|A|, implying that a lower bound on ∆′|A| suffices to prove our claim. We hence prove

via induction that for all 1 ≤ i ≤ |A|, ∆′i ≥
( 1

2q

)(nc−1) 1
2Mm

[
1− 1

2m − m
2p−1

]
. The definition

of process Γ(i) is integrated into the induction proof below.

Base case (i=1). In this case y∗0 is undefined. Set y∗1 to any string in A with divergence
probability at least

p∗1 =
∏
i∈Iy∗1

py∗1 ,i ≥ 2−
∣∣Iy∗1

∣∣
. (14)

Such a string must exist, since at each divergence point i, at least one of the outcomes
in { 0, 1 } occurs with probability at least 1/2. (Note: Queries are not being made to a
QMA oracle here, but to a QMA verifier V with a maximally mixed proof as in Step 1(a).
Whereas in the former case the output of the oracle on an invalid query does not have to
consistently output a value with any particular probability, in the latter case, there is some
fixed probability p with which V outputs 1 each time it is run on a fixed proof.) Finally, define
By∗1 := { y ∈ B | |y | < |y∗1 | } (recall |y | is the non-negative integer with binary encoding y).
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Let k∗ denote the number of divergence points of y∗1 (i.e. k∗ =
∣∣Iy∗1 ∣∣), and k0 (k1) the

number of zeroes (ones) of y∗1 arising from valid queries. Thus, k∗ + k0 + k1 = m. Then,
Equation (11) becomes

Pr[y∗1 in Step 2 ] ≥
( c

2M
)k1

(1− s)k0 p∗1 ≥
(

1
2M

)k1 (1
2

)k∗ (
1− m− k∗

2p − 1

)
≥ 1

2Mm

(
1− m

2p − 1

)
, (15)

where the second inequality follows from Equation (14), and the third since k∗ ≥ 0 and
k1 +k∗ ≤ m. Thus, ∆′1 is lower bounded by the expression in Equation (12) via an analogous
analysis for y∗1 and By∗1 .

Inductive step. Assume the claim holds for 1 ≤ i − 1 < |A|. We show it holds for
i. Let y∗i−1 be the choice of y∗ in the previous iteration i − 1 of our process. Define
Ay∗

i
:= { y ∈ A | |y | >

∣∣y∗i−1
∣∣ }. Partition Ay∗

i
into sets Sk for k ∈ [m], such that Sk is the

subset of strings in Ay∗
i
which agrees with y∗i−1 on the first k − 1 bits, but disagrees on bit

k. Note that if Sk 6= ∅, then bit k of y∗i−1 is 0 and bit k of any string in Sk is 1. For each
Sk 6= ∅, choose arbitrary representative zk ∈ Sk, and define bounded divergence probability
qi(k) :=

∏
t∈I≤k

zk

pzk,t where I≤kzk
:= { t ∈ Izk

| t ≤ k }. Note that qi(k) > 0 (since Sk 6= ∅).
Else if Sk = ∅, set qi(k) = 0. Let q∗i be the max such bounded divergence probability:

q∗i = max
k∈[m]

qi(k) and k∗i = arg max
k∈[m]

qi(k). (16)

Let y∗i be the lexicographically largest query string in Sk∗
i
with divergence probability p∗i s.t.:

p∗i ≥ q∗i · 2
−
∣∣Iy∗

i

∣∣+∣∣∣I≤k∗
i

y∗
i

∣∣∣
. (17)

That such a y∗i ∈ Sk∗i exists follows from an argument similar to Equation (14): By definition,
q∗i denotes the bounded divergence probability for all invalid queries up to and including
query k∗i , and the term exponential in

(
−
∣∣Iy∗

i

∣∣+
∣∣∣I≤k∗iy∗

i

∣∣∣) is obtained by greedily choosing,
for all invalid queries of y∗i after query k∗i , the outcome which occurs with probability at least
1/2. Set By∗

i
:= { y ∈ B |

∣∣y∗i−1
∣∣ < |y | < |y∗i | }. The following is proved in the full version.

I Lemma 5.2. For any y ∈ By∗
i
, Pr[y chosen in Step 2] ≤ q∗i .

To continue with the inductive step, again consider k∗, k0, and k1, now corresponding to
y∗i . Then, an argument similar to Equation (15) says Pr[y∗i chosen in Step 2 ] is at least

( c

2M
)k1

(1− s)k0 p∗i ≥
(

1
2M

)k1 (
1− m− k∗

2p − 1

)
q∗i

(
1
2

)∣∣Iy∗
i

∣∣−∣∣∣I≤k∗
i

y∗
i

∣∣∣
≥ q∗i

2Mm

(
1− m

2p − 1

)
, (18)

where the first inequality follows from Equation (17), and the second since
∣∣Iy∗

i

∣∣− ∣∣∣I≤k∗iy∗
i

∣∣∣ ≤ k∗.
Now, define ζi := Pr[Y = y∗i ]− Pr[Y ∈ By∗

i
]. Applying the argument of Equation (10) yields

ζi ≥
( 1

2q

)(nc−1)−|y∗i |
[

q∗i
2Mm

(
1− m

2p−1

)
− q∗i

∑
y∈By∗

i

( 1
2q

)|y∗i |−|y|] , where the first q∗i is due
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to Equation (18), and the second q∗i to Lemma 5.2. Thus, similar to Equation (12), ζi ≥( 1
2q

)(nc−1) q∗i
2Mm

[
1− 1

2m − m
2p−1

]
> 0. Observing the recurrence that for all i, ∆′i ≥ ∆′i−1 +ζi,

unrolling this recurrence yields ∆′i ≥ ∆1, which by the base case yields the claim. J

We require one last lemma (proof in the full version).

I Lemma 5.3. Pr(Y ∈ C) ≤ 2m

2p .

Finally, combining Lemmas 5.1 and 5.3 yields that Pr[Y ∈ A] − Pr[Y ∈ B ∪ C] is lower
bounded by Pr[Y ∈ A]−Pr[Y ∈ B]−Pr[Y ∈ C] ≥

( 1
2q

)(nc−1) 1
2Mm

[
1− 1

2m − m
2p

]
− 2m

2p . For
sufficiently large fixed p, this quantity is strictly positive, yielding Theorem 1.3. J

6 Estimating spectral gaps

We now prove Theorem 1.4 on SPECTRAL-GAP. UQMA is defined in Appendix A.

I Definition 6.1 (SPECTRAL-GAP(H, ε) (Ambainis [3])). Given a Hamiltonian H and a
real number α ≥ n−c for n the number of qubits H acts on and c > 0 some constant, decide:

If λ2 − λ1 ≤ α, output YES.
If λ2 − λ1 ≥ 2α, output NO.

where λ2 and λ1 denote the second and first smallest eigenvalues of H, respectively.

For clarity, if the ground space of H is degenerate, then we define its spectral gap as 0.
We now discuss Theorem 1.4. Previously, Ambainis [3] showed that SPECTRAL-GAP ∈

PQMA[log], and gave a claimed proof that SPECTRAL-GAP is PUQMA[log]-hard for O(log)-
local Hamiltonians under mapping reductions. (PUQMA[log] is defined as PQMA[log], except
with a UQMA oracle in place of a QMA oracle.) As discussed in Section 1, however, Ambainis’
proof of the latter result does not hold if the PUQMA[log] machine makes invalid queries (which
in general is the case). Here, we build on Ambainis’ approach [3] to show PUQMA[log]-hardness
of SPECTRAL-GAP under Turing reductions even when invalid queries are allowed, and
we also improve the hardness to apply to O(1)-local Hamiltonians.

We begin by showing the following modified version of Lemma 3.2 tailored to UQMA. In
contrast to Lemma 3.2, the lemma below only proves the existence of a Hamiltonian H; it
does not give an efficient procedure for computing it. The proof is in the full version; roughly,
it replaces invalid queries with “dummy” NO queries to obtain the desired spectral gap. The
reason why the mapping is not efficient is that generally a polynomial-time machine alone
cannot identify such invalid queries.

I Lemma 6.2. For any x ∈ { 0, 1 }m, let x̂ denote its unary encoding. Then, for any
PUQMA[log] circuit U acting on n bits and making m queries to a UQMA oracle, there exists
a 4-local Hamiltonian H acting on space (C2)⊗2m−1⊗Y such that there exists a correct query
string x = x1 · · ·xm such that:
1. The unique ground state of H lies in subspace |x̂〉〈x̂| ⊗ Y.
2. The spectral gap of H is at least (ε − δ)/4m for inverse polynomial ε, δ with ε − δ ≥

1/poly(n).
3. For all strings x′ ∈ { 0, 1 }m, H acts invariantly on subspace |x̂′〉〈x̂′| ⊗ Y.

Proof sketch of Theorem 1.4. The key idea is to show how to use an oracle for SPECTRAL-
GAP polynomially many times to efficiently identify invalid queries, and hence efficiently
compute H in Lemma 6.2 given U . (It is these multiple uses of the oracle which yield
a Turing reduction, rather than a many-one reduction.) Roughly, this is done by using
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the SPECTRAL-GAP oracle in conjunction with binary search to estimate the spectral
gap of specific Hamiltonian terms in Ambainis’s original construction of [3]. Some care is
required here: The naive approach, which does not work, would be to apply this spectral gap
estimation technique to each 2-local Hamiltonian Hi,y1···yi−1

Yi
corresponding to each query

made by U . Rather, the terms we apply this technique to exploit the structure of Ambainis’s
construction. Finally, with H in hand, we apply Ambainis’s [3] original construction to
obtain the desired result. The full proof is given in the full version of this article. J
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A Additional definitions

I Definition 1.1 (Unique QMA (UQMA) (Aharonov et al. [1])). We say a promise problem
A = (Ayes, Ano) is in Unique QMA if and only if there exist polynomials p, q and a polynomial-
time uniform family of quantum circuits {Qn }, where Qn takes as input a string x ∈ Σ∗
with |x| = n, a quantum proof |y〉 ∈ (C2)⊗p(n), and q(n) ancilla qubits in state |0〉⊗q(n), such
that:

(Completeness) If x ∈ Ayes, then there exists a proof |y〉 ∈ (C2)⊗p(n) such that Qn accepts
(x, |y〉) with probability at least 2/3, and for all |ŷ〉 ∈ (C2)⊗p(n) orthogonal to |y〉, Qn
accepts (x, |ŷ〉) with probability at most 1/3.
(Soundness) If x ∈ Ano, then for all proofs |y〉 ∈ (C2)⊗p(n), Qn accepts (x, |y〉) with
probability at most 1/3.
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Abstract
At Crypto 2011, some of us had proposed a family of cryptographic protocols for key estab-

lishment capable of protecting quantum and classical legitimate parties unconditionally against
a quantum eavesdropper in the query complexity model. Unfortunately, our security proofs were
unsatisfactory from a cryptographically meaningful perspective because they were sound only in
a worst-case scenario. Here, we extend our results and prove that for any ε > 0, there is a clas-
sical protocol that allows the legitimate parties to establish a common key after O(N) expected
queries to a random oracle, yet any quantum eavesdropper will have a vanishing probability of
learning their key after O(N1.5−ε) queries to the same oracle. The vanishing probability applies
to a typical run of the protocol. If we allow the legitimate parties to use a quantum computer as
well, their advantage over the quantum eavesdropper becomes arbitrarily close to the quadratic
advantage that classical legitimate parties enjoyed over classical eavesdroppers in the seminal
1974 work of Ralph Merkle. Along the way, we develop new tools to give lower bounds on the
number of quantum queries required to distinguish two probability distributions. This method
in itself could have multiple applications in cryptography. We use it here to study average-case
quantum query complexity, for which we develop a new composition theorem of independent
interest.
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1 Introduction

Not taking classified work within secret services into consideration [28], Ralph Merkle is
the first person to have asked – and solved – the question of secure communications over
insecure channels [24]. In his seminal (rejected!) 1974 project for a Computer Security course
at the University of California, Berkeley, he discovered that it is possible for two people
who want to communicate securely to establish a secret key by communicating over an
authenticated channel that provides no protection against eavesdropping. Merkle’s solution
to this conundrum offers quadratic security in the sense that if the legitimate parties –
codenamed Alice and Bob – are willing to expend an effort in the order of N , for some
security parameter N , they can establish a key that no eavesdropper – codenamed Eve –
can discover with better than vanishing probability without expending an effort in the order
of N2.

This quadratic security may seem unattractive compared to the potential exponential
security entailed by the subsequently discovered key establishment protocols of Diffie and
Hellman [16] and Rivest, Shamir and Adleman [26], to name a few. However, the security of
those currently ubiquitous cryptographic solutions will be compromised with the advent of
full-scale quantum computers, as discovered by Peter Shor more than two decades ago [27].
And even if a quantum computer is never built, no one has been able to prove their security
against classical attacks, nor that of quantum-resistant candidates based, for instance, on
short vectors in lattices. Furthermore, Merkle had already understood in 1974 that quadratic
security could be practical if the underlying one-way function (see below) can be computed
very quickly: if it takes one nanosecond to compute the function and legitimate users are
willing to spend one second each, a classical adversary who could only invert the function by
exhaustive search would require fifteen expected years to break Merkle’s original scheme.

The main interest of Merkle’s solution is that it offers provable security, at least in the
query model of computational complexity, a model closely related to the random oracle model.
In this model, we assume the existence of a black-box function f : D → R from some domain
D to some range R, so that the only way to learn something about this function is to query
the value of f(x) on inputs x ∈ D that can be chosen arbitrarily. The query complexity of
some problem given f is defined as the expected number of calls to f required to solve the
problem, using the best possible algorithm. In our case of interest, we shall consider random
black-box functions, meaning that for each x ∈ D, the value of f(x) is chosen uniformly
at random within R, independently of the value of f(x′) for any other x′ ∈ D. Provided
the size r of R is sufficiently large compared to the size d of D, such a random function is
automatically one-to-one, except with vanishing probability. The main characteristic of these
black-box random functions that is relevant to the proof of security of Merkle’s scheme is
that, given a randomly chosen point y in the image of f , the only (classical) approach to
finding an x so that f(x) = y is exhaustive search: we have to try x’s one after another until
a solution is found. Indeed, whenever we try some x′ and find that f(x′) 6= y, the only thing
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we have learned is that this particular x′ is not a solution. Provided the function is indeed
one-to-one, we expect to have to query the function d/2 times on average in order to find
the unique solution.

One may argue that black-box random functions do not exist in real life, but we can
replace them in practice with one-way functions – provided they exist! – which is what
Merkle meant by “one-way encryption” in his 1974 class assignment [24]. Thus, we can base
the security of Merkle’s scheme on the generic assumption that one-way functions exist,
which is unlikely to be broken by a quantum computer, rather than the assumption that
specific computational problems such as factorization or finding short vectors in lattices
are difficult, at least the first one of which is known not to hold on a quantum computer.
Can we do better than provable quadratic security in the query model? This question
remained open for 35 years, and was finally settled in the negative by Boaz Barak and
Mohammad Mahmoody-Ghidary [4], building on earlier work of Russell Impagliazzo and
Steven Rudich [19]: any protocol by which the legitimate parties can obtain a shared key
after O(N) expected queries to a black-box random function can be broken with O(N2)
expected queries to the same black box.

It was apparently noticed for the first time by one of us in 2005, and published a few years
later [15], that Merkle’s original 1974 scheme [24], as well as his better known subsequently
published puzzles [25], are broken by Grover’s algorithm [17] on a quantum computer. This
attack assumes that the eavesdropper can query the function in quantum superposition,
which is perhaps not reasonable if the function is provided as a physical classical black
box, but is completely reasonable if it is given by the publicly-available code of a one-way
function (as originally envisioned by Merkle). If the legitimate parties are also endowed with
a quantum computer, the same paper [15] gave an obvious fix, by which the legitimate parties
can establish a key after O(N) quantum queries to the black-box function, but no quantum
eavesdropper can discover it with better than vanishing probability without querying the
function O(N3/2) times. That paper made the explicit conjecture that this was best possible
when quantum codemakers are facing quantum codebreakers in the game of provable security
in the random black-box model. The issue of protecting classical codemakers against quantum
codebreakers was not addressed in Ref. [15].

At the Crypto 2011 conference [13], several of us disproved the conjecture of Ref. [15]
with the introduction of a new quantum protocol that no quantum eavesdropper could break
without querying the black-box functions Ω(N5/3) times.1 We also offered the first protocol
provably capable of protecting classical codemakers against quantum codebreakers, although
O(N13/12) queries in superposition sufficed for the quantum eavesdropper to obtain the
not-so-secret key. Unfortunately, our security proofs were worked out in the traditional
computational complexity worst-case scenario. In other words, it was only proved that any
quantum eavesdropper limited to o(N5/3) or o(N13/12) queries, depending on whether the
legitimate parties are quantum or classical, would be likely to fail on at least one possible
instance of the protocol. This did not preclude that most instances of the protocol could
result in insecure keys against an eavesdropper who would work no harder than the legitimate
parties. Said otherwise, our Crypto 2011 result was of limited cryptographic significance.

In subsequent work [14], we claimed to have provided a proper average-case analysis of our
protocols, rendering them cryptographically meaningful, so that any quantum eavesdropper
has a vanishing probability of learning the key after only o(N5/3) or o(N7/6) queries 2, where

1 The word “functions” is plural because the 2011 protocol required two black-box random functions.
2 For classical legitimate parties, the o(N13/12) of Ref. [13] had been improved to o(N7/6) in Ref. [14].
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the probabilities are taken not only over the execution of the eavesdropping algorithm but
also over the instance of the protocol run by the legitimate parties. We also extended our
results to two sequences of protocols based on the k-SUM problem (Definition 1 in Section 3),
where k ≥ 2 is an integer parameter, in which the legitimate parties query the black-box
random functions O(kN) times. It was claimed that any quantum eavesdropper had a
vanishing probability of learning the key after o(N

1
2 + k

k+1 ) or o(N1+ k
k+1 ) queries, against the

classical or the quantum protocol parametrized by k, respectively. Again, this was claimed
to hold not only in the cryptographically-challenged worst-case scenario, but also when the
probabilities are taken over the protocols being run by the legitimate parties.

Unfortunately, all our average-case analyses in Ref. [14] were incorrect! The case k = 2
can be fixed rather easily, hence the insufficiency of o(N5/3) queries for a quantum-against-
quantum protocol and of o(N7/6) queries for a classical-against-quantum protocol in a
cryptographically significant setting can be derived from the incorrect arguments provided
in Ref. [14]. However, we also claimed in Ref. [14] that the case k > 2 could be proved in
ways “similar to” when k = 2. This was a mistake due to a fundamental difference in the
k-SUM problem whether k = 2 or k > 2. Whereas the 2-SUM problem is easily seen to be
random self-reducible, so that its hardness in worst case implies its hardness on average,
this does not seem to be the case for the k-SUM problem when k > 2. In particular, the
worst-case lower bound proved by Aleksandrs Belovs and Robert Špalek [8] on the difficulty
of solving the k-SUM problem on a quantum computer does not extend in any obvious way
to a lower bound on average. And without such an average lower bound, our results claimed
in Ref. [14] go up in smoke for k > 2. Furthermore, for a technical reason explained later,
even such an average lower bound would not suffice.

In this paper, we overcome all these problems and give a correct and cryptographically
meaningful 3 security proof for all our protocols from Ref. [14]. Consequently, we prove that
for any ε > 0 there is a classical protocol that allows the legitimate parties to establish a
common key after O(N) expected queries to black-box random functions, yet any quantum
eavesdropper will have a vanishing probability of learning their key after O(N1.5−ε) queries
to the same oracle. The vanishing probability is over the randomness in the actual run of
the protocol followed by that of the eavesdropper’s algorithm. If we allow the legitimate
parties to use quantum computers as well, their advantage over the quantum eavesdropper
becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed
over classical eavesdroppers in the seminal 1974 work of Ralph Merkle [24].

Our results require new tools in quantum query complexity, which are of independent
interest. In particular, we introduce techniques to lower-bound the quantum query complexity
of distinguishing between two probability distributions, which we use to extend the adversary
lower bound method in order to handle average-case complexity, but they could have other
uses in cryptography. This approach is necessary for the distributions of inputs considered
here because the associated decision problems become trivial on average, which prevents
us from applying the average-case method developed in Ref. [7]. Furthermore, we prove a
composition theorem for this new lower bound method, extending that of Ref. [13], which
was valid only to prove cryptographically irrelevant worst-case lower bounds 4. Using these

3 To be honest, it is not entirely cryptographically meaningful to restrict the analysis to the number of
calls to the black-box functions, taking no account of the computing time that may be required outside
those calls. However, if we also restrict the legitimate expected time to be in O(N), then our quantum
protocol with k = 3 remains valid and provably resists any o(N7/4)-time quantum eavesdropping attack,
which was claimed in Ref [14], but with a fundamentally incorrect proof.

4 Some parts of the proofs are omitted in the present version. They can be found in the extended version



A.Belovs, G. Brassard, P. Høyer, M.Kaplan, S. Laplante, and L. Salvail 3:5

two tools, we prove that any quantum eavesdropper who does not make a prohibitive number
of calls to the black-box functions will fail to break a typical instance of the protocol, except
with vanishing probability.

This work fits in the general framework of “Cryptography in a quantum world” [12],
which addresses the question: “Is the fact that we live in a quantum world a blessing or
a curse for codemakers?”. It is a blessing if we allow quantum communication, thanks to
Quantum Key Establishment (aka Quantum Key Distribution – QKD) [10], at least if the
protocols can be implemented faithfully according to theory [29, 22]. On the other hand, it
is a curse if we continue to use the current cryptographic infrastructure, which pretends to
secure the Internet at the risk of falling prey to upcoming quantum computers. However, it is
mostly a draw in the realm of provable query complexity in the black-box model considered
in this paper since codemakers enjoy a quadratic (or arbitrarily close to being quadratic)
advantage over codebreakers in both an all-classical or an all-quantum world, at least in terms
of query complexity (but see footnote 4 again). Furthermore, the known proof that quadratic
security is best possible in an all-classical world [4] does not extend to the all-quantum world,
and hence the (unlikely) possibility remains that a more secure protocol could exist in our
quantum world.

The rest of the paper is organized as follows. Section 2 lists all the techniques and related
notations that are used throughout the paper. Section 3 recalls the classical and quantum
protocols from Refs [13, 14]. In Section 4, we introduce a new method to prove lower bounds
on the difficulty of distinguishing between two probability distributions, which we use to
study average-case quantum query complexity. This method extends the extensively studied
adversary method. We then apply this method to the k-SUM problem in Section 5, which is
at the heart of our hardness result. Finally, in Section 6, we prove a composition theorem for
the new adversary method introduced in Section 4. This allows us to conclude that typical
runs of the protocols from Refs [13, 14] are indeed secure against quantum adversaries.

2 Preliminaries and Notation

At the heart of this work is a lower bound on the quantum query complexity of a generalisation
of the k-SUM problem. Many techniques have been given to prove such lower bounds in the
worst-case scenario, including the adversary method [2, 18, 21]. This method is based on the
spectral norm of a matrix, Γ, indexed in the rows and columns by inputs to the problem.
Roughly, each entry of the matrix Γ[x, y] ∈ R can be thought of as representing the hardness
of distinguishing inputs x and y. It is known that for Boolean functions, the (negative)
adversary bound is multiplicative under function composition [18]. For non-Boolean functions,
a general composition theorem fails to hold, as counterexamples can be found. Nevertheless,
it was shown in Ref. [13] that the adversary method is multiplicative under composition
with (non-Boolean) unstructured search problems.

In this paper, we extend the quantum adversary method to average-case complexity,
which is crucial for cryptographic applications, and we show that a similar composition
property holds for this measure. As for the adversary bound, this method is based on the
spectral norm of matrices, and involves probability distributions. Below, we summarize the
notation related to functions, algebra and probabilities, used throughout the paper.

We consider decision or search problems denoted F,G or H. These problems are on
abelian groups, which are denoted G, or Gm when we want the order m of the group to

of this work [6].
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appear explicitly. The group operation is denoted “+” and its inverse “−”. For a decision
problem F, the inputs in the language F are called positive and the inputs not in the language
are negative. We compose our problems with an unstructured search problem to make them
harder. To do so, we need to add to the alphabet an element that does not belong to G. We
denote this element “?”.

Fix two problems F : An → B and G : C → A for some n ∈ N. Then, the com-
posed problem F ◦ Gn : Cn → B is defined by F ◦ Gn(x1, . . . xn) = F(G(x1), . . . ,G(xn)) for
(x1, . . . xn) ∈ Cn.

For any positive integer n we use [n] to denote the set of n elements {0, 1, 2, . . . , n− 1}.
We only make use of basic concepts of quantum computing: states, unitary operations and
measurements. These notions are used in Section 4, but even there, the calculations boil
down to basic linear algebra. The entries of an n×m matrix Γ are denoted Γ[x, y], where
x ∈ [n] and y ∈ [m]. For X ⊆ [n] and Y ⊆ [m], ΓX,Y is the restriction of Γ to the rows and
columns in X and Y, respectively.

The direct sum of spaces, operators, matrices or vectors is denoted “
⊕

”. The inner
product of two states (or vectors in an Hilbert space) ψ and φ is

〈
ψ, φ

〉
. For a matrix A, we

use ‖A‖ for its spectral norm, that is, its largest singular value, and ‖A‖F for the Frobenius
norm, that is, the square root of the sum of the squares of the moduli of its elements. For two
matrices A and B, we denote A ◦B their entrywise (or Hadamard) product. We make use of
the two following matrices: the n× n identity matrix In and the n× n all-one matrix Jn.

We use P and Q for probability distributions over inputs to the problems. The support
of a distribution is the set of elements with non-zero probability. We sometimes identify
distributions with vectors. More precisely, if px is the probability of x in P , we can consider
the vector P given by the entries P[x] = px. We use “X ∼ P ” to denote that the random
variable X is sampled from P. In this case, it is the variable whose probability is given by
Pr[X = x] = px. In the specific case of sampling an element x uniformly at random from a
set D, we use x ∈R D. We also use the indicator function 1x 6=y whose value is 1 if x 6= y and
0 otherwise.

We sometimes consider sequences of probabilities, such as the accepting probability νn
of an algorithm (for a decision problem) as a function of the input size n. For simplicity,
we often omit the subscript n, in which case “ ν ” should be understood as a function of n.
We call such a sequence ν vanishing if ν = o(1). If ν decreases faster than the inverse of any
polynomial, we say that the event is negligible.

3 Provably Secure Key Establishment Protocols

With the exception of Merkle’s more famous “puzzles” [25], all key establishment protocols
based on black-box random functions (which Merkle called “one-way encryption”) begin in a
way that is essentially identical to Merkle’s original 1974 idea [24], with possible inessential
differences 5. Given a black-box random function f : D → R from some domain D to some
range R, Alice chooses random elements xi ∈R D and she obtains yi = f(xi), which she
sends to Bob over an authenticated channel on which Eve can freely eavesdrop. This defines
the sets X of xi’s and Y of yi’s, of which X is private information kept by Alice whereas Y
becomes known to all parties, including Eve. Upon receiving this information, Bob’s first
task is to find one or several preimage(s) under f of any of the points sent by Alice.

5 In Merkle’s original scheme, there is no asymmetry between Alice and Bob, as they both “guess at
keywords” and share and compare their one-way encryptions until they discover that they have guessed
at the same keyword. In all the protocols considered here, Alice goes first and Bob works from there.
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The various schemes that were considered in Refs [24, 15, 13, 14] differ in how Bob
proceeds to find the preimage(s), how many such preimages he needs to find, and how he
informs Alice of which preimage(s) he has found. In Merkle’s original scheme [24], he needs
to find a single preimage. This is done by querying f on random points in its domain until
some x is found such that f(x) = y ∈ Y. Afterwards, Bob sends y back to Alice, who can
find efficiently the corresponding x because it is among her set X, which she had kept. This
shared x becomes their secret key. The intuition behind the security of this scheme stems
from the freedom in Bob’s task to invert f on any element of Y, compared to how stringent
Eve’s is since she must invert it on the specific element that Bob had inverted by chance.

To be more precise, let N be a safety parameter, let the domain of f contain N2 points
and its range be of size N5, which is large enough to ensure that f is one-to-one except with
vanishing probability. If Alice chooses N random points in the domain of f and Bob tries
random such points as well until he hits upon an x such that f(x) ∈ Y, it is easy to see that
both Alice and Bob need query function f an expected number of N times. However, a
classical Eve requires an expected N2/2 queries, which gives a quadratic advantage to the
legitimate parties.

Unfortunately, inverting one specific point in the image of f with the help of a quantum
computer requires only π

4

√
N2 = π

4N queries to f by way of Grover’s algorithm [17], which
is slightly fewer than the effort required by the legitimate parties. This is why Merkle’s
original scheme is totally broken against a quantum adversary, as first pointed out in Ref. [15].
In order to restore security, two main modifications to Merkle’s original scheme have been
considered, as we now proceed to describe.

3.1 Variations on Merkle’s Idea
If we require Bob to find k distinct preimages among the N points sent by Alice, for
some k > 1, rather than a single one, he will only have to work roughly k times as hard,
provided k � N . The key shared by Alice and Bob could then be the concatenation of
those preimages in the order in which the corresponding images were sent by Alice in the
first step. But how can Bob tell Alice which preimages he was able to find in a way that
will force Eve to make much more queries than her? A first solution was proposed in
Ref. [13] for the case k = 2, but a much simpler one was given subsequently in Ref. [14] for
arbitrary k. The idea is to introduce a second black-box random function t from the same
domain to some sufficiently large group G. If Bob finds preimages xi1 , xi2 , . . . , xik ∈ X, with
1 ≤ i1 < i2 < · · · < ik ≤ N , and sends w = t(xi1) + t(xi2) + · · · t(xik ) to Alice, she needs only
call black-box function t on the N points she had kept in X in order to determine Bob’s k
preimages, provided the order of G was chosen sufficiently large to ensure the uniqueness of
the solution, except with vanishing probability. Taking the order to be N4k+1 is sufficient to
ensure this. Furthermore, she can do this efficiently, in terms of computing time, when k = 2.
Hence, Alice needs to query each of functions f and t exactly N times, whereas Bob needs
to query function f an expected O(kN) times and function t exactly k times.

How difficult is the cryptanalytic task for quantum Eve, who has seen the y’s sent from
Alice to Bob and the single w sent from Bob to Alice? We gave an explicit algorithm based
on quantum walks [23] in Hamming graphs in Ref. [14], which allows her to discover the
secret key after O(N1/2+k/(k+1)) calls to the black-box functions. In the same paper, we
claimed that a matching Ω(N1/2+k/(k+1)) lower bound holds for a typical instance of the
protocol, which is formally stated in Theorem 8 below, but the proof proposed in Ref. [14]
fails for k > 2 in a way that cannot be repaired. The main purpose of the present paper is to
offer a correct proof of this theorem. It follows that for any fixed ε > 0, there is a classical
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key establishment protocol (taking k = b1/εc) that allows the legitimate parties to establish
a shared key after O(N) expected queries to black-box random functions f and t, yet any
quantum eavesdropper will have a vanishing probability of learning their key after O(N1.5−ε)
queries to the same oracle. If we take account of computational complexity in addition to
query complexity, we must be content with k = 2, in which case the claim is much more
modest, but still the quantum codebreaker must work more than linearly harder than the
classical codemakers. Along the way, we need to develop in Section 4 new tools for the study
of average-case quantum query complexity, which had essentially remained virgin territory
despite its obvious importance, in particular but not only for cryptography.

The second modifications to Merkle’s original scheme that has been considered [15, 13, 14]
is to play a fair game in allowing the codemakers to use quantum computers as well. The first
benefit is that we can enlarge the domain of f to contain N3 points. If Alice proceeds
exactly as before, Bob can use an extension of Grover’s algorithm known as BBHT [11] in
order to find random preimages of the N image points initially sent by Alice at the cost of
O(
√
N3/N ) = O(N) queries per preimage, provided k � N . This increase in the domain

size of f , and correspondingly of t, makes it significantly harder for a quantum eavesdropper
to solve the conundrum and discover the key shared by Alice and Bob. Indeed, we also prove
Theorem 9, stated below, to the effect that no cryptanalytic attack can succeed on a typical
instance of the protocol, except with vanishing probability, short of making Ω(N1+k/(k+1))
queries to the black-box functions. Again, this theorem was claimed in Ref. [14] but its proof
was fundamentally flawed for k > 2. Taking k sufficiently large, this offers a quantum-against-
quantum security that is arbitrarily close to the quadratic security that the original scheme of
Merkle [24] offered in the classical-against-classical scenario. The second benefit to allowing
the codemakers to use quantum computers is that now a quantum Alice can be efficient in
terms of computation time, in addition to query complexity, even when k = 3. According to
Theorem 9, we get an Ω(N7/4) security guarantee for a protocol that could become practical
once sufficiently powerful quantum computers start to seriously threaten the security of the
current Internet cryptographic infrastructure. This is the most secure proven solution ever
discovered to the conundrum of post-quantum cryptography [12] when all parties have equal
quantum computing capabilities, at least in the random oracle model, and its security is
reasonably close to that of Merkle’s provably optimal scheme in an all-classical world but
otherwise in the same model.

3.2 The k-SUM Problem
The security of the protocols that we study is based on the k-SUM problem, which consists in
searching for k elements among N in some abelian group G whose sum is a given value w ∈ G.

I Definition 1 (k-SUM problem). Given an abelian group G, a function t : D → G for some
domain D, a target w ∈ G and N distinct elements x1, x2, . . . , xN ∈ D, the problem is to find
k indices 1 ≤ i1 < i2 < · · · < ik ≤ N such that w =

∑k
j∈1 t(xij ), provided a solution exists.

The decision version of k-SUM is to decide whether or not a solution exists.

It is crucial to understand that we are not interested in how much computation time would
be required to find a solution, if one exists. Rather, we want to minimize the number of calls
to function t that will be required. Naturally, a quantum algorithm is allowed to query t on
superpositions of elements of D.

When k = 1, this is simply the unstructured search problem, which consists in finding
i such that t(xi) = w, provided it exists. When k = 2 and G is the group of bit strings of
a given length under bitwise exclusive-or, k-SUM takes the name of 2-XOR. In turn, when
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w = 0, 2-XOR becomes the search version of the Element Distinctness (ED) problem, which
consists in finding a collision in a given function if it is not one-to-one.

I Definition 2 (Element Distinctness (ED) problem). Given a function t : D → R, the decision
element distinctness (ED) problem is to decide whether or not this function is one-to-one.

I Definition 3 (Search version of ED). Given a function t : D → R, the search version of
the element distinctness problem (SED) is to find a pair of distinct x, x′ ∈ D such that
t(x) = t(x′), provided such a pair exists.

Quantum lower bounds have been proved on all these problems [1, 8, etc.], but only
in the worst-case scenario, which is most frequently studied in the field of computational
and query complexity. For some of these problems, such as ED, SED, 2-XOR and 2-SUM, a
simple classical randomized reduction suffices for proving their difficulty on average from
their difficulty in the worst case even in the quantum setting, at least if we add the promise
that if there is a solution, then it is unique. However, this does not appear to be the case for
k-SUM when k > 2. Our main mistake in Ref. [14] was to take such a reduction for granted
for arbitrary k after having nearly proved it in the case k = 2. “Nearly” because the proof
for k = 2 was flawed, albeit easy to repair. Not so for k > 2, however. In order to prove the
security of the key establishment protocols described above in a cryptographically meaningful
context, we need to prove the difficulty of k-SUM on average for arbitrary k, which requires
new quantum lower bound techniques. In fact, we need to prove the difficulty on average
of a composed version of k-SUM, defined below in Section 3.3, which does not follow by a
classical reasoning from the average difficulty of plain k-SUM. Therefore, we also have to
develop a new composition theorem that works on average as well.

The first quantum lower bound discovered among these problems was for the decision
element distinctness problem. Aaronson and Shi [1] proved that this problem requires Ω(d2/3)
queries to t in the worst case, where d is the cardinality of domain D. There was a technical
condition in their original proof that required r ≥ d2, where r is the cardinality of range R,
but that condition was subsequently lifted [3, 20]. Later, Belovs and Špalek [8] proved that
solving k-SUM requires Ω(Nk/(k+1)) queries to t in the worst case, provided m ≥ Nk, where
m is the order of group G and N is as in Definition 1.

Even though the technique used by Aaronson and Shi was adequate only to prove worst-
case lower bounds, it is elementary to conclude by a classical reasoning that the hardness
in worst-case of ED implies the same hardness on average for ED, SED and 2-XOR. But, as
we said already, a completely new technique, which we develop in Section 4, is required to
prove a matching hardness result for k-SUM on average, which is stated as Theorem 15 in
Section 5.

However, even this is not sufficient to derive the security of the key establishment protocols
described above in a cryptographically meaningful manner. Indeed, the eavesdropper is
not faced with an instance of k-SUM, as specified in Definition 1. He learns the value of w
when Bob transmits it to Alice, and he has access to black-box function t, but he does not
know the x’s, which are kept secret by Alice. Instead, he learns the image of those x’s by
function f , which we called the y’s, when Alice sent them to Bob in the first step of the
protocol. In fact, he has to solve the more difficult Hidden k-SUM problem, which we now
proceed to describe.

3.3 Hidden and Composed k-SUM Problems
The hidden k-SUM problem, defined below, corresponds precisely to the task facing the
eavesdropper.
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I Definition 4 (Hidden k-SUM problem). Given two sets D and R, an abelian group G, two
functions f : D → R and t : D → G, N distinct elements y1, y2, . . . , yN ∈ Im(f), and a target
w ∈ G, the problem is to find k indices 1 ≤ i1 < i2 < · · · < ik ≤ N and a preimage xij under
f for each yij , 1 ≤ j ≤ k, meaning that f(xij ) = yij , such that w =

∑k
j=1 t(xij ), provided a

solution exists. The decision version of hidden k-SUM is to decide if a solution exists.

In order to prove lower bounds on the quantum cryptanalytic task of breaking typical
instances of the protocols described in Section 3.1, we proceed in two steps. First we have to
prove the hardness of the hidden k-SUM problem on average. Then, we have to exhibit a
reduction that shows how to solve an average instance of the hidden k-SUM problem using
an adversary who thinks he is breaking a typical instance of the key establishment protocol.
To prove the hardness of the hidden k-SUM problem on average, it helps to consider a more
structured version of it, which is given by the composition of k-SUM with a search problem
called pSEARCH, defined below.

I Definition 5 (pSEARCH problem). Let A be some set and ? a symbol not in A. Consider
the set P of strings (a1, . . . , a`) in (A∪{?})` with the promise that exactly one value is not ?.
The problem pSEARCH` : P → A consists in finding this non-? value by making queries that
take i as input and return ai, 1 ≤ i ≤ `.

An equivalent formulation of the k-SUM problem would consist in a target w in abelian
group G and a list (t1, t2, . . . , tN ) of elements of G. The problem is to find k indices
1 ≤ i1 < i2 < · · · < ik ≤ N such that w = ti1 + ti2 + · · ·+ tik . We are charged for accessing
each ti given i. This is equivalent to Definition 1 simply by taking ti = t(xi), but it is more
convenient since it allows us to consider the composition of k-SUM with N instances of
pSEARCH. Thus we define the Composed version of k-SUM as follows.

I Definition 6 (Composed k-SUM problem). Given a target w in abelian group G and N
instances of the pSEARCH` problem using G as set A, we want to solve the k-SUM problem
with ti being the only non-? element in the ith instance of pSEARCH`. Said otherwise, this
is the composition of k-SUM and pSEARCH` denoted k-SUM ◦ pSEARCHN` .

The composed k-SUM problem (Definition 6) is similar to its hidden variant (Definition 4),
except that it is more structured, hence easier. Specifically, the xi’s that serve to define
ti = t(xi) in the hidden version, 1 ≤ i ≤ N , can be a priori any element of D, whereas they
are put in N “buckets” of size ` in the composed version. If we choose the size of D to be the
product of N and `, any algorithm capable of solving the hidden version can serve directly
to solve the composed version simply by taking no account of the additional information
provided by the buckets. Moreover, a random instance of the composed version can be
transformed into a random instance of the hidden version, essentially by mixing the buckets.
It follows that any lower bound on the composed problem translates directly into the same
lower bound on the hidden problem, mutatis mutandis.

In Sections 4 to 6, which are more technical, we give a lower bound on the composed
problem in a series of steps. First, we give a new general method to prove lower bounds for
the average-case quantum query complexity (Section 4). This method is closely related to the
technique given in Ref. [9], albeit with essential differences. Second, building on techniques
from Refs [8, 7], we show a lower bound on the average-case quantum query complexity of
k-SUM (Section 5). Third, we show a composition theorem for average-case quantum query
complexity, which allows us to conclude with Theorem 18 (Section 6).

When we apply this theorem with the parameters that correspond to the protocols
described in Section 3.1, we should take n = N , which is the number of images sent by
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Alice in the first step of any of these protocols and therefore also the number of buckets.
Furthermore, we should take the product of `, the size of the buckets, with n, the number of
buckets, to correspond to the size of the domain D used in the protocols.

Putting it all together, Theorem 18 gives us the following lower bound on the difficulty to
solve the hidden k-SUM problem if the domain D of functions f and t contains d elements.

I Theorem 7. Any quantum algorithm that uses at most T queries to find a solution to the
hidden k-SUM problem with success probability at least νN > 0 on average over the uniform
distribution on positive instances requires

T

νN
= Ω

(√
d/N − 1 Nk/(k+1)

)
provided m = ω

(
N
k+ 2

k+1
)
, where m is the order of the underlying abelian group.

3.4 The Security of Key Establishment
We proved (correctly!) in Ref. [14] that any eavesdropper who succeeds in obtaining the key
with non-vanishing success probability ν in any of the protocols described in Section 3.1,
after making no more than T queries, on average over the runs of the protocol, can be used
to solve the hidden k-SUM problem with the same parameters. Therefore, using the fact
that d = N2 for the classical protocols and d = N3 for the quantum protocol, we can apply
Theorem 7 to conclude that the protocols are secure according to the following theorems.

I Theorem 8. Any quantum eavesdropping strategy that makes o
(
N

1
2 + k

k+1
)
queries to the

black-box functions against a typical run of the classical protocol using parameter k will fail
to recover the key, except with vanishing probability.

I Theorem 9. Any quantum eavesdropping strategy that makes o
(
N1+ k

k+1
)
queries to the

black-box functions against a typical run of the quantum protocol using parameter k will fail
to recover the key, except with vanishing probability.

Furthermore, we showed in Ref. [14] that these bounds are tight.

4 Average-Case Quantum Adversary Lower Bound Method

We generalize the adversary lower bound method to handle average-case complexity. A
similar bound from Ref. [9] already gives a lower bound technique on average-case query
complexity, but it cannot be applied directly here, as we explain below.

We use the following complexity measure, closely related to the adversary bound [2, 18].
We give a formulation tailored to the following problem. Given two distributions P and Q,
and an algorithm that attempts to distinguish between them, we consider the number of
queries this algorithm must make in order to succeed. The algorithm is given one input, and
accepts if it thinks the sample it is given comes from P and rejects otherwise. The measure
of success is given by the probabilities sP and sQ, which are the probability of accepting
when the algorithm is given samples from P and Q, respectively.

I Definition 10. Let P and Q be two probability distributions on D, and px and qy denote
probabilities of x and y in P and Q, respectively. Let sP , sQ be real numbers in [0, 1]
(representing the acceptance probability on distributions P and Q, respectively). For a given
matrix Γ, define the adversary bound with respect to Γ,P, sP ,Q, sQ as

Adv(Γ;P, sP ;Q, sQ) = Ω
(

min
j∈[n]

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

)
. (1)
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Here, ◦ denotes entrywise (or Hadamard) product, and ‖A‖ denotes the spectral norm of A
(which is equal to its largest singular value). The vectors δP [x] = √px and δQ[y] = √qy are
unit vectors in RD; for j ∈ [n], the |D| × |D| matrix ∆j is defined by ∆j [x, y] = 1xj 6=yj

; and

τ(sP , sQ) =
√
sPsQ +

√
(1− sP)(1− sQ). (2)

I Theorem 11. Assume A is a quantum algorithm that makes T queries to the input string
x = (x1, . . . , xn) ∈ D, and then either accepts or rejects. Let P and Q be two probability
distributions on D. Let sP and sQ be acceptance probability of A when x is sampled from P
and Q, respectively. Then,

T ≥ Adv(Γ;P, sP ;Q, sQ),

for any |D| × |D| matrix Γ.

If P and Q have partial supports, then we may use a matrix Γ whose rows are indexed
by elements in the support of P and columns by elements of the support of Q. In that case
we can extend the matrix Γ by adding all-0 rows and columns. Notice that this does not
alter the value of Adv.

First let us consider why we need two distributions P,Q on the inputs (and why we
cannot use existing techniques such as Theorem 33 from Ref. [9] for decision problems,
where P = Q). The distribution we care about is the uniform distribution over the positive
instances. Under this distribution, the decision problem is of course trivial. Using this
distribution as both P and Q as in Ref. [9] would give a trivial bound.

Instead, Theorem 11 gives a lower bound on the query complexity of an algorithm that
attempts to distinguish between two distributions P and Q. Taking P as the uniform
distribution over positive instances, and Q as the uniform distribution over all instances
implies a lower bound for the search problem of finding k elements that sum to w with the
promise that the instance is positive, by the following argument. Assume an algorithm solves
the search problem with T queries with non-vanishing probability. Then we can transform
this algorithm into a distinguishing algorithm with one-sided error: if the algorithm outputs
a candidate solution a1, . . . , ak, make k additional queries and check that they sum to w.
If they do, accept, else reject. Then the acceptance probability on negative instances is 0.
Since most instances are negative, the acceptance probability on the uniform distribution is
close to 0. We are interested in the acceptance probability on the positive instances, as a
function of the number of queries T .

We now proceed to the proof of Theorem 11. Our proof is closely related the proof of the
worst-case negative-weighted adversary bound from Ref. [18]. We follow a slightly simplified
version of the proof from Ref. [5]. As usual, we introduce a progress function, show that
initially, the progress function is large (Claim 12), at the end, it is small (Claim 13), and
that at each step, the decrease is bounded (Claim 14).

Proof of Theorem 11. Recall that a quantum query algorithm is given by the following
sequence of operations

U0 → Ox → U1 → Ox → U2 → · · · → UT−1 → Ox → UT ,

where Ox denotes the input oracle, and the Uis are arbitrary unitary transformations. The
operator Ox is defined by Ox|a〉|i〉 = |a+ xi〉|i〉 which can be decomposed as

Ox =
n⊕
j=0

Oxj , (3)
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where for b ∈ Gm, Ob : |a〉|i〉 7→ |a+ b〉|i〉. The addition in the first register is the group
operation of Gm.

For an integer t between 0 and T , and x ∈ D, let

ψ(t)
x = UtOxUt−1Ox · · ·U1OxU0|0〉. (4)

be the state of the algorithm on the input x after t queries. We define the quantity called
the progress function as follows

W (t) =
∑
x,y∈D

√
pxqy Γ[x, y]

〈
ψ(t)
x , ψ(t)

y

〉
. (5)

The proof is split into three parts: proving that W (0) is large, and that both W (T ) and
W (t) −W (t+1) are small. The proofs of the claims appear in the extended version of the
paper [6].

I Claim 12. W (0) = δ∗PΓδQ.

I Claim 13. W (T ) ≤
(√

sPsQ +
√

(1− sP)(1− sQ)
)
‖Γ‖.

I Claim 14. |W (t) −W (t+1)| ≤ 2 maxj∈[n]‖Γ ◦∆j‖. J

5 Average-Case Complexity of k-SUM

Recall the k-SUM problem on n elements in an abelian group Gm where m is the order of the
group. Let w be a fixed element of Gm. An input x = (x1, . . . , xn) is called positive if there
exists a k-subset V = {t1, . . . , tk} ⊆ [n] such that xt1 + · · ·+ xtk = w in Gm. Otherwise, the
input is called negative.

Consider the following probability distribution P on positive inputs:
Select a k-subset U of [n] uniformly at random;
assign to U a uniformly random string in G|U |m whose sum is w;
choose the remaining elements uniformly at random.

I Theorem 15. Assume S is a quantum algorithm for the search problem k-SUM that makes
T queries and succeeds with probability ν > 0 over inputs sampled from the distribution P.

Then,

T

ν
= Ω

(
nk/(k+1)

)
,

provided that ν = ω
(
n−1/(k+1)) and m = Ω

(
nk+ 2

k+1

)
is again the order of the underlying

abelian group.

This theorem uses the following claim, whose proof appears in the extended version of
the paper [6].

I Claim 16. Let the distribution P be as above, and Q be the uniform distribution on all
the inputs. There exists a matrix Γ satisfying the following constraints:

δ∗PΓδQ = nk/(k+1), ‖Γ‖ ≤
(

1 +O
(
n−1/(k+1)))nk/(k+1), and ‖Γ ◦∆j‖ = O(1)

in the notation of Theorem 11.
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Proof of Theorem 15. Let S be the algorithm of Theorem 15. We apply Theorem 11 to
the algorithm A defined as follows, using the constraints from Claim 16 to evaluate Adv.
First, A executes S on its input. Let {t1, . . . , tk} be the output of S. The algorithm A then
queries the elements xt1 , . . . , xtk . It accepts if xt1 + · · ·+ xtk = w, and rejects otherwise.

The query complexity of A is T+k = T+O(1). The acceptance probability on distribution
P is sP = ν. Also, since A always rejects a negative input,

sQ ≤ Pr
x∼Q

[
the input x is positive

]
≤ 1
m

(
n

k

)
,

the last inequality following from the union bound. Thus, we have the following estimate on
τ(sP , sQ):

τ(sP , sQ) =
√
sPsQ +

√
(1− sP)(1− sQ) ≤

√
1
m

(
n

k

)
+ 1− ν

2 ,

and using the conditions on m and ν, we obtain:

δ∗PΓδQ − τ(sP , sQ)‖Γ‖
‖Γ ◦∆j‖

=
nk/(k+1) −

(
1− Ω(ν)

)(
1 +O

(
n−1/(k+1)))nk/(k+1)

O(1)

= Ω
(
νnk/(k+1)

)
. JJ

6 Composition Theorem for the Average-Case Adversary Bound

We now prove the last remaining theorem needed to obtain the lower bound on the average
case complexity of k-SUM◦pSEARCHn` (see Section 3.3). Recall that in this version, each input
variable xi ∈ Gm is embedded into a “bucket”, that is, a sequence (xi1, . . . , xi`) ∈ (Gm∪{?})`
in which exactly one element is non-?. To apply our average-case adversary lower bound
method, we need to define the probability distributions and the matrix that appears in
Eq. 1 for the composed problem. Intuitively, this is done by tensoring the matrix of the
two problems that are composed, as well as the vectors that represent the probability
distributions. However, defining the matrix correctly to get a lower bound for the composed
problem requires a careful analysis.

We use the distributions PF and QF to pick inputs to the outer function F, and the
uniform distribution to place each element of the input independently in its bucket. Formally,
we write P = PF ⊗ U⊗n` , where U` is the uniform distribution over [` ] and the distributions
are viewed as real-valued vectors indexed by elements of their supports. The definition of Q
is similar, starting from QF.

I Lemma 17. Let F : An → B, pSEARCH` : P → A where P ⊆ (A ∪ {?})` is the set of all
possible buckets, H = F ◦ pSEARCHn` , and PF, QF, P and Q defined as above. Then for any
real numbers sP , sQ ∈ [0, 1] and matrix ΓF, there exists a matrix ΓH such that

Adv(ΓH;P, sP ;Q, sQ) ≥ Adv(ΓF;PF, sP ;QF, sQ)
√
`− 1 .

I Theorem 18. Any algorithm that finds a solution to the search version of k-SUM ◦
pSEARCHn` within T queries with probability ν > 0 on average over the uniform distribution
on positive instances requires

T

ν
= Ω

(√
`− 1 nk/(k+1)

)
provided m = ω

(
n
k+ 2

k+1
)
.
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The rest of this section is devoted to the proof of Theorem 18. It follows closely the proof
of the composition theorem in Ref. [13], and in particular the adversary matrix for H we
use here has the same structure as the matrices considered in that paper. This allows us to
re-use some of the calculations from that paper (see Claims 20 and 21).

We use the following notation. Let X,Y ∈ An denote inputs to F. Its components are
Xi ∈ A. The value ΓF[X,Y] is a scalar. Notice that for the k-SUM problem, the rows of the
matrix defined in the previous section are only defined for positive inputs. In order to reuse
the norm calculations from the composition theorem in Ref. [13], we need to extend it to
all possible inputs. We do so by extending the matrix for k-SUM with rows of zeros. This
transformation does not change the norm of the matrix. Similarly, the vector sPF can be
extended with zeros to be defined for any input.

Proof of Lemma 17. The adversary matrix for the composed problem H is denoted ΓH.
We consider blocks of ΓH indexed by values X,Y, which we denote ΓX,Y

H . (These `n × `n
blocks are a submatrix corresponding to all the inputs for which the input to F is X, in the
rows, and Y, in the columns.) As in Ref. [13], we define ΓH by blocks as follows:

ΓX,Y
H = ΓF [X,Y] ·

⊗
i∈[n]

ΓXi,Yi
,

where for a, b ∈ A,

Γa,b =
{
‖J` − I`‖ · I` if a = b

J` − I` otherwise.

An optimal adversary matrix for pSEARCH can be obtained by taking J` − I` for all blocks
except the diagonal ones that are all zeroes. But if we were using it, a block ΓX,YH would be
zero whenever there is an i such that Xi = Yi. Using the matrix Γ, with modified diagonal
blocks, overcomes this issue.

From the distributions PF and QF , we define the vector δPF
=
√
PF , that is, δPF [X] =√

PrX∼PF
[X] (similarly for δQF). Again, we can split δPF into blocks δX

PF
.

With these definitions in hand, we can compute the terms that appear in Eq. 1 of
Definition 10. This is done in Claims 19, 20, and 21. When referring to Ref. [13], we use
Si = J` − I` for all i (1 ≤ i ≤ n).

I Claim 19. δ†PΓHδQ = δ†PF
ΓF δQF

· ‖J` − I`‖n.

I Claim 20. [13, claim on last line of page 409] ‖ΓH‖ = ‖ΓF‖ · ‖J` − I`‖n.

I Claim 21. [13, claim near the end of page 410] For a query i that corresponds to index q
in the bucket p, ‖ΓH ◦∆i‖ = ‖ΓF ◦∆p‖ · ‖J` − I`‖n−1 · ‖(J` − I`) ◦∆q‖.

Claims 20 and 21 were proven in the arXiv extended version of Ref. [13]. Although the
claims in the original Crypto version of Ref. [13] consider specifically the Element Distinctness
problem, the paper mentions that an explicit description of the adversary matrix is not
needed (such a description was indeed unknown when this proof was given). For this reason,
these two claims apply to any outer function F, and in particular to k-SUM. Note that the
arXiv extended version of Ref. [13] contains the proofs for arbitrary outer functions. The
proof of Claim 19 appears in the extended version of the paper [6].

Using the fact that ‖J` − I`‖ = ` − 1 and ‖(J` − I`) ◦∆q‖ =
√
`− 1 for any q, we

immediately get Lemma 17 by substituting the values obtained in Claims 19, 20 and 21 into
Definition 10. J
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Proof of Theorem 18. Using the values computed in Section 5 we get

T = Ω
(
δ†PF

ΓFδPF − τ(sP , sQ)‖ΓF‖
‖ΓF ◦∆i‖

√
`− 1

)

= Ω
(
nk/(k+1)√`− 1

(
ν

2 −

√
1
m

(
n

k

)))

Suppose that ν is non-vanishing. Since m is chosen large enough to make 1
m

(
n
k

)
arbitrarily

small, we get

T

ν
= Ω

(√
l − 1nk/(k+1)

)
. J
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Abstract
A quantum board game is a multi-round protocol between a single quantum player against the
quantum board. Molina and Watrous discovered quantum hedging. They gave an example for
perfect quantum hedging: a board game with winning probability < 1, such that the player can
win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that
perfect quantum hedging occurs in a cryptographic protocol – quantum coin flipping. For this
reason, when cryptographic protocols are composed in parallel, hedging may introduce serious
challenges into their analysis.

We also show that hedging cannot occur when playing two-outcome board games in sequence.
This is done by showing a formula for the value of sequential two-outcome board games, which
depends only on the optimal value of a single board game; this formula applies in a more general
setting of possible target functions, in which hedging is only a special case.
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1 Introduction

Quantum board games

A quantum board game is a special type of an interactive quantum protocol. The protocol
involves two parties: the player and the board. The board implements the rules of the
game: in each round i of the protocol, the board applies some quantum operation Oi and
sends a quantum message to the player; then the player applies any quantum operation it
wants, and sends a quantum message back to the board. At the final round of the board
game, the board applies a two outcome measurement, which determines whether the player
won or lost. We assume that the player knows the rules of the board game (the length of
the messages, the operations Oi and the two outcome measurement). The player has the
freedom to decide on his strategy – the protocol does not specify what the player should do
in each round; the only constraint posed on the player is that it must send a message of an
appropriate length, as expected by the board.1

∗ This work was supported by ERC Grant 030-8301.
1 Previous works which studied this setting did not introduce a specific term for it [22]. Other, related
notions are interactive proof system, that differ from quantum board games since the verifier and prover
receive an input, and from quantum games since usually we think of the players, Alice and Bob, as
having symmetric roles, whereas here, the player knows that the board only implements the rules of
the game, and uses its specified strategy.
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Perfect hedging

Molina and Watrous showed that hedging is possible in quantum board games [22]. Perfect
hedging is best explained by an example: there exists a quantum board game for which no
strategy can win with certainty, but it is possible for a player to guarantee winning 1-out-of-2
independent quantum board games, which are played in parallel. A formal definition of
hedging is given in Definition (3), but for now, one can think of that example. In a follow
up work, Arunachalam, Molina and Russo [6] analyzed a family of quantum board games,
and showed a necessary and sufficient condition so that the player can win with certainty
in at least 1-out-of-n board games. As discussed later, quantum hedging is known to be a
purely quantum phenomenon.

One example where Hedging becomes relevant is when reducing the error (soundness)
probability of quantum interactive proof protocols such as QIP(2): since the optimal strategy
for winning t-out-of-n parallel repetitions is not necessarily an independent strategy, only
Markov bound (and not the Chernoff bound) can be used to show soundness [14]. These
aspects resembles the behavior that occurs in the setting of Raz’s (classical) parallel repeti-
tion theorem [25]; the differences are that in the classical setting there are two players who
want to win all board games, whereas in our setting, there is a single player, who wants to
win at least t-out-of-n board games.

Coin flipping

Quantum coin flipping is a two player cryptographic protocol which simulates a balanced
coin flip. When Alice and Bob are honest, they both agree on the outcome, which is uniform
on {0, 1}. Coin flipping comes in two flavors: Strong and weak. Perhaps the most intuitive
one is weak coin flipping, in which each side has an opposite desirable outcome: 0 implies that
Alice wins, and 1 implies that Bob wins. An important parameter is the optimal winning
probability for a cheating player against an honest player. In weak coin flipping we denote
them by PA and PB . We define P ∗ = max {PA, PB} – the maximum cheating probability
of both players. In a strong coin flipping, a cheating player might try to bias the result to
any outcome. We define P 0

A to be the maximal winning probability of a cheating Alice who
tries to bias the result to 0, and P 1

A, P
0
B , P

1
B are defined similarly. In strong coin flipping

P ∗ = max
{
P 0
A, P

1
A, P

0
B , P

1
B

}
that is P ∗ bounds the possible bias to any of the outcomes, by

either a cheating Alice or a cheating Bob. In the classical settings, it is known that without
computational assumptions, in any coin flipping protocol (either weak or strong) at least
one of the players can guarantee winning with probability 1 (P ∗ = 1) [12]. Under mild
computational assumption, coin flipping can be achieved classically [7]. All of the results
in the rest of this paper hold information theoretically, that is, without any computational
assumptions. Unconditionally secure (i.e. without computational assumptions) quantum
strong coin flipping protocols with large but still non-trivial P ∗ < 0.9143 were first discovered
by [3]. Kitaev then proved that in strong coin flipping, every protocol must satisfy P ∗0 ·P ∗1 ≥
1
2 , hence P

∗ ≥
√

2
2 ([16], see also [5]). Therefore, the hope to find protocols with arbitrarily

small cheating probability moved to weak coin flipping. Protocols were found with decreasing
P ∗([26, 4] showed strong coin flipping with P ∗ = 3

4 , [19] showed weak coin flipping with
P ∗ = 0.692), until it was finally proved that there are families of weak coin flipping protocols
for which P ∗ converges to 1

2 [20] (see also [2]). Following this, [9] showed how such protocol
can be adopted, in order to create (arbitrarily close to) optimal strong coin flipping (so that
P ∗ can be made arbitrarily close to

√
2

2 ). Although this would not be relevant for our work,
analysis of coin flipping protocols was adapted, and later implemented, for experimental
setups [23, 24]. There is also a strong connection between coin-flipping and bit-commitment
protocols [26, 10], and to a lesser extent to oblivious transfer [8].
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Is it possible to hedge in quantum coin flips? In Section 2 we give an example for perfect
quantum hedging in the context of coin flipping. The result can be best explained in the
context of weak coin flipping (although, a similar statement can be proved for strong coin
flipping): there exists a weak coin flipping protocol where P ∗ = cos2(π8 ) introduced by
Aharonov [1] yet a cheating Bob can guarantee winning in at least 1-out-of-2 board games
played in parallel.

Avoiding hedging through sequential repetition

Consider a cryptographic quantum protocol, which involves several uses of quantum two-
outcome board games. For example, the protocol may use several occurrences of quantum
coin flips played in parallel. As we have seen, the possibility of hedging makes it hard
to analyze the resulting protocol, by simply analyzing each of the board games in it. In
Section 3 we show that quantum hedging cannot happen when the two-outcome board
games are played in sequence, even if the players are computationally unbounded.

We give a more generalized formulation for sequential board games. Suppose the player’s
utility for the outcome vector a = (a1, . . . , an) is given by some target function t(a), and
the players goal is to maximize E[t(a)] over all possible strategies. In Theorem 10 we show
that this maximal value is fully determined by the properties of each board game, and does
not require an analysis of the entire system, which is the case when playing in parallel.

The authors are not aware of previous precise mathematical formulation proofs of that
sort. It was recently brought to our attention the following intuitive discussion in [13, p. 8],
and [17, p. 9] made for related models. The intuition for our proof is fairly simple and
arguably not very surprising: if it is possible to hedge n games, then by simulating the
board in the first game, and conditioning on some good event, allows the player to hedge
n− 1 games. But since hedging cannot occur in one game, we get a contradiction.

In Appendix B we give examples, in the classical setting, for board games and target
functions, such that the sequential value of the board games is larger than the parallel value
of the board games, and vice-versa.

Arunachalam, Molina and Russo [6] showed a different approach to avoid hedging: they
showed that hedging is impossible in a quantum single round board game played in parallel,
where the player has the possibility to force a restart of the board game.

2 Quantum coin flip hedging

In this section we will give an example for a coin flipping protocol, for which a cheater
cannot guarantee a win in one flip, but one of the players can force a win in 1-out-of-2 flips:

I Theorem 1. There exists a weak coin flipping protocol with P ∗ < 1 s.t. by playing 2 coin
flips in parallel, Bob can guarantee winning in at least one of the flips.

We will first describe the weak coin flipping protocol and its properties, and then analyze
the hedging strategy of Bob. We conclude by explaining why Alice cannot hedge.

2.1 The coin flipping protocol

In this work, Aharonov’s coin flipping protocol [1] will play an important role.

TQC 2017
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A quantum coin flipping protocol

Alice Bob

Prepares 1√
2

(|00〉+ |11〉)

second qubit

Samples b ∈R {0, 1}.

sends b

If b = 1, then apply H. If b = 1, then apply H.
Measure in the standard basis Measure in the standard basis
Alice wins if the outcome is 0 Alice wins if the outcome is 0
Bob wins if the outcome is 1 Bob wins if the outcome is 1

I Theorem 2. The protocol above is a weak coin-flipping protocol with P ∗ = PA = PB =
cos2 π

8 .

The proof is given in Appendix A. This protocol is not only a weak coin flipping with
P ∗ = cos2 π

8 , but also a strong coin flipping protocol with the same value of P ∗. The
proof is essentially the same. We state the result this way because it provides a natural
interpretation for statements such as “Bob wins in 1 out of 2 flips”. Of course, similar
statements can be made for strong coin flipping, but are omitted for the sake of readability.

2.2 Coin hedging is possible

Assume a cheating Bob plays two coin flips in parallel with an honest Alice (it does not
matter if he plays against the same person twice, or against two different players, since they
behave the same – because they are honest). We want to know the maximum probability for
a cheating Bob to win at least one coin flip. Surprisingly, this is equal to 1 in the protocol we
previously described. This is impossible if Bob were to play the two coin flips sequentially
(see Theorem 5).

We saw that for one coin flipping, PA = PB = cos2 π
8 ≈ 0.853. By cheating each coin

flip independently, the best Bob can get is

Pr (Bob wins at-least one game) = 1− (1− PB)2 = 1−
(

1− cos2 π

8

)2
≈ 0.978.

We will now show Bob’s perfect hedging strategy (which is not independent), in which he
wins exactly one out of the two coin flips w.p. 1, which completes the proof of Theorem 2.
Alice’s initial state is

1
2

∑
i1,i2∈{0,1}

|i1, i2〉|i1, i2〉 = 1
2

3∑
i=0
|αi〉|αi〉, (1)
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where2

|α0〉 = |Φ−〉 = 1√
2

(|00〉 − |11〉) = 1√
2

(|+−〉 − | −+〉)

|α1〉 = |Ψ+〉 = 1√
2

(|01〉+ |10〉)

|α2〉 = 1√
2
(
|Φ+〉 − |Ψ−〉

)
= 1√

2
(|0−〉+ |1+〉)

|α3〉 = 1√
2
(
|Φ+〉+ |Ψ−〉

)
= 1√

2
(| − 0〉+ |+ 1〉) . (2)

Eq. (1) can be justified by a direct calculation, or by using the Choi–Jamiołkowski
isomorphism [11, 15], see also [27], and noting that the associated matrix for the l.h.s. and the
r.h.s. are equal (both are proportional to the identity matrix). Bob is given the right register
of the state above. Bob applies the unitary transformation U =

∑
i |γi〉〈αi|, where |γ0〉 =

|11〉, |γ1〉 = |00〉, |γ2〉 = |01〉, |γ3〉 = |10〉, so that the overall state becomes 1
2
∑3
i=0 |αi〉|γi〉,

and sends the right register back to Alice. Alice measures the right register in the standard
basis (of course, Bob could have done this just before sending the right register, if he is
restricted to sending classical information). The results of those measurements determines
the basis in which she measures the left register. This strategy guarantees that Bob wins
in exactly one coin flip: for example, if Alice measures the qubits |γ0〉 = |11〉 then the left
register collapses to |α0〉 =| Φ−〉 = 1√

2 (| +−〉+ | −+〉), and since in this case Alice measures
both of the left register qubits in the Hadamard basis, Bob will win in exactly one out of
the two coin flips. The right-most expressions in Eq. (2) are presented in this form so that
it is easy to see the similar behavior in the 3 other cases.

One may wonder how strong the effect of hedging is. In particular, can Bob guarantee
fn out of n winnings, as long as f ≤ P ∗? The answer is no: by playing three coin flipping
of this protocol, he cannot guarantee winning 2 = 2

3 · 3 with probability 1, even though
2
3 ≤ P

∗: we numerically calculated that Bob can only win with probability ≈ 0.986 at least
2 out of 3 coin flips. This is still higher than the optimal independent cheating that achieves
a success probability of ≈ 0.94.

Fortunately for Bob, Alice can not guarantee winning in 1-out-of-2 played in parallel
using this weak coin flipping protocol. In fact, she cannot do any hedging. This is true,
essentially for the same reasons error reduction for QMA works in a simple manner (vis-à-vis
QIP(2)). The following argument uses the definitions from Section 3.1. Recall that from
Bob’s perspective, he is provided with a quantum state given from Alice, and he measures
it to determine whether he wins or loses. Therefore m(ai) = min|ψi〉〈ψi|M i

ai
|ψi〉 (where

M i
ai

is Bob’s measurement operator which determines whether he gets the outcome ai in
the ith game), which is equal to the smallest eigenvalue of M i

ai
; and mpar(a1, . . . , an) =

min|ψ〉〈ψ|M i
a1
⊗ · · · ⊗M i

an
|ψ〉 which is equal to the smallest eigenvalue of M i

a1
⊗ · · · ⊗M i

an
.

But since M i
ai

is a measurement operator, its eigenvalues are non-negative, and we conclude
that mpar(a1, . . . , an) = m(a1) · . . . ·m(an).

2 One may wonder whether the states |αi〉 are the Bell states (|Φ±〉 = 1√
2 (|00〉 ± |11〉) , |Ψ±〉 =

1√
2 (|01〉 ± |10〉)), written in a non-standard local basis. This is not the case: for every Bell state |Ω〉,

SWAP |Ω〉 = ±|Ω〉. This is also true if a local basis change is applied to both qubits: for |Ω′〉 = U⊗U |Ω〉,
SWAP |Ω′〉 = ±|Ω′〉. Since |α2〉 = SWAP |α3〉 6= ±|α2〉, these vectors are not the Bell states written
in a non-standard local basis.

TQC 2017



4:6 Quantum Coin Hedging, and a Counter Measure

3 How to circumvent hedging

Our solution to circumvent hedging is to play the board games in sequence, instead of in
parallel. We will prove in Section 3.1 that in the simple scenario, in which the goal is to win
at least 1-out-of-n sequential board games, hedging is not possible (i.e. the best cheating
strategy is to use the optimal cheating strategy in each board game independently). We will
generalize this in Section 3.2, where we will prove that the same result holds for every target
function. Throughout this section, we will consider only two-outcome board games (such
as coin flipping), but a generalization to any number of outcomes seems not too difficult to
achieve as well.

3.1 Playing sequentially circumvents 1-out-of-n hedging
Molina and Watrous [22] defined hedging as the following phenomenon.3 Suppose G1, G2
are two board games with multiple outcomes A1, A2. For a1 ∈ A1 let m (a1) be the minimal
probability that can be achieved for the outcome a1 in G1, and similarly for m (a2). If
the board game G is not clear from the context, we may use mG2(a2). Now suppose that
two board games are played in parallel, and the goal is to minimize the probability for
getting the outcome a1 in the first board game and a2 in the second board game, which
is defined as mpar (a1, a2). Since the two strategies can be played independently, clearly,
mpar (a1, a2) ≤ m (a1)m (a2). Parallel Hedging for two board games is the case where
this inequality is strict, that is mpar (a1, a2) < m (a1)m (a2). Molina and Watrous gave an
example for perfect parallel hedging in whichmpar (a1, a2) = 0 whereasm (a1) = m (a2) > 0.
This definition can be naturally generalized to more than two board games.

I Definition 3 (Parallel Hedging). Let G1, . . . , Gn be n quantum board games with possible
outcomes A1, . . . , An. For ai ∈ Ai, letm (ai) be the minimal probability that can be achieved
for the outcome ai in Gi. Similarly, let mpar (a1, . . . , an) be the minimal probability that
can be achieved for outcomes (a1, . . . , an) when playing these n board games in parallel. We
say that hedging is possible in 1-out-of-n board games if there exist a1, . . . , an s.t.

mpar (a1, a2, . . . , an) <
n∏
i=1

m (ai) . (3)

If mpar (a1, a2, . . . , an) = 0 and
∏n
i=1 m (ai) > 0, then it is called prefect hedging.

It is known that inequality (3) is actually an equality in the classical case for single round
board games [22, 18]. We do not know whether the equality holds for multi-round classical
board games. What happens when the board games are played in sequence?

I Definition 4. Given board games {Gi}ni=1, the protocol for playing the board games {Gi}
in order is called sequential, assuming the player knows the result of Gi before the start of
Gi+1 (this can be achieved by adding a last round for each board game in which the board
returns the outcome).

Our next result shows that there is no sequential hedging for board games (with any number
of outcomes), and the cheater cannot do better than to cheat each board game independently;

3 Molina and Watrous restricted their definition to quantum board games with a single round of com-
munication (the board sends an initial quantum state to the player, the player sends back another
quantum state back to the board, and then the board applies a measurement to determine whether the
player wins).
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that is if {Gi}ni=1 are board games, then mseq (a1, . . . , an) = m (a1) · . . . · m (an), where
mseq (a1, . . . , an) is defined similarly to mpar (a1, . . . , an) for sequential board games. For
simplicity and clarity, we will consider only the case where all the board games are identical
and ai = aj = a for all i, j, but the same proof will work for the general scenario as well
(one will just have to add indices indicating the board game for everything).

I Theorem 5. Let G be a board game, played sequentially n times, then mseq (a, . . . , a) =
m (a) · . . . ·m (a) = m (a)n for every outcome a.

Proof. If the outcome of a single board game is a, then we say that the player lost that
board game. We denote by “failure” the event in which the player gets the outcome a in all
n games (i.e. loses all n rounds).

We define `∗ to be the probability to get the outcome a in the optimal strategy for one
board game. Let `n be probability to get the outcome a over all the n-board games, in the
best independent strategy. It is easy to see that

`n = min
S∈independent strategies

Pr (failure | S) = (`∗)n (4)

Define similarly `′n to be the minimum losing probability over all (not necessarily independ-
ent) strategies, i.e. `′n ≡ minS∈sequential strategies Pr (failure | S) . Clearly ∀n ∈ N, `′n ≤ `n
and `′1 = `1. Our goal is to show that ∀n ∈ N, `′n = `n. Assume towards a contradiction
that this is not the case. Then there exists a minimal n > 1 for which `′n < `n.

(`∗)n by (4)= `n > `′n = `′n,L Pr (lost first round) ≥ `′n,L`∗

where `′n,L := Pr (failure | lost first round). The last inequality naturally holds because
Pr (lost first round) ≥ `∗, otherwise there exists a better strategy. Therefore,

(`∗)n−1 = `n−1 > `′n,L

The strategy in which the cheater Alice (the first player) plays with Rob (Alice’s imaginary
friend) the first board game, and conditioned on losing, plays with Bob (the second player)
the next rounds, has a losing probability `′n,L.

Therefore

`n−1 > `′n,L ≥ `′n−1

which contradicts the minimality of n. J

I Corollary 6. Suppose the goal of a player is to win at least 1-out-of-n board games played
sequentially. The optimal strategy is to play independently, by using the optimal cheating
strategy in each of the board games.

3.2 Playing sequentially circumvents any form of hedging
Let us consider a more general setting, in which the player’s goal is to maximize the expect-
ation of some target function; i.e., for a vector t = (ta ∈ R)a∈{0,1}n , let

SVal (t) ≡ max
S∈sequential strategies

∑
a∈{0,1}n

ta · Pr (a | S)

and similarly

PVal (t) ≡ max
S∈parallel strategies

∑
a∈{0,1}n

ta · Pr (a | S) .
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4:8 Quantum Coin Hedging, and a Counter Measure

In general there are no relations between the parallel and sequential values: in Ap-
pendix B we give a classical one round board game in which SVal (t) > PVal (t) and another
in which SVal (t) < PVal (t) .

I Definition 7. Given a two-outcome board game, let qi be the maximal probability of the
player to achieve the outcome i ∈ {0, 1}.

Note that always q0 ≥ 1 − q1 and vice-versa. As we have seen before, the parallel value
of a two-outcome board game heavily depends on the details of the game. In contrast, the
sequential value is fully determined by q0 and q1.

In the following we will analyze the sequential value of the board game. For that we will
define the tree value function TVal, which as the following theorem shows, is equal to the
sequential value of the board game. For simplicity we will assume that for all i, Gi = G,
but this can be easily extended for general {Gi}ni=1.

I Definition 8. For a vector t = (ta)a∈{0,1}n let t←b = t0b and t→b = t1b. The tree value with
parameters q0, q1 is defined as:

TVal (t) ≡ max {q0 TVal (t←) + (1− q0) TVal (t→) , q1 TVal (t→) + (1− q1) TVal (t←)} ,

and for c ∈ R, TVal(c) = c.

I Definition 9. Consider a quantum board game G played n times in sequence. A strategy
is said to be pure black box strategy if the strategy used in the i-th board game is fully
determined by the outcomes of the previous board games. For a set S of strategies for a
single board game G, an S-black-box strategy is a pure black-box strategy in which the
strategy at the i-th board game (conditioning on previous outcomes) is in S.

I Theorem 10. For every two-outcome board game (with parameters q0, q1), every n and
every t ∈ R2n , SVal (t) = TVal (t).

Furthermore, its value can be obtained by an {S0, S1}-black-box strategy, where S0 (S1)
are any strategies that achieve outcomes 0 (1) with probability q0 (q1).

S0 and S1 are greedy strategies that simply try to maximize the chance of achieving the
outcomes 0 and 1 respectively in the board game at hand. This theorem is in fact a gen-
eralization of Theorem 5 for 2-outcome board games: By choosing ta = 1 − δa,a′ we get
that

SVal (t) ≡ max
S∈sequential strategies

∑
a∈{0,1}n

ta · Pr (a | S) = max
S∈sequential strategies

∑
a6=a′

Pr (a | S)

= max
S∈sequential strategies

1− Pr (a′ | S)

= 1− min
S∈sequential strategies

Pr (a′ | S) = 1−mseq (a′) . (5)

By expanding the recursion, a simple inductive argument shows that for our choice of t,

TVal(t) = 1−m(a1) · . . . ·m(an). (6)

By combining Theorem 10 and Eqs. (5) and (6), we reprove Theorem 5.

Proof of Theorem 10. First we show that SVal (t) ≥ TVal (t), by explicitly constructing
an {S0, S1}-black-box strategy with the value TVal (t). The strategy can be best explained
by defining a binary full tree with depth n. We fill the value of each node in the tree, from
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011 0

1 1

100 1 101 1 110 1

root 1−mG1(0) ·mG2(1) ·mG3(1)

0 1−mG2(1) ·mG3(1)

00 1

000 1 001 1 010 1

10 1

111 1

01 1−mG3(1) 11 1

Figure 1 TVal for ta = 1 − δa,011. The labels of the leaves represent all the possible outcomes
a of the values in the n = 3 board games, and the values on the right of each node are the TVal
of that node. Indeed ta = 1 for all a 6= 011. Note that m (0) = 1 − q1 and m (1) = 1 − q0,
and for example TVal (01) = q0 = 1 −mG3 (1), and TVal (0) = q0 + (1− q0) q0 = 1 −mG2 (1) +
mG2 (1)

(
1−mG3 (1)

)
= 1−mG2 (1) ·mG3 (1).

bottom to top. The leaves of the tree will have values ta. The values of a parent of two
children with values v←, v→ will have the value:

max{q0v
← + (1− q0) v→, q1v

→ + (1− q1) v←}

It can be easily verified that the value of the root is TVal(t).
Consider the following strategy which applies S0 if q0v

← + (1− q0) v→ ≥ q1v
→ +

(1− q1) v← and S1 otherwise, and continues in the same fashion with respect to the left
child if the outcome is 0, and the right child if the outcome is 1. It can be proved by a
simple inductive argument that the expected value of this strategy is the value of the root
which is indeed TVal(t). Clearly, this strategy is an {S0, S1} black-box strategy.

Next we show that SVal (t) ≤ TVal (t). This will be proven by induction on n – the
number of board games played. Clearly, for n = 1, the optimal strategy has the value
TVal(t). Let n be the minimal number, such that there exists some target t, for which
there is a strategy with value greater than TVal(t) and denote the contradicting strategy
by S. We now introduce some notation. Let pj = Pr (j in first game | using strategy S),
pji = Pr (i in the last n-1 games | j in the first game, using strategy S). Let Sn be the set
of all strategies over n sequential board games.

opt = max
S′∈Sn

∑
i∈2n

ti Pr (i | using strategy S′)

For j ∈ {0, 1}, let optj ≡ maxS′∈Sn−1
∑

i∈2n−1 tj,i Pr (i | using strategy S′). Since the optim-
ization is over board games of length n− 1, by the induction hypothesis, opt0 = TVal(t←),
and similarly opt1 = TVal(t→). We know that

opt > q0 · opt0 + (1− q0) · opt1 (7)

and similarly

opt > q1 · opt1 + (1− q1) · opt0 (8)
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otherwise, opt = TVal(t). Assume WLOG that

q0 · opt0 + (1− q0) · opt1 ≥ q1 · opt1 + (1− q1) · opt0

then we get that opt0 (q0 − 1 + q1) ≥ opt1 (q1 − 1 + q0) hence opt0 ≥ opt1 or (q1 − 1 + q0) ≤
0, because q0 ≥ 1 − q1. Since pj ≤ qj we get that q0 + q1 ≤ 1 implies p0 = q0 and p1 = q1.
We know that (for both the above cases)

opt =
∑

i∈2n−1

t←i p
0p0

i + t→i p
1p1

i .

Let us denote

v0 =
∑

i∈2n−1

t←i p
0
i , v

1 =
∑

i∈2n−1

t→i p
1
i

hence opt = p0v0 + p1v1 where pj ≤ qj .

I Claim 11. vj ≤ optj

Proof. The cheater can play himself (his honest self), according to his strategy, until he
gets j in the first board game and then continue to play the rest (n− 1) of the board games
against the real honest player. This is a valid strategy for n− 1 board games with value vj ,
but since optj is an optimal such strategy, we get that vj ≤ optj . J

Using the above claim,

opt = p0v0 + p1v1 ≤ p0opt0 + p1opt1 = p0opt0 +
(
1− p0) opt1. (9)

By subtracting Eq. 9 from Eq. 7 we get that

0 > opt0 (q0 − p0)+ opt1 (1− q0 − 1 + p0) =
(
opt0 − opt1) (q0 − p0)

but either opt0 ≥ opt1, q0 ≥ p0 and we get 0 > 0 and contradiction, or p0 = q0 hence again
we get 0 > 0 and contradiction. Altogether we now know that Eq. (7) is wrong, hence

opt = q0 · opt0 + (1− q0) · opt1 (10)

and by the hypothesis assumption we get that opt = TVal (t). J

4 Open questions

Is there a formal connection between the setting discussed in the parallel repetition
Theorem (as was discussed in the introduction) and the setting that occurs in quantum
hedging?
How general is coin hedging? Does hedging (as in Definition 3) happen in every non-
trivial (ε < 1

2 ) coin flipping protocol? The same questions can be asked for perfect
hedging. We conjecture that the answer for these questions is positive.
In our example for coin hedging, we saw that the hedging player reduces the expected
number of wins: The cheater could guarantee that he will win one flip out of two, thus
getting an expectation 0.5 for winning, while the expectation of winning in independent
cheating is ≈ 0.85. Does the expected ratio of wins in the perfect hedging of this protocol
scenario increase with n? In this protocol (or, perhaps, another coin flipping protocol),
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when flipping n coins in parallel and n → ∞, can Bob guarantee winning ∼ nP ∗ coin
flipping out of n (Of course the expected number of parallel wins cannot be higher than
the expected number of independent wins (which is 1

2 ), as was proved formally in [21])?

This property cannot hold for every protocol. The reason is essentially that P ∗ can
be artificially increased in a way which does not help the cheating player to achieve
perfect hedging. Consider some coin flipping protocol with P ∗ = 1

2 (even though this
is impossible, for P ∗ > 1

2 a simple adaptation of the following argument applies), then
a cheating Bob clearly cannot guarantee winning more than 1

2n. If we now alter the
protocol, such that in the last round of the protocol, with probability δ, Alice asks Bob
what his outcome of the protocol was, and declares that as her outcome. This changes
P ∗ to P ∗′ = 1

2 + δ
2 , but with probability δn these protocols coincide, and Bob cannot

guarantee more than 1
2n wins, which is less than P ∗′n as required by the statement

above.
Can one define and show hedging for bit-commitment?
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A Proof of Theorem 2

We will use the same method we use in other sections, which is based on semi-definite
programming (SDP). See, for example, [5]. We will follow the notations used in [2, 20]. We
will prove that the maximal cheating probability for both players is P ∗ = PA = PB = cos2 π

8 .
If Alice is the cheater, a cheating strategy is described entirely by the one qubit state ρ

which she sends to Bob. Her winning probability is given by

Pr (Alice wins) = 1
2 Tr ((|0〉〈0|+ |+〉〈+|) ρ) .

Since

max
ρ�0,Tr ρ=1

1
2 Tr ((|0〉〈0|+ |+〉〈+|) ρ) = max

|ψ〉

〈
ψ
∣∣ 1

2 (|0〉〈0|+ |+〉〈+|)
∣∣ψ〉

〈ψ | ψ〉

= λmax

(
1
2 (|0〉〈0|+ |+〉〈+|)

)
= cos2 π

8 ,

the maximal cheating probability is PA = cos2 π
8 .

Let us look at a cheating Bob (and an honest Alice). The initial density matrix is ρAM0 =
|φ+ 〉〈φ+| on Alice and the message registers A⊗M. Then, Bob applies an operation to
the M qubit. Alice’s reduced density matrix cannot be changed due to Bob’s operation.
Hence our condition is TrM ρAM1 = ρA1 = ρA0 = 1

2I. Bob’s maximal cheating probability is
given by:

maximize Tr
[
(|1〉〈1| ⊗ |0 〉〈 0|+ |− 〉〈−| ⊗ |1 〉〈 1|) · ρAM1

]
(11)

subject to ρAM1 � 0
ρAM0 =

∣∣Φ+ 〉〈Φ+∣∣
TrM ρAM1 = ρA0

The maximization is justified because if the message qubit is 0, Alice measures her qubit
in the computational basis, and Bob wins if her outcome is 1; if the message qubit is 1, Alice
measures her qubit in the Hadamard basis, and Bob wins if her outcome is | −〉.

Solving this SDP gives

ρAM1 =


0.0732 0 0.1768 0

0 0.4268 0 −0.1768
0.1768 0 0.4268 0

0 −0.1768 0 0.0732


with a maximum value of ≈ 0.8536.

It is possible to verify that indeed the value of the SDP is not only close, but is exactly
equal to cos2 π

8 ≈ 0.8536: One can see that PB ≤ cos2 π
8 , via Kitaev’s formalism to find

the Z matrix that bounds ρ (see [20, 2] for details). Alternatively, we can use the SDP
formulation of games as described in [22], which applies to the coin-flipping protocol (with

Bob as the player): the matrix Y = 1
8

(
3 +
√

2 1
1 1 +

√
2

)
is dual-feasible, hence its trace

Tr [Y ] = 1
4
(
2 +
√

2
)

= cos2 π
8 gives the correct bound.
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We now show an explicit strategy with winning probability cos2 π
8 , which shows that

PB ≥ cos2 π
8 , which completes the proof. Bob applies a − 3π

8 rotation

U =
(

cos− 3π
8 − sin− 3π

8
sin− 3π

8 cos− 3π
8

)
=
(

sin π
8 cos π8

− cos π8 sin π
8

)
on theM qubit, which transforms the state 1√

2 (|00〉+ |11〉) to:

|ζ〉 = 1√
2

(
|0〉 ⊗

(
sin π8 |0〉 − cos π8 |1〉

)
+ |1〉 ⊗

(
sin π8 |1〉+ cos π8 |0〉

))
= 1√

2

((
sin π8 |0〉+ cos π8 |1〉

)
⊗ |0〉

)
+

1√
2

(
1√
2

((
sin π8 − cos π8

)
|+〉 −

(
cos π8 + sin π8

)
|−〉
)
⊗ |1〉

)
We simplify

1√
2

(
sin π8 + cos π8

)
= 1√

2

√
1
2

(
2 +
√

2
)

=
√

2 +
√

2
2 = cos π8

and similarly, 1√
2

(
cos π8 − sin π

8
)

=
√

2−
√

2
2 = sin π

8 . Hence,

|ζ〉 = 1√
2

((
sin π8 |0〉+ cos π8 |1〉

)
|0〉 −

(
sin π8 |+〉+ cos π8 |−〉

)
|1〉
)
.

Bob measures the r.h.s. qubit in the computational basis, and sends the classical result to
Alice. His winning probability is thus cos2 π

8 . This completes the proof that PA = PB =
P ∗ = cos2 π

8 .

B Relations between parallel and sequential board games

Here we show that the value of the sequential board games can be larger than the parallel
board games and vice-versa, depending on the target function, even in the classical setting.
Out standard example for a sequential superiority uses the target function: “must win
exactly 1-out-of-2 board games”. This of course, gives the sequential run an advantage over
the parallel run, of knowing the outcomes of the previous board games. For that we define
a very simple one-round board game: the player chooses a bit b, which is sent to the board.

If b = 0, the player loses (with probability 1).
If b = 1, the player wins with probability 1

2 .

I Lemma 12. In the above board game, SVal(t) ≥ 3
4 >

1
2 = PVal(t).

Proof. The optimal winning probability in a single board game for an honest player is 1
2

by always sending b = 1. Also note, that the player can force a loss with probability 1, by
sending b = 0. Assume that we are now playing two board games. If the board games are
played in sequence, then the optimal strategy will be to try and win the first board game
by sending b1 = 1. With probability 1

2 he will win, then he can lose the second board game
by sending b2 = 0. If the player lost the first board game, he will try to win the second
board game by sending b2 = 1. Altogether, this strategy wins exactly once with probability
1
2 + 1

4 = 3
4 , proving the first inequality.

Let us look at the four deterministic possibilities for the player when the two board
games are played in parallel. If he sends b0 = b1 = 0, he then loses with probability 1. If he



M.Ganz and O. Sattath 4:15

sends b0 6= b1 , i.e. loses one of the board games and tries to win the other, then his winning
probability of exactly one board game is 1

2 . If he sends b0 = b1 = 1, i.e. trying to win
both, then his winning probability of exactly one board game is again 1

2 (because no matter
what the outcome of the first board game is, the second outcome must be different, and
this happens with probability 1

2 ). Since every random strategy is a convex combination of
these deterministic strategies, every classical strategy will also have a winning probability of
at most 1

2 , which is inferior to the winning probability in the sequential setting. Naturally,
giving the player quantum powers, does not help him in this classical simple board game,
to achieve anything better. J

In the other direction, we give an example for a classical board game in which the parallel
setting, achieves better value than the classical one. Define a board game, in which the
board sends a bit a equally distributed, and then the player returns a bit b. If a = 0, then
the player loses if b = 0, and if b = 1 then the player wins with probability p. If a = 1, then
the player wins if b = 0, and if b = 1 then the player loses with probability p. We think
of p to be of a parameter p < 3

4 . Our target function is the same as before – win exactly
1-out-of-2 board games.

I Lemma 13. In the above board game, PVal(t) ≥ 1
2 + 2p (1− p) > 1

2 + 1
2p = SVal(t).

Proof. In the parallel settings, the player gets the a1, a2 and only then sends b1, b2, which
gives him the edge. If a1 6= a2, his strategy is to send b1 = 0, b2 = 0 and he will win
exactly one board game out of the two. If a1 = a2 then he will send b1 = b2 = 1 and
he will win exactly one of the board games with probability p (1− p). Overall we see that
PVal(t) ≥ 1

2 + 2p (1− p). In the sequential setting, it does not matter what happened in
the first board game, as the second board game will determine the result (the outcome of
the second board game must be different than the first). With probability 1

2 the board will
send a good a2, resulting in the player winning with certainty exactly 1 out of the 2 board
games if they send b2 = 0. With probability 1

2 the board will send a bad a2, resulting in the
player winning with probability p exactly 1 out of the 2 board games if they send b2 = 1,
and doing so with probability 0 otherwise. In total we get that SVal(t) = 1

2 + 1
2p. By taking

p < 3
4 , we will get that P ∗seq < P ∗par (because then 1

2 + 2p (1− p) > 1
2 + 1

2p). J

In the quantum setting, we already saw that parallel can achieve better value, in our coin
flipping example in section 2. We conclude that there is no general connection between the
value of the parallel setting and the sequential setting. In parallel, you know the rest of the
questions before giving an answer to question 1, while in sequence you know the outcomes
of all previous games before you have to give an answer. Either one might be beneficial,
depending on the situation.
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Abstract
We consider the problem of a particular kind of quantum correlation that arises in some two-party
games. In these games, one player is presented with a question they must answer, yielding an
outcome of either “win” or “lose”. Molina and Watrous [30] studied such a game that exhibited
a perfect form of hedging, where the risk of losing a first game can completely offset the corres-
ponding risk for a second game. This is a non-classical quantum phenomenon, and establishes
the impossibility of performing strong error-reduction for quantum interactive proof systems by
parallel repetition, unlike for classical interactive proof systems. We take a step in this article
towards a better understanding of the hedging phenomenon by giving a complete characterization
of when perfect hedging is possible for a natural generalization of the game in [30]. Exploring
in a different direction the subject of quantum hedging, and motivated by implementation con-
cerns regarding loss-tolerance, we also consider a variation of the protocol where the player who
receives the question can choose to restart the game rather than return an answer. We show that
in this setting there is no possible hedging for any game played with state spaces corresponding
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It is assumed that Bob has complete knowledge of Alice’s specification, including both the
method used to determine Alice’s question and the criteria that she uses to determine whether
Bob has won or lost the game.

Molina and Watrous [30] consider a specific instance of this setting where Alice sends
half of a 2-qubit Bell state 1√

2 |00〉 + 1√
2 |11〉 to Bob. Bob replies with a qubit and Alice

evaluates Bob’s answer by measuring his qubit and the second half of the Bell state against
the state cos(π/8) |00〉+sin(π/8) |11〉. A victory for Bob corresponds to the outcome of Alice
measurement corresponding to cos(π/8) |00〉+ sin(π/8) |11〉. When Alice and Bob play two
repetitions of this game in parallel, the results in [30] show that there exists a strategy for Bob
that guarantees he wins at least one of the two repetitions with probability 1. However, when
the game is played once, the probability that Bob wins is at most cos(π/8)2 ≈ 0.8536. Playing
two repetitions in parallel leads then to a hedging phenomenon, where if Bob wants to decrease
his chance of losing both repetitions, he can do so by not playing each game independently
and optimally. This hedging is also perfect, in the sense that Bob can completely offset the
risk of losing both games.

This is a completely quantum phenomenon, with no classical counterpart. Indeed, when
classical information is considered, and for any game that fits the setting we study, it is
immediate to show that when Bob wants to win at least k out of n parallel repetitions, it
is optimal for him to play independently (however, this is not the case when considering
multiple provers [18, 16, 34, 24, 8]). This establishes the non-triviality of the set of outcome
distributions that are possible to obtain from parallel repetition of the games that we
study, when compared to the classical case. In particular, it immediately illustrates that the
technique of parallel repetition cannot be used to trivially achieve strong error reduction for the
complexity class QIP(2), a class studied for example in [35, 42, 25, 23]. The quantum hedging
phenomenon is also an example where the quantum version of a game produces outcomes
unachievable by its classical counterpart. Most famously considered by Bell [6], this type of
violation has been observed in a number of game-like frameworks [13, 29, 32, 14, 9, 36, 15].

It is natural then to ask how general is the hedging phenomenon, both qualitatively and
quantitatively. A complete understanding of this question would allow us to characterize the
outcome distributions that can arise from Alice and Bob playing n parallel repetitions of a
prover-verifier game in our setting. Consequently, it could lead to a protocol for achieving
error reduction via parallel repetition for QIP(2) simpler than the one currently known [25].
The techniques used to achieve such an understanding could conceivably also extend to
the analysis of prover-verifier games involving further rounds of communication, and more
generally to other kinds of multi-party quantum interactions. This would lead to results
for the corresponding complexity classes (and likely also for their classical parallels) about
error reduction by parallel repetition. Taking a step towards such a complete understanding,
we consider in Section 3 a 2-parameter generalization of the game in [30], and characterize
when Bob can guarantee that he wins at least 1 out of n parallel repetitions, for every
n. We also give optimal strategies for Bob to win at least 1 out of n parallel repetitions,
both when perfect hedging is possible and not possible. We believe these findings are a
valuable stepping stone towards a more complete understanding of hedging behaviors for
fully arbitrary initial states, fully arbitrary quantum measurements, and k-out-of-n settings,
as well as highly non-trivial from a mathematical point of view. The formulas that we obtain
also open the door for connections between the hedging phenomenon and recent work [5]
involving generalizations of the PBR game [33], as we will discuss further in Section 5.

Exploring in a different direction the subject of quantum hedging, it also seems natural
to consider the possibility of implementing a game that exhibits quantum hedging using
existing quantum information processing devices. One possible choice would be to use
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optical quantum devices, but the immediate concern arises [38] of how to account for the
fact that photon losses will often occur, leading to a communication error between Alice
and Bob. Even if one chose another implementation method where communication is more
reliable, one would still need to consider the general fact that communication errors can occur.
More generally, the consideration of implementation inaccuracies is a standard direction
in which to extend results concerning quantum information protocols – see for example
recent work regarding loss-tolerant protocols for quantum coin-flipping [2] and QKD, [39] and
noise-tolerant protocols for quantum money [31], quantum coin-flipping [44] and quantum
randomness amplification [7].

Along this direction, we consider a loss-tolerant formalism in Section 4, and prove that
under our formalism quantum hedging is not possible. To model communication errors,
we assume that Alice cannot distinguish a communication error from Bob choosing not
to return an answer. Therefore, our formalism simply allows for the possibility that Bob
chooses not to return an answer, in which case the game is repeated. Bob choosing in our
formalism a random whether to return an answer or not would correspond to a genuine
disruption of communication, while Bob strategizing about when to return an answer would
correspond to Bob using communication errors as an excuse to avoid a losing outcome. Our
particular choice of framework can also be seen as adding postselection to two-round quantum
prover-verifier interactions. This addition of post-selection has been previously considered in
the case of single-party quantum computation [1, 37, 43, 28], but not to our knowledge in
the context of quantum prover-verifier interactions.

The techniques used to obtain our results in Section 4 are inspired by the techniques in
[17], which studies a particular case of quantum cloning. The connection between quantum
cloning and semidefinite programming was observed in [4], and has been used to obtain
results regarding quantum cloning (see the review in [10]). However, this is the first time to
our knowledge that this connection with semidefinite programming acts as a bridge to apply
ideas about optimal quantum cloning to the context of fully general two-round quantum
prover-verifier interactions.

Both of our results leave room for further progress. In particular, one can consider
hedging in a wider context than the setting in Section 3, and consider formalisms that model
communication errors in a different way than in Section 4. We give some suggestions in
Section 5 concerning corresponding choices for further exploration.

2 Notation

We will denote the set of binary strings with length n as {0, 1}n. These strings will be
indexed from 0 to n− 1. Therefore, we will denote the n successive binary symbols or bits in
a ∈ {0, 1}n as a0, . . . an−1. ∧r,∨r, and

⊕
r refer to the logical AND, OR, and XOR of the

bits of r ∈ {0, 1}n, respectively, while |r| refers to its Hamming weight.
Vector spaces associated with a quantum system are defined as complex Euclidean spaces.

We denote these spaces by the capital script letters X ,Y, and Z. The dual x∗ of a vector x
in a complex Euclidean vector space X will be the linear functional (i.e. the map X → C)
that maps y to 〈x, y〉. For a d-dimensional complex Euclidean space, we will often fix a
standard computational basis and, using bra-ket notation, address its elements and their
duals as {|0〉 , . . . , |d− 1〉} and {〈0| , . . . , 〈d− 1|}, respectively. The encoding of the label
inside a bra or a ket will often be done in binary for ease of explanation.

The complex vector space of linear operators of the form A : X → Y is denoted by
L(X ,Y). We write A ∈ L(X ) as a shorthand for A : X → X . The adjoint X∗ of an operator
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X ∈ L(X ) is the operator such that for all u, v ∈ X , 〈u,Xv〉 = 〈X∗u, v〉. An operator
H ∈ L(X ) is Hermitian if H = H∗. We write Herm(X ) to denote the set of all Hermitian
operators. The inner product 〈A,B〉 = Tr(AB) between two operators A,B ∈ Herm(X ) is
real and satisfies 〈A,B〉 = 〈B,A〉. If an operator P ∈ Herm(X ), and all eigenvalues of P
are non-negative, then we call P positive semidefinite, and refer to all such operators as
P ∈ Pos(X ). For a Hermitian operator H, ‖H‖ denotes the operator norm of H, that is,
the largest absolute value of an eigenvalue. If for an operator ρ ∈ Pos(X ) it is the case that
Tr(ρ) = 1, then ρ is said to be a density operator, and is referred to as ρ ∈ D(X ). We adopt
the convention of writing IX as opposed to I to indicate that the identity is acting on the
space X when convenient to do so. We will define the vec : L(X ,Y)→ X ⊗Y mapping to be
the one that takes yx∗ to x⊗ y, for x and y elements of the standard/computational basis
of X and Y. This can be seen as flattening a matrix into a vector. For any two operators
A,B ∈ L(X ,Y), it will hold that 〈A,B〉 = 〈vec (A) , vec (B)〉.

We also consider linear mappings of the form Φ : L(X ) → L(Y). The space of all
such mappings is denoted as T(X ,Y). For each Φ ∈ T (X ,Y), a unique adjoint mapping
Φ∗ ∈ T (Y,X ) is defined by the property that 〈Y,Φ(X)〉 = 〈Φ∗(Y ), X〉 for all X ∈ L(X )
Y ∈ L(Y). Throughout this work, we define quantum states by the set of density operators
ρ ∈ D(X ), with X a complex Euclidean space. Associated with the space X one may
consider a register denoted X in which the state ρ is contained. We consider measurements
of a register X as being described by a set of positive semidefinite operators {Pa : a ∈ Σ}
indexed by a finite non-empty set Σ of measurement outcomes which satisfies the constraint∑
a∈Σ Pa = IX . By performing a measurement on X in state ρ, the outcome a ∈ Σ results

with probability 〈Pa, ρ〉. These measurements are known as POVMs. We can also consider
quantum states stored across n registers (X1,X2, · · · ,Xn). We can describe the joint state of
those registers by a density operator σ ∈ D(X1 ⊗ · · · ⊗ Xn).

A linear mapping Φ : L(X )→ L(Y) is said to be completely positive if Φ⊗ IZ is a map
that preserves positive semidefiniteness for every complex Euclidean space Z and Φ is said
to be trace-preserving if Tr(Φ(X)) = Tr(X) for all X ∈ L(X ). We define a quantum channel
as a linear mapping Φ : L(X )→ L(Y) that is completely positive and trace preserving. A
channel transforms some state ρ stored in register X into the state Φ(ρ) of another register Y.
The set of all channels between such two registers is denoted by C(X ,Y), and is a compact
and convex set. Note that the channel corresponding to an unitary operator U is the one
that maps a quantum state σ to UσU∗.

For spaces X and Y , one may define the Choi representation of an operator Φ ∈ T(X ,Y)
as J(Φ) =

∑
i,j Φ (|i〉 〈j |)⊗ |i〉 〈j |, where J : T(X ,Y)→ L(Y ⊗ X ), and i and j iterate over

the computational basis for X . Note that the mapping J is linear, bijective, and multiplicative
with respect to the tensor product. The Choi representation has a number of more complex
properties, three of which will be useful to us:

I Lemma 1.
1. The mapping Φ is completely positive if and only if J(Φ) ∈ Pos(Y ⊗ X ).
2. The mapping Φ is trace preserving if and only if TrY(J(Φ)) = IX
3. Φ(Z) = TrX

[
J(Φ)

(
IY ⊗ ZT)]

We refer the reader to [41] for the proof of Lemma 1 and further details on the notation.

3 Hedging to win 1 out of n parallel repetitions of a game

Let G denote the following game:
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1. Alice prepares the 2-qubit state ρα = uαu
∗
α ∈ D(X ⊗ Z) in registers (X,Z) where

uα = α |00〉+
√

1− α2 |11〉 ∈ X ⊗ Z, (1)

for α ∈ (0, 1]. Alice sends register X to Bob.
2. Bob applies a channel Φ ∈ C(X ,Y) to the contents of X. This results in a state

σ ∈ D(Y ⊗ Z), contained in registers (Y,Z). Register Y is sent back to Alice.
3. Alice performs a measurement on the state σ. This measurement is {P0,θ, P1,θ} for

θ ∈ [0, 2π), with

P1,θ = vθv
∗
θ , P0,θ = I − P1,θ,

vθ = cos(θ) |00〉+ sin(θ) |11〉 ∈ Y ⊗ Z. (2)

An outcome of “0” or “1” denotes a losing or winning outcome for Bob, respectively.

One can imagine repeating the game G n times in parallel. This is denoted as Gn, and
illustrated in Figure 1. In this setting, Alice prepares n states ρ1,α, . . . , ρn,α in registers
((X1,Z1), · · · , (Xn,Zn)) where

ρ1,α ∈ D(X1 ⊗Z1), . . . , ρn,α ∈ D(Xn ⊗Zn). (3)

Alice sends the registers (X1, . . . ,Xn) to Bob and he applies his quantum channel,

Φn ∈ C(X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn). (4)

The resulting states are sent back to Alice and she performs a series of n projective measure-
ments with respect to the operators P0,θ, P1,θ. These give n outcomes of either 0 or 1, loss or
win. Since Bob’s actions are not required to respect the independence of the measurements,
they may cause correlations between the n measurement outcomes.

Indeed, in [30], Molina and Watrous analyzed Gn for n = 2 where α = 1/
√

2 and θ = π/8,
and found that Bob wins one out of the two games with certainty if he applies a specific
correlated strategy. If on the other hand, Bob treated each repetition independently, it would
not be guaranteed that Bob would win at least one of the games.

We consider Gn for any n ≥ 1 and ask for what values of α and θ is it true that Bob can
make sure to win with certainty at least one out of the n games in Gn. Let pn,α,θ(Φn) ∈ [0, 1]
be the probability that Bob loses all n outcomes of Gn using the strategy defined by Φn.
This is given by:

pn,α,θ(Φn) =
〈
P⊗n0,θ , (Φn ⊗ IZ1⊗···⊗Zn)

(
n⊗
i=1

ρi,α

)〉
. (5)

Letmn,α,θ ∈ [0, 1] be minΦn pn,α,θ(Φn). We refer to a quantum channel Φn that minimizes
mn,α,θ as an optimal strategy. That is, equal to the minimum probability with which Bob loses
each game over all choices of quantum channels Φn of the form in (4). If mn,α,θ evaluates to
0, then there exists a Φn that ensures Bob wins at least one game.

The quantity mn,α,θ is expressible as the optimal value of a semidefinite program. Let
Q0,α,θ ∈ Pos(Yi ⊗Xi) be defined as

Q0,α,θ = (IYi ⊗Ψρα) (P0,θ) , (6)

where the mapping Ψρα : L(Z)→ L(X ) is defined by J(Ψρα) = ρα (the entry-wise complex
conjugate of ρα). This makes Q0,α,θ a function of both P0,θ and ρα.
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ρ1,α

ρ2,α

...

ρn,α

{Pa1}

{Pa2}

...

{Pan}

Φn

...
...

...

Z1

Z2

Zn

X1

X2

Xn

Y1

Y2

Yn

Figure 1 The parallel repetition Gn of n copies of a game G of the type we study.

It follows from Lemma 1 of [30] that Q0 is positive semidefinite, and that for any channel
Φ : L(X ) → L(Y), we have 〈P0,θ, (Φ⊗ I) (ρi,α)〉 = 〈Q0,θ, J(Φ)〉. This can be proved by
considering the case where ρi,α corresponds to a rank-1 operator that transforms a state of
the computational basis into another one, and then using the linearity properties of the inner
product (see Appendix A.1 for more details of this derivation). Putting this together with
facts 1 and 2 about the Choi representation in Lemma 1, and the bijective property of the
J(·) map, we obtain that the following primal and dual pair gives a semidefinite program to
compute mn,α,θ:

mn,α,θ: Primal problem

minimize:
〈
Q⊗n0,α,θ, X

〉
subject to: TrY1⊗···⊗Yn(X) = IX1⊗···⊗Xn ,

X ∈ Pos(Y1 ⊗X1 ⊗ · · · ⊗ Yn ⊗Xn).

(7)

mn,α,θ: Dual problem

maximize: Tr(Y )
subject to: π (IY1⊗···⊗Yn ⊗ Y )π∗ ≤ Q⊗n0,α,θ,

Y ∈ Herm(X1 ⊗ · · · ⊗ Xn).
(8)

where π is a unitary permutation operator defined by the action

π(y1 ⊗ · · · ⊗ yn ⊗ x1 ⊗ · · · ⊗ xn) = y1 ⊗ x1 ⊗ · · · ⊗ yn ⊗ xn

for all y1 ∈ Y1, · · · , yn ∈ Yn and x1 ∈ X1, · · · , xn ∈ Xn. Note that strong duality holds for
the above semidefinite program, by choosing the primal and dual feasible solutions (X,Y )
for the application of Slater’s theorem as a scalar multiple of the identity. The derivation to
obtain this semidefinite program is similar to that in [30], and previously in [22] and [21].
We point the reader to [3] for MATLAB code that solves SDPs (7) and (8), using the CVX
convex optimization package [20].
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Figure 2 γ2,α and θ2,α as a function of tan−1
(√

1− α2

α

)
.

We present now for fixed n and α the range of θ which characterizes the measurements for
which Bob can make sure he wins at least 1 parallel repetition in Gn. That is, it characterizes
when is Bob able to perform perfect hedging. Furthermore, we present strategies that give
Bob an optimal probability to win at least 1 out of n games, both when Bob is able to
perform perfect hedging and when he is not.

I Theorem 2. Let

θn,α = tan−1

(√
1
α2 − 1

(
21/n − 1

))
,

γn,α = tan−1

(√
1
α2 − 1

(
1

21/n − 1

))
,

(9)

where the trigonometric domain is restricted to [0, π/2]. If and only if Alice’s rank-1 projective
measurement {P0, P1} is parametrized by θ ∈ [θn,α, γn,α], then there exists a strategy for Bob
to perform perfect hedging.

We see then that the angle π/8 used for θ in [30] corresponds to the lower bound
θ2,1/

√
2 = π/8 from Theorem 2, but also that perfect hedging can be attained for this setting

up to γ2, 1√
2

= 3π/8. Note that as the number of games n increases, the size of this range
increases. Moreover, for any choice of θ in (0, π/2), there is an n large enough for perfect
hedging to be possible. As one can see in our plot of θn,α and γn,α, the cases where perfect
hedging are posssible are symmetric with respect to the case where the initial state and
the desired final state are the same (i.e., θ = tan−1(

√
1− α2/α)). Note also that the size

of the range where perfect hedging is possible is minimized for θ = 0 and θ = π/2, which
correspond to a standard basis measurement done by Alice.

The proof of Theorem 2 follows immediately from Lemma 5 and Lemma 6, stated below.
Theorem 2 results in the following corollary:

I Corollary 3. For a fixed n, perfect hedging occurs for the largest range of θ angles when
Alice initially prepares a maximally entangled state (that is, when α = 1√

2).

The proof for the corollary follows from directly maximizing γn,α − θn,α over all α, by
taking derivatives with respect to α. The corollary tells us then that the maximally entangled
represents an extremal case in our quantum hedging context. One might be able to use this
when trying to generalize our results, as we will further discuss in Section 5.
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5:8 Quantum Hedging in Two-Round Prover-Verifier Interactions

In the following lemmas, we define an optimal choice for Bob of the channel Φ that he
applies to the input he receives from Alice:

I Lemma 4. Let n ≥ 2 be a positive integer, let α ∈ (0, 1], let θn,α and γn,α be angles defined
as in Theorem 2, and let

Λn =
∑

r∈{0,1}n
(−1)∧r+⊕r |r〉 〈r| ,

Ξn =
∑

r∈{0,1}n
(−1)∨r+⊕r |r〉 〈r| ,

(10)

be unitary operators that Bob applies as his strategy in Gn. Then it holds that

pn,α,θn,α (Λn) = 0 = pn,α,γn,α (Ξn) . (11)

This shows the existence of strategies {Λn,Ξn} for Bob at {θn,α, γn,α} that achieve a
value of 0 for the SDP (7). The next lemma proves that for all points within these two
bounds there exists such a strategy as well. Note that Λn and Ξn do not depend on α. Also,
note that when n = 2, Bob’s unitary Λ2 on the two qubits that he receives is

Λ2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (12)

which gives us the same strategy as in [30]. The proof of the lemma follows from observing
that the final state after Bob applies Λn/ Ξn has zero overlap with the state corresponding
to Bob losing all the repetitions. The details of the derivation are included in Appendix A.2.

I Lemma 5. In the scenario where the projective measurements are parametrized by θ ∈
[θn,α, γn,α] for θn,α and γn,α defined as in Theorem 2, Bob can apply the strategy corresponding
to the following unitary operator to achieve perfect hedging for 1 out of n games:

(−1)n|0n〉〈0n| − |1n〉〈1n|+
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

(−1)n+ikr |r〉 〈r| , (13)

where for a fixed choice of |r| = i, the corresponding kr are
(
n
i

)
complex numbers with the

following properties

kr =



sθ,α,n + i
√

1− s2
θ,α,n for

⌊(
n
i

)
/2
⌋
values of r,

sθ,α,n − i
√

1− s2
θ,α,n for

⌊(
n
i

)
/2
⌋
values of r,

−1 for the remaining values of r when
(
n
i

)
is

odd and tan(θ) ≥
√

1
α2 − 1,

1 for the remaining values of r when
(
n
i

)
is odd

and tan(θ) <
√

1
α2 − 1,

where sθ,α,n is a real number ∈ [−1, 1] whose existence we guarantee in the proof of this
lemma.
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Since Bob has complete knowledge of the game, for any θ ∈ [θn,α, γn,α] Bob can apply the
strategy corresponding to the angle θ selected by Alice. It is clear that the optimal strategy
for Bob is not unique, since our definition does not uniquely specify which coefficients kr
correspond to which values of r. This lemma is derived by performing a computation (similar
to the one for Lemma 4) that computes the overlap between the resulting state after Bob
applies the strategy we describe and the state corresponding to Bob losing all n repetitions.
Then, we consider the cases sθ,α,n = −1 and sθ,α,n = 1 and obtain through continuity
arguments that there must be a value of sθ,α,n in the [−1, 1] range that results in perfect
hedging. The details of the corresponding derivation are included in Appendix A.3.

We have thus far considered the case when perfect hedging is possible. The following result
deals with characterizing the scenario when perfect hedging is not possible, and provides a
corresponding strategy for Bob to play optimally.

I Lemma 6. For n ≥ 2 and for θ ∈ [0, θn,α) ∪ (γn,α, π/2] perfect hedging cannot occur, and
the strategies Λn and Ξn mentioned in Lemma 4 are respective optimal strategies for Bob.

The proof of this lemma is obtained by using SDP complementary slackness [40] to obtain
a candidate solution for the dual SDP (8) with the same objective value as the chance of
achieving 1-out-of-n hedging for Λn/Ξn. Then, one can use a direct sum decomposition of
the matrices involved in the SDP constraint to prove the feasibility of this candidate solution.
The details of the corresponding calculations are available in Appendix A.4. Note that the
strategy Bob adopts is independent of the parameter θ, implying that when perfect hedging
is not possible the strategy is optimal regardless of the projective measurements chosen by
Alice.

It can also be observed from Lemma 5 and Lemma 6 that a unitary (and in fact, a
diagonal in the computational basis) strategy is always sufficient for Bob to win at least
once with optimal probability. Note that it intuitively makes sense that Bob’s strategy is a
diagonal unitary, since switching a |0〉 to a |1〉 or vice-versa on his side will produce a state
with no overlap with the target state cos(θ) |00〉+ sin(θ) |11〉.

4 (Lack of) Hedging in a Loss-Tolerant Prover-Verifier Model

We consider a variation of the prover-verifier setting where Bob has the choice to not respond
to Alice, in order to model communication errors, as described in Section 1. If Bob chooses
not to respond, and therefore Alice does not receive an answer, the game is repeated again,
and this goes on until an answer is returned by Bob. Bob might want to do this whenever
using his complete knowledge of the game, he can predict that an answer will result in Alice
obtaining a negative outcome in her measurement. Indeed, to see how this variation can
change the result of an interaction, consider the following game where Bob is always forced
to return an answer:
1. Alice prepares the maximally entangled state 1√

2 |00〉 + 1√
2 |11〉 and sends the second

qubit to Bob.
2. Bob responds by sending a qubit to Alice.
3. Alice ignores Bob’s answer, and measures the qubit she kept with respect to the projective

measurement {P0, P1}, where P0 = |1〉 〈1| and P1 = |0〉 〈0|.

It is clear that the maximum probability for Bob to win the game is 50%. This follows
from the fact that the actions of Bob cannot alter the reduced state that Alice holds, and
the outcome of the interaction depends only on this state. However, the situation changes
drastically when Bob is allowed to return no answer in the second step. In that case, Bob
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5:10 Quantum Hedging in Two-Round Prover-Verifier Interactions

can choose to perform a measurement using the computational basis on the qubit he receives.
If the measurement results in the outcome |0〉, corresponding to P1, he will return an answer,
and otherwise he will not, and force a restart. The entanglement between the qubit that
Alice keeps and the one that Bob receives guarantees then that the outcome will always be
the successful one.

It seems clear then that giving Bob the choice to abort the protocol can have significant
changes on what optimal behaviors for Bob are like. This motivates the consideration of
whether any form of quantum hedging (perfect or not) is still possible in the “repetition
after communication error" setting for an arbitrary two-message quantum-verifier interaction
(described by an arbitrary finite-dimensional inital quantum state ρ prepared by Alice and
an arbitrary finite-dimensional POVM {Pi} used to determine the interaction’s outcome.)
We ask in this context then whether it will be optimal for Bob to play each interaction
independently when trying to optimize his chance of winning at least k out of n parallel
interactions.

To answer this question, we will assume in our analysis that Bob always has a nonzero
chance of winning a single interaction. If this were not the case, the question of whether
or not hedging occurs would be uninteresting. This is because in this case, the optimal
probability for Bob to win k out of n parallel repetitions would always be zero. To see why,
assume to the contrary that Bob can manage to win k > 0 out of n > 1 repetitions with
non-zero probability. Then, whenever Bob plays a single game with Alice, he could simulate
the input for n− 1 additional interactions, and since the possibility that he wins k > 0 of the
n games is greater than zero, and the situation is symmetrical, the possibility that he wins
the single “real” game is greater than zero as well, which contradicts our starting premise.

Furthermore, we need to specify how does the “repetition after communication error"
aspect of the framework interacts with the “repeating n interactions in parallel" aspect of the
framework. For simplicity, we will make in our model the assumption that whenever Alice
does not receive an answer to one out of n parallel interactions, she will restart all of the n
parallel interactions.

To start our analysis, we consider an intermediate setting where we allow Bob to not give
an answer, and Alice does not repeat the interaction when she doesn’t obtain an answer, and
instead counts that as a loss for Bob. This means that Bob can return a state with trace less
than one. Using the properties of the Choi representation, and following the same analysis as
in [30] and Section 3, the optimal probability for Bob of achieving outcome a is the value of

Primal problem

maximize: 〈Qa, X〉
subject to: TrY(X) ≤ IX ,

X ∈ Pos (Y ⊗ X ) ,
(14)

where Qa is defined as in (6), starting from an arbitrary POVM {Pi} and a state ρ. Without
loss of generality, we assume that Bob wants to achieve quantum hedging with respect to
outcome a, and group all other outcomes into a single outcome corresponding to Q1−a.

Now we take into account the fact that the interaction is repeated whenever an answer is
not received. To do this, it is enough to divide the objective function, which corresponds to
the probability of obtaining outcome a, by the probability that an answer is returned. This is
because we can ignore previous rounds of the interaction, since the repeated rounds occur in
series, and Alice acts independently between them. Indeed, the way in which previous rounds
would be taken into account would be with an additional input for Bob, corresponding to his
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memory after the previous rounds of the protocol. But the fact that there is no computational
restriction on Bob and no hidden information means that for any possible value of that input,
Bob could just simulate the previous rounds to generate it, so the additional memory input
is not needed, and we can ignore previous rounds.

Note that the division by the probability that Bob returns an answer would not be
possible if Bob just chose not to return an answer. However, that strategy can just be ignored
as a non-optimal one, since we are assuming Bob can win with non-zero probability.

The probability that an answer is returned is the trace of the state after Bob returns
an answer, which is a linear function of the variable X in SDP (14). In particular, the
probability is given by 〈E,X〉, where

E =
∑
i

Qi =
∑
i

(
IL(Y) ⊗Ψρ

)
(Pi)

=
(
IL(Y) ⊗Ψρ

)
IY⊗Z = IY ⊗ TrZ(ρ),

(15)

and the last step uses the third fact in Lemma 1. Note that since
∑
iQi = E, Qa ≤ E.

This tells us then how to modify the SDP (14) that describes Bob’s optimal probability
of obtaining outcome a in a way that takes into account our loss-tolerant framework. In
particular, we have that the equivalent of SDP (14) is now given by

Primal problem

maximize: 〈Qa, X〉
〈E,X〉

subject to: TrY(X) ≤ IX ,
X ∈ Pos (Y ⊗ X ) , 〈E,X〉 6= 0.

(16)

We use now an analysis inspired by the one in [10] to obtain a more explicit form for
the value of this SDP. First, notice that scaling a solution X by a nonzero constant will
not change the value of the objective function. Since the partial trace operation preserves
positive semidefiniteness, we can then get rid of the TrY(X) ≤ IX constraint:

Primal problem

maximize: 〈Qa, X〉
〈E,X〉

subject to: X ∈ Pos (Y ⊗ X ) , 〈E,X〉 6= 0.
(17)

At this point, we can assume that X corresponds to a rank-one operator. To see why,
consider an X that corresponds to a sum of two solutions, X1 and X2. Then, the value of
the objective function will be

〈Qa, X1〉+ 〈Qa, X2〉
〈E,X1〉+ 〈E,X2〉

≤ max
(
〈Qa, X1〉
〈E,X1〉

,
〈Qa, X2〉
〈E,X2〉

)
, (18)

where the inequality follows from the fact that all values on the left-hand side are positive.
We obtain the problem

Primal problem

maximize: x∗Qax

x∗Ex

subject to: x ∈ Y ⊗ X , x∗Ex 6= 0.
(19)
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5:12 Quantum Hedging in Two-Round Prover-Verifier Interactions

Note now that we can assume without loss of generality that an optimal solution x is
contained within the support of E. In this domain the Moore-Penrose pseudo-inverse of E,
E+, acts as a bijection. Therefore, we replace x by (E+)1/2x in the objective function, and
obtain

Primal problem

maximize: x∗(E+)1/2Qa(E+)1/2x

x∗x

subject to: x ∈ Y ⊗ X , x ⊥ ker(E),
(20)

which has the value ‖(E+)1/2Qa(E+)1/2‖. We denote this as ‖Λ‖.
When Bob wants to be successful in at least k out of n parallel interactions, with Alice

acting independently, one just needs to replace Qa by the sum of tensor products of Qi’s
corresponding to at least k outcomes equal to a. Remembering that the sum of all the Qi is
equal to E, the same analysis that we performed for a single repetition gives us an optimal
probability of ‖Λk,n‖, with Λk,n given by :

∥∥∥(
√
E+)⊗n

(
E⊗n −

k−1∑
t=0

πt
(
Q⊗n−t1−a ⊗Q⊗ta

))
(
√
E+)⊗n

∥∥∥ (21)

where πt(x) is the sum of all
(
n
t

)
unique permutations of x.

As an aside, note that one can assume that ρ corresponds to a pure state ψ. This is
because given a protocol where Alice initially prepares a mixed state, we can easily modify it
so that Alice prepares a purification of that state instead, and just ignores the extra qubits
when performing the final measurement. Using this, we observe an interesting fact about this
model, which is that at least when one restricts Bob to perform a rank-one measurement,
the optimal success probability for Bob does not depend on the Schmidt coefficients of ψ.
This is proved by letting the initial state that Alice holds be given by

∑
i

√
piai ⊗ bi, and

the state corresponding to Bob’s projection by
∑
i

√
qici ⊗ di. Using algebraic manipulations

we obtain that the optimal probability of winning for Bob in a single parallel repetition is

∥∥∥ ∑
i,j,k,l

√
qjqlb

∗
i dld

∗
j bkaiak

∗ ⊗ cjc∗l
∥∥∥, (22)

with no dependence on the pi.
This suggests that the example we gave at the beginning of this section might capture

all the additional power Bob has in this model. In particular, it suggests that an optimal
strategy for Bob might always consist of performing an orthogonal measurement on the
qubits he is given, and then refusing to give an answer except when he obtains the “best”
outcome.

As for our main subject of concern (quantum hedging), it turns out that in the model
we just described quantum hedging is not possible. One can interpret this as saying that
Bob is already so powerful in one single repetition (since he can choose not to return an
answer) than the power to entangle several answers does not add anything in comparison.
More precisely, we have the following theorem:

I Theorem 7. Consider a two-message prover-verifier interaction characterized by an
arbitrary initial state ρ and an arbitrary POVM {Pi}, both on a finite number of qubits.
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Then, under the loss-tolerant setting described in this section, it is optimal for Bob to
play independently in order to maximize his chance of winning at least k out of n parallel
interactions.

The statement of the theorem results from a straightforward spectral analysis of the Λk,n
operator by induction on n and then k. The details of the corresponding computation are
included in Appendix A.5.

5 Discussion

We have analyzed generalizations of a specific prover-verifier interaction where the verifier
can use a quantum hedging strategy to win at least one of n parallel repetitions with a higher
probability than what would have been possible playing each game independently. This
interesting phenomenon was originally described in [30], where the authors illustrated an
explicit example of perfect hedging when two repetitions of the game were carried out. It
was previously unknown how the perfect hedging phenomenon generalizes to the case when
n repetitions of the game are performed. We resolved this question for a generalization of
the game in [30], and provided strategies for Bob that allow him to achieve perfect hedging
whenever it is possible.

We also analyzed a variant of this setting where Bob is not obligated to return an answer
to Alice. In a practical sense, Bob’s refusal to respond to Alice can be viewed in terms of
an experimental setup where the lack of a response could correspond to a communication
error [38]. This consideration led to a different semidefinite program that characterized the
interaction between Alice and Bob. We then used this SDP (16) to ask whether or not Bob
still had the ability to take advantage of hedging behavior, with a negative answer.

While we have considered this hedging behavior in a number of settings, there are still
many questions remaining. As mentioned, we have characterized the conditions that allow
Bob to win 1 out of n repetitions in a framework that generalizes the game in [30]. However,
it still remains open to determine the conditions under which Bob can always win at least
k out of n repetitions for some k > 1. It would be interesting to determine the threshold
of k for which perfect hedging occurs, and to also provide a characterization in regards to
the strategy that Bob uses to achieve this result. Running numerical instances for higher
values of k and n using a simple formulation in CVX [20] quickly becomes computationally
infeasible, as can be observed from the software we have provided in [3]. It is possible that
this code could be optimized to consider further cases, leading to conjectures regarding the
behavior for arbitrary k and n that could be then proved analytically. Based on our current
numerical evidence, it is possible that Bob cannot perfectly hedge more than k = n/2 games.
Note also that when k ≤ n/2 one can design a strategy for the goal of winning k out of
n repetitions by dividing the n parallel repetitions into several smaller groups, and then
using the strategies described in this paper in order to always win at least one repetition
in each group. It is left as an open question (whose solution we believe to be a significant
task) whether the range of parameters in which the resulting strategy always wins k out of n
repetitions is the optimal one. Motivated by our results in Corollary 3, one could also look
into the subject of reducibility between different games in our framework, asking for example
whether there is a procedure with an intuitive operational description that transforms a game
with an arbitrary shared initial state between Alice and Bob to one where the initial shared
state is now maximally entangled, while the possibilities of achieving k-out-of-n hedging
remains the same.
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It is also worth noting that the problem of conclusive state exclusion, which was recently
considered in [5], seems to be connected to the interaction we have analyzed in this work. In
this problem, Alice prepares a mixed state from a given distribution and sends it to Bob, and
for Bob to win, he has to accurately discard at least one of the possible options. In [5] the
PBR game, originally formulated in [33], was analyzed in terms of an semidefinite program
using the conclusive state exclusion framework. Some of the formulas we obtain in Section 3
are similar to the ones [5] derive in their analysis of the PBR game, specifically equations
(9) and (10). Looking at the SDPs involved in their work and in ours, it seems clear that
the similarity arises from the fact that diagonal unitaries happen to be optimal for hedging.
The fact that they are optimal means that the optimization problem we examine in SDP
(7) is equivalent to that of optimizing along complex vectors where each entry of the vector
is a unit. Then, to establish the connection with the PBR setting, one would establish an
equivalence between these types of vectors and highly symmetrical projective measurements
like those obtained as optimal solutions in the corresponding PBR state exclusion setting.
However, in a setting with initial states outside the α |00〉+

√
1− α2 |11〉 family we consider

in Section 3, there is no reason why the optimal channel for winning 1 out of n parallel
interactions should correspond to a diagonal unitary. It remains then to see whether any
similar connections can be established between such a setting and a state exclusion setting. It
seems plausible that further work clarifying these connections could be used to apply existing
results concerning the conclusive state exclusion framework to the hedging framework, and
vice versa.

One could also further consider the setting in which protocol errors are considered. Here,
we have assumed that Bob can delay returning an answer for as many iterations of the
protocol as he desires. An obvious follow-up question then is to determine whether an
advantage from hedging behavior is possible when this is not the case. One might restrain
Bob to behaviors where on average he will return an answer within a fixed number of
iterations, or introduce constraints be of the form “After X iterations, Bob’s probability of
having return an answer must be at least equal to Y”. A special case of those constraints
that might be particularly interesting is when Bob is required to return an answer within
a fixed number of iterations. We could also modify the way in which the “repeating after
failure" and “repeating in parallel" frameworks interact. In particular, we could have Alice
repeat only a subset of interactions if answers corresponding to the other interactions have
been obtained from Bob.

Note that when trying to analyze more general models (in both the ideal and loss-tolerant
cases) along the lines described in this section, it might be fruitful to look into whether it is
possible to again use ideas from the quantum cloning literature, as we did here in Section 4.
It is possible as well that progress can be made using representation theory tools to simplify
or avoid the analysis of semidefinite programs, as done for example in [19, 11, 12, 27].
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A Mathematical derivations

A.1 Verification of procedure to group the starting state and the final
measurement into a single variable

Consider first the case where we have a matrix A ∈ L(X ⊗ Z) that corresponds to a rank-1
operator that transforms a state of the computational basis into another one. Let it be equal
to |a〉〈c| ⊗ |b〉〈d|, with |a〉〈c| ∈ L(X ), |b〉〈d| ∈ L(Z). The channel ΨA : L(Z) → L(X ) such
that J(ΨA) = A is then the one that maps |b〉〈d| ∈ L(Z) to |a〉〈c| ∈ L(X ), and everything
else in the computational basis for L(Z) to 0.
Consider now an operator M ∈ L (Y ⊗ Z), and a channel Φ : L(X ) → L(Y). We want to
verify that

〈M, (Φ⊗ I) (A)〉 = 〈(I ⊗ΨA) (M), J(Φ)〉 . (23)

To do so, consider a computational basis decomposition M =
∑
i,j,k,lmi,j,k,l|i〉〈j| ⊗ |k〉〈l|,

with |i〉〈j| ∈ L (Y), |k〉〈l| ∈ L (Z). Then, the left hand side of (23) is equal to〈∑
i,j,k,l

mi,j,k,l|i〉〈j| ⊗ |k〉〈l|,Φ(|a〉〈c|)⊗ |b〉〈d|
〉

=
〈∑

i,j

mi,j,b,d|i〉〈j|,Φ(|a〉〈c|)
〉
,

and the right hand side of (23) is equal to

〈
(I ⊗ΨA)

∑
i,j,k,l

mi,j,k,l|i〉〈j| ⊗ |k〉〈l|

 , J(Φ)
〉

=
〈∑

i,j

mi,j,b,d|i〉〈j| ⊗ |a〉〈c|, J(Φ)
〉

=
〈∑

i,j

mi,j,b,d|i〉〈j|,Φ(|a〉〈c|)
〉
,

so (23) holds.
(23) does extend by linearity to any choice of A ∈ L(X ⊗ Z). Indeed, assume that it

holds for A,B ∈ L(X ⊗Z), and consider a linear combination λAA+ λBB, with λA, λB ∈ C.
Then, the left hand side of (23) will be given by

〈M, (Φ⊗ I) (λAA+ λBB)〉 = λA 〈M, (Φ⊗ I) (A)〉+ λB 〈M, (Φ⊗ I) (B)〉
= λA 〈(I ⊗ΨA) (M), J(Φ)〉+ λB 〈(I ⊗ΨB) (M), J(Φ)〉
=
〈
λA (I ⊗ΨA) (M) + λB (I ⊗ΨB) (M), J(Φ)

〉
.

We want to prove then that

λA (I ⊗ΨA) (M) + λB (I ⊗ΨB) (M) = (I ⊗ΨλAA+λBB) (M).

To do so, we use the third property of the Choi representation introduced in Lemma 1,
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and express λA (I ⊗ΨA) (M) + λB (I ⊗ΨB) (M) as

λA TrY⊗Z
(
J(IL(Y ) ⊗ΨA)(IX⊗Z ⊗MT )

)
+

λB TrY⊗Z
(
J(IL(Y ) ⊗ΨB)(IX⊗Z ⊗MT )

)
= TrY⊗Z

((
λAJ(IL(Y ) ⊗ΨA) + λBJ(IL(Y ) ⊗ΨB)

)
(IX⊗Z ⊗MT )

)
= TrY⊗Z

((
J(IL(Y ))⊗ λAA+ J(IL(Y ))⊗ λBB

)
(IX⊗Z ⊗MT )

)
= TrY⊗Z

((
J(IL(Y ))⊗

(
λAA+ λBB

))
(IX⊗Z ⊗MT )

)
= (I ⊗ΨλAA+λBB) (M).

A.2 Derivation for Lemma 4
Proof. Given that n parallel repetitions of the game are considered, our claim states that
Bob will win at least one out of the n repetitions if he adopts Λn as his strategy when
the projective measurement made by Alice corresponds to the parameter θn,α. A similar
argument also holds for Ξn at the corresponding angle γn,α. We prove this explicitly for
the strategy Λn , and the other case follows using the same argument. The proof of this
lemma uses a technique of conditioning where we consider the resulting state conditioned
on Bob obtaining a losing outcome in the first projective measurement of Alice, and the
corresponding probability for such an outcome. Then, we generalize this procedure to the
rest of the parallel repetitions. To conclude the proof, we set the probability of the “all-losing
state" at the end to zero, which allows us to solve for θ in the final equation.

First, let us define the pure states:

vθ = cos(θ) |00〉+ sin(θ) |11〉 , sθ = |01〉 ,
wθ = sin(θ) |00〉 − cos(θ) |11〉 , tθ = |10〉 ,

(24)

where we recall from Section 3 that vθ ∈ Y ⊗Z is the state which corresponds to the winning
projective measurement outcome, and wθ, sθ, and tθ ∈ Y ⊗ Z are the states that correspond
to the losing projective measurement. Essentially, Bob is trying then to transform the state
prepared by Alice to something as close as possible to vθ, while restricted to operating on
one half on the state.

Let Λn be the operator defined as

Λn =
∑

r∈{0,1}n
(−1)∧r+⊕r |r〉〈r|, (25)

Λ′n be the similar operator

Λ′n =
∑

r∈{0,1}n
(−1)⊕r |r〉〈r|. (26)

and define the vector κn as

κn =
∑

a∈{0,1}n

n−1⊗
i=0

α(1−ai)
(
1− α2)ai/2 |aiai〉 . (27)

We run now through the parallel repetition of n copies of the game. Since the initial shared
state is u⊗nα =

(
α |00〉+

√
1− α2 |11〉

)⊗n, the state after Bob applies his channel (acting on
his qubits for all of the n parallel repetitions) is

f0
α = (Λn ⊗ IZ1⊗···⊗Zn)κn (28)
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We shall condition now on Bob losing the first out of n parallel repetitions. It should be
noted that since Alice starts with the entangled state u⊗nα and Bob performs a unitary
diagonal operation, the states sθ and tθ in (24) do not contribute to the losing projective
measurement outcome. Once we condition on Bob losing the first game, the resulting state
is then a normalization of

f1
α,θ = (wθw∗θ ⊗ I) f0

α

= wθ ⊗ α sin(θ)
(
Λ′n−1 ⊗ IZ2⊗···⊗Zn

)
κn−1

+ wθ ⊗
√

1− α2 cos(θ) (Λn−1 ⊗ IZ2⊗···⊗Zn)κn−1, (29)

with the associated probability being (f1
α,θ)∗f1

α,θ.
Generalizing this to Bob losing all n games, one can observe that the −1’s for the cos(θ)

term in wθ cancel the negative terms from the (−1)
⊕

r term in Λn, as happens to make
the last line of (29) have a positive coefficient. Taking into account the negative term from
(−1)∧r in Λn, (29) generalizes then to:

fnα,θ = (wθ)⊗n
(
αn sin(θ)n + n(αn−1

√
1− α2) sin(θ)n−1 cos(θ) + . . .

+ n(α(1− α2)(n−1)/2) cos(θ)n−1 sin(θ)− (1− α2)n/2 cos(θ)n
)

(30)

= (wθ)⊗n
(

(α sin(θ) +
√

1− α2 cos(θ))n − 2(1− α2)n/2 cos(θ)n
)
. (31)

In order for Bob to ensure he wins at least 1 out of the n games with certainty, we require
that

∥∥∥fnα,θ∥∥∥ = 0, which implies:

(α sin(θ) +
√

1− α2 cos(θ))n − 2(1− α2)n/2 cos(θ)n = 0. (32)

This implies that for the angle θn,α = tan−1
(√

1
α2 − 1

(
21/n − 1

) )
, the strategy corres-

ponding to Λn gives us a perfect hedging strategy. Following the same procedure, using the
strategy corresponding to Ξn yields the similar condition that:

(α sin(θ) +
√

1− α2 cos(θ))n − 2αn sin(θ)n = 0, (33)

giving us as a solution γn,α = tan−1
(√

1
α2 − 1

(
1

21/n−1

))
. J

A.3 Derivation for Lemma 5
Proof. As in the previous proof, to win at least 1 out of n games, Bob needs to avoid the
outcome corresponding to the state (sin(θ) |00〉 − cos(θ) |11〉)⊗n (other states for the losing
outcome can be ignored since Bob’s strategy corresponds to a diagonal matrix). Let us now
define a matrix

D =
∑

r∈{0,1}n
(−1)|r| sin(θ)n−|r| cos(θ)|r||r〉〈r|, (34)

such that (sin(θ) |00〉 − cos(θ) |11〉)⊗n = vec (D). For convenience, we denote λ = tan(θ),
and rewrite D as

D = cos(θ)n
∑

r∈{0,1}n
(−1)|r|λn−|r||r〉〈r|. (35)
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We also introduce an operator

F =
∑

r∈{0,1}n
(1− α2)|r|/2αn−|r||r〉〈r|, (36)

such that u⊗nα = vec (F ), where uα is again the pure state α |00〉+
√

1− α2 |11〉 shared by
Alice and Bob at the beginning of a single repetition of the protocol.

From our construction the unitary U that Bob applies in Lemma 5 to his portion of the
entangled state u⊗nα is

U = (−1)n|0〉〈0| − |1〉〈1|+
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

(−1)n+ikr |r〉 〈r| . (37)

The state that Alice holds before measurement is then (U ⊗IZ1...n)u⊗nα . We analyze how
successful the application of this channel would be to avoid (sin(θ) |00〉−cos(θ) |11〉)⊗n. Upon
explicit computation of the formula 〈vec (D) , (U ⊗IZ1...n)vec (F )〉, and using repeatedly the
fact that vec (V ) = (V ⊗I)vec (I), we obtain 〈vec (D) , vec (UF )〉, which is equal to 〈D,UF 〉
by the properties of the vec operator, resulting in the following expression:

〈D,UF 〉 = Tr
(

(−1)nαnλn|0n〉〈0n|+ (1− α2)n/2(−1)n+1|1n〉〈1n|

+
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

(−1)nkr(1− α2)i/2αn−iλn−i |r〉 〈r|
)

= (−1)nαn Tr
(
λn|0n〉〈0n| −

(√
1
α2 − 1

)n
|1n〉〈1n|

+
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

kr

(√
1
α2 − 1

)i
λn−i |r〉 〈r|

)

= (−1)nαn

λn −
(√

1
α2 − 1

)n
+
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

kr

(√
1
α2 − 1

)i
λn−i



= (−1)nαn
(√

1
α2 − 1

)nλnα − 1 +
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

krλ
n−i
α

 , (38)

where λα = λ ·

(√
1
α2 − 1

)−1

.

Note that for the range of θ we are considering, it holds that 21/n − 1 ≤ λα ≤
1

21/n − 1
.

Note as well that from our choice of kr, for all i we have that Im
(∑

r∈{0,1}n
|r|=i

krλ
n−i
α

)
= 0,

and therefore the imaginary part of (38) is equal to 0. It then suffices to prove that for
any choice of λa and n, there exists an sθ,α,n ∈ [−1, 1] such that, when plugged into the
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definition of kr in the statement of Lemma 5 we have

λnα − 1 +
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

Re (kr)λn−iα = 0. (39)

Now, as the left hand side of (39) is an affine function of sθ,α,n with a positive linear
coefficient, to prove the existence of such an sθ,α,n, it suffices to prove that the left hand side
of (39)) ≤ 0 when sθ,α,n = −1 , and that the left hand side of (39) ≥ 0 when sθ,α,n = 1.

We look first into the case when s = −1. Then, when 1 ≤ λα ≤
1

21/n − 1
it holds that:

λnα − 1 +
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

Re (kr)λn−iα = λnα − 1−
n−1∑
i=1

(
n

n− i

)
λn−iα

= 2λnα − λnα − 1−
n−1∑
i=1

(
n

n− i

)
λn−iα

= 2λnα − (1 + λα)n, (40)

which is ≤ 0 whenever λα ≤
1

21/n − 1
. When 21/n − 1 ≤ λα < 1, that the left hans side

of (39) ≤ 0 follows from two simple facts. First, the fact that λnα < 1, so λnα− 1 < 0 . Second,
the fact that for each

∑
r∈{0,1}n
|r|=i

Re (kr)λn−iα term,
∑
r∈{0,1}n
|r|=i

Re (kr) ≤ −
(
n
i

)
+ 1 ≤ 0.

We look now into the case when s = 1. Then, when 21/n − 1 ≤ λα < 1 it holds that:

λnα − 1 +
n−1∑
i=1

∑
r∈{0,1}n
|r|=i

Re (kr)λn−iα = λnα − 1 +
n−1∑
i=1

(
n

n− i

)
λn−iα

= −2 + λnα + 1 +
n−1∑
i=1

(
n

n− i

)
λn−iα

= −2 + (1 + λα)n, (41)

which is ≥ 0 whenever λα ≥ 21/n − 1. When 1 ≤ λα ≤
1

21/n − 1
, that the left hand side of

(39) ≥ 0 follows from two simple facts. First, the fact that λnα ≥ 1. Second, the fact that for
each

∑
r∈{0,1}n
|r|=i

Re(kr)λn−iα term, it is the case that
∑
r∈{0,1}n
|r|=i

Re(kr) ≥
(
n
i

)
− 1. J

A.4 Derivation for Lemma 6
Proof. We will consider here the case where θ < θn,α. The other case proceeds similarly.

Remember first that we characterized the chance of achieve 1-out-of-n hedging by the
following SDP program in Section 3:
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mn,α,θ: Primal problem

minimize:
〈
Q⊗n0,α,θ, X

〉
subject to: TrY1⊗···⊗Yn(X) = IX1⊗···⊗Xn ,

X ∈ Pos(Y1 ⊗X1 ⊗ · · · ⊗ Yn ⊗Xn).

(42)

mn,α,θ: Dual problem

maximize: Tr(Y )
subject to: π (IY1⊗···⊗Yn ⊗ Y )π∗ ≤ Q⊗n0,α,θ,

Y ∈ Herm(X1 ⊗ · · · ⊗ Xn).
(43)

Then, to prove that perfect hedging is not possible when θ < θn,α, we prove the feasibility
in the dual SDP (43) of an operator Y with positive objective value. This operator is obtained
from applying complementary slackness conditions to the primal solution corresponding to
Λn. Therefore, it has value for the dual equal to the value in the primal SDP (42) for the
solution corresponding to Λn. By weak duality, its feasibility proves then the optimality of
Λn when θ < θn,α.

To prove the feasibility of Y , we will express Q⊗n0,α,θ − π (IY1⊗···⊗Yn ⊗ Y )π∗ as a direct
sum of smaller matrices. This reduces the question about feasibility of Y to a question about
the positive-semidefiniteness of these smaller matrices. Each of these smaller matrices will
have all proper leading principal minors be positive semi-definite, so by Sylvester’s criterion
it will suffice to check that their determinant is non-negative. We will then obtain a closed
formula for these determinants, and prove that they are indeed non-negative.

We will first consider the case with α = 1/
√

2, and then give an overview of the small
changes involved in adapting the proof to other values of α. To simplify our argument, we
will incur in a bit of notation abuse in this section, and omit the permutation operators in the
definition of the dual SDP (43) that remind us that matrices at the sides of a ≤ inequality
must have their entries reordered to make the spaces on which they are defined be in the
same order at both sides of the inequality.

A.4.1 Study of Q⊗n0,1/
√

2,θ

Q0,α,θ ∈ Pos(X ⊗ Y) is given by
∣∣ψ1

0
〉 〈
ψ1

0
∣∣ +

∣∣ψ2
0
〉 〈
ψ2

0
∣∣ +

∣∣ψ3
0
〉 〈
ψ3

0
∣∣, where the

∣∣ψi0〉 are
defined as

∣∣ψ1
0
〉

= α sin(θ) |00〉 −
√

1− α2 cos(θ) |11〉 ,∣∣ψ2
0
〉

= α |01〉 ,∣∣ψ3
0
〉

=
√

1− α2 |10〉 .

(44)

This follows from considering the definition of P0,θ given in Section 3, and observing that the
operator Ψρα satisfying J(Ψρα) = uαu∗α (with uα = α |00〉+

√
1− α2 |11〉 the initial state

shared between Alice and Bob) maps a state σ ∈ D (Z) to (α|0〉〈0|+
√

1− α2|1〉〈1|)σ(α|0〉〈0|+
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√
1− α2|1〉〈1|). We can then write Q⊗n0,1/

√
2,θ as

Q⊗n0,1/
√

2,θ =
(

1
2

)n (
(sin(θ) |00〉 − cos(θ) |11〉)(sin(θ) 〈00| − cos(θ) 〈11|)

+ |01〉〈01|+ |10〉〈10|
)⊗n

(45)

=
(

1
2

)n ∑
a,b,c,d∈{0,1}n

|a〉 |b〉 〈c| 〈d|
n−1∏
i=0

(
δci,1−diδai,ciδbi,di

+ δai,biδci,di

(
δai,1−ci(− sin(θ) cos(θ)) + δai,ciδai,1 cos(θ)2

+ δai,ciδai,0 sin(θ)2
))

=
(

1
2

)n ∑
a,c∈{0,1}n

|a〉〈c| ⊗
∑

b,d∈{0,1}n
|b〉〈d|

n−1∏
i=0

(
δai,1−biδci,1−diδai,ci+

δai,biδci,di

(
δai,1−ci(− sin(θ) cos(θ)) + δai,ciδai,1 cos(θ)2

+ δai,ciδai,0 sin(θ)2
))
. (46)

The key insight to go ahead with the proof is to notice that this matrix can be written as
a direct sum of 3n smaller matrices. Indeed, observe that (45) can be equivalently written as

1
2n

∑
w∈{0,1,2}n

n−1⊗
i=0
|ψwi〉〈ψwi |, where |ψwi 〉 =


sin(θ) |00〉 − cos(θ) |11〉 , if wi = 0
|01〉 , if wi = 1
|10〉 , if wi = 2

.

(47)

Then, the coefficient for each |a〉〈c| ⊗ |b〉〈d| term in the summation in (46) will receive
contribution from at most one of the elements in (47). This element will be the one with

wi =


0 if ai = bi

1 if (ai, bi) = (0, 1)
2 if (ai, bi) = (1, 0)

.

Since this only depends on |ab〉, all elements on the same row of Q⊗n0,1/
√

2,θ come from the
same term in (47). As each row of Q⊗n0,1/

√
2,θ has at least one non-zero term, (47) implies then

a decomposition Q⊗n0,1/
√

2,θ into a direct sum of smaller matrices, each of them with rank 1.
We can then identify each of these matrices by the corresponding choice of w in (47).

We will do so by writing them as Q⊗n0,1/
√

2,θ(w). We denote the number of 0s, 1s and 2s in
w by n0(w), n1(w) and n2(w), respectively. Also, note that there will be 3n matrices in
our decomposition, with the dimension of Q⊗n0,1/

√
2,θ(w) being given by 2n0(w). Also, note

that the number of matrices of size 2k is given by
(
n
k

)
2n−k. This corresponds to choosing on

which k positions wi = 0, and what is the value of wi for the other ones.
It will be convenient later to have a formula for the restriction to the diagonal of

Q⊗n0,1/
√

2,θ(w). Using the description in (47), we have that it is given by

(
1
2

)n ∑
w′∈Mw⊆{0,1}n

g(w,w′) |w′〉 |f(w,w′)〉 〈w′| 〈f(w,w′)| (48)
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where Mw is given by the cartesian product×n−1
i=0 Mwi , with


M0 = {0, 1}
M1 = {0}
M2 = {1}

,

g(w,w′) =
∏n−1
i=0 g(wi, w′i) with


g(0, 0) = sin2(θ)
g(0, 1) = cos2(θ)
g(1, 0) = 1
g(2, 1) = 1

, f(w,w′)i =
{
w′i if wi = 0
1− w′i if wi = 1

.

Note that by definition of Mw, it is not necessary to define g(wi, w′i) for values of (wi, w′i)
not included in our definition of g.

A.4.2 Study of our candidate for Y in the α = 1/
√

2 case
We define now our candidate solution Y for the dual problem, given by

Y = −ε
((

1√
2

sin(θ) |0〉 〈0|+ 1√
2

cos(θ) |1〉 〈1|
)⊗n

− 2
(

1√
2

cos(θ) |1〉 〈1|
)⊗n)

, (49)

where ε is a value > 0 given by
(

1
2

)n/2
(2 cos(θ)n − (cos(θ) + sin(θ))n). Note that the

definition of θn,1/√2 implies that this value is positive indeed for θ < θn,1/
√

2. We can then
write Y as

∑
a∈{0,1}n

λa |a〉 〈a| ,where λa =


−ε
(

1
2

)n/2
sin(θ)n−|a| cos(θ)|a| for a 6= 1n

ε

(
1
2

)n/2
cos(θ)n for a = 1n

(50)

Note that its trace (i.e., its value for the dual program) is given by

−
(

1
2

)n/2
ε
(

(sin(θ) + cos(θ))n − 2 cos(θ)n
)
, (51)

which will again be positive for θ < θn,1/
√

2 by definition of θn,1/√2.
This Y has been obtained from the strategy Λn in Lemma 4, and its feasibility proves the

optimality of Λn for θ < θn,1/
√

2. This is an example of complementary slackness behavior,
and follows from an observation [40] that given a feasible solution X to the primal SDP (42),
TrY1⊗···⊗Yn(Q⊗n0,α,θX) is an operator with the same objective value for the dual SDP (43).
Furthermore, TrY1⊗···⊗Yn(Q⊗n0,α,θX) satisfies the feasibility constraints of the dual if and
only if X represents an optimal solution to the primal. Therefore, after we experimentally
observed that Λn seemed to be optimal for θ < θn,α to obtain our proposed Y we computed
the corresponding value of TrY1⊗···⊗Yn(Q⊗n0,1/

√
2,θX). X is given in this computation by the

primal solution that represents the channel for the unitary in Λn,

X =
∑

i,j∈{0,1}n
|ii〉 〈jj | (−1)∧i+

⊕
i+∧j+

⊕
j . (52)

A.4.3 Feasibility of Y in the α = 1/
√

2 case
We want to prove that Y is feasible - that is to say, Q⊗n0,1/

√
2,θ−Y ⊗I ≥ 0. Since Y is diagonal,

the direct sum decomposition of Q⊗n0,1/
√

2,θ corresponds to a direct sum decomposition of Y .
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Since positive semidefiniteness is preserved by the direct sum operator, it is then enough to
prove that each of the Sw = Q⊗n0,1/

√
2,θ(w)− (Y ⊗ I)(w) matrices are positive semidefinite,

where (Y ⊗ I)(w) denotes Y ⊗ I restricted to the rows/columns of Q⊗n0,1/
√

2,θ assigned to
Q⊗n0,1/

√
2,θ(w).

Consider first the largest of these matrices. This will be S0n , with size 2n. Using (47),
we have that it is given by

S0n =
(

1
2

)n ∑
a,c∈{0,1}n

|aa〉 〈cc|
( n−1∏
i=0

(
δai,1−ci · − sin(θ) cos(θ)+

δai,ciδai,1 cos(θ)2 + δai,ciδai,0 sin(θ)2
)
− 2nλa

)
.

For example, for n = 2, S00 is given by

1
4


sin(θ)4 − 4λ00 − sin(θ)3 cos(θ) − sin(θ)3 cos(θ) sin(θ)2 cos(θ)2

− sin(θ)3 cos(θ) sin(θ)2 cos(θ)2 − 4λ01 sin(θ)2 cos(θ)2 − sin(θ) cos(θ)3

− sin(θ)3 cos(θ) sin(θ)2 cos(θ)2 sin(θ)2 cos(θ)2 − 4λ10 − sin(θ) cos(θ)3

sin(θ)2 cos(θ)2 − sin(θ) cos(θ)3 − sin(θ) cos(θ)3 cos(θ)4 − 4λ11


Consider now that since Q⊗n0,1/

√
2,θ ≥ 0, and for a 6= 1n, λa < 0, the first 2n − 1 principal

minors of S0n are ≥ 0. By Sylvester’s criterion, to prove that S0n ≥ 0, it suffices then to
prove that det(S0n) ≥ 0. Note that det(S0n) is a polynomial in ε. This polynomial has all
the coefficients below the one for ε2n−1 equal to 0. This is because Q⊗n0,1/

√
2,θ(0

n) has rank 1 -
therefore, each minor of it with at least two rows will have determinant equal to zero. Using
this, and going through the determinant formula, we see that det(S0n) is given byε2n−1(−1)2n−1

∑
a∈{0,1}n

(
1
2

)n
cos(θ)2|a| sin(θ)2(n−|a|)

∏
b∈{0,1}n
b6=a

λb
ε


+

ε2n(−1)2n
∏

a∈{0,1}n

λa
ε

 (53)

=ε2
n−1

ε− ∑
a∈{0,1}n

(
1
2

)n
cos(θ)2|a| sin(θ)2(n−|a|)

λa/ε

 ∏
a∈{0,1}n

λa
ε

(54)

=ε2
n−1

ε+
∑

a∈{0,1}n

(
1
2

)n/2
cos(θ)|a| sin(θ)n−|a| − 2

(
1
2

)n/2
cos(θ)n

 ∏
a∈{0,1}n

λa
ε

(55)

Since all of the λa/ε except the one for 1n are negative, we have that ε2
n−1

∏
a∈{0,1}n

λa
ε

is

negative whenever ε > 0. Therefore,

det(S0n,0n) ≥ 0 ⇐⇒ (56)

ε+
∑

a∈{0,1}n

(
1
2

)n/2
cos(θ)|a| sin(θ)n−|a| − 2

(
1
2

)n/2
cos(θ)n ≤ 0 ⇐⇒ (57)

ε ≤
(

1
2

)n/2
(2(cos(θ))n − (cos(θ) + sin(θ))n) , (58)
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which is true by definition of ε. We have then that our proposed feasible solution Y

produces a positive-semidefinite S0n . To verify the feasibility of Y , it remains to prove the
positive-semidefiniteness of the rest of the Sw.

To do so, consider an arbitrary Sw, w ∈ {0, 1, 2}n − {0n}, with a corresponding Mw, as
defined in (48). Note that Mw is the set of indices such that λi appears in the diagonal
of Sw, and that that each λi appears in the diagonal of Sw at most once, as we can see
from the expression in (48). If 1n /∈Mw, then Sw is trivially positive-semidefinite, since it is
obtained by adding a positive-semidefinite diagonal matrix Y (w) to a positive-semidefinite
matrix Q⊗n0,1/

√
2,θ(w). Otherwise, our appeal to Sylvester’s criterion from the 0n case applies

again, and it is enough to prove that det(Sw) ≥ 0. Also, since Q⊗n0,1/
√

2,θ(w) has rank 1, our
argument that det(Sw) is a polynomial of minimum degree |Mw| − 1 applies again.

Then, using (48), we have that det(Sw) is given by

ε|Mw|−1

( ∏
c∈Mw

λc
ε

)(
ε−

(
1
2

)n ∑
d∈Mw

g(w, d)
λd/ε

)
(59)

Using the recursive definition of Mw in (48), and realizing that 1n ∈ Mw implies that
n1(w) = 0, we have that

∑
d∈Mw

g(w, d)
|λd/ε|

=
(

1
2

)n/2
(sin(θ) + cos(θ))n0(w)

(
1

cos(θ)

)n2(w)
. (60)

Now, we have that
1

cos(θ) ≤ sin(θ) + cos(θ) ⇐⇒ 1
cos(θ)2 ≤ tan(θ) + 1 (61)

⇐⇒ tan(θ)2 ≤ tan(θ) ⇐⇒ θ ≤ π/4 (62)

Since we are looking at the range θ < θn,1/
√

2 ≤ π/4, and n0(w) + n2(w) = n, we have that

(sin(θ) + cos(θ))n0(w)
(

1
cos(θ)

)n2(w)
≤ (sin(θ) + cos(θ))n. (63)

Therefore, since n2(w) ≤ n,(
1
2

)n ∑
d∈Mw

g(w, d)
λd/ε

≥
(

1
2

)n/2
(2(cos(θ))n − (cos(θ) + sin(θ))n) . (64)

We see then that any ε that makes det(S0n) non-negative will make the determinant of the
other Sw non-negative as well.

A.4.4 Generalization to α 6= 1/
√

2
For α 6= 1/

√
2, the changes necessary to make the proof work are limited to arithmetic

adjustments. Q⊗n0,α,θ will now be given by

∑
a,c∈{0,1}n

|a〉〈c| ⊗
∑

b,d∈{0,1}n
|b〉〈d|

n−1∏
i=0

(
δai,1−biδci,1−diδai,ci

(
δai,1(1− α2) + δai,0α

2
)

+δai,biδci,di
(
δai,1−ci · −α sin(θ)

√
1− α2 cos(θ) + δai,ciδai,1(1− α2) cos(θ)2

+ δai,ciδai,0α
2 sin(θ)2

))
. (65)
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Note that its direct sum decomposition is not affected, since the choice of which terms of
Q⊗n0,α,θ appear on each term does not depend on α.

Similarly, Y is given now by

∑
a∈{0,1}n

λa|a〉〈a|, where λa =
{
−ε(α sin(θ))n−|a|

(√
1− α2 cos(θ)

)|a| for a 6= 1n

ε
(√

1− α2
)n cos(θ)n for a = 1n

and ε = 2
(√

1− α2 cos(θ)
)n
− (
√

1− α2 cos(θ) + α sin(θ))n. (66)

As for the feasibility of Y , we have then that det(Sw) is given by

ε|Mw|−1

( ∏
c∈Mw

λc
ε

)(
ε−

∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

λd/ε

)
, (67)

again non-negative whenever

ε ≤
∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

λd/ε

= 2
(√

1− α2
)n

cos(θ)2n0(w)−n −
∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

|λd|/ε
. (68)

Note that we have now that using the recursive definition of Mw in (48),

∑
d∈Mw

g(w, d)α2(n−|d|)(1− α2)|d|

|λd|/ε

=(α sin(θ) +
√

1− α2 cos(θ))n0(w)

(√
1− α2

cos(θ)

)n2(w)

.

To prove that (68) holds we will need an argument slightly more involved than the
corresponding one for the α = 1√

2 case. First, we consider that for n0(w) = n, the right
hand side of (68) is equal to ε, by definition of ε. Then, we prove that the right hand side
of (68) increases as we decrement n0(w), and increase n2(w) = n− n0(w) in parallel. This
is because the positive term in the right hand side increases with each decrease of n0(w),
and it does so by a larger factor than the one by which the negative term decreases. More
rigorously, consider the expression

k = 1
cos(θ)2 −

√
1− α2(

α sin(θ) +
√

1− α2 cos(θ)
)

cos(θ)
. (69)

First, note that

k ≥ 0 ⇐⇒
√

1− α2 cos(θ)2 ≤
(
α sin(θ) +

√
1− α2 cos(θ)

)
cos(θ) (70)

⇐⇒ cos(θ) ≤ α√
1− α2

sin(θ) + cos(θ) (71)

⇐⇒ 0 ≤ α√
1− α2

sin(θ), (72)

which is always true when 0 ≤ θ ≤ π/2, which is always the case within the trigonometric
domain that we consider. Then, if we denote the right hand side of (68) by rn0(w), we have
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the recursive relation

rn0(w) = rn0(w)+1
1

cos(θ)2 + k(α sin(θ) +
√

1− α2 cos(θ))n0(w)

(√
1− α2

cos(θ)

)n−n0(w)

We can see indeed that this defines an increasing sequence as we decrease n0(w), since the
second summand is positive, and the first summand multiplies the previous value of r by an
amount greater than one. We have then successfully proved that (68) holds in the α 6= 1√

2
case. J

A.5 Derivation for Theorem 7
Proof. For didactic purposes, we show our derivation along the line of thought used by us
when obtaining it. Therefore, we first consider simple proofs for two particular cases, and
then finish with a general proof.

A.5.1 Absence of hedging for the protocol in [30]
It is easy to establish that in a generalization of the example in [30] , the hedging behavior
disappears if Bob can avoid returning an answer. This generalization considers the set of
protocols where the initial quantum state shared between Alice and Bob is a pure state ψ
such that TrX (ψψ∗) = IZ/ dim(Z). It suffices to prove it for one of such states, as the other
ones can be obtained from it by Bob applying a unitary. We prove it then for

ψ = 1√
dim(X )

∑
i

ei ⊗ ei, (73)

with ei being the computational basis for X , and corresponding to the case dim(X ) = dim(Z).
The reason no hedging behavior is possible is because in this situation, it is always

possible for Bob to make sure he obtains the desired outcome. To see this, notice that the
operator that we apply to get Qa from Pa is the identity divided by dim(X ). Similarly,
E = IX⊗Y/ dim(X ). Therefore, (E+)1/2Qa(E+)1/2 = Pa. As this is a projector into a
non-empty space (from the assumption that Bob has a nonzero probability of obtaining the
desired outcome), the norm of this operator is 1.

A.5.2 Absence of hedging in the classical case
We look now at the behavior when a game is repeated twice in parallel, and the information
exchanged between Alice and Bob is classical. This is reflected in the operators ρ and Pa we
consider in our model being diagonal matrices. As ρ is a diagonal matrix, then Ψρ maps
diagonal matrices to diagonal matrices, so E and the Qa are diagonal too. Then, if we denote
by Ω(E) the matrix that has a one in a position whenever the corresponding entry of E is
nonzero, and a zero otherwise, we have that

‖Λ1,2‖ =
∥∥∥Ω(E)⊗ Ω(E)−

(
(E+)1/2 ⊗ (E+)1/2

)
(Q1−a ⊗Q1−a)

(
(E+)1/2 ⊗ (E+)1/2

)∥∥∥.
Now, whenever Ω(E) has a zero entry, (E+)1/2Q1−a(E+)1/2 has a zero entry as well in

that position, as Q1−a ≤ E. We define now λE(X) as the minimum entry of a diagonal
matrix X, restricted to the positions where E has a nonzero entry. We have then that the
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value of the game when Bob is trying to win one out of two parallel repetitions is given by:

1− λE
(

(Q1−a ⊗Q1−a)
(

(E+)1/2 ⊗ (E+)1/2
)(

Q1−a ⊗Q1−a

))
= 1− λE

(
(E+)1/2Q1−a(E+)1/2

)2
.

(74)

Since we have that

Ω(E) = (E+)1/2E(E+)1/2

= (E+)1/2(Qa +Q1−a)(E+)1/2

= (E+)1/2Q1−a(E+)1/2 + (E+)1/2Qa(E+)1/2

(75)

we have then that

λE

(
(E+)1/2Q1−a(E+)1/2

)2
= 1− ‖(E+)1/2Qa(E+)1/2‖ (76)

so

1− λE
(

(E+)1/2Q1−a(E+)1/2
)2

= ‖(E+)1/2Qa(E+)1/2‖. (77)

Therefore, there is no hedging in this case. Our argument applies similarly to the case
where Bob is trying to win k out of n repetitions.

A.5.3 Absence of hedging in the general case
We begin by defining the following operators:

A = Λ = (E+)1/2Qa(E+)1/2, B = (E+)1/2E(E+)1/2. (78)

Note that [Qa, (E+)E] = 0, as (E+)E is equal to the identity on the support of E and zero
outside it, and Qa ≤ E, so E+EQa = QaE

+E = Qa. We have then that [A,B] = 0, so A
and B are simultaneously diagonalizable. This means that any tensor products of A, B, and
I of the same dimension are simultaneously diagonalizable as well.

We consider first the case where k = 1 and n = 2, and then use a proof by induction
to take care of larger n and k. Using the operators A and B, we can use the fact that
Q1−a = E −Qa to write

∥∥∥Λ1,2

∥∥∥ in terms of A and B as∥∥∥A⊗B +B ⊗A−A⊗A
∥∥∥ ≤ ∥∥∥A⊗ I + I ⊗A−A⊗A

∥∥∥ = 2‖A‖ − ‖A‖2, (79)

where the inequality follows from the fact that 0 ≤ B ≤ I. The equality follows from
considering a basis where A is diagonal, and using the fact that since Qa ≤ E, 0 ≤ A ≤ I,
so all the eigenvalues of A are at most 1.

We have then that ‖Λ1,2‖ = 1− (1− ‖A‖)2, since the fact that Bob can just choose to
play independently implies ‖Λ1,2‖ ≥ 1− (1− ‖A‖)2. Therefore, we obtain that playing each
game independently is an optimal behavior.

In the general case where Bob is trying to win k out of n games, we can again express
Q1−a as E −Qa, and thus reduce Λk,n to a sum of tensor products of A and B.

Consider first the case where k = 1. Then observe that we can write

Λ1,n = Λ1,n−1 ⊗ (B −A) +B⊗n−1 ⊗A ≤ Λ1,n−1 ⊗ (I −A) + I⊗n−1 ⊗A (80)
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Using as basis the nth tensor product of a basis where A is diagonal, we obtain by induction
on n that ‖Λ1,n‖ = 1− (1−‖A‖)n. This is because for diagonal positive semidefinite matrices
J ≤ I and K, we have ‖J(I −K) + I ·K‖ = ‖J‖(1− ‖K‖) + ‖K‖.

Note as well that if x is a largest eigenvalue eigenvector of Λ, a maximum-eigenvalue
eigenvector of Λ1,n is given by x⊗n. Using this fact, we obtain a proof for the case with
k > 1. To do this, observe that

Λk,n = Λk,n−1 ⊗ (B −A) + Λk−1,n−1 ⊗A ≤ Λk,n−1 ⊗ (I −A) + Λk−1,n−1 ⊗A (81)

Then, using again as basis the nth tensor product of a basis where A is diagonal, we obtain
by induction that ‖Λk,n‖ = 1−

∑k−1
t=0

(
n
t

)
‖A‖t(1−‖A‖)n−t, and that for all choices of k and

n, a maximum-eigenvalue eigenvector of Λk,n is given by x⊗n, for x a largest eigenvector of Λ.
This is because for diagonal positive semidefinite matrices J,K,H, where J and H share a
largest eigenvector, and ‖J‖ ≤ ‖H‖, we have ‖J(I−K)+H ·K‖ = ‖J‖(1−‖K‖)+‖H‖‖K‖.

We obtain then that in this setting, no quantum advantage can be obtained by correlating
Bob’s strategy between parallel repetitions. J
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Triangle finding (deciding if a graph contains a triangle or not) is a central problem in quantum
query complexity. The quantum communication complexity of this problem, where the edges of
the graph are distributed among the players, was considered recently by Ivanyos et al. in the two-
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1 Introduction

1.1 Triangle finding
A triangle in an undirected graph G = (V,E) is a set of three vertices v1, v2, and v3 such that
{v1, v2}, {v1, v3}, and {v2, v3} are edges. The problem of deciding whether a given graph
contains a triangle or not is called triangle finding, and has been the subject of thorough
investigations in the past years in both the classical and quantum settings.

In the classical setting, several new applications of this problem have been discovered
recently. In particular, Vassilevska Williams and Williams [20] showed in 2010 a surprising
reduction from Boolean matrix multiplication to triangle finding. Several works followed
(e.g., [17, 21]), which have now placed triangle finding as a central problem in the recent
theory of fine-grained complexity.

In the quantum setting, triangle finding has played a prominent role in the development
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to an oracle representing the adjacency matrix of the input graph: given two vertices u
and v of G, the oracle outputs one if {u, v} ∈ E and zero if {u, v} 6∈ E (in the quantum
setting the queries can naturally be done in superposition). The trivial upper bound on
the quantum query complexity of triangle finding is O(n3/2), where n denotes the number
of vertices of the graph, by Grover search. A series of works spreading over more than a
decade [4, 7, 10, 12, 14, 16] successively improved this bound to O(n5/4) by using more
advanced techniques like quantum walks, learning graphs, variable costs quantum search and
quantum nested walks. On the other hand, the best known lower bound on the quantum
query complexity of triangle finding is the trivial Ω(n). Understanding whether the O(n5/4)
upper bound is tight or not is now the main open problem concerning the quantum query
complexity of triangle finding in dense graphs. Several quantum query algorithms for triangle
finding over sparse graphs have been constructed as well [6, 7, 8, 13].

1.2 Communication complexity of triangle finding
In this paper we consider triangle finding not in the quantum query complexity model, but in
the quantum communication complexity model. As usual when considering graph-theoretic
problems in the communication complexity setting, we assume that the edges of the graphs
are distributed among the players (in this paper we consider the most general case where the
subsets of edges owned by the players can overlap). In the two-party case, for instance, the
first player Alice receives a set of edges EA ⊆ E and the second player Bob receives a set of
edges EB ⊆ E such that EA ∪ EB = E (the intersection of these two sets is not necessarily
empty). The players must decide if the whole graph contains a triangle or not. We will use
TFkn,m to denote this distributed version of triangle finding, where k represents the number
of players, n = |V | and m is an upper bound on |E|.

The problem TF2
n,n2 has been studied by Ivanyos et al. [9] and is well understood: its

bounded-error quantum communication complexity is Θ(n). Indeed, it is easy to see that
in the two-party setting triangle finding reduces to the computation of the disjointness1
function DISJn′ with n′ = n2. The upper bound then follows from the O(

√
n′)-qubit protocol

by Aaronson and Ambainis for disjointness [1]. The lower bound follows by combining the
observation that conversely disjointness can be reduced to triangle finding with the Ω(

√
n′)-

qubit lower bound on the quantum communication complexity of disjointness [19]. More
generally, for possibly sparse graphs, the bounded-error quantum communication complexity
of TF2

n,m is Θ(
√
m). Note that the classical bounded-error communication complexity of this

problem is Θ(m): the upper bound follows from the trivial protocol where Alice sends all her
input to Bob and the lower bound follows from lower bounds on the classical communication
complexity of disjointness [11, 18].

1.3 Our contributions
In this paper, we consider the three-party quantum communication complexity of triangle
finding, i.e., the problem TF3

n,m where the edges of the graph are distributed among three
players (Alice, Bob and Charlie). In the classical bounded-error communication complexity
setting, the communication complexity of this problem is again Θ(m), since it is not easier
than the two-party case (we can consider that one player has no edge as input). To our
knowledge the quantum communication complexity of this problem has never been studied
before the present work.

1 The disjointness function DISJn′ in the two-party setting is the following problem: Alice has a subset
x ⊆ {1, . . . , n′}, Bob has a subset y ⊆ {1, . . . , n′}, and they want to decide if x ∩ y 6= ∅.
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Note that the communication complexity of TFkn,m for any constant k > 3 is equal (up
to possible constant factors) to the communication complexity of TF3

n,m, which further
motivates the study of the latter problem. Indeed, the former problem is again obviously not
easier than the latter problem and, conversely, since a triangle consists of three edges, in the
k-party case we can apply a protocol for the three-party case independently for each triple of
players (the number of such triples is constant if k is constant) in order to decide whether
the whole graph has a triangle or not.

Our main result is the following upper bound.2

I Theorem 1. The bounded-error quantum communication complexity of TF3
n,m is Õ(m7/12).

Let us briefly explain the main ideas that lead to the construction of our quantum protocol
showing Theorem 1. The main part of the protocol consists of procedures simulating the
quantum query algorithm for graph collision by Magniez, Santha, and Szegedy [16]. Indeed, for
the dense case (i.e., m ≈ n2), it is fairly easy to see that a simple combination of a procedure
implementing Grover search and another procedure simulating (in the communication
complexity setting) the Õ(n2/3)-query algorithm for graph collision by Magniez, Santha, and
Szegedy [16] gives the claimed Õ(n7/6) upper bound. For sparse graphs, a first observation
is that a quantum query algorithm for graph collision exploiting the sparsity of the given
graph would help us to design an efficient quantum communication protocol for three-party
triangle finding. However, whether graph collision can be solved with O(n2/3−c) queries for
some constant c > 0 even for m = n4/3 (i.e., even when the graph is significantly sparse) is
a long-standing open problem. To overcome this difficulty we consider a variant of graph
collision, design a quantum algorithm for it based on quantum walks, and then show how to
implement this algorithm efficiently in our setting of communication complexity (exploiting
the property that each player has complete knowledge of part of the edges). We also divide the
set of vertices of the graph into two sets: the set of vertices with degree smaller than ns and
the set of vertices with degree larger than ns, where s is a parameter. This classification helps
us, via Ambainis’ variable costs quantum search technique [3], to reduce the communication
cost needed to simulate the quantum algorithm for the variant of graph collision.

Next, we investigate whether the upper bound of Theorem 1 is tight. The trivial lower
bound on the bounded-error quantum communication complexity of TF3

n,m is Ω(
√
m), since

the three-party case is not easier than the two-party case. We first consider the dense case
and observe that proving any better lower bound would require a breakthrough:

I Proposition 2. If the bounded-error quantum communication complexity of TF3
n,n2 is

Ω(n1+ε) for some constant ε > 0, then the quantum query complexity of graph collision is
Ω(n1/2+ε).

Proposition 2 indeed shows that proving any nontrivial lower bound on the quantum
communication complexity of triangle finding would give a nontrivial lower bound on the
quantum query complexity of graph collision (proving such a lower bound is a long-standing
open problem in quantum query complexity). We then consider the sparse case. Theorem
1 implies that, for any value of m, any improvement over Õ(m7/12) for the quantum
communication complexity of TF3

n,m would imply an improvement over Õ(n7/6) for TF3
n,n2

(since we can apply Theorem 1 with n =
√
m). We also show the following sparse version of

Proposition 2:

2 In Theorem 1 and through the paper, the notation Õ(·) removes the polylog(n) factors.
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I Proposition 3. If the bounded-error quantum communication complexity of TF3
n,m is

Ω(m4/7+ε) for some m (seen as a function of n) and some constant ε > 0, then the quantum
query complexity of graph collision is Ω(n1/2+δ) for some δ > 0.

Proposition 3 shows that giving a lower bound of the form Ω(m4/7+ε) for some value m < n2,
and in particular showing that the bounds of Theorem 1 are optimal for some value of m,
would also lead to a significant breakthrough. Note nevertheless that there is a gap between
the best lower bound Ω(

√
m) on the bounded-error quantum communication complexity of

TF3
n,m and the quantity Ω(m4/7) from Proposition 3. It thus still remains possible that in

the sparse regime the trivial lower bound Ω(
√
m) can be improved without any impact on

the quantum query complexity of graph collision.

2 Preliminaries

2.1 Quantum communication complexity
Let A1, . . . , Ak be k finite sets. Consider k players and assume that for each i ∈ {1, . . . , k} the
i-th player receives as input an element ai ∈ Ai. In the model of communication complexity,
first introduced in the classical two-party setting by Yao [22], the players want to compute a
function f : A1 × · · ·Ak → {0, 1} by running a protocol such that, at the end of the protocol,
each player outputs f(a1, . . . , ak), and they want to minimize the communication they need to
compute the function f . In the quantum communication model, introduced by Yao [23], the
players are allowed to communicate with qubits. More precisely, the quantum communication
complexity of a quantum protocol P is the maximum (over all inputs) number of qubits
that P sends. The bounded-error quantum communication complexity of f is the minimum
communication complexity of any quantum protocol that computes f with probability (over
the random coins used by the protocol) at least 2/3.

2.2 Quantum query complexity of graph problems
For any finite set S and any r ∈ {1, . . . , |S|} we denote X (S, r) the set of all subsets of r
elements of S.

Let G = (V,E) be an undirected and unweighted graph, where V denotes the set of
vertices and E denotes the set of edges. In the quantum query complexity setting, we only
access the set of edges E through a quantum unitary operation OG defined as follows. For
any pair {u, v} ∈ X (V, 2), any bit b ∈ {0, 1}, and any binary string z ∈ {0, 1}∗, the operation
OG maps the basis state |{u, v}〉|b〉|z〉 to the state

OG|{u, v}〉|b〉|z〉 =
{
|{u, v}〉|b⊕ 1〉|z〉 if {u, v} ∈ E,
|{u, v}〉|b〉|z〉 if {u, v} /∈ E,

where ⊕ denotes the bit parity. Consider a quantum algorithm that computes some property
of G. We say that the algorithm uses k queries if the operation OG, which is given as an
oracle, is called k times by the algorithm.

We describe below two quantum query algorithms that we will use to construct our
quantum protocol for TF3

n,m in the communication complexity setting.

2.2.1 Quantum search with variable costs
Let X be a finite set of size N . Let fG : X → {0, 1} be a Boolean function depending on
the input graph G. Assume that, for each x ∈ X, there exists a checking procedure Px that
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computes fG(x) using tx queries to OG with high probability. The goal is to find an element
x ∈ X such that fG(x) = 1 if such an element exists. When we use Grover search, this task
can be solved with O(

√
N × tmax) queries with high probability, where tmax = maxx∈X tx.

Ambainis [3] proposed a more general quantum algorithm, which solves with high probability
this task using

Õ

√∑
x∈X

t2x


queries. In this paper, we call this algorithm Ambainis’ variable costs search.

2.2.2 Quantum walk over Johnson graphs
Let S be a finite set and r be an integer such that 1 ≤ r ≤ |S|. Let fG : X (S, r) → {0, 1}
be a Boolean function depending on a graph G. We say that a set A ∈ X (S, r) is marked
if fG(A) = 1. Consider the task whose goal is to find a marked set, if such a set exists,
or report that there is no marked set. Ambainis [2] developed the quantum walk search
approach, which solves this task using a quantum walk over a Johnson graph.

Let us first define Johnson graphs.

I Definition 4. Let X be a finite set and k ∈ {1, . . . , |X|}. A Johnson graph J(X, k) is an
undirected graph with vertex set X (X, k) where two vertices R,R′ ∈ X (X, k) are adjacent if
and only if |R ∩R′ | = k − 1.

The state of a quantum walk over a Johnson graph J(S, r) corresponds to a vertex of the
Johnson graph (i.e., to a set in X (S, r)). The key idea of the quantum walk search approach
is that each state A of the walk has a data structure D(A), which in general depends on G.
There are three costs of the walk to consider:

Set up cost S: The worst case number of queries to OG needed to construct D(A) for
A ∈ X (S, r).
Update cost U: The worst case number of queries to OG needed to update D(A) to D(A′)
when one step of the quantum walk is performed (i.e., a state A of the walk moves to A′
for some A′ ∈ X (S, r) such that |A ∩A′| = r − 1).
Checking cost C: The worst case number of queries to OG needed to check if the current
set A is marked by using D(A) (i.e., checking whether fG(A) = 1).

Let ε > 0 be the fraction of marked sets. The quantum walk search approach finds a marked
set if such a set exists with quantum query complexity

Õ

(
S + 1√

ε

(√
r × U + C

))
,

with high probability (see [2, 15]).

2.3 Graph collision
Graph collision is a variant of collision problems such as element distinctness or two-to-one
collision. In the quantum query complexity setting this problem is defined as follows. Given
a known graph G = (V,E) with |V | = n and an oracle f : V → {0, 1}, the graph collision
problem asks whether there exists an edge {a, b} ∈ E such that f(a) = f(b) = 1. The best
known upper bound on the quantum query complexity of graph collision, obtained in [16]
using quantum walks, is Õ(n2/3). No lower bound better than the trivial Ω(

√
n) is known.
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In this paper, we consider the following three-party distributed version of graph collision,
which is parametrized by two disjoint vertex sets VA, VB such that |VA| = |VB | = n:

Three-Party Graph Collision, GC3
VA,VB

Alice’s input: Boolean function fA : VA → {0, 1}
Bob’s input: Boolean function fB : VB → {0, 1}
Charlie’s input: set of edges E between VA and VB
Output: GC3

VA,VB (fA, fB , E) =
∨
{i,j}∈E fA(i)fB(j)

This problem can be solved using Õ(n2/3) qubits of communication by implementing,
using standard techniques (see, e.g., [5]) to convert a query algorithm into a quantum protocol,
the quantum query algorithm mentioned above since Charlie knows completely the set of
edges E of the corresponding graph.

3 Upper Bound

In this section we show a quantum protocol for TF3
n,m that has Õ(m7/12)-qubit communication

complexity, which proves Theorem 1.
Let G = (V,E), with E distributed among Alice, Bob and Charlie, be the input of TF3

n,m.
Let EA be the edges owned by Alice, EB be the edges owned by Bob and EC be the edges
owned by Charlie. We will write V = {v1, . . . , vn}. Let s be a parameter, to be chosen later,
such that 0 ≤ s ≤ 1.

3.1 Reduction to finding triangles in tripartite graphs

Observe that triangles with three edges in EA (or three edges in EB , or three edges in EC)
can be found without communication. Detecting if G contains a triangle with two edges in the
same set (e.g., two edges in EA and one edge in EB) can be done easily with O(

√
m)-qubit

of communication, by a straightforward reduction to the two-party case and then using the
two-party protocol from [9] described in the introduction. The hard case is detecting the
existence of a triangle with one edge in EA, one edge in EB and one edge in EC . We show
below how to reduce this problem to triangle finding in some tripartite graph.

Consider the following tripartite graph G′ . The set of vertices of G′ is the union of the
three sets I = {v1

1 , . . . , v
1
n}, J = {v2

1 , . . . , v
2
n}, and K = {v3

1 , . . . , v
3
n}. The set of edges of G′

is EA ∪ EB ∪ EC , where EA, EB and EC are constructed from E as follows:
Put edges {v1

s , v
2
t } and {v1

t , v
2
s} to EA if and only if {vs, vt} ∈ EA.

Put edges {v1
s , v

3
t } and {v1

t , v
3
s} to EB if and only if {vs, vt} ∈ EB .

Put edges {v2
s , v

3
t } and {v2

t , v
3
s} to EC if and only if {vs, vt} ∈ EC .

Observe that, without communicating with each other, Alice, Bob and Charlie can
construct the tripartite graph G

′ in the following sense: Alice can create EA, Bob can
create EB , and Charlie can create EC .

Note that G′ contains a triangle if and only if G contains a triangle with one edge in EA,
one edge in EB and one edge in EC . For instance, if the graph G contains a triangle consisting
of three vertices va, vb, vc in V such that Alice has the edge {va, vb} ∈ EA, Bob has the edge
{va, vc} ∈ EB , and Charlie has the edge {vb, vc} ∈ EC , then the tripartite graph G′ contains
the triangle with three edges {v1

a, v
2
b} ∈ EA, {v1

a, v
3
c} ∈ EB and {v2

b , v
3
c} ∈ EC .
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3.2 Protocol for dense graphs
The dense case is easy to deal with: we can simply combine Grover search (implemented in
a distributed setting) with the protocol for graph collision mentioned in Section 2.3. This
gives a quantum protocol with communication complexity Õ(

√
n × n2/3) = Õ(n7/6). For

later reference we state this upper bound as follows.

I Proposition 5. The bounded-error quantum communication complexity of TF3
n,n2 is

Õ(n7/6).

3.3 Classifying the vertices of G′

For any vertex v in G′ , let us denote the degree of v by dv. For any v ∈ I, let us denote the
set of neighbors in J of v by N I

J (v), and denote the set of neighbors in K of v by N I
K(v).

For any v ∈ J , let us denote the set of neighbors in I of v by NJ
I (v), and denote the set of

neighbors in K of v by NJ
K(v). For any v ∈ K, let us denote the set of neighbors in I of v by

NK
I (v), and denote the set of neighbors in J of v by NK

J (v). Alice, Bob, and Charlie classify
all vertices in I into two sets:

Ish = {v ∈ I | |N I
J (v)| ≥ ns or |N I

K(v)| ≥ ns},
Isl = I \ Ish,

all vertices in J into two sets:

Jsh = {v ∈ J | |NJ
I (v)| ≥ ns or |NJ

K(v)| ≥ ns},
Jsl = J \ Jsh,

all vertices in K into two sets:

Ks
h = {v ∈ K | |NK

I (v)| ≥ ns or |NK
J (v)| ≥ ns},

Ks
l = K \Ks

h.

We will say that a vertex v of G′ is s-high if v ∈ Ish ∪ Jsh ∪ Ks
h, and say it is s-low if

v ∈ Isl ∪ Jsl ∪Ks
l .

The classification of I can be done with Õ( mns ) bits of communication as follows. Since
Alice holds the set of edges EA between I and J , Alice knows, with no communication,
the set {v ∈ I | |N I

J (v)| ≥ ns}. Then Alice sends this set to both Bob and Charlie with
Õ( |EA|ns ) = Õ( mns ) bits of communication. Since Bob holds the set of edges EB between I

and K, Bob knows, with no communication, the set {v ∈ I | |N I
K(v)| ≥ ns}, and then sends

this set to both Alice and Charlie with Õ( |EB |ns ) = Õ( mns ) bits of communication. Thus they
obtain the sets Ish and Isl with Õ( mns )-bit communication. Similarly, they can obtain the
classifications of J and K using Õ( mns ) bits of communication.

3.4 Finding a triangle with a low vertex
The following proposition is the main technical contribution of this paper.

I Proposition 6. The existence of a triangle of G′ containing at least one s-low vertex can
be checked in Õ(

√
mns/6) qubits of communication.

Proof. Let us consider, without loss of generality, the case where Alice, Bob, and Charlie
check if G′ has a triangle with an s-low vertex in Isl . In this case, Alice simulates Ambainis’

TQC 2017
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variable costs search over Isl . The goal is to find one vertex (in Isl ) of a triangle of G′ . For
each i ∈ Isl the checking procedure Pi of the search decides if there exists an edge {j, k} ∈ EC
such that {i, j, k} is a triangle of G′ . The checking procedure Pi can be simulated as follows.

Let us fix i ∈ Isl . Let q be a parameter to be chosen later such that 0 ≤ q ≤
1. Alice and Bob define two bijective functions: giA : {1, . . . , |N I

J (i)|} → N I
J (i), and

giB : {|N I
J (i)| + 1, . . . , |N I

J (i)| + |N I
K(i)|} → N I

K(i), respectively. Then Alice and Bob
send |N I

J (i)| and |N I
K(i)| to Charlie. After receiving the two values |N I

J (i)| and |N I
K(i)|,

Charlie simulates the following quantum walk search AiW in order to check if there ex-
ists an edge in EC that forms a triangle of G′ with i. The walk AiW searches for a set
R ∈ X ({1, . . . , |N I

J (i)|+ |N I
K(i)|},

⌈
(|Nj(i)|+ |N I

K(i)|)q
⌉
) = X ({1, . . . , di}, ddqi e) which con-

tains two indices x ∈ {1, . . . , |N I
J (i)|} and y ∈ {|N I

J (i) + 1, . . . , |N I
J (i) + |N I

K(i)|} such that
{i, giA(x), giB(y)} is a triangle of G′ . When the set of marked sets is not empty, the fraction
of marked sets is

ε = Ω
((
|N I

J (i)|+ |N I
K(i)|

)2(q−1)) = Ω
(
d

2(q−1)
i

)
.

The data structure D(R) stores {(x, giA(x)) | x ∈ R ∩ {1, . . . , |N I
J (i)|}} and {(y, giB(y)) | y ∈

R ∩ {|N I
J (i)|+ 1, . . . , |N I

J (i)|+ |N I
K(i)|}}. In order to construct this data structure D(R) of

the initial state of the walk, Charlie asks Alice to send the vertex giA(r) to him if r ≤ |N I
J (i)|,

and asks Bob to send the vertex giB(r) to him if r > |N I
J (i)|, for each r ∈ R. More precisely,

for any r ∈ R, Alice and Bob perform the following unitary operators Ogi
A
, Ogi

B
to the basis

state |r〉|0〉, respectively, where |0〉 consisting of dlogne qubits. For any r ∈ R, the unitary
operator Ogi

A
maps the basis state |r〉|0〉 to the state

Ogi
A
|r〉|0〉 =

{
|r〉|giA(r)〉 if r ≤ |N I

J (i)|,
|r〉|0〉 if r > |N I

J (i)|.

For any r ∈ R, the unitary operator Ogi
B
maps the basis state |r〉|0〉 to the state

Ogi
B
|r〉|0〉 =

{
|r〉|giB(r)〉 if r > |N I

J (i)|,
|r〉|0〉 if r ≤ |N I

J (i)|.

Thus the setup communication cost of this walk is SC = Õ(|R|) = Õ(dqi ) qubits. The update
communication cost is UC = Õ(1) qubits, and the checking communication cost is CC = 0.
Thus Charlie can simulate, with high probability, the quantum walk search AiW with

Õ
(

SC +
√

1/ε
(
|R|1/2 × UC + CC

))
= Õ(dqi + d

1−q/2
i ), (1)

qubits of communication. Setting q = 2
3 gives the upper bound Õ(d2/3

i ).
For each i ∈ Isl , Alice, Bob and Charlie can thus implement Pi with Õ(d2/3

i ) qubits of
communication. Alice can therefore simulate Ambainis’ variable costs search with

Õ

√√√√∑
i∈Is

l

(
d

2/3
i

)2

 .

qubits of communication. To analyze this upper bound, we divide the set of s-low vertices
Isl into subsets Isl,p = {i ∈ Isl | 2p−1 ≤ di ≤ 2p}, for p = 1, . . . , dlognse. Note that
|Isl,p| = O( m

2p−1 ), for each p = 1, . . . , dlognse. The quantum communication complexity of
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the quantum protocol is thus

Õ

√∑
i∈Is

l

d
4/3
i

 = Õ


√√√√ds logne∑

p=1
|Isl,p|(2p)4/3


= Õ


√√√√ds logne∑

p=1

m

2p−1 (2p)4/3


= Õ

(√
ds logne ×m(2s logn)1/3

)
= Õ

(√
m(ns)1/3

)
= Õ

(√
mns/6

)
,

as claimed. J

3.5 Putting everything together
Checking if G′ contains a triangle can be divided into four problems:
1. Checking if G′ contains a triangle with one vertex in Isl , another vertex in J , and the

other vertex in K.
2. Checking if G′ contains a triangle with one vertex in I, another vertex in Jsl , and the

other vertex in K.
3. Checking if G′ contains a triangle with one vertex in I, another vertex in J , and the

other vertex in Ks
l .

4. Checking if G′ contains a triangle with one vertex in Ish, another vertex in Jsh, the other
vertex in Ks

h.

Cases 1, 2 and 3 can be solved with Õ(
√
mns/6) qubits of communication, from Proposition

6. For case 4 (checking if G′ contains a triangle with three s-high vertices), Alice, Bob, and
Charlie directly use Proposition 5. Since Ish = O( mns ), Jsh = O( mns ), and Ks

h = O( mns ), Case 4
can be solved with Õ

((
m
ns

)7/6
)
qubits of communication.

Thus the total communication cost of the quantum protocol for TF3
n,m is

Õ

(
m

ns
+m1/2ns/6 + m7/6

n7s/6

)
,

which is optimized by taking s such that ns = m1/2, giving the final quantum communication
complexity of Õ(m7/12).

4 Lower Bounds

In this section we give the proofs of Propositions 2 and 3. Let us denote by QGC(n) the
quantum query complexity of graph collision, when parametrized by graphs with n vertices.

Proof of Proposition 2. From the construction of the protocol giving the bound of Proposi-
tion 5, it follows that there exists a quantum protocol which computes, with high probability,
TF3

n,n2 with Õ(
√
n×QGC(n)) qubits of communication. Thus, an Ω(n1+ε) lower bound on

the bounded quantum communication complexity of TF3
n,n2 for some constant ε > 0 implies

an Ω(n1/2+ε) lower bound on the quantum query complexity of graph collision. J
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Proof of Proposition 3. Let s be a parameter such that 0 ≤ s ≤ 1. From Section 3.5 and
the construction of the protocol giving the bound of Proposition 5, it follows that there exists
a quantum communication protocol which computes TF3

n,m with bounded-error quantum
communication complexity

Õ

(
m

ns
+m1/2ns/6 +

√
m

ns
×QGC(m/ns)

)
.

Suppose an Ω(m4/7+ε) lower bound on the bounded-error quantum communication complexity
of TF3

n,m for some constant ε > 0. Setting ns = m3/7+6ε gives the upper bound

Õ
(
m4/7+ε +m2/7−3ε ×QGC(m4/7−6ε)

)
.

This implies the claimed lower bound Ω(n
2/7+4ε
4/7−6ε ) on the quantum query complexity of graph

collision. J
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Abstract
Integer arithmetic is the underpinning of many quantum algorithms, with applications ranging
from Shor’s algorithm over HHL for matrix inversion to Hamiltonian simulation algorithms. A
basic objective is to keep the required resources to implement arithmetic as low as possible.
This applies in particular to the number of qubits required in the implementation as for the
foreseeable future this number is expected to be small. We present a reversible circuit for integer
multiplication that is inspired by Karatsuba’s recursive method. The main improvement over
circuits that have been previously reported in the literature is an asymptotic reduction of the
amount of space required from O(n1.585) to O(n1.427). This improvement is obtained in exchange
for a small constant increase in the number of operations by a factor less than 2 and a small
asymptotic increase in depth for the parallel version. The asymptotic improvement are obtained
from analyzing pebble games on complete ternary trees.

1998 ACM Subject Classification F.1.1 Models of Computation, F.2 Analysis of Algorithms
and Problem Complexity

Keywords and phrases Quantum algorithms, reversible circuits, quantum circuits, integer mul-
tiplication, pebble games, Karatsuba’s method
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1 Introduction

Multiplication of integers is a fundamental operation on a classical computer. In quantum
computing, integer multiplication is also an important operation and indeed is at the core of
what needs to be performed in order to carry out Shor’s algorithm for factoring integers [30].
While much effort has been spent on optimizing the arithmetic needed to implement Shor’s
algorithm—e.g., via constant optimization [26], see also [27]—the basic underlying method for
multiplication considered in most works is the simple school method for multiplying integers
that runs in time O(n2) elementary operations. Elementary operations are here counted
e.g. as the total number of Toffoli gates, which form a universal gate set. Significantly less
effort has been spent on leveraging methods for fast multiplication which are well known
classically, e.g., Karatsuba’s method and other recursive methods.

Shor’s factoring algorithm is special in that only multiplication by constants are required,
which leads to significant simplifications in the circuits to implement Shor’s algorithm [30].
For more general period finding problems, e.g., Hallgren’s algorithm [15] and generalizations
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to computing the unit group in number fields of arbitrary degree [14] and to computing
class numbers and the principal ideal problem [6], more advanced arithmetic is required.
This includes polynomial arithmetic which as a primitive building block requires integer
multiplication |x, y, 0〉 7→ |x, y, xy〉 where inputs x and y can both be in superposition.

Another example is the quantum algorithm for nonlinear structures [10]: a full circuit level
implementation of this algorithm will require the implementation of polynomial arithmetic
over a finite field, which typically is reduced to integer arithmetic. Further examples where
integer multiplication is a useful primitive is to implement a fast quantum Fourier transform:
it was shown in [12] that the computation of the Fourier transform can be reduced to integer
multiplication, i.e., any fast algorithm for this problem gives rise to a quantum circuit for
computing a Fourier transform on a quantum computer with the same time complexity.

Finally, the implementation of arithmetic functions such as integer multiplication is an
important primitive for quantum simulation algorithms [5, 4, 23]. Once a full gate level
implementation of the quantum simulation algorithms is performed, arguably arithmetic
operations are useful to implement the indexing functions of row- and column-computable
matrices that appear in the decomposition of the Hamiltonian that is to be simulated. A
similar reasoning applies to HHL type algorithms for matrix inversion [16, 11], where the
implementation of the underlying matrix may involve arithmetic operations such as integer
multiplication for the computation of the entries.

A simple approach to integer multiplication is to reduce it to addition in a straightforward
way by using n adders as in the familiar school method. If we let Size(n) denotes the total
size of a circuit—measured as the total number of Toffoli gates—where n is the bit-size of
the numbers to be multiplied. Depth(n) denotes the depth of the circuit, allowing gates to
be applied in parallel, and Space(n) denotes the total space requirements including input
qubits, output qubits, and ancillas (i.e., qubits needed for intermediate scratch space), then
the school method requires Size(n) = Depth(n) = O(n2) and Space(n) = O(n).

Classically, Karatsuba’s algorithm allows to reduce the circuit size from O(n2) to O(nlog2 3)
by recursively decomposing the problem for size n into 3 subproblems of size n/2. However,
there is an issue with applying this algorithm to the quantum case: while it is still possible to
obtain a size reduction to Size(n) = O(nlog2 3), in the straightforward way of circuitizing the
recursion also the space complexity increases, so that overall O(nlog2 3) qubit are required.
This was observed in the earlier work [21], where also an improvement of the total depth to
O(n) was obtained, however, the number of qubits still scaled as O(nlog2 3).

As quantum memory is a very scarce commodity and indeed early quantum computers
are expected to only support a few hundred or perhaps thousands of logical qubits, it is
paramount to save space as much as possible. This leads to the question:

Can recursions be leveraged on a quantum computer in such a way that the space overhead
does not grow as the total size of the circuit?

Or in a small variation of the above question: when considering the volume of a quantum
circuit computing the integer product of two n bit numbers, where volume is defined as the
circuit depth × circuit width, is it possible to compute this product in a volume that is
strictly smaller than O(n1+log2 3) which was the previously best volume?

Our results. The results of [21] and the results derived in this paper can be compared as in
the following table. Here “parallel” and “sequential” refer to different ways the recursion was
unraveled in [21], namely whether each of the 3 circuits for subroutine calls to problems of
half size are arranged in parallel or are executed in sequence.
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Sequential [21] Parallel [21] This paper

Size(n) = O(nlog2 3)
Depth(n) = O(nlog2 3)
Space(n) = O(nlog2 3)

Size(n) = O(nlog2 3)
Depth(n) = O(n)
Space(n) = O(nlog2 3)

Size(n) = O(nlog2 3)
Depth(n) = O(n1.158)
Space(n) = O(n1.427)

Our main result is to give an affirmative answer to the question whether it is possible
to implement recursions in less space than the circuit size dictates. More precisely, our
implementation requires O(n1.427) qubits which improves slightly over O(nlog2 3) = O(n1.585),
as recorded up to 3 digits to the right of the decimal point in the last column of the table.
For the total volume, defined as Depth(n)× Space(n), there is actually no advantage over
[21] as it turns out that this quantity is asyptotically equal to O(n1+log2 3).

To achieve the bounds shown in the table, we apply a pebble game analysis of the
recurrence structure of the Karatsuba algorithm. In this case the underlying graph that
needs to be pebbled with as few pebbles as possible is a complete ternary tree. Perhaps
surprisingly, even for seemingly simple graphs such as the complete k-ary trees, where k = 2
or k = 3, the optimal pebble game for a fixed number of pebbles seems not to be known.
We provide a heuristic which allows to pebble the ternary tree corresponding to a bitsize of
n using O(n

( 3
2
)(log2 3)/(2 log2 3−1) log2(n)) = O(n1.427) pebbles. To the best of our knowledge,

this is the first work that achieves an asymptotic improvement of the space complexity for
integer multiplication while maintaining the O(nlog2 3) bound on the size of the quantum
circuit.

Besides the mentioned work [21] which investigated Karatsuba-like circuits for integer
multiplication, along similar lines there is also work for the case of binary multiplication,
i.e., multiplication over the finite field F2n . To analyze our algorithm we use the framework
of pebble games as introduced by Bennett [3] to study space-time tradeoffs for reversible
computations. The pebble games we study are played on directed acylic graphs that have
the structure of ternary trees. In related work [20] pebbling of other classes of trees has been
considered, in particular that of complete binary trees.

2 Preliminaries

The underlying gate model. As with classical circuits, reversible functions can be constructed
from universal gate sets. It is known [24] that the Toffoli gate which maps (x, y, z) 7→
(x, y, z⊕xy), together with the controlled-NOT gate (CNOT) which maps (x, y) 7→ (x, x⊕ y)
and the NOT gate which maps x 7→ x⊕ 1, is universal for reversible computation. When
moving from reversible to quantum computations, gate sets go beyond the set of classical gates
in that they allow to create so-called superposition of inputs. For instance, popular choices of
universal quantum gate sets are the so-called Clifford+T gate set and the Toffoli+Hadamard
gate set. Universality in this case means that it is possible to approximate any given target
unitary operation that we intend to execute on a quantum computer by a finite-length
sequence of operations over the given gate set. Herein the length of the sequence typically
scales as a polynomial in log(1/ε) where ε is the target accuracy of the approximation, a result
which has been established for the Clifford+T gate set [18, 29, 25] as well as probabilistic
variants thereof [7, 8].

We point out that it is known that the Toffoli gate has an exact realization over Clifford+T

[24], so all circuits for integer multiplication presented in this paper can be exactly imple-
mented over this gate set as well. Furthermore, we refer the reader to [1] for more information

TQC 2017
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 1 A pebble game played on a directed graph on 4 vertices. If 4 pebbles are available, one
can simply proceed from left to right, pebbling one vertex at a time until the rightmost vertex is
reached. After these 4 steps, all pebbles except the one on the right are removed, requiring a total
of 7 steps. If only 3 pebbles are available, the optimal strategy for this game requires 9 moves which
are shown in the subfigures (1) until (9).

(a) (b) (c)

Figure 2 Visualization of three different pebble strategies. (a) Bennett’s strategy; (b) middle-
ground heuristic strategy; (c) Lange-McKenzie-Tapp method.

about the definition of T -depth and possible time-space tradeoffs for implementing Toffoli
gates and other reversible gates over the Clifford+T gate set.

Pebble games. To study space-time tradeoffs in reversible circuit synthesis, Bennett [3]
introduced reversible pebble games. This allow to explore ways to save on scratch space at
the expense of recomputing intermediate results.

A pebble game is defined on a directed acyclic graph G = (V, E), where Vin ⊆ V is a
special subset of vertices of in-degree 0, and Vout ⊆ V is a subset of vertices of out-degree 0.
In each step of the game, a pebble can either be put or be removed on a vertex v, provided
that for all w ∈ V such that (w, v) ∈ E already a pebble has been placed on w. Typically,
a total bound S ≥ 0 on the number of available pebbles is given. Vertices in Vin can be
pebbled at any time, provided enough pebbles remain. The task is to put a pebble on all
vertices of Vout and to do so in the minimal number of moves possible. An example is given
in Figure 1. Here V = {v1, v2, v3, v4}, Vin = {v1}, Vout = {v4}. It turns out that the optimal
strategy for S = 3 requires 9 steps and the corresponding moves are shown in subfigures (1)
until (9).

For a more formal treatment and further background information about pebble games
we refer to [9]. If the graph on which the pebble game is played is a line, then the optimal
pebbling strategies for a given space bound S can be computed in practice quite well using
dynamical programming [19]. For general graphs, finding the optimal strategy is PSPACE
complete [9], i.e., it is unlikely to be solvable efficiently.

In Figure 2 we display three different pebbling strategies that all succeed in computing a
pebble game for the special case of linear graph, similar to one shown in Figure 1, but for
much larger number of vertices. In Figure 2 time is displayed from left to right, vertices are
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Figure 3 Controlled ripple adder based on Cuccaro et al. [13].

displayed vertically, with the vertex in Vin on the bottom and the vertex in Vout on top. The
strategy shown in (a) corresponds to Bennett’s compute-copy-uncompute method [2] where
the time cost is linear. The strategy shown in (c) corresponds to the Lange-McKenzie-Tapp
method [22] that resembles a fractal. In (b), a possible middle ground is shown, namely an
incremental heuristic that first uses up as many pebbles as possible, then aggressively cleans
up all bits except for the last bit, and the repeats the process until it ultimately runs out of
pebbles.

For a line graph with |V | = n, the Lange-McKenzie-Tapp strategy requires only O(log(n))
pebbles and has an overall number of O(n log(n)) steps, i.e., it is known that the line can be
optimally pebbled in a number of steps that scales poynomially with the number of vertices.

If the underlying graph G is a complete binary tree on n vertices such a polynomial
bound is unfortunately not known. While it is known that the smallest number of pebbles
required to pebble a binary tree of height h is given by S = log(h) + Θ(log∗(h)), where log∗

denotes the iterated logarithm, to our knowledge the best upper bound on the number of
steps is nO(log log(n)), given in [20]. It is an open problem if a binary tree on n vertices can
be pebbled with a polynomial number of steps provided that only S pebbles are available,
where S is as above. In this paper, we consider complete ternary trees as they arise naturally
from the Karatsuba recursion. However, we do not strive for the optimal strategy and are
content with a strategy that is good enough to give an asymptotic improvement.

3 Addition

Circuits for multiplication of integers naturally rely on circuits to add integers as subroutines,
hence we first discuss circuits to perform addition. The adder shown in Fig. 3 is a circuit
described in Cuccaro et al. [13] and forms the basis of simple multiplication circuits.

Note that not all the optimizations described in [13] are desirable in our context as we
wish to minimize T gates when adding controls to the overall circuit. It can be observed that
that every Toffoli gate in the basic circuit given in [13] shares its controls with another. We
can therefore use “directional” Toffoli gates [28]. Each directional Toffoli uses four T -gates,
requires one ancilla and has a T -depth of one. This circuit contains a total of 2n Toffoli gates
and they are all in series. The adder therefore has 8n T -Gates and a total T -depth of 2n.

To implement a controlled adder we further note that not all gates in this circuit need be
controlled: controlling a set of gates which if removed would transform the circuit into the
identity is sufficient. In the case of the in-place adder the MAJ and UMA subcircuits that

TQC 2017
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Figure 4 Controlled addition multiplier. In the above circuit notation the triangle designates the
modified bits in the adder. The circuit consists of a sequence of controlled additions as in Fig. 3
with the exception of the first block which can be replaced by a cascade of Toffoli gates as the ancilla
qubits at the bottom are initialized in the zero state. The total gate count scales asymptotically as
O(n2).

were introduced in [13] can be made to cancel by removing one gate each. Figure 3 shows the
resulting circuit. The circuit has a total number of 4n Toffoli gates, all of which are in series.
Therefore, the total T -count of the controlled adder is 16n and the total T -depth is 4n.

A simple O(n2) implementation of multiplication as a controlled addition circuit is shown
in Fig. 4. Given two numbers as bit strings a and b their product can be found by repeatedly
shifting forward by one and adding b to the result controlled on the next bit in a. The overall
circuit is an out-of-place multiplier that uses only 1 additional ancilla for the adder circuits.

This circuit takes n Toffoli gates to copy down the initial value. It then uses n − 1
controlled in place addition circuits to produce the final value. If we define Actrl

n to be the
Toffoli count for a controlled adder of size n we get Mn = n + (n− 1)Actrl

n , where Mn is the
gate count for a controlled addition based multiplication circuit of size n. We know from the
above discussion that the controlled addition circuit uses 4n Toffoli gates. This yields a total
Toffoli count of the integer multiplication of

Mn = 4n2 − 3n, (1)

and a space complexity that scales linear with the number of qubits.
The rest of the paper will consider methods to reduce this total gate count to O(nlog2 3)

while improving the amount of ancillas that are required to do so when compared to prior
approaches.
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Figure 5 Karatsuba multiplication circuit. Besides the output (denoted “xy”) this circuit outputs
also the intermediate result “B” as in the Karatsuba recursion xy = 2nA + 2bn/2cB + C mentioned
in the text. In order to remove B, we copy out the result “xy” and run the circuit backward. The
main contribution of this paper is an analysis on when to perform this uncomputation as a function
of the level of the recursion. Note that the final two adders return the inputs to their original state
in order to save space. These adders can be removed at the cost of additional garbage bits.

4 Reversible Karatsuba multiplier

The following reversible algorithm for Karatsuba improves upon previous work [21]. It does
this primarily by using in place addition to minimize garbage growth at each level. It also
attempts to choose optimal splits instead of dividing the number in half at each step, This is
helpful when the integer size is not a power of 2. Further an asymptotic improvement in
space use (yielding as well an asymptotic improvement in the space-time product), is shown
by using pebble games in the analysis.

Let n ≥ 1 and let x and y be n-bit integers. The well-known Karatsuba [17] algorithm
is based on the observation that by writing x = x12dn/2e + x0 and y = y12dn/2e + y0 the
product xy can be evaluated as xy = 2nA + 2dn/2eB + C, where

A = x1y1,

B = (x0 + x1)(y0 + y1)− x0y0 − x1y1,

C = x0y0.

Note that computation of A, B, and C only requires multiplication of integers that have
bits size n/2, i.e., half the bit size of x and y. The final addition is carried out as the addition
of n bit integers.
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4.1 Analysis

Note that the cost for the computation of A, B, and C are 3 multiplications and four
additions. Note further that the additions to compose the final result do not have to be
carried out as the bit representation of xy is the concatenation of the bit representations of
A, B, and C. For m ≥ 1, let Mg

m denote the Toffoli cost of a circuit that multiplies m-bit
inputs x and y using ancillas, i.e., a circuit that maps (x, y, 0, 0) 7→ (x, y, g(x, y), xy), where
xy is a 2m-bit output, and g(x, y) is an garbage output on k ≥ 1 bits. Furthermore, denote
by Am the cost for an (in-place) adder of two m-bit numbers. It is known that Am can be
bounded by at most 2m Toffoli gates. Let Kn denote the number of Toffoli gates that arise
in the quantum Karatsuba algorithm (See Fig. 5). The outputs of one step of the recursion
are x0,x1, y0, y1, x0y0, x1y1, and xy. It is easy to see that allowing garbage, Kg

n can be
implemented using 3 multipliers of half the bit size, 4 in-place adders of size n and 4 in
place adders of size n/2 (note the subtracters are just reversed adders). The base case is a
multiplier for two one-bit numbers which can be done with one Toffoli gate, i.e., Kg

1 = 1. We
obtain the following recursion:

Kg
n = 3Kg

n/2 + 4
(
An + An/2

)
; Kg

1 = 1. (2)

For the overall clean implementation of the Karatsuba algorithm we first run this circuit
forward, copy out the final result using n CNOTs, and then run the whole circuit backward.
This leads to an overall cost of Kn = 2Kg

n and n CNOTs. For the moment we focus on the
Toffoli cost only. By expansion we obtain that:

Kg
n = 3log2(n)Kg

1 + 4
(
An + An/2

)
+ 12

(
An/2 + An/4

)
+ . . . + 4 · 3log2(n)−1 (A2 + A1) . (3)

Using that the Toffoli cost of An/2i is 2(n/2i), we obtain for the overall Toffoli cost the
following bound:

Kn = 2

3log2 n + 4
log2 n−1∑

i=0
3i2(3n/2i)


= 2nlog2 3 + 48 n

(
1− (3/2)log2 n

1− 3/2

)
= 2nlog2 3 + 96 n

(
(3/2)log2 n − 1

)
≤ 98 nlog2 3. (4)

This bound can be improved by replacing the recursive call to Karatsuba with naive
multiplication once a certain cutoff has been reached. In Fig. 6 we provide a comparison of
various cutoff values (the naive method based on eq. (1) is also plotted for reference).

Another way to improve this algorithm is to attempt to choose more intelligent splits
rather than always splitting the inputs in half at each level. This is important because the
bit length of the numbers we are adding together may not be a power of two so dividing the
input in two at each level might not be optimal. In Fig. 6 the line plotted as aKara11 shows
the result of using the optimal splits at each level. These were found by a simple dynamic
program which evaluated the total gate size for every possible split at every level and chose
the optimal ones. Using these methods we find an optimal cutoff value of 11 (see Fig. 7).
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4.2 Time-space tradeoffs
We see in Figs. 6 and 9 that there are trade-offs available between circuits size and gate
count available by changing the cutoff value. A higher cutoff value results in a larger naive
multiplication circuits which are much more space efficient.

The reversible pebble game may be used to gain an asymptotic improvement in the space
required to implement this algorithm. Note the tree structure of the recursive dependencies
shown in Fig. 11. We find a level such that the size of each node’s subtree is approximately
equal to the size of the sum of all nodes at that level and above. Then for each node at that
level in sequence compute the node and uncompute all nodes below it.

For the Karatsuba circuit on input of size n at a level x in the tree there are 3x nodes of
size 2−xn for a total cost of

n

(
3
2

)x

.

So the total cost of the full tree is given by

n

N∑
i=0

(
3
2

)i

,

where N = log2 n. To pebble the underlying ternary tree, we would like to break the tree into
approximately equal sized subtrees at some level. Each tree at that level will be computed
then uncomputed leaving only the top node. To minimize space we will choose the size of
these subtrees to be approximately equal to the remaining size of the tree above them. In
order to find the height k of such a tree we set:

N−k−1∑
i=0

(
3
2

)i

= 1
2N−k

k−1∑
i=0

(
3
2

)i

.

Since this is a geometric series we can use the identity
∑n−1

k=0 rk = 1−rn

1−r which holds for
all r and obtain

1− 3/2N−k

1− 3/2
= 1

2N−k

1− 3/2k

1− 3/2
.

Rearranging terms, we obtain

1− 3/2N−k = 2k−N − 3k

2N
.

Since k ≤ N and since we want that 3/2N−k ≥ 3k

2N a simple calculation shows that this will
be the case for k ≤ N

2− log 2
log 3

= 0.731N . The total space use without this optimization can be
calculated as

n

log2 n−1∑
k=0

(
3
2

)k

= n
1− (3/2)log2 n

1− 3/2
.

This gives space use of O(n(3/2)log2 n)) which is equivalent to O(nlog2 3) or approximately
O(n1.585). Using the above optimization we get space usage that can be bounded by

O

(
n

(
3
2

)( log 3
2 log 3−log 2 log2 n))

≈ O(n1.427).
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Figure 10 Toffoli depth versus input size for various Karatsuba cutoffs.

To find the depth of the circuit note that each node at level k must be computed sequentially.
At level k the number of trees is

3(1− log 3
2 log 3−log 2 ) log2 n.

Each tree is of depth
n

21− log 3
2 log 3−log 2

.

This gives an overall depth for computing the k level of

n

(
3
2

)(1− log 3
2 log 3−log 2 ) log2 n

≈ n1.158.

Overall, we get a space-depth volume of our circuit that scales as n1+log2 3.

4.3 Generalization to other recursions
Assume that we are given a function with input size n which splits a problem into a total of
a subproblems of size n/b where the total cost to subdivide and recombine is O(n). Then the
overall work to compute the function for a problem of size n is given by:

n

N∑
i=0

(a

b

)i

.

Solving as above we have:

k ≤ logb n

2− log b
log a

.
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Figure 11 Structure of a pebble game for recursively implementing the Karatsuba circuit. Here
Ki for i = 1, 2, . . . , n stands for the problem at level i, i.e., a problem with input-size i bits.

This means that our method is effective for recursive functions where the number of
sub-problems is greater than the problem size reduction factor. This is intuitive since if the
problem size reduction factor is equal to or greater than the number of sub-problems then
adding up the total size of all nodes in levels above a given node will always result in a sum
greater than or equal to the sum for that node’s subtree.

By setting b in log b/ log a equal to 1 we get a square root reduction in space. This should
be compared with a pebble game for complete binary graphs that was reported on in [20] in
which a similar recursive structure was considered.

5 Conclusions and outlook

We considered the problem of optimizing the implementation of integer arithmetic on a
quantum computer. Prior to our work, the state of the art was that in order to get a
subquadratic overall gate count for a reversible multiplier a quite significant price had to
be paid in that O(nlog2 3) qubits of memory were needed. By using pebble games played on
the recursion tree, we find an improved number of ancillas needed for Karatsuba’s recursion,
which turns out to be upper bounded by O(n1.427), while maintaining the asymptotic overall
gate count of O(nlog2 3) for the number of gates. An interesting open problem is to apply
these ideas to other recursions, which leads to the question of finding good pebbling strategies
for trees of higher valency. Another open problem relates to the volume of the circuits for
integer multiplication, specifically, whether it is possible to reduce the volume asymptotically
below O(n1+log2 3) and whether non-trivial space-time lower bounds for reversible integer
multiplication can be shown that improve over the trivial Ω(n2) lower bound for the volume.

Acknowledgments. The authors would like to thank BIRS for hosting Banff Seminar
16w5029: Quantum Computer Science, during which part of this research was carried out,
and the anonymous referees for providing valuable feedback.
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Abstract
We introduce a definition of the fidelity function for multi-round quantum strategies, which
we call the strategy fidelity, that is a generalization of the fidelity function for quantum states.
We provide many interesting properties of the strategy fidelity including a Fuchs-van de Graaf
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Figure 1 An r-round interaction between a pure strategy of Alice (the linear isometries above
the dashed line) and a pure co-strategy of Bob (the linear isometries below the dashed line). Arrows
crossing the dashed line represent messages exchanged between the parties, while horizontal arrows
represent private memory.

concerned about optimizing the number of messages exchanged, without loss of generality
both of these tasks are done by the same party, which, for convenience, we call Bob. Let us
call the other party Alice. The interaction between Alice and Bob decomposes naturally into
a finite number r of rounds (see Figure 1).

Such interactions are conveniently described by the formalism of quantum strategies
introduced in Ref. [13]. We closely follow that formalism here with the exception that we
consider two mathematically different objects: strategies and pure strategies. Pure strategies
are implemented using linear isometries and preserve their final memory space, while strategies
trace out the final memory space. The object we call a strategy is called a non-measuring
strategy in Ref. [13]. For additional details on quantum strategies, one may refer to [13, 9, 11].

I Definition 1 (Pure strategy and pure co-strategy). Let r ≥ 1 and let X1, . . . ,Xr,Y1, . . . ,Yr,
Zr,Wr be complex Euclidean spaces and, for notational convenience, let Xr+1 := C and
Z0 := C. An r-round pure strategy Ã having input spaces X1, . . . ,Xr, output spaces Y1, . . . ,Yr,
and final memory space Zr, consists of:
1. complex Euclidean spaces Z1, . . . ,Zr−1, called intermediate memory spaces, and
2. an r-tuple of linear isometries (A1, . . . , Ar) of the form Ai : Xi ⊗Zi−1 → Yi ⊗Zi.

An r-round pure co-strategy having input spaces Y1, . . . ,Yr, output spaces X1, . . . ,Xr,
and final memory space Wr, consists of:
1. complex Euclidean intermediate memory spaces W0, . . . ,Wr−1,
2. a pure quantum state |β〉 ∈ X1 ⊗W0, called the initial state, and
3. an r-tuple of linear isometries (B1, . . . , Br) of the form Bi : Yi ⊗Wi−1 → Xi+1 ⊗Wi.
A pure strategy and a pure co-strategy are said to be compatible when the input spaces of
one are the output spaces of the other, and vice versa. The final state of the interaction
between Ã and B̃ is denoted by

|ψ(Ã, B̃)〉 := (IZr ⊗Br)(Ar ⊗ IWr−1) · · · (IZ1 ⊗B1)(A1 ⊗ IW0)|β〉 ∈ Zr ⊗Wr.

In order to extract classical information from the interaction it suffices to permit Alice and
Bob to measure their respective parts of the final state |ψ(Ã, B̃)〉.

A pure strategy Ã specified by linear isometries (A1, . . . , Ar) can be represented by a
single isometry

Ã := (Ar ⊗ IY1...r−1) . . . (IX3...r
⊗A2 ⊗ IY1)(IX2...r

⊗A1) : X1...r → Y1...r ⊗Zr,
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where Xi...j is short for Xi ⊗ · · · ⊗ Xj and Yi...j is short for Yi ⊗ · · · ⊗ Yj . We abuse the
notation1 Ã here and elsewhere in the paper by using it to denote both a pure strategy and
the linear isometry representing it, and we do the same for pure co-strategies B̃, discussed
next. A pure co-strategy B̃ specified by the initial state |β〉 and linear isometries (B1, . . . , Br)
can be represented by a single isometry

B̃ := (Br ⊗ IX1...r
) · · · (IY2...r

⊗B1 ⊗ IX1)(IY1...r
⊗ |β〉) : Y1...r → X1...r ⊗Wr.

Note that two pure strategies that are represented by the same linear isometry are effectively
indistinguishable, and the same holds true for pure co-strategies.

Any one party is not affected by what the other party does with their final memory space.
Hence, from the point of view of that party, the other party can trace it out. In view of this,
a strategy A is obtained from a pure strategy Ã by tracing out the final memory space Zr

and a co-strategy B is obtained from a pure co-strategy B̃ by tracing out the final memory
space Wr. Multiple pure strategies (co-strategies) can yield the same strategy (co-strategy),
and we call any such pure strategy (co-strategy) a purification. We will use tildes to indicate
purifications.

Just as a pure strategy and a pure co-strategy can be specified by linear isometries Ã
and B̃, respectively, their corresponding strategy A and co-strategy B can be specified by
quantum channels

ΦA : L(X1...r)→ L(Y1...r) : X 7→ TrZr (ÃXÃ∗),
ΨB : L(Y1...r)→ L(X1...r) : Y 7→ TrWr

(B̃Y B̃∗).

In turn, both of these channels can be specified using their Choi-Jamiołkowski representations,
but, due to the asymmetry between strategies and co-strategies, it is convenient to specify
the latter one using the Choi-Jamiołkowski representation of its adjoint map. Thus, we can
represent a strategy A by J(ΦA) and a co-strategy B by J(Ψ∗B), both of which are positive
semidefinite operators acting on Y1...r ⊗X1...r. In a similar abuse of notation as mentioned
before, we refer to J(ΦA) as the strategy A and to J(Ψ∗B) as the co-strategy B.

For compatible pure strategy Ã and pure co-strategy B̃, let

ρA(B̃) := TrZr

(
|ψ(Ã, B̃)〉〈ψ(Ã, B̃)|

)
(1)

denote the reduced state of the final memory space Wr of B̃ after the interaction between Ã
and B̃. Since this state is the same for all purifications of A, we omit the tilde above A in
this notation.

1.2 The definition of strategy fidelity
Recall that the fidelity F(P,Q) between two positive semidefinite operators P and Q is
defined as

F(P,Q) :=
∥∥∥√P√Q∥∥∥

Tr
.

When applied to density operators ρ, ξ, the fidelity function F(ρ, ξ) is a useful distance
measure for quantum states. We would like to construct a generalization of the fidelity
function that can serve as a useful distance measure for quantum strategies.

1 It will be clear from context to which we are referring.
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Just as the trace norm ‖ρ − ξ‖Tr quantifies the distinguishability of quantum states,
the strategy norm ‖S − T ‖�r studied in [12] quantifies the distinguishability of quantum
strategies S and T having the same input and output spaces. In other words, ‖S − T ‖�r
is proportional to the maximum bias with which an interacting pure co-strategy B̃ can
distinguish S from T . Another expression for this maximum bias can be derived as follows.
Let Wr be the final memory space of B̃ and let ρS(B̃), ρT (B̃) be the reduced states of this
final memory space after an interaction between B̃ and S, T , respectively, as defined in (1).
It is clear that the maximum bias with which S can be distinguished from T is proportional
to the maximum over all such B̃ with which the final state ρS(B̃) can be distinguished from
ρT (B̃), which is precisely ‖ρS(B̃)− ρT (B̃)‖Tr.

I Remark. All purifications B̃ of B are equivalent up to a unitary acting on Wr. Thus,
unitarily invariant distance measures between ρS(B̃) and ρT (B̃) (including the trace distance
and the fidelity) depend only upon B and not upon the specific purification B̃.

The strategy norm is defined so that

‖S − T ‖�r = max
B
‖ρS(B̃)− ρT (B̃)‖Tr. (2)

In light of this observation, we define the strategy fidelity by replacing the maximization of
the trace distance between ρS(B̃) and ρT (B̃) with the minimization of the fidelity between
ρS(B̃) and ρT (B̃).

I Definition 2 (Strategy fidelity). For any r-round strategies S and T having the same input
and output spaces, the strategy fidelity is defined as

Fr(S, T ) := min
B

F(ρS(B̃), ρT (B̃)) (3)

where the minimization is over all compatible co-strategies B and the states ρS(B̃), ρT (B̃)
are as defined in (1).

In the following discussion, we argue that this definition is a meaningful one by proving
analogues of the Fuchs-van de Graaf inequalities and Uhlmann’s Theorem for the strategy
fidelity, among many other properties.

I Remark. The same definition of fidelity has been considered for the case of channels [2].
In that setting, they establish several properties which we generalize to the strategy setting.

First, let us observe that the fidelity for quantum states is recovered as a special case of the
strategy fidelity when S, T are one-round strategies with no input (that is, X1 = C) and only
one output message. To see this, observe that one-round strategies such as S, T are simply
states ρ, ξ acting on Y1. Bob’s most general pure co-strategy is an isometry B̃ : Y1 →W1.
In this case the effect of Bob’s purified strategy B̃ is cancelled in the computation of Fr(S, T )
so that

F1(S, T ) = min
B

F(ρS(B̃), ρT (B̃)) = F(B̃ρB̃∗, B̃ξB̃∗) = F(ρ, ξ)

as claimed.

1.2.1 Basic properties of the strategy fidelity
We now list several other properties of the strategy fidelity, all of which immediately hold
using the corresponding properties of the fidelity of quantum states.
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I Proposition 3 (Basic properties).
(Fuchs-van de Graaf inequalities for strategies) For any r-round strategies S and T , it
holds that

1− 1
2‖S − T ‖�r ≤ Fr(S, T ) ≤

√
1− 1

4‖S − T ‖
2
�r. (4)

(Symmetry) For any r-round strategies S and T , it holds that Fr(S, T ) = Fr(T, S).
(Joint concavity) For any r-round strategies S1, . . . , Sn and T 1, . . . , Tn, and nonnegative
scalars λ1, . . . , λn satisfying

∑n
i=1 λi = 1, we have

Fr

(
n∑

i=1
λiS

i,

n∑
i=1

λiT
i

)
≥

n∑
i=1

λi Fr
(
Si, T i

)
.

(Bounds on the strategy fidelity) For any r-round strategies S and T , it holds that
0 ≤ Fr(S, T ) ≤ 1. Moreover, Fr(S, T ) = 1 if and only if S = T and Fr(S, T ) = 0 if and
only if S and T are perfectly distinguishable.

We later discuss that the strategy version of the Fuchs-van de Graaf inequalities is crucial
to our cryptographic applications. This was also used implicitly in [10].

1.2.2 Operational interpretation (min-max properties)
Here we propose an operationally motivated generalization of Uhlmann’s Theorem [24] to
the strategy fidelity. In so doing we elucidate the need for a min-max theorem. Recall that
Uhlmann’s Theorem for quantum states asserts that the fidelity F(ρ, ξ) between any two
quantum states ρ and ξ, acting on X , is given by

F(ρ, ξ) = max
U
|〈φ|(U ⊗ IX )|ψ〉|

where |φ〉, |ψ〉 ∈ X ⊗Y are any purifications of ρ, ξ and the maximization is over all unitaries
U acting on Y alone.

Intuitively, Fr(S, T ) should quantify the extent to which any purifications S̃, T̃ of two
strategies S, T can be made to look the same by acting only on the final memory space Zr.
It follows immediately from the definition of the strategy fidelity and Uhlmann’s Theorem
that

Fr(S, T ) = min
B

F(ρS(B̃), ρT (B̃)) = min
B

max
U

∣∣〈ψ(S̃, B̃)| (U ⊗ IWr
) |ψ(T̃ , B̃)〉

∣∣ (5)

where, again, the maximization is over all unitaries U acting on Zr alone.
Notice the order of minimization and maximization in (5). This could be viewed as

a competitive game between Alice (who plays according to S or T ) and Bob (who plays
according to any arbitrary co-strategy B) in which Bob is trying to distinguish S from T

and Alice is trying to make S and T look the same. To these ends, Bob chooses his strategy
B so as to minimize the overlap |〈ψ(S̃, B̃)|ψ(T̃ , B̃)〉|; given such a choice B for Bob, Alice’s
responds with a unitary U that maximizes this overlap.

The problem is that Alice’s choice of U may depend upon Bob’s co-strategy B. The
task of distinguishing S from T should depend only upon S and T—Alice should not be
granted the ability to tweak S or T after she has acquired knowledge of Bob’s specific choice
of distinguishing co-strategy B. From an operational perspective, it would be much more
desirable if the order of minimization and maximization in (5) were reversed. Alice should
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select her unitary U so as to make S look as much as possible like T before Bob selects his
distinguishing co-strategy B. Thus, we require a type of min-max theorem.

The set of all co-strategies B for Bob is compact and convex [13], but it is not at all
clear that the objective function in (5) is convex in B; we show later (Lemma 9) that this is
indeed the case. However, the set of all unitaries U for Alice is not a convex set. One might
think that we could extend the domain of maximization to the convex hull of the unitaries
in the hopes that there is a saddle point (U,B) with U unitary. Unfortunately, saddle points
do not in general occur at extreme points of the domain, so we are not guaranteed that such
a unitary saddle point exists. Thus, a min-max theorem for the strategy fidelity involving
unitaries is not so easily forthcoming.

However, if we allow Alice to apply a general quantum channel, we are able to obtain a
min-max result, as stated below.

I Theorem 4 (Strategy generalization of Uhlmann’s Theorem). Let S, T be r-round strategies
and let S̃, T̃ be any purifications of S, T . Let |ψ(S̃, B̃)〉, |ψ(T̃ , B̃)〉 be as defined in Definition 1.
We have

Fr(S, T )2 = max
Ξ

min
B
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉 (6)

where the minimum is over all r-round pure co-strategies B̃ and the maximum is over all
quantum channels Ξ acting on Zr alone.

Note that similar min-max results are derived in [2] and [10]. It will be convenient to
define the following quantum channel.

I Definition 5. A strategy fidelity-achieving channel Ξ is a channel which attains the
maximum in (6), above.

1.2.3 Semidefinite programming formulation of strategy fidelity
It was shown in [12] that the strategy norm has a semidefinite programming formulation.
Also, the fidelity of quantum states has semidefinite programming formulations, see [26, 27]
for examples. It is natural to ask whether the strategy fidelity has such a formulation. We
answer this question in the affirmative, below.

I Theorem 6 (Semidefinite programming formulation of strategy fidelity). Fix any purifications
S̃ and T̃ of r-round strategies S and T , respectively. Then Fr(S, T )2 is equal to the optimal
objective function value of the following semidefinite program:

Fr(S, T )2 = max t

subject to tIX1 � TrY1(R1)
Rj ⊗ IXj+1 � TrYj+1(Rj+1), for j ∈ {1, . . . , r − 1},

Rr � 1
2 TrZr

(
(K ⊗ IY1...r⊗X1...r

) |T̃ 〉〉〈〈S̃|
)

+ h.c.[
IZr

K

K∗ IZr

]
� 0

where the variables Rj are Hermitian acting on Y1...j ⊗ X1...j for each j ∈ {1, . . . , r}, and
h.c. denotes the Hermitian conjugate.

1.3 Applications to two-party quantum cryptography
Since the seminal work of Wiesner [28] and Bennett and Brassard [3], there has been much
interest in knowing the advantages, and limitations, of quantum protocols for cryptographic
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tasks. Due to the interactive setting of such protocols, the use of quantum strategy analysis
has proven to be useful. In [13], it was shown how to rederive Kitaev’s lower bound for
coin-flipping [15]. In [10], it was shown how to find a simple proof of the impossibility of
interactive bit-commitment. Here, we find a similar proof of this and extend the argument
to oblivious string transfer.

In this paper, we present our ideas using the machinery we have developed for the strategy
fidelity. In particular, we show that the strategy version of the Fuchs-van de Graaf inequalities
(Eqn. (4)) are of central importance in providing security lower bounds. In fact, due to
the nature of the strategy norm and strategy fidelity, we are able to bound the security
without even specifying the entire protocol! This is in stark contrast to many other security
proofs/models studied, for example in [15, 23, 25, 19, 1, 14, 13, 5, 6, 7, 8, 20, 21, 4, 22] where
Alice and Bob’s actions are assumed to be fully specified (and known to cheating parties).
We note that our proposed security model is implicit in the bit-commitment security bounds
in [10] and in the channel setting in [2].

In this paper, we show the impossibility of ideal quantum protocols for interactive
bit-commitment and oblivious string transfer.

1.3.1 Interactive bit-commitment
In bit-commitment, we require Alice and Bob to interact over two communication stages:

Commit Phase: Alice chooses a uniformly random bit a and interacts with Bob using an
r-round pure strategy Ãa.
Reveal Phase: Alice sends a to Bob and continues her interaction with him (so that Bob
can test if she has cheated).
Cheat Detection: Bob, knowing which pure strategy B̃ he has used, measures to check if
the final state is consistent with Alice’s pure strategy Ãa. He aborts the protocol if this
measurement detects the final state is not consistent with Alice’s pure strategy Ãa. If
Alice is honest, he never aborts.

Protocols are designed with the intention to achieve the following two important properties
of interest:

Binding: Alice cannot change her mind after the Commit Phase and reveal the other
value of a (without being detected by Bob).
Hiding: Bob cannot learn Alice’s bit a before she reveals it during the Reveal Phase.

Finding a protocol with perfect binding and hiding properties is known to be impossible [18,
16, 17]. However, these security proofs rely on an assumption that we do not make, that
honest Bob’s actions are specified beforehand (and thus known to Alice).

We define the cheating probabilities of Alice and Bob as follows:

BBC: The maximum probability with which a dishonest Bob can learn an honest Alice’s
committed bit a ∈ {0, 1} after the Commit Phase.

ABC: The maximum probability with which Alice can change her commitment from 0 to 1 (or
from 1 to 0) before the Reveal Phase.

I Remark. Note that in the definition of cheating Alice above, we do not assume Alice knows
Bob’s actions. It could even be the case that Bob’s sole purpose is to choose a co-strategy
such as to minimize ABC.

Cheating Bob wishes to distinguish between one of two uniformly randomly chosen
strategies. We know from [12] that

BBC = 1
2 + 1

4‖A
0 −A1‖�r.
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In Section 4, we show that

ABC ≥ Fr(A0, A1)2.

An interesting observation is that this only depends on Alice’s honest strategies, not Bob’s.
Thus, by the Fuchs-van de Graaf inequalities for strategies (Proposition 3), we have the

following trade-off lower bound.

I Theorem 7. In any interactive quantum protocol for bit-commitment, we have that√
ABC + 2BBC ≥ 2.

Moreover, we have that Alice or Bob can cheat with probability at least 9−
√

17
8 ≈ 61%.

Note that this is a similar bound to the one obtained in [10] for the interactive setting
and exactly the same as in [2] in the channel setting.

We remark that, when Alice and Bob’s actions are completely specified, optimal protocols
are known [6].

1.3.2 1-out-of-2 interactive oblivious string transfer
This is an interactive cryptographic task between Alice and Bob where Bob has two bit-
strings2 (x0, x1) and Alice wishes to learn one of the two in the following manner:

Alice chooses a uniformly random bit a which corresponds to her choice of which string
she wishes to learn, and interacts with Bob via the r-round pure strategy Ãa.
For every (x0, x1), Bob uses a pure co-strategy B̃x0,x1 , such that Alice learns the string
xa with certainty by measuring her private space Zr at the end of the protocol.

Note that we do not assume any structure on how Bob behaves other than the consistency
condition above. For example, x0 and x1 may be the result of another protocol of which
Alice is not part, and thus she does not even know the distribution from which they are
drawn. Again, Bob’s strategy may be such that, conditioned on the above requirements, he
just wants to foil Alice’s cheating, as defined below.

We define the cheating probabilities of Alice and Bob as follows:

BOT: The maximum probability with which a dishonest Bob can learn an honest Alice’s choice
bit a.

AOT: The maximum probability with which a dishonest Alice can learn x0 after learning x1

with certainty, or vice versa.

Cheating Bob behaves the exact same as in a bit-commitment protocol. Thus his cheating
probability is again

BOT = 1
2 + 1

4‖A
0 −A1‖�r.

In Section 4, we show the following bound on cheating Alice:

AOT ≥ Fr(A0, A1)2.

This yields the same bound as in bit-commitment, below.

2 The bit-length of the strings are, surprisingly, not important for the purposes of this paper.
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I Theorem 8. In any interactive quantum protocol for 1-out-of-2 oblivious string transfer,
we have that√

AOT + 2BOT ≥ 2.

Moreover, we have that Alice or Bob can cheat with probability at least 9−
√

17
8 ≈ 61%.

Note that in the case where Bob has two bits (i.e., the strings have bit-length 1), an
optimal security trade-off between Alice and Bob is known [4]:

AOT + 2BOT ≥ 2.

However, this assumes perfect knowledge of Alice and Bob’s honest strategies. Thus, our
bound for cheating Alice is a bit weaker, but has the added benefit of only depending on her
honest strategies.

2 Technical lemmas and the strategy generalization of Uhlmann’s
Theorem

In this section we prove two lemmas that allow us to establish nontrivial properties of the
strategy fidelity. These lemmas are used to prove the strategy generalization of Uhlmann’s
Theorem (Theorem 4) and to provide a semidefinite programming formulation of the strategy
fidelity (Theorem 6).

Before we proceed, let us introduce some notation. Let Yi...jXi′...j′ be short for Yi...j ⊗
Xi′...j′ . Let L(X ), U(X ), Her(X ), Pos(X ), and Dens(X ) be, respectively, the set of all
linear, unitary, Hermitian, positive semidefinite, and density operators acting on X . Let
K(X ) be the convex hull of U(X ), namely, the set of all operators K ∈ L(X ) such that
‖K‖ ≤ 1. Suppose X and Y are two complex Euclidean spaces with fixed standard basis.
Given a linear operator A : X → Y written in the standard basis as

A =
dim(X )∑

i=1

dim(Y)∑
j=1

ai,j |j〉〈i|,

the vectorization of A is

|A〉〉 :=
dim(X )∑

i=1

dim(Y)∑
j=1

ai,j |j〉 ⊗ |i〉 ∈ Y ⊗ X

and its adjoint is 〈〈A| := (|A〉〉)∗.

I Lemma 9 (Inner product is linear in B). Let S, T be r-round strategies and let S̃, T̃ be any
purifications of S, T . Let B be a compatible r-round co-strategy and let B̃ be any purification
of B. Let |ψ(S̃, B̃)〉, |ψ(T̃ , B̃)〉 be as in Definition 1 and let K ∈ L(Zr). It holds that

〈ψ(S̃, B̃)| (K ⊗ IWr
) |ψ(T̃ , B̃)〉 = 〈〈S̃| (K ⊗B) |T̃ 〉〉.

Note that the inner product above depends on B but not on its purification B̃. This
exemplifies what we stated earlier in the remark above Eqn. (2).

The proof is similar to a proof in Ref. [13, Theorem 5]. Lemma 9 is useful for proving
the following lemma. Proofs of both these results will be included in the full version.
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I Lemma 10. Let S, T be r-round strategies and let S̃, T̃ be any purifications of S, T . It
holds that

Fr(S, T ) = max
K

min
B
<
(
〈〈S̃| (K ⊗B) |T̃ 〉〉

)
where the minimum is over all compatible r-round co-strategies B for Bob and the maximum
is over all K ∈ K(Zr) acting on the final memory space Zr for Alice.

Now, with Lemmas 9 and 10 at our disposal, we proceed to prove the strategy generaliza-
tion of Uhlmann’s Theorem.

Proof of Theorem 4. From Lemma 10, it follows that

Fr(S, T ) ≤ max
K

min
B

∣∣〈〈S̃| (K ⊗B) |T̃ 〉〉
∣∣ .

We square this inequality and apply Lemma 9 to obtain

Fr(S, T )2 ≤ max
K

min
B
〈ψ(S̃, B̃)| (K ⊗ IWr

) |ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)| (K∗ ⊗ IWr
) |ψ(S̃, B̃)〉.

Let us define K̄ =
√
IZr −K∗K (noting that K∗K � IZr ) and

ΞK : L(Zr)→ L(Zr) : X 7→ KXK∗ + K̄XK̄∗,

which is a quantum channel as its Kraus representation {K, K̄} satisfies K∗K + K̄∗K̄ = IZr .
Since

〈ψ(S̃, B̃)|
(
K̄ ⊗ IWr

)
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

(
K̄∗ ⊗ IWr

)
|ψ(S̃, B̃)〉 ≥ 0

for all K and all B̃, we have

Fr(S, T )2 ≤ max
K

min
B
〈ψ(S̃, B̃)|

[(
ΞK ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉

≤ max
Ξ

min
B
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉. (7)

However, we clearly have

Fr(S, T )2 = min
B

max
Ξ
〈ψ(S̃, B̃)|

[(
Ξ⊗ IL(Wr)

) (
|ψ(T̃ , B̃)〉〈ψ(T̃ , B̃)|

)]
|ψ(S̃, B̃)〉

due to Eqn. (5) and the fact that Uhlmann’s Theorem also holds replacing unitaries with
channels. Hence, the inequality (7) is in fact an equality due to the max–min inequality. J

3 Semidefinite programming formulation for strategy fidelity

In this section, we use Lemma 10 to prove Theorem 6. From Lemma 10, we have that

Fr(S, T )2 = max {φ(K) : K ∈ K(Zr)}

where φ(K) := min
B
< 〈〈S̃| (K ⊗B) |T̃ 〉〉, and B is Bob’s co-strategy. By defining

C := 1
2 TrZr

(
(K ⊗ IY1...rX1...r

) |T̃ 〉〉〈〈S̃|
)

+ 1
2
[
TrZr

(
(K ⊗ IY1...rX1...r

) |T̃ 〉〉〈〈S̃|
)]∗

we can write

φ(K) = min
B
〈C,B〉.
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From [13, Corollary 7], we know that B must satisfy B = Qr ⊗ IYr for some (Q1, . . . , Qr)
satisfying

Tr(Q1) = 1, TrXi
(Qi) = Qi−1 ⊗ IYi−1 , for i ∈ {2, . . . , r}

and Q1 ∈ Pos(X1), Qi ∈ Pos(Y1...i−1 ⊗ X1...i), for i ∈ {2, . . . , r}. Thus, φ(K) can be
formulated as a semidefinite program. Its dual can be written as

α(K) := max
{
t : tIX1 � TrY1(R1), Rr � C,

Rj ⊗ IXj+1 � TrYj+1(Rj+1) for j ∈ {1, . . . , r − 1}
}
,

where Rj ∈ Her(Y1...j ⊗X1...j). Since this has a strictly feasible solution, as does the primal,
we know α(K) = φ(K) by strong duality and α(K) attains an optimal solution. We now let

M =
[
IZr

K

K∗ IZr

]
and set M � 0 to get ‖K‖ ≤ 1. We can check that C is a linear function

in M (since M is Hermitian). Thus, we have that the strategy fidelity can be written as in
Theorem 6.

4 Alice’s cheating in interactive bit-commitment and oblivious string
transfer

In this section we show that Alice can cheat with probability Fr(A0, A1)2 in either bit-
commitment or oblivious string transfer. The cheating has the same flavour in both cases:
Alice will follow the protocol honestly, then try to change her state as to make it look like
she chose the other strategy from the beginning. Suppose Alice uses pure strategy Ãa and
Bob uses pure co-strategy B̃. For brevity, define for each a ∈ {0, 1} the following states

|ψa〉 := |ψ(Ãa, B̃)〉 and σa := (Ξa ⊗ IWr )(|ψa〉〈ψa|) (8)

where Ξa is the strategy fidelity-achieving channel (from Definition 5) such that

〈ψā|σa|ψā〉 ≥ Fr(A0, A1)2. (9)

Note that the aim of Ξa is to get σa as close as possible to |ψā〉〈ψā|.

4.1 Bit-commitment
When we study interactive bit-commitment, we are applying the strategy/co-strategy form-
alism to only the commit phase. From the above discussion, Alice can create the state
σa ∈ Dens(Zr ⊗Wr) to try to change her commitment from a to ā. Then Alice continues
her actions to “reveal” ā in the Reveal Phase, as does Bob (even though Bob’s actions are not
specified to Alice). We just assume that this entire process is done by a unitary Uā acting on
Zr ⊗Wr. Then, Bob has a projective measurement {Πaccept,Πreject} which accepts Uā|ψā〉
with certainty, thus leading to a non-destructive measurement. Thus, we have

(IZr ⊗Πaccept)Uā|ψā〉 = Uā|ψā〉.

This implies that

(IZr ⊗Πaccept) � Uā|ψā〉〈ψā|U∗ā .

However, Alice’s actions have led to them sharing UāσaU
∗
ā at the end of the protocol. So, we

have that Alice successfully reveals ā with probability

ABC ≥ 〈IZr⊗Πaccept, UāσaU
∗
ā 〉 ≥ 〈Uā|ψā〉〈ψā|U∗ā , UāσaU

∗
ā 〉 = 〈|ψā〉〈ψā|, σa〉 ≥ Fr(A0, A1)2

using Eqn. (9), as desired.
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4.2 Oblivious string transfer
We can assume Alice uses a projective measurement {Πa

z} to learn her desired string. Note
that since xa is learned with certainty, this is a non-destructive measurement, as in the
bit-commitment analysis above. That is, we have(

Πa
xa
⊗ IWr

)
|ψ(Ãa, B̃x0,x1)〉 = |ψ(Ãa, B̃x0,x1)〉

for all a and (x0, x1). Again, this implies

Πa
xa
⊗ IWr

� |ψ(Ãa, B̃x0,x1)〉〈ψ(Ãa, B̃x0,x1)|. (10)

Thus, after learning xa, she can create the state σa (defined above) to try to learn xā.
(Here, the B̃ in the definition of σa is B̃x0,x1 .) Then she measures as if she had used pure
strategy Ãā (that is, using {Πā

z}) to try to learn xā. Then, using (10) and the definitions in
(8), we have

AOT ≥ 〈Πā
xā
⊗ IWr , σa〉 ≥ 〈ψā|σa|ψā〉 ≥ Fr(A0, A1)2,

as desired.
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Abstract
We analyse the minimum quantum resources needed to realise strong non-locality, as exemplified
e.g. by the classical GHZ construction. It was already known that no two-qubit system, with any
finite number of local measurements, can realise strong non-locality. For three-qubit systems, we
show that strong non-locality can only be realised in the GHZ SLOCC class, and with equatorial
measurements. However, we show that in this class there is an infinite family of states which
are pairwise non LU-equivalent that realise strong non-locality with finitely many measurements.
These states have decreasing entanglement between one qubit and the other two, necessitating
an increasing number of local measurements on the latter.
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1 Introduction

In this paper, we aim at identifying the minimum quantum resources needed to witness
strong contextuality [3], and more specifically, strong (or maximal) non-locality. Non-locality
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is, of course, a fundamental phenomenon in quantum mechanics – both from a foundational
point of view, and with respect to quantum information and computation, in which it plays
a central rôle.

The original form of Bell’s argument [9], as well as its now more standard formulation
due to Clauser, Horne, Shimony, and Holt (CHSH) [13], rests on deriving an inequality that
must be satisfied by probabilities arising from any local realistic theory, but which is violated
by those predicted by quantum mechanics for a particular choice of a state and a finite
set of measurements. Greenberger, Horne, Shimony, and Zeilinger (GHSZ) [19, 18] gave a
stronger, inequality-free argument for quantum non-locality. This depended only on the
possibilistic aspects of quantum predictions, i.e. on which joint outcomes given a choice of
measurements have non-zero probability, regardless of the actual value of the probabilities.
Their argument was later simplified by Mermin [27, 28]. Whereas the Bell–CHSH argument
used local measurements on a two-qubit system prepared in a maximally entangled state,
the GHZ–Mermin argument required a three-qubit system in the GHZ state. Subsequently,
Hardy showed that one can indeed find a proof of non-locality “without inequalities”, i.e.
based on possibilistic information alone, using a bipartite, two-qubit system [21]. Hardy’s
argument works on any two-qubit entangled state bar the maximally entangled ones [22].
In fact, a similar argument works on almost all n-qubit states [4], the exceptions being
those states which are products of one-qubit states and two-qubit maximally entangled
states, which provably do not admit any non-locality argument “without inequalities” [26].
However, there is an important logical distinction between the GHSZ and Hardy possibilistic
arguments.

Abramsky and Brandenburger [3] introduced a general mathematical framework for
contextuality, in which non-locality arises as a particular case. This approach studies these
phenomena at a level of generality that abstracts away from the particularities of quantum
theory. The point is that contextuality and non-locality are witnessed by the empirical
data itself, without presupposing any physical theory. For this reason, one deals with
“empirical models” – tables of data for a given experimental scenario, obtained from empirical
observations or predicted by some physical theory, specifying probabilities of joint outcomes
for the allowed sets of compatible measurements.

Various kinds of contextuality (or, in particular, non-locality) arguments were studied
and classified at this abstract level, leading to the introduction of a qualitative hierarchy of
strengths of contextuality in [3], with further refinements in [5, 1]. The classic arguments
for quantum non-locality, familiar from the literature, sit at different levels in this hierarchy.
There is a strict relationship of strengths of non-locality, rendered as

Bell < Hardy < GHZ,

where these representative examples correspond, respectively, to probabilistic non-locality,
possibilistic non-locality, and strong non-locality.

Strong contextuality (or, in particular, non-locality) arises when there is no assignment
of outcomes to all the measurements consistent with the events that the empirical model
deems possible, i.e. to which it attributes non-zero probability. It is exactly this impossibility
which is shown by Mermin’s classic argument in [27]. Strong contextuality is also the highest
level of contextuality in a different, quantitative sense. It turns out to coincide with the
notion of maximal contextuality, the property that an empirical model admits no proper
decomposition into a convex combination of a non-contextual model and another model.
This corresponds to attaining the maximum value of 1 for the contextual faction, a natural
measure of contextuality introduced in [3] as a generalisation of the notion of non-local
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fraction [16, 8, 7]. The contextual fraction is shown in [2] to be equal to the maximal
normalised violation of a contextuality-witnessing inequality. Hence, a model is strongly
contextual if and only if it violates a generalised Bell inequality up to its algebraic bound.

Strong non-locality is particularly relevant to quantum computing. It is exhibited, for
example, by all graph states under stabiliser measurements [20], which provide resource states
and measurements for universal quantum computing via the one-way or measurement-based
model [31]. It is also known to be necessary for increasing computational power in certain
models of measurement-based quantum computing with restricted classical co-processing [30].
For instance, in [6] it was shown that GHZ strong non-locality enables a linear classical co-
processor to implement the non-linear AND function, and subsequently in [14] that it enables
the function to be implemented in a secure delegated way. Moreover, strong non-locality has
important consequences for certain information processing tasks: in particular, it is known
to be required for perfect strategies [25] in certain cooperative games [2].

Summary of results
In this paper, our aim is to analyse the minimum quantum resources needed to realise strong
non-locality. More precisely, we consider n-qubit systems viewed as n-partite systems,1 where
each party can perform one-qubit local projective measurements.2 We shall consider the case
where each party has a finite set of measurements available – this is what corresponds to the
standard experimental scenarios for non-locality.

The first result we present is limitative in character. It shows that strong non-locality
cannot be realised by a two-qubit system with any finite number of local measurements.
This result was already proven, using different terminology, in [12]. However, we include
it for completeness and because its proof is useful as a warm-up for proving the other
results in this paper.3
There is a subtle counterpoint to this in a result from [8], which shows that using a
maximally entangled bipartite state, and an infinite family of local measurements, strong
non-locality is achieved “in the limit” in a suitable sense. More precisely, as more and
more measurements from the family are used, the local fraction – the part of the behaviour
which can be accounted for by a local model – tends to 0, or equivalently the non-local
fraction tends to 1. There is an interesting connection to this in our results for the
tripartite case.
However, there is a practical advantage in being able to witness strong non-locality with
a fixed finite number of measurements. If one wishes to design an experimental test for
maximal non-locality, it is desirable that one can increase precision, i.e. increase the
lower bound on the non-local fraction, without needing to expand the experimental setup
– in particular, the number of measurement settings required to be performed – but rather
by simply performing more runs of the same experiment.

1 We know by a result of Heywood and Redhead [23] that strong contextuality can be realised using a
bipartite system, but with a qutrit at each site. Hence our focus on qubits.

2 Throughout this paper, we focus on projective measurements. The more general POVMs are justified
as physical processes by Năımark’s dilation, since they are described as projective measurements in a
larger physical system. Given that we are interested in characterising the minimum resources needed in
order to witness strong non-locality, it seems reasonable to focus on PVMs, which do not need to be
seen as measurements on a part of a larger system.

3 Note that, in the same paper, it is also shown that the result applies to any bipartite state where one
of the systems is a qubit, by an application of Schmidt decomposition of any bipartite state. This
means that the optimal dimention in which strong non-locality can be realised is 2× 2× 2 = 8, i.e. a
three-qubit system, since a two-qutrit system has dimension 9.
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Having shown that strong non-locality cannot be realised in the two-qubit case, we turn
to the analysis of three-qubit systems. Of course, we know by the classical GHSZ–Mermin
construction that strong non-locality can be achieved in this case, using the GHZ state
and Pauli X and Y measurements on each of the qubits. Our aim is to analyse for which
states, and with respect to which measurements, can strong non-locality be achieved. We
use the classification into SLOCC classes for tripartite qubit systems from [15]. According
to this analysis, there are two maximal SLOCC classes, the GHZ and W classes. Below
these, there are the degenerate cases of products of an entangled bipartite state with a
one-qubit state, e.g. AB−C. By the previous result, these degenerate cases cannot realise
strong non-locality. We furthermore show that no state in the W class can realise strong
non-locality, for any choice of finitely-many local measurements.
This leaves us with the GHZ SLOCC class. We use the detailed description of this
class as a parameterised family of states from [15]. We first show that any state in this
class witnessing strong non-locality with finitely many local measurements must satisfy a
number of constraints on the parameters. In particular, the state must be balanced in the
sense that the coefficients in its unique linear decomposition into a pair of product states
have the same complex modulus. We furthermore show that only equatorial measurements
need be considered (the equators being uniquely determined by the state) – no other
measurements can contribute to a strong non-locality argument.
Having thus narrowed the possibilities for realising strong non-locality considerably, we
find a new infinite family of models displaying strong non-locality using states within the
GHZ SLOCC class that are not LU-equivalent to the GHZ state. The states in this family
start from GHZ and tend in the limit to the state |Φ+〉 ⊗ |+〉 in the AB–C class with
maximal entanglement on the first two qubits, and in product with the third. This family
is actually closely related to the construction from [8] in which an increasing number
of measurements on a bipartite maximally entangled state eventually squeezes the local
fraction to zero in the limit. Our family is obtained by adding a third qubit to this
setup, with two available local measurements, and some entanglement between the first
two qubits and the third one, thus allowing strong non-locality to be witnessed with a
finite number of measurements. There is a trade-off between the number of measurement
settings available on the first two qubits – and, consequently, the lower bound for the
non-local fraction these measurements can witness – and the amount of entanglement
necessary between the third qubit and the original two.

Outline. The remainder of this article is organised as follows: Section 2 summarises some
background material on non-locality and entanglement classification of three-qubit states,
Section 3 shows that strong non-locality cannot be witnessed by two-qubit states and a
finite number of local measurements; Section 4 does the same for three-qubit states in
the SLOCC class of W; Section 5 deals with states in the SLOCC class of GHZ, deriving
conditions on these necessary for strong non-locality; Section 6 presents the family of strong
non-locality arguments using states in the GHZ-SLOCC class; and Section 7 concludes with
some discussion of open problems and further directions.

2 Background

2.1 Measurement scenarios and empirical models
We summarise some of the main ideas of [3], with particular emphasis on non-locality. This
is merely an instance of contextuality in a particular kind of measurement scenarios known
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as multipartite Bell-type scenarios. For each notion, we introduce the general definition
followed by its specialisation to multipartite Bell-type scenarios.

Measurement scenarios are abstract descriptions of experimental setups. In general, a
measurement scenario is described by a set of measurement labels X, a set of outcomes O,
and a coverM of X consisting of measurement contexts, i.e. maximal sets of measurements
that can be jointly performed. We are typically interested in measurement scenarios with
finite X, but for technical reasons it will be useful to consider scenarios with infinitely
many measurements in order to prove results about all their finite ‘subscenarios’ at once.
Throughout this paper, we shall also restrict our attention to dichotomic measurements, with
outcome set O = {−1,+1}. This is a reasonable restriction, especially since our main focus
shall be projective measurements on single qubits. Multipartite Bell-type scenarios are a
particular kind of measurement scenario which can be thought to describe multiple parties
at different sites, each independently choosing to perform one of a number of measurements
available to them. More formally, an n-partite Bell-type scenario is described by sets
X1, . . . , Xn labelling the measurements available at each site (so that X := X1 t · · · tXn),
with maximal contexts corresponding to a single choice of measurement for each party, or in
other words a tuple m = 〈m1, . . . ,mn〉 ∈ X1 × · · · ×Xn (soM∼=

∏n
i=1Xi).

An empirical model is a collection of probabilistic data representing possible results
of running the experiment represented by a measurement scenario. Given a measurement
scenario 〈X,M, O〉, an empirical model on that scenario is a family {eC}C∈M where each
eC ∈ D(OC) is a distribution over the set of joint outcomes to the measurements of C.
Given an assignment s : C −→ O of outcomes to each measurement in C, the value eC(s)
is the probability of obtaining the outcomes determined by s when jointly performing the
measurements in the context C.

In the particular case of a Bell-type scenario, we have a family {em ∈ D(On)}m∈
∏

i
Xi

of
probability distributions. Given a vector of outcomes o = 〈o1, . . . , on〉 ∈ On, the probability
em(o) of obtaining the joint outcomes o upon performing the measurements m at each site
is often denoted in the literature on non-locality as follows:

em(o) = Prob(o|m) = Prob(o1, . . . , on|m1, . . . ,mn).

Empirical models are usually assumed to satisfy a compatibility condition: that marginal
distributions agree on overlapping contexts, i.e. for all C and C ′ inM, eC |C∩C′ = eC′ |C∩C′ .
In the case of multipartite scenarios, this corresponds to the familiar no-signalling condition.

2.2 Contextuality and non-locality
An empirical model is said to be non-contextual if there is a distribution on assignments of
outcomes to all the measurements, d ∈ D(OX), that marginalises to the empirical probabilities
for each context, i.e. ∀C ∈M. d|C = eC . Note that this means there is a deterministic,
non-contextual hidden-variable theory with the set of global assignments OX serving as a
canonical hidden variable space. Indeed, the existence of such a global distribution is in fact
equivalent to the existence of a probabilistic hidden variable theory that is factorisable, a
notion that in multipartite scenarios specialises to the standard formulation of Bell locality:
there is a set of hidden variables Λ, a distribution in h ∈ D(Λ), and ontic probabilities
Prob(o|m, λ) that are consistent with the empirical ones, i.e. for all m ∈M and o ∈ On∑

λ∈Λ

Prob(o|m, λ)h(λ) = Prob(o|m) = em(o),

TQC 2017
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and that factorise when conditioned on each λ ∈ Λ, i.e.

Prob(o|m, λ) =
n∏
i=1

Prob(oi|mi, λ).

where the probabilities on the right-hand side are obtained as the obvious marginals. The
equivalence between the two formulations of non-contextuality or locality – in terms of a
probability distribution on global assignments (canonical deterministic hidden variable theory)
and in terms of factorisable hidden variable theory – was proven in [3] for general measurement
scenarios, vastly extending a result by Fine [17]. This justifies viewing non-locality as the
special case of contextuality in multipartite systems.

For some empirical models, it suffices to consider their possibilistic content, i.e. whether
events are possible (non-zero probability) or impossible (zero probability), to detect the
presence of contextuality. In this case, we say that the model is logically contextual. An
even stronger form of contextuality, which will be our main concern in this article, arises
when no global assignment of outcomes to all measurements is consistent with the events
deemed possible by the model: the empirical model e is said to be strongly contextual if
there is no assignment g : X −→ O such that ∀C ∈M. eC(g|C) > 0. In the particular
case of multipartite scenarios, such a global assignment is determined by a family of maps
gi : Xi −→ O for each site i so that g =

⊔n
i=1 gi :

⊔n
i=1Xi −→ O. The consistency condition

then reads: for any choice of measurements m = 〈m1, . . . ,mn〉 ∈
∏
Xi, writing g(m) =

〈g1(m1), . . . , gn(mn)〉, we have

em(g(m)) = Prob(g(m)|m) = Prob(g1(m1), . . . , gn(mn)|m1, . . . ,mn) > 0.

As mentioned in Section 1, strong contextuality was shown in [3] to exactly capture
the notion of maximal contextuality. The proof of this equivalence depends crucially on
the finiteness of the number of measurements. If one would consider an infinite number of
measurements, a situation could occur in which there is a global assignment g consistent with
the model, in the sense that ∀C ∈M. eC(g|C) > 0, but where infC∈M eC(g|C) = 0, in which
case g does not correspond to any positive fraction of the model. This will indeed be the case
for all the consistent global assignments described in this paper. Note, however, that proving
the failure of strong contextuality in a scenario with an infinite number of measurements,
even if the witnessing global assignment has infC∈M eC(g|C) = 0, is nonetheless sufficient
to show that maximal contextuality cannot be realised using only a finite subset of the
measurements.

2.3 Quantum realisable models
We are mainly concerned with empirical models that are realisable by quantum systems.
This means that one can find a quantum state and associate to each measurement label
a quantum measurement in the same Hilbert space such that measurements in the same
context commute and the probabilities of the various outcomes are given by the Born rule.

More specifically, we are concerned with models arising from n-qubit systems with local,
i.e. single-qubit, measurements. The Bloch sphere representation of one-qubit pure states
will be useful: assuming a preferred orthonormal basis {|0〉, |1〉} of C2, we shall use the
notation

|θ, ϕ〉 := cos θ2 |0〉+ eiϕ sin θ2 |1〉

for any θ ∈ [0, π] and ϕ ∈ [0, 2π).
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Any single-qubit projective measurement is fully determined by specifying such a norm-
alised vector in C2, namely the pure state corresponding to the +1 eigenvalue or outcome.
Hence, the set of local measurements for a single qubit is labelled by

LM = [0, π]× [0, 2π)

The quantum measurement determined by (θ, ϕ) ∈ LM has eigenvalues O = {+1,−1} with
the eigenvector corresponding to outcome o ∈ O given by:

|θ, ϕ 7→ o〉 :=
{
|θ, ϕ〉 if o = +1
|π − θ, ϕ+ π〉 if o = −1

Throughout this paper, we shall be considering the n-partite measurement scenario
with Xi = LM for every site. Measurement contexts correspond to a choice of single qubit
measurements for each of the n sites, represented by a tuple (θ,ϕ) = 〈(θ1, ϕ1), . . . , (θn, ϕn)〉.
Performing all the measurements of a context in parallel yields an outcome o = 〈o1, . . . , on〉 ∈
On. The vector corresponding to this outcome is denoted

|θ,ϕ 7→ o〉 := |θ1, ϕ1 7→ o1〉 ⊗ · · · ⊗ |θn, ϕn 7→ on〉.

We shall also find it useful to write

|θ,ϕ〉 := |θ1, ϕ1〉 ⊗ · · · ⊗ |θn, ϕn〉 = |θ,ϕ 7→ 〈+1, . . . ,+1〉〉

for the vector corresponding to the joint outcome assigning +1 at every site.
An n-qubit state |ψ〉 determines an empirical model e|ψ〉 for this measurement scenario:

e
|ψ〉
(θ,ϕ)(o) = Prob|ψ〉(o1, . . . , on|(θ1, ϕ1), . . . , (θn, ϕn)) := |〈θ,ϕ 7→ o|ψ〉|2.

We are concerned with checking for strongly non-local behaviour on such a model. As
explained in the previous section, this amounts to checking for the existence of maps
gi : LM −→ O for each site such that for any choice of measurements (θ,ϕ), the corresponding
outcome has positive probability:

e(θ,ϕ)(g(θ,ϕ)) = Prob|ψ〉(g1(θ1, ϕ1), . . . , gn(θn, ϕn)|(θ1, ϕ1), . . . , (θn, ϕn))
= |〈θ,ϕ 7→ g(θ,ϕ)|ψ〉|2 > 0.

Given that these are quantum probabilities, we can rephrase this condition in terms of
non-vanishing amplitudes: 〈θ,ϕ 7→ g(θ,ϕ)|ψ〉 6= 0.

The following fact will be used throughout. Suppose we want to check the consistency
with the empirical model of a given global assignment g =

⊔n
i=1 gi. If this assignment satisfies

∀i ∈ {1, . . . , n}. gi(θ, ϕ) = −gi(π − θ, ϕ+ π), (1)

that is, measurements with +1 eigenstates diametrically opposed in the Bloch spehere (i.e.
measurements that are the negation of each other) are assigned opposite outcomes, then

|θ, ϕ 7→ gi(θ, ϕ)〉 =
{
|θ, ϕ〉 if gi(θ, ϕ) = +1
|π − θ, ϕ+ π〉 if gi(θ, ϕ) = −1 (⇔ gi(π − θ, ϕ+ θ) = +1)

meaning that |θ,ϕ 7→ g(θ,ϕ)〉 = |θ′,ϕ′〉 with gi(θ′i, ϕ′i) = +1 for all i. In other words, should
we wish to calculate the amplitude for a joint outcome o on a given context (θ,ϕ), we may
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equivalently calculate the amplitude for the joint outcome 〈+1, . . . ,+1〉 on a new context
(θ′,ϕ′) obtained by substituting θi 7→ π − θi and ϕi 7→ π + ϕi for all i such that oi = −1.
Therefore, it suffices to verify the equation 〈θ,ϕ 7→ g(θ,ϕ)|ψ〉 6= 0 for all contexts whose
measurements are all assigned +1. Indeed, the same is true if (1) is relaxed to simply say
that gi(π − θ, ϕ+ π) = −1⇒ gi(θ, ϕ) = +1. Incidentally, even though we shall not need this
fact, note that if there is any global assignment consistent with the model, there will be one
that satisfies (1), for this would only require a subset of the conditions.

We conclude this subsection with two observations regarding these particular quantum
empirical models. First, note that local unitaries (LU) on the state don’t affect non-locality,
or indeed strong non-locality, of the resulting empirical model. This follows from the fact that
by moving from the Schrödinger to the Heisenberg picture, we may equivalently leave the
state fixed and apply the corresponding unitaries to the sets of available local measurements.
Since the available local measurements are all the projective one-qubit measurements, a local
unitary, which can be seen as a rotation of the Bloch sphere, merely maps this set to itself.
Secondly, if we are dealing with a product state of n-qubits, |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉, then
the resulting empirical model is necessarily local. This is because the probabilities factorise:

Prob|ψ〉(o|(θ,ϕ)) = |〈θ,ϕ 7→ o|ψ〉|2 =

∣∣∣∣∣
n∏
i=1
〈θi, ϕi 7→ oi|ψi〉

∣∣∣∣∣
2

=
n∏
i=1
|〈θi, ϕi 7→ oi|ψi〉|2 .

2.4 SLOCC classes of three-qubit states
A classification of multipartite quantum states by their degree of entanglement is given by
the notion of LOCC (local operations and classical communication) equivalence [10, 29, 24].
A protocol is said to be LOCC if it is of the following form: each party may perform local
measurements and transformations on their system, and may communicate measurement
outcomes to the other parties, so that local operations may be conditioned on measurement
outcomes anywhere in the system. A state |ψ1〉 is LOCC-convertible to a state |ψ2〉 if
there exists a LOCC protocol that deterministically produces |ψ2〉 when starting with |ψ1〉.
Intuitively, such a protocol cannot increase the degree of entanglement and so we think of |ψ1〉
as being at least as entangled as |ψ2〉. The notion of LOCC-convertibility defines a preorder4
on multipartite states that in turn yields a notion of LOCC-equivalence of states: the states
|ψ〉 and |φ〉 are LOCC-equivalent when |ψ〉 is LOCC-convertible to |φ〉 and vice versa. The
LOCC-convertibility preorder then naturally defines a partial order on the collection of
LOCC equivalence classes of states.

A coarser classification of multipartite quantum states is given by relaxing the requirement
that our conversion protocols succeed deterministically to the requirement that they succeed
with non-zero probability [11]. The previous paragraph holds true for SLOCC (stochastic
LOCC) mutatis mutandis. Note that equivalence of two states under LU transformations
implies their SLOCC-equivalence. More generally, two states are SLOCC-equivalent if and
only if they are related by an invertible local operator (ILO) [15].

Dür, Vidal, and Cirac [15] classified the SLOCC classes of three-qubit systems and found
there to be exactly six classes (see Figure 1). The GHZ and W states are representatives
of the two maximal, non-comparable classes. Three intermediate classes are characterised
by bipartite entanglement between two of the qubits, which are in a product with the third.
Finally, the minimal class is given by product states.

4 A preorder is a reflexive and transitive relation; i.e. it is like a partial order except that it can deem two
distinct elements equivalent.



S. Abramsky, R. S. Barbosa, G. Carù, N. de Silva, K. Kishida, and S. Mansfield 9:9

GHZ W

A–BC B–AC C–AB

A–B–C

Figure 1 Hasse diagram of the partial order of three-qubit SLOCC classes.

By the last observation in the previous section, it is obvious that a state in the A–B–C
class cannot realise non-locality, and that the case of a state in one of the intermediate classes
can be reduced to that of the two qubits that are entangled. Hence, we shall first discuss
strong non-locality for two-qubit states and then proceed in turn to each of the maximal
SLOCC classes of three-qubit states, W and GHZ.

3 Two-qubit states are not strongly non-local

Every two-qubit state can be written, up to LU, uniquely as

|ψ〉 = cos δ|00〉+ sin δ|11〉, (2)

where δ ∈ [0, π4 ]. The state (2) is either: the product state |00〉, which is obviously non-
contextual since it is separable, when δ = 0; or an entangled state in the SLOCC class of the
Bell state |Φ+〉 = 1√

2 (|00〉+ |11〉), when δ > 0.

I Theorem 1 (equivalent to [12, Theorem 1]). Two-qubit states do not admit strongly non-local
behaviour.

Proof. This proof rests on defining an explicit global assignment g : LMtLM→ O consistent
with the possible events of the empirical model. More specifically, the map g is obtained
by assigning outcome +1 to one hemisphere of the Bloch sphere, and −1 to the other, with
special conditions on the poles and a slight asymmetry between the two parties.

We start by computing the amplitude 〈θ,ϕ|ψ〉 of measuring (θ,ϕ) = 〈(θ1, ϕ1), (θ2, ϕ2)〉
on the general state (2) and obtaining joint outcome 〈+1,+1〉:

〈θ,ϕ|ψ〉 = cos δ cos θ1

2 cos θ2

2 + sin δ sin θ1

2 sin θ2

2 e
−i(ϕ1+ϕ2)

Since δ = 0 gives rise to a product state, we will assume δ 6= 0.
We define the following maps:

g1 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or
(
θ 6= 0 and ϕ ∈

[
−π2 ,

π
2
))

−1 if θ = 0 or
(
θ 6= π and ϕ ∈

[
π
2 ,

3π
2
))

g2 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or
(
θ 6= 0 and ϕ ∈

(
−π2 ,

π
2
])

−1 if θ = 0 or
(
θ 6= π and ϕ ∈

(
π
2 ,

3π
2
])

and let g := g1 t g2 : LM t LM −→ O be a global assignment. A graphical representation of
the map g can be found in Figure 2.

Let (θ,ϕ) be a context whose individual measurements are mapped to +1 by g (see
Section 2.3 for why this is sufficient). In particular, it holds that θ1, θ2 6= 0. Since δ 6= 0, we
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|0〉

|1〉

|0〉

|1〉

ϕ = 0

ϕ = π
2

ϕ =−π
2

ϕ = π

g1 g2

ϕ =−π
2

ϕ = π
2

ϕ = 0ϕ = π

Figure 2 Graphical representation of the global assignment g. The shaded region corresponds to
the measurements mapped to +1 by g.

have

s := sin δ sin θ1

2 sin θ2

2 > 0 and c := cos δ cos θ1

2 cos θ2

2 ≥ 0.

If θ1 = π or θ2 = π, then c = 0, which implies 〈θ,ϕ|ψ〉 = se−i(ϕ1+ϕ2) 6= 0. Otherwise,
ϕ1 ∈

[
−π2 ,

π
2
)
, ϕ2 ∈

(
−π2 ,

π
2
]
and 〈θ,ϕ|ψ〉 = c + se−i(ϕ1+ϕ2) is the sum of a positive real

number and a non-zero complex number. For it to be zero, the latter must be real and
negative, hence

ϕ1 + ϕ2 = π mod 2π,

which cannot be satisfied in the domain of ϕ1, ϕ2. J

4 W-SLOCC states are not strongly non-local

A general state in the SLOCC class of the W state |W〉 = 1√
3 (|001〉+ |010〉+ |100〉) can be

written, up to LU, as

|ψW〉 =
√
a|001〉+

√
b|010〉+

√
c|100〉+

√
d|000〉, (3)

where a, b, c ∈ R>0 and d := 1− (a+ b+ c) ∈ R≥0. Indeed, we can obtain |ψW〉 from |W〉 by
applying the following ILO to |W〉:(√

a
√
b

0
√
c

)
⊗

(√
3 0

0
√

3b√
a

)
⊗ I.

In order to prove that W-SLOCC states are not strongly non-local, we will need the
following lemma, which generalises the argument used in the proof of Theorem 1 to show
that the amplitude could not be zero.

I Lemma 2. Let z1, . . . , zm ∈ C, and r ∈ R≥0. If

m∑
i=1

zi + r = 0, (4)

then one of the following holds: (i) z1 = · · · = zm = r = 0; (ii) there exists a zk ∈ R<0; (iii)
there exists 1 ≤ k, l ≤ m such that Arg(zk) ∈ (0, π) and Arg(zl) ∈ (−π, 0).
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Proof. If all the zi are real, then, since r is non-negative, we must have either (i) or (ii).
Now, suppose there is a 1 ≤ k ≤ m such that Im(zk) 6= 0. By (4), we have

∑n
i=1 Im(zi) = 0.

Thus,∑
i6=k

Im(zi) = −Im(zk) ⇔
∑
i 6=k
|zi| sin(Arg(zi)) = −|zk| sin(Arg(zk)).

Hence, there exists at least one l 6= k for which the sign of Im(zl) is opposite to that of
Im(zk), which implies that zl and zk are in different sides of the real axis, implying the
condition about Arg(zl) and Arg(zk). J

I Theorem 3. States in the SLOCC class of W do not admit strongly non-local behaviour.

Proof. Similarly to the bipartite case of Theorem 1, the key idea of the proof is the definition
of a global assignment g : LM t LM t LM→ O whose restriction to each context is contained
in the support of the model. Once again, g is obtained by partitioning the Bloch sphere into
two hemispheres to which are assigned different outcomes, with asymmetric polar conditions
across the parties.

We start by computing the amplitude 〈θ,ϕ|ψW〉 of measuring (θ,ϕ) on the general state
(3) and obtaining joint outcome 〈+1,+1,+1〉:

〈θ,ϕ|ψW〉 =
√
a

(
cos θ1

2 cos θ2

2 sin θ3

2 e
−iϕ3

)
︸ ︷︷ ︸

=:z3∈C

+
√
b

(
cos θ1

2 cos θ3

2 sin θ2

2 e
−iϕ2

)
︸ ︷︷ ︸

=:z2∈C

+
√
c

(
cos θ2

2 cos θ3

2 sin θ1

2 e
−iϕ1

)
︸ ︷︷ ︸

=:z1∈C

+
√
d

(
cos θ1

2 cos θ2

2 cos θ3

2

)
︸ ︷︷ ︸

=:r∈R≥0

. (5)

Define the following functions:

h = g1 = g2 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = 0 or (θ 6= π and ϕ ∈ (−π, 0])
−1 if θ = π or (θ 6= 0 and ϕ ∈ (0, π])

g3 : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ = π or (θ 6= 0 and ϕ ∈ (−π, 0])
−1 if θ = 0 or (θ 6= π and ϕ ∈ (0, π])

and let g := hthtg3 : LMtLMtLM −→ O be a global assignment. The map g is graphically
represented in Figure 3.

Let (θ,ϕ) be a context whose individual measurements are mapped to +1 by g. In
particular, θ1, θ2 6= π and θ3 6= 0. Since a > 0, we have

|z3| =
√
a cos θ1

2 cos θ2

2 sin θ3

2 > 0,

which implies z3 6= 0. Now, if θ3 = π, then z1 = z2 = r = 0 and 〈θ,ϕ|ψW〉 = z3 6= 0.
Otherwise, θ3 6= π and ϕ3 ∈ (−π, 0], implying that Arg(z3) = −ϕ3 ∈ [0, π). For i = 1, 2,

we either have θi = 0 or ϕi ∈ (−π, 0], implying that zi = 0 or Arg(zi) = −ϕi ∈ [0, π). Using
Lemma 2, we conclude that 〈θ,ϕ|ψW〉 6= 0: (i) fails because z3 6= 0, while (ii) and (iii) fail
because Arg(zi) ∈ [0, π) whenever zi 6= 0. J
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ϕ = 0

ϕ = π

ϕ =−π
2 ϕ = π

2

|1〉

|0〉 |0〉

|1〉

ϕ = 0

ϕ =−π
2 ϕ = π

2

h g3

ϕ = π

Figure 3 Graphical representation of the global assignment g. The shaded region corresponds to
the measurements mapped to +1 by g.

5 Strong non-locality in the SLOCC class of GHZ

5.1 The n-partite GHZ state and local equatorial measurements
Before we tackle the general case of GHZ-SLOCC states, we consider the GHZ state itself.
We show that equatorial measurements are the only relevant ones in the study of strong
non-locality for this state. In fact, this holds for the general n-partite GHZ state,

|GHZ(n)〉 := 1√
2
(
|0〉⊗n + |1〉⊗n

)
,

and consequentely, in light of the remark towards the end of Section 2.3, for any state in its
LU class. In the next section, we generalise this result to arbitrary states in the SLOCC class
of the tripartite GHZ state, and study conditions for strong non-locality within this class.

I Theorem 4. Any strongly non-local behaviour of |GHZ(n)〉 can be witnessed using only
equatorial measurements. That is, there is a global assignment g consistent with the model
e|GHZ(n)〉 in all contexts that are not exclusively composed of equatorial measurements.

Proof. The proof is achieved using a construction of a global assignment similar to the ones
previously discussed.

First, we derive the formula for the amplitude 〈θ,ϕ|GHZ(n)〉 of measuring (θ,ϕ) and
obtaining joint outcome 〈+1, . . . ,+1〉:

〈θ,ϕ|GHZ(n)〉 = 1√
2

(
n∏
i=1

cos θi2 + e−i
∑n

i=1
ϕi

n∏
i=1

sin θi2

)
.

Consider the function

h : LM −→ O :: (θ, ϕ) 7−→
{

+1 if θ ∈
[
0, π2

]
−1 if θ ∈

(
π
2 , π

]
i.e. h assigns +1 to the equator and the northern hemisphere, and −1 to the southern
hemisphere. Let g :=

⊔n
i=1 h :

⊔n
i=1 LM −→ O. We show that this global assignment

is consistent with the probabilities at all contexts that include at least a non-equatorial
measurement.

Let (θ,ϕ) be a context whose measurements are mapped to +1 by g. In particular,
θi ≤ π

2 for all i. If 〈θ,ϕ|GHZ(n)〉 = 0, then
n∏
i=1

cos θi2 = −e−i(
∑n

i=1
ϕi)

n∏
i=1

sin θi2
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|0〉

|1〉

|0′〉

|1′〉

|ϕ〉

λ

|1〉

|0′〉

|1′〉

|v〉= |0〉

|w〉= |ϕ〉

|0〉

|1〉

|ϕ〉

λ

Figure 4 Choice of a new basis {|0′〉, |1′〉} for each qubit that allows the state to be described in
the form (7).

Taking the modulus of both sides and dividing the right-hand by the left-hand side yields:
n∏
i=1

tan θi2 = 1

which is verified if and only if θi = π
2 for all 1 ≤ i ≤ n. J

5.2 Balanced GHZ-SLOCC states and local equatorial measurements
A general state in the SLOCC class of the GHZ state can be written, up to LU, as

|ψGHZ〉 =
√
K(cos δ|000〉+ sin δeiΦ|ϕ1〉|ϕ2〉|ϕ3〉), (6)

where K = (1 + 2 cos δ sin δ cosα cosβ cos γ cos Φ)−1, and

|ϕ1〉 = cosα|0〉+ sinα|1〉, |ϕ2〉 = cosβ|0〉+ sin β|1〉, |ϕ3〉 = cos γ|0〉+ sin γ|1〉,

for some δ ∈ (0, π/4], α, β, γ ∈ (0, π/2], and Φ ∈ [0, 2π). Indeed, |ψGHZ〉 is obtained from
|GHZ〉 via the ILO
√

2K
(

cos δ sin δ cosαeiΦ
0 sin δ sinαeiΦ

)
⊗
(

1 cosβ
0 sin β

)
⊗
(

1 cos γ
0 sin γ

)
.

In order to prove the results of this section, it is convenient to describe |ψGHZ〉 in a slightly
different form. By applying local unitaries, we can rewrite it as

|ψGHZ〉 =
√
K(cos δ|vλ1〉|vλ2〉|vλ3〉+ sin δeiΦ|wλ1〉|wλ2〉|wλ3〉), (7)

where

|vλ〉 = |λ, 0〉 = cos λ2 |0〉+ sin λ2 |1〉, |wλ〉 = |π − λ, 0〉 = sin λ2 |0〉+ cos λ2 |1〉 (8)

for some λi ∈ [0, π2 ), i = 1, 2, 3. The action of this LU can be thought of as choosing a new
orthonormal basis for each qubit: a graphical illustration of this process can be found in
Figure 4. A key advantage of this LU-equivalent description of a general state in the GHZ
SLOCC class is that the equator of the i-th qubit’s Bloch sphere coincides with the great
circle that bisects the i-th components of the two unique product states that form a linear
decomposition of the state. Note that any state in the GHZ SLOCC class thus uniquely
defines an equator in each Bloch sphere. It is to the measurements lying on these that we
refer as being equatorial.

We say that a state in the GHZ SLOCC class is balanced if the coefficients in its unique
linear decomposition into a pair of product states have the same complex modulus – when the
state is written in the form (7), this corresponds to having δ = π

4 , hence cos δ = sin δ = 1√
2 .
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I Lemma 5. Let |vλ〉 and |wλ〉 be given as in (8), with λ ∈ [0, π/2), and consider a
measurement (θ, ϕ) with θ ∈ [0, π/2), i.e. with +1 eigenstate in the ‘northern hemisphere’.
Then |〈θ, ϕ|vλ〉| > |〈θ, ϕ|wλ〉|.

Proof. We have

|〈θ, ϕ|vλ〉| > |〈θ, ϕ|wλ〉| ⇔
∣∣∣∣cos θ2 cos λ2 + sin θ2 sin λ2 e

−iϕ
∣∣∣∣ > ∣∣∣∣cos θ2 sin λ2 + sin θ2 cos λ2 e

−iϕ
∣∣∣∣

⇔
∣∣∣∣1 + tan λ2 tan θ2e

−iϕ
∣∣∣∣ > ∣∣∣∣tan λ2 + tan θ2e

−iϕ
∣∣∣∣ ,

where, for the last step, we divide both sides by cos λ2 cos θ2 , which is never 0 since λ, θ ∈
[0, π/2). Let x := tan λ

2 and y := tan θ
2 , then

|1 + xye−iϕ| > |x+ ye−iϕ| ⇔ |1 + xy(cosϕ− i sinϕ)| > |x+ y(cosϕ− i sinϕ)|
⇔ 1 + 2xy cosϕ+ x2y2 > x2 + 2xy cosϕ+ y2

⇔ 1 + x2y2 − x2 − y2 > 0⇔ (1− x2)(1− y2) > 0

and this is always verified since x, y ∈ [0, 1) by the definition of the domains of θ and λ. J

We use this lemma to generalise Theorem 4 to arbitrary states in the SLOCC class of the
tripartite GHZ state.

I Theorem 6. A state in the SLOCC class of GHZ that displays strong non-locality must
be balanced. Moreover, any such strongly non-local behaviour can be witnessed using only
equatorial measurements.

Proof. The proof of this theorem can be derived by taking advantage of the special properties
of balanced states and combining them with the argument used for Theorem 4.

As before, we compute the amplitude 〈θ,ϕ|ψGHZ〉:

〈θ,ϕ|ψGHZ〉 =
√
K

(
cos δ

3∏
i=1
〈θ,ϕ|vλi〉+ sin δeiΦ

3∏
i=1
〈θ,ϕ|wλi〉

)

Take h : LM −→ O as defined in the proof of Theorem 4 and let g := h t h t h. We claim
that g is consistent with the empirical probabilities at all contexts that include at least a
non-equatorial measurement.

Let (θ,ϕ) be a context whose measurements are all mapped to +1 by g. In particular,
θi ≤ π

2 for i = 1, 2, 3. If 〈θ,ϕ|ψGHZ〉 = 0, then

cos δ
3∏
i=1
〈θ,ϕ|vλi

〉 = − sin δeiΦ
3∏
i=1
〈θ,ϕ|wλi

〉,

and taking the complex modulus of both sides,

cos δ
3∏
i=1
|〈θ,ϕ|vλi

〉| = sin δ
3∏
i=1
|〈θ,ϕ|wλi

〉|

Since δ ∈ (0, π/4] we have cos δ ≥ sin δ, with equality iff δ = π
4 . By Lemma 5, we conclude

that this equation can only be satisfied if δ = π
4 (i.e. the state is balanced) and θi = π

2 for
i = 1, 2, 3 (i.e. all the measurements are equatorial). J
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5.3 Further restrictions
The theorem above allows us to reduce the scope of our search for strongly non-local behaviour
in the SLOCC class of GHZ to: (i) balanced states, i.e. those of the form

|Bλ,Φ〉 :=
√
K

2 (|vλ1〉|vλ2〉|vλ3〉+ eiΦ|wλ1〉|wλ2〉|wλ3〉),

determined by a tuple λ = 〈λ1, λ2, λ3〉 ∈
[
0, π2

)3 and a phase Φ, where |vλ〉 and |wλ〉 are
given as in (8); (ii) local equatorial measurements in the sense defined above, i.e. those with
+1 eigenstate

|ϕ〉 :=
∣∣∣π2 , ϕ〉 = 1√

2
(|0〉+ eiϕ|1〉)

for ϕ ∈ [0, 2π). Given this premise, we are interested in understanding when the amplitude
function 〈ϕ|Bλ,Φ〉 is 0. We have:

〈ϕ|Bλ,Φ〉 = 0⇔
3∏
i=1
〈ϕi|vλi

〉+ eiΦ
3∏
i=1
〈ϕi|wλi

〉 = 0

⇔
3∏
i=1
〈ϕi|wλi

〉 = −e−iΦ
3∏
i=1
〈ϕi|vλi

〉

⇔
3∏
i=1
〈ϕi|wλi〉 = −e−iΦ

3∏
i=1

e−iϕi〈ϕi|wλi〉 (9)

⇔
3∏
i=1

eiϕi〈ϕi|wλi
〉〈ϕi|wλi

〉
−1

= −e−iΦ

⇔
3∏
i=1

eiϕi

(
〈ϕi|wλi

〉
|〈ϕi|wλi〉|

)2
= −e−iΦ

⇔
3∑
i=1

(ϕi + 2Arg〈ϕi|wλi
〉) = π − Φ mod 2π

where to get (9) we use

〈ϕ|vλ〉 = 1√
2

(
cos λ2 + sin λ2 e

−iϕ
)

= e−iϕ√
2

(
cos λ2 e

iϕ + sin λ2

)
= e−iϕ〈ϕ|wλ〉.

and for the last step we take the argument of two complex numbers of norm 1. Defining

β(λ, ϕ) := ϕ+ 2Arg〈ϕ|wλ〉 = ϕ− 2 arctan
(

sin λ
2 sinϕ

cos λ2 + sin λ
2 cosϕ

)
,

we can rewrite the condition above as

〈ϕ|Bλ,Φ〉 = 0 ⇔
3∑
i=1

β(λi, ϕi) = π − Φ mod 2π (10)

I Proposition 7. If λ1 + λ2 + λ3 >
π
2 , the state |Bλ,0〉 does not admit strongly non-local

behaviour.

TQC 2017
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Proof. We start by showing that the map β(λ, ϕ), seen as a function of ϕ, is strictly increasing
for all λ ∈

[
0, π2

)
. To see this, it is sufficient to compute the derivative:

∀λ ∈
[
0, π2

)
, ϕ ∈ [0, 2π). ∂

∂ϕ
β(λ, ϕ) = cosλ

1 + cosϕ sinλ .

This is strictly positive since cosλ > 0 and cosϕ sinλ > −1 since 0 ≤ sinλ < 1.
Now, define a function h : [0, 2π) −→ O by

h(ϕ) :=
{

+1 if ϕ ∈
(
−π2 ,

π
2
]

−1 if ϕ ∈
(
π
2 ,

3π
2
]

and let g := h t h t h. Take a context ϕ whose measurements are assigned +1 by g, i.e.
ϕi ∈

(
−π2 ,

π
2
]
. Using the fact that β(λ,−) is increasing, we have∣∣∣∣∣

3∑
i=1

β(λi, ϕi)

∣∣∣∣∣ ≤
3∑
i=1
|β(λi, ϕi)| ≤

3∑
i=1

β
(
λi,

π

2

)
=

3∑
i=1

(π
2 − λi

)
= 3π

2 −
3∑
i=1

λi <
3π
2 −

π

2 = π.

Consequently,
∑3
i=1 β(λi, ϕi) 6= π mod 2π, hence by (10), 〈ϕ|Bλ,0〉 6= 0 as required. J

6 A family of strongly non-local three-qubit models

I Theorem 8. Let m ∈ N>0 and N := 2m an even number. Consider the tripartite
measurement scenario with X1 = X2 = {0, . . . , N − 1} and X3 =

{
0, N2

}
. The empirical

model determined by the state |B〈0,0,λN 〉,0〉, where λN := π
2 −

π
N , with the measurement label

i at each site interpreted as the local equatorial measurement cos iπN σX + sin iπ
N σY (i.e. the

measurement with +1 eigenstate |π2 , i
π
N 〉), is strongly non-local.

Proof. This proof rests on deriving, using the algebraic structure of Z2N , a (conditional)
system of linear equations over Z2 that must be satisfied by any global assignment consistent
with the possible events of the empirical model, yet does not admit any solution. This seems
to be closely related to the general concept of all-vs-nothing (AvN) arguments introduced
in [1], but does not quite fit this setting. The reason is that the system of linear equations
that a global assignment g must satisfy depends on the value that g assigns to a particular
measurement. In that sense, this could be seen as a conditional version of an AvN argument.

Consider a context 〈i, j, k〉 ∈ X1 ×X2 ×X3, with i, j ∈ {0, . . . , N − 1}, k ∈ {0,m}, and
a triple of outcomes 〈ai, bj , ck〉 ∈ Z3

2 for the measurements in the context.5 From equation
(10), we know that measuring 〈i, j, k〉 and obtaining outcomes 〈ai, bj , ck〉 has probability zero
if and only if

β
(

0, i π
N

+ aiπ
)

+ β
(

0, j π
N

+ bjπ
)

+ β
(π

2 −
π

N
, k
π

N
+ ckπ

)
= π mod 2π (11)

With simple computations, we can show that β(0, ϕ) = ϕ for all ϕ ∈ [0, 2π), and that

β
(π

2 −
π

N
, c0π

)
= c0π and β

(π
2 −

π

N
,
π

2 + cmπ
)

= (−1)cm
π

N
. (12)

An arbitrary global assignment is defined by choosing outcomes for all the measurements
in X1 tX2 tX3:

a0, . . . , aN−1, b0, . . . , bN−1, c0, cm ∈ Z2.

5 For this proof, it is convenient to relabel +1,−1,× as 0, 1,⊕, where ⊕ denotes addition modulo 2.
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By (11) and (12), such an assignment is consistent with the probabilities of the empirical
model at every context if and only if{

i πN + aiπ + j πN + bjπ + c0π 6= π mod 2π ∀i, j ∈ {0, . . . , N − 1}
i πN + aiπ + j πN + bjπ + (−1)cm π

N 6= π mod 2π ∀i, j ∈ {0, . . . , N − 1}

We will proceed to show that this system admits no solution, which implies strong non-locality.
By identifying the group

{
k πN | k ∈ Z2N

}
with Z2N , we can equivalently rewrite{

i+ aiN + j + bjN + c0N 6= N mod 2N ∀i, j
i+ aiN + j + bjN + (−1)cm 6= N mod 2N ∀i, j

⇔{
i+ j +N(ai ⊕ bj ⊕ c0) 6= N mod 2N ∀i, j
i+ j + (−1)cm +N(ai ⊕ bj) 6= N mod 2N ∀i, j

⇔

ai ⊕ bj ⊕ c0 = 0 ∀i, j s.t. i+ j = 0
ai ⊕ bj ⊕ c0 = 1 ∀i, j s.t. i+ j = N

ai ⊕ bj = 0 ∀i, j s.t. i+ j + (−1)cm = 0
ai ⊕ bj = 1 ∀i, j s.t. i+ j + (−1)cm = N.

⇔

a0 ⊕ b0 ⊕ c0 = 0
ai ⊕ bN−i ⊕ c0 = 1 ∀i s.t. 1 ≤ i ≤ N − 1

ai ⊕ bN−i−1 = 1 ∀i s.t. 0 ≤ i ≤ N − 1 if cm = 0

a0 ⊕ b1 = 0
a1 ⊕ b0 = 0 if cm = 1
ai ⊕ bN+1−i = 1 ∀i s.t. 2 ≤ i ≤ N − 1

Since N = 2m is even, if we sum all the N equations from the first two lines we obtain

N−1⊕
i=0

ai ⊕
N−1⊕
j=0

bj = 1.

On the other hand, if we sum any of the other two groups of N equations we get

N−1⊕
i=0

ai ⊕
N−1⊕
j=0

bj = 0,

showing that the system is unsatisfiable regardless of whether cm = 0 or cm = 1. J

This new family of strongly non-local three-qubit systems is tightly connected to a
construction on two-qubit states due to Barrett, Kent, and Pironio [8]. In particular, our
empirical models restricted to the first two parties coincide, up to a rotation of the equatorial

TQC 2017
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Figure 5 Von Neumann entanglement entropy between the third qubit of |B〈0,0,λ〉,0〉 and the
other two as a function of λ.

measurements, to those used in [8]. The local fraction of these bipartite empirical models
tends to zero as the number of measurements increases, but obviously none of them are
strongly non-local. Despite the lack of strong non-locality in the bipartite systems constructed
in [8], we show that it is possible to witness strongly non-local behaviour with a finite amount
of measurements by adding a third qubit with some entanglement, and only two local
measurements – Pauli X and Y – available on it. An interesting aspect is that there is a
trade-off between the number of measuring settings available on the first two qubits and the
amount of entanglement between the third qubit and the system comprised of the other two.

We illustrate this by computing the bipartite von Neumann entanglement entropy between
the first two qubits and the third, i.e. the von Neumann entropy of the reduced state of
|B〈0,0,λ〉,0〉 corresponding to the third qubit, as a function of λ. Let ρABC denote the density
matrix of |B〈0,0,λ〉,0〉. The reduced density matrix corresponding to the third qubit is

ρC(λ) = TrAB [ρABC ] = 〈00|ABρABC |00〉AB +〈11|ABρABC |11〉AB = 1
2

(
1 2 cos λ2 sin λ

2
2 cos λ2 sin λ

2 1

)
.

The eigenvalues of ρC(λ) are ε±(λ) := 1
2 (1 ± sinλ). Hence, by rewriting ρC(λ) in its

eigenbasis, we can easily compute the von Neumann entropy SC as a function of λ:

SC(λ) := −Tr [ρC(λ) log2 ρC(λ)] = −ε+(λ) log2 ε+(λ)− ε−(λ) log2 ε−(λ)

The plot of the function SC(λ) is shown in Figure 5. Notice that the entanglement entropy is
maximal, i.e. equal to 1, when N = 2, in which case λ2 = 0 and so |B〈0,0,λ2〉,0〉 = |GHZ〉. This
corresponds to the usual GHSZ argument with Pauli measurements X,Y for each qubit. On
the other hand, S(λ) becomes arbitrarily small as N →∞, when λN → π

2 and |B〈0,0,λN 〉,0〉
approaches the state |Φ+〉 ⊗ |+〉, which has no entanglement between the first two qubits
and the third.

7 Outlook

Our analysis of strong non-locality for three-qubit systems has been quite extensive. We
shall discuss a number of directions for further research.

1. First, it remains to complete our classification of all instances of three-qubit strong
non-locality.

2. The original GHSZ–Mermin model witnesses the yet stronger algebraic notion of all-
versus-nothing (AvN) non-locality, formalised in a general setting in [1], and indeed
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provides one of the motivating examples for considering this kind of non-locality. The
family of strongly non-local models introduced in Section 6 does not fit this framework
exactly. Nevertheless, our proof of strong non-locality does make essential use of the
algebraic structure of Z2N (or the circle group), in what amounts to a conditional version
of an AvN argument. One may wonder whether a similar property will hold for all
instances of three-qubit strong non-locality.

3. This family also highlights an inter-relationship between non-locality, entanglement and
the number of measurements available, and raises the question of whether this is an
instance of a more general relationship.

4. Finally, while the present results provide necessary conditions for strong non-locality
in three-qubit states, the more general question of characterising strong non-locality of
n-qubit states, where little is known about SLOCC classes, remains open.
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Abstract
Recently, there has been focus on determining the conditions under which the data processing
inequality for quantum relative entropy is satisfied with approximate equality. The solution of
the exact equality case is due to Petz, who showed that the quantum relative entropy between
two quantum states stays the same after the action of a quantum channel if and only if there
is a reversal channel that recovers the original states after the channel acts. Furthermore, this
reversal channel can be constructed explicitly and is now called the Petz recovery map. Recent
developments have shown that a variation of the Petz recovery map works well for recovery in
the case of approximate equality of the data processing inequality. Our main contribution here is
a proof that bosonic Gaussian states and channels possess a particular closure property, namely,
that the Petz recovery map associated to a bosonic Gaussian state σ and a bosonic Gaussian
channel N is itself a bosonic Gaussian channel. We furthermore give an explicit construction of
the Petz recovery map in this case, in terms of the mean vector and covariance matrix of the
state σ and the Gaussian specification of the channel N .
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1 Introduction

1.1 Introduction to recoverability in quantum information
Strong subadditivity of quantum entropy is one of the cornerstones of quantum information
theory, on which many fundamental results rely. Defining the conditional mutual information
of a tripartite state ρABC as

I(A;B|C)ρ := S(AC)ρ + S(BC)ρ − S(ABC)ρ − S(C)ρ, (1)
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where S(G)σ ≡ −Tr[σG log σG] is the quantum entropy of a state σG of a system G,
strong subadditivity is equivalent to the non-negativity of conditional mutual information:
I(A;B|C)ρ ≥ 0. Initially conjectured in 1967 [55, 26], it was subsequently proven six years
later [35, 36]. Afterward, its equivalence to the data processing inequality for the quantum
relative entropy [68] was realized [66, 37, 38, 56]. This latter inequality has the form

D(ρ‖σ) ≥ D(N (ρ)‖N (σ)), (2)

being valid for all states ρ, σ and all quantum channels N (completely positive, trace-
preserving maps). Here, the quantum relative entropy is defined for quantum states ρ and σ
as

D(ρ‖σ) ≡ Tr[ρ(log ρ− log σ)], (3)

whenever the support of ρ is contained in the support of σ, and it is set to +∞ otherwise
[68].

The interest in strong subadditivity has not fallen over time, and many different proofs
for it have been proposed in the last four decades (see for instance [43]). At the same time,
new improvements of the original inequality have recently been found. Extending methods
originally proposed in [17], an operator generalization of strong subadditivity was recently
proven in [28].

A line of research which is of particular interest to us focuses on investigating the conditions
under which strong subadditivity, or more generally the data processing inequality for relative
entropy, is satisfied with equality or approximate equality. The solution of the exact equality
case dates back to the 1980s: in [50, 51, 52], it was shown that the relative entropy between
two states stays the same after the action of a quantum channel if and only if there is a
recovery channel bringing back both images to the original states. Furthermore, this reversing
channel can be constructed explicitly and now takes the name Petz recovery map. Afterward,
[42, 41] proved a structure theorem giving a form for states and a channel saturating the
data-processing inequality for relative entropy, and, related to this development, the form of
tripartite states satisfying strong subadditivity with equality was determined in [24].

Characterising the structure of states for which strong subadditivity is nearly saturated
requires different techniques, and progress was not made until more recently. In 2011, a lower
bound on conditional mutual information in terms of one-way LOCC norms [40] was proven
in [9], the motivation for [9] lying in the question of faithfulness of an entanglement measure
called squashed entanglement [14] (see also [64, 65] for discussions related to squashed
entanglement). Later on, a conjecture put forward in [75] proposed another operationally
meaningful remainder term for the relative entropy decrease induced by a quantum channel,
given by the relative entropy between the state ρ and a “recovered version” of N (ρ). The
authors of [75] proposed the following conjecture as a refinement of (2):

D(ρ‖σ)
?
≥ D(N (ρ)‖N (σ)) +D(ρ‖(Rσ,N ◦ N )(ρ)) , (4)

where Rσ,N should be a quantum channel depending only on σ and N and such that
(Rσ,N ◦N )(σ) = σ. The authors of [75] proved (4) in the classical case, when the states ρ and
σ commute and the channel is classical as well, and they showed how the recovery channel in
this case can be taken as the Petz recovery map. This conjecture has now been proven in a
number of special, yet physically relevant cases as well [2, 11, 39, 32, 3]. Unfortunately, the
authors of [75] showed that in the general quantum case, Rσ,N in (4) cannot be taken as
the Petz recovery map. For further details, see also [29, 33], and for related conjectures, see
[7, 59].
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While the general form of the conjecture in (4) remains unproven, in [18], it was shown
that if the conditional mutual information I(A;B|C)ρ is small, then the state ρABC can be
very well approximated by one of its “reconstructed” versions RC→BC(ρAC). That is, the
authors of [18] proved the following inequality:

I(A;B|C)ρ ≥ − logF (ρABC ,RC→BC(ρAC)) , (5)

where F denotes the quantum fidelity [67], defined as F (ω, τ) := ‖
√
ω
√
τ‖21 for quantum

states ω and τ , and RC→BC is a recovery channel taking an input system C to output
systems BC. Furthermore, the channel RC→BC can be taken as the Petz recovery map
up to some unitary rotations preceding and following its action, but note that the unitary
rotations given in [18] generally depend on the full state ρABC .

After the result of [18] appeared, much activity surrounding entropy inequalities and
recovery channels occurred. An alternative and simpler proof of the faithfulness of squashed
entanglement following the lines of [75] immediately appeared [33], while an alternative proof
of (5) that makes use of quantum state redistribution [15, 76] appeared in [10]. In [62], an
important particular case of (5) was proven; that is, it was shown that the recovery map in (5)
can be chosen to depend only on ρBC and to obey RC→BC(ρC) = ρBC . A different approach
was delivered in [71], based on the methods of complex interpolation [6] and generalized
Rényi entropies [7, 59]. The main result of [71] states that a lower bound on the decrease in
relative entropy induced by a quantum channel is given by the negative logarithm of the
fidelity between the first state and its recovered version, which is a step closer to the proof
of the conjecture in (4). However, the recovery term in [71] is weaker than the right-hand
side of (4), and the map appearing in it lacks one of the two properties that it is required to
obey. Another step toward the proof of the conjecture in (4) was performed in [27], where a
more general tool from complex analysis [25] and the methods of [7, 59, 71] were exploited
in order to prove a statement similar to (4), with the relative entropy on the right-hand side
substituted by a negative log-fidelity, but with the recovery map depending only on σ and N
and furthermore satisfying Rσ,N (N (σ)) = σ. Meanwhile, a different proof approach based on
pinching was delivered in [63], and then a systematic method for deriving matrix inequalities
by forcing the operators to commute via the application of suitably chosen “pinching maps”
was proposed in [61]. This method as well as the complex interpolation techniques in [16]
can be also applied to prove multioperator trace inequalities [16, 61, 72], which generalise
the celebrated Golden-Thompson inequality Tr[eX+Y ] ≤ Tr[eXeY ] (X,Y hermitian) and the
stronger statements given in [34]. The results of [61] also marked further progress toward
establishing the conjecture in (4).

1.2 Introduction to quantum Gaussian states and channels
A major platform for the application of quantum information theory to physical information
processing is constituted by quantum optics [20] with a finite number of electromagnetic
modes or quantum harmonic oscillators. From the mathematical perspective, this framework
can be thought of as quantum mechanics applied to separable Hilbert spaces endowed with a
finite number of operators obeying canonical commutation relations [58].

A typical free Hamiltonian of such a system is quadratic in the canonical operators, and
in fact, a special role within this context is played by ground or thermal states of such
Hamiltonians, commonly called Gaussian states. These states define a useful operational
framework for several reasons, stemming from both physics and mathematics [1, 58]. From
the physical point of view, they are easily produced and manipulated in the laboratory and
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can be used to implement effective quantum protocols [4, 69]. Mathematically convenient
properties that qualify them as defining a legitimate framework include
1. the closure under so-called Gaussian unitary evolutions, that is, unitaries induced by

piecewise time evolution via quadratic Hamiltonians, as well as more generally
2. the closure under Gaussian channels, which can be understood as the operation of adding

an ancillary system in a vacuum state, applying a global Gaussian unitary, and tracing
out one of the subsystems [12].

Recently, more advanced “closure” properties have been established, such as the optimality
of Gaussian states for optimising the output entropy of one-mode, phase-covariant quantum
channels, even when a fixed value of the input entropy is prescribed [23, 48, 46, 47]. These
facts have the striking implication that it suffices to select coding strategies according to
Gaussian states in order to achieve optimal rates in several quantum communication tasks
[22, 73, 21, 54, 74, 47].

1.3 Summary of main result
The main contribution of our paper is a proof that Gaussian states and channels possess
another closure property: the Petz recovery map associated to a Gaussian state σ and a
Gaussian channel N is itself a Gaussian channel (see Theorem 1). Additionally, we achieve
this result through an explicit construction of the action of such a Gaussian Petz channel,
which lends itself to multiple applications. For instance, with the formulas we provide, it is
possible to construct a counterexample to the inequality in (4), in which all the states and
channels involved are Gaussian and Rσ,N is the Petz recovery map. This is similar to what
happens in the finite-dimensional case. Another application of our main result is a more
explicit form for an entropy inequality from [27], whenever the states and channel involved
are Gaussian.

This paper is structured as follows. In Section 2, we review some background material
and establish notation. In particular, we review the Petz recovery map (Section 2.1) and
bosonic Gaussian states and channels (Section 2.2). In Section 3, we state our main result,
Theorem 1, which establishes that the Petz recovery map for a Gaussian state σ and a
Gaussian channel N is itself a Gaussian channel, and we give an explicit form for it in terms
of the parameters that characterize σ and N . Corollary 2 establishes a similar result for the
rotated Petz maps from [71]. For our detailed proof of Theorem 1, we refer to [30, Sections
3.1–3.4]. We conclude in Section 4 with a summary and some open questions.

2 Background and notation

2.1 Petz recovery map
As discussed in Section 1.1, the Petz recovery map is a notable object playing a crucial
role in the theory of quantum recoverability. It has been interpreted in [31] as a quantum
generalization of the Bayes rule from probability theory. Given a state σ and a channel N ,
the associated Petz map Pσ,N is defined as a linear map satisfying the following [50, 51, 44]:

〈A,N †(B)〉σ = 〈P†σ,N (A), B〉N (σ), ∀A,B, (6)

where A and B are bounded operators and the weighted Hilbert–Schmidt inner product is
defined for bounded operators τ1 and τ2 and a trace-class operator ξ as

〈τ1, τ2〉ξ ≡ Tr[τ †1 ξ1/2τ2ξ
1/2]. (7)
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The map Pσ,N is unique if N (σ) is a faithful operator [50, 51, 44], and otherwise, it is unique
on the support of this operator. If σ acts on a finite-dimensional Hilbert space and N is a
quantum channel with finite-dimensional inputs and outputs, then the Petz map takes the
following explicit form [24]:

Pσ,N (ω) ≡ σ1/2N †
(
N (σ)−1/2ωN (σ)−1/2

)
σ1/2 , (8)

where N (σ)−1/2 is understood as a generalized inverse (i.e., inverse on the support of N (σ)).
Sometimes we the dependence of P on σ and N for the sake of simplicity. A rotated Petz
map Ptσ,N for t ∈ R, a state σ, and a channel N is defined as [71]

Ptσ,N (ω) ≡ σitPσ,N (N (σ)−itωN (σ)it)σ−it, (9)

with σit = exp(it log σ) being understood as a unitary evolution according to the Hamiltonian
log σ.

2.2 Quantum Gaussian states and channels
Here we provide some background on quantum Gaussian states and channels (see [12, 1, 58] for
reviews). An n-mode quantum system is described by a density operator acting on a tensor-
product Hilbert space. To the jth Hilbert space in the tensor product, for j ∈ {1, . . . , n}, we
let xj and pj denote the position- and momentum-quadrature operator, respectively. These
operators satisfy the canonical commutation relations: [xj , pk] = iδj,k, where we have set
~ = 1. It is convenient to form a vector r = (x1, . . . , xn, p1, . . . , pn)T from these operators,
and then we can rewrite the canonical commutation relations in matrix form as follows:

[r, rT ] = iΩ, (10)

where

Ω ≡
[

0 1
−1 0

]
⊗ In, (11)

and In denotes the n× n identity matrix. We often make use of the identities ΩTΩ = I and
ΩT = −Ω.

The displacement (Weyl) operator Dz plays an important role in Gaussian quantum
information, defined for z ∈ R2n as

Dz ≡ exp(izTΩr). (12)

For z1, z2 ∈ R2n, the displacement operators satisfy the following composition rule:

Dz1Dz2 = Dz1+z2e
− i

2 z
T
1 Ωz2 . (13)

It can be shown that displacement operators form a complete, orthogonal set of operators,
and their Hilbert–Schmidt orthogonality relation is as follows:

Tr[Dz1D−z2 ] = (2π)nδ(z1 − z2). (14)

Moreover, due to their completeness, these operators allow for a Fourier-Weyl expansion of a
quantum state, in terms of a characteristic function. In more detail, a quantum state ρ has a
characteristic function χρ(w), defined as

χρ(w) ≡ Tr[ρD−w], (15)
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and the original state ρ can be written in terms of χρ(w) as

ρ =
∫

d2nw

(2π)n
χρ(w) Dw. (16)

The mean vector sρ ∈ R2n and 2n×2n covariance matrix Vρ of a quantum state ρ are defined
as

sρ ≡ 〈r〉ρ = Tr[rρ], (17)

Vρ ≡ 〈{r − sρ, rT − sTρ }〉ρ = Tr[{r − sρ, rT − sTρ }ρ]. (18)

It follows from the above definition that the covariance matrix Vρ is symmetric.
A quantum Gaussian state is a ground or thermal state of a Hamiltonian that is quadratic

in the position- and momentum-quadrature operators. In particular, up to an irrelevant
additive constant, any such Hamiltonian has the form 1

2 (r − s)T H (r − s), where s ∈ R2n

and H is a 2n× 2n positive definite matrix that we refer to as the Hamiltonian matrix. Then
a quantum Gaussian state ρ takes the form

ρ = Z−1
ρ exp

(
−1

2(r − sρ)THρ(r − sρ)
)
, (19)

where Zρ ≡ Tr
[
exp
(
− 1

2 (r − sρ)THρ(r − sρ)
)]

and one can show that 〈r〉ρ = sρ ∈ R2n (i.e.,
sρ is the mean vector of ρ). Defining

Vρ ≡ coth
(
iΩHρ

2

)
iΩ, (20)

one can also show that Vρ is the covariance matrix of ρ, whose matrix elements satisfy
V j,kρ = 〈{rj − sjρ, rk − skρ}〉ρ and the Heisenberg uncertainty relation [60]:

Vρ + iΩ ≥ 0. (21)

A quantum Gaussian state is faithful (having full support) if Vρ + iΩ > 0.
A quantum Gaussian state ρ with mean vector sρ and covariance matrix Vρ has the

following Gaussian characteristic function:

χρ(w) = exp
(
−1

4 (Ωw)T VρΩw + i (Ωw)T sρ
)
, (22)

so that it can be written in the following way:

ρ =
∫

d2nw

(2π)n exp
(
−1

4 (Ωw)T VρΩw + i (Ωw)T sρ
)
Dw. (23)

After a change of variables (w → Ωw), this representation becomes

ρ =
∫

d2nw

(2π)n exp
(
−1

4w
TVρw − iwT sρ

)
DΩw. (24)

A quantum Gaussian channel is a completely positive, trace-preserving map that takes
Gaussian input states to Gaussian output states. A quantum Gaussian channel N that takes
n-mode Gaussian input states to m-mode Gaussian output states is specified by a 2m× 2n
transformation matrix X, a 2m× 2m positive semi-definite, additive noise matrix Y , and
a displacement vector δ ∈ R2n. The action of such a channel on a generic state ρ with



L. Lami, S. Das, and M.M. Wilde 10:7

characteristic function χρ(w) is to output a state N (ρ) having the following characteristic
function:

χN (ρ)(w) = χρ(ΩTXTΩw) exp
(
−1

4 (Ωw)T Y Ωw + i (Ωw)T δ
)
. (25)

Then the channel N leads to the following transformation of the covariance matrix V and
mean vector s of an input quantum Gaussian state:

N :
{
V 7−→ XVXT + Y

s 7−→ Xs+ δ
. (26)

The matrices X and Y should satisfy the following condition in order for the map N to be
completely positive:

Y + iΩ ≥ iXΩXT . (27)

The adjoint of a quantum channel N is defined as the unique linear map satisfying the
following for all A and B:

〈A,N (B)〉 = 〈N †(A), B〉, (28)

where B is an arbitrary trace-class operator, A is an arbitrary bounded operator, and the
Hilbert–Schmidt inner product is defined for operators A1 and A2 as 〈A1, A2〉 ≡ Tr[A†1A2].
The adjoint map N † is completely positive and unital if N is completely positive and trace-
preserving. The action of the adjoint N † of a quantum Gaussian channel N defined by (26)
is as follows [12, 19], when acting on a displacement operator DΩz:

N †(DΩz) = DΩXT z exp
(
−1

4z
TY z + izT δ

)
. (29)

The action of the adjoint N † on a quantum Gaussian state with covariance matrix V and
mean vector s is then to output a quantum Gaussian operator described by covariance matrix
X−1 (V + Y )X−T and mean vector X−1(s− δ) whenever X is invertible [19, Appendix B].
We summarize these transformation rules as follows:

N † :
{
V 7−→ X−1 (V + Y )X−T
s 7−→ X−1(s− δ) . (30)

Typically one thinks of the channel N as acting in the Schrödinger picture, taking input states
to output states, and one thinks of the adjoint N † as acting in the Heisenberg picture, taking
input bounded operators to output bounded operators. So this is why we have specified the
channel N in terms of its action on characteristic functions, which describe states, and the
adjoint N † in terms of its action on displacement operators, a natural choice of bounded
operators in our context here.

Often we find it useful to write

σ = D†sσσ0Dsσ , (31)

where σ0 is a Gaussian state with the same covariance matrix as σ but with vanishing mean
vector. Analogously, the channel N in (25) admits the following decomposition:

N (·) = D†δN0(·)Dδ, (32)
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where N0 is a zero-displacement Gaussian channel, acting as in (26) but with δ = 0. Taking
the adjoint gives

N †(·) = N †0
(
Dδ(·)D†δ

)
. (33)

Applying N to σ yields

N (σ) = D†Xs+δN0(σ0)DXs+δ, (34)

which follows from (26). We also make use of the following channel covariance relations:

N (D†γ(·)Dγ) = D†Xγ+δN0(·)DXγ+δ, (35)

N †(D†γ(·)Dγ) = D†X−1(γ−δ)N
†
0 (·)DX−1(γ−δ), (36)

which follow from (25), (26), (29), and (30). Note that (36) holds whenever X is invertible.
Finally, given a Gaussian state σ with mean vector sσ and covariance matrix Vσ, we

can consider a unitary rotation of the form σit = exp(it log σ) for t ∈ R. By using the
representation in (19) with the Hamiltonian matrix Hσ, we can write the unitary σit as

σit = exp
(
− i2 (r − sσ)T Hσt (r − sσ)

)
exp(−it logZσ) (37)

= D−sσ

[
exp
(
i

2r
T (−Hσt) r

)
exp(−it logZσ)

]
Dsσ , (38)

where we have used the fact that (r − sσ)T Hσ (r − sσ) = D−sσr
THσrDsσ and the operator

identity B exp(A)B−1 = exp(BAB−1). The unitary σit is a Gaussian unitary because it
is generated by a Hamiltonian no more than quadratic in the position- and momentum-
quadrature operators. Let us define the symplectic transformation corresponding to the
unitary exp

(
i
2r
T (−Hσt) r

)
as

Sσ,t ≡ exp(ΩHσt), (39)

so that

σitrσ−it = Sσ,−t (r − sσ) + sσ, (40)

where we used that DsσrD−sσ = r + sσ. The above formula implies that

Vσitωσ−it = Sσ,tVωS
T
σ,t, (41)

sσitωσ−it = Sσ,t(sρ − sσ) + sσ. (42)

3 Main result: Petz map as a quantum Gaussian channel

Our main result is the following theorem:

I Theorem 1. Let σ be a quantum Gaussian state with mean vector sσ and covariance
matrix Vσ, and let N be a quantum Gaussian channel with its action on an input state as
described in (26). Suppose furthermore that N (σ) is a faithful quantum state. Then the Petz
recovery map Pσ,N is a quantum Gaussian channel with the following action:

Pσ,N :
{
V 7−→ XPV X

T
P + YP

s 7−→ XP s+ δP
, (43)
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where

XP ≡
√
I + (VσΩ)−2

VσX
T

√
I +

(
ΩVN (σ)

)−2
−1
V −1
N (σ), (44)

YP ≡ Vσ −XPVN (σ)X
T
P , (45)

δP ≡ sσ −XP (Xsσ + δ) , (46)
VN (σ) = XVσX

T + Y. (47)

That is, Pσ,N in (43) is the unique linear map satisfying (6) for σ and N as described above.

The following corollary is a direct consequence of Theorem 1 and the discussion surround-
ing (37)–(40):

I Corollary 2. For σ and N as given in Theorem 1, the rotated Petz map Ptσ,N (defined in
(9)) is also a quantum Gaussian channel with the same action as the Petz recovery channel
Pσ,N but with the substitutions

XP → Xt
P ≡ Sσ,tXPSN (σ),−t, (48)

YP → Y tP ≡ Sσ,tYPSTσ,t, (49)
δP → δtP ≡ sσ −Xt

P (Xsσ + δ) . (50)

That is, Ptσ,N is a quantum Gaussian channel with the following action:

Ptσ,N :
{
V 7−→ Xt

PV (Xt
P )T + Y tP

s 7−→ Xt
P s+ δtP

. (51)

I Remark. The following entropy inequality was proven to hold whenever ρ and σ are density
operators and N is a quantum channel [27]:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))−
∫
R
dt p(t) logF (ρ, (Pt/2σ,N ◦ N )(ρ)), (52)

where p(t) := π
2 (cosh(πt) + 1)−1 is a probability distribution parametrized by t ∈ R. In

the case that ρ and σ are quantum Gaussian states and N is a quantum Gaussian channel,
Corollary 2 allows us to conclude that Pt/2σ,N is a quantum Gaussian channel for all t ∈ R.
Furthermore, there are explicit, compact formulas for the relative entropy [57, 13, 53] and
fidelity [49, 70, 5] of two quantum Gaussian states. In both cases, the formulas are given
exclusively in terms of the mean vectors and covariance matrices of the involved states. Thus,
when the states and channel involved are all Gaussian, the above inequality can be rewritten
in a simpler form involving only finite-dimensional matrices instead of trace-class operators
acting on infinite-dimensional Hilbert spaces.

The forthcoming subsections sketch the first steps of our proof of Theorem 1, and a
detailed, complete proof can be found in [30]. Before delving into our proof, we highlight our
proof strategy, which proceeds according to the following steps:
1. Even though the explicit form of the Petz map in (8) is not generally valid in the infinite-

dimensional case because the inverse of a density operator may be unbounded, we work
with it anyway, as an ansatz (call this Ansatz 1). Under Ansatz 1, we first show that
it suffices to consider the case when the state σ is a zero-mean Gaussian state and the
channel N does not apply any displacement to the mean vector of its input, so that
sσ = 0 and δ = 0, with δ defined in (25) and (26).
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2. Under the same Ansatz 1, we arrive at the hypothesis that (43) gives the explicit form
for the action of the Petz map on a Gaussian input state. Recall from (8) that the Petz
map is a serial concatenation of three completely positive maps:

(·)→ N (σ)−1/2(·)N (σ)−1/2, (53)
(·)→ N †(·), (54)

(·)→ σ1/2(·)σ1/2. (55)

To handle the first completely positive map in (53), we proceed with an additional
ansatz (Ansatz 2) that taking the inverse of a Gaussian state corresponds to negating
its covariance matrix. This is motivated by the representation in (19), in which inverting
the density operator has the effect of negating the Hamiltonian matrix, which in turn
has the effect of negating the covariance matrix due to the fact that arcoth is an odd
function. Furthermore, results of [5, Appendix B-2] allow us to conclude that sandwiching
a Gaussian state by the square root of another Gaussian state is a Gaussian map resulting
in another unnormalized, Gaussian state. To handle the second map in (54), we can
directly apply a result given in [19, Appendix B], which gives an explicit form for the
action of the adjoint of a Gaussian channel on a Gaussian state (see also the review in
(30)). We also work with a final Ansatz 3, which is the assumption that the matrix Xin
(26) is invertible. Later, we show how this assumption is not necessary. To handle the
third completely positive map in (55), we again apply the aforementioned result about
sandwiching a Gaussian state by the square root of another.

3. After arriving at an explicit form for the Petz map by using Ansatzes 1–3, we verify
that this explicit form satisfies the equations in (6) whenever the operators A and B are
Hilbert–Schmidt operators.

4. We finally employ a limiting argument to conclude that if (6) is satisfied when A and
B are Hilbert–Schmidt operators, then the equations are satisfied when A and B are
arbitrary bounded operators. By a result of [50, 51, 44], we can finally conclude that the
Gaussian channel given in Theorem 1 is the unique quantum channel satisfying (6). This
step then concludes our proof of Theorem 1.

In the subsections that follow, we provide details of the first two steps above, and we refer to
[30] for the rest of the steps of our proof of Theorem 1.

3.1 Step 1: Sufficiency of focusing on zero-mean Gaussian states and
zero-displacement Gaussian channels

As mentioned above, we employ Ansatz 1 in this first step, in which we work with the
explicit form of the Petz map in (8), in spite of the fact that the inverse of a Gaussian
density operator is unbounded. Let σ be a quantum Gaussian state with mean vector sσ
and covariance matrix Vσ, and let N be a quantum Gaussian channel with the action on an
input state as described in (26).

In this first step, we show how it suffices to consider the case sσ = δ = 0 in (8). To see
this, consider the action of the Petz map Pσ,N on an arbitrary input state ω:
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Pσ,N (ω) = σ
1/2N †

(
N (σ)−1/2

ωN (σ)−1/2
)
σ

1/2 (56)

=
(
D
†
sσ
σ

1/2
0 Dsσ

)
N †0
[
DδD

†
Xsσ+δN0(σ0)−1/2

DXsσ+δ ωD
†
Xsσ+δN0(σ0)−1/2

DXsσ+δD
†
δ

]
×
(
D
†
sσ
σ

1/2
0 Dsσ

)
(57)

=
(
D
†
sσ
σ

1/2
0 Dsσ

)
N †0
[
D
†
Xsσ
N0(σ0)−1/2

DXsσ+δ ωD
†
Xsσ+δN0(σ0)−1/2

DXsσ

]
×
(
D
†
sσ
σ

1/2
0 Dsσ

)
(58)

= D
†
sσ
σ

1/2
0 DsσD

†
X−1(Xsσ)

N †0
[
N0(σ0)−1/2

DXsσ+δ ωD
†
Xsσ+δN0(σ0)−1/2

]
×DX−1(Xsσ)D

†
sσ
σ

1/2
0 Dsσ (59)

= D
†
sσ
σ

1/2
0 N †0

[
N0(σ0)−1/2

DXsσ+δ ωD
†
Xsσ+δN0(σ0)−1/2

]
σ

1/2
0 Dsσ (60)

= D
†
sσ
Pσ0,N0

(
DXsσ+δ ωD

†
Xsσ+δ

)
Dsσ . (61)

For the first equality, we use the definition of the Petz map and Ansatz 1. The second
equality follows from (31)–(34) and the fact that f(UAU†) = Uf(A)U† for a function f ,
a unitary operator U , and a Hermitian operator A. The third equality follows because
DδD

†
Xsσ+δ = D†Xsσe

iφ for φ a phase. The fourth equality follows from the adjoint channel
covariance relation in (36) and Ansatz 3. The fifth equality follows because DsσD

†
X−1(Xsσ) =

eiϕI for some phase ϕ. The final equality follows by recognizing the form of the Petz map
Pσ0,N0 , corresponding to the zero-mean state σ0 and the zero-displacement channel N0.

The above reasoning suggests that we should focus on determining an explicit form for
Pσ0,N0(ω). That is, the above reasoning suggests that an arbitrary Petz map Pσ,N can be
realized as a serial concatenation of the displacement DXsσ+δ, the Petz map Pσ0,N0 , and the
displacement D†sσ . After we give an explicit form for Pσ0,N0 as a quantum Gaussian channel
with matrices XP and YP , it should become clear why the displacement δP in the Petz map
Pσ,N has the form in (46).

3.2 Step 2: Deducing a hypothesis for an explicit form for the Petz
map, by considering Gaussian input states

In this step, we continue working with Ansatzes 1-3, with our main objective being to arrive
at a hypothesis for the action of the Petz recovery map Pσ0,N0 on the mean vector and
covariance matrix of an input Gaussian state. Here we consider the serial concatenation of
the three completely positive maps in (53)–(55). We begin by considering the action of the
last completely positive map on a zero-mean Gaussian input state ω0. To this end, recall
from [5, Appendix C] that if ω0 and σ0 are zero-mean Gaussian states, then √σ0ω0

√
σ0 is an

(unnormalized) Gaussian operator with zero mean vector and covariance matrix given by

V√σ0ω0
√
σ0 = Vσ0 −

(
V√σ0 − Vσ0

)
(Vω0 + Vσ0)−1 (

V√σ0 − Vσ0

)
. (62)

Applying a formula from [5, Appendix B-2] (while noting our different convention for Gaussian
states), we find that

V√σ0 =
(√

I + (Vσ0Ω)−2 + I

)
Vσ0 , (63)
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which is a symmetric matrix because Vσ0 is. Indeed, consider that

V T√σ0
=
[(√

I + (Vσ0Ω)−2 + I

)
Vσ0

]T
= Vσ0

(√
I + (ΩVσ0)−2 + I

)
(64)

= Ω−1ΩVσ0

(√
I + (ΩVσ0)−2 + I

)
= Ω−1

(√
I + (ΩVσ0)−2 + I

)
ΩVσ0 (65)

=
(√

Ω−1
[
I + (ΩVσ0)−2

]
Ω + I

)
Vσ0 =

(√[
I + (Ω−1ΩVσ0Ω)−2

]
+ I

)
Vσ0 (66)

=
(√

I + (Vσ0Ω)−2 + I

)
Vσ0 = V√σ0 . (67)

The equality in (63) implies that

V√σ0 − Vσ0 =
√
I + (Vσ0Ω)−2

Vσ0 , (68)

and in turn, after substituting into (62), that

V√σ0ω0
√
σ0 = Vσ0 −

√
I + (Vσ0Ω)−2

Vσ0 (Vω0 + Vσ0)−1
Vσ0

√
I + (ΩVσ0)−2

. (69)

Thus, (69) establishes the action of the completely positive map (·) → √σ0(·)√σ0 on an
arbitrary zero-mean Gaussian state ω0.

From this discussion we already start seeing that the Petz map constructed out of a
Gaussian state σ and a Gaussian channel N should send normalized Gaussian states to
normalized Gaussian states, because (i) conjugation by the square root of a Gaussian state
(or the inverse square root of a Gaussian state as we will see) preserves the Gaussian form; (ii)
the adjoint of a Gaussian channel is still Gaussian; and (iii) the Petz map is a priori known to
be trace-preserving whenever N (σ) is a faithful state [50, 51, 44]. Then, [45, Theorem III.1]
ensures that P must act as in (26), for some XP , YP , and δP to be determined.

With this preliminary identity in hand, we are ready to determine a hypothesis for the
explicit action of Pσ0,N0 . For the sake of simplicity, we consider the input Gaussian state
to have vanishing first moments. In any case, since we are working to deduce a hypothesis
for an explicit form for the Petz map, this is by no means a loss of generality. By applying
(69) and Ansatz 2 (that the following density operator transformation ω → ω−1 induces the
transformation Vω → −Vω on the level of covariance matrices), we can conclude that the
completely positive map in (53) has the following effect on covariance matrices:

V√
N0(σ0)

−1
ω0
√
N0(σ0)

−1

= −VN (σ) −
√
I +

(
VN (σ)Ω

)−2
VN (σ)

(
Vω − VN (σ)

)−1
VN (σ)

√
I +

(
ΩVN (σ)

)−2
. (70)

In the above, we have also used the identities VN0(σ0) = VN (σ) and Vω0 = Vω. So now we
consider further concatenating with the completely positive map in (54), by applying (30)
and Ansatz 3 (that X is invertible):

V
N†0 (
√
N0(σ0)−1

ω0
√
N0(σ0)−1)

=

X
−1

[
−VN(σ) −

√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
+ Y

]
X
−T

. (71)
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But consider that VN (σ) = XVσX
T + Y , so that (71) simplifies as follows:

V
N†0 (
√
N0(σ0)−1

ω0
√
N0(σ0)−1)

= X
−1

[
−
(
XVσX

T + Y
)

−
√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
+ Y

]
X
−T

= X
−1

[
−XVσXT −

√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
]
X
−T (72)

= −Vσ −X−1
√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
X
−T

. (73)

So then we can finally consider the serial concatenation of the three completely positive
maps in (53)–(55):

V√
σ0N

†
0 (
√
N0(σ0)−1

ω0
√
N0(σ0)−1)√σ0

= Vσ −
√
I + (VσΩ)−2Vσ

×

(
−Vσ −X−1

√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
X
−T + Vσ

)−1

× Vσ
√
I + (ΩVσ)−2 (74)

= Vσ −
√
I + (VσΩ)−2Vσ

×

(
−X−1

√
I +
(
VN(σ)Ω

)−2
VN(σ)

(
Vω − VN(σ)

)−1
VN(σ)

√
I +
(

ΩVN(σ)

)−2
X
−T

)−1

× Vσ
√
I + (ΩVσ)−2 (75)

= Vσ +
√
I + (VσΩ)−2VσX

T

√
I +
(

ΩVN(σ)

)−2
−1

V
−1
N(σ)

(
Vω − VN(σ)

)
× V −1
N(σ)

√
I +
(
VN(σ)Ω

)−2
−1

XVσ

√
I + (VσΩ)−2. (76)

An inspection of (76) above suggests that the Petz map Pσ0,N0 is a quantum Gaussian
channel with the following action on an input covariance matrix Vω:

VPσ0,N0 (ω0) = XPVωX
T
P + YP , (77)

where

XP ≡
√
I + (VσΩ)−2

VσX
T

√
I +

(
ΩVN (σ)

)−2
−1
V −1
N (σ), (78)

YP ≡ Vσ −XPVN (σ)X
T
P . (79)

Combining with the development in Section 3.1, the results in (77), (61) and [45, The-
orem III.1] imply that in general

Pσ,N :
{
V 7−→ XPV X

T
P + YP

s 7−→ XP s+ δP
, (80)

where

δP ≡ sσ −XP (Xsσ + δ) , (81)
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and δ is the vector appearing in (26); it follows because

Pσ,N (ω) = D†sσPσ0,N0

(
DXsσ+δωD

†
Xsσ+δ

)
Dsσ , (82)

which implies that

sPσ,N (ω) = XP (sω −Xsσ − δ) + sσ. (83)

So by using Ansatzes 1-3, we have arrived at our hypothesis (80) for the Gaussian form of
the Petz map Pσ,N . In [30], we give the final steps of the proof that the Gaussian channel
specified in (80) is indeed equal to the Petz map Pσ,N .

4 Conclusion

The main result of this paper is Theorem 1, which establishes an explicit form for the Petz
map as a bosonic Gaussian channel whenever the state σ and the channel N are bosonic
Gaussian. Our proof approach is first to consider three ansatzes in order to arrive at a
hypothesis for the Gaussian form of the Petz map. These ansatzes included 1) working
with the form of the Petz map in (8) in spite of the fact that [N (σ)]−1 is an unbounded
operator, 2) negating the covariance matrix of the Gaussian state σ if σ is inverted, and 3)
assuming that the X matrix in (25), corresponding to a Gaussian channel, is invertible. After
deducing a hypothesis for an explicit form, [30] proves that this hypothesis is in fact correct,
by demonstrating that the Gaussian Petz channel satisfies the equations in [30, Equation
3.107] for all bounded operators A and B.

In future work, it would be interesting to determine whether the following inequality,
considered in [7, 59], could be satisfied whenever all of the objects involved are Gaussian:

D(ρ‖σ) ≥ D(N (ρ)‖N (σ))− logF (ρ, (Pσ,N ◦ N )(ρ)). (84)

More generally, one could consider the various inequalities proposed in [8] for the Gaussian
case.
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