
33rd International Symposium
on Computational Geometry

SoCG 2017, July 4–7, 2017, Brisbane, Australia

Edited by

Boris Aronov
Matthew J. Katz

LIPIcs – Vo l . 77 – SoCG 2017 www.dagstuh l .de/ l ip i c s

Editors
Boris Aronov Matthew J. Katz
New York University Ben-Gurion University
New York Beer-Sheva
USA Israel
boris.aronov@nyu.edu matya@cs.bgu.ac.il

ACM Classification 1998
F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems –
Geometrical problems and computations, G.2.1 [Discrete Mathematics] Combinatorics, I.3.5 [Computer
Graphics] Computational Geometry and Object Modeling

ISBN 978-3-95977-038-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-038-5.

Publication date
June, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available online at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SoCG.2017.0

ISBN 978-3-95977-038-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-038-5
http://www.dagstuhl.de/dagpub/978-3-95977-038-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-038-5
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SoCG 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Foreword
Boris Aronov, Matthew J. Katz, and Matias Korman . xi

Conference Organization
. xiii

External Reviewers
. xv

Sponsors
. xvii

Invited Talks

The Geometry and Topology of Crystals: From Sphere-Packing to Tiling, Nets,
and Knots

Vanessa Robins . 1:1–1:1

The Algebraic Revolution in Combinatorial and Computational Geometry: State
of the Art

Micha Sharir . 2:1–2:1

Regular SoCG Papers

Irrational Guards are Sometimes Needed
Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow . 3:1–3:15

Minimum Perimeter-Sum Partitions in the Plane
Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr,
and Ali D. Mehrabi . 4:1–4:15

Range-Clustering Queries
Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr,
and Ali D. Mehrabi . 5:1–5:16

Best Laid Plans of Lions and Men
Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen 6:1–6:16

Faster Algorithms for the Geometric Transportation Problem
Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan,
and Allen Xiao . 7:1–7:16

A Superlinear Lower Bound on the Number of 5-Holes
Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kynčl, Irene Parada,
Manfred Scheucher, Pavel Valtr, and Birgit Vogtenhuber . 8:1–8:16

A Universal Slope Set for 1-Bend Planar Drawings
Patrizio Angelini, Michael A. Bekos, Giuseppe Liotta,
and Fabrizio Montecchiani . 9:1–9:16

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Near-Optimal ε-Kernel Construction and Related Problems
Sunil Arya, Guilherme D. da Fonseca, and David M. Mount . 10:1–10:15

Exact Algorithms for Terrain Guarding
Pradeesha Ashok, Fedor V. Fomin, Sudeshna Kolay, Saket Saurabh,
and Meirav Zehavi . 11:1–11:15

Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences
Martin Balko, Josef Cibulka, and Pavel Valtr . 12:1–12:16

Subquadratic Algorithms for Algebraic Generalizations of 3SUM
Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms 13:1–13:15

Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings
Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf 14:1–14:16

On the Number of Ordinary Lines Determined by Sets in Complex Space
Abdul Basit, Zeev Dvir, Shubhangi Saraf, and Charles Wolf . 15:1–15:15

On Optimal 2- and 3-Planar Graphs
Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou 16:1–16:16

Reachability in a Planar Subdivision with Direction Constraints
Daniel Binham, Pedro Machado Manhães de Castro, and Antoine Vigneron 17:1–17:15

Fine-Grained Complexity of Coloring Unit Disks and Balls
Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow,
and Paweł Rzążewski . 18:1–18:16

Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams
Jean-Daniel Boissonnat, Mael Rouxel-Labbé, and Mathijs Wintraecken 19:1–19:16

An Approximation Algorithm for the Art Gallery Problem
Édouard Bonnet and Tillmann Miltzow . 20:1–20:15

Self-Approaching Paths in Simple Polygons
Prosenjit Bose, Irina Kostitsyna, and Stefan Langerman . 21:1–21:15

Maximum Volume Subset Selection for Anchored Boxes
Karl Bringmann, Sergio Cabello, and Michael T.M. Emmerich 22:1–22:15

Declutter and Resample: Towards Parameter Free Denoising
Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, and Yusu Wang 23:1–23:16

Ham Sandwich is Equivalent to Borsuk-Ulam
Karthik C. S. and Arpan Saha . 24:1–24:15

Local Equivalence and Intrinsic Metrics Between Reeb Graphs
Mathieu Carrière and Steve Oudot . 25:1–25:15

Applications of Chebyshev Polynomials to Low-Dimensional Computational
Geometry

Timothy M. Chan . 26:1–26:15

Orthogonal Range Searching in Moderate Dimensions: k-d Trees and Range Trees
Strike Back

Timothy M. Chan . 27:1–27:15

Contents 0:vii

Dynamic Orthogonal Range Searching on the RAM, Revisited
Timothy M. Chan and Konstantinos Tsakalidis . 28:1–28:13

On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs
Yi-Jun Chang and Hsu-Chun Yen . 29:1–29:15

Adaptive Planar Point Location
Siu-Wing Cheng and Man-Kit Lau . 30:1–30:15

High Dimensional Consistent Digital Segments
Man-Kwun Chiu and Matias Korman . 31:1–31:15

TSP With Locational Uncertainty: The Adversarial Model
Gui Citovsky, Tyler Mayer, and Joseph S. B. Mitchell . 32:1–32:16

On Planar Greedy Drawings of 3-Connected Planar Graphs
Giordano Da Lozzo, Anthony D’Angelo, and Fabrizio Frati . 33:1–33:16

Origamizer: A Practical Algorithm for Folding Any Polyhedron
Erik D. Demaine and Tomohiro Tachi . 34:1–34:16

Computing the Geometric Intersection Number of Curves
Vincent Despré and Francis Lazarus . 35:1–35:15

Topological Analysis of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers
Tamal K. Dey, Facundo Mémoli, and Yusu Wang . 36:1–36:16

Locality-Sensitive Hashing of Curves
Anne Driemel and Francesco Silvestri . 37:1–37:16

Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial
Partitioning

Kunal Dutta, Arijit Ghosh, Bruno Jartoux, and Nabil H. Mustafa 38:1–38:15

Topological Data Analysis with Bregman Divergences
Herbert Edelsbrunner and Hubert Wagner . 39:1–39:16

Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension
Khaled Elbassioni . 40:1–40:15

A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM
Esther Ezra and Micha Sharir . 41:1–41:15

Computing the Fréchet Gap Distance
Chenglin Fan and Benjamin Raichel . 42:1–42:16

Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension
Jacob Fox, János Pach, and Andrew Suk . 43:1–43:15

Implementing Delaunay Triangulations of the Bolza Surface
Iordan Iordanov and Monique Teillaud . 44:1–44:15

Lower Bounds for Differential Privacy from Gaussian Width
Assimakis Kattis and Aleksandar Nikolov . 45:1–45:16

Constrained Triangulations, Volumes of Polytopes, and Unit Equations
Michael Kerber, Robert Tichy, and Mario Weitzer . 46:1–46:15

SoCG 2017

0:viii Contents

Proper Coloring of Geometric Hypergraphs
Balázs Keszegh and Dömötör Pálvölgyi . 47:1–47:15

Computing Representative Networks for Braided Rivers
Maarten Kleinhans, Marc van Kreveld, Tim Ophelders, Willem Sonke,
Bettina Speckmann, and Kevin Verbeek . 48:1–48:16

A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations
Anna Lubiw, Zuzana Masárová, and Uli Wagner . 49:1–49:15

A Spectral Gap Precludes Low-Dimensional Embeddings
Assaf Naor . 50:1–50:16

Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons
Eunjin Oh and Hee-Kap Ahn . 51:1–51:15

Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon
Eunjin Oh and Hee-Kap Ahn . 52:1–52:15

A Quest to Unravel the Metric Structure Behind Perturbed Networks
Srinivasan Parthasarathy, David Sivakoff, Minghao Tian, and Yusu Wang 53:1–53:16

From Crossing-Free Graphs on Wheel Sets to Embracing Simplices and Polytopes
with Few Vertices

Alexander Pilz, Emo Welzl, and Manuel Wettstein . 54:1–54:16

Approximate Range Counting Revisited
Saladi Rahul . 55:1–55:15

Coloring Curves That Cross a Fixed Curve
Alexandre Rok and Bartosz Walczak . 56:1–56:15

Barcodes of Towers and a Streaming Algorithm for Persistent Homology
Michael Kerber and Hannah Schreiber . 57:1–57:16

Algorithmic Interpretations of Fractal Dimension
Anastasios Sidiropoulos and Vijay Sridhar . 58:1–58:16

Disjointness Graphs of Segments
János Pach, Gábor Tardos, and Géza Tóth . 59:1–59:15

Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane
Haitao Wang . 60:1–60:16

Quickest Visibility Queries in Polygonal Domains
Haitao Wang . 61:1–61:16

Multimedia Contributions

Zapping Zika with a Mosquito-Managing Drone: Computing Optimal Flight
Patterns with Minimum Turn Cost

Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke,
and An Nguyen . 62:1–62:5

Ruler of the Plane – Games of Geometry
Sander Beekhuis, Kevin Buchin, Thom Castermans, Thom Hurks,
and Willem Sonke . 63:1–63:5

Contents 0:ix

Folding Free-Space Diagrams: Computing the Fréchet Distance between
1-Dimensional Curves

Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic,
Wouter Meulemans, Yoshio Okamoto, and Taichi Shiitada . 64:1–64:5

Cardiac Trabeculae Segmentation: an Application of Computational Topology
Chao Chen, Dimitris Metaxas, Yusu Wang, and Pengxiang Wu 65:1–65:4

MatchTheNet – An Educational Game on 3-Dimensional Polytopes
Michael Joswig, Georg Loho, Benjamin Lorenz, and Rico Raber 66:1–66:5

On Balls in a Hilbert Polygonal Geometry
Frank Nielsen and Laëtitia Shao . 67:1–67:4

SoCG 2017

Foreword

Computational Geometry has a rich and successful history. For many years, the prime annual
event of the community has been the Symposium on Computational Geometry (SoCG),
which we are celebrating for the 33rd time (as part of CG Week 2017) at The University
of Queensland, Brisbane, Australia, July 4–7, 2017. Herein, we are happy to present the
contributions that were selected for SoCG’17, consisting of abstracts of invited talks, research
papers, and descriptions of multimedia presentations.

There were 148 papers submitted to SoCG’17 via EasyChair. After a substantial review
process, during which each paper received at least three reviews and which involved 250
external reviewers, the program committee has selected 59 papers for presentation and
inclusion in the proceedings. A subset of these was also invited to forthcoming special
issues of Discrete & Computational Geometry and the Journal of Computational Geometry,
dedicated to the best papers of SoCG’17.

The Best Paper Award goes to the paper “Computing the Geometric Intersection Number
of Curves” by Vincent Despré and Francis Lazarus. The Best Student Presentation Award
will be determined and announced at the symposium, based on the input of the attendees.

In addition to the technical papers, there were six submissions to the multimedia exposition.
All six were reviewed and accepted for presentation. The extended abstracts that describe
these submissions are included in this proceedings volume. The final versions of the multimedia
content are archived at http://www.computational-geometry.org.

We thank all authors of submitted papers and multimedia contributions. We also thank
all the people who contributed time and expertise to the quality and success of this conference,
especially the local organizers, the external reviewers, and the members of the program
committees.

Boris Aronov
Program Committee co-chair

New York University

Matthew J. Katz
Program Committee co-chair

Ben-Gurion University

Matias Korman
Multimedia Committee chair

Tohoku University

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.computational-geometry.org
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Conference Organization

SoCG Program Committee

Boris Aronov (co-chair, New York University, USA)
Matthew J. Katz (co-chair, Ben-Gurion University, Israel)
Peyman Afshani (Madalgo, Denmark)
Maike Buchin (Ruhr-Universität Bochum, Germany)
Danny Chen (University of Notre Dame, USA)
Sariel Har-Peled (University of Illinois at Urbana-Champaign, USA)
Michael Hoffmann (ETH Zürich, Switzerland)
Ravi Janardan (University of Minnesota, USA)
David Kirkpatrick (The University of British Columbia, Canada)
Sylvain Lazard (INRIA Nancy – Grand Est, France)
Maarten Löffler (Utrecht University, The Netherlands)
Anil Maheshwari (Carleton University, Canada)
Arnaud de Mesmay (CNRS, Gipsa-lab, France)
Pat Morin (Carleton University, Canada)
Yoshio Okamoto (The University of Electro-Communications, Japan)
Evanthia Papadopoulou (Università della Svizzera italiana, Switzerland)
Valentin Polishchuk (Linköping University, Sweden)
Günter Rote (Freie Universität Berlin, Germany)
Rodrigo I. Silveira (Universitat Politècnica de Catalunya, Spain)
Martin Tancer (Charles University, Czech Republic)

Multimedia Program Committee

Matias Korman (chair, Tohoku University, Japan)
Yoshio Okamoto (The University of Electro-Communications, Japan)
Alexander Pilz (ETH Zürich, Switzerland)
Rodrigo I. Silveira (Universitat Politècnica de Catalunya, Spain)
Darren Strash (Colgate University, USA)
Kevin Verbeek (TU Eindhoven, The Netherlands)
Sander Verdonschot (University of Ottawa, Canada)

Workshop Program Committee

John Hershberger (chair, Mentor Graphics, USA)
David Hsu (National University of Singapore, Singapore)
Donald Sheehy (University of Connecticut, USA)
Bettina Speckmann (TU Eindhoven, The Netherlands)
33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Conference Organization

Young Researchers Forum Program Committee

Therese Biedl (chair, University of Waterloo, Canada)
Arijit Bishnu (Indian Statistical Institute, India)
Stephane Durocher (University of Manitoba, Canada)
Seok-hee Hong (University of Sydney, Australia)
John Iacono (New York University, USA)
Clement Maria (University of Queensland, Australia)
David Mount (University of Maryland, USA)
Yoshio Okamoto (The University of Electro-Communications, Japan)

Local Organizer

Benjamin Burton (The University of Queensland, Australia)

Steering Committee (2016–)

Erin Chambers (Saint Louis University, USA)
Dan Halperin (secretary, Tel Aviv University, Israel)
Marc van Kreveld (Utrecht University, The Netherlands)
Joseph S.B. Mitchell (treasurer, Stony Brook University, USA)
David Mount (University of Maryland, USA)
Monique Teillaud (chair, INRIA Nancy – Grand Est, France)

Additional Reviewers

Mikkel Abrahamsen
Anna Adamaszek
Henry Adams
Pankaj Agarwal
Hee-Kap Ahn
Hugo Akitaya
Joshua Alman
Laurent Alonso
Helmut Alt
Alexandr Andoni
Sunil Arya
Yakov Babichenko
Arturs Backurs
Sang Won Bae
Martin Balko
Aritra Banik
Michael J. Bannister
Bahareh Banyassady
Imre Barany
Luis Barba
Gill Barequet
Ulrich Bauer
Mikhail Belkin
Sergey Bereg
Mark de Berg
Marshall Bern
Binay Bhattacharya
Therese Biedl
Davide Bilò
Ahmad Biniaz
Jean-Daniel Boissonnat
Marthe Bonamy
Peter Brass
David Bremner
Karl Bringmann
Mickaël Buchet
Kevin Buchin
Mark Bun
Sergio Cabello
Martin Cadek
Jean Cardinal
Paz Carmi

Erin Chambers
Timothy M. Chan
Steven Chaplick
Frédéric Chazal
Siu-Wing Cheng
Man Kwun Chiu
Sunghee Choi
Vincent Cohen-Addad
David Cohen-Steiner
David Conlon
Sabine Cornelsen
Ovidiu Daescu
Sandip Das
Minati De
William E. Devanny
Olivier Devillers
Tamal Dey
Claudia Dieckmann
Hu Ding
Vida Dujmović
Stephane Durocher
Alon Efrat
David Eppstein
Jeff Erickson
Louis Esperet
William Evans
Esther Ezra
Rolf Fagerberg
Mohammad Farshi
Brittany Terese Fasy
Sándor Fekete
Omrit Filtser
Vissarion Fisikopoulos
Guilherme D. da Fonseca
Fabrizio Frati
Florian Frick
Radoslav Fulek
Jie Gao
Alfredo Garcia
Delia Garijo
Bernd Gärtner
Joachim Giesen

David Glickenstein
Marc Glisse
Xavier Goaoc
Lee-Ad Gottlieb
Carsten Grimm
Allan Grønlund
Romain Grunert
Joachim Gudmundsson
Dan Halperin
John Hershberger
Frank Hoffmann
Ziyun Huang
Alfredo Hubard
John Iacono
Piotr Indyk
Hiro Ito
Iwan Jensen
Gwenaël Joret
Vojtěch Kaluža
Iyad Kanj
Haim Kaplan
Mark Keil
Elena Khramtcova
Philipp Kindermann
James King
Jun Kitagawa
Rolf Klein
Boris Klemz
Christian Knauer
Kolja Knauer
Irina Kostitsyna
Laszlo Kozma
Marc van Kreveld
Klaus Kriegel
Erik Krohn
Jason S. Ku
Nirman Kumar
Jan Kynčl
Abhiruk Lahiri
Stefan Langerman
Kasper Green Larsen
James Lee

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xvi Additional Reviewers

Erik Jan van Leeuwen
Tuomo Lempiäinen
David Letscher
Bruno Levy
Jian Li
Yuan Li
Bernard Lidicky
Andre Linhares
Giuseppe Liotta
Chih-Hung Liu
Paul Liu
Anna Lubiw
Isaac Mabillard
Sepideh Mahabadi
Clément Maria
Dániel Marx
Tyler Mayer
Marina Meila
Facundo Memoli
Manor Mendel
Wouter Meulemans
Malte Milatz
Tillmann Miltzow
Joseph Mitchell
Bojan Mohar
Guillaume Moroz
David Mount
Wolfgang Mulzer
Nabil Mustafa
Subhas Nandy
Assaf Naor
Amir Nayyeri
Ofer Neiman
Frank Nielsen
Aleksandar Nikolov
Bengt J. Nilsson
Jerri Nummenpalo
Eunjin Oh
Tim Ophelders
David Orden
Yota Otachi
Steve Oudot

Arnau Padrol
Leonidas Palios
Dömötör Pálvölgyi
Salman Parsa
Paul Pearson
Jeff Phillips
Michał Pilipczuk
Alexander Pilz
Marc Pouget
Kent Quanrud
Saladi Rahul
Rajiv Raman
Orit E. Raz
André van Renssen
Marcel Roeloffzen
Edgardo Roldán-Pensado
Sasanka Roy
Ignaz Rutter
Leonardo Ignacio Martínez
Sandoval
Filippo Santambrogio
Jenya Sapir
Manfred Scheucher
Stefan Schirra
Jean-Marc Schlenker
Christiane Schmidt
Patrick Schnider
André Schulz
Matthias Schymura
Leonid Sedov
Raimund Seidel
Paul Seiferth
Micha Sharir
Don Sheehy
Jonathan Shewchuk
Dayu Shi
Anastasios Sidiropoulos
Michiel Smid
Shakhar Smorodinsky
Noam Solomon
Kiril Solovey
Joachim Spoerhase

Jonathan Spreer
Boris Springborn
Frank Staals
Ladislav Stacho
Yannik Stein
Milos Stojakovic
Darren Strash
Ileana Streinu
Andrew Suk
Dougal Sutherland
May Szedlak
Topi Talvitie
Shin-Ichi Tanigawa
Monique Teillaud
Pratap Tokekar
Csaba Toth
Torsten Ueckerdt
Ryuhei Uehara
Jonathan Ullman
Pavel Valtr
Kasturi Varadarajan
Mikael Vejdemo-Johansson
Kevin Verbeek
Sander Verdonschot
Antoine Vigneron
Haitao Wang
Yusu Wang
Carola Wenk
Manuel Wettstein
Max Willert
Mathijs Wintraecken
Steve Wismath
David R. Wood
David P. Woodruff
Jinhui Xu
Jie Xue
Frank de Zeeuw
Norbert Zeh
Rico Zenklusen
Piotr Zgliczyński
Xinhua Zhang

Sponsors

We are grateful to The University of Queensland for hosting and sponsoring CG week 2017,
and to the National Science Foundation (NSF) for providing financial support.

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

The Geometry and Topology of Crystals: From
Sphere-Packing to Tiling, Nets, and Knots∗

Vanessa Robins

Department of Applied Mathematics, Research School of Physics and Engineering,
The Australian National University, Canberra, Australia
vanessa.robins@anu.edu.au

Abstract
Crystal structures have inspired developments in geometry since the Ancient Greeks conceived
of Platonic solids after observing tetrahedral, cubical and octahedral mineral forms in their local
environment. The internal structure of crystals became accessible with the development of x-ray
diffraction techniques just over 100 years ago, and a key step in developing this method was
understanding the arrangement of atoms in the simplest crystals as close-packings of spheres.
Determining a crystal structure via x-ray diffraction unavoidably requires prior models, and
this has led to the intense study of sphere packing, atom-bond networks, and arrangements of
polyhedra by crystallographers investigating ever more complex compounds. In the 21st century,
chemists are exploring the possibilities of coordination polymers, a wide class of crystalline mater-
ials that self-assemble from metal cations and organic ligands into periodic framework materials.
Longer organic ligands mean these compounds can form multi-component interwoven network
structures where the “edges” are no longer constrained to join nearest-neighbour “nodes” as in
simpler atom-bond networks. The challenge for geometers is to devise algorithms for enumer-
ating relevant structures and to devise invariants that will distinguish between different modes
of interweaving. This talk will survey various methods from computational geometry and topo-
logy that are currently used to describe crystalline structures and outline research directions to
address some of the open questions suggested above.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modelling, J.2
Physical Sciences and Engineering

Keywords and phrases Mathematical crystallography, Combinatorial tiling theory, Graphs and
surfaces in the 3-torus

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.1

Category Invited Talk

∗ This work is supported by ARC Future Fellowship Grant FT140100604.

© Vanessa Robins;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

The Algebraic Revolution in Combinatorial and
Computational Geometry: State of the Art
Micha Sharir

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

Abstract
For the past 10 years, combinatorial geometry (and to some extent, computational geometry
too) has gone through a dramatic revolution, due to the infusion of techniques from algebraic
geometry and algebra that have proven effective in solving a variety of hard problems that were
thought to be unreachable with more traditional techniques. The new era has begun with two
groundbreaking papers of Guth and Katz, the second of which has (almost completely) solved
the distinct distances problem of Erdős, open since 1946.

In this talk I will survey some of the progress that has been made since then, including a variety
of problems on distinct and repeated distances and other configurations, on incidences between
points and lines, curves, and surfaces in two, three, and higher dimensions, on polynomials
vanishing on Cartesian products with applications, on cycle elimination for lines and triangles in
three dimensions, on range searching with semialgebraic sets, and I will most certainly run out
of time while doing so.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations, G.2.1 Com-
binatorics

Keywords and phrases Combinatorial Geometry, Incidences, Polynomial method, Algebraic Geo-
metry, Distances

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.2

Category Invited Talk

© Micha Sharir;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Irrational Guards are Sometimes Needed∗

Mikkel Abrahamsen1, Anna Adamaszek2, and Tillmann Miltzow3

1 University of Copenhagen, Copenhagen, Denmark
miab@di.ku.dk

2 University of Copenhagen, Copenhagen, Denmark
anad@di.ku.dk

3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzow@gmail.com

Abstract
In this paper we study the art gallery problem, which is one of the fundamental problems in
computational geometry. The objective is to place a minimum number of guards inside a simple
polygon so that the guards together can see the whole polygon. We say that a guard at position
x sees a point y if the line segment xy is contained in the polygon.

Despite an extensive study of the art gallery problem, it remained an open question whether
there are polygons given by integer coordinates that require guard positions with irrational
coordinates in any optimal solution. We give a positive answer to this question by constructing
a monotone polygon with integer coordinates that can be guarded by three guards only when
we allow to place the guards at points with irrational coordinates. Otherwise, four guards are
needed. By extending this example, we show that for every n, there is a polygon which can
be guarded by 3n guards with irrational coordinates but needs 4n guards if the coordinates
have to be rational. Subsequently, we show that there are rectilinear polygons given by integer
coordinates that require guards with irrational coordinates in any optimal solution.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases art gallery problem, computational geometry, irrational numbers

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.3

Figure 1 Till, Mikkel, and Anna are meticulously guarding the polygon. They are a little
irrational, but pretty optimal.

∗ Research partially supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independ-
ent Research under the Sapere Aude research career programme, by the Danish Council for Independent
Research DFF-MOBILEX mobility grant, and by the ERC grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results” no. 280152.

© Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Irrational Guards are Sometimes Needed

1 Introduction

For a polygon P and points x, y ∈ P , we say that x sees y if the line segment xy is contained
in P. A guard set S is a set of points in P such that every point in P is seen by some
point in S. The points in S are called guards. The art gallery problem is to find a minimum
cardinality guard set for a given simple polygon P on n vertices. Such a guard set is called
optimal. The polygon P is considered to be filled, i.e., it consists of a closed, simple polygonal
curve in the plane and the bounded region enclosed by this curve.

This classical version of the art gallery problem has been originally formulated in 1973
by Victor Klee (see the book of O’Rourke [20, page 2]). It is often referred to as the
interior-guard art gallery problem or the point-guard art gallery problem, to distinguish it
from other versions that have been introduced over the years.

Chvátal proved in 1975 that bn/3c guards are always sufficient and sometimes necessary
to guard a polygon with n vertices [9]. A simpler proof was later found by Fisk [15]. Since
then, the art gallery problem has been extensively studied, both from the combinatorial and
the algorithmic perspective. Most of this research, however, is not focused directly on the
classical art gallery problem, but on its numerous versions, including different definitions of
visibility, restricted classes of polygons, restrictions on the positions of the guards, etc. For
more detailed information we refer the reader to the surveys [26, 28, 20, 22].

Despite extensive research on the art gallery problem, no combinatorial algorithm for
finding an optimal solution, or even for deciding whether a guard set of a given size k exists,
is known. The only exact algorithm is attributed to Micha Sharir (see [12]), who has shown
that in nO(k) time one can decide whether a guard set consisting of k guards exists. This
result is obtained by using standard tools from real algebraic geometry [2], and it is not
known how to find an optimal solution without using this powerful machinery (see [3] for an
analysis of the very restricted case of k = 2). Some recent lower bounds [5] based on the
exponential time hypothesis suggest that there might be no better exact algorithms than the
one by Sharir.

To explain the difficulty in constructing exact algorithms, we want to emphasize that it
is not known whether the decision version of the art gallery problem (i.e., the problem of
deciding whether there is a guard set consisting of k guards, where k is a parameter) lies in
the complexity class NP. While NP-hardness and APX-hardness of the art gallery problem
have been shown for different versions of the problem [18, 25, 27, 6, 13, 21, 17], the question
of whether the point-guard art gallery problem is in NP remains open. A simple way to show
NP-membership would be to prove that there always exists an optimal set of guards with
rational coordinates of polynomially bounded description.

Sándor Fekete posed at MIT in 2010 and at Dagstuhl in 2011 an open problem, asking
whether there are polygons requiring irrational coordinates in an optimal guard set [14, 1].
The question has been raised again by Günter Rote at EuroCG 2011 [23]. It has also been
mentioned by Rezende et al. [10]: “it remains an open question whether there are polygons
given by rational coordinates that require optimal guard positions with irrational coordinates”.
A similar question has been raised by Friedrichs et al. [16]: “[. . .] it is a long-standing open
problem for the more general Art Gallery Problem (AGP): For the AGP it is not known
whether the coordinates of an optimal guard cover can be represented with a polynomial
number of bits”.

Our results. We answer the open question of Sándor Fekete by proving the following result.
Recall that a polygon P is called monotone if there exists a line l such that the intersection
between any line orthogonal to l and P is either empty or a single line segment.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:3

I Theorem 1. There is a simple monotone polygon P with integer vertex coordinates such
that
1. P can be guarded by 3 guards, and
2. an optimal guard set of P with guards at points with rational coordinates has size 4.

An interesting consequence of Theorem 1 is that there is no optimal guard set of P among
a candidate set of guard positions consisting of intersections between extensions of chords
and edges of P. It does not help to expand the candidate set by adding a line through each
pair of candidates, thus creating new intersections to be added to the set of candidates, or to
repeat this procedure any finite number of iterations, since all candidate points created by
such a process must inevitably have rational coordinates. This shows that algorithms based
on this procedure, as well as other algorithms for the art gallery problem which consider only
rational points as possible guard positions, will in general not find an optimal guard set.

We then extend Theorem 1 by providing a family of polygons for which the ratio between
the size of an optimal rational guard set and the size of an optimal set with irrational guards
allowed is 4/3.

I Theorem 2. There is a family of simple polygons (Pn)n∈Z+ with integer vertex coordinates
such that
1. Pn can be guarded by 3n guards, and
2. an optimal guard set of Pn with guards at points with rational coordinates has size 4n.
Moreover, the coordinates of the points defining the polygons Pn are polynomial in n.

We show that the phenomenon with guards at irrational coordinates occurs already in
the much simpler class of rectilinear polygons, i.e., polygons where each edge is parallel to
the x-axis or to the y-axis.

I Theorem 3. There is a rectilinear polygon PR with vertices at integer coordinates satisfying
the following properties.
1. PR can be guarded by 9 guards.
2. An optimal guard set of PR with guards at points with rational coordinates has size 10.

The Structure of the Paper. Section 2 contains the description of a monotone polygon
P with vertices at points with rational coordinates that can be guarded by three guards
only if the guards are placed at points with irrational coordinates. In Section 3, we describe
the intuition behind our construction, and explain how we have found the polygon P. The
formal proof of Theorems 1 and 2 is then provided in Section 4. In Section 5, we present the
rectilinear polygon PR from Theorem 3 requiring guards with irrational coordinates in an
optimal guard set. Finally, in Section 6 we suggest some open problems for future research.

2 The Polygon

In Figure 2 we present the polygon P. In Section 4 we will prove that P can be guarded by
three guards only when we allow the guards to be placed at points with irrational coordinates.

The polygon P is constructed as follows. We start with a basic rectangle [0, 20]×[0, 4] ⊂ R2.
Then, we append to it six triangular pockets (colored with green in the figure), which are
triangles defined by the following coordinates:

T `
t : {(2, 4), (2, 4.5), (2.1, 4)}, T `

b : {(2, 0), (2,−0.5), (1.9, 0)},
T m

t : {(16 5
6 , 4), (17 2

6 , 4.15), (17 2
6 , 4)}, T m

b : {(3.5, 0), (3,−0.15), (3, 0)},
T r

t : {(19, 4), (19, 4.5), (19.1, 4)}, and T r
b : {(19, 0), (19,−0.5), (18.9, 0)}.

SoCG 2017

3:4 Irrational Guards are Sometimes Needed

T
` t

T
` b

T
r t

T
r b

T
m t

T
m b

R
r

R
`

R
m

P
` t

P
` b

P
r t

P
r b

(0
,4
)

(2
0,
4
)

(2
0,
0
)

(0
,0
)

(2
,4
)

(2
,4
.5
)

(2
.1
,4
)

(1
.9
,0
)

(2
,−

0.
5)

(2
,0
)

(1
9,
4)

(1
9,
4
.5
)

(1
9.
1
,4
)

(1
8.
9,
0
)

(1
9,
−
0
.5
)

(1
9,
0)

(1
6
5 6
,4
)(1
7
2 6
,4
.1
5
)

(1
7
2 6
,4
)

(3
.5
,0
)

(3
,−

0.
15
)

(3
,0
)

(2
0,
0
.6
)

(3
0,
0
.6
)

(3
0,
0.
5
)

(2
0,
0
.5
)

(0
,1
.7
)

(−
10
,1
.7
)

(−
10
,1
.8
)

(0
,1
.8
)

(1
0.
5,
4)

(1
0.
5,
8)

(1
0.
6,
8)

(1
0.
6,
4)

(4
,4
)

(4
,
2
8
0

4
7
)

(8
,
2
9
4

4
7
)

(8
,4
)

(1
6,
4)

(1
6,

1
7
7
6

3
7
5
)

(1
2,

2
4
8
6

3
7
5
)

(1
2,
4)

(4
,0
)

(4
,−

1
2

1
9
)

(8
,−

1
8

1
9
)

(8
,0
)

(1
6,
0)

(1
6,
−

3
6

2
1
)

(1
2,
−

3
4

2
1
)

(1
2,
0)

Figure 2 The polygon P. We will show that P can be guarded by three guards only when we
allow the guards to be placed at points with irrational coordinates. For practical reasons, the blue
rectangular pockets are drawn shorter than they actually are.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:5

t

b

(a) The only way that one guard can see
both t and b is when the guard is on the
blue line segment.

l`
lm lr

(b) The only way to guard the polygon with three
guards requires one guard on each of the green line
segments l`, lm, lr.

Figure 3 Forcing guards to lie on specific line segments.

Next, we append three rectangular pockets (colored with blue in the figure, for practical
reasons these pockets are drawn in the figure shorter than they actually are), which are
rectangles defined in the following way.

R`: [−10, 0]× [1.7, 1.8], Rr: [20, 30]× [0.5, 0.6], and Rm: [10.5, 10.6]× [4, 8].
Last, we append four quadrilateral pockets (colored with red in the figure), which are

defined by points with the following coordinates:

Top-left pocket P `
t {(4, 4), (4, 280

47), (8, 294
47), (8, 4)}

Top-right pocket P r
t {(12, 4), (12, 2486

375), (16, 1776
375), (16, 4)}

Bottom-left pocket P `
b {(4, 0), (4,− 12

19), (8,− 18
19), (8, 0)}

Bottom-right pocket P r
b {(12, 0), (12,− 34

21), (16,− 36
21), (16, 0)}.

The polygon P is clearly monotone. We will denote by e`
t , er

t , e`
b, and er

b the non-axis-parallel
edge within each of the four quadrilateral pockets, respectively.

3 Intuition

In this section, we explain the key ideas behind the construction of the polygon P. Our
presentation is informal, but it resembles the work process that lead to the construction
of P more than the formal proof of Theorem 1 in Section 4 does. Here we omit all “scary”
computations and focus on conveying the big picture. In the end of this section, we also
explain how we actually constructed the polygon P.

Define a rational point to be a point with two rational coordinates. An irrational point is
a point that is not rational. A rational line is a line that contains two rational points. An
irrational line is a line that is not rational.

Forcing a Guard on a Line Segment. Consider the drawing of the polygon P in Figure 2.
We will now explain an idea of how three pairs of triangular pockets, (T `

t , T
`
b), (Tm

t , Tm
b),

and (T r
t , T

r
b), can enforce three guards on three line segments within P.

Consider the two triangular pockets in Figure 3a. The blue line segment contains one
edge of each of these pockets, and the interiors of the pockets are at different sides of the line
segment. A guard which sees the point t must be placed within the orange triangular region,
and a guard which sees b must be placed within the yellow triangular region. Thus, a single
guard can see both t and b only if it is on the blue line segment tb, which is the intersection
of the two regions.

Consider now the case that we have k pairs of triangular pockets and no two regions
corresponding to different pairs of pockets intersect. In order to guard the polygon with
k guards, there must be one guard on the line segment corresponding to each pair. Our

SoCG 2017

3:6 Irrational Guards are Sometimes Needed

b

C

g1
g2

d

b

d

et

eb

pt

pb

i

g2
l

l

Figure 4 Left: The guard g2 must be inside the triangular region (or to the left of it) in order
to guard the entire part of the polygon that is not seen by g1. Right: All possible positions of the
point i define a simple curve C.

polygon P has three such pairs of pockets (see Figure 3b), and it can be checked that the
corresponding regions do not intersect. Note that in this way we can only enforce a guard to
be on a rational line as the line contains vertices of the polygon, which are rational points.

Restricting a Guard to a Region Bounded by a Curve. For the following discussion, see
Figure 4 and notation therein. We want to guard the polygon from Figure 4 using two
guards, g1 and g2. We assume that g1 is forced to lie on the blue vertical line segment l.

Consider some position of g1 on l such that g1 can see at least one point of the top
edge et of the top quadrilateral pocket and at least one point of the bottom edge eb of the
bottom quadrilateral pocket. Let pt and pb denote the leftmost points seen by g1 on et and
eb, respectively. Observe that pt moves to the right if g1 moves up and to the left if g1 moves
down. The point pb behaves in the opposite way when g1 is moved. Consider some fixed
position of g1 on the blue line segment, and the corresponding positions of pt and pb. Let b
be the bottom right corner of the top pocket and d the top right corner of the bottom pocket.
Let i be the intersection point of the line containing pt and b with the line containing pb and
d. The points b, d, i define a triangular region ∆. It is clear that if we place the guard g2
anywhere inside ∆, then g1 and g2 will together see the entire polygon. On the other hand,
if we place g2 to the right of ∆, then g1 and g2 will not see the entire polygon, as some part
of the top or the bottom pocket will not be seen.

Now, let us move the guard g1 along l. Each position of g1 yields an intersection point i.
We denote the union of all these intersection points by C (see the right picture in Figure 4).
It is easy to see that C is a simple curve.

Note that g2 sees a larger part of both pockets if it is moved horizontally to the left and a
smaller part of both pockets if it is moved horizontally to the right. Consider a fixed position
of g2 on or to the right of the segment bd. Let g′2 be the horizontal projection of g2 on C.
Let g1 be the unique position on l such that g1 and g′2 see all of the polygon. If g2 is to the
left of C, g′2 sees less of the pockets than g2, so g1 and g2 can together see everything. If g2
is to the right of C, g2 sees less of the pockets than g′2 and neither the top nor the bottom
pocket are completely guarded by g1 and g2. For any higher placement of g1 even less of
the top pocket is guarded and for any lower placement of g1 even less of the bottom pocket
is guarded. Thus, there exists no placement of g1 such that both pockets are completely
guarded by g1 and g2. We summarize our reasoning in the following observation.

I Observation 4. Consider a fixed position of g2 on or to the right of the segment bd. There
exists a position of g1 on l such that the entire polygon is seen by g1 and g2 if and only if g2
lies on or to the left of the curve C.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:7

g`

gm
gr

l`
lm

lr

p`t prt

p`b
prb

e`t
ert

e`b
erb

c`
cr

Figure 5 The polygon P.

Restricting a Guard to a Single (Irrational) Point. For this paragraph, let us consider
the polygon P introduced in Section 2, and consider a guard set for P consisting of three
guards. The polygon P is drawn in Figure 5 with additional labels and information. The
three guards g`, gm, gr are forced by the triangular pockets to lie on the three green line
segments l`, lm, lr, respectively. Additionally, the three rectangular pockets R`, Rm, Rr force
the guards to lie within one of two or three short intervals within each line segment. (These
properties of our construction will be discussed in more detail in Section 4.) With these
restrictions, we will show that for the three guards to see the whole polygon, it must hold
that the guards g` and gm can together see the left pockets P `

t and P `
b and the guards gm

and gr can together see the right pockets P r
t and P r

b .
The curve c` bounds from the right the feasible region for the guard gm such that g` and

gm can together see the left pockets P `
t and P `

b . Similarly, the curve cr bounds from the left
the feasible region for the guard gm such that gr and gm can together see the right pockets
P r

t and P r
b . Thus, the only way that g`, gm, and gr can see the whole polygon is when gm is

within the grey region between c` and cr. Our idea is to define the line segment lm so that it
contains an intersection point of c` and cr while not entering the interior of the grey region.
A simple computation with sage [11] outputs equations defining the two curves:

c` : 138x2 − 568xy − 1071y2 − 3018x+ 8828y + 15312 = 0,

cr : 138x2 − 156xy − 356y2 − 1791x+ 3296y + 1620 = 0.

One can easily verify that the point p = (3.5+5
√

2, 1.5
√

2) ≈ (10.57, 2.12) lies on both curves
and also on the line lm = { (x, y) : y = 0.3x− 1.05 }. Therefore, p is a feasible (and at the
same time irrational) position for the guard gm. Moreover, by plotting c`, cr, and lm in P as
in Figure 5, we get an indication that as we traverse lm from left to right, at the point p we
exit the area where gm and gl can guard together the two left pockets and at the same time
we enter the area where gm and gr can guard together the two right pockets. Thus, the only
feasible position for the guard gm is the irrational point p. A formal proof will be given in
Section 4.

Searching for the Polygon. The simplicity of the ideas behind our construction does not
reflect the difficulty of finding the exact coordinates for the polygon P. The reader might
for instance presume that most other choices of horizontal pockets would work if the line
segment lm is changed accordingly. However, this is not the case.

SoCG 2017

3:8 Irrational Guards are Sometimes Needed

It is easy to construct the pockets so that the corresponding curves c` and cr intersect at
some point p. We expect p to be an irrational point in general since the curves c` and cr are
defined by two second degree polynomials, as indicated above. In our construction, we need
to force gm to be on a line segment lm containing p, but we can only force gm to be on a
rational line. Hence, we require the existence of a rational line that contains p.

As any two rational lines intersect in a rational point, there can be at most one rational
line containing the irrational point p. Moreover, there exists a rational line containing p if
and only if p = (r1 +r2α, r3 +r4α) for some r1, r2, r3, r4 ∈ Q, where α ∈ R\Q is an irrational
number. The equation of the rational line containing p is then y = r4

r2
· x+ (r3 − r1 · r4

r2
). We

say that this line supports p. Therefore, we should not hope that the intersection point of
the curves c` and cr defined by arbitrarily chosen pockets will have a supporting line. Our
main idea to overcome this problem has been to reverse-engineer the polygon, after having
chosen the positions of the guards. We chose three irrational guards, all with supporting
rational lines, and then defined the pockets so that gm automatically became the intersection
point between the curves c` and cr associated with the pockets.

We chose all three guards to have coordinates of the form (r1 + r2
√

2, r3 + r4
√

2) for
r1, r2, r3, r4 ∈ Q. Assume, for the ease of presentation, that we already know that we can
end up with a polygon described as follows. (In our initial attempts, our polygons were
much less regular.) The polygon should consist of the rectangle R = [0, 20]× [0, 4] with some
pockets added. We would like the pockets to extrude vertically from the horizontal edges
of R such that the pockets meet R along the segments (4, 0)(8, 0), (12, 0)(16, 0), (4, 4)(8, 4),
and (12, 4)(16, 4), respectively.

We now explain the technique for constructing the bottom pocket to the left which should
extrude from R vertically downwards from the corners (4, 0) and (8, 0). We have to define
the edge e`

b, which is the bottom edge in the pocket. We want p`
b to be a point on e`

b such
that g` can only see the part of e`

b from p`
b and to the right, whereas gm can only see the part

of e`
b from p`

b and to the left. Therefore, we define p`
b to be the intersection point between the

line containing g` and (4, 0) and the line containing gm and (8, 0). It follows that p`
b is of the

form (r1 + r2
√

2, r3 + r4
√

2) for some r1, r2, r3, r4 ∈ Q. Hence, there is a unique rational line
l supporting p`

b, and e`
b must be a segment on l. We therefore need that both of the points

(4, 0) and (8, 0) are above l, since otherwise we do not get a meaningful polygon. However,
this is not the case for arbitrary choices of the guards g` and gm. The other pockets add
similar restrictions to the positions of the guards.

In the construction we had to take care of other issues as well. In particular, the line lm
which supports the guard gm cannot enter the grey region between the two curves c` and cr,
as otherwise the position of gm would not be unique, and the guard could be moved to a
rational point. Also, the three lines l`, lm, lr supporting the three guards g`, gm, gr cannot
intersect within the polygon.

4 Proof of Theorems 1 and 2

Basic observations. Recall the construction of the polygon P as defined in Section 2,
and consider a guard set of P of cardinality at most 3. Let l`, lm, lr, respectively, be the
restrictions of the following lines to P:

x = 2, y = 0.3x− 1.05, and x = 19.

As argued in Section 3, the triangular pockets enforce a guard onto each of these lines.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:9

I Lemma 5. Consider any guard set S for P consisting of at most 3 guards. Then (i) |S| = 3,
and (ii) there is one guard on each of the lines l`, lm, lr.

Now, consider the intervals i1 = [0.5, 0.6] and i2 = [1.7, 1.8]. Similarly as for the case of
triangular pockets, we can show that the rectangular pockets R`, Rm, Rr enforce a guard
with an x-coordinate in [10.5, 10.6], and the two remaining guards with y-coordinates in i1
and i2, respectively.

I Lemma 6. Consider any guard set for P consisting of 3 guards. Then one of the guards
has an x-coordinate in [10.5, 10.6]. For the remaining two guards, one has a y-coordinate in
i1 and the other has one in i2.

Proof. From Lemma 5, there must be one guard g` on l`, one guard gm on lm, and the last
guard gr on lr. Recall that the rectangular pockets are as follows R`: [−10, 0] × [1.7, 1.8],
Rr: [20, 30]× [0.5, 0.6], and Rm: [10.5, 10.6]× [4, 8]. It is straightforward to check that none
of the guards g`, gr can see the two top vertices of the pocket Rm. Therefore, the middle
guard gm has to see both of these vertices, so it must have an x-coordinate in [10.5, 10.6].

Then, as gm ∈ lm, the y-coordinate of gm is in [2.1, 2.13]. Therefore, gm cannot see any
of the left vertices of R` or any of the right vertices of Rr. These four vertices must be seen
by the guards g` and gr.

As some guard must see the bottom-left corner of the pocket R`, it must be placed at a
height of at least 1.7. Then, this guard cannot see any of the right vertices of Rr. Therefore,
the last guard must see both right vertices of Rr, and its height must be within i1 = [0.5, 0.6].
Then, this guard cannot see any left vertex of the pocket R`, and the second guard must see
both left vertices of the pocket, so its height must be within i2 = [1.7, 1.8]. J

Dependencies between guard positions. Let {g`, gm, gr} be a guard set of P with g` ∈
l`, gm ∈ lm, and gr ∈ lr. We will now analyze dependencies between the positions of the
guards that are caused by the quadrilateral pockets of P. Recall that the non-axis-parallel
edges of these pockets are denoted by e`

t, er
t , e`

b, and er
b .

We will first prove two technical lemmas.

I Lemma 7. Let h ∈ [0, 4] be the height of the guard g`. If h > 135
47 ≈ 2.87 then g` cannot

see any point on e`
t, and otherwise it can see a part of e`

t starting from the x-coordinate
908−188h
181−47h and to the right of it. If h < 9

19 ≈ 0.47 then g` cannot see any point on e`
b, and

otherwise it can see a part of e`
b starting from the x-coordinate 76h+12

19h−3 and to the right of it.

Proof. Consider the guard g` and the top-left pocket. The left-most point on e`
t that g` can

see is at the intersection of the following two lines: the line containing g` and the bottom-left
corner of the pocket (i.e., the point (4, 4)), and the line containing e`

t . If g` = (2, h), then the
equation of the first line is y = 4−h

2 x + (2h − 4). The second contains points (4, 280
47) and

(8, 294
47), and its equation is y = 7

94x+ 266
47 . The x-coordinate of the intersection is 908−188h

181−47h .
It reaches a value of 8 (i.e., the point coincides with the right endpoint of e`

t) when h = 135
47 .

Now, consider the guard g` and the bottom-left pocket. The leftmost point on e`
b that

g` can see is at the intersection of the following two lines: the line containing g` and the
top-left corner of the pocket (i.e., the point (4, 0)), and the line containing e`

b. The first of
these lines has equation y = −h

2x+ 2h. The second line contains points (4,− 12
19), (8,− 18

19),
and its equation is y = − 3

38x −
6

19 . The x-coordinate of the intersection is 76h+12
19h−3 , which

reaches 8 when h = 9
19 . J

SoCG 2017

3:10 Irrational Guards are Sometimes Needed

I Lemma 8. Let h ∈ [0, 4] be the height of the guard gr. If h > 507
250 = 2.028 then g` cannot

see any point on er
t , and otherwise it can see a part of er

t starting from the x-coordinate
4000h−9768

250h−645 and to the left of it. If h < 17
14 ≈ 1.21 then g` cannot see any point on er

b, and
otherwise it can see a part of er

b starting from the x-coordinate 224h−56
14h+1 and to the left of it.

Proof. Consider the guard gr and the top-right pocket. The right-most point on er
t that

gr can see is at the intersection of the following two lines: the line containing gr and the
bottom-right corner of the pocket (i.e., the point (16, 4)), and the line containing er

t . If
gr = (19, h), then the equation of the first line is y = h−4

3 x+ 76−16h
3 . The second contains

points (12, 2486
375) and (16, 1776

375), and its equation is y = − 71
150x+ 4616

375 . The x-coordinate of
the intersection is 4000h−9768

250h−645 . It reaches a value of 12 (i.e., the point coincides with the left
endpoint of er

t) when h = 507
250 = 2.028.

Now, consider the guard gr and the bottom-right pocket. The rightmost point on er
b that

gr can see is at the intersection of the following two lines: the line containing gr and the
top-right corner of the pocket (i.e., the point (16, 0)), and the line containing er

b . The first of
these lines has equation y = h

3x−
16h

3 . The second line contains points (12,− 34
21), (16,− 36

21),
and its equation is y = − 1

42x −
4
3 . The x-coordinate of the intersection is 224h−56

14h+1 , which
reaches 12 when h = 17

14 ≈ 1.21. J

We will now further restrict possible positions of the guards.

I Lemma 9. The y-coordinate of the guard g` is in the interval i1 = [0.5, 0.6], and the
y-coordinate of the guard gr is in the interval i2 = [1.7, 1.8].

Proof. As the guards g` and gr lie on line segments l` and lr, their x-coordinates are 2 and
19, respectively. From Lemma 6, the x-coordinate of gm is in the interval [10.5, 10.6]. Also,
one of the guards g`, gr has a y-coordinate in i1, and the other one in i2.

Suppose that the y-coordinate of gr is in i1, i.e., it is at most 0.6. Let v = (12,− 34
21) be

the left endpoint of the edge er
b . We will show that none of the guards can see v. Clearly, as

the x-coordinates of g` and gm are smaller than 12, neither of them can see v. From Lemma 8,
gr cannot see v. Therefore, the y-coordinate of g` must be in i1, and the y-coordinate of gr

in i2. J

I Lemma 10. The guards g` and gm must together see all of e`
t and e`

b, and the guards gm

and gr must together see all of er
t and er

b.

Proof. By the construction of P , it holds that if a guard sees a point on one of the edges e`
t ,

er
t , e`

b, and er
b , then the guard sees an interval of the edge containing an endpoint of the edge.

It now follows that if three guards together see one of these edges, then two do as well. In
order to prove the lemma, it thus suffices to prove that

g` and gr cannot together see any of the edges e`
t, e`

b, er
t , and er

b ,
g` and gm cannot together see any of the right edges er

t and er
b , and

gm and gr cannot together see any of the left edges e`
t and e`

b.

We now prove that g` and gr cannot together see any of the right edges er
t and er

b (see
Figure 6a). Since h ∈ i2, Lemma 8 gives that gr cannot see er

t to the right of the point
(742

55 ,
1629
275), and er

b to the right of the point (1736
131 ,−

216
131). It is now easy to verify that no

point on l` can see any of these two points. Hence, g` and gr cannot together see any of the
edges er

t and er
b .

We now prove that g` and gr cannot together see e`
t (see Figure 6b). Since the y-coordinate

of gr is in i2, it follows that gr does not see any point on e`
t. Since the x-coordinate of g` is

less than 4, neither g` nor gr can see the left endpoint of e`
t.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:11

(a) Guards g` and gr cannot together see any of
the right pockets.

(b) Guards g` and gr cannot together see any of
the left pockets.

Figure 6 Showing that guards g` and gr cannot see together a whole pocket. Possible positions
for the guards are pictured in red.

To show that g` and gr cannot together see the edge e`
b, we argue as follows (see Figure 6b).

The guard g` is placed at a height of at most 0.6, and gr at a height of at most 1.8. It follows
from Lemma 7 and from elementary computations that neither of the guards can see the
interval of e`

b with x-coordinates between 2076
507 < 4.1 and 48

7 > 6.8.
As the x-coordinate of both g` and gm is smaller than 12, none of these guards can see

the left endpoint of the edges er
t , er

b . Therefore, g` and gm cannot together see any of the
edges er

t , er
b . Similarly, as the x-coordinates of gm and gr are greater than 8, gm and gr

cannot together see e`
t or e`

b. This completes our proof. J

Computing the unique solution. We can now show that there is only one guard set for P
consisting of three guards. Let us start by computing the right-most possible position of gm

such that g` and gm can see together both left pockets.

I Lemma 11. The maximum x-coordinate of gm such that g` and gm can together see e`
t

and e`
b is x = 3.5 + 5

√
2. The corresponding position of g` is (2, 2−

√
2).

Proof. Consider the guard g` at position (2, h). From Lemma 9, we know that h ∈ [0.5, 0.6].
If gm and g` together see e`

t , we know from Lemma 7 that gm has to be on or below the line
containing the vertices (8, 4) and (908−188h

181−47h ,
7

94 ·
908−188h
181−47h + 266

47), i.e., the line with equation
y = 92−23h

−135+47hx+ −1276+372h
−135+47h . As gm is at the line y = 0.3x− 1.05, its x-coordinate satisfies

0.3x− 1.05 ≤ 92−23h
−135+47hx+ −1276+372h

−135+47h , i.e., x ≤ 28355−8427h
2650−742h .

If gm and g` together see e`
b, then gm has to be on or above the line containing the vertices

(8, 0) and (76h+12
19h−3 ,−

3
38 ·

76h+12
19h−3 −

6
19), i.e., the line with equation y = 3h

19h−9x−
24h

19h−9 . Hence,
the x-coordinate of g` must satisfy 0.3x− 1.05 ≥ 3h

19h−9x−
24h

19h−9 , i.e., x(1− h) ≤ 81h+189
54 .

Therefore, since h < 1, we must have x ≤ 81h+189
54−54h .

We now know that x ≤ min{ 28355−8427h
2650−742h , 81h+189

54−54h }. The first of the two values decreases
with h, and the second one increases with h. Therefore the maximum is obtained when
28355−8427h

2650−742h = 81h+189
54−54h , i.e., for h = 2 −

√
2. The value of x is then 3.5 + 5

√
2. The

corresponding position of the guard g` is (2, h) = (2, 2−
√

2). J

Similarly, we can compute the left-most possible position of gm such that gm and gr can
see together both right pockets.

I Lemma 12. The minimum x-coordinate of gm such that gr and gm can see both er
t and

er
b is x = 3.5 + 5

√
2. The corresponding position of gr is (19, 1 +

√
2

2).

Proof. Consider the guard gr at position (19, h). From Lemma 9, we know that h ∈ [1.7, 1.8].
If gm and gr together see er

t , we know from Lemma 8 that gm has to be on or below the

SoCG 2017

3:12 Irrational Guards are Sometimes Needed

Figure 7 A sketch of a polygon that can be guarded by 6 guards when irrational coordinates are
allowed, but needs 8 guards when only rational coordinates are allowed.

line containing the vertices (12, 4) and (4000h−9768
250h−645 ,− 71

150
4000h−9768

250h−645 + 4616
375), i.e., the line with

equation y = 46h−184
250h−507x + 448h+180

250h−507 . As gm is at the line y = 0.3x − 1.05, its x coordinate
satisfies: 0.3x− 1.05 ≤ 46h−184

250h−507x+ 448h+180
250h−507 , i.e., x ≥

490h−243
20h+22 .

If gm and gr together see er
b , then gm has to be on or above the line containing the vertices

(12, 0) and (224h−56
14h+1 ,− 1

42
224h−56

14h+1 −
4
3), i.e., the line with equation y = 6h

17−14hx −
72h

17−14h .
Hence, the x-coordinate of gr must satisfy 0.3x− 1.05 ≥ 6h

17−14hx−
72h

17−14h , i.e., x ≥
34h−7
4h−2 .

We have to minimize the value of max{ 490h−243
20h+22 , 34h−7

4h−2 }. When the value of h increases,
the first of these two values increases, and the second one decreases. The minimum value
is therefore obtained when 490h−243

20h+22 = 34h−7
4h−2 , i.e., for h = 1 +

√
2

2 . The value of x is then
3.5 + 5

√
2. J

We are now ready to prove our main theorems.

Proof of Theorem 1. Let P be the polygon constructed as in Section 2, and let S be a
guard set for P consisting of at most 3 guards. From Lemma 5 we have |S| = 3, and there is
one guard at each of the lines l`, lm, lr. Denote these guards by g`, gm, gr, respectively. From
Lemma 10 we know that if g`, gm, and gr together see all of P , then g` and gm must see all
of e`

t and e`
b, and gm and gr must see all of er

t and er
b . It then follows from Lemmas 11 and 12

that gm must have coordinates (3.5+5
√

2, 1.5
√

2) ≈ (10.57, 2.12), g` = (2, 2−
√

2) ≈ (2, 0.59),
and gr = (19, 1 +

√
2

2) ≈ (19, 1.71). Thus, indeed, the guards g`, gm, and gr see the entire
polygon P and are the only three guards doing so.

By scaling P up by the least common multiple of the denominators in the coordinates
of the corners of P, we obtain a polygon with integer coordinates. This does not affect the
number of guards required to see all of P.

In order to guard P using four guards with rational coordinates, we choose two rational
guards g′m,1 and g′m,2 on lm a little bit to the left and to the right of gm, respectively. The
guard g′m,1 sees a little more of both of the edges e`

t and e`
b than does gm, whereas g′m,2 sees

a little more of er
t and er

b . Therefore, we can choose a rational guard g′` on l` close to g`

such that g′` and g′m,1 together see e`
t and e`

b, and a rational guard g′r on lr with analogous
properties. Thus, g′`, g′m,1, g

′
m,2, g

′
r guard P. J

Proof of Theorem 2. We will now construct a polygon Pn that can be guarded by 3n guards
placed at points with irrational coordinates, but such that when we restrict guard positions

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:13

to points with rational coordinates, the minimum number of guards becomes 4n. We start
by making n copies of the polygon P described above, which we denote by P(1), . . . ,P(n).
We connect the copies into one polygon Pn as follows. Each consecutive pair P(i),P(i+1) is
connected by a thin corridor consisting of a horizontal piece H(i) visible by the rightmost
guard in P(i), and a vertical piece V (i) visible to the middle guard in P(i+1) (see Figure 7
for the case n = 2). We can then guard Pn using 3n guards, by placing three guards within
each polygon P(i) in the same way as for P, i.e., at irrational points.

Now, assume that Pn can be guarded by at most 4n−1 guards. We will show that at least
one guard must be irrational. For formal reasons, we define H(0) = V (0) = H(n) = V (n) = ∅.
The horizontal and vertical corridors H(i) and V (i), for i ∈ {0, . . . , n}, intersect at a
rectangular area B(i) = H(i) ∩ V (i) which we call a bend. For i ∈ {1, . . . , n − 1}, the
bend B(i) is non-empty and visible from both polygons P(i) and P(i+1). Define the extension
of P(i), denoted by E(P(i)), to be the union of P(i) and the adjacent corridors excluding
the bends, i.e., E(P(i)) = P(i) ∪ (V (i−1) \ B(i−1)) ∪ (H(i) \ B(i)). Since the extensions are
pairwise disjoint, there is an extension E(P(i)) containing at most three guards. If there are
no guards in any of the bends B(i−1), B(i) it follows from Theorem 1 that three guards must
be placed inside P(i) at irrational coordinates, so assume that there is a guard in one or both
of the bends. If the adjacent corridors V (i−1) and H(i) are long enough and thin enough,
a guard in the bends B(i−1) and B(i) cannot see any of the convex corners of P(i) in the
rectangular pockets, any point in a triangular pocket, or any point in a quadrilateral pocket.
Hence, all the features of P(i) that enforce the irrationality of the guards are unseen by the
guards in the bends and it follows that there must be irrational guards in P(i). Therefore, at
least 4n guards are needed if we require them to be rational. Similarly as in the proof of
Theorem 1, we can show that 4n rational guards are enough to guard Pn. J

5 Rectilinear Polygon

Figure 8 depicts a rectilinear polygon PR with corners at rational coordinates that can be
guarded by 9 guards, but requires 10 guards if we restrict the guards to points with rational
coordinates. The construction of PR starts with the polygon P from Theorem 1. We extend
the non-rectilinear parts by “equivalent” rectilinear parts, colored gray in the figure. The
rectilinear pockets are constructed in such a way that each of them requires at least one
guard in the interior. Additionally, if the interior of each pocket contains only one guard,
then these guards must be placed at specific positions, making the area not seen by these six
additional guards exactly the polygon P described in Section 2 (the white area in Figure 8).
Thus, the remaining 3 guards must be placed at three irrational points by Theorem 1.

6 Future Work

One of the most prominent open questions related to the art gallery problem is whether the
problem is in NP. Recently, some researchers popularized an interesting complexity class,
called ∃R, being somewhere between NP and PSPACE [8, 24, 7, 19]. Many geometric problems
for which membership in NP is uncertain have been shown to be complete for the complexity
class ∃R. Famous examples are: order type realizability, pseudoline stretchability, recognition
of segment intersection graphs, recognition of unit disk intersection graphs, recognition of
point visibility graphs, minimizing rectilinear crossing number, linkage realizability. This
suggests that there might indeed be no polynomial sized witness for any of these problems
as this would imply NP = ∃R. It is an interesting open problem whether the art gallery
problem is ∃R-complete or not.

SoCG 2017

3:14 Irrational Guards are Sometimes Needed

H1 H2

H3 H4

l` lm lr

T1

T2

Q2

Q3

Q4

Q1

I

Figure 8 The rectilinear polygon PR can be guarded with 9 guards only when we allow placing
guards at irrational points.

The irrational coordinates of the guards in our examples are all of degree 2, i.e., they
are roots in second-degree polynomials with integer coefficients. We would like to know if
polygons exist where irrational numbers of higher degree are needed in the coordinates of an
optimal solution.

We show that there exist polygons for which |OPTQ| ≥ 4
3 |OPT |. It follows from the work

by Bonnet and Miltzow [4] that it always holds that |OPTQ| ≤ 9|OPT |. It is interesting to
see if any of these bounds can be improved.

Acknowledgements. We want to thank Sándor Fekete, Frank Hoffmann, Udo Hoffmann,
Linda Kleist, Péter Kutas, Günter Rote and Andrew Winslow for discussions on the problem
and links to the literature. Special thanks goes to Michał Adamaszek for providing the
sage code. We want to further thank the developers of the software GeoGebra. Being
able to do computations and visualize parameter changes in real time facilitated our search
tremendously.

References
1 Pankaj Kumar Agarwal, Kurt Mehlhorn, and Monique Teillaud. Dagstuhl Seminar 11111,

Computational Geometry, March 13-18 , 2011.
2 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic

geometry. Springer-Verlag Berlin Heidelberg, 2006.
3 Patrice Belleville. Computing two-covers of simple polygons. Master’s thesis, McGill Uni-

versity, 1991.
4 Édouard Bonnet and Tillmann Miltzow. An approximation algorithm for the art gallery

problem. CoRR, abs/1607.05527, 2016.
5 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.

In Proceedings of the 24th Annual European Symposium on Algorithms (ESA), pages 19:1–
19:17, 2016.

6 Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons
is APX-hard. In Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG), pages 45–48, 2001.

7 John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of
the twentieth annual ACM symposium on Theory of computing (STOC), pages 460–467.
ACM, 1988.

M. Abrahamsen, A. Adamaszek, and T. Miltzow 3:15

8 Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, December
2015. doi:10.1145/2852040.2852053.

9 Vasek Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B, 18(1):39–41, 1975.

10 Pedro Jussieu de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alex-
ander Kröller, and Davi C. Tozoni. Engineering art galleries. In Algorithm Engineering:
Selected Results and Surveys, LNCS, pages 379–417. Springer, 2016.

11 The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.4),
2016. http://www.sagemath.org.

12 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process. Lett.,
100(6):238–245, 2006.

13 Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

14 Sándor Fekete. Private communication.
15 Steve Fisk. A short proof of Chvátal’s watchman theorem. J. Comb. Theory, Ser. B,

24(3):374, 1978.
16 Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous

1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS. Journal of
Computational Geometry, 7(1):256–284, 2016.

17 Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564–594, 2013.

18 Der-Tsai Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

19 Jiří Matoušek. Intersection graphs of segments and ∃R. CoRR, abs/1406.2636, 2014.
20 Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
21 Joseph O’Rourke and Kenneth Supowit. Some NP-hard polygon decomposition problems.

IEEE Transactions on Information Theory, 29(2):181–190, 1983.
22 Joseph O’Rourke. Visibility. In Jacob E. Goodman and Joseph O’Rourke, editors, Hand-

book of Discrete and Computational Geometry, chapter 28. Chapman & Hall/CRC, second
edition, 2004.

23 Günter Rote. EuroCG open problem session, 2011. See the personal webpage
of Günter Rote: http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_
artgallery-Morschach-EuroCG-2011.pdf.

24 Marcus Schaefer. Complexity of some geometric and topological problems. In International
Symposium on Graph Drawing, pages 334–344. Springer, 2009.

25 Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-hard art-gallery problems for
ortho-polygons. Math. Log. Q., 41:261–267, 1995.

26 Thomas C. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–
1399, 1992.

27 Ana Paula Tomás. Guarding thin orthogonal polygons is hard. In Fundamentals of Com-
putation Theory, pages 305–316. Springer, 2013.

28 Jorge Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 973–1027. Elsevier, 2000.

SoCG 2017

http://dx.doi.org/10.1145/2852040.2852053
http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_artgallery-Morschach-EuroCG-2011.pdf
http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_artgallery-Morschach-EuroCG-2011.pdf

Minimum Perimeter-Sum Partitions in the Plane∗†

Mikkel Abrahamsen1, Mark de Berg2, Kevin Buchin3,
Mehran Mehr4, and Ali D. Mehrabi5

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
mdberg@win.tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
m.mehr@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
amehrabi@win.tue.nl

Abstract
Let P be a set of n points in the plane. We consider the problem of partitioning P into two
subsets P1 and P2 such that the sum of the perimeters of ch(P1) and ch(P2) is minimized,
where ch(Pi) denotes the convex hull of Pi. The problem was first studied by Mitchell and
Wynters in 1991 who gave an O(n2) time algorithm. Despite considerable progress on related
problems, no subquadratic time algorithm for this problem was found so far. We present an
exact algorithm solving the problem in O(n log4 n) time and a (1 + ε)-approximation algorithm
running in O(n+ 1/ε2 · log4(1/ε)) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational geometry, clustering, minimum-perimeter partition,
convex hull

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.4

1 Introduction

The clustering problem is to partition a given data set into clusters (that is, subsets) according
to some measure of optimality. We are interested in clustering problems where the data set
is a set P of points in Euclidean space. Most of these clustering problems fall into one of two
categories: problems where the maximum cost of a cluster is given and the goal is to find a
clustering consisting of a minimum number of clusters, and problems where the number of
clusters is given and the goal is to find a clustering of minimum total cost. In this paper we
consider a basic problem of the latter type, where we wish to find a bipartition (P1, P2) of a
planar point set P . Bipartition problems are not only interesting in their own right, but also
because bipartition algorithms can form the basis of hierarchical clustering methods.

∗ A full version of the paper is available at http://arxiv.org/abs/1703.05549.
† MA is partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent

Research under the Sapere Aude research career programme. MdB, KB, MM, and AM are supported by
the Netherlands’ Organisation for Scientific Research (NWO) under project no. 024.002.003, 612.001.207,
022.005025, and 612.001.118 respectively.

© Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.4
http://arxiv.org/abs/1703.05549
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Minimum Perimeter-Sum Partitions in the Plane

There are many possible variants of the bipartition problem on planar point sets, which
differ in how the cost of a clustering is defined. A variant that received a lot of attention is
the 2-center problem [8, 11, 12, 15, 20], where the cost of a partition (P1, P2) of the given
point set P is defined as the maximum of the radii of the smallest enclosing disks of P1
and P2. Other cost functions that have been studied include the maximum diameter of the
two point sets [3] and the sum of the diameters [14]; see also the survey by Agarwal and
Sharir [2] for some more variants.

A natural class of cost function considers the size of the convex hulls ch(P1) and ch(P2) of
the two subsets, where the size of ch(Pi) can either be defined as the area of ch(Pi) or as the
perimeter per(Pi) of ch(Pi). (The perimeter of ch(Pi) is the length of the boundary ∂ ch(Pi).)
This class of cost functions was already studied in 1991 by Mitchell and Wynters [17]. They
studied four problem variants: minimize the sum of the perimeters, the maximum of the
perimeters, the sum of the areas, or the maximum of the areas. In three of the four variants
the convex hulls ch(P1) and ch(P2) in an optimal solution may intersect [17, full version] –
only in the minimum perimeter-sum problem the optimal bipartition is guaranteed to be a
so-called line partition, that is, a solution with disjoint convex hulls. For each of the four
variants they gave an O(n3) algorithm that uses O(n) storage and that computes computes
an optimal line partition; for all except the minimum area-maximum problem they also gave
an O(n2) algorithm that uses O(n2) storage. Note that (only) for the minimum perimeter-
sum problem the computed solution is an optimal bipartition. Around the same time, the
minimum-perimeter sum problem was studied for partitions into k subsets for k > 2; for
this variant Capoyleas et al. [7] presented an algorithm with running time O(n6k). Mitchell
and Wynters mentioned the improvement of the space requirement of the quadratic-time
algorithm as an open problem, and they stated the existence of a subquadratic algorithm for
any of the four variants as the most prominent open problem.

Rokne et al. [18] made progress on the first question, by presenting an O(n2 logn)
algorithm that uses only O(n) space for the line-partition version of each of the four problems.
Devillers and Katz [10] gave algorithms for the min-max variant of the problem, both for area
and perimeter, which run in O((n+k) log2 n) time. Here k is a parameter that is only known
to be in O(n2), although Devillers and Katz suspected that k is subquadratic. They also
gave linear-time algorithms for these problems when the point set P is in convex position and
given in cyclic order. Segal [19] proved an Ω(n logn) lower bound for the min-max problems.
Very recently, and apparently unaware of some of the earlier work on these problems, Bae et
al. [4] presented an O(n2 logn) time algorithm for the minimum-perimeter-sum problem and
an O(n4 logn) time algorithm for the minimum-area-sum problem (considering all partitions,
not only line partitions). Despite these efforts, the main question is still open: is it possible to
obtain a subquadratic algorithm for any of the four bipartition problems based on convex-hull
size?

1.1 Our contribution

We answer the question above affirmatively by presenting a subquadratic algorithm for the
minimum perimeter-sum bipartition problem in the plane.

As mentioned, an optimal solution (P1, P2) to the minimum perimeter-sum bipartition
problem must be a line partition. A straightforward algorithm would generate all Θ(n2) line
partitions and compute the value per(P1)+per(P2) for each of them. If the latter is done from
scratch for each partition, the resulting algorithm runs in O(n3 logn) time. The algorithms
by Mitchell and Wynters [17] and Rokne et al. [18] improve on this by using that the different

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:3

line bipartitions can be generated in an ordered way, such that subsequent line partitions
differ in at most one point. Thus the convex hulls do not have to be recomputed from scratch,
but they can be obtained by updating the convex hulls of the previous bipartition. To obtain
a subquadratic algorithm a fundamentally new approach is necessary: we need a strategy
that generates a subquadratic number of candidate partitions, instead considering all line
partitions. We achieve this as follows.

We start by proving that an optimal bipartition (P1, P2) has the following property:
either there is a set of O(1) canonical orientations such that P1 can be separated from
P2 by a line with a canonical orientation, or the distance between ch(P1) and ch(P2)
is Ω(min(per(P1), per(P2)). There are only O(1) bipartitions of the former type, and finding
the best among them is relatively easy. The bipartitions of the second type are much more
challenging. We show how to employ a compressed quadtree to generate a collection of O(n)
canonical 5-gons – intersections of axis-parallel rectangles and canonical halfplanes – such
that the smaller of ch(P1) and ch(P2) (in a bipartition of the second type) is contained in
one of the 5-gons.

It then remains to find the best among the bipartitions of the second type. Even though
the number of such bipartitions is linear, we cannot afford to compute their perimeters from
scratch. We therefore design a data structure to quickly compute per(P ∩Q), where Q is a
query canonical 5-gon. Brass et al. [6] presented such a data structure for the case where Q
is an axis-parallel rectangle. Their structure uses O(n log2 n) space and has O(log5 n) query
time; it can be extended to handle canonical 5-gons as queries, at the cost of increasing the
space usage to O(n log3 n) and the query time to O(log7 n). Our data structure improves
upon this: it has O(log4 n) query time for canonical 5-gons (and O(log3 n) for rectangles)
while using the same amount of space. Using this data structure to find the best bipartition
of the second type we obtain our main result: an exact algorithm for the minimum perimeter-
sum bipartition problem that runs in O(n log4 n) time. As our model of computation we use
the real RAM (with the capability of taking square roots) so that we can compute the exact
perimeter of a convex polygon – this is necessary to compare the costs of two competing
clusterings. We furthermore make the (standard) assumption that the model of computation
allows us to compute a compressed quadtree of n points in O(n logn) time; see footnote 2
on page 10.

Besides our exact algorithm, we present a linear-time (1 + ε)-approximation algorithm.
Its running time is O(n+ T (1/ε2)) = O(n+ 1/ε2 · log4(1/ε)), where T (1/ε2) is the running
time of an exact algorithm on an instance of size 1/ε2.

Some arguments are omitted due to limited space. See the full version [1] for the details.

2 The exact algorithm

In this section we present an exact algorithm for the minimum-perimeter-sum partition
problem. We first prove a separation property that an optimal solution must satisfy, and
then we show how to use this property to develop a fast algorithm.

Let P be the set of n points in the plane for which we want to solve the minimum-
perimeter-sum partition problem. An optimal partition (P1, P2) of P has the following two
basic properties: P1 and P2 are non-empty, and the convex hulls ch(P1) and ch(P2) are
disjoint [17, full version]. In the remainder, whenever we talk about a partition of P , we
refer to a partition with these two properties.

SoCG 2017

4:4 Minimum Perimeter-Sum Partitions in the Plane

`2 `1 `4

`3

c34
α

βP1 P2

c13 c23

Figure 1 The angles α and β.

2.1 Geometric properties of an optimal partition
Consider a partition (P1, P2) of P . Define P1 := ch(P1) and P2 := ch(P2) to be the convex
hulls of P1 and P2, respectively, and let `1 and `2 be the two inner common tangents of P1
and P2. The lines `1 and `2 define four wedges: one containing P1, one containing P2, and
two empty wedges. We call the opening angle of the empty wedges the separation angle of
P1 and P2. Furthermore, we call the distance between P1 and P2 the separation distance of
P1 and P2.

I Theorem 1. Let P be a set of n points in the plane, and let (P1, P2) be a partition of P
that minimizes per(P1) + per(P2). Then the separation angle of P1 and P2 is at least π/6 or
the separation distance is at least csep ·min(per(P1), per(P2)), where csep := 1/250.

The remainder of this section is devoted to proving Theorem 1. To this end let (P1, P2)
be a partition of P that minimizes per(P1) + per(P2). Let `3 and `4 be the outer common
tangents of P1 and P2. We define α to be the angle between `3 and `4. More precisely, if `3
and `4 are parallel we define α := 0, otherwise we define α as the opening angle of the wedge
defined by `3 and `4 containing P1 and P2. We denote the separation angle of P1 and P2
by β; see Fig. 1.

The idea of the proof is as follows. Suppose that the separation distance and the separation
angle β are both relatively small. Then the region A in between P1 and P2 and bounded
from the bottom by `3 and from the top by `4 is relatively narrow. But then the left and
right parts of ∂ A (which are contained in ∂P1 and ∂P2) would be longer than the bottom
and top parts of ∂ A (which are contained in `3 and `4), thus contradicting that (P1, P2) is
an optimal partition. To make this idea precise, we first prove that if the separation angle β
is small, then the angle α between `3 and `4 must be large. Second, we show that there is a
value f(α) such that the distance between P1 and P2 is at least f(α) ·min(per(P1), per(P2)).
Finally we argue that this implies that if the separation angle is smaller than π/6, then (to
avoid the contradiction mentioned above) the separation distance must be relatively large.
Next we present our proof in detail.

Let cij be the intersection point between `i and `j , where i < j. If `3 and `4 are parallel,
we choose c34 as a point at infinity on `3. Assume without loss of generality that neither `1
nor `2 separate P1 from c34, and that `3 is the outer common tangent such that P1 and P2
are to the left of `3 when traversing `3 from c34 to an intersection point in `3 ∩ P1. Assume
furthermore that c13 is closer to c34 than c23.

For two lines, rays, or segments r1, r2, let ∠(r1, r2) be the angle we need to rotate
r1 in counterclockwise direction until r1 and r2 are parallel. For three points a, b, c, let
∠(a, b, c) := ∠(ba, bc). For i = 1, 2 and j = 1, 2, 3, 4, let sij be a point in Pi ∩ `j . Let ∂Pi
denote the boundary of Pi and per(Pi) the perimeter of Pi. Furthermore, let ∂Pi(x, y)
denote the portion of ∂Pi from x ∈ ∂Pi counterclockwise to y ∈ ∂Pi, and length(∂Pi(x, y))
denote the length of ∂Pi(x, y).

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:5

I Lemma 2. We have α+ 3β > π.

Proof. Since per(P1) + per(P2) is minimum, we know that

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) 6 Ψ,

where Ψ := |s13s23| + |s14s24|. Furthermore, we know that s11, s12 ∈ ∂P1(s13, s14) and
s21, s22 ∈ ∂P1(s24, s23). We thus have

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) > Φ,

where Φ := |s13s11|+ |s11s12|+ |s12s14|+ |s24s21|+ |s21s22|+ |s22s23|. Hence, we must have

Φ 6 Ψ. (1)

Now assume that α+3β < π. We will show that this assumption, together with inequality (1),
leads to a contradiction, thus proving the lemma. To this end we will argue that if (1) holds,
then it must also hold when (i) s21 or s22 coincides with c12, and (ii) s11 or s12 coincides
with c12. To finish the proof it then suffices to observe that that if (i) and (ii) hold, then P1
and P2 touch in c12 and so (1) contradicts the triangle inequality.

It remains to argue that if (1) holds, then we can create a situation where (1) holds
and (i) and (ii) hold as well. To this end we ignore that the points sij are specific points
in the set P and allow the point sij to move on the tangent `j , as long as the movement
preserves (1). Moving s13 along `3 away from s23 increases Ψ more than it increases Φ, so
(1) is preserved. Similarly, we can move s14 away from s24, s23 away from s13, and s24 away
from s14.

We first show how to create a situation where (i) holds, and (1) still holds as well. Let
γij := ∠(`i, `j). We consider two cases.

Case (A): γ32 < π − β.
Note that ∠(xs23, `2) > γ32 for any x ∈ s22c12. However, by moving s23 sufficiently
far away we can make ∠(xs23, `2) arbitrarily close to γ32, and we can ensure that
∠(xs23, `2) < π − β for any point x ∈ s22c12. We now let the point x move at unit speed
from s22 towards c12. To be more precise, let T := |s22c12|, let v be the unit vector
with direction from c23 to c12, and for any t ∈ [0, T] define x(t) := s22 + t · v. Note that
x(0) = s22 and x(T) = c12.
Let a(t) := |x(t)s23| and b(t) := |x(t)s21|. In the full version [1] we show that

a′(t) = − cos(∠(x(t)s23, `2)) and b′(t) = cos(∠(`2, x(t)s21)).

Since ∠(x(t)s23, `2) < π − β for any value t ∈ [0, T], we get a′(t) < − cos(π − β).
Furthermore, we have ∠(`2, x(t)s21) > π − β and hence b′(t) 6 cos(π − β). Therefore,
a′(t) + b′(t) < 0 for any t and we conclude that a(T) + b(T) 6 a(0) + b(0). This is the
same as |s21c12|+ |c12s23| 6 |s21s22|+ |s22s23|, so (1) still holds when we substitute s22
by c12.
Case (B): γ32 > π − β.
Using our assumption α+ 3β < π we get γ32 > α+ 2β. Note that γ14 = π − γ32 + α+ β.
Hence, γ14 < π− β. By moving s24 and s21, we can in a similar way as in Case (A) argue
that (1) still holds when we substitute s21 by c12.

We conclude that in both cases we can ensure (i) without violating (1).
Since γ42 6 γ32 and γ13 6 γ14, we likewise have γ42 < π − β or γ13 < π − β. Hence, we

can substitute s11 or s12 by c12 without violating (1), thus ensuring (ii) and finishing the
proof. J

SoCG 2017

4:6 Minimum Perimeter-Sum Partitions in the Plane

P1

P2

p q

`vert1

`3

`4

s14

α

s13

s23

s24

λ

s24(λ)

s23(λ)

q(λ)

c34

> α

`vert2

Figure 2 Illustration for the proof of Lemma 3.

Let dist(P1,P2) := min(p,q)∈P1×P2 |pq| denote the separation distance between P1 and P2.
Recall that α denotes the angle between the two common outer tangents of P1 and P2; see
Fig. 1

I Lemma 3. We have

dist(P1,P2) > f(α) · per(P1), (2)

where f : [0, π] −→ R is the increasing function

f(ϕ) := sin(ϕ/4)
1 + sin(ϕ/4) ·

sin(ϕ/2)
1 + sin(ϕ/2) ·

1− cos(ϕ/4)
2 .

Proof. The statement is trivial if α = 0 so assume α > 0. Let p ∈ P1 and q ∈ P2 be points
so that |pq| = dist(P1,P2) and assume without loss of generality that pq is a horizontal
segment with p being its left endpoint. Let `vert1 and `vert2 be vertical lines containing p and
q, respectively. Note that P1 is in the closed half-plane to the left of `vert1 and P2 is in the
closed half-plane to the right of `vert2 . Recall that sij denotes a point on ∂Pi ∩ `j .

I Claim 4. There exist two convex polygons P ′1 and P ′2 satisfying the following condi-
tions:
1. P ′1 and P ′2 have the same outer common tangents as P1 and P2, namely `3 and `4.
2. P ′1 is to the left of `vert

1 and p ∈ ∂P ′1; and P ′2 is to right of `vert
2 and q ∈ ∂P ′2.

3. per(P ′1) = per(P1).
4. per(P ′1) + per(P ′2) 6 per(ch(P ′1 ∪ P ′2)).
5. There are points s′ij ∈ P ′i ∩ `j for all i ∈ {1, 2} and j ∈ {3, 4} such that ∂P ′1(s′13, p),

∂P ′1(p, s′14), ∂P ′2(s′24, q), and ∂P ′2(q, s′23) each consist of a single line segment.
6. Let s′2j(λ) := s′2j − (λ, 0) and let `′j(λ) be the line through s′1j and s′2j(λ) for j ∈ {3, 4}.

Then ∠(`′3(|pq|), `′4(|pq|)) > α/2.

Proof of the Claim. Let P ′1 := P1 and P ′2 := P2, and let s′ij be a point in P ′i ∩ `j for
all i ∈ {1, 2} and j ∈ {3, 4}. We show how to modify P ′1 and P ′2 until they have all the
required conditions. Of course, they already satisfy conditions 1–4. We first show how to
obtain condition 5, namely that ∂P ′1(s′13, p) and ∂P ′1(p, s′14) – and similarly ∂P ′2(s′24, q) and

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:7

∂P ′1(q, s′23) – each consist of a single line segment, as depicted in Fig. 2. To this end, let vij
be the intersection point `verti ∩ `j for i ∈ {1, 2} and j ∈ {3, 4}. Let s′ ∈ s′14v14 be the point
such that length(∂P ′1(p, s′14)) = |ps′|+ |s′s′14|. Such a point exists since

|ps′14| 6 length(∂P ′1(p, s′14)) 6 |pv14|+ |v14s
′
14|.

We modify P ′1 by substituting ∂P ′1(p, s′14) with the segments ps′ and s′s′14. We can now
redefine s′14 := s′ so that ∂P ′1(p, s′14) = ps′14 is a line segment. We can modify P ′1 in a similar
way to ensure that ∂P ′1(s′13, p) = s′13p, and we can modify P ′2 to ensure ∂P ′2(s′24, q) = s′24q

and ∂P ′2(q, s′23) = qs′23. Note that these modifications preserve conditions 1–4 and that
condition 5 is now satisfied.

The only condition that (P ′1,P ′2) might not satisfy is condition 6. Let s′2j(λ) := s′2j−(λ, 0)
and let `j(λ) be the line through s′2j(λ) and s′1j for j ∈ {3, 4}. Clearly, if the slopes of `3 and
`4 have different signs (as in Fig. 2), the angle ∠(`3(λ), `4(λ)) is increasing for λ ∈ [0, |pq|],
and condition 6 is satisfied. However, if the slopes of `3 and `4 have the same sign, the angle
might decrease.

Consider the case where both slopes are positive – the other case is analogous. Changing
P ′2 by substituting ∂P ′2(s′23, s

′
24) with the line segment s′23s

′
24 makes per(P ′1) + per(P ′2) and

per(ch(P ′1 ∪ P ′2)) decrease equally much and hence condition 4 is preserved. This clearly
has no influence on the other conditions. We thus assume that P ′2 is the triangle qs′23s

′
24.

Consider what happens if we move s′23 along the line `3 away from c34 with unit speed. Then
|s′13s

′
23| grows with speed exactly 1 whereas |qs′23| grows with speed at most 1. We therefore

preserve condition 4, and the other conditions are likewise not affected.
We now move s′23 sufficiently far away so that ∠(`3, `3(|pq|)) 6 α/4. Similarly, we move

s′24 sufficiently far away from c34 along `4 to ensure that ∠(`4, `4(|pq|)) 6 α/4. It then follows
that ∠(`3(|pq|), `4(|pq|)) > ∠(`3, `4)− α/2 = α/2, and condition 6 is satisfied. J

Note that condition 2 in the claim implies that dist(P ′1,P ′2) = dist(P1,P2) = |pq|,
and hence inequality (2) follows from condition 3 if we manage to prove dist(P ′1,P ′2) >
f(α) · per(P ′1). Therefore, with a slight abuse of notation, we assume from now on that
P1 and P2 satisfy the conditions in the claim, where the points sij play the role as s′ij in
conditions 5 and 6.

We now consider a copy of P2 that is translated horizontally to the left over a distance λ;
see Fig. 2. Let s24(λ), s23(λ), and q(λ) be the translated copies of s24, s23, and q, respectively,
and let `j(λ) be the line through s1j and s2j(λ) for j ∈ {3, 4}. Furthermore, define

Φ(λ) := |s13p|+ |s14p|+ |s23(λ)q(λ)|+ |s24(λ)q(λ)|

and

Ψ(λ) := |s13s23(λ)|+ |s14s24(λ)|.

Note that Φ(λ) = Φ is constant. By conditions 4 and 5, we know that

Φ 6 Ψ(0). (3)

Note that q(|pq|) = p. In the full version [1] we show that

Φ−Ψ(|pq|) > sin(δ/2) · 1− cos(δ/2)
1 + sin(δ/2) · (|s13p|+ |s14p|), (4)

where δ := ∠(`3(|pq|), `4(|pq|)). By condition 6, we know that δ > α/2. The function
δ 7−→ sin(δ/2) · 1−cos(δ/2)

1+sin(δ/2) is increasing for δ ∈ [0, π] and hence inequality (4) also holds for
δ = α/2.

SoCG 2017

4:8 Minimum Perimeter-Sum Partitions in the Plane

When λ increases from 0 to |pq| with unit speed, the value Ψ(λ) decreases with speed at
most 2, i.e., Ψ(λ) > Ψ(0)− 2λ. Using this and inequalities (3) and (4), we get

2|pq| > Ψ(0)−Ψ(|pq|) > Φ− Φ + sin(α/4) · 1− cos(α/4)
1 + sin(α/4) · (|s13p|+ |s14p|),

and we conclude that

|pq| > 1
2 · sin(α/4) · 1− cos(α/4)

1 + sin(α/4) · (|s13p|+ |s14p|). (5)

By the triangle inequality, |s13p|+ |s14p| > |s13s14|. Furthermore, for a given length of
s13s14, the fraction |s13s14|/(|s14c34|+ |c34s13|) is minimized when s13s14 is perpendicular
to the angular bisector of `3 and `4. (Recall that c34 is the intersection point of the outer
common tangents `3 and `4; see Fig. 2.) Hence

|s13s14| > sin(α/2) · (|s14c34|+ |c34s13|) . (6)

We now conclude

|s13p|+ |s14p| = sin(α/2)
1+sin(α/2) ·

(
|s13p|+|s14p|

sin(α/2) + |s13p|+ |s14p|
)

> sin(α/2)
1+sin(α/2) ·

(
|s13s14|
sin(α/2) + |s13p|+ |s14p|

)
by the triangle inequality

> sin(α/2)
1+sin(α/2) ·

(
|s14c34|+ |c34s13|+ |s13p|+ |s14p|

)
by (6)

> sin(α/2)
1+sin(α/2) · per(P1),

where the last inequality follows because P1 is fully contained in the quadrilateral s14, c34,

x13, p. The statement (2) in the lemma now follows from (5). J

We are now ready to prove Theorem 1.

Proof of Theorem 1. If the separation angle of P1 and P2 is at least π/6, we are done.
Otherwise, Lemma 2 gives that α > π/2, and Lemma 3 gives that dist(P1,P2) > f(π/2) ·
per(P1) > (1/250) ·min(per(P1), per(P2)). J

2.2 The algorithm
Theorem 1 suggests to distinguish two cases when computing an optimal partition: the case
where the separation angle is large (namely at least π/6) and the case where the separation
distance is large (namely at least csep ·min(per(P1), per(P2))). As we will see, the first case
can be handled in O(n logn) time and the second case in O(n log4 n) time, leading to the
following theorem.

I Theorem 5. Let P be a set of n points in the plane. Then we can compute a partition
(P1, P2) of P that minimizes per(P1) + per(P2) in O(n log4 n) time using O(n log3 n) space.

To find the best partition when the separation angle is at least π/6, we observe that in
this case there is a separating line whose orientation is j · π/7 for some 0 6 j < 7. For each
of these orientations we can scan over the points with a line ` of the given orientation, and
maintain the perimeters of the convex hulls on both sides. This takes O(n logn) time in
total; see the full version [1].

Next we show how to compute the best partition with large separation distance. We
assume without loss of generality that per(P2) 6 per(P1). It will be convenient to treat the
case where P2 is a singleton separately.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:9

I Lemma 6. The point p ∈ P minimizing per(P \ {p}) can be computed in O(n logn) time.

Proof. The point p we are looking for must be a vertex of ch(P). First we compute ch(P)
in O(n logn) time [5]. Let v0, v1, . . . , vm−1 denote the vertices of ch(P) in counterclockwise
order. Let ∆i be the triangle with vertices vi−1vivi+1 (with indices taken modulo m) and let
Pi denote the set of points lying inside ∆i, excluding vi but including vi−1 and vi+1. Note
that any point p ∈ P is present in at most two sets Pi. Hence,

∑m
i=0 |Pi| = O(n). It is not

hard to compute the sets Pi in O(n logn) time in total. After doing so, we compute all
convex hulls ch(Pi) in O(n logn) time in total. Since

per(P \ {vi}) = per(P)− |vi−1vi| − |vivi+1|+ per(Pi)− |vi−1vi+1|,

we can now find the point p minimizing per(P \ {p}) in O(n) time. J

It remains to compute the best partition (P1, P2) with per(P2) 6 per(P1) whose separation
distance is at least csep · per(P2) and where P2 is not a singleton. Let (P ∗1 , P ∗2) denote this
partition. Define the size of a square1 σ to be its edge length. A square σ is a good square if
(i) P ∗2 ⊂ σ, and (ii) size(σ) 6 c∗ · per(P ∗2), where c∗ := 18. Our algorithm globally works as
follows.
1. Compute a set S of O(n) squares such that S contains a good square.
2. For each square σ ∈ S, construct a set Hσ of O(1) halfplanes such that the following

holds: if σ ∈ S is a good square then there is a halfplane h ∈ Hσ such that P ∗2 = P (σ∩h),
where P (σ ∩ h) := P ∩ (σ ∩ h).

3. For each pair (σ, h) with σ ∈ S and h ∈ Hσ, compute per(P \ P (σ ∩ h)) + per(P (σ ∩ h)),
and report the partition (P \ P (σ ∩ h), P (σ ∩ h)) that gives the smallest sum.

Step 1: Finding a good square. To find a set S that contains a good square, we first
construct a set Sbase of so-called base squares. The set S will then be obtained by expanding
the base squares appropriately.

We define a base square σ to be good if (i) σ contains at least one point from P ∗2 , and
(ii) c1 · diam(P ∗2) 6 size(σ) 6 c2 · diam(P ∗2), where c1 := 1/4 and c2 := 4 and diam(P ∗2)
denotes the diameter of P ∗2 . Note that 2 ·diam(P ∗2) 6 per(P ∗2) 6 4 ·diam(P ∗2). For a square σ,
define σ to be the square with the same center as σ and whose size is (1 + 2/c1) · size(σ).

I Lemma 7. If σ is a good base square then σ is a good square.

Proof. The distance from any point in σ to the boundary of σ is at least

size(σ)− size(σ)
2 > diam(P ∗2).

Since σ contains a point from P ∗2 , it follows that P ∗2 ⊂ σ. Since size(σ) 6 c2 · diam(P ∗2), we
have

size(σ) 6 (2/c1 + 1) · c2 · diam(P ∗2) = 36 · diam(P ∗2) 6 c∗ · per(P ∗2). J

To obtain S it thus suffices to construct a set Sbase that contains a good base square. To
this end we first build a compressed quadtree for P . For completeness we briefly review the
definition of compressed quadtrees; see also Fig. 3 (left).

1 Whenever we speak of squares, we always mean axis-parallel squares.

SoCG 2017

4:10 Minimum Perimeter-Sum Partitions in the Plane

B1

B2

B3

B4.1

B4.2

B4.3

Figure 3 A compressed quadtree and some of the base squares generated from it. In the right
figure, only the points are shown that are relevant for the shown base squares.

Assume without loss of generality that P lies in the interior of the unit square U := [0, 1]2.
Define a canonical square to be any square that can be obtained by subdividing U recursively
into quadrants. A compressed quadtree [13] for P is a hierarchical subdivision of U , defined
as follows. In a generic step of the recursive process we are given a canonical square σ and
the set P (σ) := P ∩ σ of points inside σ. (Initially σ = U and P (σ) = P .)

If |P (σ)| 6 1 then the recursive process stops and σ is a square in the final subdivision.
Otherwise there are two cases. Consider the four quadrants of σ. The first case is that
at least two of these quadrants contain points from P (σ). (We consider the quadrants
to be closed on the left and bottom side, and open on the right and top side, so a point
is contained in a unique quadrant.) In this case we partition σ into its four quadrants
– we call this a quadtree split – and recurse on each quadrant. The second case is that
all points from P (σ) lie inside the same quadrant. In this case we compute the smallest
canonical square, σ′, that contains P (σ) and we partition σ into two regions: the square
σ′ and the so-called donut region σ \ σ′. We call this a shrinking step. After a shrinking
step we only recurse on the square σ′, not on the donut region.

A compressed quadtree for a set of n points can be computed in O(n logn) time in the
appropriate model of computation2 [13]. The idea is now as follows. Let p, p′ ∈ P ∗2 be a
pair of points defining diam(P ∗2). The compressed quadtree hopefully allows us to zoom in
until we have a square in the compressed quadtree that contains p or p′ and whose size is
roughly equal to |pp′|. Such a square will be then a good base square. Unfortunately this
does not always work since p and p′ can be separated too early. We therefore have to proceed
more carefully: we need to add five types of base squares to Sbase, as explained next and
illustrated in Fig. 3 (right).

(B1) Any square σ that is generated during the recursive construction – note that this not
only refers to squares in the final subdivision – is put into Sbase.

(B2) For each point p ∈ P we add a square σp to Sbase, as follows. Let σ be the square of
the final subdivision that contains p. Then σp is a smallest square that contains p and
that shares a corner with σ.

2 In particular we need to be able to compute the smallest canonical square containing two given points
in O(1) time. See the book by Har-Peled [13] for a discussion.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:11

(B3) For each square σ that results from a shrinking step we add an extra square σ′ to
Sbase, where σ′ is the smallest square that contains σ and that shares a corner with the
parent square of σ.

(B4) For any two regions in the final subdivision that touch each other – we also consider
two regions to touch if they only share a vertex – we add at most one square to Sbase, as
follows. If one of the regions is an empty square, we do not add anything for this pair.
Otherwise we have three cases.
(B4.1) If both regions are non-empty squares containing points p and p′, respectively,

then we add a smallest enclosing square for the pair of points p, p′ to Sbase.
(B4.2) If both regions are donut regions, say σ1 \ σ′1 and σ2 \ σ′2, then we add a smallest

enclosing square for the pair σ′1, σ′2 to Sbase.
(B4.3) If one region is a non-empty square containing a point p and the other is a donut

region σ \ σ′, then we add a smallest enclosing square for the pair p, σ′ to Sbase.

I Lemma 8. The set Sbase has size O(n) and contains a good base square. Furthermore,
Sbase can be computed in O(n logn) time.

Proof. A compressed quadtree has size O(n) so we have O(n) base squares of type (B1)
and (B3). Obviously there are O(n) base squares of type (B2). Finally, the number of
pairs of final regions that touch is O(n) – this follows because we have a planar rectilinear
subdivision of total complexity O(n) – and so the number of base squares of type (B4) is
O(n) as well. The fact that we can compute Sbase in O(n logn) time follows directly from
the fact that we can compute the compressed quadtree in O(n logn) time [13].

It remains to prove that Sbase contains a good base square. We call a square σ too small
when size(σ) < c1 · diam(P ∗2) and too large when size(σ) > c2 · diam(P ∗2); otherwise we say
that σ has the correct size. Let p, p′ ∈ P ∗2 be two points with |pp′| = diam(P ∗2), and consider
a smallest square σp,p′ , in the compressed quadtree that contains both p and p′. Note that
σp,p′ cannot be too small, since c1 = 1/4 < 1/

√
2. If σp,p′ has the correct size, then we are

done since it is a good base square of type (B1). So now suppose σp,p′ is too large.
Let σ0, σ1, . . . , σk be the sequence of squares in the recursive subdivision of σp,p′ that

contain p; thus σ0 = σp,p′ and σk is a square in the final subdivision. Define σ′0, σ′1, . . . , σ′k′

similarly, but now for p′ instead of p. Suppose that none of these squares has the correct size
– otherwise we have a good base square of type (B1). There are three cases.

Case (i): σk and σ′k′ are too large.
We claim that σk touches σ′k′ . To see this, assume without loss of generality that
size(σk) 6 size(σ′k′). If σk does not touch σ′k′ then |pp′| > size(σk), which contradicts
that σk is too large. Hence, σk indeed touches σ′k′ . But then we have a base square of
type (B4.1) for the pair p, p′ and since |pp′| = diam(P ∗2) this is a good base square.
Case (ii): σk and σ′k′ are too small.
In this case there are indices 0 < j 6 k and 0 < j′ 6 k′ such that σj−1 and σ′j′−1 are too
large and σj and σ′j′ are too small. Note that this implies that both σj and σ′j′ result
from a shrinking step, because c1 < c2/2 and so the quadrants of a too-large square
cannot be too small. We claim that σj−1 touches σ′j′−1. Indeed, similarly to Case (i), if
σj−1 and σ′j′−1 do not touch then |pp′| > min(size(σj−1), size(σ′j′−1)), contradicting that
both σj−1 and σ′j′−1 are too large. We now have two subcases.

The first subcase is that the donut region σj−1 \σj touches the donut region σ′j′−1 \σj′ .
Thus a smallest enclosing square for σj and σ′j′ has been put into Sbase as a base
square of type (B4.2). Let σ∗ denote this square. Since the segment pp′ is contained

SoCG 2017

4:12 Minimum Perimeter-Sum Partitions in the Plane

in σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/
√

2 = |pp′|/
√

2 6 size(σ∗).

Furthermore, since σj and σ′j′ are too small we have

size(σ∗) 6 size(σj) + size(σ′j′) + |pp′| 6 3 · diam(P ∗2) < c2 · diam(P ∗2), (7)

and so σ∗ is a good base square.
The second subcase is that σj−1 \σj does not touch σ′j′−1 \σj′ . This can only happen if
σj−1 and σ′j′−1 just share a single corner, v. Observe that σj must lie in the quadrant
of σj−1 that has v as a corner, otherwise |pp′| > size(σj−1)/2 and σj−1 would not be
too large. Similarly, σ′j′ must lie in the quadrant of σ′j′−1 that has v as a corner. Thus
the base squares of type (B3) for σj and σ′j′ both have v as a corner. Take the largest
of these two base squares, say σj . For this square σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/2
√

2 = |pp′|/2
√

2 6 size(σ∗),

since |pp′| is contained in a square of twice the size of σ∗. Furthermore, since σj is too
small and |pv| < |pp′| we have

size(σ∗) 6 size(σj) + |pv| 6 (c1 + 1) · diam(P ∗2) < c2 · diam(P ∗2). (8)

Hence, σ∗ is a good base square.
Case (iii): neither (i) nor (ii) applies.
In this case σk is too small and σ′k′ is too large (or vice versa). Thus there must be an
index 0 < j 6 k such that σj−1 is too large and σj is too small. We can now follow
a similar reasoning as in Case (ii): First we argue that σj must have resulted from a
shrinking step and that σj−1 touches σ′k′ . Then we distinguish two subcases, namely
where the donut region σj \ σj−1 touches σ′k′ and where it does not touch σ′k′ . The
arguments for the two subcases are similar to the subcases in Case (ii), with the following
modifications. In the first subcase we use base squares of type (B4.3) and in (7) the term
size(σ′j′) disappears; in the second subcase we use a type (B3) base square for σj and
a type (B2) base square for p′, and when the base square for p′ is larger than the base
square for σj then (8) becomes size(σ∗) 6 2 |p′v| < c2 · diam(P ∗2). J

Step 2: Generating halfplanes. Consider a good square σ ∈ S. Let Qσ be a set of
4 · c∗/csep + 1 = 18001 points placed equidistantly around the boundary of σ. Note that the
distance between two neighbouring points in Qσ is less than csep/c

∗ · size(σ). For each pair
q1, q2 of points in Qσ, add to Hσ the two halfplanes defined by the line through q1 and q2.

I Lemma 9. For any good square σ ∈ S, there is a halfplane h ∈ Hσ such that P ∗2 = P (σ∩h).

Proof. In the case where σ ∩ P ∗1 = ∅, two points in Qσ from the same edge of σ define a
half-plane h such that P ∗2 = P (σ ∩ h), so assume that σ contains one or more points from
P ∗1 .

We know that the separation distance between P ∗1 and P ∗2 is at least csep · per(P ∗2).
Moreover, size(σ) 6 c∗ · per(P ∗2). Hence, there is an empty open strip O with a width of at
least csep/c

∗ · size(σ) separating P ∗2 from P ∗1 . Since σ contains a point from P ∗1 , we know
that σ \O consists of two pieces and that the part of the boundary of σ inside O consists
of two disjoint portions B1 and B2 each of length at least csep/c

∗ · size(σ). Hence the sets
B1 ∩Qσ and B2 ∩Qσ contain points q1 and q2, respectively, that define a half-plane h as
desired. J

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:13

Step 3: Evaluating candidate solutions. In this step we need to compute for each pair
(σ, h) with σ ∈ S and h ∈ Hσ, the value per(P \ P (σ ∩ h)) + per(P (σ ∩ h)). We do this by
preprocessing P into a data structure that allows us to quickly compute per(P \ P (σ ∩ h))
and per(P (σ ∩ h)) for a given pair (σ, h). Recall that the bounding lines of the halfplanes h
we must process have O(1) different orientations. We construct a separate data structure for
each orientation.

Consider a fixed orientation φ. We build a data structure Dφ for range searching on P
with ranges of the form σ∩h, where σ is a square and h is halfplane whose bounding line has
orientation φ. Since the edges of σ are axis-parallel and the bounding line of the halfplanes h
have a fixed orientation, we can use a standard three-level range tree [5] for this. Constructing
this tree takes O(n log2 n) time and the tree has O(n log2 n) nodes.

Each node ν of the third-level trees in Dφ is associated with a canonical subset P (ν),
which contains the points stored in the subtree rooted at ν. We preprocess each canonical
subset P (ν) as follows. First we compute the convex hull ch(P (ν)). Let v1, . . . , vk denote
the convex-hull vertices in counterclockwise order. We store these vertices in order in an
array, and we store for each vertex vi the value length(∂ P (v1, vi)), that is, the length
of the part of ∂ ch(P (ν)) from v1 to vi in counterclockwise order. Note that the convex
hull ch(P (ν)) can be computed in O(|P (ν)|) from the convex hulls at the two children of ν.
Hence, the convex hulls ch(P (ν)) (and the values length(∂ P (v1, vi))) can be computed in∑
ν∈Dφ O(|P (ν)|) = O(n log3 n) time in total, in a bottom-up manner.
Now suppose we want to compute per(P (σ ∩ h)), where the orientation of the bounding

line of h is φ. We perform a range query in Dφ to find a set N(σ ∩ h) of O(log3 n) nodes
such that P (σ ∩ h) is equal to the union of the canonical subsets of the nodes in N(σ ∩ h).
Standard range-tree properties guarantee that the convex hulls ch(P (ν)) and ch(P (µ)) of
any two nodes ν, µ ∈ N(σ ∩ h) are disjoint. Note that ch(P (σ ∩ h)) is equal to the convex
hull of the set of convex hulls ch(P (ν)) with ν ∈ N(σ ∩ h). In the full version [1] we show
that we can compute per(P (σ ∩ h)) in O(log4 n) time.

Observe that P \ P (σ ∩ h) can also be expressed as the union of O(log3 n) canonical
subsets with disjoint convex hulls, since R2 \ (σ ∩ h) is the disjoint union of O(1) ranges of
the right type. Hence, we can compute per(P \ P (σ ∩ h)) in O(log4 n) time. We thus obtain
the following result, which finishes the proof of Theorem 5.

I Lemma 10. Step 3 can be performed in O(n log4 n) time and using O(n log3 n) space.

3 The approximation algorithm

I Theorem 11. Let P be a set of n points in the plane and let (P ∗1 , P ∗2) be a partition
of P minimizing per(P ∗1) + per(P ∗2). Suppose we have an exact algorithm for the minimum
perimeter-sum problem running in T (k) time for instances with k points. Then for any
given ε > 0 we can compute a partition (P1, P2) of P such that per(P1) + per(P2) 6
(1 + ε) ·

(
per(P ∗1) + per(P ∗2)

)
in O(n+ T (1/ε2)) time.

Proof. Consider the axis-parallel bounding box B of P . Let w be the width of B and let h
be its height. Assume without loss of generality that w > h. Our algorithm works in two
steps.

Step 1: Check if per(P ∗
1) + per(P ∗

2) 6 w/16. If so, compute the exact solution.
We partition B vertically into four strips with width w/4, denoted B1, B2, B3, and B4
from left to right. If B2 or B3 contains a point from P , we have per(P ∗1) + per(P ∗2) >
w/2 > w/16 and we go to Step 2. If B2 and B3 are both empty, we consider two cases.

SoCG 2017

4:14 Minimum Perimeter-Sum Partitions in the Plane

Case (i): h 6 w/8. In this case we simply return the partition (P ∩B1, P ∩B4). To see
that this is optimal, we first note that any subset P ′ ⊂ P that contains a point from
B1 as well as a point from B4 has per(P ′) > 2 · (3w/4) = 3w/2. On the other hand,
per(P ∩B1) + per(P ∩B4) 6 2 · (w/2 + 2h) 6 3w/2.

Case (ii): h > w/8. We partition B horizontally into four rows with height h/4,
numbered R1, R2, R3, and R4 from bottom to top. If R2 or R3 contains a point from
P , we have per(P ∗1) + per(P ∗2) > h/2 > w/16, and we go the Step 2. If R2 and R3 are
both empty, we overlay the vertical and the horizontal partitioning of B to get a 4× 4
grid of cells Cij := Bi ∩ Rj for i, j ∈ {1, . . . , 4}. We know that only the corner cells
C11, C14, C41, C44 contain points from P . If three or four corner cells are non-empty,
per(P ∗1) + per(P ∗2) > 6h/4 > w/16. Hence, we may without loss of generality assume
that any point of P is in C11 or C44. We now return the partition (P ∩ C11, P ∩ C44),
which is easily seen to be optimal.

Step 2: Handle the case where per(P ∗
1) + per(P ∗

2) > w/16.
The idea is to compute a subset P̂ ⊂ P of size O(1/ε2) such that an exact solution to the
minimum perimeter-sum problem on P̂ can be used to obtain a (1 + ε)-approximation for
the problem on P .
We subdivide B into O(1/ε2) rectangular cells of width and height at most c :=
εw/(64π

√
2). For each cell C where P ∩ C is non-empty we pick an arbitrary point in

P ∩ C, and we let P̂ be the set of selected points. For a point p ∈ P̂ , let C(p) be the
cell containing p. Intuitively, each point p ∈ P̂ represents all the points P ∩ C(p). Let
(P̂1, P̂2) be a partition of P̂ that minimizes per(P̂1) + per(P̂2). We assume we have an
algorithm that can compute such an optimal partition in T (|P̂ |) time. For i = 1, 2, define

Pi :=
⋃
p∈P̂i

P ∩ C(p).

Our approximation algorithm returns the partition (P1, P2). (Note that the convex hulls
of P1 and P2 are not necessarily disjoint.) It remains to prove the approximation ratio.
First, note that per(P̂1) + per(P̂2) 6 per(P ∗1) + per(P ∗2) since P̂ ⊆ P . For i = 1, 2, let P̃i
consist of all points in the plane (not only points in P) within a distance of at most

√
2c

from ch(P̂i). In other words, P̃i is the Minkowksi sum of ch(P̂i) with a disk D of radius
c
√

2 centered at the origin. Note that if p ∈ P̂i, then q ∈ P̃i for any q ∈ P ∩ C(p), since
any two points in C(p) are at most

√
2c apart from each other. Therefore Pi ⊂ P̃i and

hence per(Pi) 6 per(P̃i). Note also that per(P̃i) = per(P̂i) + 2cπ
√

2. These observations
yield

per(P1) + per(P2) 6 per(P̃1) + per(P̃2)
= per(P̂1) + per(P̂2) + 4cπ

√
2 6 per(P ∗1) + per(P ∗2) + 4cπ

√
2

= per(P ∗1) + per(P ∗2) + 4π
√

2 ·
(
εw/(64π

√
2)
)

6 per(P ∗1) + per(P ∗2) + εw/16 6 (1 + ε) · (per(P ∗1) + per(P ∗2)).

As all the steps can be done in linear time, the time complexity of the algorithm is O(n+T (nε))
for some nε = O(1/ε2). J

Acknowledgements. This research was initiated when the first author visited the Depart-
ment of Computer Science at TU Eindhoven during the winter 2015–2016. He wishes to
express his gratitude to the other authors and the department for their hospitality.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 4:15

References
1 M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, A.D. Mehrabi. Minimum Perimeter-

Sum Partitions in the Plane. Preprint, http://arxiv.org/abs/1703.05549 (2017).
2 P.K. Agarwal, M. Sharir. Efficient algorithms for geometric optimization. ACM Comput.

Surv. 30(4):412–458 (1998).
3 T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum

and maximum spanning trees. In Proc. 4th ACM Symp. Comput. Geom. (SoCG), pages
252–257, 1988.

4 S.W. Bae, H.-G. Cho, W. Evans, N. Saeedi, and C.-S. Shin. Covering points with convex
sets of minimum size. Theor. Comput. Sci., in press (2016).

5 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications (3rd edition). Springer-Verlag, 2008.

6 P. Brass, C. Knauer, C.-S. Shin, M. Smid, and I. Vigan. Range-aggregate queries for geo-
metric extent problems. In Proc. 19th Computing: Australasian Theory Symp. (CATS),
pages 3–10, 2013.

7 V. Capoyleas, G. Rote, G. Woeginger. Geometric clusterings. J. Alg. 12(2):341–356 (1991).
8 T.M. Chan. More planar two-center algorithms. Comput. Geom. Theory Appl. 13(2):189–

198 (1999).
9 T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3rd

edition). MIT Press, 2009.
10 O. Devillers and M. J. Katz. Optimal line bipartitions of point sets. Int. J. Comput. Geom.

Appl. 9(1):39–51 (1999).
11 Z. Drezner. The planar two-center and two-median problems. Transportation Science

18(4):351–361 (1984).
12 D. Eppstein. Faster construction of planar two-centers. In Proc. 8th ACM-SIAM Symp.

Discr. Alg. (SODA), pages 131–138 (1997).
13 S. Har-Peled. Geometric approximation algorithms. Mathematical surveys and monographs,

Vol. 173. American Mathematical Society, 2011.
14 J. Hershberger. Minimizing the sum of diameters efficiently. Comput. Geom. Theory

Appl. 2(2):111–118 (1992).
15 J.W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center

problem. In Proc. 10th ACM Symp. Comput. Geom. (SoCG), pages 303–311 (1994).
16 D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line.

In Proc. 4th Workshop Alg. Data Struct. (WADS), LNCS 955, pages 183–193, 1995.
17 J. S. B. Mitchell and E.L. Wynters. Finding optimal bipartitions of points and polygons.

In Proc. 2nd Workshop Alg. Data Struct. (WADS), LNCS 519, pages 202–213, 1991. Full
version available at http://www.ams.sunysb.edu/~jsbm/.

18 J. Rokne, S. Wang, and X. Wu. Optimal bipartitions of point sets. In Proc. 4th Canad.
Conf. Comput. Geom. (CCCG), pages 11–16, 1992.

19 M. Segal. Lower bounds for covering problems. J. Math. Modelling Alg. 1(1):17–29 (2002).
20 M. Sharir. A near-linear algorithm for the planar 2-center problem. Discr. Comput.

Geom. 18(2):125–134 (1997).

SoCG 2017

http://arxiv.org/abs/1703.05549
ftp://ftp.ams.sunysb.edu/pub/geometry/bipart.ps.gz

Range-Clustering Queries∗†

Mikkel Abrahamsen1, Mark de Berg2, Kevin Buchin3,
Mehran Mehr4, and Ali D. Mehrabi5

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
mdberg@win.tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
m.mehr@tue.nl

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
amehrabi@win.tue.nl

Abstract
In a geometric k-clustering problem the goal is to partition a set of points in Rd into k subsets
such that a certain cost function of the clustering is minimized. We present data structures for
orthogonal range-clustering queries on a point set S: given a query box Q and an integer k > 2,
compute an optimal k-clustering for S ∩Q. We obtain the following results.

We present a general method to compute a (1+ε)-approximation to a range-clustering query,
where ε > 0 is a parameter that can be specified as part of the query. Our method applies
to a large class of clustering problems, including k-center clustering in any Lp-metric and a
variant of k-center clustering where the goal is to minimize the sum (instead of maximum) of
the cluster sizes.
We extend our method to deal with capacitated k-clustering problems, where each of the
clusters should not contain more than a given number of points.
For the special cases of rectilinear k-center clustering in R1, and in R2 for k = 2 or 3, we
present data structures that answer range-clustering queries exactly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Geometric data structures, clustering, k-center problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.5

1 Introduction

Motivation

The range-searching problem is one of the most important and widely studied problems
in computational geometry. In the standard setting one is given a set S of points in Rd,
and a query asks to report or count all points inside a geometric query range Q. In many

∗ A full version of the paper is available at http://arxiv.org/abs/1705.06242.
† MA is partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent

Research under the Sapere Aude research career programme. MdB, KB, MM, and AM are supported by
the Netherlands Organisation for Scientific Research (NWO) under project no. 024.002.003, 612.001.207,
022.005025, and 612.001.118 respectively.

© Mikkel Abrahamsen, Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.5
http://arxiv.org/abs/1705.06242
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Range-Clustering Queries

applications, however, one would like to perform further analysis on the set S ∩Q, to obtain
more information about its structure. Currently one then has to proceed as follows: first
perform a range-reporting query to explicitly report S ∩Q, then apply a suitable analysis
algorithm to S ∩ Q. This two-stage process can be quite costly, because algorithms for
analyzing geometric data sets can be slow and S ∩Q can be large. To avoid this we would
need data structures for what we call range-analysis queries, which directly compute the
desired structural information about S ∩Q. In this paper we develop such data structures
for the case where one is interested in a cluster-analysis of S ∩Q.

Clustering is a fundamental task in data analysis. It involves partitioning a given data
set into subsets called clusters, such that similar elements end up in the same cluster. Often
the data elements can be viewed as points in a geometric space, and similarity is measured
by considering the distance between the points. We focus on clustering problems of the
following type. Let S be a set of n points in Rd, and let k > 2 be a natural number. A
k-clustering of S is a partitioning C of S into at most k clusters. Let Φ(C) denote the cost
of C. The goal is now to find a clustering C that minimizes Φ(C). Many well-known geometric
clustering problems are of this type. Among them is the k-center problem. In the Euclidean
k-center problem Φ(C) is the maximum cost of any of the clusters C ∈ C, where the cost of C
is the radius of its smallest enclosing ball. Hence, in the Euclidean k-center problem we want
to cover the point set S by k congruent balls of minimum radius. The rectilinear k-center
problem is defined similarly except that one considers the L∞-metric; thus we want to cover S
by k congruent axis-aligned cubes1 of minimum size. The k-center problem, including the
important special case of the 2-center problem, has been studied extensively, both for the
Euclidean case (e.g. [2, 8, 12, 17, 16, 22]) and for the rectilinear case (e.g. [7, 23]).

All papers mentioned above – in fact, all papers on clustering that we know of – consider
clustering in the single-shot version. We are the first to study range-clustering queries on a
point set S: given a query range Q and a parameter k, solve the given k-clustering problem
on S ∩Q. We study this problem for the case where the query range is an axis-aligned box.

Related work

Range-analysis queries can be seen as a very general form of range-aggregate queries. In
a range-aggregate query, the goal is to compute some aggregate function F (S ∩ Q) over
the points in the query range. The current state of the art typically deals with simple
aggregate functions of the following form: each point p ∈ S has a weight w(p) ∈ R, and
F (S ∩Q) :=

⊕
p∈S∩Q w(p), where ⊕ is a semi-group operation. Such aggregate functions

are decomposable, meaning that F (A ∩ B) can be computed from F (A) and F (B), which
makes them easy to handle using existing data structures such as range trees.

Only some, mostly recent, papers describe data structures supporting non-decomposable
analysis tasks. Several deal with finding the closest pair inside a query range (e.g. [1, 10, 13]).
However, the closest pair does not give information about the global shape or distribution
of S ∩Q, which is what our queries are about. The recent works by Brass et al. [5] and by
Arya et al. [4] are more related to our paper. Brass et al. [5] present data structures for
finding extent measures, such the width, area or perimeter of the convex hull of S ∩Q, or
the smallest enclosing disk. (Khare et al. [18] improve the result on smallest-enclosing-disk
queries.) These measures are strictly speaking not decomposable, but they depend only on

1 Throughout the paper, when we speak of cubes (or squares, or rectangles, or boxes) we always mean
axis-aligned cubes (or squares, or rectangles, or boxes).

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:3

the convex hull of S ∩Q and convex hulls are decomposable. A related result is by Nekrich
and Smid [20], who present a data structure that returns an ε-coreset inside a query range.
The measure studied by Arya et al. [4], namely the length of the MST of S ∩Q, cannot be
computed form the convex hull either: like our range-clustering queries, it requires more
information about the structure of the point set. Thus our paper continues the direction set
out by Arya et al., which is to design data structures for more complicated analysis tasks
on S ∩Q.

Our contribution

Our main result is a general method to answer approximate orthogonal range-clustering
queries in Rd. Here the query specifies (besides the query box Q and the number of
clusters k) a value ε > 0; the goal then is to compute a k-clustering C of S ∩ Q with
Φ(C) 6 (1 + ε) · Φ(Copt), where Copt is an optimal clustering for S ∩Q. Our method works
by computing a sample R ⊆ S ∩Q such that solving the problem on R gives us the desired
approximate solution. We show that for a large class of cost functions Φ we can find such a
sample of size only O(k(f(k)/ε)d), where f(k) is a function that only depends on the number
of clusters. This is similar to the approach taken by Har-Peled and Mazumdar [15], who
solve the (single-shot) approximate k-means and k-median problem efficiently by generating
a coreset of size O((k/εd) · logn). A key step in our method is a procedure to efficiently
compute a lower bound on the value of an optimal solution within the query range. The class
of clustering problems to which our method applies includes the k-center problem in any
Lp-metric, variants of the k-center problem where we want to minimize the sum (rather than
maximum) of the cluster radii, and the 2-dimensional problem where we want to minimize
the maximum or sum of the perimeters of the clusters. Our technique allows us, for instance,
to answer rectilinear k-center queries in the plane in O((1/ε) logn+ 1/ε2) for k = 2 or 3, in
O((1/ε) logn+ (1/ε2)polylog(1/ε)) for k = 4 or 5, and in O((k/ε) logn+ (k/ε)O(

√
k)) time

for k > 3. We also show that for the rectilinear (or Euclidean) k-center problem, our method
can be extended to deal with the capacitated version of the problem. In the capacitated
version each cluster should not contain more than α · (|S ∩Q|/k) points, for a given α > 1.

In the second part of the paper we turn our attention to exact solutions to range-clustering
queries. Here we focus on rectilinear k-center queries – that is, range-clustering queries for
the rectilinear k-center problem – in R1 and R2. We present two linear-size data structures
for queries in R1; one has O(k2 log2 n) query time, the other has O(3k logn) query time. For
queries in R2 we present a data structure that answers 2-center queries in O(logn) time, and
one that answers 3-center queries in O(log2 n) time. Both data structures use O(n logε n)
storage, where ε > 0 is an arbitrary small (but fixed) constant.

2 Approximate Range-Clustering Queries

In this section we present a general method to answer approximate range-clustering queries.
We start by defining the class of clustering problems to which it applies.

Let S be a set of n points in Rd and let Part(S) be the set of all partitions of S. Let
Partk(S) be the set of all partitions into at most k subsets, that is, all k-clusterings of S.
Let Φ : Part(S) 7→ R>0 be the cost function defining our clustering problem, and define

Optk(S) := min
C∈Partk(S)

Φ(C)

to be the minimum cost of any k-clustering. Thus the goal of a range-clustering query with
query range Q and parameter k > 2 is to compute a clustering C ∈ Partk(SQ) such that

SoCG 2017

5:4 Range-Clustering Queries

Φ(C) = Optk(SQ), where SQ := S ∩Q. From now on we use SQ as a shorthand for S ∩Q.
The method presented in this section gives an approximate answer to such a query: for a
given constant ε > 0, which can be specified as part of the query, the method will report a
clustering C ∈ Partk(SQ) with Φ(C) 6 (1 + ε) ·Optk(SQ).

To define the class of clusterings to which our method applies, we will need the concept
of r-packings [14]. Actually, we will use a slightly weaker variant, which we define as follows.
Let |pq| denote the Euclidean distance between two points p and q. A subset R ⊆ P of a
point set P is called a weak r-packing for P , for some r > 0, if for any point p ∈ P there
exists a packing point q ∈ R such that |pq| 6 r. (The difference with standard r-packings is
that we do not require that |qq′| > r for any two points q, q′ ∈ R.) The clustering problems
to which our method applies are the ones whose cost function is regular, as defined next.

I Definition 1. A cost function Φ : Part(S) 7→ R>0 is called (c, f(k))-regular, if there is a
constant c and a function f : N>2 7→ R>0 such that the followings hold.

For any clustering C ∈ Part(S), we have

Φ(C) > c ·max
C∈C

diam(C),

where diam(C) = maxp,q∈C |pq| denotes the Euclidean diameter of the cluster C. We call
this the diameter-sensitivity property.
For any subset S′ ⊆ S, any weak r-packing R of S′, and any k > 2, we have that

Optk(R) 6 Optk(S′) 6 Optk(R) + r · f(k).

Moreover, given a k-clustering C ∈ Partk(R) we can compute a k-clustering C∗ ∈ Partk(S′)
with Φ(C∗) 6 Φ(C) + r · f(k) in time Texpand(n, k). We call this the expansion property.

Examples

Many clustering problems have regular cost functions, in particular when the cost function is
the aggregation – the sum, for instance, or the maximum – of the costs of the individual
clusters. Next we give some examples.

Rectilinear and other k-center problems. For a cluster C, let radiusp(C) denote the
radius of the minimum enclosing ball of C in the Lp-metric. In the L∞-metric, for
instance, radiusp(C) is half the edge length of a minimum enclosing axis-aligned cube
of C. Then the cost of a clustering C for the k-center problem in the Lp-metric is
Φmax
p (C) = maxC∈C radiusp(C). One can easily verify that the cost function for the rectilin-

ear k-center problem is (1/(2
√
d), 1)-regular, and for the Euclidean k-center problem it is

(1/2, 1)-regular. Moreover, Texpand(n, k) = O(k) for the k-center problem, since we just have
to scale each ball by adding r to its radius.2 (In fact Φmax

p (C) is regular for any p.)

Min-sum variants of the k-center problem. In the k-center problem the goal is to minimize
maxC∈C radiusp(C). Instead we can also minimize Φsum

p (C) :=
∑
C∈C radiusp(C), the sum

of the cluster radii. Also these costs functions are regular; the only difference is that the
expansion property is now satisfied with f(k) = k, instead of with f(k) = 1. Another
interesting variant is to minimize

(∑
C∈C radius2(C)2)1/2, which is (1/(2

√
d),
√
k)-regular.

2 This time bound only accounts for reporting the set of balls that define the clustering. If we want to
report the clusters explicitly, we need to add an O(nk) term.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:5

Minimum perimeter k-clustering problems. For a cluster C of points in R2, define per(C)
to be the length of the perimeter of the convex hull of C. In the minimum perimeter-sum
clustering problem the goal is to compute a k-clustering C such that Φper :=

∑
C∈C per(C) is

minimized [6]. This cost function is (2, 2πk)-regular. Indeed, if we expand the polygons in a
clustering C of a weak r-packing R by taking the Minkowski sum with a disk of radius r,
then the resulting shapes cover all the points in S. Each perimeter increases by 2πr in this
process. To obtain a clustering, we then assign each point to the cluster of its closest packing
point, so Texpand(n, k) = O(n logn).

Non-regular costs functions. Even though many clustering problems have regular costs
functions, not all clustering problems do. For example, the k-means problem does not have a
regular cost function. Minimizing the the max or sum of the areas of the convex hulls of the
clusters is not regular either.

Our data structure and query algorithm

We start with a high-level overview of our approach. Let S be the given point set on which
we want to answer range-clustering queries, and let Q be the query range. We assume we
have an algorithm SingleShotClustering(P, k) that computes an optimal solution to the
k-clustering problem (for the given cost function Φ) on a given point set P . (Actually, it is
good enough if SingleShotClustering(P, k) gives a (1 + ε)-approximation.) Our query
algorithm proceeds as follows.

ClusterQuery(k,Q, ε)
1: Compute a lower bound lb on Optk(SQ).
2: Set r := ε · lb/f(k) and compute a weak r-packing RQ on SQ.
3: C := SingleShotClustering(RQ, k).
4: Expand C into a k-clustering C∗ of cost at most Φ(C) + r · f(k) for SQ.
5: return C∗.

Note that Step 4 is possible because Φ is (c, f(k))-regular. The following lemma is immediate.

I Lemma 2. Φ(C∗) 6 (1 + ε) ·Optk(SQ).

Next we show how to perform Steps 1 and 2: we will describe a data structure that allows
us to compute a suitable lower bound lb and a corresponding weak r-packing, such that the
size of the r-packing depends only on ε and k but not on |SQ|.

Our lower bound and r-packing computations are based on so-called cube covers. A cube
cover of SQ is a collection B of interior-disjoint cubes that together cover all the points in
SQ and such that each B ∈ B contains at least one point from SQ (in its interior or on its
boundary). Define the size of a cube B, denoted by size(B), to be its edge length. The
following lemma follows immediately from the fact that the diameter of a cube B in Rd is√
d · size(B).

I Lemma 3. Let B be a cube cover of SQ such that size(B) 6 r/
√
d for all B ∈ B. Then

any subset R ⊆ SQ containing a point from each cube B ∈ B is a weak r-packing for S.

Our next lemma shows we can find a lower bound on Optk(SQ) from a suitable cube cover.

I Lemma 4. Suppose the cost function Φ is (c, f(k))-regular. Let B be a cube cover of SQ
such that |B| > k2d. Then Optk(SQ) > c ·minB∈B size(B).

SoCG 2017

5:6 Range-Clustering Queries

Proof. For two cubes B,B′ such that the maximum xi-coordinate of B is at most the
minimum xi-coordinate of B′, we say that B is i-below B′ and B′ is i-above B. We denote
this relation by B ≺i B′. Now consider an optimal k-clustering Copt of SQ. By the pigeonhole
principle, there is a cluster C ∈ Copt containing points from at least 2d + 1 cubes. Let BC be
the set of cubes that contain at least one point in C.

Clearly, if there are cubes B,B′, B′′ ∈ BC such that B′ ≺i B ≺i B′′ for some 1 6 i 6 d,
then the cluster C contains two points (namely from B′ and B′′) at distance at least size(B)
from each other. Since Φ is (c, f(k))-regular this implies that Φ(Copt) > c · size(B), which
proves the lemma.

Now suppose for a contradiction that such a triple B′, B,B′′ does not exist. Then we can
define a characteristic vector Γ(B) = (Γ1(B), . . . ,Γd(B)) for each cube B ∈ BC , as follows:

Γi(B) =
{

0 if no cube B′ ∈ BC is i-below B

1 otherwise

Since the number of distinct characteristic vectors is 2d < |BC |, there must be two cubes
B1, B2 ∈ BC with identical characteristic vectors. However, any two interior-disjoint cubes
can be separated by an axis-parallel hyperplane, so there is at least one i ∈ {1, . . . , d}
such that B1 ≺i B2 or B2 ≺i B1. Assume w.l.o.g. that B1 ≺i B2, so Γi(B2) = 1. Since
Γ(B1) = Γ(B2) there must be a cube B3 with B3 ≺i B1. But then we have a triple
B3 ≺i B1 ≺i B2, which is a contradiction. J

Next we show how to efficiently perform Steps 1 and 2 of ClusterQuery. Our algorithm
uses a compressed octree T (S) on the point set S, which we briefly describe next.

For an integer s, let Gs denote the grid in Rd whose cells have size 2s and for which the
origin O is a grid point. A canonical cube is any cube that is a cell of a grid Gs, for some
integer s. A compressed octree on a point set S in Rd contained in a canonical cube B is a
tree-like structure defined recursively, as follows.

If |S| 6 1, then T (S) consists of a single leaf node, which corresponds to the cube B.
If |S| > 1, then consider the cubes B1, . . . , B2d that result from cutting B into 2d
equal-sized cubes.

If at least two of the cubes Bi contain at least one point from S then T (S) consists of
a root node with 2d children v1, . . . , v2d , where vi is the root of a compressed octree
for3 Bi ∩ S.
If all points from S lie in the same cube Bi, then let Bin ⊆ Bi be the smallest canonical
cube containing all points in S. Now T (S) consists of a root node with two children:
one child v which is the root of a compressed octree for S inside Bin, and one leaf
node w which represents the donut region B \Bin.

A compressed octree for a set S of n points in any fixed dimension can be computed in
O(n logn) time, assuming a model of computation where the smallest canonical cube of
two points can be computed in O(1) time [14, Theorem 2.23]. For a node v ∈ T (S), we
denote the cube or donut corresponding to v by Bv, and we define Sv := Bv ∩ S. It will be
convenient to slightly modify the compressed quadtree by removing all nodes v such that
Sv = ∅. (These nodes must be leaves.) Note that this removes all nodes v such that Bv
is a donut. As a result, the parent of a donut node now has only one child. The modified
tree T (S) – with a slight abuse of terminology we still refer to T (S) as a compressed octree

3 Here we assume that points on the boundary between cubes are assigned to one of these cubes in a
consistent manner.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:7

Algorithm 1 Algorithm for Steps 1 and 2 of ClusterQuery, for a (c, f(k))-regular cost
function.

1: Binner := Broot(T (S)) and Bleaf := ∅.
2: B Phase 1: Compute a lower bound on Optk(SQ).
3: while |Binner ∪ Bleaf| 6 k22d and Binner 6= ∅ do
4: Remove a largest cube Bv from Binner. Let v be the corresponding node.
5: if Bv 6⊆ Q then
6: Compute bb(SQ ∩Bv), the bounding box of SQ ∩Bv.
7: Find the deepest node u such that bb(SQ ∩Bv) ⊆ Bu and set v := u.
8: end if
9: For each child w of v such that Bw ∩ SQ 6= ∅, insert Bw into Binner if w is an

internal node and insert Bw into Bleaf if w is a leaf node.
10: end while
11: lb := c ·maxBv∈Binner size(Bv) .
12: B Phase 2: Compute a suitable weak r-packing.
13: r := ε · lb/f(k).
14: while Binner 6= ∅ do
15: Remove a cube Bv from Binner and handle it as in lines 5–9, with the following

change: if size(Bw) 6 r/
√
d then always insert Bw into Bleaf (not into Binner).

16: end while
17: For each cube Bv ∈ Bleaf pick a point in SQ ∩Bv and put it into RQ.
18: return RQ.

– has the property that any internal node has at least two children. We augment T (S) by
storing at each node v an arbitrary point p ∈ Bv ∩ S.

Our algorithm descends into T (S) to find a cube cover B of SQ consisting of canonical
cubes, such that B gives us a lower bound on Optk(SQ). In a second phase, the algorithm
then refines the cubes in the cover until they are small enough so that, if we select one point
from each cube, we get a weak r-packing of SQ for the appropriate value of r. The details are
described in Algorithm 1, where we assume for simplicity that |SQ| > 1. (The case |SQ| 6 1
is easy to check and handle.)

Note that we continue the loop in lines 3–9 until we collect k22d cubes (and not k2d, as
Lemma 4 would suggest) and that in line 11 we take the maximum cube size (instead of the
minimum, as Lemma 4 would suggest).

I Lemma 5. The value lb computed by Algorithm 1 is a correct lower bound on Optk(SQ),
and the set RQ is a weak r-packing for r = ε · lb/f(k) of size O(k(f(k)/(c ε))d).

Proof. As the first step to prove that lb is a correct lower bound, we claim that the loop in
lines 3–9 maintains the following invariant: (i)

⋃
(Binner ∪ Bleaf) contains all points in SQ,

and (ii) each B ∈ Binner contains at least two points from SQ and each B ∈ Bleaf contains
exactly one point from SQ. This is trivially true before the loop starts, under our assumption
that |SQ| > 2. Now suppose we handle a cube Bv ∈ Binner. If Bv ⊆ Q then we insert the
cubes Bw of all children into Binner or Bleaf, which restores the invariant. If Bv 6⊆ Q then
we first replace v by u. The condition bb(SQ ∩Bv) ⊆ Bu guarantees that all points of SQ
in Bv are also in Bu. Hence, if we then insert the cubes Bw of u’s children into Binner or
Bleaf, we restore the invariant. Thus at any time, and in particular after the loop, the set
Binner ∪ Bleaf is a cube cover of SQ.

SoCG 2017

5:8 Range-Clustering Queries

To complete the proof that lb is a correct lower bound we do not work with the set
Binner∪Bleaf directly, but we work with a set B defined as follows. For a cube Bv ∈ Binner∪Bleaf,
define parent(Bv) to be the cube Bu corresponding to the parent node u of v. For each
cube Bv ∈ Binner ∪ Bleaf we put one cube into B, as follows. If there is another cube
Bw ∈ Binner ∪ Bleaf such that parent(Bw) (parent(Bv), then we put Bv itself into B, and
otherwise we put parent(Bv) into B. Finally, we remove all duplicates from B. Since
Binner ∪Bleaf is a cube cover for SQ – that is, the cubes in Binner ∪Bleaf are disjoint and they
cover all points in SQ – the same is true for B. Moreover, the only duplicates in B are cubes
that are the parent of multiple nodes in Binner ∪ Bleaf, and so |B| > |Binner ∪ Bleaf|/2d > k2d.
By Lemma 4 we have Optk(SQ) > c ·minBv∈B size(Bv).

It remains to argue that minBv∈B size(Bv) > maxBv∈Binner size(Bv). We prove this by
contradiction. Hence, we assume minBv∈B size(Bv) < maxBv∈Binner size(Bv) and we define
B := arg minBv∈B size(Bv) and B′ := arg maxBv∈Binner size(Bv). Note that for any cube
Bv ∈ B either Bv itself is in Binner∪Bleaf or Bv = parent(Bw) for some cube Bw ∈ Binner∪Bleaf.
We now make the following case distinction.

Case I: B = parent(Bw) for some cube Bw ∈ Binner ∪ Bleaf. But this is an immediate
contradiction since Algorithm 1 would have to split B′ before splitting B.

Case II: B ∈ Binner∪Bleaf. Because B itself was put into B and not parent(B), there exists a
cube Bw ∈ Binner∪Bleaf such that parent(B)) parent(Bw), which means size(parent(Bw)) <
size(parent(B)). In order to complete the proof, it suffices to show that size(parent(Bw)) 6
size(B). Indeed, sinceB′ has not been split by Algorithm 1 (becauseB′ ∈ Binner) we know that
size(B′) 6 size(parent(Bw)). This inequality along with the inequality size(parent(Bw)) 6
size(B) imply that size(B′) 6 size(B) which is in contradiction with size(B) < size(B′). To
show that size(parent(Bw)) 6 size(B) we consider the following two subcases. (i) parent(B) is
a degree-1 node. This means that parent(B) corresponds to a cube that was split into a donut
and the cube corresponding to B. Since the cube corresponding to Bw must be completely
inside the cube corresponding to parent(B) (because size(parent(Bw)) < size(parent(B)))
and a donut is empty we conclude that the cube corresponding to Bw must be completely
inside the cube corresponding to B. Hence, size(parent(Bw)) 6 size(B). (ii) parent(B) is
not a degree-1 node. The inequality size(parent(Bw)) < size(parent(B)) along with the fact
that parent(B) is not a degree-1 node imply that size(parent(Bw)) 6 size(B).

This completes the proof that lb is a correct lower bound. Next we prove that RQ is a
weak r-packing for r = ε · lb/f(k). Observe that after the loop in lines 14–16, the set Bleaf is
still a cube cover of SQ. Moreover, each cube Bv ∈ Bleaf either contains a single point from
SQ or its size is at most r/

√
d. Lemma 3 then implies that RQ is a weak r-packing for the

desired value of r.

It remains to bound the size of RQ. To this end we note that at each iteration of the
loop in lines 3–9 the size of Binner ∪ Bleaf increases by at most 2d − 1, so after the loop we
have |Binner ∪ Bleaf| 6 k22d + 2d − 1. The loop in lines 14–16 replaces each cube Bv ∈ Binner
by a number of smaller cubes. Since lb = c ·maxBv∈Binner size(Bv) and r = ε · lb/f(k), each
cube Bv is replaced by only O((f(k)2d

√
d/(c ε))d) smaller cubes. Since d is a fixed constant,

the total number of cubes we end up with (which is the same as the size of the r-packing) is
O(k(f(k)/(c ε))d). J

Lemma 5, together with Lemma 2, establishes the correctness of our approach. To achieve a
good running time, we need a few supporting data structures.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:9

We need a data structure that can answer the following queries: given a query box Z,
find the deepest node u in T (S) such that Z ⊆ Bu. With a centroid-decomposition tree
Tcd we can answer such queries in O(logn) time; see the full version for details.
We need a data structure D that can answer the following queries on S: given a query
box Z and an integer 1 6 i 6 d, report a point in S ∩ Z with maximum xi-coordinate,
and one with minimum xi-coordinate. It is possible to answer such queries in O(logd−1 n)
time with a range tree (with fractional cascading), which uses O(n logd−1 n) storage. Note
that this also allows us to compute the bounding box of S ∩ Z in O(logd−1 n) time. (In
fact slightly better bounds are possible [19], but for simplicity we stick to using standard
data structures.)

I Lemma 6. Algorithm 1 runs in O(k (f(k)/(c ε))d + k ((f(k)/(c ε)) logn)d−1) time.

Proof. The two key observations in the proof are the following. First, when Bv 6⊆ Q we
replace v by the deepest node u such that bb(SQ ∩ Bv) ⊆ Bu, which implies at least two
of the children of u must contain a point in SQ. From this we conclude that the number
of iterations in Phase 1 is bounded by k22d. Second, we use the fact that in Phase 2 the
computation of bb(SQ ∩Bv) is only needed when Bv 6⊆ Q. The complete proof is in the full
version. J

This leads to the following theorem.

I Theorem 7. Let S be a set of n points in Rd and let Φ be a (c, f(k))-regular cost function.
Suppose we have an algorithm that solves the given clustering problem on a set of m points in
Tss(m, k) time. Then there is a data structure that uses O(n logd−1 n) storage such that, for
a query range Q and query values k > 2 and ε > 0, we can compute a (1 + ε)-approximate
answer to a range-clustering query in time

O

(
k

(
f(k)
c ε
· logn

)d−1
+ Tss

(
k

(
f(k)
c ε

)d
, k

)
+ Texpand(n, k)

)
.

As an example application we consider k-center queries in the plane. (The result for rectilinear
2-center queries is actually inferior to the exact solution presented later.)

I Corollary 8. Let S be a set of n points in R2. There is a data structure that uses O(n logn)
storage such that, for a query range Q and query values k > 2 and ε > 0, we can compute a
(1 + ε)-approximate answer to a k-center query within the following bounds:
(i) for the rectilinear case with k = 2, 3, the query time is O((1/ε) logn+ 1/ε2);
(ii) for the rectilinear case with k = 4, 5, the query time is O((1/ε) logn+(1/ε2)polylog(1/ε));
(iii) for the Euclidean case with k = 2, the expected query time is O((1/ε) logn + (1/ε2)·

log2(1/ε));
(iv) for the rectilinear case with k > 5 and the Euclidean case with k > 2 the query time is

O((k/ε) logn+ (k/ε)O(
√
k)).

Proof. Recall that the cost function for the k-center problem is (1/(2
√
d), 1)-regular for

the rectilinear case and (1/2, 1)-regular for the Euclidean case. We now obtain our results
by plugging in the appropriate algorithms for the single-shot version. For (i) we use the
linear-time algorithm of Hoffmann [16], for (ii) we use the O(n ·polylogn) algorithm of Sharir
and Welzl [23], for (iii) we use the O(n log2 n) randomized algorithm of Eppstein [12], for (iv)
we use the nO(

√
k) algorithm of Agarwal and Procopiuc [3]. J

SoCG 2017

5:10 Range-Clustering Queries

3 Approximate Capacitated k-Center Queries

In this section we study the capacitated variant of the rectilinear k-center problem in the
plane. In this variant we want to cover a set S of n points in R2 with k congruent squares
of minimum size, under the condition that no square is assigned more than α · n/k points,
where α > 1 is a given constant. For a capacitated rectilinear k-center query this means we
want to assign no more than α · |SQ|/k points to each square. Our data structure will report
a (1 + ε, 1 + δ)-approximate answer to capacitated rectilinear k-center queries: given a query
range Q, a natural number k > 2, a constant α > 1, and real numbers ε, δ > 0, it computes
a set C = {b1, . . . , bk} of congruent squares such that:

Each bi can be associated to a subset Ci ⊆ SQ∩bi such that {C1, . . . , Ck} is a k-clustering
of SQ and |Ci| 6 (1 + δ)α · |SQ|/k; and
The size of the squares in C is at most (1+ε)·Optk(SQ, α), where Optk(SQ, α) is the value
of an optimal solution to the problem on SQ with capacity upper bound UQ := α · |SQ|/k.

Thus we allow ourselves to violate the capacity constraint by a factor 1 + δ.
To handle the capacity constraints, it is not sufficient to work with r-packings – we also

need δ-approximations. Let P be a set of points in R2. A δ-approximation of P with respect
to rectangles is a subset A ⊆ P such that for any rectangle σ we have∣∣ |P ∩ σ|/|P | − |A ∩ σ|/|A|∣∣ 6 δ.

From now on, whenever we speak of δ-approximations, we mean δ-approximations with
respect to rectangles. Our method will use a special variant of the capacitated k-center
problem, where we also have points that must be covered but do not count for the capacity:

I Definition 9. Let R ∪ A be a point set in R2, k > 2 a natural number, and U a
capacity bound. The 0/1-weighted capacitated k-center problem in R2 is to compute a
set C = {b1, . . . , bk} of congruent squares of minimum size where each bi is associated to a
subset Ci ⊆ (R ∪A) ∩ bi such that {C1, . . . , Ck} is a k-clustering of R ∪A and |Ci ∩A| 6 U .

For a square b, let expand(b, r) denote the square b expanded by r on each side (so its radius
in the L∞-metric increases by r). Let 0/1-WeightedKCenter be an algorithm for the
single-shot capacitated rectilinear k-center problem. Our query algorithm is as follows.

CapacitatedKCenterQuery(k,Q, α, ε, δ)
1: Compute a lower bound lb on Optk(SQ).
2: Set r := ε · lb/f(k) and compute a weak r-packing RQ on SQ.
3: Set δQ := δ/16k3 and compute a δQ-approximation AQ on SQ.
4: Set U := (1+δ/2) ·α · |AQ|/k and C := 0/1-WeightedKCenter(RQ∪AQ, k, U).
5: C∗ := {expand(b, r) : b ∈ C}.
6: return C∗.

Note that the lower bound computed in Step 1 is a lower bound on the uncapacitated problem
(which is also a lower bound for the capacitated problem). Hence, for Steps 1 and 2 we can
use the algorithm from the previous section. How Step 3 is done will be explained later. First
we show that the algorithm gives a (1 + ε, 1 + δ)-approximate solution. We start by showing
that we get a valid solution that violates the capacity constraint by at most a factor (1 + δ).
(See the full version for a proof.)

I Lemma 10. Let {b1, . . . , bk} := C∗ be the set of squares computed in Step 5. There exists
a partition {C1, . . . , Ck} of SQ such that Ci ⊆ bi and |Ci| 6 (1 + δ) · UQ for each 1 6 i 6 k,
and such a partition can be computed in O(k2 + n logn) time.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:11

We also need to prove that we get a (1 + ε)-approximate solution. For this it suffices to show
that an optimal solution Copt to the problem on SQ is a valid solution on RQ ∪AQ. We can
prove this by a similar approach as in the proof of the previous lemma.

I Lemma 11. The size of the squares in C∗ is at most (1 + ε) ·Optk(SQ, α).

To make CapacitatedKCenterQuery run efficiently, we need some more supporting data
structures. In particular, we need to quickly compute a δQ-approximation within our range Q.
We use the following data structures.

We compute a collection A1, . . . , Alogn where Ai is a (1/2i)-approximation on S using
the algorithm of Phillips [21]. This algorithm computes, given a planar point set P of
size m and a parameter δ, a δ-approximation of size O((1/δ) log4(1/δ) ·polylog(log(1/δ)))
in time O((n/δ3) · polylog(1/δ)). We store each Ai in a data structure for orthogonal
range-reporting queries. If we use a range tree with fractional cascading, the data
structure uses O(|Ai| log |Ai|) storage and we can compute all the points in Ai ∩ Q in
time O(logn+ |Ai ∩Q|).
We store S in a data structure for orthogonal range-counting queries. There is such a
data structure that uses O(n) storage and such that queries take O(logn) time [9].

We can now compute a δQ-approximation for SQ as follows.

DeltaApprox(Q, δQ)
1: Find the smallest value for i such that 1

2i 6 δQ

4
|SQ|
|S| , and compute A := Q ∩Ai.

2: Compute a (δQ/2)-approximation AQ on A using the algorithm by Phillips [21].
3: return AQ.

I Lemma 12. DeltaApprox(Q, δQ) computes a δQ-approximation of size O
(

1
δQ

polylog 1
δQ

)
on SQ in time O(

(
logn/δQ)4polylog(logn/δQ)

)
.

The only thing left is now an algorithm 0/1-WeightedKCenter(RQ∪AQ, k, U) that solves
the 0/1-weighted version of the capacitated rectilinear k-center problem. Here we use the
following straightforward approach. Let m := |RQ ∪AQ|. First we observe that at least one
square in an optimal solution has points on opposite edges. Hence, to find the optimal size
we can do a binary search over O(m2) values, namely the horizontal and vertical distances
between any pair of points. Moreover, given a target size s we can push all squares such that
each has a point on its bottom edge and a point on its left edge. Hence, to test if there is
a solution of a given target size s, we only have to test O(m2k) sets of k squares. To test
such a set C = {b1, . . . , bk} of squares, we need to check if the squares cover all points in
RQ ∪AQ and if we can assign the points to squares such that the capacity constraint is met.
For the latter we need to solve a flow problem, which can be done in O(m2k) time; see the
full version. Thus each step in the binary search takes O(m2k+2k), leading to an overall
time complexity for 0/1-WeightedKCenter(RQ ∪ AQ, k, U) of O(m2k+2k logm), where
m = |RQ ∪AQ| = O

(
k/ε2 + (1/δQ)polylog(1/δQ)

)
, where δQ = Θ(δ/k3).

The following theorem summarizes the results in this section.

I Theorem 13. Let S be a set of n points in R2. There is a data structure that uses
O(n logn) storage such that, for a query range Q and query values k > 2, ε > 0 and
δ > 0, we can compute a (1 + ε, 1 + δ)-approximate answer to a rectilinear k-center query
in O∗((k/ε) logn+ ((k3/δ) logn)4 + (k/ε2 + (k3/δ))2k+2) time, where the O∗-notation hides
O(polylog(k/δ)) factors.

SoCG 2017

5:12 Range-Clustering Queries

Note that for constant k and ε = δ the query time simplifies to O∗((1/ε4) log4 n+ (1/ε)4k+4).
Also note that the time bound stated in the theorem only includes the time to compute the
set of squares defining the clustering. If we want to also report an appropriate assignment of
points to the squares, we have to add an O(k2 + |SQ| log |SQ|) term; see Lemma 10.
I Remark. The algorithm can be generalized to the rectilinear k-center problem in higher
dimensions, and to the Euclidean k-center problem; we only need to plug in an appropriate
δ-approximation algorithm and an appropriate algorithm for the 0/1-weighted version of the
problem.

4 Exact k-Center Queries in R1

In this section we consider k-center queries in R1. Here we are given a set S of n points in
R1 that we wish to preprocess into a data structure such that, given a query interval Q and
a natural number k > 2, we can compute a set C of at most k intervals of the same length
that together cover all points in SQ := S ∩Q and whose length is minimum. We obtain the
following result (complete proof in the full version).

I Theorem 14. Let S be a set of n points in R1. There is a data structure that uses O(n)
storage such that, for a query range Q and a query value k > 2, we can answer a rectilinear
k-center query in O(min{k2 log2 n, 3k logn}) time.

Proof Sketch. We present two approaches, one with O(k2 log2 n) query time and one with
O(3k logn) query time. Let p1, . . . , pn be the points in S, sorted from left to right.

The first approach uses a subroutine Decider which, given an interval Q′, a length L
and an integer ` 6 k, can decide in O(` logn) time if all points in S ∩Q′ can be covered by
` intervals of length L. The global query algorithm then performs a binary search, using
Decider as subroutine, to find a pair of points pi, pi+1 ∈ SQ such that the first interval in
an optimal solution covers pi but not pi+1. Then an optimal solution is found recursively for
k − 1 clusters within the query interval Q ∩ [pi+1,∞).

The second approach searches for a point q ∈ Q and value ` such that there is an optimal
solution where SQ ∩ (−∞, q] is covered by ` intervals and SQ ∩ [q,∞) is covered by k − `
intervals. The efficiency depends on the interesting fact that there must be a fair split
point, that is, a pair (q, `) such that `/k (the fraction of intervals used to the left of q) is
proportional to the fraction of the length of Q to the left of q. J

5 Exact Rectilinear 2- and 3-Center Queries in R2

Suppose we are given a set S = {p1, p2, . . . , pn} of n points in R2 and an integer k. In this
section we build a data structure D that stores the set S and, given an orthogonal query
rectangle Q, can be used to quickly find an optimal solution for the k-center problem on SQ
for k = 2 or 3, where SQ := S ∩Q.

2-center queries

Our approach for the case of k = 2 is as follows. We start by shrinking the query range Q
such that each edge of Q touches at least one point of S. (The time for this step is subsumed
by the time for the rest of the procedure.) It is well known that if we want to cover SQ
by two squares σ, σ′ of minimum size, then σ and σ′ both share a corner with Q and these
corners are opposite corners of Q. We say that σ and σ′ are anchored at the corner they share
with Q. Thus we need to find optimal solutions for two cases – σ and σ′ are anchored at the

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:13

c

c′

c

c′

c

c′
(a) (b) (c)

A1

A2

A′
1

A′
2

A1 A′
1

A1

A′
1

Figure 1 Various types of L∞-bisectors. The bisectors and the boundaries of query regions are
shown in black. (a): Q is “fat”. The regions Aj , A′

j for j = 1, 2 are shown with text. (b): Q is “thin”.
The regions Aj and A′

j for j = 2, 3, 4 are empty. (c): Q is a square. The regions Aj and A′
j for j = 2

are empty. In both (a) and (c) regions A3, A′
3 are colored in blue and A4, A′

4 are colored in pink.

topleft and bottomright corner of Q, or at the topright and bottomleft corner – and return
the better one. Let c and c′ be the topleft and the bottomright corners of Q, respectively. In
the following we describe how to compute two squares σ and σ′ of minimum size that are
anchored at c and c′, respectively, and whose union covers SQ. The topright/bottomleft case
can then be handled in the same way.

First we determine the L∞-bisector of c and c′ inside Q; see Figure 1. The bisector
partitions Q into regions A and A′, that respectively have c and c′ on their boundary.
Obviously in an optimal solution (of the type we are focusing on), the square σ must cover
SQ∩A and the square σ′ must cover SQ∩A′. To compute σ and σ′, we thus need to find the
points q ∈ A and q′ ∈ A′ with maximum L∞-distance to the corners c and c′ respectively. To
this end, we partition A and A′ into subregions such that in each of the subregions the point
with maximum L∞-distance to its corresponding corner can be found quickly via appropriate
data structures discussed below. We assume w.l.o.g. that the x-span of Q is at least its
y-span. We begin by presenting the details of such a partitioning for Case (a) of Figure 1 –
Cases (b) and (c) can be seen as special cases of Case (a).

As Figure 1 suggests, we partition A and A′ into subregions. We denote these subregions
by Aj and A′j , for 1 6 j 6 4. From now on we focus on reporting the point q ∈ S in A

with maximum L∞-distance to c; finding the furthest point from c′ inside A′ can be done
similarly. Define four points p(Aj) ∈ S for 1 6 j 6 4 as follows.

The point p(A1) is the point of SQ with maximum L∞-distance to c in A1. Note that
this is either the point with maximum x-coordinate in A1 or the point with minimum
y-coordinate.
The point A2 is a bottommost point in A2.
The point A3 is a bottommost point in A3.
The point A4 is a rightmost point in A4.

Clearly

q = arg max
16j64

{d∞(p(Aj), c)}, (1)

where d∞(.) denotes the L∞-distance function.

Data structure. Our data structure now consists of the following components.
We store S in a data structure D1 that allows us to report the extreme points in the
x-direction and in the y-direction inside a rectangular query range. For this we use the
structure by Chazelle [9], which uses O(n logε n) storage and has O(logn) query time.
We store S in a data structure D2 with two components. The first component should
answer the following queries: given a 45◦ query cone whose top bounding line is horizontal

SoCG 2017

5:14 Range-Clustering Queries

and that is directed to the left – we obtain such a cone when we extend the region A4
into an infinite cone –, report the rightmost point inside the cone. The second component
should answer similar queries for cones that are the extension of A3.
In the full version we describe a linear-size data structure for such queries that has
O(logn) query time.

Query procedure. Given an axis-aligned query rectangle Q, we first (as already mentioned)
shrink the query range so that each edge of Q contains at least on point of S. Then compute
the L∞-bisector of Q. Query D1 with A1 and A2, respectively, to get the points p(A1) and
p(A2). Then query D2 with u and u′ to get the points p(A3) and p(A4), where u and u′ are
respectively the bottom and the top intersection points of L∞-bisector of Q and the boundary
of Q. Among the at most four reported points, take the one with maximum L∞-distance the
corner c. This is the point q ∈ SQ ∩A furthest from c.

Compute the point q′ ∈ SQ ∩ A′ furthest from c′ in a similar fashion. Finally, report
two minimum-size congruent squares σ and σ′ anchored at c and c′ and containing q and q′,
respectively.

Putting everything together, we end up with the following theorem.

I Theorem 15. Let S be a set of n points in R2. For any fixed ε > 0, there is a data
structure using O(n logε n) storage that can answer rectilinear 2-center queries in O(logn)
time.

I Remark. We note that the query time in Theorem 15 can be improved in the word-RAM
model to O(log logn) by using the range successor data structure of Zhou [24], and the point
location data structure for orthogonal subdivisions by de Berg et al. [11].

3-center queries

Given a (shrunk) query range Q, we need to compute a set {σ1, σ2, σ3} of (at most) three
congruent squares of minimal size whose union covers SQ. It is easy to verify (and is
well-known) that at least one of the squares in an optimal solution must be anchored at one
of the corners of Q. Hence and w.l.o.g. we assume that σ1 is anchored at one of the corners
of Q. We try placing σ1 in each corner of Q and select the placement resulting in the best
overall solution. Next we briefly explain how to find the best solution subject to placing σ1 in
the leftbottom corner of Q. The other cases are symmetric. We perform two separate binary
searches; one will test placements of σ1 such that its right side has the same x-coordinate
as a point in S, the other will be on possible y-coordinates for the top side. During each
of the binary searches, we compute the smallest axis-parallel rectangle Q′ ⊆ Q containing
the points of Q\σ1 (by covering Q\σ1 with axis-parallel rectangles and querying for extreme
points in these rectangles). We then run the algorithm for k = 2 on Q′. We need to ensure
that this query ignores the points already covered by σ1. For this, recall that for k = 2 we
covered the regions A and A′ by suitable rectangular and triangular ranges. We can now do
the same, but we cover A \ σ1 and A′ \ σ1 instead.

After the query on Q′, we compare the size of the resulting squares with the size of σ1
to guide the binary search. The process stops as soon as the three sizes are the same or no
further progress in the binary search can be made. Putting everything together, we end up
with the following theorem.

I Theorem 16. Let S be a set of n points in R2. For any fixed ε > 0, there is a data
structure using O(n logε n) storage that can answer rectilinear 3-center queries in O(log2 n)
time.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi 5:15

I Remark. Similar to Theorem 15, the query time in Theorem 16 can be improved in the
word-RAM model of computation to O(logn log logn) time.

Acknowledgements. This research was initiated when the first author visited the Depart-
ment of Computer Science at TU Eindhoven during the winter 2015–2016. He wishes to
express his gratitude to the other authors and the department for their hospitality. The last
author wishes to thank Timothy Chan for valuable discussions about the problems studied
in this paper.

References

1 M. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated pair
decomposition. Compututational Geometry: Theory and Applications, 46:631–639, 2013.

2 P.K. Agarwal, R. Ben Avraham, and M. Sharir. The 2-center problem in three dimensions.
Compututational Geometry: Theory and Applications, 46:734–746, 2013.

3 P.K. Agarwal and Cecilia M. Procopiuc. Exact and approximation algorithms for clustering.
Algorithmica, 33:201–226, 2002.

4 Sunil Arya, David M. Mount, and Eunhui Park. Approximate geometric MST range queries.
In Proc. 36th International Symposium on Computational Geometry (SoCG), pages 781–
795, 2015.

5 Peter Brass, Christian Knauer, Chan-Su Shin, Michiel H.M. Smid, and Ivo Vigan. Range-
aggregate queries for geometric extent problems. In Computing: The Australasian Theory
Symposium 2013, CATS’13, pages 3–10, 2013.

6 V. Capoyleas, G. Rote, and G. Woeginger. Geometric clusterings. Journal of Algorithms,
12:341–356, 1991.

7 T.M. Chan. Geometric applications of a randomized optimization technique. Discrete &
Compututational Geometry, 22:547–567, 1999.

8 T.M. Chan. More planar two-center algorithms. Compututational Geometry: Theory and
Applications, 13:189–198, 1999.

9 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17:427–462, 1988.

10 A.W. Das, P. Gupta, K. Kothapalli, and K. Srinathan. On reporting the L1-metric closest
pair in a query rectangle. Information Processing Letters, 114:256–263, 2014.

11 Mark de Berg, Marc van Kreveld, and Jack Snoeyink. Two- and three-dimensional point
location in rectangular subdivisions. Journal of Algorithms, 18:256–277, 1995.

12 D. Eppstein. Faster construction of planar two-centers. In Proc. 8th Annual ACM-SIAM
Symposiun on Discrete Algorithms (SODA), pages 131–138, 1997.

13 P. Gupta, R. Janardan, Y. Kumar, and M. Smid. Data structures for range-aggregate
extent queries. Compututational Geometry: Theory and Applications, 47:329–347, 2014.

14 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Mathematical sur-
veys and monographs. American Mathematical Society, 2011.

15 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), pages 291–300,
2004.

16 M. Hoffmann. A simple linear algorithm for computing rectilinear 3-centers. Compututa-
tional Geometry: Theory and Applications, 31:150–165, 2005.

17 R.Z. Hwang, R. Lee, and R.C. Chang. The generalized searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9:398–423, 1993.

SoCG 2017

5:16 Range-Clustering Queries

18 S. Khare, J. Agarwal, N. Moidu, and K. Srinathan. Improved bounds for smallest enclos-
ing disk range queries. In Proc. 26th Canadian Conference on Computational Geometry
(CCCG), 2014.

19 H.-P. Lenhof and M.H.M. Smid. Using persistent data structures for adding range restric-
tions to searching problems. Theoretical Informatics and Applications, 28:25–49, 1994.

20 Yakov Nekrich and Michiel H.M. Smid. Approximating range-aggregate queries using
coresets. In Proc. 22nd Canadian Conference on Computational Geometry (CCCG), pages
253–256, 2010.

21 Jeff M. Phillips. Algorithms for ε-approximations of terrains. In Proc. 35th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 447–458, 2008.

22 M. Sharir. A near-linear time algorithm for the planar 2-center problem. Discrete &
Compututational Geometry, 18:125–134, 1997.

23 M. Sharir and E. Welzl. Rectilinear and polygonal p-piercing and p-center problems. In
Proc. 12th International Symposium on Computational Geometry (SoCG), pages 122–132,
1996.

24 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space.
Information Processing Letters, 116:171–174, 2016.

Best Laid Plans of Lions and Men
Mikkel Abrahamsen∗1, Jacob Holm2, Eva Rotenberg3, and
Christian Wulff-Nilsen4

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
miab@di.ku.dk

2 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
jaho@di.ku.dk

3 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
roden@di.ku.dk

4 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
koolooz@di.ku.dk

Abstract
We answer the following question dating back to J. E. Littlewood (1885–1977): Can two lions
catch a man in a bounded area with rectifiable lakes? The lions and the man are all assumed
to be points moving with at most unit speed. That the lakes are rectifiable means that their
boundaries are finitely long. This requirement is to avoid pathological examples where the man
survives forever because any path to the lions is infinitely long. We show that the answer to
the question is not always “yes” by giving an example of a region R in the plane where the
man has a strategy to survive forever. R is a polygonal region with holes and the exterior and
interior boundaries are pairwise disjoint, simple polygons. Our construction is the first truly
two-dimensional example where the man can survive.

Next, we consider the following game played on the entire plane instead of a bounded area:
There is any finite number of unit speed lions and one fast man who can run with speed 1 + ε

for some value ε > 0. Can the man always survive? We answer the question in the affirmative
for any constant ε > 0.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Lion and man game, Pursuit evasion game, Winning strategy

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.6

1 Introduction

‘A lion and a man in a closed circular arena have equal maximum speeds. What tactics should
the lion employ to be sure of his meal?’1 These words (including the footnote) introduce the
now famous lion and man problem, invented by R. Rado in the late thirties, in Littlewood’s
Miscellany [15]. It was for a long time believed that in order to avoid the lion, it was optimal
for the man to run on the boundary of the arena. A simple argument then shows that the

∗ Research partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent
Research under the Sapere Aude research career programme.

1 The curve of pursuit (L running always straight at M) takes infinite time, so the wording has its point.

© Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Best Laid Plans of Lions and Men

lion could always catch the man by staying on the radius OM defined by the man while
approaching him as much as possible. However, A.S. Besicovitch proved in 1952 that the man
has a very simple strategy (following which he will approach but not reach the boundary)
that enables him to avoid capture forever no matter what the lion does. See [15] for details.

Throughout this paper, all men, lions, and other animals are assumed to be points. One
can prove that two lions are enough to catch the man in a circular arena, and Croft [8]
proves that in general a necessary and sufficient number of birds to catch a fly inside an
n-dimensional spherical cage is just n (again, we assume that the fly and the birds have
equal maximum speeds).

A well-known related discrete game is the cop and robber game: Let G be a finite connected
undirected graph. Two players called cop C and robber R play a game on G according to
the following rules: First C and then R occupy some vertex of G. After that they move
alternately along edges of G. The cop C wins if at some point in time C and R are on the
same vertex. If the robber R can prevent this situation forever, then R wins. The robber
has a winning strategy on many graphs including all cycles of length at least 4. Therefore,
the cop player C can be given a better chance by allowing him, say, k cops C1, . . . , Ck. At
every turn C moves any non-empty subset of {C1, . . . , Ck}. Now, the cop-number of G is
the minimal number of cops needed for C to win. Aigner and Fromme [2] observes that the
cop-number of the dodecahedron graph is at least 3, since if there are only 2 cops, the robber
can always move to a vertex not occupied by a cop and not in the neighbourhood of any.
Furthermore, they prove that the cop-number of any planar graph is at most 3. Thus, the
cop-number of the dodecahedron is exactly 3.

Returning to the lion and man game, Bollobás [6] writes that the following open problem
was already mentioned by J.E. Littlewood (1885–1977): Can two lions catch a man in a
bounded (planar) area with rectifiable lakes? An informal definition of a rectifiable curve
is that it has finite length. We require that the boundaries of the lakes and the exterior
boundary are all rectifiable curves to avoid pathological examples where the man survives
forever because any path to the lions is infinite. Bollobás mentions the same problem in a
comment in his edition of Littlewood’s Miscellany [15] and in [7]. The problem is also stated
by Fokkink et al. [11]. Berarducci and Intrigila [4] prove that the man can survive forever
(for some initial positions of the man and lions) if the area is a planar embedding of the
dodecahedron graph where each edge is a curve with the same length, say length 1. The
proof is essentially the same as the proof by Aigner and Fromme [2] that the cop-number of
the dodecahedron is at least 3: When the man is standing at a vertex, there will always be a
neighbouring vertex with distance more than 1 to the nearest lion. It is thus safe for the
man to run to that vertex. This, however, is a one-dimensional example. Berarducci and
Intrigila raise the question whether it is possible to replace the one-dimensional edges by
two-dimensional thin lines.

We present a truly two-dimensional region R in the plane where two lions are not enough
to ever catch the man. We say that R is truly two-dimensional since R is a polygonal region
with holes and the exterior and interior boundaries are all pairwise disjoint, simple polygons
– in particular, they are clearly rectifiable. We were likewise inspired by the dodecahedron in
the construction of our example. We explain the construction in Section 2.

Rado and Rado [16] and Janković [13] consider the problem where there are many lions
and one man, but where the game is played in the entire unbounded plane. They prove
that the lions can catch the man if and only if the man starts in the interior of the convex
hull of the lions. Inspired by that problem, we ask the following question: What if the lions
have maximum speed 1 and the man has maximum speed 1 + ε for some ε > 0? We prove

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:3

that for any constant ε and any finite number of lions, such a fast man can survive forever
provided that he does not start at the same point as one of the lions. We explain a strategy
in Section 3.

Other variants of the game with a faster man have been studied previously. Flynn [9, 10]
and Lewin [14] study the problem where there is one lion and one fast man in a circular
arena. The lion tries to get as close to the man as possible and the man tries to keep the
distance as large as possible. Variants of the cop and robber game where the robber is faster
than the cops have also been studied. See for instance [3, 12].

1.1 Definitions
We follow the conventions of Bollobás et al. [5]. Let R ⊆ R2 be a region in the plane on
which the lion and man game is to be played, and assume that the lion starts at point l0
and the man at point m0. We define a man path as a function m : [0,∞) −→ R satisfying
m(0) = m0 and the Lipschitz condition ‖m(s)−m(t)‖ ≤ V · |s− t|, where V is the speed of
the man. In our case, we either have V = 1 or, in the case of a fast man, V = 1 + ε for some
small constant ε > 0. Note that it follows from the Lipschitz condition that any man path is
continuous. A lion path l is defined similarly, but the lions we consider always run with at
most unit speed. Let L be the set of all lion paths andM be the set of all man paths. Then
a strategy for the man is a function M : L −→M such that if l, l′ ∈ L agree on [0, t], then
M(l) and M(l′) also agree on [0, t]. This last condition is a formal way to describe that the
man’s position M(l)(t), when he follows strategy M , depends only on the position of the
lion at points in time before and including time t, i.e., he is not allowed to act based on the
lion’s future movements. (By the continuity of any man path, the man’s position at time t
is in fact determined by the lion’s position at all times strictly before time t.) A strategy
M for the man is winning if for any l ∈ L and any t ∈ [0,∞), it holds that M(l)(t) 6= l(t).
Similarly, a strategy for the lion L : M −→ L is winning if for any m ∈ M, it holds that
L(m)(t) = m(t) for some t ∈ [0,∞). These definitions are extended to games with more than
one lion in the natural way.

It might seem unfair that the lion is not allowed to react on the man’s movements when
we evaluate whether a strategy M for the man is winning. However, we can give the lion full
information about M and allow it to choose its path l depending on M prior to the start of
the game. If M is a winning strategy, the man can also survive the lion running along l.

We call a man strategy M locally finite if it satisfies the following property: if l and l′ are
any two lion paths that agree on [0, t] for some t then the corresponding man paths M(l) and
M(l′) agree on [0, t+ δ] for some δ > 0 (we allow that δ depends on l|[0,t]). Thus, informally,
the man commits to doing something for some positive amount of time dependent only on
the situation so far. Bollobás et al. [5] prove that if the man has a locally finite winning
strategy, then the lion does not have any winning strategy. The argument easily extends
to games with multiple lions. At first sight, it might sound absurd to even consider the
possibility that the lion has a winning strategy when the man also does. However, it does
not follow from the definition that the existence of a winning strategy for the man implies
that the lion does not also have a winning strategy. See the paper by Bollobás et al. [5] for a
detailed discussion of this (including descriptions of natural variants of the lion and man
game where both players have winning strategies). In each of the problems we describe, the
winning strategy of the man is locally finite, so it follows that the lions do not have winning
strategies. In fact, the strategies we describe satisfy the much stronger condition that they
are equitemporal, i.e., there is a constant ∆ > 0 such that the man at any point in time i ·∆,
for i = 0, 1, . . ., decides where he wants to run until time (i+ 1) ·∆.

SoCG 2017

6:4 Best Laid Plans of Lions and Men

2 The Man Surviving Two Lions in a Bounded Area

In this section, we present a polygonal region R in the plane with 11 lakes. See [1] for an
illustration of such a region. The exterior and interior boundaries of R are all pairwise
disjoint simple polygons, and a man can survive forever in R against two lions provided that
the lions are initially at a sufficient distance.

Consider a planar embedding D of the dodecahedron where each edge is a polygonal
curve. We can obtain that all edges have the same length by prolonging some edges using a
zig-zag pattern. This embedding corresponds to an area with 11 lakes and infinitely thin
paths between the lakes, and as observed by Berarducci and Intrigila [4], the man can survive
forever against two lions on such an embedding by deciding at each vertex which neighbouring
vertex to visit next. First, we explain why it is not straight-forward to obtain the region R
from D, or, at least, why some natural initial attemps will not work.

We want to “thicken” each edge of D such that the boundaries of the lakes become
disjoint, thus obtaining a truly two-dimensional region D′ containing D as a subset. However,
doing so, the point in D′ corresponding to a vertex of D does not necessarily lie on the
shortest path between its neighbours. We thus cannot simply employ the strategy from D,
roughly speaking, because the man must plan in advance which turn to take in the upcoming
vertex. Thus, before he reaches the region Rv corresponding to a given vertex, he should
already know which neighbouring vertex he will visit afterwards. Then, he can choose a path
through Rv that makes the concatenated path shortest possible.

In order to carry out this idea, we first need to describe a winning strategy of the man
on the dodecahedron graph with the special property that he does not make his decisions
at the vertices. Let G be a planar embedding of the dodecahedron where all edges have
length 4. The distance between two points in G is the length of a shortest path between
the points. Let the quarters denote the points on the edges of G at distance 1 to the closest
vertex. Consider a quarter x on the edge ab of G. For a point p ∈ G, p 6= x, let da(x, p) be
the length of a shortest simple path in G from x to p that initially follows the edge {a, b} in
direction towards a. Let db(x, p) be defined similarly.

When the man is at a quarter x with distance 1 to the vertex a and 3 to the vertex b, we
let dnear denote the distance from x to the closest lion with respect to da, and let dfar denote
the distance from x to the closest lion with respect to db. To avoid confusion, we write them
as dnear(t) and dfar(t) when x is the position of the man at the time t.

We will now show that if the lions are sufficiently far away in the initial situation, there
exists a winning strategy for the man where he only takes stock of the situations in the
quarters. That is, when he reaches a quarter, he must plan for the next 2 units of time where
to run to, and then he has reached a quarter again, and so on.

I Invariant 1. In the scenario described above:
1. The man is standing on a quarter.
2. min{dnear, dfar} ≥ 1.
3. At least one of the two following statements is true:

dnear ≥ 3
dfar ≥ 7

I Lemma 2. If Invariant 1 is satisfied initially, the man has a winning strategy by which he
runs from quarter to quarter at unit speed so that Invariant 1 is true at any quarter. The
strategy maintains Invariant 1 Point 2 at all times, that is, that the closest lion is always at
least at distance 1.

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:5

Figure 1 A situation from the proof of
Lemma 2. Imagine that all edges have length
4. The lion lnear is in the red part.

Figure 2 The embedding D of the dodeca-
hedron. All edges have lengths 1 or 3.

Proof. Let x denote the position of the man at the time t, and assume the invariant holds.
We prove that he can run to another quarter x′ without getting caught such that the invariant
again holds when he reaches x′.

The proof goes by inspecting cases. Let ab be the edge containing x and suppose a be
the nearest vertex to x and b the furthest.

Case 1: dfar(t) ≥ 7. Let y denote the other quarter on the same edge as x. We claim that
the man can run to y without violating the invariant. We must thus argue that the invariants
are satisfied at time t+2 for a man situated at y. First, note that he will not encounter any lion
while running towards y because dfar(t) > 4. Note also that dfar(t+ 2) ≥ 1, since dnear(t) ≥ 1
and the worst case is that the lion follows the man. Furthermore, dnear(t+ 2) ≥ 7− 4 = 3,
since dfar(t) ≥ 7 and the worst case is that the man and lion have run towards each other.
Thus, the invariant holds at the time t+ 2.

Case 2: dfar < 7, and thus dnear(t) ≥ 3. In this case, we exploit the fact that dfar is so
small that we can bound dfar(t+ 2) from below. Let lfar denote the lion at distance dfar from
x, and let lnear denote the other lion. Consider the two other quarters at distance 1 from a,
call them q1 and q2. Assume without loss of generality that q1 is furthest from lnear. The
situation is sketched in Figure 1. We now argue that the man can choose to run towards
q1 without getting eaten, and while maintaining the invariant. Let b′ denote the vertex at
distance 3 to q1. Note that db′(q1, lfar(t)) ≥ 11 and thus, db′(q1, lfar(t+ 2)) ≥ 9.

In Figure 1, the points that are both ≥ 3 from x, and (weakly) closer to q2 than to q1, are
marked with red, and hence by our choice of q1, lnear must be in the subset marked with red
at time t. As is easily seen by inspection, db′(q1, lnear(t)) ≥ 9, and thus db′(q1, lnear(t+2)) ≥ 7.
But then, dfar(t+ 2) ≥ min{9, 7} = 7, and Invariant 1.1 and 3 are maintained.

To see that Invariant 1.2 is still maintained, note that da(q1, lnear(t)) ≥ 3 and therefore
da(q1, lnear(t+ 2)) ≥ 1. Similarly, since db(x, lfar(t)) ≥ 1, we have da(q1, lfar(t)) ≥ 3 so that
da(q1, lfar(t+ 2)) ≥ 1. Thus, lnear(t+ 2) ≥ 1, and we are done. J

Our first goal is to find an embedding G of the dodecahedron in the plane with the
properties described below, which will make it easier for us to construct the region R.

SoCG 2017

6:6 Best Laid Plans of Lions and Men

Figure 3 Regardless of angles between
a, b, c, we can introduce bends to make the
three edges meet at v in angles of size 3π

2 and
at the same time extend the lengths suitably.

Figure 4 The shortest paths in the circle Dv

between any two of a, b, c, that avoid crossing the
polygonal curves Pvf , Pvg, Pvh all have length 1/8.

I Lemma 3. There exists a planar embedding G of the dodecahedron such that
all edges have length 4,
all edges consist of line segments with lengths being multiples of 1

8 ,
any pair of line segments from different edges that meet at a vertex each have length 1/4
and form an angle of size 2π

3 , and
for any vertex v, the circle Dv centered at v with radius 1/16 only intersects the three
edges incident to v.

After proving this lemma, we derive from G a truly two-dimensional area R in the plane
where the man can survive against two lions. Lemma 2 gives a winning strategy for the man
in G where he runs from quarter to quarter. The paths along which he runs in R will be
exactly the same as in G except for inside the circles Dv.

We first need the following elementary geometric observations:

I Observation 4. There exists a planar embedding D of the dodecahedron such that all edges
have length 1 or 3. D furthermore has the property that the circle of radius 1

4 centered at
any vertex v only intersects the three edges incident to v. (See Figure 2.)

I Lemma 5. For any three points a, b, c on a circle C, there exist a equilateral triangle
with corners a′, b′, c′ on C where {a, b, c} and {a′, b′, c′} are disjoint and such that, when
considering the points a, b, c, a′, b′, c′ all together, a is a neighbour of a′, and b is a neighbour
of b′, and c is a neighbour of c′.

Proof. See Figure 3. The points a, b, c divide C into three arcs. Clearly, we can choose an
equilateral triangle with corners on C disjoint from {a, b, c} so that not all three corners of
the triangle are on the same arc. It is now easy to label the corners of the triangle with
a′, b′, c′ to satisfy the lemma. J

We are now ready to prove that a planar embedding G of the dodecahedron exists as
stated in Lemma 3.

Proof of Lemma 3. Start with the embedding D shown in Figure 2, where all edges have
length 1 or 3. Consider a vertex v and the circle Cv of radius r = 1

4 centered at v. Assume the
three edges incident to v enter Cv in the points a, b, c, and let ua, ub, uc be the neighbouring

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:7

Figure 5 The edge euv of G is red and is one of the edges bounding the face f , which is above
euv. The polygonal curve Quv, which is on the boundary of the lake Lf , is blue.

vertices of v such that a is a point on the edge {ua, v}, b is a point on {ub, v}, and c is a
point on {uc, v}. We now delete the segments va, vb, and vc, and therefore need to reconnect
a, b, and c to v. We explain how to reconnect a to v; b and c are handled analogously.
We find points a′, b′, c′ on Cv as described in Lemma 5. See Figure 3. We first connect
a′ to v. We now need to connect a to a′ using some bends. A bend is two segments xy
and yz, each of length r/2 = 1/8, such that x and z are on Cv and y is in the interior of
Cv. If the edge {ua, v} had length 3 in D, we make two bends that together connect a and
a′. We thus increase the length of the edge {ua, v} by 1/2 in each end and the resulting
edge has length 4. If the edge {ua, v} had length 1 in D, we connect a and a′ by 6 bends,
corresponding to extending the length of the edge by 3. The result is a planar embedding G
of the dodecahedron with the properties stated in the lemma. J

We now describe how to make the region R. We want each quarter of G to be a point in
R and we want all pairs of quarters to have the same distances in G and R. It will then follow
from Lemma 2 that the man has a winning strategy by running from quarter to quarter in
R. We make one lake Lf corresponding to each face f of G. Here, we also consider the outer
boundary of R to be the boundary of an unbounded lake corresponding to the exterior face
of G. The shortest paths in R will be polygonal paths with corners at convex corners of the
lakes. Outside the circles Dv, the paths along which the man will run are exactly the paths
in G. Inside a circle Dv, we need to take special care to ensure that the man can always run
along an optimal path.

We now explain the construction of the lakes Lf corresponding to faces f of G. Consider
a vertex v of G and the faces f, g, h on which v is a vertex. We first describe how the
boundaries of Lf , Lg, Lh look in the circle Dv of radius 1/16 centered at v. See Figure 4.
Let a, b, c be the points where the edges incident to v enter Dv. Suppose that the arc on Dv

from a to b is in the face f , the arc from b to c is in g, and the arc from c to a is in h. We
now create three polygonal curves Pvf , Pvg, Pvh inside Dv so that the shortest path between
any two of a, b, c contained in Dv and not crossing any of Pvf , Pvg, Pvh has length 1/8. The
curve Pvf starts at a point rvf on Dv and ends at a point svf on Dv, and the endpoints
rvf , svf are inside f , and similarly for the faces g, h. These properties are easy to obtain by
a construction as shown in Figure 4. The curves Pvf , Pvg, Pvh will be part of the boundary
of the lakes Lf , Lg, Lh, respectively.

SoCG 2017

6:8 Best Laid Plans of Lions and Men

We now explain how to construct the rest of the boundary of each lake Lf . Consider a
face f of G and assume that the vertices on f are uvxyz in that order on f . The curves
Puf , Pvf , Pxf , Pyf , Pzf appear on the boundary of Lf in that order. In the following, we
describe how to connect the end suf of Puf with the start rvf of Pvf – the other curves are
connected in a completely analogous way. See Figure 5. Let euv be the edge of G between
u and v, thus, euv is a polygonal curve. Let a corner of euv be a common point of two
neighbouring segments of euv. We make a polygonal curve Quv corresponding to euv. Quv
starts at suf and ends at rvf so that it connects Puf and Pvf . Quv stays near euv inside f
and touches euv at the corners of euv which are convex corners of f . To summarize, Quv has
the following properties:
1. Quv starts at suf and ends at rvf ,
2. Quv is completely contained in f ,
3. Quv is, except for the endpoints suf , rvf , outside the circles Du and Dv,
4. Quv and Qu′v′ are completely disjoint for any ordered pair (u′v′) 6= (u, v) so that {u′, v′}

is an edge of G, and
5. Quv touches euv at a point p if and only if p is a corner of euv which is a convex corner

of f .

Observe that Qvu (note: not Quv!) touches euv at the corners which are concave corners
of f , since those are convex corners of the neighbouring face on the other side of euv.

I Theorem 6. There exists a polygonal region R in the plane with holes where the exterior
and interior boundaries are all pairwise disjoint and such that the man has a winning strategy
against two lions.

Proof. R is the region that we get by removing from R2 the interior of each of the lakes Lf .
Thus, the boundary of each lake is included in R, so that R is a closed set. R is also bounded
because we remove the interior of the unbounded lake corresponding to the exterior face of G.
Note that any point on an edge euv of G which is outside the circles Du and Dv is a point
in R. Since the quarters of euv are outside the circles Du and Dv, it follows that they are
also points in R. Furthermore, our construction ensures that the distance in R between any
two quarters is the same as in G. Let G′ be the points in R which are on some shortest path
between two quarters in R. Thus, G′ are the points that the man can possibly visit when
running along shortest paths in R from quarter to quarter.

Let l1 and l2 be two lions in R. We define projections l′1 and l′2 of the lions l1 and l2 to
be the closest points in G′ (with respect to distances in R). We now define l′′1 and l′′2 to be
projections of l′1 and l′2 in G in the following way. Outside the circles Dv, G and G′ coincide,
and here we simply define l′′i := l′i. Suppose now that l′i is inside a circle Dv for some vertex
v of G. See Figure 6. Suppose that the three edges incident to v enter Dv at the points a, b, c.
The projection l′i is a point on one of the shortest paths between a pair of the points a, b, c.
Recall that these shortest paths all have length 1/8. Assume without loss of generality that
l′i is on the path from a to c. Let d be the distance from a to l′i in R, so that 0 ≤ d ≤ 1/8. If
d = 1/16, we define l′′i := v. Otherwise, if d < 1/16, we let l′′i be the point on the segment
av in G with distance d to a, i.e., l′′i ∈ av so that ‖al′′i ‖ = d. Similarly, if d > 1/16, we let l′′i
be the point on bv with distance 1/8− d to b.

We now prove that l′′i moves with at most unit speed in G. It will then follow from
Lemma 2 that the man has a winning strategy.
G′ subdivides R into some regions R′1, . . . , R′k, which are the connected components of

R \ G′. Let Ri = R′i be the closure of R′i. Now, R =
⋃k
i=1 Ri. Inside each circle Dv, there is

a triangular region bounded by three segments from G′. All other regions are bounded by

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:9

Figure 6 The projection of the lion’s position li onto the point l′
i of G′ (left), and the projection

of l′
i onto the point l′′

i of G (right). The dashed lines illustrate G′, and the solid lines illustrate G. In
the left figure, l′

i is the closest point on G′ to li. In the right figure, the length of the segment cl′′
i

equals the length of the dashed path from c to l′
i.

a polygonal curve C ⊂ ∂Lf on the boundary of some lake Lf and a concave chain H ⊂ G′.
Call such a region normal. If the lion li is in a normal region Rj with boundary ∂Rj = C ∪H
as described before, the projection l′i is on H. It then follows from the concavity of H that l′i,
and thus also l′′i , moves continuously and with at most unit speed.

However, when li is inside a triangular region in Dv, the projection l′i might jump from
one segment of the triangle to another. Suppose that the three edges incident to v enter Dv

at the points a, b, c as in Figure 6. Let a′ be the point where the shortest paths from a to b
and c separate and define b′ and c′ similarly. Thus, the points a′b′c′ are the corners of the
triangular region. Suppose that l′i jumps from a′b′ to a′c′. Then, the distance from li to
a′b′ and a′c′ is the same and the distance from a to l′i before and after the jump is at most
1/16, since otherwise, li would be closer to the segment b′c′ than to a′b′ and a′c′. It follows
that l′i jumps from one point to another which have the same projection l′′i . Thus, l′′i moves
continuously and with at most unit speed.

The man now employs the strategy from Lemma 2 in the following way. He imagines
that he is playing in the dodecahedron G against the lions l′′1 and l′′2 . Assume therefore that
Invariant 1 holds initially. The strategy tells the man to which neighbouring quarter to run.
That quarter also exists in G′, and has the same distance, so the man runs to that quarter in
G′. Since l′′1 and l′′2 run with at most unit speed, the man can escape them forever. When
the man is outside the circles Dv, it is a necessary condition for the lions to catch the man
that l′′1 or l′′2 coincide with the man, so we conclude that they cannot catch him outside the
circles. When the man is inside a circle Dv, we know from Lemma 2 that l′′1 and l′′2 are at
least 1 away from the man. Therefore, l1 and l2 must be outside Dv, and hence they cannot
catch him in that case either. Thus, the man survives forever in R. J

3 The Fast Man Surviving any Number of Lions in the Plane

Finally, we consider the case where the man is just slightly faster than the lions in the
unbounded plane without obstacles. In this case, the man is able to escape arbitrarily many
lions. The full proofs of some of the claims below can be found in [1].

I Theorem 7. In the plane R2, for any ε > 0, a man able to run at speed 1 + ε has a locally
finite strategy to escape the convex hull of any number n ∈ N of unit-speed lions, provided

SoCG 2017

6:10 Best Laid Plans of Lions and Men

that the man does not start at the same point as a lion. Thus, the man has a locally finite
winning strategy.

In fact, we prove that the man is able to keep some minimum distance dε,n to any lion, where
dε,n only depends on ε, n, and the initial distances to the lions. Thus, if the n lions and man
were disks with radius < 1

2dε,n, the man is still able to escape.
We proceed by induction on the number n of lions. We define strategies Mj for the man

to keep distance cj to the first j lions. The j’th strategy yields a curve consisting of line
segments all of the same length.

Inductively, the man can keep a safety distance cn−1 to the n− 1 first lions by running
at speed 1 + εn−1, where ε1 < ε2 < . . . < εn < ε. The bends of the curve defined by strategy
Mn−1 are milestones that he runs towards when avoiding n lions. If the n’th lion `n is in the
way, the man makes an avoidance move, keeping a much smaller safety distance cn to `n and
running slightly faster at speed εn (see Figure 9). Intuitively, when performing avoidance
moves, the man runs counter-clockwise around a fixed-diameter circle centered at the lion.

After a limited number of avoidance moves, the man can make an escape move, where he
simply runs towards the milestone defined by the strategy Mn−1.

By choosing cn sufficiently small, we can make sure that the detour caused by the n’th
lion is so small that it can only annoy the man once for each of the segments of the strategy
Mn−1, and thus that he is ensured to have distance at least ci−1/2 to the position defined
by Mn−1 and hence not in danger of the (n− 1)’st lions.

I Theorem 8. A man able to run at speed 1 + ε for any ε > 0 has a locally finite strategy to
escape the convex hull of any number n ∈ N of unit-speed lions, provided that the man does
not start at the same point as a lion. Thus, the man has a locally finite winning strategy.

Proof. We assume without loss of generality that ε < 1. Let l1, . . . , ln be n arbitrary lion
paths and let the man start at position m0 such that m0 6= li(0) for all i. We show that the
man has a strategy Mn with the following properties:
1. The man is always running at speed 1 + εn, where εn := (1− 2−n) · ε.
2. The path defined by Mn(l1, . . . , ln) is a polygonal path with corners m0m1 . . . and each

segment mimi+1 has the same length ∆n · (1 + εn). Thus, the time it takes the man to
run from mi to mi+1 is ∆n.

3. Let ti := i ·∆n be the time where the man leaves mi in order to run to mi+1. The point
mi+1 can be determined from the positions of the lions at time ti.

4. There exists a safety distance cn > 0 such that for any i = 1, . . ., any t ∈ [ti, ti+1], and
any point x ∈ mimi+1, it holds that dist(x, {l1(t), . . . , ln(t)}) ≥ cn.

5. There is a corner mi = Mn(ti) such that for all t ≥ ti,

Mn(l1, . . . , ln)(t) /∈ CH{l1(t), . . . , ln(t)}.

Clearly, it follows from the properties that Mn is a winning strategy for the man fulfilling
the requirements in the theorem. We prove the statement by induction on n. If there is only
one lion, the man will run on the same ray all the time with constant speed 1 + ε1 = 1 + ε/2.
The man chooses the direction of the ray to be m0 − l1(0). This strategy obviously satisfies
the stated properties. Assume now that a strategy Mn−1 with the stated properties exists
for n− 1 ≥ 1 lions and consider a situation with n lions running along paths l1, . . . , ln.

Assume without loss of generality that the lions are numbered according to their (increas-
ing) distance to the man at time 0, i.e., ‖m0l1(0)‖ ≤ ‖m0l2(0)‖ ≤ · · · ≤ ‖m0ln(0)‖. For any
i ∈ {1, . . . , n}, let Mi be shorthand for Mi(l1, . . . , li) and m shorthand for Mn.

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:11

At any time t, let the succeeding corner on the strategy Mn−1 be

g(t) := Mn−1(bt/∆n−1 + 1c ·∆n−1).

By property 3, the man can always compute the point g(t).
We first describe the intuition behind the man’s strategy without specifying all details,

and later give a precise description. In the situation with n lions, the man attempts to run
according to the strategy for the n− 1 first lions, i.e., the strategy Mn−1. Thus, at any time
t, the man’s goal is to run towards the point g(t). However, the lion ln might prevent him
from doing so. Compared to the case with n− 1 lions, the man has increased his speed by
1 + εn − (1 + εn−1) = 2−nε, so he has time to take detours while still following the strategy
Mn−1 approximately.

Assume that we have defined the man’s strategy up to time t. If he is close to the n’th
lion, i.e., the distance ‖m(t)ln(t)‖ is close to r, for some small constant r > 0 to be specified
later, he runs counterclockwise around the lion, maintaining approximately distance r to
the lion. He does so until he gets to a point where running directly towards g(t) will not
decrease his distance to the lion. He then escapes from the lion, running directly towards
g(t). Doing so, he can be sure that the lion cannot disturb him anymore until he reaches g(t)
or g(t) has changed.

We choose r so small that when the man is running around the lion, we are in one of the
following cases:

The lion is so close to g(t) that the man is within the safety distance cn−1 from g(t), and
thus in no danger of the lions l1, . . . , ln−1.
After running around the lion in a period of time no longer than 12πr/εn, the man
escapes by running directly towards g(t) without decreasing the distance to the lion. By
choosing r sufficiently small, we can therefore limit the duration, and hence the length,
of the detour that the lion can force the man to run, so that the man is ensured to be
within the safety distance from the lions l1, . . . , ln−1 during the detour.

We now describe the details that make this idea work. We define

r := min
{

∆n−1εn(εn − εn−1)
2 + 2εn + 18π(1 + εn) ,

εncn−1

4 + 4εn + 24π(1 + εn)

}
,

ρ := 2r/εn,

θ := arccos 1
1 + εn

,

ϕ ∈ (0, π/2] so that tan θ = ρ sinϕ
ρ cosϕ− 2r , and

∆n > 0 so that 2 arcsin (1 + εn)∆n

2(r −∆n) + ∆n

ρ
≤ ϕ, ∆n <

r

3 + εn
, and ∆n−1/∆n ∈ N.

We note that ϕ can be chosen since the function x 7−→ ρ sin x
ρ cos x−2r is 0 for x = 0 and tends

to +∞ as ρ cosx decreases to 2r. As for ∆n, the function x 7−→ 2 arcsin (1+εn)x
2(r−x) + x

ρ is 0 for
x = 0 and increases continuously, and hence ∆n can be chosen.

Define a point in time t to be a time of choice if t has the form ti := i∆n for i ∈ N0. At
any time of choice ti, the man chooses the point m(ti+1) at distance (1 + εn)∆n from his
current position m(ti) by the following strategy (see Figures 7–9):
A. Suppose first that ‖m(ti)ln(ti)‖ ≥ r + ∆n(1 + εn). Then the man chooses the direction

directly towards g(ti). In the exceptional case that m(ti) = g(ti), he chooses an arbitrary
direction.

SoCG 2017

6:12 Best Laid Plans of Lions and Men

ln(ti)

m(ti) g(ti)m(ti+1)

Figure 7 A free move. The
circles with centers m(ti) and
ln(tn) have radii (1+εn)∆n and
r, respectively.

ln(ti)

m(ti)

g(ti)

b

W0

W1

Figure 8 An escape move.
The man runs to b.

ln(ti)

m(ti)

g(ti)

q

Figure 9 An avoidance
move. The man runs to q.

B. Suppose now that ‖m(ti)ln(ti)‖ < r+∆n(1+εn) and consider the casem(ti) 6= g(ti). Let b
be the point at distance (1+εn)∆n from m(ti) in the direction towards g(ti). If there exist
two parallel lines W0 and W1 such that m(ti) ∈ W0, b ∈ W1, dist(ln(ti),W0) ≥ r −∆n,
and dist(ln(ti),W1) ≥ dist(ln(ti),W0) + ∆n, then the man runs to b.

C. In the remaining cases, the circles C(m(ti),∆n(1 + εn)) and C(ln(ti), r) intersect at two
points p and q such that the arc on C(ln(ti), r) from p counterclockwise to q is in the
interior of C(m(ti),∆n(1 + εn)). The man then runs towards the point q.

A move defined by case A, B, or C is called a free move, an escape move, or an avoidance
move, respectively. Let move i be the move that the man does during the interval [ti, ti+1).

I Claim 9. At any time of choice ti, it holds that

‖m(ti)ln(ti)‖ ≥ r −∆n

and if the preceding move was an avoidance move, it also holds that

‖m(ti)ln(ti)‖ ≤ r + ∆n.

Furthermore, at an arbitrary point in time t ∈ [ti−1, ti] and any point m′ ∈ m([ti−1, ti]) it
holds that

0 < r − (3 + εn)∆n ≤ ‖m′ln(t)‖

and if move i− 1 is an avoidance move then additionally

‖m′ln(t)‖ ≤ r + (3 + εn)∆n.

Proof. (Sketch) The proof is by induction on i. The induction step for the first inequality
follows easily from the speed of the man and the speed of the lion ln and (in case of an escape
or avoidance move) from considering the distance ‖m(ti)ln(ti−1)‖. For the second inequality,
note that ‖m(ti)ln(ti−1)‖ = r. The third inequality follows by considering the combined
speed of the man and the lion ln and by observing that ‖m(ti−1)ln(ti−1)‖ ≥ r−∆n. A similar
argument using the inequality ‖m(ti−1)ln(ti−1)‖ ≤ r + ∆n shows the fourth inequality. J

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:13

ln(ti)

w0

g

W0

w4

W4

Figure 10 The distance between two consecutive of the parallel lines W0, . . . , W4 is at least ∆n,
which proves that the man runs from m(ti) = w0 to w4 unless g moves in the meantime.

I Claim 10. An avoidance move is succeeded by an avoidance move or an escape move.
When the man does an escape move, he will not do an avoidance move before he reaches g(t)
or g(t) moves.

Proof. Consider move i. We know from Claim 9 that if move i− 1 was an avoidance move,
then ‖m(ti)ln(ti)‖ ≤ r + ∆n < r + (1 + εn)∆n, so move i cannot be a free move.

For the second part of the statement, assume that move i is an escape move. Let
g := g(ti). Let w0, . . . , wk be a sequence of points on the ray from m(ti) with direction
to g such that w0 = m(ti), ‖w0wj‖ = j(1 + εn)∆n, and k is minimum such that either
g ∈ wk−1wk or g(t′) 6= g for some t′ ∈ [ti+k−1, ti+k]. See Figure 10. Let W0 and W1 be the
parallel lines defined in case B for move i. We define lines Wj for j ≥ 2 to be parallel to
W0 and passing through wj . We claim that for any j ∈ {0, . . . , k − 1}, the man moves from
wj to wj+1 during move i + j using either an escape move or a free move. We prove this
by induction on j. It holds for j = 0 by assumption, so assume it holds that m(ti+j) = wj
and that move i + j − 1 was an escape move or a free move. Since the distance between
consecutive lines Wj and Wj+1 is at least ∆n, it follows that dist(ln(ti),Wj) ≥ r+ (j− 1)∆n

and hence that dist(ln(ti+j),Wj) ≥ r −∆n. Now, if ‖m(ti+j)ln(ti+j)‖ < r + ∆n(1 + εn),
then the lines Wj and Wj+1 are a witness that move i+ j is an escape move so that the man
moves to wj+1. Otherwise, move i+ j is a free move, in which case the man moves to wj+1.
Finally, since g(t) moves or the man reaches g during move i+ k, the statement holds. J

Define ρ′ := ρ+ r + (3 + εn)∆n and τ := 6πr/εn.

I Claim 11. If move i is an avoidance move, one of the following events occurs before τ
time has passed: (i) g(t) moves, (ii) ‖m(t)g(t)‖ < ρ′, or (iii) the man makes an escape move.

Proof Sketch. If the first two events do not occur, it follows from Claim 10 that the man
keeps doing avoidance moves during this time. Let ξ(t) resp. η(t) denote the angle of the
vector

−−−−−−→
ln(t)m(t) resp.

−−−−−−→
ln(t)g(ti). A key observation is that if the difference in these angles

is small, the man makes an escape move since then the lion and the goal g are roughly on
opposite sides of the man. Showing that this difference eventually becomes small involves
showing that η increases by at least 2π more than ξ after τ time so that at some point in
time t ∈ [ti, ti + τ], vectors

−−−−−−→
ln(t)m(t) and

−−−−−−→
ln(t)g(ti) have the same orientation. By Claim 9,

SoCG 2017

6:14 Best Laid Plans of Lions and Men

the lion ln never gets closer than ρ to g(ti) which implies that the change in η is small in
any time interval [tj , tj+1]. Since the man keeps a minimum distance to the lion, it similarly
follows that the change in ξ is small in [tj , tj+1]. Picking j to be the maximum such that
tj ≤ t gives t− tj ≤ ∆n which implies that the difference in the two angles is small at time
tj at which point the man makes an escape move. Since tj ≤ t+ τ , the lemma follows. J

For i ∈ N0, define the canonical interval Ii as Ii := [i∆n−1, (i+ 1)∆n−1), i.e., Ii is
the interval of time where the man would run from the i’th to the (i+ 1)’st corner on the
polygonal line defined by the strategy Mn−1. We say that Ii ends at time t = (i+ 1)∆n−1.
Note that if t ∈ Ii, then g(t) = Mn−1((i+ 1)∆n−1) and g(t) moves when Ii ends.

As a consequence of Claim 10 and Claim 11, we get the following.

I Claim 12. If t ∈ Ii and ‖m(t)g(t)‖ ≤ ρ′, then for every t′ > t, t′ ∈ Ii, we have

‖m(t′)g(t)‖ ≤ ρ′ + (1 + εn)τ.

I Claim 13. For any i ∈ N0 and at any time during the canonical interval Ii, the man is
at distance at most ρ′ + 2(1 + εn)τ away from the segment Mn−1(Ii) and when Ii ends, the
man is within distance ρ′ + (1 + εn)τ from the endpoint Mn−1((i+ 1)∆n−1) of the segment.

Proof. We prove the claim by induction on i. To easily handle the base-case, we introduce
an auxiliary canonical interval I−1 = [−∆n−1, 0) and assume that the lions and the man are
standing at their initial positions during all of I−1. The statement clearly holds for i = −1.

Assume inductively that the statement holds for Ii−1 and consider the interval Ii. Let
g := Mn−1((i+ 1)∆n−1). The additional distance that the man runs during Ii when his
speed is 1 + εn as compared to the speed 1 + εn−1 is ∆n−1(εn − εn−1). It follows from the
definition of r that

∆n−1(εn − εn−1) ≥ ρ+ 2r + 3(1 + εn)τ > ρ′ + 3(1 + εn)τ.

By the induction hypothesis, the man is within a distance of ρ′ + (1 + εn)τ from
Mn−1(i∆n−1) at time i∆n−1. Thus, his distance to g at the beginning of interval Ii is at
most ∆n−1(1 + εn−1) + ρ′ + (1 + εn)τ , where ∆n−1(1 + εn−1) is the length of the interval
Mn−1(Ii). If the man does not do any avoidance moves during Ii, he runs straight to g, so it
follows that he reaches g at time (i+ 1)∆n−1 − 2τ at the latest. Therefore, the statement is
clearly true in this case.

Otherwise, let t ∈ Ii be the first time of choice at which he does an avoidance move
during Ii. If he is at distance at most ρ′ from g at time t, the statement follows from
Claim 12. Therefore, assume that the distance is more than ρ′. Then, we must have that
t < (i+ 1)∆n−1 − 2τ , since, if t was larger, he would already have reached g by the above
discussion. Hence, Claim 11 gives that at some time t′ ≤ t+ τ , either
1. the man gets within a distance of ρ′ from g, or
2. he does an escape move.

We first prove that in the interval [t, t′], the distance from the man to the segment
Mn−1(Ii) is at most ρ′ + 2(1 + εn)τ . To this end, note that his distance to the segment at
time t is at most ρ′ + (1 + εn)τ . Thus, since t′ ≤ t+ τ , his distance at time t′ can be at most
ρ′ + 2(1 + εn)τ .

It remains to be proven that the man stays within distance ρ′+ 2(1 + εn)τ from Mn−1(Ii)
after time t′ and that he is at distance at most ρ′ + (1 + εn)τ from g at time (i+ 1)∆n−1. If
we are in case 1, the statement follows from Claim 12, so assume case 2.

M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen 6:15

By Claim 10, the man will not do an avoidance move again after time t′ until he reaches
g or Ii ends. While he is running directly towards g, his distance to the segment Mn−1(Ii)
is decreasing, so it follows that the distance is always at most ρ′ + 2(1 + εn)τ , as claimed.
Since he was doing avoidance moves in a period of length at most τ before the escape move
at time t′, he can completely compensate for the delay caused by the avoidance moves in the
same amount of time by running directly towards g. The total delay is therefore at most 2τ .
Since he would reach g at time (i+ 1)∆n−1 − 2τ at the latest if he did not do any avoidance
moves, it follows that he reaches g at time (i+ 1)∆n−1 or earlier. The statement then follows
from Claim 12. J

We are now ready to finish our proof of Theorem 8. Claim 13 implies that during interval
Ii for any i, the distance from the man to any of the lions l1, . . . , ln−1 is at most

ρ′ + 2(1 + εn)τ < ρ+ 2r + 2(1 + εn)τ ≤ cn−1/2.

Thus, these lions will not catch the man. By Claim 9, the distance to ln is always at least
r − (3 + εn)∆n. Therefore, we now define cn := min{cn−1/2, r − (3 + εn)∆n}, and it holds
that in the time interval I := [i∆n, (i+ 1)∆n], the distance from any point on the segment
m(I) to any lion is at least cn.

Claim 13 implies that at any time t and for any i ∈ {2, . . . , n}, the distance ‖Mi−1(t)Mi(t)‖
is bounded by some constant. It follows that ‖M1(t)Mn(t)‖ ≤ dn for some constant dn > 0.
Since M1(t) traverses a ray with constant speed 1 + ε/2 > 1, the man eventually escapes
the convex hull of the lions and that the distance diverges to ∞ as t→∞. This proves the
theorem. J

References
1 M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-Nilsen. Best laid plans of lions and

men. CoRR, abs/1703.03687, 2017. URL: https://arxiv.org/abs/1703.03687.
2 Martin Aigner and Michael Fromme. A game of cops and robbers. Discrete Applied Math-

ematics, 8(1):1–12, 1984.
3 Noga Alon and Abbas Mehrabian. Chasing a fast robber on planar graphs and random

graphs. Journal of Graph Theory, 78(2):81–96, 2015.
4 Alessandro Berarducci and Benedetto Intrigila. On the cop number of a graph. Advances

in Applied Mathematics, 14(4):389–403, 1993.
5 B. Bollobás, I. Leader, and M. Walters. Lion and man – can both win? Israel Journal of

Mathematics, 189(1):267–286, 2012.
6 Béla Bollobás. The Art of Mathematics: Coffee Time in Memphis. Cambridge University

Press, 2006.
7 Béla Bollobás. The lion and the christian, and other pursuit and evasion games. In Dierk

Schleicher and Malte Lackmann, editors, An Invitation to Mathematics: From Competitions
to Research, pages 181–193. Springer-Verlag Berlin Heidelberg, 2011.

8 Hallard T. Croft. “Lion and man”: A postscript. Journal of the London Mathematical
Society, 39:385–390, 1964.

9 James Flynn. Lion and man: The boundary constraint. SIAM Journal on Control, 11:397–
411, 1973.

10 James Flynn. Lion and man: The general case. SIAM Journal on Control, 12:581–597,
1974.

11 Robbert Fokkink, Leonhard Geupel, and Kensaku Kikuta. Open problems on search games.
In Steve Alpern, Robbert Fokkink, Leszek Antoni Gąsieniec, Roy Lindelauf, and V. S.

SoCG 2017

https://arxiv.org/abs/1703.03687

6:16 Best Laid Plans of Lions and Men

Subrahmanian, editors, Search Theory: A Game Theoretic Perspective, chapter 5, pages
181–193. Springer-Verlag New York, 2013.

12 Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Nicolas Nisse, and Karol Suchan. Pur-
suing a fast robber on a graph. Theoretical Computer Science, 411:1167–1181, 2010.

13 Vladimir Janković. About a man and lions. Matematički Vesnik, 2:359–361, 1978.
14 J. Lewin. The lion and man problem revisited. Journal of Optimization Theory and

Applications, 49(3):411–430, 1986.
15 John Edensor Littlewood. Littlewood’s miscellany: edited by Béla Bollobás. Cambridge

University Press, 1986.
16 Peter A. Rado and Richard Rado. More about lions and other animals. Mathematical

Sprectrum, 7(3):89–93, 1974/75.

Faster Algorithms for the Geometric
Transportation Problem∗

Pankaj K. Agarwal1, Kyle Fox2, Debmalya Panigrahi3,
Kasturi R. Varadarajan4, and Allen Xiao5

1 Duke University, Durham, NC, USA
2 Duke University, Durham, NC, USA
3 Duke University, Durham, NC, USA
4 University of Iowa, Iowa City, IA, USA
5 Duke University, Durham, NC, USA

Abstract
Let R,B ⊂ Rd, for constant d, be two point sets with |R| + |B| = n, and let λ : R ∪ B → N
such that

∑
r∈R λ(r) =

∑
b∈B λ(b) be demand functions over R and B. Let d(·, ·) be a suitable

distance function such as the Lp distance. The transportation problem asks to find a map
τ : R × B → N such that

∑
b∈B τ(r, b) = λ(r),

∑
r∈R τ(r, b) = λ(b), and

∑
r∈R,b∈B τ(r, b)d(r, b)

is minimized. We present three new results for the transportation problem when d(·, ·) is any Lp
metric:

For any constant ε > 0, an O(n1+ε) expected time randomized algorithm that returns a
transportation map with expected cost O(log2(1/ε)) times the optimal cost.
For any ε > 0, a (1 + ε)-approximation in O(n3/2ε−d polylog(U) polylog(n)) time, where
U = maxp∈R∪B λ(p).
An exact strongly polynomial O(n2 polylogn) time algorithm, for d = 2.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Transportation map, earth mover’s distance, shape matching, approxi-
mation algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.7

1 Introduction

Let R and B be two point sets in Rd with |R| + |B| = n, where d is a constant, and
let λ : R ∪ B → N be a function satisfying

∑
r∈R λ(r) =

∑
b∈B λ(b). We denote U :=

maxp∈R∪B λ(p). We call a function τ : R×B → N, a transportation map between R and B
if
∑
b∈B τ(r, b) = λ(r) for all r ∈ R and

∑
r∈R τ(r, b) = λ(b) for all b ∈ B. Informally, for a

point r ∈ R, the value of λ(r) represents the supply at r, while for a point b ∈ B, the value
of λ(b) represents the demand at b. A transportation map represents a plan for moving the
supplies at points in R to meet the demands at points in B.

The cost of a transportation τ is defined as µ(τ) =
∑

(r,b)∈R×B τ(r, b)d(r, b), where
d(·, ·) is a suitable distance function such as the Lp distance. The Hitchcock-Koopmans
transportation problem (or simply transportation problem) on Σ = (R,B, λ) is to find the

∗ Work by Agarwal, Fox, and Xiao is supported by NSF under grants CCF-15-13816, CCF-15-46392, and
IIS-14-08846, by ARO grant W911NF-15-1-0408, and by grant 2012/229 from the U.S.-Israel Binational
Science Foundation. Work by Fox and Panigrahi is supported in part by NSF grants CCF-1527084 and
CCF-1535972. Work by Varadarajan is supported by NSF awards CCF-1318996 and CCF-1615845

© Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Faster Algorithms for the Geometric Transportation Problem

minimum-cost transportation map for Σ, denoted τ∗ := τ∗(Σ). The cost µ(τ∗) is often
referred to as the transportation distance or earth mover’s distance.

The transportation problem is a discrete version of the so-called optimal transport, or
Monge-Kantarovich, problem, originally proposed by the French mathematician Gaspard
Monge in 1781. This latter problem has been extensively studied in mathematics since
the early 20th century. See the book by Villani [27]. In addition to this connection, the
(discrete) transportation problem has a wide range of applications, including similarity
computation between a pair of images, shapes, and distributions, computing the barycenter
of a family of distributions, finding common structures in a set of shapes, fluid mechanics,
and partial differential equations. Motivated by these applications, this problem has been
studied extensively in many fields including computer vision, computer graphics, machine
learning, optimization, and mathematics. See e.g. [20, 14, 12, 23, 13] and references therein
for a few examples.

The transportation problem can be formulated as an instance of the uncapacitated min-
cost flow problem in a complete bipartite graph, in which edges have no capacity constraints.
The min-cost flow problem has been widely studied; see [18] for a detailed review of known
results. The uncapacitated min-cost flow problem in a graph with n vertices and m edges can
be solved in O((m+ n logn)n logn) time using Orlin’s algorithm [19] or Õ(m

√
n polylogU)

time1 using the algorithm by Lee and Sidford [18].
For transportation in geometric settings, Atkinson and Vaidya [8] adapted the Edmonds-

Karp algorithm to exploit geometric properties, and obtained an Õ(n2.5 logU) time algorithm
for any Lp-metric, and Õ(n2) for L1, L∞-metrics. The Atkinson-Vaidya algorithm was
improved using faster data structures for dynamic nearest-neighbor searching, first by [1] and
most recently by [17], for a running time of Õ(n2 logU). Sharathkumar and Agarwal [21]
designed a (1 + ε)-approximation algorithm with a Õ((n

√
nU + U logU) log(n/ε)) running

time.
More efficient algorithms are known for estimating the the optimal cost (earth mover’s

distance) without actually computing the transportation, provided that U = nO(1). Indyk [16]
gave an algorithm to find an O(1)-approximate estimate in Õ(n) time with probability at
least 1/2. Cabello et al. [9] reduced the problem to min-cost flow using a geometric spanner,
obtaining an (1 + ε)-approximate estimate in Õ(n2) time. Andoni et al. [4] give a streaming
algorithm that finds a (1 + ε)-approximate estimate in O(n1+oε(1)) time. However, in many
applications, one is interested in computing the map itself and not just the transportation
distance [13, 12]. This is the problem that we address in this paper.

The special case of the transportation problem where every point has unit demand/supply
is called the geometric bipartite matching problem. After a sequence of papers [25, 26, 21, 3],
a near-linear Õ(n) time (1 + ε)-approximation was found by Agarwal and Sharathkumar [22]
for this problem. On the other hand, before our work, no constant-factor approximation in
subquadratic time was known for the transportation problem with arbitrary demands and
supplies, even for the special case of U = O(n2).

Our results. We present three new results for the geometric transportation problem, for
any Lp-metric.

Our first result (Section 2) is a randomized algorithm that for any ε > 0, computes in
O(n1+ε) expected time a transportation map whose expected cost is O(log2(1/ε))µ(τ∗). The

1 We use Õ(f(n)) to denote O(f(n) polylog(n)).

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:3

expected cost improves to O(log(1/ε))µ(τ∗) if the spread2 of R ∪ B is nO(1). The overall
structure of our algorithm is a simpler version of the matching algorithm by Agarwal and
Varadarajan [3], but several new ideas are needed to handle arbitrary demands and supplies.

We note that our algorithm can be extended to spaces with bounded doubling dimension.
For example, suppose R,B lie in a subspace of Rd such that the doubling dimension with
respect to d(·, ·) is a constant, d(·, ·) is computable in O(1) time, and the spread of R ∪B
is nO(1). Then our algorithm can be adapted so that it computes in O(n1+ε) expected
time a transportation map whose expected cost is O(log(1/ε))µ(τ∗). Recall that Indyk’s
algorithm [16] estimates the cost of τ∗ within an O(1) factor assuming that U = nO(1). Using
our ideas, his algorithm can be extended to arbitrary values of U . In particular, µ(τ∗) can
be estimated within an O(1) factor in Õ(n) time.

Our second result (Section 3) is a (1 + ε)-approximation algorithm to the transportation
problem that runs in Õ(n3/2ε−d polylog(U)) time. Using a quad-tree based well-separated
pair decomposition (WSPD) [11] of a point set, we construct a graph G with O(n) vertices and
O(n/εd) edges, and reduce the problem of computing a (1 + ε)-approximate transportation
map to computing the min-cost flow in G. Next, we compute a min-cost flow f∗ in G using
the Lee-Sidford [18] algorithm. Finally, we recover in O(n/εd) time a transportation map
τ : R×B → N from f∗ such that µ(τ) ≤ (1+ε)µ(τ∗). Our algorithm can be extended to spaces
with bounded doubling dimension by using the appropriate WSPD construction [24] for such
spaces. In particular, if the doubling dimension is D and the spread of R∪B is nO(1), then a
(1 + ε)-approximate transportation map can be computed in time Õ(n3/2ε−O(D) polylog(U)).

Our third result is an exact, strongly polynomial Õ(n2) time algorithm for d = 2, thereby
matching (up to poly-logarithmic factors) the best exact algorithm for geometric matching
[17]. Our algorithm is an implementation of Orlin’s strongly polynomial min-cost flow
algorithm [19], an augmenting-paths algorithm with edge contractions. A naive application of
Orlin’s algorithm has a running time of Õ(n3). By exploiting the geometry of the underlying
graph, we improve this running time to Õ(n2) in the plane.

Proofs of many lemmas, extensions of our approximation algorithms, and the details of
our exact algorithm are omitted from this extended abstract due to space constraints. They
will appear in the full version of the paper.

2 A Near-Linear Approximation

Let Σ = (R,B, λ) be an instance of the transportation problem in Rd. We say that Σ
has bounded spread if the spread of R ∪B is bounded by na for some constant a > 0. We
present a randomized recursive algorithm that, given Σ and a parameter ε > 0, returns a
transportation map in O(n1+ε) expected time whose expected cost is O(log(1/ε))µ(τ∗) if Σ
has bounded spread, and O(log2(1/ε))µ(τ∗) otherwise (recall that τ∗ is the optimal map).
We assume that n is sufficiently large so that nε is at least a suitably large constant.

We first give a high-level description of the algorithm without describing how each step is
implemented efficiently. Next, we analyze the cost of the transportation map computed by
the algorithm. We then discuss an efficient implementation of the algorithm. For simplicity,
we describe the algorithm and its analysis for dimension d = 2; the algorithm extends to
d > 2 in a straightforward manner.

2 The spread of a point set S is the ratio of the maximum and the minimum distance between a pair of
points in S.

SoCG 2017

7:4 Faster Algorithms for the Geometric Transportation Problem

Figure 1 Moats, a safe grid (solid), an unsafe grid (dotted).

We need the notion of randomly shifted grids, as in [5, 3]. Formally, let � = [a− `, a]×
[b− `, b] be a square of side length ` with (a, b) as its top right corner. For a parameter ∆ > 0
(grid cell length), set l = dlog2

(
1 + `

∆
)
e, and L = 2l+1∆. Let �L = [a − L, a] × [b − L, b]

be the square of side length L with (a, b) as its top-right corner. We choose uniformly at
random a point ξ ∈ [0,∆)2 and set �shifted := �L + ξ. Note that � ⊆ �shifted. Let G(�,∆)
be the partition of �shifted into the uniform grid of side length ∆; G(�,∆) has 2l+1 × 2l+1

grid cells. G(�,∆) is called the randomly shifted grid on �.

2.1 A high-level description
A recursive subproblem Σ = (R,B, λ) consists of point sets R and B, a demand function
λ : R ∪ B→ N such that λ(R) = λ(B). We denote |R ∪ B| = m. If m ≤ nε/4, we call Σ a base
subproblem and compute an optimal transportation using Orlin’s algorithm. Thus, assume
that m > nε/4.

Let δ = 1/6. Also, let � be the smallest axis-aligned square containing R ∪ B, with its
sidelength denoted `. Set ∆ = `/mδ. The first step of the algorithm is to choose a randomly
shifted grid G = G(�,∆) that has the following additional property: any two points in R∪B
that are within a distance of `/m3 lie in the same grid cell. We call a grid G satisfying this
property safe. Algorithmically, we place an axis-parallel square of side length 2`/m3 around
every p ∈ R ∪ B, called the moat of p; G is safe if none of its grid lines cross any moat (see
Figure 1). If G is not safe, we sample a new random shift. It can be verified that G is safe
with probability at least 1− 1/m.

Let Π ⊆ G be the set of nonempty grid cells, i.e., ones that contain at least one point
of R ∪ B. For each cell π ∈ Π, we create a recursive instance Σπ, which we refer to as an
internal subproblem. Each Σπ aims to transport as much as possible within π. Whatever we
are unable to transport locally within cells of Π, we transport globally with a single external
subproblem Σ�. We now describe these subproblems in more detail.

For each cell π ∈ Π, we define the excess χπ of π to be the absolute difference between
the red and blue demand in π. Without loss of generality, assume λ(R ∩ π) ≥ λ(B ∩ π),
i.e. that the excess of π is red. Roughly speaking, the entirety of B ∩ π is used for the
internal subproblem, while R ∩ π is arbitrarily partitioned such that λ(B ∩ π) red demand
is used for the internal subproblem, and the remainder (of total demand = χπ) is used for
the external subproblem. We pick an arbitrary maximal subset of points (Rex)π ⊆ R ∩ π
such that λ((Rex)π) ≤ χπ. Let Rπ = (R ∩ π) \ (Rex)π, Bπ = B ∩ π, and (Bex)π = ∅. If
λ((Rex)π) < χπ, we arbitrarily pick a point p in Rπ, and split p into two copies, say p′ and
p′′, with λ(p′) = χπ − λ((Rex)π) and λ(p′′) = λ(p) − λ(p′). We then add p′ to (Rex)π and
replace p with p′′ in Rπ. This step ensures that λ((Rex)π) = χπ. Let λπ be the restriction

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:5

2

(a)

2

(b)

3

2

1

1

1

2

2

1

1

1

(c)

Figure 2 A subproblem (a) with its internal subproblems (b) and external subproblem (c).

external

primary secondary

internal

tertiary

Figure 3 Primary-secondary classification of recursive problems.

of λ to Rπ ∪ Bπ; by construction, λπ(Rπ) = λπ(Bπ). The internal subproblem for π is
Σπ = (Rπ,Bπ, λπ).

We now describe the external subproblem. Let Rex =
⋃
π∈Π(Rex)π, Bex =

⋃
π∈Π(Bex)π,

and set λex as the restriction of λ to Rex ∪ Bex. To solve the excess demand instance
Σex = (Rex,Bex, λex), we merge the excess in each cell into a single artificial point at the
center of the cell. The resulting transportation instance has relatively few points (O(m2δ))
and distorts the “real” distances by an amount proportional to the side length of the cell.
If λ(R ∩ π) > λ(B ∩ π), we create a red point rπ at the center of π and define the demand
of rπ, denoted λ�(rπ), to be χπ. Similarly, if λ(B ∩ π) > λ(R ∩ π), we create a blue point
bπ at the center of π with λ�(bπ) = χπ. Let R� (resp., B�) be the set of red (resp., blue)
points that were created at the centers of cells in Π. We create the external subproblem
Σ� = (R�,B�, λ�); Σ� acts as an approximate view of the actual excess instance Σex. See
Figure 2.

For each cell π ∈ Π, we recursively compute a transportation map τπ on the internal
subproblem Σπ. If the root instance – the original input to our transportation problem – has
bounded spread, we compute an optimal solution τ� for the external subproblem Σ� using
Orlin’s algorithm. If the root instance does not have bounded spread, then we recursively
compute an approximately optimal solution τ� for the external subproblem Σ�. Note that
irrespective of the spread of the original instance, every external subproblem Σ� has spread
bounded by O(nδ), i.e., has bounded spread. We categorize subproblems by the number of
external subproblems in the recursive chain leading to them: Σ is primary if there are none;
secondary if there is exactly one; and tertiary if there are two. All tertiary problems are
solved exactly using Orlin’s algorithm, as are base subproblems in the primary and secondary
recursion. See Figure 3 for a visualization of the recursion tree of the algorithm.

Finally, we construct a transportation map τ for Σ by combining the solutions to the
internal and external subproblems. For a pair (r, b) ∈ Rπ×Bπ, we simply set τ(r, b) = τπ(r, b).
For the external subproblem, we first convert the transportation map τ� on Σ� into a map

SoCG 2017

7:6 Faster Algorithms for the Geometric Transportation Problem

for Σex, as follows: For each red point rπ ∈ R� (resp., blue point in B�), at the center of a
cell π ∈ Π, we “redistribute” the transport from rπ (resp., bπ) to the points of (Rex)π (resp.,
(Bex)π) to compute a transportation map τex of Σex. That is, for any rπ, bπ ∈ R� × B�, we
assign the units of τ�(rπ, bπ) among the pairs in (Rex)π × (Bex)π in an arbitrary manner,
while respecting the demands. We then set τ(r, b) = τex(r, b) for (r, b) ∈ Rex × Bex. This
completes the description of the algorithm.

2.2 Cost analysis
There are two sources of error in our algorithm: the distortion between Σ� and Σex, and the
error from restricting the solution to the internal/external partitioning of demand.

δ-closeness. We first formalize the way that Σ� approximates Σex when it shifts demand
to cell centers. We introduce a notion called δ-closeness between transportation instances:
informally, two instances are δ-close if we can shift the demands of one to form the other,
without moving any demand more than δ. We give a formal definition next.

Let Σ = (R,B, λ) be an instance of the transportation problem and τ a transportation
map for Σ. We define µ∞(τ) = max(r,b):τ(r,b)>0 d(r, b) as the maximum distance used in τ .
Let Σ′ = (R′, B′, λ′) be another instance of the transportation problem with λ(R) = λ′(R′).
Consider the transportation instances ΣR = (R,R′, λR) and ΣB = (B,B′, λB) where λR
(resp., λB) is the demand of points in R and R′ (resp., B and B′) in Σ and Σ′ respectively.
We call Σ and Σ′ δ-close if there exist transportation maps τR and τB of ΣR and ΣB such
that µ∞(τR), µ∞(τB) ≤ δ, i.e., demands of R (resp., B) (and therefore the units of τ) points
of R′ (resp., B′) within distance δ. We then say that the resulting transportation τ ′ in Σ′ is a
map derived from τ in Σ. The next lemma follows immediately from definition of δ-closeness.

I Lemma 1. Let Σ and Σ′ be two δ-close instances of the transportation problem with U being
the total demand of each. Let τ be a transportation map of Σ and let τ ′ be a transportation
map of Σ′ derived from τ . Then, |µ(τ ′)− µ(τ)| ≤ 2δU .

I Observation 2. Any point in a grid cell of side length ∆ is within (∆/
√

2) of the center;
so Σ� and Σex are (∆/

√
2)-close.

Thus, the lemma relates the transportation map for Σex to the solution for Σ� produced by
the external subproblem.

Partitioning of demand. Now that we have quantified the error between Σ� and Σex,
we begin our analysis of the second source of error. First, we bound the error in a single
subproblem (i.e. one subdividing grid), and then the error for a single pair (r, b) ∈ R × B
across all subproblems. Eventually, we combine these two arguments to bound the expected
error due to the partitioning across all subproblems and all pairs of points.

Fix a recursive problem Σ = (R,B, λ), with cell side length ∆. Let χπ, Rπ, Bπ, (Rex)π,
(Bex)π for π ∈ Π and R�, B�, Rex, Bex, λex, be as defined in Section 2.1 for the instance
Σ = (R,B, λ). Let I =

⋃
π∈ΠRπ × Bπ be the set of “local” point pairs, solved by the

algorithm within internal subproblems. We refer to a pair (r, b) ∈ (R×B) \ I as “non-local”.
The next lemma outlines a method for deforming an arbitrary transportation map to one

that respects the local/non-local partitioning used by the algorithm.

I Lemma 3. Let Σ = (R,B, λ) be a recursive subproblem with cell side length ∆, and let
τ̂ be an arbitrary transportation map for Σ. Let X̂ =

∑
(r,b)/∈I τ̂(r, b) be the total non-local

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:7

transport in τ̂ , and X =
∑
π∈Π χπ be the total excess of Σ. Then, there exists a transportation

map τ̃ comprising local solutions τ̃π for each Σπ and a non-local solution τ̃ex for Σex, such
that the following properties hold:
(A) The cost of the transportation map τ̃ is given by

µ(τ̃) =
∑
π∈Π

µ(τ̃π) + µ(τ̃ex) ≤ µ(τ̂) + 8
√

2∆X̂.

(B) The local transport in τ̃ satisfies τ̃(r, b) ≥ τ̂(r, b) for all (r, b) ∈ I, and the difference∑
(r,b)∈I (τ̃(r, b)− τ̂(r, b)) ≤ 3X̂.

(C) The non-local transport in τ̃ satisfies X̂ ≥ X = X̃ :=
∑

(r,b)/∈I .τ̃(r, b).

Error parameter η. In the previous lemma, we bounded the error due to a single subproblem.
We now bound the error due to a single pair of points (r, b) ∈ R×B, using a random variable
η(r, b), defined as the cell side length of the first recursive grid to split (r, b) into different
cells.

Formally, recall that a recursive subproblem may split a point p ∈ R ∪B into two copies
p′ and p′′ with λ(p′) + λ(p′′) = λ(p); one of them passed to the external subproblem, and the
other passed down to an internal subproblem. Abusing notation slightly, we use R and B to
denote the multisets that contain all copies of points that are split along with the updated
demands. Hence, for any base subproblem (Ri, Bi, λi) (i.e., the recursive base case) every
point p ∈ Ri ∪Bi can be identified with a point p ∈ R∪B such that λi(p) = λ(p). With this
interpretation, we define a function η : R×B → R≥0 as follows: If there is a base subproblem
(Ri, Bi, λi) such that (r, b) ∈ Ri × Bi, we set η(r, b) = 0. Otherwise, there is a recursive
subproblem such that (r, b) ∈ R×B, and r and b are split into different cells of the randomly
shifted grid. In this case, η(r, b) denotes the side length of the grid cells, i.e. η(r, b) = `/mδ

where ` is the length of the smallest square containing R ∪ B, and m = |R ∪ B|.
The next lemma bounds the expected value of the error parameter η(r, b) in terms of the

distance d(r, b) for any pair of points (r, b) ∈ R×B. Its proof uses our choice of safe grids to
argue that, though the recursion depth can be large, the number of recursive subproblems
that can potentially split (r, b) is small.

I Lemma 4. There exists a constant c1 > 0 such that for any (r, b) ∈ R×B, the expectation
E [η(r, b)] ≤ c1 log2(1/ε)d(r, b).

Proof. Let n be the number of points in the input instance, and m be the number of
points in the subproblem which splits (r, b), and ` the side length of the smallest orthogonal
bounding square of that subproblem (i.e. η(r, b) = `/mδ). We can assume that m > nε/4,
since otherwise the subproblem is a base case and η(r, b) = 0.

Define ` := d(r, b)/
√

2, clearly, ` ≥ `. We partition the interval [nε/4, n] into u =
dlog2(4/ε)e intervals of the form [nj , n2

j], where nj = n2−j , for 1 ≤ j ≤ u. There exists an
index j∗ where m ∈ [nj∗ , n2

j∗], and ` ≤ ` := (n2
j∗)3d(r, b) because the grid is safe. Thus, (r, b)

must be split by a grid with ` in the interval [`, `], where `/` =
√

2n6
j∗ .

The interval [`, `] can be covered by 7/δ > (1/δ)(6 + log2(
√

2)/ log(nj∗)) intervals of the
form Ji = [niδj∗`, n

(i+1)δ
j∗ `] for 0 ≤ i ≤ 7/δ = O(1). For each value of i, algorithm produces at

most one subproblem – whose bounding square contains both r, b – with side length in Ji.
The total set of intervals, by enumeration, bounds the number of subproblems whose grids
could possibly split (r, b) as O(log(1/ε)).

For our subproblem withm points and side length `, the probability that a (safe) randomly
shifted grid splits (r, b) is no more than 3d(r, b)/(`/mδ). Recall that the value of η(r, b), in

SoCG 2017

7:8 Faster Algorithms for the Geometric Transportation Problem

this case, is `/mδ. Summing over the O(log(1/ε)) subproblems where (r, b) can be split, the
expected value of η(r, b) is O(log(1/ε))d(r, b). J

Expected cost of algorithm. We are now ready to analyze the expected cost of τ , the
algorithm’s transportation map. First, we analyze the cost if Σ has bounded spread. Recall
that, in this case, our algorithm computes an optimal solution for each external subproblem
(using Orlin’s algorithm).

I Lemma 5. If Σ is a transportation instance with bounded spread, then there exists a
constant c2 > 0 such that for any transportation map τ̂ of Σ,

µ(τ) ≤ µ(τ̂) + c2
∑

(r,b)∈R×B

τ̂(r, b)η(r, b).

An immediate corollary of Lemmas 4 and 5 is:

I Corollary 6. If Σ has bounded spread, then E[µ(τ)] = O(log(1/ε))µ(τ∗).

Proof of Lemma 5. We prove the lemma by induction on the number of points in the
subproblem. If Σ is a base problem, then τ is an optimal transport of Σ and the lemma
holds. Otherwise �, the smallest square containing R ∪ B, is split into a set of grid cells.
Following the notation in Section 2.1, let Π be the set of non-empty cells and ∆ the side
length of each grid cell.

Recall that τ is the combination of solutions τπ for the internal subproblems Σπ =
(Rπ, Bπ, λπ) of π ∈ Π, and the map τex for Σex = (Rex, Bex, λex) derived from the solution
τ� to the external subproblem Σ� = (R�, B�, λ�). From Observation 2, Σ� and Σex are
(∆/
√

2)-close; thus Lemma 1 implies µ(τ�) ≤ µ(τex) +
√

2∆X. We have

µ(τ) = µ(τex) +
∑
π∈Π

µ(τπ) ≤ µ(τ�) +
√

2∆X +
∑
π∈Π

µ(τπ). (1)

Thus, using (1), we can bound τ by bounding the local (τπ) and non-local (τ�) solutions
individually.

Let τ̃ be the transportation map created by deforming τ̂ in Lemma 3, with τ̃π and τ̃ex its
restrictions to local and non-local pairs of points respectively. To bound τ�, notice that that
τ̃ex solves Σex = (Rex, Bex, λex), and Σex is (∆/

√
2)-close to Σ�. We apply Lemma 1 and

optimality of τ� to conclude,

µ(τ�) ≤ µ(τ̃ex) +
√

2∆X. (2)

We now bound the local solutions. Since τ̃π is a transportation map of the internal subproblem
Σπ, by the induction hypothesis,

µ(τπ) ≤ µ(τ̃π) + c2
∑

(r,b)∈Rπ×Bπ

τ̃π(r, b)η(r, b). (3)

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:9

We can now combine (2) and (3) to bound τ in (1).

µ(τ) ≤ µ(τ�) +
∑
π∈Π

µ(τπ) +
√

2∆X

≤ µ(τ̃ex) + 2
√

2∆X +
∑
π∈Π

µ(τ̃π) + c2
∑
π∈Π

∑
(r,b)∈Rπ×Bπ

τ̃π(r, b)η(r, b)

 (by (2), (3))

= µ(τ̃) + c2
∑

(r,b)∈I

τ̃(r, b)η(r, b) + 2
√

2∆X (Lem. 3(A))

≤ µ(τ̂) + c2
∑

(r,b)∈I

τ̃(r, b)η(r, b) + 10
√

2∆X̂ (Lem. 3(A), 3(C))

= µ(τ̂) + c2
∑

(r,b)∈R×B

τ̂(r, b)η(r, b) + Γ,

where Γ = c2
∑

(r,b)∈I

(τ̃(r, b)− τ̂(r, b)) η(r, b) + 10
√

2∆X̂ − c2
∑

(r,b)/∈I

τ̂(r, b)η(r, b).

By definition, η(r, b) = ∆ for (r, b) 6∈ I, η(r, b) ≤ ∆/nε/4 ≤ ∆/4 for (r, b) ∈ I, and∑
(r,b)/∈I τ̂(r, b) = X̂. Therefore, using Lemma 3(B),

Γ ≤ c2
∆
4 · 3X̂ + 10

√
2∆X̂ − c2∆X̂ =

(
10
√

2− c2
4

)
∆X̂ ≤ 0.

provided that c2 ≥ 40
√

2. Hence, µ(τ) ≤ µ(τ̂) + c2
∑

(r,b) τ̂(r, b)η(r, b). This completes the
proof of the lemma. J

The general case. We now analyze the cost of the transportation map for the general case,
when the spread of R ∪B is arbitrary.

Recall Figure 3 and the categorization of recursive subproblems as primary, secondary,
or tertiary based on the number of external subproblem invocations on its path in the
recursion tree of the algorithm. We now introduce two functions η1, η2 : R × B → R≥0
corresponding to the errors introduced in the primary and secondary recursions. (Note that
tertiary subproblems are solved exactly; hence, there is no error introduced in solving a
tertiary subproblem.)

The function η1 corresponds to the primary recursion and is the same as the η defined
above, i.e., η1(r, b) = 0 if (r, b) belongs to a primary base subproblem, otherwise it is the length
of the grid cell at the subproblem which splits r and b. The function η2(r, b) corresponds
to the secondary recursion for (r, b). If (r, b) belongs to a primary base problem (i.e. does
not appear in any secondary recursion), then we set η2(r, b) = 0. Otherwise, let r̄ ∈ R� and
b̄ ∈ B� be the centers of the grid cells of the primary subproblem where r and b were split.
Then, η2(r, b) is defined to be η(r̄, b̄) for the secondary recursion on (R�, B�).

We now state two lemmas that are counterparts of Lemmas 4 and 5 for the general case.

I Lemma 7. For any pair (r, b) ∈ R×B, E [η2(r, b)] = O(log2(1/ε))d(r, b).

I Lemma 8. There exists a constant c3 > 0 such that for any transportation map τ̂ of Σ,

µ(τ) ≤ µ(τ̂) + c3
∑

(r,b)∈R×B

τ̂(r, b) [η1(r, b) + η2(r, b)] .

The bound on the expected cost follows directly from the above two lemmas.

I Corollary 9. E[µ(τ)] = O(log2(1/ε))µ(τ∗).

SoCG 2017

7:10 Faster Algorithms for the Geometric Transportation Problem

2.3 An efficient implementation
We now explain how the various steps of the algorithm are implemented to run in O(n1+ε)
time. There are three main steps in the algorithm:
(i) partitioning a recursive subproblem Σ = (R,B, λ) into internal subproblems and an

external subproblem;
(ii) solving subproblems recursively;
(iii) recovering the transportation map τ of Σ from the internal and external solutions τπ

(π ∈ Π) and τ�.
A recursive subproblem partitions its points into internal subproblems, but generates an
additional set of points (at cell centers) for its external subproblem; let us call these external
points. We bound the number of external points generated in the next lemma.

I Lemma 10. The total number of external points over all recursive subproblems is O(n).

A base subproblem of size ni ≤ nε/4 is solved in O(n3
i logni) time using Orlin’s algorithm.

We distribute this on the ni points by charging O(n2
i logni) = O(nε/2 logn) to each point.

Note every point in R ∪ B, as well as every external point, belongs to at most one base
subproblem. Since, by Lemma 10, the number of external points is O(n), it follows that the
total time spent solving base subproblems is O(n) ·O(nε/2 logn) = O(n1+ε).

The time spent in recovering the transportation map τ for Σ from its internal and external
subproblems is proportional to the number of external points in Σ. Hence, by Lemma 10,
step (iii) takes O(n) time.

Finally, implementation of step (i) depends on whether the instance Σ = (R,B, λ) has
bounded spread.

The bounded spread case. In this case, step (i) is implemented naively. We choose a
random shift, distribute the points of R ∪ B among the grid cells in O(m logm) time, where
|R ∪ B| = m, and check in additional O(m) time whether the shift is safe. So step (i) can be
implemented in O(m logm) expected time. We charge O(logm) time to each point of R ∪ B.
Since the spread is nO(1), the depth of recursion is O(1/ε). Therefore, each input point is
charged O(1

ε logn) units of time, implying that steps (i) over all subproblems take O(n logn)
expected time (note that ε is a constant). As the size of the external subproblem at R ∪ B is
O(m2δ), and δ = 1/6, the time for solving it exactly is O(m). Putting everything together
and applying Corollary 6, we obtain the following.

I Theorem 11. Let Σ be an instance of the transportation problem in Rd, where d is a
constant. Let Σ have size n and bounded spread, and let ε > 0 be a constant. A transportation
map of Σ can be computed in O(n1+ε) expected time whose expected cost is O(log(1/ε))µ(τ∗),
where τ∗ is an optimal transport of Σ.

The general case. Let Σ = (R,B, λ) be a recursive subproblem, and � the smallest square
containing R ∪ B. As defined earlier, let Σ� = (R�,B�, λ�) be the external subproblem
generated by Σ using the points of Rex,Bex. Since Σ� has bounded spread and is solved
recursively, the running time to solve Σ� is O(|R� ∪ B�|1+ε) = O(|Rex ∪ Bex|1+ε). Summing
over all recursive problems, by Lemma 10, the total time spent in solving all external
subproblems is O(n1+ε).

Step (i) is more challenging in this case because the depth of recursion can be as large
as Ω(n). We can neither spend linear time at a recursive subproblem, nor can we afford to
visit each cell of the randomly shifted grid G explicitly to compute the set Π of non-empty

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:11

cells. To avoid checking all cells of G explicitly, we (implicitly) construct a quad tree T on G
– i.e. leaves of T are cells of G and the root of T is �. The depth of T is O(logm). The role
of T will be to guide the search for non-empty cells of G. Again, we will not construct T
explicitly.

To avoid spending Ω(m) time in step (i), we do not maintain the set R ∪ B explicitly. We
build a 2D dynamic orthogonal range searching data structure that maintains a set X ⊂ R2

of weighted points, and supports the following operations:
Wt(ρ): Given a rectangle ρ, return w(X ∩ ρ).
Report(ρ,∆): Report a maximal subset Y of X ∩ ρ such that w(Y) ≤ ∆.
Empty(ρ): Return Yes if X ∩ ρ = ∅ and No otherwise.
Delete(p): Delete p from X.
ReduceWt(p,∆): Update w(p) := w(p)−∆, assuming w(p) ≥ ∆.

Using a range-tree based data structure, each operation except for Report can be performed
in O(log2m) time [2]. Report requires O(log2 n+k) time, where k is the number of reported
points.

We maintain two copies DR,DB of this data structure. The first one is initialized with R
and the supplies, and the second with B and the demands. We use R and B to denote the
current sets in these data structures.

With each recursive subproblem Σ = (R,B, λ) we associate a bounding rectangle ρ that
contains R∪B. For the root problem, ρ is the smallest square containing R∪B; for others it
is defined recursively. We maintain the invariant that when the subproblem Σ = (R,B, λ) is
being processed,
(i) R ∩ ρ = R and for any r ∈ R ∩ ρ, w(r) = λ(r),
(ii) B ∩ ρ = B and for any b ∈ B ∩ ρ, w(b) = λ(b).

We first compute Π, the set of non-empty cells of G, using T and the data structures
DR,DB. We visit T in a top-down manner. Suppose we are at a node v ∈ T, and let �v
be the square associated with v. We call Empty(ρ ∩ �v) on both DR and DB to check
whether (R ∪ B) ∩ �v = ∅. If Yes, we ignore the subtree rooted at v. If No and v is a
leaf of T, i.e., �v is a nonempty cell of G, we add �v to Π. If v is an internal node and
(R∪B)∩�v 6= ∅, we recursively search the children of v in T. Since the depth of T is O(logn),
the above procedure visits O(|Π| logn) nodes of T. The total time spent in computing Π is
thus O(|Π| log3 n).

For each cell π ∈ Π, we can compute the total demands of λ(R ∩ π) and λ(B ∩ π) – and
thus χπ – using the Wt(ρ ∩ π) operations on DR,DB. Without loss of generality, assume
λ(R∩ π) > λ(B∩ π). Using Report(ρ∩ π, χ), we report a maximal subset of points of R∩ π
whose total weight is at most χ. We then delete each of these points (by Delete) and reduce
the weight (by Reduce) of one additional point in R∩π or B∩π if needed. Let (Rπ, Bπ, λπ)
be the recursive (internal) subproblem generated for π with ρπ = ρ ∩ π as the associated
rectangle. Then the above update operation ensures that R ∩ ρπ = Rπ, B ∩ ρπ = Bπ, and
their weights are consistent with λπ.

DR and DB can also be used to test whether the random shift is safe: For each π ∈ Π,
we check whether the moat of any point in (R ∪ B) ∩ π intersects an edge of π. This is
equivalent to checking whether �π ∩ (R ∪ B) = ∅, where �π is the set of points that are
within distance `/m3 from the boundary of π. This test can be done in O(log2 n) time using
the Empty procedure. The total expected time spent in generating internal subproblems
Σπ and external subproblems Σ� of Σ is O(|Π| log3 n+m� log2 n), where m� is the total
number of external points.

SoCG 2017

7:12 Faster Algorithms for the Geometric Transportation Problem

By Lemma 10, the total number of nonempty cells over all subproblems is O(n), and
the number of external points is O(n). Thus, the expected time spent in step (i) overall is
O(n log3 n). Putting everything together, we obtain the main result of this section.

I Theorem 12. Let Σ be an instance of the transportation problem in Rd, where d is a
constant. Let Σ have size n, and let ε > 0 be a constant. A transportation map of Σ can be
computed in O(n1+ε) expected time whose expected cost is O(log2(1/ε))µ(τ∗), where τ∗ is an
optimal transport of Σ.

3 A (1 + ε)-Approximate Algorithm

In this section, we describe a (1 + ε)-approximation algorithm for the transportation problem,
based on a reduction to min-cost flow. As in Section 2, we hierarchically cluster points, but
this time for the purpose of approximately representing all Θ(n2) pairwise distances between
R and B compactly. At a high level, our algorithm is as follows:
(i) Compute a hierarchical clustering of R ∪B, using a quadtree (input points are leaves).
(ii) Construct a sparse directed acyclic graph G = (V,E) over the clusters with R as the

set of source nodes, and B as the set of sink nodes with the following property: for
every pair (r, b) ∈ R × B, there is a unique path in G from r to b, with cost roughly
d(r, b). Then, a minimum-cost flow from sources to sinks in G approximates the optimal
transportation map on (R,B, λ).

(iii) Compute an optimal flow f∗ in G using the algorithm by Lee and Sidford [18].
(iv) Recover a transportation map τ from f∗.

The hierarchical structure is important to us for two reasons: it is the foundation for
the compact representation (well-separated pair decomposition), and enables a near-linear
time procedure for recovering the transportation map (step 4). This fast recovery step is
what distinguishes this algorithm from the similar reduction in Cabello et al. [9], and why
geometric spanners [10, 7, 6], as black boxes, seem to be insufficient.

Construction of the graph. For simplicity, we describe the algorithm in R2 under Euclidean
distance. Let � be the smallest orthogonal square containing R ∪ B. We construct a
compressed quad tree T on R ∪ B with � as the square associated with the root of T . A
compressed quadtree prunes certain interior nodes of a standard quadtree, guaranteeing that
T has O(n) nodes. We can construct a compressed quadtree in O(n logn) time, see e.g. [15].
Each node v of T is associated with a square �v. For each node v ∈ T , let Rv = R ∩�v and
Bv = B ∩�v. The sets Rv, Bv form a hierarchical clustering of R ∪B.

To construct G = (V,E), we make two copies of T : the up-tree T ↑ = (V ↑, E↑) and
down-tree T ↓ = (V ↓, E↓). We orient the edges of E↑ upward – from a node to its parent,
and orient the edges of E↓ downward – from a node to its child. We delete blue points
from T ↑ and red points from T ↓, thus T ↑ contains only R, and T ↓ contains only B. We set
V = V ↑ ∪ V ↓ and E = E↑ ∪ E↓ ∪

−→
E where −→E ⊆ V ↑ × V ↓ is a set of cross edges connecting

T ↑ to T ↓ that we define below. See Figure 4.
Originally proposed by Callahan and Kosaraju [11], the notion of a well-separated pair

decomposition (WSPD) of a point set S is widely used to represent the pairwise distances
of S approximately in a compact manner. A simple WSPD construction using compressed
quadtrees is described in Chapter 3 of [15]. Using this algorithm, we construct −→E as follows:
Set δ = ε

4 . For a pair of nodes u, v ∈ T ↑ × T ↓, we define c(u, v) = min{d(x, y) | x ∈ �u, y ∈
�v} to be the minimum distance between the squares �u and �v. Using the algorithm in
[15], we compute a pair decomposition D ⊆ V ↑ × V ↓ with the following properties:

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:13

1

3 4

3

2

2

5

(a) Quadtree on R ∪ B.

1

3 4

3
2

2 5

T ↑ T ↓

−→
E

(b) Composition of G.

1

3 4

3
2

2 5

1
11

2

2

2

1

(c) Decomposition of flow.

Figure 4 Construction of G and recovering the transportation.

(W1) For every (r, b) ∈ R×B, there is a unique pair (u, v) ∈ D such that r ∈ Ru, b ∈ Bv.
(W2) For every (u, v) ∈ D, max {diam(�u), diam(�v)} ≤ δ · c(u, v).
(W3) |D| = O(n/ε2).
After having constructed T ↑ and T ↓, that algorithm constructs D in O(n/ε2) time. We set
−→
E = D with each edge oriented from T ↑ to T ↓. The cost of each edge in E↑ ∪ E↓ is set
to 0, and the cost of each (u, v) ∈ −→E is c(u, v). Finally, we define the excess χ(v) at each
node v of G: we set χ(v) = 0 for all internal nodes v of T ↑ ∪ T ↓, χ(r) = λ(r) for r ∈ R, and
χ(b) = −λ(b) for b ∈ B. The capacity of all edges in G is set to ∞. Let (G, c, χ) be the
resulting min-cost flow instance. The total time spent in constructing G is O(n logn+ n/ε2).

Cost analysis. Flow moves up from the leaves of T ↑ through its interior, crosses along the
cross edges into T ↓, and finally descends to the sinks at leaves of T ↓. By construction and
3, any pair (r, b) ∈ R × B has a unique path p(r, b) from r to b in G, using a single cross
edge. We can map any transport τ (injectively) to a feasible flow fτ on G, by placing a flow
of τ(r, b) on p(r, b). Similarly, any flow f can be mapped to a feasible transportation τf by
decomposing f into flow on source-sink paths: by the classical flow decomposition theorem, f
can be decomposed into a set {f(p(r, b)} of flows on the p(r, b) (since G is a directed acyclic
graph, any decomposition has no flow cycles, only paths). Then, setting τf (r, b) = f(p(r, b))
for all (r, b) ∈ R×B is a feasible transportation.

By 3 and the triangle inequality, µ(fτ) ≤ µ(τ) and µ(τf) ≤ (1 + ε)µ(f). We can apply
these transformations to bound the approximation quality of a transportation recovered by
decomposing the optimal flow f∗ of G. We have

µ(τ∗) ≤ µ(τf∗) ≤ (1 + ε)µ(f∗) ≤ (1 + ε)µ(fτ∗) ≤ (1 + ε)µ(τ∗).

If we compute the optimal f∗ on G and construct some τf∗ by a flow decomposition of f∗,
then τf∗ meets the claimed approximation quality – this is precisely what we do. Note that
this cost analysis applies regardless of the specific flow decomposition of f∗. Our recovery
procedure in 4 is a greedy decomposition.

Recovering a transportation map. Let f∗ be the optimal flow from R to B in G. We use
a two-part greedy algorithm to decompose f∗: assigning the flow from R to the cross edges
through the up-tree, then claiming the assigned flow using the down-tree. Both steps amount
to performing a flow decomposition on the portion of the flow lying in each tree, treating
the cross edge endpoints as sinks (resp., sources) with demand equal to the sum of outgoing
(resp., incoming) flow. Both are arborescences, so flow decomposition can be done with a

SoCG 2017

7:14 Faster Algorithms for the Geometric Transportation Problem

postorder traversal. After solving both trees, we combine the paths assigned into and out of
each cross edge to find end-to-end path flows.

We only describe the decomposition for T ↑ in detail; it is nearly identical for T ↓. For
each cross edge (u, v) ∈ −→E , this produces lists AR(u, v) and AB(u, v) which hold pairs (p, F)
indicating point p ∈ R∪B contributes F units of the flow through (u, v). The tree is processed
in postorder: a node is visited only after all its children. Denote the children of node u by
children(u). Each node u ∈ T ↑ maintains a list L(u) of the positive-demand red points in
its subtree, and a list N(u) of the positive-flow cross edges leaving u. L(u) is initialized
by joining lists L(w) from each w ∈ children(u) (at the leaves, we initialize L(r) = {r} for
r ∈ R). While N(u) is not empty, let (u, v) ∈ N(u) with flow f∗(u, v) > 0. Take any point
r ∈ L(u) and add to AR(u, v) a pair (r, F), with F = min{λ(r), f∗(u, v)}, also updating
λ(r)← λ(r)− F and f∗(u, v)← f∗(u, v)− F . This has the effect of removing either r from
L(u), (u, v) from N(u), or both. Once N(u) = ∅, all cross edges leaving u have their flow
assigned.

Finally, we complete the decomposition using AR(u, v) and AB(u, v), for each cross edge
(u, v). While both AR(u, v) and AB(u, v) are nonempty, let (r, Fr) ∈ AR(u, v) and (b, Fb) ∈
AB(u, v). Output τ(r, b) := min{Fr, Fb}, update Fr ← Fr − τ(r, b) and Fb ← Fb − τ(r, b),
and remove from the lists any pair (p, F) for which F = 0.

We charge the list union which constructs L(u) to the children of u. Each iteration
performs a constant number of list operations and either removes a node from L(u), or a
cross edge from N(u). Each removal occurs exactly once for every r ∈ R and (u, v) ∈ −→E ,
so we charge iterations to the r ∈ R or (u, v) ∈ −→E removed that iteration. The processing
of AR(u, v) and AB(u, v) can also be charged per iteration to the pair (p, F) removed in
that iteration, which is then charged back to the p ∈ R ∪ B or (u, v) ∈ −→E whose removal
introduced (p, F). Thus, the total running time is O(|V |+ |−→E |) = O(n/ε2).

We computed an optimal flow f∗ : E → N using the algorithm by Lee and Sid-
ford [18]. Since |E| = O(n/ε2), their algorithm takes Õ(n3/2ε−2 polylogU) time; recall,
U = maxp∈R∪B λ(p) is the maximum demand. This step dominates the running time com-
pared to the construction of G and the recovery algorithm. We state the main theorem in
terms of an arbitrary d.

I Theorem 13. Let Σ be an instance of the transportation problem in Rd where d is a
constant. Let Σ have size n, and let ε > 0 be a constant. A transportation map τ for Σ can
be computed in Õ(n3/2ε−d polylogU) time with cost µ(τ) ≤ (1 + ε)µ(τ∗).

References

1 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. SIAM J. Comput., 29(3):912–953, 1999.
doi:10.1137/S0097539795295936.

2 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Con-
temporary Mathematics, 223:1–56, 1999.

3 Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor approxi-
mation for Euclidean bipartite matching? In Proc. of the 20th ACM Symp. on Comp.
Geometry, pages 247–252, 2004. doi:10.1145/997817.997856.

4 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proc. of the 46th Ann. ACM Symp. on Theory
of Comp., pages 574–583, 2014. doi:10.1145/2591796.2591805.

http://dx.doi.org/10.1137/S0097539795295936
http://dx.doi.org/10.1145/997817.997856
http://dx.doi.org/10.1145/2591796.2591805

P.K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao 7:15

5 Sanjeev Arora. Polynomial time approximation schemes for Euclidean TSP and other
geometric problems. In Proc. of the 37th Ann. IEEE Symp. on Found. of Comp. Sci.,
pages 2–11, 1996. doi:10.1109/SFCS.1996.548458.

6 Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel H.M. Smid.
Euclidean spanners: short, thin, and lanky. In Proc. of the 27th Ann. ACM Symp. on
Theory of Comp., pages 489–498, 1995. doi:10.1145/225058.225191.

7 Sunil Arya, David M. Mount, and Michiel H.M. Smid. Randomized and deterministic
algorithms for geometric spanners of small diameter. In Proc. of the 35th Ann. IEEE Symp.
on Found. of Comp. Sci., pages 703–712, 1994. doi:10.1109/SFCS.1994.365722.

8 David S. Atkinson and Pravin M. Vaidya. Using geometry to solve the transportation
problem in the plane. Algorithmica, 13(5):442–461, 1995.

9 Sergio Cabello, Panos Giannopoulos, Christian Knauer, and Günter Rote. Matching point
sets with respect to the Earth Mover’s Distance. Comput. Geom., 39(2):118–133, 2008.
doi:10.1016/j.comgeo.2006.10.001.

10 Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. In Proc. of the 4th Ann. ACM/SIGACT-SIAM Symp. on Dis-
crete Algo., pages 291–300, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.
313777.

11 Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90,
1995. doi:10.1145/200836.200853.

12 Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. In Proc.
of the 31th Internat. Conf. on Machine Learning, pages 685–693, 2014. URL: http://jmlr.
org/proceedings/papers/v32/cuturi14.html.

13 Alexandre Gramfort, Gabriel Peyré, and Marco Cuturi. Fast optimal transport averaging
of neuroimaging data. In Proc. of the 24th Internat. Conf. on Infor. Processing in Medical
Imaging, pages 261–272. Springer, 2015.

14 Kristen Grauman and Trevor Darrell. Fast contour matching using approximate earth
mover’s distance. In Proc. of the 24th Ann. IEEE Conf. on Comp. Vision and Pattern
Recog., volume 1, pages I–220. IEEE, 2004.

15 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173. American Mathemat-
ical Society Providence, 2011.

16 Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic
matching (cost). In Proc. of the 18th Ann. ACM-SIAM Symp. on Discrete Algo., pages
39–42, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283388.

17 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
CoRR, abs/1604.03654, 2016. URL: http://arxiv.org/abs/1604.03654.

18 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in Õ(vrank) iterations and faster algorithms for maximum flow. In Proc.
of the 55th Ann. IEEE Symp. on Found. of Comp. Sci., pages 424–433, 2014.

19 James B. Orlin. A faster strongly polynominal minimum cost flow algorithm. In Proc. of
the 20th Annual ACM Symp. on Theory of Comp., May 2-4, 1988, Chicago, Illinois, USA,
pages 377–387, 1988. doi:10.1145/62212.62249.

20 Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for distributions with
applications to image databases. In 6th Internat. Conf. on Comp. Vision, pages 59–66,
1998. doi:10.1109/ICCV.1998.710701.

21 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem
in geometric settings. In Proc. of the 23rd Ann. ACM-SIAM Symp. on Discrete Algo.,

SoCG 2017

http://dx.doi.org/10.1109/SFCS.1996.548458
http://dx.doi.org/10.1145/225058.225191
http://dx.doi.org/10.1109/SFCS.1994.365722
http://dx.doi.org/10.1016/j.comgeo.2006.10.001
http://dl.acm.org/citation.cfm?id=313559.313777
http://dl.acm.org/citation.cfm?id=313559.313777
http://dx.doi.org/10.1145/200836.200853
http://jmlr.org/proceedings/papers/v32/cuturi14.html
http://jmlr.org/proceedings/papers/v32/cuturi14.html
http://dl.acm.org/citation.cfm?id=1283383.1283388
http://arxiv.org/abs/1604.03654
http://dx.doi.org/10.1145/62212.62249
http://dx.doi.org/10.1109/ICCV.1998.710701

7:16 Faster Algorithms for the Geometric Transportation Problem

pages 306–317, 2012. URL: http://portal.acm.org/citation.cfm?id=2095145&CFID=
63838676&CFTOKEN=79617016.

22 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm
for geometric bipartite matching. In Proc. of the 44th Ann. ACM Symp. on Theory of
Comp., pages 385–394, 2012. doi:10.1145/2213977.2214014.

23 Justin Solomon, Raif M. Rustamov, Leonidas J. Guibas, and Adrian Butscher. Earth
mover’s distances on discrete surfaces. ACM Transactions on Graphics, 33(4):67:1–67:12,
2014. doi:10.1145/2601097.2601175.

24 Kunal Talwar. Bypassing the embedding: Algorithms for low dimensional metrics. In Proc.
of the 36th Ann. ACM Symp. on Theory of Comp., pages 281–290, 2004. doi:10.1145/
1007352.1007399.

25 Pravin M. Vaidya. Geometry helps in matching. SIAM J. Comput., 18(6):1201–1225, 1989.
26 Kasturi R. Varadarajan and Pankaj K. Agarwal. Approximation algorithms for bipartite

and non-bipartite matching in the plane. In Proc. of the 10th Ann. ACM-SIAM Symp.
on Discrete Algo., pages 805–814, 1999. URL: http://dl.acm.org/citation.cfm?id=
314500.314918.

27 Cédric Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business
Media, 2008.

http://portal.acm.org/citation.cfm?id=2095145&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095145&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1145/2213977.2214014
http://dx.doi.org/10.1145/2601097.2601175
http://dx.doi.org/10.1145/1007352.1007399
http://dx.doi.org/10.1145/1007352.1007399
http://dl.acm.org/citation.cfm?id=314500.314918
http://dl.acm.org/citation.cfm?id=314500.314918

A Superlinear Lower Bound on the Number of
5-Holes∗

Oswin Aichholzer1, Martin Balko2, Thomas Hackl3, Jan Kynčl4,
Irene Parada5, Manfred Scheucher6, Pavel Valtr7, and
Birgit Vogtenhuber8

1 Institute for Software Technology, Graz University of Technology, Austria
oaich@ist.tugraz.at

2 Dept. of Applied Mathematics and Institute for Theoretical Computer Science,
Faculty of Mathematics and Physics, Charles University, Czech Republic; and
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
balko@kam.mff.cuni.cz

3 Institute for Software Technology, Graz University of Technology, Austria
thackl@ist.tugraz.at

4 Dept. of Applied Mathematics and Institute for Theoretical Computer Science,
Faculty of Mathematics and Physics, Charles University, Czech Republic
kyncl@kam.mff.cuni.cz

5 Institute for Software Technology, Graz University of Technology, Austria
iparada@ist.tugraz.at

6 Institute for Software Technology, Graz University of Technology, Austria; and
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
mscheuch@ist.tugraz.at

7 Dept. of Applied Mathematics and Institute for Theoretical Computer Science,
Faculty of Mathematics and Physics, Charles University, Czech Republic; and
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
valtr@kam.mff.cuni.cz

8 Institute for Software Technology, Graz University of Technology, Austria
bvogt@ist.tugraz.at

Abstract
Let P be a finite set of points in the plane in general position, that is, no three points of P are
on a common line. We say that a set H of five points from P is a 5-hole in P if H is the vertex
set of a convex 5-gon containing no other points of P . For a positive integer n, let h5(n) be the
minimum number of 5-holes among all sets of n points in the plane in general position.

Despite many efforts in the last 30 years, the best known asymptotic lower and upper bounds
for h5(n) have been of order Ω(n) and O(n2), respectively. We show that h5(n) = Ω(n log4/5 n),
obtaining the first superlinear lower bound on h5(n).

∗ The research for this article was partially carried out in the course of the bilateral research project
“Erdős–Szekeres type questions for point sets” between Graz and Prague, supported by the OEAD
project CZ 18/2015 and project no. 7AMB15A T023 of the Ministry of Education of the Czech Republic.
Aichholzer, Scheucher, and Vogtenhuber were partially supported by the ESF EUROCORES programme
EuroGIGA – CRP ComPoSe, Austrian Science Fund (FWF): I648-N18. Parada was supported by the
Austrian Science Fund (FWF): W1230. Balko and Valtr were partially supported by the grant GAUK
690214. Balko, Kynčl, and Valtr were partially supported by the project CE-ITI no. P202/12/G061 of
the Czech Science Foundation (GAČR). Hackl and Scheucher were partially supported by the Austrian
Science Fund (FWF): P23629-N18. Balko, Scheucher, and Valtr were partially supported by the ERC
Advanced Research Grant no. 267165 (DISCONV).

© Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kynčl, Irene Parada, Manfred Scheucher,
Pavel Valtr, and Birgit Vogtenhuber;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 A Superlinear Lower Bound on the Number of 5-Holes

The following structural result, which might be of independent interest, is a crucial step in the
proof of this lower bound. If a finite set P of points in the plane in general position is partitioned
by a line ` into two subsets, each of size at least 5 and not in convex position, then ` intersects
the convex hull of some 5-hole in P . The proof of this result is computer-assisted.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Erdős–Szekeres type problem, k-hole, empty k-gon, empty pentagon,
planar point set

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.8

1 Introduction

We say that a set of points in the plane is in general position if it contains no three points on
a common line. A point set is in convex position if it is the vertex set of a convex polygon.
In 1935, Erdős and Szekeres [16] proved the following theorem, which is a classical result
both in combinatorial geometry and Ramsey theory.

I Theorem ([16], The Erdős–Szekeres Theorem). For every integer k ≥ 3, there is a smallest
integer n = n(k) such that every set of at least n points in general position in the plane
contains k points in convex position.

The Erdős–Szekeres Theorem motivated a lot of further research, including numerous
modifications and extensions of the theorem. Here we mention only results closely related to
the main topic of our paper.

Let P be a finite set of points in general position in the plane. We say that a set H of k
points from P is a k-hole in P if H is the vertex set of a convex k-gon containing no other
points of P . In the 1970s, Erdős [15] asked whether, for every positive integer k, there is a
k-hole in every sufficiently large finite point set in general position in the plane. Harborth [21]
proved that there is a 5-hole in every set of 10 points in general position in the plane and gave
a construction of 9 points in general position with no 5-hole. After unsuccessful attempts of
researchers to answer Erdős’ question affirmatively for any fixed integer k ≥ 6, Horton [22]
constructed, for every positive integer n, a set of n points in general position in the plane
with no 7-hole. His construction was later generalized to so-called Horton sets and squared
Horton sets [29] and to higher dimensions [30]. The question whether there is a 6-hole in
every sufficiently large finite planar point set remained open until 2007 when Gerken [19]
and Nicolás [23] independently gave an affirmative answer.

For positive integers n and k, let hk(n) be the minimum number of k-holes in a set
of n points in general position in the plane. Due to Horton’s construction, hk(n) = 0 for
every n and every k ≥ 7. Asymptotically tight estimates for the functions h3(n) and h4(n)
are known. The best known lower bounds are due to Aichholzer et al. [5] who showed
that h3(n) ≥ n2 − 32n

7 + 22
7 and h4(n) ≥ n2

2 −
9n
4 − o(n). The best known upper bounds

h3(n) ≤ 1.6196n2 + o(n2) and h4(n) ≤ 1.9397n2 + o(n2) are due to Bárány and Valtr [12].
For h5(n) and h6(n), no matching bounds are known. So far, the best known asymptotic

upper bounds on h5(n) and h6(n) were obtained by Bárány and Valtr [12] and give h5(n) ≤
1.0207n2 + o(n2) and h6(n) ≤ 0.2006n2 + o(n2). For the lower bound on h6(n), Valtr [31]
showed h6(n) ≥ n/229− 4.

In this paper we give a new lower bound on h5(n). It is widely conjectured that h5(n)
grows quadratically in n, but to this date only lower bounds on h5(n) that are linear in

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.8

O. Aichholzer et al. 8:3

n have been known. As noted by Bárány and Füredi [10], a linear lower bound of bn/10c
follows directly from Harborth’s result [21]. Bárány and Károlyi [11] improved this bound to
h5(n) ≥ n/6−O(1). In 1987, Dehnhardt [14] showed h5(11) = 2 and h5(12) = 3, obtaining
h5(n) ≥ 3bn/12c. However, his result remained unknown to the scientific community until
recently. García [18] then presented a proof of the lower bound h5(n) ≥ 3bn−4

8 c and a slightly
better estimate h5(n) ≥ d3/7(n− 11)e was shown by Aichholzer, Hackl, and Vogtenhuber [6].
Quite recently, Valtr [31] obtained h5(n) ≥ n/2−O(1). This was strengthened by Aichholzer
et al. [5] to h5(n) ≥ 3n/4 − o(n). All improvements on the multiplicative constant were
achieved by utilizing the values of h5(10), h5(11), and h5(12). In the bachelor’s thesis of
Scheucher [26] the exact values h5(13) = 3, h5(14) = 6, and h5(15) = 9 were determined and
h5(16) ∈ {10, 11} was shown. During the preparation of this paper, we further determined
the value h5(16) = 11; see our webpage [25]. The values h5(n) for n ≤ 16 can be used
to obtain further improvements on the multiplicative constant. By revising the proofs of
[5, Lemma 1] and [5, Theorem 3], one can obtain h5(n) ≥ n− 10 and h5(n) ≥ 3n/2− o(n),
respectively. We also note that it was shown in [24] that if h3(n) ≥ (1 + ε)n2 − o(n2), then
h5(n) = Ω(n2).

As our main result, we give the first superlinear lower bound on h5(n). This solves an
open problem, which was explicitely stated, for example, in a book by Brass, Moser, and
Pach [13, Chapter 8.4, Problem 5] and in the survey [2].

I Theorem 1. There is an absolute constant c > 0 such that for every integer n ≥ 10 we
have h5(n) ≥ cn log4/5 n.

Let P be a finite set of points in the plane in general position and let ` be a line that
contains no point of P . We say that P is `-divided if there is at least one point of P in each
of the two halfplanes determined by `. For an `-divided set P , we use P = A ∪B to denote
the fact that ` partitions P into the subsets A and B.

The following result, which might be of independent interest, is a crucial step in the proof
of Theorem 1.

I Theorem 2. Let P = A ∪B be an `-divided set with |A|, |B| ≥ 5 and with neither A nor
B in convex position. Then there is an `-divided 5-hole in P .

The proof of Theorem 2 is computer-assisted. We reduce the result to several statements
about point sets of size at most 11 and then verify each of these statements by an exhaustive
computer search. To verify the computer-aided proofs we have implemented two independ-
ent programs, which, in addition, are based on different abstractions of point sets; see
Subsection 4.2. Some of our tools originate from the bachelor’s theses of Scheucher [26, 27].

In the rest of the paper, we assume that every point set P is planar, finite, and in general
position. We also assume, without loss of generality, that all points in P have distinct
x-coordinates. We use conv(P) to denote the convex hull of P and ∂ conv(P) to denote the
boundary of the convex hull of P .

A subset Q of P that satisfies P ∩ conv(Q) = Q is called an island of P . Note that every
k-hole in an island Q of P is also a k-hole in P . For any subset R of the plane, if R contains
no point of P , then we say that R is empty of points of P .

In Section 2 we derive quite easily Theorem 1 from Theorem 2. Then, in Section 3, we
give some preliminaries for the proof of Theorem 2, which is presented in Section 4.

SoCG 2017

8:4 A Superlinear Lower Bound on the Number of 5-Holes

2 Proof of Theorem 1

We apply Theorem 2 to obtain a superlinear lower bound on the number of 5-holes in a given
set of n points. Without loss of generality, we assume that n = 2t for some integer t ≥ 55.

We prove by induction on t ≥ 55 that the number of 5-holes in an arbitrary set P of
n = 2t points is at least f(t) := c · 2tt4/5 = c · n log4/5

2 n for some absolute constant c > 0.
For t = 55, we have n > 10 and, by the result of Harborth [21], there is at least one 5-hole
in P . If c is sufficiently small, then f(t) = c · n log4/5

2 n ≤ 1 and we have at least f(t) 5-holes
in P , which constitutes our base case.

For the inductive step we assume that t > 55. We first partition P with a line ` into two
sets A and B of size n/2 each. Then we further partition A and B into smaller sets using
the following well-known lemma, which is, for example, implied by a result of Steiger and
Zhao [28, Theorem 1].

I Lemma 3 ([28]). Let P ′ = A′ ∪B′ be an `-divided set and let r be a positive integer such
that r ≤ |A′|, |B′|. Then there is a line that is disjoint from P ′ and that determines an open
halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := blog1/5
2 nc, s := bn/(2r)c, and apply Lemma 3 iteratively in the following way

to partition P into islands P1, . . . , Ps+1 of P so that the sizes of Pi∩A and Pi∩B are exactly r
for every i ∈ {1, . . . , s}. Let P ′0 := P . For every i = 1, . . . , s, we consider a line that is disjoint
from P ′i−1 and that determines an open halfplane h with |P ′i−1 ∩A∩ h| = r = |P ′i−1 ∩B ∩ h|.
Such a line exists by Lemma 3 applied to the `-divided set P ′i−1. We then set Pi := P ′i−1 ∩ h,
P ′i := P ′i−1 \ Pi, and continue with i+ 1. Finally, we set Ps+1 := P ′s.

For every i ∈ {1, . . . , s}, if one of the sets Pi ∩A and Pi ∩B is in convex position, then
there are at least

(
r
5
)

5-holes in Pi and, since Pi is an island of P , we have at least
(

r
5
)

5-holes
in P . If this is the case for at least s/2 islands Pi, then, given that s = bn/(2r)c and thus
s/2 ≥ bn/(4r)c, we obtain at least bn/(4r)c

(
r
5
)
≥ c · n log4/5

2 n 5-holes in P for a sufficiently
small c > 0.

We thus further assume that for more than s/2 islands Pi, neither of the sets Pi ∩ A
nor Pi ∩B is in convex position. Since r = blog1/5

2 nc ≥ 5, Theorem 2 implies that there is
an `-divided 5-hole in each such Pi. Thus there is an `-divided 5-hole in Pi for more than
s/2 islands Pi. Since each Pi is an island of P and since s = bn/(2r)c, we have more than
s/2 ≥ bn/(4r)c `-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1, there are at least f(t− 1)
5-holes in A and at least f(t− 1) 5-holes in B by the inductive assumption. Since A and B
are separated by the line `, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log4/5
2 (n/2) + n/(4r) ≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expression is at least f(t) = cnt4/5, because the
inequality cn(t− 1)4/5 + n/(4t1/5) ≥ cnt4/5 is equivalent to the inequality (t− 1)4/5t1/5 +
1/(4c) ≥ t, which is true if c is sufficiently small, as (t− 1)4/5t1/5 ≥ t− 1. This completes
the proof of Theorem 1.

3 Preliminaries

Before proceeding with the proof of Theorem 2, we first introduce some notation and
definitions, and state some immediate observations.

Let a, b, c be three distinct points in the plane. We denote the line segment spanned by a
and b as ab, the ray starting at a and going through b as

−→
ab, and the line through a and b

O. Aichholzer et al. 8:5

P

p1

p2

p3

p4

S(p2, p3, p4, p1)

S(p1, p2, p3, p4)

S(p3, p4, p1, p2)

S(p4, p1, p2, p3)

(a)

a∗
a5

`

a1

a4

W1

W4

W2

W3

a2

W5

a3

(b)

a∗
a6

`

a1

a4

W1

W4

W2

W3

a2

W5

a3a5

W6

(c)

Figure 1 (a) An example of sectors. (b) An example of a∗-wedges with t = |A| − 1. (c) An
example of a∗-wedges with t < |A| − 1.

directed from a to b as ab. We say c is to the left (right) of ab if the triple (a, b, c) traced
in this order is oriented counterclockwise (clockwise). Note that c is to the left of ab if and
only if c is to the right of ba, and that the triples (a, b, c), (b, c, a), and (c, a, b) have the same
orientation. We say a point set S is to the left (right) of ab if every point of S is to the left
(right) of ab.

Let P = A ∪B be an `-divided set. In the rest of the paper, we assume without loss of
generality that ` is vertical and directed upwards, A is to the left of `, and B is to the right
of `.

Sectors of polygons

For an integer k ≥ 3, let P be a convex polygon with vertices p1, p2, . . . , pk traced counter-
clockwise in this order. We denote by S(p1, p2, . . . , pk) the open convex region to the left of
each of the three lines p1p2, p1pk, and pk−1pk. We call S(p1, p2, . . . , pk) a sector of P . Note
that every convex k-gon defines exactly k sectors. Figure 1(a) gives an illustration.

We use 4(p1, p2, p3) to denote the closed triangle with vertices p1, p2, p3. We also use
�(p1, p2, p3, p4) to denote the closed quadrilateral with vertices p1, p2, p3, p4 traced in the
counterclockwise order along the boundary.

The following simple observation summarizes some properties of sectors of polygons.

I Observation 4. Let P = A ∪B be an `-divided set with no `-divided 5-hole in P . Then
the following conditions are satisfied.
(i) Every sector of an `-divided 4-hole in P is empty of points of P .
(ii) If S is a sector of a 4-hole in A and S is empty of points of A, then S is empty of points

of B.

`-critical sets and islands

An `-divided set C = A∪B is called `-critical if it fulfills the following two conditions.
(i) Neither A nor B is in convex position.
(ii) For every extremal point x of C, one of the sets (C \ {x}) ∩A and (C \ {x}) ∩B is in

convex position.
Note that every `-critical set C = A ∪B contains at least four points in each of A and B.

If P = A ∪B is an `-divided set with neither A nor B in convex position, then there exists
an `-critical island of P . This can be seen by iteratively removing extremal points so that
none of the parts is in convex position after the removal.

SoCG 2017

8:6 A Superlinear Lower Bound on the Number of 5-Holes

a-wedges and a∗-wedges

Let P = A ∪ B be an `-divided set. For a point a in A, the rays
−→
aa′ for all a′ ∈ A \ {a}

partition the plane into |A| − 1 regions. We call the closures of those regions a-wedges and
label them as W (a)

1 , . . . ,W
(a)
|A|−1 in the clockwise order around a, where W (a)

1 is the topmost
a-wedge that intersects `. Let t(a) be the number of a-wedges that intersect `. Note that
W

(a)
1 , . . . ,W

(a)
t(a) are the a-wedges that intersect ` sorted in top-to-bottom order on `. Also

note that all a-wedges are convex if a is an inner point of A, and that there exists exactly one
non-convex a-wedge otherwise. The indices of the a-wedges are considered modulo |A| − 1.
In particular, W (a)

0 = W
(a)
|A|−1 and W (a)

|A| = W
(a)
1 .

If A is not in convex position, we denote the rightmost inner point of A as a∗ and
write t := t(a∗) and Wk := W

(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗ is unique, since

all points have distinct x-coordinates. Figures 1(b) and 1(c) give an illustration. We set
wk := |B ∩Wk| and label the points of A so that Wk is bounded by the rays −−−−→a∗ak−1 and
−−→
a∗ak for k = 1, . . . , |A| − 1. Again, the indices are considered modulo |A| − 1. In particular,
a0 = a|A|−1 and a|A| = a1.

I Observation 5. Let P = A ∪B be an `-divided set with A not in convex position. Then
the points a1, . . . , at−1 lie to the right of a∗ and the points at, . . . , a|A|−1 lie to the left of a∗.

4 Proof of Theorem 2

First, we give a high-level overview of the main ideas of the proof of Theorem 2. We proceed
by contradiction and we suppose that there is no `-divided 5-hole in a given `-divided set
P = A ∪ B with |A|, |B| ≥ 5 and with neither A nor B in convex position. If |A|, |B| = 5,
then the statement follows from the result of Harborth [21]. Thus we assume that |A| ≥ 6 or
|B| ≥ 6. We reduce P to an island Q of P by iteratively removing points from the convex
hull until one of the two parts Q∩A and Q∩B contains exactly five points or Q is `-critical
with |Q ∩ A|, |Q ∩ B| ≥ 6. If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6 or vice versa, then we reduce
Q to an island of Q with eleven points and, using a computer-aided result (Lemma 12),
we show that there is an `-divided 5-hole in that island and hence in P . If Q is `-critical
with |Q ∩A|, |Q ∩B| ≥ 6, then we show that |A ∩ ∂ conv(Q)|, |B ∩ ∂ conv(Q)| ≤ 2 and that,
if |A ∩ ∂ conv(Q)| = 2, then a∗ is the single interior point of Q ∩ A and similarly for B
(Lemma 17). Without loss of generality, we assume that |A ∩ ∂ conv(Q)| = 2 and thus a∗ is
the single interior point of Q ∩A. Using this assumption, we prove that |Q ∩B| < |Q ∩A|
(Proposition 19). By exchanging the roles of Q ∩A and Q ∩B, we obtain |Q ∩A| ≤ |Q ∩B|
(Proposition 22), which gives a contradiction.

To bound |Q∩B|, we use three results about the sizes of the parameters w1, . . . , wt for the
`-divided set Q, that is, about the numbers of points of Q ∩B in the a∗-wedges W1, . . . ,Wt

of Q. We show that if we have wi = 2 = wj for some 1 ≤ i < j ≤ t, then wk = 0 for some k
with i < k < j (Lemma 10). Further, for any three or four consecutive a∗-wedges whose union
is convex and contains at least four points of Q∩B, each of those a∗-wedges contains at most
two such points (Lemma 16). Finally, we show that w1, . . . , wt ≤ 3 (Lemma 18). The proofs
of Lemmas 16 and 18 rely on some results about small `-divided sets with computer-aided
proofs (Lemmas 13, 14, and 15). Altogether, this is sufficient to show that |Q∩B| < |Q∩A|.

We now start the proof of Theorem 2 by showing that if there is an `-divided 5-hole in
the intersection of P with a union of consecutive a∗-wedges, then there is an `-divided 5-hole
in P .

O. Aichholzer et al. 8:7

a∗
ai−1

aj

h

P \Q

(a)

a∗
ai−1

aj
x

zh

P \Q

(b)

a∗

Wi

Wj

Wi+1

. . .

ai−1

aj

`

p′

H ′
H

(c)

Figure 2 Illustration of the proof of Lemma 6. (a) The point aj is to the right of a∗. (b) The
point aj is to the left of a∗. (c) The hole H properly intersects the ray

−−→
a∗aj . The boundary of the

convex hull of H is drawn red and the convex hull of H ′ is drawn blue.

I Lemma 6. Let P = A ∪B be an `-divided set with A not in convex position. For integers
i, j with 1 ≤ i ≤ j ≤ t, let W :=

⋃j
k=i Wk and Q := P ∩W . If there is an `-divided 5-hole

in Q, then there is an `-divided 5-hole in P .

Proof. IfW is convex then Q is an island of P and the statement immediately follows. Hence
we assume that W is not convex. The region W is bounded by the rays −−−−→a∗ai−1 and −−→a∗aj

and all points of P \Q lie in the convex region R2 \W ; see Figure 2.
Since W is non-convex and every a∗-wedge contained in W intersects `, at least one of

the points ai−1 and aj lies to the left of a∗. Moreover, the points ai, . . . , aj−1 are to the right
of a∗ by Observation 5. Without loss of generality, we assume that ai−1 is to the left of a∗.

Let H be an `-divided 5-hole in Q. If aj is to the left of a∗, then we let h be the closed
halfplane determined by the vertical line through a∗ such that ai−1 and aj lie in h. Otherwise,
if aj is to the right of a∗, then we let h be the closed halfplane determined by the line a∗aj

such that ai−1 lies in h. In either case, h ∩A ∩Q = {a∗, ai−1, aj}.
We say that H properly intersects a ray r if there are points p, q ∈ H such that the interior

of the segment pq intersects r. Now we show that if H properly intersects the ray −−→a∗aj , then
H contains ai−1. Assume there are points p, q ∈ H such that pq properly intersects r := −−→a∗aj .
Since r lies in h and neither of p and q lies in r, at least one of the points p and q lies in
h \ r. Without loss of generality, we assume p ∈ h \ r. From h ∩A ∩Q = {a∗, ai−1, aj} we
have p = ai−1. By symmetry, if H properly intersects the ray −−−−→a∗ai−1, then H contains aj .

Suppose for contradiction that H properly intersects both rays −−−−→a∗ai−1 and −−→a∗aj . Then
H contains the points ai−1, aj , x, y, z for some points x, y, z ∈ Q, where ai−1x intersects
−−→
a∗aj , and ajz intersects −−−−→a∗ai−1. Observe that z is to the left of ai−1a∗ and that x is to the
right of aja∗. If aj lies to the right of a∗, then z is to the left of a∗, and thus z is in A; see
Figure 2(a). However, this is impossible as z also lies in h. Hence, aj lies to the left of a∗;
see Figure 2(b). As x and z are both to the right of a∗, the point a∗ is inside the convex
quadrilateral �(ai−1, aj , x, z). This contradicts the assumption that H is a 5-hole in Q.

So assume that H properly intersects exactly one of the rays −−−−→a∗ai−1 and −−→a∗aj , say
−−→
a∗aj ;

see Figure 2(c). In this case, H contains ai−1. The interior of the triangle 4(a∗, ai−1, aj)
is empty of points of Q, since the triangle is contained in h. Moreover, conv(H) cannot
intersect the line that determines h both strictly above and strictly below a∗. Thus, all
remaining points of H \ {ai−1} lie to the right of ai−1a∗ and to the right of aja∗. If H is
empty of points of P \Q, we are done. Otherwise, we let H ′ := (H \ {ai−1}) ∪ {p′} where
p′ ∈ P \Q is a point inside 4(a∗, ai−1, aj) closest to aja∗. Note that the point p′ might not

SoCG 2017

8:8 A Superlinear Lower Bound on the Number of 5-Holes

be unique. By construction, H ′ is an `-divided 5-hole in P . An analogous argument shows
that there is an `-divided 5-hole in P if H properly intersects −−−−→a∗ai−1.

Finally, if H does not properly intersect any of the rays −−−−→a∗ai−1 and −−→a∗aj , then conv(H)
contains no point of P \Q in its interior, and hence H is an `-divided 5-hole in P . J

4.1 Sequences of a∗-wedges with at most two points of B

In this subsection we consider an `-divided set P = A∪B with A not in convex position. We
consider the union W of consecutive a∗-wedges, each containing at most two points of B, and
derive an upper bound on the number of points of B that lie in W if there is no `-divided
5-hole in P ∩W ; see Corollary 11.

I Observation 7. Let P = A ∪B be an `-divided set with A not in convex position. Let Wk

be an a∗-wedge with wk ≥ 1 and 1 ≤ k ≤ t and let b be the leftmost point in Wk ∩B. Then
the points a∗, ak−1, b, and ak form an `-divided 4-hole in P .

From Observation 4(i) and Observation 7 we obtain the following result.

I Observation 8. Let P = A∪B be an `-divided set with A not in convex position and with
no `-divided 5-hole in P . Let Wk be an a∗-wedge with wk ≥ 2 and 1 ≤ k ≤ t and let b be
the leftmost point in Wk ∩ B. For every point b′ in (Wk ∩ B) \ {b}, the line bb′ intersects
the segment ak−1ak. Consequently, b is inside 4(ak−1, ak, b

′), to the left of akb′, and to the
right of ak−1b′.

The following lemma states that there is an `-divided 5-hole in P if two consecutive
a∗-wedges both contain exactly two points of B. Its proof can be found in the full version of
the paper [4].

I Lemma 9. Let P = A ∪ B be an `-divided set with A not in convex position and with
|A|, |B| ≥ 5. Let Wi and Wi+1 be consecutive a∗-wedges with wi = 2 = wi+1 and 1 ≤ i < t.
Then there is an `-divided 5-hole in P .

Next we show that if there is a sequence of consecutive a∗-wedges where the first and the
last a∗-wedge both contain two points of B and every a∗-wedge in between them contains
exactly one point of B, then there is an `-divided 5-hole in P .

I Lemma 10. Let P = A ∪ B be an `-divided set with A not in convex position and
with |A| ≥ 5 and |B| ≥ 6. Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i < j ≤ t,
wi = 2 = wj , and wk = 1 for every k with i < k < j. Then there is an `-divided 5-hole in P .

The proof of Lemma 10 can be found in the full version of the paper [4]. We now use
Lemma 10 to show the following upper bound on the total number of points of B in a
sequence Wi, . . . ,Wj of consecutive a∗-wedges with wi, . . . , wj ≤ 2.

I Corollary 11. Let P = A ∪ B be an `-divided set with no `-divided 5-hole, with A not
in convex position, and with |A| ≥ 5 and |B| ≥ 6. For 1 ≤ i ≤ j ≤ t, let Wi, . . . ,Wj be
consecutive a∗-wedges with wk ≤ 2 for every k with i ≤ k ≤ j. Then

∑j
k=i wk ≤ j − i+ 2.

Proof. Let n0, n1, and n2 be the number of a∗-wedges from Wi, . . . ,Wj with 0, 1, and 2
points of B, respectively. Due to Lemma 10, we can assume that between any two a∗-wedges
from Wi, . . . ,Wj with two points of B each, there is an a∗-wedge with no point of B. Thus
n2 ≤ n0 + 1. Since n0 + n1 + n2 = j − i + 1, we have

∑j
k=i wk = 0n0 + 1n1 + 2n2 =

(j − i+ 1) + (n2 − n0) ≤ j − i+ 2. J

O. Aichholzer et al. 8:9

4.2 Computer-assisted results
We now provide lemmas that are key ingredients in the proof of Theorem 2. All these lemmas
have computer-aided proofs. Each result was verified by two independent implementations,
which are also based on different abstractions of point sets; see below for details.

I Lemma 12. Let P = A ∪B be an `-divided set with |A| = 5, |B| = 6, and with A not in
convex position. Then there is an `-divided 5-hole in P .

I Lemma 13. Let P = A ∪ B be an `-divided set with no `-divided 5-hole in P , |A| = 5,
4 ≤ |B| ≤ 6, and with A in convex position. Then for every point a of A, every convex
a-wedge contains at most two points of B.

I Lemma 14. Let P = A∪B be an `-divided set with no `-divided 5-hole in P , |A| = 6, and
|B| = 5. Then for each point a of A, every convex a-wedge contains at most two points of B.

I Lemma 15. Let P = A∪B be an `-divided set with no `-divided 5-hole in P , 5 ≤ |A| ≤ 6,
|B| = 4, and with A in convex position. Then for every point a of A, if the non-convex
a-wedge is empty of points of B, every a-wedge contains at most two points of B.

We remark that all the assumptions in the statements of Lemmas 12 to 15 are necessary;
see the full version of the paper [4]. To prove these lemmas, we employ an exhaustive
computer search through all combinatorially different sets of |P | ≤ 11 points in the plane.
Since none of these statements depends on the actual coordinates of the points but only on
the relative positions of the points, we distinguish point sets only by orientations of triples of
points as proposed by Goodman and Pollack [20]. That is, we check all possible equivalence
classes of point sets in the plane with respect to their triple-orientations, which are known as
order types.

We wrote two independent programs to verify Lemmas 12 to 15. Both programs are
available online [25, 8].

The first implementation is based on programs from the two bachelor’s theses of Sch-
eucher [26, 27]. For our verification purposes we reduced the framework from there to a very
compact implementation [25]. The program uses the order type database [3, 7], which stores
all order types realizable as point sets of size up to 11. The order types realizable as sets of
ten points are available online [1] and the ones realizable as sets of eleven points need about
96 GB and are available upon request from Aichholzer. The running time of each of the
programs in this implementation does not exceed two hours on a standard computer.

The second implementation [8] neither uses the order type database nor the program
used to generate the database. Instead it relies on the description of point sets by so-
called signature functions [9, 17]. In this description, points are sorted according to their
x-coordinates and every unordered triple of points is represented by a sign from {−,+},
where the sign is − if the triple traced in the order by increasing x-coordinates is oriented
clockwise and the sign is + otherwise. Every 4-tuple of points is then represented by four
signs of its triples, which are ordered lexicographically. There are only eight 4-tuples of
signs that we can obtain (out of 16 possible ones); see [9, Theorem 3.2] or [17, Theorem 7]
for details. In our algorithm, we generate all possible signature functions using a simple
depth-first search algorithm and verify the conditions from our lemmas for every signature.
The running time of each of the programs in this implementation may take up to a few
hundreds of hours.

4.3 Applications of the computer-assisted results
Here we present some applications of the computer-assisted results from Section 4.2.

SoCG 2017

8:10 A Superlinear Lower Bound on the Number of 5-Holes

I Lemma 16. Let P = A∪B be an `-divided set with no `-divided 5-hole in P , with |A| ≥ 6,
and with A not in convex position. Then the following two conditions are satisfied.
(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-wedges whose union is convex and contains

at least four points of B. Then wi, wi+1, wi+2 ≤ 2.
(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-wedges whose union is convex and

contains at least four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

Proof. To show part (i), let W := Wi ∪Wi+1 ∪Wi+2, A′ := A ∩W , B′ := B ∩W , and
P ′ := A′ ∪B′. Since W is convex, P ′ is an island of P and thus there is no `-divided 5-hole
in P ′. Note that |A′| = 5 and A′ is in convex position. If |B′| ≤ 5, then every convex
a∗-wedge in P ′ contains at most two points of B′ by Lemma 13 applied to P ′. So assume
that |B′| ≥ 6. We remove points from P ′ from the right to obtain P ′′ = A′ ∪B′′, where B′′
contains exactly six points of B′. Note that there is no `-divided 5-hole in P ′′, since P ′′ is
an island of P ′. By Lemma 13, each a∗-wedge in P ′′ contains exactly two points of B′′. Let
B̃ be the set of points of B that are to the left of the rightmost point of B′′, including this
point, and let P̃ := A ∪ B̃. Note that B′′ ⊆ B̃. Since |B′′| = 6 and since W ∩ B̃ = B′′, each
of the a∗-wedges Wi,Wi+1,Wi+2 contains exactly two points of B̃. The a∗-wedges Wi, Wi+1,
and Wi+2 are also a∗-wedges in P̃ . Thus, Lemma 9 applied to P̃ and Wi,Wi+1 then gives us
an `-divided 5-hole in P̃ . From the choice of P̃ , we then have an `-divided 5-hole in P , a
contradiction.

To show part (ii), let W := Wi ∪Wi+1 ∪Wi+2 ∪Wi+3, A′ := A ∩W , B′ := B ∩W , and
P ′ := A′ ∪B′. Since W is convex, P ′ is an island of P and thus there is no `-divided 5-hole
in P ′. Note that |A′| = 6 and A′ is in convex position. If |B′| = 4, then the statement
follows from Lemma 15 applied to P ′ since a∗ is an extremal point of P ′. If |B′| = 5, then
the statement follows from Lemma 14 applied to P ′ and thus we can assume |B′| ≥ 6.
Suppose for contradiction that wj ≥ 3 for some i ≤ j ≤ i + 3. We remove points from P

from the right to obtain P ′′ so that B′′ := P ′′ ∩ B contains exactly six points of W ∩ B.
By applying part (i) for P ′′ and Wi ∪Wi+1 ∪Wi+2 and Wi+1 ∪Wi+2 ∪Wi+3, we obtain
that |B′′ ∩Wi|, |B′′ ∩Wi+3| = 3 and |B′′ ∩Wi+1|, |B′′ ∩Wi+2| = 0. Let b be the rightmost
point from P ′′ ∩W . By Lemma 14 applied to W ∩ (P ′′ \ {b}), there are at most two points
of B′′ \ {b} in every a∗-wedge in W ∩ (P ′′ \ {b}). This contradicts the fact that either
|(B′′ ∩Wi) \ {b}| = 3 or |(B′′ ∩Wi+3) \ {b}| = 3. J

4.4 Extremal points of `-critical sets
Recall the definition of `-critical sets: An `-divided point set C = A ∪B is called `-critical if
neither C ∩A nor C ∩B is in convex position and if for every extremal point x of C, one of
the sets (C \ {x}) ∩A and (C \ {x}) ∩B is in convex position.

In this section, we consider an `-critical set C = A ∪B with |A|, |B| ≥ 5. We first show
that C has at most two extremal points in A and at most two extremal points in B. Later,
under the assumption that there is no `-divided 5-hole in C, we show that |B| ≤ |A| − 1 if
A contains two extremal points of C (Section 4.4.1) and that |B| ≤ |A| if B contains two
extremal points of C (Section 4.4.2).

I Lemma 17. Let C = A ∪ B be an `-critical set. Then the following statements are
true.
(i) If |A| ≥ 5, then |A ∩ ∂ conv(C)| ≤ 2.
(ii) If A ∩ ∂ conv(C) = {a, a′}, then a∗ is the single interior point in A and every point of

A \ {a, a′} lies in the convex region spanned by the lines a∗a and a∗a′ that does not have
any of a and a′ on its boundary.

O. Aichholzer et al. 8:11

(iii) If A ∩ ∂ conv(C) = {a, a′}, then the a∗-wedge that contains a and a′ contains no point
of B.

By symmetry, analogous statements hold for B.

The proof of Lemma 17 can be found in the full version of the paper [4].
We remark that the assumption |A| ≥ 5 in part (i) of Lemma 17 is necessary. In fact,

arbitrarily large `-critical sets with only four points in A and with three points of A on
∂ conv(C) exist, and analogously for B.

I Lemma 18. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C and with
|A| ≥ 6. Then wi ≤ 3 for every 1 < i < t. Moreover, if |A∩ ∂ conv(C)| = 2, then w1, wt ≤ 3.

Proof. Recall that, since C is `-critical, we have |B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t.
We assume that there is a point a in A∩∂ conv(C), which lies outside ofWi, as otherwise there
is nothing to prove for Wi (either |A ∩ ∂ conv(C)| = 1 and i ∈ {1, t} or |A ∩ ∂ conv(C)| = 2
and, by Lemma 17(iii), Wi ∩B = ∅). We consider C ′ := C \ {a}. Since C is an `-critical set,
A′ := C ′ ∩A is in convex position. Thus, there is a non-convex a∗-wedge W ′ of C ′. Since W ′
is non-convex, all other a∗-wedges of C ′ are convex. Moreover, since W ′ is the union of the
two a∗-wedges of C that contain a, all other a∗-wedges of C ′ are also a∗-wedges of C. Let
W be the union of all a∗-wedges of C that are not contained in W ′. Note that W is convex
and contains at least |A| − 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the statement follows from
Lemma 16(i). J

4.4.1 Two extremal points of C in A

I Proposition 19. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |A ∩ ∂ conv(C)| = 2. Then |B| ≤ |A| − 1.

Proof. Since |A ∩ ∂ conv(C)| = 2, Lemma 18 implies that wi ≤ 3 for every 1 ≤ i ≤ t. Let
a and a′ be the two points in A ∩ ∂ conv(C). By Lemma 17(ii), all points of A \ {a, a′}
lie in the convex region R spanned by the lines a∗a and a∗a′ that does not have any of a
and a′ on its boundary. That is, without loss of generality, a = ah−1 and a′ = ah for some
1 ≤ h ≤ |A| − 1 and, by Lemma 17(iii), we have wh = 0. Since all points of A \ {a, a′} lie in
the convex region R, the regions W := cl(R2 \ (Wh−1∪Wh)) and W ′ := cl(R2 \ (Wh∪Wh+1))
are convex. Here cl(X) denotes the closure of a set X ⊆ R2. Recall that the indices of the
a∗-wedges are considered modulo |A| − 1 and that R2 is the union of all a∗-wedges.

First, suppose for contradiction that |A| = 6 and |B| ≥ 6. There are exactly five
a∗-wedges W1, . . . ,W5, and only four of them can contain points of B, since wh = 0. We
apply Lemma 16(i) to W and to W ′ and obtain that either wi ≤ 2 for every 1 ≤ i ≤ t or
wh−1, wh+1 = 3 and wi = 0 for every i 6∈ {h− 1, h+ 1}. In the first case, Corollary 11 implies
that |B| ≤ 5 and in the latter case Lemma 14 applied to P \ {b}, where b is the rightmost
point of B, gives |B| ≤ 5, a contradiction. Hence, we assume |A| ≥ 7.

I Claim 20. For 1 ≤ k ≤ t− 3, if one of the four consecutive a∗-wedges Wk, Wk+1, Wk+2,
or Wk+3 contains 3 points of B, then wk + wk+1 + wk+2 + wk+3 = 3.

There are |A| − 1 ≥ 6 a∗-wedges and, in particular, W and W ′ are both unions of at least
four a∗-wedges. For every Wi with wi = 3 and 1 ≤ i ≤ t, the a∗-wedge Wi is either contained
in W or in W ′. Thus we can find four consecutive a∗-wedges Wk,Wk+1,Wk+2,Wk+3 whose
union is convex and contains Wi. Lemma 16(ii) implies that each of Wk,Wk+1,Wk+2,Wk+3
except of Wi is empty of points of B. This finishes the proof of Claim 20.

SoCG 2017

8:12 A Superlinear Lower Bound on the Number of 5-Holes

b1

b2

b3

a∗
ai

R2

R1

`

ai−1

Figure 3 An illustration of the proof of Proposition 22.

I Claim 21. For all integers i and j with 1 ≤ i < j ≤ t, we have
∑j

k=i wk ≤ j − i+ 2.

Let S := (wi, . . . , wj) and let S′ be the subsequence of S obtained by removing every
1-entry from S. If S contains only 1-entries, the statement clearly follows. Thus we can
assume that S′ is non-empty. Recall that S′ contains only 0-, 2-, and 3-entries, since wi ≤ 3
for all 1 ≤ i ≤ t. Due to Claim 20, there are at least three consecutive 0-entries between
every pair of nonzero entries of S′ that contains a 3-entry. Together with Lemma 10, this
implies that there is at least one 0-entry between every pair of 2-entries in S′.

By applying the following iterative procedure, we show that
∑

s∈S′ s ≤ |S′|+ 1. While
there are at least two nonzero entries in S′, we remove the first nonzero entry s from S′. If
s = 2, then we also remove the 0-entry from S′ that succeeds s in S. If s = 3, then we also
remove the two consecutive 0-entries from S′ that succeed s in S′. The procedure stops when
there is at most one nonzero element s′ in the remaining subsequence S′′ of S′. If s′ = 3,
then S′′ contains at least one 0-entry and thus S′′ contains at least s′ − 1 elements. Since
the number of removed elements equals the sum of the removed elements in every step of the
procedure, we have

∑
s∈S′ s ≤ |S′|+ 1. This implies

j∑
k=i

wk =
∑
s∈S

s = |S| − |S′|+
∑
s∈S′

s ≤ |S| − |S′|+ |S′|+ 1 = j − i+ 2

and finishes the proof of Claim 21.
If Wh does not intersect `, that is, t < h ≤ |A| − 1, then the statement follows from

Claim 21 applied with i = 1 and j = t. Otherwise, we have h = 1 or h = t and we apply
Claim 21 with (i, j) = (2, t) or (i, j) = (1, t− 1), respectively. Since t ≤ |A| − 1 and wh = 0,
this gives us |B| ≤ |A| − 1. J

4.4.2 Two extremal points of C in B

I Proposition 22. Let C = A ∪ B be an `-critical set with no `-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |B ∩ ∂ conv(C)| = 2. Then |B| ≤ |A|.

Proof. If wk ≤ 2 for all 1 ≤ k ≤ t, then the statement follows from Corollary 11, since
|B| =

∑t
k=1 wk ≤ t + 1 ≤ |A|. Therefore we assume that there is an a∗-wedge Wi that

contains at least three points of B. Let b1, b2, and b3 be the three leftmost points in Wi ∩B
from left to right. Without loss of generality, we assume that b3 is to the left of b1b2.
Otherwise we can consider a vertical reflection of P . Figure 3 gives an illustration.

Let R1 be the region that lies to the left of b1b2 and to the right of b2b3 and let R2 be
the region that lies to the right of aib1 and to the right of a∗ai. Let B′ := B \ {b1, b2, b3}.

I Claim 23. Every point of B′ lies in R1 ∪R2.

O. Aichholzer et al. 8:13

We first show that every point of B′ that lies to the left of b1b2 lies in R1. Then we show
that every point of B′ that lies to the right of b1b2 lies in R2.

By Observation 8, both lines b1b2 and b1b3 intersect the segment ai−1ai. Since the
segment ai−1b1 intersects ` and since b1 is the leftmost point of Wi ∩B, all points of B′ that
lie to the left of b1b2 lie to the left of ai−1b1. The four points ai−1, b1, b2, b3 form an `-divided
4-hole in P , since ai−1 is the leftmost and b3 is the rightmost point of ai−1, b1, b2, b3 and
both ai−1 and b3 lie to the left of b1b2. By Observation 4(i), the sector S(ai−1, b1, b2, b3) is
empty of points of P (green shaded area in Figure 3). Altogether, all points of B′ that lie to
the left of b1b2 are to the right of b2b3 and thus lie in R1.

Since the segment aib1 intersects ` and since b1 is the leftmost point of Wi ∩B, all points
of B′ that lie to the right of b1b2 lie to the right of aib1. By Observation 4(i), the sector
S(b1, b2, b3, ai−1) is empty of points of P . Combining this with the fact that a∗ is to the right
of ai−1b3, we see that a∗ lies to the right of b1b2. Since b1 and b2 both lie to the left of a∗ai

and since a∗ and ai both lie to the right of b1b2, the points b2, b1, a
∗, ai form an `-divided

4-hole in P . By Observation 4(i), the sector S(b2, b1, a
∗, ai) (blue shaded area in Figure 3)

is empty of points of P . Altogether, all points of B′ that lie to the right of b1b2 are to the
right of a∗ai and to the right of aib1 and thus lie in R2. This finishes the proof of Claim 23.

I Claim 24. If b4 is a point from B′ \R1, then b2 lies inside the triangle 4(b3, b1, b4).

By Claim 23, b4 lies in R2 and thus to the right of aib1 and to the right of a∗ai. We
recall that b4 lies to the right of b1b2.

We distinguish two cases. First, we assume that the points b2, b3, b1, ai are in convex
position. Then b2, b3, b1, ai form an `-divided 4-hole in P and, by Observation 4(i), the sector
S(b2, b3, b1, ai) is empty of points from P . Thus b4 lies to the right of b2b3 and the statement
follows.

Second, we assume that the points b2, b3, b1, ai are not in convex position. Due to
Observation 8, b2 and b3 both lie to the right of aib1. Moreover, since b3 is the rightmost of
those four points, b2 lies inside the triangle 4(b3, b1, ai). In particular, ai lies to the right of
b2b3. Therefore, since b2 and b3 are to the left of a∗ai, the line b2b3 intersects ` in a point p
above `∩ a∗ai. Let q be the point `∩ b1b2. Note that q is to the left of a∗ai. The point b4 is
to the right of b2b3, as otherwise b4 lies in 4(p, q, b2), which is impossible because the points
p, q, b2 are in Wi while b4 is not. Altogether, b2 is inside 4(b3, b1, b4) and this finishes the
proof of Claim 24.

I Claim 25. Either every point of B′ is to the right of b3 or b3 is the rightmost point of B.

By Observation 4(i), the sector S(b3, ai−1, b1, b2) is empty of points of P and thus all
points of B′ ∩R1 lie to the left of ai−1b3 and, in particular, to the right of b3.

Suppose for contradiction that the claim is not true. That is, there is a point b4 ∈ B′
that is the rightmost point in B and there is a point b5 ∈ B′ that is to the left of b3. Note
that b4 is an extremal point of C. By Claim 23 and by the fact that all points of B′ ∩ R1
lie to the right of b3, b5 lies in R2 \ R1. By Claim 24, b2 lies in the triangle 4(b1, b5, b3),
and thus B \ {b4} is not in convex position. This contradicts the assumption that C is an
`-critical island. This finishes the proof of Claim 25.

I Claim 26. The point b3 is the third leftmost point of B. In particular, Wi is the only
a∗-wedge with at least three points of B.

Suppose for contradiction that b3 is not the third leftmost point of B. Then by Claim 25,
b3 is the rightmost point of B and therefore an extremal point of B. This implies that
B′ ⊆ R2 \R1, since all points of B′ ∩R1 lie to the right of b3. By Claim 24, each point of B′

SoCG 2017

8:14 A Superlinear Lower Bound on the Number of 5-Holes

then forms a non-convex quadrilateral together with b1, b2, and b3. Since neither b1 nor b2
are extremal points of C and since |B ∩ ∂ conv(C)| = 2, there is a point b4 ∈ B that is an
extremal point of C. Since |B| ≥ 5, the set C \ {b4} has none of its parts separated by ` in
convex position, which contradicts the assumption that C is an `-critical set. Since Wi is an
arbitrary a∗-wedge with wi ≥ 3, Claim 26 follows.

I Claim 27. Let W be a union of four consecutive a∗-wedges that contains Wi. Then
|W ∩B| ≤ 4.

Suppose for contradiction that |W ∩B| ≥ 5. Let C ′ := C ∩W . Note that |C ′ ∩A| = 6
and that a∗, ai−1, ai lie in C ′. By Lemma 6, there is no `-divided 5-hole in C ′. We obtain
C ′′ by removing points from C ′ from the right until |C ′′ ∩ B| = 5. Since C ′′ is an island
of C ′, there is no `-divided 5-hole in C ′′. From Claim 26 we know that b1, b2, b3 are the three
leftmost points in C and thus lie in C ′′. We apply Lemma 14 to C ′′ and, since b1, b2, b3 lie
in a convex a∗-wedge of C ′′, we obtain a contradiction. This finishes the proof of Claim 27.

We now complete the proof of Proposition 22. First, we assume that 1 ≤ i ≤ 4. Let
W := W1 ∪W2 ∪W3 ∪W4. By Claim 27, |W ∩ B| ≤ 4. Claim 26 implies that wk ≤ 2 for
every k with 5 ≤ k ≤ t. By Corollary 11, we have

|B| =
4∑

k=1
wk +

t∑
k=5

wk ≤ 4 + (t− 3) = t+ 1 ≤ |A|.

The case t− 3 ≤ i ≤ t follows by symmetry.
Second, we assume that 5 ≤ i ≤ t− 4. Let W := Wi−3 ∪Wi−2 ∪Wi−1 ∪Wi. Note that W

is convex, since 2 ≤ i− 3 and i < t. By Lemma 16(ii), we have wi−3 +wi−2 +wi−1 +wi ≤ 3
and wi + wi+1 + wi+2 + wi+3 ≤ 3. By Claim 26, wk ≤ 2 for all k with 1 ≤ k ≤ i− 4. Thus,
by Corollary 11,

∑i−4
k=1 wk ≤ i − 3. Similarly, we have

∑t
k=i+4 wk ≤ t − i − 2. Altogether,

we obtain that

|B| =
i−4∑
k=1

wk +
i−1∑

k=i−3
wk +wi +

i+3∑
k=i+1

wk +
t∑

k=i+4
wk ≤ (i−3)+3+(t−i−2) = t−2 ≤ |A|−3.

J

4.5 Finalizing the proof of Theorem 2
We are now ready to prove Theorem 2. Namely, we show that for every `-divided set
P = A ∪ B with |A|, |B| ≥ 5 and with neither A nor B in convex position there is an
`-divided 5-hole in P .

Suppose for the sake of contradiction that there is no `-divided 5-hole in P . By the result
of Harborth [21], every set P of ten points contains a 5-hole in P . In the case |A|, |B| = 5, the
statement then follows from the assumption that neither of A and B is in convex position.

So assume that at least one of the sets A and B has at least six points. We obtain
an island Q of P by iteratively removing extremal points so that neither part is in convex
position after the removal and until one of the following conditions holds.
(i) One of the parts Q ∩A and Q ∩B has only five points.
(ii) Q is an `-critical island of P with |Q ∩A|, |Q ∩B| ≥ 6.

In case (i), we have |Q ∩A| = 5 or |Q ∩B| = 5. If |Q ∩A| = 5 and |Q ∩B| ≥ 6, then we
let Q′ be the union of Q ∩ A with the six leftmost points of Q ∩ B. Since Q ∩ A is not in
convex position, Lemma 12 implies that there is an `-divided 5-hole in Q′, which is also an
`-divided 5-hole in Q, since Q′ is an island of Q. However, this is impossible as then there is

O. Aichholzer et al. 8:15

an `-divided 5-hole in P because Q is an island of P . If |Q ∩A| ≥ 6 and |Q ∩B| = 5, then
we proceed analogously.

In case (ii), we have |Q ∩ A|, |Q ∩ B| ≥ 6. There is no `-divided 5-hole in Q, since
Q is an island of P . By Lemma 17(i), we can assume without loss of generality that
|A ∩ ∂ conv(Q)| = 2. Then it follows from Proposition 19 that |Q ∩ B| < |Q ∩ A|. By
exchanging the roles of Q ∩ A and Q ∩B and by applying Proposition 22, we obtain that
|Q ∩A| ≤ |Q ∩B|, a contradiction. This completes the proof of Theorem 2.

References
1 O. Aichholzer. Enumerating order types for small point sets with applications. http:

//www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/.
2 O. Aichholzer. [Empty] [colored] k-gons. Recent results on some Erdős–Szekeres type prob-

lems. In Proceedings of XIII Encuentros de Geometría Computacional, pages 43–52, Zar-
agoza, Spain, 2009.

3 O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point
sets with applications. Order, 19(3):265–281, 2002.

4 O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and
B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. http://arXiv.org/
abs/1703.05253, 2017.

5 O. Aichholzer, R. Fabila-Monroy, T. Hackl, C. Huemer, A. Pilz, and B. Vogtenhuber.
Lower bounds for the number of small convex k-holes. Computational Geometry: Theory
and Applications, 47(5):605–613, 2014.

6 O. Aichholzer, T. Hackl, and B. Vogtenhuber. On 5-gons and 5-holes. Lecture Notes in
Computer Science, 7579:1–13, 2012.

7 O. Aichholzer and H. Krasser. Abstract order type extension and new results on the
rectilinear crossing number. Computational Geometry: Theory and Applications, 36(1):2–
15, 2007.

8 M. Balko. http://kam.mff.cuni.cz/~balko/superlinear5Holes.
9 M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial characterization of

monotone drawings of Kn. Discrete & Computational Geometry, 53(1):107–143, 2015.
10 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical

Bulletin, 30(4):436–445, 1987.
11 I. Bárány and Gy. Károlyi. Problems and results around the Erdős–Szekeres convex polygon

theorem. In Akiyama, Kano, and Urabe, editors, Discrete and Computational Geometry,
volume 2098 of Lecture Notes in Computer Science, pages 91–105. Springer, 2001.

12 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Scientiarum Mathematicarum Hungarica, 41(2):243–266, 2004.

13 P. Brass, W. Moser, and J. Pach. Research Problems in Discrete Geometry. Springer, 2005.
14 K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. PhD thesis, TU Braunsch-

weig, Germany, 1987. In German.
15 P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society

Gazette, 5(2):52–54, 1978.
16 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,

2:463–470, 1935.
17 S. Felsner and H. Weil. Sweeps, arrangements and signotopes. Discrete Applied Mathem-

atics, 109(1–2):67–94, 2001.
18 A. García. A note on the number of empty triangles. Lecture Notes in Computer Science,

7579:249–257, 2012.

SoCG 2017

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://arXiv.org/abs/1703.05253
http://arXiv.org/abs/1703.05253
http://kam.mff.cuni.cz/~balko/superlinear5Holes

8:16 A Superlinear Lower Bound on the Number of 5-Holes

19 T. Gerken. Empty convex hexagons in planar point sets. Discrete & Computational Geo-
metry, 39(1–3):239–272, 2008.

20 J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM Journal on Computing,
12(3):484–507, 1983.

21 H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik,
33:116–118, 1978. In German.

22 J.D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin,
26(4):482–484, 1983.

23 C.M. Nicolás. The empty hexagon theorem. Discrete & Computational Geometry,
38(2):389–397, 2007.

24 R. Pinchasi, R. Radoičić, and M. Sharir. On empty convex polygons in a planar point set.
Journal of Combinatorial Theory, Series A, 113(3):385–419, 2006.

25 M. Scheucher. http://www.ist.tugraz.at/scheucher/5holes.
26 M. Scheucher. Counting convex 5-holes, Bachelor’s thesis, 2013. In German.
27 M. Scheucher. On order types, projective classes, and realizations, Bachelor’s thesis, 2014.
28 W. Steiger and J. Zhao. Generalized ham-sandwich cuts. Discrete & Computational Geo-

metry, 44(3):535–545, 2010.
29 P. Valtr. Convex independent sets and 7-holes in restricted planar point sets. Discrete &

Computational Geometry, 7(2):135–152, 1992.
30 P. Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1):115–

124, 1992.
31 P. Valtr. On empty pentagons and hexagons in planar point sets. In Proceedings of

Computing: The Eighteenth Australasian Theory Symposium (CATS 2012), pages 47–48,
Melbourne, Australia, 2012.

http://www.ist.tugraz.at/scheucher/5holes

A Universal Slope Set for 1-Bend Planar Drawings
Patrizio Angelini1, Michael A. Bekos2, Giuseppe Liotta3, and
Fabrizio Montecchiani4

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
angelini@informatik.uni-tuebingen.de

2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
bekos@informatik.uni-tuebingen.de

3 Universitá degli Studi di Perugia, Perugia, Italy
giuseppe.liotta@unipg.it

4 Universitá degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

Abstract
We describe a set of ∆−1 slopes that are universal for 1-bend planar drawings of planar graphs of
maximum degree ∆ ≥ 4; this establishes a new upper bound of ∆− 1 on the 1-bend planar slope
number. By universal we mean that every planar graph of degree ∆ has a planar drawing with at
most one bend per edge and such that the slopes of the segments forming the edges belong to the
given set of slopes. This improves over previous results in two ways: Firstly, the best previously
known upper bound for the 1-bend planar slope number was 3

2 (∆− 1) (the known lower bound
being 3

4 (∆ − 1)); secondly, all the known algorithms to construct 1-bend planar drawings with
O(∆) slopes use a different set of slopes for each graph and can have bad angular resolution,
while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle
between any two edges incident to a vertex is π

(∆−1) .

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Slope number, 1-bend drawings, planar graphs, angular resolution

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.9

1 Introduction

This paper is concerned with planar drawings of graphs such that each edge is a poly-line
with few bends, each segment has one of a limited set of possible slopes, and the drawing
has good angular resolution, i.e. it forms large angles between consecutive edges incident on
a common vertex. Besides their theoretical interest, visualizations with these properties find
applications in software engineering and information visualization (see, e.g., [12, 26, 40]).
For example, planar graphs of maximum degree four (degree-4 planar graphs) are widely
used in database design, where they are typically represented by orthogonal drawings, i.e.
crossing-free drawings such that every edge segment is a polygonal chain of horizontal and
vertical segments. Clearly, orthogonal drawings of degree-4 planar graphs are optimal both
in terms of angular resolution and in terms of number of distinct slopes for the edges. Also,
a classical result in the graph drawing literature is that every degree-4 planar graph, except
the octahedron, admits an orthogonal drawing with at most two bends per edge [5, 34].

It is immediate to see that more than two slopes are needed in a planar drawing of a graph
with vertex degree ∆ ≥ 5. The k-bend planar slope number of a graph G with degree ∆ is the

© Patrizio Angelini, Michael A. Bekos, Giuseppe Liotta, and Fabrizio Montecchiani;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 A Universal Slope Set for 1-Bend Planar Drawings

Figure 1 A 1-bend planar drawing with 4 slopes and angular resolution π
4 of a graph with ∆ = 5.

minimum number of distinct slopes that are sufficient to compute a crossing-free drawing of
G with at most k bends per edge. Keszegh et al. [30] generalize the technique by Biedl and
Kant [5] and prove that for any ∆ ≥ 5, the 2-bend planar slope number of a degree-∆ planar
graph is d∆/2e; the construction in their proof has optimal angular resolution, that is 2π

∆ .
For the case of drawings with one bend per edge, Keszegh et al. [30] also show an upper

bound of 2∆ and a lower bound of 3
4 (∆ − 1) on the 1-bend planar slope number, while a

recent paper by Knauer and Walczak [31] improves the upper bound to 3
2 (∆− 1). Both these

papers use a similar technique: First, the graph is realized as a contact representation with
T -shapes [10], which is then transformed into a planar drawing where vertices are points and
edges are poly-lines with at most one bend. The set of slopes depends on the initial contact
representation and may change from graph to graph; also, each slope is either very close to
horizontal or very close to vertical, which gives rise to bad angular resolution. Knauer and
Walczak [31] also proved that the 1-bend (outer)planar slope number of outerplanar graphs
with ∆ > 2 is d∆

2 e and that ∆ + 1 slopes suffice for planar bipartite graphs.
We study the trade-off between number of slopes, angular resolution, and number of

bends per edge in a planar drawing of a graph with maximum degree ∆. We improve the
upper bounds in [31] on the 1-bend planar slope number, and at the same time we achieve
Ω(1

∆) angular resolution. More precisely, we prove the following.

I Theorem 1. For any ∆ ≥ 4, there exists an equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of planar graphs with maximum degree ∆. That is, every such graph
has a planar drawing with the following properties: (i) each edge has at most one bend; (ii)
each edge segment uses one of the slopes in S; and (iii) the minimum angle between any two
consecutive edge segments incident on a vertex or a bend is at least π

∆−1 .

Theorem 1, in conjuction with [27], implies that the 1-bend planar slope number of
planar graphs with n ≥ 5 vertices and maximum degree ∆ ≥ 3 is at most ∆− 1. We prove
the theorem by using an approach that is conceptually different from that of Knauer and
Walczak [31]: We do not construct an intermediate representation, but we prove the existence
of a universal set of slopes and use it to directly compute a 1-bend planar drawing of any
graph with degree at most ∆. The universal set of slopes consists of ∆− 1 distinct slopes
such that the minimum angle between any two of them is π

(∆−1) . An immediate consequence
of the 3

4 (∆ − 1) lower bound argument in [30] is that a 1-bend planar drawing with the
minimum number of slopes cannot have angular resolution larger than 4

3
π

(∆−1) . Hence, the
angular resolution of our drawings is optimal up to a multiplicative factor of at most 0.75;
also, note that the angular resolution of a graph of degree ∆ is at most 2π

∆ even when the
number of slopes and the number of bends along the edges are not bounded.

The proof of Theorem 1 is constructive and it gives rise to a linear-time algorithm
assuming the real RAM model of computation. A drawing computed with this algorithm
is shown in Fig. 1. The construction for triconnected planar graphs uses a variant of the
shifting method of de Fraysseix, Pach and Pollack [11]; this is used as a building block for

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:3

the drawing algorithm for biconnected planar graphs, which is based on the SPQR-tree
decomposition of the graph into its triconnected components (see, e.g., [12]). By using a
BC-tree decomposition, our approach can be further extended to general planar graphs,
details can be found in the extended version of this paper [1]. If the graph is disconnected,
since we use a universal set of slopes, the distinct connected components can be drawn
independently.

Related work. The results on the slope number of graphs are mainly classified into two
categories based on whether the input graph is planar or not. For a (planar) graph G

of maximum degree ∆, the slope number (planar slope number) is the minimum number
of slopes that are sufficient to compute a straight-line (planar) drawing of G. The slope
number of non-planar graphs is lower bounded by d∆/2e [41] but it can be arbitrarily large,
even when ∆ = 5 [2]. For ∆ = 3 this number is 4 [35], while it is unknown for ∆ = 4.
Upper bounds on the slope number are known for complete graphs [41] and outer 1-planar
graphs [14]. Deciding whether a graph has slope number 2 is NP-complete [15, 19]. For a
planar graph G of maximum degree ∆, the planar slope number of G is lower bounded by
3∆− 6 and upper bounded by O(2∆) [30]. Improved upper bounds are known for special
subclasses of planar graphs, e.g., planar graphs with ∆ ≤ 3 [15, 13, 28], outerplanar graphs
with ∆ ≥ 4 [32], partial 2-trees [33], planar partial 3-trees [25]. Note that determining the
planar slope number of a graph is hard in the existential theory of the reals [24].

Closely related to our problem is the problem of finding d-linear drawings of graphs,
in which all angles (formed either between consecutive segments of an edge or between
edge-segments incident to the same vertex) are multiples of 2π/d. For d = 4, an angular
resolution of 2π/d implies d-linearity, while for d > 4 this is not always true [8]. Special types
of d-linear drawings are the orthogonal [5, 7, 21, 39] and the octilinear [3, 4, 36] drawings,
for which d = 2 and d = 4 holds, respectively. As already recalled, any planar graph with
∆ ≤ 4 (except the octahedron) admits a planar orthogonal drawing with at most two bends
per edge [5, 34]. Deciding whether a degree-4 planar graph has an orthogonal drawing
with no bends is NP-complete [21], while it is solvable in polynomial time if one bend per
edge is allowed [6]. Octilinear drawings have been mainly studied in the context of metro
map visualization and map schematization [37, 38]. Nöllenburg [36] proved that deciding
whether an embedded planar graph with ∆ ≤ 8 admits a bendless planar octilinear drawing
is NP-complete. Bekos et al. [3] showed that any planar graph with ∆ ≤ 5 admits a planar
octilinear drawing with at most one bend per edge and this is not always possible if ∆ ≥ 6.
Note that in our work we generalize their positive result to any ∆. Later, Bekos et al. [4]
studied bounds on the total number of bends of planar octilinear drawings. Finally, trade-offs
between number of bends, angular resolution, and area requirement of planar drawings of
graphs with maximum degree ∆ are, for example, studied in [9, 16, 17, 18, 20, 22].

Paper organization. The rest of this paper is organized as follows. Preliminaries are given
in Section 2. In Section 3, we describe a drawing algorithm for triconnected planar graphs.
The technique is extended to biconnected planar graphs in Sections 4. Finally, in Section 5
we discuss further implications of Theorem 1 and we list open problems.

2 Preliminaries

A graph G containing neither loops nor multiple edges is simple. We consider simple graphs,
if not otherwise specified. The degree of a vertex of G is the number of its neighbors. We say

SoCG 2017

9:4 A Universal Slope Set for 1-Bend Planar Drawings

that G has maximum degree ∆ if it contains a vertex with degree ∆ but no vertex with degree
larger than ∆. A graph is connected, if for any pair of vertices there is a path connecting
them. Graph G is k-connected, if the removal of k− 1 vertices leaves the graph connected. A
2-connected (3-connected) graph is also called biconnected (triconnected, respectively).

A drawing Γ of G maps each vertex of G to a point in the plane and each edge of G to a
Jordan arc between its two endpoints. A drawing is planar, if no two edges cross (except
at common endpoints). A planar drawing divides the plane into connected regions, called
faces. The unbounded one is called outer face. A graph is planar, if it admits a planar
drawing. A planar embedding of a planar graph is an equivalence class of planar drawings
that combinatorially define the same set of faces and outer face.

The slope s of a line ` is the angle that a horizontal line needs to be rotated counter-
clockwise in order to make it overlap with `. The slope of an edge-segment is the slope of the
line containing the segment. Let S be a set of slopes sorted in increasing order; assume (up
to a rotation) that S contains the 0 angle, which we call horizontal slope. A 1-bend planar
drawing Γ of graph G on S is a planar drawing of G in which every edge is composed of at
most two straight-line segments, each of which has a slope that belongs to S. We say that S
is equispaced if and only if the difference between any two consecutive slopes of S is π

|S| . For
a vertex v in G, each slope s ∈ S defines two different rays that emanate from v and have
slope s. If s is the horizontal slope, then these rays are called horizontal. Otherwise, one of
them is the top and the other one is the bottom ray of v. Consider a 1-bend planar drawing
Γ of a graph G and a ray rv emanating from a vertex v of G. We say that rv is free if there
is no edge attached to v through rv. We also say that rv is incident to face f of Γ if and
only if rv is free and the first face encountered when moving from v along rv is f .

Let Γ be a 1-bend planar drawing of a graph and let e be an edge incident to the outer
face of Γ that has a horizontal segment. A cut at e is a y-monotone curve that
(i) starts at any point of the horizontal segment of e,
(ii) ends at any point of a horizontal segment of an edge e′ 6= e incident to the outer face of

Γ, and
(iii) crosses only horizontal segments of Γ.

Central in our approach is the canonical order of triconnected planar graphs which can
be computed in linear time [11, 29]. Let G = (V,E) be a triconnected planar graph and let
Π = (P0, . . . , Pm) be a partition of V into paths, such that P0 = {v1, v2}, Pm = {vn}, edges
(v1, v2) and (v1, vn) exist and belong to the outer face of G. For k = 0, . . . ,m, let Gk be the
subgraph induced by ∪ki=0Pi and denote by Ck the outer face of Gk. Π is a canonical order
of G if for each k = 1, . . . ,m− 1 the following hold:
(i) Gk is biconnected,
(ii) all neighbors of Pk in Gk−1 are on Ck−1,
(iii) |Pk| = 1 or the degree of each vertex of Pk is two in Gk, and
(iv) all vertices of Pk with 0 ≤ k < m have at least one neighbor in Pj for some j > k.

An SPQR-tree T represents the decomposition of a biconnected graph G into its tricon-
nected components and it can be computed in linear time [12, 23]. Every triconnected
component of G is associated with a node µ of T . The triconnected component itself is called
the skeleton of µ, denoted by Gskel

µ . A node µ in T can be of four different types:
(i) µ is an R-node, if Gskel

µ is a triconnected graph,
(ii) a simple cycle of length at least three classifies µ as an S-node,
(iii) a bundle of at least three parallel edges classifies µ as a P-node,
(iv) the leaves of T are Q-nodes, whose skeleton consists of two parallel edges.
Neither two S- nor two P -nodes are adjacent in T . A virtual edge in Gskel

µ corresponds to a

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:5

u

v

v1 v2

f

G−
k−1

ef

(a)

u

v

v1 v2

f

G−
k−1

ef

(b)

u1

v1 v2

u
u2

ru

P1
P2

(c)

Figure 2 Illustrations for (a-b) Lemma 2 and (c) Lemma 3.

tree node ν that is adjacent to µ in T , more precisely, to another virtual edge in Gskel
ν . If we

assume that T is rooted at a Q-node ρ, then every skeleton (except the one of ρ) contains
exactly one virtual edge, called reference edge and whose endpoints are the poles of µ, that
has a counterpart in the skeleton of its parent. Every subtree Tµ rooted at a node µ of T
induces a subgraph Gµ of G called pertinent, that is described by Tµ in the decomposition.

3 Triconnected Planar Graphs

Let G be a triconnected planar graph with ∆ ≥ 4 and let S be a set of ∆−1 equispaced slopes
containing the horizontal one. We consider the vertices of G according to a canonical order
Π = (P0, . . . , Pm). For k = 0, . . . ,m, let G−k be the planar graph obtained by removing edge
(v1, v2) from Gk, and let C−k be the path from v1 to v2 obtained by removing (v1, v2) from
Ck. We construct a 1-bend planar drawing of G−k on S satisfying the following invariants.
(I.1) No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.
(I.2) Every edge on C−k has a horizontal segment.
(I.3) Each vertex v on C−k has at least as many free top rays incident to the outer face of

G−k as the number of its neighbors in G \Gk.

Once a 1-bend planar drawing on S of G−m satisfying Invariants I.3–I.3 has been construc-
ted, a 1-bend planar drawing on S of G = G−m∪{(v1, v2)} can be obtained by drawing (v1, v2)
as a polyline composed of two straight-line segments, one attaching at the first clockwise
bottom ray of v1 and the other one at the first anti-clockwise bottom ray of v2. Since S has
at least three slopes, these two rays cross. Invariant I.3 ensures that edge (v1, v2) does not
introduce any crossing. Next, we state two useful properties of any 1-bend planar drawing
on S satisfying Invariants I.3–I.3, whose proofs can be found in [1]; see also Figs. 2a–2c).

I Lemma 2. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.3–I.3.
Let (u, v) be an edge of C−k such that u precedes v along path C−k and let σ > 0. There exists
a 1-bend planar drawing Γ′k on S of G−k , satisfying Invariants I.3–I.3, in which the horizontal
distance between any two consecutive vertices along C−k is the same as in Γk, except for u
and v, whose horizontal distance is increased by σ.

I Lemma 3. Let Γk be a 1-bend planar drawing on S of G−k satisfying Invariants I.3–I.3.
Let u be any vertex of C−k , and let ru be any free top ray of u that is incident to the outer
face of G−k in Γk. Then, it is possible to construct a 1-bend planar drawing Γ′k on S of G−k ,
satisfying Invariants I.3–I.3, in which ru does not cross any edge of Γ′k.

We now describe our algorithm. First, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj} such
that v1, v3, . . . , vj , v2 lie along a horizontal line, in this order (edge (v1, v2) is not considered).
Invariants I.3 and I.3 hold. Invariant I.3 follows since S contains ∆ − 2 top rays and all
vertices drawn so far (including v1 and v2) have at most ∆−2 neighbors later in the canonical

SoCG 2017

9:6 A Universal Slope Set for 1-Bend Planar Drawings

u`

vj
h

G−
k−1

ur

vi

τc(ur)
τa(u`)

v1 v2

(a)

u`

v1 v2

G−
k−1

ur

hi

vi

u1
u2

u3
u4

p` p1 p2 p3 p4 pr

τa(u`)
τc(ur)

(b)

Figure 3 Illustration of the cases of: (a) a chain, (b) a singleton of degree δi in Gk.

order. We now show how to add path Pk, for some k > 1, to a drawing Γk−1 satisfying
Invariants I.3–I.3, so that the resulting drawing Γk of G−k is a 1-bend planar drawing on S
satisfying Invariants I.3–I.3. We distinguish the cases in which Pk is a chain or a singleton.

Suppose first that Pk is a chain, say {vi, vi+1, . . . , vj}; refer to Fig. 3a. Let u` and ur
be the neighbors of vi and vj in C−k−1, respectively. By Invariant I.3, each of u` and ur
has at least one free top ray that is incident to the outer face of Γk−1; among them, we
denote by τa(u`) the first one in anti-clockwise order for u`, and by τc(ur) the first one in
clockwise order for ur. By Lemma 3, we can assume that τa(u`) and τc(ur) do not cross any
edge in Γk−1. This implies that there exists a horizontal line-segment h whose left and right
endpoints are on τa(u`) and τc(ur), respectively, that does not cross any edge of Γk−1. We
place all the vertices vi, vi+1, . . . , vj of Pk on interior points of h, in this left-to-right order.
Then, we draw edge (u`, vi) with a segment along h and the other one along τa(u`); we draw
edge (ur, vj) with a segment along h and the other one along τc(ur), and we draw every edge
(vq, vq+1), with q = i, . . . , j − 1, with a unique segment along h.

By construction, Γk is a planar drawing on S. All the vertices of Pk lie above u` and
ur, since τa(u`) and τc(ur) are top rays of u` and ur, respectively. Hence, these vertices and
their incident edges lie above v1 and v2, and thus Invariant I.3 is satisfied by Γk. Invariant
I.3 is satisfied since every edge that is drawn at this step has a segment along h, which is
horizontal. Invariant I.3 is satisfied since we attached edges (u`, vi) and (ur, vj) at vertices
u` and ur using the first anti-clockwise free top ray of u` and the first clockwise free top ray
of ur among those incident to the outer face, respectively. Thus, we reduced only by one the
number of free top rays incident to the outer face for u` and ur. For the other vertices of Pk,
the invariant is satisfied since their ∆− 2 top rays are free and incident to the outer face.
This concludes our description for the case in which Pk is a chain.

Suppose now that Pk is a singleton {vi} of degree δi ≤ ∆ in G−k . This also includes the
case in which Pk = Pm is the last path of Π. If δi = 2, then vi is placed as in the case of a
chain. So, we may assume that δi ≥ 3. Let u`, u1, u2, . . . , uδi−2, ur be the neighbors of vi as
they appear along C−k−1; see Fig. 3b. By Invariant I.3, each neighbor of vi in C−k−1 has at
least one free top ray incident to the outer face of Γk−1; let τa(u`) be the first of them in
anti-clockwise order for u` and τc(ur) be the first of them in clockwise order for ur. Also, for
each vertex uq, with q = 1, . . . , δi − 2, let τ(uq) be any of these rays. By Lemma 3, we can
assume that these rays do not cross any edge in Γk−1.

Consider a horizontal line hi above all vertices of Γk−1. Rays τa(u`), τ(u1), . . . , τ(uδi−2),
τc(ur) cross hi; however, the corresponding intersection points p`, p1, . . . , pδi−2, pr may
not appear in this left-to-right order along hi; see Fig. 4a. To guarantee this property, we
perform a sequence of stretchings of Γk−1 by repediately applying Lemma 2. First, if p`

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:7

G−
k−1

ur

v1 v2

hi

u`
u1
u2

u3

p1 p` pr p3 p2

σ

(a)

G−
k−1

ur

v1 v2

hi

u`
u1
u2

u3

p1p` pr p3 p2

(b)

Figure 4 (a) Intersection points p`, p1, . . . , pδi−2, pr appear in a wrong order along hi. (b)
Applying Lemma 2 to make p` be the leftmost intersection point.

is not the leftmost of these intersection points, let σ be the distance between p` and the
leftmost intersection point. We apply Lemma 2 on any edge between u` and u1 along C−k−1
to stretch Γk−1 so that all the vertices in the path of C−k from u1 to v2 are moved to the
right by a quantity σ′ slightly larger than σ. This implies that p` is not moved, while all the
other intersection points are moved to the right by a quantity σ′, and thus they all lie to the
right of p` in the new drawing; see Fig. 4b. Analogously, we can move p1 to the left of every
other intersection point, except for p`, by applying Lemma 2 on any edge between u1 and u2
along C−k−1. Repeating this argument allows us to assume that in Γk−1 all the intersection
points appear in the correct left-to-right order along hi.

We now describe the placement of vi. Let β1(vi), . . . , βδi−2(vi) be any set of δi − 2
consecutive bottom rays of vi; since S contains ∆ − 1 slopes and δi ≤ ∆, vi has enough
bottom rays. If we place vi above hi, rays β1(vi), β2(vi), . . . , βδi−2(vi) intersect hi in this
left-to-right order. Let ρ1, . . . , ρδi−2 be the corresponding intersection points. The goal is to
place vi so that each ρq, with q = 1, . . . , δi − 2, coincides with pq. To do so, we consider the
line λ1 through p1 with the same slope as β1(vi). Note that placing vi on λ1 above hi results
in ρ1 to coincide with p1. Also note that, while moving vi upwards along λ1, the distance
d(ρq, ρq+1) between any two consecutive points ρq and ρq+1, with q = 1, . . . , δi − 3, increases.

We move vi upwards along λ1 so that d(ρq, ρq+1) > d(p1, pδi−2), for each q = 1, . . . , δi−3.
This implies that all points p2, . . . , pδi−2 lie strictly between ρ1 and ρ2. Then, we apply
Lemma 2 on any edge between u1 and u2 along C−k−1 to stretch Γk−1 so that all the vertices
in the path of C−k from u2 to v2 are moved to the right by a quantity d(p2, ρ2). In this
way, u1 is not moved and so p1 still coincides with ρ1; also, p2 is moved to the right to
coincide with ρ2; finally, since d(ρ2, ρ3) > d(p1, pδi−2) > d(p2, pδi−2), all points p3, . . . , pδi−2
lie strictly between ρ2 and ρ3. By repeating this transformation for all points p3, . . . , pδi−2, if
any, we guarantee that each ρq, with q = 1, . . . , δi − 2, coincides with pq. We draw each edge
(vi, uq), with q = 1, . . . , δi − 2, with a segment along τ(uq) and the other one along βq(vi).

It remains to draw edges (vi, u`) and (vi, ur), which by Invariant I.3 must have a horizontal
segment. After possibly applying Lemma 2 on any edge between u` and u1 along C−k−1 to
stretch Γk−1, we can guarantee that τa(u`) crosses the horizontal line through vi to the left
of vi. Similarly, we can guarantee that τc(ur) crosses the horizontal line through vi to the
right of vi by applying Lemma 2 on any edge between uδi−2 and ur. We draw (vi, u`) with
one segment along τa(u`) and one along the horizontal line through vi, and we draw (vi, ur)
with one segment along τc(ur) and one along the horizontal line through vi. A drawing
produced by this algorithm is illustrated in Fig. 3b.

SoCG 2017

9:8 A Universal Slope Set for 1-Bend Planar Drawings

The fact that Γk is a 1-bend planar drawing on S satisfying Invariant I.3–I.3 can be shown
as for the case in which Pk is a chain. In particular, for Invariants I.3 and I.3, note that
vertices u1, . . . , uδi−2 do not have neighbors in G \Gk and do not belong to C−k . Thus, they
do not need to have any free top ray incident to the outer face of G−k and the edges connecting
them to vi do not need to have a horizontal segment. This concludes our description for the
case in which Pk is a singleton, and yields the following theorem (a discussion about the
time complexity can be found in [1]).

I Theorem 4. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of triconnected planar graphs with maximum degree ∆. Also, for any
such graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

4 Biconnected Planar Graphs

In this section we describe how to extend Theorem 4 to biconnected planar graphs, using
the SPQR-tree data structure described in Section 2.

The idea is to traverse the SPQR-tree of the input biconnected planar graph G bottom-up
and to construct for each visited node a drawing of its pertinent graph (except for its two
poles) inside a rectangle, which we call chip. Besides being a 1-bend planar drawing on S,
this drawing must have an additional property, namely that it is possible to increase its width
while changing neither its height nor the slope of any edge-segment. We call this property
horizontal stretchability. We give a formal definition of this drawing and describe how to
compute it for each type of node of the SPQR-tree.

Let T be the SPQR-tree of G rooted at an arbitrary Q-node ρ. Let µ be a node of T with
poles sµ and tµ. Let Gµ be the pertinent graph of µ. Let Gµ be the graph obtained from
Gµ as follows. First, remove edge (sµ, tµ), if it exists; then, subdivide each edge incident
to sµ (to tµ) with a dummy vertex, which is a pin of sµ (is a pin of tµ); finally, remove sµ
and tµ, and their incident edges. Note that, if µ is a Q-node other than the root ρ, then
Gµ is the empty graph. We denote by δ(sµ, µ) and δ(tµ, µ) the degree of sµ and tµ in Gµ,
respectively; note that the number of pins of sµ (of tµ) is δ(sµ, µ)− 1 (is δ(tµ, µ)− 1), if edge
(sµ, tµ) exists in G, otherwise it is δ(sµ, µ) (it is δ(tµ, µ)).

We construct a 1-bend planar drawing of Gµ on S inside an axis-aligned rectangle, called
the chip of µ and denoted by C(µ), so that the following properties are satisfied (see Fig. 5a):
(P.1) All the pins of sµ lie on the left side of C(µ) and all the pins of tµ lie on its right side;
(P.2) for each pin, the unique edge incident to it is horizontal; and
(P.3) there exist pins on the bottom-left and on the bottom-right corners of C(µ).

We call horizontally-stretchable (or stretchable, for short) a drawing of Gµ satisfying
Properties P.4-P.4. Note that a stretchable drawing Γ remains stretchable after any uniform
scaling, any translation, and any horizontal or vertical flip, since the horizontal slope is in S
and the slopes are equispaced. On the other hand, it is generally not possible to perform any
non-uniform scaling of Γ (in particular, a horizontal or a vertical scaling) without altering the
slopes of some segments. However, we can simulate a horizontal scaling up of Γ by elongating
the horizontal segments incident to all the pins lying on the same vertical side of the chip,
thus obtaining a new stretchable drawing inside a new chip with the same height and a larger
width. Conversely, a horizontal scaling down cannot always be simulated in this way.

Before giving the details of the algorithm, we describe a subroutine that we will often use
to add the poles of a node µ to a stretchable drawing of Gµ and draw the edges incident to
them. The proof of the next lemma can be found in [1]; see also Fig. 5b.

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:9

sµ tµ

C(µ)

(a)

sµ

C(µ)

tµ
r1r2r3r4r5

p1

p5

(b)

Figure 5 Illustrations (a) of a pin C(µ) and (b) for Lemma 5.

C(ν1)

C(ν2)

C(νh)

C(µ)

(a)

C(ν2)

u2 uh−2

C(νh−1)
C(ν1)

u1

C(νh)

C(µ)uh−1

sµ tµ
βa(u1) βc(u1) βa(u2) βc(u2) βc(uh−1)βa(uh−1)

(b)

Figure 6 Illustrations for the cases in which µ is: (a) a P -node and (b) an S-node.

I Lemma 5. Let u ∈ {sµ, tµ} be a pole of a node µ ∈ T and let u1, . . . , uq be q neighbors
of u in Gµ. Consider a stretchable drawing of Gµ inside a chip C(µ), whose pins p1, . . . , pq
correspond to u1, . . . , uq. Suppose that there exists a set of q consecutive free rays of u and
that the elongation of the edge incident to each pin p1, . . . , pq intersects all these rays. Then,
it is possible to draw edges (u, u1), . . . , (u, uq) with two straight-line segments whose slopes
are in S, without introducing any crossing between two edges incident to u or between an
edge incident to u and an edge of Gµ.

We now describe the algorithm. At each step of the bottom-up traversal of T , we
consider a node µ ∈ T with children ν1, . . . , νh, and we construct a stretchable drawing of
Gµ inside a chip C(µ) starting from the stretchable drawings of Gν1 , . . . , Gνh

inside chips
C(ν1), . . . , C(νh) that have been already constructed. We distinguish the different cases in
which µ is a Q-, a P-, an S-, or an R-node.

Suppose that µ is a Q-node. If µ is not the root ρ of T , we do not do anything, since Gµ
is the empty graph; the edge (sµ, tµ) of G corresponding to µ will be drawn when visiting
either the parent ξ of µ, if ξ is not a P-node, or the parent of ξ.

Otherwise, µ = ρ and hence it has only one child ν1. Since Gµ coincides with Gν1 , the
stretchable drawing of Gν1 is also a stretchable drawing of Gµ. Vertices sµ and tµ, and their
incident edges, will be added at the end of the traversal of T .

Suppose that µ is a P-node; refer to Fig. 6a. We consider a chip C(µ) for µ whose height
is larger than the sum of the heights of chips C(ν1), . . . , C(νh) and whose width is larger than
the one of any of C(ν1), . . . , C(νh). Then, we place chips C(ν1), . . . , C(νh) inside C(µ) so
that no two chips overlap, their left sides lie along the left side of C(µ), and the bottom side
of C(νh) lies along the bottom side of C(µ). Finally, we elongate the edges incident to all the
pins on the right side of C(ν1), . . . , C(νh) till reaching the right side of C(µ). The resulting
drawing is stretchable since the drawings of Gν1 , . . . , Gνh

are. In particular, Property P.4
holds for C(µ) since it holds for C(νh).

SoCG 2017

9:10 A Universal Slope Set for 1-Bend Planar Drawings

Suppose that µ is an S-node; refer to Fig. 6b. Let u1, . . . , uh−1 be the internal vertices
of the path of virtual edges between sµ and tµ obtained by removing the virtual edge (sµ, tµ)
from the skeleton of µ. We construct a stretchable drawing of Gµ as follows.

First, we place vertices u1, . . . , uh−1 in this order along a horizontal line lµ. For i =
1, . . . , h − 1, let βa(ui) and βc(ui) be the first bottom rays of ui in anti-clockwise and in
clockwise order, respectively. To place each chip C(νi), with i = 2, . . . , h− 1, we first flip it
vertically, so that it has pins on its top-left and top-right corners, by Property P.4. Then,
after possibly scaling it down uniformly, we place it in such a way that its left side is to
the right of ui−1, its right side is to the left of ui, it does not cross βc(ui−1) and βa(ui),
and either its top side lies on line lµ (if edge (ui−1, ui) /∈ G; see C(ν2) in Fig. 6b), or it lies
slightly below it (otherwise; see C(νh−1) in Fig. 6b).

Then, we place C(ν1) and C(νh), after possibly scaling them up uniformly, in such a way
that:
(i) Chip C(ν1) lies to the left of u1 and does not cross βa(u1). Also, if (sµ, u1) ∈ G, then

C(ν1) lies entirely below lµ; otherwise, as in Fig. 6b, the topmost pin on its right side
has the same y-coordinate as u1.

(ii) Chip C(νh) lies to the right of uh and does not cross βc(uh). Also, if (uh, tµ) ∈ G, as in
Fig. 6b, then C(νh) lies entirely below uh; otherwise, the topmost pin on its left side
has the same y-coordinate as uh.

(iii) The bottom sides of C(ν1) and of C(νh) have the same y-coordinate, which is smaller
than the one of the bottom side of any other chip C(ν2), . . . , C(νh−1).
We now draw all the edges incident to each vertex ui, with i = 1, . . . , h − 1. If edge

(ui−1, ui) ∈ G, then it can be drawn as a horizontal segment, by construction. Otherwise,
ui can be connected with a horizontal segment to its neighbor in Gνi

corresponding to
the topmost pin on the right side of C(νi). In both cases, one of these edges is attached
at a horizontal ray of ui. Analogously, one of the edges connecting ui to its neighbors in
Gνi+1 ∪ {ui+1} is attached at the other horizontal ray of ui. Thus, it is possible to draw the
remaining δ(ui, νi) + δ(ui, νi+1)− 2 ≤ ∆− 2 edges incident to ui by attaching them at the
∆− 2 bottom rays of ui, by applying Lemma 5. In fact, since C(νi) and C(νi+1) lie to the
left and to the right of ui, respectively, and do not cross βc(ui) and βa(ui), the elongations
of the edges incident to the pins of ui in C(νi) and in C(νi+1) corresponding to these edges
intersect all the bottom rays of ui, hence satisfying the preconditions to apply the lemma.

Finally, we construct chip C(µ) as the smallest rectangle enclosing all the current drawing.
Note that the left side of C(µ) contains the left side of C(ν1), while the right side of C(µ)
contains the right side of C(νh). Thus, all the pins of sµ, possibly except for the one
corresponding to edge (sµ, u1), lie on the left side of C(µ). Also, if (sµ, u1) exists, we can
add the corresponding pin since, by construction, C(ν1) lies entirely below u1. The same
discussion applies for the pins of tµ. This proves that the constructed drawing satisfies
properties P.4 and P.4. To see that it also satisfies P.4, note that the bottom side of C(µ)
contains the bottom sides of C(ν1) and of C(νh), by construction, which have a pin on both
corners, by Property P.4. Thus, the constructed drawing of Gµ is stretchable.

Suppose that µ is an R-node. We compute a stretchable drawing of Gµ as follows. First,
we compute a 1-bend planar drawing on S of the whole pertinent Gµ of µ, including its poles
sµ and tµ; then, we remove the poles of µ and their incident edges, we define chip C(µ), and
we place the pins on its two vertical sides so to satisfy Properties P.4–P.4.

Since the skeleton Gskel
µ of µ is triconnected, we use the algorithm described in Section 3

as a main tool for drawing Gµ, with suitable modifications to take into account the fact

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:11

that each virtual edge (u, v) of Gskel
µ actually corresponds to a whole subgraph, namely the

pertinent graph Gν of the child ν of µ with poles sν = u and tν = v. Thus, when the virtual
edge (u, v) is considered, we have to add the stretchable drawing of Gν inside a chip C(ν);
this enforces additional requirements for our drawing algorithm.

The first obvious requirement is that (u, v) will occupy δ(u, ν) consecutive rays of u and
δ(v, ν) consecutive rays of v, and not just a single ray for each of them, as in the triconnected
case. However, reserving the correct amount of rays of u and v is not always sufficient to add
C(ν) and to draw the edges between u, v, and vertices in Gν . In fact, we need to ensure that
there exists a placement for C(ν) such that the elongations of the edges incident to its pins
intersect all the reserved rays of the poles u and v of ν, hence satisfying the preconditions to
apply Lemma 5. In a high-level description, for the virtual edges that would be drawn with
a horizontal segment in the triconnected case (all the edges of a chain, and the first and last
edges of a singleton), this can be done by using a construction similar to the one of the case
in which µ is an S-node. For the edges that do not have any horizontal segment (the internal
edges of a singleton), instead, we need a more complicated construction.

The algorithm is again based on considering the vertices of H = Gµ according to a
canonical order Π = (P0, . . . , Pm) of H, in which v1 = sµ and v2 = tµ, and on constructing a
1-bend planar drawing of H−k on S satisfying a modified version of Invariants I.3–I.3.

(M.1) No part of the drawing lies below vertices v1 and v2, which have the same y-coordinate.
(M.2) For every virtual edge (w, z) on C−k , if (w, z) belongs to H then it has a horizontal

segment; also, the edge-segments corresponding to edges incident to the pins of the chip
of the child of µ corresponding to (w, z) are horizontal.

(M.3) Each vertex v on C−k has at least as many free top rays incident to the outer face of
H−k as the number of its neighbors in H that have not been drawn yet.

We note that Invariant M.4 is identical to Invariant I.3, while Invariant M.4 is the natural
extension of Invariant I.3 to take into account our previous observation. Finally, Invariant M.4
corresponds to Invariant I.3, as it ensures that we can still apply Lemma 2 and Lemma 3.

At the first step, we draw P0 = {v1, v2} and P1 = {v3, . . . , vj}. Consider the path
of virtual edges (v1, v3), (v3, v4), . . . , (vj , v2). Let ν1,3, ν3,4, . . . , νj,2 be the corresponding
children of µ, and let C(ν1,3), C(ν3,4), . . . , C(νj,2) be their chips. We consider this path as
the skeleton of an S-node with poles v1 and v2, and we we apply the same algorithm as
in the case in which µ is an S-node to draw the subgraph composed of v3, . . . , vj and of
chips C(ν1,3), C(ν3,4), . . . , C(νj,2) inside a larger chip, denoted by C(v1, v2). Note that, by
construction, C(v1, v2) has pins on its bottom-left and on its bottom-right corners. We then
place v1 and v2 with the same y-coordinate as the bottom side of C(v1, v2), with v1 to the left
and v2 to the right of C(v1, v2). We draw one of the edges incident to v1 horizontal, and the
remaining δ(v1, ν1,3)− 1 by applying Lemma 5, and the same for v2. Invariants M.4 and M.4
are satisfied by construction. For Invariant M.4, note that v3, . . . , vj have all their ∆− 2 top
rays free, by construction, and at least two of their neighbors have already been drawn. Also,
v1 and v2 have consumed only δ(v1, ν1,3)− 1 and δ(v2, νj,2)− 1 top rays, respectively. Since
edge (v1, v2) does not belong to H−k (but belongs to H), v1 and v2 satisfy Invariant M.4.

We now describe how to add path Pk, for some k > 1, to the current drawing Γk−1 in
the two cases in which Pk is a chain or a singleton.

Suppose that Pk is a chain {vi, vi+1, . . . , vj}; let u` and ur be the neighbors of vi
and vj in C−k . Let ν`, νi, . . . , νj−1, νr be the children of µ corresponding to virtual edges
(u`, vi), (vi, vi+1), . . . , (vj−1, vj), (vj , vr), and C(ν`), C(νi), . . . , C(νj−1), C(νr) be their chips.

We define rays τa(u`) and τc(ur), and the horizontal segment h between them, as in the
triconnected case. Due to Lemma 3, we can assume that τa(u`) and the δ(u`, ν`) − 1 top

SoCG 2017

9:12 A Universal Slope Set for 1-Bend Planar Drawings

rays of u` following it in anti-clockwise order do not cross any edge of Γk−1, and the same
for τc(ur) and the δ(ur, νr)− 1 top rays of ur following it in clockwise order. Note that, by
Invariant M.4, all these rays are free. As in the step in which we considered P0 and P1 of
Π, we use the algorithm for the case in which µ is an S-node to construct a drawing of the
subgraph composed of vi, . . . , vj and of chips C(ν`), C(νi), . . . , C(νj−1), C(νr) inside a larger
chip C(u`, ur), which has pins on its bottom-left and on its bottom-right corners. We then
place C(u`, ur) so that its bottom side lies on h and it does not cross τa(u`) and τc(ur), after
possibly scaling it down uniformly. Finally, we draw the δ(u`, ν`) edges between u` and its
neighbors in Gν`

∪ {vi}, and the δ(ur, νr) edges between ur and its neighbors in Gνr
∪ {vj},

by applying Lemma 5, whose preconditions are satisfied. The fact that the constructed
drawing satisfies the three invariants can be proved as in the previous case.

Suppose that Pk is a singleton {vi} of degree δi ≤ ∆ in H−k . As in the triconnected case,
we shall assume that δi ≥ 3. Let u`, u1, . . . , uδi−2, ur be the neighbors of vi as they appear
along C−k−1, let ν`, ν1, . . . , νδi−2, νr be the children of µ corresponding to the virtual edges
connecting vi with these vertices, and let C(ν`), C(ν1), . . . , C(νδi−2), C(νr) be their chips.

For each q = 1, . . . , δi − 2, we select any set Tq of consecutive δ(uq, νq) free top rays of uq
incident to the outer face and a set Bq of consecutive δ(vi, νq) bottom rays of vi; see Fig. 7b.
Sets B1, . . . , Bδi−2 are selected so that the rays in Bq precede those in Bq+1 in anti-clockwise
order. Since δ(vi, ν`) + δ(vi, νr) ≥ 2, we have that vi has enough bottom rays for sets
B1, . . . , Bδi−2. Sets T` and Tr contain the first δ(u`, ν`) free top rays of u` in anti-clockwise
order and of the first δ(ur, νr) free top rays of ur in clockwise order, respectively.

We then select a horizontal line hi lying above every vertex in Γk−1. As in the algorithm
described in Section 3, after possibly applying O(∆) times Lemma 2, we can assume that all
the rays in sets T`, T1, . . . , Tδi−2, Tr intersect hi in the correct order. Namely, when moving
along hi from left to right, we encounter all the intersections with the rays in T`, then all
those with the rays in T1, and so on. This property is already guaranteed for the rays in
B1, . . . , Bδi−2. This defines two total left-to-right orders OT and OB of the intersection
points of T`, T1, . . . , Tδi−2, Tr and of B1, . . . , Bδi−2 along hi, respectively. For simplicity, we
extend these orders to the rays in T`, T1, . . . , Tδi−2, Tr and in B1, . . . , Bδi−2, respectively.

Our goal is to merge the two sets of intersection points, while respecting OT and OB,
in such a way that the following condition holds for each q = 1, . . . , δi − 2. If edge (vi, uq)
belongs to H, then the first intersection point of Tq in OT coincides with the first intersection
point of Bq in OB , and the second intersection point of Tq in OT is to the right of the last
intersection point of Bq in OB; see T1 and B1 in Fig. 7b. Otherwise, (vi, uq) /∈ H and the
first intersection point of Tq in OT is to the right of the last intersection point of Bq in OB ;
see T3 and B3 in Fig. 7b. In both cases, all the intersection points of Tq and Bq are to the
left of all the intersection points of Tq+1 and Bq+1.

To obtain this goal, we perform a procedure analogous to the one described in Section 3
to make points p1, . . . , pδi−2 coincide with points ρ1, . . . , ρδi−2. Namely, we consider a line
λ1, whose slope is the one of the first ray in B1, that starts at the first intersection point of
T1 in OT , if edge (v1, u1) belongs to H, or at any point between the last intersection point
of T1 and the first intersection point of T2 in OT , otherwise. Then, we place vi along λ1,
far enough from hi so that the distance between any two consecutive intersection points in
OB is larger than the distance between the first and the last intersection points in OT ; see
Fig. 7a. Finally, we apply Lemma 2 at most δi − 3 times to move the intersection points of
sets T2, . . . , Tδi−2, one by one, in the their correct positions; see Fig. 7b.

Once the required ordering of intersection points along hi has been obtained, we consider
another horizontal line h′i lying above hi and close enough to it so that its intersections with

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:13

uδi−2u1 u2

vi

T1 T2 Tδi−2

λ1

u3
T3

hi

(a)
vi

B2 Bδi−2

uδi−2u1 u2
T1 T2 Tδi−2

u3
T3

B1 B3

hi

(b)

uq

C(νq)
h′i
hi

vi

(c)

Figure 7 Ilustrations for placing singleton vi in the case of an R-node.

the rays in T`, T1, . . . , Tδi−2, Tr and B1, . . . , Bδi−2 appear along it in the same order as along
hi. We place each chip C(νq), with q = 1, . . . , δi− 2, after possibly scaling it down uniformly,
in the interior of the region delimited by these two lines, by the last ray in Tq, and by a ray
in Bq (either the second or the first, depending on whether (vi, uq) ∈ H or not); see Fig. 7c.

We draw the edges incident to vi and uq, for each q = 1, . . . , δi − 2, as follows. If (vi, uq)
belongs to H, we draw it with one segment along the first ray in Tq and one along the
first ray in Bq (red edge in Fig. 7c). For the other edges we apply Lemma 5 twice, whose
preconditions are satisfied due to the placement of C(νq) (blue and green edges in Fig. 7c).

We conclude by drawing the edges connecting vi, u`, and vertices in Gν`
; the edges

connecting vi, ur and vertices in Gνr are drawn symmetrically. First, after possibly applying
Lemma 2, we assume that the last ray of T` intersects the horizontal line through vi to the
left of vi, at a point pi. After possibly scaling C(ν`) down uniformly, we place it so that its
left side is to the right of pi, its right side is to the left of vi, it does not cross the first top ray
of vi in clockwise order, and its bottom side is horizontal and lies either above the horizontal
line through vi, if (u`, vi) ∈ H, or along it, otherwise. Then, we draw (u`, vi), if it belongs
to H, with one segment along the last ray of T` and the other one along the horizontal line
through vi. Otherwise, (u`, vi) /∈ H and we can draw one of the edges incident to vi with
a horizontal segment. We finally apply Lemma 5 twice, to draw the edges from u` to its
neighbors in Gν`

, and from vi to its other neighbors in Gν`
. The fact that the constructed

drawing satisfies Invariants M.4–M.4 can be proved as in the triconnected case.
Once the last path Pm of Π has been added, we have a drawing Γµ of H = Gµ satisfying

Invariants M.4–M.4. We construct chip C(µ) as the smallest axis-aligned rectangle enclosing
Γµ. By Invariant M.4, vertices v1 and v2 lie on the bottom side of C(µ). Also, by Invariant M.4,
all the edges incident to v1 or to v2 have a horizontal segment. Thus, it is possible to obtain
a drawing of Gµ inside C(µ) by removing v1 and v2 (and their incident edges) from Γµ, by
elongating the horizontal segments incident to them till reaching the vertical sides of C(µ),
and by placing pins at their ends. The fact that this drawing satisfies Properties P.4–P.4
follows from the observation that v1 and v2 were on the bottom side of C(µ). This concludes
the case in which µ is an R-node.

Once we have visited the root ρ of T , we have a stretchable drawing of Gρ inside a chip
C(ρ), which we extend to a drawing of G as follows. Refer to Fig. 5a. We place sρ and tρ
at the same y-coordinate as the bottom side of C(ρ), one to its left and one to its right, so

SoCG 2017

9:14 A Universal Slope Set for 1-Bend Planar Drawings

that C(ρ) does not cross any of the rays of sρ and of tρ. Then, we draw edge (sρ, tρ) with
one segment along the first bottom ray in clockwise order of sρ and the other one along
the first bottom ray in anti-clockwise order of tρ. Also, we draw the edges connecting sρ
and tρ to the vertices corresponding to the lowest pins on the two vertical sides of C(ρ)
as horizontal segments. Finally, we draw all the remaining edges incident to sρ and tρ by
applying Lemma 5 twice. The following theorem summarizes the discussion in this section (a
discussion about the time complexity can be found in [1]).

I Theorem 6. For any ∆ ≥ 4, there exists a equispaced universal set S of ∆− 1 slopes for
1-bend planar drawings of biconnected planar graphs with maximum degree ∆. Also, for any
such graph on n vertices, a 1-bend planar drawing on S can be computed in O(n) time.

5 Conclusions and Open Problems

In this paper, we improved the upper bound on the 1-bend planar slope number from 3
2 (∆−1)

to ∆− 1, for ∆ ≥ 4. We mention two side-results of our work. Since the angular resolution
of our drawings is at least π

∆−1 , at the cost of increased drawing area our main result also
improves the best-known upper bound of π

4∆ on the angular resolution of 1-bend poly-line
planar drawings by Duncan and Kobourov [17]. For ∆ = 4, it also guarantees that planar
graphs with maximum degree 4 admit 1-bend planar drawings on a set of slopes {0, π3 ,

2π
3 },

while previously it was known that such graphs can be embedded with one bend per edge on
a set of slopes {0, π4 ,

π
2 ,

3π
4 } [3] and with two bends per edge on a set of slopes {0, π} [5].

Our work raises several open problems.
(i) Reduce the gap between the 3

4 (∆− 1) lower bound and the ∆− 1 upper bound.
(ii) Our algorithm may produce drawings with super-polynomial area. Is this unavoidable

for 1-bend planar drawings with few slopes and good angular resolution?
(iii) Study the straight-line case (e.g., when ∆ = 4). Note that stretching might be difficult

in this setting.
(iv) We proved that a set of ∆− 1 equispaced slopes is universal for 1-bend planar drawings.

Is every set of ∆− 1 slopes universal? Note that for ∆ ≤ 4 a positive answer descends
from our work and from a result by Dujmovic et al. [15], who proved that any planar
graph that can be drawn on a particular set of three slopes can also be drawn on any
set of three slopes. If the answer to this question is negative for ∆ > 4, what is the
minimum value s(∆) such that every set of s(∆) slopes is universal?

Acknowledgements. This work started at the 19th Korean Workshop on Computational
Geometry. We wish to thank the organizers and the participants for creating a pleasant and
stimulating atmosphere and in particular Fabian Lipp and Boris Klemz for useful discussions.

References

1 Patrizio Angelini, Michael A. Bekos, Giuseppe Liotta, and Fabrizio Montecchiani. Universal
slope sets for 1-bend planar drawings. CoRR, 1703.04283, 2017.

2 János Barát, Jirí Matoušek, and David R. Wood. Bounded-degree graphs have arbitrarily
large geometric thickness. Electr. J. Comb., 13(1), 2006.

3 Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Robert Krug. Planar
octilinear drawings with one bend per edge. J. Graph Algorithms Appl., 19(2):657–680,
2015. doi:10.7155/jgaa.00369.

http://dx.doi.org/10.7155/jgaa.00369

P. Angelini, M. A. Bekos, G. Liotta, and F. Montecchiani 9:15

4 Michael A. Bekos, Michael Kaufmann, and Robert Krug. On the total number of bends
for planar octilinear drawings. In LATIN, volume 9644 of LNCS, pages 152–163. Springer,
2016. doi:10.1007/978-3-662-49529-2_12.

5 Therese C. Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Comput.
Geom., 9(3):159–180, 1998. doi:10.1016/S0925-7721(97)00026-6.

6 Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal graph
drawing with flexibility constraints. Algorithmica, 68(4):859–885, 2014. doi:10.1007/
s00453-012-9705-8.

7 Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal graph drawing with
inflexible edges. Comput. Geom., 55:26–40, 2016.

8 Hans L. Bodlaender and Gerard Tel. A note on rectilinearity and angular resolution. J.
Graph Algorithms Appl., 8:89–94, 2004.

9 Nicolas Bonichon, Bertrand Le Saëc, and Mohamed Mosbah. Optimal area algorithm for
planar polyline drawings. In WG, volume 2573 of LNCS, pages 35–46. Springer, 2002.

10 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability & Computing, 3:233–246, 1994. doi:10.1017/
S0963548300001139.

11 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990. doi:10.1007/BF02122694.

12 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

13 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. The planar slope number
of subcubic graphs. In LATIN, volume 8392 of LNCS, pages 132–143. Springer, 2014.
doi:10.1007/978-3-642-54423-1_12.

14 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing outer 1-planar
graphs with few slopes. J. Graph Algorithms Appl., 19(2):707–741, 2015. doi:10.7155/
jgaa.00376.

15 Vida Dujmović, David Eppstein, Matthew Suderman, and David R. Wood. Drawings of
planar graphs with few slopes and segments. Comput. Geom., 38(3):194–212, 2007.

16 Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, and
Martin Nöllenburg. Drawing trees with perfect angular resolution and polynomial area.
Discrete & Computational Geometry, 49(2):157–182, 2013.

17 Christian A. Duncan and Stephen G. Kobourov. Polar coordinate drawing of planar graphs
with good angular resolution. J. Graph Algorithms Appl., 7(4):311–333, 2003.

18 Stephane Durocher and Debajyoti Mondal. Trade-offs in planar polyline drawings. In GD,
volume 8871 of LNCS, pages 306–318. Springer, 2014.

19 Michael Formann, Torben Hagerup, James Haralambides, Michael Kaufmann, Frank Thom-
son Leighton, Antonios Symvonis, Emo Welzl, and Gerhard J. Woeginger. Drawing
graphs in the plane with high resolution. SIAM J. Comput., 22(5):1035–1052, 1993.
doi:10.1137/0222063.

20 Ashim Garg and Roberto Tamassia. Planar drawings and angular resolution: Algorithms
and bounds (extended abstract). In ESA, volume 855 of LNCS, pages 12–23. Springer,
1994.

21 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

22 Carsten Gutwenger and Petra Mutzel. Planar polyline drawings with good angular resolu-
tion. In GD, volume 1547 of LNCS, pages 167–182. Springer, 1998.

23 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In
GD, volume 1984 of LNCS, pages 77–90. Springer, 2000. doi:10.1007/3-540-44541-2_8.

SoCG 2017

http://dx.doi.org/10.1007/978-3-662-49529-2_12
http://dx.doi.org/10.1016/S0925-7721(97)00026-6
http://dx.doi.org/10.1007/s00453-012-9705-8
http://dx.doi.org/10.1007/s00453-012-9705-8
http://dx.doi.org/10.1017/S0963548300001139
http://dx.doi.org/10.1017/S0963548300001139
http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/978-3-642-54423-1_12
http://dx.doi.org/10.7155/jgaa.00376
http://dx.doi.org/10.7155/jgaa.00376
http://dx.doi.org/10.1137/0222063
http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.1007/3-540-44541-2_8

9:16 A Universal Slope Set for 1-Bend Planar Drawings

24 Udo Hoffmann. On the complexity of the planar slope number problem. J. Graph Al-
gorithms Appl., 21(2):183–193, 2017.

25 Vít Jelínek, Eva Jelínková, Jan Kratochvíl, Bernard Lidický, Marek Tesar, and Tomás
Vyskocil. The planar slope number of planar partial 3-trees of bounded degree. Graphs and
Comb., 29(4):981–1005, 2013. doi:10.1007/s00373-012-1157-z.

26 Michael Jünger and Petra Mutzel, editors. Graph Drawing Software. Springer, 2004.
27 Goos Kant. Drawing planar graphs using the lmc-ordering (extended abstract). In FOCS,

pages 101–110. IEEE Computer Society, 1992. doi:10.1109/SFCS.1992.267814.
28 Goos Kant. Hexagonal grid drawings. InWG, volume 657 of LNCS, pages 263–276. Springer,

1992. doi:10.1007/3-540-56402-0_53.
29 Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32,

1996. doi:10.1007/BF02086606.
30 Balázs Keszegh, János Pach, and Dömötör Pálvölgyi. Drawing planar graphs of bounded

degree with few slopes. SIAM J. Discrete Math., 27(2):1171–1183, 2013. doi:10.1137/
100815001.

31 Kolja Knauer and Bartosz Walczak. Graph drawings with one bend and few slopes.
In LATIN, volume 9644 of LNCS, pages 549–561. Springer, 2016. doi:10.1007/
978-3-662-49529-2_41.

32 Kolja B. Knauer, Piotr Micek, and Bartosz Walczak. Outerplanar graph drawings with few
slopes. Comput. Geom., 47(5):614–624, 2014. doi:10.1016/j.comgeo.2014.01.003.

33 William Lenhart, Giuseppe Liotta, Debajyoti Mondal, and Rahnuma Islam Nishat. Planar
and plane slope number of partial 2-trees. In GD, volume 8242 of LNCS, pages 412–423.
Springer, 2013. doi:10.1007/978-3-319-03841-4_36.

34 Yanpei Liu, Aurora Morgana, and Bruno Simeone. A linear algorithm for 2-bend em-
beddings of planar graphs in the two-dimensional grid. Discrete Applied Mathematics,
81(1-3):69–91, 1998. doi:10.1016/S0166-218X(97)00076-0.

35 Padmini Mukkamala and Dömötör Pálvölgyi. Drawing cubic graphs with the four basic
slopes. In GD, volume 7034 of LNCS, pages 254–265. Springer, 2011. doi:10.1007/
978-3-642-25878-7_25.

36 Martin Nöllenburg. Automated drawings of metro maps. Technical Report 2005-25, Fak-
ultät für Informatik, Universität Karlsruhe, 2005.

37 Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-quality metro maps
by mixed-integer programming. IEEE Trans. Vis. Comput. Graph., 17(5):626–641, 2011.
doi:10.1109/TVCG.2010.81.

38 Jonathan M. Stott, Peter Rodgers, Juan Carlos Martinez-Ovando, and Stephen G. Walker.
Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput.
Graph., 17(1):101–114, 2011. doi:10.1109/TVCG.2010.24.

39 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

40 Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. CRC Press,
2013.

41 Greg A. Wade and Jiang-Hsing Chu. Drawability of complete graphs using a minimal slope
set. Comput. J., 37(2):139–142, 1994. doi:10.1093/comjnl/37.2.139.

http://dx.doi.org/10.1007/s00373-012-1157-z
http://dx.doi.org/10.1109/SFCS.1992.267814
http://dx.doi.org/10.1007/3-540-56402-0_53
http://dx.doi.org/10.1007/BF02086606
http://dx.doi.org/10.1137/100815001
http://dx.doi.org/10.1137/100815001
http://dx.doi.org/10.1007/978-3-662-49529-2_41
http://dx.doi.org/10.1007/978-3-662-49529-2_41
http://dx.doi.org/10.1016/j.comgeo.2014.01.003
http://dx.doi.org/10.1007/978-3-319-03841-4_36
http://dx.doi.org/10.1016/S0166-218X(97)00076-0
http://dx.doi.org/10.1007/978-3-642-25878-7_25
http://dx.doi.org/10.1007/978-3-642-25878-7_25
http://dx.doi.org/10.1109/TVCG.2010.81
http://dx.doi.org/10.1109/TVCG.2010.24
http://dx.doi.org/10.1137/0216030
http://dx.doi.org/10.1093/comjnl/37.2.139

Near-Optimal ε-Kernel Construction and
Related Problems∗

Sunil Arya†1, Guilherme D. da Fonseca2, and David M. Mount‡3

1 Department of Computer Science and Engineering, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
arya@cse.ust.hk

2 Université Clermont Auvergne and LIMOS, Clermont-Ferrand, France
fonseca@isima.fr

3 Department of Computer Science and Institute for Advanced Computer
Studies, University of Maryland, College Park, MD, USA
mount@cs.umd.edu

Abstract
The computation of (i) ε-kernels, (ii) approximate diameter, and (iii) approximate bichromatic
closest pair are fundamental problems in geometric approximation. In this paper, we describe
new algorithms that offer significant improvements to their running times. In each case the input
is a set of n points in Rd for a constant dimension d ≥ 3 and an approximation parameter ε > 0.
We reduce the respective running times
(i) from O((n+ 1/εd−2) log 1

ε) to O(n log 1
ε + 1/ε(d−1)/2+α),

(ii) from O((n+ 1/εd−2) log 1
ε) to O(n log 1

ε + 1/ε(d−1)/2+α), and
(iii) from O(n/εd/3) to O(n/εd/4+α),
for an arbitrarily small constant α > 0. Result (i) is nearly optimal since the size of the output
ε-kernel is Θ(1/ε(d−1)/2) in the worst case.

These results are all based on an efficient decomposition of a convex body using a hierarchy of
Macbeath regions and contrast with previous solutions, which decompose space using quadtrees
and grids. By further application of these techniques, we also show that it is possible to obtain
near-optimal preprocessing times for the most efficient data structures to approximately answer
queries for (iv) nearest-neighbor searching, (v) directional width, and (vi) polytope membership.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations

Keywords and phrases Approximation, diameter, kernel, coreset, nearest neighbor, polytope
membership, bichromatic closest pair, Macbeath regions

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.10

1 Introduction

In this paper we present new faster algorithms to several fundamental geometric approx-
imation problems involving point sets in d-dimensional space. In particular, we present
approximation algorithms for ε-kernels, diameter, bichromatic closest pair, and the minimum
bottleneck spanning tree. Our results arise from a recently developed shape-sensitive ap-
proach to approximating convex bodies, which is based on the classical concept of Macbeath

∗ A full version of the paper is available at http://arxiv.org/abs/1703.10868.
† Research supported by the Research Grants Council of Hong Kong, China under project number 610012.
‡ Research supported by NSF grant CCF–1618866.

© Sunil Arya, Guilherme D. da Fonseca, and David M. Mount;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.10
http://arxiv.org/abs/1703.10868
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Near-Optimal ε-Kernel Construction and Related Problems

regions. This approach has been applied to computing area-sensitive bounds for polytope
approximation [5], polytope approximations with low combinatorial complexity [6], answering
approximate polytope-membership queries [7], and approximate nearest-neighbor search-
ing [7]. The results of [7] demonstrate the existence of data structures for these query
problems but did not discuss preprocessing in detail. We complete the story by present-
ing efficient algorithms for building data structures for three related queries: approximate
polytope membership, approximate directional width, and approximate nearest-neighbors.

Throughout, we assume that the dimension d is a constant. Our running times will often
involve expressions of the form 1/εα. In such cases, α > 0 is constant that can be made
arbitrarily small. The approximation parameter ε is treated as an asymptotic variable that
approaches 0. We assume throughout that ε < 1, which guarantees that log 1

ε > 0.
In Section 1.1, we present our results for ε-kernels, diameter, bichromatic closest pair,

and minimum bottleneck tree. In Section 1.2, we present our results for the data structure
problems. In Section 1.3, we give an overview of the techniques used.

Concurrently and independently, Timothy Chan has reported complexity bounds that
are very similar to our results [18]. Remarkably, the computational techniques seem to be
very different, based on Chebyshev polynomials.

1.1 Static Results
Kernel. Given a set S of n points in Rd and an approximation parameter ε > 0, an ε-coreset
is an (ideally small) subset of S that approximates some measure over S (see [2] for a survey).
Given a nonzero vector v ∈ Rd, the directional width of S in direction v, widthv(S) is the
minimum distance between two hyperplanes that enclose S and are orthogonal to v. A
coreset for the directional width (also known as an ε-kernel and as a coreset for the extent
measure) is a subset Q ⊆ S such that widthv(Q) ≥ (1− ε) widthv(S), for all v ∈ Rd. Kernels
are among the most fundamental constructions in geometric approximation, playing a role
similar to that of convex hulls in exact computations. Kernels have been used to obtain
approximation algorithms to several problems such as diameter, minimum width, convex
hull volume, minimum enclosing cylinder, minimum enclosing annulus, and minimum-width
cylindrical shell [1, 2].

The concept of ε-kernels was introduced by Agarwal et al. [1]. The existence of ε-
kernels with O(1/ε(d−1)/2) points is implied in the works of Dudley [19] and Bronshteyn
and Ivanov [16], and this is known to be optimal in the worst case. Agarwal et al. [1]
demonstrated how to compute such a kernel in O(n+ 1/ε3(d−1)/2) time, which reduces to
O(n) when n = Ω(1/ε3(d−1)/2). While less succinct ε-kernels with O(1/εd−1) points can be
constructed in time O(n) time for all n [1, 14], no linear-time algorithm is known to build
an ε-kernel of optimal size. Hereafter, we use the term ε-kernel to refer exclusively to an
ε-kernel of size O(1/ε(d−1)/2).

Chan [17] showed that an ε-kernel can be constructed in O((n + 1/εd−2) log 1
ε) time,

which is nearly linear when n = Ω(1/εd−2). He posed the open problem of obtaining a faster
algorithm. A decade later, Arya and Chan [11] showed how to build an ε-kernel in roughly
O(n+

√
n/εd/2) time using discrete Voronoi diagrams. In this paper, we attain the following

near-optimal construction time.

I Theorem 1.1. Given a set S of n points in Rd and an approximation parameter ε > 0, it is
possible to construct an ε-kernel of S with O(1/ε(d−1)/2) points in O(n log 1

ε + 1/ε(d−1)/2+α)
time, where α is an arbitrarily small positive constant.

Because the worst-case output size is O(1/ε(d−1)/2), we may assume that n is at least
this large, for otherwise we can simply take S itself to be the kernel. Since 1/εα dominates

S. Arya, G.D. da Fonseca, and D.M. Mount 10:3

log 1
ε , the above running time can be expressed as O(n/εα), which is nearly linear given that

α can be made arbitrarily small.

Diameter. An important application of ε-kernels is to approximate the diameter of a point
set. Given n data points, the diameter is defined to be the maximum distance between any
two data points. An ε-approximation of the diameter is a pair of points whose distance is
at least (1 − ε) times the exact diameter. There are multiple algorithms to approximate
the diameter [1, 3, 11, 13, 17]. The fastest running times are O((n+ 1/εd−2) log 1

ε) [17] and
roughly O(n+

√
n/εd/2) [11]. The algorithm from [17] essentially computes an ε-kernel Q

and then determines the maximum value of widthv(Q) among a set of k = O(1/ε(d−1)/2)
directions v by brute force [1]. Discrete Voronoi diagrams [11] permit this computation in
roughly O(n+

√
n/εd/2) time. Therefore, combining the kernel construction of Theorem 1.1

with discrete Voronoi diagrams [11], we reduce n to O(1/ε(d−1)/2) and obtain an algorithm
to ε-approximate the diameter in roughly O(n+ 1/ε3d/4) time. However, we show that it is
possible to obtain a much faster algorithm, as presented in the following theorem.

I Theorem 1.2. Given a set S of n points in Rd and an approximation parameter ε > 0, it
is possible to compute an ε-approximation to the diameter of S in O(n log 1

ε + 1/ε(d−1)/2+α)
time.

Bichromatic Closest Pair. In the bichromatic closest pair (BCP) problem, we are given n
points from two sets, designated red and blue, and we want to find the closest red-blue pair.
In the ε-approximate version, the goal is to find a red-blue pair of points whose distance
is at most (1 + ε) times the exact BCP distance. Approximations to the BCP problem
were introduced in [23], and the most efficient randomized approximation algorithm runs in
roughly O(n/εd/3) expected time [11]. We present the following result.

I Theorem 1.3. Given n red and blue points in Rd and an approximation parameter ε > 0,
there is a randomized algorithm that computes an ε-approximation to the bichromatic closest
pair in O(n/εd/4+α) expected time.

Euclidean Trees. Given a set S of n points in Rd, a Euclidean minimum spanning tree is the
spanning tree with vertex set S that minimizes the sum of the edge lengths, while a Euclidean
minimum bottleneck tree minimizes the maximum edge length. In the approximate version
we respectively approximate the sum and the maximum of the edge lengths. A minimum
spanning tree is a minimum bottleneck tree (although the converse does not hold). However,
an approximation to the minimum spanning tree is not necessarily an approximation to the
minimum bottleneck tree. A recent approximation algorithm to the Euclidean minimum
spanning tree takes roughly O(n logn+n/ε2) time, regardless of the (constant) dimension [9].
On the other hand, the fastest algorithm to approximate the minimum bottleneck tree takes
roughly O((n logn)/εd/3) expected time [11]. The algorithm uses BCP to simultaneously
attain an approximation to the minimum bottleneck and the minimum spanning trees. We
prove the following theorem.

I Theorem 1.4. Given n points in Rd and an approximation parameter ε > 0, there is a
randomized algorithm that computes a tree T that is an ε-approximation to both the Euclidean
minimum bottleneck and the Euclidean minimum spanning trees in O((n logn)/εd/4+α)
expected time.

SoCG 2017

10:4 Near-Optimal ε-Kernel Construction and Related Problems

1.2 Data Structure Results

Polytope membership. Let P denote a convex polytope in Rd, represented as the bounded
intersection of n halfspaces. The polytope membership problem consists of preprocessing P so
that it is possible to determine efficiently whether a given query point q ∈ Rd lies within
P . In the ε-approximate version, we consider an expanded convex body K ⊃ P . A natural
way to define this expansion would be to consider the set of points that lie within distance
ε · diam(P) of P , thus defining a body whose Hausdorff distance from P is ε · diam(P).
However, this definition has the shortcoming that it is not sensitive to the directional width
of P . Instead, we define K as follows. For any nonzero vector v ∈ Rd, consider the two
supporting hyperplanes for P that are normal to v. Translate each of these hyperplanes
outward by a distance of ε ·widthv(P), and consider the closed slab-like region lying between
them. Define K to be the intersection of this (infinite) set of slabs. This is clearly a stronger
approximation than the Hausdorff-based definition. An ε-approximate polytope membership
query (ε-APM query) returns a positive result if the query point q is inside P , a negative
result if q is outside K, and may return either result otherwise.1

We recently proposed an optimal data structure to answer approximate polytope mem-
bership queries, but efficient preprocessing remained an open problem [7]. In this paper, we
present a similar data structure that not only attains optimal storage and query time, but
can also be preprocessed in near-optimal time.

I Theorem 1.5. Given a convex polytope P in Rd represented as the intersection of n
halfspaces and an approximation parameter ε > 0, there is a data structure that can answer
ε-approximate polytope membership queries with query time O(log 1

ε), space O(1/ε(d−1)/2),
and preprocessing time O(n log 1

ε + 1/ε(d−1)/2+α).

Directional width. Applying the previous data structure in the dual space, we obtain a data
structure for the following ε-approximate directional width problem, which is closely related
to ε-kernels. Given a set S of n points in a constant dimension d and an approximation
parameter ε > 0, the goal is to preprocess S to efficiently ε-approximate widthv(S), for a
nonzero query vector v. We present the following result.

I Theorem 1.6. Given a set S of n points in Rd and an approximation parameter ε > 0,
there is a data structure that can answer ε-approximate directional width queries with query
time O(log2 1

ε), space O(1/ε(d−1)/2), and preprocessing time O(n log 1
ε + 1/ε(d−1)/2+α).

Nearest Neighbor. Let S be a set of n points in Rd. Given any q ∈ Rd, an ε-approximate
nearest neighbor (ANN) of q is any point of S whose distance from q is at most (1 + ε) times
the distance to q’s closest point in S. The objective is to preprocess S in order to answer
such queries efficiently. Data structures for approximate nearest neighbor searching (in fixed
dimensions) have been proposed by several authors, offering space-time tradeoffs (see [7] for
an overview of the tradeoffs). Applying the reduction from approximate nearest neighbor to
approximate polytope membership established in [4] together with Theorem 1.5, we obtain
the following result, which matches the best bound [7] up to an O(log 1

ε) factor in the query
time, but offers faster preprocessing time.

1 Our earlier works on ε-APM queries [4, 7] use the weaker Hausdorff form to define the problem, but the
solutions presented there actually achieve the stronger direction-sensitive form.

S. Arya, G.D. da Fonseca, and D.M. Mount 10:5

Figure 1 Two levels of the ellipsoid hierarchy.

I Theorem 1.7. Given a set S of n points in Rd, an approximation parameter ε > 0, and
m such that log 1

ε ≤ m ≤ 1/(εd/2 log 1
ε), there is a data structure that can answer Euclidean

ε-approximate nearest neighbor queries with query time O(logn+ (log 1
ε)/(m · εd/2)) space

O(nm), and preprocessing time O(n logn log 1
ε + nm/εα).

1.3 Techniques
In contrast to previous kernel constructions, which are based on grids and the execution of
Bronshteyn and Ivanov’s algorithm, our construction employs a classical structure from the
theory of convexity, called Macbeath regions [24]. Macbeath regions, which will be defined
in Section 2.1, have found numerous uses in the theory of convex sets and the geometry of
numbers (see Bárány [12] for an excellent survey). They have also been applied to several
problems in the field of computational geometry. However, most previous results were either
in the form of lower bounds [8, 10, 15] or focused on existential results [5, 6, 20, 25].

In [7] the authors introduced a data structure employing a hierarchy of ellipsoids based
on Macbeath regions to answer approximate polytope membership queries, but the efficient
computation of the hierarchy was not considered. In this paper, we show how to efficiently
construct the Macbeath regions that form the basis of this hierarchy.

Let P denote a convex polytope in Rd. Each level i in the hierarchy corresponds to a δi-
approximation of the boundary of P by a set of O(1/δ(d−1)/2

i) ellipsoids, where δi = Θ(1/2i).
Each ellipsoid is sandwiched between two Macbeath regions and has O(1) children, which
correspond to the ellipsoids of the following level that approximate the same portion of the
boundary (see Figure 1). The hierarchy starts with δ0 = Θ(1) and stops after O(log 1

δ) levels
when δi = δ, for a desired approximation δ. We present a simple algorithm to construct
the hierarchy in O(n + 1/δ3(d−1)/2) time. The polytope P can be presented as either the
intersection of n halfspaces or the convex hull of n points. We present the relevant background
in Section 3.

Our algorithm to compute an ε-kernel in time O(n log 1
ε + 1/ε(d−1)/2+α) (Theorem 1.1)

is based on a bootstrapping process. Since the time to build the ε-approximation hierarchy
for the convex hull is prohibitively high, we use an approximation parameter δ = ε1/3 to
build a δ-approximation hierarchy in O(n+ 1/ε(d−1)/2) time. By navigating through this
hierarchy, we partition the n points among the leaf Macbeath ellipsoids in O(n log 1

ε) time,
discarding points that are too far from the boundary. We then compute an (ε/δ)-kernel for
the set of points in each leaf ellipsoid and return the union of the kernels computed.

Given an algorithm to compute an ε-kernel in O(n log 1
ε + 1/εt(d−1)) time, the previous

procedure produces an ε-kernel in O(n log 1
ε + 1/εt′(d−1)) time, where t′ = (4t + 1)/6. By

bootstrapping the construction a constant number of times, the value of t decreases from 1 to
a value that is arbitrarily close to 1

2 . (This accounts for the O(1/εα) factors in our running
times.) The construction and its analysis are presented in Section 4.

SoCG 2017

10:6 Near-Optimal ε-Kernel Construction and Related Problems

In Section 5, we use our kernel construction in the dual space to efficiently build a polytope
membership data structure, proving Theorem 1.5. The key idea is to compute multiple
kernels in order to avoid examining the whole polytope when building each Macbeath region.
Again, we use bootstrapping to obtain a near-optimal preprocessing time. The remaining
theorems follow from Theorems 1.1 and 1.5, together with several known reductions.

2 Geometric Preliminaries

Consider a convex body K in d-dimensional space Rd. Let ∂K denote the boundary of K. Let
O denote the origin of Rd. Given a parameter 0 < γ ≤ 1, we say that K is γ-fat if there exist
concentric Euclidean balls B and B′, such that B ⊆ K ⊆ B′, and radius(B)/radius(B′) ≥ γ.
We say that K is fat if it is γ-fat for a constant γ (possibly depending on d, but not on ε).

Unless otherwise specified, the notion of ε-approximation between convex bodies will be
based on the direction-sensitive definition given in Section 1.2. We say that a convex body
K ′ is an absolute ε-approximation to another convex body K if they are within Hausdorff
error ε of each other. Further, we say that K ′ is an inner (resp., outer) approximation if
K ′ ⊆ K (resp., K ′ ⊇ K).

Let B0 denote a ball of radius r0 = 1
2 centered at the origin. For 0 < γ ≤ 1, let γB0

denote the concentric ball of radius γr0 = γ
2 . We say that a convex body K is in γ-canonical

form if it is nested between γB0 and B0. A body in γ-canonical form is γ-fat and has
diameter Θ(1). We will refer to point O as the center of P .

For any point x ∈ K, define δ(x) to be minimum distance from x to any point on ∂K.
For the sake of ray-shooting queries, it is useful to define a ray-based notion of distance as
well. Given x ∈ K, define the ray-distance of x to the boundary, denoted ray(x), as follows.
Consider the intersection point p of ∂K and the ray emanating from O that passes through
x. We define ray(x) = ‖xp‖. The following utility lemma will be helpful in relating distances
to the boundary.

I Lemma 2.1. Given a convex body K in γ-canonical form:
(a) For any point x ∈ P , δ(x) ≤ ray(x) ≤ δ(x)/γ.
(b) Let h be a supporting hyperplane of K. Let p be any point inside K at distance at most

some distance w from h, where w ≤ γ/4. Let p′ denote the intersection of the ray Op
and h. Then ‖pp′‖ ≤ 2w/γ.

(c) Let p be any point on the boundary of K, and let h be a supporting hyperplane at p.
Let h′ denote the hyperplane obtained by translating h in the direction of the outward
normal by some distance w. Let p′ denote the intersection of the ray Op with h′. Then
‖pp′‖ ≤ w/γ.

We omit the straightforward proof. The lower bound on ray(x) for part (a) is trivial, and
the upper bound follows by a straightforward adaption of Lemma 4.2 of [6]. Part (b) is an
adaptation of Lemma 2.11 of [7], and part (c) is similar.

2.1 Caps and Macbeath Regions
Much of the material in this section has been presented in [6, 7]. We include it here for
the sake of completeness. Given a convex body K, a cap C is defined to be the nonempty
intersection of K with a halfspace (see Figure 2(a)). Let h denote the hyperplane bounding
this halfspace. We define the base of C to be h ∩K. The apex of C is any point in the cap
such that the supporting hyperplane of K at this point is parallel to h. The width of C,
denoted width(C), is the distance between h and this supporting hyperplane. Given any cap

S. Arya, G.D. da Fonseca, and D.M. Mount 10:7

C
w

h C2

bas
e

wid
th

w

(b)(a)

apex

K

x

M(x)

M ′(x)

2x−K

Figure 2 (a) Cap concepts and (b) Macbeath regions.

C of width w and a real λ ≥ 0, we define its λ-expansion, denoted Cλ, to be the cap of K
cut by a hyperplane parallel to and at distance λw from this supporting hyperplane. (Note
that Cλ = K, if λw exceeds the width of K along the defining direction.)

Given a point x ∈ K and real parameter λ ≥ 0, the Macbeath region Mλ(x) (also called
an M-region) is defined as:

Mλ(x) = x+ λ((K − x) ∩ (x−K)).

It is easy to see that M1(x) is the intersection of K and the reflection of K around x (see
Figure 2(b)). Clearly, M1(x) is centrally symmetric about x, and Mλ(x) is a scaled copy of
M1(x) by the factor λ about x. We refer to x as the center of Mλ(x) and to λ as its scaling
factor. As a convenience, we define M(x) = M1(x) and M ′(x) = M1/5(x). We refer to the
latter as the shrunken Macbeath region.

We now present a few lemmas that encapsulate key properties of Macbeath regions. The
first lemma shows that if two shrunken Macbeath regions have a nonempty intersection, then
a constant factor expansion of one contains the other [7, 15, 21].

I Lemma 2.2. Let K be a convex body, and let λ ≤ 1/5 be any real. If x, y ∈ K such that
Mλ(x) ∩Mλ(y) 6= ∅, then Mλ(y) ⊆M4λ(x).

The following lemma shows that all points in a shrunken Macbeath region have similar
distances from the boundary of K. The proof appears in [7].

I Lemma 2.3. Let K be a convex body. If x ∈ K and x′ ∈M ′(x), then 4δ(x)/5 ≤ δ(x′) ≤
4δ(x)/3.

For any δ > 0, define the δ-erosion of a convex body K, denoted K(δ), to be the closed
convex body formed by removing from K all points lying within distance δ of ∂K. The
next lemma bounds the number of disjoint Macbeath regions that can be centered on the
boundary of K(δ). The proof appears in [7].

I Lemma 2.4. Consider a convex body K ⊂ Rd in γ-canonical form for some constant γ.
Define ∆0 = 1

2 (γ2/(4d))d. For any fixed constant 0 < λ ≤ 1/5 and real parameter δ ≤ ∆0,
let M be a set of disjoint λ-scaled Macbeath regions whose centers lie on the boundary of
K(δ). Then |M| = O(1/δ(d−1)/2).

2.2 Shadows of Macbeath regions
Shrunken Macbeath regions reside within the interior of the convex body, but it is useful to
identify the portion of the body’s boundary that this Macbeath region will be responsible for
approximating. For this purpose, we introduce the shadow of a Macbeath region. Given a

SoCG 2017

10:8 Near-Optimal ε-Kernel Construction and Related Problems

convex body K that contains the origin O and a region R ⊆ K, we define the shadow of R
(with respect to K), denoted shadow(R), to be the set of points x ∈ K such that the line
segment Ox intersects R.

We also define a set of normal directions for R, denoted normals(R). Consider the set
of all hyperplanes that support K at some point in the shadow of R. Define normals(R) to
be the set of outward unit normals to these supporting hyperplanes. Typically, the region
R in our constructions will be a (scaled) Macbeath region or an associated John ellipsoid
(as defined in Section 3), close to the boundary of K. The following lemma captures a
salient feature of these shadows, namely, that the shadow of a Macbeath region M ′(x) can
be enclosed in an ellipsoid whose width in all normal directions is O(δ(x)). The proof is
presented in the full version.)

I Lemma 2.5. Let K ⊂ Rd be a convex body in γ-canonical form for some constant
γ. Let x ∈ K be a point at distance δ from the boundary of K, where δ ≤ ∆0. Let
M = M ′(x), S = shadow(M), N = normals(M), and M̂ = M4/γ(x). Then:
(a) S ⊆ M̂ .
(b) widthv(S) ≤ c1δ for all v ∈ N . Here c1 is the constant 8/(3γ).
(c) widthv(M̂) ≤ c2δ for all v ∈ N . Here c2 is the constant 160/(3γ2).

2.3 Representation Conversions

Convex sets are naturally described in two ways, as the convex hull of a discrete set of points
and as the intersection of a discrete set of halfspaces. Some computational tasks are more
easily performed using one representation or the other, and hence it will be useful to convert
between them. Also, when approximate representations suffice, it will be useful to prune a
large set down to a smaller size. In this section we will present a few technical utilities to
perform these conversions. We refer the reader to the full version for the missing proofs.

Given an n-element point set in Rd, Chan showed that it is possible to construct an
ε-kernel of size O(1/ε(d−1)/2) in time O(n+ 1/εd−1) [17]. The following lemma shows that,
by applying Chan’s construction, is is possible to concisely approximate the convex hull of n
points as the intersection of halfspaces.

I Lemma 2.6. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a
polytope in γ-canonical form represented as the convex hull of n points. In O(n+ 1/εd−1)
time it is possible to compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2)
halfspaces such that P ′ is an inner absolute ε-approximation of P .

The following lemma is useful when representing polytopes by the intersection of halfs-
paces.

I Lemma 2.7. Let γ < 1 be a positive constant, and ε > 0 be a real parameter. Let P be a
polytope in γ-canonical form represented as the intersection of n halfspaces. In O(n+ 1/εd−1)
time it is possible to compute a polytope P ′ represented as the intersection of O(1/ε(d−1)/2)
halfspaces such that P ′ is an outer absolute ε-approximation of P .

I Remark. Theorem 1.1 shows that an ε-kernel of size O(1/ε(d−1)/2) can be computed in
time O(n log 1

ε + 1/ε(d−1)/2+α). The construction time in Lemma 2.7 (which is derived in
the full version) is asymptotically dominated by the time needed to construct an ε-kernel.
Therefore, the construction time can be reduced to this quantity.

S. Arya, G.D. da Fonseca, and D.M. Mount 10:9

3 Hierarchy of Macbeath Ellipsoids

The data structure presented in [7] for the approximate polytope membership problem is
based on constructing a hierarchy of ellipsoids. In this section, we present a variant of this
structure, which will play an important role in our constructions.

For a Macbeath regionMλ(x), we denote its circumscribing John ellipsoid by Eλ(x), which
we call a Macbeath ellipsoid. Since Macbeath regions are centrally symmetric and the constant
in John’s Theorem [22] is

√
d for centrally symmetric bodies, we have Eλ(x) ⊆ Mλ

√
d(x).

Recall the constant ∆0 = 1
2 (γ2/4d)d defined in the statement of Lemma 2.4, and define

λ0 = 1/(20d). We omit the proof of the following lemma due to space limitations. (We
caution the reader that in the lemmas of this section, the value of n used in the application
of the lemma may differ from the original input size.)

I Lemma 3.1. Let γ < 1 be a positive constant, and let 0 < δ ≤ ∆0 be a real parameter.
Let P be a polytope in γ-canonical form, represented as the intersection of n halfspaces. In
O(n/δd−1 + 1/δ3(d−1)/2) time, we can construct a DAG structure satisfying the following
properties:
(a) The total number of nodes (including leaves), and the total space used by the DAG are

each O(1/δ(d−1)/2).
(b) Each leaf is associated with an ellipsoid E4λ0

√
d(x), where x ∈ ∂P (δ). The union of the

ellipsoids associated with all the leaves covers ∂P (δ).
(c) Given a query ray Oq, in O(log 1

δ) time, we can find a leaf node such that the associated
ellipsoid intersects this ray.

Given a convex body K and query point q, an absolute ε-APM query returns a positive
result if q lies within K, a negative result if q is at distance at least ε from K, and otherwise
it may return either result. After a small enhancement, this DAG can be used for answering
absolute ε-APM queries for a polyope P in γ-canonical form. We assume that P is represented
as the intersection of a set H of n halfspaces. We invoke the above lemma for δ = εγ/(2c1),
where c1 is the constant of Lemma 2.5(b). We then associate each leaf of the DAG with
a halfspace as follows. Let x denote the center of the leaf ellipsoid and let p denote the
intersection of the ray Ox with ∂P . Let h ∈ H denote any supporting halfspace of P
(containing P) at p. We store h with this leaf. By exhaustive search, we can determine h in
O(n) time, so the total time for this step is O(n/ε(d−1)/2). Asymptotically, this does not
affect the time it takes to construct the data structure. Given a query point q, we answer
queries by first determining a leaf whose ellipsoid intersects the ray Oq. By Lemma 3.1(c),
this takes O(log 1

ε) time. We return a positive answer if and only if q is contained in the
associated halfspace.

The following lemma summarizes the result, whose proof is presented in the full version.

I Lemma 3.2. Let γ < 1 be a positive constant, and let ε > 0 be a real parameter. Let
P be a polytope in γ-canonical form, represented as the intersection of n halfspaces. In
O(n/εd−1 + 1/ε3(d−1)/2) time, we can construct a data structure that uses O(1/ε(d−1)/2)
space and answers absolute ε-APM queries in O(log 1

ε) time.

4 Kernel Construction

In this section we establish Theorem 1.1 by showing how to build an ε-kernel efficiently.
The input to an ε-kernel construction consists of the approximation parameter ε and a set
S of n points. Our algorithm is based on a bootstrapping strategy. We assume that we

SoCG 2017

10:10 Near-Optimal ε-Kernel Construction and Related Problems

have access to an algorithm that can construct an ε-kernel of O(1/ε(d−1)/2) size in time
O(n log 1

ε + 1/ε(1/2+β)(d−1)), where β > 0 is a parameter. Recall that the size of the kernel
is asymptotically optimal in the worst case. We will present a method for improving the
running time of this algorithm. Recall that Chan [17] gave an algorithm for constructing
kernels of optimal size which runs in time O(n log 1

ε + 1/εd−1). By setting β = 1
2 , this will

form the basis of our bootstrapping, which is described below. Throughout, let δ = ε1/3.

1. Fatten the input point set S by computing an affine transformation that maps S to S′,
such that conv(S′) is in γ-canonical form for some constant γ. By standard results (see,
e.g., the journal version of [4]), this can be done in O(n) time.

2. Using Lemma 2.6, build a polytope P , represented as the intersection of O(1/δ(d−1)/2)
halfspaces, such that P is an inner absolute δ-approximation of conv(S′). This step takes
O(n+ 1/δd−1) = O(n+ 1/ε(d−1)/3) time.

3. Apply Lemma 3.1 to construct a DAG structure for P using the parameter δ. Replac-
ing n in the statement of the lemma by O(1/δ(d−1)/2), it follows that this step takes
O(1/δ3(d−1)/2) = O(1/ε(d−1)/2) time.

4. By Lemma 3.1(c), for each point p ∈ S′, find a leaf of the DAG such that the associated
ellipsoid E4λ0

√
d(x) intersects the ray Op. Recall that x ∈ ∂P (δ). This takes O(log 1

δ) per
point. In O(1) additional time, determine whether p lies in the shadow of this ellipsoid
(with respect to conv(S′)). If so, associate p with this ellipsoid, and otherwise discard it.
All the points of S′ can be processed in time O(n log 1

δ) = O(n log 1
ε).

5. For each leaf ellipsoid of the DAG, build a (c3ε/δ)-kernel for the points of S′ that lie in
its shadow, where c3 is a suitably small constant that will be selected later. This kernel is
computed using the aforementioned algorithm that computes the ε-kernel of a point set
of size n in time O(n log 1

ε + 1/ε(1/2+β)(d−1)). The size of the O(ε/δ)-kernel computed for
each shadow is O((δ/ε)(d−1)/2) and the time required is O(ni log δ

ε + (δ/ε)(1/2+β)(d−1)),
where ni denotes the number of points of S′ in the shadow. Summed over all the shadows,
it follows that the total time required is

O

(
n log δ

ε
+
(

1
δ

)d−1
2
(
δ

ε

)(1
2 +β)(d−1)

)
= O

(
n log 1

ε
+
(

1
ε

)(1
2 + 2β

3)(d−1)
)
.

Here we have used the facts that each point of S′ is assigned to at most one shadow and
the total number of shadows, which is bounded by the number of leaves in the DAG, is
O(1/δ(d−1)/2).

6. Let S′′ ⊆ S′ be the union of the kernels computed in the previous step. Since the number
of shadows is O(1/δ(d−1)/2) and the size of the kernel for each shadow is O((δ/ε)(d−1)/2),
it follows that |S′′| = O(1/ε(d−1)/2). Apply the inverse of the affine transformation
computed in Step 1 to the points of S′′, and output the resulting set of points as the
desired ε-kernel for S.

We have shown that the size of the output kernel is O(1/ε(d−1)/2), as desired. The
running time of Step 5 dominates the time complexity. Our next lemma establishes the
correctness of this construction.

I Lemma 4.1. The construction yields an ε-kernel.

Proof. Throughout this proof, for a given convex body K, we use MK(x), EK(x), and
δK(x) to denote the quantities M(x), E(x), and δ(x) with respect to K. Let P ′ = conv(S′).
By standard results on fattening, it suffices to show that conv(S′′) is an absolute O(ε)-
approximation of P ′. Let v be an arbitrary direction. Consider the extreme point p of S′

S. Arya, G.D. da Fonseca, and D.M. Mount 10:11

in direction v. Clearly p ∈ ∂P ′. Recall that P is an inner δ-approximation of P ′, and the
ellipsoids associated with the leaves of the DAG cover the boundary of P (δ). Thus, there
must be an ellipsoid E = E4λ0

√
d

P (x), x ∈ ∂P (δ), such that p is assigned to the shadow of
E in Step 4. Note that this shadow and all shadows throughout this proof are assumed to
be with respect to the polytope P ′ (and not P). We claim that widthv(shadow(E)) ≤ 2c1δ,
where c1 is the constant of Lemma 2.5(b). Assuming this claim for now, let us complete
the proof of the lemma. Recall that in Step 5, we built a (c3ε/δ)-kernel for all the points of
S′ that are assigned to the shadow of E, and S′′ includes all the points of this kernel. It
follows that the distance between the supporting hyperplanes of conv(S′) and conv(S′′) in
direction v is at most (c3ε/δ) · widthv(shadow(E)) ≤ (c3ε/δ) · (2c1δ) = 2c1c3ε. By choosing
c3 sufficiently small, we can ensure that this quantity is smaller than any desired constant
times ε, which proves the lemma.

It remains to show that widthv(shadow(E)) ≤ 2c1δ. Recall that

E = E4λ0
√
d

P (x) ⊆ M4λ0d
P (x) = M ′P (x).

Furthermore, since P ⊆ P ′, a straightforward consequence of the definition of Macbeath
regions is that M ′P (x) ⊆M ′P ′(x). To simplify the notation, let M denote M ′P ′(x). Putting
it together, we obtain E ⊆ M . Thus shadow(E) ⊆ shadow(M), which implies that
widthv(shadow(E)) ≤ widthv(shadow(M)). By Lemma 2.5(b),

widthv(shadow(M)) ≤ c1δP ′(x).

Using the triangle inequality and the fact that P is an inner δ-approximation of P ′, we
obtain δP ′(x) ≤ δP (x) + δ = 2δ. Thus widthv(shadow(E)) ≤ widthv(shadow(M)) ≤ 2c1δ,
as desired. J

We are now ready to establish the main result of this section.

Proof. (of Theorem 1.1) Our proof is based on a constant number of applications of the
algorithm from this section. It suffices to show that there is an algorithm that can construct
an ε-kernel of O(1/ε(d−1)/2) size in time O(n log 1

ε + 1/ε(1/2+β′)(d−1)), where β′ = α/(d− 1).
We initialize the bootstrapping process by Chan’s algorithm [17], which has β = 1

2 .
Observe that the value of β is initially 1

2 and falls by a factor of 2
3 with each application of

the algorithm. It follows that after O(log 1
α) applications, we will obtain an algorithm with

the desired running time. This completes the proof. J

5 Approximate Polytope Membership

In this section we show how to obtain a data structure for approximate polytope membership,
proving Theorem 1.5. Our best data structure for APM achieves query time O(log 1

ε) with
storage O(1/ε(d−1)/2) and preprocessing time O(n log 1

ε + 1/ε(d−1)/2+α). As with kernels,
our construction here is again based on a bootstrapping strategy. To initialize the process, we
will use a data structure that achieves the aforementioned query time with the same storage
but with preprocessing time O(n+ 1/ε3(d−1)/2). The data structure is based on Lemma 3.2.
Recall that the input is a polytope represented as the intersection of n halfspaces.

We begin by “fattening” the input polytope. As before, we use an affine transformation
to map the input polytope to a polytope P ′ that is in γ-canonical form. This step takes O(n)
time [4]. By standard results, it suffices to build a data structure for answering absolute
O(ε)-APM queries with respect to P ′ (see, e.g., Lemma 7.1 of the journal version of [4]).

SoCG 2017

10:12 Near-Optimal ε-Kernel Construction and Related Problems

Next, we apply Lemma 2.7 to construct an outer absolute O(ε)-approximation P of
P ′, where P is represented as the intersection of O(1/ε(d−1)/2) halfspaces. This step takes
O(n+ 1/εd−1) time. Finally, we use Lemma 3.2 to construct a data structure for answering
absolute O(ε)-APM queries with respect to P . Replacing n in the statement of the lemma
by O(1/ε(d−1)/2), it follows that this step takes O(1/ε3(d−1)/2)) time.

The total construction time is O(n+ 1/ε3(d−1)/2). To answer a query, we map the query
point using the same transformation used to fatten the polytope, and then use the data
structure constructed above to determine whether the resulting point lies in polytope P .
Subject to an appropriate choice of constant factors, the correctness of this method follows
from the fact that P is an outer absolute O(ε)-approximation of P ′.

We summarize this result in the following lemma.

I Lemma 5.1. Let ε > 0 be a real parameter and let P be a polytope, represented as the
intersection of n halfspaces. In O(n+ 1/ε3(d−1)/2) time, we can construct a data structure
that uses O(1/ε(d−1)/2) space and answers ε-APM queries in O(log 1

ε) time.

We now present the details of our bootstrapping approach. We assume that for a
parameter β > 0, in time O(n log 1

ε + 1/ε(1/2+β)(d−1)) we can construct a data structure
that can answer ε-APM queries in O(log 1

ε) time with O(1/ε(d−1)/2) storage. We present a
method for constructing a new data structure that matches the same storage and query time
but has a lower preprocessing time. Throughout, let δ = εβ/(1+β).

1. As in the kernel construction, first fatten the input polytope by applying an affine
transformation that maps the input polytope to a polytope P ′ that is in γ-canonical form.
By standard results (see, e.g., [4]), this step takes O(n) time, and it suffices to build a
data structure for answering absolute O(ε)-APM queries with respect to P ′.

2. Using Lemma 2.7, build an outer absolute O(ε)-approximation of P ′, denoted P , which
is represented as the intersection of O(1/ε(d−1)/2) halfspaces. By the remark following
Lemma 2.7, this step takes O(n log 1

ε + 1/ε(d−1)/2+α) time.
3. Apply Lemma 3.1 to construct a DAG structure for P using the parameter δ. Replacing n

in the statement of the lemma by O(1/ε(d−1)/2), it follows that this step takes O((1/δ)d−1 ·
(1/ε)(d−1)/2) time.

4. For each leaf of the DAG, construct an APM data structure as follows. Let E = E4λ0
√
d(x)

denote the ellipsoid associated with the leaf. Let R denote the minimum enclosing
hyperrectangle of the ellipsoid E4/γ(x). We will see later that R contains the shadow of E
(with respect to P), and its width in any direction in normals(E) is at most c2dδ = O(δ),
where c2 is the constant in Lemma 2.5(c).
Using the aforementioned algorithm, construct an APM data structure for this region
with approximation parameter c3ε/δ, where c3 is a sufficiently small constant that we
will select later. Note that each such region can be expressed as the intersection of
ni = O(1/ε(d−1)/2) halfspaces, namely, all the halfspaces defining P together with the 2d
halfspaces defined by the facets of R. The construction time of the APM data structure
for each leaf is

O

(
ni log δ

ε
+
(
δ

ε

)(1
2 +β)(d−1)

)
= O

((
1
ε

) d−1
2

log δ
ε

+
(
δ

ε

)(1
2 +β)(d−1)

)
,

and the space used is O((δ/ε)(d−1)/2). Since there are O(1/δ(d−1)/2) leaves, it follows
that the total space is O(1/ε(d−1)/2), and the total construction time is the product of
O(1/δ(d−1)/2) and the above construction time for each leaf.

S. Arya, G.D. da Fonseca, and D.M. Mount 10:13

Summing up the time over all the four steps, we obtain a total construction time on the
order of(
n log 1

ε
+
(

1
ε

) d−1
2 +α

)
+
(

1
δ

)d−1(1
ε

) d−1
2

+
(

1
δ

) d−1
2

·

((
1
ε

) d−1
2

log δ
ε

+
(
δ

ε

)(1
2 +β)(d−1)

)
.

Recalling that δ = εβ/(1+β) and assuming that the constant α is much smaller than β, it
follows that the construction time is

O

(
n log 1

ε
+
(

1
ε

)(1
2 + β

1+β)(d−1)
)
.

We answer queries as follows. We apply the affine transformation of Step 1 to the input
query point to obtain a point q. Recall that it suffices to answer absolute O(ε)-APM queries
for q with respect to P ′. As P is an outer absolute O(ε)-approximation of P ′, it suffices
to answer absolute O(ε)-APM queries for q with respect to P . To answer this query, we
identify a leaf of the DAG such that the associated ellipsoid E intersects the ray Oq. This
takes time O(log 1

δ). Let y denote an intersection point of this ray with the ellipsoid E. If q
lies on the segment Oy, then q is declared as lying inside P . Otherwise we return the answer
we get for query q using the APM data structure we built for this leaf. It takes time O(log δ

ε)
to answer this query. Including the time to locate the leaf, the total query time is O(log 1

ε).
Our next lemma shows that queries are answered correctly.

I Lemma 5.2. The query procedure returns a valid answer to the ε-APM query.

Proof. We borrow the terminology from the query procedure given above. As mentioned,
it suffices to show that our algorithm correctly answers absolute O(ε)-APM queries for q
with respect to the polytope P . Recall that we identify a leaf of the DAG whose associated
ellipsoid E = E4λ0

√
d(x) intersects the ray Oq. Recall that y is a point on the intersection of

the ray Oq with E. Clearly, if q lies on segment Oy, then q ∈ P and q is correctly declared
as lying inside P .

It remains to show that queries are answered correctly when ‖Oq‖ > ‖Oy‖. In this case,
we handle the query using the APM data structure we built for the leaf. Recall that this
structure is built for the polytope formed by intersecting P with the smallest enclosing
hyperrectangle R of the ellipsoid E4/γ(x). It suffices to show: (i) shadow(E) ⊆ R and (ii)
widthv(R) ≤ c2dδ for all v ∈ normals(E), where c2 is the constant in Lemma 2.5(c).

To establish (i), recall that Mλ(x) ⊆ Eλ(x) ⊆Mλ
√
d(x) for any λ > 0. Using this fact, it

follows that M4/γ(x) ⊆ E4/γ(x) ⊆ M4
√
d/γ(x). By Lemma 2.5(a), shadow(E) ⊆ M4/γ(x).

Thus shadow(E) ⊆ E4/γ(x) ⊆ R, which proves (i). To prove (ii), note that R ⊆ E4
√
d/γ(x),

since R is the smallest enclosing hyperrectangle of E4/γ(x). Also E4
√
d/γ(x) ⊆ M4d/γ(x).

Thus R ⊆M4d/γ(x). By Lemma 2.5(c), widthv(M4/γ(x)) ≤ c2δ for all v ∈ normals(M ′(x)).
Since R ⊆M4d/γ(x) and E ⊆M ′(x), it follows that widthv(R) ≤ c2dδ for all v ∈ normals(E).

We return to showing that queries are correctly answered when ‖Oq‖ > ‖Oy‖. We
consider two possibilities depending on whether q is inside or outside P . If q ∈ P then
q ∈ shadow(E). By part (i) of the above claim, shadow(E) ⊆ R, and thus q ∈ P ∩ R. It
follows that the APM structure built for the leaf will declare this point as lying inside P ∩R,
and hence the overall algorithm will correctly declare that q lies in P .

Finally, we consider the case when q /∈ P . To complete the proof, we need to show that if
the distance of q from the boundary of P is greater than ε, then q is declared as lying outside
P . Let p denote the point of intersection of the ray Oq with ∂P , let h denote a hyperplane

SoCG 2017

10:14 Near-Optimal ε-Kernel Construction and Related Problems

supporting P at p, and let v denote the outward normal to h. Recall by part (i) of the claim
that shadow(E) ⊆ R. It follows that h is a supporting hyperplane of P ∩R at p. By part (ii)
of the claim, widthv(R) ≤ c2dδ, and hence widthv(P ∩R) ≤ c2dδ. Recall that the APM data
structure for the leaf is built using the approximation parameter c3ε/δ for some constant c3.
By definition of APM query (in the standard, direction-sensitive sense), the absolute error
allowed in direction v is at most (c3ε/δ) · widthv(P ∩ R) ≤ (c3ε/δ)(c2dδ). By choosing c3
sufficiently small we can ensure that this error is at most εγ. To make this more precise,
let h′ denote the hyperplane parallel to h (outside P), and at distance εγ from it. Consider
the halfspace bounded by h′ and containing P . By the definition of APM query, if q is not
contained in this halfspace, then q would be declared as lying outside P ∩R, and the overall
algorithm would declare q as lying outside P . Let p′ denote the point of intersection of the
ray Oq with h′. By Lemma 2.1(c), ‖pp′‖ ≤ (εγ)/γ = ε. Thus, if the distance of q from ∂P is
greater than ε, then q cannot lie on segment pp′ and q is correctly declared as lying outside
P . This completes the proof of correctness. J

We now establish the main result of this section.

Proof. (of Theorem 1.5) Our proof is based on a constant number of applications of the
method presented in this section. It suffices to show that there is a data structure with
space and query time as in the theorem and preprocessing time O(n log 1

ε + 1/ε(1/2+β′)(d−1)),
where β′ = α/(d− 1).

We initialize the bootstrapping process by the data structure described in the beginning
of this section, which has β = 1. Recall that applying the method once changes the value
of β to β/(1 + β). It is easy to show that after i applications, the value of β will fall to
1/(i+ 1). Thus, after O(1/α) applications, we will obtain a data structure with the desired
preprocessing time. J

The remaining theorems follow from previous reductions. Theorem 1.2 follows from per-
forming O(1/ε(d−1)/2) width queries [3, 17] using Theorem 1.6. Theorem 1.3 is a consequence
of Theorem 1.5 together with [4, Lemma 9.2 of the journal version] and the construction
from [11, Theorem 3.2]. Theorem 1.4 follows from 1.3 using [11, Theorem 4.1]. Theorem 1.6
follows from Theorem 1.5 by using duality and binary search. Theorem 1.7 is a consequence
of Theorem 1.5 and the reduction presented in [4, Lemma 9.3 of the journal version].

References
1 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent measures of

points. J. Assoc. Comput. Mach., 51:606–635, 2004.
2 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via core-

sets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational
Geometry. MSRI Publications, 2005.

3 P.K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and
related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189–201, 1992.

4 S. Arya, G.D. da Fonseca, and D.M. Mount. Approximate polytope membership queries.
In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579–586, 2011. doi:10.1145/
1993636.1993713.

5 S. Arya, G.D. da Fonseca, and D.M. Mount. Optimal area-sensitive bounds for polytope
approximation. In Proc. 28th Annu. Sympos. Comput. Geom., pages 363–372, 2012.

6 S. Arya, G.D. da Fonseca, and D.M. Mount. On the combinatorial complexity of approx-
imating polytopes. In Proc. 32nd Internat. Sympos. Comput. Geom., pages 11:1–11:15,
2016. doi:10.4230/LIPIcs.SoCG.2016.11.

http://dx.doi.org/10.1145/1993636.1993713
http://dx.doi.org/10.1145/1993636.1993713
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.11

S. Arya, G.D. da Fonseca, and D.M. Mount 10:15

7 S. Arya, G.D. da Fonseca, and D.M. Mount. Optimal approximate polytope membership.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270–288, 2017.

8 S. Arya, T. Malamatos, and D.M. Mount. The effect of corners on the complexity of
approximate range searching. Discrete Comput. Geom., 41:398–443, 2009.

9 S. Arya and D.M. Mount. A fast and simple algorithm for computing approximate Eu-
clidean minimum spanning trees. In Proc. 27th Annu. ACM-SIAM Sympos. Discrete Algo-
rithms, pages 1220–1233, 2016.

10 S. Arya, D.M. Mount, and J. Xia. Tight lower bounds for halfspace range searching.
Discrete Comput. Geom., 47:711–730, 2012. doi:10.1007/s00454-012-9412-x.

11 Sunil Arya and Timothy M. Chan. Better ε-dependencies for offline approximate nearest
neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu.
Sympos. Comput. Geom., pages 416–425, 2014.

12 I. Bárány. The technique of M-regions and cap-coverings: A survey. Rend. Circ. Mat.
Palermo, 65:21–38, 2000.

13 G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions. J. Algorithms, 38(1):91–109, 2001.

14 J. L. Bentley, M.G. Faust, and F.P. Preparata. Approximation algorithms for convex hulls.
Commun. ACM, 25(1):64–68, 1982. doi:10.1145/358315.358392.

15 H. Brönnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching. Discrete
Comput. Geom., 10:143–155, 1993.

16 E.M. Bronshteyn and L.D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Math. J., 16:852–853, 1976.

17 T.M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions.
Comput. Geom. Theory Appl., 35(1):20–35, 2006. doi:10.1016/j.comgeo.2005.10.002.

18 T.M. Chan. Applications of Chebyshev polynomials to low-dimensional computational
geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1–15, 2017.

19 R.M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227–236, 1974.

20 K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa. Shallow packings, semialgebraic set
systems, Macbeath regions and polynomial partitioning. In Proc. 33rd Internat. Sympos.
Comput. Geom., pages 38:1–15, 2017.

21 G. Ewald, D.G. Larman, and C.A. Rogers. The directions of the line segments and of the
r-dimensional balls on the boundary of a convex body in Euclidean space. Mathematika,
17:1–20, 1970.

22 F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Es-
says Presented to R. Courant on his 60th Birthday, pages 187–204. Interscience Publishers,
Inc., New York, 1948.

23 S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair problem.
Information and Computation, 118(1):34–37, 1995.

24 A.M. Macbeath. A theorem on non-homogeneous lattices. Ann. of Math., 56:269–293,
1952.

25 N.H. Mustafa and S. Ray. Near-optimal generalisations of a theorem of Macbeath. In Proc.
31st Internat. Sympos. on Theoret. Aspects of Comp. Sci., pages 578–589, 2014.

SoCG 2017

http://dx.doi.org/10.1007/s00454-012-9412-x
http://dx.doi.org/10.1145/358315.358392
http://dx.doi.org/10.1016/j.comgeo.2005.10.002

Exact Algorithms for Terrain Guarding∗

Pradeesha Ashok1, Fedor V. Fomin2, Sudeshna Kolay3,
Saket Saurabh4, and Meirav Zehavi5

1 The Institute of Mathematical Sciences, Chennai, India
pradeesha@imsc.res.in

2 University of Bergen, Bergen, Norway
fomin@ii.uib.no

3 The Institute of Mathematical Sciences, Chennai, India
skolay@imsc.res.in

4 The Institute of Mathematical Sciences, Chennai, India; and
University of Bergen, Bergen, Norway
saket@imsc.res.in

5 University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract
Given a 1.5-dimensional terrain T , also known as an x-monotone polygonal chain, the Terrain
Guarding problem seeks a set of points of minimum size on T that guards all of the points on
T . Here, we say that a point p guards a point q if no point of the line segment pq is strictly below
T . The Terrain Guarding problem has been extensively studied for over 20 years. In 2005
it was already established that this problem admits a constant-factor approximation algorithm
[SODA 2005]. However, only in 2010 King and Krohn [SODA 2010] finally showed that Terrain
Guarding is NP-hard. In spite of the remarkable developments in approximation algorithms for
Terrain Guarding, next to nothing is known about its parameterized complexity. In particular,
the most intriguing open questions in this direction ask whether it admits a subexponential-time
algorithm and whether it is fixed-parameter tractable. In this paper, we answer the first question
affirmatively by developing an nO(

√
k)-time algorithm for both Discrete Terrain Guarding

and Continuous Terrain Guarding. We also make non-trivial progress with respect to the
second question: we show that Discrete Orthogonal Terrain Guarding, a well-studied
special case of Terrain Guarding, is fixed-parameter tractable.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Terrain Guarding, Art Gallery, Exponential-Time Algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.11

1 Introduction

The study of terrains, also known as x-monotone polygonal chains, has attracted widespread
and growing interest over the last few decades in the field of Discrete Computational Geometry.
A terrain is a graph where each vertex vi, 1 ≤ i ≤ n, is associated with a point (xi, yi) on
the two-dimensional Euclidean plane such that x1 < x2 < . . . < xn, and the edge-set is

∗ The research leading to these results received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 306992
(S. Saurabh). Part of this work was done while F.V. Fomin and M. Zehavi were visiting the Simons
Institute for the Theory of Computing.

© Pradeesha Ashok, Sudeshna Kolay, Fedor V. Fomin, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Exact Algorithms for Terrain Guarding

E = {{vi, vi+1} : 1 ≤ i ≤ n}. In the Terrain Guarding problem the task is to decide
whether one can place guards on at most k points of a given terrain such that each point on
the terrain is seen by at least one guard. Here, we say that a point p sees a point q if no
point of the line segment pq is strictly below T . The Terrain Guarding problem arises in
a wide-variety of applications relevant to the design of various communication technologies
such as cellular telephony and line-of-sight transmission networks for radio broadcasting. It
also arises in applications of coverage of highways, streets and walls with street lights or
security cameras [3, 14].

The visibility graphs of terrains exhibit unique properties which render the complexity
of the Terrain Guarding problem difficult to elucidate. Some of these properties have
already been observed in 1995 by Abello et al. [1], and some of them remain unknown despite
recent advances to identify them [13]. Indeed, the Terrain Guarding problem has been
extensively studied since 1995, when an NP-hardness proof was claimed but never completed
by Chen et al. [5]. Almost 10 years later King and Krohn [23] finally showed that this
problem is NP-hard.

Particular attention has been given to the Terrain Guarding problem from the
viewpoint of approximation algorithms. In 2005, Ben-Moshe et al. [3] obtained the first
constant-factor approximation algorithm for Terrain Guarding. Afterward, the approxim-
ation factor was gradually improved in [6, 22, 12], until a PTAS was proposed by Gibson
et al. [16]. Recently, Friedrichs et al. [14] showed that even if the terrain is continuous, the
Terrain Guarding problem still admits a PTAS.

The Terrain Guarding problem has also gained interest due to its deceptive resemblance
to the Art Gallery problem, where instead of a terrain, it is necessary to guard a polygon.
The Art Gallery problem was introduced by Klee in 1976, and it is arguably one of the
most well-known problems in Discrete Computational Geometry. For more information on
the Art Gallery problem, we refer to the books dedicated to its study [26, 28, 18]. Note
that the Art Gallery problem does not admit a subexponential-time algorithm. Indeed,
the known NP-hardness reduction for the Art Gallery problem, even when restricted
to orthogonal polygons, reduces a 3-SAT instance on n variables and m clauses to an
instance of Art Gallery with O(n+m) vertices [27, 26]. This reduction combined with
the Exponential Time Hypothesis (ETH) [19, 7] implies the following result.

I Corollary 1 (Folklore). Unless ETH fails, there is no algorithm for Art Gallery, even
when restricted to orthogonal polygons, that achieves running time of 2o(n). That is, the Art
Gallery problem does not admit a subexponential-time algorithm.

In the parameterized setting, where n is the number of vertices in the polygon and k is
the number of guards, clearly one can design an algorithm for the Art Gallery problem
running in time nO(k) by enumerating all subsets of vertices of size at most k. Interestingly,
by the very recent result of Bonnet and Miltzow [4] this trivial brute-force algorithm is
essentially optimal. More precisely, they proved that an algorithm solving Art Gallery
in time f(k) · no(k/ log k) for any function f would imply that the ETH fails. The reduction
given in [4] also implies that Art Gallery is W[1]-hard parameterized by k. Thus it is
highly unlikely that Art Gallery is fixed-parameter tractable (FPT).

Orthogonal Terrain Guarding is a problem of independent interest that is a special
case of Terrain Guarding. In this problem, the terrain is orthogonal: for each vertex
vi, 2 ≤ i ≤ n− 1, either both xi−1 = xi and yi = yi+1 or both yi−1 = yi and xi = xi+1. In
other words, each edge is either a horizontal line segment or a vertical line segment, and
each vertex is incident to at most one horizontal edge and at most one vertical edge. The
Orthogonal Terrain Guarding problem has already been studied from the perspective

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:3

of algorithms theory [20, 24, 25, 11]. Katz and Roisman [20] gave a relatively simple 2-
approximation algorithm for the the problem of guarding all vertices of an orthogonal terrain
by vertices. Recently, Lyu and Üngör improved upon this result by developing a linear-time
2-approximation algorithm for Orthogonal Terrain Guarding. The papers [25] and
[11] studied restrictions under which Orthogonal Terrain Guarding can be solved in
polynomial time.

While by now we have quite satisfactory understanding of the approximability of Terrain
Guarding, the parameterized hardness of this problem is unknown. Currently, the most
fundamental open questions regarding the complexity of the Terrain Guarding problem
are the following:

Does Terrain Guarding admit a subexponential-time algorithm?
Is Terrain Guarding FPT with respect to k?

Indeed, King and Krohn [23] state that “the biggest remaining question regarding the
complexity of Terrain Guarding is whether or not it is FPT”. Moreover, interest in the
design of efficient, exact exponential-time algorithms for this problem has been expressed
at workshops such as the Lorentz Workshop on Fixed-Parameter Computational Geometry
[15]. To the best of our knowledge, the only work which is somewhat related to the second
question is the one by Khodakarami et al. [21], who introduced the parameter “the depth of
the onion peeling of a terrain” and showed that Terrain Guarding is FPT with respect to
this parameter.

In this paper, we address both of these questions. First, we completely resolve the first
question by designing a subexponential-time algorithm for Terrain Guarding in both
discrete and continuous domains. For this purpose, we develop an nO(

√
k)-time algorithm for

Terrain Guarding in discrete domains. Friedrichs et al. [14] proved that given an instance
of Terrain Guarding in a continuous domain, one can construct (in polynomial time)
an equivalent instance of Terrain Guarding in a discrete domain. More precisely, given
an instance (T = (V,E), k) of Terrain Guarding in a continuous domain, Friedrichs et
al. [14] designed a discretization procedure that outputs an instance (T ′ = (V ′, E′), k) of
Terrain Guarding in a discrete domain such that (T = (V,E), k) is a yes-instance if and
only if (T ′ = (V ′, E′), k) is a yes-instance. Unfortunately, this reduction blows up the number
of vertices of the terrain to O(n3), and therefore the existence of a subexponential-time
algorithm for Terrain Guarding in discrete domains does not imply that there exists
such an algorithm for Terrain Guarding in continuous domains. However, observe that
the reduction does not change the value of the parameter k. Thus, since we solve Terrain
Guarding in discrete domains in time nO(

√
k) rather than nO(

√
n), we are able to deduce

that Terrain Guarding in continuous domains is solvable in time nO(
√

k). Observe that,
in both discrete and continuous domains, it can be assumed that k ≤ n: to guard all of
the points that lie on a terrain, it is sufficient to place guards only on the vertices of the
terrain. Hence, when we solve Terrain Guarding in continuous domains, we assume that
k ≤ n where n is the number of vertices of the input continuous terrain and not of the
discrete terrain outputted by the reduction. The next theorem summarizes our algorithmic
contribution.

I Theorem 2. Terrain Guarding in both discrete and continuous domains is solvable in
time nO(

√
k). Thus, it is also solvable in time nO(

√
n).

Observe that our result, Theorem 2, demonstrates an interesting dichotomy in the
complexities of Terrain Guarding and the Art Gallery problem: Corollary 1 implies
that the Art Gallery problem does not admit an algorithm with running time 2o(n), while

SoCG 2017

11:4 Exact Algorithms for Terrain Guarding

Terrain Guarding in both discrete and continuous domains is solvable in time 2O(
√

n log n).
When we measure the running time in terms of both n and k, the Art Gallery problem
does not admit an algorithm with running time f(k) · no(k/ log k) for any function f [4], while
Terrain Guarding in both discrete and continuous domains is solvable in time nO(

√
k).

Our solution is based on the definition of a planar graph that has a small domination
number and which captures both the manner in which a hypothetical solution guards the
terrain and some information on the layout of the terrain itself. Having this planar graph, we
are able to “guess” separators whose exploitation, which involves additional guesses guided
by the structure of the graph, essentially results in a divide-and-conquer algorithm. The
design of the divide-and-conquer algorithm is also nontrivial since given our guesses, it is not
possible to divide the problem into two simpler subproblems in the obvious way – that is, we
cannot divide the terrain into two disjoint subterrains that can be handled separately. We
overcome this difficulty by dividing not the terrain itself, but a set of points of interest on
the terrain.

We also shed light on the second question by showing that Orthogonal Terrain
Guarding of vertices of the orthogonal terrain with vertices is FPT with respect to the
parameter k. More precisely, we obtain the following result.

I Theorem 3. Orthogonal Terrain Guarding of vertices of the terrain with vertices is
solvable in time kO(k) · nO(1).

Our algorithm is based on new insights into the structure of orthogonal terrains, par-
ticularly into the relations between their left and right reflex and convex vertices. We
integrate these insights in the design of an algorithm that is based on the proof that one can
ignore “exposed vertices”, which are vertices seen by too many vertices of a specific type,
greedy localization, and a non-trivial branching strategy that we call “double-branching”. We
conclude the introduction by posing the following open problems: Are Terrain Guarding
and Orthogonal Terrain Guarding in continuous domains FPT?

2 Preliminaries

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}.

Graphs. We use standard notation and terminology from the book of Diestel [9] for graph-
related terms which are not explicitly defined here. We only consider simple undirected graphs.
Given a graph H, V (H) and E(H) denote its vertex-set and edge-set, respectively. Given a
subset U ⊆ V (H), the subgraph of H induced by U is denoted by H[U]. A dominating set of
H is a subset S ⊆ V (H) such that each vertex in V (H) either belongs to S or has a neighbor
in S. The domination number of H, denoted by γ(H), is the minimum size of a dominating
set of H. A clique cover of H is a partition (V1, V2, . . . , Vt) of V (H) for some t ∈ N such that
for any i ∈ [t], H[Vi] is a clique. The size of the clique cover is t. The clique cover number of
H, denoted by κ(H), is the minimum size of a clique cover of H. An independent set of H is
a subset U ⊆ V (H) such that there do not exist two vertices in U that are neighbors in H.
The independence number of H, denoted by α(H), is the maximum size of an independent
set of H. A chordal graph is a graph that has no induced cycle on more than three vertices.
In the context of chordal graphs, we will need to rely on the following well-known results.

I Theorem 4 ([17]). Let H be a chordal graph. Then
A clique cover of H of minimum size can be found in linear time.
An independent set of H of maximum size can be found in linear time.
κ(H) = α(H).

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:5

 : right reflex vertex

 : left reflex vertex

 : right convex vertex

 : left convex vertex

Figure 1 Reflex and convex vertices.

Terrains. A 1.5-dimensional terrain T = (V,E), or terrain for short, is a graph on vertex-
set V = {v1, v2, . . . , vn} where each vertex vi is associated with a point (xi, yi) on the
two-dimensional Euclidean plane such that x1 < x2 < . . . < xn, and the edge-set is
E = {{vi, vi+1} : i ∈ [n− 1]}. We say that a point p sees a point q if every point of the line
segment pq is either on or above T . Note that if a point p sees a point q, then the point q
sees the point p as well. More generally, we say that a set of points P sees a set of points Q
if each point in Q is seen by at least one point in P .

An orthogonal terrain, also known as a rectilinear terrain, is a terrain T = (V,E) where
for each vertex vi, 2 ≤ i ≤ n − 1, either both xi−1 = xi and yi = yi+1 or both yi−1 = yi

and xi = xi+1. In other words, an orthogonal terrain is a terrain where each edge is either
a horizontal line segment or vertical line segment, and each vertex is incident to at most
one horizontal edge and at most one vertical edge. A vertex vi, 2 ≤ i ≤ n − 1 belongs to
one of the four following categories: if xi = xi+1 and yi > yi+1, it is a right reflex vertex;
if xi = xi+1 and yi < yi+1, it is a right convex vertex; if xi = xi−1 and yi > yi−1, it is a
left reflex vertex; if xi = xi−1 and yi < yi−1, it is a left convex vertex. Moreover, if x1 = x2
and y1 > y2, v1 is a right reflex vertex; if x1 = x2 and y1 < y2, it is a right convex vertex;
otherwise it is a left convex vertex. Symmetrically, if xn = xn−1 and yn > yn−1, vn is a left
reflex vertex; if xn = xn−1 and yn < yn−1, it is a left convex vertex; otherwise it is a right
convex vertex. We also say that a vertex is a reflex vertex if it is either a left reflex vertex
or a right reflex vertex, and otherwise it is a convex vertex. Furthermore, we say that left
reflex/convex vertices are opposite to right reflex/convex vertices. An illustrative example of
these notions is given in Fig. 1

Let T = (V,E) be a terrain and let U be a subset of V . We use vis(U) to denote the
set containing every vertex in V that is seen by at least one vertex in U . In case U = {u},
we abuse notation and write vis(u) to refer to vis(U). We use cut(U) to denote the set
of (maximal) subterrains of T that result from the removal of the vertices in U . That is,
cut(U) is the set of each subterrain T ′ = (V ′, E′) for which there exist i < j such that
V ′ = {vi, vi+1, . . . , vj} ⊆ V \ U , either i = 1 or vi−1 ∈ U , and either j = n or vj+1 ∈ U . An
illustrative example of this notation is given in Fig. 2. Given a subset X ⊆ V and subterrain
T ′ = (V ′, E′), we define X[T ′] = X ∩ V ′. Moreover, given a set of terrains T , we let X[T]
be set of vertices that is the union of the sets in {X[T ′] : T ′ ∈ T }.

Terrain Guarding Problems. The decision version of the (Discrete) Terrain Guarding
problem is defined as follows. Its input consists of a terrain T = (V,E) on n vertices and a
positive integer k ≤ n, and the objective is to determine whether there is a subset S ⊆ V of
size at most k that sees V . We say that such a subset S is a solution. In the special case
where the input terrain is an orthogonal terrain, the problem is known as the Orthogonal
Terrain Guarding problem.

SoCG 2017

11:6 Exact Algorithms for Terrain Guarding

T = (V,E)

cut(U)

{ }
, , ,

Figure 2 The result of the operation cut(U) where U is the set of black vertices.

The Terrain Guarding problem is also defined in the context of continuous domains,
in which case it is called the Continuous Terrain Guarding problem. The input for
the Continuous Terrain Guarding problem is the same as the input for the Discrete
Terrain Guarding problem. We say that a point lies on the terrain T if it is either a vertex
in V or a point on an edge between two adjacent vertices. The objective is to determine
whether there is a subset of points of size at most k that lie on T and which see every point
that lies on T .

To develop our algorithms for Discrete Terrain Guarding, it will be more convenient
to solve a problem generalizing Discrete Terrain Guarding, that we call Annotated
Terrain Guarding. Roughly speaking, Annotated Terrain Guarding is the variant of
Discrete Terrain Guarding where one cannot place a “guard” on any vertex, but only
on vertices from a given set G, and where it is not necessary to “cover” all of the vertices
in V , but only those belonging to a given set C. Formally, the input consists of a terrain
T = (V,E) on n vertices, a positive integer k ≤ n, and subsets G,C ⊆ V . The objective is to
determine whether there is a subset S ⊆ G of size at most k that sees C. We say that such
a subset S is a solution. Clearly, Terrain Guarding is the special case of Annotated
Terrain Guarding where G = C = V . We will refer to the special case where the input
terrain is an orthogonal terrain as the Annotated Orthogonal Terrain Guarding
problem.

Treewidth. A tree decomposition of a graph H is a pair (D,β), where D is a rooted tree
and β : V (D)→ 2V (G) is a mapping that satisfies the following conditions.

For each vertex v ∈ V (H), the set {d ∈ V (D) : v ∈ β(d)} induces a nonempty and
connected subtree of D.
For each edge {v, u} ∈ E(H), there exists d ∈ V (D) such that {v, u} ⊆ β(d).

A vertex d in V (D) is called a node, and the set β(d) is called the bag at d. We let
descendants(d) denote the set of descendants of d in D. The width of (D,β) is the size
of the largest bag minus one (i.e., maxd∈V (D) |β(d)| − 1). The treewidth of H, denoted by
tw(H), is the minimum width among all possible tree decompositions of H.

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:7

Standard arguments on trees, see e.g. [7, Lemma 7.20], imply the correctness of the
following observation.

I Observation 5. Let (D,β) be a tree decomposition of a graph H where D is a binary
tree, and let S be a subset of V (H). Then, there exists a node d ∈ V (D) such that |S|/3 ≤
|
⋃

d′∈descendants(d) β(d′) ∩ S| and |
⋃

d′∈descendants(d)\{d} β(d′) ∩ S| ≤ 2|S|/3.

Parameterized Complexity. In Parameterized Complexity each problem instance is ac-
companied by a parameter k. A central notion in this field is the one of fixed-parameter
tractability (FPT). This means, for a given instance (I, k), solvability in time f(k)|I|O(1)

where f is some function of k. For more information on Parameterized Complexity we refer
the reader to monographs such as [10, 7].

Bit Vectors. A t-length bit vector is a vector v = (v1, v2, . . . , vt) such that for any i ∈ [t],
vi ∈ {0, 1}. Given two t-length bit vectors v and u, the Hamming distance between them,
denoted by H(v, u), is the number of indices i ∈ [t] such that vi 6= ui.

3 Subexponential Algorithm

In this section we prove that Annotated Terrain Guarding can be solved in time nO(
√

n).
In fact, we obtain a somewhat stronger result:

I Theorem 6. Annotated Terrain Guarding is solvable in time nO(
√

k).

Since Discrete Terrain Guarding is a special case of Annotated Terrain Guard-
ing, we derive the following result.

I Corollary 7. Discrete Terrain Guarding is solvable in time nO(
√

k).

We also derive the following result.

I Corollary 8. Continuous Terrain Guarding is solvable in time nO(
√

k).

Throughout this section, we let (T = (V,E), n, k,G,C) denote the input instance of
Annotated Terrain Guarding. First, in Section 3.1, we carefully define a planar graph
PS that captures relations between a hypothetical solution and the set C. Then, in Section 3.2,
we rely on properties of PS to show that there exists a partition of G∪C into two sets which
rarely “alternate” along the terrain and which are both relatively “small”. In Section 3.3 we
show how the existence of this partition allows us to design an algorithm for Annotated
Terrain Guarding. The algorithm is based on the method of divide-and-conquer, although
the subproblems we obtain are not associated with subterrains smaller than the original one.

3.1 The Planar Graph PS

In this section we assume that the input instance is a yes-instance. Let S be some hypothetical
solution, that is, a subset of G of size at most k that sees C. We define three sets of edges:

The set E1 contains an edge {vi, vj} between any two vertices vi, vj ∈ S ∪ C such that
there is no vt ∈ S ∪ C with i < t < j.
The set E2 contains an edge {vi, vj} between any two vertices vi ∈ S and vj ∈ C ∩vis(vi)
such that i < j and there is no vt ∈ S with t < i and vj ∈ vis(vt).
The set E3 contains an edge {vi, vj} between any two vertices vi ∈ S and vj ∈ C ∩vis(vi)
such that j < i and there is no vt ∈ S with i < t and vj ∈ vis(vt).

SoCG 2017

11:8 Exact Algorithms for Terrain Guarding

T = (V,E)

a

b
c

d
e

f

g

h

i

j

k

l

m

n

a b c d e f g h i j k l m

k

n

PS

Figure 3 A sketch of the embedding of the planar graph PS where S = {a, f, i, n} (black vertices)
and C = {b, c, d, e, g, h, j, k, l, m} (grey vertices). Here, E1 = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f},

{f, g}, {g, h}, {h, i}, {i, j}, {j, k}, {k, l}, {l, m}, {m, n}}, E2 = {{a, b}, {a, c}, {a, e}, {a, l}, {f, g},

{f, k}, {i, j}} and E3 = {{c, n}, {d, f}, {e, f}, {h, i}, {l, n}, {m, n}}.

We define PS as the graph on the vertex set V (PS) = S ∪ C and the edge set E(PS) =
E1 ∪E2 ∪E3. Denote the vertices in V (PS) by u1, u2, . . . , u|V (PS)| with respect to the order
(from left to right) in which they appear on the terrain T . An illustrative example is given
in Fig. 3. We show that PS isa planar graph using techniques similar to that in [16]. To
show that PS is a planar graph, we will need the following result, known as the Order Claim,
which was proved in [3].

I Lemma 9 ([3]). Let vi, vj , vt, vr be four vertices in V such that i < t < j < r. If vi sees
vj and vt sees vr, then vi sees vr.

Our proof also relies on the following result.

I Lemma 10. There is no pair of edges {ui, uj}, {ut, ur} ∈ E2 such that i < t < j < r.
Symmetrically, there is no pair of edges {ui, uj}, {ut, ur} ∈ E3 such that i < t < j < r.

I Lemma 11. The graph PS is a planar graph.

Let us remind that we use tw(H) to denote the treewidth and γ(H) the dominating
number of a graph H. The proof of the following result is given in [2], (see also [8]).

I Lemma 12 ([2]). There exists a constant c such that for any planar graph H, tw(H) ≤
c
√
γ(H).

From now on, we let c denote the constant mentioned in this lemma. We are now ready
to bound the treewidth of PS .

I Lemma 13. tw(PS) ≤ c
√
k.

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:9

3.2 The Existence of Exploitable Partitions
In this section we continue to assume that the input instance is a yes-instance, and again
we let S be some hypothetical solution. Given a subset U ⊆ G ∪ C and a mapping
f : cut(U) → {0, 1}, denote cut(f, 0) = {T ′ ∈ cut(U) : f(T ′) = 0} and cut(f, 1) =
{T ′ ∈ cut(U) : f(T ′) = 1}. Thus cut(f, 0) and cut(f, 1) form a partition of the set of
subterrains cut(U). Moreover, given a subset X ⊆ V , denote X[f, 0] = X[cut(f, 0)] and
X[f, 1] = X[cut(f, 1)]. Roughly speaking, we will use such a carefully chosen set U and
a function f to achieve the following goal. The set U will partition the terrain T into
subterrains, but these subterrains do not necessarily correspond to independent subproblems.
Yet, the function f : cut(U)→ {0, 1} will partition cut(U) into two sets of subterrains such
that each of them will be independent (in a certain exploitable sense) and relatively small.1

To make the above mentioned divide-and-conquer approach work, we need the following
definition. Each of its properties will be exploited in the following section.

I Definition 14. Let U ⊆ G∪C, and let f be a mapping f : cut(U)→ {0, 1}. We say that
the pair (U, f) is good if the following conditions are satisfied.
1. |U | ≤ 2c

√
k.

2. S ∩ U sees U .
3. |S[f, 0]|, |S[f, 1]| ≤ 2

3 |S|.
4. S ∩ (U ∪G[f, 0]) sees C[f, 0]; S ∩ (U ∪G[f, 1]) sees C[f, 1].

Roughly speaking, the motivation behind the introduction of each property is the following.
The first property implies that the set U is small, and therefore it will be possible to “guess”
it. The second property implies that guards places on set S see all of the vertices of U . The
third property implies that the two subproblems are small in a narrow yet exploitable sense:
each subproblem will include the entire terrain and therefore its size will be roughly the same
as the size of the original problem, yet the number of guards one should place to solve it
will be much smaller than the number of guards one should place to solve to the original
problem. We briefly note that each subproblem will be associated with the entire terrain,
including vertices on which we cannot place guards and which are already covered/may not
be covered, because such vertices play a role in blocking the lines of sights between other
vertices on which we can place guards and vertices that should be covered. The last property
implies that the subproblems are independent in the sense that we do not need to cover a
vertex of one subproblem using a guard that we place when we solve the other subproblem.

The rest of this section focuses on the proof of the existence of a good pair.

I Lemma 15. There exists a good pair (U, f).

3.3 Divide-and-Conquer
In this section we rely on Lemma 15 to design an algorithm, based on the method of
divide-and-conquer, that solves Annotated Terrain Guarding in time nO(

√
k).

We start by presenting an algorithmic interpretation of Lemma 15. To this end, we need
the following definition.

1 In our algorithm, the terrain itself will not change – the partition is only meant to control the annotations
associated with it).

SoCG 2017

11:10 Exact Algorithms for Terrain Guarding

I Definition 16. A tuple (U,U ′, f, k0, k1) is relevant if the following conditions are satisfied.
1. U ⊆ G ∪ C satisfies |U | ≤ 2c

√
k.

2. U ′ ⊆ U ∩G sees U .
3. f : cut(U)→ {0, 1}.
4. k0, k1 ∈ {0} ∪ [b2k/3c]; k0 + k1 + |U ′| = k.

I Lemma 17. One can compute in time nO(
√

k) a collection Q of relevant tuples whose size
is bounded by nO(

√
k) such that if the input instance is a yes-instance, then there exists a

solution S of size k and at least one tuple in Q having the following properties.
1. (U, f) is a good pair (with respect to S).
2. U ′ = U ∩ S.
3. |S[f, 0]| ≤ k0; |S[f, 1]| ≤ k1.

Let Q be a collection of tuples given by Lemma 17. With each tuple (U,U ′, f, k0, k1) ∈ Q,
we associate a pair of instances of Annotated Terrain Guarding, (I0(U,U ′, f, k0),
I1(U,U ′, f, k0)), as follows: I0(U,U ′, f, k0) = (T, k0, G0, C0) where G0 = G[f, 0] and C0 =
C[f, 0] \ vis(U ′); I1(U,U ′, f, k1) = (T, k1, G1, C1) where G1 = G[f, 1] and C1 = C[f, 1] \
vis(U ′). We set I(Q) = {(I0(U,U ′, f, k0), I1(U,U ′, f, k1)) : (U,U ′, f, k0, k1) ∈ Q}.

I Lemma 18. The input instance is a yes-instance if and only if there exists a pair (I0, I1)
in I(Q) such that both I0 and I1 are yes-instances.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We present a recursive algorithm that solves Annotated Terrain
Guarding in the desired time. At each stage, if k ≤ 10c, it uses brute-force to solve the
instance in polynomial time. Otherwise, it computes the set I(Q) where Q is given by
Lemma 17. For each pair (I0, I1) ∈ I(Q), it calls itself recursively twice: once with the
input I0 and once with the input I1. If the answers to both inputs I0 and I1 are positive, it
returns a positive answer. At the end, if no pair resulted in two positive answers, it returns
a negative answer. By Lemma 18, the algorithm returns the correct answer.

By Lemma 17, we have that |I(Q)| = |Q| = nO(
√

k). Consider some pair (I0(U,U ′,
f, k0), I1(U,U ′, f, k1)) in I(Q). By the fourth property in Definition 16, k0, k1 ≤ 2k/3. Let
t(k, n) denote the running time of our algorithm. Then, there exists a constant d such that
t(k, n) ≤ nd

√
k · t(2k/3). Let p be the largest number smaller than 10c such that there exists

q for which
√

(2/3)qk = p. Thus, t(n, k) = nd(
√

k+
√

(2/3)k+
√

(2/3)2k+···+p) = nO(
√

k). J

4 Parameterized Algorithm for Orthogonal Terrain Guarding

In this section we prove that Discrete Orthogonal Terrain Guarding is FPT:

I Theorem 19. Discrete Orthogonal Terrain Guarding is solvable in time kO(k) ·
nO(1).

Throughout this section, we let R`, Rr, C` and Cr denote the sets of left reflex vertices,
right reflex vertices, left convex vertices and right convex vertices, respectively. We further let
R = R`∪Rr and C = C`∪Cr denote the sets of reflex vertices and convex vertices, respectively.
Katz and Roisman [20] showed that an instance (T = (V,E), n, k) of Discrete Orthogonal
Terrain Guarding is a yes-instance if and only if the instance (T = (V,E), n, k,R,C) of
Annotated Orthogonal Terrain Guarding is a yes-instance. In other words, it is
sufficient to place guards only on reflex vertices and to guard only convex vertices. Therefore,

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:11

we say that an instance (T = (V,E), n, k,G,C) of Annotated Orthogonal Terrain
Guarding is relevant if R = G and C = C, and in the rest of this section, we focus on the
proof of the following result.

I Lemma 20. Relevant instances of Annotated Orthogonal Terrain Guarding are
solvable in time kO(k) · nO(1).

First, in Section 4.1, we show that vertices seen by too many vertices of the opposite type
can actually be ignored as they will be guarded even if we do not explicitly demand it. In
Section 4.2, we describe solutions via clique covers in chordal graphs. This description will
allow us to find a set of size at most k′, for any k′ ≤ k, that guards a subset of left convex
vertices of interest via left reflex vertices, or provide a witness for the non-existence of such a
set. Next, in Section 4.3, we examine the Hamming distance between vectors that describe
the way in which convex vertices can be guarded, and show that this distance cannot be too
large. Finally, in Section 4.4, we integrate the results obtained in the three previous sections
into the design of our double-branching parameterized algorithm for relevant instances of
Annotated Orthogonal Terrain Guarding.

4.1 Ignoring Exposed Vertices
In this section, we handle seemingly problematic vertices, which comply with the following
definition.

I Definition 21. A vertex v ∈ V (T) is exposed if it is a convex vertex seen by more than
k + 2 opposite reflex vertices.

We let E denote the set of exposed vertices, E` = C` ∩E and Er = Cr ∩E. The efficiency
of the second phase of our double-branching procedure, presented in Section 4.4, relies on the
assumption that C does not contain exposed vertices. However, C = C, and the set C may
very well contain exposed vertices. We circumvent this difficulty by showing that vertices in
E can actually be ignored. To prove this claim, we need the following notation. Given a
vertex v ∈ E`, we let uv

1, u
v
2, . . . , u

v
k+3 denote the k + 3 leftmost right reflex vertices that see

v, sorted from left-to-right by the order in which they lie on T (see Fig. 4(A)). Symmetrically,
given a vertex v ∈ Er, we let uv

1, u
v
2, . . . , u

v
k+3 denote the k + 3 rightmost left reflex vertices

that see v, sorted from right-to-left by the order in which they lie on T (see Fig. 4(B)). By
the definition of an orthogonal terrain, we have the following observation.

I Observation 22. For each vertex v ∈ E, the x-coordinate of uv
1 is the same as the one

of v and the y-coordinate of uv
1 is larger than the one of v. For any 2 ≤ i ≤ k + 3, the

y-coordinate of uv
i is the same as the one of v, and if v ∈ E` (v ∈ Er), the x-coordinate of

uv
i is larger (resp. smaller) than the one of v.

In the two following lemmata, we continue to examine vertices in E.

I Lemma 23. For each vertex v ∈ E` and index 2 ≤ i ≤ k + 2, there exists a vertex in
C` \ E` that lies between uv

i and uv
i+1. Symmetrically, for each vertex v ∈ Er and index

2 ≤ i ≤ k + 2, there exists a vertex in Cr \ Er that lies between uv
i and uv

i+1.

I Lemma 24. Let S be a solution to (T, n, k,R,C \E). For each vertex v ∈ E`, there exists
an index 2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv

i and uv
i+1 which is seen by a

vertex in S to the right of uv
i+1. Symmetrically, for each vertex v ∈ Er, there exists an index

2 ≤ i ≤ k + 2 and a vertex that lies strictly between uv
i and uv

i+1 which is seen by a vertex in
S to the left of uv

i+1.

SoCG 2017

11:12 Exact Algorithms for Terrain Guarding

A

B

Figure 4 Exposed vertices are black, and reflex vertices of the opposite type that see them are
white. The parameter k is 2.

We are now ready to show that vertices in E can be ignored.

I Lemma 25. (T, n, k,R,C) is a yes-instance if and only if (T, n, k,R,C\E) is a yes-instance.

4.2 Describing Solutions via Clique Covers in Chordal Graphs
Katz and Roisman [20] defined two graphs that aim to capture relations between convex
vertices. The first graph, GL, is defined as follows: V (GL) = CL and E(GL) = {{v, u} : there
exists a vertex in RL that sees both v and u}. The second one, GR, is defined symmetrically:
V (GR) = CR and E(GR) = {{v, u} : there exists a vertex in RR that sees both v and u}.
For these graphs, Katz and Roisman [20] proved the following useful result.

I Lemma 26 ([20]). The graph GL satisfies the following properties.
The graph GL is a chordal graph.
For any subset U ⊆ V (GL), GL[U] is a clique if and only if there exists a left reflex vertex
that sees all of the vertices in U .

The symmetric claim holds for the graph GR.

By relying on Lemma 26, Katz and Roisman [20] showed that one can decide in polynomial
time whether there exists a subset S ⊆ RL of size k′ that sees CL. To design our double-
branching procedure (in Section 4.4), we will need the following stronger claim.

I Lemma 27. Let U ⊆ CL and k′ ∈ N. Then, one can decide in polynomial time whether
there exists a subset S ⊆ RL of size k′ that sees U . In case such a subset does not exist, one
can find in polynomial time a subset U ′ ⊆ U of size k′ + 1 such that there does not exist a
subset S ⊆ RL of size k′ that sees U ′.

Symmetrically, we obtain the following claim.

I Lemma 28. Let U ⊆ CR and k′ ∈ N. Then, one can decide in polynomial time whether
there exists a subset S ⊆ RR of size k′ that sees U . In case such a subset does not exist, one
can find in polynomial time a subset U ′ ⊆ U of size k′ + 1 such that there does not exist a
subset S ⊆ RR of size k′ that sees U ′.

4.3 Hamming Distance
In this section, we associate vectors with subsets of R, and then examine the Hamming
distance between these vectors and a special vector. We start with the definition of the
association. Here, we set m = |C \ E|, and let u1, u2, . . . , um denote the vertices in C \ E
sorted from left-to-right by the order in which they lie on T .

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:13

I Definition 29. Let S ⊆ R be a set that sees C. Then, the vector associated with S is the
m-length bit vector (b1, b2, . . . , bm) such that bi = 0 if and only if ui is seen by a vertex in S
that is a left reflex vertex.

In other words, the vector associated with a subset S ⊆ R that sees C indicates, for each
vertex that we would like to guard, whether it is guarded by at least one left reflex vertex or
only by right reflex vertices. Observe that by the definition of an orthogonal terrain, a reflex
vertex can see at most two vertices of the opposite type:

I Observation 30. Any reflex vertex v sees at most two convex vertices of the opposite type:
one has the same x-coordinate as v and the other has the same y-coordinate as v.

Next, we examine the Hamming distance between a vector associated with a solution and
a special vector.

I Lemma 31. Let S∗ be a solution to (T, n, k,R,C \E), and let b∗ be the m-length bit vector
associated with S∗. Let b be the m-length bit vector (b1, b2, . . . , bm) such that bi = 0 if and
only if ui is a left convex vertex. Then, H(b∗, b) ≤ 2k.

4.4 Double-Branching
We are now ready to present ALG(T = (V,E), n,R, C, δ, k`, kr), our algorithm for relevant
instances of Annotated Orthogonal Terrain Guarding. Initially, it is called with the
arguments C = C \ E, δ = 2k, and every choice of k`, kr ∈ [k] such that k` + kr = k. As the
execution of the algorithm progresses, vertices are removed from C, and the values of k`, kr

and δ decrease. Note that there are only k choices of k` and kr, and there exists a choice of
k` and kr such that if there exists a solution S, it holds that |S ∩R`| = k` and |S ∩Rr| = kr.
Accordingly, and in light of Lemma 31, we say that the input instance (in the context of a
pair (k`, kr)) is identifiable if there exists a solution S such that |S ∩ R`| = k`, |S ∩ Rr| = kr

and the Hamming distance between b and the vector associated with S is at most δ. Thus,
to prove Lemma 20, it is sufficient to prove the following result.

I Lemma 32. ALG(T = (V,E), n,R, C, δ, k`, kr) runs in time kO(k) ·nO(1), and returns YES
if and only if the input instance is identifiable.

The pseudocode of our algorithm is given in Algorithm 1. First, we argue that if the
input instance is identifiable, then the algorithm returns YES. In this argument, we follow
the pseudocode line-by-line, and also highlight the phases of our double-branching. In case
δ < 0, we return NO, since the Hamming distance between any two vectors is nonnegative.
Next, suppose that δ ≥ 0. By Lemma 27, we may proceed by deciding in polynomial time
whether C ∩ CL cannot be seen by any set of at most k` vertices from RL. If the answer is
positive, by Lemma 27, we can compute in polynomial time a set U ⊆ C ∩ CL of size k` + 1
that cannot be seen by any set of at most k` vertices from RL. In case the input instance is
identifiable, there exists a vertex v ∈ U that should be seen by a right reflex vertex. We try
every option to identify the vertex v; this is the first phase of our double-branching. Then,
we try every option to identify a vertex u ∈ RR ∩ vis(v) that should both see v and belong
to a solution; this is the second phase of our double-branching. Since v is not exposed, there
are at most k + 2 such options to consider. For each such option, we place a guard on u.
Therefore, we decrement kr by 1, remove the vertices in vis(u) from C, and since at least
one bit is flipped in b, we also decrement δ by 1. For an identifiable input instance, we will
have made correct choices in at least one of the paths in the branch-tree. Now, if the answer
is negative, by performing the symmetric test with respect to the set C ∩ CR, we can safely
conclude that an identifiable instance is detected correctly.

SoCG 2017

11:14 Exact Algorithms for Terrain Guarding

Algorithm 1 ALG(T = (V,E), n,R, C, δ, k`, kr).
1: if δ < 0 then
2: Return NO.
3: else if C ∩ CL cannot be seen by any set of at most k` vertices from RL then
4: Compute a set U ⊆ C ∩ CL of size k` + 1 that cannot be seen by any set of at most k`

vertices from RL.
5: for all v ∈ U do
6: for all u ∈ RR∩vis(v) do Return ALG(T = (V,E), n,R, C \vis(u), δ−1, k`, kr−1).
7: end for
8: else if C ∩ CR cannot be seen by any set of at most kr vertices from RR then
9: Compute a set U ⊆ C ∩ CR of size kr + 1 that cannot be seen by any set of at most kr

vertices from RR.
10: for all v ∈ U do
11: for all u ∈ RL∩vis(v) do Return ALG(T = (V,E), n,R, C \vis(u), δ−1, k`−1, kr).
12: end for
13: else
14: Return YES.
15: end if

5 Conclusion

We studied the well-known Terrain Guarding problem, addressing two fundamental
questions relating to its complexity:

Does Terrain Guarding admit a subexponential-time algorithm?
Is Terrain Guarding FPT with respect to k?

We have resolved the first question: both Discrete Terrain Guarding and Continu-
ous Terrain Guarding admit subexponential-time algorithms. For discrete orthogonal
domains we have also resolved the second question: Discrete Orthogonal Terrain
Guarding is FPT.

We would like to conclude our paper by suggesting several directions for further research.
First and foremost, it remains to establish the fixed-parameter (in)tractability of Terrain
Guarding in general (discrete and continuous) domains, as well as to determine whether Dis-
crete Orthogonal Terrain Guarding is NP-hard or not. In case Terrain Guarding
is FPT, one can further ask whether it admits a polynomial kernel. An affirmative answer to
this question, combined with our subexponential-time algorithm, would imply that Terrain
Guarding admits a subexponential-time parameterized algorithm. Finally, it would also be
interesting to investigate whether the running time of our subexponential-time algorithm
can be substantially improved, or whether it is essentially tight under reasonable complexity
assumptions. We remark that the proof given by King and Krohn [23] to show that Terrain
Guarding is NP-hard only implies that unless ETH fails, Terrain Guarding cannot be
solved in time 2o(n

1
4).

References
1 J. Abello, O. Egecioglu, and K. Kumar. Visibility graphs of staircase polygons and the

weak bruhat order I: From visibility graphs to maximal chains. Discrete and Computational
Geometry, 14(3):331–358, 1995.

P. Ashok, S. Kolay, F. V. Fomin, S. Saurabh, and M. Zehavi 11:15

2 Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier.
Fixed parameter algorithms for dominating set and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002.

3 B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor approximation algorithm
for optimal 1.5d terrain guarding. SICOMP, 36(6):1631–1647, 2007.

4 E. Bonnet and T. Miltzow. Parameterized hardness of art gallery problems. In ESA, 2016.
5 D.Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal guarding of polygons and monotone

chains. In CCCG, pages 133–138, 1995.
6 K.L. Clarkson and K.R. Varadarajan. Improved approximation algorithms for geometric

set cover. Discrete and Computational Geometry, 37(1):43–58, 2007.
7 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized algorithms. Springer, 2015.
8 Erik D. Demaine, Fedor V. Fomin, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos.

Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. J. ACM, 52(6):866–893, 2005.

9 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
10 R. Downey and M.R. Fellows. Fundamentals of parameterized complexity. Springer, 2013.
11 S. Durocher, P.C. Li, and S. Mehrabi. Guarding orthogonal terrains. In CCCG, 2015.
12 M K Elbassioni, E Krohn, D Matijevic, J Mestre, and D Severdija. Improved approxima-

tions for guarding 1.5-dimensional terrains. Algorithmica, 60(2):451–463, 2011.
13 W. Evans and N. Saeedi. On characterizing terrain visibility graphs. JoCG, 6(1):108–141,

2015.
14 S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. The continuous 1.5D terrain guarding

problem: Discretization, optimal solutions, and PTAS. JoCG, 7(1):256–284, 2016.
15 P. Giannopoulos. Open problems: Guarding problems. Lorentz Workshop on Fixed-

Parameter Computational Geometry, Leiden, the Netherlands, page 12, 2016.
16 M. Gibson, G. Kanade, E. Krohn, and K. Varadarajan. Guarding terrains via local search.

JoCG, 5(1):168–178, 2014.
17 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,

New York, 1980.
18 S.K. Gosh. Visibility algorithms in the plane. Cambridge University Press, 2007.
19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity. Journal of Computer and System Sciences (JCSS0, 63(4):512–530,
2001.

20 M. J. Katz and G. S. Roisman. On guarding the vertices of rectilinear domains. Computa-
tional Geometry, 39(3):219–228, 2008.

21 F. Khodakarami, F. Didehvar, and A. Mohades. A fixed-parameter algorithm for guarding
1.5D terrains. Theoretical Computer Science, 595:130–142, 2015.

22 J. King. A 4-approximation algorithm for guarding 1.5-dimensional terrains. In LATIN,
pages 629–640, 2006.

23 J. King and E. Krohn. Terrain guarding is NP-hard. SICOMP, 40(5):1316–1339, 2011.
24 Y. Lyu and A. Üngör. A fast 2-approximation algorithm for guarding orthogonal terrains.

In CCCG, 2016.
25 S. Mehrabi. Guarding the vertices of an orthogonal terrain using vertex guards.

arXiv:1512.08292, 2015.
26 J. O’rourke. Art gallery theorems and algorithms. Oxford University Press, 1987.
27 D. Schuchardt and H.D. Hecker. Two NP-hard art-gallery problems for ortho-polygons.

Mathematical Logic Quarterly, 41:261–267, 1995.
28 J. Urrutia. Art gallery and illumination problems. Handbook of computational geometry,

1(1):973–1027, 2000.

SoCG 2017

Covering Lattice Points by Subspaces and
Counting Point-Hyperplane Incidences∗

Martin Balko1, Josef Cibulka2, and Pavel Valtr3

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic; and
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
balko@kam.mff.cuni.cz

2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
cibulka@kam.mff.cuni.cz

3 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic; and
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary

Abstract
Let d and k be integers with 1 ≤ k ≤ d − 1. Let Λ be a d-dimensional lattice and let K be
a d-dimensional compact convex body symmetric about the origin. We provide estimates for
the minimum number of k-dimensional linear subspaces needed to cover all points in Λ ∩ K.
In particular, our results imply that the minimum number of k-dimensional linear subspaces
needed to cover the d-dimensional n × · · · × n grid is at least Ω(nd(d−k)/(d−1)−ε) and at most
O(nd(d−k)/(d−1)), where ε > 0 is an arbitrarily small constant. This nearly settles a problem
mentioned in the book of Brass, Moser, and Pach [7]. We also find tight bounds for the minimum
number of k-dimensional affine subspaces needed to cover Λ ∩K.

We use these new results to improve the best known lower bound for the maximum number
of point-hyperplane incidences by Brass and Knauer [6]. For d ≥ 3 and ε ∈ (0, 1), we show that
there is an integer r = r(d, ε) such that for all positive integers n,m the following statement is
true. There is a set of n points in Rd and an arrangement of m hyperplanes in Rd with no Kr,r

in their incidence graph and with at least Ω
(
(mn)1−(2d+3)/((d+2)(d+3))−ε) incidences if d is odd

and Ω
(

(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε
)
incidences if d is even.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases lattice point, covering, linear subspace, point-hyperplane incidence

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.12

1 Introduction

In this paper, we study the minimum number of linear or affine subspaces needed to cover
points that are contained in the intersection of a given lattice with a given 0-symmetric
convex body. We also present an application of our results to the problem of estimating the

∗ The first and the third author acknowledge the support of the grants GAČR 14-14179S of Czech Science
Foundation, ERC Advanced Research Grant no 267165 (DISCONV), and GAUK 690214 of the Grant
Agency of the Charles University. The first author is also supported by the grant SVV–2016–260332.

© Martin Balko, Josef Cibulka, and Pavel Valtr;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

maximum number of incidences between a set of points and an arrangement of hyperplanes.
Consequently, this establishes a new lower bound for the time complexity of so-called
partitioning algorithms for Hopcroft’s problem. Before describing our results in more detail,
we first give some preliminaries and introduce necessary definitions.

1.1 Preliminaries
For linearly independent vectors b1, . . . , bd ∈ Rd, the d-dimensional lattice Λ = Λ(b1, . . . , bd)
with basis {b1, . . . , bd} is the set of all linear combinations of the vectors b1, . . . , bd with
integer coefficients. We define the determinant of Λ as det(Λ) := | det(B)|, where B is the
d× d matrix with the vectors b1, . . . , bd as columns. For a positive integer d, we use Ld to
denote the set of d-dimensional lattices Λ, that is, lattices with det(Λ) 6= 0.

A convex body K is symmetric about the origin 0 if K = −K. We let Kd be the set of
d-dimensional compact convex bodies in Rd that are symmetric about the origin.

For a positive integer n, we use the abbreviation [n] to denote the set {1, 2, . . . , n}. A
point x of a lattice is called primitive if whenever its multiple λ · x is a lattice point, then λ
is an integer. For K ∈ Kd, let vol(K) be the d-dimensional Lebesgue measure of K. We say
that vol(K) is the volume of K. The closed d-dimensional ball with the radius r ∈ R, r ≥ 0,
centered in the origin is denoted by Bd(r). If r = 1, we simply write Bd instead of Bd(1).
For x ∈ Rd, we use ‖x‖ to denote the Euclidean norm of x.

Let X be a subset of Rd. We use aff(X) and lin(X) to denote the affine hull of X and the
linear hull of X, respectively. The dimension of the affine hull of X is denoted by dim(X).

For functions f, g : N→ N, we write f(n) ≤ O(g(n)) if there is a fixed constant c1 such
that f(n) ≤ c1 · g(n) for all n ∈ N. We write f(n) ≥ Ω(g(n)) if there is a fixed constant
c2 > 0 such that f(n) ≥ c2 · g(n) for all n ∈ N. If the constants c1 and c2 depend on
some parameters a1, . . . , at, then we emphasize this by writing f(n) ≤ Oa1,...,at

(g(n)) and
f(n) ≥ Ωa1,...,at

(g(n)), respectively. If f(n) ≤ Oa1,...,at
(n) and f(n) ≥ Ωa1,...,at

(n), then we
write f(n) = Θa1,...,at(n).

1.2 Covering lattice points by subspaces
We say that a collection S of subsets in Rd covers a set of points P from Rd if every point
from P lies in some set from S.

Let d, k, n, and r be positive integers that satisfy 1 ≤ k ≤ d− 1. We let a(d, k, n, r) be
the maximum size of a set S ⊆ Zd ∩Bd(n) such that every k-dimensional affine subspace
of Rd contains at most r− 1 points of S. Similarly, we let l(d, k, n, r) be the maximum size of
a set S ⊆ Zd ∩Bd(n) such that every k-dimensional linear subspace of Rd contains at most
r − 1 points of S. We also let g(d, k, n) be the minimum number of k-dimensional linear
subspaces of Rd necessary to cover Zd ∩Bd(n).

In this paper, we study the functions a(d, k, n, r), l(d, k, n, r), and g(d, k, n) and their
generalizations to arbitrary lattices from Ld and bodies from Kd. We mostly deal with the
last two functions, that is, with covering lattice points by linear subspaces. In particular, we
obtain new upper bounds on g(d, k, n) (Theorem 4), lower bounds on l(d, k, n, r) (Theorem 5),
and we use the estimates for a(d, k, n, r) and l(d, k, n, r) to obtain improved lower bounds
for the maximum number of point-hyperplane incidences (Theorem 9). Before doing so, we
first give a summary of known results, since many of them are used later in the paper.

The problem of determining a(d, k, n, r) is essentially solved. In general, the set Zd∩Bd(n)
can be covered by (2n+ 1)d−k affine k-dimensional subspaces and thus we have an upper
bound a(d, k, n, r) ≤ (r − 1)(2n+ 1)d−k. This trivial upper bound is asymptotically almost

M. Balko, J. Cibulka, and P. Valtr 12:3

tight for all fixed d, k, and some r, as Brass and Knauer [6] showed with a probabilistic
argument that for every ε > 0 there is an r = r(d, ε, k) ∈ N such that for each positive integer
n we have

a(d, k, n, r) ≥ Ωd,ε,k
(
nd−k−ε

)
. (1)

For fixed d and r, the upper bound is known to be asymptotically tight in the cases k = 1
and k = d − 1. This is showed by considering points on the modular moment surface for
k = 1 and the modular moment curve for k = d− 1; see [6].

Covering lattice points by linear subspaces seems to be more difficult than covering by
affine subspaces. From the definitions we immediately get l(d, k, n, r) ≤ (r − 1)g(d, k, n). In
the case k = d− 1 and d fixed, Bárány, Harcos, Pach, and Tardos [5] obtained the following
asymptotically tight estimates for the functions l(d, d− 1, n, d) and g(d, d− 1, n):

l(d, d− 1, n, d) = Θd(nd/(d−1)) and g(d, d− 1, n) = Θd(nd/(d−1)).

In fact, Bárány et al. [5] proved stronger results that estimate the minimum number of
(d− 1)-dimensional linear subspaces necessary to cover the set Λ ∩K in terms of so-called
successive minima of a given lattice Λ ∈ Ld and a body K ∈ Kd.

For a lattice Λ ∈ Ld, a body K ∈ Kd, and i ∈ [d], we let λi(Λ,K) be the ith successive
minimum of Λ and K. That is, λi(Λ,K) := inf{λ ∈ R : dim(Λ ∩ (λ ·K)) ≥ i}. Since K is
compact, it is easy to see that the successive minima are achieved. That is, there are linearly
independent vectors v1, . . . , vd from Λ such that vi ∈ λi(Λ,K) ·K for every i ∈ [d]. Also note
that we have λ1(Λ,K) ≤ · · · ≤ λd(Λ,K) and λ1(Zd, Bd(n)) = · · · = λd(Zd, Bd(n)) = 1/n.

I Theorem 1 ([5]). For an integer d ≥ 2, a lattice Λ ∈ Ld, and a body K ∈ Kd, we let
λi := λi(Λ,K) for every i ∈ [d]. If λd ≤ 1, then the set Λ ∩K can be covered with at most

c2dd2 log2 d min
1≤j≤d−1

(λj · · ·λd)−1/(d−j)

(d− 1)-dimensional linear subspaces of Rd, where c is some absolute constant.
On the other hand, if λd ≤ 1, then there is a subset S of Λ ∩K of size

1− λd
16d2 min

1≤j≤d−1
(λj · · ·λd)−1/(d−j)

such that no (d− 1)-dimensional linear subspace of Rd contains d points from S.

We note that the assumption λd ≤ 1 is necessary; see the discussion in [5]. Not much is
known for linear subspaces of lower dimension. We trivially have l(d, k, n, r) ≥ a(d, k, n, r)
for all d, k, n, r with 1 ≤ k ≤ d− 1. Thus l(d, k, n, r) ≥ Ωd,ε,k(nd−k−ε) for some r = r(d, ε, k)
by (1). Brass and Knauer [6] conjectured that l(d, k, n, k + 1) = Θd,k(nd(d−k)/(d−1)) for d
fixed. This conjecture was refuted by Lefmann [15] who showed that, for all d and k with
1 ≤ k ≤ d− 1, there is an absolute constant c such that we have l(d, k, n, k+ 1) ≤ c ·nd/dk/2e

for every positive integer n. This bound is asymptotically smaller in n than the growth rate
conjectured by Brass and Knauer for sufficiently large d and almost all values of k with
1 ≤ k ≤ d− 1.

Covering lattice points by linear subspaces is also mentioned in the book by Brass, Moser,
and Pach [7], where the authors pose the following problem.

I Problem 2 ([7, Problem 6 in Chapter 10.2]). What is the minimum number of k-dimensional
linear subspaces necessary to cover the d-dimensional n× · · · × n lattice cube?

SoCG 2017

12:4 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

1.3 Point-hyperplane incidences
As we will see later, the problem of determining a(d, k, n, r) and l(d, n, k, r) is related to a
problem of bounding the maximum number of point-hyperplane incidences. For an integer
d ≥ 2, let P be a set of n points in Rd and let H be an arrangement of m hyperplanes in Rd.
An incidence between P and H is a pair (p,H) such that p ∈ P , H ∈ H, and p ∈ H. The
number of incidences between P and H is denoted by I(P,H).

We are interested in the maximum number of incidences between P and H. In the plane,
the famous Szemerédi–Trotter theorem [23] says that the maximum number of incidences
between a set of n points in R2 and an arrangement of m lines in R2 is at most O((mn)2/3 +
m + n). This is known to be asymptotically tight, as a matching lower bound was found
earlier by Erdős [9]. The current best known bounds are ≈ 1.27(mn)2/3 +m+ n [19]1 and
≈ 2.44(mn)2/3 +m+ n [1].

For d ≥ 3, it is easy to see that there is a set P of n points in Rd and an arrangement
H of m hyperplanes in Rd for which the number of incidences is maximum possible, that
is I(P,H) = mn. It suffices to consider the case where all points from P lie in an affine
subspace that is contained in every hyperplane from H. In order to avoid this degenerate
case, we forbid large complete bipartite graphs in the incidence graph of P and H, which
is denoted by G(P,H). This is the bipartite graph on the vertex set P ∪H and with edges
{p,H} where (p,H) is an incidence between P and H.

With this restriction, bounding I(P,H) becomes more difficult and no tight bounds are
known for d ≥ 3. It follows from the works of Chazelle [8], Brass and Knauer [6], and
Apfelbaum and Sharir [2] that the number of incidences between any set P of n points in Rd
and any arrangement H of m hyperplanes in Rd with Kr,r 6⊆ G(P,H) satisfies

I(P,H) ≤ Od,r
(

(mn)1−1/(d+1) +m+ n
)
. (2)

We note that an upper bound similar to (2) holds in a much more general setting; see
the remark in the proof of Theorem 9. The best general lower bound for I(P,H) is due to a
construction of Brass and Knauer [6], which gives the following estimate.

I Theorem 3 ([6]). Let d ≥ 3 be an integer. Then for every ε > 0 there is a positive integer
r = r(d, ε) such that for all positive integers n and m there is a set P of n points in Rd and
an arrangement H of m hyperplanes in Rd such that Kr,r 6⊆ G(P,H) and

I(P,H) ≥

Ωd,ε

(
(mn)1−2/(d+3)−ε) if d is odd and d > 3,

Ωd,ε
(

(mn)1−2(d+1)/(d+2)2−ε
)

if d is even,

Ωd,ε
(
(mn)7/10) if d = 3.

For d ≥ 4, this lower bound has been recently improved by Sheffer [21] in a certain
non-diagonal case. Sheffer constructed a set P of n points in Rd, d ≥ 4, and an arrangement
H of m = Θ(n(3−3ε)/(d+1)) hyperplanes in Rd such that K(d−1)/ε,2 6⊆ G(P,H) and I(P,H) ≥
Ω
(
(mn)1−2/(d+4)−ε).

1 The lower bound claimed by Pach and Tóth [19, Remark 4.2] contains the multiplicative constant
≈ 0.42. This is due to a miscalculation in the last equation in the calculation of the number of
incidences. The correct calculation is I ≈ · · · = 4n

∑1/ε

r=1 φ(r) − 2nε2∑1/ε

r=1 r
2φ(r) ≈ 4n · 3(1/ε)2/π2 −

2nε2(3/2)(1/ε)4/π2 = 9n/(ε2π2). This leads to c ≈ 3 3
√

3/(4π2) ≈ 1.27.

M. Balko, J. Cibulka, and P. Valtr 12:5

2 Our results

In this paper, we nearly settle Problem 2 by proving almost tight bounds for the function
g(d, k, n) for a fixed d and an arbitrary k from [d− 1]. For a fixed d, an arbitrary k ∈ [d− 1],
and some fixed r, we also provide bounds on the function l(d, k, n, r) that are very close to
the bound conjectured by Brass and Knauer [6]. Thus it seems that the conjectured growth
rate of l(d, k, n, r) is true if we allow r to be (significantly) larger than k + 1.

We study these problems in a more general setting where we are given an arbitrary lattice
Λ from Ld and a body K from Kd. Similarly to Theorem 1 by Bárány et al. [5], our bounds
are expressed in terms of the successive minima λi(Λ,K), i ∈ [d].

2.1 Covering lattice points by linear subspaces
First, we prove a new upper bound on the minimum number of k-dimensional linear subspaces
that are necessary to cover points in the intersection of a given lattice with a body from Kd.

I Theorem 4. For integers d and k with 1 ≤ k ≤ d−1, a lattice Λ ∈ Ld, and a body K ∈ Kd,
we let λi := λi(Λ,K) for i = 1, . . . , d. If λd ≤ 1, then we can cover Λ ∩K with Od,k(αd−k)
k-dimensional linear subspaces of Rd, where

α := min
1≤j≤k

(λj · · ·λd)−1/(d−j).

We also prove the following lower bound.

I Theorem 5. For integers d and k with 1 ≤ k ≤ d−1, a lattice Λ ∈ Ld, and a body K ∈ Kd,
we let λi := λi(Λ,K) for i = 1, . . . , d. If λd ≤ 1, then, for every ε ∈ (0, 1), there is a positive
integer r = r(d, ε, k) and a set S ⊆ Λ ∩K of size at least Ωd,ε,k(((1− λd)β)d−k−ε), where

β := min
1≤j≤d−1

(λj · · ·λd)−1/(d−j),

such that every k-dimensional linear subspace of Rd contains at most r − 1 points from S.

We remark that we can get rid of the ε in the exponent if k = 1 or k = d− 1; for details,
see Theorem 1 for the case k = d− 1 and the proof in Section 4 for the case k = 1. Also note
that in the definition of α in Theorem 4 the minimum is taken over the set {1, . . . , k}, while
in the definition of β in Theorem 5 the minimum is taken over {1, . . . , d − 1}. There are
examples, which show that α cannot be replaced by β in Theorem 4. It suffices to consider
d = 3, k = 1, and let Λ be the lattice {(x1/n, x2/2, x3/2) ∈ R3 : x1, x2, x3 ∈ Z} for some
large positive integer n. Then λ1(Λ, B3) = 1/n, λ2(Λ, B3) = 1/2, λ3(Λ, B3) = 1/2, and thus
β = (λ2λ3)−1 = 4. However, it is not difficult to see that we need at least Ω(n) 1-dimensional
linear subspaces to cover Λ ∩ B3, which is asymptotically larger than β2 = O(1). On the
other hand, α = (λ1λ2λ3)−1/2 and O(α2) = O(n) 1-dimensional linear subspaces suffice to
cover Λ ∩B3. We thus suspect that the lower bound can be improved.

Since λi(Zd, Bd(n)) = 1/n for every i ∈ [d], we can apply Theorem 5 with Λ = Zd and
K = Bd(n) and obtain the following lower bound on l(d, k, n, r).

I Corollary 6. Let d and k be integers with 1 ≤ k ≤ d− 1. Then, for every ε ∈ (0, 1), there
is an r = r(d, ε, k) ∈ N such that for every n ∈ N we have

l(d, k, n, r) ≥ Ωd,ε,k(nd(d−k)/(d−1)−ε).

SoCG 2017

12:6 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

The existence of the set S from Theorem 5 is showed by a probabilistic argument. It
would be interesting to find, at least for some value 1 < k < d− 1, some fixed r ∈ N, and
arbitrarily large n ∈ N, a construction of a subset R of Zd ∩Bd(n) of size Ωd,k(nd(d−k)/(d−1))
such that every k-dimensional linear subspace contains at most r − 1 points from R. Such
constructions are known for k = 1 and k = d− 1; see [6, 20].

Since we have l(d, k, n, r) ≤ (r − 1)g(d, k, n) for every r ∈ N, Theorem 4 and Corollary 6
give the following almost tight estimates on g(d, k, n). This nearly settles Problem 2.

I Corollary 7. Let d, k, and n be integers with 1 ≤ k ≤ d − 1. Then, for every ε ∈ (0, 1),
we have

Ωd,ε,k(nd(d−k)/(d−1)−ε) ≤ g(d, k, n) ≤ Od,k(nd(d−k)/(d−1)).

2.2 Covering lattice points by affine subspaces
For affine subspaces, Brass and Knauer [6] considered only the case of covering the d-
dimensional n× · · · × n lattice cube by k-dimensional affine subspaces. To our knowledge,
the case for general Λ ∈ Ld and K ∈ Kd was not considered in the literature. We extend the
results of Brass and Knauer to covering Λ ∩K.

I Theorem 8. For integers d and k with 1 ≤ k ≤ d−1, a lattice Λ ∈ Ld, and a body K ∈ Kd,
we let λi := λi(Λ,K) for i = 1, . . . , d. If λd ≤ 1, then the set Λ ∩K can be covered with
Od,k((λk+1 · · ·λd)−1) k-dimensional affine subspaces of Rd.

On the other hand, at least Ωd,k((λk+1 · · ·λd)−1) k-dimensional affine subspaces of Rd
are necessary to cover Λ ∩K.

2.3 Point-hyperplane incidences
As an application of Corollary 6, we improve the best known lower bounds on the maximum
number of point-hyperplane incidences in Rd for d ≥ 4. That is, we improve the bounds from
Theorem 3. To our knowledge, this is the first improvement on the estimates for I(P,H) in
the general case during the last 13 years.

I Theorem 9. For every integer d ≥ 2 and ε ∈ (0, 1), there is an r = r(d, ε) ∈ N such that
for all positive integers n and m the following statement is true. There is a set P of n points
in Rd and an arrangement H of m hyperplanes in Rd such that Kr,r 6⊆ G(P,H) and

I(P,H) ≥

Ωd,ε
(
(mn)1−(2d+3)/((d+2)(d+3))−ε) if d is odd,

Ωd,ε
(

(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε
)

if d is even.

We can get rid of the ε in the exponent for d ≤ 3. That is, we have the bounds Ω((mn)2/3)
for d = 2 and Ω((mn)7/10) for d = 3. For d = 3, our bound is the same as the bound from
Theorem 3. For larger d, our bounds become stronger. In particular, the exponents in the
lower bounds from Theorem 9 exceed the exponents from Theorem 3 by 1/((d+ 2)(d+ 3)) for
d > 3 odd and by d2/((d+ 2)2(d2 + 2d− 2)) for d even. However, the bounds are not tight.

In the non-diagonal case, when one of n and m is significantly larger that the other, the
proof of Theorem 9 yields the following stronger bound.

I Theorem 10. For all integers d and k with 0 ≤ k ≤ d− 2 and for ε ∈ (0, 1), there is an
r = r(d, ε, k) ∈ N such that for all positive integers n and m the following statement is true.

M. Balko, J. Cibulka, and P. Valtr 12:7

There is a set P of n points in Rd and an arrangement H of m hyperplanes in Rd such that
Kr,r 6⊆ G(P,H) and

I(P,H) ≥ Ωd,ε,k
(
n1−(k+1)/((k+2−1/d)(d−k))−εm1−(d−1)/(dk+2d−1)−ε

)
.

For example, in the case m = Θ(n(3−3ε)/(d+1)) considered by Sheffer [21], Theorem 10
gives a slightly better bound than I(P,H) ≥ Ω((mn)1−2/(d+4)−ε)) if we set, for example,
k = b(d− 1)/4c. However, the forbidden complete bipartite subgraph in the incidence graph
is larger than K(d−1)/ε,2.

The following problem is known as the counting version of Hopcroft’s problem [6, 10]:
given n points in Rd and m hyperplanes in Rd, how fast can we count the incidences between
them? We note that the lower bounds from Theorem 9 also establish the best known lower
bounds for the time complexity of so-called partitioning algorithms [10] for the counting
version of Hopcroft’s problem; see [6] for more details.

In the proofs of our results, we make no serious effort to optimize the constants. We also
omit floor and ceiling signs whenever they are not crucial.

3 Proof of Theorem 4

Here we sketch the proof of the upper bound on the minimum number of k-dimensional
linear subspaces needed to cover points from a given d-dimensional lattice that are contained
in a body K from Kd. We first prove Theorem 4 in the special case K = Bd (Theorem 14)
and then we extend the result to arbitrary K ∈ Kd. Since the proof is rather long and
complicated, we only prove a weaker bound (Corollary 16) and then we give a high-level
overview of the main ideas of the full proof, which can be found in the full version of the
paper [3].

3.1 Sketch of the proof for balls
We first introduce some auxiliary results that are used later. The following classical result
is due to Minkowski [18] and shows a relation between vol(K), det(Λ), and the successive
minima of Λ ∈ Ld and K ∈ Kd.

I Theorem 11 (Minkowski’s second theorem [18]). Let d be a positive integer. For every
Λ ∈ Ld and every K ∈ Kd, we have

1
2d ·

vol(K)
det(Λ) ≤

1
λ1(Λ,K) · · ·λd(Λ,K) ≤

d!
2d ·

vol(K)
det(Λ) .

A result similar to the first bound from Theorem 11 can be obtained if the volume is
replaced by the point enumerator; see Henk [13].

I Theorem 12 ([13, Theorem 1.5]). Let d be a positive integer. For every Λ ∈ Ld and every
K ∈ Kd, we have

|Λ ∩K| ≤ 2d−1
d∏
i=1

⌊
2

λi(Λ,K) + 1
⌋
.

For Λ ∈ Ld and K ∈ Kd, let v1, . . . , vd be linearly independent vectors such that
vi ∈ Λ ∩ (λi(Λ,K) ·K) for every i ∈ [d]. For d > 2, the vectors v1, . . . , vd do not necessarily
form a basis of Λ [22, see Section X.5]. However, the following theorem shows that there
exists a basis with vectors of lengths not much larger than the lengths of v1, . . . , vd.

SoCG 2017

12:8 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

I Theorem 13 (First finiteness theorem [22, see Lemma 2 in Section X.6]). Let d be a positive
integer. For every Λ ∈ Ld and every K ∈ Kd, there is a basis {b1, . . . , bd} of Λ with
bi ∈ (3/2)i−1λi(Λ,K) ·K for every i ∈ [d].

Now, let Λ be a d-dimensional lattice with λd(Λ, Bd) ≤ 1. Throughout this section, we
use λi to denote the ith successive minimum λi(Λ, Bd) for i = 1, . . . , d. Let k be an integer
with 1 ≤ k ≤ d− 1. We show the following result.

I Theorem 14. There is a constant C = C(d, k) such that the set Λ ∩ Bd can be covered
with C · αd−k k-dimensional linear subspaces of Rd, where

α := min
1≤j≤k

(λj · · ·λd)−1/(d−j).

As the first step towards the proof of Theorem 14, we show a weaker bound on the
number of k-dimensional linear subspaces needed to cover Λ ∩Bd; see Corollary 16. To do
so, we prove the following lemma that is also used later in the proof of Theorem 8.

I Lemma 15. Let d and s be integers with 0 ≤ s ≤ d − 1. There is a positive integer
r = r(d, s) and a projection p of Rd along s vectors of Λ onto a (d − s)-dimensional
linear subspace N of Rd such that Λ ∩ Bd is mapped to Λ ∩ N ∩ Bd(r) and such that
λi(Λ ∩N,Bd(r) ∩N) = Θd,s(λi+s) for every i ∈ [d− s].

Proof. If s = 0, then we set p to be the identity on Rd and r := 1. Thus we assume s ≥ 1.
For j = 0, . . . , d−1, we set rj := (2d2 +1)j . For j = 0, . . . , d−1 and a lattice Λj ∈ Ld−j , we

show that there is a projection pj of Rd−j along a vector vj ∈ Λj onto a (d−j−1)-dimensional
linear subspace N of Rd−j such that Λj ∩Bd−j(rj) is mapped to Λj ∩N ∩Bd−j(rj+1) by pj
and such that

λi+1(Λj , Bd−j(rj))/(2d
2

+ 1) ≤ λi(Λj ∩N,Bd−j(rj+1) ∩N) ≤ λi+1(Λj , Bd−j(rj))

for every i ∈ [d − j − 1]. We let pj be the projection for Λj := pj−1(Λj−1) for every
j = 1, . . . , s− 1, where Λ0 := Λ and p0 is the projection for Λ0. The statement of the lemma
is then obtained by setting p := ps−1 ◦ · · · ◦ p0.

Let B = {b1, . . . , bd−j} be a basis of Λj such that bi ∈ (3/2)i−1λi(Λj , Bd−j(rj)) ·Bd−j(rj)
for every i ∈ [d − j]. Such basis exists by the First finiteness theorem (Theorem 13). In
particular, b1 is the shortest vector from Λj ∩ Bd−j(rj). Let vj := b1 and let N be the
linear subspace generated by b2, . . . , bd−j . Let ΛN be the set Λj ∩ N . Note that ΛN is a
(d− j − 1)-dimensional lattice with the basis {b2, . . . , bd−j}.

We consider the projection pj onto N along vj . That is, every x ∈ Rd−j is mapped to
pj(x) =

∑d−j
i=2 tibi, where x =

∑d−j
i=1 tibi, ti ∈ R, is the expression of x with respect to the

basis B.
We show that pj(z) ∈ ΛN ∩Bd−j(rj+1) for every z ∈ Λj ∩Bd−j(rj). We have pj(z) ∈ ΛN ,

since B is a basis of Λj and B \ {b1} is a basis of ΛN . Let z =
∑d−j
i=1 tibi, ti ∈ Z, be the

expression of z with respect to B and let v be the Euclidean distance between b1 and N .
From the definitions of ΛN and B, we have

λi+1(Λj , Bd−j(rj)) ≤ λi(ΛN , Bd−j(rj) ∩N) ≤ (3/2)iλi+1(Λj , Bd−j(rj)) (3)

for every i ∈ [d− j − 1]. Using Minkowski’s second theorem (Theorem 11) twice, the upper

M. Balko, J. Cibulka, and P. Valtr 12:9

bound in (3), and the choice of b1, we obtain

vol(Bd−j(rj))
2d−j det(Λj)

≤ 1
λ1(Λj , Bd−j(rj)) · · ·λd−j(Λj , Bd−j(rj))

≤ rj
‖b1‖

· (3/2)(d−j)(d−j−1)/2

λ1(ΛN , Bd−j(rj) ∩N) · · ·λd−j−1(ΛN , Bd−j(rj) ∩N)

≤ rj
‖b1‖

· (3/2)(d−j)(d−j−1)/2 · (d− j − 1)! · vol(Bd−j(rj) ∩N)
2d−j−1 · det(ΛN) .

Since det(Λj) = v · det(ΛN), we can rewrite this expression as

‖b1‖ ≤
rj · (3/2)(d−j)(d−j−1)/2 · (d− j − 1)! · 2d−j · vol(Bd−j(rj) ∩N) · det(Λj)

2d−j−1 · vol(Bd−j(rj)) · det(ΛN) ≤ 2d
2
· v.

To derive the last inequality, we use the well-known formula

vol(Bm(r)) =
{

2((m−1)/2)!(4π)(m−1)/2

m! · rm if m is odd,
πm/2

(m/2)! · r
m if m is even

for the volume of Bm(r), m, r ∈ N. Since vol(Bd−j(rj) ∩ N) = vol(Bd−j−1(rj)), we have
vol(Bd−j(rj)∩N)/ vol(Bd−j(rj)) ≤ 2d−j/rj . The Euclidean distance between z and N equals
|t1| · v, which is at most rj , as z ∈ Bd−j(rj). Thus, since |t1| ≤ rj/v and 1/v ≤ 2d2

/‖b1‖, we
obtain |t1| ≤ 2d2 · rj/‖b1‖. This implies

‖pj(z)‖ = ‖z − t1b1‖ ≤ ‖z‖+ |t1| · ‖b1‖ ≤ rj + 2d
2
rj = rj+1

and we see that pj(z) lies in ΛN ∩Bd−j(rj+1).
Note that λi(ΛN , Bd−j(rj+1) ∩ N) = (2d2 + 1)−1 · λi(ΛN , Bd−j(rj) ∩ N) for every i ∈

[d− j − 1]. Using this fact together with the bounds in (3), we obtain

λi+1(Λj , Bd−j(rj))
2d2 + 1

≤ λi(ΛN , Bd−j(rj+1) ∩N) ≤ (3/2)d−jλi+1(Λj , Bd−j(rj))
2d2 + 1

for every i ∈ [d− j − 1]. J

I Corollary 16. The set Λ∩Bd can be covered with Od,k((λk · · ·λd)−1) k-dimensional linear
subspaces of Rd.

Proof. By Lemma 15, there is a positive integer r = r(d, k−1) and a projection p of Rd along
k−1 vectors b1, . . . , bk−1 ∈ Λ onto a (d−k+1)-dimensional linear subspace N of Rd such that
Λ∩Bd is mapped to Λ∩N ∩Bd(r) and such that λ′i := λi(Λ∩N,Bd(r)∩N) = Θd,k(λi+k−1)
for every i ∈ [d− k + 1]. We use ΛN to denote the (d− k + 1)-dimensional sublattice Λ ∩N
of Λ.

We consider the set S := {lin({y, b1, . . . , bk−1}) : y ∈ (ΛN \{0})∩Bd(r)}. Then S consists
of k-dimensional linear subspaces and its projection p(S) covers ΛN ∩Bd(r). By Theorem 12,
the size of S is at most

|ΛN ∩Bd(r)| ≤ 2d−k
d−k+1∏
i=1

⌊
2
λ′i

+ 1
⌋
≤ Od,k

(
d−k+1∏
i=1

1
λ′i

)
≤ Od,k((λk · · ·λd)−1),

where the second inequality follows from the assumption λd ≤ 1, as then λ′d−k+1 ≤ Od,k(λd)
implies λ′1 ≤ · · · ≤ λ′d−k+1 ≤ Od,k(1). The last inequality is obtained from λ′i ≥ Ωd,k(λi+k−1)
for every i ∈ [d− k + 1]. Moreover, S covers Λ ∩K, since for every y ∈ ΛN ∩Bd(r) there is
S ∈ S with y ∈ p(S) and p(z) ∈ ΛN ∩Bd(r) for every z ∈ Λ ∩Bd. J

SoCG 2017

12:10 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

Let q be an integer from {d− k + 1, . . . , d} such that α = (λd−q+1 · · ·λd)−1/(q−1). The
bound from Corollary 16 matches the bound from Theorem 14 in the case k = 1. The case
k = d − 1 was shown by Bárány et al. [5]; see Theorem 1. Thus we may assume d ≥ 4.
Corollary 16 also provides the same bound as Theorem 14 if q = d− k + 1, so we assume
q ≥ d− k + 2.

We now sketch the proof of the upper bound Od,k(αd−k) if q ≥ d − k + 2. Let Λ∗ be
the dual lattice of Λ. That is, Λ∗ is the set of vectors y from Rd that satisfy 〈x, y〉 ∈ Z for
every x ∈ Λ. In the rest of the section, we use µi to denote λi(Λ∗, Bd) for every i ∈ [d].
It follows from the results of Mahler [16] and Banaszczyk [4] that 1 ≤ λi · µd−i+1 ≤ d

holds for every i ∈ [d]. This together with the assumption λd ≤ 1 implies µ1 ≥ 1 and
α = Θd,k((µ1 · · ·µq)1/(q−1)).

We now proceed by induction on d− k. The case d− k = 1 is treated similarly as in the
proof of Theorem 1 by Bárány et al. [5]. Using the pigeonhole principle, we can construct
a set D′ of primitive points from Λ∗ \ {0} such that |D′| ≤ Od(α) and such that for every
x ∈ Λ∩Bd there is z ∈ D′ with 〈x, z〉 = 0. We let S to be the set of hyperplanes that contain
the origin and have normal vectors from D′. Observe that S is a set of Od(α) = Od(αd−k)
(d− 1)-dimensional linear subspaces that cover Λ ∩Bd.

For the inductive step, assume that d − k ≥ 2. We consider the set S of hyperplanes
in Rd that has been constructed in the base of the induction. For every hyperplane H(z) ∈ S
with the normal vector z ∈ D′, we let ΛH(z) be the set Λ∩H(z). Note that ΛH(z) is a lattice
of dimension at most d− 1. We now proceed inductively and cover each set ΛH(z) ∩Bd using
the inductive hypothesis for ΛH(z) and k. To do so, we employ the fact that, for every z ∈ D′,
the larger ‖z‖ is, the fewer k-dimensional linear subspaces we need to cover ΛH(z) ∩Bd. In
particular, we prove that if z is a point from D′ and q ≥ d− k + 2, then ΛH(z) ∩Bd can be
covered with Od,k

(
((µ1 · · ·µq)/‖z‖)(d−k−1)/(q−2)

)
k-dimensional linear subspaces.

Then we partition D′ into subsets S1, . . . , Sq such that all vectors from Si have ap-
proximately the same Euclidean norm. Then, for every i ∈ [q], we sum the number ci
of k-dimensional linear subspaces needed to cover ΛH(z) ∩ Bd for z ∈ Si and show that
c1 + · · ·+ cq ≤ Od,k(αd−k).

3.2 The general case
Here, we finish the proof of Theorem 4 by extending Theorem 14 to arbitrary convex bodies
from Kd. This is done by approximating a given body K from Kd with ellipsoids. A
d-dimensional ellipsoid in Rd is an image of Bd under a nonsingular affine map. Such
approximation exists by the following classical result, called John’s lemma [14].

I Lemma 17 (John’s lemma [17, see Theorem 13.4.1]). For every positive integer d and every
K ∈ Kd, there is a d-dimensional ellipsoid E with the center in the origin that satisfies

E/
√
d ⊆ K ⊆ E.

Let Λ ∈ Ld be a given lattice and let λi := λi(Λ,K) for every i ∈ [d]. From our
assumptions, we know that λd ≤ 1. Let E be the ellipsoid from Lemma 17. Since E is
an ellipsoid, there is a nonsingular affine map h : Rd → Rd such that E = h(Bd). Since E
is centered in the origin, we see that h is in fact a linear map. Thus Λ′ := h−1(Λ) ∈ Ld.
Observe that we have λi = λi(Λ′, h−1(K)) for every i ∈ [d].

For every i ∈ [d], we use λ′i to denote the ith successive minimum λi(Λ′, Bd) = λi(Λ, E).
From the choice of E, we have λi/

√
d ≤ λ′i ≤ λi. In particular, λ′d ≤ 1. Thus, by Theorem 14,

M. Balko, J. Cibulka, and P. Valtr 12:11

the set Λ′ ∩ Bd can be covered with Od,k((α′)d−k) k-dimensional linear subspaces, where
α′ := min1≤j≤k(λ′j · · ·λ′d)−1/(d−j).

Since λi = Θd(λ′i) for every i ∈ [d], we see that the set Λ′ ∩ h−1(K) can be covered with
Od,k(αd−k) k-dimensional linear subspaces, where α := min1≤j≤k(λj · · ·λd)−1/(d−j). Since
every nonsingular linear transformation preserves incidences and successive minima and maps
a k-dimensional linear subspace to a k-dimensional linear subspace, the set Λ ∩K can be
covered with Od,k(αd−k) k-dimensional linear subspaces.

4 Proof of Theorem 5

Let d and k be positive integers satisfying 1 ≤ k ≤ d− 1 and let K be a body from Kd with
λd(Zd,K) ≤ 1. For every i ∈ [d], we let λi be the ith successive minimum λi(Zd,K). Let ε be
a number from (0, 1). We use a probabilistic approach to show that there is a set S ⊆ Zd ∩K
of size at least Ωd,ε,k(((1 − λd)β)d−k−ε), where β := min1≤j≤d−1(λj · · ·λd)−1/(d−j), such
that every k-dimensional linear subspace contains at most r − 1 points from S.

Note that it is sufficient to prove the statement only for the lattice Zd. For a general
lattice Λ ∈ Ld we can apply a linear transformation h such that h(Λ) = Zd and then use the
result for Zd and h(K), since λi(Λ,K) = λi(Zd, h(K)) for every i ∈ [d]. We also remark that
in the case k = d− 1 the stronger lower bound Ωd((1− λd)β) from Theorem 1 by Bárány et
al. [5] applies.

The proof is based on the following two results, first of which is by Bárány et al. [5].

I Lemma 18 ([5]). For an integer d ≥ 2 and K ∈ Kd, if λd < 1 and p is an integer satisfying
1 < p < (1− λd)β/(8d2), then, for every v ∈ Rd, there exist an integer 1 ≤ j < p and a point
w ∈ Zd with jv + pw ∈ K.

For a prime number p, let Fp be the finite field of size p. The second main ingredient in
the proof of Theorem 5 is the following lemma.

I Lemma 19. Let d and k be integers satisfying 2 ≤ k ≤ d− 2 and let ε ∈ (0, 1). Then there
is a positive integer p0 = p0(d, ε, k) such that for every prime number p ≥ p0 there exists a
subset R of Fd−1

p of size at least pd−k−ε/2 such that every (k−1)-dimensional affine subspace
of Fd−1

p contains at most r − 1 points from R for r := dk(d− k + 1)/εe.

Proof. We assume that p is large enough with respect to d, ε, and k so that pk−1 > r. We set
P := p1−k−ε and we let X be a subset of Fd−1

p obtained by choosing every point from Fd−1
p

independently at random with the probability P .
Let A be a (k−1)-dimensional affine subspace of Fd−1

p . Then |A| = pk−1. It is well-known
that the number of (k − 1)-dimensional linear subspaces of Fd−1

p is exactly the Gaussian
binomial coefficient[

d− 1
k − 1

]
p

:= (pd−1 − 1)(pd−1 − p) · · · (pd−1 − pk−2)
(pk−1 − 1)(pk−1 − p) · · · (pk−1 − pk−2)

≤ pd−1 · pd−2 · · · pd−k+1

(pk−1 − 1)(pk−2 − 1) · · · (p− 1) ≤ p
(k−1)d−(k−1)k/2−(k−1)(k−2)/2 = p(k−1)(d−k+1). (4)

We used the fact pk−i − 1 ≥ pk−i−1 for k > i in the last inequality.
Since every (k − 1)-dimensional affine subspace A of Fd−1

p is of the form A = x+ L for
some x ∈ Fd−1

p and a (k − 1)-dimensional linear subspace L of Fd−1
p and x + L = y + L

if and only if x− y ∈ L, the total number of (k − 1)-dimensional affine subspaces of Fd−1
p

SoCG 2017

12:12 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

is pd−k
[
d−1
k−1

]
p
. This is because by considering pairs (x, L), where x ∈ Fd−1

p and L is a

(k − 1)-dimensional linear subspace of Fd−1
p , every (k − 1)-dimensional affine subspace A is

counted pk−1 times.
We use the following Chernoff-type bound (see the last bound of [12]) to estimate

the probability that A contains at least r points of X. Let q ∈ [0, 1] and let Y1, . . . , Ym
be independent 0-1 random variables with Pr[Yi = 1] = q for every i ∈ [m]. Then, for
mq ≤ s < m, we have

Pr[Y1 + · · ·+ Ym ≥ s] ≤
(mq
s

)s
es−mq. (5)

Choosing Yx as the indicator variable for the event x ∈ A ∩X for each x ∈ A, we have
m = |A| = pk−1 and q = P . Since p, r ≥ 1 and pk−1 > r, we have p−ε = mq ≤ r < m = pk−1

and thus the bound (5) implies

Pr[|A ∩X| ≥ r] ≤
(
pk−1P

r

)r
er−p

k−1P =
(
p−ε

r

)r
er−p

−ε

= p−εrer(1−ln r)−p−ε

< p−εr,

where the last inequality follows from r ≥ e, as then 1− ln r ≤ 0.
By the Union bound, the probability that there is a (k − 1)-dimensional affine subspace

A of Fd−1
p with |A ∩X| ≥ r is less than

pd−k
[
d− 1
k − 1

]
p

· p−εr ≤ p(d−k)+(k−1)(d−k+1)−εr ≤ pk(d−k+1)−1−k(d−k+1) = p−1,

where the first inequality follows from (4) and the second inequality is due to the choice of r.
From p ≥ 2, we see that this probability is less than 1/2.

The expected size of X is E[|X|] = |Fd−1
p | · P = pd−1p1−k−ε = pd−k−ε. Since |X| ∼

Bi(pd−1, P), the variance of |X| is pd−1P (1−P) < pd−k−ε and Chebyshev’s inequality implies
Pr[||X| − E[|X|]| ≥

√
2pd−k−ε] < pd−k−ε/(2pd−k−ε) = 1/2.

Thus there is a set R of size at least pd−k−ε −
√

2pd−k−ε ≥ pd−k−ε/2 such that every
(k − 1)-dimensional affine subspace of Fd−1

p contains at most r − 1 points from R. J

Let ε ∈ (0, 1) be given. To derive Theorem 5, we combine Lemma 18 with Lemma 19.
This is a similar approach as in [5], where the authors derive a lower bound for the case
k = d− 1 by combining Lemma 18 with a construction found by Erdős in connection with
Heilbronn’s triangle problem [20].

Let p be the largest prime number that satisfies the assumptions of Lemma 18. If such p
does not exist, then the statement of the theorem is trivial. By Bertrand’s postulate, we have
p > (1 − λd)β/(16d2). We may assume that p ≥ p0, where p0 = p0(d, ε, k) is the constant
from Lemma 19, since otherwise the statement of Theorem 5 is trivial.

For k ≥ 2 and t := dpd−k−ε/2e, let R = {v1, . . . , vt} ⊆ Fd−1
p be the set of points from

Lemma 19. That is, every (k − 1)-dimensional affine subspace of Fd−1
p contains at most

r − 1 points from R for r := dk(d− k + 1)/εe. In particular, every r-tuple of points from R

contains k+ 1 affinely independent points over the field Fp. For k = 1, we can set r := 2 and
let R be the whole set Fd−1

p of size t := pd−k = pd−1. Then every r-tuple of points from R

contains two affinely independent points over the field Fp.
For i = 1, . . . , t, let ui ∈ Zd be the vector obtained from vi by adding 1 as the last

coordinate. From the choice of R, every r-tuple of points from {u1, . . . , ut} contains k + 1
points that are linearly independent over the field Fp.

By Lemma 18, there exist an integer 1 ≤ ji < p and a point wi ∈ Zd for every i ∈ [t] such
that u′i := jiui + pwi lies in K. We have u′i ≡ jiui (mod p) for every i ∈ [t] and thus every

M. Balko, J. Cibulka, and P. Valtr 12:13

r-tuple of vectors from S := {u′1, . . . , u′t} ⊆ Zd contains k + 1 linearly independent vectors
over the field Fp, and hence over R. In other words, every k-dimensional linear subspace of Rd
contains at most r − 1 points from S. Since |S| = t = dpd−k−ε/2e and p > (1− λd)β/(16d2),
we have l(d, k, n, r) ≥ Ωd,k(((1− λd)β)d−k−ε). This completes the proof of Theorem 5.

5 Proof of Theorem 8

Let d and k be integers with 1 ≤ k ≤ d−1 and let Λ ∈ Ld and K ∈ Kd. We let λi := λi(Λ,K)
for every i ∈ [d] and assume that λd ≤ 1. First, we observe that it is sufficient to prove the
statement only for K = Bd, as we can then strengthen the statement to an arbitrary K ∈ Kd
using John’s lemma (Lemma 17) analogously as in the proof of Theorem 4.

First, we prove the upper bound. That is, we show that Λ ∩ Bd can be covered with
Od,k((λk+1 · · ·λd)−1) k-dimensional affine subspaces of Rd. By Lemma 15, there is a positive
integer r = r(d, k) and a projection p of Rd along k vectors b1, . . . , bk from Λ onto a (d− k)-
dimensional linear subspace N of Rd such that Λ∩Bd is mapped to Λ∩N ∩Bd(r) and such
that λ′i := λi(Λ ∩N,Bd(r) ∩N) = Θd,k(λi+k) for every i ∈ [d− k].

For each point z of Λ ∩ N ∩ Bd(r), we define A(z) to be the affine hull of the set
{z, b1 + z, . . . , bk + z}. Every A(z) is then a k-dimensional affine subspace of Rd and the
set A := {A(z) : z ∈ Λ ∩ N ∩ Bd(r)} covers Λ ∩ Bd, since p(z) ∈ Λ ∩ N ∩ Bd(r) for every
z ∈ Λ∩Bd. We have |A| = |Λ∩N∩Bd(r)| and, since λd ≤ 1 and λ′1 ≤ · · · ≤ λ′d−k ≤ Od,k(λd),
Theorem 12 implies |Λ∩N ∩Bd(r)| ≤ Od,k((λ′1 · · ·λ′d−k)−1). The bound λ′i ≥ Ωd,k(λi+k) for
every i ∈ [d− k] then gives |A| ≤ Od,k((λk+1 · · ·λd)−1).

To show the lower bound, we prove that we need at least Ωd,k((λk+1 · · ·λd)−1) k-
dimensional affine subspaces of Rd to cover Λ ∩Bd.

Let A be a k-dimensional affine subspace of Rd. We show that A contains at most
Od,k((λ1 · · ·λk)−1) points from Λ ∩Bd. Let y be an arbitrary point from Λ ∩A ∩Bd. Then
A = L+ y, where L is a k-dimensional linear subspace of Rd, and (Λ ∩A)− y = Λ ∩ L. For
every i ∈ [k], we let λ′i := λi(Λ ∩ L,Bd(2)) and we observe that λ′i ≥ λi/2. By Theorem 12,
we have |Λ ∩ L ∩ Bd(2)| ≤ Od,k((λ′1 · · ·λ′s)−1), where s is the maximum integer j from [k]
with λ′j ≤ 1. Since λ′i ≥ λi/2 for every i ∈ [k], we have |Λ∩L∩Bd(2)| ≤ Od,k((λ1 · · ·λk)−1).
For every x ∈ A ∩ Bd, we have ‖x − y‖ ≤ ‖x‖ + ‖y‖ ≤ 2 and thus x − y ∈ L ∩ Bd(2). It
follows that (Λ ∩A ∩Bd)− y ⊆ Λ ∩ L ∩Bd(2) and thus |Λ ∩A ∩Bd| ≤ Od,k((λ1 · · ·λk)−1).

Let A be a collection of k-dimensional affine subspaces of Rd that covers Λ ∩ Bd. We
have |A| ≥ |Λ∩Bd|/m, where m is the maximum of |Λ∩A∩Bd| taken over all subspaces A
from A. We know that m ≤ Od,k((λ1 · · ·λk)−1). It is a well-known fact that follows from
Minkowski’s second theorem (Theorem 11) that |Λ ∩ Bd| ≥ Ωd,k((λ1 · · ·λd)−1). Thus we
obtain

|A| ≥ |Λ ∩B
d|

m
≥ Ωd,k((λ1 · · ·λd)−1)
Od,k((λ1 · · ·λk)−1) ≥ Ωd,k((λk+1 · · ·λd)−1),

which finishes the proof of Theorem 8.

6 Proofs of Theorems 9 and 10

We now improve the lower bounds from Theorem 3 on the number of point-hyperplane
incidences. We use essentially the same construction as Brass and Knauer [6].

Assume that we are given integers d and k with 0 ≤ k ≤ d− 2 and let ε be a real number
in (0, 1). Let δ = δ(d, ε, k) ∈ (0, 1) be a sufficiently small constant. By (1), there is a positive

SoCG 2017

12:14 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

integer r1 = r1(d, δ, k) and a constant c1 = c1(d, δ, k) such that for every s ∈ N there is a
subset P of Zd ∩Bd(s) of size c1 · sd−k−δ such that every k-dimensional affine subspace of Rd
contains at most r1 − 1 points from P . In the case k = 0, we can clearly obtain the stronger
bound c1 · sd.

By Corollary 6, there is a positive integer r2 = r2(d, δ, k) and a constant c2 = c2(d, δ, k)
such that for every t ∈ N there is a subset N ′ of Zd ∩Bd(t) of size c2 · td(k+1−δ)/(d−1) such
that every (d− k − 1)-dimensional linear subspace contains at most r2 − 1 points from N ′.
In particular, every 1-dimensional linear subspace contains at most r2 − 1 points from N ′

and thus there is a set N ⊆ N ′ of size |N | = |N ′|/(r2 − 1) = c2 · td(k+1−δ)/(d−1)/(r2 − 1)
containing only primitive vectors. We note that for k = 0 we can apply Theorem 1 instead
of Corollary 6 and obtain the stronger bound |N | = c2 · td/(d−1)/(r2 − 1). We let H be the
set of hyperplanes in Rd with normal vectors from N such that every hyperplane from H
contains at least one point of P .

We show that the graph G(P,H) does not contain Kr1,r2 . If there is an r2-tuple of
hyperplanes from H with a nonempty intersection, then these hyperplanes have distinct
normal vectors that span a linear subspace of dimension at least d− k by the choice of N .
The intersection of these hyperplanes is thus an affine subspace of dimension at most k. From
the definition of P , it contains at most r1 − 1 points from P .

We set n := c1 · sd−k−δ and m := 3c2
r2−1 · s · t

d(k+2−1/d−δ)/(d−1). Then we have |P | = n.
For every p ∈ P and z ∈ N , we have 〈p, z〉 ∈ Z and |〈p, z〉| ≤ ‖p‖‖z‖ ≤ st by the Cauchy–
Schwarz inequality. Thus every point z from N is the normal vector of at most 2st+ 1 ≤ 3st
hyperplanes from H. It follows that

|H| ≤ 3st|N | = 3stc2 · td(k+1−δ)/(d−1)

r2 − 1 = 3c2

r2 − 1 · s · t
d(k+2−1/d−δ)/(d−1) = m.

From the definition of H, the number of incidences between P and H is at least

|P ||N | = n · c2 · td(k+1−δ)/(d−1)

r2 − 1 = Ωd,ε,k
(
n · (m/s)(k+1−δ)/(k+2−1/d−δ)

)
= Ωd,ε,k

(
n1−(k+1−δ)/((k+2−1/d−δ)(d−k−δ))m(k+1−δ)/(k+2−1/d−δ)

)
≥ Ωd,ε,k

(
n1−(k+1)/((k+2−1/d)(d−k))−εm(k+1)/(k+2−1/d)−ε

)
, (6)

where the last inequality holds for δ sufficiently small with respect to d, ε, and k. This
finishes the proof of Theorem 10.

To maximize the number of incidences in the diagonal case, we choose k := bd−2
2 c. For d

odd, we then have at least

Ωd,ε
(
n1−2(d−1)/((d+1−2/d)(d+3))−εm(d−1)/(d+1−2/d)−ε

)
incidences by (6). By duality, we may obtain a symmetrical expression by averaging the
exponents. Then we obtain

I(P,H) ≥ Ωd,ε
(

(mn)(d2+3d+3)/(d2+5d+6)−ε
)

= Ωd,ε
(

(mn)1−(2d+3)/((d+2)(d+3))−ε
)
.

For d even, the choice of k implies that the number of incidences is at least

Ωd,ε
(
n1−2d/((d+2−2/d)(d+2))−εmd/(d+2−2/d)−ε

)

M. Balko, J. Cibulka, and P. Valtr 12:15

by (6). Using the averaging argument, we obtain

I(P,H) ≥ Ωd,ε
(

(mn)(d3+2d2+d−2)/((d+2)(d2+2d−2))−ε
)

= Ωd,ε
(

(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε
)
.

This completes the proof of Theorem 9. For d ≤ 3, we have k = 0 and thus we can get
rid of the ε in the exponent by applying the stronger bounds on m and n.

I Remark. An upper bound similar to (2) holds in a much more general setting, where
we bound the maximum number of edges in Kr,r-free semi-algebraic bipartite graphs G =
(P ∪Q,E) in (Rd,Rd) with bounded description complexity t (see [11] for definitions). Fox et
al. [11] showed that the maximum number of edges in such graphs with |P | = n and |Q| = m

is at most Od,ε,r,t((mn)1−1/(d+1)+ε + m + n) for any ε > 0. Theorem 9 provides the best
known lower bound for this problem, as every incidence graph G(P,H) of P and H in Rd is
a semi-algebraic graph in (Rd,Rd) with bounded description complexity.

References
1 E. Ackerman. On topological graphs with at most four crossings per edge. http://arxiv.

org/abs/1509.01932, 2015.
2 R. Apfelbaum and M. Sharir. Large complete bipartite subgraphs in incidence graphs of

points and hyperplanes. SIAM J. Discrete Math., 21(3):707–725, 2007.
3 M. Balko, J. Cibulka, and P. Valtr. Covering lattice points by subspaces and counting

point-hyperplane incidences. http://arxiv.org/abs/1703.04767, 2017.
4 W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Math. Ann., 296(4):625–635, 1993.
5 I. Bárány, G. Harcos, J. Pach, and G. Tardos. Covering lattice points by subspaces. Period.

Math. Hungar., 43(1–2):93–103, 2001.
6 P. Brass and C. Knauer. On counting point-hyperplane incidences. Comput. Geom., 25(1–

2):13–20, 2003.
7 P. Brass, W. Moser, and J. Pach. Research problems in discrete geometry. Springer, New

York, 2005.
8 B. Chazelle. Cutting hyperplanes for Divide-and-Conquer. Discrete Comput. Geom.,

9(2):145–158, 1993.
9 P. Erdős. On sets of distances of n points. Amer. Math. Monthly, 53:248–250, 1946.
10 J. Erickson. New lower bounds for hopcroft’s problem. Discrete Comput. Geom., 16(4):389–

418, 1996.
11 J. Fox, J. Pach, A. Sheffer, and A. Suk. A semi-algebraic version of Zarankiewicz’s problem.

http://arxiv.org/abs/1407.5705, 2014.
12 T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Inform. Process. Lett.,

33(6):305–308, 1990.
13 M. Henk. Successive minima and lattice points. Rend. Circ. Mat. Palermo (2) Suppl.,

70(I):377–384, 2002.
14 F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and

Essays, presented to R. Courant on his 60th birthday, January 8, 1948, pages 187–204.
Interscience Publ., New York, 1948.

15 H. Lefmann. Extensions of the No-Three-In-Line Problem. www.tu-chemnitz.de/
informatik/ThIS/downloads/publications/lefmann_no_three_submitted.pdf, 2012.

16 K. Mahler. Ein Übertragungsprinzip für konvexe Körper. Časopis Pěst. Mat. Fys., 68:93–
102, 1939.

SoCG 2017

http://arxiv.org/abs/1509.01932
http://arxiv.org/abs/1509.01932
http://arxiv.org/abs/1703.04767
http://arxiv.org/abs/1407.5705
www.tu-chemnitz.de/informatik/ThIS/downloads/publications/lefmann_no_three_submitted.pdf
www.tu-chemnitz.de/informatik/ThIS/downloads/publications/lefmann_no_three_submitted.pdf

12:16 Covering Lattice Points by Subspaces and Counting Point-Hyperplane Incidences

17 J. Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002.

18 H. Minkowski. Geometrie der Zahlen. Leipzig, Teubner, 1910.
19 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,

17:427–439, 1997.
20 K.F. Roth. On a problem of Heilbronn. J. London Math. Soc., 26:198–204, 1951.
21 Adam Sheffer. Lower bounds for incidences with hypersurfaces. Discrete Anal., 2016. Paper

No. 16, 14.
22 C.L. Siegel and K. Chandrasekharan. Lectures on the geometry of numbers. Springer-Verlag,

Berlin, 1989.
23 E. Szemerédi and W.T. Trotter Jr. Extremal problems in discrete geometry. Combinatorica,

3(3–4):381–392, 1983.

Subquadratic Algorithms for Algebraic
Generalizations of 3SUM
Luis Barba1, Jean Cardinal∗2, John Iacono†3, Stefan Langerman‡4,
Aurélien Ooms§5, and Noam Solomon¶6

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
luis.barba@inf.ethz.ch

2 Département d’Informatique, Université libre de Bruxelles (ULB), Brussels,
Belgium
jcardin@ulb.ac.be

3 Department of Computer Science and Engineering, New York University
(NYU), New York, NY, USA
socg2017@johniacono.com

4 Département d’Informatique, Université libre de Bruxelles (ULB), Brussels,
Belgium
slanger@ulb.ac.be

5 Département d’Informatique, Université libre de Bruxelles (ULB), Brussels,
Belgium
aureooms@ulb.ac.be

6 School of Computer Science, Tel Aviv University (TAU), Tel Aviv, Israel
noam.solom@gmail.com

Abstract
The 3SUM problem asks if an input n-set of real numbers contains a triple whose sum is zero.
We consider the 3POL problem, a natural generalization of 3SUM where we replace the sum
function by a constant-degree polynomial in three variables. The motivations are threefold. Raz,
Sharir, and de Zeeuw gave an O(n11/6) upper bound on the number of solutions of trivariate
polynomial equations when the solutions are taken from the cartesian product of three n-sets
of real numbers. We give algorithms for the corresponding problem of counting such solutions.
Grønlund and Pettie recently designed subquadratic algorithms for 3SUM. We generalize their
results to 3POL. Finally, we shed light on the General Position Testing (GPT) problem: “Given
n points in the plane, do three of them lie on a line?”, a key problem in computational geometry.

We prove that there exist bounded-degree algebraic decision trees of depth O(n 12
7 +ε) that

solve 3POL, and that 3POL can be solved in O(n2(log logn)
3
2 /(logn)

1
2) time in the real-RAM

model. Among the possible applications of those results, we show how to solve GPT in sub-
quadratic time when the input points lie on o((logn)

1
6 /(log logn)

1
2) constant-degree polynomial

curves. This constitutes the first step towards closing the major open question of whether GPT
can be solved in subquadratic time. To obtain these results, we generalize important tools – such
as batch range searching and dominance reporting – to a polynomial setting. We expect these
new tools to be useful in other applications.

∗ Supported by the “Action de Recherche Concertée” (ARC) COPHYMA, convention number
4.110.H.000023.

† Research partially completed while on sabbatical at the Algorithms Research Group of the Département
d’Informatique at the Université libre de Bruxelles with support from a Fulbright Research Fellowship,
the Fonds de la Recherche Scientifique – FNRS, and NSF grants CNS-1229185, CCF-1319648, and
CCF-1533564.

‡ Directeur de recherches du F.R.S.-FNRS.
§ Supported by the Fund for Research Training in Industry and Agriculture (FRIA).
¶ Supported by Grant 892/13 from the Israel Science Foundation.

© Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam Solomon;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 13; pp. 13:1–13:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases 3SUM, subquadratic algorithms, general position testing, range search-
ing, dominance reporting, polynomial curves

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.13

1 Introduction

The 3SUM problem is defined as follows: given n distinct real numbers, decide whether
any three of them sum to zero. A popular conjecture is that no O(n2−δ)-time algorithm
for 3SUM exists. This conjecture has been used to show conditional lower bounds for
problems in P, notably in computational geometry with problems such as GeomBase, general
position [21] and Polygonal Containment [7], and more recently for string problems such
as Local Alignment [2] and Jumbled Indexing [5], as well as dynamic versions of graph
problems [32, 1], triangle enumeration and Set Disjointness [27]. For this reason, 3SUM
is considered one of the key subjects of an emerging theory of complexity-within-P, along
with other problems such as all-pairs shortest paths, orthogonal vectors, boolean matrix
multiplication, and conjectures such as the Strong Exponential Time Hypothesis [3, 26, 11].

Because fixing two of the numbers a and b in a triple only allows for one solution to the
equation a+b+x = 0, an instance of 3SUM has at most n2 solution triples. An instance with
a matching lower bound is for example the set { 1−n

2 , . . . , n−1
2 } (for odd n) with

3
4n

2 + 1
4

solution triples. One might be tempted to think that the number of solutions to the problem
would lower bound the complexity of algorithms for the decision version of the problem, as
it is the case for restricted models of computation [18]. This is a common misconception.
Indeed, Grønlund and Pettie [23] recently proved that there exist Õ(n3/2)-depth linear
decision trees and o(n2)-time real-RAM algorithms for 3SUM.

A natural generalization of the 3SUM problem is to replace the sum function by a
constant-degree polynomial in three variables F ∈ R[x, y, z] and ask to determine whether
there exists any triple (a, b, c) of input numbers such that F (a, b, c) = 0. We call this new
problem the 3POL problem.

For the particular case F (x, y, z) = f(x, y) − z where f ∈ R[x, y] is a constant-degree
bivariate polynomial, Elekes and Rónyai [16] show that the number of solutions to the
3POL problem is o(n2) unless f is special. Special for f means that f has one of the
two special forms f(u, v) = h(ϕ(u) + ψ(v)) or f(u, v) = h(ϕ(u) · ψ(v)), where h, ϕ, ψ are
univariate polynomials of constant degree. Elekes and Szabó [17] later generalized this result
to a broader range of functions F using a wider definition of specialness. Raz, Sharir and
Solymosi [37] and Raz, Sharir and de Zeeuw [35] recently improved both bounds on the
number of solutions to O(n11/6). They translated the problem into an incidence problem
between points and constant-degree algebraic curves. Then, they showed that unless f (or
F) is special, these curves have low multiplicities. Finally, they applied a theorem due to
Pach and Sharir [31] bounding the number of incidences between the points and the curves.
Some of these ideas appear in our approach.

In computational geometry, it is customary to assume the real-RAM model can be
extended to allow the computation of roots of constant degree polynomials. We distance
ourselves from this practice and take particular care of using the real-RAM model and the
bounded-degree algebraic decision tree model with only the four arithmetic operators.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.13

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:3

1.1 Our results
We focus on the computational complexity of 3POL. Since 3POL contains 3SUM, an
interesting question is whether a generalization of Grønlund and Pettie’s 3SUM algorithm
exists for 3POL. If this is true, then we might wonder whether we can beat the O(n11/6) =
O(n1.833...) combinatorial bound of Raz, Sharir and de Zeeuw [35] with nonuniform algorithms.
We give a positive answer to both questions: we show there exist O(n2(log logn) 3

2 / logn) 1
2)-

time real-RAM algorithms and O(n12/7+ε) = O(n1.7143)-depth bounded-degree algebraic
decision trees for 3POL.1 To prove our main result, we present a fast algorithm for the
Polynomial Dominance Reporting (PDR) problem, a far reaching generalization of the
Dominance Reporting problem. As the algorithm for Dominance Reporting and its analysis
by Chan [13] is used in fast algorithms for all-pairs shortest paths, (min,+)-convolutions,
and 3SUM, we expect this new algorithm will have more applications.

Our results can be applied to many degeneracy testing problems, such as the General
Position Testing (GPT) problem: “Given n points in the plane, do three of them lie on a line?”
It is well known that GPT is 3SUM-hard, and it is open whether GPT admits a subquadratic
algorithm. Raz, Sharir and de Zeeuw [35] give a combinatorial bound of O(n11/6) on the
number of collinear triples when the input points are known to be lying on a constant
number of polynomial curves, provided those curves are neither lines nor cubic curves. A
corollary of our first result is that GPT where the input points are constrained to lie on
o((logn) 1

6 /(log logn) 1
2) constant-degree polynomial curves (including lines and cubic curves)

admits a subquadratic real-RAM algorithm and a strongly subquadratic bounded-degree
algebraic decision tree. Interestingly, both reductions from 3SUM to GPT on 3 lines (map a
to (a, 0), b to (b, 2), and c to (c2 , 1)) and from 3SUM to GPT on a cubic curve (map a to
(a3, a), b to (b3, b), and c to (c3, c)) construct such special instances of GPT. This constitutes
the first step towards closing the major open question of whether GPT can be solved in
subquadratic time. This result is described in the arXiv e-print where we also explain how
to apply our algorithms to the problems of counting triples of points spanning unit circles or
triangles.

1.2 Definitions
3POL. We look at two different generalizations of 3SUM. In the first one, which we call
3POL, we replace the sum function by a trivariate polynomial of constant degree.

I Problem (3POL). Let F ∈ R[x, y, z] be a trivariate polynomial of constant degree, given
three sets A, B, and C, each containing n real numbers, decide whether there exist a ∈ A,
b ∈ B, and c ∈ C such that F (a, b, c) = 0.

The second one is a special case of 3POL where we restrict the trivariate polynomial F to
have the form F (a, b, c) = f(a, b)− c.

I Problem (explicit 3POL). Let f ∈ R[x, y] be a bivariate polynomial of constant degree,
given three sets A, B, and C, each containing n real numbers, decide whether there exist
a ∈ A, b ∈ B, and c ∈ C such that c = f(a, b).

We look at both uniform and nonuniform algorithms for explicit 3POL and 3POL. We begin
with an O(n 12

7 +ε)-depth bounded-degree algebraic decision tree for explicit 3POL in §2. In

1 Throughout this document, ε denotes a positive real number that can be made as small as desired.

SoCG 2017

13:4 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

§3, we continue by giving a similar real-RAM algorithm for explicit 3POL that achieves
subquadratic running time. We show how to generalize those results to the implicit version
of 3POL in the arXiv e-print.

Models of Computation Similarly to Grønlund and Pettie [23], we consider both nonuni-
form and uniform models of computation. For the nonuniform model, Grønlund and Pettie
consider linear decision trees, where one is only allowed to manipulate the input numbers
through linear queries to an oracle. Each linear query has constant cost and all other
operations are free but cannot inspect the input. In this paper, we consider bounded-degree
algebraic decision trees (ADT) [34, 41, 39], a natural generalization of linear decision trees,
as the nonuniform model. In a bounded-degree algebraic decision tree, one performs constant
cost branching operations that amount to test the sign of a constant-degree polynomial for a
constant number of input numbers. Again, operations not involving the input are free. For
the uniform model we consider the real-RAM model with only the four arithmetic operators.

The problems we consider require our algorithms to manipulate polynomial expressions
and, potentially, their real roots. For that purpose, we will rely on Collins cylindrical algebraic
decomposition (CAD) [14]. To understand the power of this method, and why it is useful for
us, we give some background on the related concept of first-order theory of the reals.

I Definition 1. A Tarski formula φ ∈ T is a grammatically correct formula consisting of real
variables (x ∈ X), universal and existential quantifiers on those real variables (∀,∃ : X×T→
T), the boolean operators of conjunction and disjunction (∧,∨ : T2 → T), the six comparison
operators (<,≤,=,≥, >, 6=: R2 → T), the four arithmetic operators (+,−, ∗, / : R2 → R),
the usual parentheses that modify the priority of operators, and constant real numbers. A
Tarski sentence is a fully quantified Tarski formula. The first-order theory of the reals (∀∃R)
is the set of true Tarski sentences.

Tarski [40] and Seidenberg [38] proved that ∀∃R is decidable. However, the algorithm
resulting from their proof has nonelementary complexity. This proof, as well as other known
algorithms, are based on quantifier elimination, that is, the translation of the input formula
to a much longer quantifier-free formula, whose validity can be checked. There exists a family
of formulas for which any method of quantifier elimination produces a doubly exponential
size quantifier-free formula [15]. Collins CAD matches this doubly exponential complexity.

I Theorem 2 (Collins [14]). ∀∃R can be solved in 22O(n) time.

See Basu, Pollack, and Roy [9] for additional details, Basu, Pollack, and Roy [8] for a
singly exponential algorithm when all quantifiers are existential (existential theory of the
reals, ∃R), Caviness and Johnson [12] for an anthology of key papers on the subject, and
Mishra [29] for a review of techniques to compute with roots of polynomials.

Collins CAD solves any geometric decision problem that does not involve quantification
over the integers in time doubly exponential in the problem size. This does not harm our
results as we exclusively use this algorithm to solve constant size subproblems. Geometric
is to be understood in the sense of Descartes and Fermat, that is, the geometry of objects
that can be expressed with polynomial equations. In particular, it allows us to make the
following computations in the real-RAM and bounded-degree ADT models:
1. Given a constant-degree univariate polynomial, count its real roots in O(1) operations,
2. Given a constant number of univariate polynomials of constant degree, compute the

interleaving of their real roots in O(1) operations,
3. Given a point in the plane and an arrangement of a constant number of constant-degree

polynomial planar curves, locate the point in the arrangement in O(1) operations.

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:5

Instead of bounded-degree algebraic decision trees as the nonuniform model we could
consider decision trees in which each decision involves a constant-size instance of the decision
problem in the first-order theory of the reals. The depth of a bounded-degree algebraic
decision tree simulating such a tree would only be blown up by a constant factor.

1.3 Previous Results

3SUM. For the sake of simplicity, we consider the following definition of 3SUM

I Problem (3SUM). Given 3 sets A, B, and C, each containing n real numbers, decide
whether there exist a ∈ A, b ∈ B, and c ∈ C such that c = a+ b.

A quadratic lower bound for solving 3SUM holds in a restricted model of computation:
the 3-linear decision tree model. Erickson [18] and Ailon and Chazelle [4] showed that in
this model, where one is only allowed to test the sign of a linear expression of up to three
elements of the input, there are a quadratic number of critical tuples to test.

I Theorem 3 (Erickson [18]). The depth of a 3-linear decision tree for 3SUM is Ω(n2).

While no evidence suggested that this lower bound could be extended to other models of
computation, it was eventually conjectured that 3SUM requires Ω(n2) time.

Baran et al. [6] were the first to give concrete evidence for doubting the conjecture. They
gave subquadratic Las Vegas algorithms for 3SUM, where input numbers are restricted to be
integer or rational, in the circuit RAM, word RAM, external memory, and cache-oblivious
models of computation. Their idea is to exploit the parallelism of the models, using linear
and universal hashing.

Grønlund and Pettie [23], using a trick due to Fredman [19], recently showed that there
exist subquadratic decision trees for 3SUM when the queries are allowed to be 4-linear.

I Theorem 4 (Grønlund and Pettie [23]). There is a 4-linear decision tree of depth O(n 3
2
√

logn)
for 3SUM.

They also gave deterministic and randomized subquadratic real-RAM algorithms for 3SUM,
refuting the conjecture. Similarly to the subquadratic 4-linear decision trees, these new
results use the power of 4-linear queries. These algorithms were later improved by Freund [20]
and Gold and Sharir [22].

I Theorem 5 (Grønlund and Pettie [23]). There is a deterministic O(n2(log logn)2/3
/(logn)2/3)-

time and a randomized O(n2(log logn)2
/ logn)-time real-RAM algorithm for 3SUM.

Since then, the conjecture was eventually updated. This new conjecture is considered an
essential part of the theory of complexity-within-P.

I Conjecture 1 (3SUM Conjecture). There is no O(n2−δ)-time algorithm for 3SUM.

Elekes-Rónyai, Elekes-Szabó. In a series of results spanning fifteen years, Elekes and
Rónyai [16], Elekes and Szabó [17], Raz, Sharir and Solymosi [37], and Raz, Sharir and de
Zeeuw [35] give upper bounds on the number of solution triples to the 3POL problem. The
last and strongest result is the following

SoCG 2017

13:6 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

I Theorem 6 (Raz, Sharir and de Zeeuw [35]). Let A, B, C be n-sets of real numbers and F ∈
R[x, y, z] be a polynomial of constant degree, then the number of triples (a, b, c) ∈ A×B ×C
such that F (a, b, c) = 0 is O(n11/6) unless F has some group related form.2

Raz, Sharir and de Zeeuw [35] also look at the number of solution triples for the General
Position Testing problem when the input is restricted to points lying on a constant number
of constant-degree algebraic curves.

I Theorem 7 (Raz, Sharir and de Zeeuw [35]). Let C1, C2, C3 be three (not necessarily distinct)
irreducible algebraic curves of degree at most d in C2, and let S1 ⊂ C1, S2 ⊂ C2, S3 ⊂ C3 be
finite subsets. Then the number of proper collinear triples in S1 × S2 × S3 is

Od(|S1|1/2|S2|2/3|S3|2/3 + |S1|1/2(|S1|1/2 + |S2|+ |S3|)),

unless C1 ∪ C2 ∪ C3 is a line or a cubic curve.

Recently, Nassajian Mojarrad, Pham, Valculescu and de Zeeuw [30] and Raz, Sharir and
de Zeeuw [36] proved bounds for versions of the problem where F is a 4-variate polynomial.

2 Nonuniform algorithm for explicit 3POL

We begin with the description of a nonuniform algorithm for explicit 3POL which we use
later as a basis for other algorithms. We prove the following:

I Theorem 8. There is a bounded-degree ADT of depth O(n 12
7 +ε) for explicit 3POL.

Idea. The idea is to partition the sets A and B into small groups of consecutive elements.
That way, we can divide the A × B grid into cells with the guarantee that each curve
c = f(x, y) in this grid intersects a small number of cells. For each such curve and each cell
it intersects, we search c among the values f(a, b) for all (a, b) in a given intersected cell. We
generalize Fredman’s trick [19] – and how it is used in Grønlund and Pettie’s paper [23] – to
quickly obtain a sorted order on those values, which provides us a logarithmic search time
for each cell. Below is a sketch of the algorithm.

Algorithm 1 (Nonuniform algorithm for explicit 3POL).
input A = { a1 < · · · < an }, B = { b1 < · · · < bn }, C = { c1 < · · · < cn } ⊂ R.
output accept if ∃ (a, b, c) ∈ A×B × C such that c = f(a, b), reject otherwise.
1. Partition the intervals [a1, an] and [b1, bn] into blocks A∗i and B∗j such that Ai = A∩A∗i

and Bj = B ∩B∗j have size g.
2. Sort the sets f(Ai ×Bj) = { f(a, b) : (a, b) ∈ Ai ×Bj } for all Ai, Bj . This is the only

step that is nonuniform.
3. For each c ∈ C,
3.1. For each cell A∗i ×B∗j intersected by the curve c = f(x, y),
3.1.1. Binary search for c in the sorted set f(Ai ×Bj). If c is found, accept and halt.
4. reject and halt.

Note that it is easy to modify the algorithm to count or report the solutions. In the latter
case, the algorithm becomes output sensitive. Like in Grønlund and Pettie’s Õ(n 3

2) decision
tree for 3SUM [23], the tricky part is to give an efficient implementation of step 2.

2 Because our results do not depend on the meaning of group related form, we do not bother defining it
here. We refer the reader to Raz, Sharir and de Zeeuw [35] for the exact definition.

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:7

B

A

n
g

n
g

g

g

a1
b1

bn

an

A∗i ×B∗jB∗j

A∗i

(a) Partitioning A and B.

B

A

n
g

n
g

a1
b1

bn

an

c = f(x, y)

(b) An xy-monotone arc of c = f(x, y) intersects
a staircase of at most 2 n

g
− 1 cells in the grid.

Figure 1 Properties of the A×B grid.

A × B grid partitioning. Let A = { a1 < a2 < · · · < an } and B = { b1 < b2 < · · · < bn }.
For some positive integer g to be determined later, partition the interval [a1, an] into n/g
blocks A∗1, A∗2, . . . , A∗n/g such that each block contains g numbers in A. Do the same for the
interval [b1, bn] with the numbers in B and name the blocks of this partition B∗1 , B∗2 , . . . , B∗n/g.
For the sake of simplicity, and without loss of generality, we assume here that g divides n.
We continue to make this assumption in the following sections. To each of the (n/g)2 pairs
of blocks A∗i and B∗j corresponds a cell A∗i ×B∗j . By definition, each cell contains g2 pairs in
A × B. For the sake of notation, we define Ai = A ∩ A∗i = { ai,1 < ai,2 < · · · < ai,g } and
Bj = B ∩B∗j = { bj,1 < bj,2 < · · · < bj,g }. Figure 1a depicts this construction.

The following two lemmas result from this construction:

I Lemma 9. For a fixed value c ∈ C, the curve c = f(x, y) intersects O(ng) cells. Moreover,
those cells can be found in O(ng) time.

Proof. Since f has constant degree, the curve c = f(x, y) can be decomposed into a constant
number of xy-monotone arcs. Split the curve into x-monotone pieces, then each x-monotone
piece into y-monotone arcs. The endpoints of the xy-monotone arcs are the intersections of
f(x, y) = c with its derivatives f ′x(x, y) = 0 and f ′y(x, y) = 0. By Bézout’s theorem, there are
O(deg(f)2) such intersections and so O(deg(f)2) xy-monotone arcs. Figure 1b shows that
each such arc intersects at most 2ng − 1 cells since the cells intersected by a xy-monotone arc
form a staircase in the grid. This proves the first part of the lemma. To prove the second
part, notice that for each connected component of c = f(x, y) intersecting at least one cell of
the grid either: (1) it intersects a boundary cell of the grid, or (2) it is a (singular) point or
contains vertical and horizontal tangency points. The cells intersected by c = f(x, y) are
computed by exploring the grid from O(ng) starting cells. Start with an empty set. Find
and add all boundary cells containing a point of the curve. Finding those cells is achieved
by solving the Tarski sentence ∃(x, y)c = f(x, y) ∧ x ∈ A∗i ∧ y ∈ B∗j , for each cell A∗i × B∗j
on the boundary. This takes O(ng) time. Find and add the cells containing endpoints of
xy-monotone arcs of c = f(x, y). Finding those cells is achieved by first finding the constant

SoCG 2017

13:8 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

number of vertical and horizontal slabs A∗i × R and R×B∗j containing such points:

∃(x, y)c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ x ∈ A∗i ,
∃(x, y)c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ y ∈ B∗j .

This takes O(ng) time. Then for each pair of vertical and horizontal slab containing such a
point, check that the cell at the intersection of the slab also contains such a point:

∃(x, y)c = f(x, y) ∧ (f ′x(x, y) = 0 ∨ f ′y(x, y) = 0) ∧ x ∈ A∗i ∧ y ∈ B∗j .

This takes O(1) time. Note that we can always assume the constant-degree polynomials we
manipulate are square-free, as making them square-free is trivial [42]: since R[x] and R[y] are
unique factorization domains, let Q = P/gcd(P, P ′x;x) and sf(P) = Q/gcd(P, P ′y; y), where
gcd(P,Q; z) is the greatest common divisor of P and Q when viewed as polynomials in R[z]
where R is a unique factorization domain and sf(P) is the square-free part of P . The set
now contains, for each component of each type, at least one cell intersected by it. Initialize
a list with the elements of the set. While the list is not empty, remove any cell from the
list, add each of the eight neighbouring cells to the set and the list, if it contains a point of
c = f(x, y) – this can be checked with the same sentences as in the boundary case – and if it
is not already in the set. This costs O(1) per cell intersected. The set now contains all cells
of the grid intersected by c = f(x, y). J

I Lemma 10. If the sets A,B,C can be preprocessed in Sg(n) time so that, for any given cell
A∗i ×B∗j and any given c ∈ C, testing whether c ∈ f(Ai ×Bj) = { f(a, b) : (a, b) ∈ Ai ×Bj }
can be done in O(log g) time, then, explicit 3POL can be solved in Sg(n) +O(n

2

g log g) time.

Proof. We need Sg(n) preprocessing time plus the time required to search each of the n
numbers c ∈ C in each of the O(ng) cells intersected by c = f(x, y). Each search costs O(log g)
time. We can compute the cells intersected by c = f(x, y) in O(ng) time by Lemma 9. J

I Remark. We do not give a Sg(n)-time real-RAM algorithm for preprocessing the input,
but only a Sg(n)-depth bounded-degree ADT. In fact, this preprocessing step is the only
nonuniform part of Algorithm 1. A real-RAM implementation of this step is given in §3.

Preprocessing. All that is left to prove is that Sg(n) is subquadratic for some choice of
g. To achieve this we sort the points inside each cell using Fredman’s trick [19]. Grønlund
and Pettie [23] use this trick to sort the sets Ai +Bj = { a+ b : (a, b) ∈ Ai ×Bj } with few
comparisons: sort the set D = (∪i[Ai−Ai])∪(∪j [Bj−Bj]), where Ai−Ai = { a−a′ : (a, a′) ∈
Ai×Ai } and Bj−Bj = { b−b′ : (b, b′) ∈ Bj×Bj }, using O(n logn+ |D|) comparisons, then
testing whether a+ b ≤ a′ + b′ can be done using the free (already computed) comparison
a− a′ ≤ b′− b. We use a generalization of this trick to sort the sets f(Ai×Bj). For each Bj ,
for each pair (b, b′) ∈ Bj × Bj , define the curve γb,b′ = { (x, y) : f(x, b) = f(y, b′) }. Define
the sets γ0

b,b′ = γb,b′ , γ
−
b,b′ = { (x, y) : f(x, b) < f(y, b′) }, γ+

b,b′ = { (x, y) : f(x, b) > f(y, b′) }.
The following lemma – illustrated by Figure 2 – follows by definition:

I Lemma 11. Given a cell A∗i ×B∗j and two pairs (a, b), (a′, b′) ∈ Ai×Bj , deciding whether
f(a, b) < f(a′, b′) (respectively f(a, b) = f(a′, b′) and f(a, b) > f(a′, b′)) amounts to deciding
whether the point (a, a′) is contained in γ−b,b′ (respectively γ0

b,b′ and γ
+
b,b′).

There are N := n
g · g

2 = ng pairs (a, a′) ∈ ∪i[Ai × Ai] and there are N pairs (b, b′) ∈
∪j [Bj×Bj]. Sorting the f(Ai×Bj) for all (Ai, Bj) amounts to solving the following problem:

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:9

B

A

n
g

n
g

a1
b1

bn

an
a a′

b′

b

(a) The pairs (a, b), (a′, b′).

A

n
g

n
g

a1 an
a

a1

an

a′

A

γ−bb′

(a, a′)

(b) (a, a′) ∈ γ+
b,b′ implies f(a, b) > f(a′, b′).

Figure 2 Generalization of Fredman’s trick (Lemma 11).

I Problem (Polynomial Batch Range Searching). Given N points and N polynomial curves
in R2, locate each point with respect to each curve.

We can now refine the description of step 2 in Algorithm 1

Algorithm 2 (Sorting the f(Ai ×Bj) with a nonuniform algorithm).
input A = { a1 < a2 < · · · < an }, B = { b1 < b2 < · · · < bn } ⊂ R
output The sets f(Ai ×Bj), sorted.
2.1. Locate each point (a, a′) ∈ ∪i[Ai ×Ai] w.r.t. each curve γb,b′ , (b, b′) ∈ ∪j [Bj ×Bj].
2.2. Sort the sets f(Ai ×Bj) using the information retrieved in step 2.1.

Note that this algorithm is nonuniform: step 2.2 costs at least quadratic time in the real-RAM
model, however, this step does not need to query the input at all, as all the information
needed to sort is retrieved during step 2.1. Step 2.2 incurs no cost in our nonuniform model.

To implement step 2.1, we use a modified version of the N 4
3 2O(log∗N) algorithm of

Matoušek [28] for Hopcroft’s problem. We prove the following upper bound in the arXiv
e-print:

I Lemma 12. Polynomial Batch Range Searching can be solved in O(N 4
3 +ε) time in the

real-RAM model when the input curves are the γb,b′ .

Analysis. Combining Lemma 10 and Lemma 12 yields a O((ng)4/3+ε + n2g−1 log g)-depth
bounded-degree ADT for 3POL. By optimizing over g, we get g = Θ(n2/7−ε), and the
previous expression simplifies to O(n12/7+ε), proving Theorem 8.

3 Uniform algorithm for explicit 3POL

We now build on the first algorithm and prove the following:

I Theorem 13. Explicit 3POL can be solved in O(n2(log logn)
3
2 /(logn)

1
2) time.

We generalize again Grønlund and Pettie [23]. The algorithm we present is derived from the
first subquadratic algorithm in their paper.

SoCG 2017

13:10 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

Idea. We want the implementation of step 2 in Algorithm 1 to be uniform, because then,
the whole algorithm is. We use the same partitioning scheme as before except we choose g to
be much smaller. This allows to store all permutations on g2 items in a lookup table, where
g is chosen small enough to make the size of the lookup table Θ(nε). The preprocessing
part of the previous algorithm is replaced by g2! calls to an algorithm that determines for
which cells a given permutation gives the correct sorted order. This preprocessing step
stores a constant-size3 pointer from each cell to the corresponding permutation in the lookup
table. Search can now be done efficiently: when searching a value c in f(Ai ×Bj), retrieve
the corresponding permutation on g2 items from the lookup table, then perform binary
search on the sorted order defined by that permutation. The sketch of the algorithm is
exactly Algorithm 1. The only differences with respect to §2 are the choice of g and the
implementation of step 2.

A × B grid partitioning. We use the same partitioning scheme as before, hence Lemma 9
and Lemma 10 hold. We just need to find a replacement for Lemma 12.

Preprocessing. For their simple subquadratic 3SUM algorithm, Grønlund and Pettie [23]
explain that for a permutation to give the correct sorted order for a cell, that permutation
must define a certificate – a set of inequalities – that the cell must verify. They cleverly note –
using Fredman’s Trick [19] as in Chan [13] and Bremner et al. [10] – that the verification of a
single certificate by all cells amounts to solving a red/blue point dominance reporting problem.
We generalize their method. For each permutation π : [g2] → [g]2, where π = (πr, πc) is
decomposed into row and column functions πr, πc : [g2]→ [g], we enumerate all cells A∗i ×B∗j
for which the following certificate holds:

f(ai,πr(1), bj,πc(1)) ≤ f(ai,πr(2), bj,πc(2)) ≤ · · · ≤ f(ai,πr(g2), bj,πc(g2)).

I Remark. Since some entries may be equal, to make sure each cell corresponds to exactly one
certificate, we replace ≤ symbols by choices of g2 − 1 symbols in {=, < }. Each permutation
π gets a certificate for each of those choices. This adds a 2g2−1 factor to the number of
certificates to test, which will eventually be negligible. Note that some of those 2g2−1

certificates are equivalent. We need to skip some of them, as otherwise we might output some
cells more than once, and then there will be no guarantee with respect to the output size.
For example, the certificate f(ai,9, bj,5) = f(ai,6, bj,7) < · · · < f(ai,4, bj,4) is equivalent to
the certificate f(ai,6, bj,7) = f(ai,9, bj,5) < · · · < f(ai,4, bj,4). Among equivalent certificates,
we only consider the certificate whose permutation π precedes the others lexicographically.
In the previous example, ((6, 7), (9, 5), . . . , (4, 4)) ≺ ((9, 5), (6, 7), . . . , (4, 4)) hence we would
only process the second certificate. For the sake of simplicity, we will write inequality when
we mean strict inequality or equation, and “≤” when we mean “<” or “=”.

Fredman’s Trick. This is where Fredman’s Trick comes into play. By Lemma 11, each
inequality f(ai,πr(t), bj,πc(t)) ≤ f(ai,πr(t+1), bj,πc(t+1)) of a certificate can be checked by
computing the relative position of (ai,πr(t), ai,πr(t+1)) with respect to γbj,πc(t),bj,πc(t+1) . For a
given certificate, for each Ai and each Bj , define

pi = ((ai,πr(1), ai,πr(2)), (ai,πr(2), ai,πr(3)), . . . , (ai,πr(g2−1), ai,πr(g2))),
qj =

(
f(x, bj,πc(1)) ≤ f(y, bj,πc(2)), . . . , f(x, bj,πc(g2−1)) ≤ f(y, bj,πc(g2))

)
.

3 In the real-RAM and word-RAM models.

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:11

A certificate is verified by a cell Ai×Bj if and only if, for all t ∈ [g2−1], the point pi,t verifies
the inequality qj,t. Enumerating all cells Ai × Bj for which the certificate holds therefore
amounts to solving the following problem:

I Problem (Polynomial Dominance Reporting (PDR)). Given N k-tuples pi of points in R2

and N k-tuples qj of bivariate polynomial inequalities of degree at most deg(f), enumerate
all pairs (pi, qj) where, for all t ∈ [k], the point pi,t verifies the inequality qj,t.

In the next section, we explain how to solve PDR efficiently and prove the following lemma:

I Lemma 14. We can enumerate all ` such pairs in time 2O(k)N
2− 4

deg(f)2+3 deg(f)+2
+ε +O(`).

We can now give a uniform implementation of step 2 in Algorithm 1:

Algorithm 3 (Sorting the f(Ai ×Bj) with a uniform algorithm).
input A = { a1 < a2 < · · · < an }, B = { b1 < b2 < · · · < bn } ⊂ R
output The sets f(Ai ×Bj), sorted.
2.1. Initialize a lookup table that will contain all O(2g2−1(g2!)) certificates on g2 elements.
2.2. For each permutation π : [g2]→ [g]2,
2.2.1. For each choice of g2 − 1 symbols in {=, < },
2.2.1.1. If there is any “=” symbol that corresponds to a lexicographically decreasing pair

of tuples of indices in π, skip this choice of symbols.
2.2.1.2. Append the certificate associated to Π and the choice of symbols to the table.
2.2.1.3. Solve the PDR instance associated to A,B,Π and the choice of symbols.
2.2.1.4. For each output pair (i, j), store a pointer from (i, j) to the last entry in the table.

Analysis. Plugging in k = g2 − 1, N = n
g , iterating over all permutations (

∑
π ` = (n/g)2),

and adding the binary search step we get that explicit 3POL can be solved in time

(g2!)2g
2
2O(g2)(n/g)2− 4

deg(f)2+3 deg(f)+2
+ε +O((n/g)2) +O(n2 log g/g).

The first two terms correspond to the complexity of step 2 in Algorithm 1, and the last
term corresponds to the complexity of step 3 in Algorithm 1. To get subquadratic time
we can set g = cdeg(f)

√
logn/ log logn, because then for some appropriate choice of the

constant factor cdeg(f), (g2)!2g22O(g2) = nδ where δ < 4/(deg(f)2 + 3 deg(f) + 2)− ε, making
the first term negligible. The complexity of the algorithm is dominated by O(n2 log g/g) =
O(n2(log logn)

3
2 /(logn)

1
2). This proves Theorem 13.

4 Polynomial Dominance Reporting

In this section, we combine a standard dominance reporting algorithm [33] with Matoušek’s
algorithm [28] to prove Lemma 14. We say a pair of blue and red points in Rk is dominating
if for all indices i ∈ [k] the ith coordinate of the blue point is greater or equal to the ith
coordinate of the red point. The standard algorithm [33] solves the following problem:

I Problem. Given N blue and M red points in Rk, report all bichromatic dominating pairs.

Our problem is significantly more complicated and general. Instead of blue points we have blue
k-tuples pi of 2-dimensional points, instead of red points we have red k-tuples qj of bivariate
polynomial inequalities, and we want to report all bichromatic pairs (pi, qj) such that, for all
t ∈ [k], the point pi,t verifies the inequality qj,t. The standard algorithm essentially works by

SoCG 2017

13:12 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

a combination of divide and conquer and prune and search, using a one-dimensional cutting
(median selection) to split a problem into subproblems. We generalize the standard algorithm
by using higher dimensional cuttings, in a way similar to Matoušek’s algorithm [28]. For the
analysis, we generalize Chan’s analysis of the standard algorithm when k is not constant [13].

Proof of Lemma 14. We use the Veronese embedding [25, 24]. Since the polynomials
have constant degree, we can trade polynomial inequalities for linear inequalities by lifting
everything to a space of higher – but constant – dimension. The degree of each polynomial is
at most deg(f). There are exactly d =

(deg(f)+2
2

)
− 1 different bivariate monomials of degree

at most deg(f)4. To each monomial we associate a variable in Rd. By this association, points
in the plane are mapped to points in Rd and bivariate polynomial inequalities are mapped
to d-variate linear inequalities.

By abuse of notation, let pi denote the tuple pi where each 2-dimensional point has been
replaced by its d-dimensional counterpart, and let qi denote the tuple qi where each bivariate
polynomial inequality has been replaced by its d-variate linear counterpart. We have N
k-tuples pi and M k-tuples qj . The algorithm checks each of the k components of the tuples
in turn and can be described recursively as follows for some positive integer r > 1:

Algorithm 4 (Polynomial Dominance Reporting).
input N k-tuples pi of d-dimensional points, M k-tuples qj of d-variate linear inequalities.
output All (pi, qj) pairs such that, for all t ∈ [k], the point pi,t verifies the inequality qj,t.
1. If k = 0, then output all pairs (pi, qj) and halt.
2. If N < rd or M < r, solve the problem by brute force in O((N +M)k) time.
3. We now only consider the kth component of each input k-tuple and call these active

components. To each active d-variate linear inequality corresponds a defining hyperplane
in Rd. Construct, as in [28], a hierarchical cutting of Rd using O(rd) simplicial cells
such that each simplicial cell is intersected by at most M

r of the defining hyperplanes.
This construction also gives us for each simplical cell of the cutting the list of defining
hyperplanes intersecting it. This takes O(Mrd−1) time. Locate each active point inside
the hierarchical cutting in time O(N log r). Let S be a simplicial cell of the hierarchical
cutting. Denote by ΠS the set of active points in S. Partition each ΠS into

⌈
|ΠS |
Nr−2

⌉
disjoint subsets of size at most N

rd
. For each simplicial cell, find the active inequalities

whose corresponding geometric object (hyperplane, closed or open half-space) contains
the cell. This takes O(Mrd) time. The whole step takes O(N log r +Mrd) time.

4. For each of the O(rd) simplicial cells, recurse on the at most N
rd
k-tuples pi whose active

point is inside the simplicial cell and the at most M
r k-tuples qj whose active inequality’s

defining hyperplane intersects the simplicial cell.
5. For each of the O(rd) simplicial cells, recurse on the at most N

rd
(k − 1)-prefixes of

k-tuples pi whose active point is inside the simplicial cell and the (k − 1)-prefixes
of k-tuples qj whose active inequality’s corresponding geometric object contains the
simplicial cell.

Correctness. In each recursive call, either k is decremented or M and N are divided by
some constant, hence, one of the conditions in steps 1 and 2 is met in each of the paths of
the recursion tree and the algorithm always terminates. Step 5 is correct because it only
recurses on (pi, qj) pairs whose suffix pairs are dominating. The base case in step 1 is correct

4 Not including the independent monomial, namely, 1.

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:13

because the only way for a pair (pi, qj) to reach this point is to have had all k components
checked in step 5. The base case in step 2 is correct by definition. Each dominating pair
is output exactly once because the recursive calls of step 4 and 5 partition the set of pairs
(pi, qj) that can still claim to be candidate dominating pairs.

Analysis. For k,N,M ≥ 0, the total complexity Tk(N,M) of computing the inclusions for
the first k components, excluding the output cost (steps 1 and 2), is bounded by

Tk(N,M) ≤ O(rd)Tk−1(N,M)︸ ︷︷ ︸
Step 5

+O(rd)Tk
(
N

rd
,
M

r

)
︸ ︷︷ ︸

Step 4

+O(N +M)︸ ︷︷ ︸
Step 3

,

T0(N,M) = 0, Tk(N,M) = O(Nk) if M < r, Tk(N,M) = O(Mk) if N < rd.

By point-hyperplane duality, Tk(N,M) = Tk(M,N), hence, we can execute step 4 on dual
linear inequalities and dual points to balance the recurrence. For some constant c1 ≥ 1,

Tk(N,M) ≤ c1r2dTk−1(N,M) + c1r
2dTk

(
N

rd+1 ,
M

rd+1

)
+ c1(N +M).

For simplicity, we ignore some problem-size reductions occuring in this balancing step.
Let Tk(N) = Tk(N,N) denote the complexity of solving the problem when M = N ,

excluding the output cost. Hence,

Tk(N) ≤ c1r2dTk−1(N) + c1r
2dTk

(
N

rd+1

)
+ c1N, (1)

T0(N) = 0, Tk(N) = O(k) if N < rd+1.

Solving the recurrence gives Tk(N) = 2O(k)N
2d
d+1 +εr , and since d =

(deg(f)+2
2

)
− 1, we have

Tk(N) = 2O(k)N
2− 4

deg(f)2+3 deg(f)+2
+εr .

To that complexity we add a constant time unit for each output pair in steps 1 and 2. J

5 3POL

Extending the previous techniques to work for the (implicit) 3POL problem is nontrivial:
1. Instead of sorting the sets f(Ai ×Bj) we need to sort the real roots of the F (Ai ×Bj , z),
2. The γb,b′ curves must be redefined. The redefined curve γb,b′ is still the zero-set of some

constant-degree bivariate polynomial P (x, y). However, retrieving the information we
need for sorting becomes more challenging than just computing the sign of the P (Ai×Ai),

3. The implementation of the certificates for the uniform algorithm gets much more convo-
luted: each certificate checks the validity of a conjunction of Tarski sentences.

Those extensions are explained in detail in the arXiv e-print. There we show

I Theorem 15. There is a bounded-degree ADT of depth O(n 12
7 +ε) for 3POL.

I Theorem 16. 3POL can be solved in O(n2(log logn)
3
2 /(logn)

1
2) time.

SoCG 2017

13:14 Subquadratic Algorithms for Algebraic Generalizations of 3SUM

6 Applications

To illustrate the expressive power of 3POL, we give some geometric applications in the arXiv
e-print. We show the following:
1. GPT can be solved in subquadratic time provided the input points lie on few parameterized

constant-degree polynomial curves.
2. In the plane, given three sets Ci of n unit circles and three points pi such that a circle

c ∈ Ci contains pi, deciding whether there exists (a, b, c) ∈ C1 × C2 × C3 such that
a ∩ b ∩ c 6= ∅ can be done in subquadratic time.

3. Given n input points in the plane, deciding whether any triple spawns a unit triangle
can be done in subquadratic time, provided the input points lie on few parameterized
constant-degree polynomial curves.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, pages 434–443. IEEE Computer Society, 2014.
2 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster

alignment of sequences. In ICALP (1), volume 8572 of LNCS, pages 39–51, 2014.
3 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and

basing hardness on an extremely popular conjecture. In STOC, pages 41–50. ACM, 2015.
4 Nir Ailon and Bernard Chazelle. Lower bounds for linear degeneracy testing. J. ACM,

52(2):157–171, 2005.
5 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness

of jumbled indexing. In ICALP (1), volume 8572 of LNCS, pages 114–125, 2014.
6 Ilya Baran, Erik D. Demaine, and Mihai Pătras,cu. Subquadratic algorithms for 3SUM.

Algorithmica, 50(4):584–596, 2008.
7 Gill Barequet and Sariel Har-Peled. Polygon containment and translational min Hausdorff

distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl., 11(4):465–
474, 2001.

8 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Computing roadmaps of semi-
algebraic sets (extended abstract). In STOC, pages 168–173. ACM, 1996.

9 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and Computation in Mathematics. Springer, 2006.

10 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, Convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypoth-
esis and consequences for non-reducibility. In ITCS, pages 261–270. ACM, 2016.

12 Bob F. Caviness and Jeremy R. Johnson. Quantifier elimination and cylindrical algebraic
decomposition. Springer, 2012.

13 Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Algo-
rithmica, 50(2):236–243, 2008.

14 George E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages, volume 33 of LNCS,
pages 134–183. Springer, 1975.

15 James H. Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. J.
Symb. Comput., 5(1/2):29–35, 1988.

16 György Elekes and Lajos Rónyai. A combinatorial problem on polynomials and rational
functions. J. Comb. Theory, Ser. A, 89(1):1–20, 2000.

L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon 13:15

17 György Elekes and Endre Szabó. How to find groups? (and how to use them in Erdős
geometry?). Combinatorica, 32(5):537–571, 2012.

18 Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theor. Comput.
Sci., 1999.

19 Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput.
Sci., 1(4):355–361, 1976.

20 Ari Freund. Improved subquadratic 3SUM. Algorithmica, pages 1–19, 2015.
21 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational

geometry. Comput. Geom., 5:165–185, 1995.
22 Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy.

ArXiv e-prints, 2015. arXiv:1512.05279 [cs.DS].
23 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. In Founda-

tions of Computer Science (FOCS 2014), pages 621–630. IEEE, 2014.
24 Joe Harris. Algebraic geometry: a first course, volume 133. Springer, 2013.
25 Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.
26 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-

rak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30. ACM, 2015.

27 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In SODA, pages 1272–1287. SIAM, 2016.

28 Jirí Matoušek. Range searching with efficient hierarchical cutting. Discrete & Computa-
tional Geometry, 10:157–182, 1993.

29 Bhubaneswar Mishra. Computational real algebraic geometry. In Handbook of Discrete
and Computational Geometry, 2nd Ed., pages 743–764. Chapman and Hall/CRC, 2004.

30 H. Nassajian Mojarrad, T. Pham, C. Valculescu, and F. de Zeeuw. Schwartz-Zippel bounds
for two-dimensional products. ArXiv e-prints, 2016. arXiv:1507.08181 [math.CO].

31 János Pach and Micha Sharir. On the number of incidences between points and curves.
Combinatorics, Probability & Computing, 7(1):121–127, 1998.

32 Mihai Pătras,cu. Towards polynomial lower bounds for dynamic problems. In STOC, pages
603–610. ACM, 2010.

33 Franco P. Preparata and Michael Ian Shamos. Computational Geometry – An Introduction.
Texts and Monographs in Computer Science. Springer, 1985.

34 Michael O. Rabin. Proving simultaneous positivity of linear forms. J. Comput. Syst. Sci.,
6(6):639–650, 1972.

35 Orit E. Raz, Micha Sharir, and Frank de Zeeuw. Polynomials vanishing on cartesian
products: The Elekes-Szabó theorem revisited. In SoCG, volume 34 of LIPIcs, pages 522–
536, 2015.

36 Orit E. Raz, Micha Sharir, and Frank de Zeeuw. The elekes-szabó theorem in four dimen-
sions. ArXiv e-prints, 2016. arXiv:1607.03600 [math.CO].

37 Orit E. Raz, Micha Sharir, and József Solymosi. Polynomials vanishing on grids: The
Elekes-Rónyai problem revisited. In SoCG, page 251. ACM, 2014.

38 Abraham Seidenberg. Constructions in algebra. Transactions of the AMS, 197:273–313,
1974.

39 J. Michael Steele and Andrew Yao. Lower bounds for algebraic decision trees. J. Algorithms,
3(1):1–8, 1982.

40 Alfred Tarski. A decision method for elementary algebra and geometry, 1951. Rand Cor-
poration.

41 Andrew Yao. A lower bound to finding convex hulls. J. ACM, 28(4):780–787, 1981.
42 David Yun. On square-free decomposition algorithms. In SYMSACC, pages 26–35, 1976.

SoCG 2017

https://arxiv.org/abs/1512.05279
https://arxiv.org/abs/1507.08181
https://arxiv.org/abs/1607.03600

Towards a Topology-Shape-Metrics Framework for
Ortho-Radial Drawings∗

Lukas Barth†1, Benjamin Niedermann2, Ignaz Rutter3, and
Matthias Wolf4

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
lukas.barth@kit.edu

2 University of Bonn, Bonn, Germany
niedermann@uni-bonn.de

3 TU Eindhoven, Eindhoven, The Netherlands
i.rutter@tue.nl

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
matthias.wolf@kit.edu

Abstract
Ortho-Radial drawings are a generalization of orthogonal drawings to grids that are formed by
concentric circles and straight-line spokes emanating from the circles’ center. Such drawings have
applications in schematic graph layouts, e.g., for metro maps and destination maps.

A plane graph is a planar graph with a fixed planar embedding. We give a combinatorial
characterization of the plane graphs that admit a planar ortho-radial drawing without bends.
Previously, such a characterization was only known for paths, cycles, and theta graphs [12], and
in the special case of rectangular drawings for cubic graphs [11], where the contour of each face
is required to be a rectangle.

The characterization is expressed in terms of an ortho-radial representation that, similar to
Tamassia’s orthogonal representations for orthogonal drawings describes such a drawing combin-
atorially in terms of angles around vertices and bends on the edges. In this sense our character-
ization can be seen as a first step towards generalizing the Topology-Shape-Metrics framework
of Tamassia to ortho-radial drawings.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph Drawing, Ortho-Radial Drawings, Combinatorial Characteriza-
tion, Bend Minimization, Topology-Shape-Metrics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.14

1 Introduction

Grid drawings of graphs map vertices to grid points, and edges to internally disjoint curves
on the grid lines connecting their endpoints. The appropriate choice of the underlying grid
is decisive for the quality and properties of the drawing. Orthogonal grids, where the grid
lines are horizontal and vertical lines, are popular and widely used in graph drawing. Their
strength lies in their simple structure, their high angular resolution, and the limited number
of directions. Graphs admitting orthogonal grid drawings must be 4-planar, i.e., they must
be planar and have maximum degree 4. On such grids a single edge consists of a sequence

∗ A full version of the paper is available at https://arxiv.org/abs/1703.06040.
† Lukas Barth’s research was partially supported by DFG Research Training Group 2153

© Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.14
https://arxiv.org/abs/1703.06040
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

up

leftright

c

down

(a) Ortho-Radial Grid. (b) Cylinder.

Figure 1 An ortho-radial drawing of a graph on a grid
(a) and its equivalent interpretation as an orthogonal
drawing on a cylinder (b).

Figure 2 Metro map of Berlin using
an ortho-radial layout. Image copyright
by Maxwell J. Roberts.

of horizontal and vertical grid segments. A transition between a horizontal and a vertical
segment on an edge is called a bend. A typical optimization goal is to minimize the number
of bends in the drawing, either in total or by the maximum number of bends per edge.

The popularity and usefulness of orthogonal drawing have their foundations in the
seminal work of Tamassia [15] who showed that for plane graphs, i.e., planar graphs with a
fixed embedding, a bend-minimal planar orthogonal drawing can be computed efficiently.
More generally, Tamassia [15] established the so-called Topology-Shape-Metrics framework,
abbreviated as TSM in the following, for computing orthogonal drawings of 4-planar graphs.

The goal of this work is to provide a similar framework for ortho-radial drawings, which are
based on ortho-radial grids rather than orthogonal grids. Such drawings have applications in
schematic graph layouts, e.g., for metro maps and destination maps; see Fig. 2 for an example.
An ortho-radial grid is formed by M concentric circles and N spokes, where M,N ∈ N.
More precisely, the radii of the concentric circles are integers, and the N spokes emanate
from the center c = (0, 0) of the circles such that they have uniform angular resolution; see
Fig. 1. We note that c does not belong to the grid. Again vertices are positioned at grid
points and edges are drawn as internally disjoint chains of (1) segments of spokes and (2)
arcs of concentric circles. As before, a bend is a transition between a spoke segment and an
arc segment. We observe that ortho-radial drawings can also be thought of as orthogonal
drawings on a cylinder; see Fig. 1. Edge segments that are originally drawn on spokes are
parallel to the axis of the cylinder, whereas segments that are originally drawn as arcs are
drawn on circles orthogonal to the axis of the cylinder.

It is not hard to see that every orthogonal drawing can be transformed into an ortho-radial
drawing with the same number of bends. The converse is, however, not true. It is readily
seen that for example a triangle, which requires at least one bend in an orthogonal drawing,
admits an ortho-radial drawing without bends, namely in the form of a circle centered at
the origin. In fact, by suitably nesting triangles, one can construct graphs that have an
ortho-radial drawing without bends but require a linear number of bends in any orthogonal
drawing.

Related Work. The case of planar orthogonal drawings is well-researched and there is a
plethora of results known; see [9] for a survey. Here, we mention only the most recent results
and those which are most strongly related to the problem we consider. A k-embedding is an
orthogonal planar drawing such that each edge has at most k bends. It is known that, with

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:3

e

e

Figure 3 In this drawing, the angles around vertices sum up to 360◦, and also the sum of angles
for each face is as expected for an ortho-radial drawing. However, the graph does not have an
ortho-radial drawing without bends.

the single exception of the octahedron graph, every planar graph has a 2-embedding [2] and
that deciding the existence of a 0-embedding is NP-complete [10]. The latter in particular
implies that the problem of computing a planar orthogonal drawing with the minimum
number of bends is NP-hard. In contrast, the existence of a 1-embedding can be tested
efficiently [3]; this has subsequently been generalized to a version that forces up to k edges
to have no bends in FPT time w.r.t. k [4], and to an optimization version that optimizes
the number of bends beyond the first one on each edge [5]. Moreover, for series-parallel
graphs and graphs with maximum degree 3 an orthogonal planar drawing with the minimum
number of bends can be computed efficiently [8].

The NP-hardness of the bend minimization problem has also inspired the study of
bend minimization for planar graphs with a fixed embedding. In his fundamental work
Tamassia [15] showed that for plane graphs, i.e., planar graphs with a fixed planar embedding,
bend-minimal planar orthogonal drawings can be computed in polynomial time. The running
time has subsequently been improved to O(n1.5) [6]. Key to these results is the existence of a
combinatorial description of planar orthogonal drawings of a plane graph in terms of the angles
surrounding each vertex and the order and directions of bends on the edges but neglecting
any kind of geometric information such as coordinates and edge lengths. In particular, this
allows to efficiently compute bend-minimal orthogonal drawings of plane graphs by mapping
the purely combinatorial problem of determining an orthogonal representation with the
minimum number of bends to a flow problem.

In addition, there is a number of works that seek to characterize the plane graphs that
can be drawn without bends. In this case an orthogonal representation essentially only
describes the angles around the vertices. Rahman, Nishizeki and Naznin [14] characterize
the plane graphs with maximum degree 3 that admit such a drawing and Rahman, Nakano
and Nishizeki [13] characterize the plane graphs that admit a rectangular drawing where in
addition the contour of each face is a rectangle.

In the case of ortho-radial drawings much less is known. A natural generalization of
the properties of an orthogonal representation to the ortho-radial case, where the angles
around the vertices and inside the faces are constrained, has turned out not be sufficient for
drawability; see Fig. 3. So far characterizations of bend-free ortho-radial drawing have only
been achieved for paths, cycles, and theta graphs [12]. For the special case of rectangular
ortho-radial drawings, i.e., every internal face is bounded by a rectangle, a characterization
is known for cubic graphs [11].

Contribution and Outline. Since deciding whether a 4-planar graph can be orthogonally
drawn in the plane without any bends is NP-complete [10], it is not surprising that also
ortho-radial bend minimization is NP-hard; the proof is in the full version [1] of this paper.

I Theorem 1.1. Deciding whether a 4-planar graph has a planar ortho-radial drawing without
any bends is NP-complete.

SoCG 2017

14:4 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

As our main result we introduce a generalization of an orthogonal representation, which
we call ortho-radial representation, that characterizes the 4-plane graphs, i.e., 4-planar
graphs with a fixed combinatorial embedding, having bend-free ortho-radial drawings; see
Theorem 3.5.

This significantly generalizes the corresponding results for paths, cycles, theta graphs [12],
and cubic graphs [11]. Further, this characterization can be seen as a step towards an
extension of the TSM framework for computing ortho-radial drawings that may have bends.
Namely, once the angles around vertices and the order and directions of bends along each
edge of a graph G have been fixed, we can replace each bend by a vertex to obtain a graph
G′. The directions of bends and the angles at the vertices of G define a unique ortho-radial
representation of G′, which is valid if and only if G admits a drawing with the specified
angles and bends. Thus, ortho-radial drawings can indeed be described by angles around
vertices and orders and directions of bends on edges. Our main result therefore implies that
ortho-radial drawings can be computed by a TSM framework, i.e., by fixing a combinatorial
embedding in a first “Topology” step, determining a description of the drawing in terms
of angles and bends in a second “Shape” step, and computing edge lengths and vertex
coordinates in a final “Metrics” step.

In the following, we disregard the “Topology” step and assume that our input consists of
a 4-planar graph with a fixed combinatorial embedding, i.e., the order of the incident edges
around each vertex is fixed and additionally, one outer face and one central face are specified;
the latter shall contain the center of the drawing. We present our definition of an ortho-radial
representation in Section 3. After introducing some basic tools based on this representation
in Section 4, we first present in Section 5 a characterization for rectangular graphs, whose
ortho-radial representation is such that internal faces have exactly four 90◦ angles, while all
other incident angles are 180◦; i.e., they have to be drawn as rectangles.

The algorithm we use as a proof of drawability corresponds to the “Metrics” step of
an ortho-radial TSM framework. The characterization corresponds to the output of the
“Shape” step. Based on the special case of rectangular 4-planar graphs, we then present the
characterization and the “Metrics” step for general 4-planar graphs in Section 6. Due to
space constraints, some proofs are omitted or only sketched; full proofs can be found in the
full version of this paper [1].

2 Ortho-Radial Drawings

In this section we introduce basic definitions and conventions on ortho-radial drawings that
we use throughout this paper. To that end, we first introduce some basic definitions.

We assume that paths cannot contain vertices multiple times but cycles can, i.e., all paths
are simple. We always consider non-selfcrossing cycles as directed clockwise, so that their
interior is locally to the right of the cycle. A cycle is part of its interior and its exterior.

For a path P and vertices u and v on P , we denote the subpath of P from u to v (including
these vertices) by P [u, v]. We may also specify the first and last edge instead and write,
e.g., P [e, e′] for edges e and e′ on P . We denote the concatenation of two paths P and Q
by P +Q. For a path P = v1 . . . vk, we define its reverse P = vk . . . v1. For a cycle C that
contains any edge at most once (e.g. if C is simple), we extend the notion of subpaths as
follows. For two edges e and e′ on C, the subpath C[e, e′] is the unique path on C that starts
with e and ends with e′. If the start vertex v of e identifies e uniquely, i.e., C contains v
exactly once, we may write C[v, e′] to describe the path on C from v to e′. Analogously, we
may identify e′ with its endpoint if this is unambiguous.

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:5

We are now ready to introduce concepts of ortho-radial drawings. Consider a 4-planar
graph G = (V,E) with fixed embedding. We refer to the directed edge from u to v by uv.
Let ∆ be an ortho-radial drawing of G, and recall that we do not allow bends on edges. In
∆ a directed edge e is either drawn clockwise, counter-clockwise, towards the center or away
from the center; see Fig. 1. Using the metaphor of drawing G on a cylinder, we say that e
points right, left, down or up, respectively. Edges pointing left or right are horizontal edges
and edges pointing up or down are vertical edges.

There are two fundamentally different ways of drawing a simple cycle C. The center of
the grid may lie in the interior or the exterior of C. In the former case C is essential and in
the latter case it is non-essential. In Fig. 1 the red cycle is essential and the blue cycle is
non-essential.

We further observe that ∆ has two special faces: One unbounded face, called the outer
face, and the central face containing the center of the drawing. These two faces are equal if
and only if ∆ contains no essential cycles. All other faces of G are called regular. Ortho-radial
drawings without essential cycles are equivalent to orthogonal drawings [12]. That is, any
such ortho-radial drawing can be transformed to an orthogonal drawing of the same graph
with the same outer face and vice versa.

We represent a face as a cycle f in which the interior of the face lies locally to the right
of f . Note that f may not be simple since cut vertices may appear multiple times on f . But
no directed edge is used twice by f . Therefore, the notation of subpaths of cycles applies
to faces. Note furthermore that the cycle bounding the outer face of a graph is directed
counter-clockwise, whereas all other faces are bounded by cycles directed clockwise.

A face f in ∆ is a rectangle if and only if its boundary does not make any left turns.
That is, if f is a regular face, there are exactly 4 right turns, and if f is the central or the
outer face, there are no turns at all. Note that by this definition f cannot be a rectangle if it
is both the outer and the central face.

3 Ortho-Radial Representations

In this section, we define ortho-radial representations. These are a tool to describe the
ortho-radial drawing of a graph without fixing any edge lengths. As mentioned in the
introduction, they are an analogon to orthogonal representations in the TSM framework.

We observe all directions of all edges being fixed once the direction of one edge and
all angles around vertices are fixed. For two edges uv and vw that enclose the angle α ∈
{90°, 180°, 270°, 360°} at v (such that the angle measured lies locally to the right of uvw), we
define the rotation rot(uvw) = 2− α/90°. We note that the rotation is 1 if there is a right
turn at v, 0 if uvw is straight, and −1 if a left turn occurs at v. If u = w, it is rot(uvw) = −2.

We define the rotation of a path P = v1 . . . vk as the sum of the rotations at its internal
vertices, i.e., rot(P) =

∑k−1
i=2 rot(vi−1vivi+1). Similarly, for a cycle C = v1 . . . vkv1, its

rotation is the sum of the rotations at all its vertices, i.e., rot(C) =
∑k

i=1 rot(vi−1vivi+1),
where we define v0 = vk and vk+1 = v1.

When splitting a path at an edge, the sum of the rotations of the two parts is equal to
the rotation of the whole path.

I Observation 3.1. Let P be a simple path with start vertex s and end vertex t. For all
edges e on P it holds that rot(P) = rot(P [s, e]) + rot(P [e, t]).

Furthermore, reversing a path changes all left turns to right turns and vice versa. Hence,
the sign of the rotation is flipped.

SoCG 2017

14:6 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

P

v
e

C[v, e]

C
e? sr

Figure 4 The labeling of e induced by P is `P
C(e) = rot(e? + P + C[v, e]).

I Observation 3.2. For any path P it is rot(P) = − rot(P).

The next observation analyzes detours; an illustration is found in [1].

I Observation 3.3. Let P be a path from v to w and xy an edge not on P such that x is an
internal vertex of P . It is rot (P [v, x] + xy) + rot (yx+ P [x,w]) = rot (P) + c, where c = −2
if xy lies locally to the right of P and c = +2 if xy lies locally to the left of P .

An ortho-radial representation of a 4-planar graph G consists of a list H(f) of pairs (e, a)
for each face f , where e is an edge on f , and a ∈ {90◦, 180◦, 270◦, 360◦}. Further, the outer
face and the central face are fixed and one reference edge e? in the outer face is given, with
e? oriented such that the outer face is locally to its left. By convention the reference edge is
always drawn such that it points right. We interpret the fields of a pair in H(f) as follows. e
denotes the edge on f directed such that f lies to the right of e. The field a represents the
angle inside f from e to the following edge in degrees. Using this information we define the
rotation of such a pair t = (e, a) as rot(t) = (180◦ − a)/90◦.

Not every ortho-radial representation also yields an ortho-radial drawing of a graph. In
order to characterize valid ortho-radial representations, we introduce labelings of essential
cycles. These labelings prove to be a valuable tool to ensure that all the essential cycles of
the graph can be drawn in such a way that they are compatible with each other.

Let G be an embedded 4-planar graph and let e? = rs be the reference edge of G. Further,
let C be a simple, essential cycle in G, and let P be a path from s to a vertex v on C. The
labeling `P

C of C induced by P is defined for each edge e on C by `P
C(e) = rot(e? +P +C[v, e]);

see Fig. 4 for an illustration. We are mostly interested in labelings that are induced by paths
starting at s and intersecting C only at their endpoints. We call such paths elementary paths.

We now introduce properties characterizing bend-free ortho-radial drawings, as we prove
in Theorem 3.5.

I Definition 3.4. An ortho-radial representation is valid if the following conditions hold:
1. The angle sum of all edges around each vertex given by the a-fields is 360.
2. For each face f , it is

rot(f) =

4, f is a regular face
0, f is the outer or the central face but not both
−4, f is both the outer and the central face

3. For each simple, essential cycle C in G, there is a labeling `P
C of C induced by an

elementary path P such that either `P
C(e) = 0 for all edges e of C, or there are edges e+

and e− on C such that `P
C(e+) > 0 and `P

C(e−) < 0.

The first two conditions ensure that the angle-sums at vertices and inside the faces are
correct. Since the labels of neighboring edges differ by at most 1, the last condition ensures
that on each essential cycle with not only horizontal edges there are edges with labels 1
and −1, i.e., edges pointing up and down. This reflects the characterization for cycles [12].

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:7

Intuitively, basing all labels on the reference edge guarantees that all cycles in the graph can
be drawn together consistently.

For an essential cycle C not satisfying the last condition there are two possibilities.
Either all labels of edges on C are non-negative and at least one label is positive, or all are
non-positive and at least one is negative. In the former case C is called decreasing and in
the latter case it is increasing. We call both monotone cycles. Cycles with only the label 0
are not monotone.

We show that a graph with a given ortho-radial representation can be drawn if and only
if the representation is valid, which yields our main result.

I Theorem 3.5. A 4-plane graph admits a bend-free orthogonal drawing if and only if it
admits a valid ortho-radial representation.

While we defer the proof that the conditions for valid ortho-radial representations are
sufficient for the existence of a drawing to Section 6.2, the necessity of the conditions is easier
to see.

I Theorem 3.6. For any ortho-radial drawing ∆ of a 4-planar graph G there is a valid
ortho-radial representation of G.

Proof Sketch. We note that any drawing ∆ fixes an ortho-radial representation up to the
choice of the reference edge. Let Γ be such an ortho-radial representation where we pick an
edge e? on the outer face as the reference edge such that e? points to the right and lies on the
outermost circle that is used by ∆. By [12] the representation Γ satisfies Conditions 1 and 2
of Definition 3.4. To prove that Γ also satisfies Condition 3, i.e., Γ does not contain any
monotone cycles, we reduce the general case to the more restricted one where all faces are
rectangles. To that end we geometrically augment ∆ to ∆′ such that all faces are rectangles.
Given an essential cycle C in ∆′ we iteratively construct a path P from the topmost point
of C in ∆′ to e? such that each edge on P goes either up or left. For this ∆′ needs to be
rectangular. We show that the reversed path P induces a labeling of C that is 0 on each
edge or has positive and negative labels. J

In the next section, we introduce further tools based on labelings. Subsequently, in
Section 5 we prove Theorem 3.5 for rectangular graphs. In Section 6, we generalize the result
to 4-planar graphs.

4 Properties of Labelings

In this section we study the properties of labelings in more detail to derive useful tools for
proving Theorem 3.5. Throughout this section, G is a 4-planar graph with ortho-radial
representation Γ that satisfies Conditions 1 and 2 of Definition 3.4. Further let e? be a
reference edge. From Condition 2 we obtain that the rotation of all essential cycles is 0.

I Observation 4.1. For any simple essential cycle C of G it is rot(C) = 0.

Together with the reference edge, an ortho-radial representation fixes the direction of
all edges. For the direction of an edge e, we consider a path P from the reference edge to
e including both edges. Different such paths may have different rotations but we observe
that these rotations differ by a multiple of 4. An edge e is directed right, down, left, or up,
if rot(P) is congruent to 0, 1, 2, or 3 modulo 4, respectively. Note that by this definition
the reference edge always points to the right. Because the rotation of essential cycles is 0 by
Observation 4.1, for two edges on an essential cycle we observe the following.

SoCG 2017

14:8 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

b CC ′

Q

P

r
p

v
d

cs

a

Figure 5 Two paths P and Q from s to p. The cycle C′ is formed by Q[b, c] and P [c, b].

I Observation 4.2. For any path P and for any two edges e and e′ on a simple, essential
cycle C, it holds that rot(C[e, e′]) = `P

C(e′)− `P
C(e).

We now show that two elementary paths to the same essential cycle C induce identical
labelings of C. Two paths P and Q from e? to vertices on C are equivalent (P ≡C Q) if the
corresponding labelings agree on all edges of C, i.e., `P

C(e) = `Q
C(e) for every edge e of C.

I Lemma 4.3. Let C be an essential cycle in G and let e? = rs. If P and Q are paths from
s to vertices on C such that P and Q lie in the exterior of C, they are equivalent.

Proof Sketch. From the definition of labelings it is not hard to see that two paths P and Q
are equivalent if there exists an edge e on C with `P

C(e) = `Q
C(e).

We prove the equivalence of P and Q by showing that such an edge e exists. To that
end assume that one of the paths, say Q, is elementary. Let p and q be the endpoints of P
and Q, respectively. Let v be the vertex following p on C when C is directed such that the
central face lies in its interior. We define Q′ = Q+ C[q, p]. It is easy to verify that both P
and Q′ are paths that lie in the exterior of C. We show that

`P
C(pv) = rot(e? + P + pv) = rot(e? +Q′ + pv) = `Q

C(pv). (1)

Hence, the edge pv is the desired edge e. So far we have assumed that Q is elementary.
If neither P nor Q are elementary, choose any elementary path R to a vertex on C. The
argument above shows that P ≡C R and R ≡C Q, and thus P ≡C Q.

To show Equation 1 we do an induction over the number k of directed edges on Q that do
not lie on P . Without loss of generality we assume that Q also ends at p; otherwise we extend
Q to Q+ C[q, p]. If k = 0, P contains Q completely and the claim follows immediately.

If k > 0, there is a first edge ab on Q such that the following edge does not lie on P . Let c
be the first vertex on Q after b that lies on P and let d be the vertex on P + pv that follows c
immediately. Fig. 5 illustrates the situation. Consider the cycle C ′ = Q[b, c]+P [c, b]. For both
cases, namely that C ′ is essential and C ′ is non-essential, we argue that rot(ab+P [b, c]+cd) =
rot(ab+Q[b, c] + cd).

In both cases it then follows from P [s, b] = Q[s, b] that rot(rs+ P [s, c] + cd) = rot(rs+
Q[s, c]+cd). For P ′ = Q[s, c]+P [c, p] it therefore holds that rot(rs+P+pv) = rot(rs+P ′+pv).
As P ′ includes the part of Q between b and c it misses fewer edges from Q than P does.
Hence, the inductive hypothesis implies rot(rs + Q + pv) = rot(rs + P ′ + pv), and thus
rot(rs+Q+ pv) = rot(rs+ P + pv). J

In the remainder of this section all labelings are induced by elementary paths. By
Lemma 4.3, the labelings are independent of the choice of the elementary path. Hence, we
drop the superscript P and write `C(e) for the labeling of an edge e on an essential cycle C.

If an edge e lies on two simple, essential cycles C1 and C2, the labels `C1(e) and `C2(e)
may not be equal in general. In Fig. 6a the labels of the edge e are different for C1 and C2
respectively, but e′ has label 0 on both cycles. Note that e′ is incident to the central face of

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:9

e

e′

C1

C2

e?

(a)

e? 0

0

0

2
2

4
1

-1

3

3

1

10

v

w

(b)

Figure 6 (a) Two cycles C1 and C2 may have both common edges with different labels (`C1 (e) =
4 6= 0 = `C2(e)) and ones with equal labels (`C1(e′) = `C2(e′) = 0). (b) All labels of C1[v, w] are
positive, implying that C1 goes down. Note that not all edges of C1[v, w] point downwards.

f ′
C ′

C

P

Q

ee

a
bb

(a) The cycle bounding the outer face is C′.

f ′

C

P

Qee

C ′

a

bb

(b) The cycle bounding the central face is C′.

Figure 7 The edge e cannot lie on both the outer and the central face, which is marked by a
cross. (a) e does not lie on the outer face, and hence the cycle bounding this face is defined as C′.
(b) C′ is the cycle bounding the central face. In both cases C′ can be subdivided in two paths P

and Q on C and f ′, respectively. Here, these paths are separated by the vertices a and b.

C1 + C2. One can show that this is a sufficient condition for the equality of the labels; see
the full version [1] for a proof.

I Lemma 4.4. Let C1 and C2 be two essential cycles and let H = C1 + C2 be the subgraph
of G formed by these two cycles. Let v be a common vertex of C1 and C2 on the central face
of H and consider the edge vw on C1. Denote the vertices before v on C1 and C2 by u1 and
u2, respectively. Then `C1(u1v) + rot(u1vw) = `C2(u2v) + rot(u2vw).

Further, if vw belongs to both C1 and C2, the labels of e are equal, i.e., `C1(vw) = `C2(vw).

For the correctness proof in Section 6, a crucial insight is that for cycles using an edge
which is part of a face, we can find an alternative cycle without this edge in a way that
preserves labels on the common subpath, which we show in the next lemma; see Fig. 7 for
an illustration.

I Lemma 4.5. If an edge e belongs to both a simple essential cycle C and a regular face f ′
with C 6= f ′, then there is a simple essential cycle C ′ not containing e such that C ′ can be
decomposed into two paths P and Q, where P or P lies on f ′ and Q = C ∩ C ′.

Applying this lemma on an edge e, we construct an essential cycle C ′ without e from an
essential cycle C including e. Also, C and C ′ have a common path P lying on the central
face of C + f ′. Thus, Lemma 4.4 implies labelings of C and C ′ being equal on P .

I Corollary 4.6. For essential cycles C, C ′ and the path P = C ∩ C ′ from Lemma 4.5, it is
`C(e) = `C′(e) for all edges e on P .

SoCG 2017

14:10 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

y

C ′

C -1xw

v

zu

1

f̃

Figure 8 All edges of C′ are labeled
with 0. In this situation there are edges
on C with labels −1 and 1. Hence, C is
neither increasing nor decreasing.

(a) Nver (b) Nrad

Figure 9 Flow networks Nver and Nrad for an example
graph G. For simplicity, the edge from the outer to the
central face in Nrad is omitted.

A monotone essential cycle cannot intersect an essential cycle whose edges are all labeled 0.

I Lemma 4.7. Let C and C ′ be two essential cycles that have at least one common vertex.
If all edges on C ′ are labeled with 0, C is neither increasing nor decreasing.

Proof Sketch. Consider Fig. 8. Let v be a vertex after which C and C ′ diverge. Assume
C leaves this vertex into the interior (the exterior) of C ′. Let y be the vertex where both
cycles converge again. Then, C enters y from the interior (the exterior) of C. Thus, one of
the edges uw and xy must be labeled positively and the other one negatively. J

5 Characterization of Rectangular Graphs

In this section, we prove Theorem 3.5 for rectangular graphs. A rectangular graph is a
graph together with an ortho-radial representation in which every face is a rectangle, i.e., all
incident angles are 90◦ or 180◦. We define two flow networks that assign consistent lengths
to the graph’s edges, one for the vertical and one for the horizontal edges. These networks
are straightforward adaptions of the networks used for drawing rectangular graphs in the
plane [7]. In the following, vertex and edge refer to the vertices and edges of the graph G,
whereas node and arc are used for the flow networks.

The network Nver = (Fver, Aver) with nodes Fver and arcs Aver for the vertical edges
contains one node for each face of G except for the central and the outer face. All nodes
have a demand of 0. For each vertical edge e in G, which we assume to be directed upwards,
there is an arc ae = fg in Nver, where f and g denote the face left and right of e, respectively.
The flow on ae has the lower bound l(ae) = 1 and upper bound u(ae) =∞. An example of
this flow network is shown in Fig. 9a.

To obtain a drawing from a flow in Nver, we set the length of a vertical edge e to the flow
on ae. The conservation of the flow at each node f ensures that the two vertical sides of the
face f have the same length.

Similarly, the network Nrad assigns lengths to the radial edges. There is a node for each
face of G, and an arc ae = fg for every horizontal edge e in G, which we assume to be
oriented clockwise. Additionally, Nrad includes one arc from the outer to the central face.
Again, all edges require a minimum flow of 1 and have infinite capacity. The demand of all
nodes is 0. Fig. 9b shows an example of such a flow network.

I Observation 5.1. A pair of valid flows in Nrad and Nver bijectively corresponds to a valid
ortho-radial drawing of G respecting Γ.

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:11

This immediately follows from the construction of the flow networks.

I Theorem 5.2. Let (G,Γ) be a rectangular graph and its ortho-radial representation. If Γ
is valid, there exists a bend-free ortho-radial drawing of G respecting Γ.

Proof Sketch. The fact that such a flow exists in Nrad is analogous to the orthogonal
case [15]. The key is to show that a valid circulation Fver in Nver exists if Γ is valid. The
main idea is to determine for each arc a of Nver a cycle Ca in Nver that contains a. If Fa

denotes the circulation that pushes one unit of flow along the arcs of Ca and is 0 elsewhere,
then Fver =

∑
a∈A Fa, where A denotes the arc set of Nver, is the desired flow. The only

reason why such a cycle Ca might not exist is if there is a set S of vertices in Nver such
that there exists an arc entering S but no arc exiting S. Without loss of generality, we
assume the subnetwork of Nver induced by S to be weakly connected, which implies that S
corresponds to a connected set S of faces in G. Note that S contains a directed cycle of Nver,
which is an essential cycle. Let C and C ′ denote the smallest and largest essential cycle of
G, respectively, such that all faces in S lie in the interior of C and in the exterior of C ′. We
show that C is increasing or C ′ is decreasing.

Assume there is an arc a entering S that crosses C (an incoming arc crossing C ′ is
similar). Since all faces are rectangles, there is an elementary path P from e? to a vertex
v on C using only right and down edges of G. Thus, if w is the first vertex of C after v,
it is `C(vw) = 0 if vw is horizontal and `C(vw) = −1 if vw points up. Since no edge on
C is pointing downward, i.e., its label is congruent to 1 mod 4, and the labels between
adjacent edges differ by −1, 0, or 1, it follows that `C(e′) ∈ {−2,−1, 0} for all edges e′ of C,
i.e., `C(e′) ≤ 0. However, the edge e corresponding to the incoming arc a of S is pointing
upwards, and therefore `C(e) = −1. Hence C is increasing. J

Combining this result with Theorem 3.6 results in the characterization of ortho-radial
drawings for rectangular graphs.

I Corollary 5.3 (Theorem 3.5 for Rectangular Graphs). A rectangular 4-plane graph admits a
bend-free ortho-radial drawing if and only if its ortho-radial representation is valid.

6 Characterization of 4-Planar Graphs

In the previous section we proved for rectangular graphs that there is an ortho-radial drawing
if and only if the ortho-radial representation is valid. We extend this result to 4-planar
graphs by reduction to the rectangular case. In this section we provide a high-level overview
of the reduction; a detailed description is found in [1].

In Section 6.1 we present an algorithm that augments G to a rectangular graph. In
Section 6.2 we then apply Corollary 5.3 to show the remaining implication of Theorem 3.5.

6.1 Rectangulation Algorithm
Given a graph G and its ortho-radial representation Γ as input, we present a rectangulation
algorithm that augments Γ producing a graph G′ with ortho-radial representation Γ′ such
that all faces except the central and outer face of Γ′ are rectangles. Moreover, we ensure
that the outer and the central face of Γ′ make no turns.

Let u be a vertex that has a left turn on a face f and let vw be an edge on f . Let further
t be the vertex before u on f . We obtain an augmentation Γu

vw from Γ by splitting the
edge vw into two edges vz and zw introducing a new vertex z. Further, we insert the edge

SoCG 2017

14:12 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

uz in the interior of f such that uz points in the same direction as tu. For an illustration of
an augmentation see Fig. 10.

Without loss of generality, we assume the central and outer faces to be rectangular; this
can be achieved by inserting 3-cycles into both faces and connecting them to the graph.
Every regular face that is not a rectangle has a left turn. We augment that face with an
additional edge such that the left turn is resolved and no further left turns are introduced,
which guarantees that the procedure of augmenting the graph terminates.

We further argue that we augment the given representation in such a way that it remains
valid. Conditions 1 and 2 of Definition 3.4 are easy to preserve if we choose the targets of the
augmentation correctly; the proof is analogous to the proof by Tamassia [15]. In particular,
the next observation helps us to check for these two conditions.

I Observation 6.1. The representation Γu
vw satisfies Conditions 1 and 2 of Definition 3.4 if

and only if rot(f [u, vw]) = 2.

We further have to check Condition 3, i.e., we need to ensure that we do not introduce
monotone cycles when augmenting the graph.

We now describe the approach in more detail. Tamassia [15] shows that if there is a
left turn, there also is a left turn on a face f such that the next two turns on f are right
turns. We resolve that left turn by augmenting G, which we sketch in the following. Let u
be the vertex at which face f takes that left turn. Let t be the vertex before u on f . We
differentiate two major cases, namely that tu is either vertical or horizontal.

Case 1, tu is vertical. Let vw be the edge that appears on f after the two right turns
following the left turn at u. We show that creating a new vertex z on vw and adding the
edge uz (cf. to Fig. 10a for an example) always upholds validity; see Section 6.2 for details.

Case 2, tu is horizontal. This case is more intricate, because we may introduce decreasing
or increasing cycles by augmenting the graph. Fig. 10b shows an example, where the graph
does not include a decreasing cycle without the edge uz, but inserting uz introduces one.
We therefore do not just consider Γu

vw, but Γu
e for a set of candidate edges e, which include

all edges v′w′ on f such that rot(f [u, v′w′]) = 2. Hence, Condition 1 and Condition 2 are
satisfied by Observation 6.1. If there is a candidate e such that Γu

e does not contain a
monotone cycle, we are done.

So assume that there is no such candidate and, furthermore, assume without loss of
generality that tu points to the right. Let the set of candidates be ordered as they appear
on f . We show that introducing an edge from u to the first candidate never introduces an
increasing cycle, while introducing an edge from u to the last candidate never introduces
a decreasing cycle. This also implies that there must be a consecutive pair of candidates
vw and v′w′ such that introducing an edge from u to vw creates a decreasing cycle and
introducing an edge from u to v′w′ creates an increasing cycle.

In Section 6.2 we show that in that case, one of the edges uw or uv′ can be inserted
without introducing a monotone cycle. Together with Observation 6.1, this proves that we
can always remove left turns from the representation while maintaining validity.

Altogether, the algorithm consists of first finding a suitable left turn in the representation,
then determining which of the two cases applies and finally performing the augmentation.
In particular, when augmenting the graph, we need to ensure that we do not introduce
monotone cycles. Checking for monotone cycles can trivially be done by testing all essential
cycles. However, this may require an exponential number of tests and it is unknown whether
testing the existence of a monotone cycle can be done in polynomial time.

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:13

u

wv z

(a) Γu
vw

u w

v

C
x

z

(b) Γu
vw

u

w
v

C ′

x

z

(c) Γu
wx

Figure 10 Examples of augmentations. (a) Inserting uz is valid, if uz points upwards. (b) The
representation Γu

vw is not valid since inserting the new edge introduces a decreasing cycle C. (c) The
candidate wx instead gives the valid representation Γu

wx. The cycle C′, which uses the same edges
outside of f as C before, is neither in- nor decreasing.

6.2 Correctness of the Rectangulation Algorithm
Following the proof structure outlined in the previous section we argue more detailedly that
a valid augmentation always exists. We start with Case 1, in which the inserted edges is
vertical and show that a valid augmentation always exists.

I Lemma 6.2. Let vw be the first candidate edge after u. If the edge of f entering u points
up or down, Γu

vw is a valid ortho-radial representation of the augmented graph G+ uz.

Proof. Assume that Γu
vw contains a simple monotone cycle C. As Γ is valid, C must contain

the new edge uz in either direction (i.e., uz or zu). Let f ′ be the new rectangular face of
G+ uz containing u, v and z, and consider the subgraph H = C + f ′ of G+ uz. According
to Lemma 4.5 there exists a simple essential cycle C ′ that does not contain uz. Moreover,
C ′ can be decomposed into paths P and Q such that P lies on f ′ and Q is a part of C.

The goal is to show that also C ′ is monotone. We present a proof only for the case of
increasing C. The proof for decreasing cycles can be obtained by flipping all inequalities.

For each edge e on Q the labels `C(e) and `C′(e) are equal by Lemma 4.4, hence `C′(e) ≤ 0.
For an edge e ∈ P , there are two possible cases. The edge e either lies on the side of f ′
parallel to uz or on one of the two other sides. In the first case, the label of e is equal to the
label `C(uz) (`C(zu) if C contains zu instead of uz). In particular the label is negative.

In the second case, we first note that `C′(e) is even, since e points left or right. Assume
that `C′(e) is positive and therefore at least 2. Then, let e′ be the first edge on C ′ after e
that points to a different direction. Such an edge exists, since otherwise all edges on C ′ would
have the label 2 and therefore C ′ would be decreasing contradicting the assumption that Γ
is valid. This edge e′ lies on Q or is parallel to uz. Hence, the argument above implies that
`C′(e′) ≤ 0. However, `C′(e′) differs from `C′(e) by at most 1, which requires `C′(e′) ≥ 1.
Therefore, `C′(e) cannot be positive.

We conclude that all edges of C ′ have a non-positive label. If all labels were 0, C would
not be an increasing cycle by Lemma 4.7. Thus, there exists an edge on C ′ with a negative
label and C ′ is an increasing cycle in Γ. But as Γ is valid, such a cycle does not exist, and
therefore C does not exist either. Hence, Γu

vw is valid. J

In Case 2 the inserted edge is horizontal. If there is a candidate e such that Γu
e is valid, we

choose this augmentation and the left turn at u is removed successfully. Otherwise, we make
use of the following structural properties. As before we assume that uz points to the right;
the other case can be treated analogously. Using a similar, though technically somewhat
more difficult approach as in Lemma 6.2 one can show that augmenting with the first and
last candidate does not create increasing and decreasing cycles, respectively.

I Lemma 6.3. Let vw be the first candidate after u. No increasing cycle exists in Γu
vw.

SoCG 2017

14:14 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

u
w = v′
v

w′

(a)

u w

v

w′

v′Q

(b)

u
v′

v

w′
w

Q

(c)

Figure 11 Three possibilities how the path between w and v′ can look like: (a) w = v′, (b) all
edges point right, and (c) all edges point left. In the first two cases the edge uw is inserted and in
(c) uv′ is added.

z

z′

x

y

u

v

w

w′

v′

Figure 12 The structure that is used to simulate the insertion of both uz and uz′ at the same
time. The edge uz is replaced by the path uxz and uz′ by uxyz′.

I Lemma 6.4. Let vw be the last candidate before u. No decreasing cycle exists in Γu
vw.

By assumption Γu
e contains a monotone cycle for each candidate edge e. From Lemma 6.3

and Lemma 6.4 it follows that there are consecutive candidates vw and v′w′ such that Γu
vw

has a decreasing cycle and Γu
v′w′ has an increasing cycle.

I Lemma 6.5. Let Q be the path on f between the candidates vw and v′w′. Then, Q can be
completed to a path P in G containing w, v′ and u whose edges all point to the right. More
precisely, P starts at w or v′ and ends at u, and either Q or Q forms the first part of P .
Moreover, the start vertex of P has no incident edge to its left.

Proof Sketch. We introduce a construction inside f that simulates the augmentations Γu
vw

and Γu
v′w′ at the same time; see Fig. 12. With this construction the resulting representation

essentially contains both the increasing cycle of Γu
v′w′ and the decreasing cycle of Γu

vw. Using
this, we show that both cycles use Q and thus Q must only point to the right. Similarly, we
show that both cycles are equal outside of f , which implies that all corresponding edges also
point to the right. Hereby, these edges together with Q form the desired path P . J

There are three possible ways how the vertices w and v′ can be arranged on P ; see Fig. 11.
Either w = v′, w comes before v′, or v′ comes before w. In any case we denote the start
vertex of P by z. According to Lemma 6.5, no edge is incident to the left of z. Hence, the
insertion of the edge uz such that it points right gives a new ortho-radial representation Γ′,
which is valid by the following lemma.

I Lemma 6.6. Let Γ′ be the ortho-radial representation that is obtained from Γ by adding
the edge uz pointing to the right as in Lemma 6.5. Then, Γ′ is valid.

Proof. By construction, Γ′ satisfies Conditions 1 and 2 of Definition 3.4. Let C ′ = P + uz

be the new cycle whose edges point right. It is `C′(e) = 0 for each edge e of C ′. Essential
cycles without uz or zu are not monotone, since they are already present in the valid
representation Γ. If an essential cycle C contains uz or zu and thus the vertex u, Lemma 4.7
states that C is not monotone. Thus, Γ′ satisfies Condition 3 and is therefore valid. J

L. Barth, B. Niedermann, I. Rutter, and M. Wolf 14:15

Putting all results together we see that the rectangulation algorithm presented in Section 6.1
works correctly. That is, given a valid ortho-radial representation Γ, the algorithm produces
another valid ortho-radial representation Γ′ such that all faces of Γ′ are rectangles and Γ is
contained in Γ′. Combining this result with Theorem 5.2 we obtain the following theorem.

I Theorem 6.7. Let Γ be a valid ortho-radial representation of a graph G. Then there is a
drawing of G representing Γ.

This shows the remaining implication of Theorem 3.5 thus completing the characterization.

7 Conclusion

In this paper we considered orthogonal drawings of graphs on cylinders. Our main result is a
characterization of the 4-plane graphs with a fixed embedding that can be drawn bend-free
on a cylinder in terms of a combinatorial description of such drawings. These ortho-radial
representations determine all angles in the drawing without fixing any lengths, and thus
are a natural extension of Tamassia’s orthogonal representations. However, compared to
those, the proof that every valid ortho-radial representation has a corresponding drawing is
significantly more involved. The reason for this is the more global nature of the additional
property required to deal with the cyclic dimension of the cylinder.

Our ortho-radial representations establish the existence of an ortho-radial TSM framework
in the sense that they are a combinatiorial description of the graph serving as interface
between the “Shape” and “Metrics” step.

For rectangular 4-plane graphs, we gave an algorithm producing a drawing from a valid
ortho-radial representation. Our proof reducing the drawing of general 4-plane graphs with
a valid ortho-radial representation to the case of rectangular 4-plane graphs is constructive;
however, it requires checking for the violation of our additional consistency criterion. It is an
open question whether this condition can be checked in polynomial time. These algorithms
correspond to the “Metrics” step in a TSM framework for ortho-radial drawings.

Since the additional property of the characterization is non-local (it is based on paths
through the whole graph), the original flow network by Tamassia cannot be easily adapted
to compute a bend-minimal valid ortho-radial representation, which would correspond to the
“Shape” step of an ortho-radial TSM framework. We leave this as an open question.

References
1 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Towards a topology-

shape-metrics framework for ortho-radial drawings. CoRR, arXiv:1703.06040, 2017.
2 Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Compu-

tational Geometry: Theory and Applications, 9:159–180, 1998.
3 Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal graph

drawing with flexibility constraints. Algorithmica, 68(4):859–885, 2014.
4 Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal graph drawing with

inflexible edges. Computational Geometry: Theory and Applications, 55:26–40, 2016.
5 Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing

with convex bend costs. ACM Transactions on Algorithms, 12:33:1–33:32, 2016.
6 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. Journal of

Graph Algorithms and Applications, 16(3):635–650, 2012.
7 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-

ing – Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

SoCG 2017

14:16 Towards a Topology-Shape-Metrics Framework for Ortho-Radial Drawings

8 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal or-
thogonal drawings. SIAM Journal on Computing, 27(6):1764–1811, 1998. doi:10.1137/
S0097539794262847.

9 Christian A. Duncan and Michael T. Goodrich. Handbook of Graph Drawing and Visualiz-
ation, chapter Planar Orthogonal and Polyline Drawing Algorithms, pages 223–246. CRC
Press, 2013.

10 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.

11 Madieh Hasheminezhad, S. Mehdi Hashemi, Brendan D. McKay, and Maryam Tahmasbi.
Rectangular-radial drawings of cubic plane graphs. Computational Geometry: Theory and
Applications, 43:767–780, 2010.

12 Mahdie Hasheminezhad, S. Mehdi Hashemi, and Maryam Tahmabasi. Ortho-radial draw-
ings of graphs. Australasian Journal of Combinatorics, 44:171–182, 2009.

13 Md. Saidur Rahman, Shin-ichi Nakano, and Takao Nishizeki. Rectangular grid drawings
of plane graphs. Computational Geometry: Theory and Applications, 10:203–220, 1998.

14 Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal drawings of
plane graphs without bends. Journal of Graph Algorithms and Applications, 7(3):335–362,
2003.

15 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

http://dx.doi.org/10.1137/S0097539794262847
http://dx.doi.org/10.1137/S0097539794262847

On the Number of Ordinary Lines Determined by
Sets in Complex Space∗†

Abdul Basit1, Zeev Dvir2, Shubhangi Saraf3, and Charles Wolf4

1 Department of Computer Science, Rutgers University, Piscataway, NJ, USA
basit.abdul@gmail.com

2 Department of Mathematics and Department of Computer Science, Princeton
University, Princeton, NJ, USA
zeev.dvir@gmail.com

3 Department of Computer Science and Department of Mathematics, Rutgers
University, Piscataway, NJ, USA
shubhangi.saraf@gmail.com

4 Department of Mathematics, Rutgers University, Piscataway, NJ, USA
ciw13@math.rutgers.edu

Abstract
Kelly’s theorem states that a set of n points affinely spanning C3 must determine at least one
ordinary complex line (a line passing through exactly two of the points). Our main theorem
shows that such sets determine at least 3n/2 ordinary lines, unless the configuration has n − 1
points in a plane and one point outside the plane (in which case there are at least n− 1 ordinary
lines). In addition, when at most n/2 points are contained in any plane, we prove a theorem
giving stronger bounds that take advantage of the existence of lines with four and more points (in
the spirit of Melchior’s and Hirzebruch’s inequalities). Furthermore, when the points span four
or more dimensions, with at most n/2 points contained in any three dimensional affine subspace,
we show that there must be a quadratic number of ordinary lines.

1998 ACM Subject Classification G.2.1 Combinatorics, Counting problems

Keywords and phrases Incidences, Combinatorial Geometry, Designs, Polynomial Method

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.15

1 Introduction

Let V = {v1, v2, . . . , vn} be a set of n points in Cd. We denote by L(V) the set of lines
determined by points in V , and by Lr(V) (resp. L≥r(V)) the set of lines in L(V) that contain
exactly (resp. at least) r points. Let tr(V) denote the size of Lr(V). Throughout the write-up
we omit the argument V when the context makes it clear. We refer to L2 as the set of
ordinary lines, and L≥3 as the set of special lines.

A well known result in combinatorial geometry is the Sylvester-Gallai theorem.

I Theorem 1 (Sylvester-Gallai theorem). Let V be a set of n points in R2 not all on a line.
Then there exists an ordinary line determined by points of V.

∗ A full version of the paper is available at http://arxiv.org/abs/1611.08740.
† Work of the second author was supported by NSF CAREER award DMS-1451191 and NSF grant

CCF-1523816. Work by the third and fourth authors was supported in part by NSF grant CCF-1350572.

© Abdul Basit, Zeev Dvir, Shubhangi Saraf, and Charles Wolf;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.15
http://arxiv.org/abs/1611.08740
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 On the Number of Ordinary Lines Determined by Sets in Complex Space

The statement was conjectured by Sylvester in 1893 [18], and the first published proof is by
Melchior [14]. Later proofs were given by Gallai in 1944 [8] and others; there are now several
different proofs of the theorem. Of particular interest is the following result by Melchior [14].

I Theorem 2 (Melchior’s inequality [14]). Let V be a set of n points in R2 that are not
collinear. Then

t2(V) ≥ 3 +
∑
r≥4

(r − 3)tr(V).

Theorem 2 in fact proves something stronger than the Sylvester-Gallai theorem, i.e. there are
at least three ordinary lines. A natural question to ask is how many ordinary lines must a
set of n points, not all on a line, determine. This led to what is known as the Dirac-Motzkin
conjecture.

I Conjecture 3 (Dirac-Motzkin conjecture). For every n 6= 7, 13, the number of ordinary
lines determined by n noncollinear points in the plane is at least

⌈
n
2
⌉
.

There were several results on this question (see [15, 13, 5]), before Green and Tao [9] resolved
it for large enough point sets.

I Theorem 4 (Green and Tao [9]). Let V be a set of n points in R2, not all on a line. Suppose
that n ≥ n0 for a sufficiently large absolute constant n0. Then t2(V) ≥ n

2 for even n and
t2(V) ≥

⌊ 3n
4
⌋
for odd n.

[9] provides a nice history of the problem, and there are several survey articles on the topic,
see for example [3].

The Sylvester-Gallai theorem is not true when the field R is replaced by C. The well
known Hesse configuration, realized by the nine inflection points of a non-degenerate cubic,
provides a counter example. A more general example is the following:

I Example 5 (Fermat configuration). For any positive integer k ≥ 3, let V be inflection points
of the Fermat Curve Xk + Y k + Zk = 0 in PC2. Then V has n = 3k points, in particular

V =
k⋃
i=1
{[1 : ωi : 0]} ∪ {[ωi : 0 : 1]} ∪ {[0 : 1 : ωi]},

where ω is a kth root of −1.
It is easy to check that V determines three lines containing k points each, while every

other line contains exactly three points. In particular, V determines no ordinary lines.1

In response to a question of Serre [17], Kelly [12] showed that when the points span more
than two dimensions, the point set must determine at least one ordinary line.

I Theorem 6 (Kelly’s theorem [12]). Let V be a set of n points in C3 that are not contained
in a plane. Then there exists an ordinary line determined by points of V.

Kelly’s proof of Theorem 6 used a deep result of Hirzebruch [11] from algebraic geometry.
More specifically, it used the following result, known as Hirzebruch’s inequality.

1 We note that the while Fermat configuration as stated lives in the projective plane, it can be made
affine by any projective transformation that moves a line with no points to the line at infinity.

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:3

I Theorem 7 (Hirzebruch’s inequality [11]). Let V be a set of n points in C2, such that
tn(V) = tn−1(V) = tn−2(V) = 0. Then

t2(V) + 3
4 t3(V) ≥ n+

∑
r≥5

(2r − 9)tr(V).

More elementary proofs of Theorem 6 were given in [7] and [6]. To the best of our knowledge,
no lower bound greater than one is known for the number of ordinary lines determined by
point sets spanning C3. Improving on the techniques of [6], we make the first progress in
this direction.

I Theorem 8. Let V be a set of n ≥ 24 points in C3 not contained in a plane. Then V
determines at least 3

2n ordinary lines, unless n− 1 points are on a plane in which case there
are at least n− 1 ordinary lines.

Clearly if n− 1 points are coplanar, it is possible to have only n− 1 ordinary lines. In
particular, let V consist of the Fermat Configuration, for some k ≥ 3, on a plane and one
point v not on the plane. Then V has 3k + 1 points, and the only ordinary lines determined
by V are lines that contain v, so there are exactly 3k ordinary lines. We are not aware of any
examples that achieve the 3

2n bound when at most n− 2 points are contained in any plane.
Using a similar argument, for point sets in R3, Theorems 4 and 8 give us the following easy
corollary.

I Corollary 9. Let V be a set of n points in R3 not contained in a plane. Suppose that
n ≥ n0 for a sufficiently large absolute constant n0. Then V determines at least 3

2n − 1
ordinary lines.

When V is sufficiently non-degenerate, i.e. no plane contains too many points, we are
able to give a more refined bound in the spirit of Melchior’s and Hirzebruch’s inequalities,
taking into account the existence of lines with more than three points. In particular, we
show the following (the constant 1/2 in Theorem 10 is arbitrary and can be replaced by any
positive constant smaller than 1):

I Theorem 10. There exists an absolute constant c > 0 and a positive integer n0 such that
the following holds. Let V be a set of n ≥ n0 points in C3 with at most 1

2n points contained
in any plane. Then

t2(V) ≥ 3
2n+ c

∑
r≥4

r2tr(V).

Suppose that V consists of n− k points on a plane, and k points not on the plane. There
are at least n− k lines through each point not on the plane, at most k − 1 of which could
contain three or more points. So we get that there are at least k(n − 2k) ordinary lines
determined by V. Then if k = εn, for 0 < ε < 1/2, we get that V has Ωε(n2) ordinary
lines, where the hidden constant depends on ε. Therefore, the bound in Theorem 10 is only
interesting when no plane contains too many points.

We note that having at most a constant fraction of the points on any plane is necessary
to obtain a bound as in Theorem 10. Indeed, let V consist of the Fermat Configuration
for some k ≥ 3 on a plane and o(k) points not on the plane. Then V has O(k) points and
determines o(k2) ordinary lines. On the other hand,

∑
r≥4 r

2tr(V) = Ω(k2).
Finally, when a point set V spans four or more dimensions in a sufficiently non-degenerate

manner, i.e. no three dimensional affine subspace contains too many points, we prove that
there must be a quadratic number of ordinary lines.

SoCG 2017

15:4 On the Number of Ordinary Lines Determined by Sets in Complex Space

I Theorem 11. There exists an absolute constant c′ > 0 and a positive integer n0 such that
the following holds. Let V be a set of n ≥ n0 points in C4 with at most 1

2n points contained
in any three dimensional affine subspace. Then

t2(V) ≥ c′n2.

Here, again, the constant 1/2 is arbitrary and can be replaced by any positive constant
less than 1. However, increasing this constant will shrink the constant c′ in front of n2. A
quadratic lower bound may also be possible if at most 1

2n points are contained in any two
dimensional space, but we have no proof or counterexample.

Note that while we state Theorems 8 and 10 over C3 and Theorem 11 over C4, the same
bounds hold in higher dimensions as well since we may project a point set in Cd onto a
generic lower dimensional subspace, preserving the incidence structures. In addition, while
these theorems are proved over C, these results are also new and interesting over R.

Organization. In Section 2 we give a short overview of the new ideas in our proof (which
builds upon [6]). In Section 3 we develop the necessary machinery on matrix scaling and
Latin squares. In Section 4, we prove some key lemmas that will be used in the proofs of our
main results. Section 5 gives the proof of Theorem 8, which is considerably simpler than
Theorems 10 and 11. In Section 6, we develop additional machinery needed for the proof of
Theorem 10 and describe the basic proof idea. The complete proofs of Theorems 10 and 11
can be found in the full version of the paper.

2 Proof overview

The starting point for the proofs of Theorems 8, 10 and 11 is the method developed in [2, 6]
which uses rank bounds for design matrices – matrices in which the supports of different
columns do not intersect in too many positions. We augment the techniques in these papers
in several ways which give us more flexibility in analyzing the number of ordinary lines. We
devote this short section to an overview of the general framework (starting with [6]) outlining
the places where new ideas come into play.

Let V = {v1, . . . , vn} be points in Cd and denote by V the n× (d+ 1) matrix whose ith
row is the vector (vi, 1) ∈ Cd+1, i.e. the vector obtained by appending a 1 to the vector vi.
The dimension of the (affine) space spanned by the point set can be seen to be equal to
rank(V)−1. We would now like to argue that too many collinearities in V (or too few ordinary
lines) imply that all (or almost all) points of V must be contained in a low dimensional
affine subspace, i.e. rank(V) is small. To do this, we construct a matrix A, encoding the
dependencies in V , such that AV = 0. Then we must have rank(V) ≤ n− rank(A), and so it
suffices to lower bound the rank of A.

We construct the matrix A in the following manner so that each row of A corresponds to
a collinear triple in V. For any collinear triple {vi, vj , vk}, there exist coefficients ai, aj , ak
such that aivi + ajvj + akvk = 0. We can thus form a row of A by taking these coefficients
as the nonzero entries in the appropriate columns. By carefully selecting the triples using
constructions of Latin squares (see Lemma 22), we can ensure that A is a design matrix.

The proof in [6] now proceeds to prove a general rank lower bound on any such design-
matrix. To understand the new ideas in our proof, we need to ‘open the box’ and see how the
rank bound from [6] is actually proved. The proof in [6] relies on matrix scaling techniques
to gain control of the matrix. We are allowed to multiply each row and each column of A
by a nonzero scalar and would like to reduce to the case where the entries of A are ‘mostly

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:5

balanced’ (see Theorem 14 and Corollary 15). Once scaled, we can consider M = A∗A

(note that rank(M) = rank(A)). The design properties of A are then used to show that the
diagonal entries of M are large and the off-diagonal entries are small. Such matrices are
referred to as diagonal dominant matrices, and it is easy to lower bound their rank using
trace inequalities (see Lemma 16).

Our proof introduces two new main ideas into this picture. The first idea has to do with
the conditions needed to scale A. It is known (see Corollary 15) that a matrix A has a
good scaling if it does not contain a ‘too large’ zero submatrix. This is referred to as having
Property-S (see Definition 13). The proof of [6] uses A to construct a new matrix B, whose
rows are the same as those of A but with some rows repeating more than once. Then one
shows that B has Property-S and continues to scale B (which has rank at most that of A)
instead of A. This loses the control on the exact number of rows in A which is crucial for
bounding the number of ordinary lines. We instead perform a more careful case analysis: If
A has Property-S then we scale A directly and gain more information about the number
of ordinary lines. If A does not have Property-S, then we carefully examine the large zero
submatrix that violates Property-S. Such a zero submatrix corresponds to a set of points
and a set of lines such that no line passes through any of the points. We argue in Lemma 26
that such a submatrix implies the existence of many ordinary lines.

The second new ingredient in our proof comes into play only in the proof of Theorem 10.
Here, our goal is to improve on the rank bound of [6] using the existence of lines with four or
more points. Recall that our goal is to give a good upper bound on the off-diagonal entries
of M = A∗A. Consider the (i, j)’th entry of M , obtained by taking the inner product of
columns i and j in A. The i’th column of A contains the coefficients of vi in a set of collinear
triples containing vi (we might not use all collinear triples). In [6] this inner product is
bounded using the Cauchy-Schwartz inequality, and uses the fact that we picked our triple
family carefully so that vi and vj appear together in a small number of collinear triples.
One of the key insights of our proof is to notice that since the entries come from linear
dependencies, having more than three points on a line gives rise to cancellations in the inner
products (which increase the more points we have on a single line).

3 Preliminaries

3.1 Matrix Scaling and Rank Bounds

One of the main ingredients in our proof is rank bounds for design matrices. These techniques
were first used for incidence type problems in [2] and improved upon in [6]. We first set up
some notation. For a complex matrix A, let A∗ denote the matrix conjugated and transposed.
Let Aij denote the entry in the ith row and jth column of A. For two complex vectors
u, v ∈ Cd, we denote their inner product by 〈u, v〉 =

∑d
i=1 ui · vi.

Central to the obtaining rank bounds for matrices is the notion of matrix scaling. We
now introduce this notion and provide some definitions and lemmas.

I Definition 12 (Matrix Scaling). Let A be an m× n matrix over some field F. For every
ρ ∈ Fm, γ ∈ Fn with all entries nonzero, the matrix A′ with A′ij = Aij · ρi · γj is referred to
as a scaling of A. Note that two matrices that are scalings of each other have the same rank.

We will be interested in scalings of matrices that control the row and column sums. The
following property provides a sufficient condition under which such scalings exist.

SoCG 2017

15:6 On the Number of Ordinary Lines Determined by Sets in Complex Space

I Definition 13 (Property-S). Let A be an m× n matrix over some field. We say that A
satisfies Property-S if for every zero submatrix of size a× b, we have

a

m
+ b

n
≤ 1.

The following theorem is given in [16].

I Theorem 14 (Matrix Scaling theorem). Let A be an m× n real matrix with non-negative
entries satisfying Property-S. Then, for every ε > 0, there exists a scaling A′ of A such that
the sum of every row of A′ is at most 1 + ε, and the sum of every column of A′ is at least
m/n− ε. Moreover, the scaling coefficients are all positive real numbers.

We may assume that the sum of every row of the scaling A′ is exactly 1 + ε. Otherwise, we
may scale the rows to make the sum 1 + ε, and note that the column sums can only increase.

The following Corollary to Theorem 14 appeared in [2].

I Corollary 15 (`2 scaling). Let A be an m× n complex matrix satisfying Property-S. Then,
for every ε > 0, there exists a scaling A′ of A such that for every i ∈ [m]∑

j∈[n]

∣∣A′ij∣∣2 ≤ 1 + ε,

and for every j ∈ [n]∑
i∈[m]

∣∣A′ij∣∣2 ≥ m

n
− ε .

Moreover, the scaling coefficients are all positive real numbers.

Corollary 15 is obtained by applying Theorem 14 to the matrix obtained by squaring
the absolute values of the entries of the matrix A. Once again, we may assume that∑
j∈[n]

∣∣A′ij∣∣2 = 1 + ε.
To bound the rank of a matrix A, we will bound the rank of the matrix M = A′∗A′,

where A′ is some scaling of A. Then we have that rank(A) = rank(A′) = rank(M). We use
Corollary 15, along with rank bounds for diagonal dominant matrices. The following lemma
is a variant of a folklore lemma on the rank of diagonal dominant matrices (see [1]) and
appeared in this form in [6].

I Lemma 16. Let A be an n×n complex hermitian matrix, such that |Aii| ≥ L for all i ∈ n.
Then

rank(A) ≥ n2L2

nL2 +
∑
i 6=j |Aij |2

.

The matrix scaling theorem allows us to control the `2 norms of the columns and rows of
A, which in turn allow us to bound the sums of squares of entries of M . To this end, we use
the following lemma which appeared in [6].

I Lemma 17. Let A be an m× n matrix over C. Suppose that each row of A has `2 norm
α, the supports of every two columns of A intersect in at most t locations, and the size of
the support of every row is q. Let M = A∗A. Then∑

i 6=j
|Mij |2 ≤

(
1− 1

q

)
tmα4.

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:7

Lemma 17 is sufficient to prove Theorems 8 and 11. To prove Theorem 10, we need better
bounds. A more careful analysis in the proof of Lemma 17 gives us the following lemma.
The proof follows the same basic approach and can be found in the full version of the paper.
We first need the following definition.

I Definition 18. Let A be an m× n matrix over C. Then we define:

D(A) :=
∑
i6=j

∑
k<k′

∣∣AkiAkj −Ak′iAk′j

∣∣2 , and E(A) :=
m∑
k=1

∑
i<j

(
|Aki|2 − |Akj |2

)2
.

Note that both D(A) and E(A) are non-negative real numbers.

I Lemma 19. Let A be an m× n matrix over C. Suppose that each row of A has `2 norm
α, the supports of every two columns of A intersect in exactly t locations, and the size of the
support of every row is q. Let M = A∗A. Then∑

i6=j
|Mij |2 =

(
1− 1

q

)
tmα4 −

(
D(A) + t

q
E(A)

)
.

3.2 Latin squares
Latin squares play a central role in our proof. While Latin squares play a role in both [6]
and [2], our proof exploits their design properties more strongly.

I Definition 20 (Latin square). An r×r Latin square is an r×r matrix L such that Lij ∈ [r]
for all i, j and every number in [r] appears exactly once in each row and exactly once in each
column.

If L is a Latin square and Lii = i for all i ∈ [r], we call it a diagonal Latin square.

I Lemma 21. For every r ≥ 3, there exists an r× r diagonal Latin square. For r ≥ 4, there
exist diagonal Latin squares with the additional property that, for every i 6= j, Lij 6= Lji.

Proof. For r ≥ 3, the existence of r × r diagonal Latin squares was proved by Hilton [10].
Therefore, we need only show the second part of the theorem. For this we rely on self-
orthogonal Latin squares.

Two Latin squares L and L′ are called orthogonal if every ordered pair (k, l) ∈ [r]2
occurs uniquely as (Lij , L′ij) for some i, j ∈ [r]. A Latin square is called self-orthogonal if it
is orthogonal to its transpose, denoted by LT . A theorem of Brayton, Coppersmith, and
Hoffman [4] proves the existence of r × r self-orthogonal Latin squares for r ∈ N, r 6= 2, 3, 6.
Let L be a self-orthogonal Latin square. Since Lii = LTii, the diagonal entries give all pairs
of the form (i, i) for every i ∈ [r], i.e. the diagonal entries must be a permutation of [r].
Without loss of generality, we may assume that Lii = i and so L is also a diagonal Latin
square. Clearly a self-orthogonal Latin square satisfies the property that Lij 6= Lji if i 6= j.

This leaves us only with the case r = 6, which requires separate treatment. It is known
that 6× 6 self-orthogonal Latin squares do not exist. Fortunately, the property we require is
weaker and we are able to give an explicit construction of a matrix that is sufficient for our
needs. Let L be the following matrix

1 4 5 3 6 2
3 2 6 5 1 4
2 5 3 6 4 1
6 1 2 4 3 5
4 6 1 2 5 3
5 3 4 1 2 6

.

It is straightforward to verify that L has the required properties. J

SoCG 2017

15:8 On the Number of Ordinary Lines Determined by Sets in Complex Space

The following lemma is a strengthening of a lemma from [2].

I Lemma 22. Let r ≥ 3. Then there exists a set T ⊆ [r]3 of r2 − r triples, referred to as a
triple system, that satisfies the following properties:
1. Each triple consists of three distinct elements.
2. For every pair i, j ∈ [r], i 6= j, there are exactly six triples containing both i and j.
3. If r ≥ 4, for every i, j ∈ [r], i 6= j, there are at least two triples containing i and j such

that the remaining elements are distinct.

Proof. Let L be a Latin square as in Lemma 21. Let T be the set of triples (i, j, k) ⊆ [r]3
with i 6= j and k = Lij . Clearly the number of such triples is r2 − r. We verify that the
properties mentioned hold.

Recall that we have Lii = i for all i ∈ [r], and every value appears once in each row and
column. So for i 6= j ∈ [r], it can not happen that Lij = i or Lij = j and we get Property 1,
i.e. all elements of a triple must be distinct.

For Property 2, note that a pair i, j appears once as (i, j, Lij) and once as (j, i, Lji). And
since every element appears exactly once in every row and column, we have that i must
appear once in the jth row, j must appear once in the ith row and the same for the columns.
It follows that each of (∗, j, i), (j, ∗, i), (∗, i, j) and (i, ∗, j) appears exactly once, where ∗ is
some other element of [r]. This gives us that every pair appears in exactly six triples.

For r ≥ 4 and i 6= j, since Lij 6= Lji, the triples (i, j, Lij) and (j, i, Lji) are sufficient to
satisfy Property 3. J

4 The dependency matrix

Let V = {v1, . . . , vn} be a set of n points in Cd. We will use dim(V) to denote the dimension
of the linear span of V and by affine-dim(V) the dimension of the affine span of V (i.e., the
minimum r such that points of V are contained in a shift of a linear subspace of dimension
r). We projectivize Cd and consider the set of vectors V ′ = {v′1, . . . , v′n}, where v′i = (vi, 1)
is the vector in Cd+1 obtained by appending a 1 to the vector vi. Let V be the n× (d+ 1)
matrix whose ith row is the vector v′i. Now note that

affine-dim(V) = dim(V ′)− 1 = rank(V)− 1.

We now construct a matrix A, which we refer to as the dependency matrix of V. Note
here that the construction we give here is preliminary, but suffices to prove Theorems 8 and
11. A refined construction is given in Section 6, where we select the triples more carefully.
The rows of the matrix will consist of linear dependency coefficients, which we define below.

I Definition 23 (Linear dependency coefficients). Let v1, v2 and v3 be three distinct collinear
points in Cd, and let v′i = (vi, 1), i ∈ {1, 2, 3}, be vectors in Cd+1. Recall that v1, v2, v3 are
collinear if and only if there exist nonzero coefficients a1, a2, a3 ∈ C such that

a1v
′
1 + a2v

′
2 + a3v

′
3 = 0.

We refer to the a1, a2 and a3 as the linear dependency coefficients between v1, v2, v3. Note
that the coefficients are determined up to scaling by a complex number. Throughout our
proof, the specific choice of coefficients does not matter, so we fix a canonical choice by
setting a3 = 1.

I Definition 24 (Dependency Matrix). For every line l ∈ L≥3(V), let Vl denote the points
lying on l. Then |Vl| ≥ 3 and we assign each line a triple system Tl ⊆ V3

l , the existence

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:9

of which is guaranteed by Lemma 22. Let A be the m× n matrix obtained by going over
every line l ∈ L≥3 and for each triple (i, j, k) ∈ Tl, adding as a row of A a vector with three
nonzero coefficients in positions i, j, k corresponding to the linear dependency coefficients
among the points vi, vj , vk. We refer to A as the dependency matrix for V.

Note that we have AV = 0. Every row of A has exactly three nonzero entries. By
Property 2 of Lemma 22, the supports of any distinct two columns intersect in exactly six
entries when the two corresponding points lie on a special line2, and 0 otherwise. That is,
the supports of any two distinct columns intersect in at most six entries.

We say a pair of points vi, vj , i 6= j, appears in the dependency matrix A if there exists
a row with nonzero entries in columns i and j. The number of times a pair appears is the
number of rows with nonzero entries in both columns i and j.

Every pair of points that lies on a special line appears exactly six times. The only pairs
not appearing in the matrix are pairs of points that determine ordinary lines. There are

(
n
2
)

pairs of points, t2(V) of which determine ordinary lines. So the number of pairs appearing in
A is

(
n
2
)
− t2. The total number of times these pairs appear is then 6

((
n
2
)
− t2

)
. Every row

gives three distinct pairs of points, so it follows that the number of rows of A is

m = 6
((

n

2

)
− t2

)
/3 = n2 − n− 2t2(V). (1)

Note that m > 0, unless t2 =
(
n
2
)
, i.e. all lines are ordinary.

As mentioned in the proof overview, we will consider two cases: when A satisfies Property-
S and when it does not. We now prove lemmas dealing with the two cases. The following
lemma deals with the former case.

I Lemma 25. Let V be a set of n points affinely spanning Cd, d ≥ 3, and let A be the
dependency matrix for V. Suppose that A satisfies Property-S. Then

t2(V) ≥ (d− 3)
2(d+ 1)n

2 + 3
2n .

Proof. Fix ε > 0. Since A satisfies Property-S, by Lemma 15 there is a scaling A′ such
that the `2 norm of each row is at most

√
1 + ε and the `2 norm of each column is at least√

m
n − ε. Let M := A′∗A′. Then Mii ≥ m

n − ε for all i. Since every row in A has support of
size three, and the supports of any two columns intersect in at most six locations, Lemma 17
gives us that

∑
i6=j
|Mij |2 ≤ 4m(1 + ε)2. By applying Lemma 16 to M we get,

rank(M) ≥
n2(mn − ε)

2

n(mn − ε)2 + 4m(1 + ε)2 .

Taking ε to 0, and combining with (1), we get

rank(A) = rank(A′) = rank(M) ≥
n2m2

n2

nm
2

n2 + 4m
= mn

m+ 4n

= n− 4n2

m+ 4n = n− 4n2

n2 − n− 2t2(V) + 4n

= n− 4n2

n2 + 3n− 2t2(V) .

2 Note that while the triple system Tl consists of ordered triples, the supports of the rows of A are
unordered.

SoCG 2017

15:10 On the Number of Ordinary Lines Determined by Sets in Complex Space

Recall that affine-dim(V) = d = rank(V) − 1. Since AV = 0, we have that rank(V) ≤
n− rank(A). It follows that

d+ 1 ≤ 4n2

n2 + 3n− 2t2(V) .

Rearranging gives us that

t2(V) ≥ (d− 3)
2(d+ 1)n

2 + 3
2n. J

We now consider the case when Property-S is not satisfied.

I Lemma 26. Let V be a set of n points in Cd, and let A be the dependency matrix for V.
Suppose that A does not satisfy Property-S. Then, for every integer b∗, 1 < b∗ < 2n/3, one
of the following holds:
1. There exists a point v ∈ V contained in at least 2

3 (n+ 1)− b∗ ordinary lines;
2. t2(V) ≥ nb∗/2.

Proof. Since A violates Property-S, there exists a zero submatrix supported on rows U ⊆ [m]
and columns W ⊆ [n] of the matrix A, where |U | = a and |W | = b, such that

a

m
+ b

n
> 1.

Let X = [m] \ U and Y = [n] \W and note that |X| = m − a and |Y | = n − b. Let the
violating columns correspond to the set V1 = {v1, . . . , vb} ⊂ V . We consider two cases: when
b < b∗, and when b ≥ b∗.

Case 1: (b < b∗). We may assume that U is maximal, so every row in the submatrix
X ×W has at least one nonzero entry. Partition the rows of X into three parts: Let X1, X2
and X3 be rows with one, two and three nonzero entries in columns of W respectively. We
will get a lower bound on the number of ordinary lines containing exactly one point in V1 and
one point in V \ V1 by bounding the number of pairs {vi, w}, with vi ∈ V1 and w ∈ V \ V1,
that lie on special lines. Note that there are at most b(n− b) such pairs, and each pair that
does not lie on a special line determines an ordinary line.

Each row of X1 gives two pairs of points {vi, w1} and {vi, w2} that lie on a special line,
where vi ∈ V1 and w1, w2 ∈ V \ V1. Each row of X2 gives two pairs of points {vi, w} and
{vj , w}, where vi, vj ∈ V1 and w ∈ V \ V1 that lie on special lines. Each row of X3 has all
zero entries in the submatrix supported on X × Y , so does not contribute any pairs. Recall
that each pair of points on a special line appears exactly six times in the matrix. This implies
that the number of pairs that lie on special lines with at least one point in V1 and one point
in V \ V1 is 2|X1|+2|X2|

6 ≤ 2|X|
6 . Hence, the number of ordinary lines containing exactly one

of v1, . . . , vb is then at least b(n− b)− |X|3 .
Recall that

1 < a

m
+ b

n
=
(

1− |X|
m

)
+ b

n
.

Substituting m ≤ n2 − n, from (1), we get

|X| < bm

n
≤ b(n− 1).

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:11

This gives that the number of ordinary lines containing exactly one point in V1 is at least

b(n− b)− |X|3 >
2b
3 n−

3b2 − b
3 .

We now have that there exists v ∈ V1 such that the number of ordinary lines containing v is
at least⌊

2
3n−

3b− 1
3

⌋
≥
⌊

2
3n− b

∗ + 4
3

⌋
≥ 2

3(n+ 1)− b∗.

Case 2: (b ≥ b∗). We will determine a lower bound for t2(V) by counting the number of
nonzero pairs of entries Aij , Aij′ with j 6= j′, that appear in the submatrix U × Y . There
are

(
n−b

2
)
pairs of points in V \ V1, each of which appears at most six times, therefore the

number of pairs of such entries is at most 6
(
n−b

2
)
. Each row of U has three pairs of nonzero

entries, i.e. the number of pairs of entries equals 3a. It follows that

3a ≤ 6
(
n− b

2

)
(2)

Recall equation (1) and that a
m + b

n > 1, which gives us

a > m

(
1− b

n

)
=
(
n2 − n− 2t2(V)

)(
1− b

n

)
. (3)

Combining (2) and (3), we get

(
n2 − n− 2t2(V)

)(
1− b

n

)
< 2
(
n− b

2

)
.

Solving for t2(V) gives us

t2(V) > nb

2 ≥
nb∗

2 . J

5 Proof of Theorem 8

We note here that the machinery developed so far is sufficient to prove both Theorems 8
and 11. Both proofs are based on similar ideas. We give the proof of Theorem 8 in this
section.

The proof relies on Lemmas 25 and 26. Together, these lemmas imply that there must be
a point with many ordinary lines containing it, or there are many ordinary lines in total. As
mentioned in the proof overview, the theorem is then obtained by using an iterative argument
removing a point with many ordinary lines through it, and then applying the same argument
to the remaining points. We get the following easy corollary from Lemma 25 and Lemma 26.

I Corollary 27. Let V be a set of n points in Cd not contained in a plane. Then one of the
following holds:
1. There exists a point v ∈ V contained in at least 2

3n−
7
3 ordinary lines.

2. t2(V) ≥ 3
2n.

Proof. Let A be the dependency matrix for V. If A satisfies Property-S, then we are done
by Lemma 25. Otherwise, let b∗ = 3, and note that Lemma 26 gives us the statement of the
corollary when n ≥ 5. J

SoCG 2017

15:12 On the Number of Ordinary Lines Determined by Sets in Complex Space

We are now ready to prove Theorem 8.

Proof of Theorem 8. If t2(V) ≥ 3
2n then we are done. Else, by Corollary 27, we may assume

there exists a point v1 with at least 1
3 (2n − 7) ordinary lines and hence at most 1

6 (n + 4)
special lines through it. Let V1 = V \ {v1}. If V1 is planar, then there are exactly n − 1
ordinary lines through v1. We note here that this is the only case where there exists fewer
then 3

2n ordinary lines.
Suppose now that V1 is not planar. Again, by Corollary 27, there are either 3

2 (n − 1)
ordinary lines in V1 or there exists a point v2 ∈ V1 with at least 2

3 (n− 1)− 7
3 = 1

3 (2n− 9)
ordinary lines through it. In the former case, we get 3

2 (n− 1) ordinary lines in V1, at most
1
6 (n+ 4) of which could contain v1. This gives that the total number of ordinary lines in V is

t2(V) ≥ 3
2(n− 1)− 1

6(n+ 4) + 1
3(2n− 7) = 1

2(4n− 9).

When n ≥ 9, we get that t2(V) ≥ 3
2n.

In the latter case there exists a point v2 ∈ V1 with at least 1
3 (2n − 9) ordinary lines

in V1 through it. Note that at most one of these could contain v1, so we get at least
1
3 (2n− 7) + 1

3 (2n− 9)− 1 = 1
3 (4n− 19) ordinary lines through one of v1 or v2. Note also that

the number of special lines through one of v1 or v2 is at most 1
6 (n+ 4) + 1

6 (n+ 3) = 1
6 (2n+ 7).

Let V2 = V1 \ {v2}. If V2 is contained in a plane, we get at least n− 3 ordinary lines from
each of v1 and v2 giving a total of 2n− 6 ordinary lines in V. It follows that when n ≥ 12,
t2(V) ≥ 3

2n.

Otherwise V2 is not contained in a plane, and again Corollary 27 gives us two cases. If
there are 3

2 (n− 2) ordinary lines in V2, then we get that the total number of ordinary lines is

t2(V) = 3
2(n− 2)− 1

6(2n+ 7) + 1
3(4n− 19) = 1

2(5n− 21).

When n ≥ 11, we get that t2(V) ≥ 3
2n.

Otherwise there exists a point v3 with at least 2
3 (n− 2)− 7

3 ordinary lines through it. At
most two of these could pass through one of v1 or v2, so we get 2

3 (n− 2)− 7
3 − 2 = 1

3 (2n− 17)
ordinary lines through v3 in V. Summing up the number of lines through one of v1, v2 and
v3, we get that

t2(V) ≥ 1
3(2n− 17) + 1

3(4n− 19) = 2n− 12.

When n ≥ 24, we get that t2(V) ≥ 3
2n. J

6 Proof Idea of Theorem 10

We first give a more careful construction for the dependency matrix of a point set V . Recall
that we defined the dependency matrix in Definition 24 to contain a row for each collinear
triple from a triple system constructed on each special line. The goal was to not have
too many triples containing the same pair. In this section (Definition 33) we will give a
construction of a dependency matrix that will have an additional property (captured in Item
4 of Lemma 31) which is used to obtain cancellation in the diagonal dominant argument.

We denote the argument of a complex number z by arg (z), and use the convention that
for every complex number z, arg (z) ∈ (−π, π].

I Definition 28 (angle between two complex numbers). We define the angle between two
complex numbers a and b to be the the absolute value of the argument of ab, denoted by∣∣arg (ab)∣∣. Note that the angle between a and b equals the angle between b and a.

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:13

I Definition 29 (co-factor). Let v1, v2 and v3 be three distinct collinear points in Cd, and
let a1, a2 and a3 be the linear dependency coefficients among the three points. Define the
co-factor of v3 with respect to (v1, v2), denoted by C(1,2)(3), to be a1a2

|a1||a2| . Notice that this
is well defined with respect to the points, and does not depend on the choice of coefficients.

The following lemma will be used to show that “cancellations” must arise in a line containing
four points (as mentioned earlier in the proof overview). We will later use this lemma as a
black box to quantify the cancellations in lines with more than four points by applying it to
random four tuples inside the line.

I Lemma 30. Let v1, v2, v3, v4 be four collinear points in Cd. Then at least one of the
following hold:
1. The angle between C(1,2)(3) and C(1,2)(4) is at least π/3.
2. The angle between C(1,3)(4) and C(1,3)(2) is at least π/3.
3. The angle between C(1,4)(2) and C(1,4)(3) is at least π/3.

Our final dependency matrix will be composed of blocks, each given by the following
lemma. Roughly speaking, we construct a block of rows A(l) for each special line l. The
rows in A(l) will be chosen carefully and will correspond to triples that will eventually give
non trivial cancellations.

I Lemma 31. Let l be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 3. Let Vl be
the r × (d+ 1) matrix whose ith row is the vector (vi, 1). Then there exists an (r2 − r)× r
matrix A = A(l), which we refer to as the dependency matrix of l, such that the following
hold:
1. AVl = 0;
2. Every row of A has support of size three;
3. The support of every two columns of A intersects in exactly six locations;
4. If r ≥ 4 then for at least 1/3 of choices of k ∈ [r2 − r], there exists k′ ∈ [r2 − r]

such that following holds: For k ∈ [r2 − r], let Rk denote the rth row of A. Suppose
supp(Rk) = {i, j, s}. Then supp(Rk′) = {i, j, t} (for some t 6= s) and the angle between
the co-factors C(i,j)(s) and C(i,j)(t) is at least π/3.

Proof. Recall that Lemma 22 gives us a family of triples Tr on the set [r]3. For every
bijective map σ : Vl → [r], construct a matrix Aσ in the following manner: Let Tl be the
triple system on V3

l induced by composing σ and Tr. For each triple (vi, vj , vk) ∈ Tl, add a
row with three non-zero entries in positions i, j, k corresponding to the linear dependency
coefficients between vi, vj and vk.

Note that for every σ, Aσ has r2 − r rows and r columns. Since the rows correspond to
linear dependency coefficients, clearly we have AσVl = 0 satisfying Property 1. Properties 2
and 3 follow from properties of the Tl from Lemma 22.

We will use a probabilistic argument to show that there exists a matrix A that has
Property 4. Let Σ be the collection of all bijective maps from [r] to the points Vl, and let
σ ∈ Σ be a uniformly random element. Consider Aσ. Since every pair of points occurs in at
least two distinct triples, for every row Rk of Aσ, there exists a row Rk′ such that the supports
of Rk and Rk′ intersect in two entries. Suppose that Rk and Rk′ have supports contained in
{i, j, s, t}. Suppose that σ maps {vi, vj , vs, vt} to {1, 2, 3, 4} and that (1, 2, 3) and (1, 2, 4) are
triples in Tr. Without loss of generality, assume vi maps to 1. Then by Lemma 30, the angle
between at least one of the pairs {C(i,j)(s), C(i,j)(t)}, {C(i,s)(j), C(i,s)(t)}, {C(i,t)(j), C(i,t)(s)}
must be at least π/3. That is, given that vi maps to 1, we have that the probability that Rk

SoCG 2017

15:14 On the Number of Ordinary Lines Determined by Sets in Complex Space

satisfies Property 4 is at least 1/3. Then it is easy to see that

Pr(Rk satisfies Property 4) ≥ 1/3.

Define the random variable X to be the number of rows satisfying Property 4, and note
that we have

E[X] ≥ (r2 − r)1
3 .

It follows that there exists a matrix A in which at least 1/3 of the rows satisfy Property
4. J

Based on this new construction, we can give improved bound on the sum of the off-
diagonal entries. The proof involves somewhat tedious calculations and can be found in the
full version.

I Lemma 32. There exists an absolute constant c0 > 0 such that the following holds. Let l
be a line in Cd and Vl = {v1, . . . vr} be points on l with r ≥ 4. Let A(l) be the dependency
matrix for l, defined in Lemma 31, and A′ a scaling of A such that the `2 norm of every
row is α. Let M = A′∗A′.∑

i 6=j
|Mij |2 ≤ 4(r2 − r)α4 − c0(r2 − r)α2.

We are now ready to define the dependency matrix that we will use in the proof of
Theorem 10.

I Definition 33 (Dependency Matrix, second construction). Let V = {v1, . . . vn} be a set of n
points in Cd and let V be the n× (d+ 1) matrix whose ith row is the vector (vi, 1). For each
matrix A(l), where l ∈ L≥3(V), add n− r column vectors of all zeroes, with length r2 − r, in
the column locations corresponding to points not in l, giving an (r2 − r)× n matrix. Let A
be the matrix obtained by taking the union of rows of these matrices for every l ∈ L≥3(V).
We refer to A as the dependency matrix of V.

Note that this construction is a special case of the one given in Definition 24 and so satisfies
all the properties mentioned there. In particular, we have AV = 0 and the number of rows
in A equals n2 − n− 2t2(V).

Proof Idea. We now briefly describe the proof idea for Theorem 10, which follows the proof
of Theorem 8 closely. Given the dependency matrix A, if A satisfies Property-S, we are able
to use matrix scaling along with the improved bound from Lemma 32. If the matrix does
not satisfy Property-S, we use Lemma 26. This gives us the following corollary.

I Corollary 34. There exists a constant c1 > 0 and a positive integer n0 such that the
following holds. Let V be a set of n ≥ n0 points in Cd not contained in a plane. Then one of
the following must hold:
1. There exists a point v ∈ V contained in at least n

2 ordinary lines.
2. t2(V) ≥ 3

2n+ c1
∑
r≥4(r2 − r)tr(V).

To complete the proof, we again use a pruning argument. We use Corollary 34 to
find a point with a large number of ordinary lines, “prune” this point, and then repeat
this on the smaller set of points. We stop when either we can not find such a point, in
which case Corollary 34 guarantees a large number of ordinary lines, or when we have
accumulated enough ordinary lines. The assumption that no plane contains more than
n/2 points guarantees that we are able to continue pruning until we find sufficiently many
ordinary lines.

A. Basit, Z. Dvir, S. Saraf, and C. Wolf 15:15

References
1 N. Alon. Perturbed identity matrices have high rank: Proof and applications. Combinat-

orics, Probability and Computing, 18(1-2):3–15, 2009.
2 B. Barak, Z. Dvir, A. Wigderson, and A. Yehudayoff. Fractional Sylvester–Gallai theorems.

Proceedings of the National Academy of Sciences, 110(48):19213–19219, 2013.
3 P. Borwein and W. Moser. A survey of Sylvester’s problem and its generalizations. Aequa-

tiones Mathematicae, 40(1):111–135, 1990.
4 R.K. Brayton, D. Coppersmith, and A. J. Hoffman. Self-orthogonal latin squares of all

orders n 6= 2, 3, 6. Bulletin of the American Mathematical Society, 80, 1974.
5 J. Csima and E.T. Sawyer. There exist 6n/13 ordinary points. Discrete & Computational

Geometry, 9(2):187–202, 1993.
6 Z. Dvir, S. Saraf, and A. Wigderson. Improved rank bounds for design matrices and a new

proof of Kelly’s theorem. In Forum of Mathematics, Sigma, volume 2, page e4. Cambridge
University Press, 2014.

7 N. Elkies, L.M. Pretorius, and K. Swanepoel. Sylvester–Gallai theorems for complex num-
bers and quaternions. Discrete & Computational Geometry, 35(3):361–373, 2006.

8 T. Gallai. Solution of problem 4065. American Mathematical Monthly, 51:169–171, 1944.
9 B. Green and T. Tao. On sets defining few ordinary lines. Discrete & Computational

Geometry, 50(2):409–468, 2013.
10 A. J.W. Hilton. On double diagonal and cross latin squares. Journal of the London Math-

ematical Society, 2(4):679–689, 1973.
11 F. Hirzebruch. Arrangements of lines and algebraic surfaces. In Arithmetic and geometry,

pages 113–140. Springer, 1983.
12 L. Kelly. A resolution of the Sylvester-Gallai problem of J.-P. Serre. Discrete & Computa-

tional Geometry, 1(1):101–104, 1986.
13 L. Kelly and W. Moser. On the number of ordinary lines determined by n points. Canadian

Journal of Mathematics, 10:210–219, 1958.
14 E. Melchior. Über Vielseite der projektiven Ebene. Deutsche Math, 5:461–475, 1940.
15 Th. Motzkin. The lines and planes connecting the points of a finite set. Transactions of

the American Mathematical Society, pages 451–464, 1951.
16 U. Rothblum and H. Schneider. Scalings of matrices which have prespecified row sums and

column sums via optimization. Linear Algebra and its Applications, 114:737–764, 1989.
17 J.-P. Serre. Advanced problem 5359. American Mathematical Monthly, 73(1):89, 1966.
18 J. J. Sylvester. Mathematical question 11851. Educational Times, 59(98):256, 1893.

SoCG 2017

On Optimal 2- and 3-Planar Graphs∗

Michael A. Bekos1, Michael Kaufmann2, and
Chrysanthi N. Raftopoulou3

1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
bekos@informatik.uni-tuebingen.de

2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
mk@informatik.uni-tuebingen.de

3 School of Applied Mathematical & Physical Sciences, NTUA, Athens, Greece
crisraft@mail.ntua.gr

Abstract
A graph is k-planar if it can be drawn in the plane such that no edge is crossed more than k

times. While for k = 1, optimal 1-planar graphs, i.e. those with n vertices and exactly 4n − 8
edges, have been completely characterized, this has not been the case for k ≥ 2. For k = 2, 3 and
4, upper bounds on the edge density have been developed for the case of simple graphs by Pach
and Tóth, Pach et al. and Ackerman, which have been used to improve the well-known “Crossing
Lemma”. Recently, we proved that these bounds also apply to non-simple 2- and 3-planar graphs
without homotopic parallel edges and self-loops.

In this paper, we completely characterize optimal 2- and 3-planar graphs, i.e., those that
achieve the aforementioned upper bounds. We prove that they have a remarkably simple regular
structure, although they might be non-simple. The new characterization allows us to develop
notable insights concerning new inclusion relationships with other graph classes.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases topological graphs, optimal k-planar graphs, characterization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.16

1 Introduction

Topological graphs, i.e. graphs with a representation of the edges as Jordan arcs between
corresponding vertex points in the plane, form a well-established subject in the field of
geometric graph theory. Besides the classical problems on crossing numbers and crossing
configurations [3, 19, 25], the well-known ”Crossing Lemma” [2, 18] stands out as a prominent
result. Researchers on graph drawing have followed a slightly different research direction,
based on extensions of planar graphs that allow crossings in some restricted local config-
urations [7, 12, 15, 14, 17]. The main focus has been on 1-planar graphs, where each edge
can be crossed at most once, with early results dating back to Ringel [23] and Bodendiek et
al. [8]. Extensive work on generation [24], characterization [16], recognition [11], coloring [9],
page number [5], etc. has led to a very good understanding of properties of 1-planar graphs.

Pach and Tóth [22], Pach et al. [21] and Ackerman [1] bridged the two research directions
by considering the more general class of k-planar graphs, where each edge is allowed to be

∗ This work is supported by the DFG grant Ka812/17-1.

© Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 On Optimal 2- and 3-Planar Graphs

crossed at most k times. In particular, Pach and Tóth provided significant progress, as they
developed techniques for upper bounds on the number of edges of simple k-planar graphs,
which subsequently led to upper bounds of 5n − 10 [22], 5.5n − 11 [21] and 6n − 12 [1]
for simple 2-, 3- and 4-planar graphs, respectively. An interesting consequence was the
improvement of the leading constant in the ”Crossing Lemma”. Note that for general k, the
current best bound on the number of edges is 4.1

√
kn [22].

Recently, we generalized the result and the bound of Pach et al. [21] to non-simple graphs,
where non-homotopic parallel edges as well as non-homotopic self-loops are allowed [6]. Note
that this non-simplicity extension is quite natural and not new, as for planar graphs, the
density bound of 3n− 6 still holds for such non-simple graphs.

In this paper, we now completely characterize optimal non-simple 2- and 3-planar graphs,
i.e. those that achieve the bounds of 5n−10 and 5.5n−11 on the number of edges, respectively;
refer to Theorems 9 and 17. In particular, we prove that the commonly known 2-planar
graphs achieving the upper bound of 5n− 10 edges, are in fact, the only optimal 2-planar
graphs. Such graphs consist of a crossing-free subgraph where all not necessarily simple faces
have size 5. At each face there are 5 more edges crossing in its interior. We correspondingly
show that the optimal 3-planar graphs have a similar simple and regular structure where
each planar face has size 6 and contains 8 additional crossing edges.

2 Preliminaries

Let G be a (not necessarily simple) topological graph, i.e. G is a graph drawn on the plane,
so that the vertices of G are distinct points in the plane, its edges are Jordan curves joining
the corresponding pairs of points, and:
(i) no edge passes through a vertex different from its endpoints,
(ii) no edge crosses itself and
(iii) no two edges meet tangentially.
Let Γ(G) be such a drawing of G. The crossing graph X (G) of G has a vertex for each edge
of G and two vertices of X (G) are connected by an edge if and only if the corresponding
edges of G cross in Γ(G). A connected component of X (G) is called crossing component.
Note that the set of crossing components of X (G) defines a partition of the edges of G. For
an edge e of G we denote by X (e) the crossing component of X (G) which contains e.

An edge e in Γ(G) is called a topological edge (or simply edge, if it is clear in the context).
Edge e is called true-planar, if it is not crossed in Γ(G). The set of all true-planar edges of
Γ(G) forms the so-called true-planar skeleton of Γ(G), which we denote by Π(G). Since G is
not necessarily simple, we will assume that Γ(G) contains neither homotopic parallel edges
nor homotopic self-loops, that is, both the interior and the exterior regions defined by any
self-loop or by any pair of parallel edges contain at least one vertex. For a positive integer s,
a cycle of length s is called true-planar s-cycle if it consists of true-planar edges of Γ(G). If e
is a true-planar edge, then X (e) = {e}, while for a chord e of a true-planar s-cycle that has
no vertices in its interior, it follows that all edges of X (e) are also chords of this s-cycle. Let
Fs = {v1, v2, . . . , vs} be a facial s-cycle of Π(G) with length s ≥ 3. The order of the vertices
(and subsequently the order of the edges) of Fs is determined by a walk along the boundary
of Fs in clockwise direction. Since Fs is not necessarily simple, a vertex or an edge may
appear more than once; see Fig. 1a. More general, a region in Γ(G) is defined as a closed
walk along non-intersecting segments of Jordan curves that are adjacent either at vertices or
at crossing points of Γ(G). The interior and the exterior of a connected region are defined
as the topological regions to the right and to the left of the walk.

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:3

v1
v2

v3
v7

v4

v5

(a)

u u′

v

v′

c

c′

Rc,c′

(b)

u u′

v v′

c

c′

R
c
,c

′

(c)

u u′

v v′

c

c′
p′

p

(d)

u

v

v′

c

p

(e)

u

v

v′

cRc

(f)

Figure 1 (a) A non-simple face {v1, . . . , v7}, where v6 is identified with v4. Different configurations
used in (b–d) Lemma 1, and (e–f) Lemma 2.

If every edge in Γ(G) is crossed at most k times, Γ(G) is called k-planar. A graph
is k-planar if it has a k-planar drawing. An optimal k-planar graph is a k-planar graph
with the maximum number of edges. In particular, we consider optimal 2- and 3-planar
graphs achieving the best-known upper bounds of 5n− 10 and 5.5n− 11 edges. A k-planar
drawing Γ(G) of an optimal k-planar graph G is called planar-maximal crossing-minimal or
PMCM-drawing, if and only if Γ(G) has the maximum number of true-planar edges among
all k-planar drawings of G and, subject to this, Γ(G) has the minimum number of crossings.

Consider two edges (u, v) and (u′, v′) that cross at least twice in Γ(G). Let c and c′ be
two crossing points of (u, v) and (u′, v′) that appear consecutively along (u, v) in this order
from u to v (i.e., there is no other crossing point of (u, v) and (u′, v′) between c and c′).
W.l.o.g. we assume that c and c′ appear in this order along (u′, v′) from u′ to v′ as well. In
Figs. 1b and 1c we have drawn two possible crossing configurations. First we drew (u, v) as
an arc with u above v and the edge-segment of (u′, v′) between u and c to the right of (u, v).
The edge-segment of (u′, v′) between c and c′, starts at c and ends at c′ either from the right
(Fig. 1b) or from the left (Fig. 1c) of (u, v), yielding two crossing configurations.

I Lemma 1. For k ∈ {2, 3}, let Γ(G) be a PMCM-drawing of an optimal k-planar graph G
in which two edges (u, v) and (u′, v′) cross more than once. Let c and c′ be two consecutive
crossings of (u, v) and (u′, v′) along (u, v), and let Rc,c′ be the region defined by the walk
along the edge segment of (u, v) from c to c′ and the one of (u′, v′) from c′ to c. Then, Rc,c′

has at least one vertex in its interior and one in its exterior.

Proof. Consider first the crossing configuration of Fig. 1b. Since crossings c and c′ are
consecutive along (u, v) and (u′, v′) does not cross itself, it follows that vertex u′ lies in the
exterior of Rc,c′ , while vertex v′ in the interior of Rc,c′ . Hence, the lemma holds. Consider
now the crossing configuration of Fig. 1c. Since c and c′ are consecutive along (u, v), vertices
u′ and v′ are in the exterior of Rc,c′ . Assume now, to the contrary, that Rc,c′ contains
no vertices in its interior. W.l.o.g. we further assume that (u, v) and (u′, v′) is a minimal
crossing pair in the sense that, Rc,c′ cannot contain another region Rp,p′ defined by any other
pair of edges that cross twice; for a counterexample see Fig. 1d. Let nc(u, v) and nc(u′, v′)
be the number of crossings along (u, v) and (u′, v′) that are between c and c′, respectively
(red in Fig. 1c). Observe that by the “minimality” criterion of (u, v) and (u′, v′) we have
nc(u, v) = nc(u′, v′). We redraw edges (u, v) and (u′, v′) by exchanging their segments
between c and c′ and eliminate both crossings c and c′ without affecting the k-planarity of
G; see the dotted edges of Fig. 1c. This contradicts the crossing minimality of Γ(G). J

I Lemma 2. For k ∈ {2, 3}, let Γ(G) be a PMCM-drawing of an optimal k-planar graph G
in which two edges (u, v) and (u, v′) incident to a common vertex u cross. Let c be the first
crossing of them starting from u and let Rc be the region defined by the walk along the edge

SoCG 2017

16:4 On Optimal 2- and 3-Planar Graphs

segment of (u, v) from u to c and the one of (u, v′) from c to u. Then, Rc has at least one
vertex in its interior and one in its exterior.

Proof Sketch. The proof is analogous to the one of Lemma 1; see Figs. 1e-1f and [20]. J

In our proofs by contradiction we usually deploy a strategy in which starting from an
optimal 2- or 3-planar graph G, we modify G and its drawing Γ(G) by adding and removing
elements (vertices or edges) without affecting its 2- or 3-planarity. Then, the number of
edges in the derived graph forces G to have either fewer or more edges than the ones required
by optimality (contradicting the optimality or the 3-planarity of G, resp.). To deploy the
strategy, we must ensure that we introduce neither homotopic parallel edges and self-loops
nor self-crossing edges. We next show how to select and draw the newly inserted elements.

A Jordan curve [u, v] connecting vertex u to v of Γ(G) is called potential edge if and only
if [u, v] does not cross itself and is not a homotopic self-loop in Γ(G), that is, either u 6= v or
u = v and there is at least one vertex in the interior and the exterior of [u, v]. Note that
u and v are not necessarily adjacent in G. However, since each topological edge (u, v) ∈ E
of G is represented by a Jordan curve in Γ(G), it follows that edge (u, v) is by definition a
potential edge of Γ(G) among other potential edges that possibly exist. Furthermore, we say
that vertices v1, v2, . . . , vs define a potential empty cycle Cs in Γ(G), if there exist potential
edges [vi, vi+1], for i = 1, . . . , s− 1 and potential edge [v1, vs] of Γ(G), which
(i) do not cross each other and
(ii) the walk along the curves between v1, v2, . . . , vs, v1 defines a region in Γ(G) that has no

vertices in its interior.
Note that Cs might be non-simple.

I Lemma 3. For k ∈ {2, 3}, let Γ(G) be a PMCM-drawing of a k-planar graph G. Let also
Cs be a potential empty cycle of length s in Γ(G) and assume that κ edges of Γ(G) are drawn
completely in the interior of Cs, while λ edges of Γ(G) are crossing1 the boundary of Cs. Also,
assume that if one focuses on Cs of Γ(G), then µ pairwise non-homotopic edges can be drawn
as chords completely in the interior of Cs without deviating k-planarity.
(i) If µ > κ+ λ, then G is not optimal.
(ii) If G is optimal and µ = κ+ λ, then all boundary edges of Cs exist2 in Γ(G).

Proof. (i) If we could replace the κ+λ edges of Γ(G) that are either drawn completely in the
interior of Cs or cross the boundary of Cs with the µ ones that one can draw exclusively in
the interior of Cs, then the lemma would trivially follow. However, to do so we need to ensure
that this operation introduces neither homotopic parallel edges nor homotopic self-loops.
Since the edges that we introduce are potential edges, it follows that no homotopic self-loops
are introduced. We claim that homotopic parallel edges are not introduced either. In fact,
if e and e′ are two homotopic parallel edges, then both must be drawn completely in the
interior of Cs, which implies that e and e′ are both newly-introduced edges; a contradiction,
since we introduce µ pairwise non-homotopic edges. (ii) In the exchanging scheme that we
just described, we drew µ edges as chords exclusively in the interior of Cs. Of course, one can
also draw the boundary edges of Cs. Since G is optimal, these edges must exist in Γ(G). J

1 Note that the boundary edges of Cs are not necessarily present in Γ(G).
2 We say that a Jordan curve [u, v] exists in Γ(G) if and only if [u, v] is homotopic to an edge in Γ(G).

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:5

v2

v1 v3

v5 v4

1

2 3

4 5

(a)

v2

v1 v3

v6 v4

v5

1

2 3 4 5

6

(b)

v2

v1 v3

v6 v4

v5

1

2 3 4 5

6

7 8

(c)

u

v w

x

3

1 2

4

5

6

(d)

Figure 2 (a–c) A potential empty cycle Cs with (a) s = 5 and five chords with two crossings each,
(b) s = 6 and six chords with at most two crossings each, and (c) s = 6 and eight chords with at
most three crossings each. (d) Configuration used in the proof of Property 2.

3 Properties of optimal 2- and 3-planar graphs

In this section, we investigate properties of optimal 2- and 3-planar graphs. We prove that a
PMCM-drawing Γ(G) of an optimal 2- or 3-planar graph G can contain neither true-planar
cycles of a certain length nor a pair of edges that cross twice. We use these properties to
show that Γ(G) is quasi-planar, i.e. it contains no 3 pairwise crossing edges.

Let R be a simple closed region that contains at least one vertex of G in its interior and
one in its exterior. Let H1 (H2) be the subgraph of G whose vertices and edges are drawn
entirely in the interior (exterior) of R. Note that potentially there exist edges that exit
and enter R. We refer to H1 and H2 as the compact subgraphs of Γ(G) defined by R. The
following lemma bounds the number of edges in any compact subgraph of Γ(G).

I Property 1. Let Γ(G) be a drawing of an optimal 2- or 3-planar graph G and let H be a
compact subgraph of Γ(G) on n′ vertices defined by a closed region R. If n′ ≥ 2, H has at
most 5n′ − 6 edges if G is optimal 2-planar, and at most 5.5n′ − 6.5 edges if G is optimal
3-planar. Further, there exists at least one edge of G crossing the boundary of R in Γ(G).

Proof. We prove this property for the class of 3-planar graphs; the proof for the class of
2-planar graphs is analogous. So, let Γ(G) be a drawing of an optimal 3-planar graph
G = (V,E) with n vertices and m edges. Let H1 and H2 be two compact subgraphs of Γ(G)
defined by a closed region R. For i = 1, 2 let ni and mi be the number of vertices and edges of
Hi. Suppose that n1 ≥ 2. In the absence of Γ(H2), drawing Γ(H1) might contain homotopic
parallel edges or self-loops. To overcome this problem, we subdivide an edge-segment of
the unbounded region of Γ(H1) by adding one vertex.3 The derived graph, say H ′

1, has
n′

1 = n1 + 1 vertices and m′
1 = m1 + 1 edges. Since H ′

1 has no homotopic parallel edges or
self-loops and n′

1 ≥ 3, it follows that m′
1 ≤ 5.5n′

1 − 11, which gives m1 ≤ 5.5n1 − 6.5.
For the second part, assume to the contrary that no edge crosses the boundary of R. This

implies that m = m1 +m2. We consider first the case where n1, n2 ≥ 2. By the above we have
that m1 ≤ 5.5n1 − 6.5and m2 ≤ 5.5n2 − 6.5. Since n = n1 + n2 and m = m1 +m2, it follows
that m ≤ 5.5n− 13; a contradiction to the optimality of G. Since a graph consisting only of
two non-adjacent vertices cannot be optimal, it remains to consider the case where either
n1 = 1 or n2 = 1. W.l.o.g. assume that n1 = 1. Since n2 ≥ 2, it follows that m2 ≤ 5.5n2−6.5,
which implies m ≤ 5.5n− 12; a contradiction to the optimality of G. J

For two compact subgraphs H1 and H2 defined by a closed region R, Property 1 implies
that the drawings of H1 and H2 cannot be “separable”. In other words, either there exists

3 One can view this process as replacing Γ(H2) with a single vertex; thus no homotopic parallel edges exist
in Γ(H1). Then we move this vertex towards the edge-segment we want to subdivide until it touches it.

SoCG 2017

16:6 On Optimal 2- and 3-Planar Graphs

an edge connecting a vertex of H1 with a vertex of H2, or there exists a pair of edges, one
connecting vertices of H1 and the other vertices of H2, that cross in the drawing Γ(G).

I Property 2. In a PMCM-drawing Γ(G) of an optimal 2-planar graph G there is no empty
true-planar cycle of length three.

Proof. Assume to the contrary that there exists an empty true-planar 3-cycle C in Γ(G) on
vertices u, v and w. Since G is connected and since all edges of C are true-planar, there is
neither a vertex nor an edge-segment in C, i.e., C is a chordless facial cycle of Π(G). This
allows us to add a vertex x in its interior and connect x to vertex u by a true-planar edge.
Now vertices u, x, u, w and v define a potential empty cycle of length five, and we can draw
five chords in its interior without violating 2-planarity and without introducing homotopic
parallel edges or self-loops; refer to Fig. 2d. The derived graph G′ has one more vertex
than G and six more edges. Hence, if n and m are the number of vertices and edges of G
respectively, then G′ has n′ = n + 1 vertices and m′ = m + 6 edges. Then m′ = 5n′ − 9,
which implies that G′ has more edges than allowed; a contradiction. J

I Property 3. The number of vertices of an optimal 3-planar graph G is even.

Proof. Follows directly from the density bound of 5.5n− 11 of G. J

I Property 4. A PMCM-drawing Γ(G) of an optimal 3-planar graph G has no true-planar
cycle of odd length.

Proof. Let s ≥ 1 be an odd number and assume to the contrary that there exists a true-planar
s-cycle C in Γ(G). Denote by G1 (G2, resp.) the subgraph of G induced by the vertices of
C and the vertices of G that are in the interior (exterior, resp.) of C in Γ(G) without the
chords of C that are in the exterior (interior, resp.) of C in Γ(G). For i = 1, 2, observe that
Gi contains a copy of C. Let ni and mi be the number of vertices and edges of Gi that do
not belong to C. Based on graph Gi, we construct graph G′

i by employing two copies of Gi

that share cycle C. Observe that G′
i is 3-planar, because one copy of Gi can be embedded in

the interior of C, while the other one in its exterior. Hence, in this embedding, there exist
neither homotopic self-loops nor homotopic parallel edges. Let n′

i and m′
i be the number of

vertices and edges of G′
i that do not belong to C. If G has n vertices and m edges, then by

construction the following equalities hold:
(i) n′

i = 2ni + s,
(ii) m′

i = 2mi + s,
(iii) n = n1 + n2 + s, and
(iv) m = m1 +m2 + s.

We now claim that n′
i ≥ 3. When s ≥ 3 the claim clearly holds. Otherwise (i.e., s = 1),

cycle C is degenerated to a self-loop which must contain at least one vertex in its interior and
its exterior. Hence, the claim follows. Property 3 in conjunction with Eq. (i) implies that G′

i is
not optimal, that is, m′

i < 5.5n′
i−11. So, by Eq. (ii) it follows that 2mi +s < 5.5(2ni +s)−11.

Summing up over i, we obtain that 2(m1 + m2 + s) < 5.5(2n1 + 2n2 + 2s) − 22. Finally,
from Eqs. (iii) and (iv) we conclude that m < 5.5n− 11; a contradiction to the optimality
of G. J

I Property 5. In a PMCM-drawing Γ(G) of an optimal 2-planar graph G there is no pair
of edges that cross twice with each other.

Proof. Assume to the contrary that (u, u′) and (v, v′) cross twice in Γ(G) at points c and
c′. By 2-planarity no other edge of Γ(G) crosses (u, u′) and (v, v′). Let Rc,c′ be the region

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:7

u′′ u

v′′

c′

v

u′ v′
c

c′′

(a)

u′′ u

v′′
v

u′ v′

(b)

u′′ u

v′′

v

u′
v′

(c)

u′′ u
v′′

v

u′
v′

(d)

v

u′
v′ = v′′

u = u′′

(e)

Figure 3 Crossing configurations for three mutually crossing edges. Potential edges are drawn
solid red. Jordan curves that can either be potential edges or homotopic self-loops are drawn dotted
red.

defined by the walk along the edge segment of (u, u′) between c and c′ and the edge segment
of (v, v′) between c′ and c. As mentioned in the proof of Lemma 1, there exist two crossing
configurations for (u, u′) and (v, v′); see Figs. 1b and 1c. In the crossing configuration of
Fig. 1b, vertices v and v′ are in the interior of Rc,c′ , while vertices u and u′ in its exterior.
Hence, u 6= v and u′ 6= v′ hold. We redraw (u, u′) and (v, v′) by exchanging the middle
segments between c and c′ and eliminate both crossings c and c′ without affecting 2-planarity;
see the dotted edges of Fig. 1b. Note that since u 6= v and u′ 6= v′ the two edges cannot be
homotopic self-loops. Also, no homotopic parallel edges are introduced, since this would
imply that at least one of the two edges already exists in Γ(G) violating 2-planarity. Consider
the crossing configuration of Fig. 1c. By Lemma 1, Rc,c′ has at least one vertex in its interior.
By 2-planarity, no edge of G crosses the boundary of Rc,c′ contradicting Property 1. J

I Property 6. In a PMCM-drawing Γ(G) of an optimal 3-planar graph G there is no pair
of edges that cross more than once with each other.

Proof Sketch. As in the proof of Property 5, we show that if (u, v) and (u′, v′) cross three
times, then either Γ(G) is not crossing minimal or Property 1 is violated. The rest of the
proof needs different arguments, as (u, v) and (u′, v′) may have one more crossing each;
see [20]. J

Now assume that Γ(G) contains three mutually crossing edges (u, v), (u′, v′) and (u′′, v′′).
In Figs. 3a–3d we have drawn four the possible crossing configurations depending on the
“direction” of the crossing of (u′′, v′′) along (u, v). Note that the endpoints of the three edges
are not necessarily distinct (e.g., in Fig. 3e we illustrate the case where u = u′′ and v′ = v′′

for the crossing configuration of Fig. 3a). For each crossing configuration, one can draw
curves connecting the endpoints of (u, v), (u′, v′) and (u′′, v′′) (red colored in Figs. 3a–3d),
which define a region that has no vertices in its interior. This region fully surrounds (u, v)
and (u′, v′) and the two segments of (u′′, v′′) that are incident to vertices u′′ and v′′.

I Claim 1. Each crossing configuration of Figs. 3b-3d induces at least 5 potential edges.

Proof. All solid-drawn red curves of Figs. 3b–3d are indeed potential edges. J

I Claim 2. The crossing configuration of Fig. 3a induces at least four potential edges.

Proof. [u′, u′′], [u, v′], [u′, v] and [v, v′′] are potential edges. J

I Corollary 4. The configuration of Fig. 3a induces a potential empty cycle C of length ≥ 4.
Each configuration of Figs. 3b–3d induces a potential empty cycle C of length ≥ 5.

SoCG 2017

16:8 On Optimal 2- and 3-Planar Graphs

u

v

c

u′

v′

(a)

u = v c

v′

u′

(b)

u

v

c

c′

u′

v′

w

w′

(c)

u = v
c

c′

v′

v′

w

w′

(d)

u = v u′ = v′

Empty

(e)

Figure 4 (a–b) vertices u and v form a corner pair; (c–d) vertices u and v form a side pair; (e) at
least one of the two potential side-edges exists.

I Claim 3. In the case where the crossing configuration of Fig. 3a induces exactly four
potential edges, there exists at least one vertex in the interior of region T defined by the walk
along the edge segment of (u, v) between c and c′′, the edge segment of (u′′, v′′) between c′′

and c′ and the edge segment of (u′, v′) between c′ and c.

Proof. By Claim 2, [u, u′′], and [v′, v′′] are homotopic self-loops. So, edges (u, v) and (u′′, v′′)
are incident to a common vertex, namely, u = u′′ and cross. By Lemma 2, Rc′′ (red-shaded
in Fig. 3e) has at least one vertex in its interior. Since Rc′′ is the union of the interior of T
and the homotopic self-loop [u, u′′], T contains at least one vertex in its interior. J

I Property 7. A PMCM-drawing Γ(G) of an optimal 2-planar graph G is quasi-planar.

Proof. Assume to the contrary that (u, v), (u′, v′) and (u′′, v′′) mutually cross in Γ(G); see
Fig. 3. By Corollary 4, there is a potential empty cycle C of length at least 4. By 2-planarity,
there is no other edge crossing (u, v), (u′, v′) or (u′′, v′′). So, the only edges that are drawn in
the interior of C are (u, v) and (u′, v′), while (u′′, v′′) is the only crossing the boundary of C.

First, consider the case where C is of length ≥ 5. Since we can draw at least five chords
completely in the interior of C as in Fig. 2a or 2b without violating its 2-planarity, it follows
by Lemma 3.(i) (for κ+ λ = 3 and µ ≥ 5) that G is not optimal; a contradiction. Finally,
consider the case where C is of length four. In this case, we have the crossing configuration of
Fig. 3a. By Claim 3 there is at least one vertex in the interior of region T . More in general,
let GT be the compact subgraph of G that is completely drawn in the interior of region T .
Since edges (u, v), (u′, v′) and (u′′, v′′) have already two crossings, it follows that no edge of
G crosses the boundary of T contradicting Property 1. J

I Property 8. A PMCM-drawing Γ(G) of an optimal 3-planar graph G is quasi-planar.

Proof Sketch. This property is the analogue of Property 7 and its proof is given in [20]. J

Two not necessarily distinct vertices u and v of G form a corner pair if and only if an
edge (u, u′) crosses an edge (v, v′) for some u′ and v′ in Γ(G); see Fig. 4a. Let c be the
crossing point of (u, u′) and (v, v′). Then, a Jordan curve [u, v] joining vertices u and v

induces a region Ru,v that is defined by the walk along the edge-segment of (u, u′) from u

to c, the edge segment of (v, v′) from c to v and the curve [u, v] from v to u. We call [u, v]
corner edge w.r.t. (u, u′) and (v, v′) if and only if Ru,v has no vertices of Γ(G) in its interior.

I Property 9. In a PMCM-drawing Γ(G) of an optimal k-planar graph G any corner edge
[u, v] is a potential edge.

Proof. By the definition of potential edges, the property holds when u 6= v. Otherwise, [u, v]
is a self-loop; see Fig. 4b. If the property does not hold, then [u, v] is a self-loop with no
vertices either in its interior or in its exterior contradicting Lemma 2. J

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:9

We say that u and v form a side pair if and only if there exist edges (u, u′) and (v, v′) for
some u′ and v′ such that they both cross a third edge (w,w′) in Γ(G) and (u, u′) 6= (v, v′);
see Figs. 4c–4d. Let c and c′ be the crossing points of (u, u′) and (v, v′) with (w,w′). Assume
w.l.o.g. that c and c′ appear in this order along (w,w′) from w to w′. Also assume that the
edge-segment of (u, u′) between u and c is on the same side of (w,w′) as the edge-segment of
(v, v′) between v and c′; see Fig. 4c. Then, any Jordan curve [u, v] joining u and v induces a
region Ru,v that is defined by the walk along the edge-segment of (u, u′) from u to c, the
edge segment of (w,w′) from c to c′, the edge segment of (v, v′) from c′ to v and the curve
[u, v] from v to u. We call [u, v] side-edge w.r.t. (u, u′) and (v, v′) if and only if Ru,v has no
vertices of Γ(G) in its interior. Since by Properties 7 and 8 edges (u, u′) and (v, v′) cannot
cross with each other (as they both cross (w,w′)), it follows that region Ru,v is well-defined.
Symmetrically we define region Ru′,v′ and side-edge [u′, v′] w.r.t. (u, u′) and (v, v′).

I Property 10. In a PMCM-drawing Γ(G) of an optimal k-planar graph G with k ∈ {2, 3}
at least one of the side-edges [u, v], [u′, v′] is a potential edge.

Proof. Note that since edges (u, u′), (v, v′) and (w,w′) do not mutually cross, curves [u, v]
and [u′, v′] cannot cross themselves. Assume to the contrary that neither [u, v] nor [u′, v′] are
potential edges. This implies that u = v, u′ = v′ and both [u, v] and [u′, v′] are self-loops that
have no vertices in their interiors or their exteriors. Fig. 4e illustrates the case where both
[u, v] and [u′, v′] are self-loops with no vertices in their interiors; the other cases are similar.
It is not hard to see that (u, u′) and (v, v′) are homotopic side-edges; a contradiction. J

Edges (u, u′) and (v, v′) are called side-apart if and only if both side-edges [u, v] and
[u′, v′] are potential edges.

4 Characterization of optimal 2-planar graphs

In this section we examine some more structural properties of optimal 2-planar graphs in
order to derive their characterization (see Theorem 9).

I Lemma 5. Let Γ(G) be a PMCM-drawing of an optimal 2-planar graph G. Any edge that
is crossed twice in Γ(G) is a chord of a true-planar 5-cycle in Γ(G).

Proof. Let (u, v) be an edge that is crossed twice in Γ(G) by (u′, v′) and (u′′, v′′) at points
c and c′. By Property 5 edges (u′, v′) and (u′′, v′′) are not identical. We assume w.l.o.g.
that c and c′ appear in this order along (u, v) from vertex u to vertex v. We also assume
that the edge-segment of (u′, v′) between u′ and c is on the same side of edge (u, v) as the
edge-segment of (u′′, v′′) between u′′ and c′; refer to Fig. 5a. By Property 9 corner edges
[u, u′], [u, v′], [v, u′′] and [v, v′′] are potential edges. By Property 10 at least one of side-edges
[u′, u′′] and [v′, v′′] is a potential edge. Assume w.l.o.g. that [v′, v′′] is a potential edge.

If [u′, u′′] is a potential edge, vertices u, v′, v′′, v, u′′ and u′ define a potential empty cycle
C on six vertices (shaded in gray in Fig. 5b). Edges (u, v), (u′, v′) and (u′′, v′′) are drawn
in the interior of C, and there exist at most two other edges that cross (u′, v′) or (u′′, v′′).
In total there exist at most five edges that have an edge-segment within C. However, in
the interior of C one can draw six chords as in Fig. 2b without deviating 2-planarity. By
Lemma 3.(i) for κ+ λ ≤ 5 and µ = 6, it follows that G is not optimal; a contradiction.

If [u′, u′′] is not a potential edge, [u′, u′′] is a homotopic self-loop and vertices u, v′,
v′′, v and u′ define a potential empty cycle C on five vertices (gray-shaded in Fig. 5c). In
the interior of C one can draw five chords as in Fig. 2a without deviating 2-planarity. By
Lemma 3.(ii), for κ+ λ ≤ 5 and µ = 5, all boundary edges of C exist in Γ(G) and κ+ λ = 5.

SoCG 2017

16:10 On Optimal 2- and 3-Planar Graphs

u

v′′
c′

v

u′ v′
c

u′′

(a)

u

v′′

v

u′ v′

u′′

(b)

u

v′′v

u′ = u′′

v′

(c)

u

v

u
′
=

u
′′

w
e

p

v′

v′′

(d)

u

v v′′

v′

x

u
′
=

u
′′

w

(e)

Figure 5 Different configurations used in Lemma 5.

u

u′

c

v′

v

(a)

u′ v

u v′

(b)

u

u′

c

v′

v

(c)

u′ v

u v′

x

(d)

Figure 6 Different configurations used in: (a–b) Lemma 6, and (c–d) Lemma 14.

So, there exist two edges (other than (u, v)), say e and e′, that cross (u′, v′) and (u′′, v′′)
respectively.

If C is a true-planar 5-cycle in Γ(G) the lemma holds. If not, e or e′ crosses a boundary
edge of C. Suppose w.l.o.g. that e crosses (v′, v′′) of C at point p and let w and w′ be the
endpoints of e. Observe that e already has two crossings in Γ(G). By 2-planarity, either the
edge-segment of (w,w′) between w and p or the one between w′ and p is drawn completely
in the exterior of C. Suppose w.l.o.g. that this edge-segment is the former one. Then vertices
v′, w and v′′ define a potential empty cycle C′ on three vertices; see Fig. 5d. We proceed as
follows: We remove edges (u, v), (u′, v′), (u′′, v′′), e and e′ and replace them with five chords
drawn in the interior of C (as in Fig. 5e). The derived graph G′ has the same number of
edges as G. However, C′ becomes a true-planar 3-cycle in G′, contradicting Property 2. J

By Lemma 5, any edge of G that is crossed twice in Γ(G) is a chord of a true-planar
5-cycle. The following lemma states that there are no edges with only one crossing in Γ(G).

I Lemma 6. Let Γ(G) be a PMCM-drawing of an optimal 2-planar graph G. Then, every
edge of Γ(G) is either true-planar or has exactly two crossings.

Proof. As shown in Lemma 5, for an edge e that is crossed twice in Γ(G), both edges that
cross e also have two crossings in Γ(G). So, the crossing component X (e) consists exclusively
of edges with two crossings. This implies that if (u, v) and (u′, v′) cross in Γ(G) and (u, v)
has only one crossing, then the same holds for (u′, v′). Vertices u, v′, v and u′ define a
potential empty cycle C on four vertices (gray-shaded in Fig. 6a). Since (u, v) and (u′, v′)
have only one crossing each, the boundary of C exists in Γ(G) and are true-planar edges. We
proceed by removing (u′, v′). C is split into two true-planar 3-cycles; see Fig. 6b. In both of
them, we plug the 2-planar pattern of Fig. 2d. In total, we removed one edge and added two
vertices and 12 edges, without creating any homotopic parallel edges or self-loops. So, if G
has n vertices and m edges, the derived graph G′ is 2-planar and has n′ = n+ 2 vertices and
m′ = m+ 11 = 5n′ − 9, i.e., G′ has more edges than allowed; a contradiction. J

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:11

I Lemma 7. The true-planar skeleton Π(G) of a PMCM-drawing Γ(G) of an optimal
2-planar graph is connected.

Proof. Assume to the contrary that Π(G) is not connected. Let H be a connected component
of Π(G). By Property 1 either there exists an edge (u, v) with u ∈ H and v ∈ G \H, or
two crossing edges e1 ∈ H and e2 ∈ G \H. In the first case, (u, v) is not true-planar. By
Lemma 5, there exists a true-planar 5-cycle with (u, v) as chord; a contradiction. In the
second case, e1 and e2 belong to the same crossing component and by Lemma 5, there exists
a true-planar 5-cycle with e1 and e2 as chords; a contradiction. J

I Lemma 8. The true-planar skeleton Π(G) of a PMCM-drawing Γ(G) of an optimal
2-planar graph G contains only faces of length 5, each containing 5 crossing edges.

Proof. Since Π(G) is connected (by Lemma 7), all its faces are connected. By Lemmas 5 and
6, all crossing edges are chords of true-planar 5-cycles. We claim that Π(G) has no chordless
faces. First, Π(G) has no chordless face of size ≥ 4, as otherwise one could add in its interior
a chord, contradicting the optimality of G. By Property 2, Π(G) contains no faces of length
3. Faces of length 1 or 2 correspond to homotopic self-loops and parallel edges. J

We are now ready to state the main theorem of this section.

I Theorem 9. A graph G is optimal 2-planar if and only if G admits a drawing Γ(G) without
homotopic parallel edges and self-loops, such that the true-planar skeleton Π(G) of Γ(G)
spans all vertices of G, it contains only faces of length 5 (that are not necessarily simple),
and each face of Π(G) has 5 crossing edges in its interior in Γ(G).

Proof. For the forward direction, consider an optimal 2-planar graph G. By Lemma 8, the
true-planar skeleton Π(G) of its 2-planar PMCM-drawing Γ(G) contains only faces of length
5 each containing 5 crossing edges in its interior. Since the endpoints of two crossing edges
are within a true-planar 5-cycle (by Lemmas 5 and 6) and since Π(G) is connected (by
Lemma 7), Π(G) spans all vertices of G. So, the proof of this direction is complete.

For the reverse direction, denote by n, m and f the number of vertices, edges and faces of
Π(G). Since Π(G) spans all vertices of G, it suffices to prove that G has exactly 5n−10 edges.
The fact that Π(G) contains only faces of length 5 implies that 5f = 2m. By Euler’s formula
for planar graphs, we have m = 5(n − 2)/3 and f = 2(n − 2)/3. Since each face of Π(G)
contains exactly 5 crossing edges, the total number of edges of G equals m+5f = 5n−10. J

5 Characterization of optimal 3-planar graphs

In this section we explore structural properties of optimal 3-planar graphs. Following similar
arguments as in Section 4 we derive their characterizations (see Theorem 17).

I Lemma 10. Let Γ(G) be a PMCM-drawing of an optimal 3-planar graph G, and suppose
that there exists a potential empty cycle C of 6 vertices in Γ(G), such that the potential
boundary edges of C exist in Γ(G). Let EC be the set of edge-segments within C. If the
following conditions C.1 and C.2 hold, then C is an empty true-planar 6-cycle in Γ(G) and
all edges with edge-segments in EC are drawn as chords in its interior.
(C.1) |EC | ≤ 8, and,
(C.2) every edge-segment of EC has at least one crossing in the interior of C.

SoCG 2017

16:12 On Optimal 2- and 3-Planar Graphs

v2v1

w c

e′

C

e

v5

v3

v4v6

(a)

e′

v2v1 v3

v4v6

w c
e

C

v5

(b)

v2v1 v3

v4v6

C′

v5

g
c′w

z

(c)

x

v4v5w v6

v2 v3z v1

(d)

u

v

u1

u2

v1

v2

(e)

Figure 7 Different configurations used in (a–d) Lemma 10, (e) Lemma 11.

Proof Sketch. We start with the following observation: If e is an edge of G, then due
to 3-planarity at most one edge-segment of e belongs to EC; if EC contains at least two
edge-segments of e, then we claim that e has at least four crossings. By C.2 each of the
two edge-segments of e contributes one crossing to e. Since C is empty and contains two
edge-segments of e, edge e exists and enters C. Hence, e has two more crossings, summing
up to a total of at least four.

Let v1, . . . , v6 be the vertices of C. If all edges with edge-segments in EC completely lie
in C, then C is a true-planar 6-cycle and the lemma trivially holds. Otherwise, there is at
least one edge e with an edge-segment in EC , that crosses a boundary edge of C. W.l.o.g. we
can assume that e crosses (v1, v6) of C at point c (refer to Fig. 7a). If w and w′ are the two
endpoints of e, then by the observation we made at the beginning of the proof it follows that
either the edge-segment of (w,w′) between w and c or the one between c and w′ is drawn
completely in the exterior of C (as otherwise e would have at least two edge-segments in EC).
W.l.o.g. assume that this is the edge-segment between w and c. Then, corner edges [v1, w]
and [w, v6] are potential edges (by Property 9).

Recall that e has one crossing in the interior of C (follows from C.2) and one more crossing
with edge (v1, v6). By 3-planarity, e may have at most one more crossing, say with edge e′.
Note that e′ may or may not have an edge-segment in EC. Vertices w, v1, . . . , v6 define a
potential empty cycle C′ on 7 vertices; see Fig. 7b. The set EC′ of edge-segments within C′

contains all edge-segments of EC (i.e., EC ⊆ EC′) plus at most two additional edge-segments:
the one defined by edge (v1, v6), and possibly an edge-segment of e′. Hence |EC′ | ≤ 10. We
now make some observations in the form of claims, which we formally prove in [20].

I Claim 4. A PMCM-drawing Γ(G) of an optimal 3-planar graph G is quasi-planar.

I Claim 5. At least one edge with an edge-segment in EC′ crosses one edge of C′.

By Claim 5, there is an edge g that crosses a boundary edge, say [w, v1], of C′ at point c′;
refer to Fig. 7c.

I Claim 6. All boundary edges of C′ exist in Γ(G); g has one crossing in the interior of C′.

We follow an analogous approach to the one we used for expanding C (that has 6 vertices)
to C′ (that has 7 vertices). We can find an endpoint of g, say z, such that w, z, v1, v2, . . . , v6
define a potential empty cycle C′′ on 8 vertices. Furthermore, the set EC′′ of edge-segments
within C′′ has at most 12 elements (at most two more than EC′). We proceed by removing
all edges with an edge-segment in EC′′ and split C′′ into two true-planar cycles of length 6
and 4, by adding true-planar chord (v1, v6); see Fig. 7d. In the interior of the 6-cycle, we
add 8 crossing edges as in Fig. 2c. In the interior of the 4-cycle, we add a vertex x with a
true planar edge (v1, x). Vertices v1, x, v1, v6, w and z define a new potential empty cycle
on 6 vertices, allowing us to add 8 more crossing edges. In total, we removed at most 12

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:13

edges, added a vertex and 18 edges. If n and m are the number of vertices and edges of G,
then the derived graph G′ has n′ = n+ 1 vertices and m′ ≥ m+ 6 edges. The last equation
gives m′ ≥ 5.5n′ − 10.5, i.e. G′ has more edges than allowed; a contradiction. J

Let (u, v) be an edge of G that is crossed by two edges (u1, v1) and (u2, v2) in Γ(G) at
points c1 and c2. By Property 6 edges (u1, v1) and (u2, v2) are not identical. We assume
w.l.o.g. that c1 and c2 appear in this order along (u, v) from u to v. We also assume that
the edge-segment of (u1, v1) between u1 and c is on the same side of edge (u, v) as the
edge-segment of (u2, v2) between u2 and c2; refer to Fig. 7e. Vertices u1, u2 and v1, v2 define
two side pairs. By Property 10, at least one of side-edges [u1, u2] and [v1, v2] is a potential
edge of Γ(G). Recall that if both side-edges [u1, u2] and [v1, v2] are potential edges of Γ(G),
then edges (u1, v1) and (u2, v2) are called side-apart.

I Lemma 11. Let Γ(G) be a PMCM-drawing of an optimal 3-planar graph G. If (u, v) is
crossed by side-apart edges (u1, v1) and (u2, v2) in Γ(G), then (u, v) is a chord of an empty
true-planar 6-cycle.

Proof. Refer to Fig. 7e. Since (u1, v1) and (u2, v2) are side-apart, side-edges [u1, u2] and
[v1, v2] are potential edges. By Property 9, corner edges [u, u1], [u, v1], [u, u2] and [v, v2]
are potential edges. Hence, vertices u, v1, v2, v, u2 and u1 define a potential empty cycle
C on six vertices (gray-shaded in Fig. 7e). Edges (u, v), (u1, v1) and (u2, v2) are drawn
completely in the interior of C and there exist at most five other edges either drawn in the
interior of C or crossing its boundary: at most one that crosses (u, v), and at most four
others that cross (u1, v1) and (u2, v2). Since we can draw eight chords in the interior of C as
in Fig. 2c, by Lemma 3.(ii), for κ+ λ ≤ 8 and µ = 8, all boundary edges of C exist in Γ(G).
Furthermore κ+ λ = 8 must hold. Note that the set EC of edge-segments within C contains
only edge-segments of these κ+ λ edges. Also, these 8 edges have exactly one edge-segment
within C that is crossed in the interior of C. Hence, C.1 and C.2 of Lemma 10 are satisfied
and there exists an empty true-planar 6-cycle that has (u, v) as chord. J

I Lemma 12. Let Γ(G) be a PMCM-drawing of an optimal 3-planar graph G. If e is crossed
by two side-apart edges in Γ(G), X (e) consists of chords of an empty true-planar 6-cycle.

Proof. The lemma follows by the observation that since e is a chord of an empty true-planar
6-cycle (by Lemma 11), all edges of X (e) are also chords of this 6-cycle. J

I Lemma 13. Let Γ(G) be a PMCM-drawing of an optimal 3-planar graph G. Any edge
that is crossed three times in Γ(G) is a chord of an empty true-planar 6-cycle in Γ(G).

Proof Sketch. We argue that the preconditions C.1 and C.2 of Lemma 10 are fulfilled,
which implies the presence of the empty true-planar 6-cycle in Γ(G). For more details refer
to [20]. J

We next consider edges of G that have two or fewer crossings in Γ(G).

I Lemma 14. Let Γ(G) be a PMCM-drawing of an optimal 3-planar graph G and let X be a
crossing component of Γ(G). Then, there is at least one edge in X that has three crossings.

Proof. Assume to the contrary that there exists a crossing component X where all edges
have at most two crossings. Assume first that X does not contain an edge with two crossings.
Then, |X | = 2. W.l.o.g. assume that X = {e, e′}. The four endpoints of e and e′ define a
potential empty cycle C on 4 vertices; see Fig. 6c. Since e and e′ have only one crossing
each, the boundary of C exist in Γ(G) and is true-planar. Note that there are no other edges

SoCG 2017

16:14 On Optimal 2- and 3-Planar Graphs

passing through the interior of C. We proceed by removing e and e′ and replace them with
the 3-planar pattern of Fig. 6d, i.e., we add a vertex x in the interior of C and true-planar
edge (v′, x). Vertices u, v′, x, v′, v and u′ define a potential empty cycle on six vertices, and
we can add 8 edges in its interior as in Fig. 2c. If G has n vertices and m edges, the derived
graph G′ has n′ = n+ 1 vertices and m′ = m− 2 + 8 edges. Then, G′ is 3-planar and has
m′ = 5.5n′ − 10.5 edges, i.e., G′ has more edges than allowed by 3-planarity; a contradiction.

Assume now that there exists an edge (u, v) ∈ X which has two crossings with edges
(u1, v1) and (u2, v2). By Lemma 11, (u1, v1) and (u2, v2) are not side-apart. Since all edges
in X have at most two crossings, adopting the proof of Lemma 5 we can prove that the
endpoints of (u, v), (u′, v′) and (u′′, v′′) define a potential empty cycle C on five vertices, with
at most five edges passing through its interior. We proceed by redrawing these five edges as
chords of C (as in Fig. 2a) and all its boundary edges are true-planar in the new drawing.
The derived graph is optimal, since it has at least as many edges as G. Observe, however,
that C becomes a true-planar 5-cycle in the new drawing; a contradiction to Property 3. J

The proofs of Lemmas 15 and 16 are similar to the ones of Lemmas 7 and 8; see also [20].

I Lemma 15. The true planar skeleton Π(G) of a PMCM-drawing Γ(G) of an optimal
3-planar graph is connected.

I Lemma 16. The true-planar skeleton Π(G) of a PMCM-drawing Γ(G) of an optimal
3-planar graph G contains only faces of length 6, each containing 8 crossing edges in Γ(G).

We say that a chord of a 2s-cycle is a middle chord if the two paths along the cycle
connecting its endpoints both have length s. We now state the main theorem of this section.

I Theorem 17. A graph G is optimal 3-planar if and only if G admits a drawing Γ(G)
without homotopic parallel edges and self-loops, such that the true-planar skeleton Π(G) of
Γ(G) spans all vertices of G, it contains only faces of length 6 (that are not necessarily
simple), and each face of Π(G) has 8 crossing edges in its interior in Γ(G) such that one of
the middle chords is missing.

Proof. For the forward direction, consider an optimal 3-planar graph G. By Lemma 16, the
true-planar skeleton Π(G) of its 3-planar PMCM-drawing Γ(G) contains only faces of length
6, each of which has 8 edges in its interior in Γ(G). By Property 8, one of the three middle
chords of each face of Π(G) cannot be present. Since the endpoints of two crossing edges
are within a true-planar 6-cycle (by Lemmas 13 and 14) and since Π(G) is connected (by
Lemma 15), Π(G) spans all vertices of G, which completes the proof of this direction.

For the reverse direction, denote by n, m and f the number of vertices, edges and faces
of Π(G). Since Π(G) spans all vertices of G, it suffices to prove that G has exactly 5.5n− 11
edges. The fact that Π(G) contains only faces of length 6 implies that 6f = 2m. By Euler’s
formula, we have m = 3(n−2)/2 and f = (n−2)/2. Since each face of Π(G) contains exactly
8 crossing edges, the total number of edge of G equals to m+ 8f = 5.5n− 11. J

6 Further Insights and Open Problems

The following corollaries are consequences of our new characterizations; for details see [20].
The definitions of bar 1-visibility and fan-planarity can be found in [13, 10] and [17, 7].

I Corollary 18. Simple 3-planar graphs have at most 5.5n− 11.5 edges.

I Corollary 19. Simple optimal 2-planar graphs admit bar 1-visibility representations.

M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou 16:15

I Corollary 20. Simple optimal 2-planar graphs are optimal fan-planar.

Our characterizations naturally lead to many open questions; we only name a few.
What is the complexity of the recognition problem for optimal 2- and 3-planar graphs?
What is the exact upper bound on the number of edges of simple optimal 3-planar graphs?
We conjecture that they do not have more than 5.5n− 15 edges.
Theorems 9 and 17 imply that optimal 2- and 3-planar graphs have a fully triangulated
planar subgraph. Can this property be proved for optimal 4-planar or more in general for
optimal k-planar graphs? Proving this property would be useful to derive better density
bounds for k ≥ 4.
By Properties 7 and 8, optimal 2- and 3-planar graphs are quasi-planar. Angelini et
al. [4] proved that every simple k-planar graph is (k + 1)-quasi planar for k ≥ 3 (i.e., it
can be drawn with no k + 1 pairwise crossing edges). Our results about optimal 2-planar
and even more about optimal 3-planar graphs give indications that the result by Angelini
et al. [4] may hold also for k = 2.
We found a RAC drawing (i.e., a drawing in which all crossing edges form right angles)
with at most one bend per edge for the optimal 2-planar graph having the dodecahedron
as its true-planar structure. Is this generalizable to all simple optimal 2-planar graphs?

Acknowledgment. The authors thank F. Montecchiani for useful discussions on the bar
1-visibility of optimal 2-planar graphs.

References
1 E. Ackerman. On topological graphs with at most four crossings per edge. CoRR,

1509.01932, 2015.
2 M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In Theory

and Practice of Combinatorics, pages 9–12. North-Holland Mathematics Studies, 1982.
3 N. Alon and P. Erdős. Disjoint edges in geometric graphs. Discrete & Computational

Geometry, 4:287–290, 1989. doi:10.1007/BF02187731.
4 P. Angelini, M.A. Bekos, F.-J. Brandenburg, G. Da Lozzo, G. Di Battista, W. Didimo,

G. Liotta, F. Montecchiani, and I. Rutter. On the relationship between k-planar and
k-quasi planar graphs. CoRR, 1702.08716, 2017.

5 M.A. Bekos, T. Bruckdorfer, M. Kaufmann, and C.N. Raftopoulou. 1-planar graphs have
constant book thickness. In ESA, volume 9294 of LNCS, pages 130–141. Springer, 2015.
doi:10.1007/978-3-662-48350-3_12.

6 M.A. Bekos, M. Kaufmann, and C.N. Raftopoulou. On the density of non-simple 3-planar
graphs. In Graph Drawing, volume 9801 of LNCS, pages 344–356. Springer, 2016. doi:
10.1007/978-3-319-50106-2_27.

7 C. Binucci, E. Di Giacomo, W. Didimo, F. Montecchiani, M. Patrignani, A. Symvonis, and
I.G. Tollis. Fan-planarity: Properties and complexity. Theor. Comp. Sci., 589:76–86, 2015.
doi:10.1016/j.tcs.2015.04.020.

8 R. Bodendiek, H. Schumacher, and K. Wagner. Über 1-optimale Graphen. Mathematische
Nachrichten, 117(1):323–339, 1984.

9 O. Borodin. A new proof of the 6 color theorem. J. of Graph Theory, 19(4):507–521, 1995.
doi:10.1002/jgt.3190190406.

10 F.-J. Brandenburg. 1-visibility representations of 1-planar graphs. J. Graph Algorithms
Appl., 18(3):421–438, 2014. doi:10.7155/jgaa.00330.

11 F.-J. Brandenburg. Recognizing optimal 1-planar graphs in linear time. CoRR, 1602.08022,
2016.

SoCG 2017

http://dx.doi.org/10.1007/BF02187731
http://dx.doi.org/10.1007/978-3-662-48350-3_12
http://dx.doi.org/10.1007/978-3-319-50106-2_27
http://dx.doi.org/10.1007/978-3-319-50106-2_27
http://dx.doi.org/10.1016/j.tcs.2015.04.020
http://dx.doi.org/10.1002/jgt.3190190406
http://dx.doi.org/10.7155/jgaa.00330

16:16 On Optimal 2- and 3-Planar Graphs

12 O. Cheong, S. Har-Peled, H. Kim, and H.-S. Kim. On the number of edges of fan-crossing
free graphs. Algorithmica, 73(4):673–695, 2015. doi:10.1007/s00453-014-9935-z.

13 A.M. Dean, W. S. Evans, E. Gethner, J.D. Laison, M.A. Safari, and W.T. Trotter. Bar
k-visibility graphs. J. Graph Algorithms Appl., 11(1):45–59, 2007.

14 E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, and S.K. Wismath. Planar and quasi-
planar simultaneous geometric embedding. Comput. J., 58(11):3126–3140, 2015. doi:
10.1093/comjnl/bxv048.

15 W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theor.
Comp. Sci., 412(39):5156–5166, 2011.

16 S. Hong, P. Eades, G. Liotta, and S.-H. Poon. Fáry’s theorem for 1-planar graphs.
In COCOON, volume 7434 of LNCS, pages 335–346. Springer, 2012. doi:10.1007/
978-3-642-32241-9_29.

17 M. Kaufmann and T. Ueckerdt. The density of fan-planar graphs. CoRR, 1403.6184, 2014.
18 T. Leighton. Complexity Issues in VLSI. Foundations of Computing Series. MIT Press.,

1983.
19 L. Lovász, J. Pach, and M. Szegedy. On Conway’s thrackle conjecture. Discrete & Com-

putational Geometry, 18(4):369–376, 1997. doi:10.1007/PL00009322.
20 A. Bekos M. M. Kaufmann, and N. Raftopoulou C.˙ On optimal 2- and 3-planar graphs.

CoRR, 1703.06526, 2017.
21 J. Pach, R. Radoičić, G. Tardos, and G. Tóth. Improving the crossing lemma by finding

more crossings in sparse graphs. Discrete & Computational Geometry, 36(4):527–552, 2006.
doi:10.1007/s00454-006-1264-9.

22 J. Pach and G. Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427–
439, 1997. doi:10.1007/BF01215922.

23 G. Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg (in German), 29:107–117, 1965.

24 Y. Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math.,
24(4):1527–1540, 2010. doi:10.1137/090746835.

25 P. Turán. A note of welcome. J. of Graph Theory, 1(1):7–9, 1977. doi:10.1002/jgt.
3190010105.

http://dx.doi.org/10.1007/s00453-014-9935-z
http://dx.doi.org/10.1093/comjnl/bxv048
http://dx.doi.org/10.1093/comjnl/bxv048
http://dx.doi.org/10.1007/978-3-642-32241-9_29
http://dx.doi.org/10.1007/978-3-642-32241-9_29
http://dx.doi.org/10.1007/PL00009322
http://dx.doi.org/10.1007/s00454-006-1264-9
http://dx.doi.org/10.1007/BF01215922
http://dx.doi.org/10.1137/090746835
http://dx.doi.org/10.1002/jgt.3190010105
http://dx.doi.org/10.1002/jgt.3190010105

Reachability in a Planar Subdivision with
Direction Constraints∗

Daniel Binham1, Pedro Machado Manhães de Castro2, and
Antoine Vigneron3

1 Visual Computing Center, KAUST, Thuwal, Saudi Arabia
ringscore@yahoo.com

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
pmmc@cin.ufpe.br

3 School of Electrical and Computer Engineering, UNIST, Ulsan, Republic of
Korea
antoine@unist.ac.kr

Abstract
Given a planar subdivision with n vertices, each face having a cone of possible directions of travel,
our goal is to decide which vertices of the subdivision can be reached from a given starting point
s. We give an O(n logn)-time algorithm for this problem, as well as an Ω(n logn) lower bound
in the algebraic computation tree model. We prove that the generalization where two cones of
directions per face are allowed is NP-hard.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Design and analysis of geometric algorithms, Path planning, Reachability

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.17

1 Introduction

We consider a motion planning problem where a point robot moves within a planar subdivision,
with constraints on its direction of travel. Within each face of the subdivision, there is a
cone of possible directions of travel, and we want to decide which vertices are reachable from
a given starting position. (See Figure 1a.)

This type of constraints appear, for instance, for motion planning in the presence of
flows [6]. In this model, a vehicle moves within a flow field, say wind or current. If the
speed of the vehicle is less than the speed of the flow, then it can only travel in a cone of
directions, with axis parallel to the direction of the current, and whose angle depends on the
ratio between the speed of the robot and the speed of the current. (See Figure 1b.)

Our results. Our main result is an O(n logn)-time algorithm to compute all the vertices
that are reachable from a given source point s, where n is the size of the input subdivision,
and each face has a cone of possible directions of travel (Section 6). We also give a matching
Ω(n logn) lower bound in the algebraic computation tree model. This result is based on
Ben-Or’s topological lower bound [1], and holds even in the special case where only one
direction of travel is given for each face. Finally, we prove that the generalization where

∗ D. Binham was supported by KAUST base funding, and A. Vigneron was supported by the 2016
Research Fund (1.160054.01) of UNIST (Ulsan National Institute of Science and Technology).

© Daniel Binham, Pedro Machado Manhães de Castro, and Antoine Vigneron;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Reachability in a Planar Subdivision with Direction Constraints

s

v1

v2 v3

v4

v5

v6

v7

(a)

~vf

s
vr

f

C(f)

(b)

Figure 1 (a) The input to our reachability problem is the triangulation, the cone of direction in
each face, and the starting point s. The output is the set of reachable vertices {v1, v2, v3, v4, v5, v6, v7}.
(b) Within the region f , the velocity of the flow is ~vf and the control speed of the robot is vr.
The blue circle represents the points that can be reached from s in unit time. Hence, the possible
directions of travel are given by the cone C(f).

s
. . .

(a)

s Θ(n)

Θ(n)

(b)

Figure 2 (a) The reachable region (shaded) is a spiral formed by an infinite sequence of blocks.
(b) The reachable region has quadratic complexity, without any spiral.

two cones of directions per face are allowed is NP-hard. Our proof is a reduction from the
partition problem, and it even holds when only two directions of travel are allowed throughout
the subdivision.

A natural approach to compute all reachable vertices would be to construct the reachable
region piece by piece, handling one face at a time. Unfortunately, this algorithm would not
necessarily terminate as the direction constraints may force a path to follow a spiral with
arbitrarily many edges (Figure 2a). Even when there are no such spirals, the complexity of
the reachable region can still be quadratic (Figure 2b). So in order to achieve a near-linear
running time, our algorithm uses efficient data structures to implicitly encode the boundary
of the part of the reachable region that has already been constructed. This data structure is
used to propagate a boundary path in O(logn) time, if it follows a previously constructed
boundary. More details can be found in Section 6.

Comparison with previous work. The most directly related problem is to find a descending
path (that is, a path that never goes up) between two points on a terrain. This is a special
case of reachability under direction constraints: After projecting the terrain to horizontal,
we get an instance of our problem where each face has a cone of possible directions which is
a halfplane. De Berg and Van Kreveld [5] gave a data structure that can answer descending
path reachability queries between two points in O(logn) time, after O(n logn) preprocessing
time. Another related paper [4] shows how to compute a collection of n paths of steepest

D. Binham, P.M.M. de Castro, and A. Vigneron 17:3

descent in O(n logn) time [4]. This work uses a data structure similar to our data structure
for recording beams (Section 6), but it uses it in a different way as it proceeds by sweeping a
horizontal plane over the whole terrain. This approach cannot be applied to our problem, as
there is no notion of elevation. Recently, Cheng and Jin [2] gave the first FPTAS for finding
a shortest descending path between two points.

The problem of planning the movement in the presence of a flow was studied by Reif and
Sun [6]. A point robot can apply a control velocity, with bounded norm, and each face of
the triangulation has a flow of constant velocity (Figure 1b). They give an approximation
algorithm for finding a shortest path between two points. However, it only applies when
the control velocity is larger than the flow velocity, meaning that all directions of travel are
possible. 1 Hence, their algorithm cannot be used to solve our problem, although it has the
advantage of providing an approximate shortest path.

Sun and Reif also considered another anisotropic motion planning problem, where a
wheeled robot travels on a terrain [7]. The mechanical constraints such as friction and
steepness imply that some directions of travel are forbidden, and the speed depends on the
direction. They present an approximation algorithm for the single source shortest path
problem. This algorithm places Steiner points along the edges and searches the induced
graph. The case where some directions of travel are forbidden is only briefly described [7,
Theorem 4] and no time bound is given for this case. In any case, the number of Steiner
points depends on several extra parameters, such as the minimum angle in the triangulation,
or the length of the longest edge.

Cheng et al. considered approximate shortest path problems in anisotropic environments
where the cost function within each face is a convex distance function [3]. This model allows
different costs for different directions of travel, but again all directions must be allowed, so
it does not solve our problem. They give an approximation algorithm whose running time
depends on the ratio between the largest and the smallest speed in any direction, and the
dependency on the input size is cubic.

In summary, we propose the first provably efficient algorithm to compute a path between
two points in a planar subdivision, when there is one cone of possible directions of travel per
face. Previous work on path planning with direction constraints either considered a special
case where each cone of direction is a halfplane [2, 5], or did not provide any time bound [6, 7].
Unlike the algorithms in other anisotropic models [2, 3, 6, 7], our algorithm does not return
an approximate shortest path, but it handles more general direction constraints, and it runs
in near-linear time, regardless of the geometry of the input.

2 Notation and preliminary

Problem statement. We are given a planar triangulation S with n vertices. More precisely,
S is a simplicial complex in R2. Each face f of S is a triangle, and is associated with a
cone C(f) of possible directions of travel. This cone is specified by a leftmost (clockwise)
and rightmost (counterclockwise) direction d`(f) ∈ R2 and dr(f) ∈ R2. We assume that
C(f) is convex: Its opening angle is at most π. A direction (or vector) d is in C(f) if
d = λd`(f) + µdr(f) for some λ, µ ≥ 0. In addition, halfplanes bounded by lines through
(0, 0) are considered to be cones, as well as the whole plane R2, which is called the full cone
of directions.

1 The algorithm by Reif and Sun [6, Section 5] requires that the parameter ρr is larger than 1, which
means that the control velocity is always larger than the flow velocity. In other words, all directions of
travel are allowed. The speed depends on the direction, but it is always positive.

SoCG 2017

17:4 Reachability in a Planar Subdivision with Direction Constraints

We denote by pq the directed closed line segment from point p to point q. We will abuse
notation so that pq ∈ C(f) means that the vector −→pq is in C(f). A segment pq in a face f is
feasible if pq ∈ C(f). Let s and t be two points in this subdivision. A feasible path from s to
t is a polyline whose edges are feasible segments. Given a starting point s, our goal is to find
all the vertices of S that can be reached by a feasible path.

Model of computation. We assume that, given a point p on the boundary of a face f
of S, we can compute in constant time the points q and q′ along the boundary of f that
are in directions d`(f) and dr(f). In addition, we assume that we have at our disposal a
constant-time logarithm function. It will help us handle spirals efficiently: We will be able
to compute in O(logn) time the exit point of a spiral (Figure 11).

Notation. An interval is a closed segment along an edge of S. We allow an interval to
be a single point in the interior of an edge of S, but vertices of S are not called intervals.
So any interval u is contained in a unique edge of S. This edge is denoted by edge(u). A
full interval is an edge of S. In other words, a full interval u is such that edge(u) = u. An
extreme interval is an interval vq such that v is a vertex of S. In particular, a full interval is
an extreme interval with respect to both of its endpoints. A free interval is an interval that
is not extreme. In other words, a free interval is contained in the interior of an edge of S.

Let u be an interval on the boundary of a face f . We denote by R(u, f) the set of points
on the boundary of f that are reachable from u along a direction in C(f). More precisely,
R(u, f) is the intersection of u + C(f) with the boundary of f . An image vertex of (u, f)
is a vertex of f that lies in R(u, f). An image interval of (u, f) is a maximal segment of
R(u, f). In degenerate cases, an image interval can be a single point in the interior of an
edge, but we do not count vertices of S as image intervals. The list of image vertices and
intervals is denoted by L(u, f). An interval u is non-propagating if R(u, f) ⊆ u. Otherwise,
it is propagating. We may also say that u propagates into f .

Let π be a feasible path from s to t. As the cones of directions are convex, we can replace
any subpath of π contained in a face f with a single edge pq. So a path π can be specified
by a sequence p1f1p2f2 . . . f`p`+1 where pipi+1 ∈ C(fi) and fi 6= fi+1 for all i. As this is the
only relevant type of path for our problem, in order to alleviate notation, we will assume
that all paths are of this form.

3 Overview

In this section, we present a brief description of our results and the approach used to prove
them. We start with the algorithms.

The naive approach would be to compute the whole reachable region block by block, by
recursively propagating intervals along the boundary of the faces of the subdivision. (See
Figure 3.) One difficulty with this approach is that the blocks partially overlap, so the
algorithm would do a lot of double-work, and it is not clear how to use planarity arguments in
the analysis. So instead of constructing the whole reachable region, we construct the skeleton
Ske (Figure 3c), which is a tree connecting the midpoints of the reachable intervals. While
constructing this tree, we will prove that any new edge that crosses a previously constructed
edge can be pruned without affecting the set of reachable nodes computed by the algorithm.
Hence, we can ensure that the skeleton is a tree properly embedded in the plane, and we
will be able to use planarity arguments in our proofs. For instance, it is easy to see that the

D. Binham, P.M.M. de Castro, and A. Vigneron 17:5

s s s

(a) (b) (c)

Figure 3 (a) Naive approach to compute the reachable region block by block. (b) After propagating
another branch, some blocks overlap. (c) Our approach using the skeleton (thick, blue). Two edges
are pruned (dashed), so that the skeleton remains a tree embedded in the plane.

skeleton can have only one branching node (i.e. degree at least 3) within each face of the
subdivision, and thus the skeleton has a linear number of branchings.

We present in Section 4 a description of our first algorithm (Algorithm 1) to construct the
skeleton edge by edge. In Section 5, we prove several properties of the skeleton constructed
by Algorithm 1. Algorithm 1 is inefficient because it could enter an infinite loop when it
encounters a spiral (Figure 2a), and even without spirals, the tree could have a quadratic
number of edges (Figure 2b). Note that in both cases, the issue arises from long paths
that cross the same sequence of edges: in the case of a spiral, the subsequence is repeated
periodically, and in the second example, we have long, horizontal paths crossing the same
sequence of edges.

We present in Section 6 an algorithm (Algorithm 2) that overcomes this difficulty using
efficient data structures for handling parallel beams, that is, paths in the skeleton that
cross the same sequence of edges of the triangulation. The idea is the following. Consider
a path that crosses the sequence of edges (e1, e2, . . . , em) in their interiors. If x1 is the
coordinate of the path along e1, then the coordinate xm along em is given by a linear map,
whose coefficients can be easily determined from the geometry of the faces and the cones of
directions. We record these linear functions in a binary tree over (e1, . . . , em), so that we
can implicitly construct in O(logm) time any path through a subsequence (ei, . . . , ej), given
its starting point xi.

We record such data structures for the left side and the right side of each beam. (See
Figure 4.) When a new beam B follows parallel and to the right of an already constructed
beam C, it forms a new tunnel, which is the empty region between these two beams. We
update the data structure in O(logm) time by first appending a subtree associated with C
to the data structure for B. Then we create a single node for the tunnel, which is sufficient
for our purpose, as any new beam entering the tunnel can only go parallel to B and C within
this tunnel.

As we shall see, Algorithm 2 runs in O(n logn) time using this data structure. For
instance, in the example of Figure 2b, the data structure for each one of the Θ(n)-long
horizontal beams can be constructed in O(logn) time, given the data structure for the beam
immediately above it. The analysis relies on several observation on the structure of the
skeleton. For instance, we show that it has O(n) maximal tunnels and maximal beams, and
that the total number of nodes in our data structures is O(n). Spirals are handled in the
same way as tunnels, as they can be seen as a special type of tunnels.

SoCG 2017

17:6 Reachability in a Planar Subdivision with Direction Constraints

e1
e2 e3

C

e4 e5 e6 e7 e8

e0 e9

e1
e2 e3

C

e4 e5 e6 e7 e8

e0 e9
B

12 23 34 45 56 67 78

s

C (left)

12 23 34 45 56 67 78C (right)

12 23 34 45 56 67 78C (left)

12 23 67 78C (right) 3–6

03 69B (left) 3–6

03 34 45 56 69B (right)

Figure 4 Data structure for beams. One node is created for the right side of C and the left side
of B to represent the tunnel (blue). A subtree of the data structure for the right side of C (red) is
deleted and inserted into the data structure for the right side of B.

s

t

s

t

(b)(a)

Figure 5 (a) Ω(n logn) lower bound. (b) NP-hardness proof.

Finally, we show two hardness results. (Detailed proofs are omitted due to space
limitation.) We first prove an Ω(n logn) lower bound on our problem using Ben-Or’s
technique [1]. Figure 5a gives an outline of our construction: The direction constraints
force the path to follow a spiral with Θ(n) edges. Then we place Θ(n) obstacles that can
move left or right, so that the target point t can only be reached if no obstacle overlaps
with the spiral. This problem has nΘ(n) connected components, and hence it requires an
algebraic computation tree of depth Ω(n logn). Then we prove that the reachability problem
where two cones of directions per face are allowed is NP-hard. In fact, our construction only
requires that each face allows the directions (0, 1) and (1, 1). Our proof is a reduction to
the partition problem: Given a set of integers, can it be partitioned into two subsets with
same sum? The reduction is given in Figure 5b. The heights of the rectangles are the input
integers, and the target point t is at the midpoint of the top edge. It can only be reached if
the instance of the partition problem is positive.

4 First algorithm

In this section, we present our first algorithm (Algorithm 1), which recursively propagates
reachable intervals or vertices to other reachable intervals or vertices that lie on the boundary
of the same face. As Algorithm 1 constructs intervals one by one, it does not terminate if
it encounters an infinite spiral. In Section 6, we present a faster version of this algorithm

D. Binham, P.M.M. de Castro, and A. Vigneron 17:7

u p

f ′

f

u

v
w̃

p

q

q̃

f ′

f
w

Figure 6 Propagating a pair (u, f), when u is an interval. (Left) The skeleton before propagating
(u, f). (Right) When we propagate (u, f), the pair (w, f ′) is created, and v and w̃ are pruned.

(Algorithm 2) that computes all reachable vertices of S in O(n logn) time, using efficient
data structures that allow us to implicitly construct a beam or a whole spiral in O(logn)
time.

Algorithm 1 draws a directed tree Ske, called the Skeleton, whose nodes lie on edges of
S. In particular, these nodes are either vertices of S that are found to be reachable by our
algorithm, or midpoints of reachable segments of edges of S.

Description. Algorithm 1 propagates recursively pairs (u, f), where u is an interval or a
vertex on the boundary of a face f . By propagating, we mean that we create children of the
pair (u, f) that are of the form (w, f ′), where w is an image vertex or interval in L(u, f), and
f ′ is a face other than f . Some of these pairs will be pruned, and thus not created. The pairs
that have been created, but not yet propagated, are stored in a set A, and are called active
pairs. After being propagated, a pair is inactive. Each pair (u, f) is processed as follows.

First assume that u is an interval. (See Figure 6.) We compute the list L(u, f) of image
vertices and intervals. Then for each vertex or interval w in this list, we check whether it
needs to be pruned as follows. Let p = mid(u) and q = mid(w). We prune w if at least one
of the three conditions below is met (Figure 7).
(i) pq ∩ Ske 6= {p}.
(ii) u and w are intervals, and edge(u) = edge(w).
(iii) u and w are intervals, edge(u) 6= edge(w), and there is a node q0 of Ske in the interior of

edge(w) such that q0q ∈ C(f0), where f0 is the face other than f bounded by edge(w).
Condition (i) ensures that Ske has no self-crossing and no cycle. Condition (ii) will be

needed in Algorithm 2 (Section 6), so that we do not need to propagate an interval backwards.
Condition (iii) will also be needed in Algorithm 2, in order to ensure that the skeleton cannot
enter two-way tunnels. (See Lemma 7.) We will prove later that our pruning scheme is
correct in the sense that, when Algorithm 1 terminates, it always outputs all the reachable
vertices. However, for some input, it may not terminate, as it may enter infinite spirals, and
thus some reachable vertices may never be visited.

If w is not pruned, we insert pq into Ske. Then we create all pairs (w, f ′) such that
w ⊂ f ′ and f ′ 6= f , and we insert them into the set A of active pairs. If w is an interval,
there is at most one such face f ′.

Now suppose that u is a vertex (Figure 8). We still compute the list L(u, f) of image
vertices and intervals. If L(u, f) contains an interval w along the edge opposite to u, we
apply pruning condition (i). So we prune w if pq ∩ Ske 6= {p}. Again, if w is not pruned,
we insert pq into Ske, and insert into A the pair (w, f ′) if f is adjacent to a face f ′ along
edge(w). Then we handle each vertex v ∈ L(u, f) such that v 6= u (if any) as follows. Let

SoCG 2017

17:8 Reachability in a Planar Subdivision with Direction Constraints

p

q

(i) (ii) (iii)

f

w
f

p
w

q

f0

q0 q

p
f w

p0

Figure 7 The three pruning conditions. The interval w corresponding to q is pruned, and hence
the edge pq (dotted) is not constructed.

f

u

f

u

v1

q
m1

m2
v2

Figure 8 Propagating a pair (u, f), when u is a vertex. (Left) The skeleton before dequeuing
(u, f). (Right) When we propagate (u, f), only v1 is pruned, and the edges uq, um1, um2 and m2v2

are inserted into Ske.

m denote the midpoint of uv. We apply pruning condition (i), so if um ∩ Ske 6= {u}, we
prune uv, and we are done with v. On the other hand, if uv is not pruned, then we insert
the edge um into Ske, and if there is a face f ′ adjacent to f along uv, we insert into A the
pair (uv, f ′).

After this, still assuming that uv was not pruned, we try to extend the skeleton Ske
further to v. So we apply pruning condition (i) to mv. If mv ∩ Ske 6= {m}, we prune v.
Otherwise, we insert the edge mv into Ske, and we insert into A the pair (v, f ′) for each face
f ′ 6= f that is adjacent to v.

Proof of correctness. We can prove that Algorithm 1 is correct in the following sense:

I Theorem 1. If Algorithm 1 terminates, then the reachable vertices are nodes of Ske.

The condition that the algorithm terminates is necessary, as otherwise it could extend
a spiral indefinitely and then some reachable vertices would not be visited. The proof is
omitted due to space limitation. The idea is to show that, whenever we prune a vertex or an
edge, which results in a pair (w, f ′) not being created, then some other pair (w′, f ′) must
have been created earlier such that R(w, f ′) ⊂ R(w′, f ′). It means that (w, f ′) can be safely
pruned. Our proof is based on proving this type of invariants carefully through case analysis.
It also uses the property below.

I Lemma 2. At any time during the execution of Algorithm 1, Ske is a tree embedded in the
plane.

Proof. Pruning condition (i) ensures that Ske does not contain any cycle or crossing edges.
When propagating a pair (u, f) where u is an interval, pruning condition (ii) ensures that
the new node q is different from p = mid(u). When u is a vertex of S, then our algorithm
does not attempt to propagate u into itself, so it does not create a duplicate node either. J

D. Binham, P.M.M. de Castro, and A. Vigneron 17:9

s

(a) (b)

Figure 9 (a) Four one-way tunnels (shaded). (b) A two-way tunnel. All these tunnels are
maximal.

5 Properties of the skeleton

In this section, we consider the properties of the skeleton Ske, at any time during the
execution of Algorithm 1. These properties will be needed in Section 6, in order to analyze
and prove correctness of Algorithm 2. The proofs of the lemmas in this section are omitted
due to space limitation.

A branching node of Ske is a node with outdegree at least 2. An edge of Ske that is
incident to a branching node or a vertex of S, is called a special edge. The other edges of Ske
are called transversal edges. Hence, a transversal edge connects two points in the interiors of
two different edges of S, and is incident to at most one other edge at each endpoint. A beam
is a subpath made of transversal edges. If it is not contained in any other beam, we say that
it is a maximal beam.

I Lemma 3. There are O(n) branching nodes in Ske.

I Lemma 4. There are O(n) special edges and maximal beams in Ske.

The combinatorial structure of a transversal edge from a point in an edge e of S to a
point along another edge e′ is the pair (e, e′). Similarly, the combinatorial structure of a
beam is the sequence of edges of S that it traverses. Two beams are parallel if they have
the same combinatorial structures. A one-way tunnel is formed by two parallel beams such
that there is no other edge of Ske in the space delimited by the two beams and the first and
last edge of S that they meet. (Figure 9.) A two-way tunnel is analogous, but one sequence
is equal to the other sequence reversed. A tunnel is either a one-way tunnel or a two-way
tunnel. A tunnel is maximal if it is not contained in any other tunnel.

We now show that there is a linear number of maximal tunnels. We prove it by charging
tunnels to either special edges, or corners: A corner of a face f is a pair (v, f) where v is a
vertex of f . (See Figure 10.)

I Lemma 5. At any time during the course of Algorithm 1, there are O(n) maximal tunnels.

A spiral is a one-way tunnel that is bounded by the same beam B on both sides. Therefore,
the beam B, or its subsequence that bounds the spiral, is periodic: it has combinatorial
structure (e1, e2, . . . , e`) with ei+p = ei for all 1 ≤ i ≤ i + p ≤ ` and some p < `. If a
spiral can be extended indefinitely, that is, we can extend the sequence (e1, e2, . . . , e`) into
an arbitrarily long sequence with period p, then we say that the spiral is an infinite spiral.

SoCG 2017

17:10 Reachability in a Planar Subdivision with Direction Constraints

v f

qp B

Figure 10 Proof of Lemma 5. (Left) The tunnel (shaded) is charged to the corner (v, f).
(Middle) The tunnel is charged to the special edge pq. (Right) The tunnel is charged to beam B.

Figure 11 (Left) A finite spiral (shaded). (Right) An infinite spiral that does not converge to a
vertex, as it never enters the shaded region.

Otherwise, we say that it is a finite spiral. Figure 2a shows an infinite spiral that converges to
a single vertex. Figure 11 shows a finite spiral, and an infinite spiral that does not converge
to a vertex.

We will see later that our algorithm handles finite spirals in the same way as a regular
tunnel (that is, a tunnel which is not a spiral). Infinite spirals behave differently, but the
lemma below shows that any beam that enters an infinite spiral cannot exit it, and hence
Algorithm 2 will interrupt this beam. (See Figure 12a.)

I Lemma 6. Suppose that Algorithm 1 extends an edge pq of the skeleton Ske inside an
infinite spiral. Then the subtree of Ske rooted at p is a single beam, which remains within
this spiral.

The lemma below shows that, while we construct the skeleton, the only way to enter a
tunnel is to enter a one-way tunnel from its entrance and towards its exit. It means that
one-way tunnels will act as one-way gates, and two-way tunnels will act as barriers during
the execution of the algorithm. The proof relies on pruning condition (iii), and is illustrated
in Figure 12b.

I Lemma 7. During the course of Algorithm 1, no new skeleton edge can be created inside
an existing tunnel, except if the tunnel is a one-way tunnel, and the new edge has the same
combinatorial type as an edge of the tunnel.

Left-turn and right-turn function. We introduce the left-turn and right-turn functions
associated with the combinatorial structure σ of a beam B. Intuitively, the left-turn function
fσ returns the exit point of a path that, from a given starting point, traverses the edge
sequence σ, and turns left as much as possible. Similarly, the right-turn function corresponds
to an extreme right-turning path. A more precise description follows.

So let σ = (e1, . . . , e`) denote the combinatorial structure of the beam B. We denote by
x1, x2, . . . , x` the coordinates along these edges. We assume that the edges are oriented in a
consistent manner, so that the left hand side of B corresponds to smaller values of xi and

D. Binham, P.M.M. de Castro, and A. Vigneron 17:11

p q

(a)

e′

e
f

qa b

p

f ′

(b)

Figure 12 (a) Proof of Lemma 6. The red beam enters an infinite tunnel (shaded), and cannot
get out. (b) Proof of Lemma 7. Edge pq gets pruned by condition (iii).

the right hand side corresponds to larger values. We assume that the range of xi is [0, 1],
and thus the endpoints of ei have coordinates xi = 0 and xi = 1.

Then a beam parallel to B is completely defined by its first interval, which lies along
e1. More precisely, we denote by [ai, bi] the interval along ei corresponding to this beam
B(a1, b1). We assume without loss of generality that xi(ai) ≤ xi(bi), that is, ai lies on the
left-hand side of B. Then x`(a`) is a piecewise linear function fσ(x1) of x1, with at most
one flat patch and one non-flat patch. More precisely, fσ is given by two coefficients aσ and
bσ and an interval [cσ, dσ]. The values of aσ, bσ, cσ, dσ depend on the shapes and the cones
of directions of the faces spanned by σ. When x1 ∈ [cσ, dσ], we have fσ(x1) = aσx1 + bσ.
When x1 ≤ cσ, then fσ(x1) = fσ(cσ). When x1 > dσ, then there is no beam corresponding
to this value of x1.

Similarly, we define the right-turn function gσ that gives the right endpoint of the interval
along e` as a function of x1(b1). Given a beam whose combinatorial structures σ is the
concatenation σ1.σ2 of two sequence σ1 and σ2, the functions fσ and gσ can be determined
in constant time, given the functions fσ1 , gσ1 , fσ2 and gσ2 .

6 Faster algorithm

In this section, we present an O(n logn) time algorithm (Algorithm 2) to compute all the
vertices that are reachable from s. Algorithm 2 is based on Algorithm 1, and the speed-
up comes from the fact that a new beam parallel to an existing beam can be implicitly
constructed in logarithmic time, using appropriate data structures. The differences with
Algorithm 1 are the following.

The skeleton is built in a depth-first manner, always starting with the leftmost subtree,
and going from left to right at each branching. So Algorithm 2 starts by constructing a
leftmost turning path of Ske, and it constructs each maximal beam in one go.
When constructing a new transversal edge, if an edge with the same combinatorial
structure has been constructed earlier, the new beam follows parallel to a previously
constructed beam, forming a new tunnel. Then a procedure called Construct Tunnel
extends the new beam in one go, for as long as this tunnel can be extended. We will see
that this procedure can be implemented to run in O(logn) time.
If a beam begins to form an infinite spiral, or enters one, then it is interrupted, that is,
the corresponding active pair never gets propagated. When all active pairs correspond to
infinite spirals, Algorithm 2 halts.

On the other hand, similarly as in Algorithm 1, a special edge, or a transversal edge
such that no other edge with the same combinatorial structure has been constructed before,

SoCG 2017

17:12 Reachability in a Planar Subdivision with Direction Constraints

is constructed in constant time. As there are O(n) different combinatorial structures for
transversal edges, this contributes O(n) to the running time. We will argue that Construct
Tunnel is called only O(n) times, and hence overall running time is O(n logn).

6.1 Data structures for beams
Let B be a beam with combinatorial structure σ = (e1, . . . , em). Then we represent the
left-turn and right-turn functions of any subsequence of σ using two balanced binary trees
T`(B) and Tr(B). These trees could be, for instance, Red-Black trees, as we will need to be
able to perform insertion, deletion, join and split operations in O(logm) time [8]. We also
record the first interval [a1, b1] of B, that is, the interval of e1 that was propagated to create
the beam B.

First suppose that B does not bound any tunnel. Then T`(B) and Tr(B) are two copies
of the same binary tree representing the subsequences of σ in a hierarchical manner, and
recording both the left-turn and the right-turn functions. Each node corresponds to a
subsequence σij = (ei, . . . , ej) of σ, and records the two indices i and j, as well as the
functions fσij

and gσij
. The root corresponds to the sequence σ of the whole beam B, and

the leaves correspond to the sequences σi(i+1) where 1 ≤ i ≤ m − 1. The subsequence
corresponding to an internal node is the concatenation of the sequences stored at its children,
which are consecutive.

If the beam B bounds a tunnel on its left side, starting from edge ei to edge ej , we replace
the subtree of T`(B) corresponding to σij = (ei, ei+1, . . . , ej) with a single node that records
the functions fσij

and gσij
. If B bounds several tunnels on its left side, we do the same for

each tunnel, as they correspond to disjoint subsequences of σ. The tree Tr(B) is constructed
in a similar way, except that it deals with tunnels on the right side of B.

Each tunnel is bounded by two parallel beams B and C, each one of them being recorded
as one node in our data structure. Suppose that B lies on the left and C lies on the right
of the tunnel. Then the node of Tr(B) and the node of T`(C) corresponding to this tunnel
record a pointer to each other.

As each node of a beam is the midpoint of the corresponding left- and right-turning path,
this data structure allows us to implicitly trace a new beam that appears immediately to the
left or to the right of B, for as long as it remains parallel to B, in logarithmic time.

If a beam B bounds an infinite spiral, then the infinite periodic subsequence is represented
by a single node that we call a sink node. By Lemma 6, a beam that enters an infinite spiral
cannot get out, so our algorithm will stop extending such beams when it encounters a sink
node.

6.2 Procedure Construct Tunnel
Suppose that we are extending a beam B, and the next transversal edge to be constructed
in this beam is pq. Assume that an edge with the same combinatorial structure has been
constructed earlier. Then there should exist a beam C adjacent to pq. Without loss of
generality, we assume that C lies to the right of pq, and that it has combinatorial structure
σ = γ.(e1, . . . , em), where e1 is the edge containing p.2 The procedure Construct Tunnel
will consider a constant number of cases below, which can be handled in logarithmic time
using our data structure.

2 When several beams cross e1, we will show in the full version of this paper how to identify the beam C:
we will use a pointer from each vertex v of S to the closest beam crossing each edge incident to v.

D. Binham, P.M.M. de Castro, and A. Vigneron 17:13

e1

e2

e3

e4

e5

e7

e′

p
q

B

C

e8

a1 b1

a6

a′
b′

b6

e1

e2

e3

e4

e5

e6 e7

e′

p
q

C

e8

a1 b1
e1

e2

e3

e4

e5

e7

e′

p
q

B

C

e8

a1 b1

a6
b6

v

c

Initial situation Case 1 Case 2

Figure 13 Result after calling Construct Tunnel once in Cases 1 and 2.

I Lemma 8. Let N denote the total number, over all beams D constructed during the course
of the algorithm, of nodes in the trees T`(D) or Tr(D). The procedure Construct Tunnel
runs in O(logN) time.

We now describe the procedure Construct Tunnel.

Case 1. In this case, we assume that B follows the left side of C, until B and C split at
some edge ei. That is, the combinatorial structure of B is α.(e1, . . . , ei, e

′) where e′ 6= ei+1,
and α is the sequence of edges crossed by B before it reaches e1. (See Figure 13.) So the
goal is to identify this index i, and to update the data structures accordingly.

In order to simplify the presentation, we first assume that C did not bound any tunnel
before we started to expand B on its left side. Let ai and bi denote the ith vertex along
the left- and right-turning paths of B, starting from a1 and b1, respectively. We now want
to find the last index i such that ai and bi lie on ei. Our data structures T`(C) and Tr(C)
allows us to find it in O(logN) time as follows. Without loss of generality, we only consider
ai and use T`(C).

We find the last index i by traversing T`(C) from the leaf recording (e1, e2) towards the
root, and going then going down towards the leaf recording (ei, ei+1). (Essentially, we are
doing exponential search.) The left-turn function (e1, e2), together with the coordinates of a1,
allow us to determine whether a2 ∈ e2—more precisely, we check whether a1 is in the domain
of f(e1,e2). If not, then we are done. Otherwise, we move to the parent of the node recording
(e1, e2). If (e1, e2) was a left child, then its parent records (e1, e2, e3) or (e1, e2, e3, e4), so we
use the corresponding left-turn function to determine whether a3 ∈ e3 or a4 ∈ e4. If (e1, e2)
is a right child, then we move to the node at the same level and immediately to the right of
its parent. This node records the sequence (e2, . . . , ej) where j ≤ 6, and we can determine in
constant time from the position of a2 computed earlier whether aj lies on ej . We repeat this
process O(logN) time, until it fails. Then we know that (ei, ei+1) is stored at a descendent
of the current node, and we find it by traversing the tree downwards.

After finding this last index i, we cut from T`(C) the nodes corresponding to the sequence
(e1, . . . , ei) and append them to T`(B). This can be done by performing two split and two
join operations, which takes O(logN) time using Red-Black trees [8]. We then insert a single
node into T`(C) that records the functions f(e1,...,e6) and g(e1,...,e6), whose coefficients we can
also compute in O(logN) time using our data structure. Then we make a copy of this node
and append it to Tr(B). Finally, we record in each of these two nodes a pointer to the other.
So overall, we have updated the data structures for B and C in O(logN) time.

The procedure above still applies when beam C bounds one or several tunnels on its left
side which are then split by B. The nodes of T`(C) corresponding to these tunnels are moved

SoCG 2017

17:14 Reachability in a Planar Subdivision with Direction Constraints

to T`(B) in the same way as the other nodes, which represent single edges of the skeleton.
The cross-pointers between these nodes do not need to be updated. Thus, the data structure
can be updated in O(logN) time.

Case 2. In this case, we assume that B follows the left side of C, until B reaches an edge ei
and branches. This case is similar to Case 1, except for the termination condition. In Case 1,
the beam B was extended until it quit following C from the left. In Case 2, we extend B
until it branches, and hence the left- and right-turning paths of B must be separated by a
vertex v of the subdivision S. (See Figure 13.) This vertex v can be found in O(logN) time
using the data structures T`(C) and T`(B), which allow us to trace the left- and right-turning
paths from a1 and b1. After v has been found, we know that B stops at the edge ei opposite
from v, and we update the data structures in the same way as in Case 1.

Case 3. In this case, we assume that B follows the left side of C, until B is interrupted
because its next tentative edge gets pruned. So we assume that this edge p1q1 has combinat-
orial structure (e1, e2), and it gets pruned due to an edge p2q2 of Ske. We denote by e′ the
third edge of the face bounded by e1 and e2.

First assume that p2 ∈ e1 and q2 ∈ e2. Then we can prove that q1 and q2 must be at the
midpoint of an edge of S. We will show in the full version of this paper how to identify this
case in constant time by augmenting the subdivision S.

Now assume that p2q2 ⊂ e2. In this case, p2q2 is an edge of S, so it can be identified in
O(logN) time as in Case 1.

Suppose that p2 ∈ e2 and q2 ∈ e1. Then C forms a reversed tunnel with the beam D

containing p2q2. This tunnel is narrower along e1, and since p1q1 follows parallel to B, it
cannot cross p2q2, a contradiction.

The case where p2 ∈ e1 and q2 ∈ e′ is similar to the case where p2 ∈ e1 and q2 ∈ e2. The
case where p2 ∈ e′ and q2 ∈ e2 is similar to the case where p2 ∈ e1 and q2 ∈ e2. The case
where p2 ∈ e′ and q2 ∈ e1 is similar to the case where p2 ∈ e2 and q2 ∈ e1. The case where
p2 ∈ e2 and q2 ∈ e′ is similar to the case where p2 ∈ e2 and q2 ∈ e1.

Case 4. In this case, we assume that B follows the left side of C, until we reach the terminal
node of C. Our data structure allows us to identify this case in O(logN), by checking that
the new section of B has the same combinatorial structure as C until we reach the end of C.
If the terminal node is a sink, then B enters an infinite spiral and thus we stop extending it.

Case 5. The beams B and C are equal, and hence we start a spiral. So B has a combinatorial
structure of the form α.β, where β = (e1, e2, . . . , ep), before the current call to Construct
Tunnel. If the spiral is finite, then we are going to extend it into α.βk.(e1, . . . , ei), where
k ≥ 0 is the number of full turns made by the spiral, and i is the number of edges in the last
(partial) turn.

Using our data structure, we compute fσ and gσ, which are linear functions. So (fσ)k(a1)
and (fσ)k(b1) are geometric progressions, whose expression can be determined in constant
time. If x1(a1) is not in the domain of (fσ)k for some k, then the spiral is finite, and we can
find in constant time the first such index k, which is the number of full turns of the spiral.
Similarly, we can find whether x1(b1) leaves (gσ)k for some k.

If the spiral is finite, then we append a node to Tr(B) and T`(C) corresponding to the
sequence βk.(e1, . . . , ei) of the spiral. If the spiral is infinite, we stop propagating B, and
append a sink node at the end of T`(B) and Tr(B).

D. Binham, P.M.M. de Castro, and A. Vigneron 17:15

Case 6. In this case, we assume that B and C form a two-way tunnel, starting from pq.
For any node of T`(C) or Tr(C) that corresponds to a sequence σ, we know the description
of the left- and right-turn functions fσ and gσ. So we can also get in constant time their
inverses f−1

σ and g−1
σ . Therefore, we can follow beam C backwards in the same way as in

Cases 1 to 4, and Case 6 can be handled in the same way.

6.3 Main result
The main result of this paper is the theorem below. Due to space limitation, its proof is
omitted.

I Theorem 9. The vertices that are reachable from s are nodes of the skeleton computed by
Algorithm 2. Therefore, we can compute all the reachable vertices in O(n logn) time.

References
1 Michael Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th ACM

Symposium on Theory of Computing, pages 80–86, 1983. doi:10.1145/800061.808735.
2 Siu-Wing Cheng and Jiongxin Jin. Approximate shortest descending paths. In Proc. 24th

ACM-SIAM Symposium on Discrete Algorithms, pages 144–155, 2013.
3 Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Approximate

shortest paths in anisotropic regions. SIAM Journal on Computing, 38(3):802–824, 2008.
4 Mark de Berg, Herman J. Haverkort, and Constantinos P. Tsirogiannis. Implicit flow

routing on terrains with applications to surface networks and drainage structures. In Proc.
22nd ACM-SIAM Symposium on Discrete Algorithms, pages 285–296, 2011.

5 Mark de Berg and Marc J. van Kreveld. Trekking in the alps without freezing or getting
tired. Algorithmica, 18(3):306–323, 1997. doi:10.1007/PL00009159.

6 John H. Reif and Zheng Sun. Movement planning in the presence of flows. Algorithmica,
39(2):127–153, 2004. doi:10.1007/s00453-003-1079-5.

7 Zheng Sun and John H. Reif. On finding energy-minimizing paths on terrains. IEEE
Transactions on Robotics, 21(1):102–114, 2005. doi:10.1109/TRO.2004.837232.

8 Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

SoCG 2017

http://dx.doi.org/10.1145/800061.808735
http://dx.doi.org/10.1007/PL00009159
http://dx.doi.org/10.1007/s00453-003-1079-5
http://dx.doi.org/10.1109/TRO.2004.837232

Fine-Grained Complexity of Coloring Unit Disks
and Balls∗

Csaba Biró1, Édouard Bonnet2, Dániel Marx3, Tillmann Miltzow4,
and Paweł Rzążewski5

1 Department of Mathematics, University of Louisville, Louisville, KY, USA
csaba.biro@louisville.edu

2 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
edouard.bonnet@dauphine.fr

3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu

4 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzow@gmail.com

5 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary; and
Faculty of Mathematics and Information Science, Warsaw University of
Technology, Warsaw, Poland
p.rzazewski@mini.pw.edu.pl

Abstract
On planar graphs, many classic algorithmic problems enjoy a certain “square root phenomenon”
and can be solved significantly faster than what is known to be possible on general graphs: for
example, Independent Set, 3-Coloring, Hamiltonian Cycle, Dominating Set can be
solved in time 2O(

√
n) on an n-vertex planar graph, while no 2o(n) algorithms exist for general

graphs, assuming the Exponential Time Hypothesis (ETH). The square root in the exponent
seems to be best possible for planar graphs: assuming the ETH, the running time for these
problems cannot be improved to 2o(

√
n). In some cases, a similar speedup can be obtained

for 2-dimensional geometric problems, for example, there are 2O(
√
n logn) time algorithms for

Independent Set on unit disk graphs or for TSP on 2-dimensional point sets.
In this paper, we explore whether such a speedup is possible for geometric coloring problems.

On the one hand, geometric objects can behave similarly to planar graphs: 3-Coloring can be
solved in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the

ETH, there is no such algorithm with running time 2o(
√
n). On the other hand, if the number `

of colors is part of the input, then no such speedup is possible: Coloring the intersection graph
of n unit disks with ` colors cannot be solved in time 2o(n), assuming the ETH. More precisely,
we exhibit a smooth increase of complexity as the number ` of colors increases: If we restrict the
number of colors to ` = Θ(nα) for some 0 6 α 6 1, then the problem of coloring the intersection
graph of n unit disks with ` colors

can be solved in time exp
(
O(n 1+α

2 logn)
)

= exp
(
O(
√
n` logn)

)
, and

cannot be solved in time exp
(
o(n 1+α

2)
)

= exp
(
o(
√
n`)

)
, unless the ETH fails.

∗ Supported by the ERC grant PARAMTIGHT: “Parameterized complexity and the search for tight
complexity results”, no. 280152.

© Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Fine-Grained Complexity of Coloring Unit Disks and Balls

More generally, we consider the problem of coloring d-dimensional unit balls in the Euclidean
space and obtain analogous results showing that the problem

can be solved in time exp
(
O(n d−1+α

d logn)
)

= exp
(
O(n1−1/d`1/d logn)

)
, and

cannot be solved in time exp
(
n
d−1+α
d −ε

)
= exp

(
O(n1−1/d−ε`1/d)

)
for any ε > 0, unless the

ETH fails.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases unit disk graphs, unit ball graphs, coloring, exact algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.18

1 Introduction

There are many examples of 2-dimensional geometric problems that are NP-hard, but can
be solved significantly faster than the general case of the problem: for example, there
are 2O(

√
n logn) time algorithms for TSP on 2-dimensional point sets or for Independent

Set on the intersection graph of unit disks in the plane [27, 21, 1], while only 2O(n) time
algorithms are known for these problems on general metrics or on arbitrary graphs. There is
evidence that these running times are essentially best possible: under the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [16], the 2O(

√
n logn) time algorithms

for these 2-dimensional problems cannot be improved to 2o(
√
n), and the 2O(n) algorithms

for the general case cannot be improved to 2o(n). Thus running times with a square root in
the exponent seems to be the natural complexity behavior of many 2-dimensional geometric
problems. There is a similar “square root phenomenon” for planar graphs, where running
times of the form 2O(

√
n), 2O(

√
k) · nO(1), or nO(

√
k) are known for a number of problems

[4, 6, 5, 15, 11, 12, 7, 9, 8, 28, 14, 10, 17, 18, 2, 24, 25, 21]. More generally, for d-dimensional
geometric problems, running times of the from 2O(n1−1/d) or nO(k1−1/d) appear naturally, and
Marx and Sidiropoulos [22] showed that, assuming the ETH, this form of running time is
essentially best possible for some problems.

In this paper, we explore whether such a speedup is possible for geometric coloring
problems. Deciding whether an n-vertex graph has an `-coloring can be done in time `O(n)

by brute force, or in time 2O(n) using dynamic programming. On planar graphs, we can
decide 3-colorability significantly faster in time 2O(

√
n), for example, by observing that planar

graphs have treewidth O(
√
n). Let us consider now the problem of coloring the intersection

graph of a set of unit disks in the 2-dimensional plane, that is, assigning a color to each disk
such that if two disks intersect, then they receive different colors. For a constant number of
colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved
in time 2O(

√
n) on the intersection graph of n unit disks in the plane and, assuming the ETH,

there is no such algorithm with running time 2o(
√
n). However, while every planar graph is

4-colorable, unit disks graphs can contain arbitrary large cliques, and hence the `-colorability
is a meaningful question for larger, non-constant, values of ` as well. We show that if the
number ` of colors is part of the input and can be up to Θ(n), then, surprisingly, no speedup
is possible: Coloring the intersection graph of n unit disks with ` colors cannot be solved
in time 2o(n), assuming the ETH. What happens between these two extremes of constant
number of colors and Θ(n) colors? Our main 2-dimensional result exhibits a smooth increase
of complexity as the number ` of colors increases.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.18

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:3

I Theorem 1. For any fixed 0 6 α 6 1, the problem of coloring the intersection graph of n
unit disks with ` = Θ(nα) colors

can be solved in time 2O(n
1+α

2 logn) = 2O(
√
n` logn), and

cannot be solved in time 2o(n
1+α

2) = 2o(
√
n`), unless the ETH fails.

Let us remark that when we express the running time as a function of two parameters
(number n of disks and number ` of colors) it is not obvious what we mean by claiming that
a running time is “best possible.” In the statement of Theorem 1, we follow Fomin et al. [13],
who studied the complexity of a two-parameter clustering problem in a similar way: We
restrict the parameter ` to be Θ(nα) for some fixed α, and determine the complexity under
this restriction as a univariate function of n.

The proof is not very specific to disks and can be easily adapted to, say, axis-parallel unit
squares or other fat objects. However, it seems that the requirement of fatness is essential
for this type of complexity behavior as, for example, the coloring of the intersection graphs
of line segments (of arbitrary lengths) does not admit any speedup compared to the 2O(n)

algorithm, even for a constant number of colors.

I Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

How does the complexity change if we look at the generalization of the coloring problem
into higher dimensions? It is known for some problems that if we generalize the problem
from two dimensions to d dimensions, then the square root in the exponent of the running
time changes to a 1 − 1/d power, which makes the running time closer and closer to the
running time of the brute force as d increases [22]. This may suggest that the d-dimensional
generalization of Theorem 1 should have (n`)1−1/d in the exponent instead of

√
n`. Actually,

this is not exactly what happens:1 the correct exponent seems to be n1−1/d times `1/d. That
is, as d increases, the running time becomes less and less sensitive to the number of colors
and approaches 2O(n), even for constant number of colors.

I Theorem 3. For any fixed 0 6 α 6 1 and dimension d > 2, the problem of coloring the
intersection graph of n unit balls in the d-dimensional Euclidean space with ` = Θ(nα) colors

can be solved in time 2
O

(
n
d−1+α
d logn

)
= 2O(n1−1/d`1/d logn), and

cannot be solved in time 2n
d−1+α
d

−ε
for any ε > 0, unless the ETH fails.

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using standard
techniques. Clearly, the problem of coloring unit disks with ` colors makes sense only if
every point of the plane is contained in at most ` disks: otherwise the intersection graph
would contain a clique of size larger than ` and we would immediately know that there is no
`-coloring. On the other hand, if every point is contained in at most ` of the n unit disks,
then it is known that there is a balanced separator of size O(

√
n`) [23, 27, 26]. By finding

such a separator and trying every possible coloring on the disks of the separator, we can
branch into `O(

√
n`) smaller instances (here it is convenient to generalize the problem into

the list coloring problem, where certain colors are forbidden on certain disks). This recursive

1 The astute reader can quickly realize that 2O((n`)1−1/d) is certainly not the correct answer when, say,
` = Θ(n) and d = 3: then 2O((n`)1−1/d) = 2O(n4/3) is worse than the running time 2O(n) possible even
for general graphs!

SoCG 2017

18:4 Fine-Grained Complexity of Coloring Unit Disks and Balls

procedure has the running time claimed in Theorem 1. We can use higher-dimensional
separation theorems and a similar approach to prove the upper bound of Theorem 3.

For the lower bound, the first observation is that instances with the following structure
seem to be the hardest: the set of disks consists of g2 groups forming a g × g-grid and each
group consists of ` pairwise intersecting disks such that disks in group (i, j) can intersect disks
only from those other groups that are adjacent to (i, j) in the g×g-grid. Note that this instance
has n = g2` disks. As a sanity check, let us observe that the g` disks in any given row have
`g` possible different colorings, hence we can solve the problem by a dynamic programming
algorithm that sweeps the instance row by row in time in 2O(g` log `) = 2O(

√
n` log `), which is

consistent with the upper bound of Theorem 1. We introduce the Partial d-grid Coloring
problem as a slight generalization of such grid-like instances where some of the g × g groups
can be missing.

To prove that instances of this form cannot be solved significantly faster, we reduce
from a restricted version of satisfiability where g2k variables are partitioned into g2 groups
forming a g × g-grid and there are two types of constraints: clauses of size at most 3 where
each variable comes from the same group and equality constraints forcing two variables from
two adjacent groups to be equal. It is not very difficult to show that any 3-SAT instance
with O(gk) variables and O(gk) clauses can be embedded into such a problem, hence the
ETH implies that the problem cannot be solved in time 2o(gk). We reduce such instances
of 3-SAT to the coloring problem by representing each group of k variables with a group
of ` = O(k) disks and make the following correspondence between truth assignments and
colorings: if the i-th variable of the group is true, then we represent it by giving color 2i− 1
to the (2i − 1)-st disk and color 2i to the 2i-th disk, and we represent false by swapping
these two colors. Then we implement gadgets that enforce the meaning of the clauses and
the equality constraints. This way, we create an equivalent instance with O(g2) groups of
` = O(k) disks in each group, hence an algorithm with running time 2o(g`) = 2o(gk) would
violate ETH, which is what we wanted to show.

The d-dimensional lower bound of Theorem 3 goes along the same lines, but we first
prove a lower bound for a d-dimensional version of 3-SAT, where there are gd groups of
variables of size k each, arranged into a g × · · · × g-grid. Based on earlier results by Marx
and Sidiropoulos [22], we prove an almost tight lower bound for this d-dimensional 3-SAT by
embedding a 3-SAT instance with roughly gd−1k variables and clauses into the d-dimensional
g× · · ·× g-grid. Then the reduction from this problem to coloring unit balls in d-dimensional
space is very similar to the 2-dimensional case.

2 Intermediate problems

In this section, we introduce two technical problems, which will serve as an intermediate
step in our hardness reductions. Let us start with some notation and definitions. For an
integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2S the family
of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by ei the d-dimensional
vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For
two positive integers g, d, we denote by R[g, d] the d-dimensional grid, i.e., a graph whose
vertices are all vectors from [g]d, and two vertices are adjacent if they differ on exactly one
coordinate, and exactly by one (on that coordinate). In other words, a and a′ are adjacent if
a = a′ ± ei for some i ∈ [d]. We will often refer to vertices of a grid as cells.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:5

Problem: d-grid 3-Sat
Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈ V (G) 7→
{v1, v2, . . . , vk} mapping each cell v to k fresh boolean variables, and a set C of constraints
of two kinds:
clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of

at most 3 literals on ζ(v);
equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variable-disjoint

constraints of the form vi = wj (with i, j ∈ [k]).
Question: Is there an assignment of the variables such that all constraints are satisfied?

Not all variables need to appear in some constraint. The size of the instance I = (G, k, ζ, C)
of d-grid 3-Sat is the total number of variables, i.e., gdk.

Problem: Partial d-grid Coloring
Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer `,
and a function ρ : v ∈ V (G) 7→ {pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a set of
` points in [`]d.
Question: Is there an `-coloring of all the points such that:

two points in the same cell get different colors;
if v and w are adjacent in G, say, w = v + ei (for some i ∈ [d]), and p ∈ ρ(v) and
q ∈ ρ(w) receive the same color, then p[i] 6 q[i] where a[i] := a · ei is the i-th
coordinate of a?

Here the size of the instance is the total number of points, i.e., |V (G)|` 6 gd`.

3 Two-Dimensional Lower Bounds

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit
disk graphs. We do it using a three-step reduction and the intermediate problems introduced
in the previous section. Thanks to introducing these two intermediate steps, our construction
is easy to generalize to higher dimensions (see Section 4).

First we reduce 3-Sat to 2-grid 3-Sat.

I Theorem 4. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with total size
n and k = Θ(nα) variables per cell in time 2o(

√
nk) = 2o(n

1+α
2), unless the ETH fails.

The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the
most important part of the proof.

I Theorem 5. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless
the ETH fails.

Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let
I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains
k variables. We think of G as embedded in the plane in a natural way, with edges being
horizontal or vertical segments. We construct an equivalent instance J = (F, `, ρ) of Partial

SoCG 2017

18:6 Fine-Grained Complexity of Coloring Unit Disks and Balls

A1
2
4
3

5
6
7
8

x1

x2

bottom of
reference
coloring

B

y1

y2

top of
reference
coloring

1
2
3
4

6
5

7
8

Figure 1 Cells of even parity contain the bottom half of the reference coloring as in cell A and
cells of odd parity contain the top part of the reference coloring, as in cell B.

2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g2) and ` := 4k points per cell, where F is
an induced subgraph of R[g′, 2] with g′ = Θ(g).

First, we will explain the most basic building blocks of our construction, i.e., standard
cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are
ready to give an overview of the whole reduction. We finish with an elaborate explanation of
more complicated gadgets and proof of their correctness.

Standard cells. A standard cell is a cell where the points p1, . . . , p` are on the main diagonal,
that is pi = (i, i) for every i ∈ [`] (see cells A and B of Figure 2a). When we talk about the
ordering of the points in a standard cell, we always mean the left-to-right (or equivalently,
top-to-bottom) ordering. Standard cells will be used for the basic pieces of the construction,
i.e., variable-assignment cells, local reference cells, and wires (see below).

Reference coloring. Later in the construction we will choose one standard cell R̄, which
will be given a special function. We will refer to the coloring of R̄ as the reference coloring.
For each i ∈ [`], we define the color i to be the color used for the point pi in R̄. Now, saying
that a point somewhere else has color i, has an absolute meaning; it means using the same
color as used for point pi in R̄.

Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard
cell A(v) = (δi, δj), where δ is a large constant. The cells A(v) for v ∈ V (G) are responsible
for encoding the truth assignment of variables in ζ(v). Therefore we call them variable-
assignment cells. We will partition variable-assignment cells into two types. The cell A(v)
for v = (i, j) of I is called even if i+ j is even. Otherwise A(v) is odd. Note that if v and w
are adjacent cells in I, then A(v) and A(w) have different parity.

As each variable-assignment cell contains ` = 4k points, there are `! = 2O(` log `) ways
to color these points with ` colors. We will only make use of 2`/4 colorings among those.
In our construction, we will make sure that each variable-assignment cell receives one
of the standard colorings. If the cell A(v) is even, the coloring ϕ of A(v) is standard
if {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and ϕ(pi) = i for i ∈ [4k] \ [2k]. If the
cell A(v) is odd, its standard colorings ϕ are the ones with ϕ(pi) = i for i ∈ [2k] and
{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [2k] \ [k]. The choice of the particular standard
coloring for the points in A(v) defines the actual assignment of variables in ζ(v). If A(v) is
even, then for each i ∈ [k], we interpret the coloring in the following way:

p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variablevi to true;
p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variablevi to false.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:7

p1
p2

A

p3
p4

q1
q2

B

q3
q4

(a) If two standard cells are adjacent, they
must have the same coloring.

(b) Wires can be used to create many copies
of the same cell.

Figure 2 Construction and usage of wires.

If A(v) is odd, for each i ∈ [k], we interpret it in that way:

p2k+2i−1 7→ 2i− 1 , p2k+2i 7→ 2ias setting the variablevito true;
p2k+2i−1 7→ 2i , p2k+2i 7→ 2i− 1as setting the variablevito false.

Observe that in even (odd, respectively) cells A(v) the assignment of variables is only
encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of the
remaining points are exactly the same as in the reference coloring, so each cell contains
exactly one half of the reference coloring.

Local reference cells. For all i, j ∈ [g − 1], we introduce a new standard cell R(i, j) =
(δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R̄ to be
R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is
exactly the same, i.e., is exactly the reference coloring.

Consider the variable-assignment cell A(v) for v = (i, j). We say that a local reference
cell R(i′, j′) is associated with A(v), if j − j′ ∈ {0, 1} and i − i′ ∈ {0, 1}. Note that each
variable-assignment cell has one, two, or four associated local reference cells. Moreover, if
v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference
cell.

Wires. If two standard cells are adjacent, then they must be colored in the same way; thus
having a path of standard cells, allows us to transport the information from one cell to
another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A
is left of B (see Figure 2a; the argument is similar if the cells are vertically adjacent).

Let p1, . . . , p` be the points of the cell A and q1, . . . , q` be the points of the cell B. Note
that the color of q1 is necessarily equal to the color of p1, because the x-coordinates of points
p2, p3, . . . , p` exceed the x-coordinate of q1. Inductively, we can show that for every i > 2, the
color of qi is the same as the color of pi. Indeed, the colors used for pi+1, pi+2, . . . , p` are not
available for qi, because these points are too close to qi. On the other hand, by the inductive
assumption, all colors used on p1, p2, . . . , pi−1 are already used for points q1, q2, . . . , qi−1.
Thus the only possible choice for the color of qi is the color of pi.

Observe that the use of wires allows us to create many copies of the same cell (see Fig. 2b).
We say two cells are the same, if the point configuration and their coloring must be necessarily
the same.

SoCG 2017

18:8 Fine-Grained Complexity of Coloring Unit Disks and Balls

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 3 Illustration of the instance J . Each blue square represents a cell A(v) corresponding
to the cell v of I (light blue cells represent even cells and dark blue ones represent odd cells). The
orange squares are local reference cells, which contain the reference coloring. Gray and brown
squares represent, respectively, clause-checking and consistency gadgets.

Overview of the construction. Before we move on to describe more complicated gadgets,
we explain the overview of the construction. Figure 3 presents the arrangement of the cells
in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which is
responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an access
to the reference coloring, which can attain from the local reference cells (we can choose any
of the local reference cells associated with A(v)). For each edge vw of G, we introduce a
consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with the outer
face) we introduce two consistency gadgets, one for each face incident with vw. This gadget
is responsible for ensuring the consistency on three different levels:

to force all equality constraints C(v, w) to be satisfied,
to ensure that each of A(v) and A(w) receives one of the standard colorings,
to ensure that the local reference cell contains exactly the reference coloring.

This gadget also requires access to the reference coloring, so we join it with the appropriate
local reference cell (see Fig. 3).

To join the variable-assignment cells and local reference cells with appropriate gadgets,
we will use wires. Notice that each cell A can interact with at most four other cells, which
may not be enough, if we want to attach several gadgets to A. However, since wires allow us
to create an exact copy of A, we can attach any constant number of gadgets to A, adding
only a constant number of additional cells. Moreover, we can do it in a way that ensures
that no two gadgets interact with each other (anywhere but on A). Thus, when we say that
we attach some gadget to a cell, we will not discuss how exactly we do this.

Every gadget uses only a constant number of cells. Thus, making the constant δ large
enough and using wires, we can make sure that different gadgets do not interact with each
other (except for the shared cells). The total size of the construction is clearly increased only
by a constant factor.

Permuting points and colors. Recall that when describing wires, we have not used the
second coordinate of the points p1, . . . , p` and q1, . . . , q`. In fact, those coordinates can be
chosen at our convenience, and the argument supporting the claim in the paragraphs on the
wires would still work. Combining this observation horizontally and vertically, we can force
any permutation of the colors (see Figure 4a). The gadget is realized as follows. Let σ be

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:9

a

b

c

d

a

b

c

d

d

c

a

b

A B

C

(a) The coloring of C is the coloring of A
with the permutation σ = (3, 4, 1, 2) applied.

a

b

c

d

a|b

c

d

d

c

a|b

a|b
a|b

A B

C

(b) In the cell C, colors a and b are now
interchangeable.

Figure 4 Permutation gadget (left) and forgetting gadget (right), attached to cells A and C.

our target permutation. To the right of a standard cell A, we put a cell B. We place the
points in B at the positions of 1’s in the permutation matrix of σ. Below the cell B, we put
a standard cell C. Is is straightforward to verify that in any feasible coloring of those three
cells, for every i ∈ [`], the points pi and qσ(i) have the same color, where pi (resp. qi) is the
point in (i, i) in the cell A (resp. cell C).

Forgetting color assignment. Besides permuting points and colors, it is also possible to
forget the color assignment of some points. Figure 4b shows a forgetting gadget attached
to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d. In
the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an
even variable-assignment cell, then by looking at C we cannot distinguish anymore whether
the variable was set to true or to false. Thus, using a forgetting gadget attached to two
standard cells, we may force equality of colors of some corresponding points, while giving
some freedom of choosing the others. This concept will be used in the next paragraph.

Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell
can act independently. In particular, this means that we can choose to forget any subset
of information but preserve the rest. It is important to note that this is a more general
phenomenon. Let `1, . . . , `t be positive integers summing up to `. Consider an arrangement
of cells where the points of each cell are all contained in the same square boxes of side lengths
respectively `1, . . . , `t, along the diagonal as shown in Figure 5a. For each h ∈ [t], the h-th
box (of side length `h) contains exactly `h points.

One may observe that a slight generalization of the argument given in the paragraph on
wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has
points grouped in t boxes of sizes `1, . . . , `t, then for each h ∈ [t], the set of colors used on
points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see
Figure 5a).

We point out that the combination of this observation and the forgetting gadget attached
to a local reference cell and a variable-assignment cell A can be used to ensure that A
receives one of the standard colorings (see Fig. 5b). The construction of the forgetting gadget
varies depending on the parity of A. In general the gadget preserves the colors of 2k points
containing the copy of one half of the reference coloring, and allows any permutation of
colors within two-element boxes representing the variables. We will use a similar approach
to check several clauses in parallel within the same group of a constant number of cells.

SoCG 2017

18:10 Fine-Grained Complexity of Coloring Unit Disks and Balls

`1

`2

`3

`4

`5

`1

`2

`3

`4

`5

A B

(a) The sets of colors used within corresponding
boxes of A and B are equal.

R

A

(b) If R contains the reference coloring, then A
receives one of standard colorings (for an even
cell).

Figure 5 Boxes in adjacent cells with the same box-structure act independently from each other.

Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of
Figure 6). Clauses with fewer literals are just a simplification of what comes next. First,
we will explain how to express a clause C, whose variables x1, x2, x3 are contained in a
(6× 6)-box of a variable-assignment cell A. In the next paragraph we will show how to check
several variable-disjoint clauses in one constant-size gadget. In general, in what follows, one
should think of the coordinates that we will specify as coordinates within a box part of the
cell, rather than as coordinates in the cell. The same applies to the colors, we should always
look at the set of colors appearing in the particular box. Obviously, the clause-checking
gadget needs to interact with variable-assignment encoding the values of x1, x2, x3. For
simplicity of notation assume that x1 is encoded by coloring points p1, p2 with colors 1, 2; x2
is encoded by coloring points p3, p4 with colors 3, 4 and; x3 is encoded by coloring points
p5, p6 with colors 5, 6. Our clause-checking gadget needs also an access to the reference
coloring contained in the cell R. This is necessary to be able to distinguish between colors
e.g. 1 and 2, and thus between setting x1 to true or to false.

First consider cells S, T , and U . The cell R contains the reference coloring and we force
the order of the colors in cell T to be from top to bottom 1, 3, 5, 2, 4, 6, using the permutation
gadget. Consider now cell U . It has one point at position (3, 3) and 5 points superimposed
at position (6, 6). Now, because of cell T , the point p can only have a color c ∈ {1, 3, 5}. All
the other colors should be given to the 5 superimposed points. Then, consider cells A and B.

The cell A contains the variable assignment. Recall that for each variable we use two
points. If a variable occupying rows 2i−1 and 2i in the cell A occurs positively in C, then we
place in cell B a point in row 2i− 1 to the left of the box (say, the third column) and a point
in the row 2i to the right of the box (the sixth column); if the variable appears negatively,
we do the opposite: we place in cell B a point in the row 2i− 1 to the right of the box (sixth
column) and a point in row 2i to the left of the box (third column). By construction, the
colors to the right are not available to the point p. Therefore, the point p (and henceforth
the whole set of cells) can be colored if and only if at least one literal is set to true by the
truth assignment.

Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C1, . . . , Cf be
the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a
permutation of points in A(v), such that the 2|C1| points encoding the variables of C1 appear
on positions 1, 2, . . . , 2|C1|, the 2|C1| points encoding the variables of C2 appear on positions

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:11

re
fe
re
n
ce

co
lo
ri
n
g 1

2
3
4
5
6

1

2

3

4
6

5

1

2

3

4
6

5

p

x1

x2

x3

[6] \ c

va
ria

b
le

assig
n
m
en
t

R S

T

UB

Aa
b

a
b

re
fe
re
n
ce

co
lo
ri
n
g

va
ria

b
le

assig
n
m
en
t

R S

T

UB

AC1

C2

Figure 6 Illustration of the clause-checking gadget. To the left, one clause x1 ∨ ¬x2 ∨ x3 is
represented. To the right, two clauses are checked in parallel.

2|C1|+ 1, 2|C1|+ 2, . . . , 2|C1|+ 2|C2| and so on. The points encoding variables which do not
appear in any clause from C(v) and the points which do not encode any variable (i.e., the
points carrying a half of the reference coloring) appear on the last position, in any order.

We introduce a new standard cell A, and using a permutation gadget we ensure that it
contains the copies of points of A(v) in the permutation σ. In the same way we introduce
a standard cell R, which contains the reference coloring with the permutation σ applied.
An illustration on how two clauses can be checked simultaneously is shown on the right
part of Figure 6. Observe that since the clauses in C(v) are pairwise variable-disjoint, one
clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).

Thus, for each cell A(v) and its associated local reference cell R, we introduce a clause-
checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.

Equality check. Let A be a cell of J and let the points p2i−1, p2i (p2j−1, p2j for 2i < 2j− 1)
in the cell A encode the variable x (y, respectively). Suppose we want to make sure
that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have
ϕ(p2i−1) + 1 = ϕ(p2i) whenever ϕ(p2j−1) + 1 = ϕ(p2j).

Such an equivalence of two variables can be expressed by two clauses C1 = x ∨ ¬y and
C2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure the
equivalence using the clause-checking gadget. Observe that C1 and C2 are not variable-
disjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking
gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables
represented in the single cell. Observe that A does not have to be a variable-assignment cell
(i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality
checks for cells where each pair of points p2i−1, p2i corresponds to some variable, encoded in
an analogous way as in variable-assignment cells.

SoCG 2017

18:12 Fine-Grained Complexity of Coloring Unit Disks and Balls

S

A(v)

A(w)

clause

wires

forget

local reference cell

combined
assignment

even variable
assignment cell

odd variable
assignment cell

variable
assignments

top of reference
coloring

bottom of
reference coloring

Figure 7 Overview of the consistency gadget. The clause gadgets serve to realize the equality
constraints C(v, w).

Consistency gadget. The last gadget, called the consistency gadget, will join every three
cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to
adjacent cells v and w of I, and a R is a local reference cell associated with both A(v) and
A(w). This gadget is responsible for ensuring that colorings of these three cells are consistent,
that is:

each cell A(v), A(w) is colored with a standard coloring,
the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,
R has exactly the reference coloring.

Suppose that A(v) is even, A(w) is odd, and v is above w in I (all other cases are
symmetric). We denote the points of A(v) by p1, p2, . . . , p`, the points of A(w) by q1, q2, . . . , q`,
and the points by R by r1, r2, . . . , r` (going from top-left to bottom-right). First, we introduce
two forgetting gadgets and attach one of them to R and A(v), and the other one to R and
A(w). The first gadget ensures that in every coloring ϕ we have
{ϕ(p2i−1), ϕ(p2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [k],
ϕ(p2i−1) = ϕ(r2i−1) and ϕ(p2i) = ϕ(r2i) for i ∈ [2k] \ [k].

The second one ensures that in every coloring ϕ we have
ϕ(q2i−1) = ϕ(r2i−1) and ϕ(q2i) = ϕ(r2i) for i ∈ [k],
{ϕ(q2i−1), ϕ(q2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [2k] \ [k].

We also introduce a new standard cell S. Let s1, s2, . . . , s` be the points in S. With two
additional forgetting gadgets, one attached to S and A(v), and the other one attached to S
and A(w), we ensure that in every coloring ϕ we have:

ϕ(s2i−1) = ϕ(p2i−1) and ϕ(s2i) = ϕ(p2i) for i ∈ [k],
ϕ(s2i−1) = ϕ(q2i−1) and ϕ(s2i) = ϕ(q2i) for i ∈ [2k] \ [k].

Note that the cell S contains the information about the values of all variables in ζ(v) (first
2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints
C(v, w), recall that each of them is of the form vi = wj . Thus we want to ensure that in
every coloring ϕ, we have ϕ(s2i−1) + 1 = ϕ(s2i) if and only if ϕ(s2k+2j−1) + 1 = ϕ(s2k+2j).
We can easily do it by performing the equality check on S, using two clause gadgets and R
as a reference coloring. The whole consistency gadget is displayed schematically in Figure 7.

Is is straightforward to observe that if I is satisfiable, then J can be colored with ` colors,
in a way described above. The opposite implication follows from the claims below.

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:13

I Claim 6. The coloring of each R(i, j) for i, j ∈ [g − 1] is exactly the same as the coloring
of R̄ = R(1, 1).

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of
R(i− 1, j) for each 2 6 i 6 g − 1 and j ∈ [g − 1]. The case for R(i, j − 1) is analogous, and
the claim follows inductively.

Let v = (i, j) and w = (i, j + 1) be the cells of I. Note that v and w are adjacent and
A(v) and A(w) are associated with both R(i− 1, j) and R(i, j). Without loss of generality
assume that v is even and w is odd. For f ∈ [`], by pf , qf , rf , and r′f we denote, respectively,
the points of A(v), A(w), R(i− 1, j), and R(i, j). By the correctness of forget gadget, we
know that for every coloring ϕ, we have: ϕ(rf) = ϕ(qf) = ϕ(r′f) for all f ∈ [2k], and
ϕ(rf) = ϕ(pf) = ϕ(r′f) for all f ∈ [4k] \ [2k]. This proves the claim. J

I Claim 7.
1. The coloring of each A(v) is one of the standard colorings.
2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied.
3. For each cell v of I, all constraints C(v) are satisfied.

The claim follows directly from Claim 6 and the correctness of forget, clause-checking, and
consistency gadgets.

Now, observe that the total number of points in F is n = O(g2`) = O(n′), where n′ = g2k

is the total size of I. Thus, the existence of an algorithm solving J in time 2o(
√
n`) could be

used to solve I in time 2o(
√
n′k), which, by Theorem 4, contradicts the ETH. J

Now, to prove the lower bound in Theorem 1, we need to show a reduction from Partial
2-grid Coloring to the problem of coloring unit disk graphs. This reduction is fairly
standard and uses a well-known approach [20, Theorems 1 and 3].

4 Higher Dimensional Lower Bounds

The following result is a generalization of Theorem 4 to higher dimensions.

I Theorem 8. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no
algorithm solving d-grid 3-Sat with total size n and k = Θ(nα) variables per cell in time
2n

d−1+α
d

−ε
= 2O(n1−1/d−εk1/d), unless the ETH fails.

After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness
of Partial d-grid Coloring.

I Theorem 9. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no 2n1−1/d−ε`1/d

algorithm solving Partial d-grid Coloring on a total of n points and ` = Θ(nα) points
in each cell, unless the ETH fails.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid
Coloring to `-Coloring of intersection graph of d-dimensional unit balls. It is very similar
to the one in Theorem 1 (see also [22, Theorem 3.1.]).

SoCG 2017

18:14 Fine-Grained Complexity of Coloring Unit Disks and Balls

v1 v2

v3 v4

v5 v6

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

Figure 8 A graph G (left) and a high-level construction of G′ (right). Circles denote equality
gadgets and squares denote inequality gadgets.

5 Segments

In this section, we show that fatness is indeed necessary to obtain subexponential-time
algorithm for coloring. We prove that a subexponential algorithm for coloring intersection
graphs of segments (i.e., convex non-fat objects) with 6 colors would contradict the ETH.

Our construction works even if we use only horizontal or vertical segments. This class is
known as 2-Dir. Note that if all segments are parallel, the intersection graph is an interval
graph and, as such, can be colored in polynomial time. Moreover, we can even assume that
the representation of the input graph is given. This is an important assumption, since the
recognition of 2-Dir graphs is NP-complete (see Kratochvíl and Matoušek [19]).

Sketch of Proof of Theorem 2. We reduce from 3-coloring of graphs with maximum degree
at most 4. Let G be a graph with n vertices and m = Θ(n) edges. It is a folklore result that,
assuming the ETH, there is no algorithm solving this problem in time 2o(n) (see for instance
Lemma 1 in [3]). We construct a 2-Dir graph G′, such that G is 3-colorable if and only if
G′ is 6-colorable.

Let the vertex set of G be V = {v1, v2 . . . , vn}. For each vertex vi we introduce two
segments: a horizontal one, called xi, and a vertical one, called yi, so that they form a half
of a n× n grid (see Figure 8). Using appropriate gadgets we ensure that each xi can only
receive colors {1, 2, 3}, while each yi can only receive colors {4, 5, 6}.

Each color c ∈ {1, 2, 3} will be identified with the color c+ 3. Thus, we want to ensure
that in any feasible 6-coloring f of G′ we have:
1. f(xi) + 3 = f(yi) for all i ∈ [n],
2. f(xi) + 3 6= f(yj) for all i > j such that vivj is an edge of G.
This is achieved by using constant-size equality gadgets and inequality gadgets. At the crossing
point of xi and yi, we put an equality gadget (represented by a circle on Figure 8). Moreover,
for each edge vivj of G, we put an inequality gadget at the crossing point of xi and yj , i > j

(represented by a square on Figure 8).
The number of vertices of G′ is n′ = Θ(n), so the theorem follows. J

References

1 Jochen Alber and Jirí Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004. doi:10.1016/
j.jalgor.2003.10.001.

http://dx.doi.org/10.1016/j.jalgor.2003.10.001
http://dx.doi.org/10.1016/j.jalgor.2003.10.001

Cs. Biró, É. Bonnet, D. Marx, T. Miltzow, and P. Rzążewski 18:15

2 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight bounds for
Planar Strongly Connected Steiner Subgraph with fixed number of terminals (and exten-
sions). In SODA 2014 Proc., pages 1782–1801, 2014. doi:10.1137/1.9781611973402.129.

3 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub W. Pachocki, and Arkadiusz Socała. Tight lower bounds on graph embedding prob-
lems. CoRR, abs/1602.05016, 2016. URL: http://arxiv.org/abs/1602.05016.

4 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Bidimensional parameters and local treewidth. SIAM J. Discrete Math.,
18(3):501–511, 2004. doi:10.1137/S0895480103433410.

5 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-Center in planar graphs and map graphs.
ACM Transactions on Algorithms, 1(1):33–47, 2005. doi:10.1145/1077464.1077468.

6 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-
free graphs. J. ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823.

7 Erik D. Demaine and Mohammad Taghi Hajiaghayi. Fast algorithms for hard graph prob-
lems: Bidimensionality, minors, and local treewidth. In GD 2014 Proc., pages 517–533,
2004. doi:10.1007/978-3-540-31843-9_57.

8 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

9 Erik D. Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth
with applications through bidimensionality. Combinatorica, 28(1):19–36, 2008. doi:10.
1007/s00493-008-2140-4.

10 Frederic Dorn, Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh.
Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In
STACS 2010 Proc., pages 251–262, 2010. doi:10.4230/LIPIcs.STACS.2010.2459.

11 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Subexponential parameterized
algorithms. Computer Science Review, 2(1):29–39, 2008. doi:10.1016/j.cosrev.2008.
02.004.

12 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010. doi:10.1007/s00453-009-9296-1.

13 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of
clusters. J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.
015.

14 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Subexpo-
nential algorithms for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.
doi:10.1016/j.ipl.2011.05.016.

15 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006. doi:10.1137/
S0097539702419649.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

17 Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√
k) time. In

ICALP 2012 Proc., pages 569–580, 2012. doi:10.1007/978-3-642-31594-7_48.
18 Philip N. Klein and Dániel Marx. A subexponential parameterized algorithm for Subset

TSP on planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014. doi:10.1137/1.
9781611973402.131.

SoCG 2017

http://dx.doi.org/10.1137/1.9781611973402.129
http://arxiv.org/abs/1602.05016
http://dx.doi.org/10.1137/S0895480103433410
http://dx.doi.org/10.1145/1077464.1077468
http://dx.doi.org/10.1145/1101821.1101823
http://dx.doi.org/10.1007/978-3-540-31843-9_57
http://dx.doi.org/10.1093/comjnl/bxm033
http://dx.doi.org/10.1007/s00493-008-2140-4
http://dx.doi.org/10.1007/s00493-008-2140-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2459
http://dx.doi.org/10.1016/j.cosrev.2008.02.004
http://dx.doi.org/10.1016/j.cosrev.2008.02.004
http://dx.doi.org/10.1007/s00453-009-9296-1
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1016/j.jcss.2014.04.015
http://dx.doi.org/10.1016/j.ipl.2011.05.016
http://dx.doi.org/10.1137/S0097539702419649
http://dx.doi.org/10.1137/S0097539702419649
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-642-31594-7_48
http://dx.doi.org/10.1137/1.9781611973402.131
http://dx.doi.org/10.1137/1.9781611973402.131

18:16 Fine-Grained Complexity of Coloring Unit Disks and Balls

19 J. Kratochvíl and J. Matoušek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

20 Dániel Marx. Efficient approximation schemes for geometric problems? In ESA 2005 Proc.,
pages 448–459, 2005. doi:10.1007/11561071_41.

21 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In Nikhil Bansal and Irene Finocchi, editors,
ESA 2015 Proc., volume 9294 of LNCS, pages 865–877. Springer, 2015. doi:10.1007/
978-3-662-48350-3_72.

22 Dániel Marx and Anastasios Sidiropoulos. The Limited Blessing of Low Dimensional-
ity: When 1-1/D is the Best Possible Exponent for D-dimensional Geometric Problems.
In Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SOCG
2014 Proc., pages 67:67–67:76, New York, NY, USA, 2014. ACM. doi:10.1145/2582112.
2582124.

23 Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators
for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1–29, January 1997. doi:
10.1145/256292.256294.

24 Marcin Pilipczuk, Michał Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen.
Subexponential-time parameterized algorithm for Steiner Tree on planar graphs. In STACS
2013 Proc., pages 353–364, 2013. doi:10.4230/LIPIcs.STACS.2013.353.

25 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
sparsification for steiner problems on planar and bounded-genus graphs. In FOCS 2014
Proc., pages 276–285. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.37.

26 W.D. Smith and N.C. Wormald. Geometric separator theorems. available online at https:
//www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz.

27 W.D. Smith and N.C. Wormald. Geometric separator theorems and applications. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science, FOCS
1998 Proc., pages 232–243, Washington, DC, USA, 1998. IEEE Computer Society. URL:
http://dl.acm.org/citation.cfm?id=795664.796397.

28 Dimitrios M. Thilikos. Fast sub-exponential algorithms and compactness in planar graphs.
In ESA 2011 Proc., pages 358–369, 2011. doi:10.1007/978-3-642-23719-5_31.

http://dx.doi.org/10.1006/jctb.1994.1071
http://dx.doi.org/10.1007/11561071_41
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1007/978-3-662-48350-3_72
http://dx.doi.org/10.1145/2582112.2582124
http://dx.doi.org/10.1145/2582112.2582124
http://dx.doi.org/10.1145/256292.256294
http://dx.doi.org/10.1145/256292.256294
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.353
http://dx.doi.org/10.1109/FOCS.2014.37
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz
http://dl.acm.org/citation.cfm?id=795664.796397
http://dx.doi.org/10.1007/978-3-642-23719-5_31

Anisotropic Triangulations via Discrete
Riemannian Voronoi Diagrams∗†

Jean-Daniel Boissonnat1, Mael Rouxel-Labbé2, and
Mathijs Wintraecken3

1 INRIA Sophia Antipolis Méditerranée, Valbonne, France
2 INRIA Sophia Antipolis Méditerranée, Valbonne, France; and

GeometryFactory, Valbonne, France
3 INRIA Sophia Antipolis Méditerranée, Valbonne, France

Abstract
The construction of anisotropic triangulations is desirable for various applications, such as the
numerical solving of partial differential equations and the representation of surfaces in graphics.
To solve this notoriously difficult problem in a practical way, we introduce the discrete Rieman-
nian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram.
This structure has been implemented and was shown to lead to good triangulations in R2 and
on surfaces embedded in R3 as detailed in our experimental companion paper.

In this paper, we study theoretical aspects of our structure. Given a finite set of points P in
a domain Ω equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi
diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the
discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions
that guarantee that these dual structures are identical. It then follows from previous results that
the discrete Riemannian Delaunay complex can be embedded in Ω under sufficient conditions,
leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under
similar conditions, the simplices of this triangulation can be straightened.

1998 ACM Subject Classification Computational Geometry and Object Modeling

Keywords and phrases Riemannian Geometry, Voronoi diagram, Delaunay triangulation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.19

1 Introduction

Anisotropic triangulations are triangulations whose elements are elongated along prescribed
directions. Anisotropic triangulations are known to be well suited when solving PDE’s [10,
19, 24]. They can also significantly enhance the accuracy of a surface representation if the
anisotropy of the triangulation conforms to the curvature of the surface [15].

Many methods to generate anisotropic triangulations are based on the notion of Rieman-
nian metric and create triangulations whose elements adapt locally to the size and anisotropy
prescribed by the local geometry. The numerous theoretical and practical results [1] of
the Euclidean Voronoi diagram and its dual structure, the Delaunay triangulation, have
pushed authors to try and extend these well-established concepts to the anisotropic setting.

∗ A full version of the paper is available at https://arxiv.org/abs/1703.06487.
† The first and third authors have received funding from the European Research Council under the

European Union’s ERC Grant Agreement number 339025 GUDHI (Algorithmic Foundations of Geometric
Understanding in Higher Dimensions).

© Jean-Daniel Boissonnat, Mael Rouxel-Labbé, and Mathijs Wintraecken;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.19
https://arxiv.org/abs/1703.06487
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

Figure 1 Left, the discrete Riemannian Voronoi diagram (colored cells with bisectors in white)
and its dual complex (in black) realized with straight simplices of a two-dimensional domain endowed
with a hyperbolic shock-based metric field. Right, the discrete Riemannian Voronoi diagram and the
dual complex realized with curved simplices of the “chair” surface endowed with a curvature-based
metric field [23].

Labelle and Shewchuk [17] and Du and Wang [12] independently introduced two anisotropic
Voronoi diagrams whose anisotropic distances are based on a discrete approximation of the
Riemannian metric field. Contrary to their Euclidean counterpart, the fact that the dual
of these anisotropic Voronoi diagrams is an embedded triangulation is not immediate, and,
despite their strong theoretical foundations, the anisotropic Voronoi diagrams of Labelle and
Shewchuk and Du and Wang have only been proven to yield, under certain conditions, a
good triangulation in a two-dimensional setting [6, 7, 9, 12, 17].

Both these anisotropic Voronoi diagrams can be considered as an approximation of the
exact Riemannian Voronoi diagram, whose cells are defined as Vg(pi) = {x ∈ Ω | dg(pi, x) ≤
dg(pj , x),∀pj ∈ P\pi}, where dg(p, q) denotes the geodesic distance. Their main advantage is
to ease the computation of the anisotropic diagrams. However, their theoretical and practical
results are rather limited. The exact Riemannian Voronoi diagram comes with the benefit of
providing a more favorable theoretical framework and recent works have provided sufficient
conditions for a point set to be an embedded Riemannian Delaunay complex [2, 14, 18].
We approach the Riemannian Voronoi diagram and its dual Riemannian Delaunay complex
with a focus on both practicality and theoretical robustness. We introduce the discrete
Riemannian Voronoi diagram, a discrete approximation of the (exact) Riemannian Voronoi
diagram. Experimental results, presented in our companion paper [23], have shown that this
approach leads to good anisotropic triangulations for two-dimensional domains and surfaces,
see Figure 1.

We introduce in this paper the theoretical side of this work, showing that our approach
is theoretically sound in all dimensions. We prove that, under sufficient conditions, the
discrete Riemannian Voronoi diagram has the same combinatorial structure as the (exact)
Riemannian Voronoi diagram and that the dual discrete Riemannian Delaunay complex can
be embedded as a triangulation of the point set, with either curved or straight simplices.
Discrete Voronoi diagrams have been independently studied, although in a two-dimensional
isotropic setting by Cao et al. [8].

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:3

2 Riemannian geometry

In the main part of the text we consider an (open) domain Ω in Rn endowed with a
Riemannian metric g, which we shall discuss below. We assume that the metric g is Lipschitz
continuous. The structures of interest will be built from a finite set of points P, which we
call sites.

2.1 Riemannian metric
A Riemannian metric field g, defined over Ω, associates a metric g(p) = Gp to any point p
of the domain. This means that for any v, w ∈ Rn we associate an inner product 〈v, w〉g =
vtg(p)w, in a way that smoothly depends on p. Using a Riemannian metric, we can
associate lengths to curves and define the geodesic distance dg as the minimizer of the
lengths of all curves between two points. When the map g : p 7→ G is constant, the metric
field is said to be uniform. In this case, the distance between two points x and y in Ω is
dG(x, y) = ‖x− y‖G =

√
(x− y)tG(x− y).

Most traditional geometrical objects can be generalized using the geodesic distance.
For example, the geodesic (closed) ball centered on p ∈ Ω and of radius r is given by
Bg(p, r) = {x ∈ Ω | dg(p, x) ≤ r}. In the following, we assume that Ω ⊂ Rn is endowed with
a Lipschitz continuous metric field g.

We define the metric distortion between two distance functions dg(x, y) and dg′(x, y)
to be the function ψ(g, g′) such that for all x, y in a small-enough neighborhood we have:
1/ψ(g, g′) dg(x, y) ≤ dg′(x, y) ≤ ψ(g, g′) dg(x, y). Observe that ψ(g, g′) ≥ 1 and ψ(g, g′) = 1
when g = g′. Our definition generalizes the concept of distortion between two metrics g(p)
and g(q), as defined by Labelle and Shewchuk [17] (see Appendix B of the full version of this
paper, [4]).

2.2 Geodesy
Let v ∈ Rn. From the unique geodesic γ satisfying γ(0) = p with initial tangent vector γ̇ = v,
one defines the exponential map through exp(v) = γ(1). The injectivity radius at a point
p of Ω is the largest radius for which the exponential map at p restricted to a ball of that
radius is a diffeomorphism. The injectivity radius ιΩ of Ω is defined as the infimum of the
injectivity radii at all points. For any p ∈ Ω and for a two-dimensional linear subspace H
of the tangent space at p, we define the sectional curvature K at p for H as the Gaussian
curvature at p of the surface expp(H).

In the theoretical studies of our algorithm, we will assume that the injectivity radius of Ω
is strictly positive and its sectional curvatures are bounded.

2.3 Power protected nets
Controlling the quality of the Delaunay and Voronoi structures will be essential in our proofs.
For this purpose, we use the notions of net and of power protection.

Power protection of point sets. Power protection of simplices is a concept formally intro-
duced by Boissonnat, Dyer and Ghosh [2]. Let σ be a simplex whose vertices belong to P,
and let Bg(σ) = Bg(c, r) denote a circumscribing ball of σ where r = dg(c, p) for any vertex
p of σ. We call c the circumcenter of σ and r its circumradius.

For 0 ≤ δ ≤ r, we associate to Bg(σ) the dilated ball B+δ
g (σ) = B(c,

√
r2 + δ2). We say

that σ is δ-power protected if B+δ
g (σ) does not contain any point of P \Vert(σ) where Vert(σ)

SoCG 2017

19:4 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

denotes the vertex set of σ. The ball B+δ
g is the power protected ball of σ. Finally, a point

set P is δ-power protected if the Delaunay ball of its simplices are δ-power protected.

Nets. To ensure that the simplices of the structures that we shall consider are well shaped,
we will need to control the density and the sparsity of the point set. The concept of net
conveys these requirements through sampling and separation parameters.

The sampling parameter is used to control the density of a point set: if Ω is a bounded
domain, P is said to be an ε-sample set for Ω with respect to a metric field g if dg(x,P) < ε,
for all x ∈ Ω. The sparsity of a point set is controlled by the separation parameter: the set P
is said to be µ-separated with respect to a metric field g if dg(p, q) ≥ µ for all p, q ∈ P . If
P is an ε-sample that is µ-separated, we say that P is an (ε, µ)-net.

3 Riemannian Delaunay triangulations

Given a metric field g, the Riemannian Voronoi diagram of a point set P , denoted by Vorg(P),
is the Voronoi diagram built using the geodesic distance dg. Formally, it is a partition of
the domain in Riemannian Voronoi cells {Vg(pi)}, where Vg(pi) = {x ∈ Ω | dg(pi, x) ≤
dg(pj , x),∀pj ∈ P \ pi}.

The Riemannian Delaunay complex of P is an abstract simplicial complex, defined
as the nerve of the Riemannian Voronoi diagram, that is the set of simplices Delg(P) = {σ |
Vert(σ) ∈ P,∩p∈σ Vg(p) 6= 0}. There is a straightforward duality between the diagram and
the complex, and between their respective elements.

In this paper, we will consider both abstract simplices and complexes, as well as their
geometric realization in Rn with vertex set P . We now introduce two realizations of a simplex
that will be useful, one curved and the other one straight.

The straight realization of a n-simplex σ with vertices in P is the convex hull of its vertices.
We denote it by σ. In other words,

σ̄ = {x ∈ Ω ⊂ Rn | x =
∑
p∈σ

λp(x) p, λp(x) ≥ 0,
∑
p∈σ

λp(x) = 1}. (1)

The curved realization, noted σ̃ is based on the notion of Riemannian center of mass [16, 13].
Let y be a point of σ̄ with barycentric coordinate λp(y), p ∈ σ. We can associate the energy
functional Ey(x) = 1

2
∑
p∈σ λp(y)dg(x, p)2. We then define the curved realization of σ as

σ̃ = {x̃ ∈ Ω ⊂ Rn | x̃ = argmin Ex̄(x), x̄ ∈ σ̄}. (2)

The edges of σ̃ are geodesic arcs between the vertices. Such a curved realization is well defined
provided that the vertices of σ lie in a sufficiently small ball according to the following
theorem of Karcher [16].

I Theorem 1 (Karcher). Let the sectional curvatures K of Ω be bounded, that is Λ− ≤ K ≤
Λ+. Let us consider the function Ey on Bρ, a geodesic ball of radius ρ that contains the
set {pi}. Assume that ρ ∈ R+ is less than half the injectivity radius and less than π/4

√
Λ+

if Λ+ > 0. Then Ey has a unique minimum point in Bρ, which is called the center of mass.

Given an (abstract) simplicial complex K with vertices in P , we define the straight (resp.,
curved) realization of K as the collection of straight (resp., curved) realizations of its simplices,
and we write K̄ = {σ̄, σ ∈ K} and K̃ = {σ̃, σ ∈ K}.

We will consider the case where K is Delg(P). A simplex of Delg(P) will simply be called
a straight Riemannian Delaunay simplex and a simplex of D̃elg(P) will be called a curved

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:5

Riemannian Delaunay simplex, omitting “realization of”. In the next two sections, we give
sufficient conditions for Delg(P) and D̃elg(P) to be embedded in Ω, in which case we will
call them the straight and the curved Riemannian triangulations of P.

3.1 Sufficient conditions for D̃elg(P) to be a triangulation of P

It is known that D̃elg(P) is embedded in Ω under sufficient conditions. We give a short
overview of these results. As in Dyer et al. [13], we define the non-degeneracy of a simplex σ̃
of D̃elg(P).

I Definition 2. The curved realization σ̃ of a Riemannian Delaunay simplex σ is said to be
non-degenerate if and only if it is homeomorphic to the standard simplex.

Sufficient conditions for the complex D̃elg(P) to be embedded in Ω were given in [13]: a
curved simplex is known to be non-degenerate if the Euclidean simplex obtained by lifting
the vertices to the tangent space at one of the vertices via the exponential map has sufficient
quality compared to the bounds on sectional curvature. Here, good quality means that the
simplex is well shaped, which may be expressed either through its fatness (volume compared
to longest edge length) or its thickness (smallest height compared to longest edge length).

Let us assume that, for each vertex p of Delg(P), all the curved Delaunay simplices in
a neighborhood of p are non-degenerate and patch together well. Under these conditions,
D̃elg(P) is embedded in Ω. We call D̃elg(P) the curved Riemannian Delaunay triangulation
of P.

3.2 Sufficient conditions for Delg(P) to be a triangulation of P

Assuming that the conditions for D̃elg(P) to be embedded in Ω are satisfied, we now give
conditions such that Delg(P) is also embedded in Ω. The key ingredient will be a bound on
the distance between a point of a simplex σ̃ and the corresponding point on the associated
straight simplex σ̄ (Lemma 3). This bound depends on the properties of the set of sites and
on the local distortion of the metric field. When this bound is sufficiently small, Delg(P) is
embedded in Ω as stated in Theorem 4.

I Lemma 3. Let σ be an n-simplex of Delg(P). Let x̄ be a point of σ̄ and x̃ the associated
point on σ̃ (as defined in Equation 1). If the geodesic distance dg is close to the Euclidean
distance dE, i.e. the distortion ψ(g, gE) is bounded by ψ0, then |x̃− x̄| ≤

√
2 · 43(ψ0 − 1)ε2.

We now apply Lemma 3 to the facets of the simplices of D̃elg(P). The altitude of the
vertex p in a simplex τ is noted D(p, τ).

I Theorem 4. Let P be a δ-power protected (ε, µ)-net with respect to g on Ω. Let σ be any
n-simplex of Delg(P) and p be any vertex of σ. Let τ be a facet of σ opposite of vertex p.
If, for all x̃ ∈ τ̃ , we have |x̃− x̄| ≤ D(pi, σ) (x̄ is defined in Equation 1), then Deld(P) is
embedded in Ω.

The condition |x̃− x̄| ≤ D(pi, σ) is achieved for a sufficiently dense sampling according to
Lemma 3 and the fact that the distortion ψ0 = ψ(g, gE) goes to 1 when the density increases.
The complete proofs of Lemma 3 and Theorem 4 can be found in[4, Appendix F].

SoCG 2017

19:6 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

4 Discrete Riemannian structures

Although Riemannian Voronoi diagrams and Delaunay triangulations are appealing from
a theoretical point of view, they are very difficult to compute in practice despite many
studies [21]. To circumvent this difficulty, we introduce the discrete Riemannian Voronoi
diagram. This discrete structure is easy to compute (see our companion paper [23] for details)
and, as will be shown in the following sections, it is a good approximation of the exact
Riemannian Voronoi diagram. In particular, their dual Delaunay structures are identical
under appropriate conditions.

We assume that we are given a dense triangulation of the domain Ω we call the canvas
and denote by C. The canvas will be used to approximate geodesic distances between points
of Ω and to construct the discrete Riemannian Voronoi diagram of P. This bears some
resemblance to the graph-induced complex of Dey et al. [11]. Notions related to the canvas
will explicitly carry canvas in the name (for example, an edge of C is a canvas edge). In our
analysis, we shall assume that the canvas is a dense triangulation, although weaker and more
efficient structures can be used (see Section 9 and [23]).

4.1 The discrete Riemannian Voronoi Diagram
To define the discrete Riemannian Voronoi diagram of P, we need to give a unique color to
each site of P and to color the vertices of the canvas accordingly. Specifically, each canvas
vertex is colored with the color of its closest site.

I Definition 5 (Discrete Riemannian Voronoi diagram). Given a metric field g, we associate
to each site pi its discrete cell Vd

g(pi) defined as the union of all canvas simplices with at
least one vertex of the color of pi. We call the set of these cells the discrete Riemannian
Voronoi diagram of P, and denote it by Vordg(P).

Observe that contrary to typical Voronoi diagrams, our discrete Riemannian Voronoi
diagram is not a partition of the canvas. Indeed, there is a one canvas simplex-thick
overlapping since each canvas simplex σC belongs to all the Voronoi cells whose sites’ colors
appear in the vertices of σC . This is intentional and allows for a straightforward definition of
the complex induced by this diagram, as shown below.

4.2 The discrete Riemannian Delaunay complex
We define the discrete Riemannian Delaunay complex as the set of simplices Deldg(P) =
{σ | Vert(σ) ∈ P,∩p∈σ Vd

g(p) 6= 0}. Using a triangulation as canvas offers a very intuitive
way to construct the discrete complex since each canvas k-simplex σ of C has k + 1 vertices
{v0, . . . , vk} with respective colors {c0, . . . , ck} corresponding to the sites {pc0 , . . . , pck

} ∈ P.
Due to the way discrete Voronoi cells overlap, a canvas simplex σC belongs to each discrete
Voronoi cell whose color appears in the vertices of σ. Therefore, the intersection of the discrete
Voronoi cells {V d

g (pi)} whose colors appear in the vertices of σ is non-empty and the simplex
σ with vertices {pi} thus belongs to the discrete Riemannian Delaunay complex. In that
case, we say that the canvas simplex σC witnesses (or is a witness of) σ. For example, if the
vertices of a canvas 3-simplex τC have colors yellow–blue–blue–yellow, then the intersection
of the discrete Voronoi cells of the sites pyellow and pblue is non-empty and the one-simplex
σ with vertices pyellow and pblue belongs to the discrete Riemannian Delaunay complex. The
canvas simplex τC thus witnesses the (abstract, for now) edge between pyellow and pblue.

Figure 2 illustrates a canvas painted with discrete Voronoi cells, and the witnesses of the
discrete Riemannian Delaunay complex.

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:7

Figure 2 A canvas (black edges) and a discrete Riemannian Voronoi diagram drawn on it. The
canvas simplices colored in red are witnesses of Voronoi vertices. The canvas simplices colored in
grey are witnesses of Voronoi edges. Canvas simplices whose vertices all have the same color are
colored with that color.

I Remark. If the intersection
⋂
i=0...k Vd

g(pci) is non-empty, then the intersection of any
subset of {Vd

g(pci
)}i=0...k is non-empty. In other words, if a canvas simplex σC witnesses a

simplex σ, then for each face τ of σ, there exists a face τC of σC that witnesses τ . As we
assume that there is no boundary, the complex is pure and it is sufficient to only consider
canvas n-simplices whose vertices have all different colors to build Deldg(P).

Similarly to the definition of curved and straight Riemannian Delaunay complexes, we
can define their discrete counterparts we respectively denote by D̃eldg(P) and Deldg(P). We
will now exhibit conditions such that these complexes are well-defined and embedded in Ω.

5 Equivalence between the discrete and the exact structures

We first give conditions such that Vordg(P) and Vorg(P) have the same combinatorial structure,
or, equivalently, that the dual Delaunay complexes Delg(P) and Deldg(P) are identical. Under
these conditions, the fact that Deldg(P) is embedded in Ω will immediately follow from the
fact that the exact Riemannian Delaunay complex Delg(P) is embedded (see Sections 3.1 and
3.2). It thus remains to exhibit conditions under which Deldg(P) and Delg(P) are identical.

Requirements will be needed on both the set of sites in terms of density, sparsity and
protection, and on the density of the canvas. The central idea in our analysis is that power
protection of P will imply a lower bound on the distance separating two non-adjacent Voronoi
objects (and in particular two Voronoi vertices). From this lower bound, we will obtain an
upper bound on the size on the cells of the canvas so that the combinatorial structure of the
discrete diagram is the same as that of the exact one. The density of the canvas is expressed
by eC , the length of its longest edge.

The main result of this paper is the following theorem.

I Theorem 6. Assume that P is a δ-power protected (ε, µ)-net in Ω with respect to g. Assume
further that ε is sufficiently small and δ is sufficiently large compared to the distortion between
g(p) and g in an ε-neighborhood of p. Let {λi} be the eigenvalues of g(p) and `0 a value
that depends on ε and δ (Precise bounds for ε, δ and l0 are given in the proof). Then, if
eC < min

p∈P

[
min
i

(√
λi
)

min {µ/3, `0/2}
]
, Deldg(P) = Delg(P).

The rest of the paper will be devoted to the proof of this theorem. Our analysis is divided
into two parts. We first consider in Section 6 the most basic case of a domain of Rn endowed

SoCG 2017

19:8 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

with the Euclidean metric field. The result is given by Theorem 7. The assumptions are
then relaxed and we consider the case of an arbitrary metric field over Ω in Section 7. As we
shall see, the Euclidean case already contains most of the difficulties that arise during the
proof and the extension to more complex settings will be deduced from the Euclidean case
by bounding the distortion.

6 Equality of the Riemannian Delaunay complexes in the Euclidean
setting

In this section, we restrict ourselves to the case where the metric field is the Euclidean metric
gE. To simplify matters, we initially assume that geodesic distances are computed exactly
on the canvas. The following theorem gives sufficient conditions to have equality of the
complexes.

I Theorem 7. Assume that P is a δ-power protected (ε, µ)-net of Ω with respect to the
Euclidean metric field gE. Denote by C the canvas, a triangulation with maximal edge length
eC. If eC < min

{
µ/16, δ2/64ε

}
, then DeldE(P) = DelE(P).

We shall now prove Theorem 7 by enforcing the two following conditions which, combined,
give the equality between the discrete Riemannian Delaunay complex and the Riemannian
Delaunay complex:
1. for every Voronoi vertex in the Riemannian Voronoi diagram v = ∩{pi}Vg(pi), there exists

at least one canvas simplex with the corresponding colors {cpi};
2. no canvas simplex witnesses a simplex that does not belong to the Riemannian Delaunay

complex (equivalently, no canvas simplex has vertices whose colors are those of non-
adjacent Riemannian Voronoi cells).

Condition 2 is a consequence of the separation of Voronoi objects, which in turn follows
from power protection. The separation of Voronoi objects has previously been studied, for
example by Boissonnat et al. [2]. Although the philosophy is the same, our setting is slightly
more difficult and the results using power protection are new and use a more geometrical
approach (see [4, Appendix C]).

6.1 Sperner’s Lemma
Rephrasing Condition 1, we seek requirements on the density of the canvas C and on the
nature of the point set P such that there exists at least one canvas n-simplex of C that has
exactly the colors c0, . . . , cd of the vertices p0, . . . , pd of a simplex σ, for all σ ∈ Delg(P). To
prove the existence of such a canvas simplex, we employ Sperner’s lemma [25], which is a
discrete analog of Brouwer’s fixed point theorem. We recall this result in Theorem 8 and
illustrate it in a two-dimensional setting (inset).

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:9

v v
v

Tv
Cv

Figure 3 Illustration of the construction of Cv. The Riemannian Voronoi diagram is drawn with
thick orange edges and the sites are colored squares. The canvas is drawn with thin gray edges
and colored circular vertices. The middle frame shows the subdivision of the incident Voronoi cells
with think black edges and the triangulation Tv is drawn in yellow. On the right frame, the set of
simplices Cv is colored in purple (simplices that do not belong to C) and in dark yellow (simplices
that belong to C).

I Theorem 8 (Sperner’s Lemma). Let σ = (p0, . . . , pn) be an n-simplex and let Tσ denote
a triangulation of the simplex. Let each vertex v′ ∈ Tσ be colored such that the following
conditions are satisfied:

The vertices pi of σ all have different colors.
If a vertex p′ lies on a k-face (pi0 , . . . pik) of σ, then p′ has the same color as one of the
vertices of the face, that is pij .

Then, there exists an odd number of simplices in Tσ whose vertices are colored with all n+ 1
colors. In particular, there must be at least one.

We shall apply Sperner’s lemma to the canvas C and show that for every Voronoi vertex v
in the Riemannian Voronoi diagram, we can find a subset Cv of the canvas that fulfills the
assumptions of Sperner’s lemma, hence obtaining the existence of a canvas simplex in Cv
(and therefore in C) that witnesses σv. Concretely, the subset Cv is obtained in two steps:

We first apply a barycentric subdivision of the Riemannian Voronoi cells incident to v.
From the resulting set of simplices, we extract a triangulation Tv composed of the simplices
incident to v (Section 6.2).
We then construct the subset Cv by overlaying the border of Tv and the canvas (Section 6.3).

We then show that if the canvas simplices are small enough – in terms of edge length –
then Cv is the triangulation of a simplex that satisfies the assumptions of Sperner’s lemma.

The construction of Cv is detailed in the following sections and illustrated in Figure 3:
starting from a colored canvas (left), we subdivide the incident Voronoi cells of v to obtain Tv
(middle), and deduce the set of canvas simplices Cv which forms a triangulation that satisfies
the hypotheses of Sperner’s lemma, thus giving the existence of a canvas simplex (in green,
right) that witnesses the Voronoi vertex within the union of the simplices, and therefore in
the canvas.

6.2 The triangulation Tv

For a given Voronoi vertex v in the Euclidean Voronoi diagram VorE(P) of the domain Ω,
the initial triangulation Tv is obtained by applying a combinatorial barycentric subdivision of
the Voronoi cells of VorE(P) that are incident to v: to each Voronoi cell V incident to v, we
associate to each face F of V a point cF in F which is not necessarily the geometric barycenter.
We randomly associate to cF the color of any of the sites whose Voronoi cells intersect to

SoCG 2017

19:10 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

B

B

B B

B
B

v

Figure 4 The triangulation Tv in 3D. A face (in green) and an edge (in red) of σS .

give F . For example, in a two-dimensional setting, if the face F is a Voronoi edge that is the
intersection of Vred and Vblue, then cF is colored either red or blue. Then, the subdivision
of V is computed by associating to all possible sequences of faces {F0, F1, . . . Fn−1, Fn}
such that F0 ⊂ F1 · · · ⊂ Fn = V and dim(Fi+1) = dim(Fi) + 1 the simplex with vertices
{cF0 , cF1 , . . . , cFn−1 , cFn}. These barycentric subdivisions are allowed since Voronoi cells are
convex polytopes.

Denote by ΣV the set of simplices obtained by barycentric subdivision of V and Σv =
{∪ΣV | v ∈ V }. The triangulation Tv is defined as the star of v in Σv, that is the set of
simplices in Σv that are incident to v. Tv is illustrated in Figure 4 in dimension 3. As shall
be proven in Lemma 9, Tv can be used to define a combinatorial simplex that satisfies the
assumptions of Sperner’s lemma.

Tv as a triangulation of an n-simplex

By construction, the triangulation Tv is a triangulation of the (Euclidean) Delaunay simplex
σv dual of v as follows. We first perform the standard barycentric subdivision on this
Delaunay simplex σv. We then map the barycenter of a k-face τ of σv to the point cFi on the
Voronoi face Fi, where Fi is the Voronoi dual of the k-face τ . This gives a piecewise linear
homeomorphism from the Delaunay simplex σv to the triangulation Tv. We call the image of
this map the simplex σS and refer to the images of the faces of the Delaunay simplex as the
faces of σS . We can now apply Sperner’s lemma.

I Lemma 9. Let P be a δ-power protected (ε, µ)-net. Let v be a Voronoi vertex in the
Euclidean Voronoi diagram, VorE(P), and let Σv be defined as above. The simplex σS and
the triangulation Tv satisfy the assumptions of Sperner’s lemma in dimension n.

Proof. By the piecewise linear map that we have described above, Tv is a triangulation of
the simplex σS . Because by construction the vertices cFi

lie on the Voronoi duals Fi of the
corresponding Delaunay face τ , cFi

has the one of the colors of of the Delaunay vertices of τ .
Therefore, σS satisfies the assumptions of Sperner’s lemma and there exists an n-simplex
in Tv that witnesses v and its corresponding simplex σv in Delg(P). J

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:11

6.3 Building the triangulation Cv

Let pi be the vertices of the k-face τS of σS . In this section we shall assume not only that τS
is contained in the union of the Voronoi cells of V (pi), but in fact that τS is a distance 8eC
removed from the boundary of ∪V (pi), where eC is the longest edge length of a simplex in
the canvas. We will now construct a triangulation Cv of σS such that:

σS and its triangulation Cv satisfy the conditions of Sperner’s lemma,
the simplices of Cv that have no vertex that lies on the boundary ∂σS are simplices of
the canvas C.

The construction goes as follows. We first intersect the canvas C with σS and consider the
canvas simplices σC,i such that the intersection of σS and σC,i is non-empty. These simplices
σC,i can be subdivided into two sets, namely those that lie entirely in the interior of σS ,
which we denote by σintC,i, and those that intersect the boundary, denoted by σ∂C,i.

The simplices σintC,i are added to the set Cv. We intersect the simplices σ∂C,i with σS
and triangulate the intersection. Note that σ∂C,i ∩ σS is a convex polyhedron and thus
triangulating it is not a difficult task. The vertices of the simplices in the triangulation of
σ∂C,i ∩ σS are colored according to which Voronoi cell they belong to. Finally, the simplices
in the triangulation of σ∂C,i ∩ σS are added to the set Cv.

Since Tv is a triangulation of σS , the set Cv is by construction also a triangulation of σS .
This triangulation trivially gives a triangulation of the faces τS . Because we assume that τS
is contained in the union of its Voronoi cells, with a margin of 8eC we now can draw two
important conclusions:

The vertices of the triangulation of each face τS have the colors of the vertices pi of τS .
None of the simplices in the triangulation of σ∂C,i ∩ σS can have n + 1 colors, because
every such simplex must be close to one face τS , which means that it must be contained
in the union of the Voronoi cells V (pi) of the vertices of τS .

We can now invoke Sperner’s lemma; Cv is a triangulation of the simplex σS whose every
face has been colored with the appropriate colors (since σS triangulated by Tv satisfies the
assumptions of Sperner’s lemma, see Lemma 9). This means that there is a simplex Cv that
is colored with n+ 1 colors. Because of our second observation above, the simplex with these
n+ 1 colors must lie in the interior of σS and is thus a canvas simplex.

We summarize by the following lemma:

I Lemma 10. If every face τS of σS with vertices pi is at distance 8eC from the boundary
of the union of its Voronoi cells ∂(∪V (pi)), then there exists a canvas simplex in Cv such
that it is colored with the same vertices as the vertices of σS .

The key task that we now face is to guarantee that faces τS indeed lie well inside of the
union of the appropriate Voronoi regions. This requires first and foremost power protection.
Indeed, if a point set is power protected, the distance between a Voronoi vertex c and the
Voronoi faces that are not incident to c, which we will refer to from now on as foreign Voronoi
faces, can be bounded, as shown in the following Lemma:

I Lemma 11. Suppose that c is the circumcenter of a δ-power protected simplex σ of a
Delaunay triangulation built from an ε-sample, then all foreign Voronoi faces are at least
δ2/8ε far from c.

The proof of this Lemma is given in the full version of this paper (see [4, Section C.2]).
In almost all cases, this result gives us the distance bound we require: we can assume that

vertices {cF0 , cF1 , . . . , cFn−1 , cFn
} which we used to construct Tv, are well placed, meaning

SoCG 2017

19:12 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

v

v′

Tv
v′ v′

Figure 5 The point v′ can be arbitrarily close to Tv, as shown by the red segments (left and
center). After piecewise linear deformation, this issue is resolved, as seen by the green segments
(right).

that there is a minimum distance between these vertices and foreign Voronoi objects. However
it can still occur that foreign Voronoi objects are close to a face τS of σS . This occurs even
in two dimensions, where a Voronoi vertex v′ can be very close to a face τS because of obtuse
angles, as illustrated in Figure 5.

Thanks to power protection, we know that v′ is removed from foreign Voronoi objects.
This means that we can deform σS (in a piecewise linear manner) in a neighborhood of v′
such that the distance between v′ and all the faces of the deformed σS is lower bounded.

In general the deformation of σS is performed by “radially pushing” simplices away from
the foreign Voronoi faces of v with a ball of radius r = min

{
µ/16, δ2/64ε

}
. The value µ/16 is

chosen so that we do not move any vertex of σv (the dual of v): indeed, P is µ-separated and
thus dE(pi, pj) > µ. The value δ2/64ε is chosen so that σS and its deformation stay isotopic
(no “pinching” can happen), using Lemma 11. In fact it is advisable to use a piecewise
linear version of “radial pushing”, to ensure that the deformation of σS is a polyhedron.
This guarantees that we can triangulate the intersection, see Chapter 2 of Rourke and
Sanderson [22]. After this deformation we can follow the steps we have given above to arrive
at a well-colored simplex.

I Lemma 12. Let P be a δ-power protected (ε, µ)-net. Let v be a Voronoi vertex of the
Euclidean Voronoi diagram VorE(P), and Tv as defined above. If the length eC of the longest
canvas edge is bounded as follows: eC < r = min

{
µ/16, δ2/64ε

}
, then there exists a canvas

simplex that witnesses v and the corresponding simplex σv in DelE(P).

Conclusion

So far, we have only proven that Delg(P) ⊆ Deldg(P). The other inclusion, which corresponds
to Condition 2 mentioned above, is much simpler: as long as a canvas edge is shorter than
the smallest distance between a Voronoi vertex and a foreign face of the Riemannian Voronoi
diagram, then no canvas simplex can witness a simplex that is not in Delg(P). Such a bound
is already given by Lemma 11 and thus, if eC < δ2/8ε then Deldg(P) ⊆ Delg(P). Observe that
this requirement is weaker than the condition imposed in Lemma 12 and it was thus already
satisfied. It follows that Deldg(P) = Delg(P) if eC < min

{
µ/16, δ2/64ε

}
, which concludes

the proof of Theorem 7.

I Remark. Assuming that the point set is a δ-power protected (ε, µ)-net might seem like a
strong assumption. However, it should be observed that any non-degenerate point set can be

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:13

seen as a δ-power protected (ε, µ)-net, for a sufficiently large value of ε and sufficiently small
values of δ and µ. Our results are therefore always applicable but the necessary canvas density
increases as the quality of the point set worsens (Lemma 12). In our practical companion
paper [23, Section 7], we showed how to generate δ-power protected (ε, µ)-nets for given
values of ε, µ and δ.

7 Extension to more complex settings

In the previous section, we have placed ourselves in the setting of an (open) domain endowed
with the Euclidean metric field. To prove Theorem 6, we need to generalize Theorem 7 to
more general metrics, which will be done in the two following subsections.

The common path to prove Deldg(P) = Delg(P) in all settings is to assume that P is a
power protected net with respect to the metric field. We then use the stability of entities
under small metric perturbations to take us back to the now solved case of the domain Ω
endowed with an Euclidean metric field. Separation and stability of Delaunay and Voronoi
objects has previously been studied by Boissonnat et al. [2, 3], but our work lives in a
slightly more complicated setting. Moreover, our proofs are generally more geometrical and
sometimes simpler. For completeness, the extensions of these results to our context are
detailed in the full version of this paper [4, Appendices C and E].

We now detail the different intermediary settings. For completeness, the full proofs are
included in the appendices.

7.1 Uniform metric field
We first consider the rather easy case of a non-Euclidean but uniform (constant) metric field
over an (open) domain. The square root of a metric gives a linear transformation between
the base space where distances are considered in the metric and a metric space where the
Euclidean distance is used (see [4, Appendix B.1]). Additionally, we show that a δ-power
protected (ε, µ)-net with respect to the uniform metric is, after transformation, still a δ-power
protected (ε, µ)-net but with respect to the Euclidean setting [4, Lemma 26], bringing us
back to the setting we have solved in Section 6. Bounds on the power protection, sampling
and separation coefficients, and on the canvas edge length can then be obtained from the
result for the Euclidean setting, using Theorem 12. These bounds can be transported back to
the case of uniform metric fields by scaling these values according to the smallest eigenvalue
of the metric [4, Theorem 40].

7.2 Arbitrary metric field
The case of an arbitrary metric field over Ω is handled by observing that an arbitrary metric
field is locally well-approximated by a uniform metric field. It is then a matter of controlling
the distortion.

We first show that, for any point p ∈ Ω, density separation and power protection are
locally preserved in a neighborhood Up around p when the metric field g is approximated
by the constant metric field g′ = g(p) [4, Lemmas 27 and 39]: if P is a δ-power protected
(ε, µ)-net with respect to g, then P is a δ′-power protected (ε′, µ′)-net with respect to g′.
Previous results can now be applied to obtain conditions on δ′, ε′, µ′ and on the (local)
maximal length of the canvas such that Deldg(P) = Delg(P) (see [4, Lemma 41]).

These local triangulations can then be stitched together to form a triangulation embedded
in Ω. The (global) bound on the maximal canvas edge length is given by the minimum of

SoCG 2017

19:14 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

the local bounds, each computed through the results of the previous sections. This ends the
proof of Theorem 6.

Once the equality between the complexes is obtained, conditions giving the embeddability
of the discrete Karcher Delaunay triangulation and the discrete straight Delaunay trian-
gulation are given by previous results that we have established in Sections 3.1 and 3.2
respectively.

8 Extensions of the main result

Approximate geodesic computations. Approximate geodesic distance computations can be
incorporated in the analysis of the previous section by observing that computing inaccurately
geodesic distances in a domain Ω endowed with a metric field g can be seen as computing ex-
actly geodesic distances in Ω with respect to a metric field g′ that is close to g [4, Section H.3].

General manifolds. The previous section may also be generalized to an arbitrary smooth
n-manifoldM embedded in Rm. We shall assume that, apart from the metric induced by
the embedding of the domain in Euclidean space, there is a second metric g defined onM.
Let πp :M→ TpM be the orthogonal projection of points ofM on the tangent space TpM
at p. For a sufficiently small neighborhood Up ⊂ TpM, πp is a local diffeomorphism (see
Niyogi [20]).

Denote by PTp
the point set {πp(pi), pi ∈ P} and PUp

the restriction of PTp
to Up.

Assuming that the conditions of Niyogi et al. [20] are satisfied (which are simple density
constraints on ε compared to the reach of the manifold), the pullback of the metric with the
inverse projection (π−1

p)∗g defines a metric gp on Up such that for all q, r ∈ Up, dgp
(q, r) =

dg(π−1
p (q), π−1

p (r)). This implies immediately that if P is a δ-power protected (ε, µ)-net on
M with respect to g then PUp

is a δ-power protected (ε, µ)-net on Up. We have thus a metric
on a subset of a n-dimensional space, in this case the tangent space, giving us a setting that
we have already solved. It is left to translate the sizing field requirement from the tangent
plane to the manifoldM itself. Note that the transformation πp is completely independent
of g. Boissonnat et al. [2, Lemma 3.7] give bounds on the metric distortion of the projection
on the tangent space. This result allows to carry the canvas sizing field requirement from
the tangent space toM.

9 Implementation

The construction of the discrete Riemannian Voronoi diagram and of the discrete Riemannian
Delaunay complex has been implemented for n = 2, 3 and for surfaces of R3. An in-depth
description of our structure and its construction as well as an empirical study can be found
in our practical paper [23]. We simply make a few observations here.

The theoretical bounds on the canvas edge length provided by Theorems 6 and 7 are
far from tight and thankfully do not need to be honored in practice. A canvas whose edge
length are about a tenth of the distance between two seeds suffices. This creates nevertheless
unnecessarily dense canvasses since the density does not in fact need to be equal everywhere
at all points and even in all directions. This issue is resolved by the use of anisotropic
canvasses.

Our analysis was based on the assumption that all canvas vertices are painted with the
color of the closest site. In our implementation, we color the canvas using a multiple-front

J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken 19:15

vector Dijkstra algorithm [5], which empirically does not suffer from the same convergence
issues as the traditional Dijkstra algorithm, starting from all the sites. It should be noted
that any geodesic distance computation method can be used, as long as it converges to the
exact geodesic distance when the canvas becomes denser. The Riemannian Delaunay complex
is built on the fly during the construction of the discrete Riemannian Voronoi diagram: when
a canvas simplex is first fully colored, its combinatorial information is extracted and the
corresponding simplex is added to Delg(P).

Acknowledgments. We thank Ramsay Dyer for enlightening discussions.

References
1 F. Aurenhammer and R. Klein. Voronoi diagrams. In J. Sack and G. Urrutia, editors,

Handbook of Computational Geometry, pages 201–290. Elsevier Science Publishing, 2000.
2 J.-D. Boissonnat, R. Dyer, and A. Ghosh. Delaunay triangulation of manifolds. Foundations

of Computational Mathematics, pages 1–33, 2017.
3 J.-D. Boissonnat, R. Dyer, A. Ghosh, and S.Y. Oudot. Only distances are required to

reconstruct submanifolds. Comp. Geom. Theory and Appl., 2016. To appear.
4 J.-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken. Anisotropic triangulations

via discrete Riemannian Voronoi diagrams, 2017. URL: https://arxiv.org/abs/1703.
06487.

5 M. Campen, M. Heistermann, and L. Kobbelt. Practical anisotropic geodesy. In Proceed-
ings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing,
SGP’13, pages 63–71. Eurographics Association, 2013.

6 G.D. Cañas and S. J. Gortler. Orphan-free anisotropic Voronoi diagrams. Discrete and
Computational Geometry, 46(3), 2011.

7 G.D. Cañas and S. J. Gortler. Duals of orphan-free anisotropic Voronoi diagrams are
embedded meshes. In SoCG, pages 219–228. ACM, 2012.

8 T. Cao, H. Edelsbrunner, and T. Tan. Proof of correctness of the digital Delaunay trian-
gulation algorithm. Comp. Geo.: Theory and Applications, 48, 2015.

9 S.-W. Cheng, T.K. Dey, E.A. Ramos, and R. Wenger. Anisotropic surface meshing. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 202–211. Society for Industrial and Applied Mathematics, 2006.

10 E.F. D’Azevedo and R. B. Simpson. On optimal interpolation triangle incidences. SIAM
J. Sci. Statist. Comput., 10(6):1063–1075, 1989.

11 T.K. Dey, F. Fan, and Y. Wang. Graph induced complex on point data. Computational
Geometry, 48(8):575–588, 2015.

12 Q. Du and D. Wang. Anisotropic centroidal Voronoi tessellations and their applications.
SIAM Journal on Scientific Computing, 26(3):737–761, 2005.

13 R. Dyer, G. Vegter, and M. Wintraecken. Riemannian simplices and triangulations.
Preprint: arXiv:1406.3740, 2014.

14 R. Dyer, H. Zhang, and T. Möller. Surface sampling and the intrinsic Voronoi diagram.
Computer Graphics Forum, 27(5):1393–1402, 2008.

15 M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In ACM
SIGGRAPH, pages 209–216, 1997.

16 H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on Pure
and Applied Mathematics, 30:509–541, 1977.

17 F. Labelle and J.R. Shewchuk. Anisotropic Voronoi diagrams and guaranteed-quality
anisotropic mesh generation. In SCG’03: Proceedings of the Nineteenth Annual Sympo-
sium on Computational Geometry, pages 191–200. ACM, 2003.

SoCG 2017

https://arxiv.org/abs/1703.06487
https://arxiv.org/abs/1703.06487

19:16 Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

18 G. Leibon. Random Delaunay triangulations, the Thurston-Andreev theorem, and metric
uniformization. PhD thesis, UCSD, 1999.

19 J.-M. Mirebeau. Optimal meshes for finite elements of arbitrary order. Constructive ap-
proximation, 32(2):339–383, 2010.

20 P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high
confidence from random samples. Discrete & Comp. Geom., 39(1-3), 2008.

21 G. Peyré, M. Péchaud, R. Keriven, and L.D. Cohen. Geodesic methods in computer vision
and graphics. Found. Trends. Comput. Graph. Vis., 2010.

22 C. Rourke and B. Sanderson. Introduction to piecewise-linear topology. Springer Science &
Business Media, 2012.

23 M. Rouxel-Labbé, M. Wintraecken, and J.-D. Boissonnat. Discretized Riemannian Delau-
nay triangulations. In Proc. of the 25th Intern. Mesh. Round. Elsevier, 2016.

24 J.R. Shewchuk. What is a good linear finite element? Interpolation, conditioning,
anisotropy, and quality measures, Manuscript 2002.

25 E. Sperner. Fifty years of further development of a combinatorial lemma. Numerical
solution of highly nonlinear problems, pages 183–197, 1980.

An Approximation Algorithm for the Art Gallery
Problem∗†

Édouard Bonnet1 and Tillmann Miltzow2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
edouard.bonnet@lamsade.dauphine.fr

2 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzow@gmail.com

Abstract
Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each other if
the line segment between x and y is contained in P. The Point Guard Art Gallery problem
asks for a minimum-size set S such that every point in P is visible from a point in S. The
set S is referred to as guards. Assuming integer coordinates and a specific general position on
the vertices of P, we present the first O(logOPT)-approximation algorithm for the point guard
problem. This algorithm combines ideas in papers of Efrat and Har-Peled [18] and Deshpande
et al. [15, 16]. We also point out a mistake in the latter.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases computational geometry, art-gallery, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.20

1 Introduction

Given a simple polygon P on n vertices, two points x, y in P are said to be visible to each
other if the line segment between x and y is contained in P. The point-guard art gallery
problem asks for a minimum-size set S such that every point in P is visible from a point in
S. The set S is referred to as guards.

Victor Klee introduced the art gallery problem to Václav Chvátal, who showed that bn/3c
guards are always sufficient and sometimes necessary for a polygon with n vertices [11]. In
1978, Steve Fisk gave an elegant proof of the same result [21]. This constitutes the first
combinatorial result related to the art gallery problem.

Related problems. A large amount of research is committed to the study of combinatorial
and algorithmic aspects of the art gallery problem, as reflected by the following surveys [33,
34, 31]. This research is focused on the art gallery problem and its many variants, based on
different definitions of visibility, restricted classes of polygons, different shapes and positions
of guards, etc. The most natural definition of visibility is arguably the one we gave above.
Other possible definitions are: x sees y if the axis-parallel rectangle spanned by x and y

is contained in P; x sees y if the line segment joining x to y intersects P at most c times,

∗ A full version of the paper is available at http://arxiv.org/abs/1607.05527.
† supported by the ERC grant PARAMTIGHT: "Parameterized complexity and the search for tight

complexity results", no. 280152.

© Édouard Bonnet and Tillmann Miltzow;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.20
http://arxiv.org/abs/1607.05527
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 An Approximation Algorithm for the Art Gallery Problem

for some value of c; x sees y if there exists a straight-line path from x to y within P with
at most c bends. Common shapes of polygons comprise: simple polygons, polygons with
holes, simple orthogonal polygons, x-monotone polygons and star-shaped polygons. Common
placements of guards include: vertex guards and point guards as defined above, but also
edge-guard (guards are edges of the polygon), segment guards (guards are interior segments
of the polygon) and perimeter guards (guards must be placed on the boundary of P).

On the algorithmic side, very few variants are known to be solvable in polynomial
time [30, 17] and most results are on approximating the minimum number of guards [15, 16,
23, 26, 27, 18, 28]. Many of the approximation algorithms are based on the fact that the range
space defined by the visibility regions has bounded VC-dimension for simple polygons [24],
combined with some algorithmic ideas of Clarkson [13, 8].

On the negative side, Eidenbenz et al. [19] showed NP-hardness and inapproximability for
the most principal variants. In particular, they show that getting a PTAS for those variants
is very unlikely, even on simple polygons. For polygons with holes, they even show that there
is no o(logn)-approximation algorithm, unless P=NP. Their reduction from Set Cover
also implies that the art gallery problem is W[2]-hard on polygons with holes and that there
is no no(k) algorithm, to determine if k guards are sufficient, under the Exponential Time
Hypothesis (ETH) [19, Sec.4]. Recently, the authors of the present paper show a similar
result for simple polygons (i.e., without holes) [7].

Point Guard Art Gallery Problem. Notwithstanding the large amount of research on the
art gallery problem, there is only one exact algorithmic result on the point guard variant.
The result is not so well-known and attributed to Micha Sharir [18]: one can find in time
nO(k) a set of k guards for the point guard variant, if it exists. This result is quite easy to
achieve with some tools from real algebraic geometry [3] and seemingly hopeless to prove
without this powerful machinery (see [4] for the very restricted case k = 2). Although the
algorithm utilizes remarkably sophisticated tools, it uses almost no problem-specific insights
and no better exact algorithm is known. Moreover, we recall that the papers [19, 7] suggest
that there is no significantly better exact algorithm even for simple polygons.

Regarding approximation algorithms for the point guard variant, the results are similarly
sparse. For general polygons, Deshpande et al. gave a randomized pseudo-polynomial time
O(logn)-approximation algorithm [15, 16]. However, we will see that their algorithm is
not correct. Efrat and Har-Peled gave a randomized polynomial time O(log |OPTgrid|)-
approximation algorithm by restricting guards to a very fine grid [18]. However, they can
not prove that their grid solution is indeed an approximation of an optimal guard placement.
In this paper, we develop the ideas of Deshpande et al. in combination with the algorithm
of Efrat and Har-Peled. Here, OPT denotes an optimal set of guards and OPTgrid an
optimal set of guards that is restricted to some grid. Finally, let us mention that there
exist approximation algorithms for monotone and rectilinear polygons [28], when the very
restrictive structure of the polygon is exploited.

Lack of progress and motivation. Note that the art gallery problem can be seen as
a geometric hitting set problem. In a hitting set problem, we are given a universe U
and a set of subsets S ⊆ 2U and we are asked to find a smallest set X ⊆ U such that
∀s ∈ S ∃x ∈ X : x ∈ s. Usually the set system is given explicitly or can be at least easily
restricted to a set of polynomial size. In our case, the universe is the entire polygon (not just
the boundary) and the set system is the set of visibility regions (given a point x ∈ P, the
visibility region Vis(x) is defined as the set of points visible from x). The lack of progress

É. Bonnet and T. Miltzow 20:3

has come from the obvious yet crucial fact that the set system is infinite and that no one
has found a way to restrict the universe to a finite set (see [12, 1] for some attempts). We
also wish to quote a recent remark by Bhattiprolu and Har-Peled [5] both confirming that
the point guard is the most principal variant and highlighting the challenge of finding an
approximation algorithm: “One of the more interesting versions of the geometric hitting set
problem, is the art gallery problem, where one is given a simple polygon in the plane, and one
has to select a set of points (inside or on the boundary of the polygon) that “see” the whole
polygon. While much research has gone into variants of this problem [31], nothing is known
as far as an approximation algorithm (for the general problem). The difficulty arises from
the underlying set system being infinite, see [18] for some efforts in better understanding this
problem.”

Besides theoretical considerations, there is a series of work to find efficient implementations
to solve the art gallery problem in practice; see [14] for a survey on this large body of work.
There as well the focus lies on the point guard variant. One of the key challenges is to find a
discretization of the solution space, as was pointed out recently [22]: “. . . a finite discretization
whose existence in the AGP [(Art Gallery Problem)] is, to the best of our knowledge, still
unknown and poses a key challenge w.r.t. software solving the AGP.” Although we cannot
answer this question with respect to exact computation, we show that a fine enough grid is a
sufficient discretization of the solution space with respect to constant-factor approximation;
see Lemma 4. We also highlight certain fundamental problems related to solution-space
discretization.

Our contribution. Recently Elbassioni showed how the framework of Brönnimann and
Goodrich [8] can be extended to infinite range spaces, if one allows that some small δ-fraction
of the ground set is not covered [20]. The main application of his paper is to yield an
approximation algorithm for a variant of the point guard art gallery problem when one
is allowed to guard only almost all the polygon. We show here how to achieve the same
asymptotic approximation factor, while guarding the whole polygon. However, we rely on
two assumptions on the gallery, which we detail below.

I Assumption 1 (Integer Vertex Representation). Vertices are given by integers, represented
in binary.

An extension of a polygon P is a line that goes through two vertices of P.

I Assumption 2 (General Position Assumption). No three extensions meet in a point of P
which is not a vertex and no three vertices are collinear.

Note that we allow that three (or more) extensions meet in a vertex or outside the polygon.
No three points lie on a line is a typical assumption in computational geometry and

discrete geometry. Often this assumption is a pure technicality. In some cases, however,
the result might in fact be wrong without this assumption. In our case, we do believe that
Lemma 4 could be proven without Assumption 2, but it seems that some new ideas would
be needed. See [2] for an example where the main result is that some general position
assumption can be weakened. The idea of general position assumptions is that a small
random perturbation of the point set yields the assumption with probability almost 1. In
case that the points are given by integers small random perturbations, destroy the integer
property. But random perturbations could be performed in the following way: first multiply
all coordinates by some large constant 2C ∈ N and then add a random integer x with
−C 6 x 6 C.

SoCG 2017

20:4 An Approximation Algorithm for the Art Gallery Problem

The integer representation assumption (Assumption 1) seems to be very strong as it
gives us useful distance bounds not just between any two different vertices of the polygon,
but also between any two objects that do not share a point (see Lemma 8). On the
other hand, real computers work with binary numbers and cannot compute real numbers
with arbitrary precision. The real-RAM model was introduced as a convenient theoretical
framework to simplify the analysis of algorithms with numerical and/or geometrical flavors,
see for instance [25, page 1]. Also note that Assumption 1 can be replaced by assuming
that all coordinates are represented by rational numbers with specified nominator and
denominator. (There could be other potentially more compact ways to specify rational
numbers.) Multiplying all numbers with the smallest common multiple of the denominators
takes polynomial time, makes all numbers integers and does not change the geometry of the
problem.

I Theorem 3. Under Assumptions 1 and 2, there is a randomized approximation algorithm
with approximation factor O(log |OPT |) for Point Guard Art Gallery for simple
polygons. The running time is polynomial in the size of the input.

The main technical idea is to show the following lemma:

I Lemma 4 (Global Visibility Containment). Let P be some (not necessarily simple) polygon.
Under Assumptions 1 and 2, it holds that there exists a grid Γ and a guard set Sgrid ⊆ Γ,
which sees the entire polygon and |Sgrid| = O(|S|), where S is an optimal guard set.

To be a bit more precise, let M be the largest appearing integer. Then the number of
points in Γ is polynomial in M . This is potentially exponential in the size of the input. Thus
algorithms that rely on storing all points of Γ explicitly do not have polynomial worst case
running time. The algorithm of Efrat and Har-Peled [18] does not store every point of Γ
explicitly and, with the lemma above, the algorithm gives an O(log |OPT |)-approximation
on the grid Γ.

While Lemma 4 tells us that we can restrict our attention to a finite grid, when considering
constant factor approximation, the same is not known for exact computation. In particular,
it is not known whether the Point Guard problem lies in NP. Recently, some researchers
popularized an interesting complexity class, called ∃R, being somewhere between NP and
PSPACE [10, 32, 9, 29]. Many geometric problems, for which membership in NP is uncertain,
have been shown to be complete for this class. This suggests that there might be indeed
no polynomial sized witness for these problems as this would imply NP = ∃R. The history
of the art gallery problem suggests the possibility that the Point Guard problem is ∃R-
complete. If NP 6= ∃R, then this would imply that there is indeed no hope to find a witness
of polynomial size for the Point Guard problem.

Given a polygon P , we will always assume that all coordinates of its vertices are given by
positive integers in binary. (This can be achieved in polynomial time.) We denote by M the
largest appearing integer and we denote by diam(P) the largest distance between any two
points in P . Note that diam(P) < 2M . We denote L = 20M > 10. Note that logL is linear
in the input size. We define the grid

Γ = (L−12 · Z2) ∩ P.

In other words, we scale the integer grid by L−12 and take all points of the grid within the
polygon P. Note that all vertices of P have integer coordinates and thus are included in Γ.

I Theorem 5 (Efrat, Har-Peled [18]). Given a simple polygon P with n vertices, one can
spread a grid Γ inside P, and compute an O(logOPTgrid)-approximation for the smallest

É. Bonnet and T. Miltzow 20:5

subset of Γ that sees P. The expected running time of the algorithm is

O(nOPT 2
grid logOPTgrid log(nOPTgrid) log2 ∆),

where ∆ is the ratio between the diameter of the polygon and the grid size.

The term OPTgrid refers to the optimum, when restricted to the grid Γ. For the solu-
tion S that is output by the algorithm of Efrat and Har-Peled the following holds |S| =
O(|OPTgrid| log |OPTgrid|). However, Efrat and Har-Peled make no claim on the relation
between |S| and the actual optimum |OPT |. Note that the grid size equals w = L−12, thus
∆ 6 L12+1 = L13 and consequently log ∆ 6 13 logL, which is polynomial in the size of the
input.

Efrat and Har-Peled implicitly use the real-RAM as model of computation: elementary
computations are expected to take O(1) time and coordinates of points are given by real
numbers. As we assume that coordinates are given by integers, the word-RAM or integer-
RAM is a more appropriate model of computation. All we need to know about this model is
that we can upper bound the time for elementary computations by a polynomial in the bit
length of the involved numbers. Thus, going from the real-RAM to the word-RAM only adds
a polynomial factor in the running time of the algorithm of Efrat and Har-Peled. Therefore,
from the discussion above we see that it is sufficient to prove Lemma 4.

Organization. In Section 2, we describe the counterexample to the algorithm of Deshpande
et al. [16]. This proves useful as a starting point of Section 3 in which we show Lemma 4.
Due to space constraints, the detailed proofs of the lemmas can only be found in the full
version [6]. Finally in Section 4, we indicate some remaining open questions.

2 Counterexample

In this section, we point out a mistake in the algorithm of Deshpande et al. [15, 16]. This
mistake though constitutes an interesting starting point for our purpose.

The algorithm by Deshpande et al. can be described from a high level perspective as
follows: maintain and refine a triangulation T of the polygon until every triangle ∆ ∈ T
satisfies the so-called local visibility containment property. The local visibility containment
property of ∆ certifies that every point x ∈ ∆ can only see points that are also seen by
the vertices of ∆. However, we will argue that it is impossible to attain the local visibility
containment property with any finite triangulation; hence, the algorithm never stops.

Actually, we will show two lemmas, which describe fundamental issues with such an
approach. Let D ⊆ P be a finite set of points in the polygon and x ∈ P, then we denote by
Dx = { d ∈ D : dist(d, x) 6 1 }.

I Lemma 6. There is a polygon P such that for any finite set D, there exists a point x such
that x sees a point p that is not visible from Dx.

Thus in case that each triangle in the triangulation by Deshpande et al. has diameter
smaller than 1 Lemma 6 shows that the promised local visibility property cannot hold. We
imagine that all vertices of the triangulation T form the set D. It was claimed that for each
point x the triangle ∆ containing x sees whatever x sees. Now, Lemma 6 says that even
the larger set Dx cannot see everything that is seen by x. Thus in particular the triangle ∆
cannot see everything seen by x.

The triangles of Deshpande et al. might be very large and thus not contained in Dx. The
next Lemma addresses the issue of large triangles.

SoCG 2017

20:6 An Approximation Algorithm for the Art Gallery Problem

a1

a2
a3t

t

∈ C = tiny interval not seen by C.= x

Iε

Iε0
f

Figure 1 Illustration of the polygon with the property described in Lemma 6.

I Lemma 7. Let c ∈ N be any constant. There exists a polygon Pc such that for any finite
set of points D, there exists a point x ∈ Pc such that any subset S ⊆ D of size c− 1 cannot
see the entire visibility region of x.

Note that the point x depends on the set D. If we invoke Lemma 7 with c = 4 it
refutes the algorithm of Deshpande et al. for good as follows. Consider the polygon P4 as in
Lemma 7. For the purpose of contradiction suppose that there exists a triangulation T with
the local visibility containment property. We denote by D the set of vertices of T . According
to Lemma 7, there exists a point x such that any three points of D cannot see everything that
x sees. In particular, the three vertices of the triangle ∆ containing x cannot see everything
that is seen by x. But T is supposed to have exactly this property — a contradiction.

Again, we want to mention that the paper of Deshpande et al. has ideas that helped to
achieve the result of the present paper. In particular, we will show that the local visibility
containment property does indeed hold most of the time.

Proof of Lemma 6. See Figure 1, for the definition of polygon P and the following descrip-
tion. We have two opposite reflex vertices with supporting line `. The sequence of points
(ai)i∈N are chosen closer and closer to ` on the right side of the polygon above `. None of
the ai’s can see t, as this would require to be actually on `. Furthermore we denote by Iε

the open interval of length ε below t with endpoint t. The interval is indicated in orange in
Figure 1. It is clear that for each ε > 0, there exists an i such that ai sees at least part of Iε.
Let D be any finite set of points. Consider now any finite collection of points C ⊆ D with
distance at most 2 to the limit of the (ai)i∈N. As we will choose x as one of the ai’s it holds
Dx ⊆ C. For each point p ∈ C exists an ε(p) such that p sees nothing of the open interval
Iε(p). Let ε0 = minp∈C ε(p). None of the points of C see anything of the open interval Iε0 .
Recall that the visibility of the ai’s come arbitrarily close to t. Thus, there is some ak that
sees a point f on interval Iε0 . We define x to be ak. Recall that the set Dx is contained in
C. We conclude no point of Dx sees the point f , which is seen by x, as claimed. J

É. Bonnet and T. Miltzow 20:7

t1

t2

t3

t4

a1
a2

q

chamber 4

extension `4

Figure 2 Illustration of the polygon with the property described in Lemma 7.

Proof of Lemmma 7. See Figure 2, for the following description of the polygon Pc. We
build Pc from c disjoint chambers with an entrance of opposite reflex vertices. The chambers
are arranged in a way that all the extensions of the opposite reflex vertices meet in a common
point q. In this way, we get c extensions `1, . . . , `c. We denote by ti the intersection of the
extension `i with the i-th chamber. An important nuance in the construction is the fact that
one can see into all the chambers simultaneously from points b arbitrarily close to q.

Again we construct a sequence (ai)i∈N such that it works as in the proof of Lemma 6, but
for all chambers simultaneously. For this let ai be any point with dist(ai, q) = 1/i and the
property that it sees into each chamber, for all i ∈ N. As in the proof of Lemma 6, it holds
that each ai sees a small interval close to tj , for all i ∈ N and j ∈ {1, . . . , c}. In particular
each such interval approaches tj , for all j = {1, . . . , c}.

Let ε > 0. We denote the open interval of length ε to the right of tj on the boundary
of Pc with Iε,j (indicated orange in the figure). No point b ∈ P can see two intervals Iε,j

and Iε,j′ entirely, for any ε > 0 and j 6= j′. Because to see the whole interval Iε,j requires
to be in chamber j. However, no point can be in two chambers simultaneously. To avoid
confusion, we want to point out that no ai can see any interval Iε,j entirely. But for every
ε > 0, there exists an i0 such that ai0 sees part of all Iε,j simultaneously.

Let D ⊆ P be any finite set. Then there exists some ε0 such that any point p ∈ D sees at
most one entire interval Iε0,j and nothing of any other interval Iε0,j′ for any j′ 6= j. To see
this consider first the case that p is contained in one of the chambers. Then the statement
is clear as it cannot see any point of any other chamber. In the other case p is outside of
any chamber and thus cannot see any interval Iε,j entirely for any j. Thus in this case there
exists some ε(p) > 0 such that p sees nothing of Iε,j for any j and 0 < ε < ε(p). We choose
ε0 = minp∈D ε(p).

By the definition of (ai)i∈N there exists some x = ak that sees at least one point fj ∈ Iε0,j ,
for all j = {1, . . . , c}. As no point of D sees two fj simultaneously, we need at least c points
of D to see f1, . . . , fc. J

SoCG 2017

20:8 An Approximation Algorithm for the Art Gallery Problem

3 Detailed exposition of the proof

The details, which we skipped here due to space constraints, can be found in [6]. Nonetheless,
all the ideas and crucial facts are highlighted in this conference version, and illustrated with
a number of figures. In almost all figures, the proportions of some objects and distances may
not reflect the reality of things. They are displayed this way to convey a message, albeit
exaggeratedly.

Our high-level proof idea is that the local visibility containment property holds for every
point x that is sufficiently far away from all extension lines. (We slightly tune the meaning
of the local visibility containment property.) This constitutes the first step. (Recall that the
extension of two vertices is the line that contains these vertices.) In a second step, we will
show that a point in the gallery cannot be close to more than two extensions at the same
time. We will add one vertex for each extension that x is close to. Recall that the vertices of
the polygon are also in Γ.

The first step is much more tedious than the second one. A reason for that is that many
observations that seem true at first sight turn out to be erroneous. Therefore, some extra care
is needed for this step in the definitions of the concepts and in breaking a general situation
to a distinction of more elementary cases. The crux is mainly to identify these elementary
cases and to properly handle them. All the other proofs are elementary.

3.1 Benefit of Integer Coordinates
The integer coordinate assumption not only implies that the distance between any two
vertices is at least 1 but it also gives useful lower bounds on distances between any two
objects of interest that do not share a point. The next lemma lists all such lower bounds that
we will need later. We denote by dist(u, v), dist(u, `) and dist(`, `′) the Euclidean distance
between the points u and v, the point u and the line `, and the lines ` and `′, respectively.

I Lemma 8. Let P be a polygon with integer coordinates and L as defined above. Let v and
w be vertices of P, ` and `′ supporting lines of two vertices, and p and q intersections of
supporting lines.
1. dist(v, w) > 0⇒ dist(v, w) > 1.
2. dist(v, `) > 0⇒ dist(v, `) > L−1.
3. dist(p, `) > 0⇒ dist(p, `) > L−5.
4. dist(p, q) > 0⇒ dist(p, q) > L−4.
5. Let ` 6= `′ be parallel. Then dist(`, `′) > L−1.
6. Let ` 6= `′ be any two non-parallel supporting lines and α the smaller angle between them.

Then holds tan(α) > 8L−2.
7. Let a ∈ P be a point and `1 and `2 be some non-parallel lines with dist(`i, a) < d, for

i = 1, 2. Then `1 and `2 intersect in a point p with dist(a, p) 6 dL2.

As these bounds are important for the intuition of the forthcoming ideas, we will give an
example by proving Item 2.

Proof of Item 2. The distance d can be computed as

d = |(v − w1) · (w2 − w1)⊥|
‖w2 − w1‖2

>
1

diam(P) >
1
L
.

Figure 3 illustrates how to derive this elementary formula. Here, · denotes the scalar product,
x⊥ is the vector x rotated by 90◦ counter-clockwise, and ‖x‖2 is the Euclidean norm of x.

É. Bonnet and T. Miltzow 20:9

w1 w2

v

`

u :=
w2 − w1

‖w2 − w1‖2

d = u⊥ · (v − w2)

Figure 3 Computing the distance between a line and a vertex.

≤ L−1

α

Figure 4 The red point indicates a point of the original optimal solution. The blue points indicate
the surrounding grid points that we choose. The polygon is indicated by bold lines. From left to
right, we have three cases: the interior case, the boundary case, and the corner case. To the very
right, we indicate that in every case the vertices of P with distance less than L−1 are also included
in α-grid∗(x).

The numerator of this formula is at least 1 as it is a non-zero integer by assumption.
The denominator is upper bounded by the diameter of P, which is in turn upper bounded
by L. J

3.2 Surrounding Grid Points
Given a point x ∈ P and a number α much smaller than the grid width, we will define
α-grid(x) as a set of grid points around x, see Figure 4. The parameter α is an upper bound
on the distance between x and α-grid(x). (We will chose later α = L−11.) In case that there
exists a vertex v of P with distance dist(x, v) 6 L−1, we define α-grid∗(x) = α-grid(x) ∪ v.
Later, we will make use of the fact that |α-grid∗(x)| 6 7.

The following precise definition depends on the position of x and the value α. It is
included for the interested reader, but not strictly needed to understand the remainder of
the main body. Let c be a circle with radius α and center x. Then there exists a unique
equilateral triangle ∆(x) inscribed c such that the lower side of ∆(x) is horizontal. We
distinguish three cases. In the interior case, ∆(x) and ∂P are disjoint. In the boundary
case, ∆(x) and ∂P have a non-empty intersection, but no vertex of P is contained in ∆(x).
In the corner case, one vertex of P is contained in ∆. It is easy to see that this covers
all the cases. We also say a point x is in the interior case, and so on. In the interior case
α-grid(x) is defined as follows. Let v1, v2, v3 be the vertices of ∆. Then the grid points gi,
which are closest to vi, for all i = 1, 2, 3 form the surrounding grid points. In the boundary
case α-grid(x) is defined as follows. Let S be the set of vertices of ∆ and all intersection
points of ∂P with ∂∆(x). For each point v ∈ S, we define the grid point gv closest to v
and accordingly we define GS = { gv : v ∈ S }. Then α-grid(x) = GS . In the corner case
α-grid(x) is defined as follows. Let S be the set of vertices of ∆ and all intersection points of
∂P with ∂∆(x). For each point v ∈ S, we define the grid point gv closest to v and accordingly
we define GS = { gv : v ∈ S }. Then α-grid(x) = GS . In any case, if there is a reflex vertex

SoCG 2017

20:10 An Approximation Algorithm for the Art Gallery Problem

r1

r2

≤ sL

slope = s

β

`

(a) A polygon with two opposite reflex vertices and
their s-bad region.

∆

x

(b) The star triangle decomposition of the
visibility region of x.

Figure 5

r with dist(x, r) 6 L−1 then we include r in the set α-grid∗(x) = r ∪ α-grid(x) as well. We
will usually denote the points in α-grid(x) with g1, g2 or just g.

3.3 Local Visibility Containment
Let s be a fixed parameter to be specified later (s = L−9). For any extension ` we define an
s-bad region, see the gray area in Figure 5a for an illustration. Note that the bad region
consists of two connected components, each being a triangle. (There can be no vertex in the
interior of the triangle, because of Lemma 8 Item 2.) The parameter s = tan(β) is indicated
in the figure. Furthermore, for each point x, the visibility region can be decomposed into
triangles as indicated in Figure 5b. The region is called bad region, because Lemma 9 does
not hold for points in those regions.

Let ∆ be some triangle of the visibility region of x (in blue in Figure 5b). In this section,
we denote the defining vertices of ∆ by r1 and r2.

Then the main lemma asserts that α-grid∗(x) sees ∆ except if x is in an s-bad region of
the vertices defining ∆.

I Lemma 9 (Special Local Visibility Containment Property). Let r1 and r2 be two consecutive
vertices in the clockwise order of the vertices visible from x ∈ P and let x be outside the
s-bad region of the vertices r1 and r2 and ∆ the triangle of the visibility region of x defined
by r1 and r2. We make the following assumptions: s 6 L−3, α 6 L−7 and 16Lα 6 s. Then
α-grid∗(x) sees ∆.

Important is the one-to-one correspondence between the triangles that cannot be seen and
the extension line that we can make responsible for it.

The proof is structured in many cases. At first the triangle ∆ is split into a small triangle
(R1) and a trapezoid (R2), as indicated in Figure 7. We show separately, for R1 and R2 that
α-grid∗(x) sees these two regions.

Another important case distinction is on whether ∆ contains a point g ∈ α-grid∗(x),
see Figure 6. In the first case g sees ∆ as ∆ is convex. In the other case, we can identify
two points g1, g2 ∈ α-grid(x) to the left and right of ∆. For all what follows we are only
concerned with the second case.

We are confronted with the situation that there might be a vertex v that is not in ∆, but
obstructs the vision of g1, g2 in one way or another. Whenever this happens, we distinguish
two cases: Either dist(v, x) < L−1 or dist(v, x) > L−1. In the first case v ∈ α-grid∗(x). To
understand the case that v is "far" from x, one must realize that L−1 is huge compared to

É. Bonnet and T. Miltzow 20:11

g1

g2

x

r1

r2

r1

r2

gx

Figure 6 Left: The point g is contained in ∆ and thus g sees ∆, as ∆ is convex. Right: The line
segment s cuts ∆.

x R1 R2

r1

r2

Figure 7 To show that each triangle of the visibility region is visible by α-grid∗(x), we treat the
small triangle R1 and the trapezoid R2 individually. In particular, as we do not make use of the
finiteness of R2, we just assume it is an infinite cone.

α = L−11. Thus x and g ∈ α-grid(x) are affected by v in a very similar way. Unfortunately,
not in exactly the same way. For instance x sees the segment seg(r1, r2), which has length
at least one, and it is easy to show that certain points of g1, g2 ∈ α-grid(x) see the entire
segment, except a sub-segment of length at most L−2, see Figure 8. This sub-segment is
completely irrelevant, but we have to deal with it. These issues arise at various places. It
makes forthcoming definitions more tedious and requires the proofs to be carried out with
extra care.

To see that α-grid∗(x) sees R1 relies mainly on the insight, which we already mentioned
above, that reflex vertices v, with dist(x, v) > L−1 can only block a very small part of the
visibility of α-grid(x) at the bottom of segment seg(r1, r2), as illustrated in Figure 8. For
the case that there exists a reflex vertex v with dist(x, v) < L−1, recall that v is included in
α-grid∗(x). Therefore, even if a reflex vertex obstructs the vision of g2 onto seg(r1, r2), then
g2 can see the entire upper half of region R1 and similarly, g1 sees the entire lower part of
R1, as illustrated in Figure 8. Thus g1 and g2 see together the entire region R1. Note that
the argument does not rely on x being outside a bad region.

To prove that R2 can be seen by α-grid∗(x) is more demanding. As it seems not useful
to use the boundedness of R2, we just assume it to be an infinite cone and we show that
α-grid∗(x) sees this cone. Obviously, the part of ∂P “behind” seg(r1, r2) is not considered
blocking. The crucial step to show that R2 can be seen by α-grid∗(x) is to show that the
black region as indicated in Figure 9 does not exist. The idea is that this is implied if ray1
and ray2 diverge.

In other words if ray1 and ray2 never meet then the black region is empty. For this
purpose, we make use of the fact that dist(g1, g2) ≈ α, for any g1, g2 ∈ α-grid(x) by definition,
while dist(r1, r2) > 1, because of integer coordinates. Thus intuitively, the distance of ray1
and ray2 is closer at its apex than at the segment seg(r1, r2). Indeed any two rays raya and
rayb will not intersect, if the following three conditions are met, see Figure 10.

SoCG 2017

20:12 An Approximation Algorithm for the Art Gallery Problem

≥ dist(r1, r2) ≥ 1
2

≤ L−2

r1

r2v

g1

g2

Figure 8 The point g2 ∈ α-grid(x) sees the upper half of the Region R1 as the green region is
completely contained inside the polygon.

≤ L−2

≤ L−2

ray1

ray2

Figure 9 The visibility of the grid points g ∈ α-grid(x) can be blocked, but we can bound the
amount by which it is blocked. The key idea to show that R2 can be seen by α-grid(x) is to show
that the region indicated in solid black is empty.

The apex of raya and rayb are “close”.
The “defining” points qa, qb are “far” apart.
Both apices are outside of the s-bad region of qa and qb.

In order to invoke the last statement, we have to show that g1 and g2 are outside some
appropriately defined bad regions. For this we use that x is outside the s-bad region of r1
and r2. The points where ray1 and ray2 intersect seg(r1, r2) play the role of the defining
points.

3.4 Global Visibility Containment
Given a minimum solution OPT , we describe a set G ⊆ Γ of size O(|OPT |) and we show
that G sees the entire polygon, see Figure 12 for an illustration. For each x ∈ OPT , G
contains α-grid∗(x). Furthermore if x is contained in an s-bad region, G contains at least
one of the vertices defining this bad region. It is clear by the previous discussion that G sees
the entire polygon, as the only part that is not seen by α-grid∗(x) are some small regions,
which are entirely seen by the vertices bounding it.

It remains to show that there is no point in three bad regions. For this, we heavily
rely on the integer coordinates and the general position assumption. Note that the integer
coordinate assumption implies not just that the distance between any two vertices is at least
1 but also that the distance between any extension ` and a vertex v not on ` is at least L−1.
Also the angle between any two extensions is at least L−2. (Recall that L is an upper bound
on the diameter and the largest appearing integer.) These bounds and other bounds of this
kind imply that if any three bad regions meet in the interior, then their extension lines must
meet in a single point, see Figure 11. We exclude this by our general position assumption.

É. Bonnet and T. Miltzow 20:13

qa

qb

raya

rayb

apices

bad region with
respect to qa and qb.

extension of
qa and qb

Figure 10 If the distance of the rays is closer at its apices than at qa and qb then we can conclude
that the rays are diverging and never crossing.

⇒
γ

β

Figure 11 Three bad regions meeting in an interior point implies that the extensions must meet
in a single point. No two bad regions intersect in the vicinity of a vertex, as they are defined by
some angle β � L−2. But the angle γ between any two extensions is at least L−2.

Figure 12 The red dots indicate the optimal solution. The blue dots indicate the set G ⊆ Γ that
are part of an approximate solution. The red dot on the top is in the interior case and four grid
points are added around it. The red dot on the left is too close to two supporting lines and we add
one of the reflex vertices of each of the supporting lines. The red dot to the right has distance less
than L−1 to a reflex vertex, so we add that vertex to G as well.

SoCG 2017

20:14 An Approximation Algorithm for the Art Gallery Problem

Close to a vertex, we use a different argument: No two bad regions intersect in the vicinity
of a vertex, as bad regions are defined by some angle β with tan(β)� L−2. But the angle γ
between any two extensions is at least L−2.

Recall that |α-grid∗(x)| 6 7. Together with the argument above follows that each x is in
at most 2 bad regions and |G| 6 (7 + 2)|OPT | = O(|OPT |).

4 Conclusion

We presented an O(log |OPT |)-approximation algorithm for the Point Guard Art Gal-
lery problem under two relatively mild assumptions. The most natural open question is
whether Assumption 2 can be removed. We believe that this is possible but it will require
some additional efforts and ideas. Another improvement of the result would be to achieve an
approximation ratio of O(logn) for polygons with holes. This would match the currently
best known algorithm for the Vertex Guard variant and the lower bound for both prob-
lems. In that respect, it is noteworthy that Lemma 4 does not require the polygon to be
simple. One might also ask about the inapproximability of Point Guard Art Gallery
for simple polygons. For the moment, the problem is only known to be inapproximable
for a certain constant ratio (quite close to 1), unless P=NP. It would be interesting to
get superconstant inapproximability under standard complexity theoretic assumptions or
improved approximation algorithms.

References

1 Eyüp Serdar Ayaz and Alper Üngör. Minimal witness sets for art gallery problems. EuroCG,
2016.

2 János Barát, Vida Dujmovic, Gwenaël Joret, Michael S. Payne, Ludmila Scharf, Daria
Schymura, Pavel Valtr, and David R. Wood. Empty pentagons in point sets with collinear-
ities. SIAM J. Discrete Math., 29(1):198–209, 2015.

3 Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in real algebraic
geometry. Springer, 2007.

4 Patrice Belleville. Computing two-covers of simple polygons. Master’s thesis, McGill Uni-
versity, 1991.

5 Vijay V. S. P. Bhattiprolu and Sariel Har-Peled. Separating a voronoi diagram via local
search. In SOCG, pages 18:1–18:16, 2016.

6 Édouard Bonnet and Tillmann Miltzow. An approximation algorithm for the art gallery
problem. CoRR, 1607.05527, 2016. URL: http://arxiv.org/abs/1607.05527.

7 Édouard Bonnet and Tillmann Miltzow. The parameterized hardness of the art gallery
problem. In ESA 2016, pages 19:1–19:17, 2016. Arxiv identifier: 1603.08116.

8 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995. doi:10.1007/
BF02570718.

9 John Canny. Some algebraic and geometric computations in PSPACE. In STOC, pages
460–467. ACM, 1988.

10 Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, December
2015. doi:10.1145/2852040.2852053.

11 Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B, 18(1):39–41, 1975.

12 Kyung-Yong Chwa, Byung-Cheol Jo, Christian Knauer, Esther Moet, René van Oostrum,
and Chan-Su Shin. Guarding art galleries by guarding witnesses. Int. J. Comput. Geometry
Appl., 16(2-3):205–226, 2006.

http://arxiv.org/abs/1607.05527
http://dx.doi.org/10.1007/BF02570718
http://dx.doi.org/10.1007/BF02570718
http://dx.doi.org/10.1145/2852040.2852053

É. Bonnet and T. Miltzow 20:15

13 Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In WADS
1993, pages 246–252, 1993. doi:10.1007/3-540-57155-8_252.

14 Pedro Jussieu de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alex-
ander Kröller, and Davi C. Tozoni. Engineering art galleries. CoRR, abs/1410.8720, 2014.
URL: http://arxiv.org/abs/1410.8720.

15 Ajay Deshpande. A pseudo-polynomial time O(log2 n)-approximation algorithm for art
gallery problems. Master’s thesis, Department of Mechanical Engineering, Department of
Electrical Engineering and Computer Science, MIT, 2006.

16 Ajay Deshpande, Taejung Kim, Erik D. Demaine, and Sanjay E. Sarma. A pseudopoly-
nomial time O(logn)-approximation algorithm for art gallery problems. In WADS 2007,
pages 163–174, 2007. doi:10.1007/978-3-540-73951-7_15.

17 Stephane Durocher and Saeed Mehrabi. Guarding orthogonal art galleries using sliding
cameras: algorithmic and hardness results. In MFCS 2013, pages 314–324. Springer, 2013.

18 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process. Lett.,
100(6):238–245, 2006. doi:10.1016/j.ipl.2006.05.014.

19 Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

20 Khaled Elbassioni. Finding small hitting sets in infinite range spaces of bounded VC-
dimension. CoRR, abs/1610.03812, 2016. accepted to SoCG 2017.

21 Steve Fisk. A short proof of Chvátal’s watchman theorem. J. Comb. Theory, Ser. B,
24(3):374, 1978. doi:10.1016/0095-8956(78)90059-X.

22 Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous
1.5d terrain guarding problem: Discretization, optimal solutions, and PTAS. JoCG, 7, 2016.

23 Subir Kumar Ghosh. Approximation algorithms for art gallery problems in polygons. Dis-
crete Applied Mathematics, 158(6):718–722, 2010.

24 Alexander Gilbers and Rolf Klein. A new upper bound for the VC-dimension of visibility
regions. Computational Geometry, 47(1):61–74, 2014.

25 Heuna Kim and Günter Rote. Congruence testing of point sets in 4-space. In SoCG,
volume 51 of LIPIcs, pages 48:1–48:16, 2016. Arxiv identifier: 1603.07269.

26 James King. Fast vertex guarding for polygons with and without holes. Comput. Geom.,
46(3):219–231, 2013. doi:10.1016/j.comgeo.2012.07.004.

27 David G. Kirkpatrick. An O(log logOPT)-approximation algorithm for multi-guarding
galleries. Discrete & Computational Geometry, 53(2):327–343, 2015. doi:10.1007/
s00454-014-9656-8.

28 Erik A. Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564–594, 2013.

29 Jirí Matousek. Intersection graphs of segments and ∃R. CoRR, 1406.2636, 2014.
30 Rajeev Motwani, Arvind Raghunathan, and Huzur Saran. Covering orthogonal polygons

with star polygons: The perfect graph approach. J. Comput. Syst. Sci., 40(1):19–48, 1990.
doi:10.1016/0022-0000(90)90017-F.

31 Joseph O’rourke. Art gallery theorems and algorithms, volume 57. Oxford University Press
Oxford, 1987.

32 Marcus Schaefer. Complexity of Some Geometric and Topological Problems, pages 334–344.
Springer, 2010. doi:10.1007/978-3-642-11805-0_32.

33 Thomas C. Shermer. Recent results in art galleries. IEEE, 80(9):1384–1399, 1992.
34 Jorge Urrutia et al. Art gallery and illumination problems. Handbook of computational

geometry, 1(1):973–1027, 2000.

SoCG 2017

http://dx.doi.org/10.1007/3-540-57155-8_252
http://arxiv.org/abs/1410.8720
http://dx.doi.org/10.1007/978-3-540-73951-7_15
http://dx.doi.org/10.1016/j.ipl.2006.05.014
http://dx.doi.org/10.1016/0095-8956(78)90059-X
http://dx.doi.org/10.1016/j.comgeo.2012.07.004
http://dx.doi.org/10.1007/s00454-014-9656-8
http://dx.doi.org/10.1007/s00454-014-9656-8
http://dx.doi.org/10.1016/0022-0000(90)90017-F
http://dx.doi.org/10.1007/978-3-642-11805-0_32

Self-Approaching Paths in Simple Polygons∗

Prosenjit Bose1, Irina Kostitsyna†2, and Stefan Langerman3

1 School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca

2 Computer Science Department, Université libre de Bruxelles (ULB), Brussels,
Belgium
irina.kostitsyna@ulb.ac.be

3 Computer Science Department, Université libre de Bruxelles (ULB), Brussels,
Belgium
stefan.langerman@ulb.ac.be

Abstract
We study self-approaching paths that are contained in a simple polygon. A self-approaching
path is a directed curve connecting two points such that the Euclidean distance between a point
moving along the path and any future position does not increase, that is, for all points a, b, and
c that appear in that order along the curve, |ac| ≥ |bc|. We analyze the properties, and present
a characterization of shortest self-approaching paths. In particular, we show that a shortest
self-approaching path connecting two points inside a polygon can be forced to follow a general
class of non-algebraic curves. While this makes it difficult to design an exact algorithm, we show
how to find a self-approaching path inside a polygon connecting two points under a model of
computation which assumes that we can calculate involute curves of high order.

Lastly, we provide an algorithm to test if a given simple polygon is self-approaching, that is,
if there exists a self-approaching path for any two points inside the polygon.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases self-approaching path, simple polygon, shortest path, involute curve

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.21

1 Introduction

The problem of finding an optimal obstacle-avoiding path in a polygonal domain is one
of the fundamental problems of computational geometry. Often a desired path has to
conform to certain constraints. For example, a path may be required to be monotone [3],
curvature-constrained [9], have no more than k links [15], etc. A natural requirement to
consider is that a point moving along a desired path must be always getting closer to its
destination. Such radially monotone paths appear, for example, in greedy geographic routing
in a network setting [10], and beacon routing in a geometric setting [5]. A strengthening
of a radially monotone path is a self-approaching path [12, 13, 1]: a point moving along a
self-approaching path is always getting closer not only to its destination, but also to all the
points on the path ahead of it. There are several reasons to prefer self-approaching paths
over radially monotone paths. First, unlike for a radially monotone path, any subpath of a
self-approaching path is self-approaching. Thus, if the destination is not known in advance
and the desired path is required to be radially monotone, one would have to resort to using

∗ A full version of the paper is available at https://arxiv.org/abs/1703.06107.
† I. K. was supported in part by the NWO under project no. 612.001.106, and by F.R.S.-FNRS.

© Prosenjit Bose, Irina Kostitsyna, and Stefan Langerman;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.21
https://arxiv.org/abs/1703.06107
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Self-Approaching Paths in Simple Polygons

self-approaching paths. Second, the length of a radially monotone path can be arbitrarily
large in comparison with the Euclidean distance between the source and the destination
points, whereas self-approaching paths have a bounded detour [13]. These properties make
self-approaching paths of interest to various applications, including network routing, graph
drawing, and others.

In this paper we study self-approaching paths that are contained in a simple polygon.
We consider the following questions:

Given two points s and t inside a simple polygon P , does there exist a self-approaching
s-t path inside P?
Find the shortest self-approaching s-t path.
Given a point s in a simple polygon P , what is the set of all points reachable from s with
self-approaching paths?
Given a point t, what is the set of all points from which t is reachable with a self-
approaching path?
Given a polygon P , test if it is self-approaching, i.e., if there exists a self-approaching
path between any two points in P .

Related work. Self-approaching curves were first introduced in the context of online search-
ing for the kernel of a polygon [12]. They were further studied in [13] where, among other
results, the authors prove that the length of any self-approaching curve connecting two
points is not greater than 5.3331 times the Euclidean distance between the points. An
equivalent definition of a self-approaching path is that for every point on the path there
has to be a 90◦ angle containing the rest of the path. Aichholzer et al. [1] developed a
generalization of self-approaching paths for an arbitrarily fixed angle α. A relevant class
of paths is increasing-chords paths [17], which are self-approaching in both directions. The
nice properties of self-approaching and increasing-chords paths, and their potential to be
applied in network routing, were recognized by the graph drawing community. As a result, a
number of papers have appeared in recent years on self-approaching and increasing-chords
graphs [2, 8, 16].

This paper is organized in the following way. We introduce a few definitions and concepts
in Section 2. In Section 3, we characterize a shortest self-approaching path between two
points in a simple polygon. In Section 4 we present an algorithm to construct the shortest
self-approaching path between two points if it exists, or to report that it does not exist, by
assuming a model of computation in which we can solve certain transcendental equations.
Finally, in Section 5 we present a linear-time algorithm to decide if a polygon is self-
approaching, that is, if there is a self-approaching path between any two point of the polygon.
Due to space limitations, some proofs are omitted. For the details refer to the full version of
this paper [6].

2 Preliminaries

For two points p1 and p2 on a directed path π that starts at point s, we shall say that
p1 <π p2 if p1 lies between s and p2 along π. For a directed path π and two points p1 <π p2
on it, denote the subpath from p1 to p2 by π(p1, p2).

P. Bose, I. Kostitsyna, and S. Langerman 21:3

c(α)

c(θ)

I(θ)

s(θ)

Figure 1 Curve c(θ) and two involutes. The arrows designate the direction of growth of the
parameter θ. The involute on the left is defined by tangents pointing in the negative direction of c,
and the involute on the right is defined by tangents pointing in the positive direction of c.

I Definition 1. A self-approaching path π in a continuous domain is a piece-wise smooth1
oriented curve such that for any three points a, b, and c on it, such that a <π b <π c:
|ac| ≥ |bc|, where |ac| and |bc| are Euclidean distances.

Icking et al. [13] showed the following normal property of a self-approaching path, that we
will be using extensively in this paper,

I Lemma 2 (the normal property [13]). An s-t path π is self-approaching if and only if any
normal to π at any point a ∈ π does not cross π(a, t).

I Definition 3. A normal h to a directed curve π at some point a ∈ π defines two half-planes.
Let the positive half-plane h+ be the open half-plane which is congruent with the direction
of π at point a.

We can rephrase the normal property in the following way.

I Lemma 4 (the half-plane property). An s-t path π is self-approaching if and only if, for
any normal h to π at any point a ∈ π, the subpath π(a, t) lies completely in the positive
half-plane h+.

I Definition 5. A bend of a self-approaching path π is a point of discontinuity of the first
derivative of π.

I Definition 6. A reachable region R(s) ⊆ P , for a given point s in a polygon P , is the set
of all points t ∈ P for which there exists a self-approaching s-t path π ∈ P .

I Definition 7. A reverse-reachable region R−1(t) ⊆ P , for a given point t in a polygon P ,
is a set of all points s ∈ P for which there exists a self-approaching s-t path π ∈ P .

2.1 Involutes
Next we introduce involute curves of kth order that will appear later as parts of shortest
self-approaching paths.

An involute of a convex curve c is a curve traced by the end point of an unwinding
pull-taut string rolled on c. Consider a parameterization ~c(θ) of the curve, and let c be
oriented in the direction of growth of the parameter θ. The involute of c can be computed
by the following formula:

~I(θ) = ~c(θ)− s(θ) ~c
′(θ)
|~c ′(θ)| ,

1 Some previous works do not require the curve to be smooth. However in this paper we will be mostly
considering shortest self-approaching paths, and thus the requirement on smoothness is justified.

SoCG 2017

21:4 Self-Approaching Paths in Simple Polygons

p2

p1

p3

t3 t2

I0

I1

I2

I3 t1 θ1

I0(θmax)

I0(θmin)

Figure 2 Circular arc I0(θ), and three involutes I1(θ), I2(θ), and I3(θ): for each i, Ii(θ) is an
involute about Ii−1(θ) that passes through point pi. The arrows designate the direction of growth of
the parameter θ (they are not necessarily consistent with the direction of a self-approaching path).

where s(θ) is the length of the tangent segment |c(θ)I(θ)|,

s(θ) =
θ∫
α

|~c ′(t)|dt .

The constant α defines the point at which the involute I will start unwinding around c (see
Fig. 1). The involute has two branches: the positive branch unwinds starting at point α in
the direction of growth of θ, and the negative branch unwinds in the opposite direction. If
the curve c is defined on the interval [θmin, θmax], then the positive branch of its involute is
defined on the interval [α, θmax], and the negative – on the interval [θmin, α].

We define an involute of order k of a curve c(θ) to be an involute of one branch (that
contains the point corresponding to a parameter αk) of an involute of order k − 1 of c(θ),
with an involute of order 0 being the curve c(θ) itself,

~Ik(θ) = ~Ik−1(θ)− sk(θ)
~I ′k−1(θ)
|~I ′k−1(θ)|

, where sk(θ) =
θ∫

αk

|~I ′k−1(t)|dt ,

~I0(θ) = ~c(θ) .

In the following sections we will show that shortest self-approaching paths consist of
straight-line segments, circular arcs, and involutes of circular arcs of some order. In the full
version of this paper [6] we provide the details of the derivation of the following formula for
an involute of a circle of order k:

Ik(θ) =
b k

2 c∑
0

(−1)ia2i(θ)
(

cos θ
sin θ

)
−
d k

2 e−1∑
0

(−1)ia2i+1(θ)
(
− sin θ
cos θ

)
,

where each involute Ii passes through a point pi(ri, ϕi) for all 1 ≤ i ≤ k,

ai(θ) = r0
θi

i! + c1
θi−1

(i− 1)! + · · ·+ ci ,

P. Bose, I. Kostitsyna, and S. Langerman 21:5

p

p1
p2

h2

q

p1

p2

h2

p

Figure 3 If a self-approaching path has an inflection point (or a segment) interior to P , then
there exists a shortcut.

and the constants ci can be found from the following equations:

ri cos(θi − ϕi) =
b i

2 c∑
0

(−1)ja2j(θi), ri sin(θi − ϕi) =
d i

2 e−1∑
0

(−1)ja2j+1(θi) . (1)

The length |pktk| of the tangent segment equals |ak(θk)|.

3 Properties of a shortest self-approaching path

In this section we will prove the following properties of a shortest self-approaching path from
s to t inside a simple polygon P :

A shortest self-approaching path is unique.
The shortest self-approaching path consists of straight segments, circular arcs and involutes
to the latter pieces of the path.

We begin by proving several lemmas:

I Lemma 8. For any two points p1 <π p2 on a self-approaching s-t path π in R2, the
perpendicular bisector of the straight-line segment p1p2 does not intersect the subpath π(p2, t).

Proof. Let h− be the half-plane defined by the perpendicular bisector of segment p1p2 that
contains p1. Assume there is a point q on the subpath π(p2, t) that is interior to h−. Then
|p1q| < |p2q|, which contradicts the definition of a self-approaching path. J

I Lemma 9. Bends of a shortest self-approaching path in a simple polygon P form a subset
of vertices of P .

Thus, any point of a shortest self-approaching s-t path which is interior to P has a well-
defined tangent. This point is an inflection point, if its tangent separates the self-approaching
path in a small enough ε-neighborhood. We can also introduce a notion of an inflection
segment for a path that contains a straight-line segment as a subpath. A straight-line segment
of a path is an inflection segment if its supporting line separates the path in a small enough
ε-neighborhood around the segment (refer to Fig. 3).

I Lemma 10. A shortest self-approaching s-t path in a simple polygon P cannot have an
inflection point (or an inflection segment) that is interior to P .

Proof. Suppose a shortest self-approaching s-t path π has an inflection point p (or an
inflection segment pq) interior to P . Consider an ε-neighborhood of p (or pq) for some small
ε such that it is also interior to P , and it does not contain other inflection points. Choose a

SoCG 2017

21:6 Self-Approaching Paths in Simple Polygons

ts

p2

p3

π2

π1

p1

Figure 4 A geodesic bounded between two self-approaching s-t paths is also self-approaching.

point p1 on subpath π(s, p) close to p and draw a tangent through it to a subpath of π(p, t)
contained in the ε-neighborhood (refer to Fig. 3). Let p2 be the tangent point. We can
always choose p1 such that the segment p1p2 lies inside the ε-neighborhood. Let h2 be the
normal line to π drawn through p2. Because π is self-approaching, the subpath π(p2, t) lies in
the positive half-plane h+

2 . Therefore, none of the normal lines to p1p2 intersects the subpath
π(p2, t). Thus, π(s, p1)⊕ p1p2 ⊕ π(p2, t) is self-approaching and is shorter than π. J

Define the inflection points of a directed geodesic path γ from s to t as the first points of
the inflection segments of γ, i.e., the set of last points in the maximal subchains of γ with
the same direction of turn.

I Lemma 11. A shortest self-approaching path from s to t in a simple polygon P contains
all the inflection points of the geodesic path from s to t.

Proof. Consider an inflection segment pipj of the geodesic path γ from s to t, pi is one of
its inflection points. Any shortest self-approaching path π intersects pipj . If the intersection
point were not pi, then π would contain an inflection point that is interior to P , but this
would contradict Lemma 10. J

Consider two self-approaching paths π1 and π2 in a simple polygon P from s to t that
do not have other points in common. Let γ be a geodesic path from s to t inside the area
bounded by π1 and π2. Then, the following lemma holds.

I Lemma 12. A geodesic path γ between two self-approaching paths π1 and π2 is also
self-approaching.

Proof. We use the fact that the geodesic lies inside of the convex hull of each side of the
boundaries between which it is constrained, i.e., γ ⊂ CH (π1) and γ ⊂ CH (π2).

Any point p ∈ γ either lies on one of the paths π1 and π2 or on a straight line segment
that is bitangent to the boundary (refer to Fig. 4).

Consider the case when p lies on π1 or π2, and is not a bend point (as point p1 in the
figure). Let, w.l.o.g., p ∈ π1. The positive half-plane h+ of the normal to π1 at p contains the
rest of the path π1(p, t). Therefore it contains the convex hull of π1(p, t), and the subpath
γ(p, t) of the geodesic.

When p lies on a path π1 and is a bend point, the two normals to the path at p define
two positive half-planes whose intersection contains the rest of the path from p to t. The
two normals to the geodesic path at this point will lie in between the two normals to the
boundary path (as in the figure for point p3). Thus, the intersection of the two positive
half-planes of the normals to the geodesic contains the convex hull of the subpath from s to
t, and, therefore, the rest of the geodesic path γ(p, t).

P. Bose, I. Kostitsyna, and S. Langerman 21:7

s

t

Figure 5 Shortest self-approaching path from s to t consists of straight-line segments, circular
arcs, and involutes of a circle of some order. Straight segments are shown in green, circular arcs in
purple, involutes of a circle of first order in orange, involutes of a circle of a second order in blue,
and involutes of a circle of third order in brown.

In the case when p lies on a bitangent, consider its end point p2. The normal to γ at
p is parallel to the normal to γ at p2. By one of the cases considered above, the positive
half-plane at p2 (or the intersection of two positive half-planes) will contain γ(p2, t), and,
therefore, the positive half-plane of the normal to γ at p will contain the subpath γ(p, t).

Thus, by the half-plane property, γ is self-approaching. J

As a corollary to this lemma, for two self-approaching paths from s to t, a path, composed of
geodesics in the areas bounded by subpaths of the two paths between each pair of consecutive
intersection points, is also self-approaching. In other words, let s = p0, p1, . . . , pk, pk+1 = t

be all the intersection points of π1 and π2 in the order they appear on π1 and π2. Observe
that the intersection points must appear in the same order along the both paths, otherwise
there would exist three points on one of these paths which would violate the definition of a
self-approaching path. Let γi be the geodesic from pi to pi+1 in the area between the two
subpaths π1(pi, pi+1) and π2(pi, pi+1). Then,

I Lemma 13. The concatenation of the geodesics γ = γ0 ⊕ γ1 ⊕ · · · ⊕ γk is self-approaching.

Proof. By a similar argument as in Lemma 12, for any normal to γi at point p, its positive
half-plane either contains the convex hull of π1(p, t), or it contains the convex hull of π2(p, t).
In both cases, that implies that the subpath γ(p, t) lies in the positive half-plane of the
normal. Therefore, γ is self-approaching. J

The next theorem is a direct corollary of Lemma 13.

I Theorem 14. A shortest self-approaching s-t path is unique.

Figure 5 shows an example of a shortest self-approaching path inside a polygon. In the
following theorem we give its characterization.

I Theorem 15. A shortest self-approaching s-t path in a simple polygon consists of straight-
line segments, circular arcs, and circle involutes of some order.

SoCG 2017

21:8 Self-Approaching Paths in Simple Polygons

CH`

p`

q
u

ICH`

t`

Figure 6 Illustration to Theorem 15.

Proof. Let p1, p2, . . . , pk be the points of the shortest self-approaching s-t path π∗ in the
order from s to t, in which the path touches the boundary of P . Consider the last segment
π∗(pk, t). It is a straight-line segment. Otherwise it could be shortened in the following way.
Consider the last segment qt of a geodesic path from s to t, and extend it in the direction
from t to q until intersecting path π∗; denote the intersection point as q′. (Note, that it
exists, as the extension of qt beyond q until intersecting the boundary of P separates s from
t.) Then, π∗ can be shortened by replacing π∗(q′, t) by the segment q′t.

Now, suppose that all the segments π∗(pi, pi+1) consist of straight-line segments, circular
arcs, or involutes of a circle of some order for all i > ` for some `. We will show, that then,
the segment π∗(p`−1, p`) consists of straight-line segments, circular arcs, and/or involutes.

Denote CH` = CH (π∗(p`, t)). Let, w.l.o.g., π∗ touch the boundary of the polygon at
point p` on its left side (refer to Fig. 6). Then construct an involute ICH`

of the convex hull
CH` starting at point p` with the tangent point moving in clockwise direction around CH`
until the first intersection point of the involute with the boundary of P . The area D` on
the concave side of the involute that it cuts off of the polygon P is a “dead” region for any
self-approaching path that ends with the subpath π∗(p`,t) (red area in the Fig. 6). In other
words, for any point u ∈ D`, any path connecting u to p` will have a normal that intersects
CH`, and therefore the subpath π∗(p`, t). To show that, consider any piecewise-smooth
path πu from u to p`. Parameterize πu for some parameter τ ∈ [0, 1], where πu(0) = u and
πu(1) = p`. Consider the distance function du(τ) from a point moving along πu to the involute
ICH`

. This function will be piecewise smooth as both of the paths are piecewise-smooth. As
a point, moving along πu, has to eventually coincide with p`, there exists parameter τ ′ at
which the distance function is decreasing, and therefore, the angle between a tangent vector
to πu at the point u′ = πu(τ ′) and a tangent from u′ to the convex hull CH` is greater than
90◦. Therefore, a positive half-plane of the normal to πu at point u′ does not fully contain
the convex hull CH`, and therefore, the path πu ⊕ π∗(p`, t) is not self-approaching.

Now, consider a geodesic path from s to p` in the region P\D`, and consider its last
segment qp`, where q is the last point before p` that belongs to the boundary of P . This
segment can be a straight-line segment, or a straight-line segment qt` followed by a piece
of the involute ICH`

, where qt` is tangent to ICH`
. If segment qp` is not on π∗, then, by a

similar argument as above, we can show that π∗ can be shortened. Extend the segment
qt` beyond the point q until the intersection q′ with π∗. Then, π∗ can be shortened if the
subpath π∗(q′p`) is replaced by the segment qp` of the geodesic.

The boundary of the convex hull CH` consists of straight-line segments and pieces of
the subpath π∗(p`, t), which we assumed were straight segments, arcs, and circle involutes.
Therefore, the segment qp` of the geodesic path also consists of straight segments, circular
arcs, and circle involutes, possibly, of one order higher than the following subpath. Therefore,
the shortest self-approaching path consists of straight-line segments, circular arcs, and circle
involutes of some order, that is not higher than the number of bends on the path. J

P. Bose, I. Kostitsyna, and S. Langerman 21:9

p`

t

pi

t`
g p`

t

t`

pj

pi
g

q q

Figure 7 A subpath of a shortest self-approaching s-t path π∗ (in blue) between two consecutive
inflection points of the geodesic path γ (in purple) from s to t is geodesically convex. The last bend
q of π∗ before the vertex p` does not necessarily belong to γ.

In the last proof, the point q of the last segment qp` of the geodesic path from s to p` in
P\D` does not necessarily belong to the geodesic path from s to t. Consider an example in
Fig. 7. In it, several vertices of the geodesic path γ are in the dead region (on the concave
side of the involute). The tangent line from the last vertex (pi in the left example, and pj in
the right example) of γ before p` that is not in the dead region intersects the boundary of
the polygon. Angle ∠pigt`, where g is the intersection point of γ with the involute, is an
obtuse angle. This follows from the fact that the intersection angle between the straight-line
segment pip` and the tangent to the involute at the intersection point must not be greater
than 90◦, otherwise the point p` would not lie in the positive half-plane of the normal to the
involute at the intersection point. Then, the total turn angle of the self-approaching path
π∗ from pi to t` is less than 90◦, and thus, the subpath π∗(pi, t`) consists of straight-line
segments. Let the previous inflection point of γ before p` be pj , and the next inflection point
of γ on or after p` be pk. It follows then that the subpath π∗(pj , pk) is geodesically convex,
that is, the shortest path between any two points on π∗(pj , pk) lies completely on one (and
the same side) of the path. We obtain the following lemma.

I Lemma 16. A shortest self-approaching s-t path in a simple polygon P consists of geodesic-
ally convex paths between inflection points of the geodesic from s to t.

I Theorem 17. A shortest self-approaching s-t path in a simple polygon P with n vertices
consists of O(n2) segments. There exists a simple polygon P and two points s and t in it,
such that the shortest self-approaching from s to t has Ω(n2) segments.

4 Existence of a self-approaching path

In this section we consider the question of testing whether, for given points s and t in a
polygon P , they can be connected with a self-approaching path. In Theorem 15 we proved
that a shortest self-approaching path can consist of involutes of a circle of high order, and in
Section 2 we showed that such an involute is defined by a system of transcendental equations.
In [14] Laczkovich proved a strengthening of Richardson’s theorem, which states that in
general the statement ∃x : f(x) = 0 is undecidable, where f(x) is an expression generated by
the rational numbers, the variable x, the operations of addition, multiplication, composition,
and the sine function. Equations (1) describing the involutes are a special case of the class
of expressions in Laczkovich’s theorem. Nevertheless, it strongly suggests that an involute of
a circle of order higher than one cannot be computed.

Next, we show an algorithm to test whether there exists a self-approaching path connecting
two points s and t, and if so, to compute the shortest path, under the assumption that we
can solve Equations (1). Subsequently, it is possible to release this assumption, and modify
the algorithm to build an approximate solution, given that the shortest self-approaching path
from s-to-t exists and there is a small leeway around it free of the polygon boundary points.

SoCG 2017

21:10 Self-Approaching Paths in Simple Polygons

4.1 Shortest path algorithm
The proof of Theorem 15 is constructive. Assume that we can solve equations of the form
as Equations (1) for an involute of order k in time O(f(k)), and evaluate the formula of
the involute of order k for a given parameter θ in time O(g(k)). Then, we can decide if
two points s and t can be connected by a self-approaching path, and we can construct the
shortest path between the points. The outline of the algorithm is:

Starting at t, move backwards along a geodesic s-t path γ. Maintain the convex hull CH
of the final part of the shortest self-approaching path π∗ to the destination t built so far.
At every bend point p`:

Calculate the appropriate branch of an involute ICH of the convex hull CH . If ICH
intersects the opposite boundary of the polygon, thus separating s from t, report that
a self-approaching path from s to t does not exist and terminate the algorithm.
Otherwise, find a geodesic path γ` from the preceding inflection point of γ to p` in
P\ICH , and add its last segment qp` as a prefix to π∗.
Update the convex hull CH . Repeat for the new bend point q, until s is reached.
Report the found path π∗.

To obtain an algorithm with an optimal running time, there are a few considerations to
take into account when constructing the shortest path. First, instead of unnecessarily
constructing the whole involute ICH until the intersection point with the boundary of P , and
then discarding the part of it under the tangent line from q, its segments can be built one
by one as needed up to the tangent point. Second, to optimally test if ICH intersects the
opposite boundary of the polygon, we can maintain a shortest path tree that will allow us to
build funnels from the opposite sides of the polygon boundary. Third, it is not necessary to
construct the whole geodesic γ` to be able to compute its last segment qp`. Instead, we can
move backwards along γ, vertex by vertex, until we reach a point from which the tangent to
ICH can be constructed (possibly with adding new points along it).

Let the edges of P be oriented in counter-clockwise order. We shall call the two ends of
an edge e, the front-point, and the end-point.

Next, we present the details of the algorithm.

Initialization step. Compute the shortest path tree SPTs with root s [11], and preprocess
it to answer the lowest common ancestor query [4]. Compute the geodesic γ from s to t,
and store γ as a stack of vertices. Let the first and the last segments of γ be sp′ and p′′t
respectively. Extend sp′ beyond s until intersection with ∂P at some point a, and extend
p′′t beyond t until intersection with ∂P at some point b. This can be done in O(logn) time
with a ray-shooting query after linear-time preprocessing of the polygon [7]. Let L be the
chain of the boundary of P from b to a in counter-clockwise order, we shall call it the left
chain. Similarly, let the right chain R be the chain of the boundary of P from a to b in
counter-clockwise order. Initialize π∗ and CH with the last segment p′′t of γ, and pop the
point t from γ.

The main loop. Let p` be the point on top of the stack γ, before the beginning of the
current iteration of the loop. Let π∗ touch ∂P in point p` on its left side (the case when π∗
touches ∂P on its right side is equivalent). Let CH be the convex hull of the already built
subpath π∗(p`, t).

Pop p` from the top of the stack γ. Consider the previous segment pip` of γ (point pi is
currently on top of the stack γ).

P. Bose, I. Kostitsyna, and S. Langerman 21:11

π∗

CH

ICH

g

tg

p′

p`

pr
e′

pipj
qr

p`tr

Figure 8 Illustration for Case 2 of the algorithm.

Case 1. If the angle between p`pi and the tangent in the clockwise direction to CH at point
p` form an angle that is not less than 90◦, then pip` lies on the shortest self-approaching
path from s to t; append π∗(p`, t) with pip` in the front, and update the convex hull.

Case 2. If the angle between p`pi and the tangent in the clockwise direction to CH form an
angle that is less than 90◦, we need to calculate the involute ICH of the convex hull for
the tangent point moving clockwise around the boundary of CH starting at p`. We first
will determine until which point to calculate ICH .

First, we check whether the points on the geodesic path γ before p` lie in the dead region
defined by ICH . To do that without explicitly constructing ICH first, for each point g on top
of the stack γ, we construct a tangent line to CH which is leaving it on its right side (refer to
Fig. 8 (left)). Let tg be the tangent point on CH , and let tg ∈ Ig for some involute segment
Ig on the boundary of the convex hull. Let gtg intersect ICH at point p′. We know that
the length of the segment p′tg is equal to the length of the boundary of the convex hull CH
from tg to p`. Thus, to check whether g lies in the dead region we can compare the length of
the segment gtg to the length of the boundary of CH from tg to g. If g does lie in the dead
region, we simply remove it from the top of the stack γ, and proceed. If at some moment γ
becomes empty, i.e., the point s lies in the dead region, we report that a self-approaching
path from s to t does not exist and terminate the algorithm.

Now, let pi be the first point on γ before p` that does not lie in the dead region of ICH .
As in Fig. 7, the tangent segment from pi to the involute may intersect the right chain of the
boundary of P . Moreover, the right chain of the boundary of P may intersect ICH . To test
and account for that case, we do the following. Let ~τ = ~I ′CH (p`) be the tangent vector to
ICH at point p`. Run a ray shooting query from p` in the direction −~τ . Let it intersect an
edge e′ of R, and denote its front-point as pr (refer to Fig. 8 (right)). Then, find a vertex pj
in the shortest path tree SPTs that is the lowest common ancestor of p` and pr. Let γ` and
γr be the two shortest paths from pj to p` and to pr respectively. Paths γ` and γr form two
convex chains. If γr does not intersect ICH , then either a common tangent to γ` and ICH , or
a common tangent to γr and ICH , will belong to π∗. To be able to compute the common
tangents, we now explicitly construct ICH segment by segment until a certain point. Let
p′p′′ be the last segment of ICH constructed so far (with the curve orientation from p′ to p′′).
We stop the construction of ICH when the segment p′pj makes a left turn with respect to
the tangent vector −~τ , where ~τ = ~I ′CH (p′).

Whether γr intersects ICH can be found during the computation of the common tangent.
If it does, report that s and t cannot be connected with a self-approaching path and terminate
the algorithm.

Let q` and qr be the two tangent points on γ` and γr respectively of the common tangent
lines with ICH . One of the points q` and qr, or both, will be equal to pj .

SoCG 2017

21:12 Self-Approaching Paths in Simple Polygons

If pj = q` = qr, then append π∗ with pjtj ⊕ ICH (tj , p`), where tj is the tangent point on
ICH .
If pj = qr 6= q`, then append π∗ with γ(pj , q`)⊕ q`t`⊕ ICH (t`, p`), where t` is the tangent
point on ICH of the common tangent with γ`.
If pj = q` 6= qr, then append π∗ with γ(pj , qr)⊕ qrtr⊕ ICH (tr, p`), where tr is the tangent
point on ICH of the common tangent with γr.

Remove the points from γ until pj is on top of the stack, and update CH . Iterate over the
main loop until γ is empty, and return π∗.

In the full version of this paper [6] we discuss how to compute common tangents between
a chain of involute segments of order ≤ k of size n and a polygonal chain of size m in
O(log(m+n) + g(k) logm+ f(k)) time, and between two chains of involutes of sizes n and m
in O(log(m+ n) + g(k) logm+ f(k)) time. We also show how to test if two chains intersect
in O(log(m+ n) + (g(k) + f(k)) logm) time.

Maintaining CH . At the end of each iteration of the main algorithm, we need to update
the convex hull of the subpath of the shortest self-approaching path built so far. This can
involve finding a tangent from a point to a chain of involutes, or finding a common tangent
of two chains of involutes.

Moreover, we want to be able to optimally calculate the length of a boundary from the
current point p` to some point tg. For that, associate two values distcw(u) and distccw(u) to
each end point of a segment on CH that will contain the distance to p` (up to some constant
that will be equal for all the points) along the boundary in clockwise and counter-clockwise
direction, respectively. Moreover, for two points u and v on CH , the length of the boundary
between them can be calculated by distccw(v) − distccw(u), if the chain of CH between u
and v in counter-clockwise order does not contain p`. This fact will allow us to maintain the
values in the points unchanged when updating the convex hull.

At every iteration of the algorithm, the distance from some tangent point tg on an
involute segment p′p′′ to p` in the clockwise direction can be computed by formula s(tg) =
lengthI(tg, p′′)+distcw(p′′)−distcw(p`), where lengthI(tg, p′′) is the arc length of the involute
from point tg to p′′. Analogously, the distance from tg to p` in the counter-clockwise direction
can be computed by taking s(tg) = lengthI(tg, p′) + distccw(p′)− distccw(p`).

When updating the convex hull after extending the path π∗, we calculate the lengths of
the tangent segments and the new involute arcs, and set the values distcw(u) and distccw(u)
to the new points of CH relatively to the values of the points remaining on CH . This will
take f(k) time to compute the arc length per segment of an involute of order k.

Taking these considerations into account, we conclude with the following theorem:

I Theorem 18. The algorithm above constructs a shortest self-approaching path from s to t
or reports that it does not exist in O(K + n logK√

K
(g(
√
K) + f(

√
K))) running time, where K

is the size of the output, f(k) is the time it takes to compute an involute of order k, and g(k)
is the time it takes to evaluate an involute of order k at a given point.

5 Self-approaching polygon

A polygon is self-approaching, if for any two points there exists a self-approaching path
connecting them.

I Theorem 19. Polygon P is self-approaching if and only if for any disk D centered at any
point p ∈ P , the intersection D ∩ P has one connected component.

P. Bose, I. Kostitsyna, and S. Langerman 21:13

(a)

p0

pi
c1

c2

pi−1

hi

ρr
(b)

pi

pi−1ρr

(c)

pi

pi−1

pj

pj−1

hi

hi−1

p`

ρr

(d)

pi−1

pi

ρl

Figure 9 The illustration for Theorem 21.

Recall that a path is increasing-chord if it is self-approaching in both directions.

I Corollary 20. Any self-approaching polygon is also increasing-chord.

Next, we present an algorithm to test whether a given simple polygon P is self-approaching.
Observe that from the proof of Theorem 19 the following property holds: the polygon P is
self-approaching if and only if an area bounded between the two normals to e at its two end
points in the right half-plane of e is free of ∂P , for all edges e on the boundary of P directed
in counter-clockwise order. We call this area the half-strip of e. We will use this property to
test efficiently if the polygon is self-approaching.

Let P be given as a set of points p0, p1, . . . , pn−1 in counter-clockwise order around the
boundary. We will start at p0, move along the boundary in counter-clockwise order and
maintain the union of all the half-strips of the edges visited so far. More precisely, we will
maintain the left and the right sides, ρl and ρr, of the hour-glass shape that is the union of
the half-strips; ρl and ρr are convex polygonal chains (refer to Fig. 9). Store the segments of
ρl and ρr as two lists, the last segments in the lists are infinite rays.

At every iteration of the algorithm, perform the following steps. Let pi be the current
point of the polygon P . The chain ρr contains the right side of the union of all the half-strips
up to point pi−1. Consider the next boundary segment pi−1pi, and a perpendicular ray hi at
the point pi (refer to Fig. 9 (a)). To update the chain ρr, do the following: Traverse ρr, and
for every its segment cjcj+1,

if pi−1pi intersects cjcj+1, then report that P is not self-approaching and terminate;
if hi intersects cjcj+1, calculate the intersection point c′, and replace the first elements of
the list ρr up to cjcj+1 with two segments, pic′ and c′cj+1; repeat for the next point pi+1.

Traverse the boundary of polygon P twice in counter-clockwise order, and then repeat the
same algorithm traversing the boundary of P twice in clockwise order. If none of the segments
pi−1pi intersected a segment of ρr, report that P is self-approaching.

I Theorem 21. Given a simple polygon P with n vertices, the presented algorithm tests in
O(n) time if it is self-approaching.

SoCG 2017

21:14 Self-Approaching Paths in Simple Polygons

Proof. Consider the counter-clockwise traversal of the boundary of P . There are two cases
when the boundary segment pi−1pi intersects ρr. In the first case, pi−1pi intersects ρr, and
hi does not intersect it (refer to Fig. 9 (b)). Let us call it the intersection of type 1. In the
second case, pi−1pi intersects ρr after hi intersects it (refer to Fig. 9 (c)). Let us call it the
intersection of type 2. Moreover, the boundary segment pi−1pi may intersect ρl (refer to
Fig. 9 (d)). Let us call it the intersection of type 3.

When traversing the polygon counter-clockwise, the presented algorithm will recognize
the first type of the intersection, but not the second or third type. In case of the second type,
during one iteration, the algorithm stops traversing ρr after finding the intersection point of
hi, and thus will not find the intersection of the segment with ρr. And in case of the third
type, the algorithm does not check for intersection with ρl at all.

Nevertheless, we will prove, that by repeating the checks above twice and in two directions,
counter-clockwise from p0 to pn−1, and clockwise from pn−1 to p0, the algorithm will correctly
decide if the polygon is self-approaching or not.

Case 0. If the polygon is self-approaching, then none of the segments will intersect ρr or
ρl. The algorithm will traverse the polygon twice, then twice in clockwise direction, and
report that it is self-approaching.

Case 1. If only the first intersection type occurs, then the algorithm will traverse the
boundary of P until the first violation of the half-strip property, correctly report that the
polygon is not self-approaching, and terminate.

Case 2. Suppose that the second intersection type occurs. Consider the first segment pi−1pi,
such that both hi and pi−1pi intersect ρr. Let pi−1pi intersect the normal to some
preceding segment pj−1pj at the point pj . As the ray hi intersects ρr before pi−1pi
does, it also intersects the polygon boundary between the points pj and pi−1. And,
therefore, the ray hi−1 perpendicular to pi−1pi at the point pi−1 also intersects the
polygon boundary between the points pj and pi−1. Then, consider the behavior of the
algorithm during the backwards traversal. Let p` for j ≤ ` < i− 1 be the first point on
the left side of the ray hi−1. Then the segment p`+1, p` intersects hi−1, and either the
segment p`+1, p` intersects the left chain ρl or there was another segment before p`+1, p`
that intersected ρl. Note, that because the intersection of pi−1pi and ρr was the first
violation of the half-strip property in counter-clockwise order, the intersection of p`+1, p`
and ρl cannot be of the second type, otherwise pi−1 would already lie on the right side of
a normal to p`+1, p` at the point p`+1. Therefore, this intersection can only be of type
one, and the algorithm will recognize it during the backwards traversal.

Case 3. Suppose that the third intersection type occurs. Then, there will be a segment
pj+1, pj (where j ≥ i), for which the first or the second intersection type occurs when
traversing the polygon in the opposite direction, and thus either case 1 or case 2 applies.

Thus, we only need to explicitly check for the first intersection type. The running time of
the algorithm is O(n). At every iteration, the number of segments removed from the list ρr
is equal to half the number of tests for intersections the algorithm makes, and the number
of segments added back is at most 2. Therefore, the total number of segments that can be
removed from ρr over one traversal of the boundary is not more than 2n. Similarly, the total
number of segments that can be removed from ρl over one traversal of the boundary is not
more than 2n. Therefore, the algorithm performs O(n) intersection tests. J

Acknowledgements. This work was begun at the CMO-BIRS Workshop on Searching and
Routing in Discrete and Continuous Domains, October 11–16, 2015.

P. Bose, I. Kostitsyna, and S. Langerman 21:15

References
1 O. Aichholzer, F. Aurenhammer, C. Icking, R. Klein, E. Langetepe, and G. Rote. Gen-

eralized self-approaching curves. Discrete Applied Mathematics, 109(1-2):3–24, 2001. doi:
10.1016/S0166-218X(00)00233-X.

2 S. Alamdari, T.M. Chan, E. Grant, A. Lubiw, and V. Pathak. Self-approaching Graphs.
In 20th International Symposium on Graph Drawing (GD), pages 260–271, 2012. doi:
10.1007/978-3-642-36763-2_23.

3 E.M. Arkin, R. Connelly, and J. S. B. Mitchell. On monotone paths among obstacles with
applications to planning assemblies. In 5th Annual Symposium on Computational Geometry
(SCG), pages 334–343. ACM Press, 1989. doi:10.1145/73833.73870.

4 M.A. Bender and M. Farach-Colton. The LCA Problem Revisited. In Latin American
Symposium on Theoretical Informatics, pages 88–94, 2000. doi:10.1007/10719839_9.

5 M. Biro, J. Iwerks, I. Kostitsyna, and J. S. B. Mitchell. Beacon-Based Algorithms for
Geometric Routing. In 13th Algorithms and Data Structures Symposium (WADS), pages
158–169. Springer, 2013. doi:10.1007/978-3-642-40104-6_14.

6 P. Bose, I. Kostitsyna, and S. Langerman. Self-approaching paths in simple polygons.
Preprint, http://arxiv.org/abs/1703.06107, 2017.

7 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994. doi:10.1007/BF01377183.

8 H. Dehkordi, F. Frati, and J. Gudmundsson. Increasing-Chord Graphs On Point Sets. In
22nd International Symposium on Graph Drawing, pages 464–475. Springer, 2014. doi:
10.1007/978-3-662-45803-7_39.

9 L.E. Dubins. On Curves of Minimal Length with a Constraint on Average Curvature,
and with Prescribed Initial and Terminal Positions and Tangents. American Journal of
Mathematics, 79(3):497–516, 1957. doi:10.2307/2372560.

10 J. Gao and L. Guibas. Geometric algorithms for sensor networks. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
370(1958):27–51, 2012. doi:10.1098/rsta.2011.0215.

11 L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2(1-4):209–233, 1987. doi:10.1007/BF01840360.

12 C. Icking and R. Klein. Searching for the kernel of a polygon – a competitive strategy. In
11th Annual Symposium on Computational Geometry (SCG), pages 258–266. ACM Press,
1995. doi:10.1145/220279.220307.

13 C. Icking, R. Klein, and E. Langetepe. Self-approaching curves. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 125(3):441–453, 1999. doi:10.1017/
S0305004198003016.

14 M. Laczkovich. The removal of π from some undecidable problems involving elementary
functions. Proceedings of the American Mathematical Society, 131(07):2235–2241, 2003.
doi:10.1090/S0002-9939-02-06753-9.

15 J. S. B. Mitchell, C. Piatko, and E.M. Arkin. Computing a shortest k-link path in a polygon.
In 33rd Annual Symposium on Foundations of Computer Science, pages 573–582. IEEE,
1992. doi:10.1109/SFCS.1992.267794.

16 M. Nöllenburg, R. Prutkin, and I. Rutter. On self-approaching and increasing-chord draw-
ings of 3-connected planar graphs. Journal of Computational Geometry, 7(1):47–69, 2016.
doi:10.20382/jocg.v7i1a3.

17 G. Rote. Curves with increasing chords. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 115(01):1, 1994. doi:10.1017/S0305004100071875.

SoCG 2017

http://dx.doi.org/10.1016/S0166-218X(00)00233-X
http://dx.doi.org/10.1016/S0166-218X(00)00233-X
http://dx.doi.org/10.1007/978-3-642-36763-2_23
http://dx.doi.org/10.1007/978-3-642-36763-2_23
http://dx.doi.org/10.1145/73833.73870
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/978-3-642-40104-6_14
http://arxiv.org/abs/1703.06107
http://dx.doi.org/10.1007/BF01377183
http://dx.doi.org/10.1007/978-3-662-45803-7_39
http://dx.doi.org/10.1007/978-3-662-45803-7_39
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1098/rsta.2011.0215
http://dx.doi.org/10.1007/BF01840360
http://dx.doi.org/10.1145/220279.220307
http://dx.doi.org/10.1017/S0305004198003016
http://dx.doi.org/10.1017/S0305004198003016
http://dx.doi.org/10.1090/S0002-9939-02-06753-9
http://dx.doi.org/10.1109/SFCS.1992.267794
http://dx.doi.org/10.20382/jocg.v7i1a3
http://dx.doi.org/10.1017/S0305004100071875

Maximum Volume Subset Selection for Anchored
Boxes
Karl Bringmann1, Sergio Cabello∗2, and Michael T. M. Emmerich3

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

2 Department of Mathematics, IMFM, Ljubljana, Slovenia; and
Department of Mathematics, FMF, University of Ljubljana, Ljubljana,
Slovenia

3 Leiden Institute of Advanced Computer Science (LIACS), Leiden University,
Leiden, The Netherlands

Abstract
Let B be a set of n axis-parallel boxes in Rd such that each box has a corner at the origin and
the other corner in the positive quadrant of Rd, and let k be a positive integer. We study the
problem of selecting k boxes in B that maximize the volume of the union of the selected boxes.
The research is motivated by applications in skyline queries for databases and in multicriteria
optimization, where the problem is known as the hypervolume subset selection problem. It is
known that the problem can be solved in polynomial time in the plane, while the best known
running time in any dimension d ≥ 3 is Ω

((
n
k

))
. We show that:

The problem is NP-hard already in 3 dimensions.
In 3 dimensions, we break the bound Ω

((
n
k

))
, by providing an nO(

√
k) algorithm.

For any constant dimension d, we give an efficient polynomial-time approximation scheme.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases geometric optimization, subset selection, hypervolume indicator, Klee’s
measure problem, boxes, NP-hardness, PTAS

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.22

1 Introduction

An anchored box is an orthogonal range of the form box(p) := [0, p1]× . . .× [0, pd] ⊂ Rd≥0,
spanned by the point p ∈ Rd>0. This paper is concerned with the problem Volume Selection:
Given a set P of n points in Rd>0, select k points in P maximizing the volume of the union
of their anchored boxes. That is, we want to compute

VolSel(P, k) := max
S⊆P, |S|=k

vol
(⋃
p∈S

box(p)
)
,

as well as a set S∗ ⊆ P of size k realizing this value. Here, vol denotes the usual volume.

Motivation

This geometric problem is of key importance in the context of multicriteria optimization and
decision analysis, where it is known as the hypervolume subset selection problem (HSSP)

∗ Supported by the Slovenian Research Agency, program P1-0297 and project L7-5459.

© Karl Bringmann, Sergio Cabello, and Michael T.M. Emmerich;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Maximum Volume Subset Selection for Anchored Boxes

[2, 3, 4, 24, 12, 13]. In this context, the points in P correspond to solutions of an optimization
problem with d objectives, and the goal is to find a small subset of P that “represents”
the set P well. The quality of a representative subset S ⊆ P is measured by the volume
of the union of the anchored boxes spanned by points in S; this is also known as the
hypervolume indicator [34]. Note that with this quality indicator, finding the optimal size-k
representation is equivalent to our problem VolSel(P, k). In applications, such bounded-size
representations are required in archivers for non-dominated sets [23] and for multicriteria
optimization algorithms and heuristics [3, 10, 7].1 Besides, the problem has recently received
attention in the context of skyline operators in databases [17].

In 2 dimensions, the problem can be solved in polynomial time [2, 13, 24], which is used
in applications such as analyzing benchmark functions [2] and efficient postprocessing of
multiobjective algorithms [12]. A natural question is whether efficient algorithms also exist in
dimension d ≥ 3, and thus whether these applications can be pushed beyond two objectives.

In this paper, we answer this question negatively, by proving that Volume Selection
is NP-hard already in 3 dimensions. We then consider the question whether the previous
Ω(
(
n
k

)
) bound can be improved, which we answer affirmatively in 3 dimension. Finally, in

any constant dimension, we improve the best-known (1− 1/e)-approximation to an efficient
polynomial-time approximation scheme (EPTAS). See Section 1.2 for details.

1.1 Further Related Work
Klee’s Measure Problem

To compute the volume of the union of n (not necessarily anchored) axis-aligned boxes in Rd
is known as Klee’s measure problem. The fastest known algorithm takes time2 O(nd/2), which
can be improved to O(nd/3polylog(n)) if all boxes are cubes [15]. By a simple reduction [8],
the same running time as on cubes can be obtained on anchored boxes, which can be improved
to O(n logn) for d ≤ 3 [6]. These results are relevant to this paper because Klee’s measure
problem on anchored boxes (spanned by the points in P) is a special case of Volume
Selection (by calling VolSel(P, |P |)).

Chan [14] gave a reduction from k-Clique to Klee’s measure problem in 2k dimensions.
This proves NP-hardness of Klee’s measure problem when d is part of the input (and thus
d can be as large as n). Moreover, since k-Clique has no f(k) · no(k) algorithm under the
Exponential Time Hypothesis [16], Klee’s measure problem has no f(d) · no(d) algorithm
under the same assumption. The same hardness results also hold for Klee’s measure problem
on anchored boxes, by a reduction in [8] (NP-hardness was first proven in [11]).

Finally, we mention that Klee’s measure problem has a very efficient randomized (1± ε)-
approximation algorithm in time O(n log(1/δ)/ε2) with error probability δ [9].

Known Results for Volume Selection

As mentioned above, 2-dimensional Volume Selection can be solved in polynomial time;
the initial O(kn2) algorithm [2] was later improved to O((n−k)k+n logn) [13, 24]. In higher
dimensions, by enumerating all size-k subsets and solving an instance of Klee’s measure
problem on anchored boxes for each one, there is an O

((
n
k

)
kd/3polylog(k)

)
algorithm. For

1 We remark that in these applications the anchor point is often not the origin, however, by a simple
translation we can move our anchor point from (0, . . . , 0) to any other point in Rd.

2 In O-notation, we always assume d to be a constant, and log(x) is to be understood as max{1, log(x)}.

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:3

small n − k, this can be improved to O(nd/2 logn + nn−k) [10]. Volume Selection is
NP-hard when d is part of the input, since the same holds already for Klee’s measure problem
on anchored boxes. However, this does not explain the exponential dependence on k for
constant d.

Since the volume of the union of boxes is a submodular function (see, e.g., [31]), the
greedy algorithm for submodular function maximization [27] yields a (1−1/e)-approximation
of VolSel(P, k). This algorithm solves O(nk) instances of Klee’s measure problem on at
most k anchored boxes, and thus runs in time O(nkd/3+1polylog(k)). Using [9], this running
time improves to O(nk2 log(1/δ)/ε2), at the cost of decreasing the approximation ratio to
1− 1/e− ε and introducing an error probability δ. See [20] for related results in 3 dimensions.

A problem closely related to Volume Selection is Convex Hull Subset Selection:
Given n points in Rd, select k points that maximize the volume of their convex hull. For
this problem, NP-hardness was recently announced in the case d = 3 [28].

1.2 Our Results
In this paper we push forward the understanding of Volume Selection. We prove that
Volume Selection is NP-hard already for d = 3 (Section 3). Previously, NP-hardness
was only known when d is part of the input and thus can be as large as n. Moreover, this
establishes Volume Selection as another example for problems that can be solved in
polynomial time in the plane but are NP-hard in three or more dimensions (see also [5, 26]).

In the remainder, we focus on the regime where d ≥ 3 is a constant and k � n. All known
algorithms (explicitly or implicitly) enumerate all size-k subsets of the input set P and thus
take time Ω

((
n
k

))
= nΩ(k). In 3 dimensions, we break this time bound by providing an nO(

√
k)

algorithm (Section 4). To this end, we project the 3-dimensional Volume Selection to a
2-dimensional problem and then use planar separator techniques.

Finally, in Section 5 we design an EPTAS for Volume Selection. More precisely, we
give a (1− ε)-approximation algorithm running in time O((n/εd)(logn+ k+ 2O(ε−2 log 1/ε)d)),
for any constant dimension d. Note that the “combinatorial explosion” is restricted to d
and ε; for any constant d, ε the algorithm runs in time O(n(k + logn)). This improves the
previously best-known (1− 1/e)-approximation, even in terms of running time.

2 Preliminaries

All boxes considered in the paper are axis-parallel and anchored at the origin. For points
p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ Rd, we say that p dominates q if pi ≥ qi for all 1 ≤ i ≤ d.
For p = (p1, . . . , pd) ∈ Rd>0, we let box(p) := [0, p1]× . . .× [0, pd]. Note that box(p) is the
set of all points q ∈ Rd≥0 that are dominated by p. A point set P is a set of points in Rd>0.
We denote the union

⋃
p∈P box(p) by U(P). The usual Euclidean volume is denoted by vol.

With this notation, we set

µ(P) := vol(U(P)) = vol
(⋃
p∈P

box(p)
)

= vol
(⋃
p∈P

[0, p1]× . . .× [0, pd]
)
.

We study Volume Selection: Given a point set P of size n and 0 ≤ k ≤ n, compute

VolSel(P, k) := max
S⊆P, |S|=k

µ(S).

Note that we can relax the requirement |S| = k to |S| ≤ k without changing this value.

SoCG 2017

22:4 Maximum Volume Subset Selection for Anchored Boxes

Figure 1 Left: triangular grid Γ. Right: choosing the parity of paths.

3 Hardness in 3 dimensions

We consider the following decision variant of 3-dimensional Volume Selection: Given a
triple (P, k, V), where P is a set of points in R3

>0, k is a positive integer and V is a positive
real value, is there a subset Q ⊆ P of k points such that µ(Q) ≥ V ?

We are going to show that the problem is NP-complete. First, we show that an interme-
diate problem about selecting a large independent set in a given induced subgraph of the
triangular grid is NP-hard. Then we argue that this problem can be embedded using boxes
whose points lie in two parallel planes. One plane is used to define the triangular-grid-like
structure and the other is used to encode the subset of vertices that describe the induced
subgraph of the grid.

3.1 Triangular grid
Let Γ be the infinite graph with vertex set and edge set (see Figure 1):

V (Γ) =
{

(i+ j · 1/2, j ·
√

3/2) | i, j ∈ N
}
,

E(Γ) = {ab | a, b ∈ V (Γ), the Euclidean distance between a and b is exactly 1} .

We use the problem Independent Set on Induced Triangular Grid: Given a pair
(A, `), where A is a subset of V (Γ) and ` is a positive integer, is there a subset B ⊆ A of `
vertices such that no two vertices of B are connected by an edge of E(Γ)?

I Lemma 3.1. Independent Set on Induced Triangular Grid is NP-complete.

Proof Sketch. Garey and Johnson [19] show that the problem Vertex Cover is NP-
complete for planar graphs of degree at most 3, which implies that Independent Set is
NP-complete for planar graphs of degree at most 3.

Given a planar graph G of degree at most 3, we construct an orthogonal drawing of G on
a square grid of polynomial size [29, 30] and transform it into a drawing of G on Γ. Rescaling
and rerouting, we get a graph H that is an induced subgraph of Γ, and a subdivision of G
where each edge of G is path in H with an even number of interior vertices. See Figure 1,
right, to see how to choose the parity of the path. If α(G) is the size of the largest independent
set in G, and each edge uv of G is represented by a path with 2kuv internal vertices, then
α(H) = α(G) +

∑
uv∈E(G) kuv. Indeed, we can obtain H from G by repeatedly replacing an

edge by a 3-edge path, and any such replacement increases the size of the largest independent
set by exactly 1. J

3.2 The point set
Let m ≥ 3 be an arbitrary integer and consider the point set Pm defined by Pm = {(x, y, z) ∈
N3 | x + y + z = m}, see Figure 2. Standard induction shows that the set Pm has
(m− 1)(m− 2)/2 points and that µ(Pm) = m(m− 1)(m− 2)/6.

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:5

ε
ε

ε
ε

εε

Figure 2 Left: the point set Pm and the boxes box(p), with p ∈ Pm. Right: the point q = p+ ∆ε

and the set diff(q).

Consider the real number ε = 1/4m2, and define the vector ∆ε = (ε, ε, ε). Note that ε is much
smaller than 1. For each point p ∈ Pm−1, consider the point p+∆ε, see Figure 2, right. Let us
define the set Qm = {p+ ∆ε | p ∈ Pm−1}. It is clear that Qm has |Pm−1| = (m−2)(m−3)/2
points, for m ≥ 3. The points of Qm lie on the plane x+ y + z = m− 1 + 3ε. For each point
q of Qm define

diff(q) = U
(
Pm ∪ {q}

)
\ U
(
Pm
)

=
(⋃
p∈Pm∪{q}

box(p)
)
\
(⋃
p∈Pm

box(p)
)
.

Note that diff(q) is the union of 3 boxes of size ε× ε× 1 and a cube of size ε× ε× ε, see
Figure 2, right. The sets and the parameter ε are selected to have the following properties.

I Lemma 3.2. The following holds.
If Q′ ⊆ Qm and the sets diff(q), for all q ∈ Q′, are pairwise disjoint, then µ(Pm ∪Q′) =
µ(Pm) + |Q′| · (3ε2 + ε3).
If Q′ ⊆ Qm and Q′ contains two points q0 and q1 such that diff(q0) and diff(q1)
intersect, then µ(Pm ∪Q′) < µ(Pm) + |Q′| · (3ε2 + ε3).
If P ′ is a subset of Pm such that Pm \ P ′ is non-empty, then µ(P ′ ∪Qm) < µ(Pm).

3.3 The reduction
We can define naturally a graph Tm on the set Qm by using the intersection of the sets
diff(·). The vertex set of Tm is Qm, and two points q, q′ ∈ Qm define an edge qq′ of Tm if
and only if diff(q) and diff(q′) intersect, see Figure 3. Simple geometry shows that Tm is
isomorphic to a part of the triangular grid Γ, up to scaling. Thus, choosing m large enough,
we can get an arbitrarily large portion of the triangular grid Γ. Note that a subset of vertices
Q′ ⊆ Qm is independent in Tm if and only if the sets {diff(q) | q ∈ Q′} are pairwise disjoint.

I Theorem 3.3. The problem Volume Selection is NP-complete in 3 dimensions.

Proof. Consider an instance (A, `) to Independent Set on Induced Triangular Grid,
where A is a subset of the vertices of the triangular grid Γ and ` is an integer. Take m
large enough so that Tm is isomorphic to an induced subgraph of Γ that contains A. For
each vertex v of Tm let ψΓ(v) be the corresponding vertex of Γ. For each subset B of A, let
Qm(B) be the subset of Tm that corresponds to B, that is, Qm(B) = {q ∈ Qm | ψΓ(q) ∈ B}.

Consider the set of points P = Pm ∪Qm(A), the parameter k = (m− 1)(m− 2)/2 + `,
and the value V = m(m−1)(m−2)

6 + ` · (3ε2 + ε3). Then we can show that (A, `) is a yes

SoCG 2017

22:6 Maximum Volume Subset Selection for Anchored Boxes

Figure 3 The graph Tm for m = 9.

instance for Independent Set on Induced Triangular Grid if and only if (P, k, V) is
a yes instance for Volume Selection.

If (A, `) is a yes instance for Independent Set on Induced Triangular Grid, there
is a subset B ⊆ A of ` independent vertices in Γ. This implies that Qm(B) is an independent
set in Tm, that is, the sets {diff(q) | q ∈ Qm(B)} are pairwise disjoint. Lemma 3.2 then
implies that

µ(Pm ∪Qm(B)) = µ(Pm) + |B| · (3ε2 + ε3) = m(m− 1)(m− 2)
6 + ` · (3ε2 + ε3) = V.

Therefore Pm ∪Qm(B) is a subset of P with |Pm|+ |B| = (m− 1)(m− 2)/2 + ` = k points
such that µ(Pm ∪Qm(B)) = V and thus (P, k, V) is a yes instance for Volume Selection.

Assume now that (P, k, V) is a yes instance for Volume Selection. This means that P
contains a subset Q of k points such that

µ(Q) ≥ V = m(m− 1)(m− 2)
6 + ` · (3ε2 + ε3) = µ(Pm) + ` · (3ε2 + ε3) > µ(Pm).

Because of Lemma 3.2, it must be that Pm is contained in Q, as otherwise we would
have µ(Q) < µ(Pm). Since we have Pm ⊂ Q and P = Pm ∪ Qm(A), we obtain that Q is
Pm ∪Qm(B) for some B ⊆ A. Moreover, |B| = k − |Pm| = `. By Lemma 3.2, if Qm(B) is
not an independent set in Tm, we have

µ(Q) = µ(Pm ∪Qm(B)) < µ(Pm) + `(3ε2 + ε) = V,

which contradicts the assumption that µ(Q) ≥ V . Thus it must be that Qm(B) is an
independent set in Tm. It follows that B ⊂ A has size ` and is an independent set in Γ, and
thus (A, `) is a yes instance for Independent Set on Induced Triangular Grid. J

4 Exact Algorithm in 3 Dimensions

In this section we design an algorithm to solve Volume Selection in 3 dimensions in time
nO(
√
k). The main insight is that, for an optimal solution Q∗, the boundary of U(Q∗) is a

planar graph with O(k) vertices, and therefore has a balanced separator with O(
√
k) vertices.

We would like to guess the separator, break the problem into two subproblems, and solve
each of them recursively. This basic idea leads to a few technical challenges to take care of.

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:7

vq4

f(q4, Q)

f(q2, Q)

vq2

Figure 4 The graphs G(Q) (left) and T (Q) (right).

One obstacle is that subproblems should be really independent because we do not want to
double count some covered parts. Essentially, a separator in the graph-theory sense does
not imply independent subproblems in our context. Another technicality is that some of the
subproblems that we encounter recursively cannot be solved optimally; we can only get a
lower bound to the optimal value. However, for the subproblems that define the optimal
solution at the higher level of the recursion, we do compute an optimal solution.

Let P be a set of n points in the positive quadrant of R3. Through our discussion, we
will assume that P is fixed and thus drop the dependency on P and n from the notation. We
can assume that no point of P is dominated by another point of P . Using an infinitesimal
perturbation of the points, we can assume that all points have all coordinates different. Let
M be the largest x- or y-coordinate in P , thus M = max{px, py | p ∈ P}. We define σ to be
the square in R2 defined by [−1,M + 1]× [−1,M + 1]. It has side length M + 2.

For each subset Q of P , consider the projection of U(Q) onto the xy-plane. This defines a
plane graph, which we denote by G(Q); see Figure 4, left. We consider G(Q) as a geometric,
embedded graph where each vertex is a point and each edge is a horizontal or vertical
straight-line segment on the xy-plane. The projection of each point q ∈ Q defines a vertex,
which we denote by vq. Each vertex q ∈ Q defines a bounded face f(q,Q) in G(Q). This is the
projection of the face on the boundary of U(Q) contained in the plane {(x, y, z) ∈ R3 | z = qz}.
In fact, each bounded face of G(Q) is f(q,Q) for some q ∈ Q. We triangulate each bounded
face f(q,Q) of G(Q) canonically, see Figure 4 right. We add all possible edges from the top
rightmost vertex vq, then all possible edges from the bottom leftmost vertex, and finally
all edges from the left bottom-most vertex. This is the canonical triangulation of the face
f(q,Q), and we apply it to each bounded face of G(Q). The outer face of G(Q) may also have
many vertices. We place on top the square σ, with vertices {−1,M + 1}2, and triangulate in
some systematic way. Let T (Q) be the resulting geometric, embedded graph, see Figure 4,
right. The graph T (Q) is a triangulation of the square σ with internal vertices. It is easy to
see that G(Q) and T (Q) have O(|Q|) vertices and edges.

A polygonal domain is a subset of the plane defined by a polygon where we remove the
interior of some polygons, which form holes. A polygonal domain D is Q-compliant if its
boundary is contained in the edge set of T (Q). Note that a Q-compliant polygonal domain
has O(|Q|) edges because the graph T (Q) has O(|Q|) edges.

SoCG 2017

22:8 Maximum Volume Subset Selection for Anchored Boxes

We are going to use dynamic programming based on planar separators of T (Q∗) for an
optimal solution Q∗. A valid tuple to define a subproblem is a tuple (S,D, `), where S ⊂ P ,
D is an S-compliant polygonal domain, and ` is a positive integer. The tuple (S,D, `) models
a subproblem where the points of S are already selected to be part of the feasible solution,
D is a S-compliant domain so that we only care about the volume inside the cylinder D×R,
and we can still select ` points from P ∩ (D×R). We have two different values associated to
each valid tuple, depending on which subsets Q of vertices from P ∩D can be selected:

Φfree(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `}.
Φcomp(S,D, `) = max{vol(U(S ∪Q) ∩ (D × R)) | Q ⊂ P ∩ (D × R), |Q| ≤ `,

D is (S ∪Q)-compliant}.

Obviously, for all valid tuples (S,D, `) we have Φcomp(S,D, `) ≤ Φfree(S,D, `). On the
other hand, we are interested in the valid tuple (∅, σ, k), for which we have Φfree(∅, σ, k) =
Φcomp(∅, σ, k).

We would like to get a recursive formula for Φfree(S,D, `) or Φcomp(S,D, `) using planar
separators. More precisely, we would like to use a separator in T (S ∪ Q∗) for an optimal
solution, and then branch on all possible such separators. However, none of the two definitions
seem good enough for this. If we would use Φfree(S,D, `), then we divide into domains that
may have too much freedom and the interaction between subproblems gets complex. If we
would use Φcomp(S,D, `), then merging the problems becomes an issue. Thus, we take a
mixed route where we argue that, for the valid tuples that are relevant for finding the optimal
solution, we actually have Φfree = Φcomp.

A valid partition π of (S,D, `) is a collection of valid tuples π = {(S1, D1, `1), . . . , (St, Dt, `t)}
such that

S1 = · · · = St = S ∪ S0 for some set S0 ⊂ P ∩D;
|S0| = O

(√
|S|+ `

)
;

the domains D1,. . . , Dt have pairwise disjoint interiors and D =
⋃
iDi;

` = |S0|+
∑
i `i; and

`i ≤ 2`/3 for each i = 1, . . . , t.
Let Π(S,D, `) be the family of valid partitions for the tuple (S,D, `). We remark that
different valid partitions may have different cardinality.

I Lemma 4.1. For each valid tuple (S,D, `) we have

Φfree(S,D, `) ≥ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φfree(S′, D′, `′),

Φcomp(S,D, `) ≤ max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Φcomp(S′, D′, `′).

Proof Sketch. For the first inequality, we show that, for each π ∈ Π(S,D, `), joining solutions
to the subproblems Φfree(·) defined by {(S′, D′, `′) | (S′, D′, `′) ∈ π} gives a feasible solution
for the problem Φfree(S,D, `).

For the second inequality, we consider an optimal solution Q∗ ⊆ P ∩D with at most `
points for the problem Φcomp(S,D, `). The triangulation T (S ∪Q∗) is a 3-connected planar
graph and the boundary of D is contained in T (S ∪Q∗) because D is (S ∪Q∗)-compliant.
We now use the cycle-separator theorem of Miller [25] to split the vertices of Q∗: There
is a cycle γ in T (S ∪ Q∗) of length O(

√
|S|+ `) such that the interior of γ has at most

2|Q∗|/3 vertices of Q∗ and the exterior of γ has at most 2|Q∗|/3 vertices of Q∗. Using this

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:9

cycle separator we can build a valid partition πγ ∈ Π(S,D, `) such that Q∗ ∩D′ is a feasible
solution to each (S′, D′, `′) ∈ πγ . For the correctness argument, we use an easy monotonicity
property of being Q-compliant, which we skip in this short version. We then have

Φcomp(S,D, `) ≤
∑

(S′,D′,`′)∈πγ

Φcomp(S′, D′, `′),

and the second inequality follows. J

Our dynamic programming algorithm closely follows the inequalities of Lemma 4.1.
Specifically, we define for each valid tuple (S,D, `) the value

Ψcomp(S,D, `) =

Φcomp(S,D, `) if ` ≤ O(

√
k);

max
π∈Π(S,D,`)

∑
(S′,D′,`′)∈π

Ψcomp(S′, D′, `′), otherwise.

Standard induction on ` using Lemma 4.1 implies the following property.

I Lemma 4.2. For each valid tuple (S,D, `) we have

Φcomp(S,D, `) ≤ Ψcomp(S,D, `) ≤ Φfree(S,D, `).

Since we know that Φfree(∅, σ, k) = Φcomp(∅, σ, k), Lemma 4.2 implies that Ψcomp(∅, σ, k) =
Φfree(∅, σ, k). Hence, it suffices to compute Ψcomp(∅, σ, k) using its recursive definition. In
the remainder, we bound the running time of this algorithm.

I Theorem 4.3. In 3 dimensions, Volume Selection can be solved in time nO(
√
k).

Proof Sketch. We compute Ψcomp(∅, σ, k) using its recursive definition. The base cases,
where ` = O(

√
k), can be solved in nO(`) = nO(

√
k) time using simple enumeration of all

size-` subsets.
Starting with (S1, D1, `1) = (∅, σ, k), consider a sequence of valid tuples (S1, D1, `1),

(S2, D2, `2), . . . such that, for i ≥ 2, the tuple (Si, Di, `i) appears in some valid partition
of (Si−1, Di−1, `i−1). By the properties of valid partitions, we have `i ≤ 2`i−1/3 and
|Si−1| ≤ |Si| ≤ |Si−1| + O(

√
|Si|+ `i−1). It follows that the sequence `1, `2, . . . decreases

geometrically, from which one can deduce that |Si| = O(
√
k) for all i. This means that there

are nO(
√
k) valid tuples (S,D, `) that appear in the recursive calls. The same bound can be

shown for the number of valid partitions in each step. J

We only described an algorithm that computes VolSel(P, k), i.e., the maximal volume
realized by any size-k subset of P . It is easy to augment the algorithm with appropriate
bookkeeping to also compute an actual optimal subset.

5 Efficient Polynomial-time Approximation Scheme

In this section we design an approximation algorithm for Volume Selection.

I Theorem 5.1. Given a point set P of size n in Rd>0, 0 ≤ k ≤ n, and 0 < ε ≤ 1/2, we can
compute a (1±ε)-approximation of VolSel(P, k) in time O(n·ε−d(logn+k+2O(ε−2 log 1/ε)d)).
We can also compute a set S ⊆ P of size at most k such that µ(S) is a (1− ε)-approximation
of VolSel(P, k) in the same time.

SoCG 2017

22:10 Maximum Volume Subset Selection for Anchored Boxes

The approach is based on the shifting technique of Hochbaum and Maass [21]. However,
there are some non-standard aspects in our application. It is impossible to break the problem
into independent subproblems because all the anchored boxes intersect around the origin. We
instead break the input into subproblems that are almost independent. To achieve this, we
use an exponential grid, instead of the usual regular grid with equal-size cells. Alternatively,
this could be interpreted as using a regular grid in a log-log plot of the input points.

Throughout this section we need two numbers λ, τ ≈ d/ε. Specifically, we define τ as the
smallest integer larger than d/ε, and λ as the smallest power of (1− ε)−1/d larger than d/ε.
We consider a partitioning of the positive quadrant Rd>0 into regions of the form

R(x̄) :=
d∏
i=1

[λxi , λxi+1) for x̄ = (x1, . . . , xd) ∈ Zd.

On top of this partitioning we consider a grid, where each grid cell contains (τ − 1)d regions
and the grid boundaries are thick, i.e., two grid cells do not touch but have a region in
between. More precisely, for any offset ¯̀= (`1, . . . , `d) ∈ Zd, we define the grid cells

C¯̀(ȳ) :=
d∏
i=1

[λτ ·yi+`i+1, λτ(yi+1)+`i) for ȳ = (y1, . . . , yd) ∈ Zd.

Note that each grid cell indeed consists of (τ − 1)d regions, and the space not contained in
any grid cell (i.e., the grid boundaries) consists of all regions R(x̄) with xi ≡ `i (mod τ) for
some 1 ≤ i ≤ d.

5.1 Description of the algorithm
Our approximation algorithm works as follows.
(1) Iterate over all grid offsets ¯̀∈ [τ]d. This is the key step of the shifting technique [21].
(2) For any choice of the offset ¯̀, remove all points not contained in any grid cell, i.e., remove

points contained in the thick grid boundaries. Call the remaining points P ′ ⊆ P .
(3) The grid cells now induce a partitioning of P ′ into sets P ′1, . . . , P ′m, where each P ′i is the

intersection of P ′ with a grid cell Ci (with Ci = C¯̀(ȳ(i)) for some ȳ(i) ∈ Zd). Note that
these grid cell subproblems P ′1, . . . , P ′m are not independent, since any two boxes have
a common intersection near the origin, no matter how different their coordinates are.
However, as shown below treating P ′1, . . . , P ′m as independent subproblems still yields an
approximation.

(4) We discretize by rounding down all coordinates of all points in P ′1, . . . , P ′m to powers of3
(1 − ε)1/d. We can remove duplicate points that are rounded to the same coordinates.
This yields sets P̃1, . . . , P̃m. Note that within each grid cell in any dimension the largest
and smallest coordinate differ by a factor of at most λτ−1. Hence, there are at most
log(1−ε)−1/d(λτ−1) = O(ε−2 log 1/ε) different rounded coordinates in each dimension, and
thus the total number of points in each P̃i is O(ε−2 log 1/ε)d.

(5) Since there are only few points in each P̃i, we can precompute all Volume Selection
solutions on each set P̃i, i.e., for any 1 ≤ i ≤ m and any 0 ≤ k′ ≤ |P̃i| we precompute
VolSel(P̃i, k′). We do so by exhaustively enumerating all 2|P̃i| subsets S of P̃i, and for
each one computing µ(S) by inclusion-exclusion in time O(2|S|) (see, e.g., [32, 33]). This
runs in total time O(m · 2O(ε−2 log 1/ε)d) = O(n · 2O(ε−2 log 1/ε)d).

3 Here we use that λ is a power of (1− ε)−1/d, to ensure that rounded points are contained in the same
cells as their originals.

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:11

(6) It remains to split the at most k points that we want to choose over the subproblems
P̃1, . . . , P̃m. As we treat these subproblems independently, we compute

V (¯̀) := max
k1+...+km≤k

m∑
i=1

VolSel(P̃i, ki).

Note that if the subproblems would be independent, then this expression would yield
the exact result. We argue below that the subproblems are sufficiently close to being
independent that this expression yields a (1− ε)-approximation of VolSel(

⋃m
i=1 P̃i, k).

Observe that the expression V (¯̀) can be computed efficiently by dynamic programming,
where we compute for each i and k′ the following value:

T [i, k′] = max
k1+...+ki≤k′

i∑
i′=1

VolSel(P̃i′ , ki′).

The following rule computes this table:

T [i, k′] = max
0≤κ≤min{k′,|P̃i|}

(
VolSel(P̃i, κ) + T [i− 1, k′ − κ]

)
.

(7) Finally, we optimize over the offset ¯̀ by returning the maximal V (¯̀).

In pseudocode, this yields the following procedure:
(1) Iterate over all offsets ¯̀= (`1, . . . , `d) ∈ [τ]d:

(2) P ′ := P . Delete any p from P ′ that is not contained in any grid cell C¯̀(ȳ).
(3) Partition P ′ into P ′1, . . . , P ′m, where P ′i = P ′ ∩ Ci for some grid cell Ci.
(4) Round down all coordinates to powers of (1− ε)1/d and remove duplicates, obtaining
P̃1, . . . , P̃m.

(5) Compute H[i, k′] := VolSel(P̃i, k′) for all 1 ≤ i ≤ m, 0 ≤ k′ ≤ |P̃i|.
(6) Compute V (¯̀) := maxk1+...+km≤k

∑m
i=1 VolSel(P̃i, ki) by dynamic programming.

(7) Return max ¯̀V (¯̀).

5.2 Running Time
Step (1) yields a factor τd = O(1

ε)d in the running time. Since we can compute for each
point in constant time the grid cell it is contained in, step (2) runs in time O(n). For
the partitioning in step (3), we use a dictionary data structure storing all ȳ ∈ Zd with
nonempty P ′ ∩ C¯̀(ȳ). Then we can assign any point p ∈ P ′ to the other points in its
cell by one lookup in the dictionary, in time O(logn). Thus, step (3) can be performed in
time O(n logn). Step (4) immediately works in the same running time. For step (5) we
already argued above that it can be performed in time O

(
n2O(ε−2 log 1/ε)d). Finally, step (6)

can be implemented in time O(
∑m
i=1 |P̃i| · k) = O(nk). The total running time is thus

O
(
n · ε−d

(
logn+ k + 2O(ε−2 log 1/ε)d)).

5.3 Correctness
Combining the following lemmas we show that the above algorithm indeed computes a
(1±O(ε))-approximation of VolSel(P).

I Lemma 5.2 (Removing grid boundaries). Let P be a point set and let 0 ≤ k ≤ |P |.
Remove all points contained in grid boundaries with offset ¯̀ to obtain the point set P¯̀ :=
P ∩

⋃
ȳ∈Zd C¯̀(ȳ). Then for all ¯̀ ∈ Zd we have VolSel(P¯̀, k) ≤ VolSel(P, k), and for

some ¯̀∈ Zd we have VolSel(P¯̀, k) ≥ (1− ε)VolSel(P, k).

SoCG 2017

22:12 Maximum Volume Subset Selection for Anchored Boxes

Proof Sketch. Since we only remove points, the first inequality is immediate. For the second
inequality we use a probabilistic argument. Consider an optimal solution, i.e., a set S ⊆ P of
size at most k with µ(S) = VolSel(P, k). Let S¯̀ := S ∩ P¯̀. For a uniformly random offset
¯̀∈ [τ]d, the probability that a fixed point p ∈ S does not survive, i.e., we have p 6∈ S¯̀ is at
most d/τ ≤ ε. Hence, p survives with probability at least 1− ε.

Now for each point q ∈ U(S) identify a point s(q) ∈ S dominating q. Since s(q) survives
in S¯̀ with probability at least 1− ε, the point q is dominated by S¯̀ with probability at least
1− ε. By integrating over all q ∈ U(S) we thus obtain an expected volume of

E¯̀[µ(S¯̀)] =
∫
U(S)

Pr[q is dominated by S¯̀]dq ≥
∫
U(S)

(1− ε)dq = (1− ε)µ(S).

It follows that for some ¯̀ we have µ(S¯̀) ≥ E[µ(S¯̀)] ≥ (1 − ε)µ(S). For this ¯̀ we have
VolSel(P¯̀, k) ≥ (1− ε)VolSel(P, k). J

I Lemma 5.3 (Rounding down coordinates). Let P be a point set, and let P̃ be the same
point set after rounding down all coordinates to powers of (1− ε)−1/d. Then for any k

(1− ε)VolSel(P, k) ≤ VolSel(P̃ , k) ≤ VolSel(P, k).

In the proof of the next lemma it becomes important that we have used the thick grid
boundaries, with a separating region, when defining the grid cells.

I Lemma 5.4 (Treating subproblems as independent I). For any offset ¯̀, let S1, . . . , Sm be
point sets contained in different grid cells with respect to offset ¯̀. Then we have

(1− ε)
m∑
i=1

µ(Si) ≤ µ
(m⋃
i=1

Si

)
≤

m∑
i=1

µ(Si).

Proof Sketch. The second inequality is the union bound applied to U(S1), . . . ,U(Sm).
For the first inequality, we can decompose

⋃m
i=1 U(Si) to get

µ
(m⋃
i=1

Si

)
= vol

(
m⋃
i=1
U(Si)

)
=

m∑
i=1

(
µ(Si)− vol

(
U(Si) ∩

⋃
j<i

U(Sj)
))

. (1)

Now let C¯̀(ȳ(i)) be the grid cell containing Pi for 1 ≤ i ≤ m, where ȳ(i) = (y(i)
1 , . . . , y

(i)
d) ∈

Zd. We may assume that these cells are ordered in non-decreasing order of y(i)
1 + . . .+ y

(i)
d .

Observe that in this ordering, for any j < i we have y(j)
t < y

(i)
t for some 1 ≤ t ≤ d. Recall

that C¯̀(ȳ) =
∏d
t=1[λτ ·yt+`t+1, λτ(yt+1)+`t). It follows that each point in

⋃
j<i U(Sj) has t-th

coordinate at most δt := λτ ·yt+`t for some 1 ≤ t ≤ d. Setting Dt := {(z1, . . . , zd) ∈ Rd≥0 |
zt ≤ δt}, we thus have

⋃
j<i U(Sj) ⊆

⋃d
t=1Dt, which yields

vol
(
U(Si) ∩

⋃
j<i

U(Sj)
)
≤ vol

(
U(Si) ∩

d⋃
t=1

Dt

)
≤

d∑
t=1

vol
(
U(Si) ∩Dt

)
. (2)

Let A be the (d− 1)-dimensional volume of the intersection of U(Si) with the plane xt = 0.
Since all points in Si have t-th coordinate at least λτ ·yt+`t+1 = λ · δt, we have µ(Si) ≥
A · λ · δt. Moreover, U(Si) ∩ Dt has d-dimensional volume A · δt. Together, this yields
vol(U(Si) ∩Dt) ≤ µ(Si)/λ. With (1) and (2), and using that λ ≥ d/ε, we thus obtain

µ
(m⋃
i=1

Si

)
≥

m∑
i=1

(
µ(Si)− d · µ(Si)/λ

)
≥ (1− ε)

m∑
i=1

µ(Si). J

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:13

Leveraging the above lemma to VolSel yields the following.

I Lemma 5.5 (Treating subproblems as independent II). For any offset ¯̀, let P1, . . . , Pm be
point sets contained in different grid cells, and k ≥ 0. Then we have

(1−ε) · max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki) ≤ VolSel(P, k) ≤ max
k1+...+km≤k

m∑
i=1

VolSel(Pi, ki).

Note that the above lemmas indeed prove that the algorithm returns a (1 ± O(ε))-
approximation to the value VolSel(P, k). In step (2) we delete the points containing the the
grid boundaries, which yields an approximation for some choice of the offset ¯̀ by Lemma 5.2.
As we iterate over all possible choices for ¯̀and maximize over the resulting volume, we obtain
an approximation. In step (4) we round down coordinates, which yields an approximation by
Lemma 5.3. Finally, in step (6) we solve the problem maxk1+...+km≤k

∑m
i=1 VolSel(P̃i, ki),

which yields an approximation to VolSel(
⋃m
i=1 P̃i, k) by Lemma 5.5. All other steps do not

change the point set or the considered problem.

5.4 Computing an Output Set
The above algorithm, as described, only gives an approximation for the value VolSel(P, k).
However, by tracing the dynamic programming table we can reconstruct a subset S of P of
size at most k yielding a (1−O(ε))-approximation of the optimal volume VolSel(P, k).

Note that we do not compute the exact volume µ(S) of the output set S. Instead, the
value V (¯̀) only is a (1 + O(ε))-approximation of µ(S). To explain this effect, recall that
exactly computing µ(T) for any given set T takes time nΘ(d) (under the Exponential Time
Hypothesis). As our running time is O(n2) for any constant d, ε, we cannot expect to compute
µ(S) exactly.

6 Conclusions

We considered the volume selection problem, where we are given n points in Rd>0 and want
to select k of them that maximize the volume of the union of the spanned anchored boxes.
We show: (1) Volume selection is NP-hard in dimension d = 2 (previously this was only
known when d is part of the input). (2) In 3 dimensions, we design an nO(

√
k) algorithm

(the previously best was Ω
((
n
k

))
). (3) We design an efficient polynomial time approximation

scheme for any constant dimension d (previously only a (1− 1/e)-approximation was known).
We leave open to improve our NP-hardness result to a matching lower bound under the

Exponential Time Hypothesis, e.g., to show that in d = 3 any algorithm takes time nΩ(
√
k)

and in any constant dimension d ≥ 4 any algorithm takes time nΩ(k). Alternatively, there
could be a faster algorithm, e.g., in time nO(k1−1/d). Finally, we leave open to figure out the
optimal dependence on n, k, d, ε of a (1− ε)-approximation algorithm.

Moving away from the applications, one could also study volume selection on general
axis-aligned boxes in Rd, i.e., not necessarily anchored boxes. This problem General
Volume Selection is an optimization variant of Klee’s measure problem and thus might
be theoretically motivated. However, General Volume Selection is probably much
harder than the restriction to anchored boxes, by analogies to the problem of computing an
independent set of boxes, which is not known to have a PTAS [1]. In particular, General
Volume Selection is NP-hard already in 2 dimensions, which follows from NP-hardness of
computing an independent set in a family of congruent squares in the plane [18, 22].

SoCG 2017

22:14 Maximum Volume Subset Selection for Anchored Boxes

Acknowledgements. This work was initiated during the Fixed-Parameter Computational
Geometry Workshop at the Lorentz Center, 2016. We are grateful to the other participants
of the workshop and the Lorentz Center for their support. We are especially grateful to
Günter Rote for several discussions and related work.

References
1 A. Adamaszek and A. Wiese. Approximation schemes for maximum weight independent

set of rectangles. In Proc. of the 54th IEEE Symp. on Found. of Comp. Science (FOCS),
pages 400–409. IEEE, 2013.

2 A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Investigating and exploiting the bias
of the weighted hypervolume to articulate user preferences. In Proc. of the 11th Conf. on
Genetic and Evolutionary Computation, pages 563–570. ACM, 2009.

3 A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Hypervolume-based multiobjective opti-
mization: Theoretical foundations and practical implications. Theoretical Comp. Science,
425:75–103, 2012.

4 J. Bader. Hypervolume-based search for multiobjective optimization: theory and methods.
PhD thesis, ETH Zurich, Zurich, Switzerland, 1993.

5 F. Barahona. On the computational complexity of Ising spin glass models. J. of Physics
A: Mathematical and General, 15(10):3241, 1982.

6 N. Beume, C.M. Fonseca, M. López-Ibáñez, L. Paquete, and J. Vahrenhold. On the com-
plexity of computing the hypervolume indicator. IEEE Trans. on Evolutionary Computa-
tion, 13(5):1075–1082, 2009.

7 N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European J. of Operational Research, 181(3):1653–1669, 2007.

8 K. Bringmann. Bringing order to special cases of Klee’s measure problem. In Int. Symp.
on Mathematical Foundations of Comp. Science, pages 207–218. Springer, 2013.

9 K. Bringmann and T. Friedrich. Approximating the volume of unions and intersections of
high-dimensional geometric objects. Computational Geometry, 43(6):601–610, 2010.

10 K. Bringmann and T. Friedrich. An efficient algorithm for computing hypervolume contri-
butions. Evolutionary Computation, 18(3):383–402, 2010.

11 K. Bringmann and T. Friedrich. Approximating the least hypervolume contributor: NP-
hard in general, but fast in practice. Theoretical Comp. Science, 425:104–116, 2012.

12 K. Bringmann, T. Friedrich, and P. Klitzke. Generic postprocessing via subset selection for
hypervolume and epsilon-indicator. In Int. Conf. on Parallel Problem Solving from Nature,
pages 518–527. Springer, 2014.

13 K. Bringmann, T. Friedrich, and P. Klitzke. Two-dimensional subset selection for hyper-
volume and epsilon-indicator. In Proc. of the 2014 Conf. on Genetic and Evolutionary
Comput., pages 589–596. ACM, 2014.

14 T.M. Chan. A (slightly) faster algorithm for Klee’s measure problem. Computational
Geometry, 43(3):243–250, 2010.

15 T.M. Chan. Klee’s measure problem made easy. In Proc. of the 54th IEEE Symp. on
Found. of Comp. Science (FOCS), pages 410–419. IEEE, 2013.

16 J. Chen, X. Huang, I. A. Kanj, and G. Xia. Linear FPT reductions and computational
lower bounds. In Proc. of the 36th ACM Symp. on Theory of Computing (STOC), pages
212–221. ACM, 2004.

17 M. Emmerich, A.H. Deutz, and I. Yevseyeva. A Bayesian approach to portfolio selection
in multicriteria group decision making. Procedia Comp. Science, 64:993–1000, 2015.

18 R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the
plane are NP-complete. Information Processing Lett., 12(3):133–137, 1981.

K. Bringmann, S. Cabello, and M.T.M. Emmerich 22:15

19 M.R. Garey and D. S. Johnson. The rectilinear Steiner tree problem in NP complete. SIAM
J. of Applied Math., 32:826–834, 1977.

20 A.P. Guerreiro, C.M. Fonseca, and L. Paquete. Greedy hypervolume subset selection in
low dimensions. Evolutionary Computation, 24(3):521–544, 2016.

21 D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

22 H. Imai and T. Asano. Finding the connected components and a maximum clique of an
intersection graph of rectangles in the plane. J. of Algorithms, 4(4):310–323, 1983.

23 J.D. Knowles, D.W. Corne, and M. Fleischer. Bounded archiving using the Lebesgue
measure. In Proc. of the 2003 Congress on Evolutionary Computation (CEC), volume 4,
pages 2490–2497. IEEE, 2003.

24 T. Kuhn, C.M. Fonseca, L. Paquete, S. Ruzika, M.M. Duarte, and J.R. Figueira. Hy-
pervolume subset selection in two dimensions: Formulations and algorithms. Evolutionary
Computation, 2015.

25 G.L. Miller. Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. Syst. Sci., 32(3):265–279, 1986.

26 J. S. B. Mitchell and M. Sharir. New results on shortest paths in three dimensions. In Proc.
of the 20th ACM Symp. on Computational Geometry, pages 124–133, 2004.

27 G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions – I. Mathematical Programming, 14(1):265–294, 1978.

28 G. Rote, K. Buchin, K. Bringmann, S. Cabello, and M. Emmerich. Selecting k points that
maximize the convex hull volume (extended abstract). In JCDCG3 2016; The 19th Japan
Conf. on Discrete and Computational Geometry, Graphs, and Games, pages 58–60, 9 2016.
http://www.jcdcgg.u-tokai.ac.jp/JCDCG3_abstracts.pdf.

29 J.A. Storer. On minimal-node-cost planar embeddings. Networks, 14(2):181–212, 1984.
30 R. Tamassia and I.G. Tollis. Planar grid embedding in linear time. IEEE Trans. on Circuits

and Systems, 36(9):1230–1234, 1989.
31 T. Ulrich and L. Thiele. Bounding the effectiveness of hypervolume-based (µ+λ)-archiving

algorithms. In Learning and Intelligent Optimization, pages 235–249. Springer, 2012.
32 L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for calculating

hypervolume. IEEE Trans. on Evolutionary Computation, 10(1):29–38, 2006.
33 J. Wu and S. Azarm. Metrics for quality assessment of a multiobjective design optimization

solution set. J. of Mechanical Design, 123(1):18–25, 2001.
34 E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. Da Fonseca. Performance

assessment of multiobjective optimizers: an analysis and review. IEEE Trans. on Evolu-
tionary Computation, 7(2):117–132, 2003.

SoCG 2017

http://www.jcdcgg.u-tokai.ac.jp/JCDCG3_abstracts.pdf

Declutter and Resample: Towards Parameter Free
Denoising∗†

Mickaël Buchet1, Tamal K. Dey2, Jiayuan Wang3, and Yusu Wang4

1 Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
mickael.buchet@m4x.org

2 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
tamaldey@cse.ohio-state.edu

3 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
wang.6195@buckeyemail.osu.edu

4 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
yusu@cse.ohio-state.edu

Abstract
In many data analysis applications the following scenario is commonplace: we are given a point
set that is supposed to sample a hidden ground truth K in a metric space, but it got corrupted
with noise so that some of the data points lie far away from K creating outliers also termed as
ambient noise. One of the main goals of denoising algorithms is to eliminate such noise so that
the curated data lie within a bounded Hausdorff distance of K. Popular denoising approaches
such as deconvolution and thresholding often require the user to set several parameters and/or
to choose an appropriate noise model while guaranteeing only asymptotic convergence. Our goal
is to lighten this burden as much as possible while ensuring theoretical guarantees in all cases.

Specifically, first, we propose a simple denoising algorithm that requires only a single para-
meter but provides a theoretical guarantee on the quality of the output on general input points.
We argue that this single parameter cannot be avoided. We next present a simple algorithm that
avoids even this parameter by paying for it with a slight strengthening of the sampling condition
on the input points which is not unrealistic. We also provide some preliminary empirical evidence
that our algorithms are effective in practice.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases denoising, parameter free, k-distance,compact sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.23

1 Introduction

Real life data are almost always corrupted by noise. Of course, when we talk about noise, we
implicitly assume that the data sample a hidden space called the ground truth with respect
to which we measure the extent and type of noise. Some data can lie far away from the
ground truth leading to ambient noise. Clearly, the data density needs to be higher near the
ground truth if signal has to prevail over noise. Therefore, a worthwhile goal of a denoising

∗ A full version of the paper is available at https://arxiv.org/abs/1511.05479.
† This work is in part supported by National Science Foundation via grants CCF-1618247, CCF-1526513,

CCF-1318595 and IIS-1550757.

© Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, and Yusu Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.23
https://arxiv.org/abs/1511.05479
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Declutter and Resample: Towards Parameter Free Denoising

Figure 1 Scale ambiguity.

algorithm is to curate the data, eliminating the ambient noise while retaining most of the
subset that lies within a bounded distance from the ground truth.

In this paper we are interested removing “outlier”-type of noise from input data. Numerous
algorithms have been developed for this problem in many different application fields; see e.g [16,
21]. There are two popular families of denoising/outlier detection approaches: Deconvolution
and Thresholding. Deconvolution methods rely on the knowledge of a generative noise
model for the data. For example, the algorithm may assume that the input data has been
sampled according to a probability measure obtained by convolving a distribution such as
a Gaussian [18] with a measure whose support is the ground truth. Alternatively, it may
assume that the data is generated according to a probability measure with a small Wasserstein
distance to a measure supported by the ground truth [7]. The denoising algorithm attempts
to cancel the noise by deconvolving the data with the assumed model.

A deconvolution algorithm requires the knowledge of the generative model and at least
a bound on the parameter(s) involved, such as the standard deviation of the Gaussian
convolution or the Wasserstein distance. Therefore, it requires at least one parameter as well
as the knowledge of the noise type. The results obtained in this setting are often asymptotic,
that is, theoretical guarantees hold in the limit when the number of points tends to infinity.

The method of thresholding relies on a density estimation procedure [20] by which it
estimates the density of the input locally. The data is cleaned, either by removing points
where density is lower than a threshold [14], or moving them from such areas toward higher
densities using gradient-like methods such as mean-shift [11, 19]. It has been recently used
for uncovering geometric information such as one dimensional features [15]. In [5], the
distance to a measure [10] that can also be seen as a density estimator [2] has been exploited
for thresholding. Other than selecting a threshold, these methods require the choice of a
density estimator. This estimation requires at least one additional parameter, either to define
a kernel, or a mass to define the distance to a measure. In the case of a gradient based
movement of the points, the nature of the movement also has to be defined by fixing the
length of a step and by determining the terminating condition of the algorithm.

New work. In above classical methods, the user is burdened with making several choices
such as fixing an appropriate noise model, selecting a threshold and/or other parameters. Our
main goal is to lighten this burden as much as possible. First, we show that denoising with a
single parameter is possible and this parameter is in some sense unavoidable unless a stronger
sampling condition on the input points is assumed. This leads to our main algorithm that
is completely free of any parameter when the input satisfies a stronger sampling condition
which is not unrealistic.

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:3

Figure 2 From left to right: the ground truth, the noisy input samples (∼ 7000 points around the
ground truth and 2000 ambient noise points), two intermediate steps of our iterative parameter-free
denoising algorithm and the final output.

Our first algorithm Declutter algorithm uses a single parameter (presented in Section 3)
and assumes a very general sampling condition which is not stricter than those for the
classical noise models mentioned previously because it holds with high probability for those
models as well. Additionally, our sampling condition also allows ambient noise and locally
adaptive samplings. Interestingly, we note that our Declutter algorithm is in fact a variant
of the approach proposed in [8] to construct the so-called ε-density net. Indeed, as we point
out in Appendix D of the full version [6], the procedure of [8] can also be directly used for
denoising purpose and one can obtain an analog of Theorems 9 and 13 in this paper for the
resulting density net.

Use of a parameter in the denoising process is unavoidable in some sense, unless there are
other assumptions about the hidden space. This is illustrated by the example in Figure 1.
Does the sample here represent a set of small loops or one big circle? The answer depends on
the scale at which we examine the data; see the full version [6] for the results of applying our
denoising algorithms on this data set. The choice of a parameter may represent this choice of
the scale [3, 13]. To remove this parameter, one needs other conditions for either the hidden
space itself or for the sample, say by assuming that the data has some uniformity. Aiming to
keep the sampling restrictions as minimal as possible, we show that it is sufficient to assume
the homogeneity in data only on or close to the ground truth for our second algorithm which
requires no input parameter.

Specifically, the parameter-free algorithm presented in Section 4 relies on an iteration
that intertwines our decluttering algorithm with a novel resampling procedure. Assuming
that the sample is sufficiently dense and somewhat uniform near the ground truth at scales
beyond a particular scale s, our algorithm selects a subset of the input point set that is close
to the ground truth without requiring any input from the user. The output maintains the
quality at scale s even though the algorithm has no explicit knowledge of this parameter.
See Figure 2 for an example.

All missing details from this extended abstract can be found in the full version [6]. In
addition, in Appendix C of the full version [6], we show how the denoised data set can be
used for homology inference. In Appendix E of the full version [6] , we provide various
preliminary experimental results of our denoising algorithms.

I Remark. Very recently, Jiang and Kpotufe proposed a consistent algorithm for estimating
the so-called modal-sets with also only one parameter [17]. The problem setup and goals are
very different: In their work, they assume that input points are sampled from a density field
that is locally maximal and constant on a compact domain. The goal is to show that as the
number of samples n tends to infinity, such domains (referred to as modal-sets in their paper)
can be recovered, and the recovered set converges to the true modal-sets under the Hausdorff
distance. We also note that our Declutter algorithm allows adaptive sampling as well.

SoCG 2017

23:4 Declutter and Resample: Towards Parameter Free Denoising

2 Preliminaries

We assume that the input is a set of points P sampled around a hidden compact set K, the
ground truth, in a metric space (X, dX). For simplicity, in what follows the reader can assume
X = Rd with P,K ⊂ X = Rd, and the metric dX of X is simply the Euclidean distance. Our
goal is to process P into another point set Q guaranteed to be Hausdorff close to K and
hence to be a better sample of the hidden space K for further applications. By Hausdorff
close, we mean that the (standard) Hausdorff distance δH(Q,K) between Q and K, defined
as the infimum of δ such that ∀p ∈ Q, dX(p,K) ≤ δ and ∀x ∈ K, dX(x,Q) ≤ δ, is bounded.
Note that ambient noise/outliers can incur a very large Hausdorff distance.

The quality of the output point set Q obviously depends on the “quality” of input
points P , which we formalize via the language of sampling conditions. We wish to produce
good quality output for inputs satisfying much weaker sampling conditions than a bounded
Hausdorff distance. Our sampling condition is based on the sampling condition introduced
and studied in [4, 5]; see Chapter 6 of [4] for discussions on the relation of their sampling
condition with some of the common noise models such as Gaussian. Below, we first introduce
a basic sampling condition deduced from the one in [4, 5], and then introduce its extensions
incorporating adaptivity and uniformity.

Basic sampling condition. Our sampling condition is built upon the concept of k-distance,
which is a specific instance of a broader concept called distance to a measure introduced
in [10]. The k-distance dP,k(x) is simply the root mean of square distance from x to its
k-nearest neighbors in P . The averaging makes it robust to outliers. One can view dP,k(x)
as capturing the inverse of the density of points in P around x [2]. As we show in Appendix
D [6], this specific form of k-distance is not essential – Indeed, several of its variants can
replace its role in the definition of sampling conditions below, and our Declutter algorithm
will achieve similar denoising guarantees.

I Definition 1 ([10]). Given a point x ∈ X, let pi(x) ∈ P denote the i-th nearest neighbor
of x in P . The k-distance to a point set P ⊆ X is dP,k(x) =

√
1
k

∑k
i=1 dX(x, pi(x))2.

I Claim 2 ([10]). dP,k(·) is 1-Lipschitz, i.e. |dP,k(x)−dP,k(y)| ≤ dX(x, y) for ∀(x, y) ∈ X×X.

All our sampling conditions are dependent on the choice of k in the k-distance, which we
reflect by writing εk instead of ε in the sampling conditions below. The following definition
is related to the sampling condition proposed in [5].

I Definition 3. Given a compact set K ⊆ X and a parameter k, a point set P is an εk-noisy
sample of K if
1. ∀x ∈ K, dP,k(x) ≤ εk
2. ∀x ∈ X, dX(x,K) ≤ dP,k(x) + εk

Condition 1 in Definition 3 means that the density of P on the compact set K is bounded
from below, that is, K is well-sampled by P . Note, we only require P to be a dense enough
sample of K – there is no uniformity requirement in the sampling here.

Condition 2 implies that a point with low k-distance, i.e. lying in high density region, has
to be close to K. Intuitively, P can contain outliers which can form small clusters but their
density can not be significant compared to the density of points near the compact set K.

Note that the choice of εk always exists for a bounded point set P , no matter what value
of k is – For example, one can set εk to be the diameter of point set P . However, the smallest

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:5

possible choice of εk to make P an εk-noisy sample of K depends on the value of k. We thus
use εk in the sampling condition to reflect this dependency.

In Section 4, we develop a parameter-free denoising algorithm. As Figure 1 illustrates, it
is necessary to have a mechanism to remove potential ambiguity about the ground truth.
We do so by using a stronger sampling condition to enforce some degree of uniformity:

I Definition 4. Given a compact set K ⊆ X and a parameter k, a point set P is a uniform
(εk, c)-noisy sample of K if P is an εk-noisy sample of K (i.e, conditions of Def. 3 hold) and
3. ∀p ∈ P, dP,k(p) ≥ εk

c .

It is important to note that the lower bound in Condition 3 enforces that the sampling
needs to be homogeneous – i.e, dP,k(x) is bounded both from above and from below by some
constant factor of εk – only for points on and around the ground truth K. This is because
condition 1 in Def. 3 is only for points from K, and condition 1 together with the 1-Lipschitz
property of dP,k (Claim 2) leads to an upper bound of O(εk) for dP,k(y) only for points y
within O(εk) distance to K. There is no such upper bound on dP,k for noisy points far away
from K and thus no homogeneity/uniformity requirements for them.

Adaptive sampling conditions. The sampling conditions given above are global, meaning
that they do not respect the “feature” of the ground truth. We now introduce an adaptive
version of the sampling conditions with respect to a feature size function.

I Definition 5. Given a compact set K ⊆ X, a feature size function f : K → R+ ∪ {0} is a
1-Lipschitz non-negative real function on K.

Several feature sizes exist in the literature of manifold reconstruction and topology inference,
including the local feature size [1], local weak feature size, µ-local weak feature size [9] or
lean set feature size [12]. All of these functions describe how complicated a compact set is
locally, and therefore indicate how dense a sample should be locally so that information can
be inferred faithfully. Any of these functions can be used as a feature size function to define
the adaptive sampling below. Let p̄ denote any one of the nearest points of p in K. Observe
that, in general, a point p can have multiple such nearest points.

I Definition 6. Given a compact set K ⊆ X, a feature size function f of K, and a parameter
k, a point set P is a uniform (εk, c)-adaptive noisy sample of K if
1. ∀x ∈ K, dP,k(x) ≤ εkf(x),
2. ∀y ∈ X, dX(y,K) ≤ dP,k(y) + εkf(ȳ),
3. ∀p ∈ P, dP,k(p) ≥ εk

c f(p̄).
We say that P is an εk-adaptive noisy sample of K if only conditions 1 and 2 above hold.

We require that the feature size is positive everywhere as otherwise, the sampling condition
may require infinite samples in some cases. We also note that the requirement of the feature
size function being 1-Lipschitz is only needed to provide the theoretical guarantee for our
second parameter-free algorithm.

3 Decluttering

We now present a simple yet effective denoising algorithm which takes as input a set of points
P and a parameter k, and outputs a set of points Q ⊆ P with the following guarantees: If P
is an εk-noisy sample of a hidden compact set K ⊆ X, then the output Q lies close to K in
the Hausdorff distance (i.e, within a small tubular neighborhood of K and outliers are all

SoCG 2017

23:6 Declutter and Resample: Towards Parameter Free Denoising

Algorithm 1: Declutter(P ,k).
Data: Point set P , parameter k
Result: Denoised point set Q

1 begin
2 sort P such that dP,k(p1) ≤ · · · ≤ dP,k(p|P |).
3 Q0 ←− ∅
4 for i←− 1 to |P | do
5 if Qi−1 ∩B(pi, 2dP,k(pi)) = ∅ then
6 Qi = Qi−1 ∪ {pi}
7 end
8 else Qi = Qi−1

9 end
10 Q←− Qn
11 end

eliminated). The theoretical guarantee holds for both the non-adaptive and the adaptive
cases, as stated in Theorems 9 and 13.

As the k-distance behaves like the inverse of density, points with a low k-distance are
expected to lie close to the ground truth K. A possible approach is to fix a threshold α and
only keep the points with a k-distance less than α. This thresholding solution requires an
additional parameter α. Furthermore, very importantly, such a thresholding approach does
not easily work for adaptive samples, where the density in an area with large feature size
can be lower than the density of noise close to an area with small feature size.

Our algorithm Declutter(P ,k), presented in Algorithm 1, works around these problems
by considering the points in the order of increasing values of their k-distances and using a
pruning step: Given a point pi, if there exists a point q deemed better in its vicinity, i.e., q
has smaller k-distance and has been previously selected (q ∈ Qi−1), then pi is not necessary
to describe the ground truth and we throw it away. Conversely, if no point close to pi has
already been selected, then pi is meaningful and we keep it. The notion of “closeness” or
“vicinity” is defined using the k-distance, so k is the only parameter. In particular, the
“vicinity" of a point pi is defined as the metric ball B(pi, 2dP,k(pi)); observe that this radius
is different for different points, and the radius of the ball is larger for outliers. Intuitively,
the radius 2dP,k(pi) of the “vicinity” around pi can be viewed as the length we have to go
over to reach the hidden domain with certainty. So, bad points have a larger “vicinity”. We
remark that this process is related to the construction of the “density net” introduced in [8],
which we discuss more in Appendix D [6].

See Figure 3 on the right for an artificial example, where the black points are input points,
and red crosses are in the current output Qi−1. Now, at the ith iteration, suppose we are
processing the point pi (the green point). Since within the vicinity of pi there is already a
good point p, we consider pi to be not useful, and remove it. Intuitively, for an outlier pi, it
has a large k-distance and hence a large vicinity. As we show later, our εk-noisy sampling
condition ensures that this vicinity of pi reaches the hidden compact set which the input
points presumably sample. Since points around the hidden compact set should have higher
density, there should be a good point already chosen in Qi−1. Finally, it is also important
to note that, contrary to many common sparsification procedures, our Declutter algorithm
removes a noisy point because it has a good point within its vicinity, and not because it is
within the vicinity of a good point. For example, in Figure 3, the red points such as p have
small vicinity, and pi is not in the vicinity of any of the red point.

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:7

P : ·
Qi−1 :

p

pi

×

Figure 3 Declutter.

In what follows, we will make this intuition more concrete. We first consider the simpler
non-adaptive case where P is an εk-noisy sample of K. We establish that Q and the ground
truth K are Hausdorff close in the following two lemmas. The first lemma says that the
ground truth K is well-sampled (w.r.t. εk) by the output Q of Declutter.

I Lemma 7. Let Q ⊆ P be the output of Declutter(P ,k) where P is an εk-noisy sample of a
compact set K ⊆ X. Then, for any x ∈ K, there exists q ∈ Q such that dX(x, q) ≤ 5εk.

Proof. Let x ∈ K. By Condition 1 of Def. 3, we have dP,k(x) ≤ εk. This means that
the nearest neighbor pi of x in P satisfies dX(pi, x) ≤ dP,k(x) ≤ εk. If pi ∈ Q, then the
claim holds by setting q = pi. If pi /∈ Q, there must exist j < i with pj ∈ Qi−1 such
that dX(pi, pj) ≤ 2dP,k(pi). In other words, pi was removed by our algorithm because
pj ∈ Qi−1 ∩B(pi, 2dP,k(pi)). Combining triangle inequality with the 1-Lipschitz property of
dP,k (Claim 2), we then have

dX(x, pj) ≤ dX(x, pi) + dX(pi, pj) ≤ dX(x, pi) + 2dP,k(pi) ≤ 2dP,k(x) + 3dX(pi, x) ≤ 5εk,

which proves the claim. J

The next lemma implies that all outliers are removed by our denoising algorithm.

I Lemma 8. Let Q ⊆ P be the output of Declutter(P ,k) where P is an εk-noisy sample of a
compact set K ⊆ X. Then, for any q ∈ Q, there exists x ∈ K such that dX(q, x) ≤ 7εk.

Proof. Consider any pi ∈ P and let p̄i be one of its nearest points in K. It is sufficient to
show that if dX(pi, p̄i) > 7εk, then pi /∈ Q .

Indeed, by Condition 2 of Def. 3, dP,k(pi) ≥ dX(pi, p̄i)− εk > 6εk. By Lemma 7, there
exists q ∈ Q such that dX(p̄i, q) ≤ 5εk. Thus,

dP,k(q) ≤ dP,k(p̄i) + dX(p̄i, q) ≤ 6εk.

Therefore, dP,k(pi) > 6εk ≥ dP,k(q) implying that q ∈ Qi−1. Combining triangle inequality
and Condition 2 of Def. 3, we have

dX(pi, q) ≤ dX(pi, p̄i) + dX(p̄i, q) ≤ dP,k(pi) + εk + 5εk < 2dP,k(pi).

Therefore, q ∈ Qi−1 ∩B(pi, 2dP,k(pi)), meaning that pi /∈ Q. J

I Theorem 9. Given a point set P which is an εk-noisy sample of a compact set K ⊆ X,
Algorithm Declutter returns a set Q ⊆ P such that δH(K,Q) ≤ 7εk.

SoCG 2017

23:8 Declutter and Resample: Towards Parameter Free Denoising

Interestingly, if the input point set is uniform then the denoised set is also uniform, a
fact that turns out to be useful for our parameter-free algorithm later.

I Proposition 10. If P is a uniform (εk, c)-noisy sample of a compact set K ⊆ X, then the
distance between any pair of points of Q is at least 2 εk

c .

Proof. Let p and q be in Q with p 6= q and, assume without loss of generality that dP,k(p) ≤
dP,k(q). Then, p /∈ B(q, 2dP,k(q)) and dP,k(q) ≥ εk

c . Therefore, dX(p, q) ≥ 2 εk

c . J

Adaptive case

Assume the input is an adaptive sample P ⊆ X with respect to a feature size function f .
The denoised point set Q may also be adaptive. We hence need an adaptive version of the
Hausdorff distance denoted δfH(Q,K) and defined as the infimum of δ such that (i) ∀p ∈ Q,
dX(p,K) ≤ δf(p̄), and (ii) ∀x ∈ K, dX(x,Q) ≤ δf(x), where p̄ is a nearest point of p in K.
Similar to the non-adaptive case, we establish that P and output Q are Hausdorff close via
Lemmas 11 and 12 whose proofs are same as those for Lemmas 7 and 8 respectively, but
using an adaptive distance w.r.t. the feature size function. Note that the algorithm does not
need to know what the feature size function f is, hence only one parameter (k) remains.

I Lemma 11. Let Q ⊆ P be the output of Declutter(P, k) where P is an εk-adaptive noisy
sample of a compact set K ⊆ X. Then, ∀x ∈ K,∃q ∈ Q, dX(x, q) ≤ 5εkf(x).

I Lemma 12. Let Q ⊆ P be the output of Declutter(P, k) where P is an εk-adaptive noisy
sample of a compact set K ⊆ X. Then, for ∀q ∈ Q, dX(q, q̄) ≤ 7εkf(q̄).

I Theorem 13. Given an εk-adaptive noisy sample P of a compact set K ⊆ X with feature
size f , Algorithm Declutter returns a sample Q ⊆ P of K where δfH(Q,K) ≤ 7εk.

Again, if the input set is uniform, the output remains uniform as stated below.

I Proposition 14. Given an input point set P which is an uniform (εk, c)-adaptive noisy
sample of a compact set K ⊆ X, the output Q ⊆ P of Declutter satisfies

∀(qi, qj) ∈ Q, i 6= j =⇒ dX(qi, qj) ≥ 2εk
c
f(q̄i) .

Proof. Let qi and qj be two points of Q with i < j. Then qi is not in the ball of center qj
and radius 2dP,k(qj). Hence dX(qi, qj) ≥ 2dP,k(qj) ≥ 2 εk

c f(q̄j). Since i < j, it also follows
that dX(qi, qj) ≥ 2dP,k(qj) ≥ 2dP,k(qi) ≥ 2 εk

c f(q̄i). J

The algorithm Declutter removes outliers from the input point set P . As a result, we
obtain a point set which lies close to the ground truth with respect to the Hausdorff distance.
Such point sets can be used for inference about the ground truth with further processing. For
example, in topological data analysis, our result can be used to perform topology inference
from noisy input points in the non-adaptive setting; see Appendix C [6] for more details.

An example of the output of algorithm Declutter is given in Figure 4(a)–(d). More
examples (including for adaptive inputs) can be found in the full version [6].

Extensions

It turns out that there are many choices that can be used for the k-distance dP,k(x) instead
of the one introduced in Definition 1. Indeed, the goal of k-distance intuitively is to provide a
more robust distance estimate – Specifically, assume P is a noisy sample of a hidden domain

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:9

(a) (b) (c) (d) (e)

Figure 4 (a)–(d) show results of the Algorithm Declutter: (a) the ground truth, (b) the noisy
input with 15K points with 1000 ambient noisy points, (c) the output of Algorithm Declutter when
k = 9, (d) the output of Algorithm Declutter when k = 30. In (e), we show the output of Algorithm
ParfreeDeclutter. As shown in Appendix E [6], algorithm ParfreeDeclutter can remove ambient noise
for much sparser input samples with more noisy points.

K ⊂ X. With the presence of noisy points far away from K, the distance dX(x, P) no longer
serves as a good approximation of dX(x,K), the distance from x to the hidden domain K. We
thus need a more robust distance estimate. The k-distance dP,k(x) introduced in Definition 1
is one such choice, and there are many other valid choices. As we show in Appendix D [6],
we only need the choice of dP,k(x) to be 1-Lipschitz, and is less sensitive than dX(x, P) (that
is, dX(x, P) ≤ dP,k(x)). We can then define the sampling condition (as in Definitions 3
and 4) using a different choice of dP,k(x), and Theorems 9 and 13 still hold. For example,
we could replace k-distance by dP,k(x) = 1

k

∑k
i=1 d(x, pi(x)) where pi(x) is the ith nearest

neighbor of x in P ; that is, dP,k(x) is the average distance to the k nearest neighbors of x
in P . Alternatively, we can replace k-distance by dP,k(x) = d(x, pk(x)), the distance from
x to its k-th nearest neighbor in P (which was used in [8] to construct the ε-density net).
Declutter algorithm works for all these choices with the same denoising guarantees.

One can in fact further relax the conditions on dP,k(x) or even on the input metric space
(X, dX) such that the triangle inequality for dX only approximately holds. The corresponding
guarantees of our Declutter algorithm are provided in Appendix D of the full version [6].

4 Parameter-free decluttering

The algorithm Declutter is not entirely satisfactory. First, we need to fix the parameter k a
priori. Second, while providing a Hausdorff distance guarantee, this procedure also “sparsifies"
input points. Specifically, the empty-ball test also induces some degree of sparsification, as
for any point q kept in Q, the ball B(q, 2dP,k(q)) does not contain any other output points in
Q. While this sparsification property is desirable for some applications, it removes too many
points in some cases – See Figure 4 for an example, where the output density is dominated
by εk and does not preserve the dense sampling provided by the input around the hidden
compact set K. In particular, for k = 9, it does not completely remove ambient noise, while,
for k = 30, the output is too sparse.

In this section, we address both of the above concerns by a novel iterative re-sampling
procedure as described in Algorithm ParfreeDeclutter(P). Roughly speaking, we start with
k = |P | and gradually decrease it by halving each time. At iteration i, let Pi denote the
set of points so far kept by the algorithm; i is initialized to be blog2(|P |)c and is gradually
decreased. We perform the denoising algorithm Declutter(Pi, k = 2i) given in the previous
section to first denoise Pi and obtain a denoised output set Q. This set can be too sparse.

SoCG 2017

23:10 Declutter and Resample: Towards Parameter Free Denoising

Algorithm 2: ParfreeDeclutter(P).
Data: Point set P
Result: Denoised point set P0

1 begin
2 Set i∗ = blog2(|P |)c, and Pi∗ ←− P
3 for i←− i∗ to 1 do
4 Q←− Declutter(Pi,2i)
5 Pi−1 ←− ∪q∈QB(q, (10 + 2

√
2)dPi,2i(q)) ∩ Pi

6 end
7 end

We enrich it by re-introducing some points from Pi, obtaining a denser sampling Pi−1 ⊆ Pi of
the ground truth. We call this a re-sampling process. This re-sampling step may bring some
outliers back into the current set. However, it turns out that a repeated cycle of decluttering
and resampling with decreasing values of k removes these outliers progressively. See Figure 2
and also more examples in the full version [6]. The entire process remains free of any user
supplied parameter. In the end, we show that for an input that satisfies a uniform sampling
condition, we can obtain an output set which is both dense and Hausdorff close to the hidden
compact set, without the need to know the parameters of the input sampling conditions.

In order to formulate the exact statement of Theorem 15, we need to introduce a more
relaxed sampling condition. We relax the notion of uniform (εk, c)-noisy sample by removing
condition 2. We call it a weak uniform (εk, c)-noisy sample. Recall that condition 2 was the
one forbidding the noise to be too dense. So essentially, a weak uniform (εk, c)-noisy sample
only concerns points on and around the ground truth, with no conditions on outliers.

I Theorem 15. Given a point set P and i0 such that for all i > i0, P is a weak uniform
(ε2i , 2)-noisy sample of K and is also a uniform (ε2i0 , 2)-noisy sample of K, Algorithm
ParfreeDeclutter returns a point set P0 ⊆ P such that dH(P0,K) ≤ (87 + 16

√
2)ε2i0 .

We elaborate a little on the sampling conditions. On one hand, as illustrated by Figure 1,
the uniformity on input points is somewhat necessary in order to obtain a parameter-free
algorithm. So requiring a uniform (ε2i0 , 2)-noisy sample of K is reasonable. Now it would
have been ideal if the theorem only required that P is a uniform (ε2i0 , 2)-noisy sample of
K for some k0 = 2i0 . However, to make sure that this uniformity is not destroyed during
our iterative declutter-resample process before we reach i = i0, we also need to assume that,
around the compact set, the sampling is uniform for any k = 2i with i > i0 (i.e, before we
reach i = i0). The specific statement for this guarantee is given in Lemma 17. However, while
the uniformity for points around the compact set is required for any i > i0, the condition
that noisy points cannot be arbitrarily dense is only required for one parameter, k = 2i0 .

The constant for the ball radius in the resampling step is taken as 10 + 2
√

2 which we call
the resampling constant C. Our theoretical guarantees hold with this resampling constant
though a value of 4 works well in practice. The algorithm reduces more noise with decreasing
C. On the flip side, the risk of removing points causing loss of true signal also increases
with decreasing C. Section 5 and Appendix E [6] provide several results for Algorithm
ParfreeDeclutter. We also point out that while our theoretical guarantee is for non-adaptive
case, in practice, the algorithm works well on adaptive sampling as well.

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:11

Proof for Theorem 15

Aside from the technical Lemma 16 on the k-distance, the proof is divided into three steps.
First, Lemma 17 shows that applying the loop of the algorithm once with parameter 2k
does not alter the existing sampling conditions for k′ ≤ k. This implies that the ε2i0 -noisy
sample condition on P will also hold for Pi0 . Then Lemma 18 guarantees that the step going
from Pi0 to Pi0−1 will remove all outliers. Combined with Theorem 9, which guarantees that
Pi0−1 samples well K, it guarantees that the Hausdorff distance between Pi0−1 and K is
bounded. However, we do not know i0 and we have no means to stop the algorithm at this
point. Fortunately, we can prove Lemma 19 which guarantees that the remaining iterations
will not remove too many points and break the theoretical guarantees – that is, no harm is
done in the subsequent iterations even after i < i0. Putting all three together leads to our
main result Theorem 15.

I Lemma 16. Given a point set P , x ∈ X and 0 ≤ i ≤ k, the distance to the i-th nearest
neighbor of x in P satisfies, dX(x, pi) ≤

√
k

k−i+1dP,k(x).

Proof. The claim is proved by the following derivation.

k − i+ 1
k

dX(x, pi)2 ≤ 1
k

k∑
j=i

dX(x, pj)2 ≤ 1
k

k∑
j=1

dX(x, pj)2 = dP,k(x)2. J

I Lemma 17. Let P be a weak uniform (ε2k, 2)-noisy sample of K. For any k′ ≤ k such
that P is a (weak) uniform (εk′ , c)-noisy sample of K for some c, applying one step of the
algorithm, with parameter 2k and resampling constant C = 10 + 2

√
2 gives a point set P ′ ⊆ P

which is a (weak) uniform (εk′ , c)-noisy sample of K.

Proof. We show that if P is a uniform (εk′ , c)-noisy sample of K, then P ′ will also be a
uniform (εk′ , c)-noisy sample of K. The similar version for weak uniformity follows from the
same argument.

First, it is easy to see that as P ′ ⊂ P , the second and third sampling conditions of Def. 4
hold for P ′ as well. What remains is to show that Condition 1 also holds.

Take an arbitrary point x ∈ K. We know that dP,2k(x) ≤ ε2k as P is a weak uniform
(ε2k, 2)-noisy sample of K. Hence there exists p ∈ P such that dX(p, x) ≤ dP,2k(x) ≤ ε2k
and dP,2k(p) ≤ 2ε2k. Writing Q the result of the decluttering step, ∃q ∈ Q such that
dX(p, q) ≤ 2dP,2k(p) ≤ 4ε2k. Moreover, dP,2k(q) ≥ ε2k

2 due to the uniformity condition for P .
Using Lemma 16, for k′ ≤ k, the k′ nearest neighbors of x, which are chosen from P ,

NNk′(x) satisfies:

NNk′(x) ⊂ B(x,
√

2ε2k) ⊂ B(p, (1+
√

2)ε2k) ⊂ B(q, (5+
√

2)ε2k) ⊂ B(q, (10+2
√

2)dP,2k(q))

Hence NNk′(x) ⊂ P ′ and dP ′,k′(x) = dP,k′(x) ≤ εk. This proves the lemma. J

I Lemma 18. Let P be a uniform (εk, 2)-noisy sample of K. One iteration of decluttering
and resampling with parameter k and resampling constant C = 10 + 2

√
2 provides a set

P ′ ⊆ P such that δH(P ′,K) ≤ 8Cεk + 7εk.

Proof. Let Q denote the output after the decluttering step. Using Theorem 9 we know
that δH(Q,K) ≤ 7εk. Note that Q ⊂ P ′. Thus, we only need to show that for any p ∈ P ′,
dX(p,K) ≤ 8Cεk + 7εk. Indeed, by the way the algorithm removes points, for any p ∈ P ′,
there exists q ∈ Q such that p ∈ B(q, CdP,k(q)). It then follows that

dX(p,K) ≤ CdP,k(q) + dX(q,K) ≤ C(εk + dX(q,K)) + 7εk ≤ 8Cεk + 7εk. J

SoCG 2017

23:12 Declutter and Resample: Towards Parameter Free Denoising

I Lemma 19. Given a point y ∈ Pi, there exists p ∈ P0 such that dX(y, p) ≤ κdPi,2i(y),
where κ = 18+17

√
2

4 .

Proof. We show this lemma by induction on i. First for i = 0 the claim holds trivially.
Assuming that the result holds for all j < i and taking y ∈ Pi, we distinguish three cases.
Case 1: y ∈ Pi−1 and dPi−1,2i−1(y) ≤ dPi,2i(y). Applying the recurrence hypothesis for

j = i− 1 gives the result immediately.
Case 2: y /∈ Pi−1. It means that y has been removed by decluttering and not been put

back by resampling. These together imply that there exists q ∈ Qi ⊆ Pi−1 such
that dX(y, q) ≤ 2dPi,2i(y) and dX(y, q) > CdPi,2i(q) with C = 10 + 2

√
2. From the

proof of Lemma 17, we know that the 2i−1 nearest neighbors of q in Pi are resampled
and included in Pi−1. Therefore, dPi−1,2i−1(q) = dPi,2i−1(q) ≤ dPi,2i(q). Moreover,
since q ∈ Pi−1, the inductive hypothesis implies that there exists p ∈ P0 such that
dX(p, q) ≤ κdPi−1,2i−1(q) ≤ κdPi,2i(q). Putting everything together, we get that there
exists p ∈ P0 such that

dX(p, y) ≤ dX(p, q) + dX(q, y)
≤ κdPi,2i(q) + 2dPi,2i(y)

≤
(

κ

5 +
√

2
+ 2
)
dPi,2i(y)

≤ κdPi,2i(y).

The derivation above also uses the relation that dPi,2i(q) < 1
C dX(y, q) ≤ 2

C dPi,2i(y).
Case 3: y ∈ Pi−1 and dPi−1,2i−1(y) > dPi,2i(y). The second part implies that at least

one of the 2i−1 nearest neighbors of y in Pi does not belong to Pi−1. Let z be such a
point. Note that dX(y, z) ≤

√
2dPi,2i(y) by Lemma 16. For point z, we can apply the

second case and therefore, there exists p ∈ P0 such that

dX(p, y) ≤ dX(p, z) + dX(z, y)

≤
(

κ

5 +
√

2
+ 2
)
dPi,2i(z) +

√
2dPi,2i(y)

≤
(

κ

5 +
√

2
+ 2
)(

dPi,2i(y) + dX(z, y)
)

+
√

2dPi,2i(y)

≤
((

κ

5 +
√

2
+ 2
)

(1 +
√

2) +
√

2
)
dPi,2i(y) ≤ κdPi,2i(y) J

Putting everything together. A repeated application of Lemma 17 (with weak uniformity)
guarantees that Pi0+1 is a weak uniform (ε2i0+1 , 2)-noisy sample of K. One more application
(with uniformity) provides that Pi0 is a uniform (ε2i0 , 2)-noisy sample of K. Thus, Lemma 18
implies that dH(Pi0−1,K) ≤ (87 + 16

√
2)ε2i0 . Notice that P0 ⊂ Pi0−1 and thus for any

p ∈ P0, dX(p,K) ≤ (87 + 16
√

2)ε2i0 .
To show the other direction, consider any point x ∈ K. Since Pi0 is a uniform (ε2i0 , 2)-

noisy sample of K, there exists y ∈ Pi0 such that dX(x, y) ≤ ε2i0 and dPi0 ,2i0 (y) ≤ 2ε2i0 .
Applying Lemma 19, there exists p ∈ P0 such that dX(y, p) ≤ 18+17

√
2

2 ε2i0 . Hence dX(x, p) ≤(
18+17

√
2

2 + 1
)
ε2i0 ≤ (87 + 16

√
2)ε2i0 . The theorem then follows.

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:13

Figure 5 Experiment on a two dimensional manifold in three dimensions. From left to right, the
ground truth, the noisy adaptively sampled input, output of two intermediate steps of the algorithm,
and the final result.

5 Preliminary experimental results

We now present some preliminary experimental results for the two denoising algorithms
developed in this paper. See Appendix E of the full version [6] for more results.

In Figure 5, we show different stages of the ParfreeDeclutter algorithm on an input
with adaptively sampled points. Even though for the parameter-free algorithm, theoretical
guarantees are only provided for uniform samples, we note that it performs well on this
adaptive case as well.

A second example is given in Figure 6. Here, the input data is obtained from a set of noisy
GPS trajectories in the city of Berlin. In particular, given a set of trajectories (each modeled
as polygonal curves), we first convert it to a density field by KDE (kernel density estimation).
We then take the input as the set of grid points in 2D where every point is associated with
a mass (density). Figure 6(a) shows the heat-map of the density field where light color
indicates high density and blue indicates low density. In (b) and (c), we show the output of
our Declutter algorithm (the ParfreeDeclutter algorithm does not provide good results as the
input is highly non-uniform) for k = 40 and k = 75 respectively. In (d), we show the set
of 40% points with the highest density values. The sampling of the road network is highly
non-uniform. In particular, in the middle portion, even points off the roads have very high
density due to noisy input trajectories. Hence a simple thresholding cannot remove these
points and the output in (d) fills the space between roads in the middle portion; however
more aggressive thresholding will cause loss of important roads. Our Declutter algorithm
can capture the main road structures without collapsing nearby roads in the middle portion
though it also sparsifies the data.

In another experiment, we apply the denoising algorithm as a pre-processing for high-
dimensional data classification. Here we use MNIST data sets, which is a database of
handwritten digits from ’0’ to ’9’. Table 1 shows the experiment on digit 1 and digit 7. We
take a random collection of 1352 images of digit ’1’ and 1279 images of digit ’7’ correctly
labeled as a training set, and take 10816 images of digit 1 and digit 7 as a testing set. Each
of the image is 28 × 28 pixels and thus can be viewed as a vector in R784. We use the L1
metric to measure distance between such image-vectors. We use a linear SVM to classify the
10816 testing images. The classification error rate for the testing set is 0.6564% shown in the
second row of Table 1.

SoCG 2017

23:14 Declutter and Resample: Towards Parameter Free Denoising

(a) (b) (c) (d)

Figure 6 (a) The heat-map of a density field generated from GPS traces. There are around 15k
(weighted) grid points serving as an input point set. The output of Algorithm Declutter when (b)
k = 40 and (c) k = 75, (d) thresholding of 40% points with the highest density.

Table 1 Results of denoising on digit 1 and digit 7 from the MNIST.

1 Error(%)
2 Original # Digit 1 1352 # Digit 7 1279 0.6564

3 Swap. Noise # Mislabelled 1 270 # Mislabelled 7 266 4.0957
4 Digit 1 Digit 7
5 # Removed # True Noise # Removed # True Noise
6 L1 Denoising 314 264 17 1 2.4500

7 Back. Noise # Noisy 1 250 # Noisy 7 250 1.1464
8 Digit 1 Digit 7
9 # Removed # True Noise # Removed # True Noise
10 L1 Denoising 294 250 277 250 0.7488

Next, we artificially add two types of noises to input data: the swapping-noise and the
background-noise. The swapping-noise means that we randomly mislabel some images of ‘1’
as ’7’, and some images of ‘7’ as ’1’. As shown in the third row of Table 1, the classification
error increases to about 4.096% after such mislabeling in the training set.

Next, we apply our ParfreeDeclutter algorithm to this training set with added swapping-
noise (to the set of images with label ’1’ and the set with label ’7’ separately) to first clean
up the training set. As we can see in Row-6 of Table 1, we removed most images with a
mislabeled ‘1’ (which means the image is ’7’ but it is labeled as ’1’). A discussion on why
mislabeled ‘7’s are not removed is given in the full version [6]. We then use the denoised
dataset as the new training set, and improved the classification error to 2.45%.

The second type of noise is the background noise, where we replace the black backgrounds
of a random subset of images in the training set (250 ‘1’s and 250 ‘7’s) with some other
grey-scaled images. Under such noise, the classification error increases to 1.146%. Again, we
perform our ParfreeDeclutter algorithm to denoise the training sets, and use the denoised
data sets as the new training set. The classification error is then improved to 0.7488%. More
results on the MNIST data sets are reported in the full version [6].

6 Discussions

Parameter selection is a notorious problem for many algorithms in practice. Our high level
goal is to understand the roles of parameters in algorithms for denoising, how to reduce their
use and what theoretical guarantees do they entail. While this paper presented some results

M. Buchet, T. K. Dey, J. Wang, and Y. Wang 23:15

towards this direction, many interesting questions ensue. For example, how can we further
relax our sampling conditions, making them allow more general inputs, and how to connect
them with other classical noise models?

We also note that while the output of ParfreeDeclutter is guaranteed to be close to the
ground truth w.r.t. the Hausdorff distance, this Hausdorff distance itself is not estimated.
Estimating this distance appears to be difficult. We could estimate it if we knew the correct
scale, i.e. i0, to remove the ambiguity. Interestingly, even with the uniformity condition, it is
not clear how to estimate this distance in a parameter free manner.

We do not provide guarantees for the parameter-free algorithm in an adaptive setting
though the algorithm behaved well empirically for the adaptive case too. A partial result is
presented in Appendix B of the full version [6], but the need for a small εk in the conditions
defeat the attempts to obtain a complete result.

The problem of parameter-free denoising under more general sampling conditions remains
open. It may be possible to obtain results by replacing uniformity with other assumptions,
for example topological assumptions: say, if the ground truth is a simply connected manifold
without boundaries, can this help to denoise and eventually reconstruct the manifold?

Acknowledgments. We thank Ken Clarkson for pointing out the result in [8].

References
1 N. Amenta and M. Bern. Surface reconstruction by voronoi filtering. Discr. Comput. Geom.,

22:481–504, 1999.
2 G. Biau et al. A weighted k-nearest neighbor density estimate for geometric inference.

Electronic Journal of Statistics, 5:204–237, 2011.
3 J.-D. Boissonnat, L. J. Guibas, and S.Y. Oudot. Manifold reconstruction in arbitrary

dimensions using witness complexes. Discr. Comput. Geom., 42(1):37–70, 2009.
4 M. Buchet. Topological inference from measures. PhD thesis, Paris 11, 2014.
5 M. Buchet, F. Chazal, T.K. Dey, F. Fan, S.Y. Oudot, and Y. Wang. Topological analysis

of scalar fields with outliers. In Proc. 31st Sympos. Comput. Geom., pages 827–841, 2015.
6 M. Buchet, T.K. Dey, J. Wang, and Y. Wang. Declutter and resample: Towards parameter

free denoising. arXiv version of this paper: arXiv 1511.05479, 2015.
7 C. Caillerie, F. Chazal, J. Dedecker, and B. Michel. Deconvolution for the wasserstein

metric and geometric inference. In Geom. Sci. Info., pages 561–568. 2013.
8 T.-H.H. Chan, M. Dinitz, and A. Gupta. Spanners with slack. In Euro. Sympos. Algo.,

pages 196–207, 2006.
9 F. Chazal, D. Cohen-Steiner, and A. Lieutier. A sampling theory for compact sets in

Euclidean space. Discr. Comput. Geom., 41(3):461–479, 2009.
10 F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Geometric inference for probability measures.

Found. Comput. Math., 11(6):733–751, 2011.
11 D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.

IEEE Trans. Pattern Anal. Machine Intelligence, 24(5):603–619, 2002.
12 T.K. Dey, Z. Dong, and Y. Wang. Parameter-free topology inference and sparsification for

data on manifolds. In Proc. ACM-SIAM Sympos. Discr. Algo., pages 2733–2747, 2017.
13 T.K. Dey, J. Giesen, S. Goswami, and W. Zhao. Shape dimension and approximation from

samples. Discr. Comput. Geom., 29:419–434, 2003.
14 D.L. Donoho. De-noising by soft-thresholding. IEEE Trans. Info. Theory., 41(3):613–627,

1995.
15 C.R. Genovese et al. On the path density of a gradient field. The Annal. Statistics,

37(6A):3236–3271, 2009.

SoCG 2017

23:16 Declutter and Resample: Towards Parameter Free Denoising

16 V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelli-
gence Review, 22(2):85–126, 2004.

17 H. Jiang and S. Kpotufe. Modal-set estimation with an application to clustering. arXiv
preprint arXiv:1606.04166, 2016.

18 A. Meister. Deconvolution problems in nonparametric statistics. Lecture Notes in Statistics.
Springer, 2009.

19 U. Ozertem and D. Erdogmus. Locally defined principal curves and surfaces. J. Machine
Learning Research, 12:1249–1286, 2011.

20 B.W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC
press, 1986.

21 J. Zhang. Advancements of outlier detection: A survey. EAI Endorsed Trans. Scalable
Information Systems, 1(1):e2, 2013.

Ham Sandwich is Equivalent to Borsuk-Ulam
Karthik C. S.∗1 and Arpan Saha†2

1 Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Israel
karthik.srikanta@weizmann.ac.il

2 Department of Mathematics, University of Hamburg, Germany
arpan.saha@studium.uni-hamburg.de

Abstract
The Borsuk-Ulam theorem is a fundamental result in algebraic topology, with applications to
various areas of Mathematics. A classical application of the Borsuk-Ulam theorem is the Ham
Sandwich theorem: The volumes of any n compact sets in Rn can always be simultaneously
bisected by an (n− 1)-dimensional hyperplane.

In this paper, we demonstrate the equivalence between the Borsuk-Ulam theorem and the
Ham Sandwich theorem. The main technical result we show towards establishing the equivalence
is the following: For every odd polynomial restricted to the hypersphere f : Sn → R, there exists
a compact set A ⊆ Rn+1, such that for every x ∈ Sn we have f(x) = vol(A∩H+)−vol(A∩H−),
where H is the oriented hyperplane containing the origin with ~x as the normal. A noteworthy
aspect of the proof of the above result is the use of hyperspherical harmonics.

Finally, using the above result we prove that there exist constants n0, ε0 > 0 such that for
every n ≥ n0 and ε ≤ ε0/

√
48n, any query algorithm to find an ε-bisecting (n − 1)-dimensional

hyperplane of n compact sets in [−n4.51, n4.51]n, even with success probability 2−Ω(n), requires
2Ω(n) queries.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, Geometrical prob-
lems and computations

Keywords and phrases Ham Sandwich theorem, Borsuk-Ulam theorem, Query Complexity, Hy-
perspherical Harmonics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.24

1 Introduction

The Borsuk-Ulam theorem states that every continuous function from an n-sphere into
Euclidean n-space maps some pair of antipodal points to the same point [6]. This result
has countless applications in Mathematics [21]. In particular it implies the Brouwer’s Fixed
Point Theorem [7, 16] which is the basis of several important results in Economics [5], for
example Nash’s theorem [23]. Soon after the Borsuk-Ulam theorem was established, the
Ham Sandwich theorem was proven using it [28, 29]. The Ham Sandwich theorem states
that the volumes of any n compact sets in Rn can always be simultaneously bisected by an
(n− 1)-dimensional hyperplane. However, as far as we know, there is no result in previous
literature establishing the equivalence of the Borsuk-Ulam theorem and the Ham Sandwich
theorem.

∗ This work was partially supported by Irit Dinur’s ISF-UGC 1399/14 grant.
† This work was partially supported by the Research Training Group 1670.

© Karthik C. S. and Arpan Saha;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Ham Sandwich is Equivalent to Borsuk-Ulam

From a computational perspective, the computation of Brouwer fixed points has been
studied extensively in various models of computations such as the Time/Computational
complexity model [24, 12, 10, 9, 26, 27], the Query complexity model [18, 8, 11, 3, 27], and the
Communication model [25, 4]. From these results one may obtain a reasonable understanding
of the problem of computing equally valued antipodal points in a Borsuk-Ulam function
by utilizing the constructive reduction from the Brouwer fixed point computation problem
[30, 32]. However, computational aspects of the Ham Sandwich theorem have been poorly
understood. In particular, no hardness result or non-trivial lower bounds in any model of
computation are known in literature for the Ham Sandwich problem.

In this paper, we prove that the Borsuk-Ulam theorem and the Ham Sandwich theorem
are indeed equivalent! Moreover, we use this equivalence to prove a query complexity lower
bound on the Ham Sandwich problem.

1.1 Our Results

Our main result is a reduction from the Borsuk-Ulam theorem to the Ham Sandwich theorem.
A key result in establishing the above reduction is that of establishing the equivalence between
the two theorems for polynomial functions:

I Proposition 1. For every polynomial f : Sn → Rn restricted to the hypersphere, there
exist n compact sets A1, . . . , An ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], we have the
following:

fi(x)− fi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−),

where fi(x) is the projection of f(x) to the ith coordinate, and H is the oriented hyperplane
containing the origin with ~x as the normal.

After establishing the above result, we use the Stone-Weierstrass theorem to note that
any continuous function can be arbitrarily well approximated by polynomial functions, and
prove the Borsuk-Ulam theorem for all continuous functions.

Next, we consider the Ham Sandwich problem in the query model: the input to the
problem is n compact sets A1, . . . , An ⊆

[
−nk, nk

]n, for some constant k > 0, and each query
is an oriented hyperplane H and the answer is vol(Ai ∩H+)− vol(Ai ∩H−), for all i ∈ [n].
The goal is to find a (n− 1)−dimensional hyperplane H such that each set is ε-bisected by
H, i.e., for all i ∈ [n], we have |vol(Ai ∩H+)− vol(Ai ∩H−)| ≤ ε. We show the following
lower bound for the Ham Sandwich problem:

I Theorem 2. There exist constants n0, ε0 > 0 such that for any n ≥ n0, ε ≤ ε0/
√

48n,
p = 2−Ω(n), and k ≥ 4.51 the following holds: any query algorithm to find an ε-bisecting
(n− 1)-dimensional hyperplane of n compact sets in

[
−nk, nk

]n, even with success probability
p, requires 2Ω(n) queries.

By assuming a notion of Lipschitz continuity, we can show that the number of queries
needed to compute an ε−bisecting hyperplane is 2O(n logn) by querying translations of
hyperplanes over

[
−nk, nk

]n whose normals form an O(ε)-net over Sn. Thus, the above
lower bound is tight up to logarithmic multiplicative factor in the exponent. Furthermore,
we remark here that Theorem 2 is the first nontrivial lower bound for the Ham Sandwich
problem in any model of computation.

Karthik C. S. and A. Saha 24:3

1.2 Our Techniques and Proof Overview
We provide below a proof-sketch of the reduction from the Borsuk-Ulam theorem to the
Ham Sandwich theorem. The basic idea is to find for a given continuous odd function on Sn
taking values in R, a compact measurable set in Rn+1, such that the given function is the
difference of volumes of the set on the positive and negative side of an oriented hyperplane
through the origin. This makes sense as the oriented hyperplanes through the origin are
parametrised by Sn on which its positive unit normal takes values, so we actually get a
continuous odd function on Sn. Then an oriented hyperplane bisects the set if and only if
the given odd function vanishes at the point on Sn corresponding to the positive unit normal
of the hyperplane. In particular, if we have have an odd continuous function from Sn to Rn,
we can make the above argument for every component. Then an oriented hyperplane bisects
the sets if and only if the given odd function taking values in Rn vanishes at the point on Sn
corresponding to the positive unit normal of the hyperplane.

A compact measurable set may be constructed by starting with a solid (n+1)-dimensional
ball of unit radius centred at the origin and then radially scaling it by a continuous function
on Sn taking values in R that is positive everywhere. Then the volume contained in a solid
angle sector would be given by integrating an expression proportional to the (n + 1)-th
power of the scaling function over the region on Sn corresponding to the solid angle sector.
Thus the difference of volumes on either side of a hyperplane is related to the (n + 1)-th
power of the scaling function by a linear integral transform. It turns out that this linear
map becomes diagonal in the basis of hyperspherical harmonics and in order to invert this
integral transform we work in this basis.

Since the basis is infinite-dimensional, there may be issues with convergence. We tackle
this by first constructing the inverse transform for functions that are restrictions of polynomial
functions on Rn+1 to Sn (see Proposition 1), since in these cases, only finitely many elements
in the basis suffice. This means that the reduction of Borsuk-Ulam theorem to the Ham
Sandwich theorem holds for all functions that are restrictions of polynomial functions on Rn+1

to Sn. And then we use the Stone-Weierstrass theorem, which states that any continuous
function on [−1, 1]n+1 may be uniformly approximated using polynomial functions, to extend
the reduction to all continuous functions on Sn.

In order to prove Theorem 2, we start from the randomized query complexity lower
bound recently obtained by Rubinstein [27] (building on the works of Hirsch et al. [18] and
Babichenko [3]) for the computation of approximate fixed points in a Brouwer function in the
Euclidean norm. We then show that computing approximately equal-valued antipodal points
in the query model is as hard as computing approximate fixed points in a Brouwer function
by using Su’s constructive proof of the Brouwer fixed point theorem from the Borsuk-Ulam
theorem [30]. Finally, we use multivariate Bernstein polynomials to approximate the Borsuk-
Ulam function and construct an input of the Ham Sandwich problem from Proposition 1 to
obtain the randomized query complexity lower bound for the Ham-Sandwich problem.

1.3 Related Works
Papadimitriou considered the Ham Sandwich problem in the computational complexity
model: given 2n2 points in general position in Rn, separated into n groups with 2n points
each, find a hyperplane which divides all groups in half. Papadimitriou showed that this
search problem is in the complexity class PPA [24, 1]. However, no hardness result is known
for this problem. On the other hand, there are many algorithms proposed in literature
to solve this problem [13, 20, 33]. In particular, the best known algorithm for finding a

SoCG 2017

24:4 Ham Sandwich is Equivalent to Borsuk-Ulam

hyperplane simultaneously bisecting n point-sets A1, . . . , An in Rd, is O
(
|A|d−1) [20], where

A =
⋃
i∈[n]

Ai.

A variant of the Ham-Sandwich problem was considered by Knauer et al.: Given d+ 1
point-sets in Rd, is there a hyperplane which simultaneously bisects all the point-sets? They
showed that this decision problem is NP-hard and W[1]-hard (with respect to d) [19], even
when one of the point-sets is just a single point. However, it is not easy to construct a
meaningful decision version of the Ham Sandwich problem because of its totality.

1.4 Organization of the Paper
This paper is organized as follows. In Section 2, we introduce the notations used in the rest
of the paper, provide some key results about hyperspherical harmonics, and formally describe
the query model of computation. In Section 3, we provide the complete reduction from the
Borsuk-Ulam theorem to the Ham Sandwich theorem. In Section 4, we prove the randomized
query complexity lower bound for the Ham Sandwich problem. Finally, in Section 5, we
conclude by highlighting some open directions for future research.

2 Preliminaries

We formally state the two theorems of interest to this paper.

I Theorem 3 (Borsuk-Ulam Theorem, [6]). Let Sn denote the set of all points on the unit
n-dimensional sphere. If n ≥ 0 then for any continuous mapping f : Sn → Rn there is a
point x ∈ Sn for which f(x) = f(−x).

I Theorem 4 (Ham Sandwich Theorem, [28, 29]). Given n compact sets in Rn there is a
(n− 1)-dimensional hyperplane which bisects each set into two sets of equal measure.

Below, we list some notations and standard definitions that are used through out the
paper.

2.1 Notations
The Lp norm of a vector x ∈ Rn is defined in the standard way as follows:

‖x‖p =

∑
i∈[n]

|xi|p
1/p

.

Moreover, we define Sn = {x ∈ Rn+1 | ‖x‖2 = 1}, Sn∞ = {x ∈ Rn+1 | ‖x‖∞ = 1}, and
Bn = {x ∈ Rn | ‖x‖2 ≤ 1}.

A hyperplane in Rn+1 is the set of solutions of an equation of the form

a0 +
n+1∑
i=1

aixi = 0.

The unit normals of the hyperplane are the vectors ±(a1, a2, . . . , an+1). A choice of one of
the two possible unit normals is said to be an orientation on the hyperplane which is referred
to as being oriented and the chosen unit normal as the positive unit normal (the other one is
said to be the negative unit normal).

The volume of a compact set, assumed to be measurable, is simply its measure.

Karthik C. S. and A. Saha 24:5

2.2 Hyperspherical Harmonics
We gather together some definitions and results we need regarding hyperspherical harmonics.

I Definition 5. A polynomial H`(x1, x2, . . . , xn+1) is homogeneous of degree ` in the n +
1 variables x1, x2, ..., xn+1 provided H`(tx1, tx2, ..., txn+1) = t`H`(x1, x2, ..., xn+1) . The
Laplace operator in Rn+1 is given by ∆n+1 :=

∑n+1
i=1

∂2

∂x2
i
. H`(x1, x2, . . . , xn+1) is called

harmonic if ∆n+1H`(x1, x2, . . . , xn+1) = 0. A hyperspherical harmonic of degree `, denoted
Y

(n+1)
` (ξ), is a harmonic homogeneous polynomial of degree ` in n+ 1 variables restricted to
Sn.

I Claim 6. The dimension of the vector space of hyperspherical harmonics of degree ` on
Sn is M(n, `) where,

M(n, `) =
{

1 if ` = 0,
2`+n−1

`

(
`+n−2
`−1

)
if ` > 0.

Proof. See Theorem 4.4 in [14]. J

I Definition 7. Let Vn+1 be the set of all n+ 1-variate polynomials over R restricted to Sn.

I Claim 8. Vn+1 is an inner product space, with addition and scaling defined for any two
polynomials f, g : Sn → R which are restricted to the n-sphere as follows:

(f + g)(x) = f(x) + g(x),
∀α ∈ R, (α · f)(x) = α · f(x),

〈f, g〉 =
∫
x∈Sn

f(x) · g(x) dx.

Proof. A linear combination of two polynomials is another polynomial. Furthermore, from
the definition of the inner product, it is clear that 〈f, g〉 is symmetric under interchange of
f and g and bilinear. To prove nondegenerateness, we shall show that 〈f, f〉 > 0 whenever
f is not identically zero. Assume that f is not identically zero. Then there must be point
x′ ∈ Sn such that f(x) 6= 0. Because f is continuous there must be an open neighbourhood
around this point such that f2 is positive at all points in the neighbourhood. The integral of
f2 over this neighbourhood is therefore positive and since the integral of f2 ≥ 0 over the
rest of the sphere has to be at least zero, it follows 〈f, f〉 > 0. This completes the proof. J

I Definition 9. For n ≥ 2 and each degree `, the set
{
Y

(n+1)
`,m

∣∣∣∣m ∈ [M(n, `)]
}

is a fixed

orthonormal basis for the vector space of hyperspherical harmonics of degree ` on Sn.

I Claim 10. For every n ≥ 2, and d ∈ Z≥0, the set
{
Y

(n+1)
`,m

∣∣∣∣` ∈ Z≥0, ` ≤ d,m ∈ [M(n, `)]
}

is an orthonormal set spanning all f ∈ Vn+1 of total degree d.

Proof. Since every polynomial can be written as a finite sum of homogeneous polynomials
of various degrees, it suffices to prove the above for the case where f is the restriction of a
homogeneous polynomial f̃ of degree d to Sn. By Theorem 2.18 in [2], we note that there is
a unique decomposition as follows,

f̃(x1, . . . , xn+1) =
bd/2c∑
i=0

Hd−2i(x1, . . . , xn+1)

n+1∑
j=1

x2
j

i

,

SoCG 2017

24:6 Ham Sandwich is Equivalent to Borsuk-Ulam

where H` is a harmonic homogeneous polynomial of degree `. Restricting to Sn gives the
following:

f =
bd/2c∑
i=0

Hd−2i|Sn .

The restriction H`|Sn is a hyperspherical harmonic of degree ` and so is a (finite) linear
combination of the functions Y (n+1)

`,m where m varies over [M(n, `)]. It follows that f is
a (finite) linear combination of hyperspherical harmonics of degree at most d. Finally,
orthonormality follows from Definition 9 above and Theorem 4.6 in [14]. J

I Lemma 11. For every n ≥ 2, and for any odd function f in Vn+1, let it be written as
follows:

f =
∑
`∈Z≥0

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m .

Then, for every even integer `, we have that α`,m = 0.

Proof. Since f is assumed to be odd, we have that f(x) + f(−x) = 0 for all x ∈ Sn. Since
the sum in the hyperspherical harmonic decomposition of f is finite, we may rearrange the
terms to have

0 =
∑

`∈Zeven
≥0

M(n,`)∑
m=1

α`,m · (Y (n+1)
`,m (x) + Y

(n+1)
`,m (−x))

+
∑
`∈Zodd
≥0

M(n,`)∑
m=1

α`,m · (Y (n+1)
`,m (x) + Y

(n+1)
`,m (−x))

= 2
∑

`∈Zeven
≥0

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m (x) .

Now, for any `′ ∈ Zeven
≥0 , we may multiply the above equation by Y (n+1)

`′,m (x) on both sides
and integrate over Sn so that, by virtue of Claim 10 we have 0 = 2α`′,m. Since `′ ∈ Zeven

≥0
was arbitrary , the result to be proved follows. J

I Definition 12. Let the sign function sgn on the interval [−1, 1] be defined as follows.

∀ξ ∈ [−1, 1], sgn(ξ) =

−1 if ξ < 0,
0 if ξ = 0,
1 if ξ > 0.

I Definition 13. For every ` ∈ Z≥0, n ≥ 2, and ξ ∈ [−1, 1], P (n+1)
` (ξ) is the `th-Gegenbauer

polynomial in n+ 1 dimensions defined as follows:

P
(n+1)
` (ξ) = (−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)
(1− ξ2)(2−n)/2

(
d
dξ

)`
(1− ξ2)`+(n−2)/2.

Karthik C. S. and A. Saha 24:7

I Theorem 14 (Funk-Hecke theorem, [15, 17]). Let x ∈ Sn, f : [−1, 1] → R a bounded
measurable function, and Y (n+1)

` a hyperspherical harmonic polynomial of degree `. Then,∫
y∈Sn

f(〈x, y〉)Y (n+1)
` (y) dy = sn−1Y

(n+1)
` (x) ·

∫ 1

−1
f(t)P (n+1)

` (t)(1− t)n/2−1 dt,

where sn−1 is the volume of the (n− 1)-sphere, i.e., Sn−1.

Proof. See Theorem 4.24 in [14]. J

I Lemma 15. Let x ∈ Sn, f : [−1, 1] → R a bounded measurable function, and Y (n+1)
` a

hyperspherical harmonic polynomial of odd degree `. Then,

Y
(n+1)
` (x) = n

2sn−1
·

(`−1)/2

Π
i=1

(`− 2i+ n+ 1)
(`−1)/2

Π
i=1

(`− 2i)

∫
y∈Sn

sgn(〈x, y〉) · Y (n+1)
` (y) dy.

Proof. Plugging in the sign function in Theorem 14, gives us:∫
y∈Sn

sgn(〈x, y〉)Y (n+1)
` (y) dy = sn−1Y

(n+1)
` (x) ·

∫ 1

−1
sgn(t)P (n+1)

` (t)(1− t)n/2−1 dt.

So it remains to evaluate the below when ` is odd:∫ 1

−1
sgn(t)P (n+1)

` (t)(1− t)n/2−1 dt.

We plug in Definition 13 into the above∫ 1

−1

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt.

When ` is odd, the function under the integral is even, so we have:∫ 1

−1

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt

= 2
∫ 1

0

sgn(t)(−1)`

2` ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt

=
∫ 1

0

(−1)`

2`−1 ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`
(1− t2)`+(n−2)/2dt.

The term under the integral is a total derivative, so the integral may be simplified to (−1)`

2`−1 ·
`−1

Π
i=0

(`+ (n− 2)/2− i)

(
d
dt

)`−1
(1− t2)`+(n−2)/2

t=1

t=0

.

SoCG 2017

24:8 Ham Sandwich is Equivalent to Borsuk-Ulam

Note that `+ (n− 2)/2 = (`− 1) + (n+ 2− 2)/2, so we may again use Definition 13 to write
the above as[

− 1
n/2 · (1− t

2)n/2 · P (n+3)
`−1 (t)

]t=1

t=0
.

When t = 1, the expression inside the square brackets vanishes. So all we are left with is
(2/n) · P (n+3)

`−1 (0). The recurrence relation from Proposition 4.21 in [14] tells us that for all
` ≥ 1 we have

(`− 1 + n) · P (n+3)
`−1 (0) + (`− 2) · P (n+3)

`−3 (0) = 0.

This, along with the observation that P (n+3)
0 (0) = 1 may be used to determine P (n+3)

`−1 (0) to
be

P
(n+3)
`−1 (0) =

(`−1)/2

Π
i=1

(`− 2i)
(`−1)/2

Π
i=1

(`− 2i+ n+ 1)

.

This completes the proof. J

2.3 Query Model
In this paper, we refer to the query model as described in [3]: every problem is specified by
the allowed possible inputs, the desired outputs, and the queries which are specified types of
questions that can be asked and by the answers that are provided. A query algorithm, is a
procedure that asks queries in an adaptive manner and generates an output for every input.
For this paper, a highly relevant remark is that there is no computational constraints on the
way the query algorithm generates the next query or the output, given the previous answers.

For randomized query algorithms, errors are allowed in the output. To be precise, we
require that for all inputs, the answer is correct only with probability p < 1. The randomized
query complexity of a problem is the minimal number t such that given an input there exists
a randomized query algorithm that makes at most t queries and outputs the correct answer
with probability p. We denote the randomized query complexity of a problem Π by QCp(Π).
As noted by Babichenko [3] this measure of randomized query complexity is closely related
to another measure: the expected number of queries for outputting the correct answer with
probability p. Therefore, any lower bounds on QCp(Π) can be easily translated to lower
bounds on the expected number of queries.

3 Equivalence of Ham Sandwich and Borsuk-Ulam Theorems

In this section, we give the reduction from the Borsuk-Ulam theorem to the Ham Sandwich
theorem. First, we show the reduction for polynomials restricted to the hypersphere.

I Proposition 1. For every polynomial f : Sn → Rn restricted to the hypersphere, there
exist n compact sets A1, . . . , An ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], we have the
following:

fi(x)− fi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−),

where fi(x) is the projection of f(x) to the ith coordinate, and H is the oriented hyperplane
containing the origin with ~x as the normal.

Karthik C. S. and A. Saha 24:9

Proof. We consider n projection functions of f : f1, . . . , fn : Sn → R. Let di be the total
degree of fi. For every i ∈ [n] we define gi(x) = fi(x)− fi(−x). Note that the gis are odd
functions. We define below n new functions h1, . . . , hn : Sn → R from the gis. For every
i ∈ [n], from hi, we construct Ai as follows:

Ai =
{
k · (hi(x1, ..., xn+1) · x1, . . . , hi(x1, ..., xn+1) · xn+1)

∣∣∣(x1, ..., xn+1) ∈ Sn, 0 ≤ k ≤ 1
}
.

Note that we can define the volume of Ai as follows:

vol(Ai) =
∫
y∈Sn

(hi(y))n+1/(n+ 1) dy. (1)

We will now define the his. We fix i ∈ [n]. From Claim 10, we have that gi can be written as
a linear combination of the hyperspherical harmonics.

gi =
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m . (2)

Note that in the above decomposition of gi into hyperspherical harmonics, we have that only
the odd spherical harmonics appear in the support (from Lemma 11). Next, we define a
couple of constants (depending on ` and m). For every ` ∈ Zodd

≥0 , where ` ≤ di, we have,

γ` = n

2sn−1
·

(`−1)/2

Π
i=1

(`− 2i+ n+ 1)
(`−1)/2

Π
i=1

(`− 2i)

,

β`,m = α`,m · γ` · (n+ 1), (3)

where sn is the volume of the n-sphere Sn. Let Γi : Sn → R be a function defined as follows:

Γi =
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m · Y (n+1)
`,m . (4)

Note that Γi is well defined because f is a polynomial function, which implies gi is a
polynomial function. We have the following bound on Γi:

I Claim 16. Let ψi = max
x∈Sn

|Γi(x)|. Then,

ψi < (n+ 1)(n+7)/2 · (di + 1)3/2 ·
(

1 + di
n

)n
· max
x∈Sn

|gi(x)|.

Finally, we define hi as follows:

hi = n+1
√

(Γi + ψi + 1), (5)

This completes the construction of the n compact sets A1, . . . , An. Fix i ∈ [n]. Let H
be some n-dimensional (oriented) hyperplane containing the origin and let xH be the unit
normal of H.

vol(Ai ∩H+)− vol(Ai ∩H−) = 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · (hi(y))n+1 dy (From (1))

SoCG 2017

24:10 Ham Sandwich is Equivalent to Borsuk-Ulam

= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · (Γi(y) + ψi + 1) dy (From (5))

= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) · Γi(y) dy

= 1
(n+ 1) ·

∫
y∈Sn

sgn(〈xH , y〉) ·

 ∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m · Y (n+1)
`,m (y)

 dy (From (4))

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m ·
1

(n+ 1) ·
∫
y∈Sn

sgn(〈xH , y〉) · Y (n+1)
`,m (y) dy

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

β`,m/γ` ·
1

(n+ 1) · Y
(n+1)
`,m (xH) (From Lemma 15)

=
∑
`≤di,

`∈Zodd
≥0 .

M(n,`)∑
m=1

α`,m · Y (n+1)
`,m (xH) (From (3))

= gi(xH) = fi(xH)− fi(−xH) (From (2))

This completes the proof. J

Below we provide the complete reduction from the Borsuk-Ulam theorem to the Ham
Sandwich theorem.

I Theorem 17 (Theorem 3 restated for n ≥ 3). For every n ≥ 3, if f : Sn → Rn is continuous
then there exists an x ∈ Sn such that, f(−x) = f(x).

Proof. Given a continuous function fi : Sn → R we may use the Tietze Extension Theorem
to extend it to a continuous function f̃i on [−1, 1]n+1 and then use the Stone-Weierstrass
theorem to note that for any real ε > 0 we may find an (n+ 1)-variate polynomial function
pi such that |f̃i(x) − pi(x)| < ε for all x := (x1, . . . , xn+1) ∈ [−1, 1]n+1. In particular
|f(x)− p(x)| < ε for all x ∈ Sn.

By Proposition 1, we know that there exist n compact sets A1, . . . , An ⊆ Rn+1, such that
for every x ∈ Sn and i ∈ [n], we have pi(x)− pi(−x) = vol(Ai ∩H+)− vol(Ai ∩H−) where
x is the unit normal of the oriented hyperplane H. We introduce another compact set An+1
which is a closed ball centred at the origin, so that any hyperplane bisecting its volume has
to necessarily pass through the origin.

By the Ham Sandwich Theorem, we know that there is an oriented hyperplane H ′ such
that vol(Ai ∩H ′+) = vol(Ai ∩H ′−) for all i ∈ [n+ 1], which is to say, there is an oriented
hyperplane H ′ through the origin such that vol(Ai ∩H ′+) = vol(Ai ∩H ′−) for all i ∈ [n].
But this means that pi(x′)− pi(−x′) = 0 for all i ∈ [n] (where x′ is the unit normal of H ′),
and so |fi(x′)− fi(−x′)| < 2ε for all i ∈ [n]. The map x 7→ |fi(x)− fi(−x)| where x ∈ Sn is
continuous and defined on a compact domain. So it must attain a minimum value somewhere,
which is nonnegative. But we have already shown that |fi(x)− fi(−x)| < 2ε for all ε > 0
and i ∈ [n]. It follows that the minimum value attained by this map is 0 (simultaneously
for all i ∈ [n]). Let it be attained at x′′ ∈ Sn. Then f(x′′) = f(−x′′). This completes the
proof. J

Karthik C. S. and A. Saha 24:11

4 Query Complexity Lower Bounds

In this section, we show query complexity lower bounds on the Ham Sandwich problem, by
using the connection established through Proposition 1.

4.1 Borsuk-Ulam problem in Query Model
The query complexity of computing an approximate fixed-point of a Brouwer function in the
max norm was studied by Hirsch et al. [18] in the deterministic setting. Recently, Babichenko
[3] extended their lower bounds to the randomized setting. Rubinstein [27], furthered this
direction to the case of fixed point computation in the Euclidean norm. Before stating the
result of Rubinstein, we formally define the approximate fixed point problem in the query
model as follows:

AFPQ(n, λ, ε) Problem:
Input: λ-Lipschitz function f : [−1, 1]n → [−1, 1]n.
Output: x ∈ [−1, 1]n such that ‖f(x)− x‖22 ≤ ε · n.
Queries: Each query is a point x ∈ [−1, 1]n and the answer is f(x).

We have the following lower bound on QCp(AFPQ(n, λ, ε)).

I Theorem 18 (Rubinstein [27]). There exist constants ε0, λ0, n0 > 0 such that for any
n ≥ n0, ε ≤ ε0, and λ ≥ λ0, and for p = 2−Ω(n) the following holds:

QCp(AFPQ(n, λ, ε)) = 2Ω(n).

Next, we define the approximate equally valued antipodal point problem in the query
model as follows:

AAPQ(n, λ, ε) Problem:
Input: λ-Lipschitz function f :

√
n+ 1 · Sn →

√
n ·Bn.

Output: x ∈ Bn such that ‖f(x)− f(−x)‖22 ≤ ε · n.
Queries: Each query is a point x ∈

√
n+ 1 · Sn and the answer is f(x).

We have the following lower bound on QCp(AAPQ(n, λ, ε)).

I Theorem 19. There exist constants ε0, n0 > 0 such that for any n ≥ n0, ε ≤ ε0/12n, and
λ ≥ 5

√
n, and for p = 2−Ω(n) the following holds:

QCp(AAPQ(n, λ, ε)) = 2Ω(n).

Proof. We show that QCp(AFPQ(n, λ, ε)) ≤ 2 · QCp

(
AAPQ (n, 5√n, ε2/12n

))
by using

the construction of Su [30]. We start from a λ-Lipschitz continuous function f : [−1, 1]n →
[−1, 1]n which is the input of AFPQ and have the following reduction to AAPQ.

Adopting Su’s Construction. Below, we describe the function gSu : Sn∞ → [−3, 3]n, con-
structed by Su to build an instance of Borsuk-Ulam by starting from an instance of Brouwer.
Let P be the projection function on to the first n coordinates. We define gSu as follows:

gSu(x1, . . . , xn+1) =

P (x)− f(P (x)) if xn+1 = 1,
P (x) + f(P (−x)) if xn+1 = −1,
P (x) + gSu (P (x),1)+gSu (P (x),−1)

2 if xn+1 = 0,
xn+1 · gSu(P (x), 1) + (1− xn+1) · gSu(P (x), 0) if 0 ≤ xn+1 ≤ 1,
−xn+1 · gSu(P (x),−1) + (1 + xn+1) · gSu(P (x), 0) if -1 ≤ xn+1 ≤ 0.

SoCG 2017

24:12 Ham Sandwich is Equivalent to Borsuk-Ulam

Using the above function, we can construct g :
√
n+ 1 · Sn → [−1, 1]n from gSu as follows:

∀x ∈
√
n+ 1 · Sn, g(x) = 1

3 · gSu

(
x

‖x‖∞

)
.

First, we observe that g is an odd function:

I Claim 20. For every x ∈
√
n+ 1 · Sn, we have g(x) = −g(−x).

Next, we compute the Lipschitz constant of g below.

I Claim 21. g is 5
√
n-Lipschitz continuous.

Furthermore, we note that we can obtain approximate fixed points of f from approximate
equally valued antipodal points of g in a natural way as follows.

I Claim 22. Fix x ∈
√
n+ 1 · Sn. If ‖g(x)− g(−x)‖22 ≤ (ε2/12n) · n then,∥∥∥∥f (P (x

‖x‖∞

))
− P

(
x

‖x‖∞

)∥∥∥∥2

2
≤ ε · n.

Finally, the proof follows by noting that in order to compute g at a point, we need to
query f in at most two points. J

Note that there is an easy deterministic query algorithm for AAPQ(n, λ, ε) which solves
it with

(
1 + 4λ√

ε

)n+1
queries by building an

√
ε

2λ -net (Lemma 5.2 in [31]). In other words we

have that QCp

(
AAPQ (n, λ, ε)

)
≤ 2O(n logn). Thus, the above lower bound is tight up to

logarithmic multiplicative factor in the exponent.
Finally, we define the problem of interest for this section below.

4.2 Ham Sandwich Problem in Query Model
The approximate bisecting hyperplane problem in the query model is defined as follows:

ABHQ(n, k, ε) Problem:
Input: n compact sets A1, . . . , An ⊆

[
−nk, nk

]n.
Output: (n − 1)-dimensional hyperplane H such that ∀i ∈ [n], |vol(Ai ∩ H+) −
vol(Ai ∩H−)| ≤ ε.
Queries: Each query is an oriented hyperplane H and the answer is vol(Ai ∩H+)−
vol(Ai ∩H−), for every i ∈ [n].

We have the following lower bound on QCp(ABHQ(n, k, ε)).

I Theorem 2. There exist constants n0, ε0 > 0 such that for any n ≥ n0, ε ≤ ε0/
√

48n,
p = 2−Ω(n), and k ≥ 4.51 the following holds: any query algorithm to find an ε-bisecting
(n− 1)-dimensional hyperplane of n compact sets in

[
−nk, nk

]n, even with success probability
p, requires 2Ω(n) queries.

Proof. We show QCp

(
AAPQ (n, 5√n, ε2/12n

))
≤ 2 ·QCp

(
ABHQ (n+ 1, 4.51, ε/

√
48n

))
by using Proposition 1. We start from a 5

√
n-Lipschitz continuous function f :

√
n+ 1 ·Sn →√

n ·Bn which is the input of AAPQ and have the following preprocessing step.

Karthik C. S. and A. Saha 24:13

Preprocessing Step. Fix i ∈ [n]. Let fi :
√
n+ 1 ·Sn → [−

√
n,
√
n] be the i-th component

of f which is 5
√
n-Lipschitz continuous. We define f ′i as follows: f ′i(x) = fi(

√
n+ 1 · x).

Note that f ′i is a function from Sn to
√
n ·Bn and is (

√
n+ 1 · 5

√
n)-Lipschitz continuous.

Now by the Tietze extension theorem f ′i may be extended to a continuous function f̃ ′i on
the cube [−1, 1]n+1 ⊃ Sn without increasing the Lipschitz constant [22]. Then from the
Stone-Weierstrass theorem we have that for any ε′ > 0 there is a polynomial function p̃i :
[−1, 1]n+1 → R such that |f̃ ′i(x)−p̃i(x)| ≤ ε′ for all x ∈ [−1, 1]n+1. Let pi be the restriction of
p̃i to Sn. So, we have a polynomial function pi : Sn → [−

√
n−ε/4

√
12n,

√
n+ε/4

√
12n] such

that for all x ∈ Sn, we have |f ′i(x)−pi(x)| ≤ ε/4
√

12n by setting ε′ = ε/4
√

12n. Furthermore,
we have that the degree of pi is O(n5) (using multivariate Bernstein polynomials).

Adopting Proposition 1. We have from Proposition 1, that there exist n compact sets
A′1, . . . , A

′
n ⊆ Rn+1, such that for every x ∈ Sn and i ∈ [n], pi(x)− pi(−x) = vol(A′i ∩H+)−

vol(A′i ∩H−), where H is the oriented hyperplane containing the origin with ~x as the normal.
Fix i ∈ [n]. From the construction in proof of Proposition 1, we have that Ai ⊆ [−h?i , h?i]n+1,
where h?i = max

x∈Sn
|hi(x)|. We have the following upper bound on h?i from Claim 16:

h?i = max
x∈Sn

|hi(x)| = max
x∈Sn

∣∣∣ n+1
√

Γi(x) + ψi + 1
∣∣∣ ≤ n+1

√
2ψi + 1

= O
(

n+1
√
ψi

)
= O

(
n+1
√

(n)(n+1)/2 · n+1√
n4n
)

= O
(√

n · n+1√
n4n
)

= O
(
n4.5) .

Next, we know that |f ′i(x)− f ′i(−x)| ≤ |pi(x)− pi(−x)|+ ε/2
√

12n. Thus, we have:

|f ′i(x)− f ′i(−x)| ≤
∣∣vol(Ai ∩H+)− vol(Ai ∩H−)

∣∣+ ε/2
√

12n.

Therefore, if we are given some hyperplane H such that for every i ∈ [n], we have
|vol(Ai ∩H+)− vol(Ai ∩H−)| ≤ ε/2

√
12n then, we would obtain x ∈ Sn such that |f ′i(x)−

f ′i(−x)| ≤ ε/
√

12n. This implies that ‖f(
√
n+ 1 · x)− f(−

√
n+ 1 · x)‖22 ≤ ε2/12. Finally,

we complete the proof by noting that to answer vol(Ai ∩H+)− vol(Ai ∩H−) for an oriented
hyperplane H, we need to query f in at most two points. J

We note here that one can construct an easier (to solve) problem than ABHQ, namely
the Euclidean−ABHQ (or ABHQ

E for short), where we need to find an (n− 1)-dimensional

hyperplane H such that
(
Ei∈[n]

[
(vol(Ai ∩H+)− vol(Ai ∩H−))2

])1/2
≤ ε, and still obtain

the same lower bounds as in Theorem 2, i.e., QCp

(
ABHQ

E
(
n+ 1, 4.51, ε/

√
48n

))
= 2Ω(n)

by starting from QCp

(
AAPQ (n, 5√n, ε2/12n

))
.

Finally, we remark that one could obtain lower bounds for the case of fixed dimension,
i.e., when the compacts objects to be bisected are in a fixed dimension, by using the lower
bounds of Chen and Teng [11] for the fixed point computation in Brouwer functions of fixed
dimension.

5 Discussion and Conclusion

In this paper, we established the equivalence between the Borsuk-Ulam theorem and the
Ham Sandwich theorem. Further, we used this equivalence to prove a lower bound on the
Ham Sandwich problem in the query model.

SoCG 2017

24:14 Ham Sandwich is Equivalent to Borsuk-Ulam

It would be interesting to extend our lower bounds for the Ham Sandwich problem in
the query model where the queries are to a membership oracle. Finally, showing that the
Ham Sandwich problem introduced by Papadimitriou [24] is PPA-complete, remains an
interesting and challenging open problem.

Acknowledgements. We would like to thank Irit Dinur for discussions which helped us to
simplify the proof of Proposition 1. We would like to thank Inbal Livni Navon, and the
anonymous reviewers of SoCG’17 for helping us improve the presentation of the paper.

References
1 James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-D Tucker is PPA complete.

Electronic Colloquium on Computational Complexity (ECCC), 22:163, 2015. URL: http:
//eccc.hpi-web.de/report/2015/163.

2 Kendall Atkinson and Weimin Han. Spherical Harmonics and Approximations on the
Unit Sphere: An Introduction. Springer-Verlag Berlin Heidelberg, 2012. doi:10.1007/
978-3-642-25983-8.

3 Yakov Babichenko. Query complexity of approximate nash equilibria. J. ACM, 63(4):36,
2016. doi:10.1145/2908734.

4 Yakov Babichenko and Aviad Rubinstein. Communication complexity of approximate nash
equilibria. CoRR, abs/1608.06580, 2016. URL: http://arxiv.org/abs/1608.06580.

5 Kim Border. Fixed Point Theorems with Applications to Economics and Game Theory.
Cambridge University Press, 1989. doi:10.1137/1028074.

6 Karol Borsuk. Drei sätze über die n-dimensionale euklidische sphäre. Fundamental Math-
ematics, 20:177–190, 1933.

7 L.E. J. Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71:97–
115, 1912. URL: http://eudml.org/doc/158520.

8 Xi Chen and Xiaotie Deng. Matching algorithmic bounds for finding a brouwer fixed point.
J. ACM, 55(3), 2008. doi:10.1145/1379759.1379761.

9 Xi Chen and Xiaotie Deng. On the complexity of 2D discrete fixed point problem. Theor.
Comput. Sci., 410(44):4448–4456, 2009. doi:10.1016/j.tcs.2009.07.052.

10 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player nash equilibria. J. ACM, 56(3), 2009. doi:10.1145/1516512.1516516.

11 Xi Chen and Shang-Hua Teng. Paths beyond local search: A tight bound for randomized
fixed-point computation. In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 124–
134, 2007. doi:10.1109/FOCS.2007.53.

12 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009. doi:
10.1137/070699652.

13 Herbert Edelsbrunner and Roman Waupotitsch. Computing a Ham-Sandwich Cut in
Two Dimensions. J. Symb. Comput., 2(2):171–178, 1986. doi:10.1016/S0747-7171(86)
80020-7.

14 Costas Efthimiou and Christopher Frye. Spherical harmonics in p dimensions. World
Scientific, Singapore, 2014. URL: https://cds.cern.ch/record/1953578.

15 P. Funk. Beiträge zur Theorie der Kugelfunktionen. Mathematische Annalen, 77:136–152,
1916. URL: http://eudml.org/doc/158720.

16 Jacques Hadamard. Note sur quelques applications de l’indice de kronecker. Jules Tannery:
Introduction à la théorie des fonctions d’une variable, 2:437–477, 1910.

http://eccc.hpi-web.de/report/2015/163
http://eccc.hpi-web.de/report/2015/163
http://dx.doi.org/10.1007/978-3-642-25983-8
http://dx.doi.org/10.1007/978-3-642-25983-8
http://dx.doi.org/10.1145/2908734
http://arxiv.org/abs/1608.06580
http://dx.doi.org/10.1137/1028074
http://eudml.org/doc/158520
http://dx.doi.org/10.1145/1379759.1379761
http://dx.doi.org/10.1016/j.tcs.2009.07.052
http://dx.doi.org/10.1145/1516512.1516516
http://dx.doi.org/10.1109/FOCS.2007.53
http://dx.doi.org/10.1137/070699652
http://dx.doi.org/10.1137/070699652
http://dx.doi.org/10.1016/S0747-7171(86)80020-7
http://dx.doi.org/10.1016/S0747-7171(86)80020-7
https://cds.cern.ch/record/1953578
http://eudml.org/doc/158720

Karthik C. S. and A. Saha 24:15

17 E. Hecke. Über orthogonal-invariante Integralgleichungen. Mathematische Annalen, 78:398–
404, 1917. URL: http://eudml.org/doc/158775.

18 Michael D. Hirsch, Christos H. Papadimitriou, and Stephen A. Vavasis. Exponential lower
bounds for finding brouwer fix points. J. Complexity, 5(4):379–416, 1989. doi:10.1016/
0885-064X(89)90017-4.

19 Christian Knauer, Hans Raj Tiwary, and Daniel Werner. On the computational complexity
of Ham-Sandwich cuts, Helly sets, and related problems. In 28th International Symposium
on Theoretical Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dortmund,
Germany, pages 649–660, 2011. doi:10.4230/LIPIcs.STACS.2011.649.

20 Chi-Yuan Lo, Jirí Matousek, and William L. Steiger. Algorithms for Ham-Sandwich Cuts.
Discrete & Computational Geometry, 11:433–452, 1994. doi:10.1007/BF02574017.

21 Jirí Matousek. Using the Borsuk-Ulam Theorem. Springer-Verlag Berlin Heidelberg, 2003.
doi:10.1007/978-3-540-76649-0.

22 E. J. McShane. Extension of range of functions. Bulletin of the American Mathematical
Society, 40(12):837–843, 1934.

23 John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951. URL:
http://www.jstor.org/stable/1969529.

24 Christos H. Papadimitriou. On the complexity of the parity argument and other inef-
ficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/
S0022-0000(05)80063-7.

25 Tim Roughgarden and Omri Weinstein. On the communication complexity of approximate
fixed points. Electronic Colloquium on Computational Complexity (ECCC), 23:55, 2016.
URL: http://eccc.hpi-web.de/report/2016/055.

26 Aviad Rubinstein. Inapproximability of Nash Equilibrium. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015, pages 409–418, 2015. doi:10.1145/2746539.2746578.

27 Aviad Rubinstein. Settling the complexity of computing approximate two-player Nash
equilibria. CoRR, abs/1606.04550, 2016. URL: http://arxiv.org/abs/1606.04550.

28 Hugo Steinhaus. A note on the ham sandwich theorem. Mathesis Polska, 9:26–28, 1938.
29 A.H. Stone and J.W. Tukey. Generalized “sandwich” theorems. Duke Mathematical

Journal, 9(2):356–359, 1942.
30 Francis Edward Su. Borsuk-Ulam implies Brouwer: a direct construction. The American

mathematical monthly, 104(9):855–859, 1997.
31 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, page

210–268. Cambridge University Press, May 2012. doi:10.1017/CBO9780511794308.006.
32 A. Yu. Volovikov. Brouwer, kakutani, and borsuk – ulam theorems. Mathematical Notes,

79(3):433–435, 2006. doi:10.1007/s11006-006-0048-0.
33 Fuxiang Yu. On the complexity of the pancake problem. Math. Log. Q., 53(4-5):532–546,

2007. doi:10.1002/malq.200710016.

SoCG 2017

http://eudml.org/doc/158775
http://dx.doi.org/10.1016/0885-064X(89)90017-4
http://dx.doi.org/10.1016/0885-064X(89)90017-4
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.649
http://dx.doi.org/10.1007/BF02574017
http://dx.doi.org/10.1007/978-3-540-76649-0
http://www.jstor.org/stable/1969529
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://eccc.hpi-web.de/report/2016/055
http://dx.doi.org/10.1145/2746539.2746578
http://arxiv.org/abs/1606.04550
http://dx.doi.org/10.1017/CBO9780511794308.006
http://dx.doi.org/10.1007/s11006-006-0048-0
http://dx.doi.org/10.1002/malq.200710016

Local Equivalence and Intrinsic Metrics Between
Reeb Graphs∗

Mathieu Carrière1 and Steve Oudot2

1 DataShape, Inria Saclay, France
mathieu.cariere@inria.fr

2 DataShape, Inria Saclay, France
steve.oudot@inria.fr

Abstract
As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the
computer graphics or topological data analysis literature. Defining good metrics between these
objects has become an important question for applications, where it matters to quantify the extent
by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing
novel distances such as functional distortion or interleaving that are provably more discriminative
than the so-called bottleneck distance, being true metrics whereas the latter is only a pseudo-
metric. Their main drawback compared to the bottleneck distance is to be comparatively hard
(if at all possible) to evaluate. Here we take the opposite view on the problem and show that
the bottleneck distance is in fact good enough locally, in the sense that it is able to discriminate
a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the
other metrics do. This suggests considering the intrinsic metrics induced by these distances,
which turn out to be all globally equivalent. This novel viewpoint on the study of Reeb graphs
has a potential impact on applications, where one may not only be interested in discriminating
between data but also in interpolating between them.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems:]Geometrical
Problems and Computations

Keywords and phrases Reeb Graphs, Extended Persistence, Induced Metrics, Topological Data
Analysis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.25

1 Introduction

In the context of shape analysis, the Reeb graph [26] provides a meaningful summary of a
topological space and a real-valued function defined on that space. Intuitively, it continuously
collapses the connected components of the level sets of the function into single points, thus
tracking the values of the functions at which the connected components merge or split. Reeb
graphs have been widely used in computer graphics and visualization – see [7] for a survey,
and their discrete versions, including the so-called Mappers [27], have become emblematic
tools of topological data analysis due to their success in applications [2, 3, 20, 23].

Finding relevant dissimilarity measures for comparing Reeb graphs has become an
important question in the recent years. The quality of a dissimilarity measure is usually

∗ This work was partially supported by ERC Grant Agreement No. 339025 GUDHI (Algorithmic Founda-
tions of Geometry Understanding in Higher Dimensions) and was carried out while the second author
was visiting the ICERM at Brown University.

© Mathieu Carrière and Steve Oudot;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

assessed through three criteria: its ability to satisfy the axioms of a metric, its discriminative
power, and its computational efficiency. The most natural choice to begin with is to use
the Gromov-Hausdorff distance dGH [10] for Reeb graphs seen as metric spaces. The main
drawback of this distance is to quickly become intractable to compute in practice, even for
graphs that are metric trees [1]. Among recent contributions, the functional distortion distance
dFD [4] and the interleaving distance dI [15] share the same advantages and drawbacks as dGH,
in particular they enjoy good stability and discriminativity properties but they lack efficient
algorithms for their computation, moreover they can be difficult to interpret. By contrast, the
bottleneck distance dB comes with a signature for Reeb graphs, called the extended persistence
diagram [14], which acts as a stable bag-of-feature descriptor. Furthermore, dB can be
computed efficiently in practice. Its main drawback though is to be only a pseudo-metric, so
distinct graphs can have the same signature and therefore be deemed equal in dB.

Another desired property for dissimilarity measures is to be intrinsic, i.e. realized as the
lengths of shortest continuous paths in the space of Reeb graphs [10]. This is particularly
useful when one actually needs to interpolate between data, and not just discriminate between
them, which happens in applications such as image or 3-d shape morphing, skeletonization,
and matching [18, 21, 22, 28]. At this time, it is unclear whether the metrics proposed so far
for Reeb graphs are intrinsic or not. Using intrinsic metrics would not only open the door
to the use of Reeb graphs in the aforementioned applications, but it would also provide a
better understanding of the intrinsic structure of the space of Reeb graphs, and give a deeper
meaning to the distance values.

Our contributions. In the first part of the paper we show that the bottleneck distance can
discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as
efficiently as the other metrics do, even though it is only a pseudo-metric globally. More
precisely, we show that, given any constant K ∈ (0, 1/22], in a sufficiently small neighborhood
of a given Reeb graph Rf in the functional distortion distance (that is: for any Reeb graph
Rg such that dFD(Rf ,Rg) < c(f,K), where c(f,K) > 0 is a positive constant depending
only on f and K), one has:

KdFD(Rf ,Rg) ≤ dB(Rf ,Rg) ≤ 2dFD(Rf ,Rg). (1)

The second inequality is already known [4], and it asserts that the bottleneck distance between
Reeb graphs is stable. The first inequality is new, and it asserts that the bottleneck distance
is discriminative locally, in fact just as discriminative as the other distances mentioned above.
Equation (1) can be viewed as a local equivalence between metrics although not in the usual
sense: firstly, all comparisons are anchored to a fixed Reeb graph Rf , and secondly, the
constants K and 2 are absolute.

The second part of the paper advocates the study of intrinsic metrics on the space of
Reeb graphs, for the reasons mentioned above. As a first step, we propose to study the
intrinsic metrics d̂GH, d̂FD, d̂I and d̂B induced respectively by dGH, dFD, dI and dB. While
the first three are obviously globally equivalent because their originating metrics are, our
second contribution is to show that the last one is also globally equivalent to the other three.

The paper concludes with a discussion and some directions for the study of the space of
Reeb graphs as an intrinsic metric space.

Related work. Interpolation between Reeb graphs is also the underlying idea of the edit
distance recently proposed by Di Fabio and Landi [16]. The problem with this distance, in its
current form at least, is that it restricts the interpolation to pairs of graphs lying in the same

M. Carrière and S. Oudot 25:3

homeomorphism class. By contrast, our class of admissible paths is defined with respect to
the topology induced by the functional distortion distance, as such it allows interpolating
between distinct homeomorphism classes.

Interpolation between Reeb graphs is also related to the study of inverse problems
in topological data analysis. To our knowledge, the only result in this vein shows the
differentiability of the operator sending point clouds to the persistence diagram of their
distance function [17]. Our first contribution (1) sheds light on the operator’s local injectivity
properties over the class of Reeb graphs.

2 Background

Throughout the paper we work with singular homology with coefficients in the field Z2,
which we omit in our notations for simplicity. In the following, “connected” stands for
“path-connected”, and “cc” stands for “connected component(s)”. Given a map f : X → R
and an interval I ⊆ R, we write XI

f as a shorthand for the preimage f−1(I), and we omit
the subscript when the map is obvious from the context.

2.1 Morse-Type Functions
I Definition 1. A continuous real-valued function f on a topological space X is of Morse
type if:
(i) there is a finite set Crit(f) = {a1 < ... < an} ⊂ R, called the set of critical values, such

that over every open interval (a0 = −∞, a1), ..., (ai, ai+1), ..., (an, an+1 = +∞) there is
a compact and locally connected space Yi and a homeomorphism µi : Yi × (ai, ai+1)→
X(ai,ai+1) such that ∀i = 0, ..., n, f |

X(ai,ai+1) = π2 ◦ µ−1
i , where π2 is the projection onto

the second factor;
(ii) ∀i = 1, ..., n − 1, µi extends to a continuous function µ̄i : Yi × [ai, ai+1] → X [ai,ai+1];

similarly, µ0 extends to µ̄0 : Y0 × (−∞, a1] → X(−∞,a1] and µn extends to µ̄n : Yn ×
[an,+∞)→ X [an,+∞);

(iii) Each levelset f−1(t) has a finitely-generated homology.

Let us point out that a Morse function is also of Morse type, and that its critical values
remain critical in the definition above. Note that some of its regular values may be termed
critical as well in this terminology, with no effect on the analysis.

2.2 Extended Persistence
Let f be a real-valued function on a topological space X. The family {X(−∞,α]}α∈R of
sublevel sets of f defines a filtration, that is, it is nested w.r.t. inclusion: X(−∞,α] ⊆ X(−∞,β]

for all α ≤ β ∈ R. The family {X [α,+∞)}α∈R of superlevel sets of f is also nested but in the
opposite direction: X [α,+∞) ⊇ X [β,+∞) for all α ≤ β ∈ R. We can turn it into a filtration
by reversing the order on the real line. Specifically, let Rop = {x̃ | x ∈ R}, ordered by
x̃ ≤ ỹ ⇔ x ≥ y. We index the family of superlevel sets by Rop, so now we have a filtration:
{X [α̃,+∞)}α̃∈Rop , with X [α̃,+∞) ⊆ X [β̃,+∞) for all α̃ ≤ β̃ ∈ Rop.

Extended persistence connects the two filtrations at infinity as follows. First, replace
each superlevel set X [α̃,+∞) by the pair of spaces (X,X [α̃,+∞)) in the second filtration.
This maintains the filtration property since we have (X,X [α̃,+∞)) ⊆ (X,X [β̃,+∞)) for all
α̃ ≤ β̃ ∈ Rop. Then, let RExt = R∪{+∞}∪Rop, where the order is completed by α < +∞ < β̃

for all α ∈ R and β̃ ∈ Rop. This poset is isomorphic to (R,≤). Finally, define the extended

SoCG 2017

25:4 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

filtration of f over RExt by:

Fα = X(−∞,α] for α ∈ R, F+∞ = X ≡ (X, ∅) and Fα̃ = (X,X [α̃,+∞)) for α̃ ∈ Rop,

where we have identified the space X with the pair of spaces (X, ∅) at infinity. The subfamily
{Fα}α∈R is the ordinary part of the filtration, while {Fα̃}α̃∈Rop is the relative part.

Applying the homology functor H∗ to this filtration gives the so-called extended persistence
module V of f , which is a sequence of vector spaces connected by linear maps induced by the
inclusions in the extended filtration. For functions of Morse type, the extended persistence
module can be decomposed as a finite direct sum of half-open interval modules – see e.g. [13]:
V '

⊕n
k=1 I[bk, dk), where each summand I[bk, dk) is made of copies of the field of coefficients

at every index α ∈ [bk, dk), and of copies of the zero space elsewhere, the maps between
copies of the field being identities. Each summand represents the lifespan of a homological
feature (cc, hole, void, etc.) within the filtration. More precisely, the birth time bk and death
time dk of the feature are given by the endpoints of the interval. Then, a convenient way to
represent the structure of the module is to plot each interval in the decomposition as a point
in the extended plane, whose coordinates are given by the endpoints. Such a plot is called
the extended persistence diagram of f , denoted Dg(f). The distinction between ordinary and
relative parts of the filtration allows us to classify the points in Dg(f) as follows:

p = (x, y) is called an ordinary point if x, y ∈ R;
p = (x, y) is called a relative point if x, y ∈ Rop;
p = (x, y) is called an extended point if x ∈ R, y ∈ Rop;

Note that ordinary points lie strictly above the diagonal ∆ = {(x, x) | x ∈ R} and relative
points lie strictly below ∆, while extended points can be located anywhere, including on ∆
(e.g. when a cc lies inside a single critical level, see Section 2.3). It is common to partition
Dg(f) according to this classification: Dg(f) = Ord(f)tRel(f)tExt+(f)tExt−(f), where
by convention Ext+(f) includes the extended points located on the diagonal ∆.

Stability. An important property of extended persistence diagrams is to be stable in the
so-called bottleneck distance d∞b . Given two persistence diagrams D,D′, a partial matching
between D and D′ is a subset Γ of D × D′ where for every p ∈ D there is at most
one p′ ∈ D′ such that (p, p′) ∈ Γ, and conversely, for every p′ ∈ D′ there is at most
one p ∈ D such that (p, p′) ∈ Γ. Furthermore, Γ must match points of the same type
(ordinary, relative, extended) and of the same homological dimension only. The cost of Γ
is: cost(Γ) = max{max

p∈D
δD(p), max

p′∈D′
δD′(p′)}, where δD(p) = ‖p− p′‖∞ if p is matched to

some p′ ∈ D′ and δD(p) = d∞(p,∆) if p is unmatched – same for δD′(p′).

I Definition 2. The bottleneck distance between two persistence diagrams D and D′ is
dB(D,D′) = infΓ cost(Γ), where Γ ranges over all partial matchings between D and D′.

I Theorem 3 (Stability [14]). For any Morse-type functions f, g : X → R,

dB(Dg(f),Dg(g)) ≤ ‖f − g‖∞. (2)

2.3 Reeb Graphs
I Definition 4. Given a topological space X and a continuous function f : X → R, we define
the equivalence relation ∼f between points of X by x ∼f y if and only if f(x) = f(y) and
x, y belong to the same cc of f−1(f(x)) = f−1(f(y)). The Reeb graph Rf (X) is the quotient
space X/ ∼f . As f is constant on equivalence classes, there is a well-defined induced map
f̃ : Rf (X)→ R.

M. Carrière and S. Oudot 25:5

Connection to extended persistence. If f is a function of Morse type, then the pair (X, f)
is an R-constructible space in the sense of [15]. This ensures that the Reeb graph is a
multigraph, whose nodes are in one-to-one correspondence with the cc of the critical level sets
of f . In that case, there is a nice interpretation of Dg(f̃) in terms of the structure of Rf (X).
We refer the reader to [4, 14] and the references therein for a full description as well as formal
definitions and statements. Orienting the Reeb graph vertically so f̃ is the height function,
we can see each cc of the graph as a trunk with multiple branches (some oriented upwards,
others oriented downwards) and holes. Then, one has the following correspondences, where
the vertical span of a feature is the span of its image by f̃ :

The vertical spans of the trunks are given by the points in Ext+
0 (f̃);

The vertical spans of the downward branches are given by the points in Ord0(f̃);
The vertical spans of the upward branches are given by the points in Rel1(f̃);
The vertical spans of the holes are given by the points in Ext−1 (f̃).

The rest of the diagram of f̃ is empty. These correspondences provide a dictionary to read
off the structure of the Reeb graph from the persistence diagram of the quotient map f̃ .
Note that it is a bag-of-features type of descriptor, taking an inventory of all the features
together with their vertical spans, but leaving aside the actual layout of the features. As
a consequence, it is an incomplete descriptor: two Reeb graphs with the same persistence
diagram may not be isomorphic. See the two Reeb graphs in Figure 1 for instance.

Notation. Throughout the paper, we consider Reeb graphs coming from Morse-type func-
tions, equipped with their induced maps. We denote by Reeb the space of such graphs. In
the following, we have Rf ,Rg ∈ Reeb, with induced maps f : Rf → R with critical values
{a1, ..., an}, and g : Rg → R with critical values {b1, ..., bm}. Note that we write f, g instead
of f̃ , g̃ for convenience. We also assume without loss of generality (w.l.o.g.) that Rf and Rg
are connected. If they are not connected, then our analysis can be applied component-wise.

2.4 Distances for Reeb graphs
I Definition 5. The bottleneck distance between Rf and Rg is:

dB(Rf ,Rg) := dB(Dg(f),Dg(g)). (3)

I Definition 6. The functional distortion distance between Rf and Rg is:

dFD(Rf ,Rg) := inf
φ,ψ

max
{

1
2D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞

}
, (4)

where:
φ : Rf → Rg and ψ : Rg → Rf are continuous maps,
D(φ, ψ) = sup {|df (x, x′)− dg(y, y′)| such that (x, y), (x′, y′) ∈ C(φ, ψ)} , where:
C(φ, ψ) = {(x, φ(x)) | x ∈ Rf} ∪ {(ψ(y), y) | y ∈ Rg},

df (x, x′) = min
π:x→x′

{
max
t∈[0,1]

f ◦ π(t)− min
t∈[0,1]

f ◦ π(t)
}
, where π : [0, 1] → Rf is a

continuous path from x to x′ in Rf (π(0) = x and π(1) = x′),

dg(y, y′) = min
π:y→y′

{
max
t∈[0,1]

g ◦ π(t)− min
t∈[0,1]

g ◦ π(t)
}
, where π : [0, 1] → Rg is a con-

tinuous path from y to y′ in Rg (π(0) = y and π(1) = y′).

Bauer et al. [4] related these distances as follows:

I Theorem 7. The following inequality holds: dB(Rf ,Rg) ≤ 3 dFD(Rf ,Rg).

SoCG 2017

25:6 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

Ext+0

Ord+0

Rel−1

Ext−1

Rf Rg
Dg(f) = Dg(g)

Figure 1 Example of two different Reeb graphs Rf and Rg that have the same extended persistence
diagram Dg(f) = Dg(g). These graphs are at bottleneck distance 0 from each other, while their
functional distortion distance is positive.

This result can be improved using the end of Section 3.4 of [8], then noting that level set
diagrams and extended diagrams are essentially the same [11], and finally Lemma 9 of [6]:

I Theorem 8. The following inequality holds: dB(Rf ,Rg) ≤ 2 dFD(Rf ,Rg).

We emphasize that, even though Theorem 8 allows us to improve on the constants of our main
result – see Theorem 9, the reduction from 3 dFD(Rf ,Rg) in Theorem 7 to 2 dFD(Rf ,Rg) in
Theorem 8 is not fundamental for our analysis and proofs.

Since the bottleneck distance is only a pseudo-metric – see Figure 1, the inequality given
by Theorem 8 cannot be turned into an equivalence result. However, for any pair of Reeb
graphs Rf ,Rg that have the same extended persistence diagram Dg(f) = Dg(g), and that are
at positive functional distortion distance from each other, every continuous path in dFD from
Rf to Rg will perturb the points of Dg(f) and eventually drive them back to their initial
position, suggesting first that dB is locally equivalent to dFD – see Theorem 9 in Section 3,
but also that, even though dB(Rf ,Rg) = 0, the intrinsic metric d̂B(Rf ,Rg) induced by dB is
positive – see Theorem 17 in Section 4.

3 Local Equivalence

Let af = min1≤i≤n ai+1 − ai > 0 and ag = min1≤j≤m bj+1 − bj > 0. In this section, we show
the following local equivalence theorem:

I Theorem 9. Let K ∈ (0, 1/22]. If dFD(Rf ,Rg) ≤ max{af , ag}/(8(1 + 22K)), then:

KdFD(Rf ,Rg) ≤ dB(Rf ,Rg) ≤ 2dFD(Rf ,Rg).

Note that the notion of locality used here is slightly different from the usual one. On
the one hand, the equivalence does not hold for any arbitrary pair of Reeb graphs inside a
neighborhood of some fixed Reeb graph, but rather for any pair involving the fixed graph.
On the other hand, the constants in the equivalence are independent of the pair of Reeb
graphs considered. The upper bound on dB(Rf ,Rg) is given by Theorem 8 and always holds.
The aim of this section is to prove the lower bound.

Convention: We assume w.l.o.g. that max{af , ag} = af , and we let ε = dFD(Rf ,Rg).

M. Carrière and S. Oudot 25:7

a

b

Rh Rh′

a

a

b

b

Figure 2 Left: effect of Mergea,b on a Reeb graph Rh. Right: Effect on its persistence diagram.

3.1 Proof of Theorem 9
Let K ∈ (0, 1/22]. The proof proceeds by contradiction. Assuming dB(Rf ,Rg) < Kε,
where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)), we progressively transform Rg into some other
Reeb graph Rg′ (Definition 12) that satisfies both dFD(Rg,Rg′) < ε (Proposition 14) and
dFD(Rf ,Rg′) = 0 (Proposition 15). The contradiction follows from the triangle inequality.

3.1.1 Graph Transformation
The graph transformation is defined as the composition of the simplification operator from [4]
and the Merge operator1 from [12]. We refer the reader to these articles for the precise
definitions. Below we merely recall their main properties. Given a set S ⊆ X and a scalar
α > 0, we recall that Sα = {x ∈ X | d(x, S) ≤ α} denotes the α-offset of S.

I Lemma 10 (Theorem 7.3 and following remark in [5]). Given α > 0, the simplification
operator Sα : Reeb → Reeb takes any Reeb graph Rh to Rh′ = Sα(Rh) such that Dg(h′) ∩
∆α/2 = ∅ and dB(Rh,Rh′) ≤ 2 dFD(Rh,Rh′) ≤ 4α.

I Lemma 11 (Theorem 2.5 and Lemma 4.3 in [12]). Given a ≤ b, the merge operator
Mergea,b : Reeb→ Reeb takes any Reeb graph Rh to Rh′ = Mergea,b(Rh) such that Dg(h′) is
obtained from Dg(h) through the following snapping principle (see Figure 2 for an illustration):

(x, y) ∈ Dg(h) 7→ (x′, y′) ∈ Dg(h′) where x′ =
{

x if x /∈ [a, b]
a+b

2 otherwise
and similarly for y′.

I Definition 12. Let Rf be a fixed Reeb graph with critical values {a1, · · · , an}. Given
α > 0, the full transformation Fα : Reeb → Reeb is defined as Fα = Merge9α ◦ S2α, where
Merge9α = Mergean−9α, an+9α ◦ ... ◦Mergea1−9α, a1+9α. See Figure 3 for an illustration.

3.1.2 Properties of the transformed graph
Let Rf ,Rg ∈ Reeb such that dB(Rf ,Rg) < Kε where ε = dFD(Rf ,Rg) < af/(8(1 + 22K)).
Letting Rg′ = FKε(Rg), we want to show both that dFD(Rg,Rg′) < 22Kε < ε and
dFD(Rf ,Rg′) = 0, which will lead to a contradiction as mentioned previously.

Let B∞(·, ·) denote balls in the `∞-norm.

1 Strictly speaking, the output of our Merge is the Reeb graph of the output of the Merge from [12].

SoCG 2017

25:8 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

ai

ai+1

ai+1 − 9α

ai+1 + 9α

ai − 9α

ai + 9α

S2α Merge9α

ai−1

ai−1 − 9α

ai−1 + 9α

Figure 3 Illustration of Fα.

I Lemma 13. Let Rh = S2Kε(Rg). Under the above assumptions, one has

Dg(h) ⊆
⋃

τ∈Dg(f)
B∞(τ, 9Kε). (5)

Proof. Since dB(Rf ,Rg) < Kε, we have Dg(g) ⊆
⋃
τ∈Dg(f)B∞(τ,Kε) ∪∆Kε. Since Rh =

S2Kε(Rg), it follows from Lemma 10 that dB(Dg(h),Dg(g)) ≤ 8Kε. Moreover, since every
persistence pair in Dg(g) ∩∆Kε is removed by S2Kε, it results that:

Dg(h) ⊆
⋃
τ∈Dg(g)\∆KεB∞(τ, 8Kε) ⊆

⋃
τ∈Dg(f)B∞(τ, 9Kε). J

Now we bound dFD(Rg′ ,Rg). Recall that, given an arbitrary Reeb graph Rh, with critical
values Crit(h) = {c1, ..., cp}, if C is a cc of h−1(I), where I is an open interval such that
∃ci, ci+1 s.t. I ⊆ (ci, ci+1), then C is a topological arc, i.e. homeomorphic to an open interval.

I Proposition 14. Under the same assumptions as above, one has dFD(Rg,Rg′) < 22Kε.

Proof. Let Rh = S2Kε(Rg). We have dFD(Rg′ ,Rg) ≤ dFD(Rg′ ,Rh) + dFD(Rh,Rg) by
the triangle inequality. It suffices therefore to bound both dFD(Rg′ ,Rh) and dFD(Rh,Rg).
By Lemma 10, we have dFD(Rh,Rg) < 4Kε. Now, recall from (5) that the points of
the extended persistence diagram of Rh are included in

⋃
τ∈Dg(f)B∞(τ, 9Kε). Moreover,

since Rg′ = Merge9Kε(Rh), Rg′ and Rh are composed of the same number of arcs in each
[ai + 9Kε, ai+1 − 9Kε]. Hence, we can define explicit continuous maps φ : Rh → Rg′ and
ψ : Rg′ → Rh as depicted in Figure 4. More precisely, since Rh and Rg′ are composed of
the same number of arcs in each [ai + 9Kε, ai+1 − 9Kε], we only need to specify φ and ψ
inside each interval (ai − 9Kε, ai + 9Kε) and then ensure that the piecewise-defined maps
are assembled consistently. Since the critical values of Rh are within distance less that 9Kε
of the critical values of f , there exist two levels ai − 9Kε < αi ≤ βi < ai + 9Kε such that
Rh is only composed of arcs in (ai − 9Kε,αi] and [βi, ai + 9Kε) for each i (dashed lines
in Figure 4). For any cc C of h−1((ai − 9Kε, ai + 9Kε)), the map φ sends all points of
C ∩ h−1([αi, βi]) to the corresponding critical point yC created by the Merge in Rg′ , and
it extends the arcs of C ∩ h−1((ai − 9Kε,αi]) (resp. C ∩ h−1([βi, ai + 9Kε))) into arcs of
(g′)−1([ai − 9Kε, ai]) (resp. (g′)−1([ai, ai + 9Kε])). In return, the map ψ sends the critical
point yC to an arbitrary point of C. Then, since the Merge operation preserves connected
components, for each arc A′ of (g′)−1((ai − 9Kε, ai + 9Kε)) connected to yC , there is at
least one corresponding path A in Rh whose endpoint in h−1(ai − 9Kε) or h−1(ai + 9Kε)

M. Carrière and S. Oudot 25:9

φ : Rh → Rg′

ψ : Rg′ → Rh

9Kε

9Kε

ai

ai

αi

αi

βi

Rh Rg′ Rh Rg′

Rh Rg′ Rh Rg′

Figure 4 The effects of φ and ψ around a specific critical value ai of f . Segments are matched
according to their colors (up to reparameterization).

matches with the one of A′ (see the colors in Figure 4). Hence ψ sends A′ to A and the
piecewise-defined maps are assembled consistently.

Let us bound the three terms in the max{· · · } in (4) with this choice of maps φ, ψ:
We first bound ‖g′− h ◦ψ‖∞. Let x ∈ Rg′ . Either g′(x) ∈

⋃
i∈{1,...,n−1}[ai + 9Kε, ai+1−

9Kε], and in this case we have g′(x) = h(ψ(x)) by definition of ψ; or, there is i0 ∈ {1, ..., n}
such that g′(x) ∈ (ai0 − 9Kε, ai0 + 9Kε) and then h(ψ(x)) ∈ (ai0 − 9Kε, ai0 + 9Kε). In
both cases |g′(x)− h ◦ ψ(x)| < 18Kε. Hence, ‖g′ − h ◦ ψ‖∞ < 18Kε.
Since the previous proof is symmetric in h and g′, one also has ‖h− g′ ◦ φ‖∞ < 18Kε.
We now bound D(φ, ψ). Let (x, φ(x)), (ψ(y), y) ∈ C(φ, ψ) (the cases (x, φ(x)), (x′, φ(x′))
and (ψ(y), y), (ψ(y′), y′) are similar). Let πg′ : [0, 1] → Rg′ be a continuous path from
φ(x) to y which achieves dg′(φ(x), y).

Assume h(x) ∈
⋃
i∈{1,...,n−1}[ai+9Kε, ai+1−9Kε]. Then one has ψ◦φ(x) = x. Hence,

πh := ψ ◦ πg′ is a valid path from x to ψ(y). Moreover, since ‖g′ − h ◦ψ‖∞ < 18Kε, it
follows that

max im(h ◦ πh) < max im(g′ ◦ πg′) + 18Kε,
min im(h ◦ πh) > min im(g′ ◦ πg′)− 18Kε.

(6)

SoCG 2017

25:10 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

Hence, one has

dh(x, ψ(y)) ≤ max im(h ◦ πh)−min im(h ◦ πh) < dg′(φ(x), y) + 36Kε,
−dh(x, ψ(y)) ≥ min im(h ◦ πh)−max im(h ◦ πh) > −dg′(φ(x), y)− 36Kε.

This shows that |dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.
Assume that there is i0 ∈ {1, ..., n} such that h(x) ∈ (ai0 − 9Kε, ai0 + 9Kε). Then, by
definition of φ, ψ, we have g′(φ(x)) ∈ (ai0−9Kε, ai0 +9Kε), and, since φ and ψ preserve
connected components, there is a path π′h : [0, 1]→ Rh from x to ψ ◦ φ(x) within the
interval (ai0 − 9Kε, ai0 + 9Kε), which itself is included in the interior of the offset
im(g′ ◦πg′)18Kε. Let now πh be the concatenation of π′h with ψ◦πg′ , which goes from x

to ψ(y). Since ‖g′−h◦ψ‖ < 18Kε, it follows that im(h◦ψ ◦πg′) ⊆ int im(g′ ◦πg′)18Kε,
and since im(h ◦ πh) = im(h ◦ π′h) ∪ im(h ◦ ψ ◦ πg′) by concatenation, one finally has
im(h ◦ πh) ⊆ int im(g′ ◦ πg′)18Kε. Hence, the inequalities of (6) hold, implying that
|dh(x, ψ(y))− dg′(φ(x), y)| < 36Kε.

Since these inequalities hold for any couples (x, φ(x)) and (ψ(y), y), we deduce that
D(φ, ψ) ≤ 36Kε.

Thus, dFD(Rh,Rg) < 4Kε and dFD(Rh,Rg′) ≤ 18Kε, so dFD(Rg′ ,Rg) < 22Kε as desired. J

Now we show that Rg′ is isomorphic to Rf (i.e. it lies at functional distortion distance 0).

I Proposition 15. Under the same assumptions as above, one has dFD(Rf ,Rg′) = 0.

Proof. First, recall from (5) that the points of the extended persistence diagram of Rh are
included in

⋃
τ∈Dg(f)B∞(τ, 9Kε). Since Rg′ = Merge9Kε(Rh), it follows from Lemma 11

that Crit(g′) ⊆ Crit(f). Hence, both Rg′ and Rf are composed of arcs in each (ai, ai+1).
Now, we show that, for each i, the number of arcs of (g′)−1((ai, ai+1)) and f−1((ai, ai+1))

are the same. By the triangle inequality and Proposition 14, we have:

dFD(Rf ,Rg′) ≤ dFD(Rf ,Rg) + dFD(Rg,Rg′) < (1 + 22K)ε. (7)

Let φ : Rf → Rg′ and ψ : Rg′ → Rf be optimal continuous maps that achieve dFD(Rf ,Rg′).
Let i ∈ {1, ..., n − 1}. Assume that there are more arcs of f−1((ai, ai+1)) than arcs of
(g′)−1((ai, ai+1)). For every arc A of f−1((ai, ai+1)), let xA ∈ A such that f(xA) = ā =
1
2 (ai+ai+1). First, note that φ(xA) must belong to an arc of (g′)−1((ai, ai+1)). Indeed, since
‖f−g′ ◦φ‖∞ < (1+22Kε), one has g′(φ(xA)) ∈ (ā− (1+22K)ε, ā+(1+22K)ε) ⊆ (ai, ai+1).
Then, according to the pigeonhole principle, there exist xA, xA′ such that φ(xA) and φ(xA′)
belong to the same arc of (g′)−1((ai, ai+1)).

Since xA and xA′ do not belong to the same arc, we have df (xA, xA′) > af/2.
Now, since ‖f − g′ ◦ φ‖∞ < (1 + 22K)ε and φ(xA), φ(xA′) belong to the same arc of
(g′)−1((ai, ai+1)), we also have dg′(φ(xA), φ(xA′)) < 2(1 + 22K)ε (see Figure 5).

Hence, D(φ, ψ) ≥ |df (xA, xA′) − dg′(φ(xA), φ(xA′))| > af/2 − 2(1 + 22K)ε, which is
greater than 2(1 + 22K)ε because ε < af/(8(1 + 22K)). Thus, dFD(Rf ,Rg′) > (1 + 22K)ε,
which leads to a contradiction with (7). This means that there cannot be more arcs in
f−1((ai, ai+1)) than in (g′)−1((ai, ai+1)). Since the proof is symmetric in f and g′, the
numbers of arcs in (g′)−1((ai, ai+1)) and in f−1((ai, ai+1)) are actually the same.

Finally, we show that the attaching maps of these arcs are also the same. In this particular
graph setting, this is equivalent to showing that corresponding arcs in Rf and Rg′ have the
same endpoints. Let ai be a critical value. Let A−f,i and A

+
f,i (resp. A

−
g′,i and A

+
g′,i) be the sets

of arcs in f−1((ai−1, ai)) and f−1((ai, ai+1)) (resp. (g′)−1((ai−1, ai)) and (g′)−1((ai, ai+1))).

M. Carrière and S. Oudot 25:11

φ(xA′)

ai+1

ai

xA′

Rf Rg′

2(1 + 22K)ε

φ(xA)

ai+1

ai

xA

f(xA) = f(xA′) = ā

Figure 5 Any path between xA and xA′ must contain the red segments, and the blue segment is
a particular path between φ(xA) and φ(xA′).

ai x y

φ(x)

φ(y)

2(1+22K)ε

Rf Rg′

Figure 6 Any path from x to y must go through an entire arc, hence df (x, y) ≥ af . On the
contrary, there exists a direct path between φ(x) and φ(y), hence dg′ (φ(x), φ(y)) < 2(1 + 22K)ε.

Morevover, we let ζif and ξif (resp. ζig′ and ξig′) be the corresponding attaching maps that
send arcs to their endpoints in f−1(ai) (resp. (g′)−1(ai)). Let A,B ∈ A−f,i. We define an
equivalence relation ∼f,i between A and B by: A ∼f,i B iff ζif (A) = ζif (B), i.e. the endpoints
of the arcs in the critical slice f−1(ai) are the same. Similarly, C,D ∈ A+

f,i are equivalent if
and only if ξif (C) = ξif (D). One can define ∼g′,i in the same way. To show that the attaching
maps of Rf and Rg′ are the same, we need to find a bijection b between the arcs of Rf and
Rg′ such that A ∼f,i B ⇔ b(A) ∼g′,i b(B) for each i.

We will now define b then check that it satisfies the condition. Recall from (7) that
dFD(Rf ,Rg′) < (1 + 22K)ε. Hence there exists a continuous map φ : Rf → Rg′ such that
‖f − g′ ◦ φ‖∞ < (1 + 22K)ε. This map induces a bijection b between the arcs of Rf

and Rg′ . Indeed, given an arc A ∈ A−f,i, let x ∈ A such that f(x) = ā = 1
2 (ai−1 + ai).

We define b(A) as the arc of A−g,i that contains φ(x). The map b is well-defined since
g′◦φ(x) ∈ [ā− (1 + 22K)ε, ā+ (1 + 22K)ε] ⊆ (ai−1, ai), hence φ(x) must belong to an arc of
(g′)−1((ai−1, ai)). Let us show that b(A) ∼g′,i b(B)⇒ A ∼f,i B. Assume there exist A,B ∈
A−f,i (the treatment of A,B ∈ A+

f,i is similar) such that A 6∼f,i B and b(A) ∼g′,i b(B). Let
x = ζif (A) and y = ζif (B). Then we have df (x, y) ≥ af while dg′(φ(x), φ(y)) < 2(1 + 22K)ε
(see Figure 6). Hence |df (x, y) − dg′(φ(x), φ(y))| > af − 2(1 + 22K)ε > 2(1 + 22K)ε, so
dFD(Rf ,Rg′) > (1 + 22K)ε, which leads to a contradiction with (7). The same argument
applies to show that A ∼f,i B ⇒ b(A) ∼g′,i b(B). J

4 Induced Intrinsic Metrics

In this section we leverage the local equivalence given by Theorem 9 to derive a global
equivalence between the intrinsic metrics d̂B and d̂FD induced by dB and dFD. Note that we
already know d̂FD to be equivalent to d̂GH and d̂I since dFD is equivalent to dGH and dI. To

SoCG 2017

25:12 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

the best of our knowledge, the question whether dFD, dI or dGH is intrinsic on the space of
Reeb graphs has not been settled, although dGH itself is known to be intrinsic on the larger
space of compact metric spaces – see e.g. [19].

Convention. In the following, whatever the metric d : Reeb× Reeb→ R+ under considera-
tion, we define the class of admissible paths in Reeb to be those maps γ : [0, 1]→ Reeb that
are continuous in dFD. This makes sense when d is either dFD itself, dGH, or dI, all of which
are equivalent to dFD and therefore have the same continuous maps γ : [0, 1]→ Reeb. In the
case d = dB our convention means restricting the class of admissible paths to a strict subset
of the maps γ : [0, 1]→ Reeb that are continuous in d (by Theorem 8), which is required by
some of our following claims.

I Definition 16. Let d : Reeb× Reeb→ R+ be a metric on Reeb. Let Rf ,Rg ∈ Reeb, and
γ : [0, 1]→ Reeb be an admissible path such that γ(0) = Rf and γ(1) = Rg. The length of γ
induced by d is defined as Ld(γ) = supn,Σ

∑n−1
i=0 d(γ(ti), γ(ti+1)) where n ranges over N and

Σ ranges over all partitions 0 = t0 ≤ t1 ≤ ... ≤ tn = 1 of [0, 1]. The intrinsic metric induced
by d, denoted d̂, is defined by d̂(Rf ,Rg) = infγ Ld(γ) where γ ranges over all admissible
paths γ : [0, 1]→ Reeb such that γ(0) = Rf and γ(1) = Rg.

The following result is, in our view, the starting point for the study of intrinsic metrics
over the space of Reeb graphs. It comes as a consequence of the (local or global) equivalences
between dB and dFD stated in Theorems 8 and 9. The intuition is that integrating two locally
equivalent metrics along the same path using sufficiently small integration steps yields the
same total length up to a constant factor, hence the global equivalence between the induced
intrinsic metrics2.

I Theorem 17. d̂B and d̂FD are globally equivalent. Specifically, for any Rf ,Rg ∈ Reeb,

d̂FD(Rf ,Rg)/22 ≤ d̂B(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). (8)

Proof. We first show that d̂B(Rf ,Rg) ≤ 2 d̂FD(Rf ,Rg). Let γ be an admissible path and let
Σ = {t0, ..., tn} be a partition of [0, 1]. Then, by Theorem 8,

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≥ 1
2

n−1∑
i=0

dB(γ(ti), γ(ti+1)).

Since this is true for any partition Σ of any finite size n, it follows that

LdFD(γ) ≥ 1
2LdB(γ) ≥ 1

2 d̂B(Rf ,Rg).

Again, this inequality holds for any admissible path γ, so d̂B(Rf ,Rg) ≤ 2d̂FD(Rf ,Rg).
We now show that d̂FD(Rf ,Rg)/22 ≤ d̂B(Rf ,Rg). Let γ be an admissible path and Σ =
{t0, ..., tn} a partition of [0, 1]. We claim that there is a refinement of Σ (i.e. a partition
Σ′ = {t′0, ..., t′m} ⊇ Σ for some m ≥ n) such that dFD(γ(t′j), γ(t′j+1)) < max{ct′

j
, ct′

j+1
}/16

for all j ∈ {0, ...,m − 1}, where ct > 0 denotes the minimal distance between consecutive
critical values of γ(t). Indeed, since γ is continuous in dFD, for any t ∈ [0, 1] there exists
δt > 0 such that dFD(γ(t), γ(t′)) < ct/16 for all t′ ∈ [0, 1] with |t − t′| < δt. Consider the
open cover {(max{0, t− δt/2},min{1, t+ δt/2})}t∈[0,1] of [0, 1]. Since [0, 1] is compact, there

2 Provided the induced metrics are defined using the same class of admissible paths, hence our convention.

M. Carrière and S. Oudot 25:13

exists a finite subcover containing all the intervals (ti − δti/2, ti + δti/2) for ti ∈ Σ. Assume
w.l.o.g. that this subcover is minimal (if it is not, then reduce the δti as much as needed).
Let then Σ′ = {t′0, ..., t′m} ⊇ Σ be the partition of [0, 1] given by the midpoints of the
intervals in this subcover, sorted by increasing order. Since the subcover is minimal, we have
t′j+1 − t′j < (δt′

j
+ δt′

j+1
)/2 < max{δt′

j
, δt′

j+1
} hence dFD(γ(t′j), γ(t′j+1)) < max{ct′

j
, ct′

j+1
}/16

for each j ∈ {0,m− 1}. It follows that

n−1∑
i=0

dFD(γ(ti), γ(ti+1)) ≤
m−1∑
j=0

dFD(γ(t′j), γ(t′j+1)) by the triangle inequality since Σ′ ⊇ Σ

≤ 22
m−1∑
j=0

dB(γ(t′j), γ(t′j+1)) by Theorem 9 with K = 1/22

≤ 22LdB(γ).

Since this is true for any partition Σ of any finite size n, it follows that

d̂FD(Rf ,Rg) ≤ LdFD(γ) ≤ 22LdB(γ).

Again, this inequality is true for any admissible path γ, so d̂FD(Rf ,Rg) ≤ 22 d̂B(Rf ,Rg). J

Theorem 17 implies in particular that d̂B is a true metric on Reeb graphs, as opposed to dB
which is only a pseudo-metric. Moreover, the simplification operator defined in Section 3.1.1
makes it possible to continuously deform any Reeb graph into a trivial segment-shaped graph
then into the empty graph. This shows that Reeb is path-connected in dFD. Since the length
of such continuous deformations is finite if the Reeb graph is finite, d̂FD and d̂B are finite
metrics. Finally, the global equivalence of d̂FD and d̂B yields the following:

I Corollary 18. The metrics d̂FD and d̂B induce the same topology on Reeb, which is a
refinement of the ones induced by dFD or dB.

I Remark. Note that the first inequality in (8) and, consequently, Corollary 18, are wrong if
one defines the admissible paths for d̂B to be the whole class of maps [0, 1]→ Reeb that are
continuous in dB – hence our convention. For instance, let us consider the two Reeb graphs Rf
and Rg of Figure 1 such that Dg(f) = Dg(g), and let us define γ : [0, 1]→ Reeb by γ(t) = Rf
if t ∈ [0, 1/2) and γ(t) = Rg if t ∈ [1/2, 1]. Then γ is continuous in dB while it is not in dFD
at 1/2 since dFD(Rf ,Rg) > 0. In this case, d̂B(Rf ,Rg) ≤ LdB(γ) = 0 < d̂FD(Rf ,Rg).

5 Discussion

In this article, we proved that the bottleneck distance, even though it is only a pseudo-
metric on Reeb graphs, can actually discriminate a Reeb graph from the other Reeb graphs
in a small enough neighborhood, as efficiently as the other metrics do. This theoretical
result legitimates the use of the bottleneck distance to discriminate between Reeb graphs in
applications. It also motivates the study of intrinsic metrics, which can potentially shed new
light on the structure of the space of Reeb graphs and open the door to new applications
where interpolation plays a key part. This work has raised numerous questions, some of
which we plan to investigate in the upcoming months:

Can the lower bound be improved? We believe that ε/22 is not optimal. Specifically, a
more careful analysis of the simplification operator should allow us to derive a tighter
upper bound than the one in Lemma 10, and improve the current lower bound on dB.

SoCG 2017

25:14 Local Equivalence and Intrinsic Metrics Between Reeb Graphs

1

1/2

1/4
1/8

0

1/16

· · ·

R1 R2 R3 R4

Figure 7 A sequence of Reeb graphs that is Cauchy but that does not converge in Reeb because
the number of critical values goes to +∞. Indeed, each Rn has n+ 2 critical values.

Do shortest paths exist in Reeb? The existence of shortest paths achieving d̂B is an
important question since a positive answer would enable us to define and study the
intrinsic curvature of Reeb. Moreover, characterizing and computing these shortest paths
would be useful for interpolating between Reeb graphs. The existence of shortest paths is
guaranteed if the space is complete and locally compact. Note that Reeb is not complete,
as shown by the counter-example of Figure 7. Hence, we plan to restrict the focus to the
subspace of Reeb graphs having at most N features with height at most H, for fixed but
arbitrary N,H > 0. We believe this subspace is complete and locally compact, like its
counterpart in the space of persistence diagrams [9].
Is Reeb an Alexandrov space? Provided shortest paths exist in Reeb (or in some subspace
thereof), we plan to determine whether the intrinsic curvature is bounded, either from
above or from below. This is interesting because barycenters in metric spaces with
bounded curvature enjoy many useful properties [25], and they can be approximated
effectively [24].
Can the local equivalence be extended to general metric spaces? We have reasons to
believe that our local equivalence result can be used to prove similar results for more
general classes of metric spaces than Reeb graphs. If true, this would shed new light on
inverse problems in persistence theory.

References
1 P. Agarwal, K. Fox, A. Nath, A. Sidiropoulos, and Y. Wang. Computing the Gromov-

Hausdorff Distance for Metric Trees. In Symp. Algo. Comput., 2015.
2 M. Alagappan. From 5 to 13: Redefining the Positions in Basketball. MIT Sloan Sports

Analytics Conference, 2012.
3 V. Barra and S. Biasotti. 3D Shape Retrieval and Classification using Multiple Kernel

Learning on Extended Reeb graphs. The Visual Computer, 30(11):1247–1259, 2014.
4 U. Bauer, X. Ge, and Y. Wang. Measuring Distance between Reeb Graphs. In Symp.

Comput. Geom., pages 464–473, 2014.
5 U. Bauer, X. Ge, and Y. Wang. Measuring Distance between Reeb Graphs (v2). CoRR,

abs/1307.2839v2, 2016.
6 U. Bauer, E. Munch, and Y. Wang. Strong Equivalence of the Interleaving and Functional

Distortion Metrics for Reeb Graphs. In Symp. Comput. Geom., 2015.
7 S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb Graphs for Shape Analysis

and Applications. Theo. Comp. Sci., 392(1-3):5–22, 2008.

M. Carrière and S. Oudot 25:15

8 H. Bjerkevik. Stability of Higher Dimensional Interval Decomposable Persistence Modules.
CoRR, abs/1609.02086, 2016.

9 A. Blumberg, I. Gall, M. Mandell, and M. Pancia. Robust Statistics, Hypothesis Test-
ing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces. CoRR,
abs/1206.4581, 2012.

10 D. Burago, Y. Burago, and S. Ivanov. A Course in Metric Geometry, volume 33 of Graduate
Studies in Mathematics. AMS, Providence, RI, 2001.

11 G. Carlsson, V. de Silva, and D. Morozov. Zigzag Persistent Homology and Real-valued
Functions. In Symp. Comput. Geom., pages 247–256, 2009.

12 M. Carrière and S. Oudot. Structure and Stability of the 1-Dimensional Mapper. In Symp.
Comput. Geom., volume 51, pages 1–16, 2016.

13 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability
of Persistence Modules. Springer, 2016.

14 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Extending persistence using Poincaré
and Lefschetz duality. Found. Comput. Math., 9(1):79–103, 2009.

15 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb Graphs. Discr. Comput.
Geom., 55:854–906, 2016.

16 B. di Fabio and C. Landi. The Edit Distance for Reeb Graphs of Surfaces. Discrete
Computational Geometry, 55(2):423–461, 2016.

17 M. Gameiro, Y. Hiraoka, and I. Obayashi. Continuation of Point Clouds via Persistence
Diagrams. Physica D, 334:118–132, 2016.

18 X. Ge, I. Safa, M. Belkin, and Y. Wang. Data Skeletonization via Reeb Graphs. In Neural
Inf. Proc. Sys., pages 837–845, 2011.

19 Alexandr Ivanov, Nadezhda Nikolaeva, and Alexey Tuzhilin. The Gromov-Hausdorff Met-
ric on the Space of Compact Metric Spaces is Strictly Intrinsic. Mathematical Notes,
100(6):947–950, 2016.

20 P. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan,
J. Carlsson, and G. Carlsson. Extracting insights from the shape of complex data using
topology. Scientific Reports, 3(1236), 2013.

21 W. Mohamed and A. Ben Hamza. Reeb graph path dissimilarity for 3d object matching
and retrieval. The Visual Computer, 28(3):305–318, 2012.

22 T. Mukasa, S. Nobuhara, A. Maki, and T. Matsuyama. Finding Articulated Body in Time-
Series Volume Data, pages 395–404. Springer Berlin Heidelberg, 2006.

23 M. Nicolau, A. Levine, and G. Carlsson. Topology based data analysis identifies a subgroup
of breast cancers with a unique mutational profile and excellent survival. Proceedings of
the National Academy of Science, 108(17):7265–7270, 2011.

24 S. Ohta. Gradient flows on Wasserstein spaces over compact Alexandrov spaces. American
Journal Mathematics, 131(2):475–516, 2009.

25 S. Ohta. Barycenters in Alexandrov spaces of curvature bounded below. Advances Geo-
metry, 12:571–587, 2012.

26 G. Reeb. Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une
fonction numérique. CR Acad. Sci. Paris, 222:847–849, 1946.

27 G. Singh, F. Mémoli, and G. Carlsson. Topological Methods for the Analysis of High
Dimensional Data Sets and 3D Object Recognition. In Symp. PB Graphics, 2007.

28 J. Tierny, J.-P. Vandeborre, and M. Daoudi. Invariant High Level Reeb Graphs of 3D
Polygonal Meshes. Symp. 3D Data Proc. Vis. Trans., pages 105–112, 2006.

SoCG 2017

Applications of Chebyshev Polynomials to
Low-Dimensional Computational Geometry

Timothy M. Chan

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, USA
tmc@illinois.edu

Abstract
We apply the polynomial method – specifically, Chebyshev polynomials – to obtain a number of
new results on geometric approximation algorithms in low constant dimensions. For example, we
give an algorithm for constructing ε-kernels (coresets for approximate width and approximate
convex hull) in close to optimal time O(n + (1/ε)(d−1)/2), up to a small near-(1/ε)3/2 factor,
for any d-dimensional n-point set. We obtain an improved data structure for Euclidean ap-
proximate nearest neighbor search with close to O(n logn + (1/ε)d/4n) preprocessing time and
O((1/ε)d/4 logn) query time. We obtain improved approximation algorithms for discrete Voronoi
diagrams, diameter, and bichromatic closest pair in the Ls-metric for any even integer constant
s ≥ 2. The techniques are general and may have further applications.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases diameter, coresets, approximate nearest neighbor search, the polynomial
method, streaming

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.26

1 Introduction

This paper presents new results on a number of fundamental problems in low-dimensional
geometric approximation algorithms. Let P be a set of n points in d-dimensional Euclidean
space where d is a constant. Let ε > 0 be a user-specified parameter (not necessarily a
constant). As a shorthand, let E := d1/εe. Below, the O notation may hide factor that
depends on d but not ε. The notation O∗ will be used to suppress small factors of the form
Ec for some constant c independent of d.

Diameter. We present a new algorithm to compute a (1 + ε)-approximation of the diameter
of P (the farthest pair distance) in O∗(n+ Ed/2) time.

There have been a long series of prior results:

O∗(Ed/2n) time by Agarwal, Matoušek, and Suri [3] (’91);
O∗(n + E2d) by Barequet and Har-Peled [14] (SODA’99);
O∗(n + E3d/2) by combining the two algorithms [18];
O∗(n + Ed) by Chan [18] (SoCG’00);
O∗(n + Ed/2√n) by Arya and Chan [9] (SoCG’14).

Our new result is a substantial improvement, and provides a near Ed/4-factor speedup in the
case when n is near Ed/2, for example.

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Applications of Chebyshev Polynomials to Computational Geometry

ε-Kernels. We obtain an algorithm to compute an ε-kernel of P with worst-case optimal
size O(E(d−1)/2) in O∗(n+ Ed/2) expected time; ε-kernels [1] provide coresets for a variety
of problems such as diameter, width, minimum enclosing cylinder, minimum bounding box,
and convex hull.

This is again a substantial improvement in terms of ε-dependencies over prior results:
O∗(n + E3d/2) time by Agarwal, Har-Peled, and Varadarajan [1] (SODA’01/FOCS’01);
O∗(n + Ed) by Chan [18] (SoCG’00);
O∗(n + Ed/2√n) by Arya and Chan [9] (SoCG’14).

More importantly, since the size of the ε-kernel may be Ω(E(d−1)/2), our result for this problem
is near worst-case optimal, up to an O∗(1) factor (more precisely, an O(E3/2 logO(1) E) factor).

Bichromatic closest pair. Assuming each input point is colored red or blue, we present a
new algorithm to compute a (1 + ε)-approximation of the bichromatic closest pair of P in
O∗(Ed/4n) expected time.

This improves a series of prior results:
O∗(Edn log n) time by Arya et al. [8] (SODA’04);
O∗(Ed/2n log n) by Chan [22] (SoCG’97);
O∗(Ed/3n) by Arya and Chan [9] (SoCG’14).

Approximate nearest neighbors. More generally, we can preprocess P in O(n logn) +
O∗(Ed/4n) expected time so that (1 + ε)-factor approximate nearest neighbor queries can be
answered in O∗(Ed/4 logn) query time.

This improves prior results with:
O(n log n) preprocessing time & O∗(Ed log n) query time by Arya et al. [8] (SODA’04);
O∗(Ed/2n log n) O∗(Ed/2 log n) by Chan [22] (SoCG’97);
O(n log n) + O∗(Ed/3n) O∗(Ed/3 log n) by Arya and Chan [9] (SoCG’14).

There were more previous results by Arya et al. [7, 6, 13] giving space/query-time tradeoffs.
For example, one method already achieved O∗(Ed/4n) space and O∗(Ed/4 logn) query
time, but preprocessing time has large ε-dependencies, making the method unsuitable for
bichromatic closest pair, for example.

Streaming diameter. In the insertion-only streaming model, we can maintain a (1 + ε)-
approximation of the diameter with O(E(d−1)/2) space and O∗(Ed/4) time per insertion of
point.

This improves prior results with:
O(E(d−1)/2) space & O∗(Ed/2) time (folklore);
O(E(d−1)/2) O∗(Ed/3) by Arya and Chan [9] (SoCG’14).

Streaming ε-kernels. In the insertion-only streaming model, we can maintain an ε-kernel
of O(E(d−1)/2) size with O(E(d−1)/2) space and O∗(1) time per insertion of point.

This improves prior results with:
O(E(d−1)/2) space & O∗(Ed logd n) time by Agarwal, Har-Peled, and Varadarajan [1] (’01);
O∗(Ed) O(1) by Chan [19] (SoCG’04);
O(E(d−1)/2) O∗(Ed/2) by Zarrabi-Zadeh [31] (ESA’08);
O(E(d−1)/2) O∗(Ed/4) by Arya and Chan [9] (SoCG’14).

Since our result has O∗(1) time, it is near optimal (up to an O(E3/2 logO(1) E) factor).

T.M. Chan 26:3

Discrete upper envelopes and discrete Voronoi diagrams. Most of the above results are
obtained by solving the following key subproblem of independent interest, called discrete
upper envelope (introduced in [19]): the problem is to find extreme points along various
uniformly spaced directions, or more precisely, find the point pξ ∈ P that maximizes pξ · ξ for
each ξ ∈ Ξ×{1}, where Ξ is the set of all points in a uniform grid of side length δ over [0, 1]d−1.
To explain the name, note that after dualization the problem corresponds to evaluating the
upper envelope of a set of hyperplanes (i.e., pointwise maximum of (d − 1)-variate linear
functions) at the vertical lines through all grid points in Ξ.

In the related (d− 1)-dimensional discrete Voronoi diagram problem [19] (also called the
“Euclidean distance transform” [17, 27]), we want to find the nearest neighbor p′ξ in P to
each grid point ξ ∈ Ξ× {0}.

In both problems, we allow approximation with an additive error of O(ε), given that
P ⊂ [0, 1]d. We present an algorithm with O∗(n+Ed/2 + F d) time where F := d1/δe. Since
the output size is Θ∗(F d), our algorithm is near-optimal up to O∗(1) factors if F ≥

√
E

(indeed, in applications, the main case of interest is when F =
√
E). This improves prior

results (assuming F ≤ E) with:

O∗(F dn) time (trivial);
O∗(n + Ed) by Chan [19] (SoCG’04);
O∗(mind

k=0 F d−k(n + Ek)) by Arya and Chan [9] (SoCG’14).

The last bound is O∗(n+Ed/2√n) in the case F =
√
E. Interestingly, these prior algorithms

actually solve the discrete upper envelope problem exactly after an initial rounding of P to a
uniform grid of side length ε (in other words, error solely comes from rounding). Our new
approach will make more powerful use of approximation.

Significance. For specific small constants d, our improvements may not be dramatic when
factors hidden in the O∗ notation are taken into account. On the other hand, for large
constants d, the time bound may become impractically large as E grows (not to mention that
hidden constant factors, of the form dO(d), may become an issue). For example, for diameter
with d = 15 and n = E7, the old bound [19] was O(E13 logE), the most recent previous
bound [9] was O(E9.5 logE), and the new bound is O(E8 logO(1) E). For bichromatic closest
pair with d = 25, the old bound [22] was O(E12n logn), the most recent previous bound [9]
was O(E7.5n logE), and the new bound is O(E5.75n logO(1) E). Also, for a problem such
as diameter, there are existing alternatives that do not necessarily have good worst-case
running time but performs much better on “realistic input” [24].

However, we believe that more significant than the results are the techniques. Surprisingly,
we bring in algebraic techniques – namely, the polynomial method – to tackle computational
geometry problems that have traditionally been solved using geometric techniques only.
Specifically, our algorithms use Chebyshev polynomials.

The polynomial method and Chebyshev polynomials have found applications before in
theoretical computer science, numerical analysis, and other areas. Two recent lines of research
are particularly relevant:

Andoni and Nguyen [5] (SODA’12) applied the polynomial method to obtain dynamic
streaming algorithms for the width problem. This was followed up by Chan [20] (SoCG’16)
for the ε-kernel problem. Chebyshev polynomials were not used. In regards to traditional
(or insertion-only streaming) algorithms, these ideas seem to give poorer results than
what is already known.

SoCG 2017

26:4 Applications of Chebyshev Polynomials to Computational Geometry

Valiant [28] (FOCS’12) applied Chebyshev polynomials to obtain faster algorithms for
approximate bichromatic closest pair and offline approximate nearest neighbor search in
high dimensions. This was later improved by Alman, Chan, and Williams [4] (FOCS’16).
These ideas do not seem directly useful for low-dimensional nearest neighbor search, as
the target time bounds are vastly different in low vs. high dimensions.

Interestingly, our work will combine ideas from these two research threads, along with
existing geometric techniques on low-dimensional ε-kernels and approximate nearest neighbor
search. The connection may be simple in hindsight (none of our ideas are original in isolation),
but honestly the author did not anticipate that these threads could come together so neatly!

Although we draw on algebraic techniques, our algorithms for discrete upper envelopes
and diameter are easy to understand and do not require advanced background. Our first
algorithm does not even need fast Fourier transform or fast matrix multiplication, just simple
arithmetic on roughly

√
E-bit-long numbers (our time bounds already account for the bit

complexity of such operations). Section 2 giving a self-contained description of the first
algorithm is about two pages long. Our second algorithm for diameter, which uses fast
Fourier transform, as described in Section 4, is even shorter.

Note. After completing a preliminary draft of this paper, the author has learned that
Arya, de Fonseca, and Mount (personal communication, late Nov. 2016) have independently
obtained similar results [12]. In fact, their time bounds are a little better in the hidden O∗(1)
factors (for example, for diameter, we obtain O((n

√
E + E(d+1)/2) logO(1) E) time, whereas

they obtain O(n logE + E(d−1)/2+δ) time for an arbitrarily small constant δ > 0). The fact
that the techniques are completely different makes the independent discovery all the more
exciting. Arya et al.’s techniques build on a long series of their earlier work involving Macbeath
regions [6, 10, 11, 13], and the analysis in these previous papers appears complicated. In
contrast, our algorithms make minimal use of geometry, and are more general in some sense.
For instance, our second algorithm for diameter works in the Ls metric for any integer
constant s ≥ 2 (or other similarly behaved distance functions) with the same running time,
whereas the approach by Arya et al. does not appear to generalize because of its reliance on
a certain lifting transformation. The polynomial method is very powerful, and we anticipate
more applications will follow.

2 First Algorithm

Our first algorithm solves a generalization of the discrete upper envelope problem:

I Problem 1 (Generalized Discrete Upper Envelope). Let d be a constant and let ψ1, . . . , ψd−1
be bivariate O(1)-degree polynomials with integer coefficients. Given a set P of n points in
Zd, we want to compute

f(x1, . . . , xd−1) := max
(a1,...,ad)∈P

(ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad) (1)

for all1 (x1, . . . , xd−1) ∈ [F]d−1, while allowing additive error O(εU), where U is a given
upper bound on |ψ1(a1, x1) + · · · + ψd−1(ad−1, xd−1) + ad| over all (a1, . . . , ad) ∈ P and
(x1, . . . , xd−1) ∈ [F]d−1.

1 [m] denotes the integer set {0, 1, . . . , m− 1}.

T.M. Chan 26:5

For example, for the discrete upper envelope problem as defined in the Introduction, we
can round the given point set P ⊂ [0, 1]d to a uniform grid of side length ε and then rescale
so that Ξ = [F]d−1 and P ⊂ [E]d−1 × [EF]. We then get an instance of Problem 1 with
ψi(ai, xi) = aixi. Here, U = O(EF), and n ≤ (EF)O(1) after removing duplicates.

For the (d− 1)-dimensional discrete Voronoi diagram problem as defined in the Introduc-
tion, approximating the distance with additive error O(ε) is equivalent to approximating the
squared distance with additive error O(ε). We can round and rescale so that Ξ = [F]d−1 and
P ⊂ [E]d. We then get an instance of Problem 1 with ψi(ai, xi) = (EF xi − ai)

2 (assuming
that F divides E). Here, U = O(E2), and n ≤ EO(1) after removing duplicates. We can also
take ψi(ai, xi) = (EF xi − ai)

s for the analogous problem under the Ls metric for any even
integer constant s.

We now solve Problem 1 using the polynomial method. We start with basic properties
about Chebyshev polynomials (e.g., see [28, 4] for quick proofs):

I Lemma 2. Let

Tq(x) :=
bq/2c∑
i=0

(
q

2i

)
(x2 − 1)ixq−2i

be the degree-q Chebyshev polynomial (of the first kind).
(i) If |x| ≤ 1, then |Tq(x)| ≤ 1.
(ii) If x > 1, then Tq(x) > 1.
(iii) If x ≥ 1 + ε, then Tq(x) > 1

2e
q
√
ε.

Set q :=
⌈√

E ln(4n)
⌉
and D := Uq. Let T (x) := D · Tq(1 + x

U), which is a polynomial
with integer coefficients. Our main idea is to work with the following function instead of f :

f̃(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈P

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t) (2)

where x1, . . . , xd−1 ∈ [F] and |t| ∈ [U]. The function f̃ is “nicer” since it is a sum (instead of
a max) of polynomials, and is thus itself a polynomial. The following observations explain
the relationship between the two functions:

Case 1: f(x1, . . . , xd−1) ≤ t. Then −2U ≤ ψ1(a1, x1)+· · ·+ψd−1(ad−1, xd−1)+ad−t ≤ 0
for all (a1, . . . , ad) ∈ P . By Lemma 2(i), all n terms in the sum (2) are at most D, and
so f̃(x1, . . . , xd−1, t) ≤ Dn.

Case 2: f(x1, . . . , xd−1) ≥ t+εU . Then ψ1(a1, x1)+ · · ·+ψd−1(ad−1, xd−1)+ad− t ≥ εU
for at least one (a1, . . . , ad) ∈ P . By Lemma 2(iii), at least one term in the sum (2) exceeds
D · 1

2e
q
√
ε. By Lemma 2(i,ii), all other terms are at least −D. So, f̃(x1, . . . , xd−1, t) ≥

D(1
2e
q
√
ε − (n− 1)) > Dn by our choice of q.

Thus, we can approximately compare f(x1, . . . , xd−1) against t with additive error εU ,
by evaluating f̃(x1, . . . , xd−1, t). So, we can approximately compute f(x1, . . . , xd−1) with
additive error O(εU) by binary search, using O(logE) evaluations of f̃ . The total number of
evaluations over all (x1, . . . , xd−1) ∈ [F]d−1 is O(F d−1 logE).

To evaluate f̃ , one could expand the expression into monomials, as f̃ is a low-degree
multivariate polynomial, but this approach seems too costly. Instead, we use the Chinese
remainder theorem. In the stated domain, f̃ is upper-bounded by M := DnTq(3) ≤
Dn2O(q) ≤ 2O(

√
E logO(1)(nEU)). Let P be a set of primes whose product exceeds M ; by

known bounds, we can choose such a set so that |P| = O(logM/ log logM) and each prime in

SoCG 2017

26:6 Applications of Chebyshev Polynomials to Computational Geometry

P is at most O(logM). We describe how to evaluate f̃(x1, . . . , xd−1, t) mod p for each p ∈ P .
Afterwards, we can reconstruct each value f̃(x1, . . . , xd−1, t) by the Chinese remainder
theorem, which takes at most O(log2 M) time by elementary methods (for example, by
repeated application of Euclid’s algorithm, although faster, more sophisticated methods are
possible). The total time of this step is O(F d−1 logE log2 M) = O(F d−1E logO(1)(nEU)).

Fix a prime p ∈ P. For each a1, . . . , ad ∈ [p], let wa1,...,ad
be the number of points

(a′1, . . . , a′d) ∈ P such that a′1 ≡ a1, . . . , a
′
d ≡ ad (mod p); we can precompute all these

counts by a linear scan over P , using O(n) arithmetic operations. Now,

f̃(x1, . . . , xd−1, t) ≡
∑

a1,...,ad∈[p]

wa1,...,ad
T (ψ1(a1, x1)+· · ·+ψd−1(ad−1, xd−1)+ad−t) (mod p).

To generate all f̃ mod p values, we use dynamic programming. For each i ∈ {1, . . . , d}
and each a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p], define

g(i)
a1,...,ai−1

(xi, . . . , xd−1, t) :=
∑

ai,...,ad∈[p]

wa1,...,ad
T (ψi(ai, xi) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

(mod p).

Then g(1) gives us f̃ mod p.
For the base case, we can compute g(d) using the formula

g(d)
a1,...,ad−1

(t) ≡
∑
ad∈[p]

wa1,...,ad
T (ad − t) (mod p) (3)

for all a1, . . . , ad−1, t ∈ [p]. For i = d − 1, . . . , 1, we can compute g(i) using the recursive
formula

g(i)
a1,...,ai−1

(xi, . . . , xd−1, t) ≡
∑
ai∈[p]

g(i+1)
a1,...,ai

(xi+1, . . . , xd−1, t− ψi(ai, xi)) (mod p) (4)

for all a1, . . . , ai−1, xi, . . . , xd−1, t ∈ [p].
The resulting dynamic program requires O(pd) table entries, each computed using O(p)

arithmetic operations by (3) and (4). This assumes that we have precomputed T (x) for
all x ∈ [p] (which straightforwardly requires O(pq) arithmetic operations). All arithmetic
operations are done modulo p, each costing at most O(log2 p) by elementary methods. Thus,
the running time of the dynamic program is O(pd+1 log2 p) = O(logd+1 M log2 logM) =
O(E(d+1)/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is
O((n+E(d+1)/2) logO(1)(nEU)) for each fixed prime p. The total over all O(logM/ log logM)
= O(

√
E logO(1)(nEU)) primes p ∈ P becomes O((n

√
E + Ed/2+1) logO(1)(nEU)).

I Theorem 3. Problem 1 can be solved in O((n
√
E+Ed/2+1 +F d−1E) logO(1)(nEU)) time,

where E = d1/εe.

In the case F =
√
E, the bound is O((n

√
E + Ed/2+1) logO(1)(nEU)), which nearly

matches the lower bound Ω(n+ E(d−1)/2) up to a factor of about E3/2.
Note that the above method actually solves a data structure version of Problem 1: after

preprocessing in O((n
√
E+Ed/2+1) logO(1)(nEU)) time, we can approximate f(x1, . . . , xd−1)

for any query point (x1, . . . , xd−1) ∈ [F]d−1 in O(E logO(1)(nEU)) time. This data structure
problem is similar to the approximate polytope membership problem studied by Arya et
al. [6, 10, 11, 13, 12].

Appendix B describes one small improvement of the Ed/2+1 term to a bound approaching
E(d+1)/2 as d gets large. This improvement requires fast rectangular matrix multiplication,
however.

T.M. Chan 26:7

3 Applications

We now sketch how our new algorithm for discrete upper envelopes and discrete Voronoi
diagrams automatically leads to better algorithms for various problems, by combining with
existing techniques from computational geometry.

Diameter. Given a set P of n points in d dimensions, we consider the problem of computing
a (1 +O(ε))-factor approximation of the diameter, i.e, the distance of the farthest pair of
points.

We can adopt the following standard algorithm, described in [19] (see also [3, 18]): First
compute a constant-factor approximation in O(n) time (e.g., by picking any arbitrary point
of P and taking the farthest neighbor distance from that point). By translation and scaling,
we may assume that the diameter is Θ(1) and P ⊂ [0, 1]d. Let Ξ be the set of all grid points
over ∂[−1, 1]d with side length δ :=

√
ε. For each ξ ∈ Ξ, find a point pξ ∈ P that maximizes

pξ · ξ and a point qξ ∈ P that maximizes −qξ · ξ, while allowing additive error O(ε). Return
the maximum of pξ · ξ − qξ · ξ over all ξ ∈ Ξ. See [19] for the correctness proof.

Observe that computing all the pξ’s and qξ’s corresponds to O(1) instances of the discrete
upper envelope problem (one per facet of ∂[−1, 1]d). By applying Theorem 3 with F =

√
E,

U = O(EF), and n ≤ EO(1), we immediately obtain:

I Corollary 4. Given n points in constant dimension d, we can compute a (1+ε)-approximation
of the diameter in O((n

√
E + Ed/2+1) logO(1) E) time, where E = d1/εe.

ε-kernels. Given a set P of n points in d dimensions, an ε-kernel is, roughly speaking, a
subset Q ⊂ P whose width approximates the width of P to within a factor of 1 + ε along
every direction simultaneously. Alternatively, it can be viewed as a “coreset” for approximate
convex hulls. The concept was introduced by Agarwal, Har-Peled, and Varadarajan [1] and
has a plethora of applications; see [1, 2] for the precise definition and background.

Previous work [19, 30] suggested the following algorithm which computes an ε-kernel of
worst-case optimal size O((1/ε)(d−1)/2): First find an affine transformation that makes P
“fat” and lie in [−1, 1]d; this is known to be doable in O(n) time. Let Ξ be the set of all grid
points over ∂[−2, 2]d with side length

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P

to ξ, while allowing additive error O(ε). Return the subset {pξ : ξ ∈ Ξ}. See [19] for the
correctness proof.

Observe that computing all the pξ’s reduces to O(1) instances of the (d− 1)-dimensional
discrete Voronoi diagram problem. (Technically, we need witness finding; see Appendix A
for a solution, requiring Las Vegas randomization.) By Theorem 3, we immediately obtain:

I Corollary 5. Given n points in constant dimension d, we can compute an ε-kernel of size
O(E(d−1)/2) in O((n

√
E + Ed/2+1) logO(1) E) expected time, where E = d1/εe.

Bichromatic closest pair. Given a set P of n red points and Q of n blue points in d

dimensions, we next examine the problem of finding a (1 +O(ε))-factor approximation of
the closest red-blue pair.

We first consider the “well-separated” case, where by translation, rotation, and scaling,
we can make P ⊂ [−1, 1]d−1 × [−2,−1] and Q ⊂ [−1, 1]d−1 × [1, 2]. Arya and Chan [9]
suggested the following algorithm to solve this case: Let Ξ be the set of all grid points over
[−1, 1]d−1 × {0} with side length δ :=

√
ε. For each ξ ∈ Ξ, find a nearest neighbor pξ ∈ P to

ξ and a nearest neighbor qξ ∈ Q to ξ, while allowing additive error O(ε). Return the closest
pair (pξ, qξ) over all ξ ∈ Ξ. See [9] for the correctness proof.

SoCG 2017

26:8 Applications of Chebyshev Polynomials to Computational Geometry

Observe that computing all the pξ’s reduces to O(1) instances of the (d−1)-dimensional dis-
crete Voronoi diagram problem. (Technically, we again need witness finding.) By Theorem 3,
the running time is O((n

√
E +Ed/2+1) logO(1) E). An alternative upper bound is O(n2), by

brute-force search. The smaller of the two bounds is always at most O(nEd/4+1/2 logO(1) E).
As observed by Arya and Chan [9], a simple grid approach can reduce the general problem

to a number of well-separated instances whose input sizes sum to O(n). Thus, the total time
is at most O(nEd/4+1/2 logO(1) E).

I Corollary 6. Given n red and blue points in constant dimension d, we can compute a
(1 + ε)-approximate bichromatic closest pair in O(nEd/4+1/2 logO(1) E) expected time, where
E = d1/εe.

Approximate nearest neighbor search. The result for bichromatic closest pair can be
extended to (offline or online) approximate nearest neighbor search, by following Arya and
Chan [9]. The techniques are more involved, requiring balanced box decomposition trees and
ideas from earlier papers of Arya, da Fonseca, Malamatos, and Mount [7, 6]. We omit the
details, but by reexamining [9] closely and incorporating our new time bound for discrete
Voronoi diagrams, we obtain:

I Corollary 7. We can preprocess n points in a constant dimension d in O(n logn) +
O∗(nEd/4) expected time so that we can find a (1 + ε)-approximate nearest neighbor to any
query point in O∗(Ed/4 logn) time, where E = d1/εe.

Streaming diameter and ε-kernels. The same paper [9] also described an application to
insertion-only streaming algorithms for approximating the diameter. Their solution requires
first designing a data structure for approximate farthest neighbor queries using techniques
similar to [7, 6], and then combining with Bentley and Saxe’s logarithmic method (or “merge-
and-reduce”) [15]. We omit the details, but by examining [9] closely and incorporating our
new time bound for discrete Voronoi diagrams, we obtain:

I Corollary 8. Given a stream of n points in constant dimension d, we can maintain a
(1 + ε)-approximation of the diameter using O(E(d−1)/2) space and supporting insertions in
O∗(Ed/4) expected time, where E = d1/εe.

The paper [9] also studied the insertion-only streaming algorithms for ε-kernels. Here,
the solution is easier. We first consider the special case where the point set P is promised
to be fat and lie in [0, 1]d at all times. If we insist on O(E(d−1)/2) space, we can handle
insertions lazily until a block of E(d−1)/2 points is read. Then following Section 3, we
can recompute all the pξ’s and qξ’s by running our discrete upper envelope algorithm
on E(d−1)/2 points, taking O(Ed/2+1 logO(1) E) time. The amortized insertion time is
O(Ed/2+1 logO(1) E)/E(d−1)/2 = O(E3/2 logO(1) E). (Deamortization is straightforward.)

Building on an earlier streaming algorithm in [19], Zarrabi-Zadeh [31] has given a reduction
of the general problem to the above special case that does not increase the processing time
or space in the insertion-only streaming model. As a result, we obtain:

I Corollary 9. Given a stream of n points in constant dimension d, we can maintain an
ε-kernel using O(E(d−1)/2) space and supporting insertions in O(E3/2 logO(1) E) expected
time, where E = d1/εe.

T.M. Chan 26:9

4 Second Algorithm

We now present an alternative algorithm for the diameter problem, which is also based on
Chebyshev polynomials, but bypasses dynamic programming, instead using fast Fourier
transform. It is slightly faster (the Ed/2+1 term in the time bound is reduced to E(d+1)/2).
It is also more direct, without going through discrete upper envelopes. The algorithm can
also be applied to the bichromatic closest pair problem. An advantage is that it can be
generalized to the Ls metric for any even integer constant s (although the algorithm for
discrete Voronoi diagrams in Section 2 works also for Ls, the reductions from diameter and
bichromatic closest pair in Section 3 rely on properties of Euclidean space).

I Problem 10 (Generalized Diameter). Let d be a constant and ϕ be a d-variate O(1)-degree
polynomial with integer coefficients. Given two sets P and Q of n points in Zd, we want to
compute

Z := max
(a1,...,ad)∈P, (b1,...,bd)∈Q

ϕ(a1 − b1, . . . , ad − bd)

while allowing additive error O(εU), where U is a known upper bound on |ϕ(a1− b1, . . . , ad−
bd)| over all (a1, . . . , ad) ∈ P, (b1, . . . , bd) ∈ Q.

For example, for diameter in the Ls metric for an even integer constant s, we can first
compute a constant-factor approximation in O(n) time. By translation, scaling, and rounding,
we may assume that the diameter is Θ(E) and P ⊂ [E]d. Approximating the diameter with
additive error O(εE) is equivalent to approximate the s-th power of the diameter with additive
error O(εEs). We then get an instance of Problem 10 with ϕ(x1, . . . , xd) = xs1 + · · ·+ xsd.
Here, U = O(Es), and n ≤ EO(1) after removing duplicates.

We now solve Problem 10 using the polynomial method. It suffices to solve the decision
problem, of deciding whether the maximum is at least a given value t (with additive error
O(εU)), since the original problem can then be solved by binary search with O(logE) calls
to the decision algorithm.

Reset q :=
⌈√

E ln(4n2)
⌉
and let D and the degree-q polynomial T be as in Section 2.

Define

Z̃ :=
∑

(a1,...,ad)∈P, (b1,...,bd)∈Q

T (ϕ(a1 − b1, . . . , ad − bd)− t).

By a similar analysis as in Section 2, we have:
Case 1: Z ≤ t. Then Z̃ ≤ Dn2.
Case 2: Z ≥ t+ εU . Then Z̃ > D(1

2e
q
√
ε − (n2 − 1)) > Dn2 by our choice of q.

It suffices to compute Z̃. At first Z̃ appears expensive to compute, since we are summing
n2 polynomials. We follow the approach in Section 2 and use the Chinese remainder theorem.
Define the set P of primes as before, withM := Dn2Tq(3) ≤ 2O(

√
E logO(1)(nEU)). We describe

how to compute Z̃ mod p for each p ∈ P. Afterwards, we can reconstruct Z̃ as before in at
most O(log2 M) = O(E logO(1)(nEU)) time.

Fix a prime p ∈ P . As before, for each a1, . . . , ad ∈ [p], let wa1,...,ad
be the number of points

(a′1, . . . , a′d) ∈ P such that a′1 ≡ a1, . . . , a
′
d ≡ ad (mod p). Similarly, for each b1, . . . , bd ∈ [p],

let vb1,...,bd
be the number of points (b′1, . . . , b′d) ∈ Q such that b′1 ≡ b1, . . . , b

′
d ≡ bd (mod p).

We can precompute all these counts by a linear scan over P and Q, using O(n) arithmetic

SoCG 2017

26:10 Applications of Chebyshev Polynomials to Computational Geometry

operations. Then

Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]

wa1,...,ad
vb1,...,bd

T (ϕ(a1 − b1, . . . , ad − bd)− t) (mod p) (5)

≡
∑

c1,...,cd∈[p]

uc1,...,cd
T (ϕ(c1, . . . , cd)− t) (mod p), (6)

where

uc1,...,cd
:=

∑
a1,...,ad∈[p]

wa1,...,ad
v(a1−c1) mod p,...,(ad−cd) mod p (mod p).

The key is to recognize this expression as a d-dimensional convolution (with wraparound
indices modulo p). This can be converted to standard 1-dimensional convolution as follows:
Initialize arrays A[0, . . . , (2p)d] and B[0, . . . , (2p)d] to 0. For each a1, . . . , ad ∈ [p], set
A[a1(2p)d−1 + a2(2p)d−2 + · · · + ad] = wa1,...,ad

. For each b1, . . . , bd ∈ [p], set B[(p −
b1)(2p)d−1+(p−b2)(2p)d−2+· · ·+(p−bd)] = vb1,...,bd

. Compute the convolution C[0, . . . , (2p)d]
where C[i] :=

∑i
k=0 A[k]B[i − k] (mod p). Then for each c1, . . . , cd ∈ [p], set uc1,...,cd

=∑
j1,...,jd∈{0,1} C[(c1 + j1p)(2p)d−1 + (c2 + jdp)(2p)d−2 + · · ·+ (cd + jdp)] (mod p).
By fast Fourier transform, we can compute all uc1,...,cd

values using O(pd log p) arithmetic
operations. Afterwards, we can compute Z̃ mod p by (6) using O(pd) arithmetic operations.
This assumes that we have precomputed T (x) for all x ∈ [p] (which straightforwardly requires
O(pq) arithmetic operations). All arithmetic operations are done modulo p, each costing
at most O(log2 p) time. The running time is thus O(pd log3 p) = O(logdM log3 logM) =
O(Ed/2 logO(1)(nEU)).

Including the cost of computing the counts, the running time is O((n+Ed/2) logO(1)(nEU))
for each fixed prime p. The total over all O(logM/ log logM) = O(

√
E logO(1)(nEU)) primes

p ∈ P is O((n
√
E + E(d+1)/2) logO(1)(nEU)).

I Theorem 11. Problem 10 can be solved in O((n
√
E+E(d+1)/2) logO(1)(nEU)) time, where

E = d1/εe.

5 Applications

Ls-diameter. The algorithm in Section 4 can immediately be applied to approximate the
diameter in the Ls metric for any even integer constant s. For the case of odd s, we can use
standard range-tree divide-and-conquer to reduce to bichromatic instances (P,Q) such that
P and Q are separated along all d axis directions, in which case the preceding algorithm
can be applied. The divide-and-conquer increases the running time by a factor of O(logd n),
which is O(logdE) since n ≤ EO(1) (after initial rounding and removal of duplicates).

I Corollary 12. Given n points in constant dimension d and any integer constant s ≥ 2, we
can compute a (1 + ε)-approximation of the Ls-diameter in O((n

√
E + E(d+1)/2) logO(1) E)

time, where E = d1/εe.

Bichromatic Ls-closest pair. For bichromatic closest pair in the Ls metric for any even
integer constant s, it suffices to solve the well-separated case, as noted in Section 3, where
P ⊂ BP and Q ⊂ BQ for two unit hypercubes BP and BQ of distance Θ(1) apart. (Note
that we can no longer rotate.) Approximating the closest pair distance with additive error
O(ε) is equivalent to approximating the s-th power of the closest pair distance with additive
error O(ε). We can round and rescale so that P,Q ⊂ [E]d. We then get an instance of

T.M. Chan 26:11

Problem 10 with ϕ(x1, . . . , xd) = −(xs1 + · · ·+ xsd). Here, U = O(Es), and n ≤ EO(1) after
removing duplicates. The rest of the analysis is as in Section 3. The case of odd s can again
be handled by incorporating range-tree divide-and-conquer.

I Corollary 13. Given n red and blue points in constant dimension d and any integer
constant s ≥ 2, we can compute a (1 + ε)-approximate bichromatic Ls-closest pair in
O(nE(d+1)/4 logO(1) E) time, where E = d1/εe.

6 Final Remarks

We now reveal the origins of the ideas behind our first algorithm in Section 2.

The application of the polynomial method to approximately find extreme points along
arbitrary directions was first proposed by Andoni and Nguyen [5], specifically for the
dynamic streaming model. This line of work was continued in [20] for the ε-kernel problem;
in fact, the idea of applying the Chinese remainder theorem and keeping the counts
wa1,...,ad

(which are easy to maintain in the dynamic streaming setting) is taken from [20].
However, it has not been realized before that the approach could give better algorithms
in the standard nonstreaming setting. Also, these previous algorithms [5, 20] constructed
polynomials by summing q-th powers rather than degree-q Chebyshev polynomials, which
caused a larger degree bound on q (of the order E instead of

√
E) and thus larger

ε-dependencies in time and space complexity.
The theoretical computer science literature contains a number of earlier applications of
Chebyshev polynomials. The closest to our work are perhaps the papers by Valiant [28]
and Alman, Chan, and Williams [4] on approximate closest pair and offline nearest
neighbor search in high dimensions. The latter paper also played with sums of Cheby-
shev polynomials, but the algorithms were put together quite differently. For example,
they dealt primarily with polynomials with Boolean variables, they needed to expand
polynomials into monomials, and they relied on fast matrix multiplication rather than
dynamic programming.
Related is another polynomial-method-based algorithm for #SAT by Chan andWilliams [21].
There, a multivariate polynomial is evaluated over all points in {0, 1}m in near 2m time,
without fast matrix multiplication. This subproblem in Boolean space reduces to comput-
ing a Möbius or zeta transform, for which a standard dynamic programming algorithm
by Yates can be invoked [29, 16]. Our dynamic programming algorithm, to evaluate a
polynomial over all points in the space [E]d, is not entirely “original” and can be viewed
as a variant of Yates’ algorithm.

Our second algorithm in Section 4 which exploits fast Fourier transform seems more
original, although the idea is simple in hindsight.

The main advantage of the polynomial method is its generality. For example, the approach
in our second algorithm might potentially be applicable to kinetic variants of the diameter
decision problem where points are moving according to O(1)-degree polynomial functions in
time.

We can consider a still more general version of the diameter problem than Problem 10,
where ϕ can be any (2d)-variate polynomial with integer coefficients and we seek Z :=
max(a1,...,ad)∈P, (b1,...,bd)∈Q ϕ(a1, . . . , ad, b1, . . . , bd). Fast Fourier transform does not seem
applicable here, and we have to adapt (5):

Z̃ ≡
∑

a1,...,ad,b1,...,bd∈[p]

wa1,...,ad
vb1,...,bd

T (ϕ(a1, . . . , ad, b1, . . . , bd)− t) (mod p),

SoCG 2017

26:12 Applications of Chebyshev Polynomials to Computational Geometry

which can be evaluated using O(p2d) arithmetic operations by brute force (instead of
O(pd log p)). This yields a slower (but still new) running time ofO((n

√
E+Ed+(1/2)) logO(1) E)

= O∗(n+ Ed).
To close, we mention two specific open problems:
Can we approximate the width of a point set in O∗(n+ Ed/2) time? The issue is that
knowing an ε-kernel, we still need to compute the width of the kernel efficiently.
Can we approximate the diameter in O∗(n + Eαd) time for some absolute constant
α < 1/2?

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent

measures of points. J. ACM, 51(4):606–635, 2004. Preliminary version in SODA’01 and
FOCS’01.

2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approxima-
tion via coresets. In Emo Welzl, editor, Current Trends in Combinatorial and Computa-
tional Geometry, pages 1–30. Cambridge University Press, 2005.

3 Pankaj K. Agarwal, Jirí Matoušek, and Subhash Suri. Farthest neighbors, maximum span-
ning trees and related problems in higher dimensions. Comput. Geom. Theory Appl., 1:189–
201, 1991. doi:10.1016/0925-7721(92)90001-9.

4 Josh Alman, Timothy M. Chan, and RyanWilliams. Polynomial representation of threshold
functions and algorithmic applications. In Proc. 57th IEEE Symp. Found. Comput. Sci.
(FOCS), pages 467–476, 2016.

5 Alexandr Andoni and Huy L. Nguyen. Width of points in the streaming model. In Proc.
23rd ACM–SIAM Symp. Discrete Algorithms (SODA), pages 447–452, 2012. ACM Trans.
Algorithms, to appear.

6 S. Arya, G.D. da Fonseca, and D.M. Mount. Approximate polytope membership queries.
In Proc. 43rd ACM Symp. Theory Comput. (STOC), pages 579–586, 2011. SIAM J.
Comput., to appear. URL: http://www.uniriotec.br/~fonseca/polytope_conf.pdf,
doi:10.1145/1993636.1993713.

7 S. Arya, T. Malamatos, and D.M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. ACM, 57:1–54, 2009. Preliminary version in SODA’02 and STOC’02.
doi:10.1145/1613676.1613677.

8 S. Arya, D.M. Mount, N. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. ACM, 45:891–923, 1998.
Preliminary version in SODA’94.

9 Sunil Arya and Timothy M. Chan. Better ε-dependencies for offline approximate nearest
neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Symp.
Comput. Geom. (SoCG), pages 416–425, 2014. doi:10.1145/2582112.2582161.

10 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal area-sensitive
bounds for polytope approximation. In Proc. 28th Symp. Comput. Geom. (SoCG), pages
363–372, 2012. doi:10.1145/2261250.2261305.

11 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. On the combinatorial
complexity of approximating polytopes. In Proc. 32nd Symp. Comput. Geom. (SoCG),
pages 11:1–11:15, 2016. doi:10.4230/LIPIcs.SoCG.2016.11.

12 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Near-optimal ε-kernel
construction and related problems. In Proc. 33rd Symp. Comput. Geom. (SoCG), 2017.

13 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Optimal approximate
polytope membership. In Proc. 28th ACM–SIAM Symp. Discrete Algorithms (SODA),
pages 270–288, 2017.

http://dx.doi.org/10.1016/0925-7721(92)90001-9
http://www.uniriotec.br/~fonseca/polytope_conf.pdf
http://dx.doi.org/10.1145/1993636.1993713
http://dx.doi.org/10.1145/1613676.1613677
http://dx.doi.org/10.1145/2582112.2582161
http://dx.doi.org/10.1145/2261250.2261305
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.11

T.M. Chan 26:13

14 Gill Barequet and Sariel Har-Peled. Efficiently approximating the minimum-volume bound-
ing box of a point set in three dimensions. J. Algorithms, 38(1):91–109, 2001. Preliminary
version in SODA’99. doi:10.1006/jagm.2000.1127.

15 J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic trans-
formation. J. Algorithms, 1(4):301–358, 1980.

16 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

17 H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Euclidean distance transform
algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 17:529–533, 1995.

18 Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Int. J. Comput. Geom.Appl., 12(1-2):67–85, 2002. Preliminary
version in SoCG’00. doi:10.1142/S0218195902000748.

19 Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimen-
sions. Comput. Geom. Theory Appl., 35(1-2):20–35, 2006. Preliminary version in SoCG’04.
doi:10.1016/j.comgeo.2005.10.002.

20 Timothy M. Chan. Dynamic streaming algorithms for ε-kernels. In Proc. 32nd Symp.
Comput. Geom. (SoCG), pages 27:1–27:11, 2016. doi:10.4230/LIPIcs.SoCG.2016.27.

21 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov–Smolensky. In Proc. 27th ACM–SIAM Symp. Discrete
Algorithms (SODA), pages 1246–1255, 2016.

22 T.M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom.,
20:359–373, 1998. Preliminary version in SoCG’97.

23 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982. doi:10.1137/0211037.

24 Sariel Har-Peled. A practical approach for computing the diameter of a point set. In Proc.
17th Symp. Comput. Geom. (SoCG), pages 177–186, 2001. doi:10.1145/378583.378662.

25 Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplication and applications.
J. Complexity, 14(2):257–299, 1998. doi:10.1006/jcom.1998.0476.

26 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
27 Otfried Schwarzkopf. Parallel computation of distance transforms. Algorithmica, 6(5):685–

697, 1991. doi:10.1007/BF01759067.
28 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning

parities and the closest pair problem. J. ACM, 62(2):13, 2015. Preliminary version in
FOCS’12.

29 F. Yates. The design and analysis of factorial experiments. Technical Communication No.
35, Commonwealth Bureau of Soil Science, Harpenden, UK, 1937.

30 H. Yu, P.K. Agarwal, R. Poreddy, and K.R. Varadarajan. Practical methods for shape
fitting and kinetic data structures using coresets. Algorithmica, 52(3):378–402, 2008. Pre-
liminary version in SoCG’04.

31 Hamid Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed
dimensions. Algorithmica, 60(1):46–59, 2011. Preliminary version in ESA’08. doi:10.1007/
s00453-010-9392-2.

A Finding Witnesses

One technical issue not addressed in Section 2 is how to find a witness point (a1, . . . , ad) ∈ P
that approximately attains the maximum in (1), for every (x1, . . . , xd−1) ∈ [F]d−1. This
is needed in some of the applications from Section 3. One standard approach to find such
witnesses is via binary search, using a binary tree of subsets of P , but this seems to hurt
the Ed/2 term in the running time. We adopt another standard approach, using random

SoCG 2017

http://dx.doi.org/10.1006/jagm.2000.1127
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1142/S0218195902000748
http://dx.doi.org/10.1016/j.comgeo.2005.10.002
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.27
http://dx.doi.org/10.1137/0211037
http://dx.doi.org/10.1145/378583.378662
http://dx.doi.org/10.1006/jcom.1998.0476
http://dx.doi.org/10.1007/BF01759067
http://dx.doi.org/10.1007/s00453-010-9392-2
http://dx.doi.org/10.1007/s00453-010-9392-2

26:14 Applications of Chebyshev Polynomials to Computational Geometry

sampling to isolate witnesses [26]. In the approximate setting, the details are trickier, but
have been worked out in the previous paper [20]. Although that paper dealt with q-th powers
instead of degree-q Chebyshev polynomials, the same ideas can be applied, as we now explain.
(In fact, the details get a little simpler when we are not working in the streaming model.)

We assume that P ⊂ [U]d (which is true in all our applications). First let `(a1, . . . , ad) =
a1U

d−1 + a2U
d−2 + · · ·+ ad + 1 denote the label of a point (a1, . . . , ad) ∈ P .

Let k := dlogne. For each j ∈ [k], draw a random sample Rj ⊂ P where each point is
chosen with probability 1/2j .

Reset q :=
⌈√

kE ln(10nU2d)
⌉
. Define the polynomial functions

f̃j(x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − t)

f∗j (x1, . . . , xd−1, t) :=
∑

(a1,...,ad)∈Rj

`(a1, . . . , ad)T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad−t)

where x1, . . . , xd−1 ∈ [F] and |t| ∈ [U]. We can evaluate f̃j and f∗j by the same approach as
in Section 2 (after resetting M := Ud ·DnTq(3)). The running time remains the same up to
polylogarithmic factors, since the number of choices for j is k = O(logn), and the degree q
increases only by a polylogarithmic factor.

Suppose we want to find a witness for a given (x1, . . . , xd−1) ∈ [F]d−1. We first find
an approximation t to the maximum, with t ≤ f(x1, . . . , xd−1) ≤ t+ dεUe, by the method
in Section 2. Intuitively, if the number of witnesses is near 2j , then with good probability
exactly one witness is in Rj and the ratio f∗

j (x1,...,xd−1,t)
f̃j(x1,...,xd−1,t)

rounded to the nearest integer
should give us the label to a witness, because the sums in the numerator and denominator
are both dominated by a single term which corresponds to the witness. More care is needed
in the approximate setting, however.

Let ∆ := ddεUe /ke. More precisely, we claim that with probability Ω(1), the label of a
witness can be found among the following ratios after rounding:

f∗j (x1, . . . , xd−1, t− i∆)
f̃j(x1, . . . , xd−1, t− i∆)

(i, j ∈ [k]).

To prove the claim, let Pi = {(a1, . . . , ad) ∈ P : ψ1(a1, x1)+ · · ·+ψd−1(ad−1, xd−1)+ad ≥
t − i∆}. Any point in Pi for any i ≤ k may be used as a witness with additive error
O(k∆) = O(εU). Since |P0| ≥ 1, there exists i ≤ k such that |Pi| ≤ 2|Pi−1| (for otherwise,
|Pk| > 2k ≥ n, a contradiction). Suppose 2j ≤ |Pi−1| ≤ 2j+1. Then |Pi| ≤ 2j+2. Let E be
the event that exactly one point of Pi−1 is chosen to be in Rj and no point of Pi \ Pi−1 is
chosen to be in Rj . Then Pr(E) ≥ |Pi−1| 1

2j (1 − 1
2j)|Pi|−1 ≥ (1 − 1

2j)2j+2 ≥ Ω(1). Suppose
that E is true. Let (a1, . . . , ad) ∈ P be the unique point of Pi−1 that is chosen to be in Rj .
Let ` = `(a1, . . . , ad) and T = T (ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − (t− i∆)). Since
ψ1(a1, x1) + · · ·+ ψd−1(ad−1, xd−1) + ad − (t− i∆) ≥ ∆, by Lemma 2, T ≥ D · 1

2e
√
ε/kq ≥

5DnU2d ≥ 5nUdD`; in other words, nUdD ≤ T/(5`). Thus,

f∗j (x1, . . . , xd−1, t− i∆)
f̃j(x1, . . . , xd−1, t− i∆)

∈
[
`T − (n− 1)UdD
T + (n− 1)D ,

`T + (n− 1)UdD
T − (n− 1)D

]
⊂

[
`− 1/(5`)
1 + 1/(5`) ,

`+ 1/(5`)
1− 1/(5`)

]
⊂
(
`− 1

2 , `+ 1
2

)
,

as desired.

T.M. Chan 26:15

Since each division costs at most O(log2 M), each witness can be found in O(log2 M log2 n)
time with success probability Ω(1). The total time for all (x1, . . . , xd−1) ∈ [F]d−1 is
O(F d−1 log2 M log2 n) = O(F d−1E logO(1)(nEU)). We can find all witnesses correctly by
repeating the algorithm an expected O(log(F d−1)) number of times (since verifying a given
witness is easy). Thus, the total time of the entire randomized (Las Vegas) algorithm remains
the same in expectation, up to polylogarithmic factors.

B Small Improvement

In this appendix, we note a small speedup to the algorithm in Section 2 by exploiting fast
Fourier transform and fast matrix multiplication. This improvement is mainly of theoretical
interest.

For the base case of the dynamic program, observe that when a1, . . . , ad−1 are fixed,
equation (3) can be rewritten as a convolution of two p-dimensional vectors: letting A[ad] :=
wa1,...,ad

and B[x] = T (−x), we have g(d)
a1,...,ad−1(t) ≡

∑
ad∈[p] A[ad]B[t− ad]. By fast Fourier

transform, the O(pd−1) convolutions require O(pd−1 · p log p) arithmetic operations.
For the main dynamic program, observe that equation (4) can be rewritten as a product

of a pd−2 × p2 matrix and a p2 × p2 matrix: letting

C[(a1, . . . , ai−1, xi+1, . . . , xd−1), (xi, t)] := g(i)
a1,...,ai−1

(xi, . . . , xd−1, t)

A[(a1, . . . , ai−1, xi+1, . . . , xd−1), (ai, z)] := g(i+1)
a1,...,ai

(xi+1, . . . , xd−1, z)

B[(ai, z), (xi, t)] :=
{

1 if z ≡ t− ψi(ai, xi) (mod p)
0 else,

we have C[ξ, η] ≡
∑
ζ A[ξ, ζ]B[ζ, η]. The computation requires O(pω(d−2,2,2)) arithmetic

operations, where ω(α, β, γ) denotes the matrix multiplication exponent for multiplying an
nα × nβ and an nβ × nγ matrix. All arithmetic operations are done modulo p. The running
time of the dynamic program is then O(pω(d−2,2,2) log2 p) = O(Eω(d/2−1,1,1) logO(1) E). The
total over all O(

√
E logO(1) E) primes p ∈ P gives O(Eω(d/2−1,1,1)+1/2 logO(1) E).

I Theorem 14. Problem 1 can be solved in O((n
√
E+Eω(d/2−1,1,1)+1/2 +F d−1E) logO(1) E)

time, where E = d1/εe.

Note that as d grows, ω(d/2−1, 1, 1)−d/2 approaches 0, by known results on rectangular
matrix multiplication [23, 25].

SoCG 2017

Orthogonal Range Searching in Moderate
Dimensions: k-d Trees and Range Trees Strike
Back∗†

Timothy M. Chan

Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
IL, USA
tmc@illinois.edu

Abstract
We revisit the orthogonal range searching problem and the exact `∞ nearest neighbor searching
problem for a static set of n points when the dimension d is moderately large. We give the first
data structure with near linear space that achieves truly sublinear query time when the dimension
is any constant multiple of logn. Specifically, the preprocessing time and space are O(n1+δ) for
any constant δ > 0, and the expected query time is n1−1/O(c log c) for d = c logn. The data
structure is simple and is based on a new “augmented, randomized, lopsided” variant of k-d trees.
It matches (in fact, slightly improves) the performance of previous combinatorial algorithms that
work only in the case of offline queries [Impagliazzo, Lovett, Paturi, and Schneider (2014) and
Chan (SODA’15)]. It leads to slightly faster combinatorial algorithms for all-pairs shortest paths
in general real-weighted graphs and rectangular Boolean matrix multiplication.

In the offline case, we show that the problem can be reduced to the Boolean orthogonal vectors
problem and thus admits an n2−1/O(log c)-time non-combinatorial algorithm [Abboud, Williams,
and Yu (SODA’15)]. This reduction is also simple and is based on range trees.

Finally, we use a similar approach to obtain a small improvement to Indyk’s data structure
[FOCS’98] for approximate `∞ nearest neighbor search when d = c logn.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases computational geometry, data structures, range searching, nearest neigh-
bor searching

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.27

1 Introduction

In this paper, we revisit some classical problems in computational geometry:
In orthogonal range searching, we want to preprocess n data points in Rd so that we can
detect if there is a data point inside any query axis-aligned box, or report or count all
such points.
In dominance range searching, we are interested in the special case when the query box is
d-sided, of the form (−∞, q1]× · · · × (−∞, qd]; in other words, we want to detect if there
is a data point (p1, . . . , pd) that is dominated by a query point (q1, . . . , qd), in the sense
that pj ≤ qj for all j ∈ {1, . . . , d}, or report or count all such points.
In `∞ nearest neighbor searching, we want to preprocess n data points in Rd so that we
can find the nearest neighbor to the given query point under the `∞ metric.

∗ A full version of the paper is available at http://tmc.web.engr.illinois.edu/high_ors3_17.pdf.
† This work was done while the author was at the Cheriton School of Computer Science, University of
Waterloo.

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.27
http://tmc.web.engr.illinois.edu/high_ors3_17.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Orthogonal Range Searching in Moderate Dimensions

All three problems are related. Orthogonal range searching in d dimensions reduces to
dominance range searching in 2d dimensions.1 Furthermore, ignoring logarithmic factors,
`∞ nearest neighbor searching reduces to its decision problem (deciding whether the `∞
nearest neighbor distance to a given query point is at most a given radius) by parametric
search or randomized search [7], and the decision problem clearly reduces to orthogonal range
searching.

The standard k-d tree [22] has O(dn logn) preprocessing time and O(dn) space, but
the worst-case query time is O(dn1−1/d). The standard range tree [22] requires O(n logd n)
preprocessing time and space and O(logd n) query time, excluding an O(K) term for the
reporting version of the problem with output size K. Much work in computational ge-
ometry has been devoted to small improvements of a few logarithmic factors. For exam-
ple, the current best result for orthogonal range reporting has O(n logd−3+ε n) space and
O(logd−3 n/ logd−4 logn+K) time [12]; there are also other small improvements for various
offline versions of the problems [12, 13, 2].

In this paper, we are concerned with the setting when the dimension is nonconstant. Tradi-
tional approaches from computational geometry tend to suffer from exponential dependencies
in d (the so-called “curse of dimensionality”). For example, the O(dn1−1/d) or O(logd n)
query time bound for range trees or k-d trees is sublinear only when d� logn/ log logn. By
a more careful analysis [10], one can show that range trees still have sublinear query time
when d� α0 logn for a sufficiently small constant α0. The case when the dimension is close
to logarithmic in n is interesting in view of known dimensionality reduction techniques [16]
(although such techniques technically are not applicable to exact problems and, even with
approximation, do not work well for `∞). The case of polylogarithmic dimensions is also
useful in certain non-geometric applications such as all-pairs shortest paths (as we explain
later). From a theoretical perspective, it is important to understand when the time complexity
transitions from sublinear to superlinear.

Previous offline results. We first consider the offline version of the problems where we
want to answer a batch of n queries all given in advance. In high dimensions, it is possible
to do better than O(dn2)-time brute-force search, by a method of Matoušek [21] using fast
(rectangular) matrix multiplication [20]; for example, we can get n2+o(1) time for d� n0.15.
However, this approach inherently cannot give subquadratic bounds.

In 2014, a surprising discovery was made by Impagliazzo et al. [17]: range-tree-like
divide-and-conquer can still work well even when the dimension goes a bit above logarithmic.
Their algorithm can answer n offline dominance range queries (and thus orthogonal range
queries and `∞ nearest neighbor queries) in total time n2−1/O(c15 log c) (ignoring an O(K)
term for reporting) in dimension d = c logn for any possibly nonconstant c ranging from 1 to
about log1/15 n (ignoring log logn factors). Shortly after, by a more careful analysis of the
same algorithm, Chan [8] refined the time bound to n2−1/O(c log2 c), which is subquadratic
for c up to about logn, i.e., dimension up to about log2 n.

At SODA’15, Abboud, Williams, and Yu [1] obtained an even better time bound for
dominance range detection in the Boolean special case, where all coordinate values are 0’s and
1’s (in this case, the problem is better known as the Boolean orthogonal vectors problem2).

1 (p1, . . . , pd) is inside the box [a1, b1] × · · · × [ad, bd] iff (−p1, p1, . . . ,−pd, pd) is dominated by
(−a1, b1, . . . ,−ad, bd) in R2d.

2 Two vectors (p1, . . . , pd), (q1, . . . , qd) ∈ {0, 1}d are orthogonal iff
∑d

i=1 piqi = 0 iff (p1, . . . , pd) is
dominated by (1− q1, . . . , 1− qd) (recalling that our definition of dominance uses non-strict inequality).

T.M. Chan 27:3

The total time for n offline Boolean dominance range detection queries is n2−1/O(log c). The
bound n2−1/O(log c) is a natural barrier, since a faster offline Boolean dominance algorithm
would imply an algorithm for CNF-SAT with n variables and cn clauses that would beat
the currently known 2n(1−1/O(log c)) time bound [1]; and an O(n2−δ)-time algorithm for any
c = ω(1) would break the strong exponential-time hypothesis (SETH) [24]. Abboud et al.’s
algorithm was based on the polynomial method pioneered by Williams [23] (see [4, 3] for other
geometric applications). The algorithm was originally randomized but was subsequently
derandomized by Chan and Williams [9] in SODA’16 (who also extended the result from
detection to counting).

Abboud et al.’s approach has two main drawbacks, besides being applicable to the Boolean
case only: 1. it is not “combinatorial” and relies on fast rectangular matrix multiplication,
making the approach less likely to be practical, and 2. it only works in the offline setting.

Impagliazzo et al.’s range-tree method [17] is also inherently restricted to the offline
setting – in their method, the choice of dividing hyerplanes crucially requires knowledge of
all query points in advance. All this raises an intriguing open question: are there nontrivial
results for online queries in d = c logn dimensions?

New online result. In Section 2, we resolve this question by presenting a randomized data
structure with O(n1+δ) preprocessing time and space that can answer online dominance range
queries (and thus orthogonal range queries and `∞ nearest neighbor queries) in n1−1/O(c log2 c)

expected time for any d = c logn� log2 n/ log logn and for any constant δ > 0. (We assume
an oblivious adversary, i.e., that query points are independent of the random choices made
by the preprocessing algorithm.) The total time for n queries is n2−1/O(c log2 c), matching the
offline bound from Impagliazzo et al. [17] and Chan [8]. The method is purely combinatorial,
i.e., does not rely on fast matrix multiplication.

More remarkable than the result perhaps is the simplicity of the solution: it is just a
variant of k-d trees! More specifically, the dividing hyperplane is chosen in a “lopsided”
manner, along a randomly chosen coordinate axis; each node is augmented with secondary
structures for some lower-dimensional projections of the data points. The result is surprising,
considering the longstanding popularity of k-d trees among practitioners. Our contribution
lies in recognizing, and proving, that they can have good theoretical worst-case performance.
(Simple algorithms with nonobvious analyses are arguably the best kind.)

In Appendix A.1, we also describe a small improvement of the query time to n1−1/O(c log c).
This involves an interesting application of so-called covering designs (from combinatorics),
not often seen in computational geometry.

Applications. By combining with previous techniques [10, 8], our method leads to new
results for two classical, non-geometric problems: all-pairs shortest paths (APSP) and Boolean
matrix multiplication (BMM).

We obtain a new combinatorial algorithm for solving the APSP problem for arbitrary
real-weighted graphs with n vertices (or equivalently the (min,+) matrix multiplication
problem for two n×n real-valued matrices) in O((n3/ log3 n)poly(log logn)) time; see Ap-
pendix A.2. This is about a logarithmic factor faster than the best previous combinatorial
algorithm [11, 15, 8], not relying on fast matrix multiplication à la Strassen. It also extends
Chan’s combinatorial algorithm for Boolean matrix multiplication from SODA’15 [8],
which has a similar running time (although for Boolean matrix multiplication, Yu [26]
has recently obtained a further logarithmic-factor improvement).
This extension is intriguing, as (min,+) matrix multiplication over the reals appears
tougher than other problems such as standard matrix multiplication over F2, for which the

SoCG 2017

27:4 Orthogonal Range Searching in Moderate Dimensions

well-known “four Russians” time bound of O(n3/ log2 n) [6] has still not been improved
for combinatorial algorithms.
We obtain a new combinatorial algorithm to multiply an n × log2 n and a log2 n × n
Boolean matrix in O((n2/ logn) poly(log logn)) time, which is almost optimal in the
standard word RAM model since the output requires Ω(n2/ logn) words; see the full
paper. The previous combinatorial algorithm by Chan [8] can multiply an n× log3 n and
a log3 n×n Boolean matrix in O(n2 poly(log logn)) time. The new result implies the old,
but not vice versa.

New offline result. Returning to the offline dominance or orthogonal range searching prob-
lem, Abboud, Williams, and Yu’s non-combinatorial algorithm [1] has a better n2−1/O(log c)

time bound but is only for the Boolean case, leading to researchers to ask whether the same
result holds for the more general problem for real input. In one section of Chan and Williams’
paper [9], such a result was obtained but only for d ≈ 2Θ(

√
logn).

In Section 3, we resolve this question by giving a black-box reduction from the real case to
the Boolean case, in particular, yielding n2−1/O(log c) time for any d = c logn� 2Θ(

√
logn).

This equivalence between general dominance searching and the Boolean orthogonal vectors
problem is noteworthy, since the Boolean orthogonal vectors problem has been used recently
as a basis for many conditional hardness results in P.

As one immediate application, we can now solve the integer linear programming problem
on n variables and cn constraints in 2(1−1/O(log c))n time, improving Impagliazzo et al.’s
2(1−1/poly(c))n algorithm [17].

Our new reduction is simple, this time, using a range-tree-like recursion.

Approximate `∞ nearest neighbor searching. So far, our discussion has been focused on
exact algorithms. We now turn to `∞ nearest neighbor searching in the approximate setting.
By known reductions (ignoring polylogarithmic factors) [16], it suffices to consider the fixed-
radius decision problem: deciding whether the nearest neighbor distance is approximately
less than a fixed value. Indyk [18] provided the best data structure for the problem, achieving
O(logρ log d) approximation factor, O(dnρ logn) preprocessing time, O(dnρ) space, and
O(d logn) query time for any ρ ranging from 1 to log d. The data structure is actually based
on traditional-style geometric divide-and-conquer. Andoni, Croitoru, and Pătraşcu [5] proved
a nearly matching lower bound.

In Section 4, we improve the approximation factor of Indyk’s data structure to O(logρ log c)
for dimension d = c logn, for any ρ ranging from 1 + δ to log c (as an unintended byproduct,
we also improve Indyk’s query time to O(d)). The improvement in the approximation factor
is noticeable when the dimension is close to logarithmic. It does not contradict Andoni et
al.’s lower bound [5], since their proof assumed d� log1+Ω(1) n.

For example, by setting ρ ≈ log c, we getO(1) approximation factor, nO(log c) preprocessing
time/space, and O(d) query time. By dividing into n1−α groups of size nα, we can lower the
preprocessing time/space to n1−α ·(nα)O(log(c/α)) while increasing the query time to O(dn1−α).
Setting α ≈ 1/ log c, we can thus answer n (online) queries with O(1) approximation factor
in n2−1/O(log c) total time, which curiously matches our earlier result for exact `∞ nearest
neighbor search but by a purely combinatorial algorithm.

In the full paper, we also provide an alternative data structure with linear space but a
larger O(c(1−ρ)/ρ2) approximation factor, and O(dnρ+δ) query time for any ρ ∈ (δ, 1− δ).

The idea is to modify Indyk’s method to incorporate, once again, a range-tree-like
recursion.

T.M. Chan 27:5

2 Online Dominance Range Searching

In this section, we study data structures for online orthogonal range searching in the reporting
version (counting or detection can be dealt with similarly), using only combinatorial techniques
without fast matrix multiplication. By doubling the dimension (footnote 1), it suffices to
consider the dominance case.

Our data structure is an augmented, randomized lopsided variant of the k-d tree, where
each node contains secondary structures for various lower-dimensional projections of the
input.

Data structure. Let δ ∈ (0, 1) and c ∈ [δC0, (δ/C0) logN/ log2 logN] be user-specified
parameters, for a sufficiently large constant C0, where N is a fixed upper bound on the size
of the input point set. Let b ≥ 2 and α ∈ (0, 1/2) be parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is
simple and is constructed as follows:

0. If n ≤ 1/α or d = 0, then just store the given points.
1. Otherwise, let J be the collection of all subsets of {1, . . . , d} of size bd/bc. Then |J | =(

d
bd/bc

)
= bO(d/b). For each J ∈ J , recursively3 construct a data structure for the

projection PJ of P that keeps only the coordinate positions in J .
2. Pick a random i∗ ∈ {1, . . . , d}. Let µ(i∗) be the d(1− α)ne-th smallest i∗-th coordinate

value in P ; let p(i∗) be the corresponding point in P . Store n, i∗, and p(i∗). Recursively
construct data structures for

the subset PL of all points in P with i∗-th coordinate less than µ(i∗), and
the subset PR of all points in P with i∗-th coordinate greater than µ(i∗).

Analysis. The preprocessing time and space satisfy the recurrence

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + bO(d/b)Tbd/bc(n) +O(n),

with Td(n) = O(n) for the base case n ≤ 1/α or d = 0. This solves to

Td(N) ≤ bO(d/b+d/b2+···)N(log1/(1−α)N)O(logb d)

= bO(d/b)N((1/α) logN)O(logb d)

= N1+O((c/b) log b)2O(log((1/α) logN) logb d) ≤ N1+O(δ)2O(log2((1/α) logN))

by setting b := (c/δ) log(c/δ).

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our
query algorithm proceeds as follows.

0. If n ≤ 1/α or d = 0, then answer the query directly by brute-force search.
1. Otherwise, let Jq = {i ∈ {1, . . . , d} : qi 6=∞}. If |Jq| ≤ d/b, then recursively answer the

query for PJq and the projection of q with respect to Jq.
2. Else,

if qi∗ ≤ µ(i∗), then recursively answer the query for PL and q;
if qi∗ > µ(i∗), then recursively answer the query for PR and q, and recursively answer
the query for PL and q′ = (q1, . . . , qi∗−1,∞, qi∗+1, . . . , qd);
in addition, if q dominates p(i∗), then output p(i∗).

3 There are other options beside recursion here; for example, we could just use a range tree for PJ .

SoCG 2017

27:6 Orthogonal Range Searching in Moderate Dimensions

Analysis. We assume that the query point q is independent of the random choices made
during the preprocessing of P . Let Lq = {i ∈ {1, . . . , d} : µ(i) < qi 6=∞}. Let j = |Jq| and
` = |Lq|.

Suppose that j > d/b. The probability that we make a recursive call for PR is equal
to Pr[(i∗ ∈ Lq) ∨ (i∗ 6∈ Jq)] = `/d + (1 − j/d). We always make a recursive call for PL,
either for q or a point q′ with j − 1 non-∞ values; the probability of the latter is equal to
Pr[i∗ ∈ Lq] = `/d.

Hence, the expected number of leaves in the recursion satisfies the following recurrence:

Qd,j(n) ≤

Qbd/bc,j(n) if j ≤ d/b

max`≤j
[(
`
d + 1− j

d

)
Qd,j(bαnc) +

(
`
d

)
Qd,j−1(b(1− α)nc)

+
(
1− `

d

)
Qd,j(b(1− α)nc)

]
if j > d/b,

(1)

with Qd,j(n) = 1 for the base case n ≤ 1/α or d = 0.
This recurrence looks complicated. Following [8], one way to solve it is by “guessing”. We

guess that

Qd,j(n) ≤ (1 + γ)jn1−ε

for some choice of parameters γ, ε ∈ (0, 1/2) to be specified later. We verify the guess by
induction.

The base case n ≤ 1/α or d = 0 is trivial. Assume that the guess is true for lexicographi-
cally smaller tuples (d, j, n). For j ≤ d/b, the induction trivially goes through. So assume
j > d/b. Let ` be the index that attains the maximum in (1). Then

Qd,j(n) ≤
(
`

d
+ 1− j

d

)
(1 + γ)j(αn)1−ε +

(
`

d

)
(1 + γ)j−1((1− α)n)1−ε +(

1− `

d

)
(1 + γ)j((1− α)n)1−ε

=
[(

`

d
+ 1− j

d

)
α1−ε +

(
`

d
· 1

1 + γ
+ 1− `

d

)
(1− α)1−ε

]
(1 + γ)jn1−ε

≤
[(

1− j − `
d

)
α1−ε +

(
1− γ`

2d

)
(1− α)1−ε

]
(1 + γ)jn1−ε

≤ (1 + γ)jn1−ε.

For the last inequality, we need to upper-bound the following expression by 1:(
1− j − `

d

)
α1−ε +

(
1− γ`

2d

)
(1− α)1−ε. (2)

Case I: j − ` > d/(2b). Then (2) is at most(
1− 1

2b

)
α1−ε + (1− α)1−ε ≤

(
1− 1

2b

)
αeε ln(1/α) + 1− (1− ε)α

≤
(

1− 1
2b

)
α(1 + 2ε log(1/α)) + 1− (1− ε)α

≤ 1− α

2b + 3αε log(1/α),

which is indeed at most 1 by setting ε := 1/(6b log(1/α)).

T.M. Chan 27:7

Case II: ` > d/(2b). Then (2) is at most
α1−ε + 1− γ

4b ≤ αeε ln(1/α) + 1− γ

4b
≤ α(1 + 2ε log(1/α)) + 1− γ

4b
≤ 2α+ 1− γ

4b ,
which is indeed at most 1 by setting γ := 8bα.

We can set α := 1/b4, for example. Then γ = O(1/b3). We conclude that

Qd(N) ≤ (1 + γ)dN1−ε ≤ eγdN1−ε ≤ N1−ε+O(cγ) ≤ N1−1/O(b log b).

Now, Qd(N) only counts the number of leaves in the recursion. The recursion has depth
O(log1/(1−α)N + log d). Each internal node of the recursion has cost O(d), and each leaf
has cost O(d/α), excluding the cost of outputting points (which occurs during the base
case d = 0). Thus, the actual expected query time can be bounded by Qd(N)(bd logN)O(1),
which is N1−1/O(b log b) for b � logN/ log2 logN . As b = (c/δ) log(c/δ), the bound is
N1−1/O((c/δ) log2(c/δ)).

Slight improvement of one log(c/δ) factor in the exponent is possible, by an interesting
application of covering designs. The details are explained in Appendix A.1. Thus:

I Theorem 1. Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/ log2 logN] for a
sufficiently large constant C1. Given N points in d = c logN dimensions, we can construct a
data structure in O(N1+δ) preprocessing time and space, so that for any query point, we can
answer a dominance range reporting query in N1−1/O(c log c) +O(K) expected time where K
is the number of reported points. For dominance range counting, we get the same time bound
but without the K term.

We mention one application to online (min,+) matrix-vector multiplication. The corollary
below follows immediately from a simple reduction [10] to d instances of d-dimensional
dominance range reporting with disjoint output.4

I Corollary 2. Let δ > 0 be any fixed constant and d = (1/C1) log2N/ log2 logN for a
sufficiently large constant C1. We can preprocess an N × d real-valued matrix A in O(N1+δ)
time, so that given a query real-valued d-dimensional vector x, we can compute the (min,+)-
product of A and x in O(N) expected time.

Applying the above corollary N/d times yields:

I Corollary 3. Let δ > 0 be any fixed constant. We can preprocess an N ×N real-valued
matrix A in O(N2+δ) time, so that given a query N-dimensional real-valued vector x, we
can compute the (min,+)-product of A and x in O((N2/ log2N) log2 logN) expected time.

A similar result was obtained by Williams [25] for online Boolean matrix-vector multipli-
cation. Recently Larsen and Williams [19] have found a faster algorithm, in the Boolean case,
but it is not combinatorial, requires amortization, and does not deal with the rectangular
matrix case in Corollary 2.

In Appendix A.2, we further show how to reduce the O(K) term in Theorem 1 by
about a logarithmic factor in the offline case, by modifying the algorithm to incorporate

4 For any j0 ∈ {1, . . . , d}, the key observation is that mind
j=1(aij +xj) = aij0 +xj0 iff (aij0−ai1, . . . , aij0−

aid) is dominated by (x1 − xj0 , . . . , xd − xj0) in Rd.

SoCG 2017

27:8 Orthogonal Range Searching in Moderate Dimensions

bit-packing tricks. This has applications to speeding up combinatorial algorithms for (min,+)
matrix-matrix multiplication and all-pairs shortest paths.

In the full paper, we note that the method can be simplified in the Boolean case – the
data structure becomes just an augmented, randomized variant of the trie. This has an
application to combinatorial algorithms for Boolean matrix multiplication.

3 Offline Dominance Range Searching

In this section, we study the offline orthogonal range searching problem in the counting
version (which includes the detection version), allowing the use of fast matrix multiplication.
By doubling the dimension (footnote 1), it suffices to consider the dominance case: given n
data/query points in Rd, we want to count the number of data points dominated by each
query point. We describe a black-box reduction of the real case to the Boolean case.

We use a recursion similar to a degree-s range tree (which bears some resemblance to a
low-dimensional algorithm from [13]).

Algorithm. Let δ ∈ (0, 1) and s be parameters to be set later. Let [s] denote {0, 1, . . . , s−1}.
Given a set P of n ≤ N data/query points in Rj × [s]d−j , with d ≤ c logN , our algorithm

is simple and proceeds as follows:

0. If j = 0, then all points are in [s]d and we solve the problem directly by mapping each
point (p1, . . . , pd) to a binary string 1p10s−p1 · · · 1pd0s−pd ∈ {0, 1}ds and running a known
Boolean offline dominance algorithm in ds dimensions.

1. Otherwise, for each i ∈ [s], recursively solve the problem for the subset Pi of all points in
P with ranks from i(n/s) + 1 to (i+ 1)(n/s) in the j-th coordinate.

2. “Round” the j-th coordinate values of all data points in Pi to i+ 1 and all query points
in Pi to i, and recursively solve the problem for P after rounding (which now lies in
Rj−1 × [s]d−j+1); add the results to the existing counts of all the query points.

Analysis. Suppose that the Boolean problem for n points in d ≤ c logn dimensions can be
solved in dCn2−f(c) time for some absolute constant C ≥ 1 and some function f(c) ∈ [0, 1/4].
The following recurrence bounds the total cost of the leaves of the recursion in our algorithm
(assuming that n is a power of s, for simplicity):

Td,j(n) = s Td,j(n/s) + Td,j−1(n).

For the base cases, Td,j(1) = 1; and if n >
√
N , then Td,0(n) ≤ (ds)Cn2−f(2cs) (since

the Boolean subproblems have dimension ds ≤ cs logN ≤ 2cs logn). On the other hand,
if n ≤

√
N , we can use brute force to get Td,0(n) ≤ dn2 ≤ dn3/2N1/4. In any case,

Td,0(n) ≤ (ds)Cn3/2N1/2−f(2cs) = An3/2 where we let A := (ds)CN1/2−f(2cs).
One way5 to solve this recurrence is again by “guessing”. We guess that

Td,j(n) ≤ (1 + γ)jAn3/2

for some choice of parameter γ ∈ (0, 1) to be determined later. We verify the guess by
induction.

5 Since this particular recurrence is simple enough, an alternative, more direct way is to expand Td,d(N)
into a sum

∑
i≥0

(
d+i

i

)
siTd,0(N/si) ≤

∑
i≥0 O(d+i

i
√

s
)i ·AN3/2, and observe that the maximum term

occurs when i is near d/
√

s. . .

T.M. Chan 27:9

The base cases are trivial. Assume that the guess is true for lexicographically smaller
(j, n). Then

Td,j(n) ≤ (1 + γ)jAs(n/s)3/2 + (1 + γ)j−1An3/2

=
[

1√
s

+ 1
1 + γ

]
(1 + γ)jAn3/2 ≤ (1 + γ)jAn3/2,

provided that
1√
s

+ 1
1 + γ

≤ 1,

which is true by setting γ := 2/
√
s.

We can set s := c4, for example. Then γ = O(1/c2). We conclude that

Td,d(N) ≤ (1 + γ)dAN3/2 ≤ eγd(ds)O(1)N2−f(2cs)

≤ (ds)O(1)N2−f(2cs)+O(γc)

= dO(1)N2−f(2c5)+O(1/c).

Now, Td,d(N) excludes the cost at internal nodes of the recursion. Since the recursion has
depth at most logsN + d, the actual running time can be bounded by Td,d(n)(d logN)O(1).

Abboud, Williams, and Yu’s algorithm [1] for the Boolean case, as derandomized by
Chan and Williams [9], achieves f(c) = 1/O(log c), yielding an overall time bound of
N2−1/O(log c)(d logN)O(1), which is N2−1/O(log c) for log c�

√
logN .

I Theorem 4. Let c ∈ [1, 2(1/C1)
√

logN] for a sufficiently large constant C1. Given N points
in d = c logN dimensions, we can answer N offline dominance range counting queries in
N2−1/O(log c) time.

We remark that if the Boolean problem could be solved in truly subquadratic time
dO(1)N2−ε, then the above analysis (with s := (c logN)2, say) would imply that the general
problem could be solved in truly subquadratic time with the same ε, up to (d logN)O(1)

factors.

4 Approximate `∞ Nearest Neighbor Searching

In this section, we study (online, combinatorial) data structures for t-approximate `∞ nearest
neighbor search. By known reductions [16, 18], it suffices to solve the fixed-radius approximate
decision problem, say, for radius r = 1/2: given a query point q, we want to find a data
point of distance at most distance t/2 from q, under the promise that the nearest neighbor
distance is at most 1/2.

Our solution closely follows Indyk’s divide-and-conquer method [18], with a simple
modification that incorporates a range-tree-like recursion.

Data structure. Let δ ∈ (0, 1), ρ > 1, and c ≥ 4 be user-specified parameters. Let s and k
be parameters to be chosen later.

Given a set P of n ≤ N data points in d ≤ c logN dimensions, our data structure is
constructed as follows:

0. If n ≤ s or d = 0, then just store the points in P .
Otherwise, compute and store the median first coordinate µ in P . Let P>i (resp. P<i)
denote the subset of all points in P with first coordinate greater than (resp. less than)
µ+ i. Let αi := |P>i|/n and βi := |P<−i|/n. Note that the αi’s and βi’s are decreasing
sequences with α0 = β0 = 1/2.

SoCG 2017

27:10 Orthogonal Range Searching in Moderate Dimensions

1. If αk > 1/s and αi+1 > αρi for some i ∈ {0, 1, . . . , k − 1}, then set type = (1, i) and
recursively construct a data structure for P>i and for P<i+1.

2. Else if βk > 1/s and βi+1 > βρi for some i ∈ {0, 1, . . . , k − 1}, then set type = (2, i) and
recursively construct a data structure for P<−i and for P>−(i+1).

3. Else if αk, βk ≤ 1/s, then set type = 3 and recursively construct a data structure for
the set P>k ∪ P<−k and
the (d − 1)-dimensional projection of P − (P>k+1 ∪ P<−(k+1)) that drops the first
coordinate (this recursion in d − 1 dimensions is where our algorithm differs from
Indyk’s).

We set k :=
⌈
logρ log s

⌉
. Then one of the tests in steps 1–3 must be true. To see this,

suppose that αk > 1/s (the scenario βk > 1/s is symmetric), and suppose that i does not
exist in step 1. Then αk ≤ (1/2)ρk ≤ 1/s, a contradiction.

Analysis. The space usage is proportional to the number of points stored at the leaves
in the recursion, which satisfies the following recurrence (by using the top expression with
(α, α′) = (αi, αi+1) for step 1 or (α, α′) = (βi, βi+1) for step 2, or the bottom expression for
step 3):

Sd(n) ≤ max

 max
α,α′: α′>αρ, 1/s<α′≤α≤1/2

[Sd(αn) + Sd((1− α′)n)]

Sd(2n/s) + Sd−1(n),
(3)

with Sd(n) = n for the base case n ≤ s or d = 0.
We guess that

Sd(n) ≤ (1 + γ)dnρ

for some choice of parameter γ ∈ (0, 1). We verify the guess by induction.
The base case is trivial. Assume that the guess is true for lexicographically smaller (d, n).

Case I: the maximum in (3) is attained by the top expression and by α, α′. Then
Sd(n) ≤ (1 + γ)d [(αn)ρ + ((1− α′)n)ρ]

≤ [αρ + 1− α′] (1 + γ)dnρ

≤ (1 + γ)dnρ.
Case II: the maximum in (3) is attained by the bottom expression. Then

Sd(n) ≤ (1 + γ)d(2n/s)ρ + (1 + γ)d−1nρ

≤
[(

2
s

)ρ
+ 1

1 + γ

]
(1 + γ)dnρ

≤ (1 + γ)dnρ

by setting s := 2(2/γ)1/ρ.

Set γ := δ/c. Then s = O((c/δ)1/ρ) and k = logρ log(c/δ) +O(1). We conclude that

Sd(N) ≤ eγdNρ ≤ Nρ+O(γc) = Nρ+O(δ).

For the preprocessing time, observe that the depth of the recursion is h := O(logs/(s−1)N+
d) (since at each recursive step, the size of the subsets drops by a factor of 1− 1/s or the
dimension decreases by 1). Now, h = O(s logN + d) ≤ O((c/δ) logN + d) = O((c/δ) logN).
Hence, the preprocessing time can be bounded by O(Sd(N)h) = O((c/δ)Nρ+δ logN).

T.M. Chan 27:11

Query algorithm. Given the preprocessed set P and a query point q = (q1, . . . , qd), our
query algorithm proceeds as follows:

0. If n ≤ s or d = 0, then answer the query directly by brute-force search.
1. If type = (1, i): if q1 > i+ 1/2, then recursively answer the query in P>i, else recursively

answer the query in P<i+1.
2. If type = (2, i): proceed symmetrically.
3. If type = 3:

if q1 > k + 1/2 or q1 < −(k + 1/2), then recursively answer the query in P>k ∪ P<−k;
else recursively answer the query in P − (P>k+1 ∪ P<−(k+1)), after dropping the first
coordinate of q.

Note that in the last subcase of step 3, any returned point has distance at most 2k + 3/2
from q in terms of the first coordinate. By induction, the approximation factor t is at most
4k + 3 = O(logρ log(c/δ)).

Analysis. The query time is clearly bounded by the depth h, which is O((c/δ) logN).

I Theorem 5. Let δ > 0 be any fixed constant. Let ρ > 1 and c ≥ Ω(1). Given N

points in d = c logN dimensions, we can construct a data structure in O(dNρ+δ) time and
O(dN +Nρ+δ) space, so that we can handle the fixed-radius decision version of approximate
`∞ nearest neighbor queries in O(d) time with approximation factor O(logρ log c).

References
1 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial

method to algorithm design. In Proc. 26th ACM–SIAM Symp. Discrete Algorithms (SODA),
pages 218–230, 2015.

2 Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle
enclosure and offline dominance reporting on the RAM. In Proc. 41st Int’l Colloq. Automata,
Languages, and Programming (ICALP), Part I, pages 77–88, 2014.

3 Josh Alman, Timothy M. Chan, and RyanWilliams. Polynomial representation of threshold
functions with applications. In Proc. 57th IEEE Symp. Found. Comput. Sci. (FOCS), pages
467–476, 2016.

4 Josh Alman and Ryan Williams. Probabilistic polynomials and Hamming nearest neighbors.
In Proc. 56th IEEE Symp. Found. Comput. Sci. (FOCS), pages 136–150, 2015.

5 Alexandr Andoni, Dorian Croitoru, and Mihai M. Pătraşcu. Hardness of nearest neighbor
under L∞. In Proc. 49th IEEE Symp. Found. Comput. Sci. (FOCS), pages 424–433, 2008.

6 V.Z. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradzhev. On economical construc-
tion of the transitive closure of a directed graph. Soviet Mathematics Doklady, 11:1209–1210,
1970.

7 Timothy M. Chan. Geometric applications of a randomized optimization technique. Dis-
crete Comput. Geom., 22(4):547–567, 1999.

8 Timothy M. Chan. Speeding up the Four Russians algorithm by about one more logarithmic
factor. In Proc. 26th ACM–SIAM Symp. Discrete Algorithms (SODA), pages 212–217, 2015.

9 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov–Smolensky. In Proc. 27th ACM–SIAM Symp. Discrete
Algorithms (SODA), pages 1246–1255, 2016.

10 T.M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Algorithmica,
50:236–243, 2008.

SoCG 2017

27:12 Orthogonal Range Searching in Moderate Dimensions

11 T.M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J.
Comput., 39:2075–2089, 2010.

12 T.M. Chan, K.G. Larsen, and M. Pătraşcu. Orthogonal range searching on the RAM,
revisited. In Proc. 27th ACM Symp. Comput. Geom. (SoCG), pages 1–10, 2011.

13 T.M. Chan and M. Pătraşcu. Counting inversions, offline orthogonal range counting, and
related problems. In Proc. 21st ACM–SIAM Symp. Discrete Algorithms (SODA), pages
161–173, 2010.

14 Daniel M. Gordon, Oren Patashnik, Greg Kuperberg, and Joel Spencer. Asymptotically
optimal covering designs. J. Combinatorial Theory, Series A, 75(2):270–280, 1996.

15 Y. Han and T. Takaoka. An O(n3 log logn/ log2 n) time algorithm for all pairs shortest
paths. In Proc. 13th Scand. Symp. and Workshops on Algorithm Theory (SWAT), pages
131–141, 2012.

16 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: To-
wards removing the curse of dimensionality. Theory Comput., 8(1):321–350, 2012.

17 R. Impagliazzo, S. Lovett, R. Paturi, and S. Schneider. 0-1 integer linear programming
with a linear number of constraints, 2014.

18 Piotr Indyk. On approximate nearest neighbors under l∞ norm. J. Comput. Sys. Sci.,
63(4):627–638, 2001.

19 Kasper Green Larsen and Ryan Williams. Faster online matrix-vector multiplication. In
Proc. 28th ACM–SIAM Symp. Discrete Algorithms (SODA), pages 2182–2189, 2017.

20 François Le Gall. Faster algorithms for rectangular matrix multiplication. In Proc. 53rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 514–523, 2012.

21 Jirí Matoušek. Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.
22 F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer–

Verlag, 1985.
23 R. Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th ACM

Symp. Theory Comput. (STOC), pages 664–673, 2014.
24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.

Theor. Comput. Sci., 348(2-3):357–365, 2005.
25 Ryan Williams. Matrix-vector multiplication in sub-quadratic time (some preprocessing

required). In Proc. 18th ACM–SIAM Symp. Discrete Algorithms (SODA), pages 995–1001,
2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283490.

26 Huacheng Yu. An improved combinatorial algorithm for Boolean matrix multiplication. In
Proc. 42nd Int’l Colloq. Automata, Languages, and Programming (ICALP), Part I, pages
1094–1105, 2015.

A Online Dominance Range Searching (Continued)

A.1 Slightly Improved Version
We now describe a small improvement to the data structure in Section 2. The idea is to
replace J with a collection of slightly larger subsets, but with fewer subsets, so that any
set Jq of size t := bd/bc is covered by some subset in J ∈ J . Such a collection is called
a covering design (e.g., see [14]), which can be constructed easily by random sampling, as
explained in see part (i) of the lemma below. In our application, we also need a good time
bound for finding such a J ∈ J for a given query set Jq; this is addressed in part (ii) of the
lemma. (Proofs are deferred to the full paper.)

http://dl.acm.org/citation.cfm?id=1283383.1283490

T.M. Chan 27:13

I Lemma 6 (Covering designs). Given numbers v ≥ k ≥ t and N , and given a size-v ground
set V ,
(i) we can construct a collection J of at most

((
v
t

)/(
k
t

))
lnN size-k subsets of V in O(v|J |)

time, so that given any query size-t subset Jq ⊂ V , we can find a subset J ∈ J containing
Jq in O(v|J |) time with success probability at least 1− 1/N ;

(ii) alternatively, with a larger collection J of at most
((
v
t

)/(
k
t

))2
ln2(vN) subsets, we can

reduce the query time to O(v3 log2(vN)).

We now modify the data structure in Section 2 as follows. In step 1, we change J to
a collection of size-bd/2c subsets of {1, . . . , d} obtained from Lemma 6(ii) with (v, k, t) =
(d, bd/2c , bd/bc). Then |J | ≤

((
d
bd/bc

)/(bd/2c
bd/bc

))2
ln2(dN) ≤ 2O(d/b) log2N . The recurrence

for the preprocessing time and space then improves to

Td(n) ≤ Td(bαnc) + Td(b(1− α)nc) + (2O(d/b) log2N)Tbd/bc(n) +O(n),

which solves to Td(N) ≤ 2O(d/b+d/b2+···)N(log1/(1−α)N)O(logb d) ≤ N1+O(δ)2O(log2((1/α) logN)),
this time by setting b := c/δ (instead of b := (c/δ) log(c/δ)).

In the query algorithm, we modify step 1 by finding a set J ∈ J containing Jq by
Lemma 6(ii) and recursively querying PJ (instead of PJq). If no such J exists, we can afford
to switch to brute-force search, since this happens with probability less than 1/N . The
analysis of the recurrence for Qd(N) remains the same. Each internal node of the recursion
now has cost O(d3 log2N) by Lemma 6(ii); the extra factor will not affect the final bound.
The overall query time is still N1−1/O(b log b), which is now N1−1/O((c/δ) log(c/δ)).

A.2 Offline Packed-Output Version, with Application to APSP
In this subsection, we discuss how to refine the algorithm in Section 2, so that the output
can be reported in roughly O(K/ logn) time instead of O(K) in the offline setting. The
approach is to combine the algorithm with bit-packing tricks.

We assume a w-bit word RAM model which allows for certain exotic word operations. In
the case of w := δ0 logN for a sufficiently small constant δ0 > 0, exotic operations can be
simulated in constant time by table lookup; the precomputation of the tables requires only
NO(δ0) time.

We begin with techniques to represent and manipulate sparse sets of integers in the word
RAM model. Let z be a parameter to be set later. In what follows, an interval [a, b) refers
to the integer set {a, a+ 1, . . . , b− 1}. A block refers to an interval of the form [kz, (k+ 1)z).
Given a set S of integers over an interval I of length n, we define its compressed representation
to be a doubly linked list of mini-sets, where for each of the O(dn/ze) blocks B intersecting
I (in sorted order), we store the mini-set {j mod z : j ∈ S ∩ B}, which consists of small
(log z)-bit numbers and can be packed in O((|S∩B|/w) log z+1) words. The total number of
words in the compressed representation is O((|S|/w) log z + n/z + 1). Proofs of the following
facts can be found in the full paper.

I Lemma 7 (Bit-packing tricks).
(i) Given compressed representations of two sets S1 and S2 over two disjoint intervals, we

can compute the compressed representation of S1 ∪ S2 in O(1) time.
(ii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n), we can compute the com-

pressed representations of T0, . . . , Tn−1 ⊂ [0,m) with Tj = {i : j ∈ Si} (called the
transposition of S0, . . . , Sm−1), in O((K/w) log2 z + mn/z + m + n + z) time, where
K =

∑m−1
i=0 |Si|.

SoCG 2017

27:14 Orthogonal Range Searching in Moderate Dimensions

(iii) Given compressed representations of S0, . . . , Sm−1 ⊂ [0, n) and a bijective function
π : [0, n) → [0, n) which is evaluable in constant time, we can compute compressed
representations of π(S1), . . . , π(Sm) in O((K/w) log2 z+mn/z+m+n+ z) time, where
K =

∑m−1
i=0 |Si|.

I Theorem 8. Assume z ≤ No(1). Let δ > 0 be any fixed constant and c ∈ [C1, (1/C1) logN/
log2 logN] for a sufficiently large constant C1. Given a set P of N points in d = c logN
dimensions, we can construct a data structure in O(N1+δ) preprocessing time and space, so
that we can answer N offline dominance range reporting queries (with a compressed output
representation) in N2−1/O(c log c) +O(((K/w) log2 z +N2/z) log d) time where K is the total
number of reported points over the N queries.

Proof. We adapt the preprocessing and query algorithm in Section 2, with the improvement
from Appendix A.1. A numbering of a set S of n elements refers to a bijection from S to
n consecutive integers. For each point set P generated by the preprocessing algorithm, we
define a numbering φP of P simply by recursively “concatenating” the numberings φPL and
φPR and appending p(i∗). The output to each query for P will be a compressed representation
of the subset of dominated points after applying φP .

In step 2 of the query algorithm, we can union the output for PL and for PR in O(1) time
by Lemma 7(i). In step 1 of the query algorithm, we need additional work since the output
is with respect to a different numbering φPJ , for some set J ∈ J . For each J ∈ J , we can
change the compressed representation to follow the numbering φP by invoking Lemma 7(iii),
after collecting all query points Q(PJ) that are passed to PJ (since queries are offline). To
account for the cost of this invocation to Lemma 7(iii), we charge (a) (1/w) log2 z units to
each output feature, (b) 1/z units to each point pair in PJ ×Q(PJ), (c) 1 unit to each point
in PJ , and (d) 1 unit to each point in Q(PJ), and (e) z units to the point set PJ itself.

Each output feature or each point pair is charged O(log d) times, since d decreases to bd/2c
with each charge. Thus, the total cost for (a) and (b) is O((K/w) log2 z log d+ (N2/z) log d).
The total cost of (c) is N1+o(1) by the analysis of our original preprocessing algorithm;
similarly, the total cost of (e) is zN1+o(1). The total cost of (d) is N2−1/O(c log c) by the
analysis of our original query algorithm.

We can make the final compressed representations to be with respect to any user-specified
numbering of P , by one last invocation to Lemma 7(iii). The algorithm can be derandomized,
as noted in the full paper. J

One may wonder whether the previous range-tree-like offline algorithm by Impagliazzo et
al. [17, 8] could also be adapted; the problem there is that d is only decremented rather than
halved, which makes the cost of re-numbering too large.

The main application is to (min,+) matrix multiplication and all-pairs shortest paths
(APSP). The corollary below follows immediately from a simple reduction [10] (see footnote 4)
to d instances of d-dimensional offline dominance range reporting where the total output size
K is O(n2). Here, we set w := δ0 logN and z := poly(logN).

I Corollary 9. Let d = (1/C1) log2N/ log2 logN for a sufficiently large constant C1. Given
an N × d and a d ×N real-valued matrix, we can compute their (min,+)-product (with a
compressed output representation) in O((N2/ logN) log3 logN) expected time.

The corollary below follows from applying Corollary 9 q/d times, in conjunction with a
subroutine by Chan [11, Corollary 2.5]. (The result improves [11, Corollary 2.6].)

I Corollary 10. Let q = log3N/ log5 logN . Given an N × q and a q×N real-valued matrix,
we can compute their (min,+)-product in O(N2) time.

T.M. Chan 27:15

Applying Corollary 10 N/q times (and using a standard reduction from APSP to (min,+)-
multiplication), we obtain:

I Corollary 11. Given two N×N real-valued matrices, we can compute their (min,+)-product
by a combinatorial algorithm in O((N3/ log3N) log5 logN) time. Consequently, we obtain a
combinatorial algorithm for APSP for arbitrary N -vertex real-weighted graphs with the same
time bound.

Note that Williams’ algorithm [23] is faster (achieving N3/2Ω(
√

logN) time), but is non-
combinatorial and gives a worse time bound (O(N2 logO(1)N)) for the rectangular matrix
case in Corollary 10.

SoCG 2017

Dynamic Orthogonal Range Searching on the
RAM, Revisited∗

Timothy M. Chan1 and Konstantinos Tsakalidis2

1 Dept. of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, IL, USA
tmc@illinois.edu

2 Cheriton School of Computer Science, University of Waterloo, Waterloo,
Canada
ktsakali@uwaterloo.ca

Abstract
We study a longstanding problem in computational geometry: 2-d dynamic orthogonal range
reporting. We present a new data structure achieving O

(
logn

log logn + k
)
optimal query time and

O
(

log2/3+o(1) n
)

update time (amortized) in the word RAM model, where n is the number of
data points and k is the output size. This is the first improvement in over 10 years of Mortensen’s
previous result [SIAM J. Comput., 2006], which has O

(
log7/8+ε n

)
update time for an arbitrarily

small constant ε.
In the case of 3-sided queries, our update time reduces to O

(
log1/2+ε n

)
, improving Wilkin-

son’s previous bound [ESA 2014] of O
(

log2/3+ε n
)
.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dynamic data structures, range searching, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.28

1 Introduction

Orthogonal range searching is one of the most well-studied and fundamental problems in
computational geometry: the goal is to design a data structure to store a set of n points so
that we can quickly report all points inside a query axis-aligned rectangle. In the “emptiness”
version of the problem, we just want to decide if the rectangle contains any point. (We will
not study the counting version of the problem here.)

The static 2-d problem has been extensively investigated [15, 6, 25, 13, 11, 22, 1, 21], with
the current best results in the word RAM model given by Chan, Larsen, and Pătraşcu [9].

In this paper, we are interested in the dynamic 2-d problem, allowing insertions and
deletions of points. A straightforward dynamization of the standard range tree [27] supports
queries in O

(
log2 n+ k

)
time and updates in O

(
log2 n

)
time, where k denotes the number

of reported points (for the emptiness problem, we can take k = 0). Mehlhorn and Näher [17]
improved the query time to O (logn log logn+ k) and the update time to O (logn log logn)
by dynamic fractional cascading.

∗ This work was done while the first author was at the University of Waterloo, and was partially supported
by an NSERC Discovery Grant.

© Timothy M. Chan and Konstantinos Tsakalidis;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Dynamic Orthogonal Range Searching on the RAM, Revisited

The first data structure to achieve logarithmic query and update (amortized) time was
presented by Mortensen [19]. In fact, he obtained sublogarithmic bounds in the word RAM
model: the query time is O

(
logn

log logn + k
)
and the amortized update time is O

(
log7/8+ε n

)
where ε denotes an arbitrarily small positive constant.

On the lower bound side, Alstrup et al. [2] showed that any data structure with tu update
time for 2-d range emptiness requires Ω

(
logn

log(tu logn)

)
query time in the cell-probe model.

Thus, Mortensen’s query bound is optimal for any data structure with polylogarithmic
update time. However, it is conceivable that the update time could be improved further
while keeping the same query time. Indeed, the O

(
log7/8+ε n

)
update bound looks too

peculiar to be optimal, one would think.
Let us remark how intriguing this type of “fractional-power-of-log” bound is, which showed

up only on a few occasions in the literature. For example, Chan and Pătraşcu [10] gave a
dynamic data structure for 1-d rank queries (counting number of elements less than a given
value) with O

(
logn

log logn

)
query time and O

(
log1/2+ε n

)
update time. Chan and Pătraşcu

also obtained more
√

logn-type results for various offline range counting problems. Another
example is Wilkinson’s recent paper [24]: he studied a special case of 2-d orthogonal range
reporting for 2-sided and 3-sided rectangles and obtained a solution with O

(
logn

log logn + k
)

amortized query time, O
(

log1/2+ε n
)
update time for the 2-sided case, and O

(
log2/3+ε n

)
update time for 3-sided; the latter improves Mortensen’s O

(
log5/6+ε n

)
update bound for

3-sided [19]. He also showed that in the insertion-only and deletion-only settings, it is possible
to get fractional-power-of-log bounds for both the update and the query time. However,
he was unable to make progress for general 4-sided rectangles in the insertion-only and
deletion-only settings, let alone the fully dynamic setting.

New results. Our main new result is a fully dynamic data structure for 2-d orthogonal
range reporting with O

(
logn

log logn + k
)

optimal query time and O
(

log2/3+o(1) n
)

update

time, greatly improving Mortensen’s O
(

log7/8+ε n
)
bound. In the 3-sided case, we obtain

O
(

log1/2+ε n
)
update time, improving Wilkinson’s O

(
log2/3+ε n

)
bound. (See Table 1 for

comparison.) Our update bounds seem to reach a natural limit with this type of approach.
In particular, it is not unreasonable to conjecture that the near-

√
logn update bound for

the 3-sided case is close to optimal, considering prior “fractional-power-of-log” upper-bound
results in the literature (although there have been no known lower bounds of this type so
far).

Like previous methods, our bounds are amortized (this includes query time). Our results
are in the word-RAM model, under the standard assumption that the word size w is at least
logn bits (in fact, except for an initial predecessor search during each query/update, we only
need operations on (logn)-bit words). Even to researchers uncomfortable with sublogarithmic
algorithms on the word RAM, such techniques are still relevant. For example, Mortensen

extended his data structure to d ≥ 3 dimensions and obtained O
((

logn
log logn

)d−1
+ k

)
query

time and O
(

logd−9/8+ε n
)
update time, even in the real-RAM model (where each word

can hold an input real number or a (logn)-bit number). Our result automatically leads to
improvements in higher dimensions as well.

T.M. Chan and K. Tsakalidis 28:3

Table 1 Dynamic planar orthogonal range reporting: previous and new results.

Update time Query time
4-sided Lueker and Willard [27] log2 n log2 n + k

Mehlhorn and Näher [17] log n log log n log n log log n + k

Mortensen [19] log7/8+ε n log n
log log n

+ k

New log2/3 n logO(1) log n log n
log log n

+ k

3-sided McCreight [16] log n log n + k

Willard [26] log n
log log n

log n
log log n

+ k

Mortensen [19] log5/6+ε n log n
log log n

+ k

Wilkinson [24] (log n log log n)2/3 log n + k

Wilkinson [24] log2/3+ε n log n
log log n

+ k

New log1/2+ε n log n
log log n

+ k

Overview of techniques: Micro- and macro-structures. Our solution builds on ideas from
Mortensen’s paper [19]. His paper was long and not easy to follow, unfortunately; we strive
for a clearer organization and a more accessible exposition (which in itself would be a valuable
contribution).

The general strategy towards obtaining fractional-power-of-log bounds, in our view, can be
broken into two parts: the design of what we will call micro-structures and macro-structures.

Micro-structures refer to data structures for handling a small number s of points; by
“small”, we mean s = 2logα n for some fraction α < 1 (rather than s being polylogarithmic,
as is more usual in other contexts). When s is small, by rank space reduction we can
make the universe size small, and as a consequence pack multiple points (about w

log s)
into a single word. As observed by Chan and Pătraşcu [10] and Wilkinson [24], we can
design micro-structures by thinking of each word as a block of multiple points, and
borrowing known techniques from the world of external-memory algorithms (specifically,
buffer trees [4]) to achieve (sub)constant amortized update time. Alternatively, Mortensen
described his micro-structures from scratch, which required a more complicated solution
to a certain “pebble game” [19, Section 6].
One subtle issue is that to simulate rank space reduction dynamically, we need list labeling
techniques, which, if not carefully implemented, can worsen the exponent in the update
bound (as was the case in both Mortensen’s and Wilkinson’s solutions).
Macro-structures refer to data structures for large input size n, constructed using micro-
structures as black boxes. This part does not involve bit packing, and relies on more
traditional geometric divide-and-conquer techniques such as higher-degree range trees,
as in Mortensen’s and Chan and Pătraşcu’s solutions, with degree 2logβ n for some
fraction β < 1. Van Emde Boas recursion is also a crucial ingredient in Mortensen’s
macro-structures.

Our solution will require a number of new ideas in both micro- and macro-structures. On
the micro level, we bypass the “pebbling” problem by explicitly invoking external-memory
techniques, as in Wilkinson’s work [24], but we handle the list labeling issue more carefully,
to avoid worsening the update time. On the macro level, we use higher-degree range trees
but with a more intricate analysis (involving Harmonic series, interestingly), plus a few
bootstrapping steps, in order to achieve the best update and query bounds.

SoCG 2017

28:4 Dynamic Orthogonal Range Searching on the RAM, Revisited

2 Preliminaries

In all our algorithms, we assume that during each query or update, we are given a pointer to
the predecessor/successor of the x- and y-values of the given point or rectangle. At the end,
we can add the cost of predecessor search to the query and update time (which is no bigger
than O

(√
logn

)
[3] in the word RAM model).

We assume a word RAM model that allows for a constant number of “exotic” operations
on w-bit words. By setting w := δ logn for a sufficiently small constant δ, these operations can
be simulated in constant time by table lookup, after preprocessing the tables in 2O(w) = nO(δ)

time.
For simplicity, we concentrate on emptiness queries; all our algorithms can be easily

modified for reporting queries, with an additional O (k) term to the query time bounds.
A 3-sided query deals with a rectangle that is unbounded on the left or right side, by

default. A 2-sided (or dominance) query deals with a rectangle that is unbounded on two
adjacent sides.

Let [n] denote {0, 1, . . . , n− 1}.
We now quickly review a few useful tools.

List labeling. Monotone list labeling is the problem of assigning labels to a dynamic set of
totally ordered elements, such that whenever x < y, the label of x is less than the label of y.
As elements are inserted, we are allowed to change labels. The following result is well known:

I Lemma 1 ([12]). A monotone labeling for n totally ordered elements with labels in
[
nO(1)]

can be maintained under insertions by making O (n logn) label changes.

Weight-balancing. Weight-balanced B-trees [5] are B-tree implementations with a rebal-
ancing scheme that is based on the nodes’ weights, i.e., subtree sizes, in order to support
updates of secondary structures efficiently.

I Lemma 2 ([5], Lemma 4). In a weight-balanced B-tree of degree s, nodes at height i have
weight Θ

(
si
)
, and any sequence of n insertions requires at most O

(
n/si

)
splits of nodes at

height i.

Colored predecessors. Colored predecessor searching is the problem of maintaining a dy-
namic set of multi-colored, totally ordered elements and searching for the predecessors with
a given color.

I Lemma 3 ([19], Theorem 14). Colored predecessor searches and updates on n colored,
totally ordered elements can be supported in O

(
log2 logn

)
time deterministically.

Van Emde Boas transformation. A crucial ingredient we will use is a general technique of
Mortensen [18, 19] that transforms any given data structure for orthogonal range emptiness
on small sets of s points, to one for point sets in a narrow grid [s]× R, at the expense of a
log logn factor increase in cost. We state the result in a slightly more general form:

I Lemma 4 ([19], Theorem 1). Let X be a set of O (s) values. Given a dynamic data
structure for j-sided orthogonal range emptiness (j ∈ {3, 4}) on s points in X×R with update
time Uj(s) and query time Qj(s), there exists a dynamic data structure for j-sided orthogonal
range emptiness on n points in X × R with update time O (Uj(s) log logn) and query time
O (Qj(s) log logn).

T.M. Chan and K. Tsakalidis 28:5

If the given data structure supports updates to X in UX(s) time and this update procedure
depends solely on X (and not the point set), the new data structure can support updates to
X in UX(s) time.

Mortensen’s transformation is obtained via a van-Emde-Boas-like recursion [23]: Roughly,
we divide the plane into

√
n horizontal slabs each with

√
n points; for each slab, we store

the topmost and bottommost point at each x-coordinate of X in a data structure for O (s)
points, and handle the remaining points recursively. (Note that all these data structures for
O (s) points work with a common set X of x-coordinates.)

3 Part 1: Micro-Structures

We first design micro-structures for 3- and 4-sided dynamic orthogonal range emptiness when
the number of points s is small. This part heavily relies on bit-packing techniques.

3.1 Static universe
We begin with the case of a static universe

[
sO(1)]2.

I Lemma 5. For s points in the static universe
[
sO(1)]2, there exist data structures for

dynamic orthogonal range emptiness that support
(i) updates in O

(
log2 s
w + 1

)
amortized time and 3-sided queries in O (log s) amortized time;

(ii) updates in O
(

log3 s
w + 1

)
amortized time and 4-sided queries in O

(
log2 s

)
amortized

time.

Proof. We mimick existing external-memory data structures with a block size of B :=
⌈
δw

log s

⌉
for a sufficiently small constant δ, observing that B points can be packed into a single word.

(i) For the 3-sided case, Wilkinson [24, Lemma 1] has already adapted such an external-
memory data structure, namely, a buffered version of a binary priority search tree due to
Kumar and Schwabe [14] (see also Brodal’s more recent work [7]), which is similar to the
buffer tree of Arge [4]. For 3-sided rectangles unbounded to the left/right, the priority
search tree is ordered by y, where each node stores O (B) x-values. Wilkinson obtained
O
(1
B · log s+ 1

)
= O

(
log2 s
w + 1

)
amortized update time and O (log s) amortized query time.

(ii) For the general 4-sided case, we use a buffered version of a binary range tree. Although
we are not aware of prior work explicitly giving such a variant of the range tree, the
modifications are straightforward, and we will provide only a rough outline. The range
tree is ordered by y. Each node holds a buffer of up to B update requests that have not
yet been processed. Each node is also augmented with a 1-d binary buffer tree (already
described by Arge [4]) for the x-projection of the points. To insert or delete a point, we add
the update request to the root’s buffer. Whenever a buffer’s size of a node exceeds B, we
empty the buffer by applying the following procedure: we divide the list of Θ (B) update
requests into two sublists for the two children in O(1) time using an exotic word operation
(since B update requests fit in a word); we then pass these sublists to the buffers at the
two children, and also pass another copy of the list to the node’s 1-d buffer tree. These 1-d
updates cost O

(1
B · log s

)
each [4], when amortized over Ω (B) updates. Since each update

eventually travels to O (log s) nodes of the range tree, the amortized update time of the
4-sided structure is O

(1
B log2 s+ 1

)
= O

(
log3 s
w + 1

)
.

A 4-sided query is answered by following two paths in the range tree in a top-down
manner, performing O (log s) 1-d queries; since each 1-d query takes O (log s) time, the

SoCG 2017

28:6 Dynamic Orthogonal Range Searching on the RAM, Revisited

overall query time is O
(
log2 s

)
. However, before we can answer the query, we need to first

empty the buffers along the two paths of the range tree. This can be done by applying the
procedure in the preceding paragraph at the O (log s) nodes top-down; this takes O (log s)
time, plus the time needed for O (B log s) 1-d updates, costing O

(1
B · log s

)
each [4]. The

final amortized query time is thus O
(
log2 s

)
. J

Notice that the above update time is constant when the number of points s is as large as
2
√
w for 3-sided queries or 2w1/3 for 4-sided.
(It is possible to eliminate one of the logarithmic factors in the query time for the above

4-sided result, by augmenting nodes of the range tree with 3-sided structures. However, this
alternative causes difficulty later in the extension to dynamic universes. Besides, the larger
query time turns out not to matter for our macro-structures at the end.)

3.2 Dynamic universe
To make the preceding data structure support a dynamic universe, the simplest way is to
apply monotone list labeling (Lemma 1), which maps coordinates to

[
sO(1)]2. Whenever a

label of a point changes, we just delete the point and reinsert a copy with the new coordinates
into the data structure. However, since the total number of label changes is O (s log s) over s
insertions, this slows down the amortized update time by a log s factor and will hurt the
final update bound.

Our approach is as follows. We first observe that the list labeling approach works fine for
changes to the y-universe. For changes to the x-universe, we switch to a “brute-force” method
with large running time, but luckily, since the number of such changes will be relatively small,
this turns out to be adequate for our macro-structures at the end. (The brute-force idea can
also be found in Mortensen’s paper [19], but his macro-structures were less efficient.)

I Lemma 6. Both data structures in Lemma 5 can be modified to work for s points in a
universe X × Y with |X|, |Y | = O (s). The update and query time bounds are the same, and
we can support
(i) updates to Y in O

(
log2 log s

)
amortized time (given a pointer to the predecessor/successor

in Y), and
(ii) updates to X in 2O(w) time, where the update procedure for X depends solely on X (and

not the point set).

Proof. (i) To start, let us assume that X =
[
sO(1)] but Y is arbitrary. We divide the sorted

list Y into O (s/A) blocks of size Θ (A) for a parameter A to be set later. It is easy to
maintain such a blocking using O (s/A) number of block merges and splits over s updates.
(Such a blocking was also used by Wilkinson [24].) We maintain a monotone labeling of the
blocks by Lemma 1. In the proof of Lemma 5, we construct the y-ordered priority search
tree or range tree using the block labels as the y-values. Each leaf then corresponds to a
block. We build a small range tree for each leaf block to support updates and queries for the
O (A) points in, say, O

(
log2 A

)
time. We can encode a y-value η ∈ Y by a pair consisting of

the label of the block containing η, and the rank of η with respect to the block. We will use
these encoded values, which still are O (log s)-bit long, in all the buffers. The block labels
provide sufficient information to pass the update requests to the leaves and the x-ordered
1-d buffer trees. The ranks inside a block provide sufficient information to handle a query or
update at a leaf.

During each block split/merge and each block label change, we need to first empty the
buffers along the path to the block before applying the change. This can be done by applying

T.M. Chan and K. Tsakalidis 28:7

the procedure from the proof of Lemma 5 at O (log s) nodes top-down, requiring O (log s)
amortized time. Since the total number of block label changes is O

(
s
A log s

A

)
, the total time

for these steps is O
(
s
A log s

A · log s
)

= O (s) by setting A := log2 s. The amortized cost for
these steps is thus O (1).

(ii) Now, we remove the X =
[
sO(1))] assumption. We assign elements in X to labels in

[O (s)] but do not insist on a monotone labeling. Then no label change is necessary! We will
use these labels for the x-values in all the buffers. The exotic word operations are simulated
by table lookup, but in the precomputation of each table entry, we need to first map the
labels to their actual x-values. During each update to X, we now need to recompute all
table entries by brute force, taking 2O(w) time. J

4 Part 2: Macro-Structures

We now present macro-structures for 3- and 4-sided dynamic orthogonal range emptiness
when the number of points n is large, by using micro-structures as black boxes. This part
does not involve bit packing (and hence is more friendly to computational geometers). The
transformation from micro- to macro-structures is based on variants of range trees.

4.1 Range tree transformation I

I Lemma 7. Given a family of data structures D(i)
j (i ∈ {1, . . . , logs n}) for dynamic j-sided

orthogonal range emptiness (j ∈ {3, 4}) on s points in X ×R (|X| = O (s)) with update time
U

(i)
j (s) and query time Q(i)

j (s), where updates to X take U (i)
X (s) time with a procedure that

depends solely on X, there exist data structures for dynamic orthogonal range emptiness on
n points in the plane with the following amortized update and query time:
(i) for the 3-sided case,

U ′3(n) = O

logs n∑
i=1

U
(i)
3 (s) log logn +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn

Q′3(n) = O

(
max
i
Q

(i)
3 (s) logs n log logn + logs n log2 logn

)
;

(ii) for the 4-sided case,

U ′4(n) = O

logs n∑
i=1

(U (i)
4 (s) + U

(i)
3 (s)) log logn +

logs n∑
i=1

U
(i)
X (s)
si−1 + logs n log2 logn

Q′4(n) = O

(
max
i
Q

(i)
4 (s) log logn + max

i
Q

(i)
3 (s) logs n log logn + logs n log2 logn

)
.

Proof. We store a range tree ordered by x, implemented as a degree-s weight-balanced
B-tree. (Deletions can be handled lazily without changing the weight-balanced tree; we can
rebuild periodically when n decreases or increases by a constant factor.) At every internal
node v at height i, we store the points in its subtree in a data structure for j-sided orthogonal
range emptiness on a narrow grid Xv × R, obtained by applying Lemma 4 to the given
structure D(i)

j , where Xv is the set of x-coordinates of the O (s) dividing vertical lines at
the node, and the x-coordinate of every point is replaced with the predecessor in Xv. We
also store the y-coordinates of these points in a colored predecessor searching structure of
Lemma 3, where points in the same child’s vertical slab are assigned the same color. And
we store the x-coordinates in another colored predecessor searching structure, where Xv is
colored black and the rest is colored white.

SoCG 2017

28:8 Dynamic Orthogonal Range Searching on the RAM, Revisited

To insert or delete a point, we update the narrow-grid structures at the nodes along the
path in the tree. This takes O

(∑logs n
i=1 U

(i)
j (s) log logn

)
total time. Note that given the

y-predecessor/successor of the point at a node, we can obtain the y-predecessor/successor
at the child by using the colored predecessor searching structure. We can also determine
the x-predecessor in Xv by another colored predecessor search. This takes total time
O
(
logs n log2 logn

)
along the path.

To keep the tree balanced, we need to handle node splits. For nodes at height i, there
are O

(
n/si

)
splits by Lemma 2. Each such split requires rebuilding two narrow-grid

structures on O
(
si
)
points, which can be done naively by O

(
si
)
insertions to empty struc-

tures. This has O
(∑logs n

i=1
(
n/si

)
· siU (i)

j (s) log logn
)
total cost, i.e., an amortized cost of

O
(∑logs n

i=1 U
(i)
j (s) log logn

)
. A split of a child of v also requires updating (deleting and rein-

serting) the points at the child’s slab. This has O
(∑logs n

i=1
(
n/si−1) · si−1U

(i)
j (s) log logn

)
total cost, i.e., an amortized cost of O

(∑logs n
i=1 U

(i)
j (s) log logn

)
. Furthermore, a split of a

child of v requires an update to Xv. This has O
(∑logs n

i=1
(
n/si−1) · U (i)

X (s)
)
total cost, i.e.,

an amortized cost of O
(∑logs n

i=1
(
1/si−1) · U (i)

X (s)
)
.

To answer a 3-sided query, we proceed down a path of the tree and perform queries in the
narrow-grid structures at nodes along the path. This takes O

(
logs n ·maxiQ(i)

3 (s) log logn
)

total time. As before, given the y-predecessor/successor of the coordinates of the rectangle
at a node, we can obtain the y-predecessor/successor at the child by using the colored
predecessor searching structure. This takes total time O

(
logs n log2 logn

)
along the path.

To answer a 4-sided query, we find the highest node v whose dividing vertical lines cut the
query rectangle. We obtain two 3-sided queries at two children of v, which can be answered
as above, plus a remaining query that can be answered via the narrow-grid structure at v in
O
(

maxiQ(i)
4 (s) log logn

)
time. J

Combining with our preceding micro-structures, we obtain the following results, achieving
the desired update time but slightly suboptimal query time (which we will fix later):

I Theorem 8. Given n points in the plane, there exist data structures for dynamic orthogonal
range emptiness that support
(i) updates in amortized O

(
log1/2 n logO(1) logn

)
time and 3-sided queries in amortized

O (logn log logn) time;
(ii) updates in amortized O

(
log2/3 n logO(1) logn

)
time and 4-sided queries in amortized

O (logn log logn) time.

Proof. (i) For the 3-sided case, Lemmata 5(i) and 6 give micro-structures with update time
O
(

log2 s
w + log2 log s

)
and query time O (log s), while supporting updates to X in 2O(w)

time. Observe that we can choose to work with a smaller word size w ≤ w, so long as
w = Ω (log s). We choose w := δi log s for a sufficiently small absolute constant δ and for
any given i ∈ [2, logs n]. This gives

U
(i)
3 (s) = O

(
log s
i

+ log2 log s
)

Q
(i)
3 (s) = O (log s)

U
(i)
X (s) = sO(δi).

T.M. Chan and K. Tsakalidis 28:9

For the special case i = 1, we use a standard priority search tree, achieving U (1)
3 (s), Q(1)

3 (s) =
O (log s) and U (1)

X (s) = 0. Substituting into Lemma 7, we obtain

U ′3(n) = O

logs n∑
i=1

log s log logn
i

+ logs n log3 logn +
logs n∑
i=2

sO(δi)

si−1 logs n log2 logn

= O

(
log s log2 logn + logs n log3 logn

)
,

since the first sum is a Harmonic series and the second sum is a geometric series. (This
assumes a sufficiently small constant for δ, as the hidden constant in the exponent O (δi)
does not depend on δ.) Furthermore,

Q′3(n) = O
(
log s logs n log logn + logs n log2 logn

)
= O

(
logn log logn + logs n log2 logn

)
.

We set s := 2
√

logn to get U ′3(n) = O
(

log1/2 n logO(1) logn
)
, Q′3(n) = O (logn log logn).

(ii) Similarly, for the 4-sided case, Lemmata 5(ii) and 6 with a smaller word size w :=
δi log s give micro-structures with

U
(i)
4 (s) = O

(
log2 s

i
+ log2 log s

)
Q

(i)
4 (s) = O

(
log2 s

)
U

(i)
X (s) = sO(δi).

For the special case i = 1, we use a standard range tree, achieving U (1)
4 (s), Q(1)

4 (s) = O
(
log2 s

)
and U (1)

X (s) = 0. Substituting into Lemma 7, we obtain

U ′4(n) = O

logs n∑
i=1

log2 s log logn
i

+ logs n log3 logn +
logs n∑
i=2

sO(δi)

si−1 logs n log2 logn

= O

(
log2 s log2 logn + logs n log3 logn

)
and

Q′4(n) = O
(
log2 s log logn + log s logs n log logn + logs n log2 logn

)
= O

(
log2 s log logn + logn log logn + logs n log2 logn

)
.

We set s := 2log
1
3 n to get U ′4(n) = O

(
log2/3 n logO(1) logn

)
, Q′4(n) = O (logn log logn). J

4.2 Range tree transformation II
We now reduce the query time to optimal by another transformation:

I Lemma 9. Given data structures for dynamic j-sided orthogonal range emptiness (j ∈ {2, 3,
4}) on n points in the plane with update time Uj(n) and query time Qj(n), there exist data
structures for dynamic j-sided orthogonal range emptiness (j ∈ {3, 4}) on n points in the
plane with the following amortized update and query time:

U ′j(n) = O
(
Uj(s) logs n log logn + Uj−1(n) logs n + logs n log2 logn

)
Q′j(n) = O

(
Qj(s) log logn + Qj−1(n) + logs n log2 logn

)
.

SoCG 2017

28:10 Dynamic Orthogonal Range Searching on the RAM, Revisited

Proof. We first switch the x- and y-coordinates of the points. This is fine since the given
data structures in the statement of this lemma still exist by symmetry (unlike in Lemma 7).

We modify the range tree in the proof of Lemma 7, where every internal node is augmented
with a (j − 1)-sided structure.

During an insertion or deletion of a point, we update the narrow-grid structures along a
path as before, in O (logs n · Uj(s) log logn) time. We now also need to update the (j−1)-sided
structures at nodes along the path. This adds O (Uj−1(n) logs n) to the update time.

During rebalancing, each split of a node at height i now requires rebuilding the (j − 1)-
sided structures, which can be done naively by O

(
si
)
insertions to an empty structure. This

has O
(∑logs n

i=1
(
n/si

)
· siUj−1(n)

)
total cost, i.e., an amortized cost of O (Uj−1(n) logs n).

To answer a j-sided query, we find the highest node v whose dividing vertical lines cut
the query rectangle. We obtain two (j − 1)-sided queries at two children of v, plus a query
in the narrow-grid structure at v. (In the case j = 3, recall that the input to a 3-sided query
is now a rectangle unbounded from above or below, because of the switching of x and y.)
The two (j − 1)-sided queries can be answered directly using the augmented structures. This
takes O (Qj(s) log logn+Qj−1(n)) time, plus the cost O

(
logs n log2 logn

)
to descend along

the path to that node. J

We obtain our final results by bootstrapping:

I Theorem 10. Given n points in the plane, there exist data structures for dynamic ortho-
gonal range emptiness that support
(i) updates in amortized O

(
log1/2+O(ε) n

)
time and 3-sided queries in amortized O

(
logn

log logn

)
time;

(ii) updates in amortized O
(

log2/3 n logO(1) logn
)
time and 4-sided queries in amortized

O
(

logn
log logn

)
time.

Proof. (i) Theorem 8(i) achieves

U3(s) = O
(

log1/2 s logO(1) log s
)

Q3(s) = O (log s log log s) .

Wilkinson [24] has given a data structure for 2-sided (dominance) queries with

U2(n) = O
(

log1/2+ε n
)

Q2(n) = O

(
logn

log logn

)
.

Substituting into Lemma 9, we obtain

U ′3(n) = O
(

log1/2 s logs n logO(1) logn + log1/2+ε n logs n+ logs n log2 logn
)

Q′3(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.

We set s := 2
logn

log3 logn to get U ′3(n) = O
(

log1/2+O(ε) n
)
, Q′3(n) = O

(
logn

log logn

)
.

(ii) Similarly, Theorem 8(ii) achieves

U4(s) = O
(

log2/3 s logO(1) log s
)

Q4(s) = O (log s log log s) .

T.M. Chan and K. Tsakalidis 28:11

Part (i) above gives

U3(n) = O
(

log1/2+O(ε) n
)

Q3(n) = O

(
logn

log logn

)
.

Substituting into Lemma 9, we obtain

U ′4(n) = O
(

log2/3 s logs n logO(1) logn + log1/2+O(ε) n logs n+ logs n log2 logn
)

Q′4(n) = O

(
log s log log s log logn + logn

log logn + logs n log2 logn
)
.

We set s := 2
logn

log3 logn to get U ′4(n) = O
(

log2/3 n logO(1) logn
)
, Q′4(n) = O

(
logn

log logn

)
. J

5 Future Work

We have not yet mentioned space complexity. We can trivially upper-bound the space of
our data structure by n times the update time, i.e., O

(
n log2/3+o(1) n

)
for the 4-sided case,

which is already an improvement over Mortensen’s O
(
n log7/8+ε n

)
space bound. We are

currently working on ways to improve space further to near-linear. (See [20, 21] for the
current best data structures with near-linear space.)

We can automatically extend our result to higher constant dimensions d ≥ 3 by us-
ing a standard degree-b range tree, which adds a b logb n factor per dimension to the
update time and a logb n factor per dimension to the query time. With b = logε n, this
gives O

(
(logn/ log logn)d−1) query time and O

(
logd−5/3+O(ε) n

)
update time, improving

Mortensen’s result. Alternatively, we can directly modify our micro- and macro-structures,
which should give a better update time of the form O

(
logd−2+O(1/d) n

)
. We are currently

working on obtaining the best precise exponent with this approach. (See [8] for a different
tradeoff with query time better by about a logarithmic factor but update time worse by
several logarithmic factors.)

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for ortho-

gonal range searching. In Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 198–207, 2000. doi:10.1109/SFCS.2000.892088.

2 Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In Proceed-
ings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 534–543, Nov 1998. doi:10.1109/SFCS.1998.743504.

3 Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees.
Journal of the ACM, 54(3):13, 2007. doi:10.1145/1236457.1236460.

4 Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1–24, 2003. doi:10.1007/s00453-003-1021-x.

5 Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management. SIAM
Journal on Computing, 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

6 Jon Louis Bentley. Decomposable searching problems. Information Processing Letters,
8(5):244–251, 1979. doi:10.1016/0020-0190(79)90117-0.

SoCG 2017

http://dx.doi.org/10.1109/SFCS.2000.892088
http://dx.doi.org/10.1109/SFCS.1998.743504
http://dx.doi.org/10.1145/1236457.1236460
http://dx.doi.org/10.1007/s00453-003-1021-x
http://dx.doi.org/10.1137/S009753970240481X
http://dx.doi.org/10.1016/0020-0190(79)90117-0

28:12 Dynamic Orthogonal Range Searching on the RAM, Revisited

7 Gerth Stølting Brodal. External memory three-sided range reporting and top-k queries
with sublogarithmic updates. In Proceedings of the 33rd Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS), pages 23:1–23:14, 2016. doi:10.4230/LIPIcs.
STACS.2016.23.

8 Timothy M. Chan. Three problems about dynamic convex hulls. International
Journal of Computational Geometry and Applications, 22(4):341–364, 2012. doi:10.1142/
S0218195912600096.

9 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching
on the RAM, revisited. In Proceedings of the 27th Annual Symposium on Computational
Geometry (SoCG), pages 1–10, 2011. doi:10.1145/1998196.1998198.

10 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range count-
ing, and related problems. In Proceedings of the 21st Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA), pages 161–173, 2010. doi:10.1137/1.9781611973075.15.

11 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988. doi:10.1137/0217026.

12 Paul F. Dietz. Maintaining order in a linked list. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing (STOC), pages 122–127, 1982. doi:10.1145/800070.
802184.

13 Otfied Fries, Kurt Mehlhorn, Stefan Näher, and Athanasios K. Tsakalidis. A log logn data
structure for three-sided range queries. Information Processing Letters, 25(4):269–273, 1987.
doi:10.1016/0020-0190(87)90174-8.

14 Vijay Kumar and Eric J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. In Proceedings of the 8th Annual IEEE Symposium
on Parallel and Distributed Processing, pages 169–176, 1996. doi:10.1109/SPDP.1996.
570330.

15 George S. Lueker. A data structure for orthogonal range queries. In Proceedings of the
19th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 28–34,
1978. doi:10.1109/SFCS.1978.1.

16 Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,
1985. doi:10.1137/0214021.

17 Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorithmica, 5(1):215–
241, 1990. doi:10.1007/BF01840386.

18 Christian Worm Mortensen. Fully-dynamic two dimensional orthogonal range and line
segment intersection reporting in logarithmic time. In Proceedings of the 14th Annual
ACM–SIAM Symposium on Discrete Algorithms (SODA), pages 618–627, 2003. URL: http:
//dl.acm.org/citation.cfm?id=644108.644210".

19 Christian Worm Mortensen. Fully dynamic orthogonal range reporting on RAM. SIAM
Journal on Computing, 35(6):1494–1525, 2006. doi:10.1137/S0097539703436722.

20 Yakov Nekrich. Space efficient dynamic orthogonal range reporting. Algorithmica, 49(2):94–
108, 2007. doi:10.1007/s00453-007-9030-9.

21 Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Computa-
tional Geometry, 42(4):342–351, 2009. doi:10.1016/j.comgeo.2008.09.001.

22 Mark H. Overmars. Efficient data structures for range searching on a grid. Journal of
Algorithms, 9(2):254–275, 1988. doi:10.1016/0196-6774(88)90041-7.

23 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear
space. Information Processing Letters, 6(3):80–82, 1977. doi:10.1016/0020-0190(77)
90031-X.

24 Bryan T. Wilkinson. Amortized bounds for dynamic orthogonal range reporting. In Pro-
ceedings of the 22th Annual European Symposium on Algorithms (ESA), pages 842–856,
2014. doi:10.1007/978-3-662-44777-2_69.

http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.1142/S0218195912600096
http://dx.doi.org/10.1142/S0218195912600096
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.1137/1.9781611973075.15
http://dx.doi.org/10.1137/0217026
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1145/800070.802184
http://dx.doi.org/10.1016/0020-0190(87)90174-8
http://dx.doi.org/10.1109/SPDP.1996.570330
http://dx.doi.org/10.1109/SPDP.1996.570330
http://dx.doi.org/10.1109/SFCS.1978.1
http://dx.doi.org/10.1137/0214021
http://dx.doi.org/10.1007/BF01840386
http://dl.acm.org/citation.cfm?id=644108.644210"
http://dl.acm.org/citation.cfm?id=644108.644210"
http://dx.doi.org/10.1137/S0097539703436722
http://dx.doi.org/10.1007/s00453-007-9030-9
http://dx.doi.org/10.1016/j.comgeo.2008.09.001
http://dx.doi.org/10.1016/0196-6774(88)90041-7
http://dx.doi.org/10.1016/0020-0190(77)90031-X
http://dx.doi.org/10.1016/0020-0190(77)90031-X
http://dx.doi.org/10.1007/978-3-662-44777-2_69

T.M. Chan and K. Tsakalidis 28:13

25 Dan E. Willard. New data structures for orthogonal range queries. SIAM Journal on
Computing, 14(1):232–253, 1985. doi:10.1137/0214019.

26 Dan E. Willard. Examining computational geometry, Van Emde Boas trees, and hashing
from the perspective of the fusion tree. SIAM Journal on Computing, 29(3):1030–1049,
2000. doi:10.1137/S0097539797322425.

27 Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data
structures. Journal of the ACM, 32(3):597–617, 1985. doi:10.1145/3828.3839.

SoCG 2017

http://dx.doi.org/10.1137/0214019
http://dx.doi.org/10.1137/S0097539797322425
http://dx.doi.org/10.1145/3828.3839

On Bend-Minimized Orthogonal Drawings of
Planar 3-Graphs
Yi-Jun Chang∗1 and Hsu-Chun Yen†2

1 Department of EECS, University of Michigan, Ann Arbor, MI, USA
2 Department of Electrical Engineering, National Taiwan University, Taipei,

Taiwan

Abstract
An orthogonal drawing of a graph is a planar drawing where each edge is drawn as a sequence of
horizontal and vertical line segments. Finding a bend-minimized orthogonal drawing of a planar
graph of maximum degree 4 is NP-hard. The problem becomes tractable for planar graphs of
maximum degree 3, and the fastest known algorithm takes O(n5 logn) time. Whether a faster
algorithm exists has been a long-standing open problem in graph drawing. In this paper we
present an algorithm that takes only Õ(n17/7) time, which is a significant improvement over the
previous state of the art.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Bend minimization, graph drawing, orthogonal drawing, planar graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.29

1 Introduction

An orthogonal drawing of a graph is a planar drawing where each edge is composed of a
sequence of horizontal and vertical line segments with no crossings. Orthogonal drawings
appear in many applications such as the automation of VLSI circuit layout and the drawing
of diagrams in information systems. Variants of orthogonal drawings have been introduced
in the literature to cope with different constraints or to improve the readability and aesthetic
feel: smoothing the drawing [2, 1], requiring orthogonal convexity [5], accommodating vertices
of more than 4 incident edges [16, 8], and restricting directions of vertices [11, 13]. Refer
to [12] for a survey on orthogonal drawings.

Bend-minimization is one of the most classical optimization problems on orthogonal
drawings. Given a planar (or plane) graph, the problem asks for an orthogonal drawing
with the total number of bends minimized. However, the problem is NP-hard for planar
4-graphs [15].1 To obtain polynomial time algorithms, one has to relax the problem one way
or another. For example, it is known that a polynomial time algorithm exists when the first
bend on an edge does not incur any cost [3].

Much research effort has been made on bend-minimization for subclasses of planar 4-
graphs [9, 7, 14, 18, 17]. The two most natural subclasses are planar 3-graphs (reducing

∗ Yi-Jun Chang was supported in part by NSF grant CCF-1514383.
† Hsu-Chun Yen was supported in part by Ministry of Science and Technology, Taiwan, under grant

MOST 103-2221-E-002-154-MY3.
1 We write k-graphs to denote graphs of maximum degree k. Note that the degree of each vertex cannot

exceed 4 in an orthogonal drawing, and hence planar 4-graphs are the most general graph class that can
be drawn orthogonally.

© Yi-Jun Chang and Hsu-Chun Yen;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

the maximum degree by 1) and plane 4-graphs (fixing the planar embedding). For plane
4-graphs, a seminal work by Tamassia [20] demonstrates a reduction from bend-minimization
to a computation of a min-cost flow. Following this approach, the runtime has been reduced
to O(n7/4√logn) [14], and subsequently to O(n1.5) [7].2

For planar 3-graphs, the fastest known algorithm for bend-minimization is the O(n5 logn)
time algorithm designed by Di Battista, Liotta, and Vargiu, which dates back to 1998 [9].
As stated as an open problem in [4], further improving the time complexity is identified as
an important issue in the field of graph drawing.

Problem 15: Let G be a planar graph whose vertices have degree at most three. Is there an
algorithm to compute a planar bend-minimum orthogonal drawing of G in o(n5 logn) time?

In this paper, we answer the problem affirmatively by demonstrating an Õ(n17/7) time3
algorithm. Precisely, our algorithm takes O(n ·T (n)) time, where T (n) is the time complexity
of constructing a bend-minimized orthogonal drawing of a plane 3-graph subject to the
constraint that some designated edges have no bend. We will later see that bend-minimization
of a plane 3-graph can be reduced to min-cost flow of constant capacity, and a recent
breakthrough on unit-capacity min-cost flow in sparse graphs [6] implies T (n) = Õ(n10/7).

The main challenge of designing a bend-minimization algorithm for planar 3-graphs is to
handle the transition from the variable embedding setting to the fixed embedding setting.
The naïve approach of testing all possible planar embeddings is very inefficient, as there can
be an exponential number of different planar embeddings. A natural way to approach this
problem is to devise a dynamic programming procedure on an SPQR-tree, which is a tree
structure capable of storing all possible embeddings of a planar graph using linear space. The
approach is briefly sketched as follows. By “contracting” all subgraphs of the planar graph
G that can be flipped, a graph G′ that has a fixed combinatorial embedding is obtained. An
optimal drawing of G′ can be computed quickly using a bend-minimization algorithm for
plane 3-graphs. The optimal drawings of the contracted subgraphs are computed recursively.
Merging these drawings yields a drawing of G. Using the terminology of SPQR-trees, if G is
the pertinent graph of a node µ in the SPQR-tree, then the graph G′ is (a subdivision of) the
skeleton of µ, and the contracted subgraphs are the pertinent graphs of some descendants of µ.
See Fig. 1 for a conceptual example: (1) G′ = H2 is resulting from contracting the subgraph
H1 into a vertex v in G. (2) Merging the drawings of H1 and H2 yields an orthogonal
drawing of G (treating each white dot in the figure as a bend).

The above strategy does not immediately give us a bend-minimization algorithm. Observe
that the outer boundary of G needs to have 4 convex corners. Thus we need an additional
constraint which requires that the drawing of G′ and the drawings computed by recursive
calls jointly supply 4 convex corners in the outer boundary. To ensure that the final drawing
of G is optimal, one has to compute multiple drawings of each contracted subgraph H subject
to different constraints on the number of convex corners in the outer boundary of G that H
can supply, and to examine all possible combinations of these constraints. In [9] the notion
of spirality, which measures how an orthogonal drawing is “rolled up”, is developed to serve
as the aforementioned constraints.

In this paper, we utilize some tools developed by Rahman et al. in [19]. They characterized
the condition for the existence of a no-bend orthogonal drawing based on the number of

2 Throughout the paper, we define n := |V (G)| as the number of vertices in the graph. Note that we
have |E(G)| = O(n) for planar graphs.

3 The Õ(·) notation suppresses any poly log n factor.

Y. Chang and H. Yen 29:3

a

b
c

d

e

f

g
h

i

j
k

l

m

n

a

b

c

d

e f

g h

i j
k

l

m

n

w

x y

z

h

i

j

l

m
n

a

b
c

d

e

f

g

k

v

h

i j

l

m

n

w a

b

c

d

e f

g

k

x y

z

v

G
H1

H2 G●

H1
●

H2
●

e

a

x1

b

c

d
e

f g

h

a b

c
d
e

g

l

h

a b

c

d

g

l

h

a b

c

d
g

l

h

x2 x3

G1 G2 G3 G4

i

j

k l

f

k

j

i

k

j

i

k

j

i

e

Figure 1 Contracting subgraphs and merging sub-drawings.

2-vertices4 on some cycles, and they gave a linear time algorithm to construct such a drawing
if one exists. Note that bend-minimization can be equated with finding a minimum number
of subdivisions and a planar embedding to meet the condition for a no-bend orthogonal
drawing to exist.

We first reduce the bend-minimization problem to a constrained version, and then we
use the SPQR-tree dynamic programming to solve the constrained version of the bend-
minimization problem recursively. In our algorithm, for each contracted subgraph, only a
constant number of recursive calls is needed, and the merging of the subdrawings can be
performed in time linear to the number of contracted subgraphs. Our algorithm is presented
in a top-down manner. The main algorithm (for biconnected planar 3-graphs) is described
in Sec. 3, and the details of some subroutines are left in Sec. 4 and 5. The SPQR-tree
implementation is described in Sec. 6. Our algorithm can also be extended to planar 3-graphs
that are not biconnected based on block-cutvertex tree. The detail is omitted due to space
limit.

It is expected that our approach be applicable to some other variants of orthogonal
drawings, such as the orthogonally convex drawing [5], as its no-bend version can be
characterized analogously along the line of the work by Rahman at el. [19].

2 Preliminaries

Given a graph G = (V,E), we write ∆(G) to denote the maximum degree of G. We write
V (G) and E(G) to denote the sets of vertices and edges of G, respectively. We call G a
d-graph if ∆(G) ≤ d. A vertex of degree d is called a d-vertex. A multi-graph is a graph
where self-loops are disallowed while multi-edges are allowed. Throughout the paper, all
graphs under consideration are planar 3-graphs with possibly multi-edges. Unless otherwise
stated, all cycles and paths are assumed to be simple in the sense that they do not have
repeated vertices.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). We write H ⊆ G

to denote the subgraph relation. We write H (G if H ⊆ G and H 6= G. For H (G, we
write G−H to denote the graph resulting from removing from G all vertices in H and the
edges incident to these vertices. A graph is planar if it can be drawn on a plane without any
edge crossing. A planar drawing partitions the plane into several disconnected regions called
faces. The face corresponding to the region of unbounded size is called the outer face. The
remaining ones are called inner faces. A facial cycle is a cycle surrounding a face. All facial
cycles are simple in a biconnected plane graph. A plane graph is a planar graph with a fixed
combinatorial embedding (which specifies a cyclic order of the edges incident to each vertex
in the planar embedding) and a designated outer cycle CO that surrounds the outer face.

4 We write a k-vertex to denote a vertex of degree k.

SoCG 2017

29:4 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

We call a cycle inner if it is not the outer one. For any vertex and edge, we call it boundary
if it is located in CO; otherwise, it is non-boundary. A cycle C 6= CO is called boundary if it
contains some edges in CO. For a cycle C in a plane graph G, we write G[C] to denote the
subgraph of G that contains exactly C and vertices and edges residing in its interior region.
Note that G[C] = G iff C = CO; and G[C] = C iff C is an inner facial cycle.

With respect to a cycle C of a plane graph G, an edge e = {u, v} 6∈ E(G[C]) is called a
leg of C if at least one of u and v belongs to V (C). A vertex in V (C) incident to some leg of
C is called a legged-vertex of C. In a 3-graph, each legged-vertex of C is incident to exactly
one leg of C. A cycle C is k-legged if C has exactly k legs.

Consider the plane graph G in Fig. 1. The cycle C1 = (h,m, l, j, i) is a non-boundary
2-legged cycle of which the two legged-vertices are h and j, and the two legs are {a, h}
and {j, k}. The facial cycle C2 = (d, e, k) is a boundary 3-legged cycle in G. A subdivision
is a process of adding a new 2-vertex w to an edge e = {u, v} by replacing e with two
edges {u,w} and {w, v}. A smoothing is the reverse process of a subdivision which removes
a 2-vertex w by replacing two edges {u,w} and {w, v} with a new edge {u, v}, assuming
{u,w}, {w, v} ∈ E(G).

2.1 Theorems of Rahman et al.
Rahman st al. [19] gave a characterization of those biconnected plane 3-graphs that admit
orthogonal drawings without bends. Based on the characterization, they presented a linear
time algorithm to construct such a drawing, if one exists.

I Theorem 1 ([19]). A biconnected plane 3-graph G admits a no-bend orthogonal drawing if
and only if the following conditions are met:
1. The outer cycle CO contains at least four 2-vertices.
2. Each 2-legged cycle contains at least two 2-vertices.
3. Each 3-legged cycle contains at least one 2-vertex.

The conditions in Theorem 1 can be reformulated as a single condition requiring the
number of 2-vertices plus the number of legged-vertices to be at least 4 in each cycle. Note
that a cycle is drawn as an orthogonal polygon in an orthogonal drawing. Since an orthogonal
polygon must have at least four 90◦ corners, the necessity of the conditions in Theorem 1
follows from the fact that only 2-vertices and legged-vertices can be drawn as 90◦ corners of
a cycle. Corollary 2 is an immediate consequence of Theorem 1.

I Corollary 2. A biconnected planar 3-graph G admits an orthogonal drawing using x bends
if and only if there is a plane graph G• which is a subdivision of G with |V (G•)|− |V (G)| = x

meeting the three conditions in Theorem 1.

To better understand Theorem 1 and Corollary 2, consider the plane graph G in Fig. 1, the
non-boundary 2-legged cycle C1 = (h,m, l, j, i), and the boundary 3-legged cycle C2 = (d, e, k).
As CO(G) contains only one 2-vertex f , C1 contains only one 2-vertex i, and V (C2) contains
no 2-vertex, all three conditions in Theorem 1 are violated. The plane graph G• in Fig. 1,
which results from making 3 subdivisions in G, fulfills the three conditions. A no-bend
orthogonal drawing of G• can be seen as an orthogonal drawing of G with 3 bends.

Observe that in the linear time drawing algorithm of Rahman et al. [19], it is possible to
choose any set of four 2-vertices in CO as four convex corners in the outer boundary.5 Hence
we have the following theorem.

5 The outer boundary refers to the orthogonal polygon corresponding to CO in the drawing. Note that a
convex corner in the outer boundary is also a concave corner of the outer face.

Y. Chang and H. Yen 29:5

I Theorem 3 ([19]). Let G be a biconnected plane 3-graph that admits a no-bend orthogonal
drawing, and let S be a set of at most four 2-vertices in CO. Then there exists a no-bend
orthogonal drawing of G in which all vertices in S are convex corners in the outer boundary.

2.2 Orthogonal Representations and Min Cost Flow Formulation.

Let G be a biconnected plane 3-graph that admits a no-bend orthogonal drawing. A naïve
way of describing a no-bend orthogonal drawing of G is to specify the actual coordinates
of all vertices. The concept of an orthogonal representation [20] allows us to describe the
shape of an orthogonal drawing, expressed in terms of angles around the vertices without
reporting any information about the actual coordinates of the vertices.6 Formally speaking,
an orthogonal representation consists of assigning an angle θ ∈ {90◦, 180◦, 270◦} to each pair
(v, F) such that the vertex v belongs to the cycle surrounding face F . This indicates that
v is a degree θ corner in face F . It is required that the summation of all angles around a
vertex is 360◦, and the difference between the number of convex corners and the number of
concave corners is 4 in each inner face, and is −4 in the outer face. Given an orthogonal
representation meeting the above requirements, in O(n) time a no-bend orthogonal drawing
realizing the angle assigned to each corner can be constructed [20].

In view of the above, the task of bend-minimization of a biconnected plane 3-graph reduces
to applying a minimum number of subdivisions to make the graph to have an orthogonal
representation. This can be formulated as a min-cost flow problem [20]. Each vertex v of
degree k supplies 4− k units of flow. Each inner face F consumes p− 4 units of flow, where
p is the number of vertices surrounding F . The outer face FO consumes p+ 4 units of flow,
where p is the number of vertices in CO. For each pair (v, F) such that v belongs to the
cycle surrounding F , add an arc (v, F) with capacity 2 and cost 0. Flowing k units of flow
from v to F indicates that v is a 90(k + 1)◦ corner in F . For each edge e which borders the
two faces F and F ′, add two arcs (F, F ′) and (F ′, F) with capacity 4 and cost 1. Flowing
k units of flow from F to F ′ along the arc associated with e indicates that the edge e is
subdivided k times, and these k new 2-vertices are convex corners in F and concave corners
in F ′. Since Theorem 1 implies that subdividing an edge more than 4 times makes no use, it
is fine to set the capacity of these arcs to 4. It is straightforward to verify that any feasible
flow corresponds to an orthogonal representation, and the cost of the flow equals the number
of 2-vertices introduced by subdivisions. The flow network can be made unit-capacity by
emulating an arc of capacity k by k arcs with capacity 1. Since the total number of arcs in
the flow network is m = O(n), and since the maximum cost of an arc is W = 1, the min-cost
flow algorithm of [6] solves the bend-minimization problem of a biconnected plane 3-graph in
Õ(m10/7 logW) = Õ(n10/7) time.

I Theorem 4. A bend-minimized orthogonal drawing of a biconnected plane 3-graph can be
constructed in T (n) = Õ(n10/7) time.

We are not aware of any unit-capacity min-cost flow formulation of bend-minimization of
plane 4-graphs, so the O(n1.5) time algorithm of [7] remains state-of-the-art.

6 Here we only describe a simplified version of orthogonal representations that works for no-bend drawings
of biconnected plane 3-graphs. See [20] for a complete definition that handles bends and general plane
graphs.

SoCG 2017

29:6 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

Algorithm 1: Min-Bend-Draw(G, s).
Input: (1) a biconnected planar 3-graph G that is not a cycle, (2) a 2-vertex s ∈ V (G)
Output: a bend-minimized orthogonal drawing of G subject to the condition that s

belongs to the outer boundary
1 Let u and v be the two neighbors of s.
2 for each b ∈ {1, 2, 3} do
3 G̃← the graph resulting from replacing (u, s, v) with a path P = (u, s1, . . . , sb, v).
4 G• ← Subdiv-Embed(G̃, P).
5 Compute a no-bend orthogonal drawing of G• (which can be seen as an orthogonal

drawing of G).
6 Among all drawings computed, return the one that uses the minimum number of bends.

3 The Main Algorithm

In this section we present our main algorithm, which applies O(n) calls to a subroutine that
solves a constrained version of the bend-minimization problem. Let G be a biconnected
planar 3-graph, and P be a u–v path such that V (P) \ {u, v} contains only 2-vertices. A
P -orthogonal drawing of G is an orthogonal drawing of G such that the outer cycle contains
P as a subpath, and no bend is imposed on P . A P -orthogonal drawing for a biconnected
plane 3-graph G, with P ⊆ CO(G), is defined analogously.

The procedure Subdiv-Embed(G,P), which is described in the next section, computes
a plane graph G• such that any no-bend orthogonal drawing of G• is a bend-minimized
P -orthogonal drawing of G. More precisely, the plane graph G• is required to meet the
following conditions:

G• is a subdivision of G, and no subdivision is made on the path P .
P belongs to the outer cycle of G•.
G• admits a no-bend orthogonal drawing.
Among all plane graphs meeting the above 3 criteria, G• is chosen such that |V (G•)| −
|V (G)| is minimized.

To describe our main algorithm, we first note the following result.

I Lemma 5. For any orthogonal drawing of a planar graph G, at least one of the following is
true: (1) the outer boundary contains a 2-vertex v ∈ V (G); (2) the outer boundary contains
an edge e ∈ E(G) that has at least one bend.

Proof. If no 2-vertex of G belongs to CO, there must be at least 4 bends in the outer cycle
to serve as 4 convex corners of the orthogonal polygon corresponding to CO. J

Using Subdiv-Embed as a blackbox, Algorithm 1 and Algorithm 2 compute bend-minimized
orthogonal drawings subject to the two cases of Lemma 5. We remark that the reason that
we do not need to consider the case of b > 3 in these two algorithms is due to Lemma 7.
Based on these two algorithms, Algorithm 3, which is the main algorithm of the paper,
computes a bend-minimized orthogonal drawing of a biconnected planar 3-graph G that is
not a cycle. See Fig. 2 for an illustration of Min-Bend-Draw. The subdivisions introduced in
the procedure Subdiv-Embed are drawn as white dots.

Let G be a plane graph, and let H = G[C] be a subgraph of G such that C is a 2-legged
cycle. Define flipping H as the operation that reverses the cyclic order of the edges incident
to v in the combinatorial embedding of G, for each v ∈ V (H). As long as C is 2-legged, the

Y. Chang and H. Yen 29:7

Algorithm 2: Min-Bend-Draw(G, e).
Input: (1) a biconnected planar 3-graph G that is not a cycle, (2) an edge

e = {u, v} ∈ E(G)
Output: a bend-minimized orthogonal drawing of G subject to the condition that e

has at least one bend and belongs to the outer boundary
1 for each b ∈ {1, 2, 3} do
2 G̃← the graph resulting from replacing (u, v) with a path P = (u, s1, . . . , sb, v).
3 G• ← Subdiv-Embed(G̃, P).
4 Compute a no-bend orthogonal drawing of G• (which can be seen as an orthogonal

drawing of G).
5 Among all drawings computed, return the one that uses the minimum number of bends.

Algorithm 3: Min-Bend-Draw(G).
Input: a biconnected planar 3-graph G that is not a cycle
Output: a bend-minimized orthogonal drawing of G

1 For each e ∈ E(G), run Min-Bend-Draw(G, e).
2 For each 2-vertex s ∈ V (G), run Min-Bend-Draw(G, s).
3 Among all drawings computed, return the one that uses the minimum number of bends.

flipping operation preserves the planarity of G. For example, in Fig. 3 the plane graph G2
is resulting from flipping H = G[C] in the plane graph G1, where C = (c, k, l, h, i, e, d). To
prove the correctness of Min-Bend-Draw(G), we need the following lemmas.

I Lemma 6. Let G be a biconnected plane 3-graph admitting a no-bend orthogonal drawing.
Let C be a boundary 2-legged cycle that has no boundary 2-vertex. Then flipping G[C]
preserves the property of having a no-bend orthogonal drawing.

I Lemma 7. Let G be a planar graph that is not a cycle, and P be a path of four consecutive
2-vertices in G. Then smoothing one 2-vertex in P to make it a path of three consecutive
2-vertices does not increase the minimum number of bends needed to have an orthogonal
drawing.

Due to the space limit, the proof of Lemma 6 and Lemma 7 are omitted (The proof of
Lemma 7 utilizes Lemma 6). Refer to Fig. 3 for an illustration:

The plane graph G2 is resulting from flipping H = G[C] in the plane graph G1, where
C = (c, k, l, h, i, e, d). The property of having no-bend orthogonal drawing is preserved.
If we treat G1 and G3 as planar graphs, the planar graph G3 is resulting from smoothing
f in G1; the graph G3 still has a no-bend orthogonal drawing (with a different embedding
than G1).

I Theorem 8. Min-Bend-Draw(G), Min-Bend-Draw(G, e), and Min-Bend-Draw(G, s) are cor-
rect.

Proof. The correctness of Min-Bend-Draw(G, e) and Min-Bend-Draw(G, s) follows from the
correctness of Subdiv-Embed. Note that Lemma 7 allows us not to consider the case of b > 3.

Lemma 5 ensures that there exists a bend-minimized orthogonal drawing of G such that
either (1) the outer boundary contains a 2-vertex s ∈ V (G), or (2) the outer boundary

SoCG 2017

29:8 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

𝑠3𝑠2
𝑠1

𝐺

𝐺

𝑒

𝑢

෨𝐺
𝑣

𝑢

𝑣

𝑠1 𝑠2

𝑠3
Min-Bend-Draw(𝐺, 𝑒) 𝑏 = 3

𝑃

𝐺● = Subdiv-Embed(෨𝐺, 𝑃)

𝑠

𝑣
𝑃

෨𝐺

𝑠2𝑢

Min-Bend-Draw(𝐺, 𝑠) 𝑏 = 2

𝑠2

𝑣𝑢

𝐺● = Subdiv-Embed(෨𝐺, 𝑃)

𝑒

𝑠𝑠1 𝑠1

Figure 2 Illustration of Min-Bend-Draw.

a

b
c

d

e

f

g
h

i

j
k

l

m

n

a

b

c

d

e f

g h

i j
k

l

m

n

w

x y

z

h

i

j

l

m
n

a

b
c

d

e

f

g

k

v

h

i j

l

m

n

w a

b

c

d

e f

g

k

x y

z

v

G
H1

H2 G●

H1
●

H2
●

a b

c

d
e

f g

h

G1

i

j

k l

a b

c
d
e

g

l

h

G2

f

k

j

i

a b

c

d

g

l

h

G3

k

j

i

e

Flipping Smoothing

H H1 H2

u

v

u'

v'

u

v

s1

s2

s1'

s2'

u'

v'

B1 B2

Splitout

Mergeout

Splitin

Mergein

u v' u'

v

s1'

s2' s3'

u' v' s1 B2

B1

u

v

H2 H1 H

Figure 3 Flipping and smoothing.

contains an edge e ∈ E(G) whose number of bends is at least 1. Therefore, among all edges
e ∈ E(G) and all 2-vertices s ∈ V (G), one of Min-Bend-Draw(G, e) or Min-Bend-Draw(G, s)
returns a bend-minimized orthogonal drawing. Thus, Min-Bend-Draw(G) is correct. J

4 Constrained Orthogonal Drawing

In this section we describe the procedure Subdiv-Embed(G,P) and prove its correctness.
Recall that we need Subdiv-Embed(G,P) to return a plane graph G• such that its no-bend
orthogonal drawing is also a bend-minimized P -orthogonal drawing of G.

To better understand how Subdiv-Embed(G,P) works, the reader is encouraged to consult
Fig. 4 as our discussion proceeds. Let G be a biconnected planar 3-graph, and P be a u–v path
in G such that V (P) \ {u, v} contains only 2-vertices (see G in the leftmost figure of Fig. 4).
With respect to the given G and P , a biconnected subgraph B with E(P) (E(G) \ E(B)
is said to be essential if there exists an embedding of G where P ⊆ CO such that in this
particular embedding the unique cycle C with B = G[C] is 2-legged. Note that changing
“there exists” to “for all” does not alter the definition. That is, for any essential subgraph B,
in any embedding of G with P ⊆ CO, the unique cycle C with B = G[C] must be 2-legged.
Moreover, all 2-legged cycles C resulting from different embeddings of G with P ⊆ CO have
the same two 2-vertices s and t. We define {s, t} as the poles of B.7

With respect to G and P , an essential subgraph B is said to be maximal if for all essential
subgraphs B′, either E(B) ∩ E(B′) = ∅ or B′ ⊆ B. Fig. 4 specifies two maximal essential
subgraphs Bx and By. We write B(G,P) to denote the set of maximal essential subgraphs
with respect to G and P . Given a fixed planar embedding of G with P ⊆ CO, Bin(G,P) is

7 These terms are related to SPQR tree, as described below. In an SPQR tree of G with any reference
edge e in P , an essential subgraph B is a pertinent graph (with poles {s, t}) associated with either a
P-node or an R-node. The reason that B is not associated with an S-node is that B is biconnected. See
Section 6 for more details.

Y. Chang and H. Yen 29:9

𝑃

𝐺

𝑏 = 1

𝐵𝑦
2

𝑃(𝐵𝑦, ℒ)

𝑃(𝐵𝑥, ℒ)

𝐵𝑥
3

𝑃

𝐵𝑥

𝐵𝑦

𝐺ℒ

𝑃(𝐵𝑥
3) 𝑃(𝐵𝑦

2)

v 2

v 2 v 2

v 2

v 2

𝑃(𝐵𝑦, ℒ)

𝑃(𝐵𝑥, ℒ)

𝑃

𝑃(𝐵𝑥
3) 𝑃(𝐵𝑦

2)

𝐵𝑦
2●𝐵𝑥

3●𝐺ℒ
● Merge

𝑃

𝐺●

Figure 4 Illustration of Subdiv-Embed.

𝑢

𝑣

𝑃

𝐺ℒ

𝑢

𝑣

𝑃1

𝐺ℒ
′

𝑃2

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5

Figure 5 An example illustrating the proof of Lemma 10.

defined as the set of maximal essential subgraphs that does not have any edge in CO, and
Bout(G,P) is defined as B(G,P) \ Bin(G,P).

For any essential subgraph B, we write Bb to denote the planar graph resulting from
adding a path (s, r1, . . . , rb, t) to B, where {s, t} are the poles of B. We write P (Bb) to
denote the path (s, r1, . . . , rb, t). The upper figure of Fig. 4 shows B3

x, P (B3
x), B2

y and P (B2
y).

Intuitively, the path (s, r1, . . . , rb, t) is an abstraction for the sub-drawing (with b convex
corners) to which the drawing of B will eventually be attached, and 4 − b represents the
number of convex corners that the drawing of B is capable to contribute in forming the final
orthogonal drawing.

Given a function L that maps Bout(G,P) to {1, 2, 3}, we write GL to denote the plane
graph resulting from replacing each B ∈ Bout(G,P) with a path of 4 − L(B) 2-vertices
(r1, . . . , r4−L(B)) and replacing each B ∈ Bin(G,P) with a 2-vertex r. See GL in the upper
figure of Fig. 4. Let {s, s′} and {t, t′} be the two (uniquely defined) edges in E(G) \ E(B),
where {s, t} are the poles of B. We write P (B,L) to denote the path of 4− L(B) 2-vertices
or the single 2-vertex in GL that replaces B, depending on whether B ∈ Bout(G,P) or
B ∈ Bin(G,P).

I Definition 9. A function L that maps Bout(G,P) to {1, 2, 3} is a valid labeling if and only
if |Bout(G,P)| ≥ 3 implies L(B) = 3 for all B ∈ Bout(G,P).

The intuition behind Definition 9 is as follows. Recall that 4 convex corners are needed in
the outer boundary of an orthogonal drawing. The path P can supply at least 1 convex corner
(P has at least one 2-vertex). Thus, if |Bout(G,P)| ≥ 3, it suffices that each B ∈ Bout(G,P)
supplies 1 convex corner.

SoCG 2017

29:10 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

I Lemma 10. Among all embeddings of G with P ⊆ CO, there are at most two ways of
partitioning B(G,P) into Bin(G,P) and Bout(G,P). Moreover, given (1) a labeling L that
maps Bout(G,P) to {1, 2, 3}, and (2) a set Bout(G,P), the plane graph GL (if it exists) is
uniquely determined.

Proof. First of all, we can restrict our consideration to the function L such that L(B) = 1
for all B, as taking subdivisions does not affect the number of planar embeddings.

To understand the proof better, the reader is referred to Fig. 5 for an illustrating example,
in which s1, . . . , s5 are 2-vertices corresponding to essential subgraphs B1, . . . , B5, respectively.
Let G′L be the planar graph resulting from removing the intermediate vertices of the u–v
path P in GL and neglecting the planar embedding of GL. It is clear that in any planar
embedding of G′L such that u, v ∈ V (CO), there is no 2-legged cycle C in G′L such that C
contains both u and v. The existence of such a cycle C violates the definition of B(G,P), as
C would have been contracted into a 2-vertex in GL.

Therefore, under the constraint that u, v ∈ V (CO) in an embedding of G′L, there is no way
to flip G′L[C] in G′L, where C is any 2-legged cycle. With respect to any embedding of G′L
such that u, v ∈ V (CO), let P1 and P2 be the two u–v paths along the outer boundary, and
define Si = {B|P (B,L) ⊆ Pi}, where i ∈ {1, 2}. The unordered pair {S1, S2} is independent
of the chosen embedding (since no flipping operation can be performed).

The outer boundary of GL is either P together with P1 (i.e., Bout(G,P)={B1, B5}) or P
together with P2 (i.e., Bout(G,P)={B2, B4}). Therefore, Bout(G,P) can only be S1 or S2,
and once Bout(G,P) is fixed, the planar embedding of GL is fixed. J

The procedure Subdiv-Embed(G,P) is defined as Algorithm 4. The procedure uses a
subroutine Merge which constructs a plane graph G• from the following plane graphs:

GL
• ← a subdivision of GL that admits a no-bend orthogonal drawing.

B3• ← Subdiv-Embed(B3, P (B3)), for each B ∈ Bin(G,P).
BL(B)• ← Subdiv-Embed(BL(B), P (BL(B))), for each B ∈ Bout(G,P).

Recall that the plane graph G• is a planar embedding of a subdivision of G that admits a
no-bend orthogonal drawing. In addition, we require |V (G•)| − |V (G)| to be |V (GL•)| −
|V (GL)|+

(∑
B∈Bin(G,P) |V (B3•)| − |V (B3)|

)
+
(∑

B∈Bout(G,P) |V (BL(B)•)| − |V (BL(B))|
)
.

Intuitively, G• is constructed by merging these plane graphs in such a way that main-
tains the property of having a no-bend orthogonal drawing without making any new sub-
division (see Fig. 4). As guaranteed by Lemma 10, there are two ways of partitioning
B(G,P), and the upper middle figure shows one of the two in which Bout(G,P) = {By} and
Bin(G,P) = {Bx}. Procedure Subdiv-Embed(G,P) produces GL• (which is a subdivision
of GL), B3

x
• (i.e., Subdiv-Embed(B3

x, P (B3
x)) which is a subdivision of B3

x), and B2
y
• (i.e.,

Subdiv-Embed(B2
y , P (B2

y)), which is a subdivision of B2
y). Note that the white dots in the

drawing indicate 2-vertices created by subdivisions. Also note that displaying the orthogonal
drawings of B3

x
•, B2

y
•, and G• in Fig. 4 are simply for illustrating purposes. We only compute

their planar embeddings and subdivisions, and no specific drawing is fixed. The description
of the procedure Merge is left to the next section.

The P -orthogonal drawing of the plane graph GL in Algorithm 4 can be computed using
any orthogonal drawing algorithm for plane 3-graphs that allows us to restrict some edges to
have no bend. This can be done in time T (|V (GL)|) = Õ(|V (GL)|10/7) using the min-cost
flow described in Sec. 2.2. It is straightforward to modify the min-cost flow to restrict some
edges to have no bend. The proof of the correctness of Subdiv-Embed(G,P) is omitted due
to the space limit.

Y. Chang and H. Yen 29:11

Algorithm 4: Subdiv-Embed(G,P).
Input: (1) a biconnected planar 3-graph G that is not a cycle, and (2) a u–v path P

in G such that V (P) \ {u, v} consists of exactly b 2-vertices, where b ∈ {1, 2, 3}
Output: a plane graph G• which is a planar embedding of a subdivision of G such

that no subdivision is made on P , and any no-bend orthogonal drawing of
G• is also a bend-minimized P -orthogonal drawing of G

1 for the at most 2 possibilities of partitioning B(G,P) into Bin(G,P) and Bout(G,P),
and the at most 9 possibilities of valid labelings L do

2 Construct a bend-minimized P -orthogonal drawing D of the plane graph GL
subject to the constraint that no bend is made on the path (r1, . . . , r4−L(B)) that
replaces B, for each B ∈ Bout(G,P). Let GL• be the subdivision of GL resulting
from replacing each bend in D by a 2-vertex.

3 For each B ∈ Bin(G,P), let B3• ← Subdiv-Embed(B3, P (B3)).
4 For each B ∈ Bout(G,P), let BL(B)• ← Subdiv-Embed(BL(B), P (BL(B))).
5 Use Merge to construct a planar embedding of a subdivision of G from GL

•,
{B3•}B∈Bin(G,P), and {BL(B)•}B∈Bout(G,P).

6 Among all planar embeddings of subdivisions of G computed, return the one that uses
the minimum number of subdivisions.

I Theorem 11. Procedure Subdiv-Embed(G,P) returns a plane graph G• such that any
no-bend orthogonal drawing of G• is a bend-minimized P -orthogonal drawing of G.

We will later see that the procedure Merge admits an implementation that runs in
|B(G,P)| time. This leads to the following lemma.

I Lemma 12. Suppose that Subdiv-Embed(Bi, P (Bi)) for each B ∈ B(G,P), i ∈ {1, 2, 3}
are precomputed. Subdiv-Embed(G,P) is in O(T (|E(G)| −

∑
B∈B(G,P) |E(B)|)) time.

Proof. The drawing D of GL can be computed in O(T (|V (GL)|)) time. The procedure
Merge takes O(|B(G,P)|) ≤ O(|V (GL)|) time. The lemma follows from the fact that |V (GL)|
and |E(G)| −

∑
B∈B(G,P) |E(B)| differs by at most a constant factor. J

5 Merging Subgraphs

In this section we describe the procedure Merge. For each essential subgraph B, we define
B• as its corresponding subgraph in B3• or BL(B)•, depending on whether B ∈ Bin(G,P)
or B ∈ Bout(G,P). Here B• is defined as a plane graph instead of a planar graph. Observe
that simply replacing each P (B,L) with B• (i.e., an expansion) yields a planar embedding
of a subdivision of G that meets the constraint on the number of subdivisions made (i.e.,
|V (G•)| − |V (G)|). But this does not guarantee that the resulting plane graph G• has a no-
bend P -orthogonal drawing. A key in our merging procedure is that after replacing P (B,L)
with B•, B• becomes a subgraph of G• that can be flipped. We will see that, by appropriately
flipping some B•, we obtain a planar embedding that has a no-bend P -orthogonal drawing.

Let B be an essential subgraph of G with poles {s, t}. We let es = {s, s′} and et = {t, t′}
be the two edges incident to s and t, respectively, from the outside of B. The two edges
es and et are well-defined since both s and t already have two incident edges in B as B
is required to be biconnected. Recall that in Subdiv-Embed(G,P) an orthogonal drawing
D of GL is computed. By definition, D is also a no-bend orthogonal drawing of the plane

SoCG 2017

29:12 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

𝑒𝑠

𝑒𝑡
𝐹1𝐹2

𝑃(𝐵𝑎, ℒ)

𝐺ℒ
●
(drawn as 𝐷)

type-0

𝑃(𝐵𝑎
3)

𝑃(𝐵𝑎
3)

𝑠

𝑡
𝑡

𝑠𝐹1 𝐹1

𝐹2 𝐹2

𝐵𝑎
3●
(drawn as type-1) 𝐵𝑎

3●
(drawn as type-0)

𝑒𝑠

𝑒𝑡

𝐹1𝐹2
𝑃(𝐵𝑏, ℒ)

type-(-2)

𝑠 𝑠 𝑠

𝑡 𝑡 𝑡

𝐹1𝐹1𝐹1𝐹2 𝐹2 𝐹2

𝐵𝑏
2●

(drawn as type-2)
𝐵𝑏

2●

(drawn as type-1)
𝐵𝑏

2●

(drawn as type-0)

𝑃(𝐵𝑏
2) 𝑃(𝐵𝑏

2) 𝑃(𝐵𝑏
2)

Flip

Figure 6 Illustration of Merge.

graph GL•. We let F1 (resp., F2) be the face in GL• such that s′ is followed by s (resp., s is
followed by s′) in the counter-clockwise ordering of vertices of its facial cycle. We say that
P (B,L) is of type-k if the number of convex corners minus the number of concave corners
of F1 in P (B,L) is k in D. Note that P (B,L) is of type-k if and only if the number of
convex corners minus the number of concave corners of F2 in P (B,L) is −k, since a vertex
in P (B,L) is convex in F1 if and only if it is concave in F2. See Fig. 6 for examples of types
of P (B,L).

Next, we define the type of B• with respect to a specific orthogonal drawing D′ of B3•

or BL(B)•. For notational simplicity, we write i = 3 if B ∈ Bin(G,P), and i = L(B) otherwise.
Let (s, x1, . . . , xa, t, y1, . . . , yb) be the clockwise ordering of vertices in the cycle surrounding
B•, and let P1 = (s, x1, . . . , xa, t) and P2 = (s, yb, . . . , y1, t). Among the two faces in Bi•

that are not within the subgraph B•, we let F1 (resp., F2) be the face that has P1 (resp., P2)
as a subpath in the facial cycle. Then we say B• is of type-k in a given orthogonal drawing
of Bi• if the number of convex corners minus the number of concave corners of F1 in P1 is
k. Note that B• is of type-k if and only if the number of convex corners minus the number
of concave corners of F2 in P2 is −k. See Fig. 6 for examples of B• of different types and
drawings of Bi• that realize these types.

Recall that our algorithm does not fix any specific orthogonal drawing of Bi•. We define
T (B•) as the set of integers such that k ∈ T (B•) if there exists an orthogonal drawing D′ of
Bi• such that (1) B• is of type-k with respect to the drawing D′, (2) in the drawing D′, no
bend is made in the subgraph B• (but it is allowed to have bends in the path P (Bi)).

I Lemma 13. The type of P (B,L) is within {−4+i, . . . , 4−i}, where i = 3 if B ∈ Bin(G,P),
and i = L(B) otherwise.

Proof. As the path P (B,L) contains exactly 4− i 2-vertices, the result follows. J

I Lemma 14. If s is followed by t (resp., t is followed by s) in P (Bi) in the counter-clockwise
ordering of vertices of the outer cycle of Bi•, then T (B•) contains all of 0,−1, . . . ,−4 + i

(resp., 0, 1, . . . , 4− i).

Proof. We only focus on the case where t is followed by s in P (Bi) in the counter-clockwise
ordering of vertices of the outer cycle of Bi•. In this case F1 is an inner face. The proof

Y. Chang and H. Yen 29:13

Algorithm 5: Merge.
Input: GL• and its no-bend orthogonal drawing D, {B3•}B∈Bin(G,P), and

{BL(B)•}B∈Bout(G,P)
Output: a plane graph G• which is a planar embedding of a subdivision of G that

admits a no-bend orthogonal drawing
1 Initialize G̃ = GL

•.
2 for B ∈ B(G,P) do
3 Set i = 3 if B ∈ Bin(G,P), and i = L(B) otherwise.
4 Set b1 as the sign of the type of P (B,L) in D (if the type is 0, then b1 can be

either −1 or 1).
5 Set b2 = 1 if t is followed by s in P (Bi) in the counter-clockwise ordering of

vertices of the outer cycle of Bi•, and set b2 = −1 otherwise.
6 Replace P (B,L) in G̃ with B•.
7 Flip the subgraph B• if b1 · b2 < 0.
8 return G• = G̃.

of the other case is similar. To see that 4 − i ∈ T (B•), consider any no-bend orthogonal
drawing D′ of Bi• where all the i 2-vertices on the path P (Bi) are drawn as convex corners
in F1. Due to Theorem 3, such a drawing D′ exists. The type of Bi• with respect to D′
is 4− i since the number of convex corners minus the number of concave corners of F1 in
P1 must be 4 − i. In what follows, we prove that T (B•) also contains 0, 1, . . . , 4 − i − 1.
For each x ∈ {i+ 1, . . . , 4}, by adding x− i new 2-vertices (which are treated as bends in a
drawing) to the path P (Bi), Theorem 3 allows us to construct an orthogonal drawing D′ of
Bi• where the path P (Bi), excluding the two endpoints, supplies x convex corners in F1.
The type of Bi• with respect to D′ is 4− x since the number of convex corners minus the
number of concave corners of F1 in P1 must be 4− x. J

Based on Lemma 13 and Lemma 14, we define the Merge procedure as Algorithm 5. In
the iteration of the algorithm that processes B, let τ be the type of P (B,L) in D. For
the case where b1 and b2 have the same sign, there is an orthogonal drawing D′ of Bi•

realizing the type τ (by Lemma 13 and Lemma 14). It is straightforward to see that replacing
P (B,L) with the drawing of B• (taken from D′) maintains the validity of the orthogonal
representation D (since both P (B,L) in D and B• in D′ have the same type τ).

For the case where b1 and b2 have opposite signs, there is an orthogonal drawing D′ of
Bi• realizing the type −τ , where τ is the type of P (B,L) in D. Similarly, if the replacement
is done with the drawing of B• taken from D′, then after flipping the subgraph B•, the
validity of the orthogonal representation D is maintained (the flipping cancels the effect of
opposite signs).

Though the correctness of Algorithm 5 is based on the existence of certain drawings of
Bi•, there is no need to compute these drawings. Therefore, the Algorithm 5 takes only
|B(G,P)| time. See Fig. 6 for an illustration of Merge.

6 SPQR-tree Implementation

In this section we show that the three procedures Min-Bend-Draw(G), Min-Bend-Draw(G, s),
and Min-Bend-Draw(G, e) admit efficient implementations based on SPQR-trees [10].

SoCG 2017

29:14 On Bend-Minimized Orthogonal Drawings of Planar 3-Graphs

We denote the SPQR-tree of G rooted at the edge e as TG,e. Each node in TG,e is either
an S-,P-,Q-, or R-node. Each node is associated with a subgraph of G which is called the
pertinent graph. Each pertinent graph B is associated with two vertices {s, t} ⊆ V (H), called
poles, such that removal of s and t disconnects B from the rest of the graph. The root node
of TG,e is a Q-node whose pertinent graph is the subgraph of G resulting from removing the
edge e. Let ν be a node in TG,e that is a descendant of another node µ; then the pertinent
graph of ν is a proper subgraph of the pertinent graph of µ.

For a given subgraph H ⊆ G and two vertices s, t ∈ V (H) such that H does not contain
the reference edge e, the following two statements are equivalent:

B is biconnected, and removing s and t disconnects B from the rest of the graph.
B is the pertinent graph of a P-node or an R-node µ of TG,e, and the poles of µ are {s, t}.

For any node µ in TG,e, we define B(µ) as the set of all pertinent graphs B meeting the
following condition: B is associated with a P-node or an R-node ν which is a descendant
of µ such that all intermediate nodes in the directed path (µ, . . . , ν) in the SPQR-tree TG,e

contains no P-node and R-node.
Consider the procedure Subdiv-Embed(G̃, P) invoked in an execution of Min-Bend-

Draw(G, e) or Min-Bend-Draw(G, s). With respect to the SPQR-tree TG̃,e′ for any arbitrary
choice of e′ ∈ E(P), it is clear that B(G̃, P) is exactly B(µ), where µ is the root of TG̃,e′ .
Therefore, any recursive call Subdiv-Embed(Bi, P (Bi)) invoked in the procedure Subdiv-
Embed(G̃, P) can be associated with a P-node or an R-node ν ∈ B(µ) of TG̃,e in the
sense that B is the pertinent graph of ν. Similarly, it is straightforward to see that the set
B(Bi, P (Bi)) is exactly B(ν), independent of i. Since the SPQR-tree TG̃,e′ can be constructed
in linear time, we have the following theorem (which is due to Lemma 12).

I Theorem 15. Let n = |V (G)|. Both Min-Bend-Draw(G, e) and Min-Bend-Draw (G, s) can
be implemented to run in O(T (n)) time, and Min-Bend-Draw(G) can be implemented to run
in O(n · T (n)) time, where T (n) = Õ(n10/7).

I Remark. We comment on the suggestion of an anonymous reviewer regarding the use
of the terminology in [9] to derive our result. In the procedure Subdiv-Embed(G,P), the
computation of Subdiv-Embed(Bi, P (Bi)) for i ∈ {1, 2, 3} is analogous to the computation of
optimal set of B in [9]. Theorem 1 actually implies that the spirality of a split component of
a biconnected planar 3-graph is bounded by a constant. This also explains why it suffices to
only consider i ∈ {1, 2, 3}. If one goes through the proof details in [9], tracks the dependence
on spirality carefully, and incorporates the Õ(n10/7) time algorithm for the fixed-embedding
setting (Theorem 4, which is based on [6]) to the approach in [9], an Õ(n17/7) time bend-
minimization algorithm can also be obtained using the terminology in [9]. Nonetheless, we
feel that our approach (directly based on tools in [19]) is more natural and simpler than [9].

Acknowledgements. We thank the anonymous reviewers for their thoughtful comments.

References
1 Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Antonios Symvonis.

Smooth orthogonal layouts. JGAA, 17(5):575–595, 2013.
2 Michael A. Bekos, Michael Kaufmann, Robert Krug, Thorsten Ludwig, Stefan Näher, and

Vincenzo Roselli. Slanted orthogonal drawings: Model, algorithms and evaluations. JGAA,
18(3):459–489, 2014.

3 Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing
with convex bend costs. ACM Trans. Algorithms, 12(3):33:1–33:32, 2016.

Y. Chang and H. Yen 29:15

4 Franz Brandenburg, David Eppstein, Michael T. Goodrich, Stephen Kobourov, Giuseppe
Liotta, and Petra Mutzel. Selected open problems in graph drawing. In Proceedings of the
11th International Symposium on Graph Drawing (GD’03), pages 515–539. Springer Berlin
Heidelberg, 2004.

5 Yi-Jun Chang and Hsu-Chun Yen. On orthogonally convex drawings of plane graphs.
Computational Geometry, 62:34–51, 2017.

6 Michael B. Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 logW) time. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 752–
771. Society for Industrial and Applied Mathematics, 2017.

7 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. JGAA,
16(3):635–650, 2012.

8 Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzonia. Or-
thogonal and quasi-upward drawings with vertices of prescribed size. In Proceedings of the
7th International Symposium on Graph Drawing (GD’99), pages 297–310. Springer Berlin
Heidelberg, 1999.

9 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal ortho-
gonal drawings. SIAM Journal on Computing, 27(6):1764–1811, 1998.

10 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956–997, 1996.

11 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. On the complexity of hv-
rectilinear planarity testing. In Proceedings of the 22nd International Symposium on Graph
Drawing (GD’14), pages 343–354. Springer Berlin Heidelberg, 2014.

12 Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing
algorithms. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization,
chapter 8. CRC Press, 2013.

13 Stephane Durocher, Stefan Felsner, Saeed Mehrabi, and Debajyoti Mondal. Drawing hv-
restricted planar graphs. In Proceedings of the 11th Latin American Theoretical Informatics
Symposium (LATIN’14), pages 156–167. Springer Berlin Heidelberg, 2014.

14 Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm with applications
to graph drawing. In Proceedings of the Symposium on Graph Drawing (GD’96), pages
201–216. Springer Berlin Heidelberg, 1997.

15 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.

16 Gunnar W. Klau and Petra Mutzel. Quasi–orthogonal drawing of planar graphs. Technical
Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

17 Md. Saidur Rahman, Shin-ichi Nakano, and Takao Nishizeki. A linear algorithm for bend-
optimal orthogonal drawings of triconnected cubic plane graphs. JGAA, 3(4):31–62, 1999.

18 Md. Saidur Rahman and Takao Nishizeki. Bend-minimum orthogonal drawings of plane
3-graphs. In Proceedings of the 28th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’02), pages 367–378. Springer Berlin Heidelberg, 2002.

19 Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal drawings of
plane graphs without bends. JGAA, 7(4):335–362, 2003.

20 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

SoCG 2017

Adaptive Planar Point Location∗

Siu-Wing Cheng1 and Man-Kit Lau2

1 Department of Computer Science and Engineering, HKUST, Hong Kong
2 Department of Computer Science and Engineering, HKUST, Hong Kong

Abstract
We present a self-adjusting point location structure for convex subdivisions. Let n be the number
of vertices in a convex subdivision S. Our structure for S uses O(n) space and processes any
online query sequence σ in O(n+ OPT) time, where OPT is the minimum time required by any
linear decision tree for answering point location queries in S to process σ. The O(n + OPT)
time bound includes the preprocessing time. Our result is a two-dimensional analog of the static
optimality property of splay trees. For connected subdivisions, we achieve a processing time of
O(|σ| log logn+ n+ OPT).

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems – Geometrical Problems and Computations

Keywords and phrases point location, planar subdivision, static optimality

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.30

1 Introduction

Planar point location is a fundamental problem in computational geometry that has been
studied extensively. It calls for preprocessing a planar subdivision into a data structure so
that for any query point, the region in the subdivision that contains the query point can be
reported. There are several common types of planar subdivisions. A subdivision is convex
if the boundary of every region (including the outer boundary) bounds a convex polygon.
A subdivision is connected if the boundary of every region bounds a simple polygon. A
subdivision is general if the boundary of every region bounds a polygon possibly with holes.
In this paper, we are concerned with point location methods that use point-line comparisons.

Given a general subdivision with n vertices, point location structures with worst-case
O(logn) query time, O(n logn) preprocessing time, and O(n) space have been obtained [2,
11, 14, 15]. For connected subdivisions, the preprocessing time can be reduced to O(n) [14]
after triangulating every region in linear time [6].

When processing a sequence of query points that fall into different regions with vastly
different frequencies, one may consider objectives other than minimizing the worst-case time
to answer a single query. One scenario is that for every region r, the probability pr of the
query point falling into r is given. In this case, one may want to minimize the expected query
time. The entropy H =

∑
r pr log(1/pr), where the sum is over all regions in S, is a lower

bound to the expected query time according to Shannon’s theory [16]. Arya, Malamatos,
and Mount [3] and Iacono [12] studied subdivisions in which all regions have sizes bounded
by some constant. They obtained structures that use O(n) space and answer a query in
O(H) expected time. Later, Arya, Malamatos, Mount, and Wong [4] improved the expected
query time to H +O(

√
H).

∗ Supported by Research Grants Council, Hong Kong, China (project no. 16201116).

© Siu-Wing Cheng and Man-Kit Lau;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Adaptive Planar Point Location

If some regions have non-constant sizes, the entropy is a very weak lower bound. Indeed,
Arya, Malamatos, Mount, and Wong [4] showed a convex polygon of n sides and a query
distribution so that a query point lies in the polygon with probability 1/2 and the expected
number of point-line comparisons needed to decide whether a query point lies in the polygon
is Ω(logn). Note that the entropy is only a constant. Several subsequent research works
consider comparison against linear decision trees that answer point location queries in planar
subdivisions. We call them point location linear decision tree for convenience. Given a
connected subdivision S with n vertices and the query distribution, Collete et al. [9] designed
a structure that uses O(n) space and answers a query in O(H∗) expected time, where H∗ is
the minimum expected time needed by any point location linear decision tree for S. Afshani,
Barbay, and Chan [1] and Bose et al. [5] also obtained optimal solutions (with respect to
linear decision trees) for several geometry query problems, including planar point location,
when the query distribution is given.

In one dimension, optimal query performance can be obtained without knowing the
query distribution. Sleator and Tarjan [17] designed splay trees for storing an ordered set of
values such that any online query sequence σ can be processed in O(|σ|+

∑
v fv log(|σ|/fv))

time, where the sum is over all values in the set and fv denotes the frequency of v being
queried in σ, provided that every value is accessed at least once. This result is known as the
Static Optimality Theorem [17]. Note that

∑
v fv log(|σ|/fv) is the minimum time needed

to process σ by any static binary search tree that stores the same set of values.
Does there exist an analog of the Static Optimality Theorem in the context of planar

point location? Iacono and Mulzer [13] proposed a self-adjusting point location structure for
triangulations. Given a triangulation S, their structure uses O(n) space and processes any
online query sequence σ in O(n+

∑
t ft log(|σ|/ft)) time, where the sum is over all triangles

in S and ft denotes the frequency of a triangle t being hit by a query point in σ. The
space usage is O(n). The time bound includes the preprocessing time to construct the first
structure before locating the first query point in σ. Note that

∑
t ft log(|σ|/ft) is a lower

bound to the minimum time needed by a static point location structure for S to process
σ. The handling of more general planar subdivisions is posed as an open problem in [13].
Recently, we made progress by designing a self-adjusting point location structure for convex
subdivisions [8] based on the result in [13]. Given a convex subdivision S, our structure uses
O(n) space and processes any online query sequence σ in O(|σ| log logn+ n+ OPT) time,
where OPT is the minimum time needed by any point location linear decision tree for S to
process σ.

In this paper, we prove an analog of the Static Optimality Theorem for convex subdivisions.
We propose a self-adjusting point location structure that processes any online query sequence
in O(n+ OPT) time, which includes the preprocessing time. The space usage is O(n).

It is known that the optimal point location linear decision tree for an optimally triangulated
subdivision has the same asymptotic performance as the optimal point location linear decision
tree for the untriangulated subdivision. Therefore, our solution keeps a triangulation of the
convex subdivision so that we can invoke Iacono and Mulzer’s result [13]. The triangulation
also allows us to extract some frequently accessed triangles and keep a separate, smaller point
location structure for them. Then, query points in these triangles can be located faster. As
observed in [13], the difficulty lies in efficiently computing the optimal triangulation, which
depend on the access frequencies. As the access frequencies evolve, the subdivision will need
to be retriangulated and the analysis has to address this issue. On the other hand, we showed
in [8] that some canonical triangulation methods (independent of the access frequencies) can
lower the average extra cost per query to O(log logn). Our insight is to recursively extract

S.-W. Cheng and M.-K. Lau 30:3

Figure 1 Triangulation of a bounded region in S.

frequently accessed triangles and generate a separate point location structure for them using
these canonical triangulation methods. This results in a multi-level structure. The structure
at the highest level is queried first and if that fails, we move down the levels. We devise
an analysis that handles both successful and unsuccessful queries at each level. Intuitively,
the performance improves as the number of levels increases, and thus we circumvent the
difficulty of computing an optimal triangulation.

We also observe that the strategy in [8] works for connected subdivisions with the help of
balanced geodesic triangulations. This gives a processing time of O(|σ| log logn+ n+ OPT).

2 Basics

We state the result of Iacono and Muzler [13] below for future reference.

I Theorem 1 ([13]). For any planar triangulation T with n vertices, there is a point-line
comparison based data structure that uses O(n) space and processes any online sequence of
point location queries in T in O

(∑
t∈T f(t) log N

f(t) + n
)

time, where N is the number of
queries and f(t) is the number of query points that fall into the triangle t in T . The time
bounds includes the O(n) preprocessing time.

We review the canonical triangulation methods in [8] which will be used later.
Let S denote a convex subdivision with n vertices. For each bounded region r in S,

the procedure TriReg is called to triangulate r. Figure 1 gives an example. TriReg runs in
O(|r|) time and produces a triangulation of O(|r|) size. This triangulation method was first
introduced by Dobkin and Kirkpatrick for convex polygon intersection detection [10]. Every
line segment in r intersects O(log |r|) triangles.

TriReg(r)
1. If r is a triangle, then return.
2. Take any maximum subsequence α of vertices of r such that no two vertices in α

are adjacent along the boundary of r, except possibly the first and the last ones.
3. Connect the vertices in α to form a convex polygon r′.
4. Call TriReg(r′).

Second, we triangulate the exterior region of S. We pick three boundary edges of S
such that removing them gives three boundary chains of S of roughly equal sizes. The
support lines of these three edges bound a triangle, denoted by BS , that contains S.1 We
call the three interior-disjoint regions between the boundaries of BS and S boomerangs. Each
boomerang has two straight sides and a reflex chain. Figure 2(a) gives an example. For

1 It is possible that BS is unbounded, but we will assume that BS is bounded for simplicity.

SoCG 2017

30:4 Adaptive Planar Point Location

S S

BS

S ∆S

(a) (b)

Figure 2 (a) Boomerangs (shown shaded). (b) An example in which S is just one convex polygon.

b ∆̃b

Tb

Figure 3 The nodes of Tb are given the same colors as the corresponding regions in ∆̃b.

each boomerang b, we call the procedure SplitBR to partition b hierarchically into triangular
regions as well as to construct a binary tree that represents this hierarchy. Denote the output
partition of b by ∆̃b and the binary tree by Tb. Figure 3 gives an example. The binary tree
Tb is not constructed in [8], but we will need it later. SplitBR runs in O(|b|) time, ∆̃b has
O(|b|) size, and Tb has O(log |b|) height.

SplitBR(b)
1. If b is a triangle, then return.
2. Take the middle edge e of the reflex chain of b.
3. Cut b with the support line of e into a triangle t and two smaller boomerangs b1

and b2.
4. Call SplitBR(b1) and SplitBR(b2) to obtain ∆̃b1 , Tb1 , ∆̃b2 , and Tb2 .
5. ∆̃b := {t} ∪ ∆̃b1 ∪ ∆̃b2 .
6. Create the binary tree Tb with root v containing t. Make Tb1 and Tb2 left and right

subtrees of v.
7. Return ∆̃b and Tb.

Finally, for every triangular region r in ∆̃b, there is exactly one side e of r that bounds S.
This side e contains O(log |b|) vertices. We call TriBR(b) to obtain a triangulation of b.

TriBR(b)
1. For each triangular region r in ∆̃b, do
a. take the side e of r that bounds S,
b. add edges to connect the vertices in e to the vertex of r opposite e.

S.-W. Cheng and M.-K. Lau 30:5

Every line segment in b intersects O(log |b|) triangular regions in ∆̃b and there are
O(log |b|) triangles in each triangular region. So each line segment in b intersects O(log2 |b|)
triangles in the triangulation of b.

We use ∆S to denote the resulting triangulation of the boomerangs and the bounded
regions in S. Figure 2(b) gives an example. There are O(n) vertices in ∆S and ∆S can
be constructed in O(n) time. Theorem 1 is applied to ∆S to produce a data structure for
answering point location queries in S.

I Theorem 2 ([8]). Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based data structure that uses O(n) space and processes any online sequence σ of
point location queries in S in O(|σ| log logn+ n+ OPT) time, where OPT is the minimum
time needed by any point location linear decision tree for S to process σ. The time bound
includes the O(n) preprocessing time.

3 Planar convex subdivision

Let S denote a planar convex subdivision with n vertices. We first present a solution with
processing time O(|σ| log log logn + n + OPT). Then, we bootstrap from this solution to
obtain the optimal result.

3.1 First solution
We first compute ∆S as described in Section 2. Let DS be the point location structure in
Theorem 2 for S. Note that DS evolves as σ is processed. Let f(n) denote the function
(log2 n)6. For any j ≥ 1, whenever DS has been used to answer the j-th subset of f(n)
queries, we extract a subset of triangles from ∆S , construct a new triangulation ∆j using
this subset, and then compute a point location structure Dj for ∆j . Once Dj has been
constructed, the next query is answered using Dj first. If Dj locates the query point in a
region (bounded or exterior) in S, we are done; otherwise, we use DS to answer the query.
We elaborate on the construction of ∆j and Dj in the following sections.

3.1.1 Triangulation ∆j

We extract the subsetX of f(n)(log2 n)−2 triangles in ∆S that have the highest f(n)(log2 n)−2

access frequencies currently. Some triangles in X lie in bounded regions in S and some may
lie outside S. To extract X quickly, we maintain a doubly linked list A such that the i-th
entry of A stores a doubly linked list of triangles with the i-th highest frequency. Whenever
we need to output X, we scan the lists in the entries of A in order until we have collected
f(n)(log2 n)−2 triangles. Whenever the frequency of a triangle t ∈ ∆S is incremented, we
need to relocate t within A. Suppose that t is currently stored in the list at the i-th entry of
A. If the triangles in the list at the (i− 1)-th entry of A have the same frequency as t, then
we move t to the end of the list at the (i− 1)-th entry. Otherwise, the triangles in the list
at the (i − 1)-th entry have a higher frequency than t, and so we insert a new entry of A
between the (i− 1)-th and the i-th entries and make t a singleton list at this new entry of A.
If the list at the i-th entry of A becomes empty after moving t, we delete this entry of A. So
each update of A takes O(1) time.

We can assume that for each triangle t in ∆S , if t lies in a region r in S, then t stores the
region id r. Moreover, if r is the exterior region of S, then t ⊆ ∆̃b for some boomerang b and
t also stores the id of the triangular region in ∆̃b that contains t. By sorting the triangles in
X with respect to their region ids, we can find the triangles in r ∩X for every region r in S.

SoCG 2017

30:6 Adaptive Planar Point Location

∆̃b

Tb

shrink(b)

Figure 4 The two triangular regions in ∆̃b with white dots contain some triangles in X. Cor-
responding nodes in Tb are also marked with white dots. Then, all ancestors of these nodes in Tb

are marked, and the union of the corresponding triangular regions in ∆̃b is a boomerang shrink(b)
(shown shaded).

For each bounded region r in S, let conv(r ∩X) denote the convex hull of the triangles
in r ∩ X and we can compute conv(r ∩ X) in O(|r ∩ X| log |r ∩ X|) time. Then, we call
TriReg(conv(r ∩X)) to triangulate conv(r ∩X). Each resulting triangle stores the region
id r. Summing over all bounded regions in S, the total running time is O(|X| log |X|) =
O(f(n)/ logn) and the total number of triangles produced is O(|X|) = O(f(n)(logn)−2).

Next, we handle the triangles in X outside S. Let b be one of the boomerangs between
the boundaries of BS and S. For each triangle t ∈ b ∩X, we mark the triangular region r in
the binary tree Tb that contains t and we also mark all ancestors of r in Tb. We form the
union of the marked triangular regions. Denote the union by shrink(b). Note that shrink(b)
is a boomerang and every edge in the reflex chain of shrink(b) supports an outer boundary
edge of S. Figure 4 gives an example. Also, b∩X ⊆ shrink(b), |shrink(b)| = O(|b∩X| log |b|),
and shrink(b) can be computed in O(|b∩X| log |b|) time. We call SplitBR(shrink(b)) and then
TriBR(shrink(b)) to obtain a triangulation of shrink(b). Each resulting triangle stores the id
of the exterior region of S. Summing over all three boomerangs between the boundaries of
BS and S, the total running time is O(|X| logn) = O(f(n)/ logn) and the total number of
triangles produced is O(|X| logn) = O(f(n)/ logn).

Collect all O(f(n)/ logn) triangles computed in the above. By a plane sweep, we can add
edges in O

(
f(n)
logn log f(n)

logn

)
time to form a triangulation that contains all triangles collected

and has size O(f(n)/ logn). This is the triangulation ∆j desired. The total construction
time of ∆j is O

(
f(n)
logn log f(n)

logn

)
. The extra triangles added by the plane sweep do not store

the id of any region in S, and therefore, query points that fall into such triangles are not
located successfully in S.

3.1.2 Structure Dj, querying, and frequencies

The access frequencies in ∆S are initialized to be zero before processing σ. The subscript of
∆j and Dj increases monotonically as we process σ. When the construction of ∆j and Dj

completes, we forget about ∆j−1 and Dj−1 and reuse their storage. The access frequencies
in ∆j are initialized to be zero.

Dj consists of two point location structures D′j and D′′j . D′j is obtained by invoking
Theorem 1, the result in [13], on ∆j . D′′j is a worst-case optimal planar point location
structure (e.g. [14]). The querying procedure works as follows. Let q be the next query point.
We check in O(1) time whether q lies inside BS . If not, we just output that q is outside S.
Suppose that q lies inside BS . We query Dj by alternating the search steps in D′j and D′′j .

S.-W. Cheng and M.-K. Lau 30:7

We stop as soon as a triangle t in ∆j containing q is found. If t stores a region (bounded or
exterior) of S, then we output that region. Otherwise, we use DS to locate the triangle t′ in
∆S that contains q, and we output the region of S (bounded or exterior) stored at t′.

After locating q, we update the access frequencies in ∆S or ∆j . This update is important
because the frequencies govern how the method in [13] will adjust DS and Dj in order to
adapt to incoming queries. If q lies outside BS , we do not change any frequency in ∆S and
∆j . Suppose that q lies inside BS . If q is located in a triangle t ∈ ∆j and t stores a region of
S, then we increment the frequency of t in ∆j and we are done. The frequencies in ∆S do
not change in this case. On the other hand, if the search in Dj does not report a region of S,
then q is subsequently located in S by DS and we increment the frequency of the triangle in
∆S that contains q. The frequencies in ∆j do not change in this case.

There are some consequences due to our frequency update. Consider two online query
sequences αj ⊆ α such that Dj can successfully locate in S the query points in αj , but not
the query points in α\αj . Therefore, query points in α\αj do not cause any change to Dj .
Let Dj(α) denote the running time of Dj on α (excluding the preprocessing time of Dj). We
conclude that

Dj(α) = O(Dj(αj) + |α\αj | log |∆j |) (1)

because each query in α\αj can be answered by D′′j in O(log |∆j |) worst-case time.

3.1.3 Analysis
We first analyze the performance of Dj . Among all point location linear decision trees for
S, let D be the one that takes the minimum time to process σ. We convert D to a point
location linear decision tree for ∆j as follows.

Each leaf node v of D corresponds to a convex polygon ρ in a region of S. If ρ has k
sides, then v has depth at least k as each node of D applies a cut along a line. Therefore, we
can expand v into a linear decision subtree so that the leaf nodes of this subtree correspond
to a triangulation of ρ and the height of this subtree is at most k − 2.

Let Dσ
min denote the linear decision tree obtained by expanding D as described above.

The triangular regions at the leaf nodes of Dσ
min form a refinement of S. Locating a query

point q in this refinement of S using Dσ
min has the same asymptotical complexity as locating

q in S using D.
Let t be the triangle at a leaf node of Dσ

min. We discuss how to expand this leaf node to a
linear decision subtree depending on whether t lies in a bounded or unbounded region of S.

Suppose that t lies in a bounded region r of S. Recall that X is the subset of triangles
extracted from ∆S for constructing ∆j . All vertices of conv(r ∩X) lie on the boundary of r,
so t intersects O(log |r ∩X|) = O(log logn) triangles in ∆j ∩ conv(r ∩X), which refine t into
a planar subdivision Pt of size O(log logn). We expand the leaf node of Dσ

min storing t to a
linear decision subtree Lt that performs point location in Pt in O(log log logn) worst-case
query time. Some leaf nodes of Lt correspond to regions in the refinement of t that are
outside conv(r ∩X). We need to expand such leaf nodes further in order to locate query
points that fall into t \ conv(r ∩X) in a triangle in ∆j . We will not be interested in the
query time for such query points, so we can expand these leaf nodes of Lt arbitrarily.

Suppose that t lies in the unbounded region of S. We expand the leaf node storing t
into a linear decision subtree L′t of O(1) height such that each leaf node of L′t corresponds
to a triangle that lies inside or outside t ∩ BS . At each leaf node of L′t outside t ∩ BS , we
can output the exterior of BS . All leaf nodes of L′t inside BS lie in a boomerang b between
the boundaries of BS and S. Take such a leaf node of L′t and let t′ be the triangle stored

SoCG 2017

30:8 Adaptive Planar Point Location

there. We are concerned with the overlay of t′ and shrink(b). Since every edge of the reflex
chain of shrink(b) supports an outer boundary edge of S, every triangular region in shrink(b)
produced by SplitBR is incident on an outer boundary edge of S. Since the interior of t′
cannot intersect the boundary of S or any bounded region in S, the interior of t′ contains
at most one vertex in the reflex chain of shrink(b). Thus, the boundary of t′ inside shrink(b)
consists of O(1) line segments. Each segment intersects O(log |shrink(b)|) triangular regions in
shrink(b) produced by SplitBR, and each triangular region contains O(log |shrink(b)|) triangles
produced by TriBR. As a result, t′ intersects O(log2 |shrink(b)|) = O((log logn)2) triangles in
the triangulation of shrink(b). Therefore, we can expand the leaf node storing t′ into a linear
decision subtree as in the previous paragraph.

Let D′ be the linear decision tree obtained by expanding Dσ
min as described above. Let q

be a query point. If q can be located successfully in S by Dj , the search in D′ traverses a
root-to-leaf path in Dσ

min and then another path of length O(log log logn) to a leaf of D′. Let
Dσ

min(α) and D′(α) denote the running times of Dσ
min and D′ on an online query sequence α,

respectively. Then, for any online query sequence αj such that query points in αj can be
located successfully in S by Dj ,

D′(αj) = O(Dσ
min(αj) + |αj | log log logn). (2)

For every pair of online query sequences αj ⊆ α such that αj is the maximum subsequence
of α that can be located successfully in S by Dj , by (1), Dj(α) = O(Dj(αj)+ |α\αj | log |∆j |).
By Theorem 1, Dj performs no worse than D′ on αj . Let Dpre

j denote the O(|∆j | log |∆j |)
preprocessing time to construct both ∆j and Dj . Therefore,

Dj(α) +Dpre
j

= O
(
Dj(αj) + |α\αj | log |∆j |

)
+O

(
|∆j | log |∆j |

)
= O

(
D′(αj) + |∆j |+ |α\αj | log |∆j |

)
+O

(
|∆j | log |∆j |

)
(∵ Theorem 1)

= O
(
Dσ

min(αj) + |∆j | log |∆j |+ |αj | log log logn+ |α\αj | log |∆j |
)
. (∵ (2))

The next result summarizes the discussion above.

I Lemma 3.
(i) For every pair of online query sequences αj ⊆ α such that αj is the maximum sub-

sequence of α that can be located successfully in S by Dj , Dj(α) +Dpre
j = O

(
Dσ

min(αj) +
|∆j | log |∆j |+ |α\αj | log logn+ |αj | log log logn

)
.

(ii) Dσ
min(σ) = O(OPT), where OPT is the minimum time needed by any point location

linear decision tree for S to process σ.

We are ready to analyze the performance of the first solution.

I Lemma 4. Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based data structure that processes any online sequence σ of point location queries
in S in O(|σ| log log logn+ n+ OPT) time. The time bound includes the preprocessing time.

Proof. Let σS denote the subsequence of queries in σ that are answered by DS . For each
j ≥ 1, we use σj to denote the subsequence of σ that are located successfully in S by Dj .
Therefore,

⋃
j≥1 σj = σ\σS . Note that σj ∩σk = ∅ if j 6= k. Let Γ denote the total processing

time required by all Dj ’s, including the preprocessing time Dpre
j . Note that Γ also includes

the time spent on unsuccessfully locating some query points in σS by the Dj ’s. Lemma 3(i)
implies that

Γ = O
(∑

j

Dσ
min(σj) +

∑
j

|∆j | log |∆j |+ |σS | log logn+ |σ\σS | log log logn
)
.

S.-W. Cheng and M.-K. Lau 30:9

Each ∆j has O(f(n)/ logn) size and ∆j is constructed after answering f(n) new queries
using DS . So |∆j | log |∆j | can be charged to these queries, i.e.,

∑
j |∆j | log |∆j | = O(|σ|).

Therefore,

Γ = O
(
Dσ

min(σ\σS) + |σ|+ |σS | log logn+ |σ\σS | log log logn
)
.

Let Γ0 denote the total processing time required by DS on σS , including the O(n) prepro-
cessing time to construct ∆S andDS . By Theorem 2, Γ0 = O(Dσ

min(σS)+|∆S |+|σS | log logn).
Therefore,

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS | log logn+ |σ\σS | log log logn
)
. (3)

We will show that the term |σS | log logn can be absorbed by other terms in (3). For query
points in σS that end in leaf nodes ofDσ

min at depth greater than log2 log2 n, their contribution
to |σS | log logn can be absorbed by Dσ

min(σS). We bound the number of remaining query
points in σS in Claim 5 below.

I Claim 5. Let σ̂S be the subsequence of σS such that each query point in σ̂S lies in some
triangle (leaf node) in Dσ

min at depth log2 log2 n or less. Then, |σ̂S | = O(log9 n+ |σS |/ logn).

Proof. We will make use of the following facts:
Fact 1: At most 21+log2 log2 n− 1 = 2 log2 n− 1 nodes in Dσ

min have depth at most log2 log2 n

because Dσ
min is a binary tree.

Fact 2: For each triangle t ∈ ∆S , if the current access frequency of t is at least |σS |(log2 n)2/f(n),
then t must be included in the set X for the next construction of ∆j and Dj . The reason
is that the sum of frequencies in ∆S is at most |σS |, so there are at most f(n)(log2 n)−2

triangles in ∆S with frequencies at least |σS |(log2 n)2/f(n), implying that t is one of the
top f(n)(log2 n)−2 frequently accessed triangles.

Let Z be the subset of triangles in ∆S that overlap with some triangle (leaf node) in Dσ
min

at depth log2 log2 n or less. By Fact 1, there are at most 2 log2 n− 1 triangles (leaf nodes)
in Dσ

min at depth log2 log2 n or less. Each such triangle must lie inside a region (bounded
or exterior) of S in order that Dσ

min answers a point location query correctly. So each such
triangle intersects O(log2 n) triangles in ∆S . It follows that

|Z| = O(log3 n). (4)

Consider a triangle t ∈ ∆S that contains a query point in σ̂S . Thus, t ∈ Z because t must
overlap with some triangle (leaf node) in Dσ

min at depth log2 log2 n or less. If the frequency
of t in ∆S never reaches |σS |(log2 n)2/f(n), then at most |σS |(log2 n)2/f(n) query points
in t are from σ̂S . Suppose that the frequency of t in ∆S reaches |σS |(log2 n)2/f(n), say
after the construction of ∆j and before the construction of ∆j+1. At most f(n) queries can
be answered by DS during this period. It means that the frequency of t in ∆S is at most
f(n) + |σS |(log2 n)2/f(n) before the construction of ∆j+1. By Fact 2, t will be included in
∆k for all k > j. Every query point that falls in t after the construction of ∆j+1 will be
located successfully in S by Dk for some k ≥ j + 1. Thus, the frequency of t in ∆S will
not be increased further and at most f(n) + |σS |(log2 n)2/f(n) query points in t are from
σ̂S . Hence, |σ̂S | ≤ (f(n) + |σS |(log2 n)2/f(n)) · |Z|. Recall that f(n) = (log2 n)6. Since
|Z| = O(log3 n) by (4), we obtain |σ̂S | = O(log9 n+ |σS |/ logn). J

SoCG 2017

30:10 Adaptive Planar Point Location

If |σS\σ̂S | < |σ̂S |, we obtain the following from (3):

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ̂S | log logn+
|σ\σS | log log logn

)
= O

(
Dσ

min(σ) + n+ |σ|+ |σ̂S | log logn+ |σ\σS | log log logn
)

= O
(
Dσ

min(σ) + n+ |σ|+ |σS |+ log9 n log logn+
|σ\σS | log log logn

)
(∵ Claim 5)

= O
(
Dσ

min(σ) + n+ |σ|+ |σ\σS | log log logn
)
.

If |σS\σ̂S | ≥ |σ̂S |, we obtain the following from (3):

Γ0 + Γ = O
(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ̂S | log logn+
|σ\σS | log log logn

)
= O

(
Dσ

min(σ) + n+ |σ|+ |σS\σ̂S | log logn+ |σ\σS | log log logn
)

= O
(
Dσ

min(σ) + n+ |σ|+ |σ\σS | log log logn
)
.

In the last step above, we use the fact that Dσ
min(σS) = Ω(|σS\σ̂S | log logn), which is true

because each query point in σS \σ̂S lies in a triangle (leaf node) in Dσ
min at depth greater

than log2 log2 n.
As a result, no matter whether |σS\σ̂S | or |σ̂S | is greater than the other, we have Γ0 +Γ =

O (Dσ
min(σ) + n+ |σ| log log logn) = O (OPT + n+ |σ| log log logn) by Lemma 3(ii). J

3.2 Optimal solution
We apply the method in Section 3.1 recursively to obtain a multi-level data structure. To
facilitate the description of this new strategy, we revise our notation as follows. We relabel
each triangulation ∆j and each point location structure Dj in Section 3.1 as ∆1,j and
D1,j . The extra subscript 1 signifies that these are triangulations and structures at the
first level. We use ∆0,1 and D0,1 to denote ∆S and DS , respectively. At any level i ≥ 1,
a new triangulation ∆i,j and a new point location structure Di,j will be constructed from
time to time to replace ∆i,j−1 and Di,j−1. At level 0, ∆0,1 and D0,1 will never be replaced,
and there are no other triangulation and point location structure at level 0. When it is not
important to distinguish the current index j at a level, we use ∆i,∗ and Di,∗ to denote the
current triangulation and point location structure at level i.

We have multiple levels of triangulations and point location structures at any time:
(∆0,1, D0,1), (∆1,∗, D1,∗), . . . , (∆m,∗, Dm,∗), where m is the highest level currently. Let q be
the next query point. We first check if q lies inside BS in O(1) time. If not, we output the
exterior region of S. Suppose that q lies inside BS . We first query Dm,∗ with q. If we fail to
locate a region in S containing q, then we try Dm−1,∗. If that also fails, we try Dm−2,∗ and
so on. The location of q will succeed by D0,1 the latest.

After locating q, we need to update the access frequencies in the triangulations. This
update is important because the frequencies govern how the method in [13] adapts the
point location structures to incoming queries. If q lies outside BS , we do not change any
frequency in any triangulation. If q is located in a triangle that stores a region of S at level
i, we increment the frequency of the triangle in ∆i,∗ that contains q. The frequencies in
triangulations at other levels do not change.

The number of levels increases monotonically as we process σ. The triangulation and
point location structure at each level are rebuilt from time to time. We use i-rebuild to
refer to a rebuild at level i. Use n0 to denote n and define ni = f(ni−1)/ log2 ni−1 for i ≥ 1.

S.-W. Cheng and M.-K. Lau 30:11

For any i ≥ 0, if f(ni) query points are located successfully in S by Di,∗ since the last
(i+ 1)-rebuild and no i-rebuild has happened during these f(ni) queries, then we perform a
new (i+ 1)-rebuild. That is, if level i+ 1 does not exist, then we construct ∆i+1,1 from ∆i,∗
and then Di+1,1 for ∆i+1,1; otherwise, if ∆i+1,k and Di+1,k are currently stored at level i+ 1,
then we replace them by constructing ∆i+1,k+1 from ∆i,∗ and then Di+1,k+1 for ∆i+1,k+1.
The construction works as follows.

We extract the subset X of f(ni)(log2 ni)−2 triangles in ∆i,∗ that have the highest
f(ni)(log2 ni)−2 access frequencies in ∆i,∗. Then, we proceed as in Section 3.1.1 to produce
∆i+1,k+1 from X. Details are given below. For each bounded region r of S, we compute
conv(r∩X) and then triangulate it by calling TriReg(conv(r∩X)). This produces O(|r∩X|)
triangles and takes O(|r ∩X| log |r ∩X|) time. Each resulting triangle stores the region id
r. Summing over all bounded regions, we obtain O(|X|) = O(f(ni)(logni)−2) = o(ni+1)
triangles in O(|X| log |X|) = O(ni+1 logni+1) time. Consider the processing of triangles in
X outside S. In a 1-rebuild as described in Section 3.1.1, for each boomerang b between the
boundaries of BS and S, we compute another boomerang shrink(b) ⊆ b. Suppose that there is
a 2-rebuild before the next 1-rebuild. Note that any triangle outside S that is selected in this
2-rebuild must be contained in shrink(b′) for some boomerang b′ between the boundaries of BS
and S. Assume that some triangles lying in shrink(b) are selected. Note that these triangles
belong to the triangulation of shrink(b) produced by SplitBR and TriBR. Since shrink(b) is a
boomerang, there is also a hierarchy on the triangular regions produced by SplitBR as in
Figure 4. As in Section 3.1.1, we first mark the triangular regions in the hierarchy that store
the selected triangles and then mark their ancestors in the hierarchy. The union of the marked
triangular regions is another boomerang shrink(shrink(b)) ⊆ shrink(b) and it is triangulated
by calling SplitBR and TriBR. Each resulting triangle stores the id of the exterior region of S.
Each triangle also stores the id of the triangular region containing it, which is produced by
the call SplitBR(shrink(shrink(b))). Note that shrink(shrink(b)) has O(f(n1)/ logn1) size and
its processing takes O(f(n1)/ logn1) time. In general, in an (i+ 1)-rebuild, the processing of
triangles in X outside S takes O(f(ni)/ logni) = O(ni+1) time and produces at most three
boomerangs of O(ni+1) size and O(ni+1) triangles in these boomerangs.

The triangles computed above may form disconnected components. We apply a plane
sweep in O(ni+1 logni+1) time to connect them with triangles. These extra triangles do not
store any region in S, so query points that fall into them are not located successfully in S. The
resulting triangulation is ∆i+1,k+1. The frequencies of all triangles in ∆i+1,k+1 are initialized
to be zero. We apply Theorem 1 to ∆i+1,k+1 to obtain the point location structure Di+1,k+1.
In summary, the (i+ 1)-rebuild takes O(ni+1 logni+1) time and |∆i+1,k+1| = O(ni+1).

We do not increase the number of levels anymore when the highest level m reaches
the value such that nm < 305 for the first time.2 The triangulation size is O(nm) = O(1).
However, we will still perform i-rebuild for any i ∈ [1,m]. Also, if a query point is located
successfully in S at this highest possible level m, we do not change any frequency in ∆m,∗.
The query time is only O(1) anyway.

I Remark. Let m be the highest level currently. When an i-rebuild is performed for some
i < m, the triangulations at levels i + 1, . . . ,m are unaffected. Query answering will still
start from level m. The selected triangles on which the construction of ∆i+1,∗ was based may
not be related to the selected triangles on which the construction of the new ∆i,∗ is based.

2 This particular choice goes well with the proof of Claim 8.

SoCG 2017

30:12 Adaptive Planar Point Location

I Theorem 6. Let S be a planar convex subdivision with n vertices. There is a point-line
comparison based structure that uses O(n) space and processes any online sequence σ of point
location queries in S in O(n + OPT) time, where OPT is the minimum time required by
any point location linear decision tree for S to process σ. The time bound includes the O(n)
preprocessing time.

Proof. For any online query sequence α, we use Di,j(α) to denote the time needed by Di,j

to process α and Dpre
i,j to denote the preprocessing time to construct both ∆i,j and Di,j .

Define the following subsets of query points:

σi,j = {q ∈ σ : q is located successfully in S using Di,j },
σi = {q ∈ σ : q is located successfully in S at level i},
σ<i = {q ∈ σ : q is located successfully in S at some level less than i}.

By definition, σ =
⋃
i,j σi,j , the σi,j ’s are mutually disjoint, σi =

⋃
j σi,j , and σ<i =

⋃i−1
a=0 σa.

Claim 7 below is analogous to Lemma 3(i) and it can be proved by the same argument.

I Claim 7. For all i ∈ [1,m] and all online query sequences αi,j ⊆ α such that αi,j is the
maximum subsequence of α that can be successfully located in S by Di,j, Di,j(α) +Dpre

i,j =
O(Dσ

min(αi,j) + |∆i,j | log |∆i,j |+ |α\αi,j | logni + |αi,j | log logni).

Let Γi denote the total processing time required by Di,j over all j, including the pre-
processing time Dpre

i,j . Recall that Dpre
i,j = O(|∆i,j | log |∆i,j |) = O(ni logni) for i > 0 and

Dpre
0,1 = O(|∆0,1|) = O(n0). Note that for i > 0, Γi includes the time spent on unsuccessfully

locating some query points in σ<i. By Claim 7, for i ∈ [1,m],

Γi = O
(∑

j

Dσ
min(σi,j) +

∑
j

ni logni + |σ<i| logni +
∑
j

|σi,j | log logni
)

= O
(
Dσ

min(σi) +
∑
j

ni logni + |σ<i| logni + |σi| log logni
)
.

By Theorem 2, Γ0 = D0,1(σ0) +O
(
|∆0,1|

)
= O

(
Dσ

min(σ0) + n0 + |σ0| log logn0
)
. Therefore,

m∑
i=0

Γi = O
(m∑
i=0

Dσ
min(σi) + n0 +

m∑
i=1

∑
j

ni logni +
m∑
i=0
|σi| log logni +

m∑
i=1
|σ<i| logni

)
.

Since ∆i,j is constructed after answering f(ni−1) new queries using Di−1,∗, the preprocessing
time of O(ni logni) = o(f(ni−1)) for constructing ∆i,j and Di,j can be charged to these new
queries. So

∑m
i=1
∑
j ni logni can be charged to the queries in σ, i.e.,

∑m
i=1
∑
j ni logni =

O(|σ|). We rewrite the term
∑m
i=1 |σ<i| logni =

∑m−1
i=0 (|σi|

∑m
l=i+1 lognl).

I Claim 8. For all i ∈ [0,m− 1],
∑m
l=i+1 log2 nl < 35 log2 log2 ni.

Consequently,

m∑
i=0

Γi = O
(m∑
i=0

Dσ
min(σi) + n+ |σ|+

m∑
i=0
|σi| log logni +

m−1∑
i=0
|σi| log logni

)
= O

(
Dσ

min(σ) + n+ |σ|+
m∑
i=0
|σi| log logni

)
. (5)

S.-W. Cheng and M.-K. Lau 30:13

Define the following quantities:

σ̂i,j =
{
q ∈ σi,j : q lies in some leaf node of Dσ

min at depth log2 log2 ni or less
}
,

σ̂i =
⋃
j

σ̂i,j

Claim 9 below is analogous to Claim 5 in the proof of Lemma 4. It also has a similar proof.

I Claim 9. |σ̂i,j | = O(log9 ni + |σi,j |/ logni).

By Claim 9,

|σ̂i| =
∑
j

|σ̂i,j | = O
(∑

j

log9 ni + |σi|/ logni
)
. (6)

If |σi\σ̂i| ≥ |σ̂i|, then

|σi| log logni = |σi\σ̂i| log logni + |σ̂i| log logni = O(|σi\σ̂i| log logni)
= O(Dσ

min(σi)).

In the last step above, we use the fact that Dσ
min(σi) = Ω(|σi\σ̂i| log logni), which is true

because each query point in σi\σ̂i lies in a triangle (leaf node) in Dσ
min at depth greater than

log2 log2 ni. If |σi\σ̂i| < |σ̂i|, then

|σi| log logni = |σi\σ̂i| log logni + |σ̂i| log logni = O(|σ̂i| log logni)

= O
(∑

j

log9 ni log logni + |σi|
)
. (∵ (6))

= O
(∑

j

ni + |σi|
)
.

Combining the two cases above and the fact thatDσ
min(σi) = Ω(|σi|), we obtain |σi| log logni =

O
(
Dσ

min(σi) +
∑
j ni
)
. Substituting this equation into (5) gives

m∑
i=0

Γi = O
(
Dσ

min(σ) + n+ |σ|+
m∑
i=0

Dσ
min(σi) +

m∑
i=0

∑
j

ni

)
.

We have shown previously that
∑m
i=1
∑
j ni logni = O(|σ|). Note that

∑
j n0 = n0 = n as

there are only one triangulation and one structure at level 0. Also,
∑m
i=0 D

σ
min(σi) = Dσ

min(σ)
andDσ

min(σ) = Ω(|σ|). Therefore, by Lemma 3(ii),
∑m
i=0 Γi = O

(
Dσ

min(σ)+n
)

= O(OPT+n).
To bound the size of our data structure, observe that ∆i,j and Di,j have O(ni) size

and (∆i,j , Di,j) replace (∆i,j−1, Di,j−1). Therefore, the total size is O(
∑m
i=0 ni). Since

ni = O(f(ni−1)/ logni−1) = O(log5 ni−1), it is clear that ni = O(n/2i−1) by an inductive
argument. As a result, the total size is O(

∑m
i=0 ni) = O(

∑m
i=0 n/2i−1) = O(n). J

4 Planar connected subdivision

We describe a point location structure for a connected subdivision S with n vertices. It uses
O(n) space and processes any online query sequence σ in O(|σ| log logn+ n+ OPT) time.

We need a balanced geodesic triangulation of a simple polygon P [7]. Let k be the number
of vertices of P . Pick three vertices v1, vk/3, v2k/3 of P (which divide the boundary of P into
chains of roughly equal sizes). The three geodesic paths among v1, vk/3, v2k/3 bound the

SoCG 2017

30:14 Adaptive Planar Point Location

(a) (b) (c)

Figure 5 (a) Kite and the geodesic triangle inside (shown shaded). (b) Divide into triangles and
boomerangs. (c) Triangulation.

so-called kite. Refer to Figure 5(a) for an example. The part of the kite with an non-empty
interior is a geodesic triangle τ , whose boundary consists of three reflex chains. Next, compute
the geodesic paths from v1 and vk/3 to vk/6, the middle vertex in the chain between v1 and
vk/3. This creates another kite joining v1, vk/6 and vk/3 and hence another geodesic triangle
τ ′ inside this kite. The same process is repeated to other parts of P recursively. In the end,
we obtain a balanced geodesic triangulation, which can be computed in O(|P |) time [7].

We simulate the decomposition as sketched in Section 2 using balanced geodesic triangu-
lations. Let conv(S) denote the convex hull of S. We divide the exterior face of conv(S) into
triangles as described in Section 2. Each region r inside conv(S) is a simple polygon. We first
compute a balanced geodesic triangulation ∆̃r of r. We triangulate each geodesic triangle τ
in ∆̃r as follows. We shoot two rays inward from each vertex of τ . They intercept each other
and form four triangles. Figure 5(b) shows an example. These four triangles are surrounded
by three boomerangs. The boomerangs are triangulated as described in Section 3.1, and this
process places O(logn) vertices on the boundaries of three of the triangles in the middle. We
connect these vertices to triangulate these three triangles. Figure 5(c) shows an example.
This complete the triangulation of τ . The triangulations of all geodesic triangles in ∆̃r form
the triangulation ∆r. Any triangle that lies in r intersects O(log2 n) triangles in τ , implying
that any triangle that lies in r intersects O(log3 n) triangles in ∆r. The collection of all
triangles obtained above form the triangulation ∆S . It takes O(n) time to compute ∆S . We
apply Theorem 1 to ∆S to obtain a point location structure DS .

Define Dσ
min for S as in Section 3.1.3. A leaf of Dσ

min corresponds to a triangle t that lies
in a region r of S, so t intersects O(log3 n) in ∆S . It means that we can expand the leaf
nodes of Dσ

min into linear decision subtrees of height O(log logn) so that the expanded linear
decision tree D′ takes Dσ

min(σ) +O(|σ| log logn) time to locate the query points in σ in ∆S .
The total processing time by DS (including the preprocessing time) is DS(σ) +O(n), which
by Theorem 1 is O(D′(σ) +n) = O(Dσ

min(σ) +n+ |σ| log logn) = O(OPT +n+ |σ| log logn).

I Theorem 10. Let S be a planar connected subdivision with n vertices. There is a point-line
comparison based data structure that uses O(n) space and processes any online sequence σ of
point location queries in S in O(|σ| log logn+ n+ OPT) time, where OPT is the minimum
time needed by any point location linear decision tree for S to process σ. The time bound
includes the O(n) preprocessing time.

5 Conclusion

The performance of our data structure is asymptotically optimal when compared with static
point location linear decision trees. It is an open problem to obtain optimal performance when

S.-W. Cheng and M.-K. Lau 30:15

compared with linear decision trees that may reorganize themselves. This open problem may
be difficult as it is related to the dynamic optimality conjecture by Sleator and Tarjan [17],
which conjectures that the performance of a splay tree is no more than O(n) plus a constant
times the time required by any binary search tree algorithm. The dynamic optimality
conjecture is still open after over thirty years.

References
1 P. Afshani, J. Barbay, and T. Chan. Instance optimal geometric algorithms. Proc. 50th

Annu. IEEE Symp. Found. Computer Sci., 2009, 129–138.
2 U. Adamy and R. Seidel. On the exact worst case query complexity of planar point location.

Proc. 9th Annu. ACM-SIAM Symp. Discrete Alg., 1998, 609–618.
3 S. Arya, T. Malamatos, and D.M. Mount. A simple entropy-based algorithm for planar

point location. ACM Trans. Alg., vol. 3, no. 2, 2007, article 17.
4 S. Arya, T. Malamatos, D. Mount, and K. Wong. Optimal expected-case planar point

location. SIAM J. Comput., 37 (2007), 584–610.
5 P. Bose, L. Devroye, K. Douïeb, V. Dujmovic, J. King, and P. Morin. Odds-On Trees,

arXiv:1002.1092v1 [cs.CG], 5 February 2010.
6 B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational

Geometry, 6 (1991), 485–524.
7 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and

J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica, 12
(1994), 54–68.

8 S.-W. Cheng and M.-K. Lau. Adaptive Point Location in Planar Convex Subdivisions.
Preliminary version appeared in Proc. 26th Int’l Symp. Algorithms and Computation, 2015,
14-22. The full version is to appear in Int’l J. Comput. Geom. Theory and Appl.

9 S. Collette, V. Dujmović, J. Iacono, S. Langerman, and P. Morin. Entropy, triangulation,
and point location in planar subdivisions. ACM Trans. Alg., vol. 8, no. 3, 2012, article 29.

10 D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of preprocessed polyhedra
– a unified approach, Proc. 17th Int’l Colloq. Automata, Languages and Programming, 1990,
400–413.

11 H. Edelsbrunner, L. J Guibas, and J. Stolfi. Optimal point location in a monotone subdi-
vision. SIAM J. Comput., 15 (1986), 317–340.

12 J. Iacono. Expected asymptotically optimal planar point location. Comput. Geom.: Theory
and Appl., 29 (2004), 19–22.

13 J. Iacono and W. Mulzer. A static optimality transformation with applications to planar
point location. Int’l J. Comput. Geom. Appl., 22 (2012), 3270–340.

14 D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12 (1983),
28–35.

15 N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees.
Comm. ACM, 29 (1986), 669–679.

16 C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
1948.

17 D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees, J. ACM, 32 (1985), 652–
686.

SoCG 2017

High Dimensional Consistent Digital Segments
Man-Kwun Chiu1 and Matias Korman∗2

1 National Institute of Informatics (NII), Tokyo, Japan; and
JST, ERATO, Kawarabayashi Large Graph Project, Japan
chiumk@nii.ac.jp

2 Tohoku University, Sendai, Japan
mati@dais.is.tohoku.ac.jp

Abstract
We consider the problem of digitalizing Euclidean line segments from Rd to Zd. Christ et al.
(DCG, 2012) showed how to construct a set of consistent digital segments (CDS) for d = 2: a
collection of segments connecting any two points in Z2 that satisfies the natural extension of the
Euclidean axioms to Zd. In this paper we study the construction of CDSs in higher dimensions.

We show that any total order can be used to create a set of consistent digital rays CDR in Zd

(a set of rays emanating from a fixed point p that satisfies the extension of the Euclidean axioms).
We fully characterize for which total orders the construction holds and study their Hausdorff
distance, which in particular positively answers the question posed by Christ et al..

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, I.4.1
Digitization and Image Capture

Keywords and phrases Consistent Digital Line Segments, Digital Geometry, Computer Vision

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.31

1 Introduction

Computation in Ancient Greece was rigorously done with ruler and compass using the five
axioms of Euclidean geometry. The study of these axioms has had a drastic influence in
the development of mathematics. Indeed, the removal of one of them (the fifth one) created
non-Euclidean geometries, which have had huge influence on science and technology.

Computers and digital data have nowadays replaced the ruler and compass methods of
computation. In order to have a rigorous system of geometric computation in the digital
world, it is desirable to establish a set of axioms similar to those of the Euclidean geometry,
where we need to replace a line by a Manhattan path in the micro scale that in a macro scale
can be seen as a straight line.

There have been several attempts to define digital segments in a two dimensional n× n
grid. The two dimensional bounded space is the most popular case to consider given its
many applications in computer vision and computer graphics. Solutions have been proposed
from a robust finite-precision geometric computation point of view [6, 8], snap rounding [5],
and many more.

A pioneering work by Michael Luby in 1987 [7] introduced an axiomatic approach of the
set of digital rays emanating from the origin. He showed that lines should curve by Θ(logn)
to satisfy a set of axioms analogous to Euclid’s axioms (the lower bound proof was given

∗ M.K. was supported in part by the ELC project (MEXT KAKENHI No. 12H00855, 15H02665, and
24106007).

© M.K. Chiu and M.Korman;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 High Dimensional Consistent Digital Segments

by Håstad). The theory was recently re-discovered by Chun et al. [4] and Christ et al. [3].
Using these results we can define a geometry that satisfies Euclid-like axioms in the two
dimensional grid, and only a small bend of the lines will be needed (i.e., Θ(logn) in an n× n
grid, a formal definition is given below).

Chun et al. and Christ et al. proposed a d-dimensional version of the set of axioms, but
unfortunately it is not constructive. That is, they left open how to find a system to generate
a complete set of digital segments in d-dimensional space that resembles the Euclidean
segments. In this paper we provide the first significant step towards answering the question
for high dimensions. For the purpose we extend the constructive algorithm of Christ et al. [3]
to spaces of arbitrary dimension and study how much of a bend it creates.

2 Preliminaries

Let x1, x2, . . . , xd denote the coordinate axes in Zd, and pi denote the i-th coordinate of a
point p ∈ Zd (for simplicity, from now on all indices are in the set {1, . . . , d}). Our aim is
to construct a digital path for any two points p, q ∈ Zd (we denote such a path by R(p, q)).
Ideally, we want R to be constructive and defined in the whole domain, but sometimes we
will consider subsets of Zd × Zd instead.

I Definition 1. For any S ⊆ Zd × Zd, let DS(S) be a set of digital segments such that
R(p, q) ∈ DS(S) for all (p, q) ∈ S. We say that DS(S) forms a partial set of consistent digital
segments on S (partial CDS for short) if for every pair (p, q) ∈ S it satisfies the following five
axioms:
(S1) Grid path property: R(p, q) is a path between p and q under the 2d-neighbor topology1.
(S2) Symmetry property: R(p, q) = R(q, p).
(S3) Subsegment property: For any r ∈ R(p, q), we have R(p, r) ∈ DS(S) and R(p, r) ⊆

R(p, q).
(S4) Prolongation property: There exists r ∈ Zd, such that R(p, r) ∈ DS(S) and R(p, q) ⊂

R(p, r).
(S5) Monotonicity property: For all i ≤ d such that pi = qi, it holds that every point

r ∈ R(p, q) satisfies ri = pi = qi.

These axioms give nice properties of digital line segments analogous to Euclidean line
segments. For example, (S1) and (S3) imply that the non-empty intersection of two digital
line segments is connected under the 2d-neighbor topology. In particular, the intersection
between two digital segments is a digital line segment that could degenerate to a single point
or even to an empty set. (S5) implies that the intersection with any axis-aligned halfspace is
connected, and so on.

Ideally, we want the set S to be as large as possible. A subset of Zd × Zd that is often
used for constructions is S = {p} × Zd (for some p ∈ Zd). We say that a partial CDS on
such a set is a consistent digital ray system (CDR for short). Note that this means that
we have a method to connect a fixed point p to any other point of Zd. A partial CDS for
S = Zd × Zd is called a set of consistent digital segments (CDS for short). Our aim is to
create a CDS in Zd, since it is a constructive way to connect any pairs of points.

It is not straightforward how to create a CDS, even when d = 2. For example, the
simple rounding scheme of Euclidean segments to the digital world that is often used in

1 The 2d-neighbor topology is the natural one that connects to your predecessor and successor in each
dimension. Formally speaking, two points are connected if and only if their L1 distance is exactly one.

M.K. Chiu and M.Korman 31:3

Figure 1 Two different Euclidean line segments and their corresponding digital line segments via
a rounding scheme. Note that their intersection in Z2 (highlighted with grey disks) is not connected
under the 4-neighbor topology, which implies that the rounding scheme is not consistent.

computer graphics, does not generate a CDS (since axioms are not always preserved, see
Figure 1). Another alternative is to use the bounding box approach that makes all moves in
one dimension before moving in another one. Although this set of segments is consistent, it
will be visually very different from the Euclidean line segments. Thus, the objective is to
create a CDS that resembles the Euclidean segments.

The straightness or resemblance between the digital line segment R(p, q) and the Euclidean
segment pq is often measured using the Hausdorff distance. The Hausdorff distance H(A,B)
of two objects A and B is defined by H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) =
maxa∈A minb∈B δ(a, b), and δ(a, b) is the natural Euclidean distance, given by || · ||2 norm.

I Definition 2. Let DS(S) be a partial CDS. We say that DS(S) has Hausdorff distance
f(n) if for all p, q ∈ S such that ||p− q||1 ≤ n, it holds that H(pq,R(p, q)) = O(f(n)).

Constructions with smaller Hausdorff distance resemble more the Euclidean segments
and thus, are more desirable. Hence, the big open problem in the field is what is the
(asymptotically speaking) smallest f(n) function so that we can have a CDS in Zd? Or
equivalently: what is the asymptotic behavior of the Hausdorff distance of the CDS that
best approximates the Euclidean segments?2

2.1 Previous work
Although the concept of consistent digital segments was first studied by Luby [7], it received
renewed interest by the community when it was rediscovered by Chun et al. [4]. The latter
showed how to construct a set of consistent digital rays (CDR) in any dimension. The
construction satisfies all axioms, including the Hausdorff distance bound:

I Theorem 3 (Theorem 4.4 of [4], rephrased). For any d ≥ 2 and p ∈ Zd we can construct a
CDR with O(logn) Hausdorff distance.

Håstad3 and Chun et al. [4] showed that any CDR in two dimensions must have Ω(logn)
Hausdorff distance. Thus logn is the smallest possible distance one can hope to achieve.
This result was generalized by Christ et al. [3], who shows a correspondence between CDRs
in Z2 and total orders on the integers (details on this correspondence is given in Section 3).

2 Note that in the original definition of Christ et al. [3], the requirement is for points p, q ∈ S such that
||p − q||2 ≤ n. The focus of interest is the two dimensional case, and for any fixed dimension both
metrics are equivalent (since

√
d

d ||p− q||1 ≤ ||p− q||2 ≤ ||p− q||1. However, since we are interested in
bounds that depend in the dimension d, it is more accurate to measure the distance between p and q
with the L1 metric.

3 The lower bound was published by Luby, but credit given to Håstad (see Theorem 19 of [7]).

SoCG 2017

31:4 High Dimensional Consistent Digital Segments

In particular, this correspondence can be used to create a CDS in Z2 that has O(logn)
Hausdorff distance. Note that the Ω(logn) lower bound also holds for CDS, so this result is
asymptotically tight.

This answers the question of how well can CDSs approximate Euclidean segments in the
two dimensional case. However, the question for higher dimensions remains largely open.
Although the method of Christ et al. [3] cannot be used to construct CDSs or CDRs in higher
dimensions, they show that it can create partial CDSs.

I Theorem 4 (Theorem 16 of [3], rephrased). Let S = {(x, y) : xi ≥ yi} ⊂ Zd × Zd. We can
construct arbitrarily many partial CDSs on S.

Note that S contains segments of positive slope (that is, only for the pairs (p, q) such
that q is in the first orthant of p), hence it is roughly a small fraction (roughly 1/2d−1) of
all possible segments. Other than Theorems 3 and 4, little or nothing is known for three or
higher dimensions. Up to date, the only CDS known in three or higher dimensions is the
naive bounding box approach (described in Section 3) that has Ω(n) Hausdorff distance. In
particular, it still remains open whether one can create a CDS in Zd with o(n) Hausdorff
distance (for d > 2).

Other research in the topic has focused in the characterization of CDSs in two dimensions.
Chowdhury and Gibson [1] gave necessary and sufficient conditions so that the union of CDRs
forms a CDS. This characterization heavily uses the correspondence between CDRs and total
orders, and thus it was stated in terms of total orders. In a companion paper, the same
authors [2] afterwards provided an alternative characterization together with a constructive
algorithm. Specifically, they gave an algorithm that, given a collection of segments in an
n× n grid that satisfies the five axioms, computes a CDS that contains those segments. The
algorithm runs in polynomial time of n. Both results only hold for the two dimensional case.

Other definitions

Given two points p, q ∈ Zd such that p 6= q, the slope of R(p, q) is the sign vector t =
(t1, t2, . . . , td) ∈ {+1,−1}d, where ti = +1 if pi ≤ qi and is −1 if pi ≥ qi. Note that two
points have more than one slope when pi = qi for some index i. For simplicity, we refer to
the slope of R(p, q) (whenever p and q have more than one slope we pick one arbitrarily). Let
T be the set containing all 2d slopes of Zd. For any two vectors u, v ∈ Zd, let u · v denote
their dot product.

A total order θ of Z is a binary relation on all pairs of integers. We denote that a is
smaller than b with respect to θ by a ≺θ b. We say that two elements a and b are consecutive
if there is no number between them (i.e., no integer c satisfies a ≺θ c ≺θ b).

We define three operations on total orders: shift, flip and reverse. The shift operation
is denoted by θ + c and is the result of adding a constant value c to each integer without
changing their binary relations (that is, a ≺θ b if and only if a + c ≺θ+c b + c). Similarly,
the flip of θ is denoted by −θ and is the result of changing the sign of all binary relations
(that is, a ≺θ b if and only if −a ≺−θ −b). The reverse operation of θ (denoted by θ−1) is
the total order resulting in inverting all relationships (that is, a ≺θ b if and only if b ≺θ−1 a).

For any a < b ∈ Z, we will restrict a total order θ to an interval [a, b] (and denote
it by θ[a, b]). For these subsets we also use the same shift, flip and reverse operations
whose definitions follow naturally. In particular, observe that (θ[a, b])−1 = (θ−1)[a, b],
(θ[a, b]) + c = (θ + c)[a+ c, b+ c], and −(θ[a, b]) = (−θ)[−b,−a]. Due to lack of space some
proofs are deferred to the extended version of the document.

M.K. Chiu and M.Korman 31:5

2.2 Results overview and paper organization
We study properties that CDRs and CDSs must satisfy in high dimensions (i.e., d ≥ 3), and
show that they behave very differently from the two-dimensional counterparts. In Section 3
we introduce the concept of axis-order. Although not needed in two dimensions, it allows us
to extend the total order construction of Christ et al. to higher dimensions.

Given a point p ∈ Zd, a total order θ on the integers, and a slope t, we construct a
partial CDS which we denote by TOC(θ, p, t). This partial CDS contains segments having
an endpoint p and slope t. In two dimensions it generates a tree that covers a quadrant
whose corner is p (analogously, in higher dimensions it covers an orthant whose apex is p).

In two dimensions we have 2d = 4 different slopes. Christ et al. [3] showed that we can
pick any four total orders, apply each order to a different slope, and the union of the four
constructions will be a CDR. In this paper we show that the analogous result does not hold
in higher dimensions: fixing the total order for a single orthant uniquely determines the
behavior of other orthants.

I Theorem 5 (Necessary and sufficient condition for CDRs). For any d > 2, point p ∈ Zd and
set {θt : t ∈ T} of 2d total orders,

⋃
t∈T TOC(θt, p, t) forms a CDR at p if and only if for any

t, t′ ∈ T it holds that θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p, where T is the set containing
all possible slopes of Zd.

In particular, there is a unique way of completing the partial CDS TOC(θ, p, t) to a
CDR which we denote by TOC(θ, p). The next step is to consider the union of several
CDRs to obtain a CDS. For the two dimensional case, Christ et al. showed that we can pick
2d−1 = 2 total orders, and if we use them consistently for all points of Z2, the result will
always be a CDS. Theorem 5 already implies that only one total order can be involved in
the construction of CDSs. In Section 4 we observe that not all total orders will create one,
and fully characterize which total orders do so.

I Theorem 6 (Necessary and sufficient condition for CDSs). θ is a total order such that⋃
p∈Zd TOC(θ, p) forms a CDS if and only if θ = θ + 2 and θ = −(θ + 1)−1.

In particular, this result positively answers the question posed by Christ et al. of whether
their approach can be extended to create CDSs in higher dimensions (posed in a preliminary
version of [3]).

The main difference between two dimensional and higher dimensional spaces is that the
construction for two different slopes has a larger portion in common. In two dimensions,
two quadrants share at most a line (whose behavior is unique because of the monotonicity
axiom), but in general orthants may share a subspace of dimension d− 1. The total orders
associated to each orthant must behave similarly within the subspace, which creates some
dependency between the total orders. More importantly, each orthant shares subspaces with
other orthants, and so on. This cascades creating common dependencies that cycle back
to the original orthant and highly constrain the total orders. In Section 6 we discuss this
dependency and argue that variations of this construction will also have the same necessary
and sufficient conditions.

3 Extending the total order construction to higher dimensions

In this section we use a total order to construct a CDR in Zd. We start by reviewing the
construction of Christ et al. [3] for Z2. Given a total order θ and two points p = (p1, p2), q =
(q1, q2) ∈ Z2 such that q1 ≥ p1 and q2 ≥ p2, we view the digital segment R(p, q) as a collection

SoCG 2017

31:6 High Dimensional Consistent Digital Segments

p

q

r

o x1 + x2 = 2 x1 + x2 = 6

x1 + x2 = 11

x1

x2

Figure 2 Example of the construction of Christ et al. in Z2. Given p = (1, 1), q = (8, 4) and
a total order θ such that θ[2, 11] = 5 ≺ 3 ≺ 2 ≺ 7 ≺ 9 ≺ 8 ≺ 11 ≺ 10 ≺ 6 ≺ 4. The path must
perform q1 − p1 = 7 steps in the x1 direction and q2 − p2 = 3 steps in the x2 direction. Since
p1 + p2 = 2 and 2 is among the 7 smallest elements in θ[2, 11], it moves in the x1 direction. Similarly,
at point r = (4, 2), the path will move in x2 direction because r1 + r2 = 6 is among the 3 largest
elements of θ[2, 11]. Observe that, for any c ∈ [2, 11] there is a unique point m in the path such that
m1 +m2 = c.

of steps that form a path from p to q. Due to the monotonicity property, in each step the
path increases either the first or second coordinate by one. Clearly, this path must do
q1 + q2− p1− p2 steps, out of which q1− p1 are in the x1 coordinate (and the remaining ones
in the x2 coordinate). The choice of which steps we move in which coordinate depends on
θ: assume that after moving several steps we have reached some intermediate point (r1, r2).
Then, we check whether or not the number r1 + r2 is among the q1 − p1 smallest elements of
θ[p1 + p2, q1 + q2 − 1]. If so, we move from (r1, r2) in the x1 coordinate. Otherwise we do so
in the x2 coordinate (see an example in Figure 2).

All of the segments created this way have slope (+1,+1). In a similar way, we can pick
a total order to define the segments emanating from p with slope (+1,−1), (−1,+1) and
(−1,−1). We emphasize that there is no dependency between the total orders: the choice of
total order for one slope has no impact on the available options for the others. Moreover,
any four choices will result in a CDR (similarly, any CDR in Zd is associated with 2d total
orders of Z, one for each slope). As mentioned before, this independence between quadrants
does not hold in higher dimensions.

3.1 Constructing a CDR in Zd from a total order
The construction of Christ et al. explains how to construct segments of slope (+1,+1) in
Z2 (or equivalently, for points in the first quadrant). The segments of different slopes are
obtained via symmetry. In higher dimensions it will be useful to have an explicit way to
construct segments of any slope. Thus, we first generalize the method of Christ et al. for
any orthant.

In order to get an idea of our approach, we first look at the folklore bounding box
approach to construct a CDS. When defining the path between point p and point q, we
consider the minimum bounding box formed by the two points. The point with smaller x1
coordinate will move in the x1 coordinate until reaching the x1 coordinate of another point.
Afterwards, the one with smaller x2 coordinate will move in the x2 coordinate, and so on
until the two points meet (see Figure 3).

So, if d = 3, for any segment whose slope is (+1,+1,+1) we first do all the movements
in the x1 coordinate, then x2 coordinate, and finally in the x3 coordinate. However, if
the segment has slope (+1,−1,−1), then the bounding box CDS will travel first in the x1
coordinate, then x3 and finally x2. Intuitively speaking, even though in both cases we are

M.K. Chiu and M.Korman 31:7

p

q

1

2

3

Figure 3 Example of the bounding box approach in Z3. p = (0, 3, 0) and q = (3, 0, 3). The
number in each circle indicates the order in which we execute the movements.

performing the same steps (i.e, we use the natural order 0 ≺ 1 ≺ 2 ≺ 3 ≺ . . .), the order in
which we execute each dimension is slightly different (or equivalently, the total order is being
interpreted differently). We model this difference in interpretation through a new concept
which we call axis-order.

Given a slope (t1, t2, . . . , td), let a1, . . . ak be the indices of the coordinates with positive
value in increasing order (that is, ti = +1 if and only if i = aj for some j ≤ k). Similarly,
let b1, . . . bd−k be the indices of the coordinates with negative value in decreasing order.
Then, the axis-order of (t1, t2, . . . , td) is xa1 , xa2 , . . . , xak

, xb1 , . . . , xbd−k
. For example, the

axis-order of (−1,+1,+1) is x2, x3, x1, and the axis-order of (+1,−1,+1) is x1, x3, x2. As
we will see later, it will be useful to consider subspaces of Zd. We observe a property that
follows from the definition of axis-order.

I Observation 7. Let a1, . . . ak be a sequence of indices such that a1 < . . . < ak, and let
t, t′ ∈ {−1, 1}d be two slopes such that tai = t′ai

(for all i ≤ k). Then, t and t′ have the
same axis-order τ restricted to a subspace H spanned by {xa1 , xa2 , . . . , xak

}. Moreover, the
axis-order of −t and −t′ restricted to H is the reverse of τ .

With the help of axis-order we can extend the two dimensional construction to higher
dimensions. Given a point p = (p1, . . . , pd) ∈ Zd, a total order θ and a slope t, we construct
the set of rays emanating from p with that slope. Define the orthant Ot(p) = {q ∈ Zd : ti ·qi ≥
ti·pi}: by definition, the segment from p to any point inOt(p) has slope t. Also, let xa1 , xa2 , . . .

be the axis-order of t.
For any point q = (q1, . . . , qd) ∈ Ot(p) we construct the segment R(p, q). Similar to the

two dimensional case, the path from p to q must do t · q− t ·p steps, out of which |p1− q1| will
be in the first coordinate, |p2−q2| in the second, and so on. We traverse through intermediate
points, each time increasing the inner product with t by one. At each intermediate point r,
we check the position of t · r in θ[t · p, t · q− 1]; if it is among the |pa1 − qa1 | smallest elements
in θ[t · p, t · q − 1] then we move in the xa1 coordinate. Otherwise, if it is among the smallest
|pa1 − qa1 |+ |pa2 − qa2 | elements we move in xa2 , and so on.

For example, if the total order θ satisfies 3 ≺θ 1 ≺θ 5 ≺θ 7 ≺θ 9 ≺θ 8 ≺θ 6 ≺θ 4 ≺θ 2 ≺θ 0,
p = (0, 0, 0) and q = (2,−3, 5), the slope is (+1,−1,+1), axis-order is x1, x3, x2. So we
must look at θ[p · (+1,−1,+1), q · (+1,−1,+1)− 1] = θ[0, 9]. In this total order the number
(+1,−1,+1) · (0, 0, 0) = 0 is the largest element in θ[0, 9], so we move from (0, 0, 0) in the x2
coordinate to point (0,−1, 0). At point (0,−1, 0) the number (+1,−1,+1) · (0,−1, 0) = 1 is
the second smallest element in θ[0, 9], so we move in the x1 coordinate, and so on. Overall
the path is (0, 0, 0) → (0,−1, 0) → (1,−1, 0) → (1,−2, 0) → (2,−2, 0) → (2,−3, 0) →
(2,−3, 1)→ (2,−3, 2)→ (2,−3, 3)→ (2,−3, 4)→ (2,−3, 5).

SoCG 2017

31:8 High Dimensional Consistent Digital Segments

I Definition 8. For any point p ∈ Zd, slope t, and total order θ, we call the collection of
segments {R(p, q) : q ∈ Ot(p)} the total order construction of θ (centered at p) for the slope
t, and denote it by TOC(θ, p, t).

3.2 Properties of the total order construction
I Lemma 9 (Translation Lemma). For any p ∈ Zd, slope t and total order θ, the set of
segments in TOC(θ, p, t) is the translated copy of the set of segments in TOC(θ − t · p, o, t),
where o is the origin.

I Lemma 10. For any p ∈ Zd, slope t and total order θ, the set of segments in TOC(θ, p, t)
forms a partial CDS on {p} × Ot(p).

Proof. This statement is a particular case of Theorem 4: we are interested in segments of a
single slope emanating from a fixed point, whereas Theorem 4 only requires segments of a
fixed slope. The proof given by Christ et al. [3] is for slope (+1, . . . ,+1), but the arguments
extend naturally for the general case. J

Let θ0 be the natural order on the integers (that is, θ0 = {. . . ≺ −1 ≺ 0 ≺ 1 ≺ 2 ≺ . . .}).
Fix any point p ∈ Zd and apply the total order construction TOC(θ, p, t) to all slopes.
Similarly, let θ1 be result of swapping the position of −1 and −2 in θ0 (i.e., θ1 = {. . . ≺
−1 ≺ −2 ≺ 0 ≺ 1 ≺ 2 . . .}). Let C0(p) and C1(p) the union of segments created with each
total order, respectively.

I Proposition 11. C0(p) is a CDR that is included in the bounding box CDS whereas C1(p)
is not a CDR.

3.3 Gluing orthants to obtain CDRs
The second example of Proposition 11 shows an example of a total order that cannot be
applied everywhere to form a CDR. Theorem 5 stated in Section 2.2 shows the relationship
that total orders in different slopes must satisfy in order to create a CDR. Intuitively speaking,
this correlation is so strong that choosing one total order effectively fixes the rest. The
remainder of this section is dedicated to proving this interdependency. We start by showing
the proof of one implication of the equivalence.

I Lemma 12 (Necessary condition for CDRs). Let p ∈ Zd and {θt : t ∈ T} be a set of 2d
total orders such that

⋃
t∈T TOC(θt, p, t) forms a CDR. Then, for any t, t′ ∈ T , it holds that

θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p.

Proof (Sketch). We prove the statement by contradiction. That is, assume that there exist
two slopes t, t′ such that v ≺θt v

′ but v′ − t · p+ t′ · p ≺θt′ v − t · p+ t′ · p. Without loss of
generality, we can choose t and t′ so that the corresponding orthants share a two-dimensional
plane (pick a sequence of intermediate orthants so that pairwise they do, and look at the first
time in which the equality is not satisfied). We pick a point q such that R(p, q) has both slope
t and t′, and look at R(p, q) from both the viewpoints of TOC(θt, p, t) and TOC(θt′ , p, t′).

Along the path R(p, q) we look at two intermediate points r and r′. The main feature of
these points is that the behavior of R(p, q) at those points depends on the positions of v and
v′ in θt (if we look at it from the viewpoint of TOC(θt, p, t)). Since v ≺θt v

′, we can choose q
in a way that the path will move in different directions at the two points. Then, we study
the same segment from the viewpoint of the other orthant. In this case, the behavior of the
same intermediate points will depend on the positions of v′− t · p+ t′ · p and v− t · p+ t′ · p in
the shifted total order instead. Thus, if the relationships are reversed, the two paths behave
differently and in particular we cannot have a CDR. J

M.K. Chiu and M.Korman 31:9

I Lemma 13 (Sufficient condition for CDRs). For any point p ∈ Zd, let {θt : t ∈ T} be a set
of 2d total orders such that θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p for any t, t′ ∈ T . Then,⋃

t∈T TOC(θt, p, t) forms a CDR.

This completely characterizes the CDRs that can be made with the total order construction
in Zd. For any point p, slope t and total order θ, there is a unique CDR that can be created in
this way and contains TOC(θ, p, t). Since the choice of slope is not important, let TOC(θ, p)
be the unique CDR that contains TOC(θ, p, (+1, . . . ,+1)).

I Corollary 14. For any p ∈ Zd there exist arbitrarily many CDRs with O(logn) Hausdorff
distance.

Proof. An explicit construction of a single CDR in Zd with O(logn) Hausdorff distance was
given by Chun et al. [4]. They showed that the CDR generated using the Van der Corput
sequence [9] as total order has low Hausdorff distance (for any dimension). Christ et al. [3]
extended the result showing that the straightness is asymptotically same as the discrepancy of
the permutation corresponding to the total order, which is known to be Θ(logn). Moreover,
for any total order θ with low discrepancy, it holds that θ + k has low discrepancy (for any
k ∈ Z), so the arguments for d = 2 extend directly to the higher dimension construction.
Thus, we omit them. J

4 Necessary and sufficient conditions for CDSs

Next we focus our attention to constructing CDSs. Christ et al. [3] showed that if we apply
the same total order construction to all points of Z2 we get a collection of CDRs whose union
is always a CDS. For any total order θ, let TOC(θ) =

⋃
p∈Zd TOC(θ, p). Unlike the two

dimensional case, the construction TOC(θ) does not always yield a CDS in higher dimensions.
Theorem 6 stated in Section 2.2 gives necessary and sufficient conditions that the total order
must satisfy.

Recall that in principle, we allow different orthants (except (+1, . . . ,+1)) to have different
total orders in this construction. For any point p ∈ Zd and slope t, let θpt be the total
order associated to point p and slope t in TOC(θ). Since TOC(θ) in particular contains
TOC(θ, p), Theorem 5 gives a relationship between θ and θpt . We give a stronger bound on
that relationship as well.

I Theorem 15. If θ is a total order such that TOC(θ) forms a CDS, then for any p ∈ Zd
and slope t it holds that θpt [t · p,∞) = θ[t · p,∞). In particular, TOC(θpt , p, t) = TOC(θ, p, t).

This shows that, if we want to create a CDS in this fashion, we must use the same total
order θ for all points and all slopes. Again, this contrasts with the d = 2 case where we can
combine any two total orders for slopes (+1,+1) and (+1,−1). Christ et al. [3] showed that
if we repeat the construction for all points of Z2 the union will form a CDS. The remainder
of this section is dedicated to showing Theorems 6 and 15.

4.1 Two dimensional preliminaries
We will often consider two dimensional subspaces and find some requirements that extend
to the whole space. Thus, we first show a subtree property that CDS in Z2 must satisfy.
Consider any point p ∈ Z2, slope t, point q ∈ TOC(θpt , p, t) such that q 6= p, and all points
r ∈ Z2 such that R(p, r) passes through q. This set of points (and their paths to q) form a

SoCG 2017

31:10 High Dimensional Consistent Digital Segments

p = (0, 0)

q = (2, 2)

0 ≺ 8 ≺ 4 ≺ 2 ≺ 6 ≺ 9 ≺ 1 ≺ 5 ≺ 3 ≺ 7θpt [0, 9]

⊆ θpt [4, 9]{8, 4} ≺ 6 ≺ 9 ≺ {5, 7}

a b

θpt [0, 3] ≺ 20 ≺ 1 ≺ 3

n = 10

X1(n)

|| ||

|| ||
X3(n)

ia = 4 ib = 7

X2(n)
||

θqt [4, 9]

r = (p1 + ia, n− (p1 + ia)) = (4, 6)
r′ = (ib − 1 + p1, n− (ib − 1 + p1)) = (6, 4)

r

r′

Figure 4 Example of the subtree property. (left) geometric interpretation of the subtree property.
The paths to p that pass through q impose a constraint on θq

t . In particular, a point in the diagonal
x1 + x2 = n will pass through q if and only if it is between r and r′ (highlighted points in the figure).
(right) implications in the total order of θq

t . In red bold we highlight the points that belong to the
left interval. The points in the right interval are classified into the three sets X1(n), X2(n) and
X3(n) according to their positions (left of a, right of b, or in between). The fact that the subtree of
q (black in the left figure) has to be preserved in q implies many relationships for θq

t that are shown
in the third line.

subtree of TOC(θpt , p, t). The same tree must be part of TOC(θqt , q, t) or it would violate
(S3) (see Figure 4, left).

We express this subtree property in terms of total orders θpt and θqt . Assume t = (+1,+1),
let s1, s2 ≥ 0 be integers such that q = p + (s1, s2), and let n be any number such that
n > s1+s2. We will consider the restriction of the total order θpt to three intervals: [t·p, t·q−1],
[t · q, t · p + n − 1], and [t · p, t · p + n − 1]. Note that the union of the first two forms the
third one. In order to reduce notation we call them the left, the right, and the complete
intervals. Similarly, we call θpt [t · p, t · q − 1], θpt [t · q, t · p+ n− 1], and θpt [t · p, t · p+ n− 1]
the left order, the right order and the complete order. The subtree property says that many
inequalities in the right order must also hold in θqt .

First assume that s1, s2 6= 0; let a and b be the s1-th and (s1 + 1)-th smallest numbers
in the left order, respectively. By definition, these two numbers are consecutive in the left
order, but they need not be in the complete order (i.e., there could be numbers from the
right interval).

Let ia and ib be the positions of a and b in the complete order, respectively. We partition
the numbers of the right interval into three groups, depending on whether they are (i) smaller
than a, (ii) larger than a and smaller than b, or (iii) larger than b (all these comparisons
are with respect to θpt). Let X1(n), X2(n), and X3(n) be the three sets, respectively (see
Figure 4).

Before giving the subtree property we extend the definitions of these three sets for the
cases in which s1 and s2 can be zero. If s1 = 0 then a and ia are not well defined (similarly,
b and ib are not defined when s2 = 0). In the first case we set ia = 0, X1(n) = ∅ and classify
the numbers of the right interval into X2(n) and X3(n) depending on whether they are
smaller or larger than b. Similarly, if ib is not defined, we set ib = n + 1, X3(n) = ∅, and
numbers are be split into the two sets X1(n) and X2(n).

The following lemma characterizes the points whose path to/from p passes through q in
the quadrant of (+1,+1).

M.K. Chiu and M.Korman 31:11

I Lemma 16. For any n > s1 + s2, let r ∈ Z2 be a point such that r1 + r2 = p1 + p2 + n.
The path R(p, r) passes through q if and only if r1 ≥ q1, r2 ≥ q2 and ia ≤ r1 − p1 ≤ ib − 1.

I Lemma 17 (The subtree property). For any n > s1 + s2 and u, v ∈ [t · q, t · p+ n− 1], the
following relationships must hold in θqt :

u ≺θq
t
v for all u ∈ X1(n) and v ∈ X2(n),

u ≺θq
t
v for all u ∈ X1(n) ∪X2(n) and v ∈ X3(n),

u ≺θq
t
v for all u, v ∈ X2(n) such that u ≺θp

t
v.

I Remark. Although we have stated the subtree property for slope (+1,+1), it is straightfor-
ward to see that this result extends to other ones. We stick to this notation for simplicity of
exposition, although we will afterwards use it for negative slope as well.

4.2 Application in high dimensional spaces
With the subtree property we can show the first necessary condition of Theorem 6.

I Lemma 18. Let θ be a total order such that TOC(θ) forms a CDS. Then, θ = θ + 2.

Proof. We first give a birdseye overview of the proof: choose an arbitrary λ ∈ Z and consider
the affine plane H = {x3 = λ, x4 = 0, . . . , xd = 0}. In this plane we look at the origin
p = (0, 0), and points q = (0,−1) and r = (−1, 0) (see Figure 5, left). In particular, we look
at the third quadrant (the one with slope (−1,−1)): first, from Theorem 5 we know that
θp(−1,−1) must coincide with θ (on the interval [λ,∞)).

We apply the subtree property from p to q and r; the key property is that both θq(−1,−1)
and θr(−1,−1) coincide with θ + 2 on the interval [λ+ 1,∞). Moreover, all paths to p must
pass through either q or r, which in particular implies that all inequalities from θp(−1,−1)
must also be preserved in either θq(−1,−1) or θr(−1,−1). By combining all of these properties,
we show that θ coincides with θ + 2 on the interval [λ + 1,∞). The result works for any
value of λ, so when λ→ −∞ we get θ = θ + 2 as claimed.

More formally, pick any λ ∈ Z and consider the points p = (0, 0, λ, 0, . . . 0), q =
(0,−1, λ, 0, . . . , 0) and r = (−1, 0, λ, 0, 0, . . . , 0). By construction, these points lie on the
affine plane H = {x3 = λ, x4 = 0, . . . , xd = 0} as claimed.

Let t = (+1, . . . ,+1) and t′ = (−1,−1,+1, . . . ,+1). By definition of TOC(θ) we have
θpt = θqt = θrt = θ. We use Theorem 5 to determine the total order used at slope t′ for the
three points: θpt′ [t′ · p,∞) = θpt [t · p,∞) − t · p + t′ · p = θ[t · p,∞) − t · p + t′ · p = θ[λ,∞).
Similarly, at point q we have θqt′ [λ+ 1,∞) = θ[λ− 1,∞) + 2 = (θ+ 2)[λ+ 1,∞) and at point
r we have θrt′ [λ+ 1,∞) = (θ + 2)[λ+ 1,∞) (The six total orders and their relevant orthants
are depicted in Figure 5, right).

For any n > 0 consider the bounded interval [λ, λ+ n− 1]. We apply Lemma 17 in the
third quadrant to obtain relationships between θpt′ , θ

q
t′ and θrt′ . Let Xpq

1 (n), Xpq
2 (n), and

Xpq
3 (n) be the partition in the three sets obtained when applying the subtree property to p

and q (similarly, we define the sets Xpr
i). Since we are applying it to the third quadrant and

in particular the axis-order is x2, x1, we must swap the definitions of s1 and s2 (i.e., s1 will
be equal to the difference in the x2 coordinate of p and q).

For the pair p, q we have s1 = 1, s2 = 0. Thus the left interval consists of the singleton
[λ, λ], the right interval is [λ+ 1, λ+ n− 1], Xpq

3 (n) = ∅ and we are splitting the numbers of
the right interval into sets Xpq

1 (n) and Xpq
2 (n) depending on whether or not they are larger

than λ. That is,

Xpq
1 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : i ≺θp

t′
λ} ,

Xpq
2 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : λ ≺θp

t′
i} .

SoCG 2017

31:12 High Dimensional Consistent Digital Segments

p

Q1

Q3

q

p

θ[λ,∞)

θ[λ,∞)

r

θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

q

θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

x1

x2

r

Figure 5 An example of the CDR at p is shown on the left hand side and the relationships
between the total orders for the different quadrants at p, q and r on the right hand side. The
subtrees at q and at r in Q3 are represented by solid blue and dashed red segments respectively. In
the example θ[0, 8] = {2 ≺ 8 ≺ 4 ≺ 0 ≺ 6 ≺ 9 ≺ 1 ≺ 5 ≺ 3 ≺ 7}.

Applying the subtree property to the pair p, r gives a similar partition. In this case, the
three sets become Xpr

1 (n) = ∅, Xpr
2 (n) = [λ+ 1, λ+ n− 1]∩ {i ∈ Z : i ≺θp

t′
λ} = Xpq

1 (n), and
Xpr

3 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : λ ≺θp

t′
i} = Xpq

2 (n).
The sets Xpq

i imply some constraints on θqt′ (similarly, Xpr
i gives constraints on θrt′).

Recall that we previously observed that θqt′ [λ + 1,∞) = θpt′ [λ + 1,∞) = (θ + 2)[λ + 1,∞),
which in particular implies that all constraints of the subtree property apply to θ + 2.

Xpq
2 (n) says that all relationships in θpt′ [λ+ 1, λ+ n− 1] are preserved for numbers that

are larger than λ in θpt′ . Similarly, Xpr
2 (n) says that relationships for numbers smaller than

λ must also be preserved. Thus, we conclude that all relationships (both larger and smaller
than λ) must be preserved. Hence, we conclude that θpt′ [λ+ 1, λ+ n− 1] ⊂ (θ + 2)[λ+ 1,∞).
This reasoning applies for any values of λ ∈ Z, and n > 0. In particular, when λ→ −∞ and
n→∞ we get θ = θ + 2 as claimed. J

With this result we can now show Theorem 15.

(Proof of Theorem 15). Let t′ = (+1, . . . ,+1) and note that, by definition, we have θpt′ = θ.
We apply Theorem 5 and obtain θpt [t·p,∞) = θpt′ [t′·p,∞)−t′·p+t·p = θ[t′·p,∞)−t′·p+t·p. The
term −t′ ·p+t ·p must be an even number (since each coordinate of vector t−t′ is either a zero
or a two). Thus, we can apply θ = θ+2 repeatedly until we get θ[t′·p,∞)−t′·p+t·p = θ[t·p,∞)
as claimed. J

Specifically, we give two necessary conditions that together are also sufficient. The two
conditions are derived from the axioms S1-S5. The first necessary condition is θ = θ + 2,
which is already proved in Lemma 18.

The other necessary condition derives from the symmetry axiom (S2) of CDSs.

I Lemma 19 (Necessary condition 2 for CDSs). Any total order such that TOC(θ) forms a
CDS satisfies that θ = −(θ + 1)−1.

Proof (Sketch). This proof follows the same spirit as Theorem 5, but using the symmetry
axiom instead. For any two numbers a, b such that such that a ≺θ b we choose two points
p, q ∈ Zd and look at R(p, q). In particular, we look at two specific intermediate points r

M.K. Chiu and M.Korman 31:13

and s. The key property of these two points is that the behavior of R(p, q) around those
points is determined by the positions of a and b in θ. Then, we look at the symmetric path
R(q, p) and show that the behavior around the same intermediate points now depends on
the positions of −b− 1 and −a− 1. In order to satisfy the symmetry axiom, the return path
R(q, p) has to be the same and thus we must have −b− 1 ≺θ −a− 1. J

This completes one side of the implication of Theorem 6. In order to complete the proof
we show that the two requirements for θ are also sufficient.

I Lemma 20 (Sufficient condition for CDSs). Let θ be a total order that satisfies θ + 2 = θ

and θ = −(θ + 1)−1. Then, TOC(θ) forms a CDS.

5 Characterization of necessary and sufficient conditions

Let F be the collection of total orders of Z that satisfy the necessary and sufficient conditions
of Theorem 6. In order to bound the Hausdorff distance of the CDS associated to these
constructions, we must give properties of total orders in F .

I Observation 21. All odd numbers appear monotonically in any total order θ that satisfies
θ = θ + 2. The same holds for even numbers.

The above result follows from repeatedly applying the fact that a ≺θ b⇔ a+ 2 ≺θ b+ 2.
The second necessary condition also gives a strong relationship between odd and even
numbers.

I Observation 22. Let θ be a total order such that θ = −(θ + 1)−1. Then, it holds that
0 ≺θ 2⇔ −3 ≺θ −1.

By combining the previous two observations we get that either both odd and even numbers
increase monotonically for any θ ∈ F or both decrease monotonically. Next we study the
relationship between odd and even numbers.

I Lemma 23. Let θ ∈ F be a total order in which two numbers of the same parity are
consecutive in θ. Then, it holds that 1 ≺θ 2⇔ 2q + 1 ≺θ 2q′ for all q, q′ ∈ Z.

I Corollary 24. There are exactly four total orders in F in which two numbers of the same
parity are consecutive.

Proof. Let θ ∈ F be any such total order. By Lemma 23 either all odd numbers appear
before all even numbers or vice versa. There are four cases depending on whether 0 ≺θ 2
or 2 ≺θ 0 and 1 ≺θ 2 or 2 ≺θ 1. The first inequality determines whether all even numbers
appear monotonically increasing or decreasing in θ (by Observations 21 and 22 this also
determines the order of all odd numbers). The second inequality determines whether odd
numbers are smaller or larger (with respect to ≺θ) than the even ones. Thus, under the
assumption that two numbers of the same parity are consecutive in θ, only the following four
orders exist:

τo+e+ = {. . . ≺ 1 ≺ 3 ≺ 5 ≺ . . . ≺ 0 ≺ 2 ≺ 4 ≺ . . .},
τo−e− = {. . . ≺ 5 ≺ 3 ≺ 1 ≺ . . . ≺ 4 ≺ 2 ≺ 0 ≺ . . .},
τe+o+ = (τo−e−)−1 = {. . . ≺ 0 ≺ 2 ≺ 4 ≺ . . . ≺ 1 ≺ 3 ≺ 5 ≺ . . .},
τe−o− = (τo+e+)−1 = {. . . ≺ 4 ≺ 2 ≺ 0 ≺ . . . ≺ 5 ≺ 3 ≺ 1 ≺ . . .}.

J

SoCG 2017

31:14 High Dimensional Consistent Digital Segments

It remains to consider the case in which θ ∈ F is a total order in which no two numbers
of the same parity appear consecutively. That is, we have an odd number followed by an
even number, followed by an odd number, and so on. For any q ∈ Z, let αq be the unique
total order satisfying 0 ≺αq 2q + 1 ≺αq 2 ≺αq 2q + 3 and αq = αq + 2.

I Theorem 25. F = {τo+e+ , τo−e− , τe+o+ , τe−o−} ∪ {αq : q ∈ Z} ∪ {(αq)−1 : q ∈ Z}

This completely characterizes the set F of total orders, and allows us to find a lower
bound on the Hausdorff distance of the associated CDSs.

I Theorem 26. For any p = (p1, . . . , pd) ∈ Zd, total order θ ∈ F and n > 0, there exists a
point q ∈ Zd such that ||p− q||1 = 6n and H(pq,R(p, q)) ≥ 2

√
5n

5 .

Proof (Sketch). Pick a point q sufficiently far from p and look at one every other step in
the path R(p, q). The way in which the path behaves will depend on the position of the odd
numbers of θ (or even numbers depending on the parity of the starting point). Since odd and
even numbers appear monotonically in θ, the path will do all steps in one direction before
moving into a different one. Intuitively speaking, the movements in the odd numbers will
form a bounding box and so will the movements in the even numbers (although the path is
not necessarily the bounding box CDS). J

I Remark. First notice that a linear upper bound in the Hausdorff distance trivially follows
from the monotonicity axiom. Although asymptotically speaking our construction has the
same Hausdorff distance as the bounding box CDS, it can be seen that our leading constant
is roughly twice smaller: for points whose L1 distance is at most n, the bounding box CDS
has an error of

√
2n
4 ≈ 0.3n whereas, say, TOC(τo+e+) has an error of

√
5n

15 ≈ 0.15n.

6 Conclusions

Increasing the dimension from two to three brings a significant change in the associated
constraints for creating CDRs and CDSs. Although we have not been able to create a CDS
with o(n) Hausdorff distance, we believe that the results presented in this paper provide
the first significant step towards this goal. The next natural step would be to consider
constructions that apply different total orders to different points of Zd.

For simplicity of exposition, we have defined the CDS as the union of CDRs at all
points. The construction of Christ et al. [3] considers the union of half CDRs instead (CDRs
that are defined for only half of the slopes, such as slopes that satisfy t1 = +1). We note
that the same result would follow if we use their approach. Indeed, in order to derive the
two necessary conditions, we have only looked at two slopes. For simplicity we have used
(+1, . . . ,+1) and (−1,−1,+1, . . . ,+1), but the same result follows for any two slopes that
differ in two coordinates. Thus, constructing CDSs by gluing half CDRs would result in the
same necessary and sufficient constraints.

Similarly, one could consider using some kind of priority between slopes (say, lexicograph-
ical) so that if p and q are in more than one orthant, only the definition of R(p, q) in the
lexicographically smallest slope is considered. This removes the dependency between orthants
(Theorem 5), but has a consistency problem: we can find three points p, q, q′ ∈ Zd such that
R(p, q) and R(p, q′) have different slopes, but the intersection of the two segments is not
connected (such as in Figure 6).

M.K. Chiu and M.Korman 31:15

x2

x1

x3

p

q′

q

Figure 6 Removing dependency between orthants can create inconsistencies between them.

Acknowledgements. The authors would like to thank Takeshi Tokuyama and Matthew
Gibson for their valuable comments during the creation of this paper, as well as the anonymous
reviewers whose comments have helped in improving the quality of the paper.

References
1 Iffat Chowdhury and Matt Gibson. A characterization of consistent digital line segments in

Z2. In Proceedings of the 23rd Annual European Symposium on Algorithms, pages 337–348,
2015.

2 Iffat Chowdhury and Matt Gibson. Constructing consistent digital line segments. In Pro-
ceedings of the 12th Latin American Theoretical Informatics Symposium, pages 263–274,
2016.

3 Tobias Christ, Dömötör Pálvölgyi, and Miloš Stojaković. Consistent digital line segments.
Discrete & Computational Geometry, 47(4):691–710, 2012.

4 Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama. Consistent
digital rays. Discrete and Computational Geometry, 42(3):359–378, 2009.

5 Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanenbaum. Snap
rounding line segments efficiently in two and three dimensions. In Proceedings of the 13th
Annual Symposium on Computational Geometry, pages 284–293, 1997.

6 Daniel H. Greene and F. Frances Yao. Finite-resolution computational geometry. In Proceed-
ings of the 27th Annual Symposium on Foundations of Computer Science, pages 143–152,
1986.

7 M.G. Luby. Grid geometries which preserve properties of Euclidean geometry: A study of
graphics line drawing algorithms. In NATO Conference on Graphics/CAD, pages 397–432,
1987.

8 Kokichi Sugihara. Robust geometric computation based on topological consistency. In
Proceedings of the 9th International Conference on Computational Science, pages 12–26,
2001.

9 Johannes van der Corput. Verteilungsfunktionen I & II (in german). Proceedings of the
Koninklijke Nederlandse Akademie van Wetenschappen, 38:813–820, 1058–1066, 1935.

SoCG 2017

TSP With Locational Uncertainty: The
Adversarial Model∗†

Gui Citovsky1, Tyler Mayer2, and Joseph S. B. Mitchell3

1 Google Manhattan, New York, NY, USA
gcitovsky@gmail.com

2 Dept. of Applied Mathematics and Statistics, Stony Brook University, Stony
Brook, NY, USA
tyler.mayer@stonybrook.edu

3 Dept. of Applied Mathematics and Statistics, Stony Brook University, Stony
Brook, NY, USA
joseph.mitchell@stonybrook.edu

Abstract
In this paper we study a natural special case of the Traveling Salesman Problem (TSP) with
point-locational-uncertainty which we will call the adversarial TSP problem (ATSP). Given a
metric space (X, d) and a set of subsets R = {R1, R2, ..., Rn} : Ri ⊆ X, the goal is to devise an
ordering of the regions, σR, that the tour will visit such that when a single point is chosen from
each region, the induced tour over those points in the ordering prescribed by σR is as short as
possible. Unlike the classical locational-uncertainty-TSP problem, which focuses on minimizing
the expected length of such a tour when the point within each region is chosen according to some
probability distribution, here, we focus on the adversarial model in which once the choice of σR
is announced, an adversary selects a point from each region in order to make the resulting tour as
long as possible. In other words, we consider an offline problem in which the goal is to determine
an ordering of the regions R that is optimal with respect to the “worst” point possible within each
region being chosen by an adversary, who knows the chosen ordering. We give a 3-approximation
when R is a set of arbitrary regions/sets of points in a metric space. We show how geometry
leads to improved constant factor approximations when regions are parallel line segments of the
same lengths, and a polynomial-time approximation scheme (PTAS) for the important special
case in which R is a set of disjoint unit disks in the plane.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases traveling salesperson problem, TSP with neighborhoods, approximation
algorithms, uncertainty

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.32

1 Introduction

We consider the travelling salesperson problem (TSP) on uncertain sites. We are given as
input a set of n uncertainty regions R = {R1, R2, . . . , Rn}, each of which is known to contain
exactly one site that must be visited by the tour. In the standard TSP, the regions Ri are
singleton points. In the TSP with neighborhoods (TSPN), or one-of-a-set TSP, model, the

∗ A full version of the paper is available at https://arxiv.org/abs/1705.06180.
† This research was partially supported by the National Science Foundation (CCF-1526406).

© Gui Citovsky, Tyler Mayer, and Joseph S.B. Mitchell;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.32
https://arxiv.org/abs/1705.06180
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 TSP With Locational Uncertainty: The Adversarial Model

(a) Optimal solution ≈ n (b) T SPc
(c) Adversarial tour on T SPc

ordering ≈
√

2n

Figure 1 TSP on center points ordering does not always provide an optimal solution to ATSP.

goal is to compute an optimal tour that visits some point of each region Ri, and we are
allowed to pick any point pi ∈ Ri to visit, making this choice in the most advantageous way
possible, to minimize the length of the resulting tour that we compute. In models of TSP
with locational uncertainty, the regions Ri model the support sets of probability distributions
for the uncertain locations of the (random variable) sites pi. The objective, then, may be
to optimize some statistic of the tour length; e.g., we may wish to minimize the expected
tour length, or minimize the probability that the tour length is greater than some threshold,
etc. In this paper, we study the version of the stochastic TSP model in which our goal is to
optimize for the worst case choice of pi within each Ri. We call this problem the adversarial
TSP, or ATSP, as one can think of the choice of pi within each Ri as being made by an
adversary. Our goal is to compute a permutation σR on the regions Ri so that we minimize
the length of the resulting tour on the points pi, assuming that an adversary makes the
choice of pi ∈ Ri, given our announced permutation σR on the regions. While the TSPN
seeks an optimal tour for the best choices of pi ∈ Ri, the ATSP seeks an optimal tour for the
worst choices of pi ∈ Ri.

Another motivation for the ATSP solution is that one may seek a single permutation of
the set of input sets Ri so that the permutation is “good” (controls the worst-case choices of
pi ∈ Ri) for any of the numerous (|R1| · |R2| · |R3| · · · |Rn|) instances of TSP associated with
the sets Ri, thereby avoiding repeated computations of TSP tours. In certain vehicle routing
applications, it may also be beneficial to establish a fixed ordering of visits to clients, even if
the specific locations of these visits may vary in the sets Ri. Further, in locationally uncertain
TSP one may expect that probability distributions over the regions Ri are imperfect and not
known precisely, and that customer locations are known imprecisely (possibly for privacy
concerns, with deliberate noise added for protecting the identity/privacy of users), making it
important to optimize over all possible choices of site locations.

In Figure 1 we give a simple example showing that the ordering given by a TSP on center
points (TSPc) can be suboptimal, by at least a factor of

√
2. The input R is a

√
n ×
√
n

grid of vertical unit-length line segments with distance 1 between midpoints of horizontally
adjacent segments and with distance 1 + ε between midpoints of vertically adjacent segments.
In Figure 2 we show that the ordering prescribed by a TSPN over the input regions can be
at least a factor 2 away from optimal. The input is a set of n segments, n/2 of which have
length 1, and the remainder have length ε; they are arranged in alternating order radially
around a point or the boundary of a small circle.

In this paper, we initiate the study of the ATSP. We give a 3-approximation when R is
a set of arbitrary regions/sets of points in a metric space. We exploit geometry to give an
improved approximation bound for the case of regions that are unit line segments of the
same orientation in the plane; we compute a permutation with adversarial tour length at

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:3

(a) Optimal solution ≈ n/2 (b) TSPN (c) Adversarial tour on TSPN
ordering ≈ n

Figure 2 TSPN ordering does not always provide an optimal solution to ATSP.

most (7/3 + ε)|OPT | + 1, where |OPT | is the length of an optimal solution. We further
exploit geometry to give a polynomial time approximation scheme (PTAS) for the important
special case when R is a set of disjoint unit disks in the plane.

Related Work

Geometric problems on imprecise points have been the subject of many recent investigations.
Löffler et al. [11] study, given a set of n uncertainty regions in the plane, the problem of
selecting a single point within each region so that the area of the resulting convex hull is
as large/small as possible. They show a number of results, including an O(n3)-time and an
O(n7)-time exact algorithm for maximizing the area of the convex hull of selected points
when the uncertainty regions are parallel line segments and disjoint axis aligned squares
respectively. They show that this problem is NP-Hard when the regions are line segments
with arbitrary orientations. In the same paper, Löffler et al. show that the problem of
selecting a point within each region so that the resulting minimum spanning tree over those
points is as small as possible is NP-Hard when the uncertainty regions are overlapping disks
and squares. In his thesis [6], Fraser extends the prior minimum spanning tree result to show
that the problem is still NP-Hard even when the regions are pairwise disjoint. He provides
several constant factor approximation algorithms for the special case of disjoint disks in the
plane. Dorrigiv et al. [4] show that neither the minimization nor the maximization version
of this problem admit an FPTAS when the regions are disjoint disks. Yang et al. [16] give
a PTAS for the minimization version. In a thesis by Montanari [15], it is shown that the
minimization version when the input regions are vertically or horizontally aligned segments is
NP-Hard and that this problem does not admit a FPTAS. Interestingly, in another paper by
Liu and Montanari [10] it is shown that selecting a point from each region so that diameter
of a minimum spanning tree on the selected points is minimized is polynomially solvable
when the regions are arbitrary sized (possibly overlapping) disks in the plane.

Montanari [15] also studies the problem of placing a single point within each region so
that the resulting shortest s, t path is either maximized or minimized. They show that the
minimization version of this problem can be solved in polynomial time in the L1 metric
when the polygons are rectilinear (not necessarily disjoint, or convex). They also show
that the maximization version of the problem is NP-Hard to approximate to any factor
(1− ε) : ε < 1/4 even in the case where the polygons are vertically aligned segments.

There has been a considerable amount of work done on studying TSP variants with
point-existential uncertainty. Two main models in the literature are the a priori model
proposed by Bertsimas et al. [2] and Jaillet [7], in which each point xi (with a known, fixed,
location) is independently present with probability pi, and the universal model [8], which
asks for a tour over the entire data set such that for any subset of active requests, the master
tour restricted to this active subset is close to optimal.

SoCG 2017

32:4 TSP With Locational Uncertainty: The Adversarial Model

The TSP with neighborhoods (TSPN) problem was introduced by Arkin and Hassin [1] and
has been studied extensively from the perspective of approximation algorithms, particularly
in geometric domains (see, e.g.,[13]). Kamousi et al [9] study a stochastic TSPN model where
each client lies within a region, a disk with a fixed center and stochastic radius.

Preliminaries

We are given regions R = {R1, R2, . . . , Rn}, with each Ri a subset of a metric space (X, d).
We seek a cyclic permutation σ = (σ1, σ2, . . . , σn) (an ordering) of the regions R, in order to
minimize the length, maxpi∈Ri

[d(pσ1 , pσ2) + d(pσ2 , pσ3) + · · ·+ d(pσn−1 , pσn
) + d(pσn

, pσ1)],
of a cycle on adversarial choices of the points in the respective regions. We let σ∗R denote
an optimal ordering for R, and we let |OPT | denote the length of the corresponding cycle,
OPT , that is based on the optimal adversarial choices of the points pi ∈ Ri, for the ordering
σ∗R. The following lemmas are shown in the full paper [3].

I Lemma 1. The length, |OPT |, of OPT satisfies TSPN∗ ≤ |OPT | ≤ TSPN∗+
∑
Ri∈R 2 ·

diam(Ri), where TSPN∗ is the length of an optimal TSPN tour on the regions R, and
diam(Ri) denotes the diameter of region Ri ∈ R.

I Lemma 2. For a set R of convex regions in the Euclidean plane, and any ordering σ of
the regions R, any longest cycle corresponding to an adversarial choice of points pi ∈ Ri
is a polygonal cycle, with edges (pσi

, pσi+1) and with each point pσi
an extreme point of its

corresponding region, Rσi
.

2 3-Approximation for Arbitrary Regions in a Metric Space

We begin by giving a 3-approximation to the ATSP problem when R is a set of arbitrary
regions in a metric space.

Consider the complete graph Ĝ whose nodes are the regions R and whose edges join
every pair of regions with an edge, (Ri, Rj), whose weight is defined to be w(Ri, Rj) =
maxs∈Ri,t∈Rj

{d(s, t)}, the maximum distance between a point s ∈ Ri and a point t ∈ Rj .
For distinction, we will speak of edge “weights” in the graph Ĝ and of edge “lengths” in the
original metric space (X, d). It is not hard to see that the edge-weighted graph Ĝ defines a
metric (see the full paper [3]).

I Lemma 3. An optimal TSP tour in Ĝ yields a 2-approximation to the ATSP on R.

Proof. Let σ∗R =< R∗1, R
∗
2, ..., R

∗
n > be an optimal (cyclic) permutation of the regions R for

the adversarial TSP on R, and let p∗i ∈ R∗i be the adversary’s choice of points corresponding
to σ∗R. Then, |OPT | = d(p∗1, p∗2) + d(p∗2, p∗3) + · · · + d(p∗n, p∗1) is the length of the cycle
C =< p∗1, p

∗
2, . . . , p

∗
n >, an optimal adversarial TSP solution.

Let wσ∗
R

= w(R∗1, R∗2) + w(R∗2, R∗3) + · · ·+ w(R∗n, R∗1) be the total weight of the cycle σ∗R
in Ĝ. Let w∗TSP be the total weight of a minimum-weight Hamiltonian cycle, given by (cycle)
permutation σTSP , in Ĝ; then, w∗TSP ≤ wσ∗

R
.

Our goal is to show that the permutation σTSP yields a 2-approximation for the adversarial
TSP on R. Since the length of the adversarial cycle corresponding to σTSP is at most wTSP ,
and since w∗TSP ≤ wσ∗

R
, it suffices to show that wσ∗

R
≤ 2|OPT |.

Consider the cycle C =< p∗1, p
∗
2, . . . , p

∗
n > whose length is |OPT |. If we modify C by

choosing points within each region R∗i differently from p∗i ∈ R∗i , the length of C can only go
down, since the points p∗i were chosen adversarially to make the cycle C as long as possible
(for the given permutation σ∗R). Consider two copies of C (of total length 2|OPT |); we will

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:5

modify these two cycles into two (possibly shorter) cycles, C1 and C2, by making different
choices for the points in each region R∗i .

Consider first the case that n is even. Then, we define C1 to be the modification of cycle
C in which the points are chosen in regions R∗i in order to maximize the lengths of the
“odd” edges, (R∗1, R∗2), (R∗3, R∗4), . . . , (R∗n−1, R

∗
n), and we define C2 to be the modification of

cycle C in which the points are chosen in regions R∗i in order to maximize the lengths of
the “even” edges, (R∗2, R∗3), (R∗4, R∗5), . . . , (R∗n, R∗1). The cycle C1, then, has length at least
w(R∗1, R∗2) +w(R∗3, R∗4) + · · ·+w(R∗n−1, R

∗
n), the total weights of the odd edges in the cycle in

Ĝ corresponding to σ∗R. Similarly, the cycle C2 has length at least w(R∗2, R∗3) + w(R∗4, R∗5) +
· · ·+ w(R∗n, R∗1), the total weights of the even edges in the cycle in Ĝ corresponding to σ∗R.
Together, then, the lengths of the two cycles C1 and C2 total at least the weight, wσ∗

R
, of the

cycle σ∗R in the graph Ĝ. Since each of the weights of C1 and C2 are at most |OPT | (the
weight of C), we conclude that wσ∗

R
≤ 2|OPT |, as claimed.

The case in which n is odd is handled similarly; details appear in the full paper [3]. J

I Theorem 4. The permutation σR corresponding to a Christofides 3/2-approximate TSP
tour in Ĝ yields a 3-approximation to the adversarial TSP on R.

3 Unit Line Segments of the Same Orientation in the Plane

In this section, we assume that R consists of a set of n unit-length segments of the same
orientation; without loss of generality, we assume the segments are vertical. We show that
the ordering, TSPc, given by an optimal TSP tour on the segment center points yields an
adversarial tour of length at most (7/3)|OPT |+ 1; thus, a PTAS to approximate TSPc yields
an algorithm with adversarial tour length at most (7/3 + ε)|OPT |+ 1, for any fixed ε.

I Lemma 5. For the ATSP on a set R of unit vertical segments in the plane, |OPT | ≥ TSP ∗c ,
where TSP ∗c is the length of an optimal TSP tour on the segment center points.

Proof. Consider an ATSP optimal ordering σ∗R of the vertical segments R. The cycle γc
that visits the center points of segments R in the order σ∗R has length at least TSP ∗c , and
the length, |OPT |, of an adversarial cycle for σ∗R is at least the length of γc. J

I Lemma 6. |OPT | ≥ 3
4 (n− 1) when n is odd and |OPT | ≥ 3

4n when n is even.

Proof. It suffices to show the claim for ATSP paths; an ATSP cycle is at least as long. The
proof is by induction on n = |R|. First, suppose that n is odd. The base case is trivially
true. Assume that the claim holds for n ≤ k, for k odd. Next, consider an instance S′ with
k + 2 segments. We know that for the first k segments in an optimal permutation for S′,
that |OPT | ≥ 3

4 (k − 1). Next, we show that regardless of the placement of the next two unit
segments in S′, sk+1 and sk+2, an adversary can make us pay at least 3/2 units for every
independent pair of consecutive segments in σ∗S . We can assume that (vertical) segments
sk+1 and sk+2 are vertically collinear. Next we assume, without loss of generality, that sk+2
is above sk+1. Let a be the point on sk that the adversary chose; refer to Figure 3. Let b1
(resp., c1) be the top endpoint of sk+1 (resp., sk+2). Let b2 (resp. c2) be the bottom endpoint
of sk+1 (resp., sk+2). Now, let |b1a| = x and |c2b1| = y. This implies that |ab2| = 1 − x,
|c2b2| = 1− y and |c1b1| = 1− y. The three candidate routes for the adversary to take are
(a, b2, c1) or (a, b1, c2) or (a, b1, c1). These paths have lengths 3 − x − y, x + y, x + 1 − y,
respectively. Thus, we solve min−maxx,y{{3−x−y, x+y, x+1−y} : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
to find the minimum possible length of the adversarial route; the solution is 3/2. Thus, the
adversary can make us pay 3/2 for each pair of segments; thus, |OPT | ≥ 3

4 (n− 1) for n odd.

SoCG 2017

32:6 TSP With Locational Uncertainty: The Adversarial Model

x

1− x

y

1− y

1− y

a

b1

b2

c1

c2

sk+1

sk+2

Figure 3 Illustration of the induction step in the proof of Lemma 6.

In the case that n is even, the adversary can make us pay at least 3/2 between every
consecutive pair of segments in the optimal ordering; thus, |OPT | ≥ 3

4n. J

I Theorem 7. For the ATSP on a set R of unit-length vertical segments, the ordering given
by an optimal TSP on the segment center points yields an adversarial tour of length at
most (7/3)|OPT |+ 1. Thus, a PTAS for the TSP on center points yields an approximation
algorithm for ATSP, with tour length at most (7/3 + ε)|OPT |+ 1.

Proof. Let APXc be the ordering in which the segments are visited by a (1 + ε)-approximate
TSP tour on their center points, and let |APXc| be the cost of the resulting adversarial
tour for this ordering. We know that |APXc| ≤ |TSPc| + n, where |TSPc| is the length
of an optimal TSP on center points, since a tour on the center points can be made to
detour to either endpoint and back, for each segment, at a total increase in length of n.
Since |TSPc| ≤ |OPT | (by Lemma 5) and n ≤ 4/3|OPT |+ 1 (by Lemma 6), we have that
|APX| ≤ (7/3 + ε)|OPT |+ 1. J

4 PTAS for Disjoint Unit Disks in the Plane

In this section we give a PTAS for the adversarial TSP problem when the regions R =
{d1, . . . , dn} are n disjoint unit-diameter disks in the plane. We employ the m-guillotine
method [12], which has been applied to give approximation schemes for a wide variety of
geometric network optimization problems, including the Euclidean TSP and the TSP with
Neighborhoods (TSPN) when the regions are disjoint disks or fat regions in the plane [5, 14].

The challenge in applying known PTAS techniques is being able to handle the adversarial
nature of the tour. For the TSPN problem, one computes (using dynamic programming) a
shortest connected m-guillotine, Eulerian, spanning subgraph of the regions; a tour visiting
each region can then be extracted from this network. A structure lemma shows that an
optimal TSPN solution can be converted to an m-guillotine solution whose weight is at most
(1 + ε)|OPT |. Since m-guillotine networks have a recursive structure, we can apply dynamic
programming in order to find the cheapest such structure over the input. Then, by extracting
a tour from the optimal m-guillotine network, we obtain a permutation of the input disks, as
well as a particular point within each region that the tour visits.

For the ATSP problem, we require new ideas and a new structure theorem to account
for the fact that our algorithm must search for a permutation of the input disks that is
good with respect to an adversarial path through the ordered disks. We seek to optimize
a network that has a recursive structure (to allow dynamic programming to be applied)
and that yields an ordering of the disks so that the length of the adversary’s tour is “very

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:7

close” to optimal among all possible permutations. We do this by searching for a shortest
(embedded) network having an m-guillotine structure that has additional properties that
guarantee that the adversary’s path through the sequence of regions we compute is not much
longer than that of the network we compute. To accomplish this, we will require several
structural results about an optimal solution to ATSP.

4.1 Discretization and a Structural Theorem
In order to make our problem and our algorithm discrete, for a fixed integer m = O(1/ε), we
place m sample points evenly spaced around the boundaries of each of the n disks di ∈ R.
Let G be the set of all nm sample points. Let EG denote the set of edges (line segments)
between two sample points of G that lie on the boundaries of different disks of R. The
following lemma shows that for any adversarial (polygonal) tour T associated with σR there
is a polygonal tour T ′ visiting the sequence σR whose vertices are among the sample points
G and whose length is at least (1−O(1/m))|T |.

I Lemma 8. Given an adversarial (polygonal) path/cycle, T , associated with a sequence σR
of input disks, there is a polygonal path/cycle T ′ that visits sample points G, exactly one per
disk, in the order σR, such that |T | ≤ (1 +O(1/m))|T ′|.

Proof. We let T ′ be the path/cycle obtained from T by rounding each of its vertices to the
closest sample point of the associated (unit-diameter) disk. This rounding results in each
edge decreasing in length by at most 2 · πm , since the sample points are spaced on the disk
boundary at distance (along the boundary) of 2π(1/2)

m . Thus, |T | ≤ |T ′|+ 2π
m n. We obtain a

lower bound on |T ′|, in terms of n, using an area argument (as done in [5], but included here
for completeness). Let A(T ′) be the area swept by a disk of radius 1 whose center traverses
T ′; it is well known that the area swept by a disk of radius δ whose center moves on a curve
of length λ is at most 2δλ+πδ2, implying that A(T ′) ≤ 2|T ′|+π. Since T ′ meets all n of the
unit-diameter disks di, we know that A(T ′) ≥ n · π(1/2)2. Thus, n ≤ (8/π)|T ′|+ 4 ≤ O(|T ′|)
(assuming that |T ′| ≥ c, for some constant c, which holds if n ≥ 2). Since n ≤ O(|T ′|), the
inequality |T | ≤ |T ′|+ 2π

m n implies that |T | ≤ (1 +O(1/m))|T ′|, as desired. J

A corollary of Lemma 8 is that, for purposes of obtaining a PTAS, it suffices to search
for an optimal adversarial tour in the discrete graph of edges EG on sample points.

For two consecutive disks, di and di+1 in an ordering σR, we refer to the convex hull of
di and di+1 as the fat edge associated with (di, di+1). The collection of such fat edges will be
called the convex hull tour associated with σR.

I Theorem 9. No point p ∈ R2 in the plane lies within more than a constant number of fat
edges of the convex hull tour, OPT , associated with an optimal ordering σ∗R.

Proof. Consider an arbitrary point p ∈ R2 and consider its intersection with the convex hull
tour of OPT . Center a disk Dp, of radius K centered at p, with K = O(1) a constant to be
determined later. Since the disks di are disjoint, there are only a constant number (O(K2))
that intersect Dp. We remove from R these disks, as well as the (at most two) disks adjacent
to them in the tour OPT . Let R′ be the remaining set of disks after these (constant number
of) disks are removed from R.

We claim that p is contained in no more than a constant number of the fat edges of
OPT joining two disks of R′. Assume to the contrary that more than a constant number
of remaining fat edges of the convex hull tour of OPT connecting disks of R′ contain p.
Consider two such fat edges, (d1, d2) and (d3, d4), containing p in the region where they

SoCG 2017

32:8 TSP With Locational Uncertainty: The Adversarial Model

p

d1

d2

d3

d4

v1

v4

v3

v2
p′

(a) Case 1.

d1

d2

d3

d5

d4

d6

v1
v4

v6

v5
v3

v2

p
p′

(b) Case 2.

Figure 4 Case analysis for fat edge swapping.

properly cross. Each of these fat edges must pass “nearly” diametrically across Dp. That
is they must cross Dp in such a way that they contain its center point p. We will show
that by uncrossing these two fat edges we obtain a strictly shorter adversarial tour, thereby
contradicting the optimality assumption. Suppose, without loss of generality, that, in order to
preserve connectivity, the uncrossing replaces (d1, d2) and (d3, d4) with (d1, d4) and (d3, d2).
Let vi be the point of intersection closest to di where the adversarial edge incident on di
crosses the boundary of Dp. There are two cases.

Case 1: First suppose that ∠v1p
′v4 = ∠v3p

′v2 ≤ π/2, where p′ is the point where the
adversarial edges correspond to (d1, d2) and (d3, d4) cross; refer to Figure 4a. Note that we
could delete the portions of adversarial edges (v1, v2), and (v3, v4) crossing Dp and replace
these with the two portions of the circumference of Dp connecting points v1, v4 and v2, v3
(see Figure 4a). In deleting the portions of the adversarial edges which intersect the interior
of Dp, we saved at least 4

√
K2 − 1. This value comes from the fact that the adversarial edge

is contained within the fat edge connecting these two disks, which needs only “nearly” pass
diametrically across Dp; it could be the case that p is contained within a fat edge on its
boundary. In replacing the deleted portions of adversarial edges with two arcs comprising at
most half of the circumference of Dp (with arc length at most πK) we still get an overall
savings of at least 4

√
K2 − 1− πK. Thus, we need to choose K so that 4

√
K2 − 1− πK ≥ 9

implying K ≥ 11 = O(1). We will show later that this savings of 9 units of tour length is
more than enough to compensate for the adversarial increase in the new proposed ordering.

Case 2: Next, suppose that ∠v1p
′v4 = ∠v3p

′v2 > π/2 for any pair of fat edges still
containing p. We will begin by breaking the plane into quadrants whose origin is p and
now consider triples of fat edges that contain p. We will only consider those triples of fat
edges whose disk endpoints lie in quadrants I, and III, as we can repeat this process a finite
number of times, each with a new perturbed (rotated) set of quadrants who’s origin is p so
that eventually all remaining fat edges containing p have this property.

Let (d1, d2) be some remaining fat edge containing p whose disk endpoints are in quadrants
I, and III. Let (d3, d4), (d5, d6) be the second and third fat edge respectively that contain p,

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:9

and have an endpoint in each of quadrants I and III, found in order by walking along the
optimal tour from d2 away from d1. As in case 1, let vi be the point of intersection of the
adversarial edge emanating from disk di and the boundary of Dp. We have that all of the vi
are in quadrants I or III as well (see Figure 4b). Given that v1, v2 are in opposite quadrants,
as well as points v3, v4, and v5, v6, a simple case analysis will show that we can delete two
edges (vi, vi+1), (vj , vj+1) that cross the interior of Dp, and replace them with two arcs of
Dp, lying strictly within quadrants I and III, which make up at most half the circumference
of Dp, while preserving connectivity of the tour. This case analysis is independent of the
specifics of which quadrant contains disk di, and only requires that each triple of edges we
try to uncross go between opposite quadrants.

Thus, as in Case 1, we can argue that in replacing two edges crossing Dp (saving at least
4
√
K2 − 1 in length) and replacing these with the two arcs of Dp (which comprise at most

half the circumference of Dp) we have a net savings of at least 4
√
K2 − 1− πK, which is at

least 9 when K ≥ 11.

Each round of uncrossing (Case 1 or Case 2) reduces the tour length by a positive amount
and reduces the depth of p by at least one. Therefore, this process will terminate in a finite
number of rounds. The number of fat edges containing p remaining after the process (Case 2)
terminates will be at most (another) constant.

Finally, we argue that the constant 9 we save in tour length in each local uncrossing is
enough to compensate for whatever global increase in adversarial tour length may occur due
to the new proposed ordering (since the adversary gets to re-optimize his selection of points).

Again, consider an uncrossing of the original, hypothesized optimal tour, replacing (d1, d2)
and (d3, d4) with (d1, d4) and (d2, d3). Let x, y, u, v be the (original) points adversarially
chosen in disks d1, d2, d3, d4. After performing the uncrossing, we get a new tour, and thus
the adversary gets to re-optimize by choosing a different set of points. From the adversarial
property of the initial solution, we have that the initial paths from x to u and from v to y
were as long as possible over the intermediate choice of disks if we fix points x, y, u, v. The
new path chosen between disks d1 and d3 is at most that of the original path between x
and u, plus two diameters, one per disk. That is, suppose the adversary chose new points
x′, u′ in disks d1, d3 respectively. We can model the new path as traveling from x′ to x in
d1 following the original path from x to u and then traveling from u to u′ in d3 costing at
most two diameters. Similarly for the path between v, and y. Finally, in arguing about the
additional length reconnecting the tour after the swap, we can upper bound, by triangle
inequality, the length of the edge (x′, v′) and (u′, y′) as at most four diameters, one per disk
d1, d2, ..., d4 the portions of the edges (x, y) (u, v) strictly exterior to Dp as well as at most
half the circumference of Dp. However, we have the savings of removing those portions of
edges (x, y) and (u, v) that were strictly interior to Dp. Recall that the diameter of Dp

was chosen such that removing two edges that pass “nearly” diametrically across Dp and
replacing them with two arcs comprising at most half of its circumference results in a net
savings of 9 units. Therefore in adding at most 8 diameters (or 8 units) upper bounding the
adversarial increase, we still have a net savings of at least 1 unit. Thus, we have a strictly
shorter adversarial tour after performing the uncrossing, thereby contradicting the optimality
assumption of the original tour. J

4.2 The m-Guillotine Structure Theorem
We begin with some notation largely following [5, 12]. Let G be an embedded planar straight
line graph (PSLG) with edge set E of total length L, and let R = {d1, . . . , dn} be a set of

SoCG 2017

32:10 TSP With Locational Uncertainty: The Adversarial Model

disjoint unit-diameter disks di in the plane. (In our setting, there will be exactly one vertex
of G within each disk di ∈ R.) Let B be an axis-aligned bounding square of R. We refer to
an axis-aligned box W ⊂ B as a window, which will correspond to a particular subproblem
of our dynamic program. We refer to an axis-parallel line ` that intersects window W as a
cut of window W .

Consider a cut ` for window W ; assume, without loss of generality, that ` is vertical. The
intersection ` ∩ (E ∩W) of ` with the edge set contained in W consists of a, possibly empty,
set of subsegments (which include, as a degenerate case, singleton points) along `. We let
ξ be the number of endpoints of subsegments along `, and let these endpoints along ` be
denoted by β1, β2, . . . , βξ ordered by decreasing y coordinate. For a positive integer m we
define the m-span σm(`) of ` to be ∅ if ξ ≤ 2(m− 1), and the possibly zero length segment
βm, βξ−m+1, joining the mth and the mth from the last endpoints along ` otherwise.

The intersection of `∩R∩W consists of a possibly empty set of ξR ≤ |R∩W | subsegments
of `, one subsegment for each disk (bounding box) intersected by `∩W . Let these disk/boxes
be d1, d2, . . . , dξR

in order of decreasing y coordinate. For a positive integer m we define
the m-disk-span σm,R(`) of ` to be the (possibly empty) line segment joining the bottom
endpoint of dm ∩ ` to the top endpoint of dξR−m+1 ∩ `. In fact, as observed in [14], it suffices
to consider the m-disk-span of the set of axis-aligned bounding squares of the input disks,
since the charging scheme charges the perimeters of the regions, which are, within a constant
factor, the same whether we deal with circular disks or square (L∞) disks.

As in [5] we define a line (cut) ` to be an m-good cut with respect to W if σm(`) ⊆ E

and σm,R ⊆ E. Finally, we say that E satisfies the m-guillotine property with respect to W if
either (1) W does not fully contain any disk; or (2) there exists an m-good cut ` that splits
W into W1, and W2 and, recursively, E satisfies the m-guillotine property with respect to
W1, and W2. The following is shown in [5], using a variant of the charging scheme of [12]:

I Theorem 10 ([5]). Let G be an embedded connected planar graph with edge set E of total
length L, and let R be a given set of pairwise-disjoint equal-radius disks (of radius δ) each
of which intersects E. Assume that E and R are contained in the square B. Then for any
positive integer m there exists a connected planar graph G′ that satisfies the m-guillotine
property with respect to B and has edge set E′ ⊇ E of length L′ ≤ (1 +O(1/m))L+O(δ/m).

In the constructive proof of Theorem 10, m-spans are added to E, whose lengths are
charged off to a small fraction (O(1/m)) of the length L of E. Consider the edges of E that
cross an m-span, ab that is added: By Theorem 9 we know that the associated fat edges (of
width 1) have constant depth. This implies that the number of edges of E that cross an
m-span, ab, that arises in the constructive proof of Theorem 10 is O(|ab|).

I Theorem 11. In the graph G′ that is obtained from G according to Theorem 10, the
segments of E′ that arise as m-span edges for the input edges E are such that the number of
edges of E intersecting an m-span edge ab is at most O(|ab|).

Provided that the input R is nontrivial (n ≥ 2), the length L∗ of an optimal solution
OPT (path or cycle) to ATSP is at least 2; thus, Theorem 10 shows that there exists an
m-guillotine supergraph of OPT of length L′ ≤ (1 + O(1/m))L∗. Further, as shown in
[5, 12, 14], one can make the m-guillotine conversion using cuts whose coordinates are from
among a discrete set of O(n) candidate x- and y-coordinates, for fixed m. We will show how
to use this fact, along with the structure of an optimal adversarial solution, to construct via
dynamic programming an m-guillotine structure from which we can extract an approximation
to OPT , with approximation factor (1 + ε), for any ε > 0. (Here, m = O(1/ε).)

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:11

4.3 The Dynamic Program
A subproblem of our dynamic program (DP) is responsible for computing a shortest total
length connected network that spans the input set R of disks (at their sample points) while
satisfying a constant-size, O(m), set of boundary conditions. The boundary conditions specify
O(m) disks that the subproblem is responsible for interconnecting, as well as conditions on
how the computed network within this subproblem should interact with optimal solutions
computed within abutting subproblems. As we cannot afford to keep track of all (potentially
Ω(n)) interconnections of the optimal ATSP solution, OPT , between two rectangles that
bound subproblems, the m-guillotine structure theorem, together with our additional struc-
tural results, allow us to compactly summarize the interconnection information well enough
to ensure approximation within factor (1 + ε) of optimal.

Unlike the PTAS for TSPN, where the DP can choose any point within each region of R,
in computing a minimum-weight connected, Eulerian, m-guillotine spanning subgraph over G,
in the ATSP we have no control over the point being spanned within each region: Once we
produce an ordering σR, the adversary gets to solve an offline longest path problem to choose
the (“worst possible”) point pi ∈ di within each region di ∈ R our tour must visit. Thus,
we need to create a minimum weight connected spanning Eulerian subgraph over G that
satisfies the m-guillotine property and satisfies a certain adversarial subpath property, which
allows us to show that in the resulting network computed by DP, we can extract a polygonal
tour of R that satisfies the adversarial property. In essence, we need the DP subproblems to
be able to estimate (approximately) what the cost of an adversarial solution will be, if we
extract from the optimized m-guillotine network a tour through R.

In particular, each DP subproblem is specified by a window W ⊆ B, along with the
following additional information:
1. An m-span (possibly empty) on each of the 4 sides of W , each with a parity bit indicating

whether the number of edges incident to the m-span from outside of W is even or odd;
2. O(m) specified edges, which are the network edges crossing the boundary of W that are

not crossing one of the (up to 4) m-spans;
3. An m-disk span (possibly empty) on each of the 4 sides of W , with a specified sample

point given for the first and for the last disk along the m-disk span;
4. O(m) specified input disks (i.e., disks of R not intersecting an m-disk span) intersecting

the boundary of W ;
5. A specified sample point of G on the boundary of each of the O(m) specified input

disks, where the network is required to visit the associated disks (these are the “guessed”
positions of the adversarial visitation points for the specified disks);

6. For each of the O(m) specified input disks, we indicate whether the specified sample
point of the disk is visited by the network being computed for the subproblem, and, if so,
whether its degree in that network is 1 or 2. (The total degree of the sample point, using
edges associated with subproblems on both sides of the cut, will be 2.)

7. An interconnection pattern specifying the subsets of the O(m) boundary elements (spe-
cified input disks, specified edges, m-spans, and m-disk spans) that form connected
components within W .

There are only O(n4) choices for W , nO(m) choices for the specified edges/disks, and
a constant (O(g(m)), for some function g) number of choices of the O(m) bits and the
interconnection patterns. Thus, there are a polynomial number of subproblems for the DP.

A subproblem in the dynamic program requires one to compute a minimum-length
m-guillotine network satisfying the following constraints:

SoCG 2017

32:12 TSP With Locational Uncertainty: The Adversarial Model

(i) The network is comprised of edges of the following types: (a). edges from the set EG of
edges linking a sample point of G on one disk to a sample point of G on another disk;
(b). edges of type (a), EG , truncated at a (Steiner) attachment point on an m-span
where the edge crosses the m-span or passes through an endpoint of the m-span; and (c)
m-spans and m-disk spans that lie along cuts in the decomposition (recall that cuts lie
along O(n) discrete horizontal/vertical lines). The attachment points and the endpoints
of m-spans and m-disk spans constitute a set, H, of Steiner points, distinct from the
sample points G on the boundaries of the disks.

(ii) Each sample point of G within W that is visited by the network has degree 2.
(iii) The number of edges of type (b) (i.e., edges of EG truncated at an m-span) incident on

an m-span segment ab is even or odd, according to whether the parity bit of the m-span
is even or odd, so that the total sum of the degrees of the Steiner points H along an
m-span is even. Further, the number of edges of type (b) incident on an m-span segment
ab is bounded by c0 · |ab|, where c0 is a constant arising from the structure Theorem 9.

(iv) The network must be m-guillotine with respect to W , and, for each cut in the recursive
partitioning of W , in the total length of the network we count each m-span twice; these
doubled m-spans allow us to augment the resulting network to be Eulerian [12], and
thereby to extract a tour (see below). Further, we count the length of each m-disk span
a constant (O(1)) times as well; this will allow the m-disk spans to be converted into
adversarial subpaths visiting the set of disks that are spanned.

(v) The network must utilize the specified edges (which straddle the boundary of W).
(vi) The network must visit, at a sample point, each of the input disks interior to W .
(vii) The network must visit each specified disk whose bit indicates it should be visited by the

subproblem, at the specified sample point for that disk. Further, the network must visit
the specified sample points for the first and last disk associated with each nonempty
m-disk span.

(viii) The network must obey the interconnection pattern of the subproblem.
(ix) The network obeys the adversarial subpath property: Any maximal path, endpoints

non-inclusive, within the network that goes through only sample points G is a longest
path through the sequence of disks on which the sample points lie (one per disk).

I Lemma 12. When an optimal tour OPT is rounded to the grid G and then converted to
become m-guillotine in the process that proves Theorem 10, the network that results from the
augmentation of OPT satisfies conditions (i)-(viii) at every level of the recursive process, for
appropriate choices of the specified edges, disks, and interconnection patterns.

Proof. During the process that converts OPT to be m-guillotine, according to the construct-
ive proof of Theorem 10, most of the conditions hold automatically, by construction. Edges
of OPT that cross an m-span, ab, do so at a point of H that has degree 4 (since the crossing
edge is partitioned at the crossing point, becoming two truncated type-(b) edges, and the
m-span is partitioned at the crossing point as well). An m-span edge ab, by construction,
extends between two points (a and b, each a Steiner point) on edges of OPT (each of which
is thereby partitioned into two truncated type-(b) edges). Theorem 11 implies that the
fat edges associated with the edges of OPT have bounded depth, implying condition (iii)
holds. Condition (viii) holds for the choice of interconnection pattern that is implied by
OPT . The adversarial subpath property holds because of the adversarial path property of
OPT itself. J

We now discuss the enforcement of condition (ix), the adversarial subpath property, which
is key to our being able to account for the adversary’s choices during our optimization of the

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:13

network length, assuring that, in the end, we can extract from the computed network a tour
that is adversarial and not much longer than the overall network.

Let (W,Σ) denote a subproblem associated with window W , where Σ is a specification of
the boundary constraints information (1)-(7). The dynamic programming recursion optimizes
the partition of the subproblem (W,Σ) into two subproblems, (W1,Σ1) and (W2,Σ2), by a
horizontal or vertical cut line ` (intersecting W and passing through one of the O(n) discrete
values of x, y-coordinates that define windows). Crucial to the correctness of the algorithm
is that this recursion preserves the properties specified by the conditions (i)-(ix).

The objective function, f(W,Σ), measures the total length of the network restricted to
the window W ; in particular, edges of EG that are specified in the boundary constraints Σ
have their length partitioned and assigned to subproblems through which they pass.

The DP recursion optimizes over the choice of the cut line ` that partitions W into W1
and W2, as well as the boundary conditions, Σ`, along the cut, which will be part of the
specifications Σ1 and Σ2. The conditions Σ1 and Σ2 must be compatible with each other and
with the choice of boundary conditions, Σ`, across the cut `. In particular, in order for Σ1
and Σ2 to be compatible with each other and with Σ, the specified edges of EG across ` must
match, as well as the m-span and m-disk span along the cut `. Further, the interconnection
pattern of Σ must specify subsets of boundary elements for W that are yielded by taking the
union of interconnection patterns for (W1,Σ1) and (W2,Σ2).

We let Σ(R)
` denote the partial specification of the boundary conditions Σ`, in which

we specify which pairs of disks from R constitute the specified edges crossing `, but do not
specify the actual sample points on the boundaries of these disks that define the endpoints of
the edges from EG being specified. (In other words, Σ(R)

` specifies only the equivalence classes
of the full set of conditions, Σ`; the refinement of these equivalence classes will be specified
in the optimization within the “max” term of the recursion below.) The DP recursion is

f(W,Σ) = min
`,Σ(R)

`

{ max
Σ`∈X(Σ(R)

`
)
(f(W1(`),Σ1(Σ`)) + f(W2(`),Σ2(Σ`)))}

where the outer minimization is over choices of the cut ` and the cross-cut boundary conditions
Σ(R)
` , and the inner maximization is over choices of Σ` that are in the set X(Σ(R)

`) of all
boundary conditions across the cut ` that are refinements of the choice Σ(R)

` , specifying
precisely which sample points are utilized for each of the disks of R that are involved in the
specification Σ(R)

` (and not already specified by the “parent” choice, Σ, in cases in which
edges crossing ` also extend outside of W and have their sample points specified within Σ).
In the expression above, W1(`) and W2(`) are the subwindows of W on either side of the cut
`, and Σ1(Σ`) and Σ2(Σ`) are the corresponding boundary conditions on either side of ` that
are inherited from Σ and consistent with the conditions Σ`. The fact that we maximize over
the choices that the adversary can make, in all choices that cross the cut `, implies that we
preserve the adversarial subpath property:

I Lemma 13. The DP yields a network satisfying (ix), the adversarial subpath property.

4.4 Extracting an Approximating ATSP Tour
The output of the DP algorithm is an m-guillotine network G of minimum cost, where cost
is total length, taking into account that m-spans are counted twice, and m-disk spans are
counted O(1) times (and are each of length at least 1). From the structure Theorem 10, we
know that the total length of edges of G is at most |OPT |(1 +O(1/m)).

The fact that we accounted for the doubling of the m-spans in the optimization implies
that we can afford to augment the edges along each m-span, in order that every Steiner

SoCG 2017

32:14 TSP With Locational Uncertainty: The Adversarial Model

pi qi

qi−1

pi−1

p∗i−1

q∗i−1

p∗i
q∗i

πi

APX(πi)
πi−1

APX(πi−1)

Figure 5 Bounding the adversarial increase over extracted approximate tour T ′.

point along an m-span has degree 4: Initially, the points H along an m-span have degree
3, being either endpoints of the m-span (having a T-junction with an edge between two
sample points of G), or being a T-junction where an edge between two sample points of G
is truncated, terminating on the m-span. By the parity condition at the m-span, we know
that there are an even number of T-junctions along the m-span, implying that we can add
a perfect matching of segments along the m-span, joining consecutive pairs of T-junctions.
The total length of this matching is less than the length of the m-span, and is “paid for” by
the doubling of the m-span lengths in the DP optimization.

The fact that we accounted for O(1) copies of the m-disk spans in the optimization
implies that we can afford to augment the edges of G with an adversarial path through the
sequence of disks stabbed by the m-disk span; such a path has length proportional to the
length of the m-disk span, assuming the m-disk span is nontrivial in length.

By the above discussion, the result of our algorithm is, then, a connected Eulerian network
of length at most |OPT |(1 +O(1/m)). From this network, we extract a tour T . The tour T
is a cycle consisting of straight line segments joining points that are either sample points, G,
or Steiner points, H. Let π1, π2, . . . , πk be the maximal subpaths along T whose vertices are
all sample points G; i.e., each path πi has only vertices of G (no Steiner points H), and every
sample point of G that is a vertex of T lies in exactly one path π.

Now, the number, k, of subpaths is at most the number of Steiner points H along the
tour T , and this number is upper bounded by the number of Steiner points along m-spans in
the entire network. But, the total length of all m-spans is at most O(1/m) · |OPT |, by the
proof of Theorem 10. This implies that k ≤ O(1/m) · |OPT |.

The adversarial subpath property that was enforced in the dynamic programming al-
gorithm implies that the subpaths πi are each adversarial – their lengths are longest possible,
for the given sequence of disks through which it passes (given that the path πi begins at
sample point pi and ends at sample point qi as chosen by our dynamic program). We obtain
a new tour, T ′, by chaining together the subpaths πi, omitting any Steiner points that were
along T . The resulting tour T ′ is not necessarily adversarial, but the following lemma shows
that it is close to being so.

I Lemma 14. Let σ′R be the order in which the disks R are visited by the tour T ′. Then,
the adversarial tour, APX, associated with σ′R has length at most |T ′|+O(1/m) · |OPT |.

Proof. For each subpath πi in our approximate tour T ′ let APX(πi) be the adversarial
path computed over the sequence of disks associated with πi in the final adversarial tour
associated with σ′R. Similarly let p∗i (resp., q∗i) be the point chosen in the first (resp., last)
disk along πi in APX. Assume that we have chosen the points pi (resp., qi) in the first
(resp., last) disk along πi in our extracted tour T ′; see Figure 5 for an illustration.

G. Citovsky, T. Mayer, and J. S. B. Mitchell 32:15

From the adversarial property of our computed solution we know that the length of the
path |πi| computed from pi to qi is as long as possible over choices in intermediate disks.
Therefore we can over estimate the length of APX by walking around T ′ adding at most two
unit diameter detours to the first and last disk in each sub-path πi. That is we can begin at
pi detour to p∗i and back, follow πi until we reach qi an then detour from qi to q∗i and back
and follow T ′ to pi+1 and so on. By triangle inequality and the fact that πi is a longest path
for fixed choices of pi, and qi this over estimates the length of APX.

We have |APX| ≤ |T ′|+ 4k, and therefore |APX| ≤ |T ′|+O(1/m)|OPT |, because, as
previously stated k ≤ O(1/m)|OPT |. J

Since we know that the computed T , and thus T ′, has length at most |OPT |(1+O(1/m)),
Lemma 14 implies that the overall solution extracted from our computed tour yields a PTAS.

References
1 Esther M. Arkin and Refael Hassin. Approximation algorithms for the geometric covering

salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.
2 Dimitris J. Bertsimas, Patrick Jaillet, and Amedeo R. Odoni. A priori optimization. Oper-

ations Research, 38(6):1019–1033, 1990.
3 Gui Citovsky, Tyler Mayer, and Joseph S.B. Mitchell. TSP With Locational Uncertainty:

The Adversarial Model, March 2017. arXiv:1705.06180 [cs.CG]. URL: https://arxiv.
org/abs/1705.06180.

4 Reza Dorrigiv, Robert Fraser, Meng He, Shahin Kamali, Akitoshi Kawamura, Alejandro
López-Ortiz, and Diego Seco. On minimum-and maximum-weight minimum spanning trees
with neighborhoods. Theory of Computing Systems, 56(1):220–250, 2015.

5 Adrian Dumitrescu and Joseph S.B. Mitchell. Approximation algorithms for TSP with
neighborhoods in the plane. Journal of Algorithms, 48:135–159, 2003. Special issue devoted
to 12th ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, January, 2001.

6 Robert Fraser. Algorithms for geometric covering and piercing problems. PhD thesis,
University of Waterloo, 2012.

7 Patrick Jaillet. A priori solution of a traveling salesman problem in which a random subset
of the customers are visited. Operations Research, 36(6):929–936, 1988.

8 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Uni-
versal approximations for TSP, Steiner tree, and set cover. In Proc. 37th ACM Symposium
on Theory of Computing, pages 386–395. ACM, 2005.

9 Pegah Kamousi and Subhash Suri. Euclidean traveling salesman tours through stochastic
neighborhoods. In International Symposium on Algorithms and Computation, pages 644–
654. Springer, 2013.

10 Chih-Hung Liu and Sandro Montanari. Minimizing the diameter of a spanning tree for
imprecise points. In International Symposium on Algorithms and Computation, pages 381–
392. Springer, 2015.

11 Maarten Löffler and Marc van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010.

12 Joseph S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems. SIAM Journal on Computing, 28(4):1298–1309, 1999.

13 Joseph S.B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry (2nd Edition),
chapter 27, pages 607–641. Chapman & Hall/CRC, Boca Raton, FL, 2004.

SoCG 2017

https://arxiv.org/abs/1705.06180
https://arxiv.org/abs/1705.06180

32:16 TSP With Locational Uncertainty: The Adversarial Model

14 Joseph S.B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the plane.
In Proc. 18th ACM-SIAM Symposium on Discrete algorithms, pages 11–18. Society for
Industrial and Applied Mathematics, 2007. URL: http://www.ams.sunysb.edu/~jsbm/
papers/tspn-soda07-rev.pdf.

15 Sandro Montanari. Computing routes and trees under uncertainty. PhD thesis, Dissertation,
ETH-Zürich, 2015, No. 23042, 2015.

16 Yang Yang, Mingen Lin, Jinhui Xu, and Yulai Xie. Minimum spanning tree with neigh-
borhoods. In International Conference on Algorithmic Applications in Management, pages
306–316. Springer, 2007.

http://www.ams.sunysb.edu/~jsbm/papers/tspn-soda07-rev.pdf
http://www.ams.sunysb.edu/~jsbm/papers/tspn-soda07-rev.pdf

On Planar Greedy Drawings of 3-Connected
Planar Graphs∗

Giordano Da Lozzo1, Anthony D’Angelo2, and Fabrizio Frati3

1 Department of Computer Science, University of California, Irvine, CA, USA
gdalozzo@uci.edu

2 School of Computer Science, Carleton University, Ottawa, Canada
anthonydangelo@cmail.carleton.ca

3 Department of Engineering, Roma Tre University, Rome, Italy
frati@dia.uniroma3.it

Abstract
A graph drawing is greedy if, for every ordered pair of vertices (x, y), there is a path from x

to y such that the Euclidean distance to y decreases monotonically at every vertex of the path.
Greedy drawings support a simple geometric routing scheme, in which any node that has to send
a packet to a destination “greedily” forwards the packet to any neighbor that is closer to the
destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing
such a neighbor always exists and hence this routing scheme is guaranteed to succeed.

In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The
greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing.
The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a
planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy
embedding conjecture was settled in the positive by Leighton and Moitra.

In this paper we prove that every 3-connected planar graph admits a planar greedy drawing.
Apart from being a strengthening of Leighton and Moitra’s result, this theorem constitutes a
natural intermediate step towards a proof of the convex greedy embedding conjecture.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Greedy drawings, 3-connectivity, planar graphs, convex drawings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.33

1 Introduction

Geographic routing is a family of routing protocols for ad-hoc networks, which are networks
with no fixed infrastructure – such as routers or access points – and with dynamic topology [15,
27, 28]. In a geographic routing scheme each node of the network actively sends, forwards,
and receives packets; further, it does so by only relying on the knowledge of its own geographic
coordinates, of those of its neighbors, and of those of the packet destination. Greedy routing
is the simplest and most renowned geographic routing scheme. In this protocol, a node that
has to send a packet simply forwards it to any neighbor that is closer – according to the
Euclidean distance – to the destination than itself. The greedy routing scheme might fail

∗ This article reports on work supported by the U.S. Defense Advanced Research Projects Agency (DARPA)
under agreement no. AFRL FA8750-15-2-0092. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S. Government. This
research was also partially supported by NSERC, by MIUR-PRIN Project 20157EFM5C – “MODE”,
and by H2020-MSCA-RISE Project 734922 – “CONNECT”.

© Giordano Da Lozzo, Anthony D’Angelo, and Fabrizio Frati;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 On Planar Greedy Drawings of 3-Connected Planar Graphs

to deliver packets because of the presence of a void in the network; this is a node with no
neighbor closer to the destination than itself. For this reason, several variations of the greedy
routing scheme have been proposed; see, e.g., [6, 19, 20].

Apart from its failure in the presence of voids, the greedy routing protocol has two
disadvantages which limit its applicability. First, in order for the protocol to work, each
node of the network has to be equipped with a GPS, which might be expensive and might
consume excessive energy. Second, two nodes that are close geographically might be unable
to communicate with each other because of the presence of topological obstructions. Rao et
al. [26] introduced the following brilliant idea for extending the applicability of geographic
routing in order to overcome the above issues. Suppose that a network topology is known;
then one can assign virtual coordinates to the nodes and use these coordinates instead of the
geographic locations of the nodes in the greedy routing protocol. The virtual coordinates
can then be chosen so that the greedy routing protocol is guaranteed to succeed.

Assigning the virtual coordinate to the nodes of a network corresponds to the following
graph drawing problem: given a graph G, construct a greedy drawing of G, that is a drawing
in the plane such that, for any ordered pair of vertices (x, y), there is a neighbor of x in G that
is closer – in terms of Euclidean distance – to y than x. Equivalently, a greedy drawing of G
is such that, for any ordered pair of vertices (x, y), there is a distance-decreasing path from x

to y, that is, a path (u1, . . . , um) in G such that x = u1, y = um, and the Euclidean distance
between ui+1 and um is smaller than the one between ui and um, for any i = 1, . . . ,m− 2.

Greedy drawings experienced a dramatical surge of popularity in the theory community in
2004, when Papadimitriou and Ratajczak [24] proposed the following two conjectures about
greedy drawings of 3-connected planar graphs (the convex greedy embedding conjecture has
not been stated in the journal version [25] of their paper [24]).

I Conjecture 1 (Greedy embedding conjecture). Every 3-connected planar graph admits a
greedy drawing.

I Conjecture 2 (Convex greedy embedding conjecture). Every 3-connected planar graph
admits a convex greedy drawing.

Papadimitriou and Ratajczak [24, 25] provided several reasons why 3-connected planar
graphs are central to the study of greedy drawings. First, there exist non-3-connected planar
graphs and 3-connected non-planar graphs that do not admit any greedy drawing. Thus, the
3-connected planar graphs form the largest class of graphs that might admit a greedy drawing,
in a sense. Second, all the 3-connected graphs with no K3,3-minor admit a 3-connected
planar spanning graph, hence they admit a greedy drawing, provided the truth of the greedy
embedding conjecture. Third, the preliminary study of Papadimitriou and Ratajczak [24, 25]
provided evidence for the mathematical depth of their conjectures.

Leighton and Moitra [21] (and, independently and slightly later, Angelini et al. [4]) settled
Conjecture 1 in the affirmative. In this paper we show the following result.

I Theorem 3. Every 3-connected planar graph admits a planar greedy drawing.

Given a 3-connected planar graph G, the algorithms in [4, 21] find a spanning subgraph
S of G and construct a (planar) greedy drawing of S; then they embed the edges of G not in
S as straight-line segments obtaining a, in general, non-planar greedy drawing of G. Thus,
Theorem 3 strengthens Leighton and Moitra’s and Angelini et al.’s results. Furthermore,
convex drawings, in which all the faces are delimited by convex polygons, are planar, hence
Theorem 3 provides a natural step towards a proof of Conjecture 2.

G. Da Lozzo, A. D’Angelo, and F. Frati 33:3

Our proof employs a structural decomposition for 3-connected planar graphs which
finds its origins in a paper by Chen and Yu [7]. This decomposition actually works for a
super-class of the 3-connected planar graphs known as strong circuit graphs. We construct a
planar greedy drawing of a given strong circuit graph G recursively: we apply the structural
decomposition to G in order to obtain some smaller strong circuit graphs, we recursively
construct planar greedy drawings for them, and then we suitably arrange these drawings
together to get a planar greedy drawing of G. For this arrangement to be feasible, we need
to ensure that the drawings we construct satisfy some restrictive geometric requirements;
these are described in the main technical theorem of the paper – Theorem 8.

Related results. Planar greedy drawings always exist for maximal planar graphs [11].
Further, every planar graph G with a Hamiltonian path P = (u1, . . . , un) has a planar greedy
drawing. Namely, construct a planar straight-line drawing Γ of G such that y(u1) < · · · <
y(un); such a drawing always exists [12]; scale Γ down horizontally, so that P is “almost
vertical”. Then, for any 1 ≤ i < j ≤ n, the paths (ui, ui+1 . . . , uj) and (uj , uj−1 . . . , ui) are
distance-decreasing. A characterization of the trees that admit a (planar) greedy drawing is
known [22]; indeed, a greedy drawing of a tree is always planar [2].

Algorithms have been designed to construct succinct greedy drawings, in which the vertex
coordinates are represented with a polylogarithmic number of bits [13, 16, 17]; this has been
achieved by allowing the embedding space to be different from the Euclidean plane or the
metric to be different from the Euclidean distance.

Planar drawings have been studied in which paths between pairs of vertices are required
to exist satisfying properties other than being distance-decreasing. We say that a path
P = (u1, . . . , um) in a graph drawing is self-approaching [1, 23] if, for any three points a, b, c
in this order along P from u1 to um, the Euclidean distance between a and c is larger than
the one between b and c – then a self-approaching path is also distance-decreasing. We say
that P is increasing-chord [1, 10, 23] if it is self-approaching in both directions. We say that
P is strongly monotone [3, 14, 18] if the orthogonal projections of the vertices of P on the
line ` through u1 and um appear in the order u1, . . . , um. It has been recently proved [14]
that every 3-connected planar graph has a planar drawing in which every pair of vertices is
connected by a strongly monotone path.

Because of space limitations some proofs are sketched or omitted; they can be found in
the complete version of the paper [8].

2 Preliminaries

In this section we introduce some preliminaries.

Subgraphs and connectivity. We denote by V (G) and E(G) the vertex and edge sets of
a graph G, respectively. For U ⊆ V (G), we denote by G − U the graph obtained from G

by removing the vertices in U and their incident edges. Further, if e ∈ E(G), we denote by
G− e the graph obtained from G by removing the edge e. Let H be a subgraph of G. An
H-bridge B of G is either an edge of G not in H with both the end-vertices in H (then B is
a trivial H-bridge), or a connected component of G− V (H) together with the edges from
that component to the vertices in V (H) (then B is a non-trivial H-bridge); the vertices in
V (H) ∩ V (B) are the attachments of B in H. For a vertex v ∈ V (G)− V (H), we denote by
H ∪ {v} the subgraph of G composed of H and of the isolated vertex v.

SoCG 2017

33:4 On Planar Greedy Drawings of 3-Connected Planar Graphs

A vertex k-cut (in the following simply called k-cut) in a connected graph G is a set of k
vertices whose removal disconnects G. For k ≥ 2, a connected graph is k-connected if it has
no (k − 1)-cut. A k-connected component of a graph G is a maximal k-connected subgraph
of G. Given a 2-cut {a, b} in a 2-connected graph G, an {a, b}-component is either the edge
ab (then the {a, b}-component is trivial) or a subgraph of G induced by a, b, and the vertices
of a connected component of G− {a, b} (then the {a, b}-component is non-trivial).

Plane graphs and embeddings. A drawing of a graph is planar if no two edges cross. A
plane graph is a planar graph with a plane embedding; a plane embedding of a connected
planar graph G is an equivalence class of planar drawings of G, where two drawings Γ1 and
Γ2 are equivalent if: (i) the clockwise order of the edges incident to each vertex v ∈ V (G)
coincides in Γ1 and Γ2; and (ii) the clockwise order of the edges of the walks delimiting the
outer faces of Γ1 and Γ2 is the same. When we talk about a planar drawing of a plane graph
G, we always mean that it respects the plane embedding of G. We assume that any subgraph
H of G is associated with the plane embedding obtained from the one of G by deleting the
vertices and edges not in H. A vertex of G is external or internal depending on whether it is
or it is not incident to the outer face of G, respectively. For two external vertices u and v of
a 2-connected plane graph G, let τuv(G) and βuv(G) be the paths composed of the vertices
and edges encountered when walking along the boundary of the outer face of G in clockwise
and counter-clockwise direction from u to v, respectively. Note that τuv(G) and βvu(G) have
the same vertices and edges, however in reverse linear orders.

Geometry. In this paper every angle is measured in radians. The slope of a half-line ` is
defined as follows. Denote by p the starting point of ` and let `′ be the vertical half-line
starting at p and directed towards decreasing y-coordinates. Then the slope of ` is the
angle spanned by a counter-clockwise rotation around p bringing `′ to coincide with `, minus
π
2 . Because of this definition, the slope of any half-line is between -π2 (included) and 3π

2
(excluded); in the following there will be very few exceptions to this assumption, which will
be however evident from the text. Every angle expressed as arctan(·) is between -π2 and π

2 .
We define the slope of an edge uv in a graph drawing as the slope of the half-line from u

through v. Then the slope of an edge uv is equal to the slope of the edge vu plus or minus π.
For a directed line `, we let its slope be equal to the slope of any half-line starting at a point
of ` and directed as `. We denote by ∆pqr a triangle with vertices p, q, r, and we denote by
]pqr the angle of ∆pqr incident to q; note that]pqr is between 0 and π.

Let Γ be a drawing of a graph G and let u, v ∈ V (G). We denote by d(Γ, uv) the Euclidean
distance between the points representing u and v in Γ. We also denote by dV (Γ, uv) the
vertical distance between u and v in Γ, that is, dV (Γ, uv) = |y(u) − y(v)|, where the y-
coordinates of u and v are taken from Γ; the horizontal distance dH(Γ, uv) between u and v
in Γ is defined analogously. With a slight abuse of notation, we will use d(Γ, pq), dH(Γ, pq),
and dV (Γ, pq) even if p and q are points in the plane (and not vertices of G). A straight-line
drawing of a graph is such that each edge is represented by a straight-line segment.

The following lemma argues that the planarity and the greediness of a drawing are not
lost as a consequence of any sufficiently small perturbation of the vertex positions.

I Lemma 4. Let Γ be a planar straight-line drawing of a graph G. There is a value ε∗Γ > 0
such that the following holds. Let Γ′ be any straight-line drawing in which, for every vertex
z ∈ V (G), the Euclidean distance between the positions of z in Γ and Γ′ is at most ε∗Γ; then
Γ′ is planar and any path which is distance-decreasing in Γ is also distance-decreasing in Γ′.

G. Da Lozzo, A. D’Angelo, and F. Frati 33:5

G1 G2
G3

u2 uk−1u1
uk=v

Gk

u0=u
u3

uk=v

u

u0=y`

y1
y2

G1 G2

Gku1 u2

H

(a) (b)

Figure 1 (a) Structure of (G, u, v) in Case A. (b) Structure of (G, u, v) in Case B.

3 Proof of Theorem 3

In this section we prove Theorem 3. Throughout the section, we will work with plane graphs.
Further, we will deal with a class of graphs, known as strong circuit graphs [7], that is
wider than 3-connected planar graphs. Strong circuit graphs constitute a subclass of the
well-known circuit graphs, whose definition is due to Barnette and dates back to 1966 [5].
Here we rephrase the definition of strong circuit graphs as follows.

I Definition 5. A strong circuit graph is a triple (G, u, v) such that either: (i) G is an edge
uv or (ii) |V (G)| ≥ 3 and the following properties are satisfied.
(a) G is a 2-connected plane graph;
(b) u and v are two distinct external vertices of G;
(c) if edge uv exists, then it coincides with the path τuv(G); and
(d) for every 2-cut {a, b} of G we have that a and b are external vertices of G and at

least one of them is an internal vertex of the path βuv(G); further, every non-trivial
{a, b}-component of G contains an external vertex of G different from a and b.

Several problems are easier to solve on (strong) circuit graphs than on 3-connected planar
graphs. Indeed, (strong) circuit graphs can be easily decomposed into smaller (strong)
circuit graphs and hence are suitable for inductive proofs. We now present a structural
decomposition for strong circuit graphs whose main ideas can be found in a paper by Chen
and Yu [7] (see [9] for an application of this decomposition to cubic strong circuit graphs).

Consider a strong circuit graph (G, u, v) such that G is not a single edge. The decompos-
ition distinguishes the case in which the path τuv(G) coincides with the edge uv (Case A)
from the case in which it does not (Case B).

I Lemma 6. Suppose that we are in Case A (refer to Fig. 1(a)). Then the graph G′ = G−uv
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

6a: for i = 1, . . . , k − 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is
in the outer face of Gi+1 and vice versa in the plane embedding of G;
6b: for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
6c: for i = 1, . . . , k with u0 = u and uk = v, (Gi, ui−1, ui) is a strong circuit graph.

Given a strong circuit graph (G, u, v) that is not a single edge, the vertex u belongs to
one 2-connected component of the graph G− {v}. Indeed, if it belonged to more than one
2-connected component of G−{v}, then {u} would be a 1-cut of G−{v}, hence {u, v} would
be a 2-cut of G, which contradicts Property (d) for (G, u, v). We now present the following.

I Lemma 7. Suppose that we are in Case B (refer to Fig. 1(b)). Let H be the 2-connected
component of the graph G−{v} that contains u; then we have |V (H)| ≥ 3. Let H ′ := H∪{v}.
Then G contains ` distinct H ′-bridges B1, . . . , B`, for some ` ≥ 2, such that:

SoCG 2017

33:6 On Planar Greedy Drawings of 3-Connected Planar Graphs

7a: each H ′-bridge Bi has two attachments, namely v and a vertex yi ∈ V (H);
7b: the H ′-bridges B1, . . . , B`−1 are trivial, while B` might be trivial or not;
7c: any two among y1, . . . , y` are distinct except, possibly, for y`−1 and y`; also if ` = 2,
then y1 and y2 are distinct;
7d: y1 is an internal vertex of τuv(G); further, B1 is an edge that coincides with τy1v(G);
7e: y` is an internal vertex of βuv(G) and βuy1(H); further, B` contains the path βy`v(G);
7f: B1, . . . , B`−1 appear in this counter-clockwise order around v and lie in the outer face
of B` in the plane embedding of G;
7g: the triple (H,u, y1) is a strong circuit graph; and
7h: B` consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, such that:

for i = 1, . . . , k − 1, the graphs Gi and Gi+1 share a single vertex ui; further, Gi is in
the outer face of Gi+1 and vice versa in the plane embedding of G;
for 1 ≤ i, j ≤ k with j ≥ i+ 2, the graphs Gi and Gj do not share any vertex; and
for i = 1, . . . , k with u0=y` and uk=v, the triple (Gi, ui−1, ui) is a strong circuit graph.

We prove that any strong circuit graph (G, u, v) has a planar greedy drawing by exploiting
Lemmata 6 and 7 in a natural way. Indeed, if we are in Case A (in Case B) then Lemma 6
(resp. Lemma 7) is applied in order to construct strong circuit graphs (Gi, ui−1, ui) with
i = 1, . . . , k (resp. strong circuit graphs (H,u, y1) and (Gi, ui−1, ui) with i = 1, . . . , k) for
which planar greedy drawings are inductively constructed and combined together in order
to get a planar greedy drawing of (G, u, v). The base case of the induction is the one in
which G is an edge; then a planar greedy drawing of G is directly constructed. In order to be
able to combine the planar greedy drawings for the strong circuit graphs (Gi, ui−1, ui) (and
(H,u, y1) if we are in Case B) to construct a planar greedy drawing of (G, u, v), we need the
inductively constructed drawings to satisfy some restrictive geometric requirements. These
are expressed in the following theorem, which is the core of the proof of Theorem 3.

I Theorem 8. Let (G, u, v) be a strong circuit graph with at least three vertices and let
0 < α < π

4 be an arbitrary parameter. Let βuv(G) = (u = b1, b2, . . . , bm = v). There exists
a straight-line drawing Γ of G in the Cartesian plane such that the following holds. For
any value δ ≥ 0, denote by Γδ the straight-line drawing obtained from Γ by moving the
position of vertex u by δ units to the left. Then Γδ satisfies the following properties (refer to
Fig. 2).
1. Γδ is planar;
2. τuv(G) lies entirely on a horizontal line `u with u to the left of v;
3. the edge b1b2 has slope in the interval (−α, 0) and the edge bibi+1 has slope in the interval

(0, α), for each i = 2, 3, . . . ,m− 1;
4. for every vertex x ∈ V (G) there is a path Px = (x = v1, v2, . . . , vp = v) from x to v in G

such that the edge vivi+1 has slope in the interval (−α, α) in Γδ, for each i = 1, 2, . . . , p−1;
further, if x 6= u, then u /∈ V (Px);

5. for every vertex x ∈ V (G) there is a path Qx = (x = w1, w2, . . . , wq = u) from x to u
in G such that the edge wiwi+1 has slope in the interval (π − α, π + α) in Γδ, for each
i = 1, 2, . . . , q − 1; and

6. for every ordered pair of vertices (x, y) in V (G) there is a path Pxy from x to y in G such
that Pxy is distance-decreasing in Γδ; further, if x 6= u and y 6= u, then u /∈ V (Pxy).

We comment on the statement of Theorem 8. First, let us set δ = 0 and argue about
Γ0 = Γ. Properties 1 and 6 are those that one would expect, as they state that Γ is planar
and greedy, respectively. Properties 2 and 3 state that all the edges incident to the outer
face of Γ are “almost” horizontal; indeed, the edges of τuv(G) are horizontal (this does not

G. Da Lozzo, A. D’Angelo, and F. Frati 33:7

bm−1

b2
b3

bm=v`u δ

u=b1α

PxxQx

Figure 2 Illustration for the statement of Theorem 8.

bm−1

b2
b3

at=bm=v`u δ

a2 a3
ε

u=a1=b1

d(Γ′, a1a2) d(Γ′, a2at)

Figure 3 The straight-line drawing Γ of G in Case A if k = 1.

compromise the planarity of Γ since G does not contain edges between non-consecutive
vertices of τuv(G), by Property (d) of (G, u, v)), the edge b1b2 has a slightly negative slope,
and all the other edges of βuv(G) have slightly positive slopes. Then the planarity of Γ
implies that Γ is contained in a wedge delimited by two half-lines with slopes 0 and −α
starting at u. Properties 4 and 5 argue about the existence of certain paths from any vertex
to u and v; these two vertices play an important role in the structural decomposition we
employ, since distinct subgraphs are joined on those vertices, and the paths incident to them
are inductively combined together in order to construct distance-decreasing paths. Finally,
all these properties still hold if u is moved by an arbitrary non-negative amount δ to the left.
This is an important feature we exploit in one of our inductive cases.

We now present an inductive proof of Theorem 8. In the Base Case the graph G is
a single edge. We remark that, although Theorem 8 assumes that the given graph has at
least three vertices, for its proof we need to inductively draw certain subgraphs of it; these
subgraphs might indeed be single edges. Whenever we need to draw a strong circuit graph
(G, u, v) such that G is a single edge uv, we draw it as a horizontal straight-line segment
with positive length, with u to the left of v. We remark that, since Theorem 8 assumes that
|V (G)| ≥ 3, we do not need the constructed drawing to satisfy Properties 1–6.

We now discuss the inductive cases. In Case A the path τuv(G) coincides with the edge
uv, while in Case B it does not. We discuss Case A first. Let G′ = G − uv, where G′
consists of a sequence of graphs G1, . . . , Gk, with k ≥ 1, satisfying the properties described
in Lemma 6. Our construction is different if k = 1 and k ≥ 2.

Suppose first that k = 1; by Lemma 6 the triple (G′ = G1, u, v) is a strong circuit graph
(and G1 is not a single edge, as otherwise we would be in the Base Case). Inductively
construct a straight-line drawing Γ′ of G′ with α

2 as a parameter. By Property 2 the path
τuv(G′) = (u = a1, . . . , at = v) lies on a horizontal line `u in Γ′ with u to the left of v. Let
Y > 0 be the minimum distance in Γ′ of any vertex strictly below `u from `u. Let

ε = 1
2 min{ε∗Γ′ , Y, tan(α) · d(Γ′, a1a2), tan(α) · d(Γ′, a2at)}.

We construct a straight-line drawing Γ of G from Γ′ as follows; refer to Fig. 3. Decrease the
y-coordinate of the vertex a2 by ε; for i = 3, . . . , t− 1, decrease the y-coordinate of the vertex
ai so that it ends up on the straight-line segment a2at. Draw the edge uv as a straight-line
segment. We have the following.

SoCG 2017

33:8 On Planar Greedy Drawings of 3-Connected Planar Graphs

b2

`u δ

u1

ε

u=u0=b1

d(Γ1, u0u1)

Γ1
u2

Γ2

Γ3
Γ4

u3
pv=v=u4=bm

h

Figure 4 The straight-line drawing Γ of G in Case A if k ≥ 2. In this example k = 4. The gray
angle in the drawing is α

2 .

I Lemma 9. For any δ ≥ 0, the drawing Γδ constructed in Case A if k = 1 satisfies
Properties 1–6 of Theorem 8.

Proof Sketch. The planarity of Γ is established due to the inequality ε < ε∗Γ′ and to Lemma 4.
Since Γ and Γδ coincide, except for the position of u, every crossing in Γδ has to involve
edges incident to u. The proof that in fact there are no such crossings relies on the fact that
Γ′δ is planar, by induction, and on the inequalities ε < ε∗Γ′ and ε < Y .

The paths Px and Qx requested for Properties 4 and 5 are obtained by suitably modifying
paths satisfying the same properties for (G′, u, v). The paths Px and Qx might contain edges
in τuv(G′); however, the slopes of the edges are in the required interval, which is (−α, α) or
(π − α, π + α) depending on whether these edges are traversed towards v or u, respectively.
This is due to the inequalities ε < tan(α) · d(Γ′, a1a2) and ε < tan(α) · d(Γ′, a2at). J

We now discuss the case in which k ≥ 2. Refer to Fig. 4. By Lemma 6, for i = 1, . . . , k,
the triple (Gi, ui−1, ui) is a strong circuit graph, where u0 = u, uk = v, and ui is the only
vertex shared by Gi and Gi+1, for i = 1, . . . , k − 1.

If G1 is a single edge, then inductively construct a straight-line drawing Γ1 of G1 and
define ε = 1

2 min{ε∗Γ1
, tan(α) · d(Γ1, u0u1)}. If G1 is not a single edge, then inductively

construct a straight-line drawing Γ1 of G1 with α
2 as a parameter. By Property 2 of Γ1, the

path τu0u1(G1) lies on a horizontal line `u. Let Y > 0 be the minimum distance in Γ1 of any
vertex strictly below `u from `u. Let ε = 1

2 min{ε∗Γ1
, Y, tan(α) · d(Γ1, u0u1)}. In both cases,

decrease the y-coordinate of u1 by ε. Further, decrease the y-coordinate of every internal
vertex of the path τu0u1(G1), if any, so that it ends up on the straight-line segment u0u1.

Now consider a half-line h with slope s = α
2 starting at u1. Denote by pv the point at

which h intersects the horizontal line `u through u. For i = 2, . . . , k, inductively construct a
straight-line drawing Γi of Gi with α

3 as a parameter (if Gi is a single edge, then the parameter
does not matter). Uniformly scale the drawings Γ2, . . . ,Γk so that the Euclidean distance
between ui−1 and ui in Γi is equal to d(Γ1,u1pv)

k−1 . For i = 2, . . . , k, rotate the scaled drawing
Γi around ui−1 counter-clockwise by s radians. Translate the scaled and rotated drawings
Γ2, . . . ,Γk so that the representations of ui in Γi and Γi+1 coincide, for i = 1, . . . , k − 1.
Finally, draw the edge uv as a straight-line segment. This completes the construction of a
drawing Γ of G. We have the following.

I Lemma 10. For any δ ≥ 0, the drawing Γδ constructed in Case A if k ≥ 2 satisfies
Properties 1–6 of Theorem 8.

Proof Sketch. The fulfillment of Property 3 for Γδ is the reason for the asymmetry of the
construction, which shifts vertices in Γ1, while it rotates Γ2, . . . ,Γk. Indeed, for i = 1, . . . , k,
the first edge of βui−1ui(Gi) has negative slope in Γi, while all the other edges have positive
slopes; we need to ensure that the same property holds for βuv(G) = βu0u1(G1) ∪ · · · ∪
βuk−1uk(Gk) in Γδ. For i = 2, . . . , k, the counter-clockwise rotation of Γi by s = α

2 radians

G. Da Lozzo, A. D’Angelo, and F. Frati 33:9

v=u4

cr=u1

ε

d(Γ1, u0u1)

u2

u3

u=u0=c1

x=v1

vh=cj

`u

c2

Figure 5 Illustration for the proof that the slope in Γδ of every edge in the path Px is in (−α, α),
in the case in which x belongs to G1. The path Px is thick.

makes up for the negative slope (at most α
3 in absolute value) of the first edge of βui−1ui(Gi)

in Γi. On the other hand, the edges of βu0u1(G1) do not move when transforming Γ1 in Γ,
except for the edge incident to u1, which however does not change its slope significantly, due
to the inequality ε < Y ; hence the slope of the first edge of βu0u1(G1) remains negative (or
becomes negative if G1 is a single edge) and the other ones remain positive.

We present a proof that Γδ satisfies Property 4. Let x ∈ V (G). If x = u, let Px = (u, v);
then the only edge of Px has slope 0 ∈ (−α, α) in Γδ. If x = ui, for some i ∈ {1, . . . , k−1}, then
let Px =

⋃k
j=i+1 τuj−1uj (Gj) and observe that all the edges of Px have slope s = α

2 ∈ (−α, α);
further Px does not pass through u. If x 6= ui, for every i ∈ {0, . . . , k}, then x belongs to
a unique graph Gi, for some i ∈ {1, . . . , k}. Assume that i = 1; the case i ≥ 2 is easier
to handle. Refer to Fig. 5. Let τu0u1(G1) = (u0 = c1, c2, . . . , cr = u1). Since Γ1 satisfies
Property 4, there exists a path P 1

x = (x = v1, v2, . . . , vp = u1) from x to u1 in G1, not passing
through u0, whose edges have slopes in (−α2 ,

α
2) in Γ1; let h be the smallest index such that

vh = cj , for some j ∈ {1, . . . , r}. Such an index h exists (possibly h = p and j = r). Then
let Px consist of the paths (x = v1, v2, . . . , vh), (vh = cj , cj+1, . . . , cr), and

⋃k
j=2 τuj−1uj (Gj).

Since u /∈ V (P 1
x), we have that u /∈ V (Px), hence it suffices to argue about the slopes of the

edges of Px in Γ rather than in Γδ.
For l = 1, . . . , h−2, the slope of vlvl+1 is in (−α, α) in Γ since it is in (−α, α) in Γ1 and since

neither vl nor vl+1 moves when transforming Γ1 into Γ. Further, for l = j, . . . , r−1, the slope
of the edge clcl+1 in Γ is − arctan

(
ε

d(Γ1,u0u1)

)
, which is in the interval (−α, 0) ⊂ (−α, α),

given that ε, d(Γ1, u0u1) > 0 and that ε < tan(α) · d(Γ1, u0u1). Moreover, the edges of⋃k
j=2 τuj−1uj (Gj) have slope s = α

2 ∈ (−α, α). Finally, let σ1 and σ be the slopes of the edge
vh−1vh in Γ1 and Γ, respectively. Since vh−1vh ∈ E(P 1

x), we have σ1 ∈ (−α2 ,
α
2); since α ≤ π

4 ,
we have x(vh−1) < x(vh) in Γ1 and Γ (note that the x-coordinates of the vertices do not
change when transforming Γ1 into Γ). Further, by Properties 1–4 of Γ1, we have that vh−1
lies below `u, which contains vh; hence, y(vh−1) < y(vh) in Γ1. Since the vertex vh moves
down (while vh−1 stays put) when transforming Γ1 into Γ, and since ε ≤ Y

2 < dV (Γ1, vh−1vh),
it follows that 0 < σ < σ1; hence σ ∈ (0, α2) ⊂ (−α, α).

Turning our attention to Property 6, consider any two vertices x, y ∈ V (G), and assume
that x ∈ V (Gi) and y ∈ V (Gj). We prove the existence of a path Pxy from x to y in G

that is distance-decreasing in Γδ in the case in which 2 ≤ i < j ≤ k; the other cases can be
treated similarly. Let Pxy consist of a path P ix in Gi from x to ui whose edges have slopes in
(−α3 ,

α
3) in Γi, of the path

⋃j−1
l=i+1 τul−1ul(Gl), and of a path P juj−1y in Gj that is distance-

decreasing in Γj . By induction, P ix and P juj−1y exist since Γi and Γj satisfy Properties 4
and 6, respectively; further, note that u /∈ V (Pxy). Let Pxy = (z1, z2, . . . , zs); we prove that
d(Γδ, zhzs) > d(Γδ, zh+1zs), for h = 1, 2, . . . , s − 2, hence Pxy is distance-decreasing in Γδ.
We distinguish three cases.

If zhzh+1 is in Gj , then (zh, zh+1, . . . , zs) is a sub-path of P juj−1y, hence it is distance-
decreasing in Γδ since it is distance-decreasing in Γj and since the drawing of Gj in Γδ is

SoCG 2017

33:10 On Planar Greedy Drawings of 3-Connected Planar Graphs

π
2 ul
Gl

Gl+1

ul+1
zh zh+1

`h`′h
zs

π
2

ui
Gi

Gi+1

ui+1zh

zh+1

`h

`′h

zs

ui−1

slope π
2 +

α
6

slope π
2 +

5α
6

(a) (b)

Figure 6 (a) Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in τul−1ul(Gl).
(b) Illustration for the proof that d(Γδ, zhzs) > d(Γδ, zh+1zs) if zhzh+1 is in P ix.

congruent to Γj , up to affine transformations (a uniform scaling, a rotation, and a translation),
which preserve the property of a path to be distance-decreasing.

If zhzh+1 is in τul−1ul(Gl), for some l ∈ {i+ 1, i+ 2, . . . , j − 1}, as in Fig. 6(a), then it
has slope s = α

2 . The directed line `h with slope π+α
2 through ul, oriented towards increasing

y-coordinates has the drawings of Gl+1, . . . , Gk (and in particular the vertex zs) to its right;
this is because by Property 3 of Γδ every edge in βulv(G) has slope in the interval (0, α), where
−π+α

2 < 0 < α < π+α
2 , and because the path

⋃k
m=l+1 τum−1um(Gm) has slope s = α

2 , where
−π+α

2 < α
2 <

π+α
2 . Then the directed line `′h parallel to `h, passing through the midpoint of

the edge zhzh+1, and oriented towards increasing y-coordinates has `h to its right, hence it
has zs to its right. Since the half-plane to the right of `′h represents the locus of the points of
the plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs).

If zhzh+1 is in P ix, as in Fig. 6(b), then by Property 4 it has slope in (−α3 ,
α
3) in Γi.

Since Γi is counter-clockwise rotated by s radians in Γδ, it follows that zhzh+1 has slope in
(s − α

3 , s + α
3) = (α6 ,

5α
6) in Γδ. Consider the directed line `h that passes through ui, that

is directed towards increasing y-coordinates and that is orthogonal to the line through zh
and zh+1. Denote by sh the slope of `h. Then sh ∈ (π2 + α

6 ,
π
2 + 5α

6). We have that `h has
the drawings of Gi+1, . . . , Gk to its right; this is because by Property 3 of Γδ every edge in
βuiv(G) has slope in (0, α) with sh − π < −π2 + 5α

6 < 0 < α < π
2 + α

6 < sh and because the
path

⋃k
m=i+1 τum−1um(Gm) has slope s = α

2 , where sh − π < −
π
2 + 5α

6 < α
2 < π

2 + α
6 < sh.

Further, `h has the drawings of G2, . . . , Gi to its left; this is because by Property 3 of Γδ every
edge in τuiu1(G) has slope in (π, π+α) with sh < π

2 + 5α
6 < π < π+α < 3π

2 + α
6 < π+sh and

because the path
⋃i
m=2 βumum−1(Gm) has slope s = π + α

2 , where sh <
π
2 + 5α

6 < π + α
2 <

3π
2 + α

6 < π + sh. Now consider the directed line `′h parallel to `h, passing through the
midpoint of the edge zhzh+1, and oriented towards increasing y-coordinates. This line has `h
to its right, given that the drawing of Gi (and in particular the midpoint of zhzh+1) is to the
left of `h in Γδ. Thus, `′h has the drawings of Gl+1, . . . , Gk (and in particular the vertex zs)
to its right. Since the half-plane to the right of `′h represents the locus of the points of the
plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhzs) > d(Γδ, zh+1zs). J

We now discuss Case B, in which (G, u, v) is decomposed according to Lemma 7. Refer
to Figs. 7 and 8. First, the triple (H,u, y1) is a strong circuit graph with |V (H)| ≥ 3.
Inductively construct a straight-line drawing ΓH of H with α

2 as a parameter.
Let βuy1(H) = (u = b1, . . . , bm = y1). Let φi be the slope of the edge bibi+1 in ΓH and

let φ = mini=2,...,m−1{φi}. By Property (c) of (H,u, y1) if the edge uy1 belongs to H then
it coincides with the path τuy1(H). Hence, m ≥ 3 and φ is well-defined. Further, φ is in the
interval (0, α2) by Property 3 of ΓH .

G. Da Lozzo, A. D’Angelo, and F. Frati 33:11

y1=bm
v Dρ

pρ,u

ρ

ΓHu=b1

b2

`u δ

y`

dV (Γδ, y`y1)

dH(Γδ, y`y1) dy1v
pρ,β

d∗

φ2

Figure 7 The straight-line drawing Γ of G in Case B. For the sake of readability, φ and ρ are
larger than they should be. The dark gray angle is β. Fig. 8 shows an enlarged view of Dρ.

Dρ

pρ,u pρ,β

Γ1

Γ2
Γ3

u1 u2 v=uk

u0

v=uk

Dρ

Γ1,d∗

Γ2
Γ3

u1 u2

(a) (b)

Figure 8 A closer look at Dρ. Figure (a) represents the drawings Γ1, . . . ,Γk once they have been
uniformly scaled, rotated, and translated, while (b) also has the vertex u0 moved by d∗ units (this
movement actually happens before the rotation and translation of Γ1).

Let β = 1
2 min

{
φ, arctan

(
dV (ΓH ,y`y1)

3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)}
. Note that β > 0, given that

φ, dV (ΓH , y`y1) > 0 and dH(ΓH , y`y1) ≥ 0. In particular, dV (ΓH , y`y1) > 0 because y1 is
a vertex of τuy1(H) and y` is an internal vertex of βuy1(H) by Lemma 7, and because of
Properties 1–3 of ΓH . Also note that β < α

4 , given that φ < α
2 .

Consider a half-line hβ with slope β starting at y`. Place the vertex v at the intersection
point between hβ and the horizontal line `u through u. Draw all the trivial (H ∪{v})-bridges
of G as straight-line segments. This concludes the construction if every (H ∪ {v})-bridge of
G is trivial. Otherwise, B` is the only non-trivial (H ∪ {v})-bridge of G. Then B` consists
of k strong circuit graphs (Gi, ui−1, ui), where u0 = y` and uk = v. With a slight change of
notation, in the remainder of the section we assume that, if the edge y`v exists, then it is
an edge of B` (rather than an individual trivial (H ∪ {v})-bridge B`−1 of G); in this case
(B`, u0, uk) is a strong circuit graph.

We claim that v lies to the right of y1. The polygonal line representing βy`y1(H) in ΓH
and the straight-line segment y`v are both incident to y`. By definition of φ and since ΓH
satisfies Property 3, βy`y1(H) is composed of straight-line segments with slopes in the range
[φ, α2), while y`v has slope β. The claim then follows from 0 < β < φ < π

2 . Let dy1v be the
distance between y1 and v. Let Y > 0 be the minimum distance in ΓH of any vertex strictly
below `u from `u. Let ρ = min{dy1v

3 , Y2 } and let Dρ be the disk with radius ρ centered at v.
Let pρ,β (pρ,u) be the intersection point of the boundary of Dρ with hβ (resp. with `u) that
is closer to y` (resp. to y1). Let d∗ be the Euclidean distance between y` and pρ,β .

Let α′ = β
2 . Since β > 0, we have α′ > 0; further, α′ < α

8 , given that β < α
4 . For

i = 1, . . . , k, inductively construct a straight-line drawing Γi of Gi with α′ as a parameter
(if Gi is a single edge, then the parameter does not matter). Uniformly scale the drawings
Γ1, . . . ,Γk so that the Euclidean distance between ui−1 and ui is equal to ρ

k . Move the
vertex u0 in Γ1 by d∗ units to the left, obtaining a drawing Γ1,d∗ . Rotate the drawings
Γ1,d∗ ,Γ2, . . . ,Γk counter-clockwise by β radians. Translate Γ1,d∗ ,Γ2, . . . ,Γk so that, for
i = 1, . . . , k − 1, the representations of ui in Γi and Γi+1 (in Γ1,d∗ and Γ2 if i = 1) coincide

SoCG 2017

33:12 On Planar Greedy Drawings of 3-Connected Planar Graphs

`u

slope π−α
2

slope π+α
2

y1 v

Dρ

`h

pρ,u

pT

pB

`′h

zh zh+1
y

α
2

α
2

ρ

ρx

Figure 9 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if zhzh+1 is in PHx . For the
sake of readability, Dρ is larger than it should be.

and so that the representation of u0 in Γ1,d∗ coincides with the one of y` in ΓH . This
completes the construction of a straight-line drawing Γ of G. We have the following.

I Lemma 11. For any δ ≥ 0, the drawing Γδ constructed in Case B satisfies Properties 1–6
of Theorem 8.

Proof Sketch. Let ΓH,δ denote the drawing obtained from ΓH by moving the vertex u by δ
units to the left.

We first prove that every vertex z 6= u0 that belongs to a graph Gi lies inside the
disk Dρ in Γδ. A consequence of this statement is a sharp geometric separation between
the vertices of G that are in H and those that are not. Consider any drawing Γj with
j ∈ {1, . . . , k} (where Γ1 is considered before moving u0 by d∗ units to the left) and let
Dj be the disk centered at uj with radius d(Γj , uj−1uj). By Properties 1 and 2 of Γj ,
the path τuj−1uj (Gj) lies on uj−1uj in Γj , hence it lies inside Dj . Further, the edges of
βuj−1uj (Gj) have slopes in (−α′, α′) ⊂ (−α8 ,

α
8) ⊂ (− π

32 ,
π
32); hence βuj−1uj (Gj) also lies

inside Dj . By planarity Γj lies entirely inside Dj . Hence, uj−1 is the farthest vertex
of Gj from uj in Γj . This property is true also after the uniform scaling of Γ1, . . . ,Γk;
further, after the scaling, the distance between uj−1 and uj is ρ

k , by construction. By the
triangular inequality, we have that d(Γδ, vz) ≤

∑k
j=i+1 d(Γδ, uj−1uj) + d(Γδ, uiz). Since

d(Γδ, uj−1uj) = ρ
k for any j ∈ {2, . . . , k}, and since d(Γδ, uiz) ≤ ρ

k (this exploits z 6= u0
and hence d(Γδ, uiz) = d(Γi, uiz), where Γi is understood as already scaled), we have that
d(Γδ, vz) ≤ (k−i+1)ρ

k ≤ ρ. Thus z lies inside Dρ.
We now prove that Property 6 is satisfied by Γδ. We devote our attention to the proof of

the existence of a distance-decreasing path Pxy from a vertex x to a vertex y if: (i) x ∈ V (H)
and y ∈ V (Gi), for some i ∈ {1, . . . , k}; or (ii) x ∈ V (Gi), for some i ∈ {1, . . . , k}, and
y ∈ V (H). While the rest of the proof that Property 6 is satisfied by Γδ proceeds similarly
to the proof of Lemma 10, cases (i) and (ii) above deal with vertices x and y that are “far
apart” in Γδ, a circumstance that does not occur in the proof of Lemma 10.

In case (i) Pxy contains a path PHx in H from x to y1. Assume that x 6= u, as the case
x = u is easier to handle. By Property 4 of ΓH,δ, there is a path PHx = (x = z1, . . . , zs = y1)
in H that connects x to y1, that does not pass through u, and whose edges have slopes in
(−α2 ,

α
2) in ΓH,δ. We prove that, for h = 1, . . . , s− 1, d(Γδ, zhy) > d(Γδ, zh+1y); see Fig. 9.

Since the drawing of H in Γδ coincides with ΓH,δ, zhzh+1 has slope in (−α2 ,
α
2) in Γδ. Let `h

be the directed line through y1 directed towards increasing y-coordinates and orthogonal to
the line through zh and zh+1. Denote by sh the slope of `h. Then sh ∈ (π−α2 , π+α

2).
We prove that `h has the disk Dρ to its right. In order to do that, consider the point pT on

the half-line with slope π−α
2 starting at y1 and such that dV (Γδ, y1pT) = ρ. Further, consider

G. Da Lozzo, A. D’Angelo, and F. Frati 33:13

`u y1 v Dρ

pρ,u

mh

`′h

ρzh

zh+1=y`

ph qh
β

`h

y

H
dV (Γδ, y`y1)

dH(Γδ, y`y1)

Figure 10 Illustration for the proof that d(Γδ, zhy) > d(Γδ, zh+1y) if zh+1 = y` = u0.

the point pB on the half-line with slope −π+α
2 starting at y1 and such that dV (Γδ, y1pB) = ρ.

Note that pT pB is a vertical straight-line segment with length 2ρ. Consider the infinite closed
strip S with height 2ρ that is delimited by the horizontal lines through pT and pB . Since Dρ

has its center on `u and has radius ρ, it lies inside S. The part of `h inside S is to the left of
pT pB , given that sh ∈ (π−α2 , π+α

2). Hence, it suffices to show that pρ,u, which is the point of
Dρ with smallest x-coordinate, lies to the right of pT pB. We have d(Γδ, y1pρ,u) = dy1v − ρ.
Further, dH(Γδ, y1pT) = ρ · tan(α2). Hence, it suffices to prove ρ · tan(α2) < dy1v − ρ, that is
ρ <

dy1v
1+tan(α2) ; this is true since ρ < dy1v

3 and tan(α2) < 1, given that 0 < α < π
4 .

The line `h has ΓH,δ (and in particular the midpoint of zhzh+1) to its left; this is because by
Property 2 of ΓH,δ every edge in βy1u(H) has slope π, where sh < π+α

2 < π < 3π−α
2 < π+sh,

and because by Property 3 of ΓH,δ every edge in τy1u(H) has slope in (π − α
2 , π + α

2), where
sh <

π+α
2 < π − α

2 < π + α
2 < 3π−α

2 < π + sh. Let `′h be the directed line parallel to `h,
passing through the midpoint of zhzh+1, and oriented towards increasing y-coordinates; `′h
has `h to its right, as the midpoint of zhzh+1 is to the left of `h in Γδ. Thus, `′h has Dρ, and
in particular y, to its right. Since the half-plane to the right of `′h is the locus of the points
of the plane that are closer to zh+1 than to zh, it follows that d(Γδ, zhy) > d(Γδ, zh+1y).

The path Pxy also contains the edge y1v, which “jumps” from H to Dρ. Since y lies
in Dρ, we have that d(Γδ, vy) ≤ ρ ≤ dy1v

3 . By the triangular inequality, we have that
d(Γδ, y1y) > d(Γδ, y1v)− d(Γδ, vy) ≥ dy1v − ρ ≥

2dy1v
3 . Hence, d(Γδ, y1y) > d(Γδ, vy). The

third sub-path of Pxy is a path Pvy from v to y in
⋃k
l=iGl that is distance-decreasing in Γδ.

The construction of this path proceeds similarly as in the proof of Lemma 10.
In case (ii) we have that x ∈ V (Gi), for some i ∈ {1, . . . , k}, and y ∈ V (H). While in case

(i) the connection between H and Dρ is done via y1, here it is done via y`. In particular, the
first part of Pxy consists of edges with slopes in the range (π−α, π+α) inside Dρ. Similarly
to case (i), the orthogonal line through the midpoint of each of these edges separates H from
Dρ; hence traversing the edge decreases the distance to y.

We now argue that traversing an edge that “jumps” from Dρ to H decreases the distance
to y. That is, we show that, for a vertex zh in Dρ incident to an edge zhzh+1 with
zh+1 = y` = u0, it holds d(Γδ, zhy) > d(Γδ, zh+1y). Refer to Fig. 10. We exploit again the
fact that the line `h passing through y1 and orthogonal to the line through zh and zh+1 has
ΓH,δ (and in particular y) to its left; then consider the directed line `′h parallel to `h, oriented
towards increasing y-coordinates, and passing through the midpoint mh of zhzh+1. Since the
half-plane to the left of `′h is the locus of the points of the plane that are closer to zh+1 than
to zh, it suffices to show that the intersection point ph of `′h and `u lies to the right of y1 on
`u; in fact, this implies that `′h has `h (and hence y) to its left.

Since zh lies inside Dρ, we have x(zh) ≥ x(pρ,u) = x(y1) + dy1v − ρ. Moreover, x(y1) =
x(y`)+dH(Γδ, y`y1). Thus, we have x(mh) = x(y`)+x(zh)

2 ≥ x(y`)+(x(y`)+dH(Γδ,y`y1)+dy1v−ρ)
2 =

x(y`) + dH(Γδ,y`y1)+dy1v−ρ
2 . Translate the Cartesian axes so that x(y`) = 0. Thus, x(mh) =

dH(Γδ,y`y1)+dy1v−ρ
2 . By Lemma 7, y` is an internal vertex of βuv(G), hence y` lies below `u.

SoCG 2017

33:14 On Planar Greedy Drawings of 3-Connected Planar Graphs

Since ρ < Y and zh lies in Dρ, the y-coordinate of y` is smaller than the one of zh. Hence,
the slope of zhzh+1 is larger than π. Further, zh and hence mh lie on or below hβ , thus the
slope of zhzh+1 is at most π + β and the slope sh of `′h is in the interval (π2 ,

π
2 + β).

We now derive a lower bound for the x-coordinate of ph. Let qh be the projection of
mh on `u. Consider the triangle ∆mhphqh. Since the y-coordinate of y` is smaller than the
one of zh, it is also smaller than the one of mh. Thus, d(Γδ,mhqh) ≤ dV (Γδ, y`y1). Since
sh ∈ (π2 ,

π
2 + β), the angle]phmhqh is at most β. Hence, d(Γδ, phqh) ≤ dV (Γδ, y`y1) · tan(β).

Thus, x(ph) = x(mh)− d(Γδ, phqh) ≥ dH(Γδ,y`y1)+dy1v−ρ
2 − dV (Γδ, y`y1) · tan(β). It remains

to prove that this quantity is larger than dH(Γδ, y`y1), which is the x-coordinate of y1.
Since β < α

4 <
π
16 , we have tan(β) ≤ 1, hence dH(Γδ,y`y1)+dy1v−ρ

2 −dV (Γδ, y`y1) · tan(β) ≥
dH(Γδ,y`y1)+dy1v−ρ

2 − dV (Γδ, y`y1). We want to establish dH(Γδ,y`y1)+dy1v−ρ
2 − dV (Γδ, y`y1) >

dH(Γδ, y`y1), that is, dy1v > 2dV (Γδ, y`y1) + dH(Γδ, y`y1) + ρ. Since ρ ≤ dy1v
3 , we need to

prove that dy1v >
6dV (Γδ,y`y1)+3dH(Γδ,y`y1)

2 .
We now express dy1v as a function of β. This is done by looking at the triangle whose

vertices are y`, v, and the projection of y` on `u. Since the angle of this triangle at v is
β, we get dy1v = dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1). Substituting this into the previous inequal-
ity, we need to have dV (Γδ,y`y1)

tan(β) − dH(Γδ, y`y1) > 6dV (Γδ,y`y1)+3dH(Γδ,y`y1)
2 , hence tan(β) <

2dV (Γδ,y`y1)
6dV (Γδ,y`y1)+5dH(Γδ,y`y1) , which is true since β < arctan

(
dV (ΓH ,y`y1)

3dV (ΓH ,y`y1)+3dH(ΓH ,y`y1)

)
. This

concludes the proof that d(Γδ, zhy) > d(Γδ, zh+1y).
The path Pxy continues with a path Py`y from y` to y in H that is distance-decreasing in

ΓH,δ (and hence in Γδ, since the drawing of H in Γδ coincides with ΓH,δ). This concludes
the proof of the lemma. J

Given a strong circuit graph (G, u, v) such that G is not a single edge, we are in Case A
or Case B depending on whether the edge uv exists or not, respectively. Thus, Lemmata 9–11
prove Theorem 8. We show how to use Theorem 8 in order to prove Theorem 3. Consider
any 3-connected planar graph G and associate any plane embedding to it; let u and v be
two consecutive vertices in the clockwise order of the vertices along the outer face of G. We
have that (G, u, v) is a strong circuit graph. Indeed: (a) by assumption G is 2-connected –
in fact 3-connected – and associated with a plane embedding; (b) by construction u and v
are two distinct external vertices of G; (c) edge uv exists and coincides with τuv(G), given
that v immediately follows u in the clockwise order of the vertices along the outer face of G;
and (d) G does not have any 2-cut, as it is 3-connected. Thus, Theorem 8 can be applied in
order to construct a planar greedy drawing of G. This concludes the proof of Theorem 3.

4 Conclusions

In this paper we have shown how to construct planar greedy drawings of 3-connected planar
graphs. It is tempting to try to use the graph decomposition we employed in this paper for
proving that 3-connected planar graphs admit convex greedy drawings. However, despite
some efforts in this direction, we have not been able to modify the statement of Theorem 8
in order to guarantee the desired convexities of the angles in the drawings. Thus, proving or
disproving the convex greedy embedding conjecture remains an elusive goal.

References
1 S. Alamdari, T.M. Chan, E. Grant, A. Lubiw, and V. Pathak. Self-approaching graphs. In

Didimo and Patrignani, editors, GD, volume 7704 of LNCS, pages 260–271, 2012.

G. Da Lozzo, A. D’Angelo, and F. Frati 33:15

2 P. Angelini, G. Di Battista, and F. Frati. Succinct greedy drawings do not always exist.
Networks, 59(3):267–274, 2012.

3 P. Angelini, E. Colasante, G. Di Battista, F. Frati, and M. Patrignani. Monotone drawings
of graphs. J. Graph Algorithms Appl., 16(1):5–35, 2012.

4 P. Angelini, F. Frati, and L. Grilli. An algorithm to construct greedy drawings of triangu-
lations. J. Graph Algorithms Appl., 14(1):19–51, 2010.

5 D. Barnette. Trees in polyhedral graphs. Canadian J. Math., 18:731–736, 1966.
6 P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery in ad

hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.
7 G. Chen and X. Yu. Long cycles in 3-connected graphs. J. Comb. Theory, Ser. B, 86(1):80–

99, 2002.
8 G. Da Lozzo, A. D’Angelo, and F. Frati. On planar greedy drawings of 3-connected planar

graphs. CoRR, 2016. URL: http://arxiv.org/abs/1612.09277.
9 G. Da Lozzo, V. Dujmović, F. Frati, T. Mchedlidze, and V. Roselli. Drawing planar graphs

with many collinear vertices. In Hu and Nöllenburg, editors, GD, volume 9801 of LNCS,
pages 152–165, 2016.

10 H.R. Dehkordi, F. Frati, and J. Gudmundsson. Increasing-chord graphs on point sets. J.
Graph Algorithms Appl., 19(2):761–778, 2015.

11 R. Dhandapani. Greedy drawings of triangulations. Discr. Comp. Geom., 43(2):375–392,
2010.

12 G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.
Theor. Comput. Sci., 61:175–198, 1988.

13 D. Eppstein and M.T. Goodrich. Succinct greedy geometric routing using hyperbolic
geometry. IEEE Trans. Computers, 60(11):1571–1580, 2011.

14 S. Felsner, A. Igamberdiev, P. Kindermann, B. Klemz, T. Mchedlidze, and M. Scheucher.
Strongly monotone drawings of planar graphs. In Fekete and Lubiw, editors, SoCG,
volume 51 of LIPIcs, pages 37:1–37:15, 2016.

15 H. Frey, S. Rührup, and I. Stojmenović. Routing in wireless sensor networks. In Misra,
Woungang, and Misra, editors, Guide to Wireless Sensor Networks, Computer Communic-
ations and Networks, chapter 4, pages 81–111. Springer, 2009.

16 M.T. Goodrich and D. Strash. Succinct greedy geometric routing in the Euclidean plane.
In Dong, Du, and Ibarra, editors, ISAAC, volume 5878 of LNCS, pages 781–791, 2009.

17 X. He and H. Zhang. On succinct greedy drawings of plane triangulations and 3-connected
plane graphs. Algorithmica, 68(2):531–544, 2014.

18 P. Kindermann, A. Schulz, J. Spoerhase, and A. Wolff. On monotone drawings of trees. In
Duncan and Symvonis, editors, GD, volume 8871 of LNCS, pages 488–500, 2014.

19 E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In CCCG,
1999. URL: http://www.cccg.ca/proceedings/1999/c46.pdf.

20 F. Kuhn, R. Wattenhofer, and A. Zollinger. An algorithmic approach to geographic routing
in ad hoc and sensor networks. IEEE/ACM Trans. Netw., 16(1):51–62, 2008.

21 T. Leighton and A. Moitra. Some results on greedy embeddings in metric spaces. Discr.
Comp. Geom., 44(3):686–705, 2010.

22 M. Nöllenburg and R. Prutkin. Euclidean greedy drawings of trees. In Bodlaender and
Italiano, editors, ESA, volume 8125 of LNCS, pages 767–778, 2013.

23 M. Nöllenburg, R. Prutkin, and I. Rutter. On self-approaching and increasing-chord draw-
ings of 3-connected planar graphs. J. Comp. Geom., 7(1):47–69, 2016.

24 C.H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric routing. In
Nikoletseas and Rolim, editors, ALGOSENSORS, volume 3121 of LNCS, pages 9–17, 2004.

25 C.H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric routing. Theor.
Comput. Sci., 344(1):3–14, 2005.

SoCG 2017

http://arxiv.org/abs/1612.09277
http://www.cccg.ca/proceedings/1999/c46.pdf

33:16 On Planar Greedy Drawings of 3-Connected Planar Graphs

26 A. Rao, C.H. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without location
information. In Johnson, Joseph, and Vaidya, editors, MOBICOM, pages 96–108, 2003.

27 C. Siva Ram Murthy and B. S. Manoj. Ad Hoc Wireless Networks: Architectures and
Protocols. Prentice Hall, 2004.

28 C.K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice Hall, 2002.

Origamizer: A Practical Algorithm for Folding
Any Polyhedron
Erik D. Demaine∗1 and Tomohiro Tachi†2

1 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge,
MA, USA
edemaine@mit.edu

2 Department of General Systems Studies, The University of Tokyo, Japan
tachi@idea.c.u-tokyo.ac.jp

Abstract
It was established at SoCG’99 that every polyhedral complex can be folded from a sufficiently
large square of paper, but the known algorithms are extremely impractical, wasting most of the
material and making folds through many layers of paper. At a deeper level, these foldings get
the topology wrong, introducing many gaps (boundaries) in the surface, which results in flimsy
foldings in practice. We develop a new algorithm designed specifically for the practical folding
of real paper into complicated polyhedral models. We prove that the algorithm correctly folds
any oriented polyhedral manifold, plus an arbitrarily small amount of additional structure on
one side of the surface (so for closed manifolds, inside the model). This algorithm is the first to
attain the watertight property: for a specified cutting of the manifold into a topological disk with
boundary, the folding maps the boundary of the paper to within ε of the specified boundary of
the surface (in Fréchet distance). Our foldings also have the geometric feature that every convex
face is folded seamlessly, i.e., as one unfolded convex polygon of the piece of paper. This work
provides the theoretical underpinnings for Origamizer, freely available software written by the
second author, which has enabled practical folding of many complex polyhedral models such as
the Stanford bunny.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases origami, folding, polyhedra, Voronoi diagram, computational geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.34

1 Introduction

The ultimate challenge in computational origami design is to devise an algorithm that tells
you the best way to fold anything you want. Several results tackle this problem for various
notions of “best” and “anything”. We highlight two key such results, from SoCG’96 and
SoCG’99 respectively. The tree method [6, 7, 4] finds an efficient folding of a given square of
paper into a shape with an orthogonal projection equal to a scaled copy of a given metric
tree. We use the term “efficient” because the method works well in practice, being the
foundation for most modern origami design, but exact optimization of the scale factor (the
usual measure of efficiency) is a difficult computational problem, recently shown NP-hard
[3], but one that can be handled reasonably well by heuristics. The strip method [1] finds a
folding of a given piece of paper into a scaled copy of any desired polyhedral complex (any

∗ Supported in part by NSF ODISSEI grant EFRI-1240383 and NSF Expedition grant CCF-1138967.
† Supported in part by JST PRESTO program and JSPS KAKENHI 16H06106.

© Erik D. Demaine and Tomohiro Tachi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Origamizer: A Practical Algorithm for Folding Any Polyhedron

Figure 1 Origamizer software [8, 9] applied to 374-triangle Stanford bunny: real-world folding
(left) and computed crease pattern (right).

connected union of polygons in 3D), which is a much broader notion of “anything”. But it
inherently provides no way to optimize the scale factor, forcing extreme inefficiency in paper
usage (unless the piece of paper is a long narrow strip).

Our goal is to achieve the best of both these worlds. On the one hand, we want to fold
arbitrary polyhedral complexes. On the other hand, we want to be able to optimize the scale
factor to find efficient and ideally practical foldings. The vision is that the origami designer
of the future uses 3D modeling software to design their target figure, gives it to an algorithm,
and out comes a practical origami design.

We are not far from this vision today. Origamizer [8, 9] is freely available computer
software implementing a relatively new heuristic for this problem. It achieves surprisingly
practical foldings for complicated polyhedral models. For example, Figure 1 shows the result
for the classic Stanford bunny, coarsened to 374 triangles. In this design, 22.3% of the paper
area makes up the actual surface of the target shape – about a 2:1 scale factor in each
dimension – which matches the material usage ratio in most practical origami design. The
crease pattern is unlike most representational origami designs today, likely incapable of being
designed by hand, yet it is also quite reasonable to fold in practice.1

The catch is that the heuristic implemented by the Origamizer software sometimes fails:
sometimes it cannot even find a feasible solution, which makes it impossible to optimize
even locally. In this paper, we develop an Origamizer algorithm that is guaranteed to find a
feasible folding, for any orientable polyhedral manifold. In fact, we describe a large family
of feasible foldings, with many free parameters, similar to the original Origamizer heuristic.
In particular, Figure 1 falls within our family of foldings. The key new guarantee is that
our family of foldings is nonempty, and that we can find such a folding (actually many)
algorithmically. While we do not consider here how to optimize within the family of foldings
(this is likely a computationally difficult problem, like the tree method), the starting points
found by our algorithm open the door to a wealth of optimization heuristics. The result

1 To see an accelerated video of the 10-hour folding process, visit http://www.youtube.com/watch?v=
GAnW-KU2yn4

http://www.youtube.com/watch?v=GAnW-KU2yn4
http://www.youtube.com/watch?v=GAnW-KU2yn4

Erik D. Demaine and Tomohiro Tachi 34:3

Figure 2 Folding a surface with gaps like the strip method (left) versus a watertight folding with
some extra tiny facets like our method (right). The paper boundary is drawn thick.

should be at least as efficient as the existing Origamizer software, because the family of
foldings is broader, but now it is also guaranteed never to fail. We plan to implement this
provably correct algorithm in a future version of the Origamizer software.

Our Origamizer algorithm proves the existence of a new type of folding, called watertight,
for any specification of where the boundary of the paper should go. That is, suppose we are
told how to cut the given oriented polyhedral manifold into a topological disk with boundary.
(If the manifold is itself a disk, no cutting is necessary.) Informally, a watertight folding has
no holes, gaps, or slits internal to this boundary – only paper. Formally, the boundary of the

piece of paper (which can be any convex polygon) maps to within Fréchet distance ε of
the boundary of the polyhedral surface, for a specified ε > 0. Thus the rest of the polyhedral
surface must be covered entirely by the interior of the paper. By contrast, this property is
violated violently in the strip method [1], which places the boundary of the paper on every
face. Indeed, the lack of the watertight property seems a natural formalization of how the
strip method felt like “cheating”. Figure 2 shows a comparison.

Because the paper is homeomorphic to a disk, disk surfaces are the best we could hope
to make watertight. Although we believe the watertight property is an essential feature of
what makes Origamizer’s foldings practical, it has one theoretical downside: it cannot fold
exactly a desired polyhedral complex. By watertightness, a negative curvature vertex must
be covered by an interior point of the piece of paper, which has a disk neighborhood. In
other words, an entire neighborhood of a point of the piece of paper must fold to an entire
neighborhood of a vertex of negative curvature. But such a folding is impossible by the
Gauss-Bonnet Theorem.

Therefore Origamizer aims to fold a slight variation of the polyhedral complex, which adds
small additional features at the vertices and along the edges. These features all have Hausdorff
distance at most ε from the polyhedral complex, for any specified ε > 0. Furthermore, for
orientable polyhedral surfaces, the features can all be placed on one side. In the case of an
orientable closed polyhedron, like the Stanford bunny, we can place all of these features on
the inside, so that they become invisible to the spectator. Such hidden features are standard
in origami, and we believe they are well worth it to achieve the watertight property.

2 Problem Statement and Overview

The Origamizer problem is to find a convex polygon of paper P and a “watertight”, “seamless”,
“ε-extra folding” of P into a given “polyhedral manifold” Q.2 We need to define the four
notions in quotes.

2 Any convex polygon of paper can be folded into any other convex polygon after suitable scaling [1], so
we can view the convex shape of the piece of paper as a free choice by the algorithm.

SoCG 2017

34:4 Origamizer: A Practical Algorithm for Folding Any Polyhedron

A polyhedral manifold Q is an embedded polyhedral manifold with strictly convex facets
homeomorphic to a disk. Such Q could come from any polyhedral complex using standard
techniques: for nonorientable or nonmanifold complexes, doubling every face to make them
orientable manifolds; for orientable manifolds not homeomorphic to a disk, cutting each handle;
and for nonconvex facets, subdividing into convex pieces. The polyhedral manifold Q has
two specified sides, the clean side and the tuck side. For defining clockwise/counterclockwise
orientations, we view the tuck side as the top side of the manifold. We require that the
manifold does not touch itself, at least on the tuck side, other than the two boundary edges
that come from each cut edge.

For any ε > 0, an ε-extra folding of a polygon of paper, P , into a manifold with specified
boundary, Q, is a folded state of P (as defined, e.g., in [4, chapter 11]) whose image includes
all of Q and otherwise is within ε of Q on the tuck side of Q. More precisely, we construct a
tuck-side ε offset of Q, by unioning the portion of a radius-ε ball, centered at every point
of Q, that lies on the tuck side of Q; when Q does not separate the ball into two portions
(i.e., within ε of the original boundary of Q), we include the entire ball. Then the image
of an ε-extra folding must lie entirely within the union of Q and its tuck-side ε offset. In
particular, the Hausdorff distance between Q and the image of the folded state is at most ε.

Such a folding is seamless if the clean side of every facet of Q is covered by a single
facet of the crease pattern of P , at the outermost layer of the folded state. Intuitively, this
condition means that all visible creases and boundary edges of the piece of paper lie on edges
and the tuck side of Q. In our foldings, we will satisfy the stronger property that each facet
of Q is represented by a single uncreased face of paper, with no additional layers of paper
even on the tuck side.

Such a folding is watertight if there is a closed curve C on P (the effective boundary of P)
that folds to a 3D curve having Fréchet distance at most ε to the closed loop of boundary
edges of Q, such that the folded image of the interior of C covers the interior of Q. In other
words, the exterior of C is extraneous to the folding, and every point on the folded C is
within distance ε of a corresponding point on the boundary of Q, where this correspondence
proceeds monotonically around both curves (according to some parameterization). In our
foldings, we will further guarantee that C is convex; indeed, C will be the boundary of the
piece of paper P output by our algorithm.

Overview. Figure 3 gives a visual overview of the entire Origamizer algorithm. The
algorithm first attaches ε-thin faces to the target polyhedral surface Q to form a target
folded structure called a waffle, effectively splitting negative-curvature vertices into multiple
positive-curvature pockets of the waffle [Section 3]. Next the algorithm locally “squashes”
these pockets into the piece of paper, with angles large enough that they can be folded down
to the desired angles [Section 4]. All that remains is to fold away the excess material between
these squashed pockets, and thereby form the waffle. To guide this process, the algorithm
first draws streams (smooth constant-width channels) that connect together corresponding
edges and vertices of different squashed pockets [Section 5].

Ultimately, Origamizer uses a Voronoi diagram as the basis for its crease pattern: for any
set of sites, we show how to fold an abstract waffle (not necessarily embedded in 3D) with
exactly one pocket for every Voronoi cell [Section 7]. The challenge is to choose sites defining
the Voronoi diagram so that the resulting abstract waffle can be folded into the desired waffle.
The algorithm places one site at each squashed pocket, several sites along each stream, and
additional sites to fill the rest of the paper [Section 6]. The resulting abstract waffle can
be folded into the desired waffle by collapsing each stream’s pockets to bring together the
pockets at either end of the stream, and by collapsing all additional pockets [Section 7].

Erik D. Demaine and Tomohiro Tachi 34:5

Given the page limit, we focus here on high-level sketches and figures of the required
properties and algorithms. Refer to the full version of the paper [5] for the details and proofs.

3 Tuck Proxy and Waffles

Given the target polyhedral manifold Q, the first step of the algorithm computes a “tuck
proxy” T , which is a special type of “polyhedral waffle”. The tuck proxy T is a polyhedral
complex that will contain our folding and which contains (and lies very close to) the target
polyhedral surface Q. Roughly speaking, a polyhedral waffle consists of floor polygons, which
together form a topological disk, and wall polygons – wall quadrangles glued along floor
edges, and wall triangles glued at floor vertices. The top edges of the wall polygons, opposite
their attachment to their floor, must form an edge-2-connected planar graph called the waffle
graph; refer to Figure 4. The waffle dual is the “modified dual” of the waffle graph. Roughly
speaking, the modified dual is the usual planar dual plus a boundary node and incident edge
for each edge of the outside face. (Thus, each boundary node has exactly one incident edge.)

In the tuck proxy, the floor polygons must be exactly the facets of Q. Any single floor
vertex, floor edge, or floor polygon, together with its incident wall polygons, must form a
polyhedral manifold homeomorphic to a disk (called a waffle pocket) that is intrinsically
convex, meaning that no point has more than 360◦ of material. Furthermore, every wall
polygon must have height at most ε, so that the tuck proxy is within ε of Q. In addition,
the algorithm outputs a parameter ε′ with 0 < ε′ < ε that lower bounds how far the tuck
proxy extends beyond Q, which guarantees no global self intersection up to that distance.

Figure 5 illustrates this step of the algorithm. The main idea is to inset the edges of Q on
the tuck side (like the beginning of the formation of the 3D straight skeleton) by an amount
ε′ small enough that no collision events occur. This insetting bisects all dihedral angles, so
in particular, it divides every reflex dihedral angle into two convex dihedral angles. This
consequence is the key to how we guarantee that the waffle pockets are intrinsically convex.
We then connect these edge offsets around each vertex of Q, which is equivalent to drawing
a connected graph on a small sphere around the vertex. We first connect these offsets by a
cycle on the sphere. The pocket formed by the floor polygon, two offset edges, and one edge
of the cycle has a perimeter of at most 360◦ because of the strict convexity of the incident
polygons and strict convexity of the angle between the offset and the floor. Then, to make
the remaining pocket intrinsically convex, we subdivide the cycle by overlaying a regular
tetrahedron and triangulating (if necessary). The resulting faces have edge lengths of at
most 109.5◦, so perimeter at most 328.5◦ < 360◦.

4 Waffle Pocket Squashing

Given the tuck proxy T and parameter ε′, the next step of the algorithm computes a local
squashing of each waffle pocket of the tuck proxy. Roughly speaking, local squashing consists
of adding material between polygons in the waffle pocket until they lie flat and nonoverlapping
in the plane. More formally, a local squashing draws each floor and wall polygon of the waffle
pocket in the plane subject to only increasing the bottom angles of wall polygons, preserving
convexity of the wall polygons, preserving the connectivity between the polygons, leaving no
angular gaps between polygons at floor vertices, keeping the squashed wall polygons within
ε′ of the floor vertex/polygon, and preserving the cyclic order of the wall polygons around
the floor vertex/polygon. The top edges of the squashed wall polygons must form a convex
polygon in the plane, called the cell, so that the cell perpendiculars (normal to each cell edge,

SoCG 2017

34:6 Origamizer: A Practical Algorithm for Folding Any Polyhedron

Polyhedral Surface Q

quadrangular
triangular

quadrangular
triangular
boundary

realizing quadrangular
realizing triangular
not realizing triangular
boundary

§3: Tuck Proxy T
(waffle)

waffle dualwaffle graphfloor graph

modified
 dual

' x
x'

y
y' [x',y']

(x,y)*

x

ŷ

e

Voronoi dual§7: Voronoi diagram

'

^

e' *

^

modified
 dual

P

§6: Site Placement

§7: Folding to Abstract Waffle §7: Final Folding f(P) T

crimp folding

Waffle Pockets

floor vertex v

wall triangle wi
wall quadrangle wi

floor face f
bottom angles

§5: Stream Placement

brook node

boundary river cap

§4: Local Squashing
of Pockets

cell
cell perpendicular

P

Voronoi diagram in geodesic vertex metric

ORIGAMIZER ALGORITHM

brooks (vertex stream)
rivers (edge stream)
stream banks

core
point site
segment site
polygon site

P'

waffle graph correspondance

Figure 3 Visual overview of entire Origamizer algorithm, including intermediate data structures.

Erik D. Demaine and Tomohiro Tachi 34:7

waffle floor graph
waffle dual

boundary nodes

waffle graph

Figure 4 A waffle, the waffle graph, and the waffle dual. Wall faces are red; floor faces are grey.

overlay
tetrahedron

triangulate
(if necessary)

min distance is
determined by
depth of edge tuck

insetoffset wall
quadrangle

insetoffset wall
quadrangle

waffle pocket

wall quadrangle

floor polygon

floor vertexwall triangle

Boundary Vertex

Interior Vertex

Figure 5 Construction of the tuck proxy for an interior vertex (top) and boundary vertex (bottom).
The interior-vertex construction consists of three rows. Top: spherical view of behavior around a
vertex; Middle: planar projection of behavior on the sphere; and Bottom: broader 3D view, around
an edge and its two endpoints (left) and actual tuck proxy around the vertex (right).

and starting from the midpoint of the bottom of the corresponding squashed wall polygon)
proceed counterclockwise around the floor vertex/polygon.

Figures 6 and 7 illustrate the two cases of this step of the algorithm, which get applied
to all waffle pockets of the tuck proxy corresponding to floor vertices and floor polygons,
respectively. The algorithm first vertex-unfolds [2] the wall polygons into the plane, leaving
angular gaps evenly distributed between squashed wall polygons. We then place rays for each
gap from the vertex, such that consecutive rays sandwich the squashed wall polygons and
form an angle strictly less than 180◦. (Specifically, each ray is the angular bisector between

SoCG 2017

34:8 Origamizer: A Practical Algorithm for Folding Any Polyhedron

Rays

Wall Polygon

Cell

Cell Perpendicular

1⁄2 ε′
vertex unfolding place rays in the gap intersect with circle

Figure 6 Local squashing algorithm for a waffle pocket corresponding to a floor vertex.

≤ 1⁄2 ε′

Cell Perpendicular

Rays

Wall Polygon

Cell

vertex unfold and
place rays in the gap

intersect with
offset smoothed at corners

Figure 7 Local squashing algorithm for a waffle pocket corresponding a floor polygon.

the angular bisectors of two consecutive squashed wall polygons, possibly rounded to one of
those wall polygon’s boundaries.) We connect the intersection of the rays with a smooth
convex curve (for the floor vertex case, a circle; and for the floor polygon case, the offset of
the floor polygon smoothed at the corner with quadratic Bézier curve), placed close enough
to and surrounding the floor vertex/polygon, to obtain a strictly convex cell. The resulting
squashed wall polygons are bounded by the rays and the cell, and thus the bottom angles
only increase. Because we use an offset curve to intersect the rays, wall quadrangles attached
to a floor polygon squash into trapezoids.

5 Placing Streams

Given the tuck proxy T , parameter ε′, and a local squashing of its waffle pockets, the next
step of the algorithm computes a stream placement, which consists of a convex polygon P ′
and a mapping from various features of the waffle dual into geometric structures drawn
on P ′. Roughly speaking, each waffle dual node maps to either a point in P ′ (for a waffle
pocket corresponding to a floor vertex) or an isometric embedding of a facet of Q in P ′

(for a waffle pocket corresponding to that floor polygon); and each waffle dual edge maps
to a stream – a C1 curve consisting of line segments and circular arcs, possibly thickened
orthogonally. Specifically, if the waffle dual edge corresponds to a wall quadrangle, then
the stream connects two equal-length edges of the placed floor polygons, and the stream is
thickened by an amount equal to that common edge length, forming a river (as in [6, 7]).
On the other hand, if the waffle dual edge corresponds to a wall triangle, then the stream
connects two points, either placed floor vertices or vertices of placed floor polygons, and the
stream has zero thickness, forming a brook.

This step of the algorithm also outputs a number δ > 0 that is a lower bound on the
“clearance” of the output structures, that is, the critical radius at which a disk Minkowski-

Erik D. Demaine and Tomohiro Tachi 34:9

p
p

P'
boundary brook node

start direction

boundary river cap

Figure 8 Left: Tutte embedding with out-
side face p. Right: Construction of start ray
and convex polygon P ′.

Tx

Sx

x y

Sy

Ty

Figure 9 Connecting two embedded waffle dual
nodes x and y with a river.

summed with the structures causes a collision event. This lower bound is important for
bounding the number of creases in the ultimate Origamizer design.

This step of the algorithm consists of two major parts. In the first part, we embed the
waffle dual in the plane using a Tutte embedding [10], and construct a convex polygon P ′ so
that the boundary nodes lie on the boundary of P ′; refer to Figure 8. During this construction,
we guarantee that every boundary node attached to a river has enough clearance to be
thickened parallel to its edge of P ′, to its desired width, without leaving that edge of P ′ and
without intersecting other boundary nodes.

In the second part, we place floor vertices and polygons at the nodes of the embedded
waffle dual graph, and connect them by rivers and brooks, respectively, along the edges of
the embedded graph; see Figure 9. The main challenge is that the directions of the edges of
the embedded waffle dual graph do not (in general) match the start directions of the streams
defined by the cell perpendiculars of the local squashing. We construct a local structure
around each embedded waffle dual node to adjust these directions without self-intersection.
Specifically, this local structure consists of three nested disks, centered at each waffle dual
node x and having radii rx < sx < tx, each helping to adjust the directions of streams
incident to x; refer to Figure 10. The radius-rx disk Rx separates the streams from the
floor vertex/polygon; the radius-sx disk Sx bends the streams to meet the disk boundary
orthogonally; and the radius-tx disk Tx twists the streams to match the directions of the
incident edges of the embedded waffle dual graph, while carefully avoiding collisions by
having k tracks for a degree-k vertex x. In the last twisting step, we rotate the embedded
floor polygon so that one edge normal does not require twisting, conceptually cut the disk
there, and look at the Tx − Sx annulus in polar view; then we make each connection from
inside (pi) to outside (qi) in counterclockwise order, using the outermost unused track
for counterclockwise (leftward) connections and the innermost unused track for clockwise
(rightward) connections. To make the streams C1 and obtain positive clearance δ, we fillet
each corner of these streams, replacing each sharp corner by a circular arc of sufficient radius.
To guarantee that these disks are local to their corresponding nodes, we scale up the Tutte
embedding by a sufficient (but finite) factor.

6 Placing Sites

Given the output from the previous three steps (the tuck proxy T and parameter ε′ from
Section 3, a local squashing of waffle pockets from Section 4, and a stream placement from
Section 5), the next step of the algorithm computes a site placement: the final piece of
paper P , and a set of point, segment, and polygon sites on P . This site placement satisfies
several properties which we state in terms of their generalized Voronoi diagram. The Voronoi
diagram we use is in the geodesic vertex metric, which measures the geodesic (shortest-path)

SoCG 2017

34:10 Origamizer: A Practical Algorithm for Folding Any Polyhedron

≥δi

sr ts

Rx Sx

Sx

Tx

Sx TxSxRx

q1 q2q3q4q5q6 q1

p1 p2p3p4p5p6 p1

0˚360˚

q1 q2 q3

p1 p2 p3

0˚180˚

δmax

2δmax

δmax

2δmax

2δmax

2δmax

2δmax

2δmax

Figure 10 Attaching rivers to a facet of Q. Top: interior case. Bottom: boundary case. Left:
filling disks Rx and Sx of radii rx < sx. Middle: filling the annulus Tx \ Sx of outer radius tx > sx.
Right: polar view.

(a) Geodesic vertex metric (b) Euclidean vertex metric (c) Euclidean metric

Figure 11 The geodesic vertex metric and the resulting Voronoi diagram of point, segment,
and polygon sites, compared with the usual Euclidean metric (where we measure the minimum
distance to any point of a site) and an intermediate “Euclidean vertex metric” (where we measure
the minimum Euclidean distance to a vertex of a site).

distance between a point of the paper and the nearest vertex of a site, viewing all sites as
planar obstacles that cannot be crossed (and thus must be routed around) by a shortest
path. Refer to Figure 11.

The site placement requirements are the following:
1. The Voronoi diagram can be contracted into the waffle graph of T , i.e., the modified

dual of the Voronoi diagram is a supergraph of a subdivision of the waffle dual (Figure 3
middle). Thus each edge of the waffle dual is realized by a path of edges in the Voronoi
dual, and the corresponding waffle graph edges realize the corresponding Voronoi edges.

2. Each Voronoi edge is a straight segment which mirror-reflects its defining site vertices
(avoiding cases like Figure 12(a), which can generally happen when using the geodesic
vertex metric). As shown in Figure 12(b), we obtain a mirror-reflected pair of triangles
or quadrangles called paired subcells, where a paired subcell is quadrangular if and only if
the Voronoi edge realizes a wall quadrangle.

Erik D. Demaine and Tomohiro Tachi 34:11

(a) Bad cases of Voronoi edge:
not triangular or quadrangular

(b) Paper comprises of subcells

triangular
Voronoi edge

quadrangular
Voronoi edge

boundary of P

triangular paired subcell

quadrangular paired subcell

unpaired subcell

subcell
angle

subcell angle

subcell angles

Figure 12 Triangular and quadrangular edges, subcells, and subcell angles.

brooks

core

squash

rind

point site

rivers

segment site

polygon site

flesh polygon
(a) Pumpkin

(b) Jack-O'-Lantern

(c) Calabash

a

p=q

b

(d) Cucumber

p
a b

q

Figure 13 Different types of squashes generated by the site placement algorithm: pumpkins
around brook nodes, jack-o’-lanterns around placed facets, calabashes along brooks, and cucumbers
along rivers.

3. Each Voronoi edge realizing an edge of the waffle graph must have subcell angles (formed
with the site) that are at least the bottom angles of the corresponding wall polygons.

4. Every point of the paper P is within ε′ (Euclidean) distance of a site vertex.

To guarantee these properties of the Voronoi diagram of the placed sites, we also place a
collection of (open set) planar regions called squashes, of four different types (see Figure 13):
pumpkins at brook nodes (points connecting multiple brooks), jack-o’-lanterns around placed
floor polygons, calabashes along brooks, and cucumbers along rivers. The sites defining a
squash lie on the boundary of the squash. Within each squash, there is a core, which is part
of the Voronoi diagram of the generating sites, and flesh polygons, which are mirror-reflected
triangles and quadrangles between sites and the core. We design so that the flesh polygons
have angles (against the sites) that are at least the bottom angles of corresponding wall
polygons.

A key property is that each squash is the continuous union of geodesic (open) disks
centered at points on the core and passing though the nearest vertices of the generating
sites. This property ensures that, if there are no other sites in the squash, then the core is
guaranteed to be part of the global Voronoi diagram, and thus the flesh polygons will be
contained in paired subcells. Thus the algorithm places sites and squashes tightly enough

SoCG 2017

34:12 Origamizer: A Practical Algorithm for Folding Any Polyhedron

1. 2. 3.

Figure 14 Site placement algorithm overview. 1. Adding sites at brook nodes and placed floor
faces. 2. Adding point sites along brooks and segment sites along rivers. 3. Filling stream banks
with point sites.

(so any point of P has distance at most ε′ to a site) while using the union of squashes as a
protective region in which we forbid placing any new sites. Specifically, the site-placement
algorithm consists of following three steps; refer to Figure 14.

1. Node sites: Add a pumpkin at each brook node, and a jack-o’-lantern at each placed
floor polygon. The core of each pumpkin and jack-o’-lantern is exactly the cell of the
local squashing of the corresponding waffle pocket.

2. Stream sites: Place a sequence of point sites along each brook, and calabashes between
consecutive pairs of placed point sites, such that the angle of each flesh polygon equals the
bottom angle of the wall triangle of T corresponding to the brook. Place a sequence of
segment sites along each river, and cucumbers between consecutive pairs of placed segment
sites, such that the angles of each flesh polygon equal the bottom angles of the wall
quadrangle of T corresponding to the river. Because streams are (thickened) line segments
and circular arcs, we can design calabashes and cucumbers to have mirror symmetry
between consecutive sites along each stream. If the gap between two consecutive sites is
too big, other streams (and thus stream sites) might intersect the squash. In this case,
we subdivide by bisecting the gap, adding an additional site along the stream, which
converges to squashes intersecting only the streams they belong to (by the smoothness
and positive clearance δ of streams obtained in Section 5). Also subdivide sufficiently so
that each point in the squash has distance at most 1

2ε
′ from the core.

3. Bank sites: Repeatedly add a point site wherever there is a point ε′ away from the closest
site. Here we use that squashes are contained in the Minkowski sum of each site with an
ε′-radius disk, so that this process terminates without placing sites on squashes.

We claim that the resulting site placement gives a Voronoi diagram that can contract to
the waffle graph of T . This claim follows because, for each stream following the modified
dual of the waffle graph of T , there is a sequence of sites that are adjacent to each other
through Voronoi edge containing the cores of calabashes or cucumbers, which are sandwiched
by flesh triangles or quadrangles, respectively. In the Voronoi dual, such a sequence realizes
an edge of waffle dual. (Refer to the waffle graph correspondence in the middle of Figure 3.)

The piece of paper P is defined to be the convex hull of the paired subcells (within P ′), or
equivalently, the convex hull of the sites and the Voronoi diagram (clipped to P ′). Polygon P
differs only slightly from P ′ from the previous step, possibly removing “nonsubcell” portions
of P ′ near its vertices. There may still be regions of P that are not in any paired subcell,
which we call unpaired subcells; see Figure 12(b). Unpaired subcells are all triangles, with
two edges defined by legs of adjacent paired subcells and one edge defined by the boundary
of P .

Erik D. Demaine and Tomohiro Tachi 34:13

Figure 15 Folding each Voronoi cell (left) into a pocket of an abstract waffle (middle). Each wall
is double covered by a pair of mirror-reflected paired subcells as shown in the cross section (right).

7 Voronoi Folding

Given the tuck proxy T and the site placement from Section 6, the final step of the algorithm
computes a watertight seamless ε-extra folding of the piece of paper P into Q. In particular,
the computed folding contains all facets of Q and lies on the tuck proxy T . We construct the
folding by a sequence of folding steps, where each folding step treats the folded image resulting
from previous steps as the “sheet of paper” to start from (never separating layers of paper
that have been brought together by previous steps). In fact, each folding step produces an
abstract metric polyhedral complex called an abstract waffle, which is topologically equivalent
to a waffle and has an intrinsic metric for each floor and wall polygon. The last folding
step’s abstract waffle embeds directly on the tuck proxy, and thus we can realize the abstract
structure isometrically in 3D. Validity of each folding step guarantees a consistent layer
ordering in the final folded state (without paper crossing itself).

Initial folding step into abstract waffle: Define the graph G to consist of the following
edges: the Voronoi edge of every paired subcell (within P) and the boundary edge of every
unpaired subcell. The initial folding step folds P into an abstract waffle A whose waffle
graph is G; refer to Figure 15. Specifically, for every Voronoi edge of G, the two paired
subcells of P (which are reflections of each other) fold onto each other to doubly cover the
corresponding wall polygon of A; and for every boundary edge of G, the unpaired subcell of
P fold to singly cover the corresponding wall polygon of A. This folding gives a consistent
metric to every wall polygon of the abstract waffle A. In particular, each cell of the Voronoi
diagram (within P) becomes a pocket of A.

The floor polygons of A are the placed floor polygons in P . Because the Voronoi diagram
realizes the waffle graph of the tuck proxy T , the floor polygons in A are connected together
in the same way as the floor polygons in T . In other words, the floor of A is isometric to Q.

The remaining challenge is that A has excess wall polygons and also larger angles compared
to T . The main idea of the following steps is to remove excess wall triangles that do not
realize the waffle graph of T , reduce the bottom angles of walls realizing the waffle graph of T ,
and then glue isometric walls together to have a simplified topology. Each of the following
folding steps involves folding one or two creases that radiate from a single floor vertex, so
they can easily be viewed as foldings of the 1D waffle graph, where edge lengths represent
bottom angles and each quadrangular edge is split into two subedges to represent its two
bottom angles.

SoCG 2017

34:14 Origamizer: A Practical Algorithm for Folding Any Polyhedron

waffle dual

waffle graph

abstract waffle A

Contracting
non-realizing
edges

Bottom angle
adjustment
 & merging

tuck proxy T

Figure 16 The waffle graph of the abstract waffle, reduced to the waffle graph of the tuck proxy.

(b)(a) (c) (d) (e)

Figure 17 Contraction in Voronoi diagram / deletion in Voronoi dual to form the waffle graph /
waffle dual of the tuck proxy.

base angles
of tuck proxy

crimp fold

Figure 18 Angle adjustment to fit quadrangular wall of T .

Erik D. Demaine and Tomohiro Tachi 34:15

Contracting and merging nonrealizing edges: First we contract each edge of the Voronoi
diagram that does not realize an edge of the waffle graph of T (Figure 16 from left to middle).
Each edge contraction can be achieved by folding the corresponding wall triangle in half
(along an angular bisector) and gluing it against an adjacent wall polygon, possibly wrapping
around the walls of the same pocket (Figure 17, (a) → (b) and (b) → (c)). If we ever
have multiple edges connecting the same two nodes, we can unify the angles to the smallest
angle by crimp folding the larger angles (Figure 17, (c) → (d)), making these multiple edges
isometric to each other, and thus the wall polygons can be stacked on top of each other. This
fused edge can be contracted again (Figure 17, (d) → (e)) to collapse a pocket. By applying
these folding steps to all edges not realizing the waffle graph of T , we obtain a simplified
waffle graph whose dual consists of just the paths of edges realizing each edge of the waffle
dual of T .

Merging realizing edges: Each dual path corresponds to a sequence of wall polygons that
represent the same edge in the waffle graph. To fuse them together, we crimp their bottom
angles to match the bottom angles of the corresponding wall polygons of T ; see Figure 18.
Once they have the same base angles, we can stack the wall polygons on top of each other
and regard them as a single wall polygon (Figure 16 from middle to right). Now each wall
polygon can be isometrically embedded into the corresponding wall polygon of T , which
gives the resulting folded state being a subset of T . Therefore, the final folded state f is the
desired ε-extra folding of Q.

Remaining desired properties: The seamless property follows because the floor polygons
are isometric to Q, and no other part of the paper folds strictly interior to any facet
of Q. Watertightness follows by considering a point p moving along the boundary of P in
counterclockwise order and a point q moving along the boundary of Q in counterclockwise
order. The correspondence between p and q is given by (1) if p is on a boundary site,
then f(p) = q; and (2) if p is between two consecutive boundary sites, then q stays at the
corresponding vertex, which stays within distance ε from f(p).

References

1 Erik D. Demaine, Martin L. Demaine, and Joseph S.B. Mitchell. Folding flat silhouettes
and wrapping polyhedral packages: New results in computational origami. Computational
Geometry: Theory and Applications, 16(1):3–21, 2000.

2 Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O’Rourke.
Vertex-unfolding of simplicial manifolds. In Discrete Geometry: In Honor of W. Kuperberg’s
60th Birthday, pages 215–228. Marcer Dekker Inc., 2003.

3 Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle packing for origami design is
hard. In Origami5: Proceedings of the 5th International Conference on Origami in Science,
Mathematics and Education, pages 609–626. A K Peters, Singapore, July 2010.

4 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, July 2007.

5 Erik D. Demaine and Tomohiro Tachi. Origamizer: A practical algorithm for folding any
polyhedron. Manuscript, 2017. URL: http://erikdemaine.org/papers/Origamizer/.

6 Robert J. Lang. A computational algorithm for origami design. In Proceedings of the 12th
Annual ACM Symposium on Computational Geometry, pages 98–105, Philadelphia, PA,
May 1996.

SoCG 2017

http://erikdemaine.org/papers/Origamizer/

34:16 Origamizer: A Practical Algorithm for Folding Any Polyhedron

7 Robert J. Lang and Erik D. Demaine. Facet ordering and crease assignment in uniaxial
bases. In Origami4: Proceedings of the 4th International Conference on Origami in Science,
Mathematics, and Education, Pasadena, California, September 2006.

8 Tomohiro Tachi. Software: Origamizer, 2008. URL: http://www.tsg.ne.jp/TT/
software/.

9 Tomohiro Tachi. Origamizing polyhedral surfaces. IEEE Transactions on Visualization
and Computer Graphics, 16(2):298–311, 2010. doi:10.1109/TVCG.2009.67.

10 W.T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
13:743–767, 1963. URL: http://plms.oxfordjournals.org/cgi/pdf_extract/s3-13/
1/743, doi:doi:10.1112/plms/s3-13.1.743.

http://www.tsg.ne.jp/TT/software/
http://www.tsg.ne.jp/TT/software/
http://dx.doi.org/10.1109/TVCG.2009.67
http://plms.oxfordjournals.org/cgi/pdf_extract/s3-13/1/743
http://plms.oxfordjournals.org/cgi/pdf_extract/s3-13/1/743
http://dx.doi.org/doi:10.1112/plms/s3-13.1.743

Computing the Geometric Intersection Number of
Curves∗†

Vincent Despré1 and Francis Lazarus2

1 LIP, ENS-Lyon, Lyon, France
Vincent.Despre@ens-lyon.fr

2 GIPSA-Lab, CNRS, Grenoble, France
Francis.Lazarus@gipsa-lab.fr

Abstract
The geometric intersection number of a curve on a surface is the minimal number of self-
intersections of any homotopic curve, i.e., of any curve obtained by continuous deformation.
Given a curve c represented by a closed walk of length at most ` on a combinatorial surface of
complexity n we describe simple algorithms to (1) compute the geometric intersection number of
c in O(n+ `2) time, (2) construct a curve homotopic to c that realizes this geometric intersection
number in O(n+ `4) time, (3) decide if the geometric intersection number of c is zero, i.e., if c is
homotopic to a simple curve, in O(n+ ` log2 `) time.

To our knowledge, no exact complexity analysis had yet appeared on those problems. An
optimistic analysis of the complexity of the published algorithms for problems (1) and (3) gives at
best a O(n+ g2`2) time complexity on a genus g surface without boundary. No polynomial time
algorithm was known for problem (2). Interestingly, our solution to problem (3) is the first quasi-
linear algorithm since the problem was raised by Poincaré more than a century ago. Finally, we
note that our algorithm for problem (1) extends to computing the geometric intersection number
of two curves of length at most ` in O(n+ `2) time.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases computational topology, curves on surfaces, combinatorial geodesic

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.35

1 Introduction

Let S be a surface. Two closed curves α, β : R/Z→ S are freely homotopic, written α ∼ β,
if there exists a continuous map h : [0, 1]× R/Z such that h(0, t) = α(t) and h(1, t) = β(t)
for all t ∈ R/Z. Assuming the curves are in general position, their number of intersections is

|α ∩ β| = |{(t, t′) | t, t′ ∈ R/Z and α(t) = β(t′)}|.

Their geometric intersection number only depends on their free homotopy classes and
is defined as

i(α, β) = min
α′∼α,β′∼β

|α′ ∩ β′|.

Likewise, the number of self-intersections of α is given by
1
2 |{(t, t

′) | t 6= t′ ∈ R/Z and α(t) = α(t′)}|,

∗ A full version of the paper is available at http://arxiv.org/pdf/1511.09327.
† This work was partially supported by the LabEx PERSYVAL-Lab ANR-11-LABX-0025-01.

© Vincent Despré and Francis Lazarus;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.35
http://arxiv.org/pdf/1511.09327
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Computing the Geometric Intersection Number of Curves

and its minimum over all the curves freely homotopic to α is its geometric self-intersection
number i(α). Note the one half factor that comes from the identification of (t, t′) with
(t′, t).

The geometric intersection number is an important parameter that allows to stratify
the set of homotopy classes of curves on a surface. The surface is usually endowed with a
hyperbolic metric, implying that each homotopy class is identified by its unique geodesic
representative. Extending a former result by Mirzakhani [24], Sapir [31, 25] has recently
provided upper and lower bounds for the number of closed geodesics with bounded length and
bounded geometric intersection number. Chas and Lalley [6] also proved that the distribution
of the geometric intersection number with respect to the word length approaches the Gaussian
distribution as the length grows to infinity. Other more experimental results were obtained
with the help of a computer to show the existence of length-equivalent homotopy classes with
distinct geometric intersection numbers [5]. Hence, for both theoretical and practical reasons
various aspects of the computation of geometric intersection numbers have been studied in
the past including the algorithmic ones. Nonetheless, all the previous approaches rely on
rather complex mathematical arguments and to our knowledge no exact complexity analysis
has yet appeared. In this paper, we make our own the words of Dehn who noted that the
metric on words (on some basis of the fundamental group of the surface) can advantageously
replace the hyperbolic metric [12]. We propose a combinatorial framework that leads to
simple algorithms of low complexity to compute the geometric intersection number of curves
or to test if this number is zero. Our approach is based on the computation of canonical forms
as recently introduced in the purpose of testing whether two curves are homotopic [22, 15].
Canonical forms are instances of combinatorial geodesics who share nice properties with the
geodesics of a hyperbolic surface. On such surfaces each homotopy class contains a unique
geodesic that moreover minimizes the number of self-intersections. Although a combinatorial
geodesic is generally not unique in its homotopy class, it must stay at distance one from its
canonical representative and a careful analysis of its structure leads to the first result of the
paper.

I Theorem 1. Given two curves represented by closed walks of length at most ` on an
orientable combinatorial surface of complexity n we can compute the geometric intersection
number of each curve or of the two curves in O(n+ `2) time.

As usual the complexity of a combinatorial surface stands for its total number of vertices,
edges and faces. A key point in our algorithm is the ability to compute the primitive root
of a canonical curve c in linear time. This is a curve r that is not homotopic to a proper
power of any other curve and such that c ∼ rk for some integer k. We next provide an
algorithm to compute an actual curve immersion – its combinatorial description is part of our
combinatorial framework – that minimizes the number of self-intersections in its homotopy
class.

I Theorem 2. Let c be a closed walk of length ` in canonical form. We can compute a
combinatorial immersion with i(c) crossings in O(`4) time.

We also propose a nearly optimal algorithm that answers an old problem studied by Poin-
caré [29, §4]: decide if the geometric intersection number of a curve is null, that is if the
curve is homotopic to a simple curve.

I Theorem 3. Given a curve represented by a closed walk of length ` on an orientable
combinatorial surface of complexity n we can decide if the curve is homotopic to a simple
curve in O(n+ ` log2 `) time.

V. Despré and F. Lazarus 35:3

We emphasize that our results represent significant progress with respect to the state of the art.
No precise analysis appeared in the previously proposed algorithms [2, 7, 8, 9, 23, 11, 28, 18]
concerning Theorems 1 or 3. An optimistic analysis of what seems the most efficient
approach [23, Th. 3.7], although particularly complex, gives at best a quadratic time
complexity for computing the geometric intersection number on a genus g surface without
boundary, assuming that the curves are primitive. Schaefer et al. [32] propose an efficient
computation of the geometric intersection number of curves represented by normal coordinates
in a triangulated surface. However, their approach is limited to simple input curves. Apart
from a recent algorithm by Aretinnes [1], which is restricted to surfaces with nonempty
boundary, we know of no polynomial time algorithm for Theorem 2. Finally, Theorem 3
states the first quasi-linear algorithm for detecting homotopy classes of simple curves since
the problem was raised by Poincaré more than a century ago [29, §4].

Section 2 presents our general simple strategy to compute the geometric intersection
number. We introduce our combinatorial framework in Sections 3 - 5. The proof of Theorem 1
is given in the next three sections where the case of non-primitive curves is also treated.
The computation of a minimally crossing immersion is presented in Section 9. We finally
propose a simple algorithm to detect and embed curves that are homotopic to simple curves
(Theorem 3) in Section 10. Due to space limitations most proofs are deferred to the full
arXiv version of the paper.

2 Our strategy for counting intersections

Following Poincaré’s original approach we represent the surface S as the hyperbolic quotient
surface D/Γ where Γ is a discrete group of hyperbolic motions of the Poincaré disk D. We
denote by p : D→ D/Γ = S its universal covering map. Any closed curve α : R/Z→ S gives
rise to its infinite power α∞ : R→ R/Z→ S that wraps around α infinitely many times. A
lift of α is any curve α̃ : R→ D such that p ◦ α̃ = α∞ where the parameter of α̃ is defined up
to an integer translation (we thus identify the curves t 7→ α̃(t+ k), k ∈ Z). Note that p−1(α)
is the union of all the images Γ · α̃ of α̃ by the motions in Γ. The curve α̃ has two limit points
on the boundary of D which can be joined by a unique hyperbolic line L. The projection
p(L) covers infinitely many times the unique geodesic homotopic to α. In particular, the set
of pairs of limit points of all lifts of α only depends on the homotopy class of α.

No two motions of Γ have a limit point in common unless they are powers of the same
motion. This can be used to show that when α is primitive its lifts are uniquely identified by
their limit points [16]. Let α and β be two primitive curves. We fix a lift α̃ of α and denote
by τ ∈ Γ the hyperbolic motion sending α̃(0) to α̃(1). Let Γ · β̃ be the set of lifts of β. We
consider the subset of lifts

B = {β̃′ ∈ Γ · β̃ | the limit points of β̃′ and α̃ alternate along ∂D},

and we denote by B/τ the set of equivalence classes of lifts generated by the relations
β̃′ ∼ τ(β̃′).

I Lemma 4 (Reinhart [30]). i(α, β) = |B/τ |.

In the ideal situation of hyperbolic geodesics, each intersection point of α and β corresponds
precisely to a class in B/τ . When α and β are not geodesic the situation is more ambiguous
and their lifts may have multiple intersection points. When dealing with combinatorial
geodesics, the situation is more constrained and somehow intermediate between the hyperbolic
case and the most general situation. See Figure 1.

SoCG 2017

http://arxiv.org/pdf/1511.09327

35:4 Computing the Geometric Intersection Number of Curves

D
α̃

β̃

Figure 1 Left, two intersecting hyperbolic lines. Middle, two lifts of non-geodesic curves may
intersect several times. Right, lifts of combinatorial geodesics.

Our strategy to compute the geometric intersection number consist of identifying B/τ
with certain pairs of homotopic subpaths of α and β. We shall work in a combinatorial
framework as described in the next section. In order to mimic at best hyperbolic geometry
we restrict our framework to system of quads as introduced in Section 4. The structure of
combinatorial geodesics in a system of quads is analysed in Section 5.

3 Combinatorial framework

Combinatorial surfaces. As usual in computational topology, we model a surface by a
cellular embedding of a graph G in a compact topological surface S. Such a cellular
embedding can be encoded by a combinatorial surface composed of the graph G itself
together with a rotation system [26] that records for every vertex of the graph the clockwise
cyclic order of the incident arcs. The facial walks are obtained from the rotation system
by the face traversal procedure as described in [26, p.93]. In order to handle surfaces with
boundaries we allow every face of G in S to be either an open disk or an annulus (open
on one side). In other words G is a cellular embedding in the closure of S obtained by
attaching a disk to every boundary of S. We record this information by storing a boolean
for every facial walk of G indicating whether the associated face is perforated or not. All
the considered graphs may have loop and multiple edges. A directed edge will be called an
arc and each edge corresponds to two opposite arcs. We denote by a−1 the arc opposite to
an arc a. We only consider orientable surfaces in this paper. Every combinatorial
surface Σ can be reduced by first contracting the edges of a spanning tree and then deleting
edges incident to distinct faces. The resulting reduced surface has a single vertex and a
single face. The combinatorial surface Σ and its reduced version encode different cellular
embeddings on a same topological surface.

Combinatorial curves. Consider a combinatorial surface with its graph G. A combinatorial
curve (or path) c is a walk in G, i.e., an alternating sequence of vertices and arcs, starting
and ending with a vertex, such that each vertex in the sequence is the target vertex of the
previous arc and the source vertex of the next arc. We generally omit the vertices in the
sequence. A combinatorial curve is closed when additionally the first and last vertex are
equal. When no confusion is possible we shall drop the adjective combinatorial. The length
of c is its total number of arc occurrences, which we denote by |c|. If c is closed, we write c(i),
i ∈ Z/|c|Z, for the vertex of index i of c and c[i, i+ 1] for the arc joining c(i) to c(i+ 1). For
convenience we set c[i+ 1, i] = c[i, i+ 1]−1 to allow the traversal of c in reverse direction. In
order to differentiate the arcs with their occurrences we denote by [i, i±1]c the corresponding
occurrence of the arc c[i, i ± 1] in c±1, where c−1 is obtained by traversing c1 := c in the

V. Despré and F. Lazarus 35:5

opposite direction. More generally, for any non-negative integer ` and any sign ε ∈ {−1, 1},
the sequence of indices (i, i+ ε, i+ 2ε, . . . , i+ ε`) is called an index path of c of length `.
The index path can be forward (ε = 1) or backward (ε = −1) and can be longer than c,
so that an index may appear more than once in the sequence. We denote this path by [i ε`→]c.
Its image path is given by the arc sequence

c[i ε`→] := (c[i, i+ ε], c[i+ ε, i+ 2ε], . . . , c[ε(`− 1), ε`]).

The image path of a length zero index path is just a vertex. A spur of c is a subsequence of
arcs of the form (a, a−1). A closed curve is contractible if it is homotopic to a trivial curve
(i.e., a curve reduced to a single vertex). We will implicitly assume that a homotopy has
fixed endpoints when applied to paths and is free when applied to closed curves.

Combinatorial immersions. A combinatorial curve may be seen as a continuous curve in
general position snapped to the graph of the combinatorial surface. When doing so several
parts of the continuous curve may be mapped to the same edge. In order not to lose
information, one needs to record their ordering. Following the notion of a combinatorial set
of loops as in [10], we thus define a combinatorial immersion of a set C of combinatorial
curves as the data for each arc a in G of a left-to-right order �a over all the occurrences of a
or a−1 in the curves of C. The only requirement is that opposite arcs should be associated
with inverse orders. Let Av be the set of occurrences of a or a−1 in the curves of C, where a
runs over all arcs of G with origin v. A combinatorial immersion induces for each vertex v of
G a circular order �v over Av; if a1, . . . , ak is the clockwise-ordered list of arcs of G with
origin v, then �v is the cyclic concatenation of the orders �a1 , . . . ,�ak

.

Combinatorial crossings. Given an immersion I of two combinatorial closed curves c and
d we define a double point of (c, d) as a pair of indices (i, j) ∈ Z/|c|Z× Z/|d|Z such that
c(i) = d(j). Likewise, a double point of c is a pair (i, j) ∈ Z/|c|Z × Z/|c|Z with i 6= j

and c(i) = c(j). The double point (i, j) is a crossing in I if the pairs of arc occurrences
([i − 1, i]c, [i, i + 1]c) and ([j − 1, j]d, [j, j + 1]d) are linked in the �c(i)-order, i.e., if they
appear in the cyclic order

· · · [i, i− 1]c · · · [j, j − 1]d · · · [i, i+ 1]c · · · [j, j + 1]d · · · ,

with respect to �c(i) or the opposite order. An analogous definition holds for a self-crossing
of a single curve, taking c = d in the above definition. The number of crossings of c
and d and of self-crossings of c in I is denoted respectively by iI(c, d) and iI(c). Note
that every combinatorial immersion can be realized by continuous curves with the same
number of crossings. The combinatorial self-crossing number of c, denoted by i(c), is
the minimum of iI(c′) over all the combinatorial immersions I of any combinatorial curve c′
freely homotopic1 to c. The combinatorial crossing number of two combinatorial curves
c and d is defined the same way taking into account crossings between c and d only. It is
easily proved that i(c) and i(c, d) coincide with the geometric (self-)intersection number of
continuous realizations of c and d.

1 Homotopy of combinatorial curves can be defined equivalently via their continuous realizations or thanks
to combinatorial homotopies based on elementary moves. See Appendix A in the arXiv version.

SoCG 2017

http://arxiv.org/pdf/1511.09327

35:6 Computing the Geometric Intersection Number of Curves

4 Systems of quads

Reduction to a system of quads. Let Σ be a combinatorial surface with negative Euler
characteristic. We describe the construction of a system of quads for a surface without
boundary. A similar construction applies when Σ has perforated faces. Following Lazarus
and Rivaud [22] we start putting Σ into a standard form called a system of quads by
Erickson and Whittlesey [15]. After reducing Σ to a surface Σ′ with a single vertex v and
a single face f this system of quads is obtained by adding a vertex w at the center of f ,
adding edges between w and all occurrences of v in the facial walk of f , and finally deleting
the edges of Σ′. The graph of the resulting system of quads, called the radial graph [22],
is bipartite. It contains two vertices, namely v and w, and 4g edges, where g is the genus
of Σ. All its faces are quadrilaterals. Note that this system of quads is deduced from Σ by
a sequence of edge contractions, deletions or insertions, including one edge subdivision to
insert w. Every cycle of Σ can be modified accordingly to give a homotopic cycle in the
system of quads.

I Lemma 5 ([13, 22]). Let n be the number of edges of Σ. The above construction of a
system of quads can be performed in O(n) time so that for every closed curve c of length ` in
Σ, we can compute in O(`) time a homotopic curve of length at most 2` in the system of
quads.

For the rest of the paper we shall assume that all surfaces have negative Euler charac-
teristic. The case of surfaces with non-negative Euler characteristic is handled in the proof
of Theorem 1.

Diagrams. A disk diagram over the combinatorial surface Σ is a combinatorial sphere ∆
with one perforated face together with a labelling of the arcs of ∆ by the arcs of Σ such that
1. opposite arcs receive opposite labels,
2. the facial walk of each non-perforated face of ∆ is labelled by the facial walk of some

non-perforated face of Σ.
The diagram is reduced when no edge of ∆ is incident to two non-perforated faces labelled
by the same facial walk (with opposite orientations) of Σ. An annular diagram is defined
similarly by a combinatorial sphere with two distinct perforated faces. A vertex of a diagram
that is not incident to any perforated face is said interior.

I Lemma 6 (van Kampen, See [15, Sec. 2.4]). A cycle of Σ is contractible if and only if it
is the label of the facial walk of the perforated face of a reduced disk diagram over Σ. Two
cycles are freely homotopic if and only if the facial walks of the two perforated faces of a
reduced annular diagram over Σ are labelled by these two cycles respectively.

Note that two non-perforated faces that are adjacent and consistently oriented in a reduced
diagram are labelled by adjacent faces that are consistently oriented in Σ. Moreover, the
degree of an interior vertex of the diagram is a multiple of the degree of the corresponding
vertex in Σ. In the sequel, all the considered diagrams will be supposed reduced.

Spurs, brackets and canonical curves. Thanks to Lemma 5 we may assume that our
combinatorial surface Σ is a system of quads. Moreover, the construction of this system of
quads with the assumption on the Euler characteristic implies that all interior vertices
have degree at least 8. Following the terminology of Erickson and Whittlesey [15], we
define the turn of a pair of arcs (a1, a2) sharing their origin vertex v as the number of face

V. Despré and F. Lazarus 35:7

c

d

initial tip

final tip

Figure 2 A disk diagram for two homotopic paths c and d composed of paths and staircases.

corners between a1 and a2 in clockwise order around v. Hence, if v is a vertex of degree d in
Σ, the turn of (a1, a2) is an integer modulo d that is zero when a1 = a2. The turn sequence
of a subpath (ai, ai+1, . . . , ai+j−1) of a closed curve of length ` is the sequence of j + 1 turns
of (a−1

i+k, ai+k+1) for −1 ≤ k < j, where indices are taken modulo `. The subpath may have
length `, thus leading to a sequence of `+1 turns. Note that the turn of (a−1

i+k, ai+k+1) is zero
precisely when (ai+k, ai+k+1) is a spur. A bracket is any subpath whose turn sequence has
the form 12∗1 or 1̄2̄∗1̄, where t∗ stands for a possibly empty sequence of turns t and x̄ stands
for −x. It follows from Lemma 6 and a simple combinatorial Gauss-Bonnet theorem [17] that

I Theorem 7 ([17, 15]). A nontrivial contractible closed curve on a system of quads must
have either a spur or four brackets. Moreover, if the curve is the label of the boundary walk
(i.e., of the facial walk of the perforated face) of a disk diagram with at least one interior
vertex, then the curve must have either a spur or five brackets.

Lazarus and Rivaud [22] have introduced a canonical form for every nontrivial free
homotopy class of closed curves in a system of quads. In particular, two curves are freely
homotopic if and only if their canonical forms are equal (up to a circular shift of their
vertex indices). It was further characterized by Erickson and Whittlesey [15] in terms of
turns and brackets. It is the unique homotopic curve that contains no spurs or brackets and
whose turning sequence contains no −1’s and contains at least one turn that is not −2.

I Theorem 8 ([22, 15]). The canonical form of a closed curve of length ` on a system of
quads can be computed in O(`) time.

5 Geodesics

The canonical form is an instance of a combinatorial geodesic, i.e., a curve that contains
no spurs or brackets. The canonical form is the rightmost homotopic geodesic. The definitions
of a geodesic and of a canonical form extend trivially to paths. In particular, the canonical
form of a path is the unique homotopic path that contains no spurs or brackets and whose
turning sequence contains no −1’s. Although we cannot claim in general the uniqueness
of geodesics in a homotopy class, homotopic geodesics are almost equal and have the same
length. Specifically, define a (quad) staircase as a planar sequence of quads obtained by
stitching an alternating sequence of rows and columns of quads to get the shape of a staircase.
See Fig. 2. Assuming that the staircase goes up from left to right, we define the initial tip
of a quad staircase as the lower left vertex of the first quad in the sequence. The final tip is
defined as the upper right vertex of the last quad.

A closed staircase is obtained by identifying the two vertical arcs incident to the initial
and final tips of a staircase.

I Theorem 9. Let c, d be two non-trivial homotopic combinatorial geodesics. If c, d are
closed curves, then they label the two boundary cycles of an annular diagram composed of a

SoCG 2017

35:8 Computing the Geometric Intersection Number of Curves

unique closed staircase or of an alternating sequence of paths (possibly reduced to a vertex)
and quad staircases connected through their tips. Likewise, if c, d are paths, then the closed
curve c · d−1 labels the boundary of a disk diagram composed of an alternating sequence of
paths (possibly reduced to a vertex) and quad staircases connected through their tips.

I Corollary 10. With the hypothesis of Theorem 9, c and d have equal length which is
minimal among homotopic curves. Moreover, c and d have no index path whose image path
is contractible.

The next two lemmas follow directly from the characterization of geodesics and canonical
forms in terms of spurs, brackets and turns.

I Lemma 11. The image path of any index path of a combinatorial geodesic is geodesic. If
the combinatorial geodesic is in canonical form, so is the image path.

I Lemma 12. Likewise, any power ck of a combinatorial closed geodesic c is also a combin-
atorial geodesic. Moreover, if c is in canonical form, so is ck.

6 Crossing Double-paths

Let c, d be two combinatorial closed curves on a combinatorial surface. A double-path of
(c, d) of length ` is a pair of forward index paths ([i `→]c, [j

`→]d) with the same image path
c[i `→] = d[j `→]. If ` = 0 then the double path is just a double point. A double path of c is
defined similarly, taking c = d and assuming i 6= j. The next Lemma follows from Lemma 11.

I Lemma 13. Let [i `→]c and [j k→]d be forward index paths of two canonical curves c and d
such that the image paths c[i `→] and d[j k→] are homotopic. Then k = ` and ([i `→]c, [j

`→]d)
is a double path.

A double path ([i `→]c, [j
`→]d) gives rise to a sequence of `+ 1 double points (i+ k, j + k)

for k ∈ [0, `]. A priori a double point could occur several times in this sequence. The next
two lemmas claim that this is not possible when the curves are primitive. Recall that a curve
is primitive if its homotopy class cannot be expressed as a proper power of another class.

I Lemma 14. A double path of a primitive combinatorial curve c cannot contain a double
point more than once in its sequence. In particular, a double path of c must be strictly shorter
than c.

I Lemma 15. Let c and d be two non-homotopic primitive combinatorial curves. A double
path of (c, d) cannot contain a double point more than once in its sequence. Moreover, the
length of a double path of (c, d) must be less than |c|+ |d| − 1.

A double path whose index paths cannot be extended is said maximal. As an immediate
consequence of Lemmas 14 and 15 we have:

I Corollary 16. The maximal double paths of a primitive curve or of two primitive curves
in canonical form induce a partition of the double points of the curves.

Let (i, j) and (i+ `, j + `) be the first and the last double points of a maximal double path
of (c, d), possibly with c = d. When ` ≥ 1 the arcs c[i, i − 1], d[j, j − 1], c[i, i + 1] must
be pairwise distinct because canonical curves have no spurs, and similarly for the three
arcs c[i+ `, i+ `+ 1], d[j + `, j + `+ 1], c[i+ `, i+ `− 1]. We declare the maximal double

V. Despré and F. Lazarus 35:9

d

j+1
j

j+2

j-1

j-2

i

i'-1

j i
L

R

j+1
i'+1

i'
i
j

i
ji'

i'

i
j

i'

i
j

Figure 3 Left, a typical crossing double path in D+. Middle, four configurations in D0. Right,
two configurations in D−.

path to be a crossing double path if the circular ordering of the first three arcs at c(i)
and the circular ordering of the last three arcs at c(i+ `) are either both clockwise or both
counterclockwise with respect to the rotation system of the system of quads. When ` = 0,
that is when the maximal double path is reduced to the double point (i, j), we require that
the arcs c[i, i − 1], d[j, j − 1], c[i, i + 1], d[j, j + 1] are pairwise distinct and appear in this
circular order, or its opposite, around the vertex c(i) = d(j).

7 Counting intersections combinatorially: the primitive case

Let c, d be primitive combinatorial curves such that d is canonical and let cR and c−1
L be the

canonical curves homotopic to c and c−1 respectively. We denote by ∆ the annular diagram
with left and right boundaries ∆L and ∆R corresponding to cL and cR given by Theorem 9.
We consider the following set of double paths:
D+ is the set of crossing double paths of positive length of cR and d,
D0 is the set of crossing double paths (i, j) of zero length of cR and d such that either

the two boundaries of ∆ coincide at ∆L(i) = ∆R(i) and d[j − 1, j] = cL[i − 1, i] or
d[j, j + 1] = cL[i, i+ 1], or
one of d[j, j − 1] or d[j, j + 1] is the label of a spoke (∆R(i),∆L(i′)) of ∆ and d[j −
2, j− 1] = cL[i′− 1, i′] in the first case or d[j + 1, j + 2] = cL[i′, i′+ 1] in the other case.

D− is the set of crossing double paths ([i `→]c−1
L
, [j `→]d) (` ≥ 0) of c−1

L and d such that
none of the following situations occurs:

the two boundaries of ∆ coincide at ∆−1
L (i) = ∆R(i′) and d[j − 1, j] = cR[i′ − 1, i′],

the two boundaries of ∆ coincide at ∆−1
L (i + `) = ∆R(i′) and d[j + `, j + `+ 1] =

cR[i′, i′ + 1],
d[j−1, j] is the label of a spoke (∆−1

L (i),∆R(i′)) of ∆ and d[j−2, j−1] = cR[i′−1, i′],
d[j+`, j+`+1] is the label of a spoke (∆−1

L (i+`),∆R(i′)) of ∆ and d[j+`+1, j+`+2] =
cR[i′, i′ + 1].

Those definitions allow the case c ∼ d, recalling that the index paths of a double path of c
must be distinct by definition. Figure 3 depicts some configurations.

Referring to Section 2, we view the underlying surface of the system of quads Σ as
a quotient D/Γ of the Poincaré disk. The system of quads lifts to a quadrangulation of
D and the lifts of a combinatorial curve in Σ are combinatorial bi-infinite paths in this
quadrangulation. By Lemma 12, if the combinatorial curve is geodesic (resp. canonical)
so are its lifts. In this case, each lift is simple by Corollary 10. We fix a lift c̃R of cR and
consider the set B/τ of Lemma 4 corresponding to the classes of lifts of d whose limit points
alternate with the limit points of c̃R along ∂D.

SoCG 2017

35:10 Computing the Geometric Intersection Number of Curves

I Proposition 17. B/τ is in 1-1 correspondence with the disjoint union D+ ∪ D0 ∪ D−.

The proof relies on a careful analysis of canonical paths inside a disk diagram.

8 Non-primitive curves and proof of Theorem 1

In order to finish the proof of Theorem 1, we need to handle the case of non-primitive curves.
Thanks to canonical forms, computing the primitive root of a curve becomes extremely
simple2.

I Lemma 18. Let c be a combinatorial curve of length ` > 0 in canonical form. A primitive
curve d such that c is homotopic to dk for some integer k can be computed in O(`) time.

Proof. By Theorem 8, we may assume that c and d are in canonical form. By Lemma 12,
the curve dk is also in canonical form. The uniqueness of the canonical form implies that
c = dk, possibly after some circular shift of d. It follows that d is the smallest prefix of c
such that c is a power of this prefix. It can be found in O(`) time using a variation of the
Knuth-Morris-Pratt algorithm to find the smallest period of a word [21]. J

The geometric intersection number of non-primitive curves is related to the geometric
intersection number of their primitive roots. The next result is part of the folklore although
we could only find references in some relatively recent papers.

I Proposition 19 ([11, 18]). Let c and d be primitive curves and let p, q be positive integers.
Then,

i(cp) = p2 × i(c) + p− 1 and i(cp, dq) =
{

2pq × i(c) if c ∼ d or c ∼ d−1,

pq × i(c, d) otherwise.

Proof of Theorem 1. Let c, d and Σ be the two combinatorial curves and the combinatorial
surface as in the Theorem. We first assume that the Σ has negative Euler characteristic. We
can compute the canonical forms of c, c−1 and d in O(`) time after O(n) time preprocessing
by Lemma 5. Thanks to Lemma 18 we can further determine primitive curves c′ and d′

and integers p, q such that c ∼ c′p and d ∼ d′p in O(`) time. We then use the formulas in
Proposition 19 to deduce i(c, d) and i(c) from i(c′, d′) and i(c′). We can thus assume that c
and d are primitive. According to Proposition 17 and Lemma 4, we have

i(c, d) = |D+|+ |D0|+ |D−|

The set D+ can be constructed in O(`2) time. Indeed, since the maximal double paths of c
and d form disjoint sets of double points by Corollary 16, we just need to traverse the grid
Z/|c|Z× Z/|d|Z and group the double points into maximal double paths. Those correspond
to diagonal segments in the grid that can be computed in time proportional to the size of
the grid. We can also determine which double paths are crossing in the same amount of
time. Likewise, we can construct the sets D0,D− in O(`2) time. We can also compute i(c)
in quadratic time using that i(c, c) = 2i(c).

If Σ is a sphere or a disk, then every curve is contractible and i(c, d) = i(c) = 0. If Σ is a
cylinder, then every two curves can be made non crossing so that i(c, d) = 0 while i(c) = p−1.
Finally, if Σ is a torus, the radial graph of the system of quads can be decomposed into two
loops α, β such that c ∼ αx · βy and d ∼ αx′ · βy′ . We may then use the classical formulas:
i(c) = gcd(x, y)− 1 and i(c, d) = | det

(
(x, y), (x′, y′)

)
|. J

2 Compare with the short-lex straight normal form and its use by Epstein and Holt [14, Sec. 3.2].

V. Despré and F. Lazarus 35:11

[i, i+ 1]

[j, j + 1] [j + k, j + k − 1]

[i+ `, i+ `− 1] [j, j + 1]

[i, i+ 1] [i+ `, i+ `− 1]

[j + k, j + k − 1]

Figure 4 Right, the realization of the bigon ([i `→], [j k→]) when j = i+ ` and Condition 2 in
the definition of a singular bigon is not satisfied. The small purple part is at the same time the
beginning of the red side of the bigon and the end of the blue side. Swapping this bigon does not
reduce the number of crossings.

9 Computing a minimal immersion

In the subsequent sections we deal with the self-intersection number of a single curve. We
thus drop the subscript c to denote an index path [i `→] or an arc occurrence [i, i+ 1].

Bigons and monogons. A bigon of an immersion I of c is a pair of index paths ([i `→], [j k→])
whose sides c[i `→] and c[j k→] have strictly positive lengths, are homotopic, and whose tips
(i, j) and (i+ `, j + k) are combinatorial crossings for I. A monogon of I is an index path
[i `→] of strictly positive length such that (i, i+ `) is a combinatorial crossing and the image
path c[i `→] is contractible. In agreement with the terminology of Hass and Scott [19], a
bigon ([i `→], [j k→]) is said singular if
1. its two index paths have disjoint interiors, i.e., they do not share any arc occurrence;
2. when j = i+ ` the following arc occurrences

[i, i− 1], [j, j − 1], [i, i+ 1], [j + k, j + k + 1], [j, j + 1], [j + k, j + k − 1]

do not appear in this order or its opposite in the circular ordering induced by I at c(j);
3. when i = j + k the following arc occurrences

[i, i− 1], [j, j − 1], [i+ `, i+ `− 1], [i, i+ 1], [i+ `, i+ `+ 1], [j, j + 1]

do not appear in this order or its opposite in the circular ordering induced by I at c(i).
Remark that when the above conditions 2 and 3 are not satisfied, the bigon maps to a
non-singular bigon in the continuous realization of I. See Figure 4.

When the bigon is singular we can swap its two sides by exchanging the two arc
occurrences [i+ p, i+ p+ 1] and [j + εp, i+ ε(p+ 1)] in I, for 0 ≤ p < ` and k = ε`. By
performing the swap on a continuous realization of I, then projecting back to a combinatorial
version, we obtain the following

I Lemma 20. Swapping the two sides of a singular bigon of an immersion of a geodesic
primitive curve decreases its number of crossings by at least two.

Hence, by swapping singular bigons we may decrease the number of crossings until there is no
more singular bigons. Since a combinatorial immersion of a primitive geodesic c cannot have
a monogon by Corollary 10, it follows from the next theorem that the resulting immersion
has no excess crossing.

I Theorem 21 (Hass and Scott [19, Th. 4.2]). An immersion of a primitive curve has excess
crossing if and only if it contains a monogon or a singular bigon.

SoCG 2017

35:12 Computing the Geometric Intersection Number of Curves

pi

1

p′

i+ 1
j

j + 1 c

c′

i+ k + 1pi

i+ k + 2
t 2 1

u

2 2

p′

i

i+ k + 2
t− 1 2̄1̄

u− 1

2̄ 2̄

i+ 1

i+ 1

Figure 5 Left, the arc [i, i+ 1] is switchable. Right, a switch may avoid a crossing.

In the full version of the paper it is shown that we can find a singular bigon of a given
combinatorial immersion of a curve of length ` with excess intersection in O(`2) time. This
allows to conclude the proof of Theorem 2 since such an immersion contains O(`2) crossings.

10 The unzip algorithm

We now turn to the original problem of Poincaré [29, §4], deciding whether a given curve c is
homotopic to a simple curve. In the affirmative we know by Lemma 20 and Theorem 21 that
some geodesic homotopic to c must have a (combinatorial) embedding, i.e., an immersion
without crossings. Rather than swapping the sides of a singular bigon as in Lemma 20 we
can choose to switch one side along the other side. This will also decrease the number of
crossings if the bigon contains no other interior bigons. By considering interior-most bigons
only, we can thus enforce a given edge of c to stay fixed as we remove crossings. This suggests
an incremental computation of an embedding in which the image of the first arc occurrence
is left unchanged: we assume that c is canonical and consider the trivial embedding of its
first arc occurrence [0, 1]. We next insert the successive arc occurrences incrementally to
obtain an embedding of the path formed by the already inserted arcs. When inserting the
occurrence [i, i+ 1] we need to compare its left-to-right order with each already inserted arc
occurrence β of its supporting arc. If β 6= [0, 1] we can use the comparison of the occurrence
[i−1, i] with the occurrence γ preceding β (or succeeding β if it is a backward occurrence). If
[i−1, i] and γ have the same supporting arc, we just propagate their relative order to [i, i+ 1]
and β. Otherwise, we use the circular ordering of the supporting arcs of [i − 1, i], γ and
[i, i+ 1] in order to conclude. When β = [0, 1], we cannot use the occurrence preceding [0, 1]
as it is not yet inserted. We rather compare [i, i+ 1] and [0, 1] as follows. In the Poincaré
disk, we consider two lifts d̃i and d̃0 of c such that d̃i[i, i+ 1] = d̃0[0, 1]. We decide to insert
[i, i+ 1] to the left (right) of [0, 1] if one of the limit points of d̃i lies to the left (right) of d̃0.

After comparing [i, i + 1] with all the occurrences of its supporting arc, we can insert
it in the correct place. If no crossings were introduced this way, we proceed with the next
occurrence [i+ 1, i+ 2]. It may happen, however, that no matter how we insert [i, i+ 1] in
the left-to-right order of its supporting arc, the resulting immersion of [0 i+1→] will have a
combinatorial crossing. In order to handle this case, we first check if [i, i+ 1] is switchable,
i.e., if for some k ≥ 0 and some turns t, u the subpath p := c[i k+2→] has turn sequence t2k1u
and the index path [i k+2→] does not contain the arc occurrence [0, 1]. When [i, i + 1] is
switchable we can switch p to a new subpath p′ with turn sequence (t− 1)1̄2̄k(u− 1) such
that p and p′ bound a diagram composed of a single horizontal staircase. See Figure 5.

We then insert the arc occurrence [i, i+ 1] and proceed with the algorithm using c′ in
place of c. The successive switches in the course of the computation untangle c incrementally
and we call our embedding procedure the unzip algorithm.

V. Despré and F. Lazarus 35:13

δ

γ

A B

γ′

δ′

Figure 6 The plain circles represent non-contractible curves. The two curves γ and δ on the
left have homotopic disjoint curves γ′ and δ′. They thus have excess intersection although there is
no singular bigon between the two. If A = γ(0) = δ(0) and B = γ(u) = δ(v) we nonetheless have
δ|[0,v] ∼ γ|[0,1+u] where γ|[0,1+u] is the concatenation of γ with γ|[0,u]. In particular, γ|[0,1+u] wraps
more that once around γ.

I Lemma 22. The unzip algorithm applied to a canonical primitive curve c of length ` can
be implemented to run in O(` log2 `) time.

I Proposition 23. If i(c) = 0 the unzip algorithm returns an embedding of a geodesic
homotopic to c.

The proof of the proposition is far from trivial. Assuming that the the unzip algorithm
returns an immersion with crossings, the rough idea is to show that c has two lifts in D
whose limit points alternate along ∂D.

Proof of Theorem 3. Let c be a combinatorial curve of length ` on a combinatorial surface
of size n. We compute its canonical form in O(n + `) time and check in linear time that
c is primitive. In the negative, we conclude that either c is contractible, hence reduced to
a vertex, or that c has no embedding by Proposition 19. In the affirmative, we apply the
unzip algorithm to compute an immersion I of some geodesic c′ homotopic to c. According
to Proposition 23, we have i(c) = 0 if and only if I has no crossings. This is easily verified in
O(n+ `) time by checking for each vertex v of the system of quads that the set of paired arc
occurrences with v as middle vertex form a well-parenthesized sequence with respect to the
local ordering ≺v induced by I. We conclude the proof thanks to Lemma 22. J

A related problem was tackled by Chang et al. [4, Th. 8.2] who can decide if a given
closed walk on a combinatorial surface has an embedding. In their formulation, though, the
combinatorial path is fixed and they only look for the existence of a combinatorial immersion
without crossing. They suggest a linear time complexity for this problem and it seems likely
that we could also eliminate the log2 ` factor in our complexity.

11 Concluding remarks

The existence of a singular bigon claimed in Theorem 21 relies on Theorem 4.2 of Hass and
Scott [19]. As noted by the authors themselves this result is “surprisingly difficult to prove”.
Except for this result and the recourse to some hyperbolic geometry in the general strategy of
Section 2, our algorithms and proofs are purely combinatorial. Concerning Theorem 21, the
existence of an immersion without bigon could be achieved in our combinatorial viewpoint
by showing that if an immersion has bigons, then one of them can be swapped to reduce the
number of crossings. One difficulty is that such bigons need not be singular as shown by our
example in Figure 6.

If those swappable bigons could be found easily this would provide an algorithm to
compute a minimally crossing immersion of two curves by iteratively swapping bigons as

SoCG 2017

35:14 Computing the Geometric Intersection Number of Curves

in Section 9. Note that in the approaches based on Reidemeister-like moves by de Graff
and Schrijver [11] or by Paterson [28], the number of moves required to reach a minimal
configuration is unknown. Even though Chang and Erickson [3] conjectured that a minimal
configuration could be reached in a quadratic number of moves, it would remain to construct
the corresponding sequence of moves efficiently. Comparatively, the number of bigon swapping
would be just half the excess crossing of a given immersion. We would thus obtain a polynomial
time algorithm for computing a minimally crossing immersion of two curves (there is an
exponential time algorithm by a result of Neumann-Coto [27, Prop. 2.2]).

It would be interesting to see if the unzip algorithm of Section 10 yields minimally crossing
curves even with curves that are not homotopic to simple curves, thus improving Theorem 2.
It is also tempting to check whether the unzip algorithm applies to compute the geometric
intersection number of two curves rather than a single curve. Finally, say that two curves are
in the same configuration if there is an ambient isotopy of the surface where they live that
brings one curve to the other. It was shown by Neumann-Coto [27] that every minimally
crossing immersion is in the configuration of shortest geodesics for some Riemaniann metric
µ, but Hass and Scott [20] gave counterexamples to the fact that we could always choose µ
to be hyperbolic. Is there an algorithm to construct or detect combinatorial immersions that
have a realization in the configuration of geodesics for some hyperbolic metric?

Acknowledgements. We thank the anonymous referees for their insightful comments.

References
1 Chris Arettines. A combinatorial algorithm for visualizing representatives with minimal

self-intersection. J. Knot Theor. Ramif., 24(11):1–17, 2015.
2 Joan S. Birman and Caroline Series. An algorithm for simple curves on surfaces. J. London

Math. Soc., 29(2):331–342, 1984.
3 Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. In Proc. 32nd Int’l Symp.

Comput. Geom. (SoCG), volume 51, pages 29:1–15, 2016.
4 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In

Proc. 26th ACM-SIAM Symp. Discrete Alg. (SODA), pages 1655–1670, 2015.
5 Moira Chas. Self-intersection numbers of length-equivalent curves on surfaces. Exp. Math.,

23(3):271–276, 2014.
6 Moira Chas and Steven P. Lalley. Self-intersections in combinatorial topology: statistical

structure. Invent. Math., 188(2):429–463, 2012.
7 David R. J. Chillingworth. Simple closed curves on surfaces. Bull. London Math. Soc.,

1(3):310–314, 1969.
8 David R. J. Chillingworth. Winding numbers on surfaces. II. Math. Ann., 199(3):131–153,

1972.
9 Marshall Cohen and Martin Lustig. Paths of geodesics and geometric intersection numbers:

I. In Combinatorial group theory and topology, volume 111 of Ann. Math. Stud., pages
479–500. Princeton Univ. Press, 1987.

10 Éric Colin de Verdière and Francis Lazarus. Optimal System of Loops on an Orientable
Surface. Discrete Comput. Geom., 33(3):507–534, 2005.

11 Maurits de Graaf and Alexander Schrijver. Making curves minimally crossing by Re-
idemeister moves. J. Com. Theory B, 70(1):134–156, 1997.

12 Pierre De La Harpe. Topologie, théorie des groupes et problèmes de décision: célébration
d’un article de max dehn de 1910. Gazette des mathématiciens, 125:41–75, 2010.

13 Tamal K. Dey and Sumanta Guha. Transforming Curves on Surfaces. J. Comput. and Syst.
Sci., 58(2):297–325, 1999.

V. Despré and F. Lazarus 35:15

14 David Epstein and Derek Holt. The linearity of the conjugacy problem in word-hyperbolic
groups. Int’l J. Algebr. Comput., 16(02):287–305, 2006.

15 Jeff Erickson and Kim Whittelsey. Transforming curves on surfaces redux. In Proc. 24th
ACM-SIAM Symp. Discrete Alg. (SODA), 2013.

16 Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton Univ. Press,
2012.

17 Steve M. Gersten and Hamish B. Short. Small cancellation theory and automatic groups.
Invent. Math., 102:305–334, 1990.

18 Daciberg L. Gonçalves, Elena Kudryavtseva, and Heiner Zieschang. An algorithm for
minimal number of (self-)intersection points of curves on surfaces. In Proc. Seminar on
Vector and Tensor Analysis, volume 26, pages 139–167, 2005.

19 Joel Hass and Peter Scott. Intersections of curves on surfaces. Isr. J. Math., 51(1-2):90–120,
1985.

20 Joel Hass and Peter Scott. Configurations of curves and geodesics on surfaces. Geometry
and Topology Monographs, 2:201–213, 1999.

21 Donald E. Knuth, James H. Morris, Jr, and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

22 Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proc. 53rd IEEE
Symp. Found. Comput. Sci. (FOCS), pages 440–449, 2012.

23 Martin Lustig. Paths of geodesics and geometric intersection numbers: II. In Combinatorial
group theory and topology, volume 111 of Ann. of Math. Stud., pages 501–543. Princeton
Univ. Press, 1987.

24 Maryam Mirzakhani. Growth of the number of simple closed geodesies on hyperbolic
surfaces. Ann. Math., pages 97–125, 2008.

25 Maryam Mirzakhani. Counting mapping class group orbits on hyperbolic surfaces. Preprint
arxiv:1601.03342, January 2016. URL: http://arxiv.org/pdf/1601.03342.

26 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Studies in the Mathematical
Sciences. Johns Hopkins Univ. Press, 2001.

27 Max Neumann-Coto. A characterization of shortest geodesics on surfaces. Algebr. Geom.
Topol., 1:349–368, 2001.

28 J.M. Paterson. A combinatorial algorithm for immersed loops in surfaces. Topol. Appl.,
123(2):205–234, 2002.

29 Henri Poincaré. Cinquième complément à l’analysis situs. Rendiconti del Circolo Matem-
atico di Palermo, 18(1):45–110, 1904.

30 Bruce L. Reinhart. Algorithms for Jordan curves on compact surfaces. Ann. Math., pages
209–222, 1962.

31 Jenya Sapir. Bounds on the number of non-simple closed geodesics on a surface. Preprint
arxiv:1505.07171, May 2015. URL: http://arxiv.org/abs/1505.07171.

32 Marcus Schaefer, Eric Sedgwick, and Daniel Stefankovic. Computing Dehn twists and
geometric intersection numbers in polynomial time. In CCCG, pages 111–114, 2008.

SoCG 2017

http://arxiv.org/pdf/1601.03342
http://arxiv.org/pdf/1601.03342
http://arxiv.org/pdf/1505.07171
http://arxiv.org/abs/1505.07171

Topological Analysis of Nerves, Reeb Spaces,
Mappers, and Multiscale Mappers∗†

Tamal K. Dey1, Facundo Mémoli2, and Yusu Wang3

1 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
tamaldey@cse.ohio-state.edu

2 Department of Mathematics and Department of Computer Science and
Engineering, The Ohio State University, Columbus, OH, USA
memoli@math.osu.edu

3 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
yusu@cse.ohio-state.edu

Abstract
Data analysis often concerns not only the space where data come from, but also various types of
maps attached to data. In recent years, several related structures have been used to study maps
on data, including Reeb spaces, mappers and multiscale mappers. The construction of these
structures also relies on the so-called nerve of a cover of the domain.

In this paper, we aim to analyze the topological information encoded in these structures in
order to provide better understanding of these structures and facilitate their practical usage.

More specifically, we show that the one-dimensional homology of the nerve complex N(U)
of a path-connected cover U of a domain X cannot be richer than that of the domain X itself.
Intuitively, this result means that no new H1-homology class can be “created” under a natural
map from X to the nerve complex N(U). Equipping X with a pseudometric d, we further refine
this result and characterize the classes of H1(X) that may survive in the nerve complex using the
notion of size of the covering elements in U . These fundamental results about nerve complexes
then lead to an analysis of the H1-homology of Reeb spaces, mappers and multiscale mappers.

The analysis of H1-homology groups unfortunately does not extend to higher dimensions.
Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result
between mappers and the domain, and interleaving relevant modules, we can still analyze the
persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Topology, nerves, mapper, multiscale mapper, Reeb spaces

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.36

1 Introduction

Data analysis often concerns not only the space where data come from, but also various
types of information attached to data. For example, each node in a road network can contain
information about the average traffic flow passing this point, a node in protein-protein
interaction network can be associated with biochemical properties of the proteins involved.

∗ A full version of the paper is available at https://arxiv.org/abs/1703.07387.
† This work was partially supported by National Science Foundation under grant CCF-1526513.

© Tamal K. Dey, Facundo Mémoli and Yusu Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 36; pp. 36:1–36:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.36
https://arxiv.org/abs/1703.07387
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

Such information attached to data can be modeled as maps defined on the domain of interest;
note that the maps are not necessarily Rd-valued, e.g, the co-domain can be S1. Hence
understanding data benefits from analyzing maps relating two spaces rather than a single
space with no map on it.

In recent years, several related structures have been used to study general maps on data,
including Reeb spaces [9, 11, 13, 18], mappers (and variants) [4, 8, 21] and multiscale mappers
[10]. More specifically, given a map f : X → Z defined on a topological space X, the Reeb
space Rf w.r.t. f (first studied for piecewise-linear maps in [13]), is a generalization of the
so-called Reeb graph for a scalar function which has been used in various applications [2]. It
is the quotient space of X w.r.t. an equivalence relation that asserts two points of X to be
equivalent if they have the same function value and are connected to each other via points of
the same function value. All equivalent points are collapsed into a single point in the Reeb
space. Hence Rf provides a way to view X from the perspective of f .

The Mapper structure, originally introduced in [21], can be considered as a further
generalization of the Reeb space. Given a map f : X → Z, it also considers a cover U of
the co-domain Z that enables viewing the structure of f at a coarser level. Intuitively, the
equivalence relation between points in X is now defined by whether points are within the
same connected component of the pre-image of a cover element U ∈ U . Instead of a quotient
space, the mapper takes the nerve complex of the cover of X formed by the connected
components of the pre-images of all elements in U (i.e, the cover formed by those equivalent
points). Hence the mapper structure provides a view of X from the perspective of both f
and a cover of the co-domain Z.

Finally, both the Reeb space and the mapper structures provide a fixed snapshot of the
input map f . As we vary the cover U of the co-domain Z, we obtain a family of snapshots
at different granularities. The multiscale mapper [10] describes the sequence of the mapper
structures as one varies the granularity of the cover of Z through a sequence of covers of Z
connected via cover maps.

New work. While these structures are meaningful in that they summarize the information
contained in data, there has not been any qualitative analysis of the precise information
encoded by them with the only exception of [4] and [14] 1. In this paper, we aim to analyze
the topological information encoded by these structures, so as to provide better understanding
of these structures and facilitate their practical usage [12, 17]. In particular, the construction
of the mapper and multiscale mapper use the so-called nerve of a cover of the domain. To
understand the mappers and multiscale mappers, we first provide a quantitative analysis of
the topological information encoded in the nerve of a reasonably well-behaved cover for a
domain. Given the generality and importance of the nerve complex in topological studies,
this result is of independent interest.

More specifically, in Section 3, we first obtain a general result that relates the one
dimensional homology H1 of the nerve complex N(U) of a path-connected cover U (where
each open set contained is path-connected) of a domain X to that of the domain X itself.
Intuitively, this result says that no new H1-homology classes can be “created" under a natural
map from X to the nerve complex N(U). Equipping X with a pseudometric d, we further

1 Carrière and Oudot [4] analyzed certain persistence diagram of mappers induced by a real-valued
function, and provided a characterization for it in terms of the persistence diagram of the corresponding
Reeb graph. Gasparovic et al [14] provides full description of the persistence homology information
encoded in the intrinsic Čech complex (a special type of nerve complex) of a metric graph.

T.K. Dey, F. Mémoli, and Y. Wang 36:3

refine this result and quantify the classes of H1(X) that may survive in the nerve complex
(Theorem 21, Section 4). This demarcation is obtained via a notion of size of covering
elements in U . These fundamental results about nerve complexes then lead to an analysis
of the H1-homology classes in Reeb spaces (Theorem 27), mappers and multiscale mappers
(Theorem 29). The analysis of H1-homology groups unfortunately does not extend to higher
dimensions. Nevertheless, we can still provide an interesting analysis of the persistent
homology groups for these structures (Theorem 36, Section 5). During this course, by using
a map-induced metric, we establish a Gromov-Hausdorff convergence between the mapper
structure and the domain. This offers an alternative to [18] for defining the convergence
between mappers and the Reeb space, which may be of independent interest.

All missing proofs in what follows are deferred to the full version of this paper on arXiv.

2 Topological background and motivation

Space, paths, covers. Let X denote a path connected topological space. Since X is path
connected, there exists a path γ : [0, 1]→ X connecting every pair of points {x, x′} ∈ X ×X
where γ(0) = x and γ(1) = x′. Let ΓX(x, x′) denote the set of all such paths connecting x
and x′. These paths play an important role in our definitions and arguments.

By a cover of X we mean a collection U = {Uα}α∈A of open sets such that
⋃
α∈A Uα = X.

A cover U is path connected if each Uα is path connected. In this paper, we consider only
path connected covers.

Later to define maps between X and its nerve complexes, we need X to be paracompact,
that is, every cover U of X has a subcover U ′ ⊆ U so that each point x ∈ X has an open
neighborhood contained in finitely many elements of U ′. Such a cover U ′ is called locally
finite. From now on, we assume X to be compact which implies that it is paracompact too.

I Definition 1 (Simplicial complex and maps). A simplicial complex K with a vertex set V
is a collection of subsets of V with the condition that if σ ∈ 2V is in K, then all subsets of σ
are in K. We denote the geometric realization of K by |K|. Let K and L be two simplicial
complexes. A map φ : K → L is simplicial if for every simplex σ = {v1, v2, . . . , vp} in K, the
simplex φ(σ) = {φ(v1), φ(v2), . . . , φ(vp)} is in L.

I Definition 2 (Nerve of a cover). Given a cover U = {Uα}α∈A of X, we define the nerve of
the cover U to be the simplicial complex N(U) whose vertex set is the index set A, and where a
subset {α0, α1, . . . , αk} ⊆ A spans a k-simplex in N(U) if and only if Uα0∩Uα1∩. . .∩Uαk 6= ∅.

Maps between covers. Given two covers U = {Uα}α∈A and V = {Vβ}β∈B of X, a map of
covers from U to V is a set map ξ : A → B so that Uα ⊆ Vξ(α) for all α ∈ A. By a slight
abuse of notation we also use ξ to indicate the map U → V. Given such a map of covers,
there is an induced simplicial map N(ξ) : N(U) → N(V), given on vertices by the map ξ.
Furthermore, if U ξ→ V ζ→ W are three covers of X with the intervening maps of covers
between them, then N(ζ ◦ ξ) = N(ζ) ◦N(ξ) as well. The following simple result is useful.

I Proposition 3 (Maps of covers induce contiguous simplicial maps [10]). Let ζ, ξ : U → V be
any two maps of covers. Then, the simplicial maps N(ζ) and N(ξ) are contiguous.

Recall that two simplicial maps h1, h2 : K → L are contiguous if for all σ ∈ K it holds
that h1(σ)∪h2(σ) ∈ L. In particular, contiguous maps induce identical maps at the homology
level [19]. Let Hk(·) denote the k-dimensional homology of the space in its argument. This
homology is singular or simplicial depending on if the argument is a topological space or a

SoCG 2017

36:4 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

Uαf−1Uα

R3 R2f N(f−1U)

Figure 1 The map f : S2 ⊂ R3 → R2 takes the sphere to R2. The pullback of the cover element
Uα makes a band surrounding the equator which causes the nerve N(f−1U) to pinch in the middle
creating two 2-cycles. This shows that the map φ∗ : X → N(∗) may not induce a surjection in H2.

simplicial complex respectively. All homology groups in this paper are defined over the field
Z2. Proposition 3 implies that the map Hk(N(U))→ Hk(N(V)) arising out of a cover map
can be deemed canonical.

3 Surjectivity in H1-persistence

In this section we first establish a map φU between X and the geometric realization |N(U)|
of a nerve complex N(U). This helps us to define a map φU∗ from the singular homology
groups of X to the simplicial homology groups of N(U) via the singular homology of |N(U)|.
The famous nerve theorem [3, 16] says that if the elements of U intersect only in contractible
spaces, then φU is a homotopy equivalence and hence φU∗ leads to an isomorphism between
H∗(X) and H∗(N(U)). The contractibility condition can be weakened to a homology ball
condition to retain the isomorphism between the two homology groups [16]. In absence of such
conditions of the cover, simple examples exist to show that φU∗ is neither a monophorphism
(injection) nor an epimorphism (surjection). Figure 1 gives an example where φU∗ is not
sujective in H2. However, for one dimensional homology we show that, for any path connected
cover U , the map φU∗ is necessarily a surjection. One implication of this is that the simplicial
maps arising out of cover maps induce a surjection among the one dimensional homology
groups of two nerve complexes.

3.1 Nerves
The proof of the nerve theorem [15] uses a construction that connects the two spaces X
and |N(U)| via a third space XU that is a product space of U and the geometric realization
|N(U)|.

XU

π

##
X

ζ
>>

φU // |N(U)|

In our case U may not satisfy the contractibility condition. Nevertheless, we use the same
construction to define three maps, ζ : X → XU , π : XU → |N(U)|, and φU : X → |N(U)|
where φU = π ◦ ζ is referred to as the nerve map. Details about the construction of these
maps follow.

Denote the elements of the cover U as Uα for α taken from some indexing set A. The
vertices of N(U) are denoted by {uα, α ∈ A}, where each uα corresponds to the cover

T.K. Dey, F. Mémoli, and Y. Wang 36:5

element Uα. For each finite non-empty intersection Uα0,...,αn :=
⋂n
i=0 Uαi consider the

product Uα0,...,αn × ∆n
α0,...,αn , where ∆n

α0,...,αn denotes the n-dimensional simplex with
vertices uα0 , . . . , uαn . Consider now the disjoint union

M :=
⊔

α0,...,αn∈A:Uα0,...,αn 6=∅

Uα0,...,αn ×∆n
α0,...,αn

together with the following identification: each point (x, y) ∈ M , with x ∈ Uα0,...,αn

and y ∈ [α0, . . . , α̂i, . . . , αn] ⊂ ∆n
α0,...,αn is identified with the corresponding point in the

product U
α0,...,α̂i,...,αn

× ∆
α0,...,α̂i,...,αn

via the inclusion Uα0,...,αn ⊂ U
α0,...,α̂i,...,αn

. Here
[α0, . . . , α̂i, . . . , αn] denotes the i-th face of the simplex ∆n

α0,...,αn . Denote by ∼ this identific-
ation and now define the space XU := M / ∼ . An example for the case when X is a line
segment and U consists of only two open sets is shown below.

I Definition 4. A collection of real valued continuous functions {ϕα :→ [0, 1], α ∈ A} is
called a partition of unity if (i)

∑
α∈A ϕα(x) = 1 for all x ∈ X, (ii) For every x ∈ X, there

are only finitely many α ∈ A such that ϕα(x) > 0.
If U = {Uα, α ∈ A} is any open cover of X, then a partition of unity {ϕα, α ∈ A} is

subordinate to U if supp(ϕα) is contained in Uα for each α ∈ A.

Since X is paracompact, for any open cover U = {Uα, α ∈ A} of X, there exists a
partition of unity {ϕα, α ∈ A} subordinate to U [20]. For each x ∈ X such that x ∈ Uα,
denote by xα the corresponding copy of x residing in XU . Then, the map ζ : X → XU is
defined as follows: for any x ∈ X,

ζ(x) :=
∑
α∈A

ϕα(x)xα.

The map π : XU → |N(U)| is induced by the individual projection maps

Uα0,...,αn ×∆n
α0,...,αn → ∆n

α0,...,αn .

Then, it follows that φU = π ◦ ζ : X → |N(U)| satisfies, for x ∈ X,

φU (x) =
∑
α∈A

ϕα(x)uα. (1)

We have the following fact [20, pp. 108]:

I Fact 5. ζ is a homotopy equivalence.

3.2 From space to nerves
Now, we show that the nerve maps at the homology level are surjective for one dimensional
homology. Interestingly, the result is not true beyond one dimensional homology (see Figure 1)

SoCG 2017

36:6 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

which is probably why this simple but important fact has not been observed before. First, we
make a simple observation that connects the classes in singular homology of |N(U)| to those
in the simplicial homology of N(U). The result follows immediately from the isomorphism
between singular and simplicial homology induced by the geometric realization; see [19,
Theorem 34.3]. In what follows let [c] denote the class of a cycle c.

I Proposition 6. Every 1-cycle ξ in |N(U)| has a 1-cycle γ in N(U) so that [ξ] = [|γ|].

I Proposition 7. If U is path connected, φU∗ : H1(X)→ H1(|N(U)|) is a surjection.

Proof. Let [γ] be any class in H1(|N(U)|). Because of Proposition 6, we can assume that
γ = |γ′|, where γ′ is a 1-cycle in the 1-skeleton of N(U). We construct a 1-cycle γU in XU
so that π(γU) = γ. Recall the map ζ : X → XU in the construction of the nerve map φU
where φU = π ◦ ζ. There exists a class [γX] in H1(X) so that ζ∗([γX]) = [γU] because ζ∗ is
an isomorphism by Fact 5. Then, φU∗([γX]) = π∗(ζ∗([γX])) because φU∗ = π∗ ◦ ζ∗. It follows
φU∗([γX]) = π∗([γU]) = [γ] showing that φU∗ is surjective.

Therefore, it remains only to show that a 1-cycle γU can be constructed given γ in |N(U)|
so that π(γU) = γ. See the full version for this construction. J

Since we are eventually interested in the simplicial homology groups of the nerves rather
than the singular homology groups of their geometric realizations, we make one more
transition using the known isomorphism between the two homology groups. Specifically, if
ιU : Hk(|N(U)|)→ Hk(N(U)) denotes this isomorphism, we let φ̄U∗ denote the composition
ιU ◦ φU∗. As a corollary to Proposition 7, we obtain:

I Theorem 8. If U is path connected, φ̄U∗ : H1(X)→ H1(N(U)) is a surjection.

3.3 From nerves to nerves
In this section we extend the result in Theorem 8 to simplicial maps between two nerves
induced by cover maps. The following proposition is key to establishing the result.

I Proposition 9 (Coherent partitions of unity). Suppose {Uα}α∈A = U θ−→ V = {Vβ}β∈B are
open covers of the paracompact topological space X and θ : A→ B is a map of covers. Then
there exists a partition of unity {ϕα}α∈A subordinate to the cover U such that if for each
β ∈ B we define

ψβ :=
{ ∑

α∈θ−1(β) ϕα if β ∈ im(θ);
0 otherwise.

then the set of functions {ψβ}β∈B is a partition of unity subordinate to the cover V.

Proof is deferred to the full version.
Let {Uα}α∈A = U θ−→ V = {Vβ}β∈B be two open covers ofX connected by a map of covers.

Apply Proposition 9 to obtain coherent partitions of unity {ϕα}α∈A and {ψβ}β∈B subordinate
to U and V, respectively. Let the nerve maps φU : X → |N(U)| and φV : X → |N(V)| be
defined as in (1) above. Let N(U) τ→ N(V) be the simplicial map induced by the cover map
θ. Then, τ can be extended to a continuous map τ̂ on the image of φU as follows: for x ∈ X,
τ̂(φU (x)) = Σα∈Aϕα(x) vθ(α).

I Proposition 10. Let U and V be two covers of X connected by a cover map U θ→ V. Then,
the nerve maps φU and φV satisfy φV = τ̂ ◦φU where τ : N(U)→ N(V) is the simplicial map
induced by the cover map θ.

T.K. Dey, F. Mémoli, and Y. Wang 36:7

Proof. For any point p ∈ im(φU), there is x ∈ X where p = φU (x) = Σα∈Aϕα(x)uα. Then,

τ̂ ◦ φU (x) = τ̂

(∑
α∈A

ϕα(x)uα

)
=
∑
α∈A

ϕα(x)τ(uα) =
∑
α∈A

ϕα(x) vθ(α)

=
∑
β∈B

∑
α∈θ−1(β)

ϕα(x) vθ(α) =
∑
β∈B

ψβ(x)vβ = φV(x) . J

An immediate corollary of the above Proposition is:

I Corollary 11. The induced maps of φU∗ : Hk(X) → Hk(|N(U)|), φV∗ : Hk(X) →
Hk(|N(V)|), and τ̂∗ : Hk(|N(U)|) → Hk(|N(V)|) at the homology levels commute, that
is, φV∗ = τ̂∗ ◦ φU∗.

With transition from singular to simplicial homology, Corollary 11 implies that:

I Proposition 12. φ̄V∗ = τ∗ ◦ φ̄U∗ where φ̄V∗ : Hk(X) → Hk(N(V)), φ̄U∗ : Hk(X) →
Hk(N(U)) and τ : N(U)→ N(V) is the simplicial map induced by a cover map U → V.

Proposition 12 extends Theorem 8 to the simplicial maps between two nerves.

I Theorem 13. Let τ : N(U)→ N(V) be a simplicial map induced by a cover map U → V
where both U and V are path connected. Then, τ∗ : H1(N(U))→ H1(N(V)) is a surjection.

Proof. Consider the maps

H1(X) φ̄U∗→ H1(N(U)) τ∗→ H1(N(V)), and H1(X) φ̄V∗→ H1(N(V)).

By Proposition 12, τ∗ ◦ φ̄U∗ = φ̄V∗. By Theorem 8, the map φ̄V∗ is a surjection. It follows
that τ∗ is a surjection. J

3.4 Mapper and multiscale mapper
In this section we extend the previous results to the structures called mapper and multiscale
mapper. Recall that X is assumed to be compact. Consider a cover of X obtained indirectly
as a pullback of a cover of another space Z. This gives rise to the so called Mapper and
Multiscale Mapper. Let f : X → Z be a continuous map where Z is equipped with an open
cover U = {Uα}α∈A for some index set A. Since f is continuous, the sets {f−1(Uα), α ∈ A}
form an open cover of X. For each α, we can now consider the decomposition of f−1(Uα) into
its path connected components, so we write f−1(Uα) =

⋃jα
i=1 Vα,i, where jα is the number of

path connected components Vα,i’s in f−1(Uα). We write f∗U for the cover of X obtained
this way from the cover U of Z and refer to it as the pullback cover of X induced by U via f .
Note that by its construction, this pullback cover f∗U is path-connected.

Notice that there are pathological examples of f where f−1(Uα) may shatter into infinitely
many path components. This motivates us to consider well-behaved functions f : we require
that for every path connected open set U ⊆ Z, the preimage f−1(U) has finitely many open
path connected components. Henceforth, all such functions are assumed to be well-behaved.

I Definition 14 (Mapper [21]). Let f : X → Z be a continuous map. Let U = {Uα}α∈A be
an open cover of Z. The mapper arising from these data is defined to be the nerve simplicial
complex of the pullback cover: M(U , f) := N(f∗U).

SoCG 2017

36:8 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

When we consider a continuous map f : X → Z and we are given a map of covers
ξ : U → V between covers of Z, we observed in [10] that there is a corresponding map of
covers between the respective pullback covers of X: f∗(ξ) : f∗U −→ f∗V. Furthermore, if
U ξ→ V θ→W are three different covers of a topological space with the intervening maps of
covers between them, then f∗(θ ◦ ξ) = f∗(θ) ◦ f∗(ξ).

In the definition below, objects can be covers, simplicial complexes, or vector spaces.

I Definition 15 (Tower). A tower W with resolution r ∈ R is any collection W =
{
Wε

}
ε≥r

of objects Wε indexed in R together with maps wε,ε′ : Wε → Wε′ so that wε,ε = id and
wε′,ε′′ ◦wε,ε′ = wε,ε′′ for all r ≤ ε ≤ ε′ ≤ ε′′. Sometimes we write W =

{
Wε

wε,ε′−→ Wε′
}
r≤ε≤ε′

to denote the collection with the maps. Given such a tower W, res(W) refers to its resolution.
When W is a collection of covers equipped with maps of covers between them, we call it

a tower of covers. When W is a collection of simplicial complexes equipped with simplicial
maps between them, we call it a tower of simplicial complexes.

The pullback properties described at the end of section 2 make it possible to take the
pullback of a given tower of covers of a space via a given continuous function into another
space, so that we obtain the following.

I Proposition 16 ([10]). Let U = {Uε} be a tower of covers of Z and f : X → Z be a
continuous function. Then, f∗U = {f∗Uε} is a tower of (path-connected) covers of X.

In general, given a tower of covers W of a space X, the nerve of each cover in W together
with each map of W provides a tower of simplicial complexes which we denote by N(W).

I Definition 17 (Multiscale Mapper [10]). Let f : X → Z be a continuous map. Let U be a
tower of covers of Z. Then, the multiscale mapper is defined to be the tower of the nerve
simplicial complexes of the pullback: MM(U, f) := N(f∗U).

As we indicated earlier, in general, no surjection between X and its nerve may exist at
the homology level. It follows that the same is true for the mapper N(f∗U). But, for H1, we
can apply the results contained in previous section to claim the following.

I Theorem 18. Consider the following multiscale mapper arising out of a tower of path
connected covers:

N(f∗U0)→ N(f∗U1)→ · · · → N(f∗Un) .

There is a surjection from H1(X) to H1(N(f∗Ui)) for each i ∈ [0, n].
Consider a H1-persistence module of a multiscale mapper as shown below.

H1
(
N(f∗U0)

)
→ H1

(
N(f∗U1)

)
→ · · · → H1

(
N(f∗Un)

)
. (2)

All connecting maps in the above module are surjections.

The above result implies that, as we proceed forward through the multiscale mapper,
no new homology classes are born. They can only die. Consequently, all bar codes in the
persistence diagram of the H1-persistence module induced by it have the left endpoint at 0.

4 Analysis of persistent H1-classes

Using the language of persistent homology, the results in the previous section imply that one
dimensional homology classes can die in the nerves, but they cannot be born. In this section,

T.K. Dey, F. Mémoli, and Y. Wang 36:9

we analyze further to identify the classes that survive. The distinction among the classes is
made via a notion of ‘size’. Intuitively, we show that the classes with ‘size’ much larger than
the ‘size’ of the cover survive. The ‘size’ is defined with the pseudometric that the space X
is assumed to be equipped with. Precise statements are made in the subsections.

4.1 H1-classes of nerves of pseudometric spaces
Let (X, d) be a pseudometric space, that is, d satisfies the axioms of a metric except that
d(x, x′) = 0 may not necessarily imply x = x′. Assume X to be compact as before. We
define a ‘size’ for a homology class that reflects how big the smallest generator in the class is
in the metric d.

I Definition 19. The size s(X ′) of a subset X ′ of the pseudometric space (X, d) is defined
to be its diameter, that is, s(X ′) = supx,x′∈X′×X′ d(x, x′). The size of a class c ∈ Hk(X) is
defined as s(c) = infz∈c s(z).

I Definition 20. A set of k-cycles z1, z2, . . . , zn of Hk(X) is called a generator basis if the
classes [z1], [z2], . . . , [zn] together form a basis of Hk(X). It is called a minimal generator
basis if Σni=1s(zi) is minimal among all generator bases.

Lebesgue number of a cover. Our goal is to characterize the classes in the nerve of U with
respect to the sizes of their preimages in X via the map φU . The Lebesgue number of a
cover U becomes useful in this characterization. It is the largest number λ(U) so that any
subset of X with size at most λ(U) is contained in at least one element of U . Formally,

λ(U) = sup{δ | ∀X ′ ⊆ X with s(X ′) ≤ δ, ∃Uα ∈ U where Uα ⊇ X ′} .

We observe that a homology class of size no more than λ(U) cannot survive in the nerve.
Further, the homology classes whose sizes are significantly larger than the maximum size of
a cover do necessarily survive where we define the maximum size of a cover as smax(U) :=
maxU∈U{s(U)}.

Let z1, z2, . . . , zg be a non-decreasing sequence of the generators with respect to their sizes
in a minimal generator basis of H1(X). Consider the map φU : X → |N(U)| as introduced
in Section 3. We have the following result.

I Theorem 21. Let U be a path-connected cover of X.
(i) Let ` = g + 1 if λ(U) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that

s(z`) > λ(U). If ` 6= 1, the class φ̄U∗[zj] = 0 for j = 1, . . . , `− 1. Moreover, if ` 6= g + 1,
the classes {φ̄U∗[zj]}j=`,...,g generate H1(N(U)).

(ii) The classes {φ̄U∗[zj]}j=`′,...,g are linearly independent where s(z`′) > 4smax(U).

The result above says that only the classes of H1(X) generated by generators of large
enough size survive in the nerve. To prove this result, we use a map ρ that sends each
1-cycle in N(U) to a 1-cycle in X. We define a chain map ρ : C1(N(U))→ C1(X) among one
dimensional chain groups as follows 2. It is sufficient to exhibit the map for an elementary
chain of an edge, say e = {uα, uα′} ∈ C1(N(U)). Since e is an edge in N(U), the two cover
elements Uα and Uα′ in X have a common intersection. Let a ∈ Uα and b ∈ Uα′ be two
points that are arbitrary but fixed for Uα and Uα′ respectively. Pick a path ξ(a, b) (viewed

2 We note that the high level framework of defining such a chain map and analyzing what it does to
homologous cycles is similar to the work by Gasparovic et al. [14]. The technical details are different.

SoCG 2017

36:10 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

Uα

Uβ

a w
b

X

ρ(e)

N(U)
uα uβ

â

b̂ŵx̂ ŷẑ

Hw
Hb

Ha

γa,b

(a) (b)

Figure 2 Illustration for proof of Proposition 22.

as a singular chain) in the union of Uα and Uα′ which is path connected as both Uα and Uα′
are. Then, define ρ(e) = ξ(a, b). The following properties of φU and ρ turn out to be useful.

I Proposition 22. Let γ be any 1-cycle in N(U). Then, [φU (ρ(γ))] = [|γ|].

Proof. Let e = (uα, uβ) be an edge in γ with uα and uβ corresponding to Uα and Uβ
respectively. Let a and b be the corresponding fixed points for set Uα and Uβ respectively.
Consider the path ρ(e) = ξ(a, b) in X as constructed above, and set γa,b = φU (ξ(a, b)) to be
the image of ρ(e) in |N(U)|. See Figure 2 for an illustration. Given an oriented path ` and
two points x, y ∈ `, we use `[x, y] to denote the subpath of ` from x to y. For a point x ∈ X,
for simplicity we set x̂ = φU (x) to be its image in |N(U)|.

Now, let w ∈ ρ(e) be a point in Uα∩Uβ , and ŵ = φU (w) be its image in γa,b. Furthermore,
let σw ∈ N(U) be the lowest-dimensional simplex containing ŵ. While uα and uβ may not
be vertices of σw, we can show that V ert(σw) ∪ {uα, uβ} must span a simplex σ̄w, in N(U)
(see full version). Let γa,b[x̂, ŷ] be the maximal subpath of γa,b containing ŵ that is contained
within |σ̄w|. One can construct a homotopy Ha that takes γa,b[â, x̂] to uα under which
any point ẑ ∈ γa,b[â, x̂] moves monotonically along the segment ẑuα within the geometric
realization of the simplex containing both ẑ and uα. See the details in the full version.

Similarly, there is a homotopy Hb that takes γa,b[ŷ, b̂] to uβ under which any point
ẑ ∈ γa,b[ŷ, b̂] moves monotonically along the segment ẑuβ . Finally, for the middle subpath
γa,b[x̂, ŷ], since it is within simplex σ̄w with e = (uα, uβ) being an edge of it, we can construct
a homotopy Hw that takes γa,b[x̂, ŷ] to |uαuβ | under which x̂ and ŷ move monotonically
along the segments x̂uα and ŷuβ within the geometric realization of simplex σ̄w, respectively.
ConcatenatingHa, Hw andHb, we obtain a homotopyHα,β taking γa,b to |e|. A concatenation
of these homotopiesHα,β considered over all edges in γ, brings φU (ρ(γ)) to |γ| with a homotopy
in |N(U)|. Hence, their homology classes are the same. J

I Proposition 23. Let z be a 1-cycle in C1(X). Then, [φU (z)] = 0 if λ(U) > s(z).

Proof of Theorem 21.
Proof of (i): By Proposition 23, we have φU∗[z] = [φU (z)] = 0 if λ(U) > s(z). This

establishes the first part of the assertion because φ̄U∗ = ι ◦φU∗ where ι is an isomorphism
between the singular homology of |N(U)| and the simplicial homology of N(U). To see
the second part, notice that φ̄U∗ is a surjection by Theorem 8. Therefore, the classes
φ̄U∗(z) where λ(U) 6> s(z) contain a basis for H1(N(U)). Hence they generate it.

Proof of (ii): Suppose on the contrary, there is a subsequence {`1, . . . , `t} ⊂ {`′, . . . , g}
such that Σt

j=1[φU (z`j)] = 0. Let z = Σt
j=1φU (z`j). Let γ be a 1-cycle in N(U) so that

[z] = [|γ|] whose existence is guaranteed by Proposition 6. It must be the case that
there is a 2-chain D in N(U) so that ∂D = γ. Consider a triangle t = {uα1 , uα2 , uα3}
contributing to D. Let a′i = φ−1

U (uαi). Since t appears in N(U), the covers Uα1 , Uα2 , Uα3

T.K. Dey, F. Mémoli, and Y. Wang 36:11

containing a′1, a′2, and a′3 respectively have a common intersection in X. This also means
that each of the paths a′1 a′2, a′2 a′3, a′3 a′1 has size at most 2smax(U). Then,
ρ(∂t) is mapped to a 1-cycle in X of size at most 4smax(U). It follows that ρ(∂D) can be
written as a linear combination of cycles of size at most 4smax(U). Each of the 1-cycles of
size at most 4smax(U) is generated by basis elements z1, . . . , zk where s(zk) ≤ 4smax(U).
Therefore, the class of z′ = φU (ρ(γ)) is generated by a linear combination of the basis
elements whose preimages have size at most 4smax(U). The class [z′] is same as the class
[|γ|] by Proposition 22. But, by assumption [|γ|] = [z] is generated by a linear combination
of the basis elements whose sizes are larger than 4smax(U) reaching a contradiction. J

4.2 H1-classes in Reeb space
In this section we prove an analogue of Theorem 21 for Reeb spaces, which to our knowledge
is new. The Reeb space of a function f : X → Z, denoted Rf , is the quotient of X under the
equivalence relation x ∼f x′ if and only if f(x) = f(x′) and there exists a continuous path
γ ∈ ΓX(x, x′) such that f ◦ γ is constant. The induced quotient map is denoted q : X → Rf
which is of course surjective. We show that q∗ at the homology level is also surjective for H1
when the codomain Z of f is a metric space. In fact, we prove a stronger statement: only
‘vertical’ homology classes (classes with strictly positive size) survive in a Reeb space which
extends the result of Dey and Wang [11] for Reeb graphs.

Let V be a path-connected cover of Rf . This induces a pullback cover denoted U =
{Uα}α∈A = {q−1(Vα)}α∈A on X. Let N(U) and N(V) denote the corresponding nerve
complexes of U and V respectively. It is easy to see that N(U) ∼= N(V) because Uα ∩Uα′ 6= ∅
if and only if Vα ∩ Vα′ 6= ∅. There are nerve maps φV : Rf → |N(V)| and φU : X → |N(U)|
so that the following holds:

I Proposition 24. Consider the sequence X q→ Rf (X) φV→ |N(V)| = |N(U)|. Then, φU =
φV ◦ q.

Let the codomain of the function f : X → Z be a metric space (Z, dZ). We first impose a
pseudometric on X induced by f ; the one-dimensional version of this pseudometric is similar
to the one used in [1] for Reeb graphs. Recall that given two points x, x′ ∈ X we denote by
ΓX(x, x′) the set of all continuous paths γ : [0, 1]→ X such that γ(0) = x and γ(1) = x′.

I Definition 25. We define a pseudometric df on X as follows: for x, x′ ∈ X,

df (x, x′) := inf
γ∈ΓX(x,x′)

diamZ(f ◦ γ).

I Proposition 26. df : X ×X → R+ is a pseudometric.

Similar to X, we endow Rf with a distance d̃f that descends via the map q: for any
equivalence classes r, r′ ∈ Rf , pick x, x′ ∈ X with r = q(x) and r′ = q(x′), then define

d̃f (r, r′) := df (x, x′).

The definition does not depend on the representatives x and x′ chosen. In this manner we
obtain the pseudometric space (Rf , d̃f). Let z1, . . . , zg be a minimal generator basis of H1(X)
defined with respect to the pseudometric df and q : X → Rf be the quotient map.

I Theorem 27. Let ` ∈ [1, g] be the smallest integer so that s(z`) 6= 0. If no such ` exists,
H1(Rf) is trivial, otherwise, {[q(zi)]}i=`,...g is a basis for H1(Rf).

SoCG 2017

36:12 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

Proof. Consider the sequence X q→ Rf
φV→ |N(V)| where V is a cover of Rf . It is shown in the

full version that q∗ is a surjection for H1-homology. Then, {[q(zi)]}i=1,...,g generate H1(Rf).
First, assume that ` as stated in the theorem exists. Let the cover V be fine enough so that
0 < smax(U) ≤ δ where δ = 1

4 min{s(zi) | s(zi) 6= 0}. Then, by applying Theorem 21(ii),
we obtain that [φU (zi)]i=`,...,g are linearly independent in H1(|N(U)|) = H1(|N(V)|. Since
[φU (zi)] = [φV ◦ q(zi)] by Proposition 24, {[q(zi)]}i=`,...,g are linearly independent in H1(Rf).
But, [q(zi)] = 0 for s(zi) = 0 and {[q(zi)]}i=1,...,g generateH1(Rf). Therefore, {[q(zi)]}i=`,...,g
is a basis. In the case when ` does not exist, we have s(zi) = 0 for every i ∈ [1, g]. Then,
[q(zi)] = 0 for every i rendering H1(Rf) trivial. J

4.3 Persistence of H1-classes in mapper and multiscale mapper
To apply the results for nerves in section 4.1 to mappers and multiscale mappers, the Lebesgue
number of the pullback covers of X becomes important. The following observation in this
respect is useful. Remember that the size of a subset in X and hence the cover elements are
measured with respect to the pseudometric df .

I Proposition 28. Let U be a cover for the codomain Z. Then, the pullback cover f∗U has
Lebesgue number λ(U).

Notice that the smallest size smin(f∗U) of an element of the pullback cover can be
arbitrarily small even if smin(U) is not. However, the Lebesgue number of U can be leveraged
for the mapper due to the above proposition.

Given a cover U of Z, consider the mapper N(f∗U). Let z1, . . . , zg be a set of minimal
generator basis for H1(X) where the metric in question is df . Then, as a consequence of
Theorem 21 we have:

I Theorem 29.
(i) Let ` = g + 1 if λ(U) > s(zg). Otherwise, let ` ∈ [1, g] be the smallest integer so that

s(z`) > λ(U). If ` 6= 1, the class φU∗[zj] = 0 for j = 1, . . . , `− 1. Moreover, if ` 6= g + 1,
the classes {φU∗[zj]}j=`,...,g generate H1(N(f∗U)).

(ii) The classes {φU∗[zj]}j=`′,...,g are linearly independent where s(z`′) > 4smax(U).
(iii) Consider a H1-persistence module of a multiscale mapper induced by a tower of path

connected covers:

H1
(
N(f∗Uε0)

) s1∗→ H1
(
N(f∗Uε1)

) s2∗→ · · · sn∗→ H1
(
N(f∗Uεn)

)
. (3)

Let ŝi∗ = si∗ ◦ s(i−1)∗ ◦ · · · ◦ φ̄Uε0∗. Then, the assertions in (i) and (ii) hold for
H1(N(f∗Uεi)) with the map ŝi∗ : X → N(f∗Uεi).

I Remark (Persistence diagram approximation.). The persistence diagram of the H1-persistence
module considered in Theorem 29(iii) contains points whose birth coordinates are exactly zero.
This is because all connecting maps are surjective by (i) and thus every class is born only at
the beginning. The death coordinate of a point that corresponds to a minimal basis generator
of size s is in between the index εi and εj where s ≥ 4smax(Uεi) and s ≤ λ(Uεj) because of
the assertions (i) and (ii) in Theorem 29. Assuming covers whose λ and smax values are
within a constant factor of each other (such as the ones described in next subsection), we
can conclude that a generator of size s dies at some point cs for some constant c. Therefore,
by computing a minimal generator basis of N(Uε0) and computing their sizes provide a
4-approximation to the persistence diagram of the multiscale mapper in the log scale.

T.K. Dey, F. Mémoli, and Y. Wang 36:13

4.4 Two special covers and intrinsic Čech complex
We discuss two special covers, one can be effectively computed and the other one is relevant
in the context of the intrinsic Čech complex of a metric space. We say a cover U of a metric
space (Y, d) is (α, β)-cover if α ≤ λ(U) and β ≥ smax(U).

A (δ, 4δ)-cover: Consider a δ-sample P of Y , that is, every metric ball B(y, δ), y ∈ Y ,
contains a point in P . Observe that the cover U = {B(p, 2δ)}p∈P is a (δ, 4δ)-cover for Z.
Clearly, smax(U) ≤ 4δ. To determine λ(U), consider any subset Y ′ ⊆ Y with s(Y ′) ≤ δ.
There is a p ∈ P so that dY (p, Y ′) ≤ δ. Let y′ be the furthest point in Y ′ from p. Then,
dY (p, y′) ≤ dY (p, Y) + diam(Y ′) ≤ 2δ establishing that λ(U) ≥ δ.

A (δ, 2δ)-cover: Consider the infinite cover U of Y where U = {B(y, δ)}y∈Y . These are the
set of all metric balls of radius δ. Clearly, smax(U) ≤ 2δ. Any subset Y ′ ⊆ Y with s(Y ′) ≤ δ
is contained in a ball B(y, δ) where y is any point in Y ′. This shows that λ(U) ≥ δ. A
consequence of this observation and Theorem 21 is that the intrinsic Čech complexes satisfy
some interesting property.

I Definition 30. Given a metric space (Y, dY), its intrinsic Čech complex Cδ(Y) at scale δ
is defined to be the nerve complex of the set of intrinsic δ-balls {B(y, δ)}y∈Y .

I Observation 31. Let Cδ(Y) denote the intrinsic Čech complex of a metric space Y at scale
δ. Let U denote the corresponding possibly infinite cover of Y . Let z1, . . . , zg be a minimal
generator basis for H1(Y). Then, {φ̄U∗(zi)}i=`,...,g generate H1(Cδ(Y)) if ` is the smallest
integer with s(z`) > δ. Furthermore, {φ̄U∗(zi)}i=`′,...,g are linearly independent if s(z′`) > 8δ.

5 Higher dimensional homology groups

We have already observed that the surjectivity of the map φU∗ : H1(X) → H1(|N(U)|) in
one dimensional homology does not extend to higher dimensional homology groups. This
means that we cannot hope for analogues to Theorem 21(i) and Theorem 29 to hold for
higher dimensional homology groups. However, under the assumption that f : X → Z is a
continuous map from a compact space to a metric space, we can provide some characterization
of the persistent diagrams of the mapper and the multiscale mapper as follows:

We define a metric dδ on the vertex set Pδ of N(U) where smax(U) ≤ δ and then show
that the Gromov-Hausdorff distance between the metric spaces (Pδ, dδ) and (Rf , d̃f) is
at most 5δ. The same proof also applies if we replace (Rf , d̃f) with the pseudometric
space (X, df). See the full version.
Previous result implies that the persistence diagrams of the intrinsic Čech complex of the
metric space (X, df) and that of the metric space (Pδ, dδ) have a bottleneck distance of
O(δ). This further implies that the persistence diagram of the mapper structure N(U)
(approximated as the metric structure (Pδ, dδ)) is close to that of the intrinsic Čech
complex of the pseudometric space (X, df).
We show that the intrinsic Čech complexes of (X, df) interleave with MM(U, f) thus
connecting their persistence diagrams. See Section 5.1.
It follows that the persistence diagrams of the multiscale mapper MM(U, f) and (Pδ, dδ)
are close, both being close to that of (X, df). This shows that the multiscale mapper
encodes similar information as the mapper under an appropriate map-induced metric.

SoCG 2017

36:14 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

I Definition 32 (Intrinsic Čech filtration). The intrinsic Čech filtration of the metric space
(Y, dY) is

C(Y) = {Cr(Y) ⊆ Cr
′
(Y)}0<r<r′ .

The intrinsic Čech filtration at resolution s is defined as Cs(Y) = {Cr(Y) ⊆ Cr′(Y)}s≤r<r′ .

Whenever (Y, dY) is totally bounded, the persistence modules induced by taking homology
of this intrinsic Čech filtration become q-tame [7]. This implies that one may define
its persistence diagram Dg C(Y) which provides one way to summarize the topological
information of the space Y through the lens of its metric structure dY .

We argue that the pseudometric space (X, df) is totally bounded. This requires us to
show that for any ε > 0 there is a finite subset of P ⊆ X so that open balls centered at points
in P with radii ε cover X. Recall that we have assumed that X is a compact topological
space, that (Z, dZ) is a metric space, and that f : X → Z is a continuous map. Consider
a cover U of Z where each cover element is a ball of radius most ε/2 around a point in Z.
Then, the pullback cover f∗U of X has all elements with diameter at most ε in the metric df .
Since X is compact, a finite sub-cover of f∗U still covers X. A finite set P consisting of one
arbitrary point in each element of this finite sub-cover is such that the union of df -balls of
radius ε around points in P covers X. Since ε > 0 was arbitrary, (X, df) is totally bounded.

Consider the mapper N(f∗U) w.r.t a cover U of the codomain Z. We can equip its
vertex set, denoted by Pδ, with a metric structure (Pδ, dδ), where δ is an upper bound on
the diameter of each element in U . Hence we can view the persistence diagram Dg C(Pδ)
w.r.t. the metric dδ as a summary of the mapper N(f∗U). Using the Gromov-Hausdorff
distance between the metric spaces (Pδ, dδ) and (X, df), we relate this persistent summary
to the persistence diagram Dg C(X) induced by the intrinsic Čech filtration of (X, df).
Specifically, we show that dGH((Pδ, dδ), (X, df)) ≤ 5δ. Theorem 32 in the full version
extends to this result. With (X, df) being totally bounded, by results of [7], it follows that
the bottleneck-distance between the two resulting persistence diagrams satisfies:

dB(Dg C(Pδ),Dg C(X)) ≤ 2 ∗ 5δ = 10δ. (4)

5.1 MM(W, f) for a tower of covers W

Above we discussed the information encoded in a certain persistence diagram summary of a
single Mapper structure. We now consider the persistent homology of multiscale mappers.
Given any tower of covers (TOC) W of the co-domain Z, by applying the homology functor
to its multiscale mapper MM(W, f), we obtain a persistent module, and we can thus discuss
the persistent homology induced by a tower of covers W. However, as discussed in [10], this
persistent module is not necessarily stable under perturbations (of e.g the map f) for general
TOCs. To address this issue, Dey et al. introduced a special family of the so-called (c,s)-good
TOC in [10], which is natural and still general. Below we provide an equivalent definition of
the (c,s)-good TOC based on the Lebesgue number of covers.

I Definition 33 ((c, s)-good TOC). Give a tower of covers U = {Uε}ε≥s, we say that it is
(c,s)-good TOC if for any ε ≥ s, we have that (i) smax(Uε) ≤ ε and (ii) λ(Ucε) ≥ ε.

As an example, the TOC U = {Uε}ε≥s with Uε := {Bε/2(z) | z ∈ Z} is an (2,s)-good
TOC of the co-domain Z.

We now characterize the persistent homology of multiscale mappers induced by (c,s)-good
TOCs. Connecting these persistence modules is achieved via the interleaving of towers of

T.K. Dey, F. Mémoli, and Y. Wang 36:15

simplicial complexes originally introduced in [5]. Below we include the slightly generalized
version of the definition from [10].

I Definition 34 (Interleaving of simplicial towers, [10]). Let S =
{
Sε

sε,ε′−→ Sε′
}
r≤ε≤ε′ and

T =
{
Tε

tε,ε′−→ Tε′
}
r≤ε≤ε′ be two towers of simplicial complexes where res(S) = res(T) = r.

For some c ≥ 0, we say that they are c-interleaved if for each ε ≥ r one can find simplicial
maps ϕε : Sε → Tε+c and ψε : Tε → Sε+c so that:
(i) for all ε ≥ r, ψε+c ◦ ϕε and sε,ε+2c are contiguous,
(ii) for all ε ≥ r, ϕε+η ◦ ψε and tε,ε+2c are contiguous,
(iii) for all ε′ ≥ ε ≥ r, ϕε′ ◦ sε,ε′ and tε+c,ε′+c ◦ ϕε are contiguous,
(iv) for all ε′ ≥ ε ≥ r, sε+c,ε′+c ◦ ψε and ψε′ ◦ tε,ε′ are contiguous.
Analogously, if we replace the operator ‘+’ by the multiplication ‘·’ in the above definition,
then we say that S and T are c-multiplicatively interleaved.

Our main results of this section are the following whose proofs are deferred to the full
version. First, Theorem 35 states that the multiscale-mappers induced by any two (c, s)-good
towers of covers interleave with each other, implying that their respective persistence diagrams
are also close under the bottleneck distance. From this point of view, the persistence diagrams
induced by any two (c,s)-good TOCs contain roughly the same information. Next in Theorem
36, we show that the multiscale mapper induced by any (c, s)-good TOC interleaves (at
the homology level) with the intrinsic Čech filtration of (X, df), thereby implying that the
persistence diagram of the multiscale mapper w.r.t. any (c, s)-good TOC is close to that of
the intrinsic Čech filtration of (X, df) under the bottleneck distance.

I Theorem 35. Given a map f : X → Z, let V = {Vε
vε,ε′−→ Vε′

}
ε≤ε′ and W = {Wε

wε,ε′−→
Wε′

}
ε≤ε′ be two (c, s)-good tower of covers of Z. Then the corresponding multiscale mappers

MM(V, f) and MM(W, f) are c-multiplicatively interleaved.

I Theorem 36. Let Cs(X) be the intrinsic Čech filtration of (X, df) starting with resolution
s. Let U = {Uε

uε,ε′−→ Uε′
}
s≤ε≤ε′ be a (c, s)-good TOC of the compact connected metric space

Z. Then the multiscale mapper MM(U, f) and Cs(X) are 2c-multiplicatively interleaved.

Finally, given a persistence diagram Dg, we denote its log-scaled version Dglog to be the
diagram consisting of the set of points {(log x, log y) | (x, y) ∈ Dg}. Since interleaving towers
of simplicial complexes induce interleaving persistent modules, using results of [5, 6], we have
the following corollary.

I Corollary 37. Given a continuous map f : X → Z and a (c, s)-good TOC U of Z, let
DglogMM(U, f) and DglogCs denote the log-scaled persistence diagram of the persistence
modules induced by MM(U, f) and by the intrinsic Čech filtration Cs of (X, df) respectively.
We have that

dB(DglogMM(U, f),DglogCs) ≤ 2c.

Acknowledgments. We thank the reviewers for helpful comments.

References
1 U. Bauer, X. Ge and Y. Wang. Measuring distance between Reeb graphs. Proc. 30th

Annual Symp. Comput. Geom., SoCG (2014), 464–473.

SoCG 2017

36:16 Topology of Nerves, Reeb Spaces, Mappers, and Multiscale Mappers

2 S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis
and applications. Theor. Comput. Sci., 392(1-3):5–22, 2008.

3 K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund. Math.
35 (1948), 217–234.

4 M. Carrière and S.Y. Oudot. Structure and Stability of the 1-Dimensional Mapper. Proc.
32nd Int’l Symp. Comput. Geom., SoCG (2016), 25:1–25:16.

5 F. Chazal, D. Cohen-Steiner, M. Glisse, L. Guibas, and S. Oudot. Proximity of persistence
modules and their diagrams. Proc. 25th Annual Symp. Comput. Geom., SoCG (2009), 237–
246.

6 F. Chazal, V. de Silva, M. Glisse, and S. Oudot. The structure and stability of persistence
modules. SpringerBriefs in Mathematics, eBook ISBN 978-3-319-42545-0, Springer, 2016.

7 F. Chazal, V. de Silva, and S. Oudot. Persistence stability for geometric complexes. Geo-
metric Dedicata, 173(1):193–214, 2014.

8 F. Chazal and J. Sun. Gromov-Hausdorff approximation of filament structure using Reeb-
type graph. Proc. 30th Annual Symp. Comput. Geom., SoCG (2014), 491–500.

9 V. de Silva, E. Munch, and A. Patel. Categorified Reeb graphs. ArXiv preprint
arXiv:1501.04147, (2015).

10 T.K. Dey, F. Mémoli, and Y. Wang. Multiscale mapper: Topological summarization via
codomain covers. ACM-SIAM Symp. Discrete Alg., SODA (2016), 997–1013.

11 T.K. Dey and Y. Wang. Reeb graphs: Approximation and persistence. Discrete Comput.
Geom. 49 (2013), 46–73.

12 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Amer. Math.
Soc., Providence, Rhode Island, 2009.

13 H. Edelsbrunner, J. Harer, and A.K. Patel. Reeb spaces of piecewise linear mappings. In
Proc. 24th Annual Symp. Comput. Geom., SoCG (2008), 242–250.

14 E. Gasparovic, M. Gommel, E. Purvine, R. Sazdanovic, B. Wang, Y. Wang and L. Ziegel-
meier. A complete characterization of the one-dimensional intrinsic Čech persistence dia-
grams for metric graphs. Manuscript, an earlier version appeared as a report for IMA
Workshop for Women in Computational Topology (WinCompTop), 2016.

15 A. Hatcher. Algebraic Topology. Cambridge U. Press, New York, 2002.
16 J. Leray. L’anneau spectral et l’anneau filtré d’homologie d’un espace localement compact

et d’une application continue. J. Math. Pures Appl. 29 (1950), 1–139.
17 P.Y. Lum, G. Singh, A. Lehman, T. Ishkhanikov, M. Vejdemo-Johansson, M. Alagappan,

J. Carlsson, and G. Carlsson. Extracting insights from the shape of complex data using
topology. Scientific reports 3 (2013).

18 E. Munch and B. Wang. Convergence between categorical representations of Reeb space
and mapper. 32nd Int’l Symp. Comput. Geom., SoCG (2016), 53:1–53:16.

19 J.R. Munkres, Topology, Prentice-Hall, Inc., New Jersey, 2000.
20 V. Prasolov. Elements of combinatorial and differential topology. American Mathematical

Soc., Vol. 74, 2006.
21 G. Singh, F. Mémoli, and G. Carlsson. Topological Methods for the Analysis of High

Dimensional Data Sets and 3D Object Recognition. Symp. Point Based Graphics, 2007.

Locality-Sensitive Hashing of Curves∗†

Anne Driemel1 and Francesco Silvestri2

1 Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands
adriemel@tue.nl

2 Department of Information Engineering, University of Padova, Padova,
Italy; and
Theoretical Computer Science, IT University of Copenhagen, Copenhagen
Denmark
silvestri@dei.unipd.it

Abstract
We study data structures for storing a set of polygonal curves in IRd such that, given a query
curve, we can efficiently retrieve similar curves from the set, where similarity is measured using
the discrete Fréchet distance or the dynamic time warping distance. To this end we devise the first
locality-sensitive hashing schemes for these distance measures. A major challenge is posed by the
fact that these distance measures internally optimize the alignment between the curves. We give
solutions for different types of alignments including constrained and unconstrained versions. For
unconstrained alignments, we improve over a result by Indyk from 2002 [17] for short curves. Let
n be the number of input curves and letm be the maximum complexity of a curve in the input. In
the particular case where m ≤ α

4d logn, for some fixed α > 0, our solutions imply an approximate
near-neighbor data structure for the discrete Fréchet distance that uses space in O(n1+α logn)
and achieves query time in O(nα log2 n) and constant approximation factor. Furthermore, our
solutions provide a trade-off between approximation quality and computational performance: for
any parameter k ∈ [m], we can give a data structure that uses space in O(22kmk−1n logn+nm),
answers queries in O(22kmk logn) time and achieves approximation factor in O(m/k).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Locality-Sensitive Hashing, Fréchet distance, Dynamic Time Warping

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.37

1 Introduction

We study nearest-neighbor searching for polygonal curves under the discrete Fréchet distance
or the dynamic time warping distance. This problem has various applications in machine
learning, information retrieval and classification where the recorded instances are curves.
Dynamic time warping has shown to be useful for classification of various types of data: sur-
gical processes [11], whale singing [5], chromosomes [23], fingerprints [22], electrocardiogram
(ECG) frames [15], and vessel trajectories [30]. Originally conceived for speech recognition,
it is now being deployed as universal similarity measure for time series in the field of data

∗ A full version of the paper is available at https://arxiv.org/abs/1703.04040.
† Driemel has been supported by NWO Veni project “Clustering time series and trajectories (10019853)”.

Silvestri has been supported by the European Research Council project “Scalable Similarity Search”
(no. 614331) and by MIUR of Italy under project AMANDA.

© Anne Driemel and Francesco Silvestri;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.37
https://arxiv.org/abs/1703.04040
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Locality-Sensitive Hashing of Curves

mining. The Fréchet distance is considered a useful similarity measure for trajectories of
moving objects [6, 12, 20, 31].

Indyk and Motwani [19, 14] introduced the idea that hashing could enable faster nearest-
neighbor searching in high-dimensional Euclidean spaces using a hashing scheme where near
points are more likely to collide than far ones. They showed that such an approach can be
used for the (c, r)-near neighbor problem which is defined as follows. Preprocess a set S
of n points into a data structure that answers queries in the following way: if there exists
a point p ∈ S that lies within distance r from the query point q, then the data structure
reports a point p′ ∈ S that lies within distance cr from q. In this paper, we study such
locality-sensitive hashing schemes for the space of curves.

1.1 State of the art
In 2002, Indyk gave a deterministic and approximate near-neighbor data structure for the
discrete Fréchet distance [17]. This data structure is to date the only result known for this
task and represents the state of the art. The data structure achieves approximation factor
O(logm + log logn), where m is the maximum length of a curve and n is the maximum
number of elements in the data structure. Further, the data structures uses space in
O
(
|X|
√
m(m

√
mn)2

)
, where |X| is the size of the domain on which the curves are defined.

The query time is O
(
mO(1) logn

)
. The data structure precomputes all answers to queries

with curves of length
√
m, leading to a very high space consumption.1

In the group of `p distances, the Fréchet distance most resembles the `∞-distance, which
is notoriously hard to embed into a low-dimensional `p-space, see also the discussion by Indyk
in [16]. Indyk’s data structure for the discrete Fréchet distance is in fact an extension of his
data structure for the `∞-distance [16]. Any subset of `d∞ can be embedded into the Fréchet
metric2 [18]. This embedding implies that, unless the strong exponential-time hypothesis
fails, there exists no data structure for near-neighbor searching under the discrete Fréchet
distance that achieves preprocessing time in O

(
n2−ε polym

)
, query time in O

(
n1−ε polym

)
for any ε > 0, and approximation factor c < 3. This suggests that the problem becomes
hard for long curves, i.e., m ∈ ω(logn). Recently, Backurs and Sidiropoulos showed how
to embed finite subsets of the Hausdorff distance into `∞ using constant distortion and
constant dimension of the host space [2]. However, for the Fréchet distance, no non-trivial
embeddings are known, see also the discussion in [18]. It is possible to embed any finite
metric space into `p, for example, using the embedding due to Bourgain [25]. However, the
high cost of computing the embedding makes it unfit for use in a nearest-neighbor data
structure. Another known approach to proximity searching in metric spaces is to exploit a
low doubling-dimension [1, 13]. However, the doubling dimension of the Fréchet distance
is infinite, even if the metric space is restricted to curves of constant length [9]. Recently
Bartal et al. [3] gave lower bounds for embedding doubling spaces. Their result implies that a
metric embedding of the Fréchet distance into an `p-space would have at least super-constant
distortion. However, as noted earlier, it is not even known how to obtain such an embedding.

In general, there is little known in terms of data structures for the Fréchet distance.

1 Indyk also claims (without proof) a slightly different bound using a trade-off parameter t ≥ 2: approx-
imation factor O((logm+ log logn)(t−1)), space O

((
m2|X|

)tm1/t

n2t
)

and query time (m+ logn)O(t).
The space bound decreases at the cost of approximation and query time as soon as t < logm; however,
the trade-off disappear for larger values of t since all bounds increase in t as soon as t ≥ logm.

2 In particular, one can use 3d vertices to express each d-dimensional vector as a curve on a real line.

A. Driemel and F. Silvestri 37:3

The authors are aware of the following few results which were developed for the classic
(continuous) Fréchet distance. De Berg, Cook and Gudmundsson [7] study range counting
queries for the set of subcurves that lie within distance r to a query line segment. Their data
structure uses a partition tree to store compressed subcurves. For any parameter n ≤ s ≤ n2,
the space used by the data structure is in O(spoly logn). The queries are computed in time
in O

(
n√
s

poly logn
)
and uses a constant approximation factor. However, the data structure

does not support more complex query curves than line segments. A second data structure
is due to Driemel and Har-Peled [8]. This data structure answers queries for the Fréchet
distance of a subcurve to a query curve (the subcurve is specified in the query). If the queries
are line segments, an approximation factor of (1 + ε) can be achieved with logarithmic query
time and linear space. Unlike the `∞-metric, which can be evaluated in time that is linear
in the dimension, evaluating a single Fréchet distance is believed to take time that is at
least roughly quadratic in the complexity of the curves (the number of vertices) in the worst
case [4]. The high time complexity can be credited to the fact that the distance measure
optimizes over all possible monotone alignments of the two input sequences. Computing
the discrete Fréchet distance, as well as dynamic time warping, can be solved via dynamic
programming. In both cases, the naive linear scan leads to O(nm2) query time for finding
the nearest neighbor. For dynamic time warping (DTW) no data structures exist that give
provable guarantees, however there exist many heuristics, see the work of Rakthanmanon
et al. [26] (and references therein). Since DTW does not satisfy the triangle inequality, it
cannot be embedded into an `p-space.

1.2 Our results
Our first result is a basic LSH scheme for the discrete Fréchet distance, which leads to a
very efficient LSH with approximation factor that is linear in the number of curve vertices.
The scheme is described in Section 3 and it is surprisingly simple: We snap the curves to
a randomly shifted grid and remove consecutive duplicate vertices. It turns out that this
simple scheme alleviates the alignment problem which sets the Fréchet distance computation
apart from the `∞-distance. Next, we show in Section 4 that it is even possible to get
constant approximation, at the cost of a lower collision probability for near curves. The
second scheme randomly perturbs the vertices of the input curves independently and snaps
the vertices to a fixed grid instead of a randomly shifted grid. It is natural to ask if there
exists an LSH scheme exhibiting a full-spectrum trade-off between collision probability and
approximation. We positively answer to this question in Section 5, with a scheme based
on a random partition of the input curves, inspired by Indyk’s data structure [17], followed
by the application of the basic scheme to each subsequence independently.3 (Due to space
constraints, we refer to the full version of our paper [10] for more details.)

All the LSH schemes achieve zero false-positives, meaning that no collisions happen
between far curves. When applied to the (c, r)-near neighbor problem, we obtain the results
summarized in Table 1 (see also Section 2.3). It is interesting to compare our bounds with the
state of the art. The basic scheme of Theorem 7 provides a data structure using almost linear
space and O(m logn) query time by allowing a linear approximation c = O(m). This query
time always beats the trivial exact solution of scanning all input curves for each query, which
needs O

(
nm2) time. In comparison, Indyk’s result [17] provides a better approximation when

3 Indeed, in Theorem 10, the collision probability for near curves is bounded by 2−3M for K = M (using
Stirling’s approximation for the binomial coefficient), however when summarizing our bounds we use
the simplified bound from Corollary 11.

SoCG 2017

37:4 Locality-Sensitive Hashing of Curves

Table 1 Our approximate near-neighbor data structure results for the discrete Fréchet distance
in comparison with the result by Indyk, assuming d = O(1) for simplicity. The first four rows
refer to the standard discrete Fréchet distance dF , while the last two rows dw,aF and dw,sF refer
to the anchored and speed constraints respectively. The input consists of n polygonal curves
in IRd, each of complexity at most m. The corresponding query results are achieved with high
probability. The parameters k ≥ 1 and ` ≥ 1 trade-off space/query time and approximation, and
parameter w constrains the possible alignments. The first entry in bi-criteria (·, ·) denotes the
distance approximation, while the second is the alignment approximation.

Space Query time Approximation Reference

dF

O
(
|X|
√

m(m
√

mn)2) O
(
mO(1) logn

)
O(logm+ log logn) [17]

O(n logn+ nm) O(m logn) O(m) Thm. 7
O(24mdn logn+ nm) O(24mdm logn) O(1) Thm. 9
O(22kmk−1n logn+ nm) O(22kmk logn) O(m/k) Cor. 11

dw,aF O
((√

2w
)2m/`

n logn+ nm
)

O
((√

2w
)2m/`

m logn
)

bi-criteria
(

4d 3
2 `, 2`− 2

)
Thm. 12

dw,sF O
((√

2w`
)2m/`

n logn+ nm
)
O
((√

2w`
)2m/`

m logn
)
bi-criteria

(
4d 3

2 `, `
)

Thm. 13

m = Ω(log logn) but it uses exponential space and slightly higher query time. More generally,
when curves are short m = o(logn), our basic result provides a good alternative to Indyk’s
result due to the improved space. In the particular case where m ≤ α

4d logn for some fixed
α > 0, we can answer queries using a constant approximation factor in O(nα log2 n) time
and using O(n1+α logn) space, using Theorem 9. When curves have constant complexity,
the basic LSH gives the first efficient data structure with constant approximation. We recall
that a data structure for the (c, r)-approximate near neighbor problem can be used as a
building block for solving the c-approximate nearest neighbor problem [28].

We then address LSH for the discrete Fréchet distance under alignment constraints in
Section 6. It is natural to constrain the alignments of curves: this preserves important
characteristics of the input curves and it also reduces the actual time to compute the distance
between curves (see e.g., [27, 21]). We target the anchored and bounded speed constraints
that require, respectively, a vertex to be aligned with at most w vertices or to be aligned
with vertices whose indices differ by at most w/2, for a suitable parameter w ≥ 1 (for
formal definitions see Section 2.2). Our scheme provides the first data structures for the
(c, r)-near neighbor problem with alignment constraints. Further, they exhibit a bi-criteria
approximation: it is possible to reduce space and query time with a weaker approximation
on the distance but also on the alignment parameter w. Bounds are summarized in Table 1.

In Section 7, we study which one of our schemes work for DTW. We show that the basic
LSH applies to DTW with the same linear approximation, space and query bounds of the
discrete Fréchet distance. In contrast, the techniques to improve the approximation factor
under the Fréchet distance do not provide improvements for DTW. The LSH schemes for
constrained distances also yields linear approximation for DTW distance, but maintains the
trade-off between space/query time and the approximation on the alignment parameter w.

2 Preliminaries

2.1 Distance measures for curves
A time series (or trajectory)4 is a series (p1, t1), . . . , (pm, tm) of measurements pi of a signal
taken at times ti. We assume 0 = t1 < t2 < . . . < tm = 1 andm is finite. A time series may be

4 Usually, these are referred to as time series when d = 1 and trajectories when d > 1.

A. Driemel and F. Silvestri 37:5

viewed as a continuous function P : [0, 1]→ IRd by linearly interpolating p1, . . . , pm in order
of ti, i = 1, . . .m. We obtain a polygonal curve with vertices p1 = P (t1), . . . , pm = P (tm)
and segments between pi and pi+1 called edges pipi+1 = {xpi + (1− x)pi+1|x ∈ [0, 1]}. We
will simply refer to P as a curve. We denote the space of all curves in IRd with ∆d.

We now recall the definitions of discrete Fréchet distance and of the dynamic time warping
distance between two curves. To this end we define the concept of traversal. Given two
polygonal curves P = p1, . . . , pm1 and Q = q1, . . . , qm2 , a traversal

T = {(i1, j1), (i2, j2), . . . , (i`, j`)}

is a sequence of pairs of indices referring to a pairing of vertices from the two curves with
the following properties:
(i) i1 = 1, j1 = 1, i` = m1, and j` = m2
(ii) ∀(ik, jk) ∈ T : (ik+1 − ik) ∈ {0, 1} ∧ (jk+1 − jk) ∈ {0, 1}.
(iii) ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.
Intuitively, one can think of the traversal as a prescribed schedule for simultaneously traversing
the two curves, starting at the first vertex of each curve, in every step the traversal advances
by one vertex, either on one of the curves, or on both curves simultaneously, finally the
traversal has to end at the last vertices of the two curves.

We consider the maximum distance of two vertices paired by a traversal as the cost
incurred by this traversal. Let T be the set of possible traversals for two curves P and Q,
then the Fréchet distance corresponds to the minimal cost of a traversal of the two curves.
Likewise, if we define the cost of a traversal as the sum of distances between paired vertices,
then the traversal with minimum cost corresponds to the dynamic time warping distance.

I Definition 1. Let T be the set of possible traversals for two curves P and Q. The discrete
Fréchet distance dF (P,Q) between curves P and Q is defined as

dF (P,Q) = min
T∈T

max
(ik,jk)∈T

‖pik − qjk‖.

I Definition 2. Let T be the set of possible traversals for two curves P and Q. The dynamic
time warping (DTW) distance dDTW(P,Q) between curves P and Q is defined as

dDTW(P,Q) = min
T∈T

∑
(ik,jk)∈T

‖pik − qjk‖.

The discrete Fréchet distance satisfies the triangle inequality and is a pseudo-metric. This
is not true for the DTW distance, since it does not satisfy the triangle inequality.

We refer to a traversal realizing the distance of two curves as an optimal traversal. We
can interpret a traversal as the edges of a bipartite graph where the nodes are the vertices
of the two curves and the edges connect the pairs. The following simple lemma holds for
all distance measures. As a consequence, we assume in the paper that an optimal traversal
consists of disconnected stars, that we call components.

I Lemma 3. For any two curves P = p1, . . . , pm1 and Q = q1, . . . , qm2 , there always exists
an optimal traversal T with the following two properties:
(i) T consists of at most m = min{m1,m2} disconnected components.
(ii) Each component is a star, i.e., all edges of this component share a common vertex.

Proof. The first part is immediate, since we can charge each component to a vertex of the
shorter curve that is contained in it. To see the second part of the claim, assume for the sake

SoCG 2017

37:6 Locality-Sensitive Hashing of Curves

of contradiction that an optimal traversal has the pairs (i, j), (i, j + 1)(i+ 1, j + 1) for some
i, j (or the symmetric configuration (i, j), (i+ 1, j)(i+ 1, j + 1)). In this case, the middle pair
(i, j + 1) can be removed without increasing the cost and without invalidating the traversal
properties. We can apply this reasoning repeatedly until each component is a star. J

2.2 Distances measures with constraints
Anchored distances. A traversal T is said w-anchored traversal if each vertex is paired
with a vertex at distance at most w/2 (for simplicity we assume w to be even): namely,
|i − j| ≤ w/2 for each (i, j) ∈ T . Parameter w is called the width of the traversal. Such
a traversal exists only if |m1 − m2| ≤ w/2, otherwise there would be unpaired vertices
(e.g., the last vertex of the longest curve). For two curves P and Q with lengths satisfying
|m1 −m2| ≤ w/2, we define the w-anchored discrete Fréchet distance dw,aF(P,Q) and w-
anchored DTW distance dw,aDTW(P,Q) as in Definitions 1 and 2 where T is defined as the
set of all possible w-anchored traversals.

Speed-constrained distances. A traversal T is a w-speed traversal if each vertex is aligned
with at most w vertices of the other curve: in other terms, the bipartite graph representing
the traversal has degree at most w. Parameter w is called the speed of the traversal. (We
overload the meaning of w since the width and speed parameters play a similar role in our
algorithms.) Note that a w-anchored traversal is a (w + 1)-speed traversal, but the opposite
is not necessary true. A w-speed traversal exists only if 1/w ≤ m1/m2 ≤ w. For two curves
P and Q with lengths satisfying 1/w ≤ m1/m2 ≤ w, we defined the w-speed discrete Fréchet
distance dw,sF(P,Q) and w-speed DTW distance dw,sDTW(P,Q) as in Definitions 1 and 2
where T is defined as the set of all possible w-speed traversals.

2.3 Locality-sensitive hashing
We use the notion of asymmetric locality-sensitive hashing (see, e.g. [29]), defined as follows:

I Definition 4. Let S be the set of curves in IRd and let d : S × S → IR+ be a distance
measure defined on them. Given real values r > 0, c > 1, 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1 with
α1 > α2, a family H of pairs of hash functions (h1, h2) is called (r, c, α1, α2)-sensitive if for
any two curves P,Q ∈ S
(i) if d(P,Q) ≤ r, then Pr(h1,h2)∈H(h1(P) = h2(Q)) ≥ α1;
(ii) if d(P,Q) > cr, then Pr(h1,h2)∈H(h1(P) = h2(Q)) ≤ α2.

When h1 = h2, we have the traditional definition of (symmetric) locality-sensitive hashing.
The above scheme is asymmetric in the sense that there are two different schemes and the
guarantees only hold for curves P and Q where P was hashed using the first scheme and Q
was hashed using the second scheme. This is useful, e.g., if the application of the LSH is
a nearest neighbor data structure, where comparisons only need to be done between input
objects and query objects.

The results reported in Table 1 follow by applying the standard framework for solving the
(c, r)-near neighbor problem with an (r, c, α1, α2)-sensitive hashing scheme H. For the sake
of completeness, we sketch this process here.5 A new family H′ of hashing is constructed by

5 We observe that the LSH schemes presented in this paper have long hash values (curves or array of
curves). However, they can be shortened with traditional hashing (i.e., by mapping each value in
[0, O(n)]), that allows for a more efficient search in the hash tables generated by the LSH. This technique
increases α2 by an additive O(1/n) term.

A. Driemel and F. Silvestri 37:7

concatenating k = max{1, logα2(1/n)} hash functions fromH, so that the collision probability
of far points is at most 1/n. Then, each point in S is inserted into L = (1/α1)k hash tables,
each corresponding to a different randomly chosen hash function from H′. For a query point
q, the algorithm searches among all points that collide with q in the L hash tables and
stops as soon as a cr-near neighbor is found. When α2 > 0, the data structure requires
O
(
n1+ρ + nm

)
memory words and query time O(Γnρ), where Γ = Ω(m) is the time required

for computing the distance between two curves and ρ = logα1/ logα2. When α2 = 0, the
data structure requires O(n/α1) memory words and query time O(m/α1). Note that in this
case the query time does not include Γ: the algorithm does not need to compute distances
between q and points in the buckets since there are no false positives. For a given query,
the data structures returns an approximate cr-near neighbor with constant probability. To
obtain high probability (i.e., at least 1−1/n) we repeat the above process logn times, leading
to logn different data structures. This increases space and query time by a O(logn) term.

3 Linear approximation factor

We first present the basic LSH scheme in Section 3.1, and then in Section 3.2 we analyze
its correctness and performance for the discrete Fréchet distance. The basic LSH has an
approximation factor that is linear in the number of vertices that a curve can have.

3.1 Algorithm
We use a randomly shifted grid in our hashing scheme. Let the canonical d-dimensional grid
of resolution δ be defined as an evenly spaced point set in IRd, as follows:

Gδ =
{

(x1, . . . , xd) ∈ IRd | ∀ 1 ≤ i ≤ d ∃ j ∈ IN : xi = j · δ
}
.

Consider a family of such grids parametrized by a shift t:

Ĝtδ = {p+ t | p ∈ Gδ} .

Choosing t uniformly at random from the half-open hypercube [0, δ)d we obtain a family of
randomly shifted grids. Let P ∈ ∆d be a polygonal curve with vertices p1, . . . , pm and let
htδ : ∆d → ∆d be a hash function. The curve htδ(P) is defined as the result of the following
two-stage construction.
(i) We snap the curve to the grid Ĝtδ. More precisely, we replace each vertex pi with its

closest grid point p′i = arg min
q∈Ĝt

δ

‖pi − q‖ to obtain the curve P ′.
(ii) We remove consecutive duplicates in P ′. That is, we remove the vertex p′i if it is identical

to p′i−1.
Let HL

δ be the family of hash functions htδ constructed this way.

3.2 Analysis
I Lemma 5. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
m = min{m1,m2}. For any δ > 0, it holds that

PrHL
δ

(
htδ(P) = htδ(Q)

)
≥ 1−

(
2dm · dF (P,Q)

δ

)
.

Proof. We bound the probability that P and Q do not hash to the same sequence. To this
end, consider an optimal traversal T of P and Q with respect to the discrete Fréchet distance.

SoCG 2017

37:8 Locality-Sensitive Hashing of Curves

By Lemma 3, we can assume that |T | ≤ m and each component is a star. Let ` denote the
number of components of T . For 1 ≤ k ≤ ` denote with Ek the event that not all vertices of
the k-th component are snapped to the same grid point. This happens only if at least one
pair of vertices is separated in at least one dimension by the random shift t.

Since the component is a star, there exists a vertex v of either P or Q, such that v is
involved in all pairs of T in the k-th component. Therefore, all vertices in this component
have distance at most dF (P,Q) to v. Since t is uniformly distributed in [0, δ)d, the probability
that any pair is separated along any fixed dimension is 2dF (P,Q) /δ. As a consequence,
event Ek happens with probability at most 2d · dF (P,Q) /δ.

By a union bound over the ` components in T , we have that the probability of P and Q
not being hashed to the same sequence is bounded by

Pr

 ⋃
1≤k≤`

Ek

 ≤ ∑
1≤k≤`

Pr(Ek) = 2dm · dF (P,Q)
δ

and the lemma follows. J

I Lemma 6. For any value of δ and for any P,Q ∈ ∆d, if there exists a value of t ∈ [0, δ)d
such that htδ(P) = htδ(Q), then it holds that dF (P,Q) ≤

√
d · δ.

Proof. In the case that htδ(P) = htδ(Q), it holds that dF (htδ(P), htδ(Q)) = 0. Snapping a
curve to the randomly shifted grid changes the position of each vertex by at most

√
d

2 · δ.
Therefore, it holds that dF (P, htδ(P)) ≤

√
d

2 · δ and similarly dF (Q, htδ(Q)) ≤
√
d

2 · δ. By the
triangle inequality, dF (P,Q) ≤ dF (htδ(P), P)+dF (htδ(P), htδ(Q))+dF (htδ(Q), Q) ≤

√
d·δ. J

The next theorem follows by plugging in the bounds of Lemmas 5 and 6.

I Theorem 7. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
m = min{m1,m2}, δ = 4dmr and c = 4d 3

2m. It holds that:
(i) if dF (P,Q) < r, then PrHL

δ
(htδ(P) = htδ(Q)) > 1

2 ;
(ii) if dF (P,Q) > cr, then PrHL

δ
(htδ(P) = htδ(Q)) = 0.

4 Constant approximation factor

In the previous section we analyzed a very efficient LSH with linear approximation factor.
On the other end of the spectrum, we can also design an LSH with constant approximation
factor, but higher running time. Conceptually, the easiest way to do this is to randomly and
independently perturb the vertices of each curve and snap them to a fixed grid.

4.1 Algorithm
The described scheme is asymmetric. We assume that we have two types of curves, which
we call input curves and query curves. Consider an input curve P = p1, . . . , pm, and let
Gδ be the canonical d-dimensional grid of resolution δ defined in the previous section.
Let tP = t1, . . . , tm be a sequence of independent random variables which are uniformly
distributed in

[
− δ2 ,

δ
2
]d. We perturb the vertices of P : Let P ′ = p′1, . . . , p

′
m be the perturbed

curve with p′i = pi + ti. We snap the curve P ′ to the grid Gδ. More precisely, we replace
each vertex p′i with its closest grid point p′′i = arg minq∈Gδ ‖p

′
i − q‖ to obtain the curve P ′′.

In the next step we remove consecutive duplicates in P ′′. That is, we remove the vertex p′′i if
it is identical to p′′i−1. We define htPδ (P) to be the result of this algorithm.

A. Driemel and F. Silvestri 37:9

For a query curve Q, the hash function is the same. However, a different random sequence
tQ is used for randomly perturbing the curve. We let HC

δ denote the LSH scheme defined
this way: namely, HC

δ contains all pairs (htPδ , h
tQ
δ), where vectors tP and tQ consist of entries

independent and identically distributed in
[
− δ2 ,

δ
2
]d.

4.2 Analysis
I Lemma 8. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively. Let
m = min{m1,m2} and let M = max{m1,m2}. For any δ > 0, it holds that

PrHC
δ

(
htPδ (P) = h

tQ
δ (Q)

)
≥
(

1
2

)dm
·
(

1
2 −

dF (P,Q)
δ

)dM
In particular, if δ > 4dF (P,Q), then the probability is strictly lower bounded by 2−2d(m1+m2).

Proof. Note that for dF (P,Q) ≥ δ
2 the claim is trivially true. Therefore, assume that

dF (P,Q) < δ
2 . For simplicity assume first that d = 1. We bound the probability that P

and Q do not hash to the same sequence. To this end, consider an optimal traversal T of
P and Q with respect to the discrete Fréchet distance. By Lemma 3, we can assume that
|T | ≤ m1 +m2 and each component is a star. Let ` denote the number of components of
T . For 1 ≤ k ≤ ` denote with Ek the event that not all vertices of the k-th component are
snapped to the same grid point. Assume that the center of the k-th star is a vertex pi of P
and that the other vertices of the component are vertices qj , . . . , qj+ck of Q. The analysis for
the case where the center is a vertex of Q is analogous. There must be a grid point in either
one of the two intervals to the left and to the right of pi: Il = [pi− δ

2 , pi) and Ir = [pi, pi+ δ
2).

We analyze the case that there is a grid point in Ir, the other case is analogous. Let Xi be
the event that p′i ∈ Ir. Since tP is uniformly random in

[
− δ2 ,

δ
2
]m1 , it holds that Pr(Xi) ≥ 1

2 .
Now, let Yj be the event that q′j ∈ Ir. If qj was in pi’s component, then there are two cases.
Either qj lies in Il or in Ir. In the first case, we have

Pr(Yi) ≥
δ
2 − |pi − qj |

δ
≥ 1

2 −
d(P,Q)

δ
,

and in the second case we have Pr(Yi) ≥ 1
2 . We can bound the probability that all vertices

in the k-th component snap to the same grid point

Pr
(
Ek
)
≥ Pr(Xi ∩ Yj ∩ · · · ∩ Yj+ck) ≥ 1

2 ·
(

1
2 −

d(P,Q)
δ

)ck
.

If all components are preserved, then the two curves will hash to the same sequence,
therefore

Pr
(
htPδ (P) = h

tQ
δ (Q)

)
≥ Pr

 ⋂
1≤k≤`

Ek

 ≥ ∏
1≤k≤`

Pr
(
Ek
)

≥
∏

1≤k≤`

1
2

(
1
2 −

d(P,Q)
δ

)ck
≥
(

1
2

)`(1
2 −

d(P,Q)
δ

)m1+m2−`

.

The last inequality follows since
(∑

1≤k≤` ck

)
= m1 + m2 − `. Indeed, each center of a

component can be charged to this component and the remaining vertices make up the
sum of the leaves of all components. The lemma is now implied for d = 1 observing that
` ≤ min{m1,m2}, as implied by Lemma 3. We get the lemma for general d by observing
that the dimensions are independent. J

SoCG 2017

37:10 Locality-Sensitive Hashing of Curves

The next theorem follows by plugging in the bounds of Lemma 8 and by using same
arguments as in the proof of Lemma 6.

I Theorem 9. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
δ = 4dr and c = 4d3/2. It holds that
(i) if dF (P,Q) < r, then PrHC

δ

(
htPδ (P) = h

tQ
δ (Q)

)
>
(1

2
)2d(m1+m2);

(ii) if dF (P,Q) > cr, then PrHC
δ

(
htPδ (P) = h

tQ
δ (Q)

)
= 0.

5 Trade-off between approximation factor and query time

In the previous two sections we have seen schemes with linear and constant approximations.
We now suggest a scheme exhibiting a trade-off between the collision probability of near
points and the approximation factor. The basic idea is to randomly partition the input
curves and to concatenate the outcome of the basic LSH (Section 3) applied to the different
parts of the curves.

5.1 Algorithm
The scheme is asymmetric. Again, we assume that we have two types of curves, which we
call input and query curves. The difference in how they are handled lies in the way we create
the partition. For an input curve P = p1, . . . , pm, we randomly sample a partition into K
subsequences. To this end, we denote a partition of P with Φs(P) =

(
P̂1, . . . , P̂K

)
where

the subsequences are defined by a monotone sequence s ∈ [m]K−1 as follows.

P̂1 = p1, . . . , ps1 ; ∀ 1 < i < K : P̂i = psi−1 , . . . , psi ; P̂K = psK−1 , . . . , pm.

There are at most
(
m+K−1
K−1

)
ways to partition a curve of length m in this way. We denote

with PK the family of all valid partitions for a given m. Let t = t1, . . . , tK be a sequence
of independent random values evenly distributed in [0, δ)d. Once we have partitioned the
input curve P into K (overlapping) subsequences, we apply the basic LSH to each individual
subsequence and concatenate the resulting curves:

gt,sδ,K(P) = ht1δ

(
P̂1

)
⊕ ht2δ

(
P̂2

)
⊕ · · · ⊕ htKδ

(
P̂K

)
.

A query curve Q = q1, . . . , qm is subdivided into K equal-sized subsequences (determin-
istically), where the last subsequence may be shorter and two consecutive sequences overlap
by one element. We denote with Φ∗(Q) this partitioning into equal-sized subsequences. For
query curves, we define gt,∗δ,K(Q) to be the resulting curve given by applying the basic LSH to
each individual subsequence and concatenating the resulting curves. For any given δ > 0 and
K ≥ 1, we denote with HT

δ,K the family of asymmetric hash functions created this way: that
is, HT

δ,K consists of tuples (gt,sδ,K , g
t,∗
δ,K) where the entries of t are independently and identically

distributed in [0, δ)d and Φs(P) is uniformly chosen at random from PK .

5.2 Analysis
We have the following theorem which generalizes Theorem 7. Using the parameter K we get
a tradeoff between approximation factor and query time.

I Theorem 10. Let P,Q ∈ S be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}. Let K ≥ 1 be a given integer and let δ = 4dr ·

⌈
M
K

⌉
and c = 4d 3

2 ·
⌈
M
K

⌉
.

It holds that

A. Driemel and F. Silvestri 37:11

(i) if dF (P,Q) < r, then PrHT
δ,K

(
gt,sδ,K(P) = gt,∗δ,K(Q)

)
≥
(1

2
)K · (M+K−1

K−1
)−1;

(ii) if dF (P,Q) > cr, then PrHT
δ,K

(
gt,sδ,K(P) = gt,∗δ,K(Q)

)
= 0.

Proof. We first prove (i). Let T be an optimal traversal of P and Q. We say two partitions
Φs(P) and Φr(Q) are consistent with respect to T if and only if (si, ri) ∈ T for all 1 ≤ i ≤
K−1. Let E denote the event that the partition Φs(P) used in the hash functions is consistent
with Φ∗(Q) with respect to T . By construction this happens for at least one of the partitions
in PK . Therefore, Pr(E) ≥ 1

|PK | . Now, let Ei be the event that htiδ
(
P̂i

)
= htiδ

(
Q̂i

)
. By

Lemma 5 we have that

Pr(Ei | E) ≥ 1−

2dm′ ·
dF

(
P̂i, Q̂i

)
δ

 ≥ 1−
(

2d
⌈
M

K

⌉
· dF (P,Q)

δ

)
≥ 1

2 .

Note that we can assume m′ ≤
⌈
M
K

⌉
in the above inequality, since m′ is the length of the

shorter of the two subsequences in the lemma. By construction, the length of Q̂i will be at
most

⌈
M
K

⌉
.

Since the values ti are chosen pairwise independent, we have

PrHT
δ,K

(
gt,sδ,K(P) = gt,∗δ,K(Q)

)
≥

 ∏
1≤i≤K

Pr(Ei | E)

 · Pr(E) ≥
(

1
2

)K
· 1
|PK |

.

Using |PK | ≤
(
M+K−1
K−1

)
, the first part of the claim follows.

As for the second part of the claim, we can use Lemma 6 applied to the subsequences.
If there exists a partition of P , and there exist t = t1, . . . , tK , such that for all 0 ≤ i ≤ K

htiδ

(
P̂i

)
= htiδ

(
Q̂i

)
, then it holds by Lemma 6 that dF

(
P̂i, Q̂i

)
≤
√
d · δ. In this case, we can

combine the traversals of the subsequences to a traversal of the entire curves. This combined
traversal has the same cost, therefore it follows that dF (P,Q) ≤

√
d · δ. Consequently, if

dF (P,Q) > cr = 4d 3
2Mr/K =

√
d · δ, then it cannot happen that gt,sδ (P) = gt,∗δ (Q) for any

combination of t = t1, . . . , tK and s. J

I Corollary 11. Let P,Q ∈ S be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}. Let K ≥ 1 be a given integer and let δ = 4dr ·

⌈
M
K

⌉
and c = 4d 3

2 ·
⌈
M
K

⌉
.

It holds that
(i) if dF (P,Q) < r, then PrHT

δ,K

(
gt,sδ,K(P) = gt,∗δ,K(Q)

)
>
(1

4
)K ·(1

M

)K−1;

(ii) if dF (P,Q) > cr, then PrHT
δ,K

(
gt,sδ,K(P) = gt,∗δ,K(Q)

)
= 0.

6 Handling constrained alignments

We now focus on LSH for discrete Fréchet distance with constraints on the alignment. We first
target the w-anchored distance in Section 6.1, and then the w-speed distance in Section 6.2.
As in the previous sections, the schemes are asymmetric and consist of a partitioning of the
curve into subsequences and on the application of the basic LSH scheme to each subsequence.
However, the partitions are different since they leverage on random processes on both input
and query curves, consecutive subsequences do not overlap, and the constraints are exploited.
We let ` ≥ 1 denote an arbitrary given integer that allows to trade-off the collision probability
of near curves with a bi-criteria approximation on the distance and on the anchored alignment.

SoCG 2017

37:12 Locality-Sensitive Hashing of Curves

6.1 LSH for anchored distances

Consider an input curve P = p1, . . . , pm and let rP = rP,1, rP,2, . . . rP,m and t = t1, t2, . . . , tm
denote sequences of independent and identically distributed random variables in [1, w/2] and
[0, δ)d respectively, where δ is a suitable parameter defined later. The partition of P consists
of a fixed partitioning into subsequences of length `, followed by a random perturbation of
subsequence lengths. Specifically, the following three operations are performed:
(i) Partition P into subsequences P̂ ′1, . . . , P̂ ′K′ with K ′ = dm/`e of size `, with the possible

exception of the last subsequence. Let s′ ∈ [m]K′+1 be the vector denoting the final
indexes of each subsequence, that is P̂i = p(s′i−1+1), . . . , ps′i : we have s′0 = 0, s′K′ = m

and s′i = i` for each 1 ≤ i < K ′.
(ii) Random perturb the final index of each subsequence with the random vector rP : for

each 1 ≤ i < K ′, set si = min{si + rp,2,m}.
(iii) Clean the partition by removing overlaps among subsequences: for each 1 ≤ i < K ′

and starting from i = 1, remove each subsequence where s′i ≤ s′j for some j < i. We
let ΦrP (P) =

(
P̂1, . . . , P̂K

)
denote the resulting partition of P with K ≤ dm/`e and

let sP ∈ [m]K+1 be the resulting vector denoting the final indexes of each subsequence
(note that each subsequence has now length at most `+ w).
Once curve P has been partitioned into K subsequences, we apply the basic LSH in

Section 3 to each subsequence using the random shifts given by sequence t. Specifically, we
snap the i-th subsequence P̂i on a grid of side δ shifted by the random value ti and remove
consecutive duplicates within each subsequence; the remaining values denote the hash value
of P̂i and we denote them with htiδ

(
P̂i

)
. The final hash value gt,rPw,δ,`(P) of curve P is the

array containing the hash of each subsequence, specifically:

gt,rPw,δ,`(P) =
(
ht1δ

(
P̂1

)
, ht2δ

(
P̂2

)
, . . . , htKδ

(
P̂K

))
.

We observe that the final hash value is not a curve as in previous sections, but an array of
curves. Equality between two curves then holds only if the two hash values have the same
length and coincide in each position (i.e., the hash values ((a, b), (c)) and ((a), (b, c)) do not
collide, but they collide if their are considered as a single curve (a, b, c)). This enforces the
alignment constraint.

The hash process of a query curve Q is the same: however, a different random sequence
rQ is used to partition the curve, while the same sequence t of random shifts is kept. Due
to the different random bits in rQ the proposed LSH scheme is asymmetric. We let HA

w,δ,`

denote the hash family consisting of all possible pairs of hash functions
(
gt,rPw,δ,`, g

t,rQ
w,δ,`

)
.

The next theorem shows that the scheme has a bi-criteria approximation: In addition to
the distance approximation c, the scheme has also an approximation on the alignment. As
an example, we observe that two curves with a w-anchored distance larger than cr can still
collide if they have a w + 2(`− 1)-anchored distance lower than cr.

I Theorem 12. Let P,Q ∈ S be two curves with m1 and m2 points, respectively and let
m = min{m1,m2}. Let ` ≥ 1 be an arbitrary integer, δ = 4dr`, and c = 4d 3

2 `. Then, it holds
that:
(i) if dw,aF(P,Q) < r, then PrHA

w,δ,`

(
gt,rPw,δ,`(P) = g

t,rQ
w,δ,`(Q)

)
>
(
1/
√

2w
)2m/`;

(ii) if d(w+2(`−1)),aF(P,Q) > cr, then PrHA
w,δ,`

(
gt,rPw,δ,`(P) = g

t,rQ
w,δ,`(Q)

)
= 0.

A. Driemel and F. Silvestri 37:13

6.2 LSH for bounded-speed distances
Consider an input curve P = p1, . . . , pm and let rP = rP,1, rP,2, . . . , rP,m and t = t1, t2, . . . tm
denote sequences of independent and identically distributed random variables in [1, w`] and
[0, δ)d respectively. We random partition curve P into non overlapping subsequences of
length given by the random sequence rp. Specifically, let Φs(P) =

(
P̂1, . . . , P̂K

)
denote

a partition of P with m/(w`) ≤ K ≤ m and let s ∈ [m]K+1 be the vector denoting the
initial and final indexes of a subsequence, that is P̂i = psi−1+1, . . . , psi . Then, s satisfies the
following conditions : (i) s0 = 0 and sK = m, (ii) for 1 ≤ i ≤ K, si − si−1 = rp,1, which
implies that si =

∑i
j=1 rp,1. Once we have partitioned curve P into K subsequences, we

continue as in the w-anchored LSH by applying the basic LSH to each subsequence using
the random shifts given by sequence t. For a query curve Q, the hash process is the same,
but a different random sequence rQ is used to partition the curve. We let HS

w,δ,` denote
the hash family consisting of all possible pairs of hash functions

(
gt,rPw,δ,`, g

t,rQ
w,δ,`

)
. The next

theorem shows that the scheme has a bi-criteria approximation (note that the alignment
approximation in point (ii) differs from the one for the anchored distance).

I Theorem 13. Let P,Q ∈ S two curves with m1 and m2 points, respectively and let
m = min{m1,m2}. Let ` ≥ 1 be an arbitrary integer, δ = 4dr`, and c = 4d 3

2 `. Then, it holds
that:
(i) if dw,sF(P,Q) < r, then PrHS

w,δ,`

(
gt,rPw,δ,`(P) = g

t,rQ
w,δ,`(Q)

)
>
(
1/
√

2w`
)2m/`;

(ii) if dw`,sF(P,Q) > cr, then PrHS
w,δ,`

(
gt,rPw,δ,`(P) = g

t,rQ
w,δ,`(Q)

)
= 0.

7 Extensions to dynamic time warping

All our schemes can be applied to DTW without any algorithmic change, and in this section
we analyze some of them. We first investigate in Section 7.1 the basic scheme in Section 3.1
for this distance. Then, we provide a few insights on DTW with constrained alignments in
Section 7.2. We do not analyze the techniques proposed in Sections 4 and 5 since they have
the same linear approximation of the basic LSH, and – in contrast to our previous results for
the Fréchet distance – do not provide a sublinear approximation for DTW.

7.1 Analysis of the basic LSH
I Lemma 14. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively. For any
δ ≥ 0, it holds that

PrHL
δ

(
htδ(P) = htδ(Q)

)
≥ 1−

(
d · dDTW(P,Q)

δ

)
.

I Lemma 15. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2} and δ ≥ 0. If there exists a value of t ∈ [0, δ)d such that htδ(P) = htδ(Q),
then it holds that dDTW(P,Q) ≤ 2M

√
d · δ.

Lemma 14 above can be proven by a similar analysis as in the proof of Lemma 5: let T be
an optimal traversal of P and Q with respect to their DTW distance; let ` = |T | and denote
with dk the distance ‖pik − qjk‖ for 1 ≤ k ≤ `; we have that dDTW(P,Q) =

∑
1≤k≤` dk; now,

we can use a union bound over all pairs in the traversal, instead of components. The proof
of Lemma 15 is somewhat technical since DTW does not satisfy the triangle inequality. The
following theorem can be obtained by plugging in the bounds of Lemmas 14 and 15.

SoCG 2017

37:14 Locality-Sensitive Hashing of Curves

I Theorem 16. Let P,Q ∈ ∆d be two curves with m1 and m2 points, respectively, and let
M = max{m1,m2}, δ = 2dr and let c = 4d 3

2M .
(i) if dDTW(P,Q) < r, then PrHL

δ
(htδ(P) = htδ(Q)) > 1

2 ;
(ii) if dDTW(P,Q) > cr, then PrHL

δ
(htδ(P) = htδ(Q)) = 0.

7.2 Handling constrained alignments
The schemes in Section 6 for w-anchored/speed traversals automatically apply to DTW
distance, with the same collision probabilities stated in Theorems 12 and 13. However, the
approximation factor is 4d3/2(m1 + m2), where m1 and m2 are curve lengths. The claim
follows by mimicking the proofs for the Fréchet distance and use the bounds in Theorem 16.

8 Conclusion

To the best of our knowledge, this is the first paper providing LSH schemes for curves. When
applied to the near neighbor problem, our techniques improve the state of the art for the
discrete Fréchet distance [17] under different settings, and provide the first data structure
with theoretical guarantees for DTW. The methods presented are simple enough that they
may be practical. We do not know if our bounds are tight. It would be interesting to
know if lower bounds can be obtained for the studied problem and/or to improve the upper
bounds. All of the presented LSH schemes exhibit the property that no collisions happen
between far points (i.e., α2 = 0). An open question is to understand if it is possible to
slightly increase this collision probability (say α2 = 1/n) to get a better approximation factor.
Another interesting direction would be to reduce space by exploiting the independence in
the approach described in Section 4.1, or by using a multiprobe approach [24]. Finally, we
remark that our results only partially extend to DTW. As such, it is still open to get a
sublinear approximation for DTW. We hope that our work inspires further work in one of
these directions.

Acknowledgments. The authors would like to thank Rasmus Pagh and the anonymous
reviewers for useful comments. This research was initiated at the Dagstuhl Seminar 16101
“Data Structures and Advanced Models of Computation on Big Data, 2016”.

References
1 S. Arya, D. Mount, A. Vigneron, and J. Xia. Space-time tradeoffs for proximity searching

in doubling spaces. In Proc. 16th European Symp. Algorithms (ESA), pages 112–123, 2008.
2 A. Backurs and A. Sidiropoulos. Constant-distortion embeddings of Hausdorff metrics into

constant-dimensional lp spaces. In Proc. 19th Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), volume 60, pages 1:1–1:15, 2016.

3 Y. Bartal, L.A. Gottlieb, and O. Neiman. On the impossibility of dimension reduction for
doubling subsets of `p. In Proc. 13th Symp. on Computational Geometry (SOCG), pages
60:60–60:66, 2014.

4 K. Bringmann. Why Walking the Dog Takes Time: Fréchet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In Proc. 55th Symp. on Foundations of
Computer Science (FOCS), pages 661–670, 2014.

5 J.C. Brown and P. J.O. Miller. Automatic classification of killer whale vocalizations using
dynamic time warping. J. of the Acoustical Society of America, 122(2):1201–1207, 2007.

6 J. Campbell, J. Tremblay, and C. Verbrugge. Clustering player paths. In Proc. 10th Int’l
Conf. on the Foundations of Digital Games (FDG), 2015.

A. Driemel and F. Silvestri 37:15

7 M. de Berg, A. F. Cook, and J. Gudmundsson. Fast Fréchet queries. Comput. Geom.,
46(6):747–755, 2013.

8 A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM J. Computing, 42(5):1830–1866, 2013.

9 A. Driemel, A. Krivošija, and C. Sohler. Clustering time series under the Fréchet distance.
In Proc. 27th Symp. on Discrete Algorithms (SODA), pages 766–785, 2016.

10 A. Driemel and F. Silvesstri. Locality-sensitive hashing of curves. Arxiv:1703.04040, 2017.
11 G. Forestier, F. Lalys, L. Riffaud, B. Trelhu, and P. Jannin. Classification of surgical

processes using dynamic time warping. J. Biomedical Informatics, 45(2):255–264, 2012.
12 J. Gudmundsson and N. Valladares. A GPU approach to subtrajectory clustering using the

Fréchet distance. IEEE Trans. on Parallel and Distributed Systems, 26(4):924–937, 2015.
13 Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,

and low-distortion embeddings. In Proc. 44th Symp. Found. Comp. Science (FOCS), pages
534–543, 2003.

14 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: Towards removing
the curse of dimensionality. Theory of Computing, 8(1):321–350, 2012.

15 B. Huang and W. Kinsner. ECG frame classification using dynamic time warping. In Proc.
Canadian Conf. on Electrical and Computer Engineering, volume 2, pages 1105–1110, 2002.

16 P. Indyk. On approximate nearest neighbors in non-euclidean spaces. In Proc. 39th Symp.
on Foundations of Computer Science, pages 148–155, 1998.

17 P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product met-
rics. In Proc. 18th Symp. on Computational Geometry (SOCG), pages 102–106, 2002.

18 P. Indyk and J. Matoušek. Low-distortion embeddings of finite metric spaces. In Handbook
of Discrete and Computational Geometry, pages 177–196. CRC Press, 2004.

19 P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Symp. Theory of Computing (STOC), pages 604–613, 1998.

20 R. J. Kenefic. Track clustering using Fréchet distance and minimum description length. J.
of Aerospace Information Systems, 11(8):512–524, 2014.

21 E. Keogh and C.A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge
and Information Systems, 7(3):358–386, 2005.

22 Z.M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and
dynamic time warping. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(11):1266–1276, 2000.

23 B. Legrand, C. S. Chang, S.H. Ong, S.Y. Neo, and N. Palanisamy. Chromosome classific-
ation using dynamic time warping. Pattern Recognition Letters, 29(3):215–222, 2008.

24 Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: Efficient indexing
for high-dimensional similarity search. In Proc. 33rd Int’l Conf. on Very Large Data Bases,
VLDB’07, pages 950–961. VLDB Endowment, 2007.

25 J. Matoušek. Embedding finite metric spaces into euclidean spaces. In Lectures on Discrete
Geometry, chapter 15. Springer, 2002.

26 T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria,
and E. Keogh. Searching and mining trillions of time series subsequences under dynamic
time warping. In Proc. 18th Conf. Knowl. Disc. and Data Mining, pages 262–270, 2012.

27 C.A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data
mining. In Proc. SIAM Conf. on Data Mining (SDM), pages 506–510, 2005.

28 G. Shakhnarovich, T. Darrell, and P. Indyk, editors. Nearest-Neighbor Methods in Learning
and Vision: Theory and Practice. MIT Press, 2006.

29 A. Shrivastava and P. Li. Asymmetric LSH (ALSH) for sublinear time maximum inner
product search (MIPS). In Proc. 27th Conf. on Neural Information Processing Systems
(NIPS), pages 2321–2329, 2014.

SoCG 2017

37:16 Locality-Sensitive Hashing of Curves

30 G.K.D. Vries. Kernel methods for vessel trajectories. PhD thesis, Univ. Amsterdam, 2012.
31 H. Zhu, J. Luo, H. Yin, X. Zhou, J. Z. Huang, and F.B. Zhan. Mining trajectory cor-

ridors using Fréchet distance and meshing grids. In Proc. 14th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), pages 228–237, 2010.

Shallow Packings, Semialgebraic Set Systems,
Macbeath Regions, and Polynomial Partitioning∗

Kunal Dutta1, Arijit Ghosh2, Bruno Jartoux3, and
Nabil H. Mustafa4

1 DataShape, INRIA Sophia Antipolis – Méditerranée, Sophia Antipolis, France
kunal.dutta@inria.fr

2 ACM Unit, Indian Statistical Institute, Kolkata, India
agosh@mpi-inf.mpg.de

3 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
ESIEE Paris, Paris, France
bruno.jartoux@esiee.fr

4 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge,
ESIEE Paris, Paris, France
mustafan@esiee.fr

Abstract
The packing lemma of Haussler states that given a set system (X,R) with bounded VC dimension,
if every pair of sets in R have large symmetric difference, then R cannot contain too many sets.
Recently it was generalized to the shallow packing lemma, applying to set systems as a function
of their shallow-cell complexity. In this paper we present several new results and applications
related to packings:
1. an optimal lower bound for shallow packings,
2. improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions in con-

vex geometry,
3. we observe that Mnets provide a general, more powerful framework from which the state-of-

the-art unweighted ε-net results follow immediately, and
4. simplifying and generalizing one of the main technical tools in Fox et al. (J. of the EMS, to

appear).

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems, G.2.1 Combi-
natorics

Keywords and phrases Epsilon-nets, Haussler’s packing lemma, Mnets, shallow-cell complexity,
shallow packing lemma

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.38

1 Introduction

Given a set system (X,R) consisting of base elements X together with a set R of subsets of
X, a classical and influential way to capture its ‘complexity’ has been through the concept
of VC dimension. First define the projection of R onto any Y ⊆ X to be the system

R|Y =
{
Y ∩R : R ∈ R

}
.

∗ Bruno Jartoux and Nabil H. Mustafa’s research in this paper is supported by the grant ANR SAGA (JCJC-
14-CE25-0016-01). Kunal Dutta and Arijit Ghosh are supported by the European Research Council
under the Advanced Grant 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in
Higher Dimensions) and the Ramanujan Fellowship (No. SB/S2/RJN-064/2015) respectively.

© Kunal Dutta, Arijit Ghosh, Bruno Jartoux, and Nabil H. Mustafa;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 38; pp. 38:1–38:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

Also, for any positive integer r, define R|Y,≤r to be the sets in R|Y of size at most r. The
VC dimension of a set system (X,R), henceforth denoted by VC-dim(R), is the size of any
largest subset Y ⊆ X for which |R|Y | = 2|Y |; such a set Y is said to be shattered by R.

The importance of VC dimension derives from the fact that it is bounded for most
natural geometric set systems, where X is a set of geometric objects in Rd and R is
defined by geometric constraints. For example, consider the case when X is a set of
points in Rd and the sets in R are defined by containment by half-spaces, i.e., R =

{
H ∩

X : H is a half-space in Rd
}
. It is not hard to see that the VC dimension of this set system

is d+ 1. This forms the basis for bounding the VC dimension of many geometric set systems
via linearization [21].

Set systems derived from geometric configurations can be categorized into two types.
When X is a set of points and sets in R are defined by containment by members of a family
of geometric objects O, we say that (X,R) is a primal set system induced by O. The second
type is when the base set X is a finite subset of O, and R is defined to be R =

{
Rp : p ∈ Rd

}
,

where Rp =
{
O ∈ X : p ∈ O

}
is the set of objects containing p. Then we say that (X,R)

is the dual set system induced by O. For most natural families of geometric objects, these
primal and dual set systems can be shown to have bounded VC dimension [21, Section 10.3].

1.1 Shallow-cell Complexity of Set Systems
It turns out that for nearly all results on set systems with bounded VC dimension, the key
technical property required is a consequence of bounded VC dimension, the primal shatter
lemma of Sauer and Shelah [29, 30].

I Theorem A (Primal shatter lemma). Let (X,R) be a set system with VC-dim(R) = d.
Then for any Y ⊆ X, we have |R|Y | = O

(
|Y |d

)
.

While most set systems derived from geometry have bounded VC dimension and thus
satisfy the primal shatter lemma, in fact they often satisfy a finer property—not only is the
size of R|Y polynomially bounded, but also the number of sets in R|Y of any fixed size r is
bounded by an even smaller function. For example, let X be a set of n points in R2, and R
the primal set system induced by disks. Then it is well-known that for any set Y ⊆ X, the
number of sets in R|Y of size at most r is |R|Y,≤r| = O

(
|Y | · r2). For small values of r, this

contrasts sharply with the total size of R|Y , which can be Θ
(
|Y |3

)
.

This has motivated a finer classification of set systems. In [11, 9], a set system (X,R)
was said to have the (d, d1) Clarkson–Shor property if for any Y ⊆ X, the number of sets
in R|Y of size r was O

(
|Y |d1rd−d1

)
. More generally, given (X,R), define fR(m, r) as the

maximum number of sets of cardinality at most r in the projection on any set of m points:

∀m, r ∈ N, fR(m, r) = max
Y⊆X,|Y |=m

|R|Y,≤r|.

We now define the key property used in this paper.

I Definition 1. The shallow-cell complexity, denoted by ϕR(·, ·)1, of a set system (X,R) is
defined as ϕR(m, r) = fR(m,r)

m .

In earlier literature, sometimes this was defined simply as fR(m, r); however, as usually
there is at least a linear factor of m in the function fR(m, r), we prefer to normalize by m,

1 The subscript will be dropped when it is clear from the context.

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:3

Table 1 Some geometric set systems.

Objects P/D ϕ(m) VCdim
Intervals P/D O(1) 2
Lines in R2 P/D O(m) 2
Pseudo-disk P O(1) 3
Pseudo-disk D O(1) O(1)
Half-spaces P/D O

(
mbd/2c−1) d+ 1

Balls P/D O
(
mdd/2e−1) d+ 1

Triangles D O(m) 7
Convex sets P O

(
2m/m

)
∞

which will make later results simpler to state. Often the dependency on r is less important:
we say that (X,R) has shallow-cell complexity ϕR(·) if fR(m, r) = O

(
m · ϕR(m) · rcR

)
,

where cR ≥ 0 is a fixed constant independent of m and r.
Note that the shallow-cell complexity of set systems with the (d, d1) Clarkson–Shor

property is ϕ(m, r) = O
(
md1−1rd−d1

)
. For a family O of geometric objects 2, define its

union complexity κO(·) by letting κO(m) be the maximum number of faces of all dimensions
in the union of any m of its members. It can be shown that the dual set system (O,R)
induced by O has shallow-cell complexity ϕ(m) = O

(κR(m)
m

)
.

See Table 1 for the VC dimension and the shallow-cell complexity of many of the commonly
studied geometric set systems (Primal and Dual).

1.2 Macbeath regions and Mnets
Given a convex object C in Rd with volume vol(C), Macbeath’s theorem [19] states the
existence of a collection of smaller convex regions {C1, . . . , Cl}, each Ci ⊆ C is called a
Macbeath region of C, and where l = O

((1
ε

)1− 2
d+1
)
, such that

(i) vol(Ci) = Θ(ε vol(C)) for each i, and
(ii) for any half-space H with vol(H ∩ C) ≥ ε vol(C), there exists a j such that Cj ⊆ H.

Mnets (or combinatorial Macbeath regions), introduced by Mustafa et al. [26], are the
combinatorial analogue of Macbeath regions for set systems, replacing the Lebesgue measure
with the counting measure.

I Definition 2. Given a set system (X,R) on n elements and a parameter ε > 0, a collection
M = {M1, . . . ,Ml} of subsets of X is an ε-Mnet for R of size l if
(i) |Mi| = Θ(εn) for each i, and
(ii) for any R ∈ R with |R| ≥ εn, there exists an index j such that Mj ⊆ R.

Beginning with the breakthrough, and beautiful, result of Haussler and Welzl [16], epsilon-
nets have been one of the most fundamental structures in combinatorial geometry with many
applications in areas such as approximation algorithms, discrete and computational geometry,
combinatorial discrepancy theory and learning theory [8, 20, 21, 28].

I Definition 3. For a given set system (X,R) and a parameter ε > 0, an (unweighted) ε-net
for R is a set N ⊆ X such that for any R ∈ R, |R| ≥ ε|X| =⇒ N ∩R 6= ∅.

2 These objects are usually semialgebraic; see [1] for a discussion of the definition of faces and cells induced
by arrangements of geometric objects.

SoCG 2017

38:4 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

Haussler and Welzl [16] in their paper showed that there exists ε-nets of size independent
from the size of the ground set X, i.e., the size of the smallest ε-net is O

(
d
ε log d

ε

)
, where

d is the VC dimension of the set system. Chan et al. [6], improving on an earlier result
of Varadarajan [31] that stated a slightly weaker result for dual set systems induced by
geometric objects, proved the following generalization of the epsilon-net result of Haussler
and Welzl. See also [25] for a simpler proof of this theorem.

I Theorem B. Let (X,R) be a set system with shallow-cell complexity ϕR(·), where ϕR(n) =
O(nd) for some constant d. Let ε > 0 be a given parameter. Then there exists an ε-net for
R of size O

(1
ε logϕR(1

ε)
)
. Furthermore, such an ε-net can be computed in deterministic

polynomial time.

Recently Theorem B has been shown to be tight by Kupavskii et al. [17]. For a state-of-
the-art on ε-nets, we refer the reader to [27].

1.3 Packing Lemma for Geometric Set Systems
A set system (X,R) is said to be a δ-packing if for all distinct R,S ∈ R, |R∆S| ≥ δ, where
∆ is the symmetric difference. In 1995 Haussler [15] proved the following key statement.

I Theorem C (Packing Lemma). Let (X,R) be a set system with VC-dim(R) ≤ d and
|X| = n. Let δ, 1 ≤ δ ≤ n be such that (X,R) is a δ-packing. Then |R| = O

((
n
δ

)d), where
the constant in the asymptotic notation depends on d3.

Haussler’s seminal proof of Theorem C, later simplified by Chazelle [7], is an elegant
application of the probabilistic method, and has since been applied to diverse areas ranging
from computational geometry and machine learning to Bayesian inference—see e.g. [15, 20, 18].
It was further shown in [15] that this bound is tight:

I Theorem D (Optimality of Packing Lemma). Given any positive integers d, n and δ ∈
{1, . . . , n}, there exists a set system (X,R) such that |X| = n, VC-dim(R) ≤ d, R is a
δ-packing and |R| = Ω

((
n
δ

)d).
Recent efforts have been devoted to extending the packing lemma to these finer classifi-

cations of set systems. For k, δ ∈ N∗, call (X,R) a k-shallow δ-packing if R is a δ-packing
and |S| ≤ k for all S ∈ R. After some earlier bounds [26, 11], the following lemma has been
recently established in [9, 24].

I Theorem E (Shallow Packing Lemma). Let (X,R) be a set system on n elements, and
let d0, d, d1, k, δ > 0 be integers. Assume VC-dim(R) ≤ d0. If (X,R) is a k-shallow
δ-packing,

1. |R| = O

(
nd1kd−d1

δd

)
if R satisfies the (d, d1) Clarkson–Shor property.

2. |R| ≤ 24d0n

δ
· ϕ
(

4d0n

δ
,

12d0k

δ

)
if R has shallow-cell complexity ϕ(·, ·).

The constant in the asymptotic notation of 1 depends on d0, d and d1.

I Remark. Note that 2 implies 1 in Theorem E.

3 The same bound also holds with bounded primal shatter dimension replacing VC dimension, see e.g.
Chapter 5.3 [20].

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:5

2 Our Contributions

We present three main results: a tight lower bound for shallow packings, a construction of
Mnets using the shallow packing lemma, and a generalization of the shallow packing lemma
to l-wise packings. A key ingredient which makes the Mnets bound possible is merging the
polynomial partitioning technique with the shallow packing lemma.

2.1 Optimality of Shallow Packings (Proof in Section 3)
While Haussler [15] gave a matching lower bound to his packing lemma, the optimality of
the shallow packing lemma was an open question in previous work [11, 26, 9, 24]. In earlier
work [9], a matching lower bound was presented for one particular case, when ϕ(m) = m. We
show that the shallow packing lemma is tight up to a constant factor for the most common
case of shallow-cell complexity, when ϕ(m, r) = O

(
md1−1rd−d1

)
for some integers d, d1.

I Theorem 4 (Optimality of Shallow Packings). For any positive integers d ≥ d1 and for any
positive integer n, there exists a set system (X,R) on n elements such that
1. (X,R) has shallow-cell complexity ϕ(m, r) = O(md1−1rd−d1), and

2. for any δ and k ≥ 4dδ, (X,R) has a k-shallow δ-packing of size Ω
(
nd1kd−d1

δd

)
.

Our proof is via an explicit construction of a semialgebraic set system.

2.2 Mnets for Semialgebraic Set Systems (Proof in Section 4)
Semialgebraic sets are subsets of Rd obtained by taking Boolean operations such as unions,
intersections, and complements of sets of the form {x ∈ Rd : g(x) ≥ 0}, where g is a d-variate
polynomial in R [x1, . . . , xd]. Denote by Γd,∆,s the family of all semialgebraic sets in Rd
obtained by taking Boolean operations on at most s polynomial inequalities, each of degree
at most ∆. In this paper d, ∆, s are all regarded as constants and therefore the sets in Γd,∆,s
have constant description complexity4. For a set X of points in Rd and a set system R on X,
we say that (X,R) is a semialgebraic set system generated by Γd,∆,s if for all S ∈ R there
exists a γ ∈ Γd,∆,s such that S = X ∩ γ.

I Theorem 5 (Mnets). Let d, d0, ∆ and s be integers and (X,R) a semialgebraic set system
generated by Γd,∆,s with |X| = n and VC-dim(R) ≤ d0. If R has shallow-cell complexity
ϕ(·, ·), with ϕ(·, ·) a non-decreasing function in the first argument, then (X,R) has an ε-Mnet
of size

l = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

In particular, if (X,R) has shallow-cell complexity ϕ(·), then l = O
(1
ε · ϕ

(8d0
ε

))
. Constants

depend on d, ∆, and s; the second one also depends on d0.

Most of the time this bound simplifies to O
(1
ε · ϕ

(1
ε

))
The proof of Theorem 5 uses the

shallow packing lemma (Theorem E), as well as the polynomial partitioning method of Guth
and Katz [14], specifically a multilevel refinement due to Matoušek and Patáková [23].

First we point out that Theorem 5 immediately implies the best known bounds on
unweighted ε-nets, though with the additional restriction that the set system is semialgebraic.

4 For a detailed introduction to this topic, see [5].

SoCG 2017

38:6 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

Table 2 Many known results follow from Theorem 5 via their shallow-cell complexity. Polyloga-
rithmic improvements are in bold.

Set System Primal/Dual Size of ε-Mnets
Objects with union complexity κ(·) D O(κ(1

ε
))

α-fat triangles D O(1
ε

log∗ 1
ε
)

Locally γ-fat objects D 1
ε
· 2O(log∗ 1

ε
)

Triangles of approximately same size D O(1
ε
)

α-fat triangles P O(1
ε

log2 1
ε
)

Rectangles in R2 P O(1
ε

log 1
ε
)

Lines in R2 P O(1
ε2)

Strips in R2 P O(1
ε2)

Cones in R2 P O(1
ε2)

Pseudo-disks in R2 P/D O(1
ε
)

Half-spaces in Rd P/D O(1
εbd/2c)

I Corollary 6. Set systems with ε-Mnets of size M have ε-nets of size O
(1
ε log(εM)

)
. In

particular, a set system (X,R) with VC-dim(R) ≤ d0 has ε-nets of size
1. O

(1
ε logϕ

(8d0
ε , 48d0

))
if it has shallow-cell complexity ϕ(·, ·), and

2. O
(1
ε logϕ

(8d0
ε

))
if it has shallow-cell complexity ϕ(·).

Proof. LetM be an ε-Mnet for (X,R) whose sets have size at least Cεn. Pick each point
of X into a random sample R independently with probability p = 1

Cεn log(ε|M|).
R is disjoint from any fixedMi ∈M with probability at most (1−p)Cεn ≤ e−pCεn = 1

ε|M| .
Therefore the expected number of sets ofM not hit by R is at most 1

ε ; let S be a set consisting
of an arbitrary point from each such set. As E[|S|] ≤ 1

ε , we have that S ∪R is an ε-net of
expected size ≤ 1

ε + 1
Cε log(ε|M|)). J

Second, Theorem 5 unifies and generalizes a number of previous statements. In [26], a
collection of results on Mnets were presented using different techniques: for the dual set
system induced by regions of union complexity κ(·) using cuttings, for rectangles using
divide-and-conquer constructions, and for triangles using ε-nets. All these and more results
follow as immediate corollaries of Theorem 5.

I Corollary 7 (See Table 2). There exist ε-Mnets of size
1. O

(
κ(1

ε)
)
for the dual set system induced by objects in R2 with union complexity κ(·). In par-

ticular, O
(1
ε log∗ 1

ε

)
for the dual set systems induced by α-fat triangles5, O

(
1
ε 2O(log∗ 1

ε)
)

for the dual set system induced by locally γ-fat semialgebraic objects6 in the plane, and
O
(1
ε

)
for the dual set systems induced by triangles of approximately same size [22].

2. O
(1
ε log2 1

ε

)
for the primal set system induced by α-fat triangles.

3. O
(1
ε log 1

ε

)
for the primal set system induced by rectangles in the plane.

4. O(1
ε2) for the primal system induced by lines, strips and cones in the plane, improving

the previous-best results by polylogarithmic factors. They were O(1
ε2 log2 1

ε), O(1
ε2 log3 1

ε2)
and O(1

ε2 log4 1
ε) respectively.

5. O
(1
ε

)
for the primal set system of semialgebraic pseudo-disks and O(1

εbd/2c) for the primal
set system of half-spaces.

5 For a fixed parameter α with 0 < α ≤ π/3, a triangle is α-fat if all three of its angles are at least α.
6 For a fixed parameter γ with 0 < γ ≤ 1/4, a planar semialgebraic object o is called locally γ-fat if, for any

disk D centered in o and that does not fully contain o in its interior, we have area(D u o) ≥ γ · area(D),
where D u o is the connected component of D ∩ o that contains the center of D.

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:7

The main open question in [26] was the following interesting pattern that was observed:
for all the cases studied, a set system that had an ε-net of size O

(1
ε logϕ(1

ε)
)
had Mnets of

size O
(1
εϕ(1

ε)
)
. Theorem 5 now shows that this was not a coincidence. By Theorem B, a set

system with shallow-cell complexity ϕ(·) has ε-nets of size O
(1
ε logϕ(1

ε)
)
. And now, from

Theorem 5, it follows that it has Mnets of size O
(1
εϕ(1

ε)
)
.

2.3 l-Wise k-Shallow δ-Packings (Proof in Section 5)

Call a set system (X,R) an l-wise δ-packing if for all distinct A1, . . . , Al ∈ R, we have∣∣ (A1 ∪ · · · ∪Al)
∖

(A1 ∩ · · · ∩Al)
∣∣ ≥ δ.

Building on Chazelle’s [7] proof of the packing lemma together with Turán’s theorem on
independent sets in graphs [28], Fox et al. [13, Lemma 2.5] proved the following:

I Theorem F (l-Wise δ-Packing Lemma). Let (X,R) be a set system such that |X| = n and
where for all Y ⊆ X we have |R|Y | = O(|Y |d). If R is an l-wise δ-packing, for a positive
integer l and δ ∈ {1, . . . , n}, then |R| = O

((
n
δ

)d), where the constant in the asymptotic
notation depends on l and d.

A set system (X,R) is an l-wise k-shallow δ-packing if it is an l-wise δ-packing and
furthermore, |S| ≤ k, ∀S ∈ R. Building on the proof in [20] and [24], we prove the following,
which simultaneously generalizes three theorems: that of Haussler [15] (Theorem C), Fox et
al. [13] (Theorem F) and Ezra et al. [9] (Theorem E).

I Theorem 8 (l-Wise k-Shallow δ-Packing Lemma). Let (X,R) be a set system with |X| = n.
Let d, k, l, δ > 0 be four integers such that VC-dim(R) ≤ d, and R is an l-wise k-shallow
δ-packing. If R has shallow-cell complexity ϕ(·, ·), then

|R| = O

(
l3n

δ
· ϕ
(
s, 4l · ks

n

))
, where s = 8l(l − 1)dn

δ
− 1.

I Corollary 9. Theorems C, E (up to a constant factor) and F.

Proof. Theorem E is Theorem 8 with l set to 2. To obtain Theorem F, set k = n in
Theorem 8. Theorem C is the special case of F when l = 2. J

3 Proof of Theorem 4

In this section we will build a set system with the desired shallow-cell complexity and then
show that it contains a large shallow packing.

Proof of Theorem 4. Without loss of generality we assume that n is an integer multiple of
d. The ground set X will be a subset of N× N.

For each 1 ≤ i ≤ d1, set Xi = {i} × {1, . . . , nd }. Note that we are simply considering d1
disjoint copies of {1, . . . , nd }; the singleton {i} is here to distinguish Xi from Xj .

Define the following set system Pi on each Xi: Pi =
{{
i
}
×
{

2αβ+1, . . . , 2α(β+1)
} ∣∣∣ 0 ≤

α ≤ log2
(
n
d

)
, 0 ≤ β < 2−α nd

}
.

Intuitively, consider a balanced binary tree Ti on Xi, with its leaves labeled (i, 1), (i, 2),
. . . , (i, nd) (see figure).

SoCG 2017

38:8 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

(i, 1) (i, 2) (i, n
d
)

Then for each node v ∈ Ti, Pi contains a set consisting of the leaves of the subtree rooted at
v. Here α is the height of the node (so 2α is the number of elements in the corresponding
subset), while β identifies one of the nodes of that height (among the 2log(nd)−α = 2−α · nd
choices).

I Claim 10. For any Y ⊆ Xi and 7 r ∈ N, |Pi|Y,≤r| = O(|Y |). Specifically, fPi(m, r) ≤ 2m.

Proof. For any Y ⊆ Xi, the sets in Pi|Y are in a one-to-one correspondence with the nodes
of Ti whose left and right subtrees, if they exist, both contain leaves labeled by Y . It is easy
to see that if the nodes of Ti corresponding to Y form a connected sub-tree, then these nodes
define a new binary tree whose leaves are still labeled by Y , and thus their number is at
most 2|Y | − 1. Otherwise, the statement holds by induction on the number of connected
components of Y in Ti. J

Next, for each d1 + 1 ≤ i ≤ d, let Yi = {i} × {1, . . . , nd }. For each Yi, define Qi ={{
i
}
×
{

1, . . . , γ
} ∣∣∣ 1 ≤ γ ≤ n

d , γ ∈ N
}
, which can be seen as prefix sets of the sequence

〈(i, 1), . . . , (i, nd)〉.

I Claim 11. For any Y ⊆ Yi and l ∈ N, |Qi|Y,≤l| = O(l). Specifically, fQi(m, l) ≤ l.

Proof. The number of sets of size at most l in Qi|Y is |Qi|Y,≤l| = min
{
l, |Y |

}
≤ l. J

Finally, the required base set will be X =
(

d1⋃
i=1

Xi

)
∪

(
d⋃

i=d1+1
Yi

)
. Its size is |X| =

d1 · nd + (d− d1) · nd = n. The set system R0 is defined on X by taking d-wise union of the
sets in Pi’s and Qi’s: R0 =

{⋃d
i=1 ri

∣∣∣ (r1, r2, · · · , rd) ∈ P1× · · · ×Pd1 ×Qd1+1× · · · ×Qd
}
.

We will bound the shallow-cell complexity of R0 then construct a subset of R0 which is
a large packing.

I Claim 12. ∀Y ⊆ X, ∀l ∈ N, |R0|Y,≤l| = O
(
|Y |d1 ld−d1

)
. Specifically, fR0(m, l) ≤

(2m)d1 ld−d1 .

Proof. Let Y ⊆ X, |Y | = m. Any set S ∈ R0|Y,≤l can be uniquely written as the disjoint
union S = p1 ∪ · · · ∪ pd1 ∪ qd1+1 ∪ · · · ∪ qd, where pi ∈ Pi|Y ∩Xi,≤l and qi ∈ Qi|Y ∩Yi,≤l. This
yields an injection R0|Y,≤l 7→

(∏
1≤i≤d1

Pi|Y ∩Xi,≤l
)
×
(∏

d1+1≤i≤dQi|Y ∩Yi,≤l
)
.

Thus by Claims 10 and 11, we have the required bound:

fR0(m, l) = max
Y⊆X,|Y |=m

|R0|Y,≤l| ≤
(
fP1(m, l)

)d1
·
(
fQ1(m, l)

)d−d1
≤ (2m)d1 ld−d1 . J

7 Crucially, the bound is actually independent of r.

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:9

It remains to show that some subset of R0 is a large k-shallow δ-packing. For the given
parameters k, δ and for all 1 ≤ i ≤ d1 and d1 + 1 ≤ j ≤ d, define:

P(k,δ)
i =

{i}× {2αβ + 1, . . . , 2α(β + 1)
} ∣∣∣∣∣∣

α, β ∈ N
log2 δ ≤ α ≤ log2(kd)
0 ≤ β < 2−α(nd)

 ⊆ Pi,
Q(k,δ)
j =

{{
j
}
×
{

1, 2, . . . , γδ
} ∣∣ 1 ≤ γ ≤ k

dδ

}
⊆ Qj .

The intuition here is that we pick only the nodes in our binary trees Ti which have height
at least log2 δ (and thus a symmetric difference of at least δ elements).

(i, 1) (i, 2) (i, nd)

height ≥ log2 δ

P(k,δ)
i

Similarly in Qj we only pick every δ-th set. All these sets have size at most k
d . This is

straightforward for Q(k,δ)
i ; on the other hand, a set in P(k,δ)

i defined by the pair (α, β) has
size 2α ≤ k

d .
All those sets also are integer intervals of the form

{
λδ + 1, . . . , µδ

}
for some λ, µ ∈ N

and thus pairwise δ-separated (for the P (k,δ)
i , notice that 2α is a multiple of δ). Hence

R =
{
p1 ∪ · · · ∪ pd1 ∪ qd1+1 ∪ · · · ∪ qd

∣∣∣ (p, q) ∈
∏

1≤i≤d1

P(k,δ)
i ×

∏
d1+1≤i≤d

Q(k,δ)
i

}
⊆ R0

is a δ-packing which is k-shallow. We bound its size:

|R| =
d1∏
i=1

∣∣∣P(k,δ)
i

∣∣∣ · d∏
i=d1+1

∣∣∣Q(k,δ)
i

∣∣∣ =

n
d

blog2(kd)c∑
α=dlog2 δe

2−α
d1 (

k

dδ

)d−d1

≥ d−d
(

21−dlog2 δe − 2blog2(kd)c
)d1

nd1

(
k

δ

)d−d1

≥ d−d
(

1
δ
− 2d

k

)d1

nd1

(
k

δ

)d−d1

≥ d−d(2δ)−d1nd1

(
k

δ

)d−d1

= Ω
(
nd1kd−d1

δd

)
. J

The gist of Haussler’s probabilistic lower bound construction for Theorem D was to consider
R0 with d1 = 0 and randomly build a packing [15].

4 Proof of Theorem 5, Corollary 7

We first give a brief overview of a technical tool that is used in the proof of Theorem 5.

4.1 Preliminaries
We will use the following theorem of Matoušek and Patáková [23]. For γ, ω ⊂ Rd, we say
that γ crosses ω if ω ∩ γ /∈ {∅, ω}.

SoCG 2017

38:10 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

I Theorem G (Multilevel polynomial partitioning). For every integer d > 1, there exist
constants K = K(d) and C = C(d) such that the following holds. Given an n-point set
P ⊂ Rd and a parameter r > 1, there exist a set Σ∗ ⊆ P with |Σ∗| ≤ rK and d families of
sets, Σk, 1 ≤ k ≤ d, that form a partition of P

P = Σ∗ ∪
d⋃
k=1

⋃
S∈Σk

S

where the following properties hold for each 1 ≤ k ≤ d:
1. Σk = {Σk1, . . . ,Σktk}, tk ≤ CrC , and for 1 ≤ l ≤ tk, |Σkl| ≤ n

rk
with rk ∈ [r, rK].

2. there exist a family of semialgebraic regions Sk = {Sk1, . . . , Sktk} such that for each
1 ≤ l ≤ tk,
(a) Skl is connected, defined by O(rC) polynomial inequalities of degree O(rC),
(b) Σkl ⊆ Skl, and
(c) every set γ ∈ Γd,∆,s crosses at most Cd,∆,s · r1−1/d

k of the sets in Sk, where the
constant Cd,∆,s depends only on d, ∆ and s.

Theorem G extends the Guth–Katz [14] polynomial partitioning technique, a partition of Rd
by an algebraic variety which is balanced with respect to the set P . Here partitioning is
applied not once but recursively on varieties of decreasing dimension. This will allow us to
dispense with assumptions of genericity.

4.2 Proofs
We now give proofs of Theorem 5 and Corollary 7.

Proof of Theorem 5. Note that if ε = O(1
n), then the trivial collection of singleton sets{

{p} : p ∈ X
}
will be an ε-Mnet for (X,R), of size n = O(1

ε). Therefore we may restrict
ourselves to the case when

ε >
4 (16 · d · Cd,∆,s)Kd

n
. (1)

For i = 0, . . . , dlog 1
ε e, let Ri ⊆ R be an inclusion-maximal

(
2i−1ε n

)
-packing, with the

additional constraint that each set in Ri has cardinality in [2iεn, 2i+1εn). From Theorem E,
we have

|Ri| ≤
C ′d0

2iε · ϕ
(

8d0

2iε , 48d0

)
, where C ′ is an absolute constant. (2)

Say Ri =
{
Ri1, . . . , Rimi

}
, where mi = |Ri|. For a parameter r to be fixed later,

consider the multilevel polynomial partitioning of Rij as in Theorem G. We will write

Rij = Σ∗ij ∪
d⋃
k=1

tijk⋃
l=1

Σijkl,

where
1. We will denote by Sijkl the corresponding connected semialgebraic region in Rd containing

the set Σijkl; see Theorem G.
2. rij1, rij2, . . . , rijd ∈ [r, rK] where the constant K depends on d as defined in Theorem G.
3. For all k = 1, 2, . . . , d, tijk ≤ CrC , where the constant C depends on d and it is defined

in Theorem G. This implies
∑d
i=1 tijk ≤ CdrC .

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:11

4. |Σijkl| ≤ |Rij |rijk
for all k and l.

5. |Σ∗ij | ≤ rK .
6. For all γ ∈ Γd,∆,s and every k = 1, 2, . . . , d, the number of Sijkl crossed by γ is at most

Cd,∆,sr
1−1/d
ijk , where the constant Cd,∆,s is defined in Theorem G.

The ε-MnetM will be the union of a family (Mi) of set collections. For each Rij , we do
the following: for all k ∈ {1, . . . , d} and l ∈ {1, . . . , tijk}, if |Σijkl| ≥ 2iεn

8CdrC then add Σijkl

toMi. Finally letM =
⋃dlog 1

ε e
i=0 Mi.

It remains to show thatM is the required ε-Mnet for an appropriate value of r. Namely,
(i) the required bound on |M| holds,
(ii) each set inM has size Ω(εn), and
(iii) for any R ∈ R with |R| ≥ εn, there exists a set Y ∈M where Y ⊆ R.

Let r = (16dCd,∆,s)d, ensuring that rK < 1
4εn.

To see i), observe that |Mi| = O
(
drC · |Ri|

)
= O

(
d0
2iεϕ

(
8d0
2iε , 48d0

))
. Therefore, as ϕ(·, ·)

is a non-decreasing function in the first variable, we have

|M| =
dlog(d0/ε)e∑

i=0
|Mi| = O

dlog(d0/ε)e∑
i=0

d0

2iε · ϕ
(

8d0

2iε , 48d0

) = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

To see ii), observe that each set added toM satisfies |Σijkl| ≥ 2iεn
8CdrC = Ω

(
εn
)
.

To see iii), let R ∈ R be any set such that |R| ≥ εn, and let i be the index such that
|R| ∈ [2iεn, 2i+1εn). There are two cases.

Case 1: R ∈ Ri

Say R = Rij , then R contains all the sets Σijkl (for all values of k and l), and it remains to
argue that at least one was added toM. So assume that it is not the case. Observe that

|Rij | =
∑
k,l

|Σijkl|+ |Σ∗ij | ≤ CdrC ·
2iεn

8CdrC + rK = 2i−3εn+ rK < 2iεn.

The last inequality follows from the fact that rK < 2i−2εn. We have reached a contradiction,
as by construction we had |Rij | ≥ 2iεn.

Case 2: R /∈ Ri

By the maximality of Ri, there exists an index j such that Rij ∈ Ri and |R∩Rij | ≥ 2i−1εn.
Note that the above bound on |R∩Rij | follows from the fact that |R∩Rij | ≥ |Rij |−|R∆Rij |.
If R contains a set Σijkl included inMi, then we are done. So assume it does not. Then

consider the contribution to the points in the set R ∩Rij =

⋃
k,l

(R ∩ Σijkl)

 ∪ (R ∩ Σ∗ij
)
.

(a) All indices k, l such that |Σijkl| < 2iεn
8CdrC . The total number of points contained in R

from all such sets is at most CdrC · 2iεn
8CdrC = 2iεn

8 .
(b) All k such that the semialgebraic set γ defining R crosses the connected component

Sijkl corresponding to Σijkl. By Theorem G, there are at most Cd,∆,s r1−1/d
ijk such sets,

and by the property of multilevel partitioning, each such region contains at most 2i+1εn
rijk

points of X.
(c) The points of R contained in Σ∗ij .

SoCG 2017

38:12 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

Using the fact that r is sufficiently large in terms of d, ∆ and s, we have

|R∩Rij | ≤ 2i−3εn+
d∑
k=1

2i+1εn

rijk
·Cd,∆,sr

1− 1
d

ijk +rK < 2i−3εn+ dCd,∆,s2i+1εn

r1/d +rK < 2i−1εn.

The last inequality follows from the fact that rijk ≥ r, r = (16dCd,∆,s)d and rK < 2i−2εn.
We get a contradiction to the fact that |R ∩Rij | ≥ 2i−1εn, which completes the proof. J

Proof of Corollary 7.
1. The shallow-cell complexity of the dual set system induced by objects with union com-

plexity κ(·) is ϕ(m) = O(κ(m)
m), which together with Theorem 5 implies the stated bound.

The remaining bounds follow from the facts that κ(m) for triangles with approximately
same size [22] is O(m), for α-fat triangles [12] is O(m log∗m) (where the constant of
proportionality depends only on α), and for locally γ-fat objects [2] is O(m2log∗m), where
the constant of proportionality in the linear term depends only on γ.

2. Ene et al. [10] proved the following: given a set X of n points in R2 and a parameter r > 0,
there exists a collection Or of O(r3n logn) regions, such that for every α-fat triangle ∆,
|∆∩X| ≤ r, there exists a subsetM⊆ Or, |M| ≤ 9, such that

(⋃
M∈MM

)
∩X = ∆∩X.

This result together with Theorem 5 will give us the bound.
3. Ene et al. [10] proved the following: given a set X of n points in the plane and a

parameter r > 0, there exists a collection Or of rectangles, with |Or| = O(r2n logn),
such that for any rectangle R with |R ∩ X| ≤ r there exists R1, R2 ∈ Ok such that
(R1 ∪R2) ∩X = R ∩X. This result together with Theorem 5 will give us the bound.

4. Shallow-cell complexity ϕ(m, r) is O(m2) for lines, O(m2r) for strips, and O(m2r2) for
cones [26]. J

5 Proof of Theorem 8

The proof will use the following technical lemma, combining the ideas in [20, 24, 13].

I Lemma 13. Let (X,R) be a set system with |X| = n. Let d, l, δ be three integers such
that VC-dim(R) ≤ d, and R is an l-wise δ-packing. If A ⊆ X is a uniformly selected random
sample of size 8l(l−1)dn

δ − 1, then |R| ≤ 2l · E [|R|A|].

Proof. Pick a random sample R of size s = 8l(l−1)dn
δ from X. Let GR = (R|R, ER) be the

unit distance graph on R|R, with an edge between any two sets whose symmetric difference
is a singleton. Define the weight of a set S′ ∈ R|R to be the number of sets of R whose
projection in R|R is S′, i.e. w(S′) = |{r ∈ R | r ∩ R = S′}|. Define the weight of an edge
{S′i, S′j} ∈ ER as w(S′i, S′j) = min{w(S′i), w(S′j)}. Let W =

∑
e∈ER w(e).

We will use the following result from [20, Chapter 5, Proof 5.14].

I Claim 14. W ≤ 2d · |R|.

Pick R by first picking a set A of s− 1 elements and then selecting the remaining element
a uniformly from X \A. Let W1 be the weight of the edges in GR for which the element a is
the symmetric difference. By symmetry, we have E[W] = s · E[W1].

To compute E[W1], first fix a set Y of s− 1 vertices. Conditioned on this fixed choice of
A, one shows (the interested reader will find a proof in the extended version of this paper):

I Claim 15. E
[
W1|A = Y

]
≥ δ/n

2l(l−1)

(
|R| − l |R|Y |

)
.

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:13

Using the fact that E[W] = s · E[W1], one can compute an upper bound on E[W]:

E[W] = s · E[W1] = s ·
∑
Y⊆X
|Y |=s−1

E[W1|A = Y] · Pr[A = Y]

≥ s ·
∑
Y⊆X
|Y |=s−1

δ

2l(l − 1)n

(
|R| − l · |R|Y |

)
· Pr[A = Y] (by Claim 15)

≥ 4d
(
|R|

∑
Y⊆X
|Y |=s−1

Pr[A = Y]− l
∑
Y⊆X
|Y |=s−1

|R|Y | · Pr[A = Y]
)

= 4d(|R| − lE[|R|A|]).

Combining Claim 14 and the above lower bound on E[W], we get 2d|R| ≥ E[W] ≥
4d|R| − 4dl · E[|R|A|]. This implies |R| ≤ 2l · E[|R|A|]. J

Proof of Theorem 8. Let A ⊆ X be a random sample of size s := 8l(l−1)dn
δ − 1. Let

R1 =
{
S ∈ R s.t. |S ∩A| ≥ 4l · ksn

}
. Each element x ∈ X belongs to A with probability s

n ,
and thus the expected number of elements in A from a fixed set of t elements is ts

n . This
implies that E[|S ∩A|] ≤ ks

n as |S| ≤ k for all S ∈ R. Markov’s inequality then bounds the
probability of a set of R belonging to R1: Pr[S ∈ R1] = Pr

[
|S ∩A| > 4l · ksn

]
≤ 1

4l . Thus

E[|R|A|] ≤ E[|R1|]+E[|(R\R1)|A|] ≤
∑
S∈R

Pr[S ∈ R1]+s ·ϕ
(
s, 4l·ks

n

)
≤ |R|4l +s·ϕ

(
s, 4l·ks

n

)
,

where we used the fact that |(R\R1)|A| = O
(
|A|·ϕ(|A|, t)

)
, where t = maxS∈R\R1 |S| ≤ 4l ksn .

Now the bound follows from Lemma 13. J

6 Conclusion

Lower bound for the Shallow Packing Lemma

The lower bound construction given in the proof of Theorem 4, showing the optimality of the
Shallow Packing Lemma (Theorem E), is constructive. Also observe that it can be realized
in a number of simple ways, for example with points on a square grid and sets induced by
some specific (2d)-gons, i.e., a semialgebraic set system with constant description complexity.

Applications of Mnets

Corollary 6 shows that the existence of small ε-nets follows immediately from the more general
structure of Mnets. Macbeath regions for convex bodies have recently found algorithmic
applications such as volume estimation of convex bodies [4, 3]. We believe that Mnets will
also find important applications and connections to various aspects of set systems with
bounded VC dimension.

Computing Mnets

In the real RAM model of computation one can compute exactly with arbitrary real numbers
and each arithmetic operation takes unit time. Matoušek and Patáková [23] gave the following
algorithmic counterpart of Theorem G.

SoCG 2017

38:14 Shallow Packings, Semialg. Set Systems, Macbeath Reg., and Poly. Partitioning

I Theorem H (Algorithmic Multilevel Polynomial Partitioning). The sets Σ∗, Σij, Sij from
Theorem G can be computed in time O(nrC) 8.

Using this result and the construction in the proof of Theorem 5, we can get a randomized
algorithm with time complexity poly

(
n, 1

ε

)
that computes Mnets for semialgebraic set systems

matching the upper bound on the size of Mnets from Theorem 5.

Acknowledgements. Part of this work was done when Kunal Dutta and Arijit Ghosh were
researchers in D1: Algorithms & Complexity, Max-Planck-Institute for Informatics, Germany,
supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

References
1 P. K. Agarwal, J. Pach, and M. Sharir. State of the Union (of Geometric Objects): A

Review. In J. Goodman, J. Pach, and R. Pollack, editors, Computational Geometry: Twenty
Years Later, pages 9–48. American Mathematical Society, 2008.

2 B. Aronov, M. de Berg, E. Ezra, and M. Sharir. Improved Bounds for the Union of Locally
Fat Objects in the Plane. SIAM J. Comput., 43(2):543–572, 2014.

3 S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal Area-Sensitive Bounds for Polytope
Approximation. In Proc. 28th Annual Symposium on Computational Geometry (SoCG),
pages 363–372, 2012.

4 S. Arya, G. D. da Fonseca, and D. M. Mount. On the Combinatorial Complexity of Approx-
imating Polytopes. In Proc. 32nd International Symposium on Computational Geometry
(SoCG), volume 51, pages 11:1–11:15, 2016.

5 S. Basu, R. Pollack, and M. F. Roy. Algorithms in Real Algebraic Geometry. Springer-
Verlag, 2003.

6 T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted Capacitated, Priority, and
Geometric Set Cover via Improved Quasi-Uniform Sampling. In Proc. 23rd ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1576–1585, 2012.

7 B. Chazelle. A note on Haussler’s packing lemma. See Section 5.3 from Geometric Discrep-
ancy: An Illustrated Guide by J. Matoušek, 1992.

8 B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, Cambridge, New York, 2000.

9 K. Dutta, E. Ezra, and A. Ghosh. Two Proofs for Shallow Packings. Discrete & Computa-
tional Geometry, 56(4):910–939, 2016. Extended abstract appeared in Proc. 31st Interna-
tional Symposium on Computational Geometry (SoCG), pages 96–110, 2015.

10 A. Ene, S. Har-Peled, and B. Raichel. Geometric Packing under Non-uniform Constraints.
In Proc. 28th Annual Symposium on Computational Geometry (SoCG), pages 11–20, 2012.

11 E. Ezra. A Size-Sensitive Discrepancy Bound for Set Systems of Bounded Primal Shatter
Dimension. SIAM J. Comput., 45(1):84–101, 2016. Extended abstract appeared in Proc.
25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1378–1388, 2014.

12 E. Ezra, B. Aronov, and S. Sharir. Improved Bound for the Union of Fat Triangles. In Proc.
22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1778–1785, 2011.

13 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. A Semi-Algebraic Version of Zarankiewicz’s
Problem. J. of the European Mathematical Society, to appear.

14 L. Guth and N. H. Katz. On the Erdös distinct distances problem in the plane. Annals of
Math., 181(1):155–190, 2015.

8 The constant C is the same as in Theorem G.

K. Dutta, A. Ghosh, B. Jartoux, and N.H. Mustafa 38:15

15 D. Haussler. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded
Vapnik-Chervonenkis Dimension. J. Comb. Theory, Ser. A, 69(2):217–232, 1995.

16 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2:127–151, 1987.

17 A. Kupavskii, N. H. Mustafa, and J. Pach. Near-Optimal Lower Bounds for ε-nets for
Half-spaces and Low Complexity Set Systems. In M. Loebl, J. Nešetřil, and R. Thomas,
editors, A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek. Springer,
2017. Extended abstract with the title “New Lower Bounds for epsilon-Nets” appeared
in Proc. 32nd International Symposium on Computational Geometry (SoCG), 54:1–54:16,
2016.

18 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample complexity
of learning. J. of Computer and System Sciences, 62(3):516–527, 2001. doi:10.1006/jcss.
2000.1741.

19 A. M. Macbeath. A theorem on non-homogeneous lattices. Annals of Math., 56:269–293,
1952.

20 J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics.
Springer, Berlin, New York, 1999.

21 J. Matoušek. Lectures in Discrete Geometry. Springer-Verlag, New York, NY, 2002.
22 J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat Triangles Determine Linearly

Many Holes. SIAM J. Comput., 23(1):154–169, 1994.
23 J. Matoušek and Z. Patáková. Multilevel Polynomial Partitions and Simplified Range

Searching. Discrete & Computational Geometry, 54(1):22–41, 2015.
24 N. H. Mustafa. A Simple Proof of the Shallow Packing Lemma. Discrete & Computational

Geometry, 55(3):739–743, 2016.
25 N. H. Mustafa, K. Dutta, and A. Ghosh. A Simple Proof of Optimal Epsilon-nets. Combi-

natorica, to appear.
26 N. H. Mustafa and S. Ray. ε -Mnets: Hitting Geometric Set Systems with Subsets. Discrete

& Computational Geometry, 57(3):625–640, 2017. Extended abstract with the title “Near-
Optimal Generalisations of a Theorem of Macbeath” appeared in Proc. 31st Symposium
on Theoretical Aspects of Computer Science (STACS), pages 578–589, 2014.

27 N. H. Mustafa and K. Varadarajan. Epsilon-approximations and Epsilon-nets. In J. E.
Goodman, J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational
Geometry. CRC Press LLC, 2017.

28 J. Pach and P. K. Agarwal. Combinatorial Geometry. John Wiley & Sons, New York, NY,
1995.

29 N. Sauer. On the Density of Families of Sets. J. Comb. Theory, Ser. A, 13(1):145–147,
1972.

30 S. Shelah. A Combinatorial Problem, Stability and Order for Models and Theories in
Infinitary Languages. Pacific J. of Mathematics, 41:247–261, 1972.

31 K. R. Varadarajan. Weighted Geometric Set Cover via Quasi-Uniform Sampling. In Proc.
42nd Symposium on Theory of Computing (STOC), pages 641–648, 2010.

SoCG 2017

http://dx.doi.org/10.1006/jcss.2000.1741
http://dx.doi.org/10.1006/jcss.2000.1741

Topological Data Analysis with Bregman
Divergences∗†

Herbert Edelsbrunner1 and Hubert Wagner2

1 IST Austria, Klosterneuburg, Austria
edels@ist.ac.at

2 IST Austria, Klosterneuburg, Austria
hub.wag@gmail.com

Abstract
We show that the framework of topological data analysis can be extended from metrics to general
Bregman divergences, widening the scope of possible applications. Examples are the Kullback –
Leibler divergence, which is commonly used for comparing text and images, and the Itakura –
Saito divergence, popular for speech and sound. In particular, we prove that appropriately gen-
eralized Čech and Delaunay (alpha) complexes capture the correct homotopy type, namely that
of the corresponding union of Bregman balls. Consequently, their filtrations give the correct per-
sistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover,
we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to
approximate the persistence diagram. We propose algorithms to compute the thus generalized
Čech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we
explain their surprisingly good performance by making a connection with discrete Morse theory.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Topological data analysis, Bregman divergences, persistent homology,
proximity complexes, algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.39

1 Introduction

The starting point for the work reported in this paper is the desire to extend the basic
topological data analysis (TDA) paradigm to data measured with dissimilarities. In particular
for high-dimensional data, such as discrete probability distributions, notions of dissimilarity
inspired by information theory behave strikingly different from the Euclidean distance, which
is the usual setting for TDA. On the practical side, the Euclidean distance is particularly ill-
suited for many types of high-dimensional data; see for example [21], which provides evidence
that the Euclidean distance consistently performs the worst among several dissimilarity
measures across a range of text-retrieval tasks. A broad class of dissimilarities are the
Bregman divergences [8]. Its most prominent members are the Kullback-Leibler divergence
[23], which is commonly used both for text documents [5, 21] and for images [14], and the
Itakura-Saito divergence [22], which is popular for speech and sound data [18]. We propose
a TDA framework in the setting of Bregman divergences. Since TDA and more generally
computational topology are young and emerging fields, we provide some context for the
reader. For more a comprehensive introduction, see the recent textbook [16].

∗ A full version of the paper is available at https://arxiv.org/abs/1607.06274.
† This research is partially supported by the Toposys project FP7-ICT-318493-STREP.

© Herbert Edelsbrunner and Hubert Wagner;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.39
https://arxiv.org/abs/1607.06274
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Topological Data Analysis with Bregman Divergences

Computational topology. Computational topology is an algorithmic approach to describing
shape in a coarser sense than computational geometry does. TDA utilizes such algorithms
within data analysis. One usually works with a finite set of points, possibly embedded in
a high-dimensional space. Such data may be viewed as a collection of balls of a radius
that depends on the scale of interest. Intersections reveal the connectivity of the data. For
example, the components of the intersection graph correspond to the components of the
union of balls.

Homology groups. These are studied in the area of algebraic topology, where they are used
to describe and analyze topological spaces; see e.g. [20]. The connected components of a space
or, dually, the gaps between them are encoded in its zero-dimensional homology group. There
is a group for each dimension. For example, the one-dimensional group encodes loops or,
dually, the tunnels, and the two-dimensional group encodes closed shells or, dually, the voids.
Importantly, homology provides a formalism to talk about different kinds of connectivity
and holes of a space that allows for fast algorithms.

Nerves and simplicial complexes. The nerve of a collection of balls generalizes the intersec-
tion graph and contains a k-dimensional simplex for every k + 1 balls that have a non-empty
common intersection. It is a hypergraph that is closed under taking subsets, a structure
known as a simplicial complex in topology. If the balls are convex, then the Nerve Theorem
states that this combinatorial construction captures the topology of the union of balls. More
precisely, the nerve and the union have the same homotopy type and therefore isomorphic
homology groups [24]. This result generalizes to the case in which the balls are not necessarily
convex but their common intersections of all orders are contractible. In the context in which
we center a ball of some radius at each point of a given set, the nerve is referred to as the
Čech complex of the points for the given radius. Its k-skeleton is obtained by discarding
simplices of dimension greater than k. The practice-oriented reader will spot a flaw in this
setup: fixing the radius is a serious drawback that limits data analysis applications.

Persistent homology. To remedy this deficiency, we study the evolution of the topology
across all scales, thus developing what we refer to as persistent homology. For graphs and
connected components, this idea is natural but more difficult to flesh out in full generality. In
essence, one varies the radius of balls from 0 to ∞, giving rise to a nested sequence of spaces,
called a filtration. Topological features, namely homology classes of different dimensions, are
created and destroyed along the way. In practice, one computes the persistence diagram of
a filtration, which discriminates topological features based on their lifetime, or persistence.
The persistence diagram serves as a compact topological descriptor of a dataset, which is
provably robust against noise. Owing to its algebraic and topological foundations, the theory
is very general. Importantly, the Nerve Theorem extends to filtrations [11, Lemma 3.4],
therefore, for simplicity, we often restrict our proofs to balls of fixed radius.

TDA in the Bregman setting. In the light of the above, there are only two obstacles
to applying topological data analysis to data measured with Bregman divergences. We
need to prove that the Nerve Theorem applies also when the balls are induced by Bregman
divergences, and we need to provide efficient algorithms to construct the relevant complexes,
so that the existing algorithms for persistence diagrams can be used without modification.
The main complication is that the balls may be nonconvex, which we overcome by combining
results from convex analysis and topology.

H. Edelsbrunner and H. Wagner 39:3

Applications. Persistence is an important method within TDA, which has been successfully
used in a variety of applications. In low dimensions, it was for example used to shed light on
the distribution of matter in the Universe [31] and to characterize the structure of atomic
configurations in silica glass [25]. As for high-dimensional data, Chan et al. analyze viral
DNA and relate persistent cycles with recombinations [10], and Port et al. study languages
leaving the interpretation of a persistent cycle in the Indo-Germanic family open [28].

Related work. This paper is the first work at the intersection of topology and Bregman
divergences. We list related papers in relevant fields. In machine learning, Banerjee et al. use
the family of Bregman divergences as the unifying framework for clustering algorithms [2].
The field of information geometry deals with selected Bregman divergences and related
concepts from a geometric perspective [1]. Building on the classical work of Rockafellar [30]
in convex analysis, Bauschke and Borwein are the first to use the Legendre transform for
analyzing Bregman divergences [4]. Boissonnat, Nielsen and Nock [6] use similar methods
to make significant contributions at the intersection of computational geometry and Breg-
man divergences. In particular, they study the geometry of Bregman balls and Delaunay
triangulations, but not the topologically more interesting Delaunay, or alpha, complexes.
In the Euclidean setting, the basic constructions are well understood [3, 33], including
approximations, which are interesting and useful, but beyond the scope of this paper.

Results. This paper provides the first general TDA framework that applies to high di-
mensional data measured with non-metric dissimilarities. Indeed, prior high dimensional
applications of TDA were restricted to low dimensional homology, required custom-made to-
pological results, or used common metrics such as the Euclidean and the Hamming distances,
which are often not good choices for such data. We list the main technical contributions:
1. We show that the balls under any Bregman divergence have common intersections that

are either empty of contractible.
2. We show that the persistence diagram of the Vietoris-Rips complex can be arbitrarily far

from that of the filtration of the union on Bregman balls.
3. We show that the radius functions that correspond to the Čech and Delaunay complexes

for Bregman divergences are generalized discrete Morse functions.
4. We develop algorithms for computing Čech and Delaunay radius functions for Bregman

divergences, which owe their speed to non-trivial structural properties implied by Result 3.
Most fundamental of the four is Result 1, which forms the theoretical foundation of TDA in
the Bregman setting. It implies that the Čech and Delaunay complexes for a given radius
have the same homotopy type as the union of Bregman balls. Combined with the Nerve
Theorem for filtrations, it also implies that the filtration of Čech and Delaunay complexes
have the same persistence diagram as the filtration of the unions. In the practice of TDA,
the filtration of Vietoris-Rips complexes is often substituted for the filtration of Čech or
Delaunay complexes. For metrics, this is justified by the small bottleneck distance between
the persistence diagrams if drawn in log-log scale. Result 2 shows that such a substitution
is not generally justified for Bregman divergences. In other words, for some Bregman
divergences higher order interactions have to be taken into account explicitly as they are not
approximated by implications of pairwise interactions. To appreciate Results 3 and 4, we
note that the Čech radius function maps every simplex to the smallest radius, r, such that
the simplex belongs to the Čech complex for radius r, and similarly for Delaunay. Being
a generalized discrete Morse function has important structural consequences that make it
possible to construct Čech and Delaunay complexes in an output-sensitive manner. We
support this claim with experiments.

SoCG 2017

39:4 Topological Data Analysis with Bregman Divergences

F(Ω)

Ω
x

DF (x||y)

y

DF (y||x)

Figure 1 Geometric interpretation of the Bregman divergence associated with the function F

on Ω.

2 Bregman Divergences

Bregman divergences are sometimes called distances because they measure dissimilarity. As
we will see shortly, they are generally not symmetric, and they always violate the triangle
inequality. So really they satisfy only the first axiom of a metric, mapping ordered pairs to
non-negative numbers and to zero iff the two elements are equal.

We begin with a formal introduction of the concept, which originated in the paper by
Bregman [8]. Their basic properties are well known; see the recent paper by Boissonnat,
Nielsen and Nock [6]. We stress that our setting is slightly different: following Bauschke and
Borwein [4], we define the divergences in terms of functions of Legendre type. The crucial
benefit of this additional requirement is that the conjugate of a function of Legendre type is
again a function of Legendre type, even if the domain is bounded as in the important case
of the standard simplex. In contract, the conjugate of a differentiable and strictly convex
function that is not of Legendre type is not necessarily again a convex function.

Functions of Legendre type. Let Ω ⊆ Rn be an nonempty open convex set and F : Ω→ R
a strictly convex differentiable function. In addition, we require that the length of the
gradient of F goes to infinity whenever we approach the boundary of Ω. Following [30, page
259], we say that F : Ω → R is a function of Legendre type. As suggested by the naming
convention, these conditions are crucial when we apply the Legendre transform to F . The
last condition prevents us from arbitrarily restricting the domain and is vacuous whenever
Ω does not have a boundary, for example when Ω = Rn. For points x, y ∈ Ω, the Bregman
divergence from x to y associated with F is the difference between F and the best linear
approximation of F at y, both evaluated at x:

DF (x‖y) = F (x)− [F (y) + 〈∇F (y), x− y〉] . (1)

As illustrated in Figure 1, we get DF (x‖y) by first drawing the hyperplane that touches the
graph of F at the point (y, F (y)). We then intersect the vertical line that passes through x
with the graph of F and the said hyperplane: the Bregman divergence is the height difference
between the two intersections. Note that it is not necessarily symmetric: DF (x‖y) 6= DF (y‖x)
for most F, x, y.

Accordingly, we introduce two balls of radius r ≥ 0 centered at a point x ∈ Ω: the primal
Bregman ball containing all points y so that the divergence from x to y is at most r, and the

H. Edelsbrunner and H. Wagner 39:5

F(Ω)

Ω

r

r

x

Figure 2 The primal Bregman ball with center x is obtained by illuminating the graph of F from
below. In contrast, the dual Bregman ball is constructed by cutting the graph with the elevated line.

dual Bregman ball containing all points y so that the divergence from y to x as at most r:

BF (x; r) = {y ∈ Ω | DF (x‖y) ≤ r}; (2)
B′F (x; r) = {y ∈ Ω | DF (y‖x) ≤ r}. (3)

To construct the primal ball geometrically, we take the point (x, F (x)− r) at height r below
the graph of F and shine light along straight half-lines emanating from this point onto the
graph. The ball is the vertical projection of the illuminated portion onto Rn; see Figure 2.
To construct the dual ball geometrically, we start with the hyperplane that touches the graph
of F at (x, F (x)), translating it to height r above the initial position. The ball is the vertical
projection of the portion of the graph below the translated hyperplane onto Rn; see again
Figure 2.

Since DF is not necessarily symmetric, the two Bregman balls are not necessarily the
same. Indeed, the dual ball is necessarily convex while the primal ball is not.

I Result 1 (Convexity Property). DF : Ω × Ω → R is strictly convex in the first argument
but not necessarily convex in the second argument.

Proof. Fixing y, set f(x) = DF (x‖y). According to (1), f is the difference between F and
an affine function; compare with the geometric interpretation of the dual Bregman ball. The
strict convexity of F implies the strict convexity of f . This argument does not apply to
g(y) = DF (x‖y), which we obtain by fixing x, and it is easy to find an example in which g is
non-convex; see Figure 4. J

Legendre transform and conjugate function. In a nutshell, the Legendre transform applies
elementary polarity to the graph of F , giving rise to the graph of another, conjugate function,
F ∗ : Ω∗ → R, that relates to F in interesting ways. If F is of Legendre type then so is F ∗;
see [30, Theorem 26.5].

The notion of polarity we use in this paper relates points in Rn × R with affine functions
Rn → R. Specifically, it maps a point C = (c, γ) to the function defined by C∗(x) = 〈c, x〉−γ,
and it maps C∗ back to (C∗)∗ = C. We refer to Figure 3 for an illustration.

As a first step in constructing the conjugate function, we get Ω∗ as the set of points
e = c∗ = ∇F (c) with c ∈ Ω. We define h : Ω → Ω∗ by mapping c to h(c) = c∗. Note that
differentiability of strictly convex functions implies continuous differentiability [13, Theorem
2.86], hence h is a homeomorphism between the two domains.

SoCG 2017

39:6 Topological Data Analysis with Bregman Divergences

B ∗

Q ∗

p

P

a

A

q

Q

b

B
P ∗

A ∗

Figure 3 Top: the graph of F and the tangent lines that illustrate the two Bregman divergences
between a and p associated with F . Bottom: the graph of F ∗ and the tangent lines that illustrate
the two Bregman divergences between b = a∗ and q = p∗ associated with F ∗. Note that A∗, B∗, P ∗,
Q∗ are the affine functions corresponding to points A, B, P, Q.

The conjugate function, F ∗ : Ω∗ → R, is then defined by mapping e to F ∗(e) = ε such
that (e, ε) is the polar point of the affine function whose graph touches the graph of F in the
point (c, F (c)). Writing b = a∗ and q = p∗, we eventually get

DF ∗(b‖q) = F ∗(b)− P ∗(b) ≥ 0, (4)
DF ∗(q‖b) = F ∗(q)−A∗(q) ≥ 0. (5)

For more details see the Appendix present in the full version of this paper. For explanation,
see again Figure 3. The left-hand sides of (4) and (5) are both non-negative and vanish iff
b = q. Since this is true for all points b, q ∈ Ω∗, F ∗ is strictly convex, provided Ω∗ is convex.
Proving that this assumption is always fulfilled is more involved. We therefore resort to a
classical theorem [30, Theorem 26.5], which states that F ∗ is again of Legendre type and,
in particular, Ω∗ is convex. Hence, F ∗ defines a Bregman divergence and, importantly, this
divergence is symmetric to the one defined by F .

I Result 2 (Duality Property). Let F : Ω → R and F ∗ : Ω∗ → R be conjugate functions of
Legendre type. Then DF (a‖p) = DF ∗(p∗‖a∗) for all a, p ∈ Ω.

In words, the Legendre transform preserves the divergences, but it does so by exchanging
the arguments. This is interesting because DF is strictly convex in the first argument and so
is DF ∗ , only that its first argument corresponds to the second argument of DF . To avoid
potential confusion, we thus consider the primal and dual Bregman balls of F ∗:

BF ∗(u; r) = {v ∈ Ω∗ | DF ∗(u‖v) ≤ r}, (6)
B′F ∗(u; r) = {v ∈ Ω∗ | DF ∗(v‖u) ≤ r}, (7)

where we write u = x∗ and v = y∗ so we can compare the two balls with the ones defined
in (2) and (3). As mentioned earlier, both dual balls are necessarily convex while both
primal balls are possibly non-convex. Recall the homeomorphism h : Ω→ Ω∗ that maps x to
x∗. It also maps BF (x; r) to B′F ∗(u; r) and B′F (x; r) to BF ∗(u; r). In words, it makes the

H. Edelsbrunner and H. Wagner 39:7

non-convex ball convex and the convex ball non-convex, and it does this while preserving the
divergences. We use this property to explain the necessity on using functions of Legendre
type; it also plays a crucial role later. Consider a dual Bregman ball with a non-convex
conjugate image, namely the corresponding primal ball. Then the restriction of F to this
dual ball is strictly convex and differentiable. However, it is not of Legendre type and its
conjugate has a non-convex domain.

Examples. We close this section with a short list of functions, their conjugates, and the
corresponding Bregman divergences. Half the squared Euclidean norm maps a point x ∈ Rn

to F (x) = 1
2‖x‖

2. The gradient is ∇F (x) = x, and the conjugate is defined by F ∗(x) = F (x).
The divergence associated with F is half the squared Euclidean distance:

DF (x‖y) = 1
2‖x− y‖

2
. (8)

This Bregman divergence is special because it is symmetric in the two arguments.
The Shannon entropy of a discrete probability distribution is −

∑n
i=1 xi ln xi. To turn

this into a convex function, we change the sign, and to simplify the computations, we subtract
the sum of the xi, defining F (x) =

∑n
i=1[xi ln xi − xi] over the positive orthant, which we

denote as Rn
+. The gradient is ∇F (x) = [ln x1, ln x2, . . . , ln xn]T , and the conjugate is the

exponential function, F ∗(u) =
∑n

i=1 e
ui , with u = x∗, defined on Rn. Associated with F is

the Kullback-Leibler divergence and with F ∗ is the exponential loss:

DF (x‖y) =
n∑

i=1

[
xi ln xi

yi
− xi + yi

]
, (9)

DF ∗(u‖v) =
n∑

i=1
[eui − (ui − vi + 1)evi] . (10)

The Kullback-Leibler is perhaps the best known Bregman divergence; it is also referred to as
the information divergence, information gain, relative entropy; see [1, page 57]. If applied to
finite distributions, F would be defined on the standard (n− 1)-simplex, where it measures
the expected number of extra bits required to code samples from x using a code that is
optimized for y instead of for x. Since the (n− 1)-simplex is the intersection of Rn

+ with a
hyperplane, this restriction of F is again of Legendre type. In this particular case, we can
extend the function to the closed (n − 1)-simplex, so that some coordinates may be zero,
provided we accept infinite divergences for some pairs. Importantly, our constructions will
not use the divergence directly, circumventing the problem with infinite divergences. As
explained in Section 4, we will use the radius of first intersection of balls, which is always
finite for the Kullback-Leibler divergence. Consequently, the framework is suitable also for
sparse data, pervasive for example in text-retrieval applications.

The Burg entropy maps a point x ∈ Rn
+ to F (x) =

∑n
i=1[1− ln xi]. The components of

the gradient are −1/xi, for 1 ≤ i ≤ n. The conjugate is the function F ∗ : Rn
− → R defined

by F ∗(u) =
∑n

i=1 [1− ln |ui|]. Associated with F is the Itakura-Saito divergence:

DF (x‖y) =
n∑

i=1

[
xi

yi
− ln xi

yi
− 1
]
. (11)

We note that F and F ∗ are very similar, but their domains are diagonally opposite orthants.
Indeed, the Itakura-Saito distance is not symmetric and generates non-convex primal balls;
see Figure 4.

SoCG 2017

39:8 Topological Data Analysis with Bregman Divergences

Figure 4 Two primal Itakura-Saito balls and the dual Itakura-Saito ball centered at the point
where the primal balls touch. Its boundary passes through the centers of the primal balls.

3 Proximity Complexes for Bregman divergences

In this section, we extend the standard constructions of topological data analysis (Čech,
Vietoris-Rips, Delaunay complexes) to the setting of Bregman divergences. Importantly, we
prove the contractibility of non-empty common intersections of Bregman balls and Voronoi
domains. This property guarantees that the Čech and Delaunay complexes capture the
correct homotopy type of the data.

Contractibility for balls. Every non-empty convex set is contractible, which means it has
the homotopy type of a point. The common intersection of two or more convex sets is either
empty or again convex and therefore contractible. While primal Bregman balls are not
necessarily convex, we show that their common intersections are contractible unless empty.
The reason for our interest in this property is the Nerve Theorem [7, 24], which asserts that
the nerve of a cover with said property has the same homotopy type as the union of this
cover.

I Result 3 (Contractibility Lemma for Balls). Let F : Ω → R be of Legendre type, X ⊆ Ω,
and r ≥ 0. Then

⋂
x∈X BF (x; r) is either empty or contractible.

Proof. Recall the homeomorphism h : Ω → Ω∗ obtained as a side-effect of applying the
Legendre transform to F . It maps every primal Bregman ball in Ω homeomorphically to a
dual Bregman ball in Ω∗, which is convex. Similarly, it maps the common intersection of
primal Bregman balls in Ω homeomorphically to the common intersection of dual Bregman
balls in Ω∗: h(X) = Y in which X =

⋂
x∈X BF (x; r) and Y =

⋂
x∈X B′F ∗(x∗; r). Since X and

Y are homeomorphic, they have the same homotopy type. Hence, either X = Y = ∅ or Y is
convex and X is contractible. J

Čech and Vietoris-Rips constructions for Bregman divergences. The contractibility of
the common intersection suggests we take the nerve of the Bregman balls. Given a finite
set X ⊆ Ω and r ≥ 0, we call the resulting simplicial complex the Čech complex of X and r
associated with F . Related to it is the Vietoris-Rips complex, which is the clique complex of
the 1-skeleton of the Čech complex:

ČechF (X; r) = {P ⊆ X |
⋂

p∈P

BF (p; r) 6= ∅}, (12)

RipsF (X; r) = {Q ⊆ X |
(

Q
2
)
⊆ ČechF (X; r)}. (13)

In words, the Vietoris-Rips complex contains a simplex iff all its edges belong to the Čech
complex. We note that for F (x) = ‖x‖2, (13) translates to the usual Euclidean definition of
the Vietoris-Rips complex. Increasing the radius from 0 to ∞, we get a filtration of Čech

H. Edelsbrunner and H. Wagner 39:9

Figure 5 Three points for which pairwise intersecting dual Kullback-Leibler balls centered at
these points can be small, but triplewise intersecting such balls are necessarily large.

complexes and a filtration of Vietoris-Rips complexes. By construction, the Čech complex is
contained in the Vietoris-Rips complex for the same radius. If we measure distance with the
Euclidean metric, this relation extends to

Čech(X; r) ⊆ Rips(X; r) ⊆ Čech(X;
√

2r). (14)

Indeed, if all pairs in a set of k + 1 balls of radius r have a non-empty common intersection,
then increasing the radius to

√
2r guarantees that the k+1 balls have a non-empty intersection.

This fact is often expressed by saying that the two filtrations have a small interleaving distance
if indexed logarithmically.

No interleaving. The interleaving property expressed in (14) extends to general metrics –
except that the constant factor is 2 rather than

√
2 – but not to general Bregman divergences.

To see that (14) does not extend, we give an example of 3 points whose Bregman balls overlap
pairwise for a small radius but not triplewise until the radius is very large.

The example uses the exponential function defined on the standard triangle, which
we parametrize using barycentric coordinates. For convenience, the explanation uses the
conjugate function, which is the Shannon entropy; that is: we look at dual balls in which
distance is measured with the Kullback-Leibler divergence. Specifically, we use F (x) =∑3

i=1 xi ln xi. The barycentric coordinates are non-negative and satisfy
∑3

i=1 xi = 1. We
therefore get the maximum value of 0 at the three corners, and the minimum of − ln 3 at the
center of the triangle; see Figure 5. After some calculations, we get the squared length of
the gradient at x as 1

3 [(ln x1 − ln x2)2 + (ln x1 − ln x3)2 + (ln x2 − ln x3)2]. It goes to infinity
when x approaches the boundary of the triangle.

We construct the example using points near the midpoints of the edges. Choosing them
in the interior of the triangle but close to the boundary, the corresponding three tangent
planes are as steep as we like. Moving the planes upward, we get the dual balls as the
vertical projections of the parts of the graph of F on or below the planes. Moving the planes
continuously, we let r be the height above the initial positions, and note that r is also the
radius of the dual balls. Pairwise overlap between the balls starts when the three lines at
which the planes meet intersect the graph of F . This happens at r < ln 3. Triplewise overlap
starts when the point common to all three planes passes through the graph of F . This
happens at a value of r that we can make arbitrarily large.

SoCG 2017

39:10 Topological Data Analysis with Bregman Divergences

Contractibility for Voronoi domains. Čech and Vietoris-Rips complexes can be high di-
mensional and of exponential size, even if the data lives in low dimensions. To remedy this
shortcoming, we use the Delaunay (or alpha) complex; see [16, 17]. It is obtained by clipping
the balls before taking the nerve. We explain this by introducing the Voronoi domains of the
generating points as the clipping agents.

Letting X ⊆ Ω be finite, we define the primal and dual Voronoi domains of x ∈ X

associated with F as the sets of points for which x minimizes the Bregman divergence to or
from the point:

VF (x) = {a ∈ Ω | DF (x‖a) ≤ DF (y‖a),∀y ∈ X}; (15)
V ′F (x) = {a ∈ Ω | DF (a‖x) ≤ DF (a‖y),∀y ∈ X}. (16)

An intuitive construction of the primal domains grows the primal Bregman balls around the
points, stopping the growth at places where the balls meet. Similarly, we get the dual Voronoi
domains by growing dual Bregman balls. Not surprisingly, the primal Voronoi domains are
not necessarily convex, and the dual Voronoi cells are convex. To see the latter property,
we recall that the dual ball centered at x is constructed by translating the hyperplane that
touches the graph of F above x. Specifically, DF (a‖x) is the height at which the hyperplane
passes through the point (a, F (a)). This implies that we can construct the dual Voronoi
domains as follows:

For each x ∈ X, consider the half-space of points in Rn × R on or above the hyperplane
that touches the graph of F at (x, F (x)).
Form the intersection of these half-spaces, which is a convex polyhedron. We call its
boundary the upper envelope of the hyperplanes, noting that it is the graph of a piecewise
linear function from Rn to R.
Project the upper envelope vertically onto Rn. Each dual Voronoi domain is the intersec-
tion of Ω with the image of an n-dimensional face of the upper envelope.

We conclude that the dual Voronoi domains are convex and use this property to show that
the primal Voronoi domains intersect contractibly.

I Result 4 (Contractibility Lemma for Voronoi Domains). Let F : Ω→ R be of Legendre type,
and X ⊆ Ω finite. Then

⋂
x∈X VF (x) is either empty or contractible.

The proof is similar to that of the Contractibility Lemma for Balls and therefore omitted.

Delaunay construction for Bregman divergences. Taking the nerve of the primal Voronoi
domains, we get the Delaunay triangulation of X associated with F , which we denote as
DelF (X). Further restricting the primal Voronoi domains by primal Bregman balls of radius
r, we get the Delaunay complex of X and r associated with F :

DelF (X; r) = {P ⊆X |
⋂

p∈P

[BF (p;r) ∩ VF (p)] 6= ∅}. (17)

Assuming general position of the points in X, the Delaunay triangulation is a simplicial
complex of dimension at most n. We will be explicit about what we mean by general
position shortly. Combining the proofs of the two Contractibility Lemmas, we see that the
common intersection of any set of clipped primary balls is either empty or contractible. This
together with the Nerve Theorem implies that DelF (X; r) has the same homotopy type as
ČechF (X; r), namely the homotopy type of the union of the Bregman balls that define the
two complexes.

H. Edelsbrunner and H. Wagner 39:11

4 Algorithms

Recall that all three proximity complexes defined in Section 3 depend on a radius parameter.
In this section, we give algorithms that compute the values of this parameter beyond which the
simplices belong to the complexes. By focusing on the resulting radius functions, we decouple
the computation of the radius for each simplex from the technicalities of constructing the
actual simplicial complex. In particular, we show that the Čech complexes can be efficiently
reconstructed from the Vietoris-Rips complexes, and the Delaunay complexes from the
Delaunay triangulations. We exploit a connection with discrete Morse theory to develop
efficient algorithms.

Radius functions. Let X ⊆ Ω be finite, write ∆(X) for the simplex whose vertices are the
points in X, and recall that DelF (X) is the Delaunay triangulation of X associated with F .
The Čech, Vietoris-Rips, and Delaunay radius functions associated with F ,

%Čech
F : ∆(X)→ R, (18)

%Rips
F : ∆(X)→ R, (19)
%Del

F : DelF (X)→ R, (20)

are defined such that P ∈ ČechF (X; r) iff %Čech
F (P) ≤ r, and similarly for Vietoris-Rips and

for Delaunay. By definition of the Čech complex, %Čech
F (P) is the minimum radius at which

the primal Bregman balls centered at the points of P have a non-empty common intersection.
We are interested in an equivalent characterization using dual Bregman balls. To this end,
we say that a dual Bregman ball, B′, includes P if P ⊆ B′, and we call B′ the smallest
including dual ball if there is no other dual ball that includes P and has a smaller radius.
Because F is strictly convex, the smallest including dual ball of P is unique; see Figure 4,
which shows the smallest including dual Itakura-Saito ball of a pair of points. We call B′
empty if no point of X lies in its interior, and we call it a circumball of P if all points of P
lie on its boundary. We observe that a simplex P ∈ ∆(X) belongs to DelF (X) iff it has an
empty dual circumball. Because F is strictly convex, the smallest empty dual circumball of
a simplex is either unique or does not exist. The characterization of the radius functions in
terms of dual balls is strictly analogous to the Euclidean case studied in [3].

I Result 5 (Radius Function Lemma). Let F : Ω→ R be of Legendre type, X ⊆ Ω finite, and
∅ 6= P ⊆ X.
I. %Čech

F (P) is the radius of the smallest including dual ball of P , and %Rips
F (P) is the maximum

radius of the smallest including dual balls of the pairs in P .
II. If P ∈ DelF (X), %Del

F (P) is the radius of the smallest empty dual circumball of P .
We omit the proof, which is not difficult. Every circumball also includes, which implies that
%Rips

F (P) ≤ %Čech
F (P) ≤ %Del

F (P) whenever the radius functions are defined. Correspondingly,
DelF (X; r) ⊆ ČechF (X; r) ⊆ RipsF (X; r) for every value of r.

General position. It is often convenient and sometimes necessary to assume that the points
in X ⊆ Ω are in general position, for example when we require the Delaunay triangulation
be a simplicial complex in Rn. Here is a notion that suffices for the purposes of this paper.

I Result 6 (Definition of General Position). Let Ω ⊆ Rn and F : Ω→ R of Legendre type. A
finite set X ⊆ Ω is in general position with respect to F if, for every P ⊆ X of cardinality
at most n+ 1,
I. the points in P are affinely independent,
II. no point of X \ P lies on the boundary of the smallest dual circumball of P .

SoCG 2017

39:12 Topological Data Analysis with Bregman Divergences

Let k = dimP . Property I implies that P has an (n− k)-parameter family of circumballs.
In particular, there is at least one circumball as long as k ≤ n. Property II implies that
no two different simplices have the same smallest dual circumball. In particular, no two
n-simplices in the Delaunay triangulation have the same circumball.

Discrete Morse theory. For points in general position, two of the radius functions exhibit
a structural property that arises in the translation of Morse theoretic ideas from the smooth
category to the simplicial category. Following [3], we extend the original formulation of
discrete Morse theory given by Forman [19]. Letting K be a simplicial complex, and P,R ∈ K
two simplices, we write P ≤ R if P is a face of R. The interval of simplices between P and
R is [P,R] = {Q ∈ K | P ≤ Q ≤ R}. We call P the lower bound and R the upper bound of
the interval. A generalized discrete vector field is a partition of K into intervals. We call it
a generalized discrete gradient if there exists a function f : K → R such that f(P) ≤ f(Q)
whenever P is a face of Q, with equality iff P and Q belong to a common interval. A function
with this property is called a generalized discrete Morse function. To get an intuitive feeling
for this concept, consider the sequence of sublevel sets of f . Any two contiguous sublevel
sets differ by one or more intervals, and any two of these intervals are independent in the
sense that neither interval contains a face of a simplex in the other interval. Indeed, this
property characterizes generalized discrete Morse functions.

I Result 7 (GDMF Theorem). Let F : Ω → R be of Legendre type and let X ⊆ Ω be finite
and in general position. Then %Čech

F : ∆(X) → R and %Del
F : DelF (X) → R are generalized

discrete Morse functions. (We give a full proof in the Appendix of the full version of this
paper.)

Observe that the Vietoris-Rips radius function is not a generalized discrete Morse function.
The structural properties implied by the GDMF Theorem will be useful in the design of
algorithms that compute the radius functions. The theorem should be compared with the
analogous result in the Euclidean case [3]. The arguments used there can be translated
almost verbatim to prove additional structural results for Bregman divergences. Perhaps
most importantly, they imply that the Wrap complex of F and X is well defined – see [15]
for the original paper on these complexes defined in 3-dimensional Euclidean space – and
that the Čech complex collapses to the Delaunay complex and further to the Wrap complex,
all defined for the same radius.

Bregman circumball algorithm. Depending on how the function F is represented, there
may be a numerical component to the algorithms needed to find smallest including dual
balls. Consider a k-simplex Q ⊆ X with 0 ≤ k ≤ n. Assuming general position, the affine
hull of the points A = (a, F (a)) with a ∈ Q is a k-dimensional plane, which we denote as
Q. We are interested in the point (q, ψ) ∈ Q that maximizes ψ − F (q), the height above the
graph of F . The point q is the center of the smallest dual circumball of Q, and ψ − F (q) is
the radius. Interestingly, this observation implies that the point of first intersection of two
primal Bregman balls lies on a line joining their centers. For later reference, we assume a
routine that computes this point, possibly using a standard numerical optimization method.

dualball routine CircumBall (Q):
let Q be the affine hull of the points (a, F (a)), a ∈ Q;
find (q, ψ) ∈ Q maximizing ψ − F (q);
return (q, ψ − F (q)).

H. Edelsbrunner and H. Wagner 39:13

This is an unconstrained k-dimensional convex optimization, and k is much smaller than n
for high dimensional data. Indeed, the optimization can be performed in the space of affine
coordinates of the plane Q. Importantly, the Hessian is of dimension k × k and not n× n,
which would be prohibitive. This allows us to use second-order quasi-Newton methods, such
as the fast BFGS algorithm [27].

Note that the smallest dual circumball of Q includes Q but is not necessarily the smallest
including dual ball. However, the latter is necessarily the smallest dual circumball of a face
of Q. Next, we show how the CircumBall routine is used to efficiently compute the radius
functions.

Čech radius function algorithm. According to the Radius Function Lemma (i), the value of
a simplex, Q ∈ ∆(X), under the Čech radius function is the radius of the smallest including
dual ball of Q. To compute this value, we visit the simplices in a particular sequence.
Recalling the GDMF Theorem, we note that the smallest including dual ball of a simplex
Q is the smallest dual circumball of the minimum face P ⊆ Q in the same interval. It is
therefore opportune to traverse the simplices in the order of increasing dimension. Whenever
the smallest dual circumball of a simplex Q is not the smallest including dual ball, we get
%Čech

F (Q) from one of its codimension 1 faces. We identify such a simplex Q when we come
across a face whose smallest dual circumball includes Q, and we mark Q with the center
and radius of this ball. The following pseudocode computes the radius function of the Čech
complex restricted to the k-skeleton of ∆(X) for some nonnegative integer k:

for i = 0 to k do
forall P ⊆ X with dimP = i do

if P unmarked then (p, r) = CircumBall(P);
forall a ∈ X with DF (a‖p) < r do mark P ∪ {a} with (p, r).

As in the Euclidean setting, the size of ∆(X) is exponential in the size of X so that the
computations are feasible only for reasonably small values of k or small radius cut-offs. In
practice, we would run the algorithm with a radius cut-off, or use an approximation strategy
yielding a similar persistence diagram.

Observe the similarity to the standard algorithm for constructing the k-skeleton of the
Vietoris-Rips complex: after adding all edges of length at most 2r, we add simplices of
dimension 2 and higher whenever possible. Geometric considerations are thus restricted to
edges and the rest of the construction is combinatorial; see [33] for a fast implementation.
Our algorithm can be interpreted as constructing the Čech complex from the Vietoris-Rips
complex at the cost of at most one call to CircumBall per simplex. This is more efficient
than explicitly computing the smallest including dual ball for each simplex, even if we use
fast randomized algorithms as described in [26, 32]. Furthermore, the CircumBall routine
is only called for the lower bounds of the intervals of the Čech radius function or, equivalently,
for each subcomplex in the resulting filtration. The number of such intervals depends on
the relative position of the points in X and not only on the cardinality. Notwithstanding,
the number of intervals is significantly smaller than the number of simplices in the Čech
complex. This suggests that only a small overhead is needed to compute the Čech from the
Vietoris-Rips complexes. Our preliminary experiments for the Kullback-Leibler divergence
support this claim; see Table 1. Note that the number of calls to the CircumBall routine
is between 1

10 and 1
3 of the number of simplices, with an average between 6 and 15 function

evaluations per call.

SoCG 2017

39:14 Topological Data Analysis with Bregman Divergences

Table 1 Experimental evaluation on three synthetic datasets: (A) Full Čech complex with 20
points in R20; (B) 3-skeleton with 256 points in R4 and radius cutoff r = 0.1; (C) 4-skeleton with
4,000 points in R4 and radius cutoff r = 0.01.

A (20 pts) B (256 pts) C (4,000 pts)

#edges 190 7,715 36,937
#simplices 1,048,575 1,155,301 1,222,688
#calls to CircumBall 104,030 346,475 283,622
#function evaluations in CircumBall 1,523,295 2,904,603 1,783,474

Delaunay radius function algorithm. According to the Radius Function Lemma (ii), the
value of a simplex Q ∈ DelF (X) under the Delaunay radius function is the radius of the
smallest empty dual Bregman circumball of Q.

real routine DelaunayRadius (Q):
(q, r) = CircumBall(Q);
forall a ∈ X \Q do

if DF (a‖q) < r then return none;
return r.

The CircumBall routine gives only the smallest dual circumball of Q, and if it is not
empty, then we have to get the value of the Delaunay radius function from somewhere else.
According to the GDMF Theorem, we get the value from the maximum simplex in the
interval that contains Q. It is therefore opportune to traverse the simplices of the Delaunay
triangulation in the order of decreasing dimension. Whenever the smallest dual circumball
of a simplex Q is non-empty, we get %Del

F (Q) from one of the simplices that contain Q as a
codimension 1 face.

As already observed in [6], we can construct the full Delaunay triangulation, DelF (X),
using existing algorithms for the Euclidean case. We get the Delaunay complexes as sublevel
sets of the radius function. Specifically, we first use the polarity transform to map the points
(x, F (x)) to the corresponding affine functions; see Section 2. We then get a geometric
realization of DelF (X) from the vertical projection of the upper envelope of the affine
functions onto Rn, which is a Euclidean weighted Voronoi diagram, also known as power
diagram or Dirichlet tessellation. Its dual is the Euclidean weighted Delaunay triangulation,
also known as regular or coherent triangulation. The data that defines these Euclidean
diagrams are the points x ∈ X with weights ξ = F (x)− ‖x‖2. Finally, after computing the
radius function on all simplices in DelF (X), we get the Delaunay complexes as a filtration of
this weighted Delaunay triangulation. Interestingly, this is not necessarily the filtration we
obtain by simultaneously and uniformly increasing the weights of the points.

5 Discussion

The main contribution of this paper is the extension of the mathematical and computational
machinery of topological data analysis (TDA) to applications in which distance is measured
with a Bregman divergence. This includes text and image data often compared with the
Kullback-Leibler divergence, and speech and sound data often studied with the Itakura-Saito
divergence. It is our hope that the combination of Bregman divergences and TDA technology
will bring light into the generally difficult study of high-dimensional data. In support of
this optimism, Rieck and Leitte [29] provide experimental evidence that good dimension

H. Edelsbrunner and H. Wagner 39:15

reduction methods preserve the persistent homology of the data. With our extension to
Bregman divergences, such experiments can now be performed for a much wider spectrum of
applications. There are specific mathematical questions whose incomplete understanding is
currently an obstacle to progress in the direction suggested by this paper:

A cornerstone of TDA is the stability of its persistence diagrams, as originally proved in
[12]. How does the use of Bregman divergences affect the stability of the diagrams?
Related to the question of stability is the existence of sparse complexes and filtrations for
data in Bregman spaces whose persistence diagrams are close to the ones we get for the
Čech and Delaunay complexes.
What about effective approximations of the introduced radius functions? In other
words, are there simpler constructions yielding similar results, preferably using existing
computational packages?

Acknowledgements The authors thank Žiga Virk for discussions on the material presented
in this paper.

References
1 S. Amari and H. Nagaoka. Methods of Information Geometry. Amer. Math. Soc., Provid-

ence, Rhode Island, 2000.
2 A. Banerjee, S. Merugu, I.S. Dhillon and J. Ghosh. Clustering with Bregman divergences.

J. Mach. Learn. Res. 6 (2005), 1705–1749.
3 U. Bauer and H. Edelsbrunner. The Morse theory of Čech and Delaunay complexes. Trans.

Amer. Math. Soc., 369 (2017), 3741–3762.
4 H.H. Bauschke and J.M. Borwein. Legendre functions and the method of random Bregman

projections. J. Convex Analysis 4 (1997), 27–67.
5 B. Bigi. Using Kullback-Leibler distance for text categorization. In “Proc. 25th European

Conf. Inform. Retrieval, 2003”, LNCS 2633, 305–319.
6 J.-D. Boissonnat, F. Nielsen and R. Nock. Bregman Voronoi diagrams. Discrete Comput.

Geom. 44 (2010), 281–307.
7 K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund. Math.

35 (1948), 217–234.
8 L.M. Bregman. The relaxation method of finding the common point of convex sets and

its applications to the solution of problems in convex programming. USSR Comput. Math.
Math. Phys. 7 (1967), 200–217.

9 G. Carlsson. Topology and data. Bull. Amer. Math. Soc. 46 (2009), 255–308.
10 J.M. Chan, G. Carlsson and R. Rabadan. Topology of viral evolution. Proc. Natl. Acad.

Sci. 110 (2013), 18566–18571.
11 F. Chazal and S.Y. Oudot. Towards persistence-based reconstruction in Euclidean spaces.

In “Proc. 24th Ann. Sympos. Comput. Geom., 2008”, 232–241.
12 D. Cohen-Steiner, H. Edelsbrunner and J. L. Harer. Stability of persistence diagrams. Dis-

crete Comput. Geom. 37 (2007), 103–120.
13 A. Dhara and J. Dutta. Optimality Conditions in Convex Optimization: a Finite-

dimensional View. CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2012.
14 M.N. Do and M. Vetterli. Wavelet-based texture retrieval using generalized Gaussian dens-

ity and Kullback-Leibler distance. IEEE Trans. Image Proc. 11 (2002), 146–158.
15 H. Edelsbrunner. Surface reconstruction by wrapping finite point sets in space. In Discrete

and Computational Geometry. The Goodman-Pollack Festschrift, 379–404, eds. B. Aronov,
S. Basu, J. Pach and M. Sharir, Springer-Verlag, 2003.

SoCG 2017

39:16 Topological Data Analysis with Bregman Divergences

16 H. Edelsbrunner and J. L. Harer. Computational Topology. An Introduction. Amer. Math.
Soc., Providence, Rhode Island, 2010.

17 H. Edelsbrunner, E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics 13
(1994), 43–72.

18 C. Févotte, N. Bertin and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-
Saito divergence: with application to music analysis. Neural Comput. 21 (2009), 793–830.

19 R. Forman. Morse theory for cell complexes. Adv. Math. 134 (1998), 90–145.
20 A. Hatcher. Algebraic Topology. Cambridge Univ. Press, Cambridge, England, 2002.
21 A. Huang. Similarity measures for text document clustering. Proc. 6th New Zealand Com-

puter Science Research Student Conference, 49–56, 2008.
22 F. Itakura and S. Saito. An analysis-synthesis telephony based on the maximum likelihood

method. In “Proc. 6th Internat. Congress Acoustics, 1968”, Tokyo, Japan, c17–c20.
23 S. Kullback and R.A. Leibler. On information and sufficiency. Ann. Math. Stat. 22 (1951),

79–86.
24 J. Leray. Sur la forme des espaces topologiques et sur les points fixes des représentations.

J. Math. Pures Appl. 24 (1945), 95–167.
25 T. Nakamura, Y. Hiraoka, A. Hirata, E.G. Escolar and Y. Nishiura. Persistent homology

and many-body atomic structure for medium-range order in the glass. Nanotechnology, 26
(2015), 304001.

26 F. Nielsen and R. Nock. On the smallest enclosing information disk. Proc. 18th Canad.
Conf. Comput. Geom., 2006.

27 J. Nocedal and S. Wright. Numerical Optimization. Springer Science and Business Media,
2006.

28 A. Port, I. Gheorghita, D. Guth, J.M. Clark, C. Liang, S. Dasu and M. Marcolli. Persistent
topology of syntax. arXiv:1507.05134, 2015.

29 B. Rieck, H. Leitte. Persistent homology for the evaluation of dimensionality reduction
schemes. Computer Graphics Forum 34 (2015), 431–440.

30 R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey,
1970.

31 T. Sousbie. The persistent cosic web and its filamentary structure–I. Theory and imple-
mentation. Monthly Notices Royal Astro. Soc. 414 (2011), 350–383.

32 E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends
in Computer Science, H.Ȧ. Maurer (ed.), Springer, LNCS 555 (1991), 359–370.

33 A. Zomorodian. Fast construction of Vietoris-Rips complex. Computer & Graphics 34
(2010), 263–271.

Finding Small Hitting Sets in Infinite Range
Spaces of Bounded VC-Dimension
Khaled Elbassioni

Masdar Institute of Science and Technology, Abu Dhabi, UAE
kelbassioni@masdar.ac.ae

Abstract
We consider the problem of finding a small hitting set in an infinite range space F = (Q,R)
of bounded VC-dimension. We show that, under reasonably general assumptions, the infinite-
dimensional convex relaxation can be solved (approximately) efficiently by multiplicative weight
updates. As a consequence, we get an algorithm that finds, for any δ > 0, a set of size O(sF (z∗F))
that hits (1− δ)-fraction of R (with respect to a given measure) in time proportional to log(1

δ),
where sF (1

ε) is the size of the smallest ε-net the range space admits, and z∗F is the value of
the fractional optimal solution. This exponentially improves upon previous results which achieve
the same approximation guarantees with running time proportional to poly(1

δ). Our assumptions
hold, for instance, in the case when the range space represents the visibility regions of a polygon in
R2, giving thus a deterministic polynomial-time O(log z∗F)-approximation algorithm for guarding
(1 − δ)-fraction of the area of any given simple polygon, with running time proportional to
polylog(1

δ).

1998 ACM Subject Classification G.1.6 Convex Programming, I.3.5 Geometric Algorithms, Lan-
guages, and Systems

Keywords and phrases VC-dimension, approximation algorithms, fractional covering, multiplic-
ative weights update, art gallery problem, polyhedral separators, geometric covering

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.40

1 Introduction

Let F = (Q,R) be a range space defined by a (possibly) infinite set of ranges R ⊆ 2Q over a
(possibly) infinite set Q. A hitting set of R is a subset H ⊆ Q such that H ∩R 6= ∅ for all
R ∈ R. Finding a hitting set of minimum size for a given range space is a fundamental problem
in computational geometry. For finite range spaces (that is, when Q is finite), standard
algorithms for SetCover [29, 33, 13] yield (log |Q|+1)-approximation in polynomial time, and
this is essentially the best possible guarantee assuming P 6= NP [17]. Better approximation
algorithms exist for special cases, such as range spaces of bounded VC-dimension [8], of
bounded union complexity [15, 47], of bounded shallow cell complexity [9], as well as several
classes of geometric range spaces [3, 40, 30]. Many of these results are based on showing
the existence of a small-size ε-net for the range space F and then using the multiplicative
weights update algorithm of Brönnimann and Goodrich [8]. For instance, if a range space
F has VC-dimension d, then it admits an ε-net of size O(dε log 1

ε) [27, 31], which by the
above mentioned method implies an O(d · log OptF)-approximation algorithm for the hitting
set problem for F , where OptF denotes the size of a minimum-size hitting set. Even et
al. [19] observed that this can be improved to O(d · log z∗F)-approximation by first solving
the LP-relaxation of the problem to obtain the value of the fractional optimal solution z∗F ,
and then finding an ε-net, with ε := 1/z∗F .

© Khaled Elbassioni;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

The multiplicative weights update algorithm in [8] works by maintaining weights on the
points. The straightforward extension to infinite (or continuous) range spaces (that is, the
case when Q is infinite) does not seem to work, since the bound on the number of iterations
depends on the measure of the regions created during the course of the algorithm, which can
be arbitrarily small. In this paper we take a different approach, which can be thought of as
a combination of the methods in [8] and [19] (with LP replaced by an infinite-dimensional
convex relaxation1):

We maintain weights on the ranges (in contrast to the method of Brönnimann and
Goodrich [8] which maintains weights on the points, and the second method suggested by
Agarwal and Pan [1] which maintains weights on both points and ranges);
We first solve the covering convex relaxation within a factor of 1+ε using the multiplicative
weights update (MWU) methoid, extending the approach in [21] to infinite-dimensional
covering LP’s (under reasonable assumptions);
We finally use the rounding idea of [19] to get a small integral hitting set from the
obtained fractional solution.

Informal main theorem. There is an algorithm that, given a range space F = (Q,R) of VC-
dimension d and δ > 0, (under mild assumptions) finds a subset of Q of size O(d · z∗F log z∗F)
that hits (1− δ)-fraction of R (with respect to a given measure) in time polynomial in the
input description of F and log(1

δ).

This exponentially improves upon previous results2 which achieve the same approximation
guarantees, but with running time depending polynomially on 1

δ . It should be noted that
the main contribution of this paper is an efficient algorithm for approximately solving the
infinite-dimensional covering linear programming relaxation with an infinite number of
constraints. Even though such relaxation is convex, none of the known polynomial-time
methods for convex programming (such as the ellipsoid method and interior point methods)
can be used since their running time depends polynomially on the dimension. For the class of
infinite-dimensional covering linear programs with infinitely many constraints corresponding
to the ranges of a range space, we observe an interesting connection between the convergence
of the MWU method and the fact that the range space has bounded VC-dimension.

We apply this result to a number of problems:
The art gallery problem: given a simple polygon H, our main theorem implies that
there is a deterministic polytime O(log z∗F)-approximation algorithm (with running time
proportional to polylog(1

δ)) for guarding (1 − δ)-fraction of the area of H. When δ is
(exponentially) small, this improves upon a previous result [12] which gives a polytime
algorithm that finds a set of size O(OptF · log 1

δ), guarding (1− δ)-fraction of the area of
H. Other (randomized) O(log OptF)-approximation results which provide full guarding
(i.e., δ = 0) also exist, but they either run in pseudo-polynomial time [16], restrict the set
of candidate guard locations [18, 22], or make some general position assumptions [6].
Covering a polygonal region by translates of a convex polygon: Given a collection H of
polygons in the plane and a convex polygon H0, our main theorem implies that there is a
randomized polytime O(1)-approximation algorithm for covering (1− δ) of the total area

1 More precisely, an infinite-dimensional covering linear programming relaxation with an infinite number
of constraints

2 More precisely (as pointed to us by an anonymous reviewer), using relative approximation results (see,
e.g., [26]), one can obtain the same approximation guarantees as our main Theorem by solving the
problem on the set system induced on samples of size O((d ·OptF/δ) log(1/δ))

K. Elbassioni 40:3

of the polygons in H by the minimum number of translates of H0. Previous results with
proved approximation guarantees mostly consider only the case when H is a set of points
[15, 28, 32].
Polyhedral separation in fixed dimension: Given two convex polytopes P1,P2 ⊆ Rd
such that P1 ⊂ P2, our main theorem implies that there is a randomized polytime
O(d · log z∗F)-approximation algorithm for finding a polytope P3 with the minimum
number of facets separating P1 from (1− δ)-fraction of the volume of ∂P2. This improves
the approximation ratio by a factor of d over the previous (deterministic) result [8] (but
which gives a complete separation).

The paper is organized as follows. In the next section we define our notation, recall some
preliminaries, and describe the infinite-dimensional convex relaxation. In Section 3, we state
our main result, followed by the algorithm for solving the fractional problem in Section 4
and its analysis in Section 5. The success of the whole algorithm relies crucially on being
able to efficiently implement the so-called maximization oracle, which essentially calls for
finding, for a given measure on the ranges, a point that is contained in the heaviest subset of
ranges (with respect to the given measure). We utilize the fact that the dual range space has
bounded VC-dimension in Section 6 to give an efficient randomized implementation of the
maximization oracle in the Real RAM model of computation. With more work, we show in
fact that, in the case of the art gallery problem, the maximization oracle can be implemented
in deterministic polynomial time in the bit model. Sections 7.2 and 7.3 describe the two
other applications.

2 Preliminaries

2.1 Notation
Let F = (Q,R) be a range space. For a point q ∈ Q and a subset of ranges R′ ⊆ R,
let R′[q] := {R ∈ R′ : q ∈ R}. The dual range space F∗ = (Q∗,R∗) is defined as the
range space with Q∗ := R and R∗ := {R[q] : q ∈ Q}. For a set of points P ⊆ Q, let
R|P := {R ∩ P : R ∈ R} be the projection of R onto P . Similarly, for a set of ranges
R′ ⊆ R, let R∗|R′ := {R′[q] : q ∈ Q}. For a positive integer r, we denote by gF (r) ≤ 2r the
smallest integer such that for every finite set P ⊆ Q of size r, we have |R|P | ≤ gF (r). For
p ∈ Q and R ∈ R, we denote by 1p∈R ∈ {0, 1} the indicator variable that takes value 1 if
and only if p ∈ R.

2.2 Assumptions
We shall make the following assumptions:
(A1) gF (r) ≤ crγ , for all integers r ≥ 0 and some constants γ ≥ 1 and c > 0 (known to the

algorithm).
(A2) There exists a finite integral optimum whose value OptF is bounded by a parameter

n (that is not necessarily part of the input description).
(A3) There exists an integrable function w0 : R → R+. We assume that the integration of

w0 over any subset of R of input description of size k can be computed in time poly(k).

Note that if assumption (A3) holds then w0 naturally defines a finite measure on R where
the measure for a (measurable) set R′ ⊆ R is w0(R′) :=

∫
R∈R′ w0(R)dR. 3

3 One may also consider a general measure on R. For simplicity of presentation, we assume here the
more restrictive condition (A3), as all the applications we consider have this restriction. However, the

SoCG 2017

40:4 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

2.3 Range spaces of bounded VC-dimension

We consider range spaces F = (Q,R) of bounded VC-dimension defined as follows. A finite
set P ⊆ Q is said to be shattered by F if R|P = 2P . The VC-dimension of F , denoted
VC-dim(F), is the cardinality of the largest subset of Q shattered by F . If arbitrarily large
subsets of Q can be shattered then VC-dim(F) = +∞. It is well-known [42, 43] that if
VC-dim(F) = d then gF (r) ≤ g(r, d) :=

∑d
i=0
(
r
i

)
= O(rd), and that VC-dim(F∗) < 2d+1.

Thus, if VC-dim(F) = d then Assumption (A1) is satisfied with γ = d.

2.4 ε-nets

Given a range space (Q,R), an integrable function µ : Q → R+, and a parameter ε > 0,
an ε-net for R (w.r.t. µ) is a set P ⊆ Q such that P ∩ R 6= ∅ for all R ∈ R that satisfy
µ(R) ≥ ε · µ(Q), where for Q′ ⊆ Q, we write µ(Q′) :=

∫
q∈Q′ µ(q)dq. We say that a range

space F admits an ε-net of size sF (·), if for any ε > 0, there is an ε-net of size sF (1
ε).

For range spaces of VC-dimension d, it is known [27, 31] that a random sample (w.r.t. to
the probability density function µ

µ(Q)) of size sF (1
ε) = O(dε log 1

ε) is an ε-net with (high)
probability Ω(1).

We say that µ : Q → R+ has (finite) support of size K if µ can be written as a conic
combination of K Dirac delta functions4: for any q ∈ Q, µ(q) :=

∑
p∈P µ(p)δp(q), for some

finite P ⊆ Q of cardinality K and non-negative multipliers µ(p), for p ∈ P . If this is the
case, an ε-net for R of size sF (1

ε) = O(dε log d
ε) can be computed deterministically in time

O(d)3d 1
ε2d logd(dε)K under the following assumption [7, 11, 34]:

(A1′) The range space is given by a subsystem oracle Subsys(F , P) that, given any finite
P ⊆ Q, returns the set of ranges R|P in time O(|P |)d+1.

It should also be noted that some special range spaces may admit a smaller size ε-net,
e.g., sF (1

ε) = O(1
ε) for half-spaces in R3 [35, 36]; see also [9, 30, 15, 47].

2.5 ε-approximations

Given the dual range space F∗, a probability density function w on R, and an ε > 0, an
ε-approximation is a finite subset of ranges R′ ⊆ R such that, for all q ∈ Q,∣∣∣∣ |R′[q]||R′|

− w(R[q])
w(R)

∣∣∣∣ ≤ ε; (1)

see, e.g., [10]. It is known [2, 10, 46] that if F = (Q,R) is a range space of VC-dimension
d, and w is an arbitrary probability density function on R, then for any ε > 0, a random
sample (w.r.t. w) of size O(d2d

ε2 log 1
εσ) is an ε-approximation for F∗, with probability 1− σ.

2.6 The fractional problem

Given a range space F = (Q,R), satisfying assumptions (A1)–(A3), the fractional covering
problem for F seeks to find an integrable function µ : Q→ R+, such that µ(R) ≥ 1 for all

extension to general measurable sets should be straightforward.
4 A Dirac delta function satisfies

∫
Q′
δp(q)dq = 1 if p ∈ Q′, and

∫
Q′
δp(q)dq = 0, for any Q′ ⊆ Q.

K. Elbassioni 40:5

R ∈ R and µ(Q) is minimized5:

z∗F : = inf
integrable µ

∫
q∈Q

µ(q)dq (F-hitting)

s.t.
∫
q∈R

µ(q)dq ≥ 1, ∀R ∈ R, (2)

µ(q) ≥ 0, ∀q ∈ Q.

Equivalently, it is required to find a probability measure µ on Q that solves the maximin
problem: supµ infR∈R µ(R).

I Proposition 1. For a range space F satisfying (A2), we have OptF ≥ z∗F .

Proof. Given a finite integral optimal solution P ∗, we define an integrable function µ :
Q → R+ of support size OptF by µ(q) :=

∑
p∈P∗ δp(q), for q ∈ Q. Then µ(Q) =∫

q∈Q
∑
p∈P∗ δp(q)dq =

∑
p∈P∗

∫
q∈Q δp(q)dq =

∑
p∈P∗ 1 = |P ∗| = OptF and µ(R) =∫

q∈R
∑
p∈P∗ δp(q)dq =

∑
p∈P∗

∫
q∈R δp(q)dq =

∑
p∈P∗ 1p∈R = |{p ∈ P ∗ : p ∈ R}| ≥ 1,

for all R ∈ R, since P ∗ is a hitting set. Since µ is feasible for (F-hitting), the claim
follows. J

Assume F satisfies (A3). For α ≥ 1, we say that µ : Q→ R+ is an α-approximate solution
for (F-hitting) if µ is feasible for (F-hitting) and µ(Q) ≤ α · z∗F . For β ∈ [0, 1], we say that
µ is β-feasible if µ(R) ≥ 1 for all R ∈ R′, where R′ ⊆ R satisfies w0(R′) ≥ β ·w0(R). Finally,
we say that µ is an (α, β)-approximate solution for (F-hitting) if µ is both α-approximate
and β-feasible.

2.7 Rounding the fractional solution
Brönnimann and Goodrich [8] gave a multiplicative weights update algorithm for approx-
imating the minimum hitting set for a finite range space satisfying (A1′) and admitting
an ε-net of size sF (1

ε). Their algorithm works as follows. It first guesses the value of the
optimal solution (within a factor of 2), and initializes the weights of all points to 1. It
then finds an ε = 1

2OptF -net of size sF (1
ε). If there is a range R that is not hit by the

net (which can be checked by the subsystem oracle), the weights of all the points in R

are doubled. The process is shown to terminate in O(OptF log |Q|
OptF) iterations, giving an

sF (2OptF)/OptF -approximation. Even et al. [19] strengthen this result by using the linear
programming relaxation to get sF (z∗F)/z∗F -approximation. We can restate this result as
follows.

I Lemma 2. Let F = (Q,R) be a range space admitting an ε-net of size sF (1
ε) and µ be a

measure on Q satisfying (2). Then there is a hitting set for R of size sF (µ(Q)).

Proof. Let ε := 1
µ(Q) . Then for all R ∈ R we have µ(R) ≥ 1 = ε · µ(Q), and hence an ε-net

for R is actually a hitting set. J

I Corollary 3. Let F = (Q,R) be a range space of VC-dimension d and µ : Q → R+ be
an integrable function satisfying (2). Then a random sample of size O(d · µ(Q) log(µ(Q))),
w.r.t. the probability density function µ′ := µ

µ(Q) , is a hitting set for R with probability Ω(1).
Furthermore, if µ has support size K then there is a deterministic algorithm that computes a
hitting set for R of size O(d · µ(Q) log(d · µ(Q))) in time O(d)3dµ(Q)2d logd(d · µ(Q))K.

Further improvements on the Brönnimann-Goodrich algorithm can be found in [1].

5 We may as well restrict µ to have finite support and replace the integrals over Q by summations.

SoCG 2017

40:6 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

3 Solving the fractional problem – Main result

We shall make the following further assumption:
(A4) There is a deterministic (resp., randomized) oracle Max(F , w, ν) (resp., Max(F , w, σ, ν)),

that given a range space F = (Q,R), an integrable function w : R → R+, and ν > 0, re-
turns (resp., with probability 1−σ) a point p ∈ Q such that ξw(p) ≥ (1−ν) maxq∈Q ξw(q),
where ξw(p) := w(R[p]) =

∫
R∈R w(R)1p∈RdR.

The following is the main result of the paper.

I Theorem 4. Given a range space F satisfying (A1)–(A4), and ε, δ, ν ∈ (0, 1), there is
a deterministic (resp., randomized) algorithm that finds (resp., with probability Ω(1)) a
function µ : Q → R+ of support size K := O(γ

ε3(1−ν) log γ
ε · OptF log OptF

εδ(1−ν)) that is a
(1+5ε

1−ν , 1− δ)-approximate solution for (F-hitting), using K calls to the oracle Max(F , w, ν)
(resp., Max(F , w, σ, ν)).

In view of Corollary 3, we get the following theorem as an immediate consequence of
Theorem 4.

I Theorem 5 (Main Theorem). Let F = (Q,R) be a range space satisfying (A1)–(A4) and
admitting a hitting set of size sF (1

ε), and ε, δ, ν ∈ (0, 1) be given parameters. Then there
is a (deterministic) algorithm that computes a set of size sF (z∗F), hitting a subset of R of
measure at least (1− δ)w0(R), using O(γ

ε3(1−ν) log γ
ε ·OptF log OptF

εδ(1−ν)) calls to the oracle
Max(. . . , ν) and a single call to an ε-net finder.

In Section 6, we observe that the maximization oracle can be implemented in randomized
polynomial time. As a consequence, we obtain the following corollary of Theorem 5, under
the assumption of the availability of the following oracles:

Subsys(F∗,R′): this is the dual subsystem oracle; given a finite subset of ranges R′ ⊆ R,
it returns the set of ranges R∗|R′ . Note that |R∗|R′ | ≤ g(|R′|, 2d+1).
PointIn(F ,R′): Given F and a finite subset of ranges R′ ⊆ R, the oracle returns a
point p ∈ Q that lies in

⋂
R∈R′ R (if one exists).

Sample(F , ŵ): Given F = (Q,R) and a probability density function ŵ : R → R+, it
samples a range R ∈ R according to ŵ.

I Corollary 6. Let F = (Q,R) be a range space of VC-dimension d satisfying (A2) and (A3)
and ε, δ ∈ (0, 1) be given parameters. Then there is a randomized algorithm that computes a
set of size O(d · z∗F log z∗F), hitting a subset of R of measure at least (1− δ)w0(R), in time
O(K · (τ1 ·N + τ2(N) + τ3(N) + gF∗(N))), where K := O(dε3 log d

ε ·OptF log OptF
εδ), and τ1,

τ2(N) and τ3(N), are respectively the maximum times taken by the oracle Sample(F , ŵ),
and the oracles Subsys(F∗,R′), PointIn(F ,R′) on a set R′ of size N := d2dOpt2

F
ε2 log OptF

ε .

Note that gF∗(r) ≤ r2d+1 , but stronger bounds can be obtained for special cases.

4 The algorithm

The algorithm is shown in Algorithm 1 below. For any iteration t, let us define the active
range-subspace Ft = (Q,Rt) of F , where

Rt := {R ∈ R : |Pt ∩R| < T}.

K. Elbassioni 40:7

Data: A range space F = (Q,R) satsfying (A1)–(A4), and approximation accuracies
ε, δ, ν ∈ (0, 1).

Result: A (1+5ε
1−ν , 1− δ)-approximate solution µ for (F-hitting).

1 t← 0; P0 ← ∅; set T as in (3)
2 while w0(Rt) ≥ δ · w0(R) do

// define7 wt : Rt → R+ by wt(R)← (1− ε)|Pt∩R|w0(R), for R ∈ Rt
3 pt+1 ←Max(Ft, wt, ν)
4 Pt+1 ← Pt ∪ {pt+1}
5 t← t+ 1
6 end
7 return the measure µ̂ : Q→ R+ defined by µ̂(q)← 1

T

∑
p∈Pt δp(q)

Algorithm 1: The fractional covering algorithm

Clearly, (since these properties are hereditary) VC-dim(Ft) ≤ VC-dim(F), and Ft admits an
ε-net of size sF (1

ε) whenever F does. For convenience, we assume below that Pt is (possibly)
a multi-set (repetitions allowed).

Define6 a := γ

ε2 , b := max{lnT0, 1}, T0 := OptFδ1/γc1/γ

ε(1− ν)δ1/γ

(
ln 1

1− ε + ln 1
εδ

)
, and

T := e2ab(ln(a+ e− 1) + 1) = Θ
(
γ

ε2 log γ
ε

log OptF
εδ(1− ν)

)
. (3)

For simplicity of presentation, we will assume in what follows that the maximization
oracle is deterministic; the extension to the probabilistic case is straightforward.

5 Analysis

Define the potential function Φ(t) := wt(Rt), where wt(R) := (1 − ε)|Pt∩R|w0(R), and
Pt = {pt′ : t′ = 1, . . . , t} is the set of points selected by the algorithm in Step 3 up to time t.
We can also write wt+1(R) = wt(R)(1− ε · 1pt+1∈R).

The analysis is done in three steps: the first one (Section 5.1), which is typical for MWU
methods, is to bound the potential function, at each iteration, in terms of the ratio between
the current solution obtained by the algorithm at that iteration and the optimum fractional
solution. The second step (Section 5.2) is to bound the number of iterations until the desired
fraction of the ranges is hit. Finally, the third step (Section 5.3) uses the previous two steps
to show that the algorithm reaches the required accuracy after a polynomial number of
iterations.

5.1 Bounding the potential
The following three lemmas are obtained by the standard analysis of MWU methods with
"
∑

"′s replaced by "
∫
"′s.

I Lemma 7. For all t = 0, 1, . . ., it holds that Φ(t+ 1) ≤ Φ(t) exp
(
− ε

Φ(t) · wt(Rt[pt+1])
)
.

6 When a polynomial upper bound n on OptF is known, as per Assumption (A2), we can use it instead
of OptF in the formula for T0; otherwise, exponential search can be used to estimate OptF .

SoCG 2017

40:8 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

Proof.

Φ(t+ 1) =
∫
R∈Rt+1

wt+1(R)dR =
∫
R∈Rt+1

wt(R)(1− ε · 1pt+1∈R)dR

≤
∫
R∈Rt

wt(R)(1− ε · 1pt+1∈R)dR = Φ(t)
(

1− ε
∫
R∈Rt

1pt+1∈R
wt(R)
Φ(t) dR

)
≤ Φ(t) exp

(
−ε
∫
R∈Rt

1pt+1∈R
wt(R)
Φ(t) dR

)
,

where the first inequality is because Rt+1 ⊆ Rt since |Pt ∩R| is non-decreasing in t, and the
last inequality is because 1− z ≤ e−z for all z. J

I Lemma 8. Let κ(t) :=
∑t−1
t′=0

wt′ (Rt′ [pt′+1])
Φ(t′) . Then z∗F · κ(t) ≥ 1−ν

1+ε |Pt|.

Proof. Due to the choice of pt′+1, we have that

ξt′(pt′+1) := wt′(Rt′ [pt′+1]) ≥ (1− ν) max
q∈Q

wt′(Rt′ [q]). (4)

Consequently, for a (1 + ε)-approximate solution µ∗,

z∗F · κ(t) =
t−1∑
t′=0

z∗F
wt′(Rt′ [pt′+1])

Φ(t′) ≥ 1
1 + ε

t−1∑
t′=0

(∫
q∈Q

µ∗(q)dq
)∫

R∈Rt′
1pt′+1∈R

wt′(R)
Φ(t′) dR

≥ 1− ν
1 + ε

t−1∑
t′=0

∫
q∈Q

µ∗(q)
∫
R∈Rt′

1q∈R
wt′(R)
Φ(t′) dRdq

= 1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

(∫
q∈Q

µ∗(q)1q∈Rdq
)
wt′(R)
Φ(t′) dR

= 1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

µ∗(R)wt
′(R)

Φ(t′) dR ≥
1− ν
1 + ε

t−1∑
t′=0

∫
R∈Rt′

wt′(R)
Φ(t′) dR

= 1− ν
1 + ε

t−1∑
t′=0

1 = 1− ν
1 + ε

|Pt|.

where the first inequality is due to the (1 + ε)-approximability of µ∗, the second inequality is
due to (4), and the last inequality is due to the feasibility of µ∗ for (F-hitting). J

I Lemma 9. For all t = 0, 1, . . . , we have

Φ(t) ≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
. (5)

Proof. By repeated application of Lemma 7, and using the result in Lemma 8, we can deduce
that

Φ(t) ≤ Φ(0) exp
(
−

t−1∑
t′=0

ε

Φ(t′) · wt
′(Rt′ [pt′+1])

)
= Φ(0) exp (−εκ(t))

≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
. J

K. Elbassioni 40:9

5.2 Bounding the number of iterations

I Lemma 10. After at most tmax := OptF
ε(1−ν)

(
T ln 1

1−ε + ln 1
εδ

)
iterations, we have w0(Rtmax) <

δ · w0(R).

Proof. For a range R ∈ R, let us denote by Tt(R) := {0 ≤ t′ ≤ t − 1 : pt′+1 ∈ R ∈ Rt′}
the set of time steps, up to t, at which R was hit by the selected point pt′+1, when it was
still active. Initialize w′0(R) := w0(R) +

∑
t′∈Tt(R) wt′+1(R). For the purpose of the analysis,

we will think of the following update step during the algorithm: upon choosing pt+1, set
w′t+1(R) := w′t(R) − wt(R)1pt+1∈R for all R ∈ Rt. Note that the above definition implies
that w′t(R) ≥ (1− ε)|Tt(R)|w0(R) for all R ∈ R and for all t.

I Claim 11. For all t, w′t+1(Rt+1) ≤
(

1− ε(1−ν)
OptF

)
w′t(Rt).

Proof. Consider an integral optimal solution P ∗ ⊆ Q (which is guaranteed to exist by (A2)).
Then

wt(Rt) =
∫
R∈Rt

wt(R)dR = wt

 ⋃
q∈P∗

Rt[q]

 ≤ ∑
q∈P∗

wt(Rt[q]). (6)

From (6) it follows that there is a q ∈ P ∗ such that wt(Rt[q]) ≥ wt(Rt)
OptF . Note that for

such q we have ξt(q) := wt (Rt[q]) ≥ wt(Rt)
OptF , and thus by the choice of pt+1, ξt(pt+1) ≥

(1− ν)ξt(q) ≥ (1−ν)wt(Rt)
OptF . It follows that

w′t+1(Rt+1) ≤ w′t+1(Rt) =
∫
R∈Rt

(w′t(R)− wt(R)1pt+1∈R)dR

=
∫
R∈Rt

w′t(R)dR−
∫
R∈Rt

wt(R)1pt+1∈RdR = w′t(Rt)− ξt(pt+1)

≤ w′t(Rt)−
(1− ν)wt(Rt)

OptF
. (7)

Note that, for all t,

w′t(R) < wt(R)
∑
t′≥0

(1− ε)t
′

= wt(R)
ε

. (8)

Thus, wt(Rt) > ε · w′t(Rt). Using this in (7), we get the claim. J

Claim 11 implies that, for t = tmax, w′t(Rt) ≤
(

1− ε(1−ν)
OptF

)t
w′0(R) < e

− ε(1−ν)
OptF

t
w′0(R). Since

|R∩Pt| < T for all R ∈ Rt, we have |Tt(R)| ≤ T and hence w′t(Rt) =
∫
R∈Rt w

′
t(R)dR ≥ (1−

ε)Tw0(Rt). On the other hand, (8) implies that w′0(R) < w0(R)
ε . Thus, if w0(Rt) ≥ δ ·w0(R),

we get (1− ε)T δ < 1
ε · e
− ε(1−ν)

OptF
t
, giving t < OptF

ε(1−ν)

(
T ln 1

1−ε + ln 1
εδ

)
= tmax, in contradiction

to t = tmax. J

5.3 Convergence to an (1+5ε
1−ν , 1 − δ)-approximate solution

I Lemma 12. Suppose that T ≥ max{1,ln(gF (tmax)/δ)}
ε2 and ε ≤ 0.67. Then Algorithm 1

terminates with a (1+5ε
1−ν , 1− δ)-approximate solution µ̂ for (F-hitting).

SoCG 2017

40:10 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

Proof. Suppose that Algorithm 1 (the while-loop) terminates in iteration tf ≤ tmax.
(1 − δ)-Feasibility: By the stopping criterion, w0(Rtf) < δ · w0(R). Then for t = tf
and any R ∈ R \ Rt, we have µ̂(R) = 1

T

∫
q∈R

∑
p∈Pt δp(q)dq = 1

T

∑
p∈Pt

∫
q∈R δp(q)dq =

1
T

∑
p∈Pt 1p∈R = 1

T |Pt ∩R| ≥ 1, since |Pt ∩R| ≥ T , for all R ∈ R \ Rt.
Quality of the solution µ̂: We can write

Φ(t) =
∑

P∈(Rt)|Pt

(1− ε)|P |w0(Rt[P]), (9)

where Rt[P] := {R ∈ Rt : R ∩ Pt = P}. Since Φ(t) satisfies (5), we get by (9) that

(1− ε)|P |w0(Rt[P]) ≤ Φ(0) exp
(
−ε · 1− ν

1 + ε
· |Pt|
z∗F

)
, for all P ∈ (Rt)|Pt

∴ |P | ln(1− ε) + ln(w0(Rt[P])) ≤ ln Φ(0)− ε · 1− ν
1 + ε

· |Pt|
z∗F

, for all P ∈ (Rt)|Pt .

Dividing by ε · 1−ν
1+ε · T and rearranging, we get

|Pt|
z∗FT

≤ (1 + ε) (ln Φ(0)− ln(w0(Rt[P]))
ε(1− ν)T + (1 + ε)|P |

ε(1− ν)T · ln
1

1− ε , for all P ∈ (Rt)|Pt .

(10)

Since w0(Rt) = w0

(⋃
P∈(Rt)|Pt

Rt[P]
)

=
∑
P∈(Rt)|Pt

w0 (Rt[P]) , there is a set P̂ ∈ (Rt)|Pt
such that w0(Rt[P̂]) ≥ w0(Rt)

|(Rt)|Pt |
.

We apply (10) for t = tf − 1 and P̂ ∈ (Rt)|Pt . By the definition of gF (·), we have
|(Rt)|Pt | ≤ gF (|Pt|) ≤ gF (tmax). Using Φ(0) = w0(R) ≤ w0(Rt)

δ , , µ̂(Q) = |Pt|+1
T , |P̂ | < T

(as P̂ = R ∩ Pt for some R ∈ Rt), T ≥ ln(gF (tmax)/δ)
ε2 and T ≥ 1

ε2 (by assumption), and
zF∗ ≥ 1, we get (for ε ≤ 0.67)

µ̂(Q)
z∗F

≤ (1 + ε) ln(gF (tmax)/δ)
ε(1− ν)T + (1 + ε)

ε(1− ν) · ln
1

1− ε + 1
T · z∗F

≤ ε(1 + ε)
(1− ν) + (1 + ε)

ε(1− ν) · ln
1

1− ε + ε2 <
1 + 5ε
1− ν . J

Finally one can verify that the choice of T in (3) satisfies the precondition in Lemma 12.

6 Implementation of the maximization oracle

Let F = (Q,R) be a range space with VC-dim(F) = d. Recall that the maximization
oracle needs to find, for a given ν > 0 and function w : R → R+, a point p ∈ Q such that
ξw(p) ≥ (1− ν) maxq∈Q ξw(q), where ξw(p) := w(R[p]).

To implement the maximization oracle, we follow the approach in [12], based on ε-
approximations. Recall that an ε-approximation for F∗ is a finite subset of ranges R′ ⊆ R,
such that (1) holds for all q ∈ Q. We use ε := ν

2OptF and σ = o(1), and take a random sample
R′ of size N = O(d2d

ε2 log 1
εσ) = O(d2dOpt2

F
ν2 log OptF

νσ) from R according to the probability
density function ŵ := w/w(R) (for this, we use the sampling oracle Sample(F , ŵ)). Then
R′ is an ε-approximation with high probability. We call Subsys(F∗,R′) to obtain the set
R∗|R′ , then return the subset of ranges R′′ ∈ argmaxR′′′∈R∗

|R′
|R′′′|. Finally, we call the

oracle PointIn(F ,R′′) to obtain a point p ∈
⋂
R∈R′′ R.

K. Elbassioni 40:11

I Lemma 13. With probability Ω(1), ξ(p) ≥ (1− ν) maxq∈Q ξ(q).

I Remark. The above implementation of the maximization oracle assumes the unit-cost model
of computation and infinite precision arithmetic (real RAM). In some of the applications in
the next section, we note that, in fact, deterministic algorithms exist for the maximization
oracle, which can be implemented in the bit-model with finite precision.

7 Applications

7.1 Art gallery problem
In the art gallery problem we are given a (non-simple) polygon H with n vertices and h

holes. Two points p, q ∈ H are said to see each other, denoted by p ∼ q, if the line segment
joining them lies inside H (say, including the boundary ∂H). The objective is to find a
subset G ⊆ H such that for every point q ∈ H, there is a point p ∈ G such that p ∼ q.

Let Q = H, R = {VH(q) : q ∈ H}, where VH(q) := {p ∈ H : p ∼ q} is the visibility
region of q ∈ H. For convenience, we shall consider R as a multi-set and hence assume that
ranges in R are in one-to-one correspondence with points in H. We shall see below that the
range space F = (Q,R) satisfies (A1)–(A4).

Note that (A1) is satisfied with γ = VC-dim(F) ≤ 14 by the result of [23] for simple
polygons, while γ = O(log h) for polygons with h holes [45]. (A2) follows immediately from
the fact that each point in the polygon is seen from some vertex. (A3) is satisfied if we use
w0(R) = 1 for all R ∈ R and note that it is integrable over R as

∫
R∈R w0(R)dR = area(H)

(recall that ranges in R are in one-to-one correspondence with points in H). Now we show
that (A4) is also satisfied. Consider the randomized implementation of the maximization
oracle in Section 6. We need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and
Sample(F , w) can be implemented in polynomial time. This is more or less standard; we
sketch it here for completeness.

It is known (see, e.g., [18]) that the subsystem oracle Subsys(F∗,R′) can be computed
efficiently, for any (finite) R′ ⊂ R, as follows. Observe that R′ is a finite set of polygons which
induces an arrangement of lines (in R2) of total complexity O(nh|R′|2). We can construct
the set of cells of this arrangement, call it cells(R′), in time O(nh|R′|2 log(nh|R′|)), and label
each cell of the arrangement by the set of visibility polygons from R′ it is contained in. Then
R∗|R′ is the set of different cell labels which can be obtained, for e.g., by a sweep algorithm
in time O(nh|R′|2 log(nh|R′|)). This argument also implies that gF∗(r) ≤ O(nhr2), and
that we can implement PointIn(F ,R′) in O(nh|R′|2 log(nh|R′|)) time. Finally, we can
implement Sample(F , ŵt) given the probability density function ŵt : R → R+ defined by
the subset Pt ⊆ Q as follows. We construct the cell arrangement cells(R), induced by the
current set Pt as described above. We first sample a cell R′ (which corresponds to an infinite
set of ranges with the same weight) with probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then we sample

a point (corresponding to a range) R uniformly at random from R′. Thus we obtain the
following result from Corollary 6, in the unit-cost model.

I Corollary 14. Given a polygon H with n vertices and h holes and δ > 0, there is
a randomized algorithm that finds in poly(n, h, log 1

δ) time a set of points in H of size
O(z∗F log z∗F · log(h+ 2)) guarding at least (1− δ) of the area of H, where z∗F is the value of
the optimal fractional solution.

We can also obtain a deterministic version of Corollary 14 in the bit model of computation.
The idea, following [38], is to express the function ξt(q) := wt(Rt[q]) as a sum of continuous

SoCG 2017

40:12 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

functions, each of which is a ratio of two polynomials of two variables, namely, the x and
y-coordinates of q. Then maximizing over q amounts to solving a system of two polynomial
equations of degree poly(n, h, log 1

δ) in two variables, which an be solved using quantifier
elimination techniques, e.g., [5, 25, 41]. However, a technical hurdle that we need to overcome
is that the required bit length may grow from one iteration to the next, resulting in an
exponential blow-up in the bit length needed for the computation. To deal with this issue,
we need to round the set Rt in each iteration so that the total bit length in all iterations
remains bounded by a polynomial in the input size.

I Corollary 15. Given a polygon H with n vertices and h holes with rational representa-
tion of maximum bit-length L and δ > 0, there is a deterministic algorithm that finds in
poly(L, n, h, log 1

δ) time a set of points in H of size O(z∗F log(h + 2) · log(z∗F · log(h + 2)))
and bit complexity poly(L, n, h, log 1

δ) guarding at least (1− δ) of the area of H, where z∗F is
the value of the optimal fractional solution.

7.2 Covering a polygonal region by translates of a convex polygon
Let H be a collection of (non-simple) polygons in the plane and H0 be a given full-dimensional
convex polygon. The problem is to minimally cover all the points of the polygons in H by
translates of H0, that is to find the minimum number of translates H1

0 , . . . ,H
k
0 of H0 such

that each point p ∈
⋃
H∈HH is contained in some Hi

0. The discrete case when H is a set
of points has been considered extensively, e.g., covering points with unit disks/squares [28]
and generalizations in 3D [15, 32]. Fewer results are known for the continuous case, e.g.,
[24] which considers the covering of simple polygons by translates of a rectangle8 and only
provides an exact (exponential-time) algorithm; see also [20] for another example, where it is
required to hit every polygon in H by a copy of H0 (but with rotations allowed).

This problem can be modeled as a hitting set problem in a range space F = (Q,R), where
Q is the set of translates of H0 and R :=

{
{Hi

0 ∈ Q : R ∈ Hi
0} : R ∈

⋃
H∈HH

}
. Again

considering R as a multi-set, we have R ↔
⋃
H∈HH, and we shall refer to elements of R as

sets of translates of H0 as well as points in
⋃
H∈HH. It was shown by Pach and Woeginger

[39] that VC-dim(F∗) ≤ 3 and also that F∗ admits an ε-net of size sF∗ = O(1
ε). As observed

in [32], this would also imply that VC-dim(F) ≤ 3 and sF = O(1
ε). Thus (A1) is satisfied

with γ = 3. Moreover, assuming that H is contained in a box of size D and that H0 contains
a box of size d, then (A2) is satisfied as OptF ≤ D

d . (A3) is satisfied if we use w0(R) = 1 for
all R ∈ R (which defines the area measure over R). Now we show that (A4) is also satisfied.

Consider the randomized implementation of the maximization oracle in Section 6. We
need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and Sample(F , w) can be
implemented in polynomial time. Let m be the total number of vertices of the polygons
in H and H0. Note that for a given finite R′ ⊆ R, the set R∗|R′ is the set of all subsets of
points in R′ that are contained in the same copy of H0. Observe that each such subset is
determined by at most two points from R′ that lie on the boundary of a copy of H0. It
follows that Subsys(F∗,R′) can be implemented in O(m2|R′|2 logm) time. This argument
also shows that PointIn(F ,R′) can be implemented in the same time O(m2|R′|3) and
that gF∗(r) ≤ r2. Finally, we can implement Sample(F , ŵt) given the probability density
function ŵt : R → R+ defined by the subset Pt ⊆ Q as follows. Given the current subset
Pt ⊆ Q of translates of H0, we can find (e.g. by a sweep line algorithm) in O(m logm) time
the cells of the arrangement defined by H ∪ Pt (where a cell is naturally defined to be a

8 Note that in [24], each polygon has to be covered completely by a rectangle.

K. Elbassioni 40:13

maximal set of points in R that all belong exactly to the same polygons in the arrangement).
Let us call this set cells(R) and note that it has size O(m). We first sample a cell R′ with
probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then we sample a point R uniformly at random from R′.

I Corollary 16. Given a collection of polygons in the plane H and a convex polygon H0, with
m total vertices and δ > 0, there is a randomized algorithm that finds in poly(n,m, log 1

δ)
time a set of O(z∗F) translates of H0 covering at least (1− δ) of the total area of the polygons
in H, where z∗F is the value of the optimal fractional solution.

7.3 Polyhedral separation in Rd

Given two (full-dimensional) convex polytopes P1,P2 ⊆ Rd such that P1 ⊂ P2, it is
required to find a (separator) polytope P3 ⊆ Rd such that P1 ⊆ P3 ⊆ P2, with as few
facets as possible. This problem can be modeled as a hitting set problem in a range
space F = (Q,R), where Q is the set of supporting hyperplanes for P1 and R := {{p ∈
Q : p separates R from P1} : R ∈ ∂P2} (thus, we may assume that R ↔ ∂P2). Note that
VC-dim(F) = d (and VC-dim(F∗) = d+ 1). In their paper [8], Brönnimann and Goodrich
gave a deterministic O(d2 log OptF)-approximation algorithm, improving on earlier results
by Mitchell and Suri [37], and Clarkson [14]. It was shown in [37] that, at the cost of losing
a factor of d in the approximation ratio, one can consider a finite set Q, consisting of the
hyperplances passing through the facets of P1. We can save this factor of d by showing that
F satisfies (A1)–(A4).

Let n and m be the number of facets of P1 and P2, respectively. Then (A1) is satisfied
with γ = d as explained above. Also, (A2) is obviously satisfied since P3 = P2 is a separator
with n facets. For (A3), we use w0 as the surface area measure, i.e., w0(R′) = vold−1(R′)
for R′ ⊆ R. Now we show that (A4) also holds.

Consider the randomized implementation of the maximization oracle in Section 6. We
need to show that the oracles Subsys(F∗,R′), PointIn(F ,R′) and Sample(F , w) can be
implemented in polynomial time. Note that for a given finite R′ ⊆ R, the set R∗|R′ has
size at most g(|R′|, d + 1), and furthermore, for any hyperplane q ∈ Q, R′[q] is the set
of points in R′ separated from P1 by q. Thus, R′[q] is determined by exactly d points
chosen from R′ and the vertices of P1. It follows that the set R∗|R′ can be found (and hence
Subsys(F∗,R′) can be implemented) in time poly((n d2 + |R′|)d). This argument also shows
that PointIn(F ,R′) can be implemented in the time poly((n d2 + |R′|)d). Finally, we can
implement Sample(F , ŵt) given the probability density function ŵt : R → R+ defined by
the current subset Pt ⊆ Q as follows. We first construct the set of cells of the hyperplane
arrangement of Pt, which has complexity O(|Pt|d), in time O(|Pt|d+1); see, e.g., [4, 44]. Next,
we intersect every facet of P2 with every cell in the arrangement. This allows us to identify
the partition of ∂P2 induced by the cell arrangement; let us call it cells(R). The running
time for this is poly(|Pt|d,md). We first sample R′ with probability ŵt(R′)∑

R′∈cells(R)
ŵt(R′)

, then

we sample a point R uniformly at random from R′ (note that both volume computation and
uniform sampling can be done in polynomial time in fixed dimension).

I Corollary 17. Given two convex polytopes P1,P2 ⊆ Rd such that P1 ⊂ P2, with n and m
facets respectively and δ > 0, there is a randomized algorithm that finds in poly((nm)d, log 1

δ)
time a polytope P3 with O(z∗Fd · log z∗F) facets separating P1 from a subset of ∂P2 of volume
at least (1− δ) of the volume of ∂P2, where z∗F is the value of the optimal fractional solution.

SoCG 2017

40:14 Finding Small Hitting Sets in Infinite Range Spaces of Bounded VC-Dimension

Acknowledgement. The author is grateful to Waleed Najy for his help in the proof of
Lemma 12 and for many useful discussions, and to the anonymous reviewers for the careful
reading and the helpful remarks.

References
1 P.K. Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers.

In SoCG’14, pages 271–279, 2014.
2 N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Series in Discrete Mathematics

and Optimization. Wiley, 2008.
3 B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes.

SIAM Journal on Computing, 39(7):3248–3282, 2010.
4 D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of

arrangements and polyhedra. Discrete & Computational Geometry, 8(3):295–313, 1992.
5 S. Basu, R. Pollack, and M. Roy. On the combinatorial and algebraic complexity of quan-

tifier elimination. J. ACM, 43(6):1002–1045, 1996.
6 É. Bonnet and T. Miltzow. An approximation algorithm for the art gallery problem. In

EuroCG’16, also available online as: https://arxiv.org/abs/1607.05527, 2016.
7 H. Brönnimann, B. Chazelle, and J. Matoušek. Product range spaces, sensitive sampling,

and derandomization. SIAM Journal on Computing, 28(5):1552–1575, 1999.
8 H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite VC-dimension.

Discrete & Computational Geometry, 14(4):463–479, 1995.
9 T.M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated, priority, and

geometric set cover via improved quasi-uniform sampling. In SODA’12, pages 1576–1585,
2012.

10 B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, New York, NY, USA, 2000.

11 B. Chazelle and J.Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

12 O. Cheong, A. Efrat, and S. Har-Peled. Finding a guard that sees most and a shop that
sells most. Discrete & Computational Geometry, 37(4):545–563, 2007.

13 V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

14 K.L. Clarkson. Algorithms for polytope covering and approximation. In WADS’93, pages
246–252, 1993.

15 K.L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set
cover. Discrete & Computational Geometry, 37(1):43–58, 2006.

16 A. Deshpande, T. Kim, E.D. Demaine, and S. E. Sarma. A pseudopolynomial time O(logn)-
approximation algorithm for art gallery problems. In WADS’07, pages 163–174, 2007.

17 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In STOC’14, pages
624–633, 2014.

18 A. Efrat and S. Har-Peled. Guarding galleries and terrains. Inf. Process. Lett., 100(6):238–
245, 2006.

19 G. Even, D. Rawitz, and S. (M.) Shahar. Hitting sets when the VC-dimension is small. Inf.
Process. Lett., 95(2):358–362, 2005.

20 S.K. Ganjugunte. Geometric Hitting Sets and Their Variants. PhD thesis, Duke University,
USA, 2011.

21 N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM J. Comput., 37(2):630–652, 2007.

22 S. K. Ghosh. Approximation algorithms for art gallery problems in polygons. Discrete
Applied Mathematics, 158(6):718–722, 2010.

K. Elbassioni 40:15

23 A. Gilbers and R. Klein. A new upper bound for the VC-dimension of visibility regions.
Computational Geometry, 47(1):61–74, 2014.

24 R. Glück. Covering polygons with rectangles. In EuroCG’16, 2016.
25 D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities in subexponential

time. J. Symb. Comput., 5(1/2):37–64, 1988.
26 S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete & Com-

putational Geometry, 45(3):462–496, 2011.
27 D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete & Computa-

tional Geometry, 2:127–151, 1987.
28 D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems

in image processing and VLSI. J. ACM, 32(1):130–136, 1985.
29 D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer

and System Sciences, 9(3):256–278, 1974.
30 J. King and D.G. Kirkpatrick. Improved approximation for guarding simple galleries from

the perimeter. Discrete & Computational Geometry, 46(2):252–269, 2011.
31 J. Komlós, J. Pach, and G. Woeginger. Almost tight bounds for ε-nets. Discrete & Com-

putational Geometry, 7(2):163–173, March 1992.
32 S. Laue. Geometric set cover and hitting sets for polytopes in R3. In STACS’08, pages

479–490, 2008.
33 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,

13(4):383–390, 1975.
34 J. Matoušek. Cutting hyperplane arrangements. Discrete & Computational Geometry,

6(3):385–406, 1991.
35 J. Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.
36 J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: Small ε-nets for disks

and halfspaces. In SoCG’90, pages 16–22, 1990.
37 J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral objects. Compu-

tational Geometry, 5(2):95–114, 1995.
38 S. Ntafos and M. Tsoukalas. Optimum placement of guards. Information Sciences, 76(1–

2):141–150, 1994.
39 J. Pach and G. Woeginger. Some new bounds for Epsilon-nets. In SoCG’90, pages 10–15,

1990.
40 E. Pyrga and S. Ray. New existence proofs ε-nets. In SoCG’08, pages 199–207, 2008.
41 J. Renegar. On the computational complexity and geometry of the first-order theory of the

reals. J. Symb. Comput., 13(3):255–352, 1992.
42 N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,

13(1):145–147, 1972.
43 S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary

languages. Pacific J. Math., 41(1):247–261, 1972.
44 N.H. Sleumer. Output-sensitive cell enumeration in hyperplane arrangements. Nordic J.

of Computing, 6(2):137–147, 1999.
45 P. Valtr. Guarding galleries where no point sees a small area. Israel Journal of Mathematics,

104(1):1–16, 1998.
46 V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability & Its Applications, 16(2):264–280,
1971.

47 K. Varadarajan. Epsilon nets and union complexity. In SoCG’09, pages 11–16, 2009.

SoCG 2017

A Nearly Quadratic Bound for the Decision Tree
Complexity of k-SUM∗

Esther Ezra1 and Micha Sharir2

1 Georgia Institute of Technology, Atlanta, GA, USA
eezra3@math.gatech.edu

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@post.tau.ac.il

Abstract
We show that the k-SUM problem can be solved by a linear decision tree of depth O(n2 log2 n),
improving the recent bound O(n3 log3 n) of Cardinal et al. [7]. Our bound depends linearly on k,
and allows us to conclude that the number of linear queries required to decide the n-dimensional
Knapsack or SubsetSum problems is only O(n3 logn), improving the currently best known
bounds by a factor of n [28, 29]. Our algorithm extends to the RAM model, showing that the
k-SUM problem can be solved in expected polynomial time, for any fixed k, with the above
bound on the number of linear queries. Our approach relies on a new point-location mechanism,
exploiting “ε-cuttings” that are based on vertical decompositions in hyperplane arrangements in
high dimensions. A major side result of the analysis in this paper is a sharper bound on the
complexity of the vertical decomposition of such an arrangement (in terms of its dependence
on the dimension). We hope that this study will reveal further structural properties of vertical
decompositions in hyperplane arrangements.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on Discrete Structures, Geometrical Problems and Computations

Keywords and phrases k-SUM and k-LDT, linear decision tree, hyperplane arrangements, point-
location, vertical decompositions, ε-cuttings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.41

1 Introduction

Problem definition and the model. In this paper we study the k-SUM problem, and the
more general k-linear degeneracy testing (k-LDT) problem. We define them formally:

I Definition 1 (k-SUM). Given a point x := (x1, x2, . . . , xn) ∈ Rn, decide whether there
exist k indices i1, i2, . . . , ik such that xi1 + xi2 + . . .+ xik

= 0.

In what follows, we assume that we are looking for a k-tuple of distinct coordinates. The
case where some coordinates can be repeated more than once is also easy to handle, by a
straightforward extension of the technique presented here, which we omit, for the sake of
simplicity of presentation.

∗ Work on this paper by Esther Ezra has been supported by NSF CAREER under grant CCF:AF 1553354.
Work on this paper by Micha Sharir was supported by Grant 892/13 from the Israel Science Foundation,
by Grant 2012/229 from the U.S.–Israel Binational Science Foundation, by the Blavatnik Research Fund
in Computer Science at Tel Aviv University, by the Israeli Centers of Research Excellence (I-CORE)
program (Center No. 4/11), and by the Hermann Minkowski-MINERVA Center for Geometry at Tel
Aviv University.

© Esther Ezra and Micha Sharir;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

IDefinition 2 (k-LDT). Given a fixed k-variate linear function f(y1, . . . , yk) = a0+
∑k

i=1 aiyi,
where a0, a1, . . . , ak are real coefficients, and a point x := (x1, x2, . . . , xn) ∈ Rn, decide
whether there exist k indices i1, i2, . . . , ik such that f(xi1 , xi2 , . . . , xik

) = 0.1

By definition, k-SUM is a special case of k-LDT when we set f(y1, . . . , yk) =
∑k

i=1 yi.
We note that the special case k = 3, the so-called 3-SUM problem, received considerable
attention in the past two decades, due to its implications to conditional lower bounds on the
complexity of many fundamental geometric problems; see [18] and below for a list of such
problems. From now on we focus only on the k-SUM problem; the algorithm that we present
applies more or less verbatim to k-LDT too.

Following the approach in Cardinal et al. [7] for k-SUM (see also [2, 15]), let H be the
collection of the

(
n
k

)
hyperplanes h in Rn of the form xi1 +xi2 + · · ·+xik

= 0, over all k-tuples
1 ≤ i1 < i2 < · · · < ik ≤ n. Then the k-SUM problem can be reformulated as asking, for a
query point x, whether x lies on any hyperplane of H. This can be determined by locating
x in the arrangement A(H) formed by those hyperplanes.

The model in which we consider this problem is the s-linear decision tree: Solving an
instance of the problem with input x = (x1, . . . , xn) is implemented as a search with x in
some tree T . Each internal node v of T is assigned a linear function in the n variables
x1, . . . , xn, with at most s non-zero coefficients. The outgoing edges from v are labeled <, >,
or =, indicating the branch to follow depending on the sign of the expression at v evaluated
at x. Leaves are labeled “YES” or “NO”, where “YES” means that we have managed to
locate x on a hyperplane of H, and “NO” means that x does not lie on any hyperplane. Each
“YES” leaf has an edge labeled “=” leading to it (but not necessarily vice versa, because
some of the tests may involve auxiliary hyperplanes that are not part of the input). To solve
an instance of the problem, we begin at the root of T . At each node v that we visit, we
test the sign at x of the linear function at v, and proceed along the outgoing edge labeled
by the result of the test. We conduct this search until we reach a leaf, and output its label
“YES” or “NO”. At each internal node, the test (which we also refer to as a linear query)
is assumed to cost one unit. All other operations are assumed (or rather required) not to
depend on the specific coordinates of x (although they might depend on discrete data that
has been obtained from the preceding queries with x), and incur no cost in this model. Thus
the length of the search path from the root to a leaf is the overall number of linear queries
performed by the algorithm on the given input, and is thus our measure for its cost. In other
words, the worst-case complexity of the algorithm, in this model, is the maximum depth of
its corresponding tree. As in [7], when s = n (the maximum possible value for s), we refer to
the model just as a “linear decision tree”. The study in this paper will only consider this
unconstrained case.

We also note that, although we could in principle construct the whole tree T in a
preprocessing stage, the algorithm that we present only constructs, on the fly, the search
path that x traces in T .

To recap, solving an instance of k-SUM, with input x, in this model amounts to processing
a sequence of linear queries of the form “Does x lie on some hyperplane h, or else on which
side of h does it lie?”. Each such query is a sign test, asking for the sign of h(x), where
h(·) is the linear expression defining h. Some of the hyperplanes h that participate in these
queries will be original hyperplanes of H, but others will be auxiliary hyperplanes that the
algorithm constructs. The algorithm succeeds if at least one of the linear queries that involves

1 We emphasize that in the k-LDT problem, the coefficients a0, a1, . . . , ak are fixed and the input is the
point x.

E. Ezra and M. Sharir 41:3

an original hyperplane (or, during the recursion, a lower-dimensional hyperplane that is
contained in an original hyperplane) results in an equality, determining that x does lie on a
hyperplane of H.

Previous work. The k-SUM problem is a variant of the SubsetSum problem,2 and is
therefore NP-complete (when k is part of the input); however, its behavior as a function of k
(say, in the standard RAM model) has not yet been fully resolved. Specifically, Erickson [15]
showed that the k-SUM problem can be solved (in the RAM model) in time O((2n/k)dk/2e)
for k odd, and O((2n/k)k/2 log (n/k)) for k even. Moreover, he presented a nearly-tight
lower bound of Ω((n/kk)dk/2e) for k-SUM in the k-linear decision tree model (see [2] for a
more comprehensive overview of Erickson’s result). Ailon and Chazelle [2] slightly improved
Erickson’s lower bound, and extended it to the s-linear decision tree model, where s > k,
showing a lower bound of Ω

(
(nk−3)

2k−s
2d(s−k+1)/2e (1−εk)

)
, where εk > 0 tends to 0 as k goes to

∞. As stated in [2], in spite of the strength of this latter lower bound, it is not very informative
for s ≥ 2k. In particular, when s is arbitrarily large (the case studied in this paper), one
can no longer derive a lower bound of the form nΩ(k). Indeed, Meyer auf der Heide [29]
showed an upper bound of O(n4 logn) on the number of linear queries for the n-dimensional
Knapsack problem3 (and thus, in particular, for k-SUM). Meiser [28] presented an efficient
point-location mechanism for high-dimensional hyperplane arrangements, in the standard
real RAM model. When interpreted in the linear decision tree model, and applied to the
instances at hand, it yields a linear decision tree for k-SUM (as well as for the more general
problem k-LDT) of depth that is only polynomial4 in k and n. Cardinal et al. [7] improved
this bound5 to O(n3 log3 n). Concerning lower bounds in this model of computation, Dobkin
and Lipton [14] showed a lower bound of Ω(n logn) on the depth of the linear decision tree for
k-LDT, and, in another paper [13], a lower bound of Ω(n2) for the n-dimensional Knapsack
problem. See also [5, 31] for more general non-linear decision tree models of computation.

The case k = 3, i.e., the 3SUM-problem, is related to various geometric problems to
which it can be reduced. These problems are known as 3SUM-hard. These include problems
such as testing whether there exist three collinear points in a given planar set of n points,
testing whether the union of n given triangles in the plane covers the unit square, or just
testing whether the union has any holes (i.e., is not simply connected), checking for polygon
containment under translation, visibility among triangles in 3-space, planar motion planning
(under translations and rotations), translational motion planning in 3-space, maximum depth
in an arrangement of disks, and more. The study of 3SUM-hard problems was pioneered
in the seminal work of Gajentaan and Overmars [18], who showed subquadratic reductions
from 3-SUM to many of these problems; see also Barequet and Har-Peled [4] and Aronov and
Har-Peled [3] for several additional reductions. During the last two decades, the prevailing
conjecture was that any algorithm for 3-SUM requires Ω(n2) time.6 In a recent dramatic

2 In this problem, given n real numbers, we want to determine whether there is a subset of them that
sums to 0.

3 This problem is an extension of SubsetSum, and asks, given n real numbers, whether there is a subset
of them that sums to 1.

4 The original analysis of Meiser was sketchy and relied on a suboptimal choice of parameters. Meiser’s
analysis has been somewhat tightened by Liu [26]. A careful and meticulous study of Meiser’s algorithm,
with improved performance bounds, is given in the full version (written with Har-Peled and Kaplan) [16].

5 We note however that the bound in [7] only applies to instances of k-LDT where all the coefficients are
rational.

6 In fact, before the term “3SUM-hard” was coined, these problems were referred to as “n2-hard”
problems [18].

SoCG 2017

41:4 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

development, this has been refuted by Grønlund and Pettie [20], who presented a (slightly)
subquadratic algorithm for 3-SUM (see also the more recent work of Chan and Lewenstein [8],
as well as those of Gold and Sharir [19] and of Freund [17]). Furthermore, Grønlund and
Pettie showed that in the (2k − 2)-linear decision tree model, only O(nk/2√logn) queries
are required for k odd. In particular, for 3SUM, this bound is O(n3/2√logn). More recently,
this bound has further been improved by Gold and Sharir [19] to O(n3/2), or, more generally,
to O(nk/2) for arbitrary k, under a randomized (2k − 2)-linear decision tree model. Note
that in all these cases, the best known lower bound is just the standard Ω(n logn) bound,
and closing the gap between this bound and the aforementioned upper bounds still remains
elusive.

Our result. Our main result is an improvement by (more than) a factor of n over the recent
bound of Cardinal et al. [7] on the complexity of a linear decision tree for k-SUM and k-LDT.
Specifically, we show:

I Theorem 3. For any fixed k, the complexity of k-SUM and k-LDT in the linear decision-tree
model is O(n2 log2 n), where the constant of proportionality is linear in k.

In fact, the actual bound in Theorem 3 is O(n2 logn log |H|). We can apply this bound
to the n-dimensional Knapsack problem, in which the relevant hyperplanes are of the form
xi1 + · · ·+ xik

= 1, for all the 2n − 1 possible nonempty subsets {i1, . . . , ik} of {1, . . . , n}.
Taking then |H| = 2n − 1, we obtain the following corollary of Theorem 3, which improves
the previous bounds in [28, 29].

I Corollary 4. The complexity of the n-dimensional SubsetSum and Knapsack problems
in the linear decision-tree model is O(n3 logn).

We note that the two bounds that we obtain in Theorem 3 and Corollary 4 are larger by
only a factor of O(n logn) from the respective lower bounds of Dobkin and Lipton [13, 14].

On the “real” algorithmic front, we show that in the RAM model the k-SUM and k-LDT
problems can be solved in expected polynomial time, with the same number, O(n2 log2 n), of
linear queries (and with all other operations independent of the actual coordinates of x), as
in Theorem 3 (the description of the algorithm is deferred to the full version of this paper).

Our analysis uses a variant of the approach in [7], inspired by the point-location mechanism
of Meiser [28], where we locate the input point x in A(H) using a recursive algorithm that
exploits and locally simulates the construction of (a specific kind of) an ε-cutting of A(H).
While this framework is not new, a major difference between the construction of [7] and ours is
that the former construction applies bottom-vertex triangulation to the cells in arrangements
of suitable subsets of H, which partitions each cell into simplices. Since the ambient dimension
is n, each simplex is defined (in general) by Θ(n2) hyperplanes of H; see, e.g., [1, 12] and
below. In contrast, in our construction we partition the cells of such arrangements using the
vertical decomposition technique [1, 9], where each cell of the arrangement is partitioned into
a special kind of vertical prisms, each of which is defined by only at most 2n hyperplanes
of H. In both studies, ours and that of Cardinal et al. [7], the local construction of the cell
containing x (in an arrangement of some subsample of H) is carried out through n recursive
steps (reducing the dimension by 1 at each step). The difference is that the algorithm in [7]
needs to perform roughly quadratically many queries at each such recursive step, whereas our
algorithm performs only nearly linearly many queries. With a few additional observations
about the structure of vertical decompositions (see below for a detailed discussion), this
will eventually decrease the overall depth of the linear decision tree by (slightly more than)

E. Ezra and M. Sharir 41:5

a factor of n, with respect to the bound in [7]. We note that, although the combinatorial
bound on the overall complexity of bottom vertex triangulations in hyperplane arrangements
is in general smaller than the currently best known bound on the complexity of vertical
decompositions (in dimensions d ≥ 5), this is not an issue in the decision tree model. In
other words, for the purpose of locating the cell containing x, in the (linear) decision tree
model, using vertical decompositions is the decisive winning strategy.

A note on vertical decomposition. As a by-product of this study, our analysis leads
to some new insights concerning the structure and complexity of vertical decompositions
of arrangements of hyperplanes, including a sharper bound on the complexity of such a
decomposition in high dimensions. Specifically, it follows from the study of Chazelle et al. [9],
or rather from its extension by Koltun [25], that this bound is O(n2d−4), where the coefficient
of proportionality is 2O(d2). We improve this coefficient to 2O(d) (Theorem 5), using a simple
but crucial observation about the structure of vertical decompositions, given in Lemma 8.
This property is also used by our algorithm to efficiently construct the (prism-like) cell
containing the query point x. This improvement is significant when d is not assumed to
be a constant (as in the cases, studied here, of the k-SUM and k-LDT problems, and in
the cases of the SubsetSum and Knapsack problems). Moreover, this improvement (from
2O(d2) to 2O(d)) is crucial for obtaining ε-cuttings with samples of size that is only (nearly)
linear in d. More details are given later in the paper. We believe these results to be of
independent interest, and we hope that these insights will lead to further improved bounds
on the complexity of vertical decompositions and for additional useful structural properties
and further applications of this construct. A more thorough and detailed analysis of these
issues is given in the full version [16].

2 Preliminaries: Arrangements and Vertical Decomposition

Let H be a collection of n hyperplanes in Rd (observe that the notation in this section is
different, as it caters to any collection of hyperplanes in any dimension). We emphasize that
H is not necessarily in general position, and that it may contain vertical hyperplanes (as
it does in the case of k-SUM). The vertical decomposition V(H) of the arrangement A(H)
is defined in the following recursive manner (see [1, 9] for the general setup, and [21, 25]
for the case of hyperplanes in four dimensions). Let the coordinate system be x1, x2, . . . , xd,
and let C be a cell in A(H). For each (d− 2)-face g on ∂C, we erect a (d− 1)-dimensional
vertical wall passing through g and confined to C; this is the union of all the maximal xd-
vertical line-segments that have one endpoint on g and are contained in C. The walls extend
downwards (resp., upwards) from faces g on the top boundary (resp., bottom boundary)
of C (faces on the “equator” of C, i.e., faces that have a vertical supporting hyperplane,
have no wall (within C) erected from them). Note that if g lies on a vertical hyperplane
h ∈ H, the vertical wall is contained in h. This collection of walls subdivides C into convex
vertical prisms, each of which is bounded by (potentially many) vertical walls, and by two
hyperplanes of H, one appearing on the bottom portion and one on the top portion of ∂C,
referred to as the floor and the ceiling of the prism, respectively; in case C is unbounded, a
prism may be bounded by just a single (floor or ceiling) hyperplane of H. In rare situations,
where all the hyperplanes of H are vertical, prisms have neither a floor nor a ceiling. (Note
that, by construction, a floor (resp., a ceiling) of a prism cannot be contained in a vertical
hyperplane of H.) More formally, this step is accomplished by projecting the bottom and
the top portions of ∂C onto the hyperplane xd = 0, and by constructing the overlay of these

SoCG 2017

41:6 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

two convex subdivisions. Each full-dimensional (i.e., (d− 1)-dimensional) cell in the overlay,
when lifted vertically back to Rd and intersected with C, becomes one of the above prisms.

Note that after this step, the two bases (or the single base, in case the prism is unbounded)
of a prism may have arbitrarily large complexity, or, more precisely, be bounded by arbitrarily
many hyperplanes. Each base, say the floor base, is a convex polyhedron in Rd−1, namely in
the hyperplane h− containing it, bounded by at most 2n−1 hyperplanes (of dimension d−2),
where each such hyperplane is either an intersection of h− with another original hyperplane h,
or the vertical projection onto h− of an intersection of the corresponding ceiling hyperplane
h+ with some other h (for h vertical, the two cases coincide; that is, they yield the same
(d− 2)-hyperplane within h−); this collection might also include h− ∩h+. In what follows we
refer to these prisms as undecomposed prisms, or first-stage prisms. Our goal is to decimate
the dependence of the complexity of the prisms on n, and to construct a decomposition of
this kind so that each of its prisms is bounded by no more than 2d hyperplanes. To do
so, we recurse with the construction at each base of each prism, or rather, for simplicity,
within the common projection of the bases onto xd = 0. Each recursive subproblem is now
(d− 1)-dimensional.

Specifically, after the first decomposition step described above, we project each of the
first-stage prisms just obtained onto the hyperplane xd = 0, obtaining a (d− 1)-dimensional
convex polyhedron C ′, which we vertically decompose using the same procedure described
above, only in one lower dimension. That is, we now erect vertical walls within C ′ from
each (d− 3)-face of ∂C ′, in the xd−1-direction. These walls subdivide C ′ into xd−1-vertical
(undecomposed) prisms, each of which is bounded by (at most) two facets of C ′, which form
its floor and ceiling (in the xd−1-direction), and by some of the vertical walls. We keep
projecting these prisms onto hyperplanes of lower dimensions, and produce the appropriate
vertical walls. We stop the recursion as soon as we reach a one-dimensional instance, in
which case all prisms projected from previous steps become line-segments, requiring no
further decomposition.7 We now backtrack, and lift the vertical walls (constructed in lower
dimensions, over all iterations), one dimension at a time, ending up with (d− 1)-dimensional
walls within the original cell C; that is, a (d− i)-dimensional wall is “stretched” in directions
xd−i+2, . . . , xd (applied in that order), for every i = d, . . . , 2.

Each of the final cells is a “box-like” prism, bounded by at most 2d hyperplanes. Of
these, two are original hyperplanes, two are hyperplanes supporting two xd-vertical walls
erected from some (d− 2)-faces, two are hyperplanes supporting two xd−1xd-vertical walls
erected from some (d− 3)-faces (within the appropriate lower-dimensional subspaces), and
so on. Note that since we do not assume general position, some of these vertical walls may
be original hyperplanes of H (this issue is discussed in more detail later on).

We note that each final prism is defined in terms of at most 2d original hyperplanes of
H, in a sense made precise in the ensuing description. We establish this property using
backward induction on the dimension of the recursive instance. Initially, we have two original
hyperplanes h−, h+, which contain the floor and ceiling of the prism, respectively. We
intersect each of them with the remaining hyperplanes of H (including the intersection
h− ∩ h+), and project all these intersections onto the (d− 1)-hyperplane xd = 0. Suppose
inductively that, when we are at dimension j, we already have a set Dj of (at most) 2(d− j)
original defining hyperplanes (namely, original hyperplanes defining the walls erected so

7 If we care about the complexity of the resulting decomposition, in terms of its dependence on n, which
is not a crucial issue in our approach, it is better to stop the recursion earlier. The terminal dimension
is d = 2 or d = 3 in [9], and d = 4 in [25].

E. Ezra and M. Sharir 41:7

far), and that each (lower-dimensional) hyperplane in the current collection Hj of (j − 1)-
hyperplanes is obtained by an interleaved sequence of intersections and projections, which
are expressed in terms of some subset of the ≤ 2(d− j) defining hyperplanes and (at most)
one additional original hyperplane. Clearly, all this holds trivially in the initial step j = d.
We now choose a new floor and a new ceiling from among the hyperplanes in Hj , gaining
two new defining hyperplanes (the unique ones that define the new floor and ceiling and
are the ones not in Dj). We add them to Dj to form Dj−1, intersect each of them with
the other hyperplanes in Hj , and project all the resulting (j − 2)-intersections onto the
(j − 1)-hyperplane xj = 0, to obtain a new collection Hj−1 of (j − 2)-hyperplanes. Clearly,
the inductive properties that we assume carry over to the new sets Dj−1 and Hj−1, so this
holds for the final setup in d = 1 dimensions. Since each step adds at most two new defining
hyperplanes, the claim follows.

We apply this recursive decomposition for each cell C of A(H), and thereby obtain the
entire vertical decomposition V(H). We remark though that our algorithm does not explicitly
construct V(H). In fact, it does not even construct the (full discrete representation of the)
prism of V(H) containing the query point x. It will be clear shortly from the presentation
what the algorithm actually constructs. The description given above, while being constructive,
is made only to define the relevant notions, and to set the infrastructure within which our
algorithm will operate.

3 ε-Cuttings from Vertical Decompositions

Given a finite collection H of hyperplanes in Rd, by an ε-cutting for H we mean a subdivision
of space into prism-like cells, of the form just defined, that we simply refer to as prisms8,
such that every cell is crossed by (i.e., the interior of the cell is intersected by) at most
ε|H| hyperplanes of H, where 0 < ε < 1 is the parameter of the cutting. ε-cuttings are a
major tool for a variety of applications, including our own; they have been established and
developed in several fundamental studies [10, 11, 27].

Roughly speaking, when d is a (small) constant, the random sampling theory of Clark-
son [11] (see also Clarkson and Shor [12]) produces an ε-cutting as follows. We draw9 a
random sample R of cd

ε log d
ε hyperplanes from H, where cd is a parameter that depends

only on d; its actual dependence on d becomes a major issue in the analysis when d is large.
We then construct the arrangement A(R) of R and its vertical decomposition V(R). With a
suitable choice of cd, the random sampling technique of Clarkson [11] then guarantees, with
constant (high) probability, that each prism of V(R) is crossed by at most ε|H| hyperplanes
of H. (This also follows from the ε-net theory of Haussler and Welzl [23], but, as it turns out,
the coefficient cd has to be much larger when d is large; see below and [16] for more details.)

3.1 The Clarkson Framework
We keep denoting by H a set of n hyperplanes in Rd. Following the definitions and notations
in [22, Chapter 8], put T = T(H) :=

⋃
S⊆H

V(S); that is, T is the set of all possible prisms

8 In the original studies (see, e.g., [10]), these subcells were taken to be simplices, although both forms
have been used in the literature by now.

9 We use an alternative drawing mode, in which, to get a sample of size r, we sample each element of H
independently with probability p = r/|H|. The size of the sample is r only in expectation, but this does
not affect (in fact, it simplifies) the overall analysis; see, e.g., [30].

SoCG 2017

41:8 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

defined by the subsets of H. For each prism τ ∈ T, we associate with τ its defining set D(τ)
and its conflict set K(τ). The former is the smallest subset D ⊆ H such that τ is a prism
in V(D), and the latter is the set of all hyperplanes h ∈ H for which τ does not appear in
V(D ∪ {h}); they are precisely the hyperplanes in H \D that cross τ . By our discussion in
Section 2 we have |D(τ)| ≤ 2d, for each τ ∈ T.

We have the following two axioms, which hold for any subset S ⊆ H:
(i) For any τ ∈ V(S), we have D(τ) ⊆ S and K(τ) ∩ S = ∅.
(ii) If D(τ) ⊆ S and K(τ) ∩ S = ∅, then τ ∈ V(S).
A key novel property of vertical decompositions, which we establish in this paper, is the
following result (some highlights of whose proof are given at the end of this section):

I Theorem 5. Let H be a set of n hyperplanes in Rd. Then the cardinality of T(H) is at
most O

(
22d

d7/2n
2d
)
.

In particular, we get a sharper bound on the complexity of vertical decompositions:

I Corollary 6. Let H be a set of n hyperplanes in Rd. Then the number of prisms in V(H)
is at most O

(
22d

d7/2n
2d
)
.

I Remark. As already mentioned in the introduction, the bound in Corollary 6 significantly
improves the previous upper bound of [9] in terms of its dependence on d, in that its “constant”
of proportionality drops from 2O(d2) to less than 4d. We pay a small price (it is small unless
n is huge relative to d) in terms of the dependence on n, which is n2d in the new bound,
instead of n2d−4 in [25] (and only O(nd) if one uses instead bottom-vertex triangulation).
See below for an additional discussion of this issue.

Equipped with Theorem 5, we obtain (we omit the standard proof, which follows the
analysis in [11, 12] 10):

I Theorem 7. Given a set H of n hyperplanes in d-space, and a parameter ε ∈ (0, 1), a
random sample R of O

(
d
ε log d

ε

)
hyperplanes of H (with an appropriate absolute constant

of proportionality) satisfies, with constant probability, the property that each prism in the
vertical decomposition V(R) of A(R) is crossed by at most ε|H| hyperplanes of H.

I Remark.
1. To turn this random sampling into a procedure that generates an ε-cutting almost surely,

we draw a random sample R of the aforementioned (expected) size, and test whether
it satisfies the property asserted in Theorem 7. If not, we simply discard this sample
and repeat the construction with a new sample. Clearly, since we fail with constant
probability (which we can make rather small by increasing the constant of proportionality),
the expected number of trials till a successful sample is drawn is constant (close to 1).

2. Our construction uses vertical decomposition. Expanding upon an earlier made comment,
we note that an alternative construction, for arrangements of hyperplanes, is the bottom-
vertex triangulation (see [1]). It has the advantage, over vertical decomposition, that the
(bound on the) number of cells (simplices) that it produces is significantly smaller (at
most |R|d), but its major disadvantage for the analysis in this paper is that the typical
size of a defining set of a simplex in this decomposition is d0 = d(d+ 3)/2, as opposed
to the much smaller value d0 = 2d for vertical decomposition; see above, [1], and the

10 It is important to notice that we can follow this analysis because the coefficient is only singly exponential
in d.

E. Ezra and M. Sharir 41:9

full version [16], for more details. The fact that prisms in the vertical decomposition
have such a smaller bound on the size of their defining sets, combined with our improved
bound on the complexity of vertical decomposition, is what makes vertical decomposition
a superior technique for the (decision-tree complexity of the) k-SUM problem.

3. We also remark that the method that we use here is not optimal, from a general
perspective, in several aspects: First, it does not involve the refining second resampling
stage of Chazelle and Friedman [10] (and of others), which leads to a slight improvement in
the number of cells (or, alternatively, to a smaller required sample size). More significantly,
in d ≥ 5 dimensions there are no sharp known bounds on the complexity of the vertical
decomposition, even for arrangements of hyperplanes (see [9, 24] for the general case,
and [21, 25] for the case of hyperplanes). Nevertheless, these issues are irrelevant for the
technique employed here (mainly because, as already mentioned, we will not construct
the entire vertical decomposition), and the coarser method reviewed above serves our
purposes just fine.

4. Finally, we note that, in principle, we could have also used the ε-net theory of [23] to
ensure the ε-cutting property of the resulting decomposition. However, the VC-dimension
of the suitably defined corresponding range space is much larger than 2d. Concretely,
it follows from the analysis in the full version [16] that the VC-dimension is O(d3) and
Ω(d2). Since the size of the random sample in the theory in [23] has to be (slightly more
than) proportional to the VC-dimension, this approach results in much poorer bounds,
which will cause our algorithm to be at least as slow as the one in [7].

3.2 Key Properties in the Proof of Theorem 5
Following the presentation in Section 2, we first analyze the complexity of the vertical
decomposition of a single cell of A(H), and then derive a global bound for the entire
arrangement. Due to lack of space, we only present here a key property of the analysis, which
is also crucial for the analysis of our k-SUM algorithm presented in Section 4.

Let C be a fixed cell of A(H). With a slight abuse of notation, denote by n the number of
its facets (that is, the number of hyperplanes of H that actually appear on its boundary), and
consider the procedure of constructing its vertical decomposition, as described in Section 2.
As we recall, the first stage produces vertical prisms, each having a fixed floor and a fixed
ceiling. We take each such prism, whose ceiling and floor are contained in two respective
hyperplanes h1, h2 of H, project it onto the hyperplane xd = 0, and decompose the projection
Cd−1 recursively.

The (d − 2)-hyperplanes that bound Cd−1 are projections of intersections of the form
h ∩ h1, h ∩ h2, for h ∈ H \ {h1, h2}, including also h1 ∩ h2, if it arises. In principle, the
number of such hyperplanes is at most 2n − 1, but, as shown in the following lemma the
actual number is smaller:

I Lemma 8. Let τ be a first-stage prism, whose ceiling and floor are contained in two
respective hyperplanes h1, h2. Then for each hyperplane h ∈ H, h 6= h1, h2, the following
holds.
(a) If h is nonvertical then only one of g1 := h1 ∩ h or g2 := h2 ∩ h can appear on ∂τ . It is

g1 if C lies below h, and g2 if C lies above h.
(b) If h is vertical, both g1 and g2 can appear on ∂τ , but their projections onto xd = 0

coincide.

SoCG 2017

41:10 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

Proof.
(a) Assume that h is nonvertical. Then either C lies fully above h or it lies fully below h.

Without loss of generality, assume that the former case holds. Since C lies below h1, the
intersection g1 = h ∩ h1, if it shows up on ∂C at all, must bound an equator facet ϕ of C. If
ϕ appears on ∂τ , then the interior of τ must contain a vertical segment whose endpoints lie
on h (bottom) and on h1 (top), contradicting the fact that the floor of τ lies on h2. Hence
only g2 can appear on ∂τ . The case where C lies below h is handled symmetrically.

The proof of (b) is straightforward; it follows from the fact that h1 and h2 are nonvertical,
and in fact both projections of g1 and g2 coincide with that of the entire h. J

I Remark. An important feature of the proof is that it also holds when τ is any convex
vertical prism, obtained at any recursive step of the decomposition, and, in particular, when
τ is the vertical prism obtained at the final step.

It is straightforward to verify that Lemma 8 implies that the projection of τ onto xd = 0
has at most n− 1 facets. Using this property we derive a recurrence relation to bound the
complexity of the vertical decomposition of a single cell C, and then, using axioms (i)–(ii),
we obtain a bound for the entire arrangement. These details appear in the full paper [16].

4 The Algorithm

4.1 Algorithm outline
The high-level approach of our algorithm can be regarded as an optimized variant of the
algorithm of Cardinal et al. [7], which is inspired by the point-location mechanism of
Meiser [28]. We choose ε > 0 to be a constant, smaller than, say, 1/2, and apply the ε-cutting
machinery, as reviewed in Theorem 7. For a given input point x, the algorithm proceeds as
follows.
(i) Construct a random sample R of r := O

(
n
ε log n

ε

)
= O(n logn) hyperplanes of H,

with a suitable absolute constant of proportionality (recall that in our application, the
dimension of the underlying space is n). If R violates the ε-cutting property asserted in
Theorem 7, discard R and repeat the process with a new sample.

(ii) Construct the prism τ = τx of V(R) that contains the input point x. If at that step we
detect an original hyperplane of H that contains x, we stop and return “YES”.

(iii) Construct the conflict list CL(τ) of τ (the subset of hyperplanes of H that cross τ), and
recurse on it.

(iv) Stop as soon as |CL(τ)| is smaller than the sample size r = O
(

n
ε log n

ε

)
(we use the

same sample size in all recursive steps). When that happens, test x, in brute force,
against each original hyperplane of H in CL(τ); return “YES” if one of the tests results
in an equality, and “NO” otherwise.

We note that those parts of the algorithm that do not depend11 on x, which are costly in
the RAM model, are performed here for free. That is, our goal at this point is only to bound
the number of linear queries performed by the algorithm. We also note that although the
construction of the prism containing x (described below) is conceptually simple, it involves
several technical details, which mainly follow from the fact that H may contain vertical
hyperplanes (vs. the simpler scenario where all hyperplanes are in general position).

11By this we mean that they do not compute any explicit expression that depends on the coordinates of
x. They might (and in general, will) depend on previously computed discrete data that does depend on
x, but accessing this data in our model, once computed, is for free.

E. Ezra and M. Sharir 41:11

We next describe the details of implementing step (ii). We comment that step (i) costs
nothing in our model, so we do not bother with its implementation details. The tests in
step (iii), although being very costly in the “full” standard RAM model of computation, are
independent of the specific coordinates of x, and thus cost nothing in our model. We present
this step in detail in the full version of this paper.

Constructing the prism containing x. Since the overall complexity of a prism (the number
of its faces of all dimensions) is exponential in the dimension n, we do not construct it
explicitly. Instead we only construct explicitly its at most 2n bounding hyperplanes, consisting
of a floor and a ceiling (or only one of them in case the cell Cx in A(R) containing x is
unbounded), and at most 2n − 2 vertical walls (we have strictly fewer than 2n − 2 walls
in cases when either the floor of τ intersects its ceiling (on ∂τ), or when this happens in
any of the projections τ∗ of τ in lower dimensions, or when the current subcell becomes
unbounded at any of the recursive steps). The prism τ , as defined in step (ii), is then
implicitly represented as the intersection of the halfspaces bounded by these hyperplanes and
containing x. Let Hx denote this set of at most 2n hyperplanes. From now on we assume,
to simplify the presentation but without loss of generality, that Cx is bounded, and that τ
has exactly 2n− 2 vertical walls (and thus exactly 2n bounding hyperplanes).

The following recursive algorithm constructs Hx, and also detects whether x lies on one
of the bounding hyperplanes of τ . Let r = O

(
n
ε log n

ε

)
denote the (expected) size of our

sample R. Initially, we set Hx := ∅. We first perform r linear queries with x and each of the
hyperplanes of R, resulting in a sequence of r output labels “above” / “below” / “sideways” /
“on”. At the top level of recursion (before reducing the dimension), encountering a label “on”
means that x lies on an original hyperplane of H, and thus there is a positive solution to our
instance of k-SUM, and we stop the entire procedure and output “YES”. At deeper recursive
levels (in lower-dimensional spaces), when we encounter “on”, we need to check that the
relevant (now lower-dimensional) hyperplane is fully contained in an original hyperplane of
H, in order to output “YES” (the full containment condition is addressed later on). As will
be discussed below, such a hyperplane does not have to belong to R, so the procedure for
performing this test, and in particular its analysis, is rather elaborate.

We thus assume, without loss of generality, that all labels are “above”, ”below”, or
“sideways”. We next partition the set of the hyperplanes in R according to their labels, letting
R1 denote the set of hyperplanes lying above x, R2 the set of hyperplanes below it, and
R0 the set of vertical hyperplanes to the side of x. We then identify the upper hyperplane
h1 ∈ R1 and the lower hyperplane h2 ∈ R2 with shortest vertical distances from x. We
do this by computing the minimum of these vertical distances, each of which is a linear
expression in x, using (|R1|− 1) + (|R2|− 1) < r additional comparisons. The hyperplanes h1
and h2 contain the ceiling and the floor of τ , respectively, and we thus insert them into Hx.

In order to produce the hyperplanes containing the vertical walls of τ , we recurse on
the dimension n. This process somewhat imitates the one producing the entire vertical
decomposition of Cx described above. However, the challenges in the current construction
are to build only the single prism containing x, to keep the representation implicit, and to
do this efficiently.

We generate all pairwise intersections h1 ∩ h and h2 ∩ h, for h ∈ R, h 6= h1, h 6= h2, and
obtain two collections G1, G2 of (n− 2)-dimensional flats, each of size at most r − 2, which
we project onto the hyperplane xn = 0.

By Lemma 8 (when the input set is now R) and the remark after it, the following holds
for each h ∈ R \ {h1, h2}. Put g1 := h1 ∩ h and g2 := h2 ∩ h. (a) If h is nonvertical then

SoCG 2017

41:12 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

at most one of g1, g2 can appear on ∂τ . (b) If h is vertical, the projections of g1 and g2
coincide, and are in fact equal to the projection of the entire h. We can therefore discard one
of g1, g2 when h is nonvertical (using the simple rule in Lemma 8), and replace both by the
single projection of h, when h is vertical. Hence, the subset G ⊆ G1 ∪G2 of the surviving
intersections consists of at most |R| − 2 flats (of dimension n− 2). We denote by R(1) the
set of their projections onto the hyperplane xn = 0. (If h1 ∩ h2 is also relevant, we add its
projection to R(1), making its size go up to |R| − 1.)

We continue the construction recursively on R(1) in n − 1 dimensions. That is, at the
second iteration, we project x onto the subspace xn = 0; let x(1) be the resulting point. We
first perform at most r linear tests with x(1) and each of the hyperplanes in R(1). If we
encounter “on” for some h(1) ∈ R(1) then x lies on a vertical wall of τ passing through h(1).
If h(1) is fully contained in a (vertical) hyperplane h′ ∈ H, we output “YES”. We emphasize
that h′ does not have to belong to R (see a discussion of this issue in the proof of correctness,
given below), so, to determine whether such an h′ exists, we simply test h(1) against all
hyperplanes of H (which costs nothing in our model). Otherwise, if we encountered “on” for
some h(1) ∈ R(1) in the above test, but h(1) is not contained in any vertical hyperplane of
H, then the prism τ containing x (in the original n-space) is of one lower dimension (or,
alternatively, x lies on a facet of a full-dimensional prism, which projects to a portion of h(1)).
In this case, we can intersect all the remaining hyperplanes in R(1) with h(1), projecting the
whole setting to the hyperplane xn−1 = 0, and continue the construction recursively within
that hyperplane.

The general flow of the recursive procedure is as follows. At each step i, for i = 1, 2, . . . , n,
we have a collection R(i−1) of at most |R| hyperplanes of dimension n− i, and a point x(i−1),
in the x1 · · ·xn−i+1-hyperplane (for i = 1 we have R(0) = R and x(0) = x). We first test
whether x(i−1) lies on any of the hyperplanes h(i−1) in R(i−1). If so, we test whether h(i−1)

is contained in an original hyperplane of H (essentially12 a hyperplane that is parallel to
all the coordinates xn−i+2, . . . , xn that we have already processed, that is, vertical in all of
them), and, if so, we output “YES”. If x(i−1) lies on some h(i−1) (but no original hyperplane
of H contains h(i−1)), we recurse in one lower dimension, as described for the case i = 2.
Otherwise, we assume, without loss of generality, that no “on” label is produced. We find the
pair of hyperplanes that lie respectively above and below x(i−1) in the xn−i+1-direction, and
are closest to x(i−1) in that direction (they support the “ceiling” and “floor” of the recursive
prism, in the xn−i-direction), and then produce a set R(i) of fewer than |R| hyperplanes
of dimension (n − i − 1) in the x1 · · ·xn−i-hyperplane. We also project x(i−1) onto this
hyperplane, thereby obtaining the next point x(i). The construction of R(i) is performed
similarly to the way it is done in case i = 1, described above, and Lemma 8 (and the
remark following it) continues to apply, so as to ensure that indeed |R(i)| continues to be
(progressively) smaller than |R|, and that its members are easy to construct.

We stop when we reach i = n, in which case we are given a set of at most |R| points on
the real line, and we locate the two closest points to the final projected point x(n).

To complete the construction, we take each of the hyperplanes h(i−1)
1 , h(i−1)

2 , obtained
at each of the iterations i = 2, . . . , n, and lift it “vertically” in all the remaining directions
xn−i+2, . . . , xn, and add the resulting (n− 1)-hyperplanes in Rn to Hx. We comment that in
case x lies on a facet (or, more generally, a lower dimensional face) of τ , we need to confine
these liftings to the appropriate flat h containing this face(t).

12To be precise, it could also be that, accidentally, some other original hyperplane contains h(i−1).

E. Ezra and M. Sharir 41:13

I Remark. The importance of Lemma 8 is that it controls the sizes of the sets R(i), i ≥ 1.
Without the filtering that it provides, the size of each R(i) would be roughly twice the size of
R(i−1), and the query would then require exponentially many linear tests. This doubling
effect shows up in the original analysis of the complexity of vertical decompositions [9].

Algorithm correctness. Let h be a hyperplane of H that contains x. Clearly, h must
intersect the interior or the boundary of τ . In the former case, h belongs to CL(τ), and
will be passed down the recursion. In the latter case, either h is the floor or ceiling of τ ,
and then the first stage of constructing τ will detect that x ∈ h. Otherwise h must be an
xd-vertical hyperplane. Indeed, no other original hyperplane can meet τ unless it intersects
its floor or ceiling; since x was found not to lie on the floor or the ceiling, it cannot lie on any
nonvertical h. If h is in R, then the algorithm outputs “YES”. It is possible, though, that
h /∈ R, in which case, since h does not intersect the interior of τ , it does not belong to CL(τ),
and we risk missing h altogether. (Clarkson’s theory, in the context used in this paper, does
not control the number of hyperplanes that touch τ without crossing it.) However, if x does
lie on h then x must lie on ∂τ , and one of the recursive steps in the construction of τ will
detect this fact. In the full version of this paper we describe a procedure, already alluded to
several times earlier, that tests for this property, and establish its correctness.

We emphasize that at each recursive step we construct the prism τ only with respect
to the conflict list of its parent cell τ0 (initially, τ0 = Rd and CL(τ0) = H), implying that
τ is not necessarily contained in τ0. In other words, the sequence of cells τ constructed in
our algorithm are spatially in no particular relation to one another (except that all of them
contain x). Still, this does not harm the correctness of the search process, a claim that is
argued as follows. The fact that x lies in τ0 and in τ implies that it can only lie either on one
of the hyperplanes in CL(τ0) or on one of the (at most 2d) bounding hyperplanes of τ . The
latter situation will be detected during the non-recursive processing of τ , during which the
algorithm (step (ii)) will test x against each of the bounding hyperplanes of τ (once again,
we describe this in more detail in the full paper). If it finds that x lies on such a hyperplane,
it then determines, as mentioned above, whether that hyperplane is an original hyperplane
of H (or, more precisely, of CL(τ0)). Hence, if x lies on some hyperplane h ∈ H, and this
fact has not yet been detected, h will be passed to the recursion as an element of CL(τ) at
step (iii). The case where τ is lower-dimensional is handled in a similar manner.

We next claim that the algorithm terminates (almost surely). Indeed, at each recursive
step, the sample R is drawn from the corresponding subset CL(τ0). Applying Theorem 7
to CL(τ0), we obtain that the conflict list of the next prism τ contains (with certainty, due
to the test applied at step (i)) only at most ε|CL(τ0)| hyperplanes of CL(τ0). Hence, with
probability 1, after a logarithmic number of steps (see below for the concrete analysis) we
will reach step (iv), and then the algorithm will correctly determine whether x lies on a
hyperplane of H (by the invariant that we maintain, any such hyperplane belongs to the
final conflict list CL(τ)).

(The termination is guaranteed only almost surely, because of the possibility of the event
(that has probability 0) of repeatedly failing to choose a good sample at some recursive
application of step (i).)

The query complexity. Due to lack of space, we describe the analysis of the query complexity
very briefly, and postpone the remaining details to the full paper. Roughly speaking, at each
recursive step in the construction of τ we need to perform O(r) linear queries in order to
determine, for each hyperplane h ∈ R whether it lies above, below, on, or sideways from x,

SoCG 2017

41:14 A Nearly Quadratic Bound for the Decision Tree Complexity of k-SUM

and then find the ceiling and floor hyperplanes h1 and h2. In order to test, for a nonvertical
hyperplane h ∈ R \ {h1, h2}, which of g1 := h1 ∩ h or g2 := h2 ∩ h can appear on ∂τ (or,
more specifically, on the boundary of the undecomposed convex prism τ̄ containing τ), we use
the simple rule provided in Lemma 8 (which holds in any dimension i ≤ n). This eventually
implies that we spend a total of O(n2 logn) linear queries over all n steps of the recursion
(on the dimension), for a grand total of O(n2 logn log |H|) = O(kn2 log2 n) linear queries,
over all O(log |H|) steps of the algorithm.

This completes the proof of Theorem 3 for the k-SUM problem. The analysis proceeds
more or less verbatim to the more general case of k-LDT with the same performance bound,
and generalizes, also trivially, to the cases of SubsetSum and Knapsack. We omit the easy
details in this version. J

Concluding remarks and open problems. It looks likely that the number of queries can
be brought down to O(n2 logn). To fit into the general theory of Clarkson, we have drawn
a sample R of size O(n logn). The logarithmic factor is needed if we want to ensure (with
constant, high probability) that the ε-cutting property holds for all prisms that arise in
V(R), but we only need this property to hold for the single prism that contains x. With a
smaller sample size O(n), and with some extra care, we seem to obtain an expected number
of O(n2 logn) queries. We plan to present this improvement in the full version [16], where
this under-sampling technique is referred to as optimal sampling. Applying this improvement
to the Knapsack or the SubsetSum problems, the number of queries goes down to O(n3).

We show in the full version that our algorithm, when cast into the RAM model, has an
implementation whose expected running time is nk+O(1) (but still using only O(n2 log2 n)
linear queries on x). An interesting open problem is whether the running time can be improved
to roughly O(ndk/2e), while still using only nearly-quadratically many linear queries. A
similar result was obtained in the previous work of Cardinal et al. [7] (but with a nearly-cubic
number of linear queries). We hope to obtain a similar improvement for the approach used
in this paper.

Acknowledgments. The authors would like to thank Shachar Lovett, Sariel Har-Peled, and
Haim Kaplan for many useful discussions.

References

1 P.K. Agarwal and M. Sharir, Arrangements and their applications, In Handbook of Com-
putational Geometry, (J. Sack and J. Urrutia, eds.), Elsevier, Amsterdam, pp. 973–1027,
2000.

2 N. Ailon and B. Chazelle, Lower bounds for linear degeneracy testing, J. ACM, 52(2):157–
171, 2005.

3 B. Aronov and S. Har-Peled, On approximating the depth and related problems, SIAM J.
Comput. 38:899–921, 2008.

4 G. Barequet and S. Har-Peled, Polygon-containment and translational min-Hausdorff-
distance between segment sets are 3SUM-hard, Int’l J. Comput. Geometry Appl., 11(4):465–
474, 2001.

5 M. Ben-Or, Lower bounds for algebraic computation trees, In Proc. 16th Annual ACM
Symp. Theory Comput. (STOC), pp. 80–86, 1983.

6 R.G. Bland, D. Goldfarb, and M. J. Todd, The ellipsoid method: A survey, Operations
Research, 29(6):1039–1091, 1981.

E. Ezra and M. Sharir 41:15

7 J. Cardinal, J. Iacono, and A. Ooms, Solving k-SUM using few linear queries, In Proc. 24th
European Symp. Alg. (ESA), 2016, 25:1–25:17.

8 T.M. Chan and M. Lewenstein, Clustered integer 3SUM via additive combinatorics, In
Proc. 47th Annual ACM Symp. Theory Comput. (STOC), pp. 31–40, 2015.

9 B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly exponential stratification
scheme for real semi–algebraic varieties and its applications, Theoret. Comput. Sci., 84:77–
105, 1991. Also in Proc. 16th Int’l Colloq. on Automata, Languages and Programming, 1989,
pp. 179–193.

10 B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in
geometry, Combinatorica, 10:229–249, 1990.

11 K.L. Clarkson, New applications of random sampling in computational geometry, Discrete
Comput. Geom., 2:195–222, 1987.

12 K.L. Clarkson and P.W. Shor, Applications of random sampling in computational geo-
metry, II, Discrete Comput. Geom., 4:387–421, 1989.

13 D. Dobkin and R. Lipton, A lower bound of n2/2 on linear search programs for the
Knapsack problem, J. Comput. Syst. Sci., 16(3):413–417, 1978.

14 D. Dobkin and R. Lipton, On the complexity of computations under varying set of primit-
ives, J. Comput. Syst. Sci., 18:86–91, 1979.

15 J. Erickson, Lower bounds for linear satisfiability problems, Chicago. J. Theoret. Comput.
Sci., 8:388–395, 1997.

16 E. Ezra, S. Har-Peled, H. Kaplan and M. Sharir, Decomposing arrangements of hyperplanes:
VC-dimension, combinatorial dimension, and point location, Manuscript, 2017.

17 A. Freund, Improved Subquadratic 3SUM, Algorithmica, 77(2):440–458, 2017.
18 A. Gajentaan and M.H. Overmars, On a class of O(n2) problems in computational geo-

metry, Comput. Geom. Theory Appl., 5:165–185, 1995.
19 O. Gold and M. Sharir, Improved bounds on 3SUM, k-SUM, and linear degeneracy, CoRR

abs/1512.05279v2, 2017.
20 A. Grønlund and S. Pettie, Threesomes, degenerates, and love triangles, In Proc. 55th

Annual Symp. Found. Comput. Sci., pp. 621–630, 2014.
21 L. J. Guibas, D. Halperin, J. Matoušek, and M. Sharir, On vertical decomposition of ar-

rangements of hyperplanes in four dimensions, Discrete Comput. Geom., 14:113–122, 1995.
22 S. Har-Peled, Geometric Approximation Algorithms, Mathematical Surveys and Mono-

graphs, Vol. 173, AMS Press, Providence, RI, 2011.
23 D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom.,

2:127–151, 1987.
24 V. Koltun, Almost tight upper bounds for vertical decompositions in four dimensions, J.

ACM 51(5):699–730, 2004.
25 V. Koltun, Sharp bounds for vertical decompositions of linear arrangements in four dimen-

sions, Discrete Comput. Geom., 31(3):435–460, 2004.
26 D. Liu, A note on point location in arrangements of hyperplanes, Inform. Process. Letts.,

90(2):93–95, 2004.
27 J. Matoušek, Cutting hyperplane arrangements, Discrete Comput. Geom., 6:385–406, 1991.
28 S. Meiser, Point location in arrangements of hyperplanes, Information Comput., 106(2):286–

303, 1993.
29 F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional knap-

sack problem, J. ACM, 31:668–676, 1984.
30 M. Sharir, The Clarkson–Shor technique revisited and extended, Combinat. Probab. Com-

put., 12:191–201, 2003.
31 M. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Alg., 3:1–8, 1982.

SoCG 2017

Computing the Fréchet Gap Distance∗†

Chenglin Fan1 and Benjamin Raichel2

1 Dept. of Computer Science, University of Texas at Dallas, Dallas, TX, USA
cxf160130@utdallas.edu

2 Dept. of Computer Science, University of Texas at Dallas, Dallas, TX, USA
benjamin.raichel@utdallas.edu

Abstract
Measuring the similarity of two polygonal curves is a fundamental computational task. Among
alternatives, the Fréchet distance is one of the most well studied similarity measures. Informally,
the Fréchet distance is described as the minimum leash length required for a man on one of the
curves to walk a dog on the other curve continuously from the starting to the ending points.
In this paper we study a variant called the Fréchet gap distance. In the man and dog analogy,
the Fréchet gap distance minimizes the difference of the longest and smallest leash lengths used
over the entire walk. This measure in some ways better captures our intuitive notions of curve
similarity, for example giving distance zero to translated copies of the same curve.

The Fréchet gap distance was originally introduced by Filtser and Katz [19] in the context
of the discrete Fréchet distance. Here we study the continuous version, which presents a number
of additional challenges not present in discrete case. In particular, the continuous nature makes
bounding and searching over the critical events a rather difficult task.

For this problem we give an O(n5 logn) time exact algorithm and a more efficient O(n2 logn+
n2

ε log 1
ε) time (1 + ε)-approximation algorithm, where n is the total number of vertices of the

input curves. Note that for (small enough) constant ε and ignoring logarithmic factors, our
approximation has quadratic running time, matching the lower bound, assuming SETH [10], for
approximating the standard Fréchet distance for general curves.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms,
I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Fréchet Distance, Approximation, Polygonal Curves

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.42

1 Introduction

Polygonal curves arise naturally in the modeling of a number computational problems, and
for such problems assessing the similarity of two curves is one of the most fundamental tasks.
There are several competing measures for defining curve similarity. Among these, there has
been strong interest in the Fréchet distance, particularly from the computational geometry
community, as the Fréchet distance takes into account the continuous “shape” of the curves
rather than just the set of points in space they occupy. The Fréchet distance and related
measures have been used for a variety of applications [21, 9, 24, 23, 11], and it is typically
illustrated as follows. Let the two polygonal curves be denoted π and σ, with n vertices in
total. Imagine a man and a dog are respectively placed at the starting vertices of π and σ,
and they must each move continuously along their curves to their respective ending points.

∗ See [18] for the full version (http://www.utdallas.edu/~bar150630/gap.pdf).
† Work on this paper was partially supported by NSF CRII Award 1566137.

© Chenglin Fan and Benjamin Raichel;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 42; pp. 42:1–42:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.42
http://www.utdallas.edu/~bar150630/gap.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Computing the Fréchet Gap Distance

Figure 1 Left: A 2D “airplane roll”. Right: Turning in 2D by pivoting on one side at a time.

The man and dog are connected by a leash, and the Fréchet distance is the minimum leash
length required over all possible walks of the man and dog, where the man and dog can
independently control their speed but cannot backtrack.

In this paper we consider a variant called the Fréchet gap distance, originally introduced
by Filtser and Katz in the context of the discrete Fréchet distance [19]. In the man and
dog analogy, this variant minimizes the difference of the lengths of the longest and shortest
leashes used over the entire walk. As discussed in [19], since this measure considers both
the closest and farthest relative positions of the man and dog, in many cases it is closer to
our intuitive notion of curve similarity. Notably, two translated copies of the same curve
have Fréchet gap distance zero, as opposed to the magnitude of the translation under the
standard Fréchet distance. Though this is not to say that it is the same as minimizing the
standard Fréchet distance under translation. For instance, fix any two points on a rigid body
in two or three dimensions. The pair of curves traced out by these points as we arbitrarily
rotate and translate the rigid body will always have Fréchet gap distance zero (see Figure 1).

A natural scenario for the gap distance is planning the movement of military units, where
one wants them to be sufficiently close to support each other in case of need, but sufficiently
far from each other to avoid unintended interaction (i.e., friendly fire). Such units might
move on two major roads that are roughly parallel to each other, thus matching our setup.

Previous Work. Alt and Godau [4] presented an O(n2 log(n)) time algorithm to compute the
standard Fréchet distance. More recently Buchin et al. [12] improved the logarithmic factor in
the running time (building on [1]), however Bringmann [10] showed that assuming the Strong
Exponential Time Hypothesis (SETH), no strongly subquadratic time algorithm is possible.
Moreover, Bringmann showed that assuming SETH there is no strongly subquadratic 1.001-
approximation algorithm, thus ruling out the possibility of a strongly subquadratic PTAS
for general curves. On the other hand, there are fast approximation algorithms for several
families of nicely behaved curves, for example Driemel et al. [16] gave an O(cn/ε+ cn logn)
time algorithm for the case of c-packed curves.

Many variants of the Fréchet distance between polygonal curves have been considered.
Alt and Godau [4] gave a quadratic time algorithm for the weak Fréchet distance, where
backtracking on the curves is allowed. Driemel and Har-Peled [15] considered allowing
shortcuts between vertices, and for this more challenging variant, they give a near linear time
3-approximation for c-packed curves. Later Buchin et al. [14] proved the general version,
where shortcutting is also allowed on edge interiors, is NP-hard (and gave an approximation
for the general and an exact algorithm for the vertex case). The discrete Fréchet distance only
considers distances at the vertices of polygonal curves, i.e. rather than a continuously walking
man and dog, there is a pair of frogs hopping along the vertices. This somewhat simpler variant
can be solved in O(n2) time using dynamic programming [17]. Interestingly, Agarwal et al. [1]
showed the discrete variant can be solved in weakly subquadratic O(n2 log logn/ logn) time,
however the above results of Bringmann [10] also imply there is no strongly subquadratic
algorithm for the discrete case, assuming SETH. Avraham et al. [6] considered shortcuts in
the discrete case, providing a strongly subquadratic running time, showing shortcuts make it
more tractable, which was the reverse for the continuous case.

C. Fan and B. Raichel 42:3

Minimizing Fréchet distance under translation (and other transformations) was previously
considered, though running times are typically large. For example, Alt et al. [5] gave a
roughly O(n8) time algorithm, though they also gave a O(n2/ε2) time (1 + ε)-approximation.
Avraham et al. [7] consider the discrete case, and provide a nice summary of other previous
work. The Fréchet distance has also been extended to more general inputs, such as graphs [3],
piecewise smooth curves [22], simple polygons [13], surfaces [2], and complexes [20]. In
general there are too many Fréchet distance results to cover, and the above is just a sampling.

The most relevant previous work is that of Filtser and Katz [19], who first proposed the
Fréchet gap distance. The technical content of the two papers differs significantly however,
as [19] considers the discrete case, avoiding many of the difficulties faced in our continuous
setting. In particular, a solution to the gap problem is a distance interval. In the continuous
case the challenge is bounding the number of possible intervals, while in the discrete case
a bound of O(n4) holds, as each interval endpoint is a vertex to vertex distance. Using a
result of Avraham et al. [7], Filtser and Katz improve this to an O(n3) time algorithm to
compute the minimum discrete Fréchet gap. They also provide O(n2 log2 n) time algorithms
for one-sided discrete Fréchet gap with shortcuts and the weak discrete Fréchet gap distance.

Contributions and Overview. Here we consider the continuous Fréchet gap distance problem
(defined informally above, and formally below). This is the first paper to consider the more
challenging continuous version of this problem. For this problem we provide an O(n5 logn)
time exact algorithm and a more efficient O(n2 logn+ n2

ε log 1
ε) time (1 + ε)-approximation

algorithm, and we now outline our approach and main contributions.
The standard approach for computing the Fréchet distance starts by solving the decision

version for a given query distance δ ≥ 0, by using the free space diagram, which describes the
pairs of points (one from each curve) which are within distance δ. The convexity of the free
space cells allows one to efficiently propagate reachibility information, leading to a quadratic
time proceedure overall. For the Fréchet gap problem the free space cells are no longer convex,
but despite this we show that they have sufficient structure to allow efficient reachability
propagation, again leading to a quadratic time decider, which in our case determines whether
a given query interval [s, t] is feasible.

The next step in computing the Fréchet distance is to find a polynomially sized set of
critical events, determined by the input curves, to search over. For the standard Fréchet
distance this set has O(n3) size. For the Fréchet gap case however the number of critical
events can be much larger as they are determined by two rather than one distance value.
As mentioned above, for the discrete case only pairs of vertex distances are relevant and
so there are O(n4) events. On the other hand, for the continuous case there can now be
“floating” monotonicity events where increasing (or decreasing) the gap interval endpoint
values simultaneously may lead to an entire continuum of optimum intervals. Despite this
we show there is an O(n6) sized set of canonical intervals containing an optimum solution.

The last step is efficiently searching over the critical events. For the standard Fréchet
distance this can be done via parametric search [4] or sampling [20], yielding an O(n2 logn)
running time. Searching in the gap case however is more challenging, as there is no longer a
natural linear ordering of events. Specifically, the set of feasible intervals may not appear
contiguously when ordering candidate intervals by width. Despite this, we similarly get a
near linear factor speed up, by using a more advanced version of the basic approach in [20].

Our approximation uses the observation that all feasible intervals share a common value.
Roughly speaking, at the cost of a 2-approximation, this allows us to consider the radius of
intervals centered at this common value, rather than two independent interval endpoints,
reducing the number of critical events. This is improved to a (1 + ε)-approximation, and
finally the running time is reduced by a linear factor, again using a modified version of [20].

SoCG 2017

42:4 Computing the Fréchet Gap Distance

2 Preliminaries

Throughout, given points p, q ∈ Rd, ||p − q|| denotes their Euclidean distance. Moreover,
given two (closed) sets P,Q ⊆ Rd, dist(P,Q) = minp∈P,q∈Q ||p− q|| denotes their distance.

2.1 Fréchet Distance and Fréchet Gap Distance
A polygonal curve π of length n is a continuous mapping from [0, n] to Rd, such that
for any integer 1 ≤ i ≤ n, the restriction of π to the interval [i − 1, i] is defined by
π((i − 1) + α) = (1 − α)π(i − 1) + απ(i) for any α ∈ [0, 1], i.e. a straight line segment.
When it is clear from the context, we often use π to denote the image π([0, n]). The set of
vertices of π is defined as V (π) = {π0, π1 . . . , πn}, where πi = π(i), and the set of edges is
E(π) = {π0π1, . . . , πn−1πn}, where πi−1πi is the line segment connecting πi−1 and πi.

A reparameterization for a curve π of length n is a continuous non-decreasing bijection
f : [0, 1]→ [0, n] such that f(0) = 0, f(1) = n. Given reparameterizations f, g of an n length
curve π and an m length curve σ, respectively, the width between f and g is defined as

widthf,g(π, σ) = max
α∈[0,1]

||π(f(α))− σ(g(α))|| .

The (standard) Fréchet distance between π and σ is then defined as

dF (π, σ) = min
f,g

widthf,g(π, σ)

where f, g range over all possible reparameterizations of π and σ.
A gap is an interval [s, t] where 0 ≤ s ≤ t are real numbers, and the gap width is t− s.

Similarly, given reparameterizations f, g for curves π, σ, define their gap and gap width as

gapf,g(π, σ) =
[

min
α∈[0,1]

||π(f(α))− σ(g(α))||, max
α∈[0,1]

||π(f(α))− σ(g(α))||
]
,

gapwidthf,g(π, σ) = max
α∈[0,1]

||π(f(α))− σ(g(α))|| − min
α∈[0,1]

||π(f(α))− σ(g(α))|| .

The Fréchet gap distance between two curves π and σ is then defined as

dG(π, σ) = min
f,g

gapwidthf,g(π, σ)

where f, g range over all possible reparameterizations of π and σ.
If there exist reparameterizations f and g for curves π and σ satisfying the inequalities,

max
α∈[0,1]

||π(f(α))− σ(g(α))|| ≤ t min
α∈[0,1]

||π(f(α))− σ(g(α))|| ≥ s,

we say [s, t] is a feasible gap between curves π and σ. Throughout the paper [s∗, t∗] denotes
an arbitrary optimal gap, that is t∗ − s∗ = dG(π, σ). (Note there may be more than one such
optimal gap, and moreover a feasible gap does not necessarily contain an optimal gap.)

Note that in the later sections of the paper we refer to gaps or intervals [s, t] instead as
parametric points or pairs (s, t), in which case feasibility is defined analogously.

2.2 Free Space
To compute the standard Fréchet distance one normally looks at the so called free space.
The t free space between curves π and σ, with n and m edges respectively, is defined as

Ft = {(α, β) ∈ [0, n]× [0,m] | ||π(α)− σ(β)|| ≤ t}.

C. Fan and B. Raichel 42:5

LF
i,j LF

i,j+1

BF
i+1,j

BF
i,j

Figure 2 Free space cell.

LF
i,j

LaFi,j+1

LbFi,j+1

BF
i+1,j

BF
i,j

Figure 3 Relative free space cell.

Similarly define F<t = {(α, β) ∈ [0, n] × [0,m] | ||π(α) − σ(β)|| < t} to be Ft without its
boundary. C(i, j) = [i− 1, i]× [j − 1, j] is referred to as the cell of the free space diagram
determined by edges πi−1πi and σj−1σj , and the free space within this cell is

Ft(i, j) = {(α, β) ∈ [i− 1, i]× [j − 1, j] | ||π(α)− σ(β)|| ≤ t}.

Alt and Godau [4] showed that the free space within a cell is always a convex set
(specifically, the clipping of an affine transformation of a disk to the cell). Moreover,
any x, y monotone path in the free space from (0, 0) to (n,m) corresponds to a pair of
reparameterizations f , g of π, σ such that widthf,g(π, σ) ≤ t. The converse also holds and
hence dF (π, σ) ≤ t if and only if such a monotone path exists. These two statements together
imply that in order to determine if dF (π, σ) ≤ t, it suffices to restrict attention to the free
space intervals on the boundaries of the cells. Specifically, let LFi,j (resp. BFi,j) denote the left
(resp. bottom) free space interval of C(i, j), i.e. LFi,j = Ft(i, j) ∩ ({i− 1} × [j − 1, j]) (resp.
BFi,j = Ft(i, j) ∩ ([i− 1, i]× {j − 1})). See Figure 2.

2.3 Relative Free Space
We extend the standard free space definitions of the previous section to the Fréchet gap
distance problem. First we define the s, t relative free space between π and σ to be

F[s,t] = {(α, β) ∈ [0, n]× [0,m]| | s ≤ ||π(α)− σ(β)|| ≤ t} = Ft \ F<s ,

describing all pairs of points, one on π and one on σ, whose distance is contained in [s, t].
For a point (α, β) in a cell of F[s,t] or Ft, throughout we use the colloquial terms higher or
lower (resp. right or left) to refer larger or smaller value of α (resp. β).

Again we seek an x, y monotone path in the relative free space from (0, 0) to (n,m),
since such a path corresponds to a pair of reparameterizations f , g of π, σ such that
gapwidthf,g(π, σ) ≤ t − s, and hence dG(π, σ) ≤ t − s. Conversely, if no such path exists
then [s, t] is not a feasible gap for π and σ, implying that [s∗, t∗] 6⊆ [s, t], but note however
that unlike the standard Fréchet distance, it may still hold that t∗ − s∗ ≤ t− s.

The relative free space in the cell C(i, j) determined by edges πi−1πi and σj−1σj is,

F[s,t](i, j) = {(α, β) ∈ [i− 1, i]× [j − 1, j] | s ≤ ||π(α)− σ(β)|| ≤ t} = Ft(i, j) \F<s (i, j).

Another technical challenge with the Fréchet gap problem arises from the fact that relative
free space in a cell may not be convex (see Figure 3). However, there is some structure.
Observe that F[s,t](i, j) = Ft(i, j)\F<s (i, j), and hence is the set difference of two convex sets,
where one is contained in the other. In other words, it looks like a standard free space cell
with a hole removed. In particular, we can again look at the free space intervals on the cell

SoCG 2017

42:6 Computing the Fréchet Gap Distance

boundaries. As Ft(i, j) is convex, it still determines a single interval on each cell boundary,
however, this interval may be broken into two subintervals by the removal of Fs(i, j) (whose
convexity implies it is at most two subintervals). Let LFi,j = LbFi,j ∪ LaFi,j denote the relative
free space on the left boundary of C(i, j), where LbFi,j denotes the bottom and LaFi,j the top
interval (note if Fs(i, j) does not intersect the boundary then LbFi,j = LaFi,j = LFi,j). Similarly,
let BFi,j = BlFi,j ∪ BrFi,j denote the relative free space on the bottom boundary of C(i, j),
where BlFi,j denotes the left and BrFi,j the right interval.

3 The Fréchet Gap Decision Problem

The Fréchet gap decision problem is defined as follows.

I Problem 1. Given polygonal curves π, σ, is a given interval [s, t] a feasible gap for π, σ?

As discussed in Section 2.3, [s, t] is a feasible gap for π and σ if and only if there exists an
x, y monotone path from (0, 0) to (n,m) in the [s, t] relative free space F[s,t]. This motivates
the definition of the reachable relative free space,

RF[s,t] = {(α, β) ∈ [0, n]×[0,m] | there exists an x, y monotone path from(0, 0) to (α, β)}.

Hence the answer to Problem 1 is ‘yes’ if and only if (n,m) ∈ RF[s,t]. As was the case with the
relative free space, the relevant information for the reachable relative free space is contained
on the cell boundaries. We now describe how to propagate the reachable information from
the left and bottom boundary to the right and top boundary of a cell, which ultimately
will allow us to propagate the reachable information from (0, 0) to (n,m). (Note this is the
typical approach to solving the standard Fréchet distance decision problem.)

Let LRi,j and BRi,j denote the reachable subsets of the left and bottom boundaries of
C(i, j). First we argue that like LFi,j , LRi,j is composed of at most two disjoint intervals. Let
LxFi,j be either LaFi,j or LbFi,j . The reachable subset of LxFi,j is a single connected interval.
To see this, observe that wherever the lowest reachable point in LxFi,j lies, all points above
it in LxFi,j are reachable by a monotone path. As LRi,j is a subset of LFi,j , this implies it is
composed of at most two intervals denoted LaRi,j and LbRi,j (if LFi,j is single interval then
LRi,j = LaRi,j = LbRi,j). BlRi,j and BrRi,j are defined similarly.

Propagating in a cell: Given LRi,j and BRi,j , we now describe how to compute LRi,j+1 (BRi+1,j
is handled similarly). There are four cases, determined by whether we are propagating LRi,j
or BRi,j , and whether we are going above or below the hole Fs(i, j). First, some notation.

I Definition 2. Label the leftmost and rightmost vertical lines tangent to the hole Fs(i, j)
as v`li,j and v`ri,j , and label the topmost and bottommost horizontal tangent lines as h`ai,j
and h`bi,j (see Figure 4). Similarly define the leftmost point Hli,j , the rightmost point Hri,j ,
the topmost point Hai,j , and the bottommost point Hbi,j , of Fs(i, j) (Note any one of these
points may be undefined if Fs(i, j) intersects the boundary in more than a single point, as is
the case for Hri,j in Figure 4.) Finally, let Iai,j be the highest and Ibi,j the lowest point of
LFi,j+1. When i, j is fixed, the subscript is often dropped.

Propagation of the reachable relative free space is done similarly to that for the standard
free space [4]. Namely points from LRi,j and BRi,j are projected onto LFi,j+1 by paths which
locally stay as low as possible. The only difference is that now the LRi,j and BRi,j cases are
each broken into two subcases based on whether the path must go above or below the hole
Fs(i, j) (see Figure 5 and Figure 6). Note this stays a constant time operation per cell, since

C. Fan and B. Raichel 42:7

h`a

h`b

v`l v`r

Hl

Ha

Hb

Ia

Ib

wa

Figure 4 Free space cell. Figure 5 BR
i,j to LR

i,j+1. Figure 6 LR
i,j to LR

i,j+1.

as proved above LRi,j and BRi,j are each always composed of at most two disjoint subintervals.
Due to space limitations, the straightforward but tedious details of propagation are left to
the full version [18] (the above definition was kept as it is needed later).

I Theorem 3 (For proof see [18]). Given polygonal curves π of length n, σ of length m, and
an interval [s, t], the Fréchet gap decision problem, Problem 1, can be solved in O(nm) time.

4 Finding the Relative Free Space Critical Events

In this section we describe the relative free space critical events, that is a polynomially sized
subset of possible intervals, which must contain an optimal interval [s∗, t∗]. The relative free
space events are significantly more complicated than the free space events for the standard
Fréchet distance. The following definitions will be used throughout this section.

I Definition 4. Two free space cells C(i, j) and C(k, l) are adjacent if they share a horizontal
or vertical boundary, i.e. k = i and |l−j| = 1, or l = j and |k−i| = 1. Call any monotone path
from (0, 0) to (n,m) in the relative free space a valid path. Given any valid path p, the cell
sequence of p, denoted cp(p) = (C1, . . . , Cn+m−1), is the ordered sequence of cells p intersects
(so C1 = C(1, 1), Cn+m−1 = C(n,m)). For horizontally adjacent cells C(i, j) and C(i, j + 1)
in the cell sequence, p either passes above or below Fs(i, j), specifically if p intersects the
vertical segment connecting Ha to the top boundary of C(i, j) then p passes above Fs(i, j),
and otherwise p passes below. (Similarly define passing left or right for vertically adjacent
cells.) This defines the passing sequence of p, denoted pass(p) = (h1, . . . , hn+m−1), where
hi ∈ {above, below, left, right}.

For the standard Fréchet distance, Alt and Godau [4] specified the following set of distance
values, called the critical events, which must contain the optimal Fréchet distance.

Initialization event: The minimum value ε such that (0, 0) ∈ Fε and (n,m) ∈ Fε.
Connectivity events: For any cell Ci, the minimum ε such that LFi or BFi is non-empty,
corresponding to the distance between a vertex of one curve and an edge of the other.
Monotonicity events: Let Ij and Ik be two non-empty vertical free space boundary
intervals in the same row with Ij left of Ik (or horizontal intervals in the same column).
The minimum ε such that Ibj ≤ Iak , that is there is a monotone path between Ij and Ik.

Since any valid path can be decomposed into a set of row and column subpaths, proving
that dF (π, σ) is one the above defined critical events is a straightforward task.

For the Fréchet gap distance, the critical events will be a super-set of the standard Fréchet
events. As an optimal gap is defined by an interval [s, t], the events below can either be a
value of s or a value of t. A critical interval is then any valid s ≤ t pair from the first three
critical event types defined below. Additionally, there is now a fourth type called a floating

SoCG 2017

42:8 Computing the Fréchet Gap Distance

(a) (b)

(c) (d)

Ib
j

Ia
k

Ha
j

Hb
k

Ib
j Ha

j

Ia
kHb

k

Figure 7 Opening of a horizontal passage.

monotonicity event. These events directly specify the s, t pair (i.e. these “events” are also
“critical intervals”), and there are potentially an infinite number of such events.
1. Initialization events: The values s = min{||π0 − σ0||, ||πn − σm||} and t = max{||π0 −

σ0||, ||πn − σm||}. That is, the supremum of values for s such that (0, 0) /∈ Fs and
(n,m) /∈ Fs, and the minimum value of t such that (0, 0) ∈ Ft and (n,m) ∈ Ft.

2. Connectivity events: For any row i and column j, the values dist(πi−1, σj−1σj), dist(πi,
σj−1σj), dist(πi−1πi, σj−1), dist(πi−1πi, σj), for either s or t. In other words for cell Ci,j ,
the maximum value s such that Ha, Hb, Hl, or Hr are defined, or minimum value t such
that Ia, Ib (or similarly any of the other three cell boundary intervals) are defined. Note
Ia, Ib are first defined at the same location/value where Hr is last defined, yet we still
regard these as separate events, one for s and the other for t. (For s this is when the free
space intervals may break into two, and for t it is when the interval is first non-empty.)

3. Standard Monotonicity events: For any cells Cj , Ck in the same row with Cj left of
Ck:
(a) The value t such that height(Ibj) = height(Iak).
(b) The value s such that height(Haj) = height(Hbk).

3. Floating Monotonicity events: For any cells Cj , Ck in the same row with Cj left of
Ck:
(a) Any pair s, t such that height(Ibj) = height(Hbk).
(b) Any pair s, t such that height(Haj) = height(Iak).

Here height() denotes the vertical coordinate of a point in the relative free space. Analogous
definitions apply to the case when cells are in the same column. Note that depending on the
geometry such events may not be defined.

Let Ss and St denote the set of values for s and t, respectively, determined by the
initialization, connectivity and standard monotonicity critical events, and let Ss × St denote
the corresponding set of valid critical intervals determined by these values. Let SF be the set
of s, t intervals determined by floating monotonicity events. The set of all critical intervals is
then SI = SF ∪ (Ss × St). The proof of the following is similar to the standard Fréchet case,
except now valid paths are characterized by passing sequences in addition to cell sequences.

I Lemma 5 (For proof see [18]). SI contains any optimal Fréchet gap interval [s∗, t∗].

4.1 Bounding the number of critical intervals
We now bound the number of critical intervals, i.e. |SI |. An interval [s, t] ∈ SI , is either
in Ss × St or SF . Now Ss (resp. St) has size1 O(n3) as it contains one initialization event,

1 For simplicity, from this point onwards we assume without loss of generality that m ≤ n and only write
sizes and running times with respect to n.

C. Fan and B. Raichel 42:9

πi

πi−1

σj

σj−1

σk

p

(a) Distance from σk

πi

πi−1

σj

σj−1

p

(b) Distance from σj−1

πi

πi−1

σj

σj−1

p

(c) Distance from σj−1σj

Figure 8 How point p determines s and t. In general segments may not lie in a single plane.

O(n2) connectivity events, and O(n3) monotonicity events (just like the standard Fréchet
case). As we consider all valid pairs from Ss and St, this gives an O(n6) bound on |Ss × St|.

Bounding the size of SF is significantly more complicated. In particular, the floating
monotonicity events may give rise to an entire continuum of critical intervals. For example,
consider the second type of floating monotonicity event (2), shown in Figure 7. The value
of height(Haj) is governed only by a function of s and the value of height(Iak) only by a
function of t. These functions might be such that if we increase or decrease s, but keep
t− s constant (i.e. the gap value we are optimizing), height(Haj) = height(Iak) remains an
invariant. (Hence the term “floating” events.)

In this section we describe the functions which govern how s and t can vary such that
height(Haj) = height(Iak) remains an invariant. Ultimately our understanding of these
function will yield a polynomially sized set of canonical critical intervals (determined by
vertices of the arrangement of these functions), which must contain an optimum gap interval.

4.1.1 Function Description of Floating Monotonicity Events
Consider the floating monotonicity event type (2) (similar statements will hold for type
(1)). Such an event is specified by a triple of indices, i, j, k, where i specifies an edge
πi−1πi (i.e. a row of the relative free space), j specifies an edge σj−1σj (i.e. a column), and
k ≥ j specifies a vertex σk (i.e. the right boundary of a column). The event occurs when
height(Haj) = height(Iak) = h.

Geometrically, a fixed height h corresponds to a point p on πi−1πi. The point Haj is
determined by s, and Iak by t. First lets understand Iak . In order to have h = height(Iak),
t must be such that t = ||σk − p||, and moreover p must be the higher (i.e. closer to πi)
of the possibly two points on πi−1πi satisfying this condition (the other point determining
Ibk). Consider the plane determine by πi−1, πi, and σk, and let πi−1 = (0, 0), p = (0, h),
and σk = (χ, γ) (see Figure 8a). Then as a function of h, t is described by the equation
t =

√
χ2 + (γ − h)2. Note that Iak is only defined when t ∈ [t1, t2], where t1 = dist(σk, πi−1πi)

and t2 = ||σk − πi||, and hence this equation is only relevant in this interval.
height(Haj) on the other hand is determined by s, however the relationship is a bit more

complicated. Observe that Haj is the only point on the horizontal line h`aj that is in the set
Fs(i, j), meaning the point on σj−1σj that Haj corresponds to must be the closest point on
σj−1σj to p (see Figure 8b and Figure 8c). If this closest point is either σj−1 or σj , then the
form of the equation for s in terms of h is the same as it was t, namely s =

√
α2 + (β − h)2

(where α, β are now the coordinates of either σj−1 or σj). Otherwise this closest point is
in the interior of σj−1σj in which case the equation is of the form s = c · h + d, for some

SoCG 2017

42:10 Computing the Fréchet Gap Distance

t2

t1

sr=s2sl=s1

t2

t1

sr=s2s1 sl

Figure 9 Two cases for curve piece fi,j,k, and shaded satisfying points in s, t parametric space.

constants c and d (since as one walks along a line, the distance to another fixed line is
given by a linear equation). Similar to Iak , Haj is only defined when s ∈ [s1, s2], where
s1 = dist(σj−1σj , πi−1πi) and s2 = dist(σj−1σj , πi), and hence this equation is only relevant
in this interval.

Now that we have a description of height(Haj) in terms of s and height(Iak) in terms
of t, we can describe the function for t in terms of s, denoted fi,j,k(s), which describes
when height(Haj) = height(Iak) = h. There are two cases based on the form of the function
describing s.

Interior of σj−1σj case:

s = c · h+ d, t =
√
χ2 + (γ − h)2 ⇒ fi,j,k(s) =

√(
s− d
c
− γ
)2

+ χ2 .

Endpoint of σj−1σj case:

s =
√
α2 + (β − h)2, t =

√
χ2 + (γ − h)2 ⇒ fi,j,k(s) =

√
(
√
s2 − α2 + (β − γ))2 + χ2 .

To summarize, fi,j,k(s) is composed of at most three hyperbola2 pieces, and is only
(possibly) defined within the region s ∈ [s1, s2] and t ∈ [t1, t2], see Figure 9. Also, the
geometry of the problem implies that when fi,j,k(s) is defined it is a monotone increasing
function. Hence the intersection of fi,j,k with the bounding box [s1, s2]× [t1, t2] is connected,
and so rather than using this box to define fi,j,k, we instead say fi,j,k is either completely
undefined or is defined only in the interval [sl, sr] where sl and sr are the s coordinate where
fi,j,k respectively enters and leaves the bounding box. Note that one can argue if fi,j,k is
defined then sr = s2, however, it may be that sl > s1 (if the closest point to σj−1σj is lower
on πi−1πi than the closest point to σk).

The exact form of the equation fi,j,k(s) is not needed in our analysis, however, the above
discussion implies the following simple observation which will be used later.

I Observation 6. In the s, t parametric space fi,j,k is either undefined or defines a constant
complexity monotonically increasing curve piece, with endpoints at values sli,j,k ≤ sri,j,k. In
particular, fi,j,k has only a constant number of local minima and maxima (i.e. points of
tangency) with respect to translations of the line t = s.

Note that for (1), i.e. when height(Ibj) = height(Hbk), fi,j,k can be defined similarly, and
the above observation again holds. One must also define functions for the analogous events
in the free space columns. Such functions are again determined by triples i, j, k, however
now i, j refer to rows and k to the column. Below we will denote these functions by gi,j,k.

2 Technically, the endpoint case is not a hyperbola, though it is similar.

C. Fan and B. Raichel 42:11

4.1.2 Events minimizing the gap
As discussed above each fi,j,k, if defined, gives an entire continuum of critical intervals.
However, ultimately we are only interested in feasible intervals which minimize the gap, and
this will allow us to reduce this continuum to a polynomial number of canonical intervals.
This polynomially sized set is determined not only by the fi,j,k, but also by the other types
of critical events. Note that initialization (1), connectivity (2), and standard monotonicity
events (3) only define constraints on either just s or t, whereas the fi,j,k and gi,j,k define a
continuum of [s, t] intervals. Hence to put them on equal footing we think of all of them as
defining constraints in the two dimensional s, t parametric space.

First observe that in the parametric space, for any point (s, t) of interest, 0 ≤ s ≤ t, and
so we only consider points in the first quadrant that are above the line t = s. Initialization,
connectivity, and standard monotonicity events are simply defined by horizontal or vertical
lines. Specifically, for each such event the points satisfying the corresponding constraint are
those above (resp. left of) the corresponding horizontal (resp. vertical) line:
1. Initialization events: s ≤ α0, t ≥ β0

Where α0 = min{||π0 − σ0||, ||πn − σm||} and β0 = max{||π0 − σ0||, ||πn − σm||}.
2. Connectivity events: s ≤ αli,j or s ≤ αbi,j , t ≥ βli,j or t ≥ βbi,j

Where the αi,j and βi,j are vertex-edge distances, that is αli,j = βli,j = dist(πi−1πi, σj−1)
or αbi,j = βbi,j = dist(πi−1, σj−1σj). Note defining both αi,j and βi,j is not necessary but
useful to distinguish constraints on s from those on t.

3. Standard Monotonicity events: s ≤ αi,(j,k) or s ≤ α(i,j),k, t ≥ βi,(j,k) or t ≥ β(i,j),k
Which happens when the free space is such that αi,(j,k) = height(Hai,j) = height(Hbi,k)
or α(i,j),k = height(Hai,k) = height(Hbj,k), and when βi,(j,k) = height(Ibi,j) = height(Iai,k)
or β(i,j),k = height(Ibi,k) = height(Iaj,k).

4. Floating Monotonicity events: t ≥ fi,j,k(s) for s ∈ [slfi,j,k, s
rf
i,j,k], or t ≥ gi,j,k(s) for

s ∈ [slgi,j,k, s
rg
i,j,k]. Note depending on the geometry such constraints may not be defined.

Note that the first three event types each partition the entire parametric space into two
connected sets, those which either satisfy or do not satisfy the constraint. The fi,j,k (and
gi,j,k) can also be thought of in this way, see the shaded regions in Figure 9. Specifically,
(s, t) satisfies the constraint if t ≥ t1, s ≤ s2, and if s ∈ [sl, sr] then (s, t) must lie above the
curve fi,j,k. Otherwise (s, t) does not satisfy the constraint.

Any valid path in the relative free space must have a well defined cell sequence (C1, . . . ,

Cn+m−1) and passing sequence pass(p) = (h1, . . . , hn+m−1) (see Definition 4). Moreover,
such a pair of sequences precisely determine a subset of the constraints defined above, such
that there is a valid path with this cell and passing sequence if and only if all constraints in
the subset are satisfied (this is implied by Lemma 5). In other words, for a given cell and
passing sequence we want to solve a well defined optimization problem, where constraints on
s and t are of the form described above, and the objective is to minimize t− s.

Clearly the optimal value of this optimization problem must lie on the boundary of at
least one constraint. In particular, the optimum lies either at the intersection point of the
boundaries of two constraints, or at a local minimum of one of the boundary constraints,
with respect to the objective of minimizing t− s. By Observation 6, each fi,j,k or gi,j,k has at
most a constant number of local minima, and as the boundaries of all other constraints are
straight lines, this is also true for every boundary function. Thus we have now determined
the set of canonical critical intervals discussed earlier in this section.

I Lemma 7. The above defined constraints, determined by all types of critical events,
determine an O(n6) sized set of canonical critical intervals, i.e. (s, t) pairs, that must contain
an optimal gap [s∗, t∗].

SoCG 2017

42:12 Computing the Fréchet Gap Distance

Proof. Any optimal gap determines a cell and passing sequence of some valid path in the
corresponding relative free space. Above it was discussed how such sequences determine a
subset of constraints, where the optimum gap width is determined either at an intersection
of the boundaries of two constraints or at a local minimum of an fi,j,k or gi,j,k. Now a priori
we do not know the cell and passing sequence of a path determining an optimal gap, hence
we will consider them all. So consider the arrangement of all planar curves defined by the
boundaries of any of the possible constraints defined above. There are a constant number
of initialization constraints, O(n2) possible connectivity constraints, and O(n3) possible
standard or floating monotonicity constraints. Due to the particularly nice form of these
curves, each pair intersect at most a constant number of times, and hence there are O(n6)
intersections overall. Moreover, as discussed above, each curve has only a constant number
of local minima with respect the the objective of minimizing t− s. Hence this arrangement
determines as set of O(n6) points, at least one of which realizes the minimum gap width. J

I Observation 8. Whether or not a given (s, t)-pair is feasible for the Fréchet gap problem,
is solely determined by which constraints the point satisfies or does not satisfy. So consider
the arrangement of curves determined by the boundaries of all the constraint types discussed
above. Then within the interior of a given cell of the arrangement all (s, t)-pairs are thus
either all feasible or all infeasible.

5 Exact Computation of the Fréchet Gap Distance

The O(n6) critical intervals given by Lemma 7 together with the O(n2) decider of Theorem 3,
naively give only an O(n8) algorithm for computing the Fréchet gap distance, as there is no
immediate linear ordering to search over the events. However, here we give a much faster
O(n5 logn) time algorithm to compute the Fréchet gap distance exactly.

The standard Fréchet distance is computed in O(n2 logn) time by searching over the
O(n3) critical events with an O(n2) time decision procedure. This searching originally was
done with parametric search [4], though for our purposes the simpler sampling based approach
of [20] is more relevant.

Searching is a far more challenging task in the Fréchet gap setting. Specifically, in the
standard Fréchet case there is a linear ordering of the critical events, and in this ordering
all events are infeasible up until the true Fréchet distance, and then feasible afterwards.
However, in our two dimensional parametric space there is no such natural linear ordering.
Moreover, recall that even if an interval [s, t] is feasible, it does not imply [s, t] contains an
optimal gap as a subinterval. Thus the following lemma, while easy to prove, is crucial.

I Lemma 9 (For proof see [18]). In the parametric space, the set of feasible (s, t) pairs is a
connected set.

The algorithm for exactly computing the Fréchet gap distance uses the following sub-
routines:

deciderPoint(s, t): Decides whether or not the pair (s, t) is feasible, in O(n2) time.
deciderLine(c): Given a positive number c, returns “below” if there is any feasible
(s, t)-pair with t− s ≤ c, and returns “above” otherwise. The running time is O(n5).
sample(r): Samples r (s, t)-pairs, independently and uniformly at random, from the set
of O(n6) canonical critical pairs of Lemma 7. The running time is O(r).
sweep(c1, c2): Returns the set of all canonical critical (s, t)-pairs of Lemma 7 such that
c1 ≤ t− s ≤ c2, in O((n3 + k) logn) time, where k is the number of such critical pairs.

C. Fan and B. Raichel 42:13

First observe the subroutine deciderPoint(s, t) is given by Theorem 3. deciderLine(c)
is computed as follows. First compute the intersection points of the line, t− s = c, with the
O(n3) boundaries of all the constraints discussed in Section 4.1.2. Since these constraints
are horizontal/vertical lines or fi,j,k/gi,j,k, by Observation 6, there are O(n3) intersection
points. Thus calling deciderPoint on each of these intersection points, takes O(n5) time
as deciderPoint takes O(n2) time. By Observation 8, if all these point queries return
infeasible, then all points on the line t− s = c are infeasible. In this case, since by Lemma 9
the feasible region is connected, any optimal gap pair must lie above the the line t− s = c.
On the other hand, again by by Lemma 9, if one of the point queries returned true then any
optimal gap pair must lie below (or on) the line t− s = c.

The subroutine sample(r) is also straightforward. Specifically, every canonical critical
pair is either a local minima or an intersection of the boundaries of two constraints from
Section 4.1.2. Thus in order to sample a canonical critical pair, we sample either one or two
constraints3, where whether we sample one or two is done in proportion to the number of
pairs versus single constraints. Each constraint is determined by either a pair or triple of
indices (and a few bits, such as whether the side of bottom of a cell, etc.), and hence each
can be sampled in O(1) time (again done proportionally to the number of triples versus pairs
of indices). Thus r canonical pairs can be sampled in O(r) time.

Thus what remains is to describe the subroutine sweep, for which we have the following.

I Lemma 10. Given two real values 0 ≤ c1 ≤ c2, one can compute the set of all canonical
critical (s, t)-pairs of Lemma 7 such that c1 ≤ t− s ≤ c2, in O((n3 + k) logn) time, where k
is the number of such critical pairs. This algorithm is denoted sweep(c1, c2).

Proof. It is well known that one can compute the set of all k intersection points of a set
of m x-monotone constant-complexity curves in O((m+ k) logm) time using a horizontal
sweep line in the standard sweep line algorithm of Bentley and Ottmann [8]. In our case the
curves are given by the O(n3) constraints of Section 4.1.2, clipped to only be defined in the
region bounded by the lines t − s = c1 and t − s = c2. The constraints with straight line
boundaries are s-monotone, and by Observation 6 so are the fi,j,k and gi,j,k. Thus the claim
follows by applying the standard sweep line algorithm to our case. J

1 R = sample(αn4) // α a sufficiently large constant
2 Sort R̂ = {c = t− s | (s, t) ∈ R} in increasing order
3 Binary search over R̂ using deciderLine(c) for the interval [c1, c2]

s.t. deciderLine(c1) = above and deciderLine(c2) = below
// Set initial values c1 = 0, c2 =∞

4 S = sweep(c1, c2)
5 Call deciderPoint(s, t) on each (s, t) ∈ S, and

return the feasible pair with smallest t− s value.
Algorithm 1: Computing the Fréchet gap distance

The algorithm for computing the Fréchet gap distance is shown in Algorithm 1. We need the
following lemma to bound the number of critical pairs that we end up searching over.

3 Note the number of local minima per constraint and the number of times two constraints intersect is a
constant, but the constant may be more than one. Thus technically the described sampling is not truly
uniform. One can make it uniform, though this distinction is irrelevant for our asymptotic analysis.

SoCG 2017

42:14 Computing the Fréchet Gap Distance

I Lemma 11 (For proof see [18]). Let [c1, c2] be the interval described in Algorithm 1. Then
with exponentially high probability, this interval contains O(n3) canonical critical pairs.

Note instead one could argue that with polynomially high probability the number of canonical
critical pairs in [c1, c2] is only O(n2 logn). Ultimately though this would not change the
running time, as the real bottleneck is searching with the O(n5) time deciderLine.

I Theorem 12. Given polygonal curves π and σ, each of length at most n, Algorithm 1
computes the Fréchet gap distance in O(n5 logn) time.

Proof. The correctness of Algorithm 1 has essentially already been argued. Specifically,
the random sample R partitions the real line into intervals based on the values in R̂. One
of these intervals contains the optimal gap width, implying the interval [c1, c2] found by
searching using deciderLine(c) is well defined. Moreover, S contains a canonical critical
pair with optimal gap width as sweep(c1, c2) returns all canonical critical pairs in the region
bounded by the lines t− s = c1 and t− s = c2, and by Lemma 7 the set of canonical critical
pairs contains a pair with optimal gap width. As deciderPoint is called on all pairs in S,
the algorithm will find this optimal gap pair.

For the running time, calling sample(αn4) takes O(n4) time. Sorting R̂ takes O(n4 logn)
time, and searching over R̂ takes O(n5 logn) time as deciderLine takes O(n5) time. By
Lemma 10, sweep(c1, c2) takes O((n3 + |S|) logn) time. Calling deciderPoint on each
pair in S takes O(|S|n2) time, as deciderPoint takes O(n2) time. By Lemma 11, with
high probability |S| = O(n3), so sweeping and all deciderPoint calls combined take O(n5)
time. Thus the overall time is O(n5 logn), i.e. dominated by the time to search with
deciderLine. J

6 Approximation

In this section, we propose an efficient algorithm to approximate the Fréchet gap distance,
based on the following simple fact. Let do be the average of the starting and ending vertex
pair distances of π and σ, that is do = db+de

2 where db = ||π0 − σ0|| and de = ||πn − σm||.

I Observation 13. If a parametric point (s, t) is feasible then s ≤ do ≤ t.

This implies we only need to consider parametric points such that s ≤ do ≤ t, which we call
centered points. Define the radius of any such point (s, t) to be rs,t = max{t− do, do − s},
and define the projection to be proj(s, t) = (do − rs,t, do + rs,t).

Observe that in order to get a 2-approximation it suffices to restrict our attention to
projected points (as [s, t] ⊆ [do−rs,t, do+rs,t] for any centered point (s, t)), and the advantage
is that projected points are more nicely behaved. Specifically, projected points define a linear
ordering by the parameter r with the nice property that if (do − r, do + r) is feasible then
for any r′ ≥ r it holds that (do − r′, do + r′) is also feasible. Moreover, below we show that
the O(n6) critical intervals of Lemma 7, can be reduced to O(n3) in this setting, intuitively
since now there is only a single parameter r, rather than independent s and t parameters.

The details of how the above high level idea is employed are interesting, but are omitted
due to space constraints. Here we give a brief outline. First it is shown that considering
the minimum radius projected point in each region defined by one of the O(n3) constraints
of Section 4.1.2, gives a set of O(n3) projected points containing a 2-approximation to
the Fréchet gap distance. Then it is observed that sorting these points by radii induces a
linear ordering of feasibility, thus already implying a near cubic time algorithm to find a
2-approximation. Next we how to construct an O(n2/ε) time (1 + ε)-approximate decider

C. Fan and B. Raichel 42:15

(again making use of Observation 13), and then show how to use it to efficiently turn any
constant factor approximation into a (1 + ε)-approximation. Finally, the most challenging
part is removing a near linear factor in the running time, and involves sampling and careful
sweeping over the functions for s and t discussed in Section 4.1.1, modified for the projected
point setting, thus advancing the basic sampling and sweeping approach of [20].

I Theorem 14 (For proof see [18]). Given polygonal curves π and σ, each of length at most
n, one can (1 + ε)-approximate the Fréchet gap distance in O(n2(logn+ 1

ε log 1
ε)) time.

References
1 P. Agarwal, R. Avraham, H. Kaplan, and M. Sharir. Computing the discrete Fréchet

distance in subquadratic time. SIAM Journal on Computing, 43(2):429–449, 2014.
2 H. Alt and M. Buchin. Can we compute the similarity between surfaces? Discrete &

Computational Geometry, 43(1):78–99, 2010.
3 H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. In Proc. of the 14th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 589–598, 2003.
4 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Int.

J. Comput. Geometry Appl., 5:75–91, 1995.
5 H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the Fréchet

distance. In Annual Symp. on Theo. Aspects of Comp. Sci. (STACS), pages 63–74, 2001.
6 R. Avraham, O. Filtser, H. Kaplan, M. Katz, and M. Sharir. The discrete and semicon-

tinuous Fréchet distance with shortcuts via approximate distance counting and selection.
ACM Trans. Algorithms, 11(4):29, 2015.

7 R. Avraham, H. Kaplan, and M. Sharir. A faster algorithm for the discrete Fréchet distance
under translation. CoRR, abs/1501.03724, 2015.

8 J. Bentley and T. Ottmann. Algorithms for reporting and counting geometric intersections.
IEEE Trans. Computers, 28(9):643–647, 1979.

9 S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data.
In Proc. 31st VLDB Conference, pages 853–864, 2005.

10 K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless seth fails. In Symp. on Found. of Comp. Sci. (FOCS), pages
661–670. IEEE, 2014.

11 K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting commuting
patterns by clustering subtrajectories. Int. J. Comput. Geom. Appl., 21(3):253–282, 2011.

12 K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the dog – with an
application to alt’s conjecture. In Proc. of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1399–1413, 2014.

13 K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple
polygons in polynomial time. In 22nd Annual Symp. Comput. Geom., pages 80–87, 2006.

14 M. Buchin, A. Driemel, and B. Speckmann. Computing the Fréchet distance with shortcuts
is np-hard. In 30th Annual Symp. Comput. Geom. (SoCG), page 367, 2014.

15 A. Driemel and S. Har-Peled. Jaywalking your dog: computing the Fréchet distance with
shortcuts. SIAM Journal on Computing, 42(5):1830–1866, 2013.

16 A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic
curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, 2012.

17 T. Eiter and H. Mannila. Computing discrete Fréchet distance, 1994.
18 C. Fan and B. Raichel. Computing the Fréchet gap distance. http://www.utdallas.edu/

~bar150630/gap.pdf.
19 O. Filtser and M. Katz. The discrete Fréchet distance gap. arXiv:1506.04861, 2015.

SoCG 2017

http://www.utdallas.edu/~bar150630/gap.pdf
http://www.utdallas.edu/~bar150630/gap.pdf

42:16 Computing the Fréchet Gap Distance

20 S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. ACM Transac-
tions on Algorithms (TALG), 10(1):3, 2014.

21 M. Kim, S. Kim, and M. Shin. Optimization of subsequence matching under time warping
in time-series databases. In Proc. ACM Symp. on Applied Computing, pages 581–586, 2005.

22 G. Rote. Computing the Fréchet distance between piecewise smooth curves. Computational
Geometry, 37(3):162–174, 2007.

23 J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary similarity and local alignment
applied to cover song identifica. Audio, Speech & Lang. Proc., 16(6):1138–1151, 2008.

24 C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Localizing
global curve-matching algorithms. In Sci. Statis. Database Manag., pages 879–888, 2006.

Erdős-Hajnal Conjecture for Graphs with Bounded
VC-Dimension
Jacob Fox∗1, János Pach†2, and Andrew Suk‡3

1 Stanford University, Stanford, CA, USA
jacobfox@stanford.edu

2 EPFL and Rényi Institute, Lausanne, Switzerland
pach@cims.nyu.edu

3 University of Illinois at Chicago, Chicago, IL, USA
suk@uic.edu

Abstract
The Vapnik-Chervonenkis dimension (in short, VC-dimension) of a graph is defined as the VC-
dimension of the set system induced by the neighborhoods of its vertices. We show that every
n-vertex graph with bounded VC-dimension contains a clique or an independent set of size
at least e(logn)1−o(1) . The dependence on the VC-dimension is hidden in the o(1) term. This
improves the general lower bound, ec

√
logn, due to Erdős and Hajnal, which is valid in the class

of graphs satisfying any fixed nontrivial hereditary property. Our result is almost optimal and
nearly matches the celebrated Erdős-Hajnal conjecture, according to which one can always find
a clique or an independent set of size at least eΩ(logn). Our results partially explain why most
geometric intersection graphs arising in discrete and computational geometry have exceptionally
favorable Ramsey-type properties.

Our main tool is a partitioning result found by Lovász-Szegedy and Alon-Fischer-Newman,
which is called the “ultra-strong regularity lemma” for graphs with bounded VC-dimension. We
extend this lemma to k-uniform hypergraphs, and prove that the number of parts in the partition
can be taken to be (1/ε)O(d), improving the original bound of (1/ε)O(d2) in the graph setting. We
show that this bound is tight up to an absolute constant factor in the exponent. Moreover, we
give an O(nk)-time algorithm for finding a partition meeting the requirements in the k-uniform
setting.

1998 ACM Subject Classification G.2.2. Graph Theory

Keywords and phrases VC-dimension, Ramsey theory, regularity lemma

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.43

1 Introduction

During the relatively short history of computational geometry, there were many breakthroughs
that originated from results in extremal combinatorics [23]. Range searching turned out to
be closely related to discrepancy theory [9], linear programming to McMullen’s Upper Bound
theorem and to properties of the facial structure of simplicial complexes [40], motion planning
to the theory of Davenport-Schinzel sequences and to a wide variety of other forbidden

∗ Supported by a Packard Fellowship, by NSF CAREER award DMS 1352121, and by an Alfred P. Sloan
Fellowship.

† Supported by Hungarian Science Foundation EuroGIGA Grant OTKA NN 102029, by Swiss National
Science Foundation Grants 200020-162884 and 200021-165977.

‡ Supported by NSF grant DMS-1500153.

© Jacob Fox, János Pach, and Andrew Suk;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

configuration results [35], graph drawing and VLSI design to the crossing lemma, to the
Szemerédi-Trotter theorem, and to flag algebras [41]. A particularly significant example
that found many applications in discrete and computational geometry, was the discovery of
Haussler and Welzl [26], according to which many geometrically defined set systems have
bounded Vapnik-Chervonenkis dimension. Erdős’s “Probabilistic Method” [5] or “Random
Sampling” techniques, as they are often referred to in computational context, had been
observed to be “unreasonably effective” in discrete geometry and geometric approximation
algorithms [24]. Haussler and Welzl offered an explanation and a tool: set systems of bounded
Vapnik-Chervonenkis dimension admit much smaller hitting sets and “epsilon-nets” than
other set systems with similar parameters.

It was also observed a long time ago that geometrically defined graphs and set systems
have unusually strong Ramsey-type properties. According to the quantitative version of
Ramsey’s theorem, due to Erdős and Szekeres [19], every graph on n vertices contains a
clique or an independent set of size at least 1

2 logn. In [14], Erdős proved that this bound
is tight up to a constant factor. However, every intersection graph of n segments in the
plane, say, has a much larger clique or an independent set, whose size is at least nε for some
ε > 0 [29]. The proof extends to intersection graphs of many other geometric objects [3].
Interestingly, most classes of graphs and hypergraphs in which a similar phenomenon has
been observed turned out to have (again!) bounded Vapnik-Chervonenkis dimension. (We
will discuss this fact in a little more detail at the end of the Introduction.)

The problem can be viewed as a special case of a celebrated conjecture of Erdős and
Hajnal [15], which is one of the most challenging open problems in Ramsey theory. Let P
be a hereditary property of finite graphs, that is, if G has property P , then so do all of
its induced subgraphs. Erdős and Hajnal conjectured that for every hereditary property P
which is not satisfied by all graphs, there exists a constant ε(P) > 0 such that every graph
of n vertices with property P has a clique or an independent set of size at least nε(P). They
proved the weaker lower bound eε(P)

√
logn. According to the discovery of Haussler and Welzl

mentioned above, the Vapnik-Chervonenkis dimension of most classes of “naturally” defined
graphs arising in geometry is bounded from above by a constant d. The property that the
Vapnik-Chervonenkis dimension of a graph is at most d, is hereditary.

The aim of this paper is to investigate whether the observation that the Erdős-Hajnal
conjecture tends to hold for geometrically defined graphs can be ascribed to the fact that
they have bounded VC-dimension. Our first theorem (Theorem 1 below) shows that the
answer to this question is likely to be positive. To continue, we need to agree on the basic
definitions and terminology.

Let F be a set system on a ground set V . The Vapnik-Chervonenkis dimension (VC-
dimension, for short) of F is the largest integer d for which there exists a d-element set
S ⊂ V such that for every subset B ⊂ S, one can find a member A ∈ F with A ∩ S = B.
Given a graph G = (V,E), for any vertex v ∈ V , let N(v) denote the neighborhood of v in G,
that is, the set of vertices in V that are connected to v. We note that v itself is not in N(v).
Then we say that G has VC-dimension d, if the set system induced by the neighborhoods in
G, i.e. F = {N(v) ⊂ V : v ∈ V }, has VC-dimension d.

The VC-dimension of a set system is one of the most useful combinatorial parameters
that measures its complexity, and, apart from its geometric applications, it has proved to
be relevant in many other branches of pure and applied mathematics, such as statistics,
logic, learning theory, and real algebraic geometry. The notion was introduced by Vapnik
and Chervonenkis [42] in 1971, as a tool in mathematical statistics. Kranakis et al. [28]
observed that the VC-dimension of a graph can be determined in quasi-polynomial time and,

J. Fox, J. Pach, and A. Suk 43:3

for bounded degree graphs, in quadratic time. Schaefer [34], addressing a question of Linial,
proved that determining the VC-dimension of a set system is Σp3-complete. For each positive
integer d, Anthony, Brightwell, and Cooper [6] determined the threshold for the Erdős-Rényi
random graph G(n, p) to have VC-dimension d (see also [27]). Given a bipartite graph F ,
its closure is defined as the set of all graphs that can be obtained from F by adding edges
between two vertices in the same part. It is known (see [30]) that a class of graphs has
bounded VC-dimension if and only if none of its members contains any induced subgraph
that belongs to the closure of some fixed bipartite graph F .

Our first result states that the Erdős-Hajnal conjecture “almost holds” for graphs of
bounded VC-dimension.

I Theorem 1. Let d be a fixed positive integer. If G is an n-vertex graph with VC-dimension
at most d, then G contains a clique or independent set of size e(logn)1−o(1) .

Note that the dependence of the bound on d is hidden in the o(1)-notation.
There has been a long history of studying off-diagonal Ramsey numbers, where one is

interested in finding the maximum size of an independent set guaranteed in a Ks-free graph
on n vertices with s fixed. An old result of Ajtai, Komlós, and Szemerédi [1] states that all
such graphs contain independent sets of size cn

1
s−1 (logn)

s−2
s−1 . In the other direction, Spencer

[38] used the Lovász Local Lemma to show that there are Ks-free graphs on n vertices and
with no independent set of size c′n

2
s+1 logn. This bound was later improved by Bohman

and Keevash [8] to c′n
2
s+1 (logn)1− 2

(s+1)(s−2) . In Section 4, we give a simple proof, extending
Spencer’s argument, showing that there are Ks-free graphs with bounded VC-dimension and
with no large independent sets.

I Theorem 2. For fixed s ≥ 3 and d ≥ 5 such that d ≥ s+ 2, there exists a Ks-free graph
on n vertices with VC-dimension at most d and no independent set of size cn

2
s+1 logn, where

c = c(d).

For large s (s > d), a result of Fox and Sudakov (Theorem 1.9 in [22]) implies that all
n-vertex Ks-free graphs G with VC-dimension d contain an independent set of size n

1
c log s

where c = c(d).

Regularity lemma for hypergraphs with bounded VC-dimension. First, we generalize
the definition of VC-dimension for graphs to hypergraphs. Given a k-uniform hypergraph
H = (V,E), for any (k − 1)-tuple of distinct vertices v1, . . . , vk−1 ∈ V , let

N(v1, . . . , vk−1) = {u ∈ V : {v1, . . . , vk−1, u} ∈ E(H)}.

Then we say that H has VC-dimension d, if the set system

F = {N(v1, . . . , vk−1) ⊂ V : v1, . . . , vk−1 ∈ V }

has VC-dimension d. Of course, the hyperedges of H form a set system, but the VC-dimension
of this set system is usually different from the VC-dimension of H. The latter one is defined
as the VC-dimension of the set system F induced by the neighborhoods of the vertices of H,
rather than by the hyperedges.

The dual of the set system (V,F) on the ground set V is the set system obtained by
interchanging the roles of V and F . That is, it is the set system (F ,F∗), where the ground
set is F and

F∗ = {{A ∈ F : v ∈ A} : v ∈ V }.

SoCG 2017

43:4 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

In other words, F∗ is isomorphic to the set system whose ground set is
(
V
k−1
)
, and each set

is a maximal collection of (k − 1)-tuples {S1, . . . , Sp} such that for all i, v ∪ Si ∈ E(H) for
some fixed v. Hence, we have (F∗)∗ = F , and it is known that if F has VC-dimension d,
then F∗ has VC-dimension at most 2d + 1. We say that H = (V,E) has dual VC-dimension
d if F∗ has VC-dimension d.

The main tool used to prove Theorem 1 is an ultra-strong regularity lemma for graphs
with bounded VC-dimension obtained by Lovász and Szegedy [30] and Alon, Fischer, and
Newman [2]. Here, we extend the ultra-strong regularity lemma to uniform hypergraphs.

Given k vertex subsets V1, . . . , Vk of a k-uniform hypergraph H, we write E(V1, . . . , Vk)
to be the set of edges going across V1, . . . , Vk, that is, the set of edges with exactly one vertex
in each Vi. The density across V1, . . . , Vk is defined as |E(V1,...,Vk)|

|V1|···|Vk| . We say that the k-tuple
(V1, . . . , Vk) is ε-homogeneous if the density across it is less than ε or greater than 1− ε. A
partition is called equitable if any two parts differ in size by at most one.

In [30], Lovász and Szegedy established an ultra-strong regularity lemma for graphs
(k = 2) with bounded VC-dimension, which states that for any ε > 0, there is a (least)
K = K(ε) such that the vertex set V of a graph with VC-dimension d has a partition into
at most K ≤ (1/ε)O(d2) parts such that all but at most an ε-fraction of the pairs of parts
are ε-homogeneous. A better bound was obtained by Alon, Fischer, and Newman [2] for
bipartite graphs with bounded VC-dimension, who showed that the number of parts in the
partition can be taken to be (d/ε)O(d). Since the VC-dimension of a graph G is equivalent
to the dual VC-dimension of G, we generalize their result to hypergraphs with the following
result.

I Theorem 3. Let ε ∈ (0, 1/4) and let H = (V,E) be an n-vertex k-uniform hypergraph
with dual VC-dimension d. Then V has an equitable partition V = V1 ∪ · · · ∪ VK with
8/ε ≤ K ≤ c(1/ε)2d+1 parts such that all but an ε-fraction of the k-tuples of parts are
ε-homogeneous. Here c = c(d, k) is a constant depending only on d and k. Moreover, there
is an O(nk) time algorithm for computing such a partition.

Our next result shows that the partition size in the theorem above is tight up to an
absolute constant factor in the exponent.

I Theorem 4. For d ≥ 16 and ε ∈ (0, 1/100), there is a graph G with VC-dimension d such
that any equitable vertex partition on G with the property that all but an ε-fraction of the
pairs of parts are ε-homogeneous, requires at least (5ε)−d/4 parts.

Semi-algebraic graphs vs. graphs with bounded VC-dimension. A semi-algebraic graph
G, is a graph whose vertices are points in Rd and edges are pairs of points that satisfy a
semi-algebraic relation of constant complexity.1 In a sequence of recent works [3, 11, 21],
several authors have shown that classical Ramsey and Turán-type results in combinatorics
can be significantly improved for semi-algebraic graphs.

It follows from the Milnor-Thom theorem (see [31]) that semi-algebraic graphs of bounded
complexity have bounded VC-dimension. Therefore, all results in this paper on properties
of graphs of bounded VC-dimension apply to semi-algebraic graphs of bounded description
complexity. However, a graph being semi-algebraic of bounded complexity is a much more
restrictive condition than having bounded VC-dimension. In particular, it is known (it

1 A binary semi-algebraic relation E on a point set P ⊂ Rd is the set of pairs of points (p, q) from P
whose 2d coordinates satisfy a boolean combination of a fixed number of polynomial inequalities.

J. Fox, J. Pach, and A. Suk 43:5

follows, e.g., from [6]) that for each ε > 0 there is a positive integer d = d(ε) such that
the number of n-vertex graphs with VC-dimension d is 2Ω(n2−ε), while the Milnor-Thom
theorem can be used to deduce that the number of n-vertex semi-algebraic graphs coming
from a relation with bounded “description complexity” is only 2O(n logn). Furthermore, it is
known [3] that semi-algebraic graphs have the strong Erdős-Hajnal property, that is, there
exists a constant δ > 0 such that every n-vertex semi-algebraic graph of bounded complexity
contains a complete or an empty bipartite graph whose parts are of size at least δn. This is
not true, in general, for graphs with bounded VC-dimension. In particular, the probabilistic
construction in Section 4 shows the following.

I Theorem 5. For fixed d ≥ 5 and for every sufficiently large n, there is an n-vertex graph
G = (V,E) with VC-dimension at most d with the property that there are no two disjoint
subsets A,B ⊂ V (G) such that |A|, |B| ≥ 4n4/d logn and (A,B) is homogeneous, that is,
either A×B ⊂ E(G) or (A×B) ∩ E(G) = ∅.

It follows from a result of Alon et al. [3] that a stronger regularity lemma holds for semi-
algebraic graphs of bounded description complexity, where all but an ε-fraction of the pairs
of parts in the equitable partition are complete or empty, instead of just ε-homogeneous as
in the bounded VC-dimension case (see [32]). This result was further extended to k-uniform
hypergraphs by Fox et al. [20], and the authors [21] recently showed that it holds with a
polynomial number of parts.

Organization. In the next section, we prove Theorem 3. In Section 3, we prove Theorem 1,
which nearly settles the Erdős-Hajnal conjecture for graphs with bounded VC-dimension. In
Section 4, we prove Theorems 2 and 5. We conclude by discussing a number of other results
for graphs and hypergraphs with bounded VC-dimension. We systemically omit floors and
ceilings whenever they are not crucial for sake of clarity in our presentation. All logarithms
are natural logarithms.

2 Regularity partition for hypergraphs with bounded VC-dimension

In this section, we prove Theorem 3. We start by recalling several classic results on set
systems with bounded VC-dimension. Let F be a set system on a ground set V . The primal
shatter function of F is defined as

πF (z) = max
V ′⊂V,|V ′|=z

|{A ∩ V ′ : A ∈ F}|.

In other words, πF (z) is a function whose value at z is the maximum possible number
of distinct intersections of the sets of F with a z-element subset of V . The dual shatter
function of (V,F), denoted by π∗F , whose value at z is defined as the maximum number of
equivalence classes on V defined by a z-element subfamily Y ⊂ F , where two points x, y ∈ V
are equivalent with respect to Y if x belongs to the same sets of Y as y does. In other words,
the dual shatter function of F is the primal shatter function of the dual set system F∗.

The VC-dimension of F is closely related to its shatter functions. A famous result of
Sauer [33], Shelah [36], Perles, and Vapnik-Chervonenkis [42] states the following.

I Lemma 6. If F is a set system with VC-dimension d, then

πF (z) ≤
d∑
i=0

(
z

i

)
.

SoCG 2017

43:6 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

On the other hand, suppose that the primal shatter function of F satisfies πF (z) ≤ czd for all
z. Then, if the VC-dimension of F is d0, we have 2d0 ≤ c(d0)d, which implies d0 ≤ 4d log(cd).
It is known that if F has VC-dimension d, then F∗ has VC-dimension at most 2d + 1.

Given two sets A1, A2 ∈ F , the symmetric difference of A1 and A2, denoted by A14A2,
is the set (A1 ∪A2) \ (A1 ∩A2). We say that the set system F is δ-separated if for any two
sets A1, A2 ∈ F we have |A14A2| ≥ δ. The following packing lemma was proved by Haussler
in [25].

I Lemma 7. Let F be a set system on a ground set V such that |V | = n and πF (z) ≤ czd
for all z. If F is δ-separated, then |F| ≤ c1(n/δ)d where c1 = c1(c, d).

We will use Lemma 7 and the following lemma to prove Theorem 3.

I Lemma 8. Let 0 < ε < 1/2 and H = (W1 ∪ · · · ∪ Wk, E) be a k-partite k-uniform
hypergraph such that |Wi| = m for all i. If (W1, . . . ,Wk) is not ε-homogeneous, then there
are at least εmk+1 pairs of k-tuples (e, e′), where |e ∩ e′| = k − 1, e ∈ E(H), e′ 6∈ E(H), and
|e ∩Wi| = |e′ ∩Wi| = 1 for all i.

Proof. Let εj be the fraction of pairs of k-tuples (e, e′), each containing one vertex in each
Wi and agree on all vertices except in Wj , and e is an edge and e′ is not an edge. It suffices
to show that ε1 + ε2 + · · ·+ εk ≥ ε.

Pick vertices ai, bi ∈ Wi uniformly at random with repetition for i = 1, 2, . . . , k. For
0 ≤ i ≤ k, let ei = {aj : j ≤ i} ∪ {bj : j > i}. In particular, ek = (a1, . . . , ak) and
e0 = (b1, . . . , bk). Then let X be the event that e0 and ek have different adjacency, that is,
e0 is an edge and ek is not an edge, or e0 is not an edge and ek is an edge. Then we have

Pr[X] ≥ 2ε(1− ε) ≥ ε,

since (W1, . . . ,Wk) is not homogeneous. Let Xi be the event that ei and ei+1 have different
adjacency, and let Y be the event that at least one event Xi occurs. Then by the union
bound, we have

Pr[Y] ≤ Pr[X0] + Pr[X1] + · · ·+ Pr[Xk−1] = ε1 + ε2 + · · ·+ εk.

On the other hand, if X occurs, then Y occurs. Therefore ε1 + ε2 + · · ·+ εk ≥ Pr[Y] ≥
Pr[X] ≥ ε, which completes the proof. J

Proof of Theorem 3. Let 0 < ε < 1/2 and H = (V,E) be an n-vertex k-uniform hypergraph
with dual VC-dimension d. For every vertex v ∈ V , let N(v) denote the set of (k − 1)-tuples
S ∈

(
V
k−1
)
such that v ∪ S ∈ E(H). Let F be the set-system whose ground set is

(
V
k−1
)
, and

A ∈ F if and only if A = N(v) for some vertex v ∈ V . Hence F = {N(v) : v ∈ V } has
VC-dimension d. Set δ = ε2

4k2

(
n
k−1
)
. By examining each vertex and its neighborhood one

by one, we greedily construct a maximal set S ⊂ V (H) such that F ′ = {N(s) : s ∈ S} is
δ-separated. By Lemma 7, we have |S| ≤ c1(4k2/ε2)d. Let S = {s1, s2, . . . , s|S|}.

We define a partition Q : V = U1 ∪ · · · ∪ U|S| of the vertex set such that v ∈ Ui if i is
the smallest index such that |N(v)4N(si)| < δ. Such an i always exists, since S is maximal.
By the triangle inequality, for u, v ∈ Ui, we have |N(u)4N(v)| < 2δ. Set K = 8k|S|/ε.
Partition each part Ui into parts of size |V |/K = n/K and possibly one additional part of
size less than n/K. Collect these additional parts and divide them into parts of size |V |/K
to obtain an equitable partition P : V = V1 ∪ · · · ∪ VK into K parts. The number of vertices
of V belonging to parts Vi that are not fully contained in one part of Q is at most |S||V |/K.
Hence, the fraction of (unordered) k-tuples (Vi1 , . . . , Vik) such that at least one of the parts

J. Fox, J. Pach, and A. Suk 43:7

is not fully contained in some part of Q is at most k|S|/K = ε/8. Let X denote the set of
unordered k-tuples of parts (Vi1 , . . . , Vik) such that each part is fully contained in a part of
Q (though, in not necessarily the same part) and (Vi1 , . . . , Vik) is not ε-homogeneous.

Let T be the set of pairs of k-tuples (e, e′), such that |e∩e′| = k−1, e ∈ E(H), e′ 6∈ E(H),
|e∩Vij | = |e′ ∩Vij | = 1 for j = 1, 2, . . . , k, and (Vi1 , . . . , Vik) ∈ X. Notice that for (e, e′) ∈ T ,
such that e∩ Vij = b, e′ ∩ Vij = b′, b 6= b′, and Vij lies completely inside a part in Q, we have
|N(b)4N(b′)| ≤ 2δ. Therefore

|T | ≤ K
(n
K

)2
2δ ≤ ε2

2Kk2n
2
(

n

k − 1

)
.

On the other hand, by Lemma 8, every k-tuple of parts (Vi1 , . . . , Vik) that is not ε-
homogeneous gives rise to at least ε(n/K)k+1 pairs (e, e′) in T . Hence |T | ≥ |X|ε(n/K)k+1,
which implies

|X| ≤ (ε/2)
(
K

k

)
.

Thus, the fraction of k-tuples of parts in P that are not ε-homogeneous is at most ε/8+ε/2 < ε,
and K ≤ c(1/ε)2d+1 where c = c(k, d).

Finally, it remains to show that the partition P can be computed in O(nk) time. Given
two vertices s, v,∈ V , we have |N(s)4N(v)| = |N(s)|+ |N(v)| − 2|N(s) ∩N(v)|. Therefore
we can determine if |N(s)4N(u)| < δ in O(nk−1) time. Hence the maximal set S ⊂ V

described above (and therefore the partition Q) can be computed in O(nk) time since |S| ≤ n.
The final equitable partition P requires an additional O(n) time, which gives a total running
time of O(nk). J

We now establish Theorem 4 which shows that the partition size in Theorem 3 is tight
up to an absolute constant factor.

Proof of Theorem 4. Given two vertex subsets X,Y of a graph G, we write eG(X,Y) for the
number of edges between X and Y in G, and write dG(X,Y) for the density of edges between
X and Y , that is, dG(X,Y) = eG(X,Y)

|X||Y | . The pair (X,Y) is said to be (ε, δ)-regular if for all
X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ δ|X| and |Y ′| ≥ δ|Y |, we have |dG(X,Y)− dG(X ′, Y ′)| ≤ ε.
In the case that ε = δ, we just say ε-regular. We will make use of the following construction
due to Conlon and Fox.

I Lemma 9 ([10]). For d ≥ 16 and ε ∈ (0, 1/100), there is a graph H on n = d(5ε)−d/2e
vertices such that for every equitable vertex partition of H with at most

√
n parts, there are

at least an ε-fraction of the pairs of parts which are not (4/5)-regular.

Let H = (V,E) be the graph obtained from Lemma 9 on n = d(5ε)−d/2e vertices, where
ε ∈ (0, 1/100) and d ≥ 16, and consider a random subgraph G ⊂ H by picking each edge in
E independently with probability p = n−2/d = 5ε. Then we have the following.

I Lemma 10. In the random subgraph G, with probability at least 1 − n−2, every pair of
disjoint subsets X,Y ⊂ V , with |X| ≤ |Y |, satisfy

|eG(X,Y)− p · eH(X,Y)| < √g, (1)

where g = 2|X||Y |2 ln(ne/|Y |).

SoCG 2017

43:8 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

Proof. For fixed sets X,Y ⊂ V (G), where |X| = u1 and |Y | = u2, let EH(X,Y) =
{e1, . . . , em}. We define Si = 1 if edge ei is picked and Si = 0 otherwise, and set S =
S1 + · · ·+ Sm. A Chernoff-type estimate (see Theorem A.1.4 in [5]) implies that for a > 0,
Pr[|S − pm| > a] < 2e−2a2/m. Since m ≤ u1u2, the probability that (1) does not hold is
less than 2e−2g/(u1u2). By the union bound, the probability that there are disjoint sets
X,Y ⊂ V (G) for which (1) does not hold is at most

n∑
u2=1

u2∑
u1=1

(
n

u2

)(
n− u2

u1

)
2e−2g/(u1u2) ≤

n∑
u2=1

u2∑
u1=1

(
ne

u2

)u2 (ne
u1

)u1

2e−2g/(u1u2)

≤
n∑

u2=1

u2∑
u1=1

2
(
ne

u2

)−2u2

≤ n−2. J

By the analysis in Section 4, the probability that G has VC-dimension at least d+ 1 is at
most(

n

d+ 1

)
n2d+1

p(d+1)2d ≤ nd+1n−2d+1/d <
1
10 ,

since d ≥ 16. Therefore, the union bound implies that there is a subgraph G ⊂ H such that
G has VC-dimension at most d, and every pair of disjoint subsets X,Y ⊂ V , with |X| ≤ |Y |,
satisfy

|eG(X,Y)− p · eH(X,Y)| <
√

2|X||Y |2 ln(ne/|Y |). (2)

We will now show that for every equitable vertex partition of G into fewer than
√
n =

(5ε)−d/4 parts, there are at least an ε-fraction of the pairs of parts which are not ε-homogenous.
Let P be a equitable partition on V into t parts, where t <

√
n = (5ε)−d/4. By Lemma 9,

there are at least ε
(
t
2
)
pairs of parts in P which are not (4/5)-regular in H. Let (X,Y)

be such a pair. Then there are subsets X ′ ⊂ X and Y ′ ⊂ Y such that |X ′| ≥ 4|X|/5,
|Y ′| ≥ 4|Y |/5, and

|dH(X,Y)− dH(X ′, Y ′)| ≥ 4/5.

Moreover, by (2), we have

|eG(X,Y)− p · eH(X,Y)| ≤
√

2
(n
t

)3/2
ln(te) ≤

√
2 ln(te)
n1/4 (n/t)2.

Since d ≥ 16 and ε ∈ (0, 1/100), this implies

|eG(X,Y)− p · eH(X,Y)| ≤ (5ε)2√2 ln(te)(n/t)2 ≤ ε

4(n/t)2.

Hence |dG(X,Y)− p · dH(X,Y)| ≤ ε/4. Therefore we have

|dG(X ′, Y ′)− dG(X,Y)| ≥ p · |dH(X ′, Y ′)− dH(X,Y)| − 2ε4 ≥ 4ε− ε

2 > 3ε.

Finally, it is easy to see that (X,Y) is not ε-homogeneous in G. Indeed if (X,Y) were
ε-homogeneous, then we have either dG(X,Y) < ε or dG(X,Y) > 1− ε. In the former case
we have dG(X ′, Y ′) > 3ε, which implies

eG(X,Y) ≥ eG(X ′, Y ′) > 3ε4|X|
5

4|Y |
5 > ε|X||Y |,

contradiction. In the latter case, we have d(X ′, Y ′) < 1− 3ε, and a similar analysis shows
that eG(X,Y) < (1− ε)|X||Y |, contradiction.

Thus, any equitable vertex partition on G such that all but an ε-fraction of the pairs of
parts are ε-homogeneous, requires at least (5ε)−d/4 parts. J

J. Fox, J. Pach, and A. Suk 43:9

3 Proof of Theorem 1

The family G of all complement reducible graphs, or cographs, is defined as follows: The graph
with one vertex is in G, and if two graphs G,H ∈ G, then so does their disjoint union, and
the graph obtained by taking their disjoint union and adding all edges between G and H.
Clearly, every induced subgraph of a cograph is a cograph, and it is well known that every
cograph on n vertices contains a clique or independent set of size

√
n.

Let fd(n) be the largest integer f such that every graph G with n vertices and VC-
dimension at most d has an induced subgraph on f vertices which is a cograph. Cographs
are perfect graphs, so that Theorem 1 is an immediate consequence of the following result.

I Theorem 11. For any δ ∈ (0, 1/2) and for every integer d ≥ 1, there is a c = c(d, δ) such
that fd(n) ≥ ec(logn)1−δ for every n.

Proof. For simplicity, let f(n) = fd(n). The proof is by induction on n. The base case n = 1
is trivial. For the inductive step, assume that the statement holds for all n′ < n. Let δ > 0
and let G = (V,E) be an n-vertex graph with VC-dimension d. We will determine c ∈ (0, 1)
later.

Set ε = (1/32)e−3c(logn)1−δ . We apply Theorem 3 to obtain an equitable partition
P : V = V1 ∪ · · · ∪ VK into at most K ≤ ε−c4 parts, where c4 = O(d), such that all but an
ε-fraction of the pairs of parts are ε-homogeneous. We call an unordered pair of distinct
vertices (u, v) bad if at least one of the following holds:
1. (u, v) lie in the same part, or
2. u ∈ Vi and v ∈ Vj , i 6= j, where (Vi, Vj) is not ε-homogeneous, or
3. u ∈ Vi and v ∈ Vj , i 6= j, uv ∈ E(G) and |E(Vi, Vj)| < ε|Vi||Vj |, or
4. u ∈ Vi and v ∈ Vj , i 6= j, uv 6∈ E(G) and |E(Vi, Vj)| > (1− ε)|Vi||Vj |.
By Theorem 3, the number of bad pairs of vertices in G is at most

K

(
n/K

2

)
+
(n
K

)2
ε

(
K

2

)
+ ε

(n
K

)2
(1− ε)

(
K

2

)
≤ 2ε

(
n

2

)
.

By Turán’s Theorem, there is a subset R ⊂ S of at least 1
4ε vertices such that R

does not contain any bad pairs. This implies that all vertices of R are in distinct parts
of P. Furthermore, if uv are adjacent in R, then the corresponding parts Vi, Vj satisfy
|E(Vi, Vj)| ≥ (1− ε)|Vi||Vj |, and if uv are not adjacent, then we have |E(Vi, Vj)| < ε|Vi||Vj |.
Since the induced graph G[R] has VC-dimension at most d, G[R] contains a cograph U0 of
size t = f(1/(4ε)), which, by the induction hypothesis, is a set of size at least ec(log(1/4ε))1−δ .
Without loss of generality, we denote the corresponding parts of U0 as V1, . . . , Vt. Each part
contains n/K vertices.

For each vertex u ∈ V1, let db(u) denote the number of bad pairs uv, where v ∈ Vi
for i = 2, . . . , t. Then there is a subset V ′1 ⊂ V1 of size n

2K , such that each vertex u ∈ V ′1
satisfies db(u) < 8tε(n/K). Indeed, otherwise at least n/(2K) vertices in V1 satisfies
db(u) ≥ 8tε(n/K), which implies

n

2K
8tεn
K
≤
∑
u∈V ′1

db(u) ≤
∑
u∈V1

db(u) ≤ ε(t− 1)
(n
K

)2
,

and hence a contradiction. By the induction hypothesis, we can find a subset U1 ⊂ V ′1 such
that the induced subgraph G[U1] is a cograph of size f(n/(2K)). If the inequality

f
(n

2K

)
8tε n

K
>

n

4tK

SoCG 2017

43:10 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

is satisfied, then we have

f3(n) ≥ f
(n

2K

)
t2 >

1
32ε .

By setting ε such that 1
ε = 32e3c(logn)1−δ , we have f(n) ≥ ec(logn)1−δ and we are done.

Therefore, we can assume that

f
(n

2K

)
8tε n

K
≤ n

4tK .

Hence, by deleting any vertex v ∈ V2 ∪ · · · ∪ Vt that is in a bad pair with a vertex in U1, we
have deleted at most n

4tK vertices in each Vi for i = 2, . . . , t.
We repeat this entire process on the remaining vertices in V2, . . . , Vt. At step i, we will

find a subset Ui ⊂ Vi that induces a cograph of size

f
(n

2K − i
n

4Kt

)
≥ f

(n

4K

)
,

and again, if the inequality

f
(n

4K

)
8tε n

K
>

n

4tK
is satisfied, then we are done by the same argument as above. Therefore we can assume
that our cograph G[Ui] has the property that there are at most n/(4tK) bad pairs between
Ui and Vj for j > i. At the end of this process, we obtain subsets U1, . . . , Ut such that the
union U1 ∪ · · · ∪ Ut induces a cograph of size at least tf

(
n

4K
)
. Therefore we have

f(n) ≥ f
(1

4ε
)
f
(
n

4K
)

≥ f
(
e3c(logn)1−δ

)
f
(
elogn−c·c5(logn)1−δ

)
≥ ec(3c(logn)1−δ)1−δ

ec(logn−c·c5(logn)1−δ)1−δ
,

(3)

where c5 = c5(d). Notice we have the following estimate:(
logn− c · c5(logn)1−δ)1−δ = (logn)1−δ

(
1− c·c5

logδ n

)1−δ

≥ (logn)1−δ
(

1− c·c5
(logn)δ

)
≥ (logn)1−δ − c · c5(logn)1−2δ.

(4)

Plugging (4) into (3) gives

f(n) ≥ ec(3c(logn)1−δ)1−δ
· ec(logn)1−δ−c2·c5(logn)1−2δ

= ec(logn)1−δ · e
(

31−δc2(logn)1−2δ+δ2
−c2c5(logn)1−2δ

)
.

(5)

The last inequality follows from the fact that c < 1. Let n0 = n0(d, δ) be the minimum
integer such that for all n ≥ n0 we have

31−δ(logn)1−2δ+δ2
− c5(logn)1−2δ ≥ 0.

We now set c = c(d, t) to be sufficiently small such that the statement is trivial for all n < n0.
Hence we have f(n) ≥ ec(logn)1−δ for all n. J

J. Fox, J. Pach, and A. Suk 43:11

4 Random constructions

Here we prove Theorems 2 and 5. The proof of Theorem 2 uses the Lovász Local Lemma
[17] in a similar manner as Spencer [38] to give a lower bound on Ramsey numbers.

I Lemma 12 (Lovász Local Lemma). Let A be a finite set of events in a probability space. For
A ∈ A let Γ(A) be a subset of A such that A is independent of all events in A\ ({A}∪Γ(A)).
If there is a function x : A → (0, 1) such that for all A ∈ A,

Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)),

then Pr
[⋂

A∈AA
]
≥
∏
A∈A

(1− x(A)). In particular, with positive probability no event in A

holds.

Proof of Theorem 2. Let s and d be positive integers such that d > s+2. Let G(n, p) denote
the random graph on n vertices in which each edge appears with probability p independently
of all the other edges, where p = n−2/(s+1) and n is a sufficiently large number. For each set
S of s vertices, let AS be the event that S induces a complete graph. For each set T of t
vertices, let BT be the event that T induces an empty graph. Clearly, we have Pr[AS] = p(

s
2)

and Pr[BT] = (1− p)(
t
2).

For each set D of d vertices, let CD be the event that D is shattered. Then

Pr[CD] ≤
∏
W⊂D

Pr[∃v ∈ V (G) : N(v) ∩D = W]

=
∏
W⊂D

(
1−

(
1− p|W |(1− p)d−|W |

)n)

=
d∏
j=0

(
1−

(
1− pj(1− p)d−j

)n)(dj)

≤
d∏
j=1

(
n · pj(1− p)d−j

)(dj) ≤ d∏
j=1

n(dj) · pj(
d
j) ≤ n2d · pd2d−1

.

Next we estimate the number of events dependent on each AS , BT and CD. Let S ⊂ V
such that |S| = s. Then the event AS is dependent on at most

(
s
2
)(

n
s−2
)
≤ s2ns−2 events

AS′ , where |S′| = s. Likewise, AS is dependent on at most
(
n
t

)
events BT where |T | = t.

Finally AS is dependent on at most
(
s
2
)(

n
d−2
)
≤ s2nd−2 events CD where |D| = d.

Let T ⊂ V be a set of vertices such that |T | = t. Then the event BT is dependent on at
most

(
t
2
)(

n
s−2
)
≤ t2ns−2 events AS where |S| = s. Likewise, BT is dependent on at most

(
n
t

)
events BT ′ where |T ′| = t. Finally BT is dependent on at most

(
t
2
)(

n
d−2
)
≤ t2nd−2 events

CD where |D| = d.
Let D ⊂ V be a set of vertices such that |D| = d. Then the event CD is dependent on

at most
(
d
2
)(

n
s−2
)
≤ d2ns−2 events AS where |S| = s. Likewise, CD is dependent on at most(

n
t

)
events BT where |T | = t. Finally CD is dependent on at most

(
d
2
)(

n
d−2
)
≤ d2nd−2 events

CD′ where |D′| = d.
By Lemma 12, it suffices to find three real numbers x, y, z ∈ (0, 1) such that

p(
s
2) ≤ x(1− x)s

2ns−2
(1− y)(

n
t)(1− z)s

2nd−2
, (6)

(1− p)(
t
2) ≤ y(1− x)t

2ns−2
(1− y)(

n
t)(1− z)t

2nd−2
, and (7)

n2d · pd2d−1
≤ z(1− x)d

2ns−2
(1− y)(

n
t)(1− z)d

2nd−2
. (8)

SoCG 2017

43:12 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

Recall p = n
−2
s+1 , s ≥ 3, and d > s + 2. We now set t = c1n

2
s+1 (logn), x = c2n

−2(s2)
s+1 ,

y = e−c3n
2
s+1 (logn)2 , and z = c4n

2d− 2
s+1d2d−1

, where c1, c2, c3, c4 only depend on s and d. By
letting c1 > 10c3, setting c1, c2, c3, c4 sufficiently large, an easy (but tedious) calculation
shows that (6), (7), (8) are satisfied when n is sufficiently large. By Lemma 12, there is an
n-vertex Ks-free graph G with VC-dimension at most d and independence number at most
c1n

2
s+1 logn. J

Proof of Theorem 5. Let d ≥ 5 and n be a sufficiently large integer. Consider the random
n-vertex graph G = G(n, p), where each edge is chosen independently with probability
p = n−4/d. As n is sufficiently large, the union bound and the analysis above implies that
the probability that G has VC-dimension at least d is at most 1/3.

Let A,B ⊂ V (G) be vertex subsets, each of size k. The probability that (A,B) is
homogenous is at most

pk
2

+ (1− p)k
2
≤ n−4k2/d + e−n

−4/dk2
.

The probability that G contains a homogeneous pair (A,B), where |A|, |B| = k, is at most(
n

k

)(
n− k
k

)(
n−4k2/d + e−n

−4/dk2
)
< 1/3,

for k = 4n4/d logn and n sufficiently large. Thus, again by the union bound, there is a graph
with VC-dimension less than d, with no two disjoint subsets A,B ⊂ V (G) such that (A,B)
is homogeneous and |A|, |B| = 4n4/d logn. J

5 Concluding remarks

Many interesting results arose in our study of graphs and hypergraphs with bounded VC-
dimension. In particular, we strengthen several classical results from extremal hypergraph
theory for hypergraphs with bounded VC-dimension. Below, we briefly mention two of them.

Hypergraphs with bounded VC-dimension. Erdős, Hajnal, and Rado [16] showed that
every 3-uniform hypergraph on n vertices contains a clique or independent set of size
c log logn. A famous open question of Erdős asks if log logn is the correct order of magnitude
for Ramsey’s theorem for 3-uniform hypergraphs. According to the best known constructions,
there are 3-uniform hypergraphs on n vertices with no clique or independent set of size
c′
√

logn. For k ≥ 4, the best known lower and upper bounds on the size of the largest clique
or independent set in every n-vertex k-uniform hypergraph is of the form c log(k−1) n (the
(k − 1)-times iterated logarithm) and c′

√
log(k−2) n, respectively (see [12] for more details).

By combining Theorem 1 with an argument of Erdős and Rado [18], one can significantly
improve these bounds for hypergraphs of bounded (neighborhood) VC-dimension.

I Theorem 13. Let k ≥ 3 and d ≥ 1. Every k-uniform hypergraph on n vertices with
VC-dimension d contains a clique or independent set of size e(log(k−1) n)1−o(1)

.

Geometric constructions given by Conlon et al. [11] show that Theorem 13 is tight apart
from the o(1) term in the second exponent. That is, for fixed k ≥ 3, there are k-uniform
hypergraphs on n vertices with VC-dimension d = d(k) such that the largest clique or
independent set is of size O(log(k−2) n).

J. Fox, J. Pach, and A. Suk 43:13

The Erdős-Hajnal conjecture for tournaments. A tournament T = (V,E) on a set V is
an orientation of the edges of the complete graph on the vertex set V , that is, for u, v ∈ V
we have either (u, v) ∈ E or (v, u) ∈ E, but not both. A tournament with no directed cycle
is called transitive. If a tournament has no subtournament isomorphic to T , then it is called
T -free. An old result due to Entringer, Erdős, and Harner [13] and Spencer [39] states that
every tournament on n vertices contains a transitive subtournament of size c logn, which is
tight apart from the value of the constant factor. Alon, Pach, and Solymosi [4] showed that
the Erdős-Hajnal conjecture is equivalent to the following conjecture.

I Conjecture 14. For every tournament T , there is a positive δ = δ(T) such that every
T -free tournament on n vertices has a transitive subtournament of size nδ.

In particular, it is known that every T -free tournament on n vertices contains a transitive
subtournament of size ec

√
logn, where c = c(T). Another application of the ultra-strong

regularity lemma, Theorem 3, improves this bound in the special case where T = (V,E) is
2-colorable, that is, there is a 2-coloring of V (T) such that each color class induces a transitive
subtournament. This follows from the fact that, if T is 2-colorable, then the set system
formed by the out-neighborhoods of the vertices of a T -free tournament has VC-dimension
at most c′ = c′(T). On the other hand, if the same set system has bounded VC-dimension,
then the tournament is T ′-free for some bounded size 2-colorable T ′.

I Theorem 15. For a fixed integer k > 0, let T be a 2-colorable tournament on k vertices.
Every T -free tournament on n vertices contains a transitive subtournament of size e(logn)1−o(1) .

References
1 M. Ajtai, J. Komlós, and E. Szemerédi, A note on Ramsey numbers, J. Combin. Theory

Ser. A 29 (1980), 354–360.
2 N. Alon, E. Fischer, and I. Newman, Efficient testing of bipartite graphs for forbidden

induced subgraphs, SIAM J. Comput. 37 (2007), 959–976.
3 N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir, Crossing patterns of semi-

algebraic sets, J. Combin. Theory Ser. A 111 (2005), 310–326.
4 N. Alon, J. Pach, J. Solymosi, Ramsey-type theorems with forbidden subgraphs, Combin-

atorica 21 (2001), 155–170.
5 N. Alon and J.H. Spencer, The probabilistic method, 3rd ed., Wiley, 2008.
6 M. Anthony, G. Brightwell, and C. Cooper, The Vapnik-Chervonenkis dimension of a

random graph, 14th British Combinatorial Conference (Keele, 1993). Discrete Math. 138
(1995), 43–56.

7 T. Bohman, The triangle-free process, Adv. Math. 221 (2009), 1653–1677.
8 T. Bohman and P. Keevash, The early evolution of the H-free process, Invent. Math. 181

(2010), 291–336.
9 B. Chazelle, The Discrepancy Method: Randomness and Complexity, Cambridge University

Press, New York, 2000.
10 D. Conlon and J. Fox, Bounds for graph regularity and removal lemmas,

Geom. Funct. Anal., 22 (2012), 1191–1256.
11 D. Conlon, J. Fox, J. Pach, B. Sudakov, and A. Suk, Ramsey-type results for semi-algebraic

relations, Trans. Amer. Math. Soc. 366 (2014), 5043–5065.
12 D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23

(2010), 247–266.
13 R.C. Entringer, P. Erdős, and C.C. Harner, Some extremal properties concerning transit-

ivity in graphs, Period. Math. Hungar. 3 (1973), 275–279.

SoCG 2017

43:14 Erdős-Hajnal Conjecture for Graphs with Bounded VC-Dimension

14 P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
15 P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–52.
16 P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Math.

Acad. Sci. Hungar. 16 (1965), 93–196.
17 P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related

questions. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his
60th birthday), Vol. II, pp. 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10, North-
Holland, Amsterdam, 1975.

18 P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set,
Proc. London Math. Soc. 3 (1952), 417–439.

19 P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935),
463–470.

20 J. Fox, M Gromov, V. Lafforgue, A. Naor, and J. Pach, Overlap properties of geometric
expanders, J. Reine Angew. Math. 671 (2012), 49–83.

21 J. Fox, J. Pach, and A. Suk, A polynomial regularity lemma for semi-algebraic hypergraphs
and its applications in geometry and property testing, to appear in SIAM J. Comput.

22 J. Fox and B. Sudakov, Density theorems for bipartite graphs and related Ramsey-type
results, Combinatorica 29 (2009), 153–196.

23 J. E. Goodman, J. O’Rourke, and C.D. Tóth (eds.), Handbook of Discrete and Computa-
tional Geometry, Chapman Hill/CRC Press, Boca Raton, 2017.

24 S. Har-Peled, Geometric Approximation Algorithms, Mathematical Surveys and Mono-
graphs, Vol. 173, Amer. Math. Soc., Providence, 2011.

25 D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded
Vapnik-Chervonenkis dimension, J. Combin. Theory Ser. A, 69 (1995), 217–232.

26 D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom. 2
(1987), 127–151.

27 J. Komlós, J. Pach, and G. Woeginger, Almost tight bounds for ε-nets, Discrete Comput.
Geom. 7 (1992), 163–173.

28 E. Kranakis, D. Krizanc, B. Ruf, J. Urrutia, and G. Woeginger, The VC-dimension of set
systems defined by graphs, Discrete Appl. Math. 77 (1997), 237–257.

29 D. Larman, J. Matoušek, J. Pach, and J. Törőcsik, A Ramsey-type result for convex sets,
Bull. London Math. Soc. 26(2) (1994), 132–136.

30 L. Lovász and B. Szegedy, Regularity partitions and the topology of graphons, An Irregular
Mind, Imre Bárány, József Solymosi, and Gábor Sági editors, Bolyai Society Mathematical
Studies 21 (2010), 415–446.

31 J. Matoušek, Lectures on Discrete Geometry, Springer-Verlag, New York, 2002.
32 J. Pach and J. Solymosi, Structure theorems for systems of segments, Proceeding of the

Japanese Conference on Discrete and Computational Geometry (2000), 308–317.
33 N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145–147.
34 M. Schaefer, Deciding the Vapnik-Cervonenkis dimension is Σ3

p-complete, J. Comput. Sys-
tem Sci. 58 (1999), 177–182.

35 M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applica-
tions, Cambridge University Press, Cambridge, 1995.

36 S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary
languages, Pacific J. Math. (1972) 41, 247–261.

37 M. Simonovits and V. Sós, Ramsey-Turán theory, Discrete Math. 229 (2001), 293–340.
38 J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977), 69–

76.
39 J. Spencer, Random regular tournaments, Period. Math. Hungar. 5 (1974), 105–120.
40 R. Stanley, Combinatorics and Commutative Algebra, Birkhäuser, Boston, 1996.

J. Fox, J. Pach, and A. Suk 43:15

41 R. Tamassia, ed., Handbook of Graph Drawing and Visualization, Chapman and Hall/CRC
Press, Boca Raton, 2013.

42 V. Vapnik and A. Chervonenkis, On the uniform convergence of relative frequencies of
events to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.

SoCG 2017

Implementing Delaunay Triangulations of the
Bolza Surface
Iordan Iordanov1 and Monique Teillaud2

1 Loria, Inria Centre de recherche Nancy – Grand Est, Université de Lorraine,
CNRS UMR 7503, Villers-lès-Nancy, France

2 Loria, Inria Centre de recherche Nancy – Grand Est, Université de Lorraine,
CNRS UMR 7503, Villers-lès-Nancy, France

Abstract
The cgal library offers software packages to compute Delaunay triangulations of the (flat) torus
of genus one in two and three dimensions. To the best of our knowledge, there is no avail-
able software for the simplest possible extension, i.e., the Bolza surface, a hyperbolic manifold
homeomorphic to a torus of genus two.

In this paper, we present an implementation based on the theoretical results and the incre-
mental algorithm proposed last year [2]. We describe the representation of the triangulation, we
detail the different steps of the algorithm, we study predicates, and report experimental results.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases hyperbolic surface, Fuchsian group, arithmetic issues, Dehn’s algorithm,
cgal

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.44

1 Introduction

Motivated by applications in various fields, some packages to compute periodic Delaunay
triangulations in the Euclidean spaces E2 and E3 have been introduced in the cgal library [4,
12] and have attracted a number of users. To the best of our knowledge, no software is
available to compute periodic triangulations in a hyperbolic space. This would be a natural
extension: periodic triangulations in E2 can be seen as triangulations of the two-dimensional
(flat) torus of genus one; similarly, periodic triangulations in the hyperbolic plane H2 can be
seen as triangulations of hyperbolic surfaces. The Bolza surface is a hyperbolic surface with
the simplest possible topology, as it is homeomorphic to a genus-two torus. First steps in
computing Delaunay triangulations of hyperbolic surfaces have recently been made [2]. Due
to lack of space, we refer the reader to that paper for examples of applications.

All previous work mentioned above is generalizing the well-known incremental algorithm
introduced by Bowyer [3], which has proved to be reasonably easy to implement and very
efficient in practice. For each new point p, the set of conflicting simplices, i.e., simplices
whose circumscribing ball contains p, are removed; then their union is triangulated by simply
filling it with new simplices with apex p. This simple update operation relies on the fact
that the union of conflicting simplices is always a topological ball. As proved earlier [2], for
an input set S on a closed hyperbolic surface M , this property is ensured as soon as

sys(M) > 2δS , (1)

where sys(M) denotes the systole of M , i.e., the length of a shortest non-contractible loop
on M , and δS denotes the diameter of the largest disks that do not contain any point of S

© Iordan Iordanov and Monique Teillaud;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Implementing Delaunay Triangulations of the Bolza Surface

in their interior. This condition ensures that there is no cycle of length one or two in the
1-skeleton of the Delaunay triangulation.

Two ideas have been proposed to fulfill this condition [2]. The first one consists in
increasing the systole by using covering spaces of M , but it was shown to require at least 32
sheets for the Bolza surface, so this does not lead to a practical method. A more practical
idea was quickly sketched in the last section of the same paper; it consists in initializing the
triangulation with a set of “dummy” vertices that ensure that largest empty disks are small
enough so that inequality (1) holds. As the diameter of largest empty disks cannot increase
when new points are inserted, the condition will still be fulfilled when inserting points. If
sufficiently many reasonably well-distributed points are inserted, then the dummy vertices
can be removed from the triangulation without violating condition (1). In this paper, we
elaborate on this approach and propose a first implementation.

We recall some background for the Bolza surface in Section 2. In Section 3 we propose
a representation for Delaunay triangulations of the Bolza surface. Then we present the
various steps of the construction in Section 4. We investigate the algebraic complexity of the
algorithm in Section 5. Finally, we present some results of our implementation.

The source code, all Maple sheets, and the appendix are publicly available at

https://members.loria.fr/Monique.Teillaud/DT_Bolza_SoCG17/.

The software package will be submitted for integration in cgal as soon as the documentation
is completed.

2 The Bolza surface

Details and references for the background given in this section can be found in [2].
As the Poincaré disk model of the hyperbolic plane H2 is conformal, it is often used in

applications. The hyperbolic plane is represented as the open unit disk B of the Euclidean
plane E2. The boundary of B represents the set of points at infinity, denoted as H∞.
Hyperbolic lines, or geodesics, are represented as diameters of B or as arcs of circles orthogonal
to H∞. A hyperbolic circle is represented as a Euclidean circle contained in B and its
hyperbolic center is the limit point of the pencil of circles that it generates with H∞.

We denote the group of orientation-preserving isometries on H2 as Isom+(H2). By
identifying E2 with the complex plane C, each g ∈ Isom+(H2) is a mapping in the form

g(z) = αz+β
βz+α

, z ∈ C with matrix g =
[
α β

β α

]
, where α, β ∈ C and |α|2 − |β|2 = 1. We

are only interested here in one type of orientation-preserving isometries: the hyperbolic
isometries, also called translations. A hyperbolic translation fixes two points at infinity
and no point inside B. The geodesic Xg through the two fixed points of a translation g

is called the axis of g. Points lying on Xg are all translated along Xg by the same fixed
distance `(g) called the translation length. The length can be computed from the matrix as
`(g) = 2 · arcosh

(1
2Tr(g)

)
, where Tr(g) denotes the trace of the matrix of g. A point that

does not lie on Xg is translated by a distance greater than `(g) along a curve equidistant
from Xg (of course the distance between a point and its image is measured on the geodesic
containing them). See Figure 1-Left.

A hyperbolic surface is a connected 2-dimensional manifold such that every point has a
neighborhood isometric to a disk of H2. A closed (i.e., compact) and orientable hyperbolic
surface is isometric to a quotient of H2 under the action of a Fuchsian group Γ (i.e., a
discrete subgroup of Isom+(H2)) that contains only translations (and the identity). The
Bolza surface is the simplest possible closed orientable hyperbolic surface. Consider the

https://members.loria.fr/Monique.Teillaud/DT_Bolza_SoCG17/

I. Iordanov and M. Teillaud 44:3

p a(p)

q
a(q)

Xa`(a)

> `(a)

a

b̄

c

d̄

ā

b

c̄

d

O

Figure 1 Left: Action of translation a on H2. Right: Regular octagon DO and generators of G.

regular hyperbolic octagon DO centered at the origin O, with angles equal to π/4. The four
hyperbolic translations a, b, c, and d that identify opposite sides of DO generate a Fuchsian
group denoted as G. See Figure 1-Right.1 For simplicity, we also denote as g the image gO
of the origin by a translation g of G.

The Bolza surface is defined as the quotient of H2 under the action of the group G:

M = H2/G.

The projection map Π : H2 →M = H2/G is a local isometry and a covering projection.
The Dirichlet region Dp(G) for G centered at p is defined as the the closure of the open
cell of p in the Voronoi diagram VDH (Gp) of the infinite set of points Gp in H2. From the
compactness ofM, Dp(G) is a compact convex hyperbolic polygon with finitely many sides.
The fact that G is non-Abelian leads to interesting difficulties. Among other properties, the
Dirichlet regions Dp(G) and Dq(G) of two different points p and q do not always have the
same combinatorics. The set of points GO is quite degenerate: all vertices of VDH (GO) have
degree eight. See Figure 2-Left. The octagon DO is in fact the Dirichlet region DO(G) of
the origin. Figure 2-Right illustrates notation that will be used throughout this paper: the
vertices of DO are denoted as V0, . . . , V7 and their associated Delaunay circles are denoted as
C0, . . . , Ck.

Each Dirichlet region Dp(G) is a fundamental domain for the action of G on H2, i.e.,
(i) Dp(G) contains at least one point of the preimage by Π of any point ofM, and (ii) if it
contains more than one point of the same preimage, then all these points lie on its boundary.

The group G has the following finite presentation:

G =
〈
a, b, c, d | abcdabcd

〉
,

which denotes the quotient of the group 〈a, b, c, d〉 generated by a, b, c, and d, by the normal
closure (i.e., the smallest normal subgroup) in 〈a, b, c, d〉 of the element RG = abcdabcd,
called the relation of G. Here and throughout the paper, g denotes the inverse of an element
g ∈ G. We use 1 to denote the identity of G: ∀ g ∈ G, gg = gg = 1, and RG = 1 in G.

The Bolza surfaceM is homeomorphic to a double torus. Its area (which is also the area
of DO) is equal to 4π(genus(M)−1) = 4π. The generators of G are naturally ordered around

1 The octagon is rotated compared to [2]. The notation adopted now seems to be more standard in the
literature, see for instance [1].

SoCG 2017

44:4 Implementing Delaunay Triangulations of the Bolza Surface

O a

b

c

d

a

b
c

d

C0

O

V0

V1

V2
V3

V4

V5

V6
V7

M0

M1

M2

M3

M4

M5

M6

M7

dc
dcb
abcd
abc
ab

a

d

Figure 2 Left: Voronoi diagram of the infinite set of points GO. Right: The original domain D
and the images of O around the vertex V0 of DO.

the octagon DO as an ordered cyclical sequence A =
[
a, b, c, d, a, b, c, d

]
= [g0, g1, . . . , g7].

The matrices of the elements gk, k = 0, 1, . . . , 7, are

gk =
[

ξ2 eikπ/4
√

2 ξ
e−ikπ/4

√
2 ξ ξ2

]
, where ξ =

√
1 +
√

2. (2)

The translations gk all have the same length, which is the systole ofM:

sys(M) = `(gk) = 2 · arcosh
(

1 +
√

2
)
≈ 3.05714, k = 0, 1, . . . , 7.

3 Representation of the triangulation

As mentioned in the introduction, the use of dummy points allows us to always assume that
the set P of input points satisfies inequality (1) for the Bolza surfaceM.

We introduce the original domain D ⊂ DO forM, which contains exactly one point of
the fiber under Π of each point on the surface M. See Figure 2-Right: D consists of the
interior of DO, its four “solid” sides, and one vertex of the octagon (chosen to be V0).2

We can consider that all points of P lie in D. Similarly, we will now define a unique
representative of each face of the Delaunay triangulation DTM (P) ofM defined by P.

3.1 Canonical representative of a face
The definition of the canonical representative of a face will rely on Theorem 2, which is
reminiscent of the result proved for the flat torus by Dolbilin and Huson [9] and recalled
in [5, Lemma 6.3].

We denote the hyperbolic distance between two points p and q in H2 as distH(p, q) and
the (hyperbolic) segment with endpoints p and q as [p, q]. Let us recall our abuse of notation:
g denotes both a translation and the point gO. The points Mk, k = 0, . . . , 7 visible on
Figure 2-Right are defined as the midpoints of Vk and Vk+1 (indices are meant modulo 8).

Let UD be the union of the disks bounded by the circles Ck, k = 0, 1, . . . , 7, and let CD be
the boundary of UD. See Figure 3-Left.

2 Π(Vk) = Π(V0), k = 1, . . . , 7: V5 = aV0, V2 = bV5, V7 = cV2, V4 = dV2, V1 = aV4, V6 = bV1, V3 =
cV6, V0 = dV3.

I. Iordanov and M. Teillaud 44:5

O

Ck

CD

gk

1 2
sy
s
(M

)

O

Mk

gk

Vkp

Bk
π
8

Figure 3 Left: Curve CD (in bold). Right: The distance between CD and ∂DO is realized as the
distance of the points gk and Mk.

I Lemma 1. The distance between CD and ∂DO is equal to distH (Mk, gk) = 1
2 sys (M),

k = 0, 1, . . . , 7.

Proof. Using symmetries, we get (see Figure 3-Right):

distH (CD, ∂DO) = min
p∈[Vk,Mk], q∈Ck∩CD

distH (p, q) .

The hyperbolic circle Bk centered at Mk and passing through O also contains the points
Vk, gk and Vk+1: indeed, by definition of the Dirichlet region of O, segment [Vk, Vk+1] lies
on the bisecting line of O and gk, moreover [O, gk] lies on the bisecting line of Vk and Vk+1;
in addition, distH(Mk, Vk) = distH(O,Mk) since the angles of the triangle (O, Vk,Mk) at O
and at Vk are both equal to π/8.

The points O and gk are the intersections of Ck and Ck+1, and the segment [O, gk] is
a diameter of Bk, so Bk is contained in the union of the disks bounded by Ck and Ck+1.
The segment [Vk,Mk] is a radius of Bk, so for any point q ∈ Ck ∩ CD and for any p ∈
[Mk, Vk], distH(p,Bk) ≤ distH(p, q). Equality is attained when q = gk, so: distH (CD, ∂DO) =
minp∈[Vk,Mk] distH (p, gk) . For every point p ∈ [Vk,Mk], distH(gk, p) ≥ distH(gk,Mk) because
the angle gkMkp is right. The result follows. J

Let Dg denote the closure of the region of g in VDH (GO); Dg is the image of DO by the
translation g. The infinite set of regions Dg, for g ∈ G, form a tiling of the plane H2 (it was
shown on Figure 2-Left.) We define N as the set of translations g in G for which Dg∩DO 6= ∅.
The set N has 48 elements; it is naturally ordered counterclockwise around O, following the
boundary of DO. Each element ν of N has an index indexN (ν) in this sequence. We choose
abcd as the first element for the sequence N , i.e., indexN (abcd) = 0. See Figure 4-Left. We
define DN as

DN =
⋃
g∈N
Dg.

I Theorem 2. Let P ⊂ H2 be a set of points such that inequality (1) holds for M. If a
2-face σ of DTH (GP) has at least one of its vertices in DO, then σ is contained in DN .

From now on, 2-faces will simply be named faces, as done in cgal.

SoCG 2017

44:6 Implementing Delaunay Triangulations of the Bolza Surface

d
dc
dcb

abcd

abc
ab

a

ad̄
ad̄c̄
b̄c̄d̄

ab̄c̄d̄
b̄c̄b̄

b̄ā
b̄ā
dcd
āb̄cd
ā

cd

c

cb
cba

d̄abcd̄abd̄a

d̄d̄c̄d̄c̄b̄āb̄c̄d̄
āb̄c̄
āb̄

ā

ād

ādc

bcd
ā

bcd
bc b

ba
ba
d̄

c̄d̄
ab

c̄d̄
a

c̄d̄

c̄

c̄̄b
c̄̄bā
dā̄bc̄
dā̄b
dā

O

KE
k+1

KE
k

KE
k−1KE

k−2

O κk
γ

ωk

Ck

ρlk
Vk

Vk+2

Vk−2

Figure 4 Left: The translations in N . Right: Proof of Theorem 2.

Proof. Let σ be a face in DTH (GP) with at least one vertex in DO. By definition of δP , the
circumscribing disk of σ has diameter smaller than δP , which is smaller than 1

2 sys (M) by
inequality (1). Lemma 1 allows us to conclude that this disk is contained in UD.

We will now prove that UD is contained in DN , by proving that each circle Ck, for
k ∈ {0, 1, . . . , 7} is contained in DN . A circle Ck is centered at the Voronoi vertex Vk; it
passes through the origin O and its images under the action of seven consecutive elements
of N . Rotating Ck around Vk by π/4 maps each of these eight points (and its Voronoi
region) to the next one along Ck. This rotational symmetry shows that in order to prove
that Ck ⊂ DN , it is enough to prove that Ck intersects only the two sides of DO that are
incident to its hyperbolic center Vk.

Indices below are again taken modulo eight, e.g., we write Vk+1 instead of Vk+1 mod 8.
Let us first show that Ck intersects the sides [Vk−1, Vk] and [Vk, Vk+1] of DO. Consider a
hyperbolic triangle (O, Vk, Vk+1). Its angle at O is π/4, while the angles at the vertices
Vk and Vk+1 are π/8. From the Hyperbolic law of sines,3 we conclude that the length of
[Vk, Vk+1] is larger than the length of [O, Vk]. The result follows, since the segment [O, Vk] is
a radius of Ck.

Consider now the line segment lk = [Vk−2, Vk+2], k = 0, 1, . . . , 7, which cuts the octagon
into two halves. See Figure 4-Right. Both lk and Ck contain O; moreover lk is perpendicular
to the segment [O, Vk], which is supported by a diameter of Ck. So lk and Ck are tangent at
O and lk separates Ck from the other half of the octagon, thus Ck cannot intersect any side
[Vk+j , Vk+j+1] of DO for j = 2, 3, 4, 5.

Using the fact that hyperbolic circles in the Poincaré disk model are Euclidean circles
(see Section 2), we continue the proof and the computations in the Euclidean plane E2. The
sides of DO are supported by the Euclidean circles KE

j = (κj , γ), j = 0, 1, . . . , 7 shown on
Figure 4-Right. The centers and radii of KE

j , as well as the Euclidean centers ωk and radii ρ
of Ck are given in Table 1 and computed with Maple.

What is left to do is to show that Ck does not intersect eitherKE
k+1 orKE

k−2. By symmetry,
it suffices to consider KE

k+1. The signed Euclidean distance of the circles Ck and KE
k+1 is

3 If A,B,C are the sides of a hyperbolic triangle and ϑA, ϑB , ϑC the angles opposite to each side, then

sin(ϑA)
sinh(A) = sin(ϑB)

sinh(B) = sin(ϑC)
sinh(C) .

I. Iordanov and M. Teillaud 44:7

Table 1 Expressions for the Euclidean radii and centers of KE
j and Ck, i, k = 0, 1, . . . , 7.

Quantity Notation Expression Approximation

radius of KE
j γ

√√
2−1
2 0.4551

center of KE
j κj eijπ/4

√√
2+1
2 –

radius of Ck ρ
√

(2−
√

2)(
√

2− 1) 0.4926
center of Ck ωk ei(2k+7)π/8

√
3
√

2− 4 –

Figure 5 Examples of faces of DTH (GP) with one, two and three vertices in D, that project to
the same face on M. Their respective vertices drawn as a dot project to the same vertex on M
(same for cross and square). The canonical representative is the shaded face.

distE
(
Ck,K

E
k+1
)

= distE (ωk, κk+1) − ρ − γ. Maple calculations yield: distE
(
Ck,K

E
k+1
)

=√√
2−1

2

(
3
√

2−
√

2
√

4− 2
√

2− 1
)
. The last factor is positive:

(
3
√

2− 1
)2 = 19 − 6

√
2,(√

2
√

4− 2
√

2
)2

= 8− 4
√

2, and clearly 19− 6
√

2 > 8− 4
√

2 > 0. This shows that Ck and
KE
k+1 do not intersect. J

Let P ⊂ D be a set of points satisfying inequality (1) forM. The rest of this section is
dedicated to the choice of a unique canonical representative σc in DTH (GP) for each face σ

in DTM (P).
Let σ be a face in DTM (P). By definition of D, each vertex of σ has a unique preimage

by Π in D, so, the set

Σ =
{
σ ∈ Π−1(σ) | σ has at least one vertex in D

}
(3)

contains at most three faces. See Figure 5. When Σ contains only one face, then this face
is completely included in D, and we naturally choose it to be σc. Let us now assume that
Σ contains two or three faces. From Theorem 2, each face σ ∈ Σ is contained in DN . So,
for each vertex v of σ, there is a unique translation ν(v, σ) in N ∪ {1} such that v lies in
ν(v, σ)D.

We consider all faces in DTH (GP) oriented counterclockwise. For σ ∈ Σ, we denote as
vfirst_outσ the first vertex of σ (in the counterclockwise order) that is not lying in D. Using the
indexing on N defined above, we can now choose σc as the face of Σ whose first vertex lying
outside D is “closest” to the region abcdD in the counterclockwise order around O:

SoCG 2017

44:8 Implementing Delaunay Triangulations of the Bolza Surface

I Definition 3 (Canonical representative). With the notation defined above, the canonical
representative of a face σ of DTM (P) is the face σc ∈ Σ such that

indexN (ν(vfirst_outσc , σc)) = min
σ∈Σ

indexN (ν(vfirst_outσ , σ)).

3.2 Data structure in CGAL
General two-dimensional triangulation data structures in cgal store the vertices and faces
of the triangulation. Each vertex stores a point and a pointer to one of its incident faces.
Each face stores three pointers to its vertices v0, v1, and v2, as well as three pointers to its
three adjacent faces. Edges are not explicitly stored.

As mentioned above, we can assume that all input points of P lie in D. We adapt the cgal
structure to store a triangulation of the Bolza surface. Each vertex v of DTM (P) represents
an orbit under the action of G; it stores the point of Π−1(v) that belongs to D. Faces of
DTM (P) are stored through their canonical representative in DTH (GP). Concretely, in
addition to the pointers to vertices and neighbors, each face σc stores the three translations
ν(vi, σc) ∈ N , i = 0, 1, 2 defined at the end of Section 3.1. In this way, for a given face
σc in the structure, the corresponding canonical representative is the triangle in H2 whose
vertices are the images by ν(vi, σc) of the point in D stored in vi for i = 0, 1, 2. The
translations ν(vi, σc) play a similar role as the so-called “offsets” of the cgal Euclidean
periodic triangulations.

We choose to represent translations in the faces of the triangulation data structure as
words. This is detailed below.

Translations as words. We consider the cyclical sequence A formed by generators of G (see
Section 2) as an alphabet, and we denote the set of words on A as A∗. Each translation
g in G can be seen as a word in A∗, also denoted as g. For two translations g, g′ ∈ G, the
composition (or multiplication) gg′ corresponds to the concatenation of the two words g
and g′. Recall that composition is not commutative. We have seen in the two previous
sections that we only need to store translations in N . Let us note here that N is closed
under inversion, but not under composition.

The finite presentation of G captures the fact that a translation g ∈ G does not have
a unique representation in terms of the generators (see Section 2). To obtain a unique
representation of the translations that are involved in our algorithm, we slightly modify
Dehn’s algorithm. Dehn’s algorithm solves the word problem (i.e., the problem of deciding
whether a given word on the generators of a group is equal to the group identity) in the case
of fundamental groups of closed orientable surfaces of genus at least 2 [6, 11].4

Let us present our implementation, tailored to our specific case.
We encode each element gk, k = 0, 1, . . . , 7 of A as its index k. By concatenation, each

word of A∗ is encoded as a sequence of integers.
Let w be a non-trivial word in A∗. The first step of the reduction consists in freely

reducing w, i.e., removing all sub-words of the form gg or gg for g ∈ A. With our encoding,
two elements gi and gj of A are inverses in G if i = (j + 4) mod 8.

The relation RG = abcdabcd is encoded as 05274163. Let us note that any cyclical
permutation of RG or of its inverse RG is equal to 1 in G. This can be viewed in another

4 For interesting historical facts on this topic, see [14]. Software solving the word problem can be found
for instance in [10, 13].

I. Iordanov and M. Teillaud 44:9

way by considering R∞G , the infinite word formed by infinitely many concatenations of RG :
any subsequence R of R∞G or R∞G with |R| = |RG | is a relation in G, i.e., it reduces to 1.
(Here |·| denotes the length of a word.) The next step of the reduction consists in detecting
a factorization of the (now freely-reduced) word w of the form w = wλwµwκ, where wµt
is a relation R for some t ∈ A∗ with |t| < |wµ|. Then |wµ| > |RG | /2 = 4 and wµ can be
substituted in w by t, which yields the word wλtwκ with length shorter than |w|.

In our implementation, to find the sub-word wµ, we use the fact that a sequence of letters
(gkj)j=0,1,...,n, gkj ∈ A, is a sub-word of R∞G of length n if, for every j from 0 to n − 1,
kj+1 = (kj + 5) mod 8. Similarly, (gkj

) is a sub-word of R∞G of length n if for every j from 0
to n − 1, kj+1 = (kj − 5) mod 8. It holds that |R| < 2 |w|, so all words in A∗ with length
less than 2 |w| can be listed in order to find such a word R.

The two steps are repeated until w = 1 or until w cannot be further reduced. In the
original algorithm by Dehn, words of length |RG | /2 are not reduced. In order to have a
unique representations of words of length four, we introduce a small modification to the
algorithm: whenever we get an irreducible word w with |w| = 4, we check whether w is a
sub-word of R∞G . If so, we return w; in all other cases, we return w.

Dehn’s algorithm terminates in a finite number of steps and its time complexity is
polynomial in the length of the input word. Note that we reduce words that are formed by
the concatenation of two or three words in N ; this will become clear in Section 4.2. Since
the longest word in N has four letters, the longest words that we reduce have length 12.

4 Constructing the triangulation

Let us now describe the steps of our implementation of the incremental algorithm that was
quickly recalled in the introduction.

4.1 Initialization
The set Q of 14 dummy points proposed in [2, Section 4.2] is as follows:

the origin O;
the eight midpoints Pk of the hyperbolic segments [O, Vk], k = 0, 1, . . . 7;
the midpoints Mk, k = 4, 5, 6, 7 of the closed sides of D;
the vertex V0 of D.

The canonical representatives of the 32 faces forming the Delaunay triangulation of Q are
shown in Figure 6-Left. They can be constructed in four iterations (i = 0, 1, 2, 3) by using
the numbering shown in Figure 6-Right (but faces are not numbered in the code).

The coordinates of the dummy points are algebraic numbers, as reported in Table 2.
They have been computed using Maple. These exact coordinates would increase the algebraic
degree of the predicates (studied in Section 5) in an artificial way; therefore, we introduce
a set Q′ of rational approximations of the points in Q. See the third column of Table 2.
We have verified that DTM(Q) and DTM(Q′) have identical combinatorial structures. We
initialize the triangulation as DTM(Q′).5

4.2 Finding faces in conflict with a new point
Let p ∈ P ⊂ D be a new point to be inserted in the Delaunay triangulation. Consider σ a
face in DTM (P), and the set Σ defined in (3). We say that σc is in conflict with the input

5 Note that any other set of points that satisfies condition (1) could be used to initialize the triangulation.

SoCG 2017

44:10 Implementing Delaunay Triangulations of the Bolza Surface

V0

i + 4 i

i
+
12

2(i + 12)

2(i +
8)

i + 8

2(i + 8) + 1

2(i
+ 12)

+ 1

0

1
2

3

4

5
6

7

V6 V7

M4

M5

M6

M7

P0

P1

P2P3

P4

P5

P6 P7

O O

Pi

Pi+1

giMi+4Mi+4

Pi+4

Pi+5

giPi+5

giPi+4

Vi

Vi+1

V1

V2V3

V4

V5

Vi+4

Vi+5

Figure 6 Left: Delaunay triangulation ofM defined by the dummy points. Right: Zooming in
on the faces created in iteration i. Note the identification of the marked edges.

v

τ c
ν(τ c)

σc
ν(σc)

v

Figure 7 Translating τ c by ν = νnbr (σc, τ c) gives a face adjacent to σc.

point p if there exists a face σ ∈ Σ whose circumscribing disk contains p.
Recall that, since hyperbolic circles are Euclidean circles, a Delaunay triangulation in H2

has exactly the same combinatorics as the Euclidean Delaunay triangulation of the same
points. Consequently, the Euclidean Delaunay triangle containing p gives us a hyperbolic
Delaunay face in conflict with p; the Euclidean and hyperbolic faces will both be denoted as
σp, which should not introduce any confusion. To find this triangle, we adapt the so-called
visibility walk [7]. This walk starts from an arbitrary face, then, for each visited face, it visits
one of its neighbors, until a face containing p is found. Before specifying how the neighbor
to be visited is specified in the case of the Bolza surface, we introduce the notion of neighbor
translation.

I Definition 4 (Neighbor translation). Let σ, τ be two adjacent faces in DTM (P) and σ, τ
two of their preimages by Π in DTH (GP). We define the neighbor translation νnbr (σ, τ)
from σ to τ as the translation of G such that νnbr (σ, τ) τ is adjacent to σ in DTH (GP).

Let v be a vertex common to σ and τ , and let vσ and vτ the vertices of σ and τ that
project on v by Π. We can compute the neighbor translation from σ to τ as

νnbr (σ, τ) = ν(vτ , τ) ν(vσ, σ).

Figure 7 illustrates the neighbor translation of the canonical representatives of σ and τ . It
can be easily seen that νnbr (σ, τ) = ν(v, τ) ν(v, σ) = ν(v, σ) ν(v, τ) = νnbr (τ, σ).

We define the location translation νloc as follows: let σp be the Euclidean Delaunay
triangle containing p. νloc is the translation that moves σcp to σp.

The location procedure starts from a face incident to O. Then, for each visited face σ
of DTH (GP), we consider the Euclidean edge e defined by two of the vertices of σ. With a
simple orientation test, we can check whether the Euclidean line supporting e separates p
from the vertex of σ opposite to e. If this is the case, the next visited face is the neighbor τ
of σ through e, and we repeat the process, until

I. Iordanov and M. Teillaud 44:11

Table 2 Exact and rational expressions for the dummy points.

Point Expression Rational approximation

V0

(
23/4
√

2+
√

2
4 ,− 23/4

√
2−
√

2
4

)
(97/125,−26/81)

M4

(
−
√√

2− 1, 0
)

(−9/14, 0)

M5

(
−
√

2
√√

2−1
2 ,−

√
2
√√

2−1
2

)
(−5/11,−5/11)

M6

(
0,−

√√
2− 1

)
(0,−9/14)

M7

(√
2
√√

2−1
2 ,−

√
2
√√

2−1
2

)
(5/11,−5/11)

P0

(
21/4
√

2+
√

2

2
√

2+2
√

2−
√

2
,− 21/4

√
2−
√

2

2
√

2+2
√

2−
√

2

)
(1/2,−4/19)

P1

(
23/4
(√

2+
√

2+
√

2−
√

2
)

4
√

2+4
√

2−
√

2
,

23/4
(√

2+
√

2−
√

2−
√

2
)

4
√

2+4
√

2−
√

2

)
(1/2, 4/19)

P2

(
21/4
√

2−
√

2

2
√

2+2
√

2−
√

2
,

21/4
√

2+
√

2

2
√

2+2
√

2−
√

2

)
(4/19, 1/2)

P3

(
23/4
(√

2−
√

2−
√

2+
√

2
)

4
√

2+4
√

2−
√

2
,

23/4
(√

2+
√

2+
√

2−
√

2
)

4
√

2+4
√

2−
√

2

)
(−4/19, 1/2)

P4

(
− 21/4

√
2+
√

2

2
√

2+2
√

2−
√

2
,

21/4
√

2−
√

2

2
√

2+2
√

2−
√

2

)
(−1/2, 4/19)

P5

(
−

23/4
(√

2+
√

2+
√

2−
√

2
)

4
√

2+4
√

2−
√

2
,

23/4
(√

2−
√

2−
√

2+
√

2
)

4
√

2+4
√

2−
√

2

)
(−1/2,−4/19)

P6

(
− 21/4

√
2−
√

2

2
√

2+2
√

2−
√

2
,− 21/4

√
2+
√

2

2
√

2+2
√

2−
√

2

)
(−4/19,−1/2)

P7

(
23/4
(√

2+
√

2−
√

2−
√

2
)

4
√

2+4
√

2−
√

2
,−

23/4
(√

2−
√

2+
√

2+
√

2
)

4
√

2+4
√

2−
√

2

)
(4/19,−1/2)

either we find the Euclidean Delaunay face σp containing p by visiting only faces that do
not cross the border of D; then σp is a (canonical) face of DTH (GP) in conflict with p,
and νloc = 1.
or, at some point, we visit a (canonical) face σD included in D and its (non-canonical)
neighbor τ that crosses the border of D. Then the walk continues in non-canonical faces,
until we find the Euclidean triangle σp containing p. Then νloc is νnbr (σD, τ c) and the
canonical face in conflict with p is σcp = νlocσp.

If a (Euclidean) face with edges e1, e2, and e3 is entered through e1 during the walk, and
if none of e2 and e3 separates its opposite vertex from p, then the face contains p. So, two
orientation tests are enough to conclude that a face contains p (except for the starting face).

The location translation νloc is also used when looking for all other faces in conflict with
p. Starting from σcp and for each face in conflict with p, we recursively examine the translated
image under νloc of each neighbor (obtained with a neighbor translation) that has not yet
been visited. We store the set Zc of canonical faces in conflict with p. Note that Zc is not
necessarily a connected region.

4.3 Insertion
It remains to create the new faces and delete the faces in conflict. The translation νloc
computed in the previous step will again be used. We know that p lies in νlocσcp. We first
create a new vertex vnew and store p in it.

By construction, the union of all translated faces νlocνnbr
(
σcp, τ

c
)
τ c, τ c ∈ Zc is a

topological disk Z in H2. We identify the sequence of edges E on the border of Z; each
edge e is incident to one face in Z and one face that is not in Z. For each face τ c in Zc,

SoCG 2017

44:12 Implementing Delaunay Triangulations of the Bolza Surface

we temporarily store the translations νlocνnbr (σc, τ c) ν(vi, τ c), i = 0, 1, 2 directly in its three
vertices (not in τ c, since it will be deleted). Since Z is a topological disk, the result for a
given vertex v is independent of the face of Z incident to v that is considered. We store 1 in
vertex vnew.

For each edge e ∈ E, we create a new face τe having e as an edge and vnew as third vertex.
The neighbor of τe outside Zc is the neighbor through e of the face in Zc incident to e. Two
new faces consecutive along E are adjacent. We can now delete all faces in Z.

All that is left to do now is to compute the translations to be stored in the new faces.
Let τnew be a newly created face. We retrieve the translations temporarily stored in its
vertices v0, v1, v2 and we store them in τnew. Equipped with these translations, τnew is
not necessarily canonical. If all translations stored in τ cnew are equal to 1, then τnew is
contained in D, so it is actually canonical. Otherwise, one of the vertices of τnew is vnew;
without loss of generality, v0 = vnew, and ν(v0, τnew) = 1. For i = 0, 1, 2 we can easily
compute ∆i = indexN (ν(vfirst_outτi

, τi)), where τi is the image of τnew under ν(vi, τnew): in
each face, vfirst_outτi

is the first vertex of τi such that ν(vfirst_outτi
, τi) 6= 1. Note that we do

not actually compute the images of τnew, we only compute translations (as words). We
then find the index k for which ∆k is minimal, and in τnew we store the translations
ν(vk, τnew)ν(vi, τnew), i = 0, 1, 2. The face τnew has now been canonicalized. Once this is
done for all new faces, temporary translations can be removed from the vertices.

5 Algebraic complexity

We follow the so-called Exact Geometric Computation paradigm pioneered by Chee Yap [15].
As can be seen in Section 4, the correctness of the combinatorial structure DTM (P) relies
on the exact evaluation of three predicates:

SideOfOctagon, which checks whether an input point lies inside D. This predicate is used
as a precondition for the insertion of each point.
Orientation, which checks whether an input point p in D lies on the right side, the left
side, or on an oriented Euclidean segment. This predicate is used when looking for the
Euclidean triangle containing an input point.
InCircle, which checks whether an input point p in D lies inside, outside, or on the
boundary of the disk circumscribing an oriented triangle. It is used when looking for all
faces in conflict with an input point.

Let the coordinates of a point pi ∈ H2 be denoted as xi and yi. The last two predicates can
be expressed as signs of determinants:

Orientation (p1, p2, p3) = sign

∣∣∣∣∣x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣ , InCircle (p1, p2, p3, p4) = sign

∣∣∣∣∣∣∣
x1 y1 x2

1 + y2
1 1

x2 y2 x2
2 + y2

2 1
x3 y3 x2

3 + y2
3 1

x4 y4 x2
4 + y2

4 1

∣∣∣∣∣∣∣ . (4)
We assume that all input points (which lie in D) have rational coordinates (recall that

this holds for the initial dummy points, see Section 4.1). So, in the above determinants,
at least one point (xi, yi) is rational. However, the points against which the predicates are
testing the new input point are vertices of some face of DTH (GP) contained in UD, so they
are images of some input points by translations in N ∪ {1}. Therefore, the evaluation of the
two predicates (4) boils down to determining the sign, considered as an element of {−1, 0, 1}
of polynomial expressions in rational variables, whose coefficients are lying in some extension
field of the rationals, as made precise below.

I. Iordanov and M. Teillaud 44:13

gkgk+1
Vk

gkgk+3

gkgk+3gk+6

gkgk+3gk+6gk+1

gk+1gk+6

gk+1gk+6gk+3

Figure 8 Elements of N around a vertex Vk.

Table 3 Matrices of translations around a vertex Vk, k. Recall that ξ =
√

1 +
√

2.

gk =
[

1 +
√

2 eikπ/4
√

2ξ
e−ikπ/4

√
2ξ 1 +

√
2

]
(see (2))

gkgk+3 =
[(

1 +
√

2
) (

1− i
√

2
)

eikπ/4
(
1 + i

(
1 +
√

2
))
ξ

e−ikπ/4
(
1− i

(
1 +
√

2
))
ξ

(
1 +
√

2
) (

1 + i
√

2
)]

gkgk+3gk+6 =
[

−
(
1 +
√

2
)

(1 + 2i) eikπ/4
(
1 +
√

2
)

(−1 + i) ξ
−e−ikπ/4

(
1 +
√

2
)

(1 + i) ξ −
(
1 +
√

2
)

(1− 2i)

]
gkgk+3gk+6gk+1 =

[
−2
√

2− 3 −eikπ/4
(
2 +
√

2 + i
√

2
)
ξ

−e−ikπ/4
(
2 +
√

2− i
√

2
)
ξ −2

√
2− 3

]
gk+1gk+6gk+3 =

[(
1 +
√

2
)

(−1 + 2i) −eikπ/4
(
2 +
√

2
)
iξ

e−ikπ/4
(
2 +
√

2
)
iξ −

(
1 +
√

2
)

(1 + 2i)

]
gk+1gk+6 =

[(
1 +
√

2
)

+
(
2 +
√

2
)
i eikπ/4

(
1 +
√

2− i
)
ξ

e−ikπ/4
(
1 +
√

2 + i
)
ξ
(
1 +
√

2
)
−
(
2 +
√

2
)
i

]
gk+1 =

[
1 +
√

2 eikπ/4 (1 + i) ξ
e−ikπ/4 (1− i) ξ 1 +

√
2

]

The evaluation of the degree of the predicates requires to perform a case analysis on the
different possible positions of the faces in UD, i.e., on the possible translations of N that can
be involved in each predicate. The following property shows how we can take symmetries of
D into account to reduce the number of possible cases.

I Lemma 5. Let σ be a face in DTM (P). Then, for any edge uv of its canonical represen-
tative σc, such that ν(u, σc) 6= 1 and ν(v, σc) 6= 1,∣∣∣∣indexN (ν(u, σc))− indexN (ν(v, σc))

∣∣∣∣ ≤ 7.

Proof. We can assume that σc 6⊂ D, otherwise all its three translations are equal to 1.
Reusing the proof of of Lemma 1 and the notation therein, we see that σc is either contained
in the disk bounded by Bk, or in the disk bounded by Ck, for some k ∈ {0, . . . , 7}. So σc
can only intersect D and the seven octagons around some Vk. The result follows. J

Figure 8 shows the possible translations of N involved in a given canonical representative,
for some k ∈ {0, . . . , 7}. Their matrices are given in Table 3.

For k even, the sine and cosine of ±kπ/4 have values in {−1, 0, 1}, while for k odd they
are both equal to ±

√
2/2. Therefore, up to sign, the above matrices are divided into two

“classes”. Due to the symmetries of DO, we actually only need to examine one case in each
class, therefore we can focus on the two cases k = 0 and k = 1.

I Proposition 1. All predicates can be evaluated by determining the sign of rational polyno-
mial expressions of total degree at most 72 in the coordinates of input points.

SoCG 2017

44:14 Implementing Delaunay Triangulations of the Bolza Surface

Proof. We examine the complexity of the Orientation predicate and refer the reader to the
appendix for other ones. As mentioned above, at least one point is inside D. Without loss
of generality, we assume that p3 ∈ D. Let us consider the possible cases for the other two
points.

All three points are inside D. In this case, all the arguments of the predicate are
rational, so from (4) we get a polynomial with rational coefficients of total degree 2 in
the coordinates of the input points.
Point p2 is also in D, and p1 is outside D. In this case, p1 can be the image of an input
point by 14 possible different translations in N (seven around V0 and seven around V1).
Only p3 is inside D. In this case, both p1 and p2 can be images of input points under
the translations around V0 and V1. Of course, we avoid redundancies: if we examine
the case Orientation(gip′1, gjp′2, p3), p′i, p′j ∈ D, we do not examine the case Orienta-
tion(gjp′1, gip′2, p3) since it would have the same degree. This amounts to 56 cases in total
– 28 cases around V0 and another 28 around V1.

We have found with Maple that in all cases, the expressions produced by (4) have
denominators that are strictly positive and numerators that can be brought into the form(

A
√

2 +B
)
ξ + C

√
2 +D, ξ =

√
1 +
√

2, (5)

where A,B,C,D are rational polynomial expressions in the input coordinates. Moreover,
the maximum total degree of A,B,C,D is 5. By squaring twice (to eliminate square roots
coming from ξ), we get a rational polynomial of degree 20 in rational variables. J

The degree itself, as well as the high number of cases (in spite of the reduction) that
would need to be considered, show that giving a complete implementation for all polyno-
mial expressions involved in the predicates is hardly feasible. Therefore, we use the type
CORE::Expr [16] included in the cgal distribution to compute the coordinates of translated
points and directly evaluate the signs of determinants (4). This number type guarantees that
predicates are exact.

Our implementation handles degeneracies using symbolic perturbations [8]. Note that
there are no degeneracies in the initial triangulation DTM(Q′).

6 Experimental results

Experiments are run on a MacBook Pro with CPU Intel Core i5 @ 2.9GHz, 16GB
RAM @ 1867MHz running the master version of cgal from GitHub, compiled in re-
lease mode with clang-700.1.81. We insert random points uniformly distributed with respect
to the hyperbolic metric in D. As mentioned in introduction, dummy points are removed
after the insertion of new points. Averaged over 10 executions, the running time is 34 seconds
for one million points. This is slower than the computation of 2D Euclidean Delaunay
triangulations with cgal, which takes around 12 seconds on average for the same sets of
points, using CORE::Expr as number type (and about one second with double number type).
This is due in particular to the much higher arithmetic demand in our case (Proposition 1),
as confirmed by preliminary profiling, which shows that almost two thirds of the running
time is spent in computations of predicates. For the insertion of one million points, only
0.76% calls to predicates involve images of rational points under translations in N , but these
calls account for 36% of the total time spent in predicates.

We have also executed tests in which we insert random points in the triangulation and
progressively remove dummy points whenever doing so does not violate condition (1). Over

I. Iordanov and M. Teillaud 44:15

100 executions, all dummy points are removed with the insertion of at least 17 and at most
72 random points.

Due to lack of space, pictures showing some Delaunay triangulations are shown on the
web page.

References
1 N.L. Balazs and A. Voros. Chaos on the pseudosphere. Physics Reports, 143(3):109–240,

1986. doi:10.1016/0370-1573(86)90159-6.
2 Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on ori-

entable surfaces of low genus. In Proceedings of the Thirty-second International Sympo-
sium on Computational Geometry, pages 20:1–20:15, 2016. doi:10.4230/LIPIcs.SoCG.
2016.20.

3 A. Bowyer. Computing Dirichlet tessellations. The Computer Journal, 24(2):162–166, 1981.
doi:10.1093/comjnl/24.2.162.

4 Manuel Caroli and Monique Teillaud. 3D periodic triangulations. In CGAL User and
Reference Manual. CGAL Editorial Board, 3.5 (and further) edition, 2009-. URL: http://
doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary.

5 Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-
orbifolds. Discrete & Computational Geometry, 55(4):827–853, 2016. doi:10.1007/
s00454-016-9782-6.

6 M. Dehn. Transformation der Kurven auf zweiseitigen Flächen. Mathematische Annalen,
72(3):413–421, 1912. doi:10.1007/BF01456725.

7 Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangulation. In-
ternational Journal of Foundations of Computer Science, 13:181–199, 2002. URL: https:
//hal.inria.fr/inria-00102194.

8 Olivier Devillers and Monique Teillaud. Perturbations for Delaunay and weighted Delaunay
3D Triangulations. Computational Geometry: Theory and Applications, 44:160–168, 2011.
doi:10.1016/j.comgeo.2010.09.010.

9 Nikolai P. Dolbilin and Daniel H. Huson. Periodic Delone tilings. Periodica Mathematica
Hungarica, 34:1-2:57–64, 1997.

10 The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.8.6, 2016.
URL: http://www.gap-system.org.

11 Martin Greendlinger. Dehn’s algorithm for the word problem. Communications on Pure
and Applied Mathematics, 13(1):67–83, 1960. doi:10.1002/cpa.3160130108.

12 Nico Kruithof. 2D periodic triangulations. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.3 (and further) edition, 2013-. URL: http://doc.cgal.org/latest/
Manual/packages.html#PkgPeriodic2Triangulation2Summary.

13 The Magma Development Team. Magma Computational Algebra System. URL: http:
//magma.maths.usyd.edu.au/magma/.

14 John Joseph O’Connor and Edmund Frederick Robertson. The MacTutor History of Math-
ematics archive, 2003. URL: http://www-history.mcs.st-andrews.ac.uk/HistTopics/
Word_problems.html.

15 C.K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F.K.
Hwang, editors, Computing in Euclidean Geometry, volume 4 of Lecture Notes Series
on Computing, pages 452–492. World Scientific, Singapore, 2nd edition, 1995. doi:
10.1142/9789812831699_0011.

16 Chee Yap et al. The CORE Library Project. URL: http://cs.nyu.edu/exact/core_
pages/intro.html.

SoCG 2017

http://dx.doi.org/10.1016/0370-1573(86)90159-6
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.20
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.20
http://dx.doi.org/10.1093/comjnl/24.2.162
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary
http://dx.doi.org/10.1007/s00454-016-9782-6
http://dx.doi.org/10.1007/s00454-016-9782-6
http://dx.doi.org/10.1007/BF01456725
https://hal.inria.fr/inria-00102194
https://hal.inria.fr/inria-00102194
http://dx.doi.org/10.1016/j.comgeo.2010.09.010
http://www.gap-system.org
http://dx.doi.org/10.1002/cpa.3160130108
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic2Triangulation2Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic2Triangulation2Summary
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Word_problems.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Word_problems.html
http://dx.doi.org/10.1142/9789812831699_0011
http://dx.doi.org/10.1142/9789812831699_0011
http://cs.nyu.edu/exact/core_pages/intro.html
http://cs.nyu.edu/exact/core_pages/intro.html

Lower Bounds for Differential Privacy from
Gaussian Width∗

Assimakis Kattis1 and Aleksandar Nikolov2

1 Department of Computer Science, University of Toronto, Toronto, ON, Canada
kattis@cs.toronto.edu

2 Department of Computer Science, University of Toronto, Toronto, ON, Canada
anikolov@cs.toronto.edu

Abstract
We study the optimal sample complexity of a given workload of linear queries under the con-
straints of differential privacy. The sample complexity of a query answering mechanism under
error parameter α is the smallest n such that the mechanism answers the workload with error
at most α on any database of size n. Following a line of research started by Hardt and Tal-
war [STOC 2010], we analyze sample complexity using the tools of asymptotic convex geometry.
We study the sensitivity polytope, a natural convex body associated with a query workload that
quantifies how query answers can change between neighboring databases. This is the information
that, roughly speaking, is protected by a differentially private algorithm, and, for this reason, we
expect that a “bigger” sensitivity polytope implies larger sample complexity. Our results identify
the mean Gaussian width as an appropriate measure of the size of the polytope, and show sample
complexity lower bounds in terms of this quantity. Our lower bounds completely characterize the
workloads for which the Gaussian noise mechanism is optimal up to constants as those having
asymptotically maximal Gaussian width.

Our techniques also yield an alternative proof of Pisier’s Volume Number Theorem which
also suggests an approach to improving the parameters of the theorem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases differential privacy, convex geometry, lower bounds, sample complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.45

1 Introduction

The main goal of private data analysis is to estimate aggregate statistics while preserving
individual privacy guarantees. Intuitively, we expect that, for statistics that do not depend
too strongly on any particular individual, a sufficiently large database allows computing
an estimate that is both accurate and private. A natural question then is to characterize
the sample complexity under privacy constraints: the smallest database size for which we
can privately estimate the answers to a given collection of queries within some allowable
error tolerance. Moreover, it is desirable to identify algorithms that are simple, efficient, and
have close to the best possible sample complexity. In this work, we study these questions for
collections of linear queries under the constraints of approximate differential privacy.

We model a database D of size n as a multiset of n elements (counted with repetition)
from an arbitrary finite universe U . Each element of the database corresponds to the data
of a single individual. To define a privacy-preserving computation on D, we use the strong

∗ A full version of the paper is available at https://arxiv.org/abs/1612.02914.

© Assimakis Kattis and Aleksandar Nikolov;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.45
https://arxiv.org/abs/1612.02914
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Lower Bounds for Differential Privacy from Gaussian Width

notion of differential privacy. Informally, an algorithm is differentially private if it has almost
identical behavior on any two databases D and D′ that differ in the data of a single individual.
To capture this concept formally, let us define two databases D and D′ to be neighboring
if we can get D′ by replacing a single element of D with another element from U . Then
differential privacy is defined as follows:

I Definition 1 ([5]). A randomized algorithm A that takes as input a database and outputs
a random element from the set Y satisfies (ε, δ)-differential privacy if for all neighboring
databases D,D′ and all measurable S ⊆ Y we have that:

P[A(D) ∈ S] ≤ eεP[A(D
′
) ∈ S] + δ,

where probabilities are taken with respect to the randomness of A.

One of the most basic primitives in private data analysis, and data analysis in general, are
counting queries and, slightly more generally, linear queries. While interesting and natural in
themselves, they are also quite powerful: any statistical query (SQ) learning algorithm can
be implemented using noisy counting queries as a black box [10]. In our setting, we specify
a linear query by a function q : U → [0, 1] (given by a table of its values for each element
of U). Slightly abusing notation, we define the value of the query as q(D) = 1

n

∑
e∈D q(e),

where the elements of D are counted with multiplicity, and n is the size of D. For example,
when q : U → {0, 1}, we can think of q as a property defined on U and q(D) as the fraction
of elements of D that satisfy the property: this is a counting query. We call a set Q of linear
queries a workload and an algorithm that answers a query workload a mechanism. We denote
by Q(D) = (q(D))q∈Q the vector of answers to the queries in Q. Throughout the paper, we
will use the letter m for the size of a workload Q.

Starting from the work of Dinur and Nissim [4], it is known that we cannot hope to
answer too many linear queries too accurately while preserving even a very weak notion of
privacy. For this reason, we must allow our private mechanisms to make some error. We
focus on average error (in an L2 sense). We define the average error of an algorithm A on a
query workload Q and databases of size at most n as:

err(Q,A, n) = max
D

E
∑
q∈Q

(A(D)q − q(D))2

|Q|

1/2

= max
D

(
E

1
m
‖A(D)−Q(D)‖22

)1/2
,

where the maximum is over all databases D of size at most n, A(D)q is the answer to query q
given by the algorithm A on input D, and expectations are taken with respect to the random
choices of A. This is a natural notion of error that also works particularly well with the
geometric tools that we use.

In this work we study sample complexity: the smallest database size which allows us to
answer a given query workload with error at most α. The sample complexity of an algorithm
A with error α is defined as:

sc(Q,A, α) = min{n : err(Q,A, n) ≤ α}.

The sample complexity of answering the linear queries Q with error α under (ε, δ)-differential
privacy is defined by:

scε,δ(Q, α) = inf{sc(Q,A, α) : A is (ε, δ)-differentially private}.

The two main questions we are interested in are:

A. Kattis and A. Nikolov 45:3

1. Can we characterize scε,δ(Q, α) in terms of a natural property of the workload Q?
2. Can we identify conditions under which simple and efficient (ε, δ)-differentially private

mechanisms have nearly optimal sample complexity?

We make progress on both questions. We identify a geometrically defined property of
the workload that gives lower bounds on the sample complexity. The lower bounds also
characterize when one of the simplest differentially private mechanisms, the Gaussian noise
mechanism, has nearly optimal sample complexity in the regime of constant α.

Before we can state our results, we need to define a natural geometric object associated
with a workload of linear queries. This object has been important in applying geometric
techniques to differential privacy [9, 2, 16, 15].

I Definition 2. The sensitivity polytope K of a workload Q of m linear queries is equal to
K = conv{±Q(D) : D is a database of size 1}.

From the above definition, we see that K is a symmetric (i.e. K = −K) convex polytope in
Rm. The importance of K lies in the fact that it captures how query answers can change
between neighboring databases: for any two neighboring databases D and D′ of size n and
n′ respectively, nQ(D)− n′Q(D′) ∈ K. This is exactly the information that a differentially
private algorithm is supposed to hide. Intuitively, we expect that the larger K is, the larger
scε,δ(K,α) should be.

We give evidence for the above intuition, and propose the width ofK in a random direction
as a measure of its “size”. Let hK be the support function of K: hK(y) = maxx∈K 〈x, y〉.
For a unit vector y, hK(y) + hK(−y) is the width of K in the direction of y; for arbitrary
y, hK(ty) scales linearly with t (and is, in fact, a norm). We define the `∗-norm of K,
also known as its Gaussian mean width, as `∗(K) = E[hK(g)], where g is a standard
Gaussian random vector in Rm. The Gaussian mean width is closely related to the mean
width w(K) = EhK(y)+hK(−y)

2 , where y is distributed according to the rotation invariant
probability measure on the unit sphere. It’s easy to show that `∗(K) = E‖g‖2w(K), where
g ∼ N(0, I), and E‖g‖2 = Θ(

√
m). The Gaussian mean width of the Euclidean unit ball

Bm2 is Θ(
√
m), and, since hK(y) ≤ hBm

2
(y) for any y ∈ Rm and any K ⊆ Bm2 , we have

`∗(K) = O(
√
m) for any such K.

The following theorem captures our main result.

I Theorem 3. Let Q be a workload of m linear queries, and let K be its sensitivity polytope.
The following holds for all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), and any α ≤ `∗(K)

Cm(log 2m)2 ,
where C is an absolute constant, and σ(ε, δ) = (0.5

√
ε+

√
2 log (1/δ))/ε:

scε,δ(Q, α) = O

(
min

{σ(ε, δ)`∗(K)√
mα2 ,

σ(ε, δ)
√
m

α

})
;

scε,δ(Q, α) = Ω
(

σ(ε, δ)`∗(K)2

m3/2(log 2m)4α

)
.

The upper bound on the sample complexity is achieved by a mechanism running in time
polynomial in m, n, and |U|. Moreover, if `∗(K) = Ω(m), then scε,δ(Q, α) = Θ

(
σ(ε,δ)

√
m

α

)
for any α ≤ 1/C, where C is an absolute constant.

The sample complexity upper bounds in the theorem above are known from prior work:
one is given by the projection mechanism from [16], with the sample complexity upper
bound in terms of `∗(K) shown in [6]; the other upper bound is given by the Gaussian noise
mechanism [4, 7, 5]. The main new contribution in this work are the lower bounds on the

SoCG 2017

45:4 Lower Bounds for Differential Privacy from Gaussian Width

sample complexity. The gap between upper and lower bounds is small when `∗(K) is close to
its maximal value of m. Indeed, when `∗(K) = Θ(m), our results imply that the Gaussian
noise mechanism has optimal sample complexity up to constants. This is, to the best of
our knowledge, the first example of a general geometric condition under which a simple and
efficient mechanism has optimal sample complexity up to constant factors. Moreover, in
the constant error regime this condition is also necessary for the Gaussian mechanism to be
optimal up to constants: when `∗(K) = o(m) and α = Ω(1), the projection mechanism has
asymptotically smaller sample complexity than the Gaussian mechanism.

We can prove somewhat stronger results for another natural problem in private data
analysis, which we call the mean point problem. In this problem, we are given a closed
convex set K ⊂ Rm, and we are asked to approximate the mean D of the database D, where
D = {x1, . . . , xn} is a multiset of points in K and D = 1

n

∑n
i=1 xi. This problem, which will

be the focus for most of this paper, has a more geometric flavor, and is closely related to the
query release problem for linear queries. In fact, Theorem 3 will essentially follow from a
reduction from the results below for the mean point problem.

With respect to the mean point problem, we define the error of an algorithm A as:

err(K,A, n) = sup
D

(E‖A(D)−D‖22)1/2,

where the supremum is over databases D consisting of at most n points from K, and the
expectation is over the randomness of the algorithm. The sample complexity of an algorithm
A with error α is defined as:

sc(K,A, α) = min{n : err(K,A, n) ≤ α}.

The sample complexity of solving the mean point problem with error α over K is defined by:

scε,δ(K,α) = min{sc(K,A, α) : A is (ε, δ)-differentially private}.

Our main result for the mean point problem is given in the following theorem:

I Theorem 4. Let K be a symmetric convex body contained in the unit Euclidean ball
Bm2 in Rm. The following holds for all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), and any
α ≤ `∗(K)

C
√
m(log 2m)2 , where C is an absolute constant, and σ(ε, δ) = (0.5

√
ε+

√
2 log (1/δ))/ε:

scε,δ(K,α) = O

(
min

{σ(ε, δ)`∗(K)
α2 ,

σ(ε, δ)
√
m

α

})
;

scε,δ(K,α) = Ω
(
σ(ε, δ)`∗(K)
(log 2m)2α

)
.

The upper bound on the sample complexity is achieved by a mechanism running in time poly-
nomial in m, n, and |U|. Moreover, when `∗(K) = Ω(

√
m), then scε,δ(K,α) = Θ

(
σ(ε,δ)

√
m

α

)
for any α ≤ 1/C, where C is an absolute constant.

The upper bounds again follow from prior work, and in fact are also given by the projection
mechanism and the Gaussian noise mechanism, which can be defined for the mean point
problem as well. Notice that the gap between the upper and the lower bound is on the order
(log 2m)2

α . If the lower bound was valid for all values of the error parameter α less than a
fixed constant, rather than for α ≤ `∗(K)

C
√
m(log 2m)2 , Theorem 4 would nearly characterize the

optimal sample complexity for the mean point problem for all constant α. Unfortunately,
the restriction on α is, in general, necessary (up to the logarithmic terms) for lower bounds

A. Kattis and A. Nikolov 45:5

on the sample complexity in terms of `∗(K). For example, we can take K = γBm2 , i.e. a
Euclidean ball in Rm with radius γ. Then, `∗(K) = Θ(γ

√
m), but the sample complexity is

0 when α > γ, since the trivial algorithm which ignores the database and outputs 0 achieves
error γ. Thus, a more sensitive measure of the size of K is necessary to prove optimal lower
bounds. We do, nevertheless, trust that the techniques introduced in this paper bring us
closer to this goal.

We conclude this section with a high-level overview of our techniques. Our starting point
is a recent tight lower bound on the sample complexity of a special class of linear queries: the
1-way marginal queries. These queries achieve the worst case sample complexity for a family
of m linear queries: Ω(

√
m/α) [3, 22]. The sensitivity polytope of the 1-way marginals is the

cube [−1, 1]m, and it can be shown that the lower bound on the sample complexity of 1-way
marginals implies an analogous lower bound on the sample complexity of the mean point
problem with K = Qm = [−1/

√
m, 1/

√
m]m. For the mean point problem, it is easy to see

that when K ′ ⊆ K, the sample complexity for K ′ is no larger than the sample complexity for
K. Moreover, we can show that the sample complexity of any projection of K is no bigger
than the sample complexity of K itself. So, our strategy then is to find a large scaled copy of
Qm

′ , m′ ≤ m, inside a projection of K onto a large dimensional subspace whenever `∗(K) is
large. We solve this geometric problem using deep results from asymptotic convex geometry,
namely the Dvoretzky criterion, the low M∗ estimate, and the MM∗ estimate.

We note that in [3], the authors mention a similar idea of showing a lower bound on the
sample complexity of an arbitrary family of counting queries Q by embedding the 1-way
marginals into Q. For average error, their approach gives a lower bound of Ω(

√
d
α) (ignoring

the dependence on ε and δ) for any α ≤ 1
10

√
d
m , where d is the the VC-dimension of the set

system {Se : e ∈ U} and Se = {q ∈ Q : q(e) = 1}. This lower bound is at least as strong as
our lower bounds, since `∗(K)√

m
≤ C
√
d for a sufficiently large constant C. (This inequality is a

well-known consequence of Dudley’s chaining inequality and estimates on entropy numbers in
terms of VC-dimension, e.g. Theorem 14.12. in [11].) Our results, however, hold for arbitrary
linear queries, and not just counting queries. Moreover, our lower bound is in terms of the
efficiently computable quantity `∗(K), while there is evidence that computing VC-dimension
is hard [18]. Thus, our lower bound can be seen as an efficiently computable relaxation of
the VC-dimension lower bound, and also as a generalization of it to linear queries.

Our techniques also yield an alternative proof of the volume number theorem of Milman
and Pisier [14]. Besides avoiding the quotient of subspace theorem, our proof yields an
improvement in the volume number theorem, conditional on the well-known conjecture (see
e.g. Chapter 6 in [1]) that any symmetric convex body K has a position (affine image) TK
for which `∗(TK)`(TK) = O(m

√
log 2m), where `(K) is the expected K-norm of a standard

Gaussian. More details about this connection are given in Section 6.

1.1 Prior Work

Most closely related to our work are the results of Nikolov, Talwar, and Zhang [16], who gave
a private mechanism (also based on the projection mechanism, but more involved) which has
nearly optimal sample complexity (with respect to average error), up to factors polynomial
in logm and log |U|. This result was subsequently improved by Nikolov [15], who showed
that the logm factors can be replaced by logn. While these results are nearly optimal for
subconstant values of the error parameter α, i.e. the optimality guarantees do not depend
on 1/α, factors polynomial in log |U| can be prohibitively large. Indeed, in many natural
settings, such as that of marginal queries, |U| is exponential in the number of queries m, so
the competitiveness ratio can be polynomial in m.

SoCG 2017

45:6 Lower Bounds for Differential Privacy from Gaussian Width

The line of work that applies techniques from convex geometry to differential privacy
started with the beautiful paper of Hardt and Talwar [9], whose results were subsequently
strengthened in [2]. These papers focused on the “large database” regime (or, in our language,
the setting of subconstant error), and pure differential privacy (δ = 0).

2 Preliminaries

We begin with the introduction of some notation. Throughout the paper we use C, C1,
etc., for absolute constants, whose value may change from line to line. We use 〈·, ·〉 for the
standard inner product on Rm, ‖ · ‖2 for the standard Euclidean norm, and ‖ · ‖1 for the
`1 norm in Rm. We define Bm1 and Bm2 to be the `1 and `2 unit balls in Rm respectively,
while Qm = [− 1√

m
, 1√

m
]m ⊆ Rm will refer to the m-dimensional hypercube, normalized to

be contained in the unit Euclidean ball. We use Im for the identity operator on Rm, as well
as for the m ×m identity matrix. For a given subspace E, we define ΠE : Rm → Rm as
the orthogonal projection operator onto E. Moreover, when T : E → F is a linear operator
between the subspaces E,F ⊆ Rm, we define ‖T‖ = max{‖Tx‖2 : ‖x‖2 = 1} as its operator
norm, which is also equal to its largest singular value σ1(T). For the diameter of a set K
we use the nonstandard, but convenient, definition diamK = max {‖x‖2 : x ∈ K}. For sets
symmetric around 0, this is equivalent to the standard definition, but scaled up by a factor
of 2. We use N(µ,Σ) to refer to the Gaussian distribution with mean µ and covariance Σ,
and we use the notation x ∼ N(µ,Σ) to denote that x is distributed as a Gaussian random
variable with mean µ and covariance Σ. For an m×m symmetric matrix (or equivalently a
self-adjoint operator from `m2 to `m2) A we use A � 0 to denote that A is positive semidefinite,
i.e. 〈x,Ax〉 ≥ 0 for any x ∈ Rm. For positive semidefinite matrices/operators A, B, we use
the notation A � B to denote B −A � 0.

2.1 Convex Geometry
In this section, we outline the main geometric tools we use in later sections. For a more
detailed treatment, we refer to the lecture notes by Vershynin [23] and the books by Pisier [21]
and Artstein-Avidan, Giannopoulos, and Milman [1].

Throughout, we define a convex body K as a compact subset of Rm with non-empty
interior. A convex body K is (centrally) symmetric if and only if K = −K. We define the
polar body K◦ of K as: K◦ = {y : 〈x, y〉 ≤ 1 ∀x ∈ K}. The following basic facts are easy to
verify and very useful.

I Fact 5. For convex bodies K,L ⊆ Rm, K ⊆ L⇔ L◦ ⊆ K◦.

I Fact 6 (Section/Projection Duality). For a convex body K ⊆ Rm and a subspace E ⊆
Rm:
1. (K ∩ E)◦ = ΠE(K◦);
2. (ΠE(K))◦ = K◦ ∩ E.
In both cases, the polar is taken in the subspace E.

I Fact 7. For any invertible linear map T and any convex body K, T (K)◦ = T−∗(K◦),
where T−∗ is the inverse of the adjoint operator T ∗.

A simple special case of Fact 7 is that, for any convex body K, (rK)◦ = 1
rK
◦. Using this

property alongside Fact 5 and Fact 6, we have the following useful corollary.

I Corollary 8. For a convex body K ⊆ Rm and E ⊆ Rm a subspace with k = dimE, the
following two statements are equivalent:

A. Kattis and A. Nikolov 45:7

1. ΠE(rBm2) ⊆ ΠE(K);
2. K◦ ∩ E ⊆ 1

r (Bm2 ∩ E),
where, as before, taking the polar set is considered in the subspace E. Notice that the second
statement is also equivalent to diam(K◦ ∩ E) ≤ 1

r .

Our work relies on appropriately quantifying the “size” of (projections and sections of)
a convex body. It turns out that, for our purposes, the right measure of size is related to
the notion of width, captured by the support function. Recall from the introduction that the
support function of a convex body K ⊂ Rm is given by hK(y) = maxx∈K 〈x, y〉 for every
y ∈ Rm.

The support function is intimately related to the Minkowski norm ‖ · ‖K , defined for a
symmetric convex body K ⊆ Rm by ‖x‖K = min {r ≥ 0 : x ∈ rK}, for every x ∈ Rm. It
is easy to verify that ‖ · ‖K is indeed a norm. The support function hK is identical to the
Minkowski norm of the polar body K◦ (which is also the dual norm to ‖·‖K): hK(y) = ‖y‖K◦
for every y ∈ Rm.

Now we come to the measure of the “size” of a convex body which will be central to our
results: the Gaussian mean width of the body, defined next.

I Definition 9. The Gaussian mean width and Gaussian mean norm of a symmetric convex
body K ⊆ Rm are defined respectively as:

`∗(K) = E‖g‖K◦ = E[hK(g)], `(K) = E‖g‖K ,

where g ∼ N(0, Im) is a standard Gaussian random variable.

The next lemma gives an estimate of how the mean width changes when applying a linear
transformation to K. The lemma is standard and the proof is deferred to the full version of
the paper.

I Lemma 10. For any symmetric convex body K ⊂ Rm, and any linear operator T : `m2 → `m2 :

`∗(T (K)) ≤ ‖T‖`∗(K).

Similar to approaches in previous works ([9], [16]), we exploit properties inherent to a
specific position of K to prove lower bounds on its sample complexity.

I Definition 11 (`-position). A convex body K ⊆ Rm is in `-position if for all linear operators
T : `m2 → `m2 :

`∗(K) · `(K) ≤ `∗(T (K)) · `(T (K)).

Clearly, K is in `-position if and only if K◦ is in `-position, since `∗(K) = `(K◦) for
any convex body K. Note further that the product `∗(K) · `(K) is scale-invariant, in the
sense that `∗(rK) · `(rK) = `∗(K) · `(K) for any nonnegative real r. This is because, for any
x, y ∈ Rm, ‖x‖rK = 1

r‖x‖K , and hrK(y) = rhK(y), so `∗(rK) = r`∗(K) and `(rK) = 1
r `(K).

We will relate the Gaussian mean width of K to another measure of its size, and the size
of its projections and sections, known as Gelfand width. A definition follows.

I Definition 12 (Gelfand width). For a symmetric convex body K ⊂ Rm, the Gelfand width
of order k of K (with respect to the `2 norm) is defined as:

ck(K) = inf
E

inf{r : K ∩ E ⊆ r(Bm2 ∩ E)} = inf
E

sup{‖x‖2 : x ∈ K ∩ E},

where the first infimum is over subspaces E ⊆ Rm of co-dimension at most k − 1 (i.e. of
dimension at least m− k + 1). When k > m, we define ck(K) = 0.

SoCG 2017

45:8 Lower Bounds for Differential Privacy from Gaussian Width

Note that ck(K) = infE diam(K ∩ E), where the infimum is over subspaces E ⊆ Rm of
codimension at most k − 1. Observe also that for any K, ck(K) is non-increasing in k. It is
well-known that the infimum in the definition is actually achieved [19].

2.2 Known Bounds

In this section, we recall some known differentially private mechanisms, with bounds on their
sample complexity, as well as a lower bound on the optimal sample complexity. We start
with the lower bound:

I Theorem 13 ([3, 22]). For all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1) and α ≤ 1/10:

scε,δ (Qm, α) = Ω
(√

m log 1/δ
αε

)
. (1)

Next we recall one of the most basic mechanisms in differential privacy, the Gaussian
mechanism. A proof of the privacy guarantee, with the constants given below, can be found
in [16].

I Theorem 14 (Gaussian Mechanism [4, 7, 5]). Let D = {x1, . . . , xn} be such that ∀i :
‖xi‖2 ≤ σ. If w ∼ N(0, σ(ε, δ)2σ2Im), σ(ε, δ) = (

√
ε + 2

√
2 log (1/δ))/ε and Im ∈ Rm×m

is the identity matrix, then the algorithm AGM defined by AGM (D) = D + 1
nw is (ε, δ)-

differentially private.

I Corollary 15. For any symmetric convex K ⊆ Bm2 :

scε,δ(K,α) = O

(√
m log 1/δ
αε

)
.

In the rest of the paper we will use the notation σ(ε, δ) =
√
ε+2
√

2 log (1/δ)
ε from the

theorem statement above.
Finally, we also present the projection mechanism from [16], which post-processes the

output of the Gaussian mechanism by projecting onto K.

I Theorem 16 (Projection Mechanism [16, 6]). Let K ⊆ Bm2 be a symmetric convex body,
and define APM to be the algorithm that, on input D = {x1, . . . , xn} ⊂ K, outputs:

ŷ = arg min{‖ŷ − ỹ‖22 : ŷ ∈ K},

where ỹ = D+ 1
nw, w ∼ N(0, σ(ε, δ)2Im). Then APM satisfies (ε, δ)-differential privacy and

has sample complexity:

sc(K,APM , α) = O

(
σ(ε, δ)`∗(K)

α2

)
.

I Corollary 17. For any symmetric convex K ⊆ Bm2 :

scε,δ(K,α) = O

(
σ(ε, δ)`∗(K)

α2

)
.

A. Kattis and A. Nikolov 45:9

3 Basic Properties of Sample Complexity

In this section, we prove some fundamental properties of sample complexity that will be
extensively used in later sections. The proofs Lemmas 18,20 and Theorem 23 are deferred to
the full version of the paper.

I Lemma 18. L ⊆ K ⇒ ∀α ∈ (0, 1) : scε,δ(L,α) ≤ scε,δ(K,α).

I Corollary 19. For all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1) and α ≤ 1/10:

scε,δ(Bm2 , α) = Ω
(√

m log 1/δ
αε

)
.

Proof. Since Qm ⊆ Bm2 , this follows directly from Lemma 18 and Theorem 13. J

I Lemma 20. For any α ∈ (0, 1), any linear operator T : Rm → Rm and any symmetric
convex body K ⊂ Rm:

scε,δ(K,α) ≥ scε,δ(T (K), α · ‖T‖).

I Corollary 21. For any t > 0:

scε,δ(tK, tα) = scε,δ(K,α).

Proof. Taking T = tIm in Lemma 20, where Im is the identity on Rm, the lemma implies
scε,δ(tK, tα) ≤ scε,δ(K,α). Since this inequality holds for any t and K, we may apply it to
K ′ = tK and t′ = 1/t, and we get scε,δ(K,α) = scε,δ((1/t)tK, (1/t)tα) ≤ scε,δ(tK, tα). J

Since for any subspace E of Rm, the corresponding orthogonal projection ΠE has operator
norm 1, we also immediately get the following corollary of Lemma 20:

I Corollary 22. For any subspace E:

scε,δ(K,α) ≥ scε,δ(ΠE(K), α).

In the next theorem, we combine the lower bound in Theorem 19 and the properties
we proved above in order to give a lower bound on the sample complexity of an arbitrary
symmetric convex body K in terms of its geometric properties. In the following sections we
will relate this geometric lower bound to the mean Gaussian width of K.

I Theorem 23 (Geometric Lower Bound). For all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), any
convex symmetric body K ⊆ Rm, any 1 ≤ k ≤ m and any α ≤ 1/(10ck(K◦)):

scε,δ(K,α) = Ω
(√

log 1/δ
αε

·
√
m− k + 1
ck(K◦)

)
.

4 Optimality of the Gaussian Mechanism

In this section, we present the result that the Gaussian mechanism is optimal, up to constant
factors, when K ⊆ Bm2 is sufficiently large. More specifically, if the Gaussian mean width of
K is asymptotically maximal, then we can get a tight lower bound on the sample complexity
of the Gaussian mechanism. This is summarized in the theorem below.

SoCG 2017

45:10 Lower Bounds for Differential Privacy from Gaussian Width

I Theorem 24. For all ε < O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), sufficiently small constant α,
and any symmetric convex body K ⊆ Bm2 , if

`∗(K) = Ω(
√
m),

then:

scε,δ(K,α) = Θ
(√

m log 1/δ
αε

)
,

and scε,δ(K,α) is achieved, up to constants, by the Gaussian mechanism.

By Theorem 15 we have an upper bound for the Gaussian mechanism defined previously.
To prove its optimality, we use a classical result from convex geometry, known as Dvoretzky’s
criterion, to show a matching lower bound for the sample complexity. This result relates the
existence of a nearly-spherical section of a given convex body to the Gaussian mean norm. It
was a key ingredient in Milman’s probabilistic proof of Dvoretzky’s theorem: see Matoušek’s
book [12] for an exposition.

I Theorem 25 ([13]; Dvoretzky’s Criterion). For every symmetric convex body K ⊆ Rm such
that Bm2 ⊆ K, and every β < 1, there exists a constant c(β) and a subspace E with dimension
dimE ≥ c(β)`(K)2 for which:

(1− β)`(K)√
m
Bm2 ∩ E ⊆ K ∩ E ⊆ (1 + β)`(K)√

m
Bm2 ∩ E.

Proof of Theorem 24. Given the matching upper bound on sample complexity in The-
orem 15, it suffices to show the equivalent lower bound, namely that:

scε,δ(K,α) = Ω
(√

m log 1/δ
αε

)
.

To this end, we will show that there exists a k ≤ (1− c)m+ 1, for an absolute constant c, so
that ck(K◦) = O(1). Then the lower bound will follow directly from Theorem 23.

We will prove the claim above by applying Dvoretzky’s criterion to K◦. By Theorem 5,
K ⊆ Bm2 ⇒ Bm2 ⊆ K◦. We can then apply Dvoretzky’s criterion with β = 1/2, ensuring
that there exists a subspace E of dimension dimE ≥ c(1/2)`(K◦)2 for which:

K◦ ∩ E ⊆ `(K◦)
2
√
m
Bm2 ∩ E.

Let us define k = m−dimE+1; then k ≤ m−c(1/2)`(K◦)2+1 = m−c(1/2)`∗(K)2+1. Since,
by assumption `∗(K) = Ω(m), there exists a constant c so that k ≤ (1− c)m+ 1. Finally,
by the definition of Gelfand width, ck(K◦) ≤ `(K◦)

2
√
m

= O(1), as desired. This completes the
proof. J

5 Gaussian Width Lower Bounds in `-position

In Section 4 we showed that the Gaussian Mechanism is optimal when the Gaussian mean
width of K is asymptotically as large possible. Our goal in this and the following section is to
show general lower bounds on sample complexity in terms of `∗(K). This is motivated by the
sample complexity upper bound in terms of `∗(K) provided by the projection mechanism.

A. Kattis and A. Nikolov 45:11

It is natural to follow the strategy from Section 4: use Dvoretzky’s criterion to find a
nearly-spherical projection of K of appropriate radius and dimension. An inspection of the
proof of Theorem 24 shows that the sample complexity lower bound we get this way is
Ω
(
`∗(K)2
√
m

)
(ignoring the dependence on ε, δ, and α here, and in the rest of this informal

discussion). Recall that we are aiming for a lower bound of Ω(`∗(K)), so we are off by a
factor of `

∗(K)√
m

. Roughly speaking, the problem is that Dvoretzky’s criterion does too much:
it guarantees a spherical section of K◦, while we only need a bound on the diameter of the
section. In order to circumvent this difficulty, we use a different result from asymptotic
convex geometry, the low M∗-estimate, which bounds the diameter of a random section of
K◦, without also producing a large ball contained inside the section. A technical difficulty is
that the resulting upper bound on the diameter is in terms of the Gaussian mean K-norm,
rather than the (reciprocal of the) mean width. When K is in `-position, this is not an
issue, because results of Pisier, Figiel, and Tomczak-Jaegermann show that in that case
`(K)`∗(K) = O(logm). In this section we assume that K is in `-position, and we remove
this requirement in the subsequent section.

The main result of this section is summarized below.

I Theorem 26. For all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), all symmetric convex bodies
K ⊆ Rm in `-position, and for α ≤ `∗(K)

C
√
m log 2m , where C is an absolute constant:

scε,δ (K,α) = Ω
(√

log 1/δ
αε

· `
∗(K)

log 2m

)
.

The following two theorems are the main technical ingredients we need in the proof of
Theorem 26.

I Theorem 27 ([8], [20]; MM∗ Bound). There exists a constant C such that for every
symmetric convex body K ⊂ Rm in `-position:

`(K) · `∗(K) ≤ C ·m log 2m.

It is an open problem whether this bound can be improved to m
√

log 2m. This would be
tight for the cube Qm. This improvement would lead to a corresponding improvement in our
bounds.

I Theorem 28 ([17]; Low M∗ estimate). ’ There exists a constant C such that for every
symmetric convex body K ⊂ Rm there exists a subspace E ⊆ Rm with dimE = m − k for
which:

diam (K ∩ E) ≤ C · `
∗(K)√
k
.

Combining Theorems 27 and 28, we get the following key lemma.

I Lemma 29. There exists a constant C such that for every symmetric convex body K ⊂ Rm
in `-position, and every β ∈ (0, 1− 1/m), there exists a subspace E of dimension at least βm
satisfying:

diam(K ∩ E) ≤ C
√
m log 2m√

1− β · `(K)
.

SoCG 2017

45:12 Lower Bounds for Differential Privacy from Gaussian Width

Proof. Let k = b(1− β)mc ≥ 1. Using the low M∗ estimate on K, there exists a subspace
E with dimE = m− k = dβme for which:

diam (K ∩ E) ≤ C1 ·
`∗(K)√

k
.

By the MM∗ upper bound, since K is in `-position, we have that:

`∗(K) ≤ C2 ·
m log 2m
`(K) ,

and, combining the two inequalities, we get that:

diam(K ∩ E) ≤ C1C2
m log 2m√
k · `(K)

≤ C
√
m logm√

1− β · `(K)
,

for an appropriate constant C. This completes the proof. J

The proof of the desired lower bound now follows easily from this lemma.

Proof of Theorem 26. By Theorem 23, it suffices to show that

mmax
k=1

√
m− k + 1
ck(K◦) = Ω

(
`∗(K)
log 2m

)
. (2)

Indeed, if k∗ is the value of k for which the maximum on the left hand side is achieved, then√
m−k∗+1
ck∗ (K◦) is a lower bound on the sample complexity for all α ≤ 1/(10ck∗(K◦)), and by (2):

1
10ck∗(K◦)

= Ω
(

`∗(K)√
m− k∗ + 1 · log 2m

)
= Ω

(
`∗(K)√
m · log 2m

)
.

In the rest of the proof, we establish (2).
Since K (and thus also K◦) are in `-position by assumption, from Lemma 29 applied to

K◦ we have that there exists a subspace E such that dimE ≥ m/2 and:

diam(K◦ ∩ E) = O

(√
m log 2m
`(K◦)

)
= O

(√
m log 2m
`∗(K)

)
.

Setting kE = m− dimE+ 1 ≤ m/2 + 1, and because ckE
(K◦) ≤ diam(K◦ ∩E) by definition,

we get that:

mmax
k=1

√
m− k + 1
ck(K◦) ≥

√
dimE

diam(K◦ ∩ E) = Ω
(
`∗(K)
log 2m

)
,

as desired. J

6 Gaussian Width Lower Bounds for Arbitrary Bodies

In this section, we remove the assumption that K is in `-position from the previous section.
Instead, we use a recursive charging argument in order to reduce to the `-position case. The
resulting guarantee is worse than the one we proved for bodies in `-position by a logarithmic
factor.

The main lower bound result of this section is the following theorem.

A. Kattis and A. Nikolov 45:13

I Theorem 30. For all ε = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), any symmetric convex body
K ⊂ Rm, and any α ≤ `∗(K)

C
√
m(log 2m)2 , where C is an absolute constant:

scε,δ(K,α) = Ω
(
σ(ε, δ)`∗(K)
(log 2m)2α

)
.

The lower bound follows from the geometric lemma below, which may be of independent
interest.

I Lemma 31. There exists a constant C such that, for any symmetric convex body K ⊂ Rm,

`∗(K) ≤ C(log 2m)
(

m∑
i=1

1√
i · cm−i+1(K◦)

)
. (3)

Lemma 31 is closely related to the volume number theorem of Milman and Pisier [14],
which states that the inequality (3) holds with 1

cm−i+1(K◦) replaced by the volume number
vi(K), defined as:

vi(K) = sup
E:dimE=i

vol(ΠE(K))1/i

(vol(ΠE(Bm2))1/i ,

where the supremum is over subspaces E of Rm. Inequality (3) is stronger than the volume
number theorem, because 1

cm−i+1(K◦) ≤ vi(K). Indeed, setting r = 1
cm−i+1(K◦) , by Theorem 8

and the definition of Gelfand width we have that there exists a subspace E of dimension i
such that rΠE(Bm2) ⊆ ΠEK. Therefore, vol(ΠE(K)) ≥ ri vol(ΠE(Bm2)), which implies the
desired inequality.

Even though the volume number theorem is weaker than (3), the proof given by Pisier in
his book [21], with minor modifications, appears to yield the stronger inequality we need.
In the full version of the paper we give an alternative proof, which only uses the low M∗

estimate, the MM∗ estimate, and elementary linear algebra.

Proof of Theorem 30. As in the proof of Theorem 26, it is sufficient to prove that:

mmax
k=1

√
m− k + 1
ck(K◦) = Ω

(
`∗(K)

(log 2m)2

)
. (4)

But this inequality follows easily from Lemma 31 and the trivial case of Hölder’s inequality:

`∗(K) ≤ C(log 2m)
(

m∑
i=1

1√
i · cm−i+1(K◦)

)
≤ C(log 2m)

(
m∑
i=1

1
i

)
·

(
mmax
i=1

√
i

cm−i+1(K◦)

)

= O((log 2m)2) ·
(

mmax
i=1

√
i

cm−i+1(K◦)

)
.

Then, the proof of the theorem follows from (4) analogously to the proof of Theorem 26. J

We now have everything in place to prove our main result for the mean point problem.

Proof of Theorem 4. The upper bounds on sample complexity follow from Theorem 14,
Theorem 15, Theorem 16, and Theorem 17. The lower bounds follow from Theorem 30. The
statement after “moreover” follows from Theorem 15 and Theorem 24. J

SoCG 2017

45:14 Lower Bounds for Differential Privacy from Gaussian Width

7 From Mean Point to Query Release

All the bounds we proved so far were for the mean point problem. In this section we show
reductions between this problem, and the query release problem, which allow us to translate
our lower bounds to the query release setting and prove Theorem 3. We will show that the
problem of approximating Q(D) for a query workload Q under differential privacy is nearly
equivalent to approximating the mean point problem with universe K ′ = 1√

m
K, where K is

the sensitivity polytope of Q. We state this reduction next, and defer its proof to the full
version of the paper.

I Lemma 32. Let Q be a workload of m linear queries over the universe U with sensitivity
polytope K. Define K ′ = 1√

m
K. Then, we have the inequalities:

scε,δ(Q, α) ≤ scε,δ(K ′, α); (5)

scε,δ(K ′, α) ≤ max
{

sc2ε,2δ(Q, α/4), 16 diam(K ′)
α2

}
. (6)

Moreover, we can use an (ε, δ)-differentially private algorithm A′ as a black box to get an
(ε, δ)-differentially private algorithm A such that sc(Q,A, α) = sc(K ′,A′, α). A makes a
single call to A′, and performs additional computation of worst-case complexity O(mn), where
n is the size of the database.

We also use a simple lemma that relates the sample complexity at an error level α to the
sample complexity at a lower error level α′ < α. The proof is a padding argument and can
be found in [22].

I Lemma 33. For any workload Q, any 0 < α′ < α < 1, and any privacy parameters ε, δ,
we have

scε,δ(Q, α′) = Ω
(α

Cα′

)
· scε,δ(Q, α),

for an absolute constant C.

We are now ready to finish the proof of our main result for the query release problem.

Proof of Theorem 3. The upper bounds on sample complexity follow from the upper bounds
in Theorem 4 together with Lemma 32.

Denote K ′ = 1√
m
K, and let α0 = `∗(K′)

C
√
m(log 2m)2 = `∗(K)

Cm(log 2m)2 be the smallest error
parameter for which Theorem 30 holds. Then, by Theorem 30 and Lemma 32:

max
{

scε,δ(Q, α0), diam(K)√
mα2

0

}
= Ω

(
σ(ε, δ)`∗(K)√
m(log 2m)2α0

)
.

It is easy to show that scε,δ(Q, α0) = Ω(diam(K)/(α0
√
m)) for all sufficiently small ε and δ.

Therefore, we have:

scε,δ(Q, α0) = Ω
(
σ(ε, δ)`∗(K)√
m(log 2m)2

)
.

By Lemma 33, we get that for any α ≤ α0 the sample complexity is at least:

scε,δ(Q, α) = Ω
(
σ(ε, δ)`∗(K)α0√
m(log 2m)2α

)
= Ω

(
σ(ε, δ)`∗(K)2

m3/2(log 2m)4α

)
.

An analogous proof, with α0 = 1/C set to the smallest error parameter for which
Theorem 24 holds, establishes the statement after “moreover”. J

A. Kattis and A. Nikolov 45:15

References

1 Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman. Asymptotic geo-
metric analysis. Part I, volume 202 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2015. doi:10.1090/surv/202.

2 Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Uncon-
ditional differentially private mechanisms for linear queries. In Proceedings of the 44th
Symposium on Theory of Computing, STOC’12, pages 1269–1284, New York, NY, USA,
2012. ACM. doi:10.1145/2213977.2214089.

3 Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price of
approximate differential privacy. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pages 1–10. ACM, 2014.

4 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceed-
ings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pages 202–210. ACM, 2003.

5 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference, pages 265–284.
Springer, 2006.

6 Cynthia Dwork, Aleksandar Nikolov, and Kunal Talwar. Using convex relaxations for
efficiently and privately releasing marginals. In 30th Annual Symposium on Computational
Geometry, SOCG’14, Kyoto, Japan, June 08-11, 2014, page 261. ACM, 2014. doi:10.
1145/2582112.2582123.

7 Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Annual International Cryptology Conference, pages 528–544. Springer, 2004.

8 T. Figiel and Nicole Tomczak-Jaegermann. Projections onto Hilbertian subspaces of Banach
spaces. Israel J. Math., 33(2):155–171, 1979. doi:10.1007/BF02760556.

9 Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC’10, pages 705–714, New York,
NY, USA, 2010. ACM. doi:10.1145/1806689.1806786.

10 Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM,
45(6):983–1006, 1998. doi:10.1145/293347.293351.

11 Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Classics in Math-
ematics. Springer-Verlag, Berlin, 2011. Isoperimetry and processes, Reprint of the 1991
edition.

12 Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

13 V.D. Milman. A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies.
Funkcional. Anal. i Priložen., 5(4):28–37, 1971.

14 V.D. Milman and G. Pisier. Gaussian processes and mixed volumes. Ann. Probab.,
15(1):292–304, 1987. URL: http://links.jstor.org/sici?sici=0091-1798(198701)15:
1<292:GPAMV>2.0.CO;2-A&origin=MSN.

15 Aleksandar Nikolov. An improved private mechanism for small databases. In Automata,
Languages, and Programming – 42nd International Colloquium, ICALP 2015, Kyoto, Ja-
pan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer
Science, pages 1010–1021. Springer, 2015. doi:10.1007/978-3-662-47672-7_82.

16 Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy:
the sparse and approximate cases. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 351–360. ACM, 2013. doi:10.
1145/2488608.2488652.

SoCG 2017

http://dx.doi.org/10.1090/surv/202
http://dx.doi.org/10.1145/2213977.2214089
http://dx.doi.org/10.1145/2582112.2582123
http://dx.doi.org/10.1145/2582112.2582123
http://dx.doi.org/10.1007/BF02760556
http://dx.doi.org/10.1145/1806689.1806786
http://dx.doi.org/10.1145/293347.293351
http://dx.doi.org/10.1007/978-1-4613-0039-7
http://links.jstor.org/sici?sici=0091-1798(198701)15:1<292:GPAMV>2.0.CO;2-A&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(198701)15:1<292:GPAMV>2.0.CO;2-A&origin=MSN
http://dx.doi.org/10.1007/978-3-662-47672-7_82
http://dx.doi.org/10.1145/2488608.2488652
http://dx.doi.org/10.1145/2488608.2488652

45:16 Lower Bounds for Differential Privacy from Gaussian Width

17 Alain Pajor and Nicole Tomczak-Jaegermann. Subspaces of small codimension of finite-
dimensional Banach spaces. Proc. Amer. Math. Soc., 97(4):637–642, 1986. doi:10.2307/
2045920.

18 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996. doi:10.
1006/jcss.1996.0058.

19 Allan Pinkus. n-widths in approximation theory, volume 7 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag,
Berlin, 1985. doi:10.1007/978-3-642-69894-1.

20 G. Pisier. Sur les espaces de Banach K-convexes. In Seminar on Functional Analysis,
1979–1980 (French), pages Exp. No. 11, 15. École Polytech., Palaiseau, 1980.

21 Gilles Pisier. The volume of convex bodies and Banach space geometry, volume 94 of
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1989. doi:
10.1017/CBO9780511662454.

22 Thomas Steinke and Jonathan Ullman. Between pure and approximate differential privacy.
CoRR, abs/1501.06095, 2015. URL: http://arxiv.org/abs/1501.06095.

23 R. Vershynin. Lectures in geometric functional analysis. 2009. URL: http://
www-personal.umich.edu/~romanv/papers/GFA-book.pdf.

http://dx.doi.org/10.2307/2045920
http://dx.doi.org/10.2307/2045920
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1007/978-3-642-69894-1
http://dx.doi.org/10.1017/CBO9780511662454
http://dx.doi.org/10.1017/CBO9780511662454
http://arxiv.org/abs/1501.06095
http://www-personal.umich.edu/~romanv/papers/GFA-book.pdf
http://www-personal.umich.edu/~romanv/papers/GFA-book.pdf

Constrained Triangulations, Volumes of Polytopes,
and Unit Equations
Michael Kerber1, Robert Tichy2, and Mario Weitzer3

1 Institute of Geometry, Graz University of Technology, Graz, Austria
kerber@tugraz.at

2 Institute of Analysis and Number Theory, Graz University of Technology,
Graz, Austria
tichy@tugraz.at

3 Institute of Analysis and Number Theory, Graz University of Technology,
Graz, Austria
weitzer@math.tugraz.at

Abstract
Given a polytope P in Rd and a subset U of its vertices, is there a triangulation of P using d-
simplices that all contain U? We answer this question by proving an equivalent and easy-to-check
combinatorial criterion for the facets of P. Our proof relates triangulations of P to triangulations
of its “shadow”, a projection to a lower-dimensional space determined by U . In particular, we
obtain a formula relating the volume of P with the volume of its shadow. This leads to an exact
formula for the volume of a polytope arising in the theory of unit equations.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations, F.2.1 [Numerical Algorithms and Problems] Number-Theoretic
Computations

Keywords and phrases constrained triangulations, simplotopes, volumes of polytopes, projec-
tions of polytopes, unit equations, S-integers

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.46

1 Introduction

1.1 Problem statement and results
Let P be a convex polytope in Rd, that is, the convex hull of a finite point set V , and let
U be a subset of V . We ask for a triangulation of (the interior of) P with the property
that every d-simplex in the triangulation contains all points of U as vertices, calling it a
U-spinal triangulation. A simple example is the star triangulation of P (Figure 1), where
all d-simplices contain a common vertex p, and U is the singleton set consisting of that
point. Another example is the d-hypercube with U being a pair of opposite points (Figure 2).
Indeed, the hypercube can be triangulated in a way that all d-simplices contain the space
diagonal spanned by U [16, 10].

We are interested in what combinations of P and U admit spinal triangulations. Our
results provide a simple combinatorial answer for this question: Denoting by n the cardinality
of U , a U -spinal triangulation of P exists if and only if each facet of P contains at least n− 1
vertices of U . In that case, we call U a spine of P. More generally, we provide a complete
characterization of spinal triangulations: let Φ denote the orthogonal projection of Rd to
the orthogonal complement of the lower-dimensional flat spanned by U . Φ maps U to 0 by
construction, and P is mapped to a shadow P̂ := Φ(P). We obtain a U -spinal triangulation

© Michael Kerber, Robert Tichy, and Mario Weitzer;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 46; pp. 46:1–46:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

−→

Figure 1 A star triangulation of a
hexagon.

−→

Figure 2 A U -spinal triangulation of a cube,
where U consists of the two vertices on a space
diagonal.

(1)
−→

(2)
−→

(3)
−→

(1)
−→

(2)
−→

(3)
−→

Figure 3 Two examples of the lifting process: (1) Project polytope P to the orthogonal complement
of the flat spanned by U (vertices marked by prominent dots) to obtain shadow P̂. (2) Star-triangulate
P̂ with respect to the origin. (3) Lift star triangulation of P̂ to obtain U -spinal triangulation of P.
Note: every facet of P contains exactly |U | − 1 points of U in both examples.

of P by first star-triangulating P̂ with respect to 0 and then lifting each maximal simplex
to Rd by taking the preimage of its vertices under Φ (Figure 3). Vice versa, every spinal
triangulation can be obtained in this way.

An important consequence of our characterization is that a spine allows us to relate the
volumes of a convex polytope P and its shadow P̂ (with respect to that spine) by a precise
equation. An application of this observation leads to our second result: an exact volume
formula of an important polytope arising in number theory which we call the Everest polytope.
We show that this polytope is the shadow of a higher-dimensional simplotope, the product of
simplices, whose volume is easy to determine.

1.2 Number theoretic background
In the following we briefly discuss the number-theoretic background of the Everest polytope.
G. R. Everest [12, 13] studied various counting problems related to Diophantine equations.
In particular, he proved asymptotic results for the number of values taken by a linear form
whose variables are restricted to lie inside a given finitely generated subgroup of a number
field. This includes norm form- and discriminant form equations, normal integral bases
and related objects. Everest’s work contains important contributions to the quantitative
theory of S-unit equations and makes use of Baker’s theory of linear forms in logarithms and
Schmidt’s subspace theorem from Diophantine approximation; see for instance [30, 14, 2].
Later, other authors [15] applied the methods of Everest to solve combinatorial problems
in algebraic number fields. The corresponding counting results involve various important
arithmetic constants, one of them being the volume of a certain convex polytope.

M. Kerber, R. Tichy, and M. Weitzer 46:3

In order to introduce Everest’s constant, we use basic facts from algebraic number theory.
Let K be a number field, N = NK/Q the field norm and S a finite set of places of K including
the archimedian ones. We denote by OK,S = {α ∈ K : |α|v ≤ 1 for all v 6∈ S} the ring of
S-integers and its unit group by UK,S ; the group of S-units. Let c0, . . . , cn denote given
non-zero algebraic numbers. During the last decades, a lot of work is devoted to the study of
the values taken by the expression c0x0 + . . .+ cnxn, where the xn are allowed to run through
UK,S , see for instance [26, 19]. A specific instance of this kind of general S-unit equations
is the following combinatorial problem. As usual, two S-integers α and β are said to be
associated (for short α ∼ β) if there exists an S-unit ε such that α = βε. It is well-known
that the group of S-units UK,S is a free abelian group with s = |S| − 1 generators, ωK and
RegK,S denote as usual the number of roots of unity and the S-regulator of K, respectively
(for the basic concepts of algebraic number theory see [25]). Then for given n ∈ N, q > 0 the
counting function u(n, q) is defined as the number of equivalence classes [α]∼ such that

N(α) :=
∏
v∈S
|α|v ≤ q, α =

n∑
i=1

εi,

where εi ∈ UK,S and no subsum of ε1 + . . .+ εn vanishes. From the work of Everest [12, 13],
the following asymptotic formula can be derived:

u(n, q) = c(n− 1, s)
n!

(
ωK(log q)s

RegK,S

)n−1
+ o((log q)(n−1)s−1+ε)

for arbitrary ε > 0. Here c(n − 1, s) is a positive constant, and its exact value has been
known only in special cases; see [3] for more details. In general, c(n, s) is given as the volume
of a convex polytope in Rns that we define and study in Section 4. Our results show that

c(n, s) = 1
(s!)n+1

((n+ 1)s)!
(ns)! ,

which can also be written in terms of a multinomial coefficient as
((n+1)s
s,...,s

) 1
(ns)! .

1.3 Geometric background
Our results fall into the category of constrained triangulations of convex polytopes. Triangula-
tions of polytopes are a classic topic in discrete geometry; an infamous question is the quest
for triangulating a d-hypercube with a minimal number of simplices [6]. Precise answers are
only known up to dimension 7 using computer-assisted proofs [22]. A contemporary overview
on results relating to triangulations of polytopes and more general point configurations is
provided by de Loera, Rambau, and Santos [8]. It includes a discussion on the triangulation
of simplotopes, a geometric object whose study goes back to Hadwiger [20], and has been
studied, for instance, in the context of combinatorics [17], game theory [32] and algebraic
geometry [18, Ch. 7]. Simplotopes admit a standard triangulation, the so-called staircase
triangulation, which can easily be described in combinatorial terms. A by-product of our
results is that simplotopes can also be triangulated by a family of spinal triangulations.

An n-element subset U of the vertex set of a polytope with the property that each facet
contains exactly n−1 points of U is called a special simplex in the literature. Special simplices
have been studied by Athanasiadis [1] to relate the Ehrhart polynomial of integer polytopes
with special simplex with the h-vector of the shadow. This results found applications in the
study of toric rings and Gorenstein polytopes [21, 5]. Polytopes with special simplices are
further studied by de Wolff [9]. His classification yields, among other results, upper bounds

SoCG 2017

46:4 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

for the number of faces of a polytope with special simplices. Remarkably, special simplices
with two vertices, called spindles, are also used by Santos for his celebrated counterexample
for the Hirsch conjecture [29]. While these works employ similar techniques as our work, for
instance, lifting triangulations of the shadow to triangulations of the polytope, the (more
elementary) questions of this paper are not addressed in the related work. We also point out
that despite the close relation to special simplices, the notion of spines introduced in this
paper is slightly more general because a facet is allowed to contain all vertices of U .

Otherwise, constraining triangulations has mostly been considered for low-dimensional
problems under an algorithmic angle. For instance, a constrained Delaunay triangulation
is a triangulation which contains a fixed set of pre-determined simplices; apart from these
constraints, it tries to be “as Delaunay as possible”; see Shewchuk’s work [31] for details.
While our work is related in spirit, there appears to be no direct connection to this frame-
work, because our constraint does not only ensure the presence of certain simplices in the
triangulation, but rather constrains all d-simplices at once.

Computing volumes of high-dimensional convex polytopes is another notoriously hard
problem, from a computational perspective [24, Sec. 13][11] as well as for special cases. A
famous example is the Birkhoff polytope of all doubly-stochastic n× n-matrices, whose exact
volume is known exactly only up to n = 10 [27, 7]. Our contribution provides a novel
technique to compute volumes of polytopes through lifting into higher dimensions. We point
out that lifting increases the dimension, so that the lift of a polytope is not the image of
a linear transformation. Therefore, the well-known formula vol(AP) =

√
det(ATA) vol(P)

with A ∈ Re×d and e ≥ d does not apply to our case.

1.4 Organization
We start by introducing the basic concepts from convex geometry in Section 2. We proceed
with our structural result on spinal triangulations, in Section 3. We calculate the vertices
of the Everest polytope in Section 4 and define a map from a simplotope to the Everest
polytope in Section 5, leading to the volume formula for the Everest polytope. We conclude
with some additional remarks in Section 6.

2 Geometric concepts

Let M be an arbitrary subset of Rd with some integer d ≥ 1. The dimension of M is
the dimension of the smallest affine subspace of Rd containing M . We say that M is full-
dimensional if its dimension is equal to d. Throughout the entire paper, V will always
stand for a finite point set in Rd that is full-dimensional and in convex position, that is
x /∈ conv(V \ {x}) for every x ∈ V , where conv(·) denotes the convex hull in Rd.

2.1 Polytopes and simplicial complexes
We use the following standard definitions (compare, for instance, Ziegler [33]): A polytope P
is the convex hull of a finite point set in Rd in which case we say that the point set spans
P. A hyperplane H ⊆ Rd is called supporting (for P) if P is contained in one of the closed
half-spaces induced by H. A face of P is either P itself, or the intersection of P with a
supporting hyperplane. If a face is neither the full polytope nor empty, we call it proper. A
face of dimension ` is also called `-face of P, with the convention that the empty set is a
(−1)-face. We call the union of all proper faces of P the boundary of P , and the points of P
not on the boundary the interior of P. 0-faces are called the vertices of P, and we let V (P)

M. Kerber, R. Tichy, and M. Weitzer 46:5

denote the set of vertices. With ` being the dimension of P , we call (`− 1)-faces facets, and
(`− 2)-faces ridges of P. Any face F of P is itself a polytope whose vertex set is V (P) ∩ F .

It is well-known that every point p ∈ P (and only those) can be written as a convex
combination of vertices of P , that is p =

∑
v∈V (P) λvv with real values λv ≥ 0 for all v and∑

v∈V (P) λv = 1. By Carathéodory’s theorem, there exists a convex combination with at
most d+ 1 non-zero entries, that is, p =

∑d+1
i=1 λivi with vi ∈ V (P), λi ≥ 0 and

∑
λi = 1.

An `-simplex σ with ` ∈ {−1, . . . , d} is a polytope of dimension ` that has exactly `+ 1
vertices. Every point in a simplex is determined by a unique convex combination of the
vertices. A simplicial complex C in Rd is a set of simplices in Rd such that for a simplex σ in
C, all faces of σ are in C as well, and if σ and τ are in C, the intersection σ ∩ τ is a common
face of both (note that the empty set is a face of any polytope). We let V (C) denote the set
of all vertices in C. The underlying space

⋃
C of C is the union of its simplices. We call a

simplex in C maximal if it is not a proper face of another simplex in C. A simplicial complex
equals the set of its maximal simplices together with all their faces and is therefore uniquely
determined by its maximal simplices. Also, the underlying space of C equals the union of its
maximal simplices.

In what follows, we let P := conv(V) be the polytope spanned by V as fixed above. In
particular, dim(P) = d because V is full-dimensional and V (P) = V because V is in convex
position.

2.2 Spines
We call U ⊆ V with |U | = n a spine of V if each facet of P contains at least n− 1 points of
U . Trivially, a one-point subset of V is a spine. If P is a simplex, any non-empty subset of
vertices is a spine. For a hypercube, every pair of opposite vertices forms a spine, but no
other spines with two or more elements exist.

We derive a geometric characterization of spines next. The U -span (in V) is the set of
all d-simplices σ satisfying U ⊆ V (σ) ⊆ V . Equivalently, it is the set of all d-simplices with
vertices in V that have conv(U) as a common face. Clearly, each simplex of the U -span is
contained in P, and the same is true for the union of all simplices in the U -span.

I Lemma 1. Let U ⊆ V with |U | = n. Then, U is a spine of V if and only if the union of
all U -span simplices is equal to P, that is, if every point in P belongs to at least one simplex
in the U -span.

Proof. We prove both directions of the equivalence separately. For “⇒”, we proceed by
induction on n. The statement is true for n = 0 by Carathéodory’s theorem. Let U be a set
with at least one element, u ∈ U arbitrary, and p ∈ P \ {u}. The ray starting in u through
p leaves the polytope in a point p̄, and this point lies on (at least) one facet F of P that
does not contain u. By assumption, F contains all points in Ū := U \ {u}. We claim that
Ū is a spine of V̄ := V ∩ F . To see that, note that F is spanned by V̄ and the facets of F
(considered as a polytope in Rd−1) are the ridges of P contained in F . Every such ridge R is
the intersection of F and another facet F ′ of P. By assumption, F ′ also contains at least
n− 1 points of U and it follows at once that R contains n− 2 points of Ū . So, Ū is a spine
of V̄ , and by induction hypothesis, there exists a (d− 1)-simplex σ̄ in the Ū -span in V̄ that
contains p̄. The vertices of σ̄ together with u span a simplex σ that contains p and σ is in
the U -span by construction.

The direction “⇐” is clear if n ∈ {0, 1}, so we may assume that n ≥ 2 and proceed by
contraposition. If U is not a spine, we have a facet F of P such that less than n− 1 points

SoCG 2017

46:6 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

of U lie on F . Then, every simplex σ in the U -span has at least 2 vertices not on F , and
therefore at most d− 1 vertices on F . This implies that σ ∩F is at most (d− 2)-dimensional.
Therefore, the (finite) union of all U -span simplices cannot cover the (d − 1)-dimensional
facet F , which means that the U -span is not equal to P. J

From now on, we use the (equivalent) geometric characterization from the preceding
lemma and the combinatorial definition of a spine interchangeably. A useful property is that
spines extend to faces in the following sense.

I Lemma 2. Let U be a spine of V , and let F be an `-face of P. Then Ū := U ∩ F is a
spine of V̄ := V ∩ F , both considered as point sets in R`. In particular, F contains at least
n− (d− `) points of U .

Proof. For every simplex σ in the U -span, let σ̄ := σ ∩ F . Clearly, σ̄ is itself a simplex,
spanned by the vertices V (σ̄) = V (σ) ∩ F , and is of dimension at most `. Because U is a
spine of V , the union of all σ̄ covers F = conv(V̄). Moreover, V (σ̄) contains Ū . If σ̄ is not
of dimension `, we can find an `-simplex in the Ū -span of V̄ that has σ̄ as a face just by
adding suitable vertices from V̄ . This implies that the union of the Ū -span covers F . The
“in particular” part follows by downward induction on `. J

2.3 Star triangulations
Let V ′ ⊆ Rd be a finite point set that is full-dimensional, but not necessarily in convex position.
We call a simplicial complex C a triangulation of V ′ if V (C) = V ′ and

⋃
C = conv(V ′). In

this case, we also call C a triangulation of the polytope conv(V ′). In a triangulation of V ′,
every maximal simplex must be of dimension d.

We will consider several types of triangulations in this paper. For the first type, we
assume that V ′ = V ∪{0}, where 0 = (0, . . . , 0) /∈ V , V is in convex position (as fixed before),
and either 0 lies in conv(V) or V ′ is in convex position as well. We define a star triangulation
of V ′ as a triangulation where all d-simplices contain 0 as a vertex. The elementary proof of
the following result can be looked up at [23].

I Lemma 3. A star triangulation of V ′ exists.

2.4 Pulling triangulations
As usual, let V be a point set in convex position spanning a polytope P in Rd, and let
p1 ∈ V . We can describe a star triangulation with respect to p1 also as follows: Triangulate
each facet of P that does not contain p1 such that the triangulations agree on their common
boundaries. Writing Σ := {σ1, . . . , σm} for the maximal simplices triangulating these facets,
it is not difficult to see that a (star) triangulation of P is given by the maximal simplices

p1 ∗ Σ := {p1 ∗ σ1, . . . ,p1 ∗ σm},

where v ∗ σ is the simplex spanned by v and the vertices of σ. Recursively star-triangulating
the facets not containing p1 in the same way, this construction yields the pulling triangulation.

To define the triangulation formally, we fix a total order p1 ≺ p2 ≺ . . . ≺ pn on V . For a
single point, we set Pull({p}) := {p}. For any face F of P with positive dimension, let pk
denote the smallest vertex of F with respect to ≺. Then

Pull(F) := pk ∗
⋃

R facet of F
pk /∈R

Pull(R).

M. Kerber, R. Tichy, and M. Weitzer 46:7

The following result follows directly by induction on the dimension of the faces. See [4,
Sec.5.6], [8, Lemma 4.3.6]:

I Theorem 4. Pull(P) are the maximal simplices of a triangulation of P.

3 Spinal triangulations

Fix a simplicial complex C with vertex set V (C) in Rd and a set U ⊆ V (C) of size at most
d+ 1. Let σ denote the simplex spanned by U . We call C U -spinal if every maximal simplex
of C contains σ as a face. If C is a triangulation of V , we talk about a U -spinal triangulation
accordingly. U -spinal triangulations are closely related to spines: if a U -spinal triangulation
of V exists, then U is a spine of V , because all maximal simplices of the triangulation lie in the
U -span. For the previously discussed spine of a hypercube consisting of two opposite points,
also a spinal triangulation exists, consisting of d! d-simplices that all share the diagonal
connecting these points. This construction is called staircase triangulation [8] or Freudenthal
triangulation [10].

We show next that a spine always induces a spinal triangulation. Let P be a polytope
spanned by a finite full-dimensional point set V ⊆ Rd in convex position and let U =
{u1, . . . ,un} be a spine of V . We fix a total order ≺ on V where u1 ≺ u2 ≺ . . . ≺ un are
the n smallest elements, preceeding all points in V \ U .

I Lemma 5. The pulling triangulation with respect to ≺ is a U -spinal triangulation.

Proof. We prove the statement by induction on n. Let T denote the pulling triangulation
with respect to ≺. For n = 1, every maximal simplex of T contains u1 by construction. For
n > 1, every maximal simplex is a join of u1 with a (d− 1)-simplex σ that is contained in a
facet F of P that does not contain u1. σ, however, is itself a maximal simplex of the pulling
triangulation of F . By the spine property, U ′ := {u2, . . . ,un} are vertices of F and form a
spine by Lemma 2. By induction, the pulling triangulation of F is U ′-spinal. Therefore, σ
contains all vertices of U ′, and the join with u1 contains all vertices of U . J

3.1 Folds and lifts
As before, let P be a polytope spanned by a finite full-dimensional point set V ⊆ Rd in
convex position, U ⊆ V a spine of V with n elements, and set e := d − n + 1. Assume
without loss of generality that the origin is among the points in U . Furthermore let AU
be the subspace of Rd spanned by U . It is easy to see that the spine points are affinely
independent, so that the dimension of AU is n− 1. Let A⊥U be the orthogonal complement,
which is of dimension e. Let ΦU : Rd → A⊥U the (orthogonal) projection of Rd to A⊥U . For
notational convenience, we use the short forms x̂ := ΦU (x) and X̂ := ΦU (X) for the images
of points and sets in Rd.

Fix a U -spinal triangulation T and let σ be a maximal simplex of T . Recall that the
vertices of σ are the points of U , which all map to 0 under ΦU , and e additional vertices
v1, . . . ,ve. Hence, σ̂ is the convex hull of {0, v̂1, . . . , v̂e}. Moreover, since σ has positive
(d-dimensional) volume, its projection σ̂ has positive (e-dimensional) volume as well. It
follows that σ̂ is a e-simplex spanned by {0, v̂1, . . . , v̂e}. Consequently, with σ1, . . . , σt being
the maximal simplices of T , we call its fold the set of simplices consisting of σ̂1, . . . , σ̂m and
all their faces. The following statement is a reformulation of [1, Prop.2.3] and [28, Prop.3.12]

I Lemma 6. The fold of a U -spinal triangulation T is a star triangulation (with respect to
the origin).

SoCG 2017

46:8 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

Proof. All maximal simplices of the fold contain the origin by construction. Moreover, their
union covers P̂ because T covers P. Finally, we argue that the fold of two distinct maximal
simplices σ1, σ2 cannot overlap: Let H be a hyperplane that separates σ1 and σ2. Since AU
is contained in the affine span of σ1 ∩ σ2, H contains AU . Then, ΦU (H) is a hyperplane in
Re which separates the two e-simplices σ̂1 and σ̂2. J

We will now define the converse operation to get from a star triangulation in Re to a
U -spinal triangulation in Rd. We first show that pre-images of vertices are well-defined.

I Lemma 7. If v ∈ V \ U then v̂ 6= 0. Furthermore, if v 6= w ∈ V \ U then v̂ 6= ŵ.

Proof. Since U is a spine of V , there is a d-simplex σ in the U -span in V which has v among
its vertices. If v is in the kernel of ΦU , then v and the points in U (which span the kernel of
ΦU) are linearly dependent and σ cannot be full-dimensional, which is a contradiction.

For the second part, we assume to the contrary that v 6= w but v̂ = ŵ. If there is
also a d-simplex σ in the U -span which has both v and w among its vertices, σ̂ cannot be
full-dimensional, which is a contradiction. Otherwise, if no such d-simplex σ exists, the
d-simplices incident to v triangulate a neighborhood of v within P , and the same is true for
w, with the two sets of simplices being disjoint. It follows that their projections under ΦU
have to overlap, contradicting Lemma 6. J

For an e-simplex σ̂ ⊆ Re with vertices in V̂ and containing 0 as vertex, the lifted d-simplex
σ ⊆ Rd is spanned by the pre-image of V (σ̂) under ΦU

∣∣
V

(the restriction of ΦU to V). Note
the slight abuse of notation as we chose “σ̂” as the name of a simplex before even defining
the simplex σ, but the naming is justified because σ̂ indeed is equal to ΦU (σ) in this case.
Given a star triangulation of V̂ , its lift is given by the set of lifts of its maximal simplices,
together with all their faces.

Our goal is to show that the lift of a star triangulation is a U -spinal triangulation of P.
As a first step, we observe that such a lift is a U -spinal simplicial complex.

I Lemma 8. The lift of a star triangulation of V̂ is a U-spinal simplicial complex in Rd
whose underlying space is a subset of P.

Proof. Fix a star triangulation T̂ and let T denote its lift. For any simplex in T , all faces
are included by construction. We need to show that for two simplices σ and τ in T , σ ∩ τ is
a face of both. We can assume without loss of generality that σ and τ are maximal, hence
d-simplices. By construction, σ and τ are the lifts of e-simplices σ̂ and τ̂ in T̂ . Clearly, σ̂ and
τ̂ intersect because they share the vertex 0. Moreover, since σ̂ and τ̂ belong to a triangulation,
their intersection is a common face, spanned by a set of vertices {0, v̂1 . . . , v̂k}. Hence, there
exists a hyperplane Ĥ in Re separating σ̂ and τ̂ such that σ̂∩Ĥ = conv{0, v̂1 . . . , v̂k} = τ̂ ∩Ĥ.
Let H denote the preimage of Ĥ under ΦU . Then, H is a separating hyperplane for σ and τ ,
and σ ∩H = conv{u1, . . . ,un,v1, . . . ,vk} = τ ∩H as one can readily verify. This shows that
the lift is a simplicial complex. Its underlying space lies in P because every lifted simplex
does. It is U -spinal because the lift of every simplex contains U by definition. J

3.2 Volumes

The converse of Lemma 6 follows from the fact that all lifts of star triangulations have the
same volume, as we will show next.

M. Kerber, R. Tichy, and M. Weitzer 46:9

I Lemma 9. Let σ be a simplex with vertices in V that contains U = {u1, . . . ,un}. Then(
d

n− 1

)
vol(σ) = vol(U)vol(σ̂),

where vol(U) denotes the volume of the simplex spanned by U .

Proof. For a k-simplex τ = {v0, . . . , vk}, let p(τ) denote the parallelotope spanned by
v1−v0, . . . , vk−v0. It is well-known that vol(p(τ)) = k!vol(τ). Rewriting the claimed volume
by expanding the binomial coefficient and noting that d− (n− 1) = e yields

d!vol(σ)︸ ︷︷ ︸
vol(p(σ))

= (n− 1)!vol(U)︸ ︷︷ ︸
vol(p(U))

e!vol(σ̂)︸ ︷︷ ︸
vol(p(σ̂))

.

To prove the relation between the volumes of paralleotopes, we assume without loss of
generality that u1 = 0. Let AU denote the linear subspace spanned by u2, . . . , un, and let Aq

U

denote the parallel affine subspace that contains q ∈ A⊥U . Then, vol(p(σ) ∩ AU) = vol(p(U))
by definition. By Cavalieri’s principle, every parallel cross-section of p(σ) has the same
volume. More precisely,

vol(p(σ) ∩ Aq
U) =

{
vol(p(U)) if q ∈ p(σ̂)
0 otherwise

.

Using Fubini’s theorem, the volume of p(σ) can be expressed as an integral over all cross-
sections, which yields

vol(p(σ)) =
∫

q∈A⊥
U

vol(p(σ) ∩ Aq
U)dq =

∫
q∈p(σ̂)

vol(p(U))dq = vol(p(U))vol(p(σ̂)). J

I Lemma 10. Let U be a spine of V , and T denote the lift of a star triangulation of V̂
Then, with the notation of Lemma 9,(

d

n− 1

)
vol
(⋃
T
)

= vol(U)vol(P̂),

where
⋃
T is the underlying space of T . In particular, the underlying spaces of the lifts of

all star triangulations of V̂ have the same volume.

Proof. The statement follows directly from Lemma 9 because the relation holds for any
simplex in the star triangulation and its lift. J

With that, we can prove our first main theorem.

I Main Theorem 1 (Lifting theorem). Let P be a polytope spanned by a full-dimensional
finite point set V ⊆ Rd in convex position and U := {u1, . . . ,un} ⊆ V . Then,

U is a spine of V if and only if there exists a U -spinal triangulation of V .

In this case, for n ≥ 1, the U-spinal triangulations of V are exactly the lifts of the star
triangulations of V̂ , the orthogonal projection of V to the orthogonal complement of the affine
space spanned by U . Furthermore, if n ≥ 2,(

d

n− 1

)
vol(P) = vol(U)vol(P̂).

SoCG 2017

46:10 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

Proof. For the equivalence, the “if”-part follows directly from the geometric characterization
of spines (Lemma 1), and the “only if” part follows from Lemma 5.

For the second part, given any U -spinal triangulation T ∗, its fold T̂ ∗ is a star triangulation
by Lemma 6, and by lifting that star triangulation, we obtain T ∗ back. Vice versa, starting
with any star triangulation T̂ , we know that its lift is a simplicial complex contained in P
by Lemma 8. By Lemma 10, the lifts of T̂ and T̂ ∗ have the same volume, but the lift of
the latter is P. It follows that also the lift of the former is a triangulation of P, proving the
second claim.

The claim about the volumes follows at once by applying Lemma 10 on T ∗ and T̂ ∗. J

We remark that not every U -spinal triangulation is a pulling triangulation. This follows
from the fact that each pulling triangulation is regular (see [8, p.181]), but examples of
non-regular spinal triangulations are known (one such example is given in [8, p.306]).

4 The Everest polytope

For n, s ∈ N, define En,s := {x ∈ Rns | gn,s(x) ≤ 1} where gn,s : Rns → R with

(x1,1, . . . , xn,s) 7→
s∑
j=1

max {0, x1,j , . . . , xn,j}+ max

0,−
s∑
j=1

x1,j , . . . ,−
s∑
j=1

xn,j

 .

It is not difficult to verify that En,s is bounded and the intersection of finitely many halfspaces
of Rns. We call it the (n, s)-Everest polytope. It is well-known [3] that the number-theoretic
constant c(n, s) discussed in the introduction is equal to the volume of En,s.

4.1 Vertex sets
In order to describe the vertices of En,s we introduce the following point sets which we also
utilize in later parts of the paper. Note that we identify Rns and Rn×s which explains the
meaning of “row” and “column” in the definition. Let es(i) denote the i-th s-dimensional
unit (row) vector with the convention that es(0) = 0. We define the following sets in Rns:

Vn,s :=

−es(j1)

...
−es(jn)

∣∣∣∣∣∣∣ j1, . . . , jn ∈ {0, . . . , s}

 ,

Un,s :=

−es(j)

...
−es(j)

∣∣∣∣∣∣∣ j ∈ {0, . . . , s}

 ,

Pn,s := Vn,s − (Un,s \ {0}) = {v− u | v ∈ Vn,s ∧ u ∈ Un,s \ {0}} .

It can be readily verified that Vn,s is the set of points in {−1, 0}ns such that there is at most
one −1 per row, Un,s is the set of points in Vn,s such that all −1’s (if there are any) are
contained in a single column, and Pn,s is the set of points in {−1, 0, 1}ns such that

all ’1’s (if there are any) are in a unique ”1-column“,
all entries of the 1-column are either 0 or 1,
all rows with a 1 contain at most one −1,
all rows without a 1 contain only ’0’s.

M. Kerber, R. Tichy, and M. Weitzer 46:11

I Lemma 11. Pn,s ∩ Vn,s = {0}, Un,s ⊆ Vn,s, |Vn,s| = (s + 1)n, |Un,s| = s + 1, and
|Pn,s| = s(s+ 1)n − s+ 1.

Proof. Follows directly from the definitions and from basic combinatorics. J

I Theorem 12. The set of vertices of En,s is given by (Pn,s∪Vn,s)\{0} = (Vn,s−Un,s)\{0}.

We split the proof into several parts which will be treated in the following lemmas. For the
rest of this section, let i and j (with a possible subscript) denote elements of {1, . . . , n} and
{1, . . . , s}, respectively, let v = (v1,1, . . . , vn,s) be a vertex of En,s, and set

mj := max {0, v1,j , . . . , vn,j} for all j,

si := −
s∑
j=1

vi,j for all i,

m := max {0, s1, . . . , sn} .

Then

gn,s

v1,1 · · · v1,s
...

...
vn,1 · · · vn,s

 = max

0
v1,1
...

vn,1

+ · · ·+ max

0
v1,s
...

vn,s

+ max

0

−v1,1 − · · · − v1,s
...

−vn,1 − · · · − vn,s

= m1 + · · ·+ms +m = 1.

Furthermore it can easily be verified that vi,j ∈ [−1, 1] for all i and j, mj ∈ [0, 1] for all j,
si ∈ [−1, 1] for all i, and m ∈ [0, 1].

In the proofs below, we will repeatedly apply the following argument: if there is an ε > 0
and an x ∈ Rns such that v± δx ∈ En,s for all δ ∈ [0, ε], v cannot be a vertex of En,s (since
it is in the interior of an at least 1-dimensional face).

I Lemma 13. If mj = 0 for all j then v ∈ Vn,s.

Proof. Since allmj are equal to zero, all vi,j have to be non-positive, so all si are non-negative.
Also we get that m is equal to 1 which implies that at least one of the si is equal to 1. Suppose
that vi0,j0 ∈ (−1, 0) for some i0, j0. If si0 < 1, then for ε := min {−vi0,j0 , 1− si0} > 0 and
δ ∈ [0, ε] we get that gn,s(v1,1, . . . , vi0,j0 ± δ, . . . , vn,s) = 1, so (v1,1, . . . , vi0,j0 ± δ, . . . , vn,s) is
on the boundary of En,s and v cannot be a vertex of En,s.

If on the other hand si0 is equal to 1, then there is a j1 6= j0 such that vi0,j1 ∈ (−1, 0).
But then we get gn,s(v1,1, . . . , vi0,j0 ± δ, . . . , vi0,j1 ∓ δ, . . . , vn,s) = 1 where we set ε :=
min {−vi0,j0 ,−vi0,j1 , vi0,j0 + 1, vi0,j1 + 1} > 0 and δ ∈ [0, ε], so again v cannot be a vertex
of En,s.

Thus we get that all vi,j are either −1 or 0 and it is clear that in any given row i0 only
one of the vi0,j can be −1 (as they sum up to −si0 ≥ −1). Therefore v ∈ Vn,s (see [23] for
an extended proof). J

I Lemma 14. If mj0 = 1 for some j0 then v ∈ Pn,s.

Proof. Since mj0 is equal to 1, all other mj and m have to be equal to zero. Thus all vi,j0

are non-negative and at least one of them is equal to 1. Also, all other vi,j (i.e. if j 6= j0) are
non-positive and so are all si. Just as in the proof of Lemma 13 we can show that all vi,j are
either −1, 0, or 1; we omit the details. Furthermore it is clear that if vi0,j0 is equal to 1 for

SoCG 2017

46:12 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

some i0, then there cannot be more than one −1 in the i0-th row (as si0 ≤ 0). By the same
reasoning, if vi0,j0 is equal to 0, there cannot be any −1 in the i0-th row at all. Considering
the definition of Pn,s we thus see that v ∈ Pn,s. J

I Lemma 15. If mj 6= 1 for all j then mj = 0 for all j.

Proof. The proof works similar to that of Lemma 13; see [23]. J

Proof of Theorem 12. Lemma 15 implies that if v is a vertex of En,s, then we are in the
situation of either Lemma 13 or Lemma 14, hence v ∈ Pn,s ∪ Vn,s. Furthermore it is clear
that 0 is not a vertex of En,s. Also, it follows from the definition of Pn,s that

En,s := (Pn,s ∪ Vn,s) \ {0} = ((Vn,s − (Un,s \ {0})) ∪ Vn,s) \ {0} = (Vn,s − Un,s) \ {0} .

We are left to show that En,s ⊆ V (En,s). First we observe that gn,s(v) = 1 for all
v ∈ En,s. We consider the case that n, s ≥ 2 and assume that there is a v ∈ En,s that is not
a vertex of En,s. Since v is on the boundary of En,s but not a vertex of En,s, it is contained
in the interior of an at least 1-dimensional face F of En,s. Let w be any vertex of F . Then
w ∈ En,s and v 6= w.

Now let a ∈ E2,2, a 6= b ∈ E2,2∪{0}, and consider the convex combination αa +(1−α)b,
α ∈ R. By plugging in all possible values of a and b one can verify that if α > 1 then
g2,2(αa + (1− α)b) > 1.

Let v′,w′ ∈ R2×s be submatrices consisting of 2 rows of v and w respectively, such that
v′ 6= 0 and v′ 6= w′. By definition of En,s, v′ and w′ thus respectively contain submatrices
of the form a and b from above while the remaining entries are padded with zeros. It follows
from the definition of gn,s that gn,s(αv + (1− α)w) > 1 if α > 1, which contradicts the fact
that v is in the interior of F . Hence, En,s ⊆ V (En,s) if n, s ≥ 2. If n = 1 and s ≥ 2 one can
proceed analogously by considering a ∈ E1,2, a 6= b ∈ E1,2 ∪ {0}; same goes for s = 1 and
a ∈ E1,1, a 6= b ∈ E1,1 ∪ {0}. J

I Corollary 16. The number of vertices of En,s is given by (s+ 1)n+1 − s− 1.

Proof. Follows directly from Theorem 12 and Lemma 11. J

5 Projections of simplotopes

We will establish a relation between the Everest polytope En,s and a special polytope known
as simplotope. This relation will allow the comparison of the volumes of the two polytopes
even though they are of different dimension.

5.1 Simplotopes
For s ∈ N, the s-simplex ∆s is spanned by the points (0,−es(1), . . . ,−es(s)) in Rs, with es(i)
the i-th standard vector in Rs, as before. A simplotope is a Cartesian product of the form
∆s1 × . . .×∆sn

with positive integers s1, . . . , sn. Note that in the literature, simplotopes are
usually defined in a combinatorially equivalent way using the standard s-simplex spanned by
(s+ 1)-unit vectors in Rs+1. We restrict to the case that all si are equal, and we call

Sn,s = ∆s × . . .×∆s︸ ︷︷ ︸
n times

the (n, s)-simplotope for n, s ∈ N.

M. Kerber, R. Tichy, and M. Weitzer 46:13

For instance, d-hypercubes are d-fold products of line segments, and therefore (n, s)-
simplotopes with n = d and s = 1. It is instructive to visualize a point in Sn,s as an
n × s-matrix with real entries in [0, 1], where the sums of the entries in each row do not
exceed 1. One can readily verify that the set of vertices of the (n, s)-simplotope is equal to
Vn,s, as given in the beginning of Section 4. Moreover, it is straight-forward to verify that
each facet of Sn,s is given by

∆s × . . .×∆s︸ ︷︷ ︸
i times

×F ×∆s × . . .×∆s︸ ︷︷ ︸
n− i− 1 times

where F is a facet of ∆s and 0 ≤ i ≤ n− 1. It follows at once:

I Theorem 17. Un,s is a spine of Vn,s = V (Sn,s).

5.2 A linear transformation
We call the matrix

Πn,s :=

 −Is

Ins
...
−Is

 ∈ R(ns)×((n+1)s),

where Id is the identity matrix of dimension d, the (n, s)-SE-transformation (“SE” stands
for “Simplotope ↔ Everest polytope”). We show that the name is justified, as it maps the
(n+ 1, s)-simplotope onto the (n, s)-Everest polytope. See [23] for a proof.

I Theorem 18. Πn,s(V (Sn+1,s) \ Un+1,s) = V (En,s), Un+1,s \ {0} is a basis of ker(Πn,s)
(in particular, Πn,sUn+1,s = {0}), and 0 is contained in the interior of En,s. In particular,
Πn,sSn+1,s = En,s.

We are now ready to prove a formula for the Everest polytope.

I Main Theorem 2. The volume of the (n, s)-Everest polytope is given by

vol(En,s) = ((n+ 1)s)!
(ns)!(s!)n+1 .

Proof. We want to apply the Lifting Theorem (Main Theorem 1) with P ← Sn+1,s, P̂ ← En,s,
d ← (n + 1)s and e ← ns. However, a minor modification is needed, because the SE-

transformation Πn,s is not a projection matrix. So, let Π̃n,s :=
(

Πn,s

0 Is

)
∈ R((n+1)s)×((n+1)s),

Π := (Ins 0) ∈ R(ns)×((n+1)s), and let S̃n+1,s := Π̃n,sSn+1,s denote the transformed simplo-
tope. Clearly, vol(S̃n+1,s) = vol(Sn+1,s), ΠS̃n+1,s = En,s, and the transformed spine points
Ũn+1,s := Π̃n,sUn+1,s span the kernel of Π. Using Main Theorem 1 on S̃n+1,s and En,s, we
obtain(

(n+ 1)s
ns

)
vol(S̃n+1,s) = vol(Ũn+1,s)vol(En,s).

Furthermore, vol(Ũn+1,s) = 1
s! since Ũn+1,s = {(0, . . . ,0,−es(j)) | j ∈ {0, . . . , s}}. Moreover,

Sn+1,s is the (n+ 1)-fold product of simplices ∆s spanned by 0 and s unit vectors. Hence,
the volume of ∆s is 1/s!, and by Fubini’s theorem,

vol(S̃n+1,s) = vol(Sn+1,s) = (vol(∆s))n+1 = 1
(s!)n+1 .

Plugging in the formulas for vol(Ũn+1,s) and vol(S̃n+1,s) into the formula given by the lifting
theorem the claim follows by rearranging terms. J

SoCG 2017

46:14 Constrained Triangulations, Volumes of Polytopes, and Unit Equations

6 Conclusions and further remarks

Main Theorem 1 combines several new results. It answers the question of the existence of a
triangulation of a polytope under the constraint that a given subset of the vertices of the
polytope must be contained in every maximal simplex of the triangulation. Furthermore,
it characterizes all such triangulations and provides a method to compute one (or all)
efficiently from the lift of a star triangulation. Finally, it generalizes the well-known relation
vol(AM) = |det(A)| vol(M) where M is a measurable subset of Rd and A ∈ Rd×d to certain
cases where A is not a square matrix. In particular, it allows us to express the volume of an
object in Rd in terms of the volume its “shadow” in Re, and vice versa.

The shadow that a cube in R3 casts if the light shines parallel to any of its space diagonals
is a regular hexagon. Assuming a cube with side length `, the theorem implies that the
volume of the cube and the volume (area) of its shadow (the hexagon) differ by a factor of√

3/` which provides an alternative method to compute the volume of a hexagon from the
volume of a cube. By lifting the “complicated” hexagon to a higher dimensional space it
gains more symmetries and becomes the comparatively simple cube. In the same fashion,
the complicated Everest polytope is the shadow of the simpler simplotope which allowed the
computation of its volume in Main Theorem 2.

Starting with a polytope and a spine, it is easy to determine the volume of the “shadow”
with respect to the spine using our theorem. On the other hand, there is no easy way to
tell if a given shape is the shadow of some higher dimensional object and in the case of the
Everest polytope, this is the interesting direction. We pose the question of whether other
polytopes (e.g., the Birkhoff polytope) can be expressed as shadows of other polytopes. For
that purpose, it might be worthwhile to find general methods or at least good heuristics to
determine if a complicated shape can be recognized as the shadow of some simpler object.

Acknowledgements. We thank Raman Sanyal, Volkmar Welker, and the anonymous referees
for helpful discussions and recommendations that have led to significant simplifications of
our exposition.

References
1 C. Athanasiadis. Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture

of Stanley. J. Reine Angew. Math., 583:163–174, 2005.
2 A. Baker and G. Wüstholz. Logarithmic forms and group varieties. J. Reine Angew. Math.,

442:19–62, 1993.
3 F. Barroero, C. Frei, and R. Tichy. Additive unit representations in rings over global fields –

a survey. Publ. Math. Debrecen, 79(3–4):291–307, 2011.
4 M. Beck and R. Sanyal. Combinatorial Reciprocity Theorems. American Mathematical

Society, 2016. In preparation, available at http://math.sfsu.edu/beck/crt.html.
5 W. Bruns and T. Römer. h-vectors of Gorenstein polytopes. J. Combin. Theory Ser. A,

114:65–76, 2007.
6 H. Croft, K. Falconer, and R. Guy. Unsolved Problems in Geometry. Springer, 1991.
7 J. de Loera, F. Liu, and R. Yoshida. A generating function for all semi-magic squares and

the volume of the Birkhoff polytope. J. Algebraic Combin., pages 113–139, 2009.
8 J. de Loera, J. Rambau, and F. Santos. Triangulations. Springer, 2010.
9 T. de Wolff. Polytopes with special simplices. arXiv:1009.6158.

10 H. Edelsbrunner and M. Kerber. Dual complexes of cubical subdivisions of Rn. Discrete
Comput. Geom., 47(2):393–414, 2012.

http://math.sfsu.edu/beck/crt.html

M. Kerber, R. Tichy, and M. Weitzer 46:15

11 I. Emiris and V. Fisikopoulos. Efficient random-walk methods for approximating polytope
volume. In Proc. of the 13th Annual Symp. on Comp. Geom., SOCG’14, pages 318:318–
318:327, 2014.

12 G.R. Everest. A “Hardy-Littlewood” approach to the S-unit equation. Compos. Math.,
70(2):101–118, 1989.

13 G.R. Everest. Counting the values taken by sums of S-units. J. Number Theory, 35(3):269–
286, 1990.

14 J. Evertse and H.P. Schlickewei. A quantitative version of the absolute subspace theorem.
J. Reine Angew. Math., 548:21–127, 2002.

15 C. Frei, R. Tichy, and V. Ziegler. On sums of S-integers of bounded norm. Monatsh. Math.,
175(2):241–247, 2014.

16 H. Freudenthal. Simplizialzerlegung beschränkter Flachheit. Ann. of Math., pages 580–582,
1942.

17 R. Freund. Combinatorial theorems on the simplotope that generalize results on the simplex
and cube. Math. Oper. Res., 11(1):169–179, 1986.

18 I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants and Multidimen-
sional Determinants. Birkhäuser, 2008.

19 K. Győry and K. Yu. Bounds for the solutions of S-unit equations and decomposable form
equations. Acta Arith., 123(1):9–41, 2006.

20 H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, 1957.
21 T. Hibi and H. Ohsugi. Special simplices and Gorenstein toric rings. J. Combin. Theory

Ser. A, 113:718–725, 2006.
22 R. Hughes and M. Anderson. Simplexity of the cube. Discrete Math., 158:99–150, 1996.
23 M. Kerber, R. Tichy, and M. Weitzer. Constrained triangulations, volumes of polytopes,

and unit equations. arXiv, 1609.05017, 2016.
24 J. Matoušek. Lectures in Discrete Geometry. Springer, 2002.
25 J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, 1999.
26 K. Nishioka. Algebraic independence by Mahler’s method and S-unit equations. Compositio

Math., 92(1):87–110, 1994.
27 I. Pak. Four questions on Birkhoff polytope. Ann. Comb., 4:83–90, 2000.
28 V. Reiner and V. Welker. On the Charney-Davis and Neggers-Stanley conjectures. J.

Combin. Theory Ser. A, 109(2):247–280, 2005.
29 F. Santos. A counterexample to the Hirsch conjecture. Ann. of Math., 176:383–412, 2012.
30 H.P. Schlickewei. S-unit equations over number fields. Invent. Math., 102(1):95–108, 1990.
31 J. Shewchuk. General-dimensional constrained Delaunay and constrained regular triangu-

lations, I: Combinatorial properties. Discrete Comput. Geom., 39:580–637, 2008.
32 G. van der Laan and A. Talman. On the computation of fixed points in the product space

of unit simplices and an application to noncooperative n person games. Math. Oper. Res.,
7(1):1–13, 1982.

33 G. Ziegler. Lectures on Polytopes. Springer, 2007.

SoCG 2017

Proper Coloring of Geometric Hypergraphs∗

Balázs Keszegh1 and Dömötör Pálvölgyi2

1 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest, Hungary
keszegh@renyi.hu

2 Department of Pure Mathematics and Mathematical Statistics, University of
Cambridge, UK
dom@cs.elte.hu

Abstract
We study whether for a given planar family F there is an m such that any finite set of points can
be 3-colored such that any member of F that contains at least m points contains two points with
different colors. We conjecture that if F is a family of pseudo-disks, then m = 3 is sufficient. We
prove that when F is the family of all homothetic copies of a given convex polygon, then such
an m exists. We also study the problem in higher dimensions.

1998 ACM Subject Classification G.2.2 [Graph Theory] Hypergraphs

Keywords and phrases discrete geometry, decomposition of multiple coverings, geometric hyper-
graph coloring

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.47

1 Introduction

In the present paper, we primarily focus on the following proper coloring problem. Given a
finite set of points in the plane, S, we want to color the points of S with a small number of
colors such that every member of some given geometric family F that intersects S in many
points will contain at least two different colors.

Pach conjectured in 1980 [28] that for every convex set D there is an m such that any
finite set of points admits a 2-coloring such that any translate of D that contains at least m
points contains both colors. This conjecture inspired a series of papers studying the problem
and its variants – for a recent survey, see [31]. Eventually, the conjecture was shown to hold
in the case when D is a convex polygon in a series of papers [29, 41, 37], but disproved in
general [30]. In fact, the conjecture fails for any D with a smooth boundary, e.g., for a disk.

It follows from basic properties of generalized Delaunay triangulations (to be defined
later) and the Four Color Theorem that for any convex D it is possible to 4-color any finite
set of points such that any homothetic copy1 of D that contains at least two points will
contain at least two colors. Therefore, the only case left open is when we have 3 colors. We
conjecture that for 3 colors the following holds.

I Conjecture 1. For every plane convex set D there is an m such that any finite set of
points admits a 3-coloring such that any homothetic copy of D that contains at least m points
contains two points with different colors.

∗ First author is supported by the Hungarian National Research, Development and Innovation Office –
NKFIH under the grant K 116769. Second author is supported by the Marie Skłodowska-Curie action
of the EU, under grant IF 660400.

1 A homothetic copy or homothet of a set is a scaled and translated copy of it (rotations are not allowed).

© Balázs Keszegh and Dömötör Pálvölgyi;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Proper Coloring of Geometric Hypergraphs

The special case of Conjecture 1 when D is a disk has been posed earlier by the first
author [17], and is also still open. Our main result is the proof of Conjecture 1 for convex
polygons.

I Theorem 2. For every convex n-gon D there is an m such that any finite set of points
admits a 3-coloring such that any homothetic copy of D that contains at least m points
contains two points with different colors.

We would like to remark that the constructions from [30] do not exclude the possibility
that for convex polygons the strengthening of Theorem 2 using only 2 colors instead of 3
might also hold; this statement is known to hold for triangles [19] and squares2 [1].

The constant m which we get from our proof depends not only on the number of sides,
but also on the shape of the polygon. However, we conjecture that this dependence can be
removed, and in fact the following stronger conjecture holds for any pseudo-disk arrangement.
We define a pseudo-disk arrangement as a family of planar bodies whose boundaries are
Jordan curves such that any member of the family intersects the boundary of any other
member in a connected curve.3

I Conjecture 3. For any pseudo-disk arrangement any finite set of points admits a 3-coloring
such that any pseudo-disk that contains at least 3 points contains two points with different
colors.

This conjecture also has a natural dual counterpart.

I Conjecture 4. The members of any pseudo-disk arrangement admit a 3-coloring such that
any point that is contained in at least 3 pseudo-disks is contained in two pseudo-disks with
different colors.

We believe that these are fundamental problems about geometric hypergraphs, and find
it quite surprising that they have not been studied much.

The rest of this paper is organized as follows. In the rest of this section, we give an
overview of related results. In Section 2 we give the definition and basic properties of
generalized Delaunay triangulations. In Section 4 we prove Theorem 2, using the proof
method of [1]. In Section 5 we study the higher dimensional variants of the problem and
present some constructions. In Section 6 we briefly discuss further related topics.

Previous results
Most earlier papers on colorings and geometric ranges focused not on proper colorings,
but on polychromatic colorings and its dual, cover-decomposition. In the polychromatic
k-coloring problem our goal is to color the points of some finite S with k colors such that
every member of some family F that contains many points of S contains all k colors. Gibson
and Varadarajan [13] have shown that for every convex polygon D there is a cD such that
every finite set of points can be k-colored such that any translate of D that contains at
least mk = cDk points contains all k colors. Whether such a polychromatic k-coloring exists
for homothetic copies of convex polygons for any mk is an open problem, which would be
a significant strengthening of our Theorem 2. This conjecture has only been proved in a

2 And since affine transformation have no effect on the question, also for parallelograms.
3 This is slightly non-standard, as usually it is assumed that any two boundaries intersect at most twice
(the structure of the boundary curves is also called a pseudo-circle arrangement). We use our definition
as in our case any family of homothets of a convex set forms a pseudo-disk arrangement, see, e.g., [27].

B. Keszegh and D. Pálvölgyi 47:3

series of papers for triangles [7, 8, 19, 20, 21, 23] and very recently [1] for squares using the
Four Color Theorem. The derived upper bound on mk is polynomial in k in both cases. It
is, however, conjectured in a much more general setting [35] that whenever mk exists, it is
linear in k, just like for the translates of convex polygons. This is also known for axis-parallel
bottomless rectangles:4 any finite set of points can be k-colored such that any axis-parallel
bottomless rectangle that contains at least mk = 3k − 2 points contains all k colors [3]. (The
value of mk is known to be optimal only for k = 2 [17].) Their proof reduces the problem
to coloring a one-dimensional dynamic point set with respect to intervals, which turns the
problem into a variant of online colorings. We will not introduce these notions here; for some
related results, see [8, 18, 23].

The dual notion of polychromatic colorings is cover-decomposition. In the cover-decomposi-
tion problem we are given some finite family F that covers some region mk-fold (i.e., each
point of the region is contained in at least mk members of F) and our goal is to partition F
into k families that each cover the region. By considering the respective underlying incidence
hypergraphs in the polychromatic coloring and in the cover-decomposition problems, one
can see that they are about colorings of dual hypergraphs.5 In fact, the two problems are
equivalent for translates of a given set, as the following observation shows.

I Observation 5 (Pach [28]). For any set D, if H is the inclusion hypergraph of some points
and some translates of D, then the dual hypergraph of H is also such an inclusion hypergraph.

Combining this with the result of Gibson and Varadarajan [13], we get that for every
convex polygon D there is a cD such that if F is an (mk = cDk)-fold covering of a region
by the translates of D, then F can be decomposed into k coverings of the same region. It
follows from the proofs about polychromatic k-colorings for triangles that the same holds for
coverings by the homothets of a triangle, with a polynomial bound on mk (this function is
slightly weaker than what is known for the polychromatic k-coloring problem). By homothets
of other convex polygons, however, surprisingly for any m it is possible to construct an
indecomposable m-fold covering [26]. The homothets of the square are the only family which
is known to behave differently for polychromatic coloring and cover-decomposition.

Proper colorings of (primal and dual) geometric hypergraphs have been first studied
systematically in [17], for halfplanes and axis-parallel bottomless rectangles, proving several
lower and upper bounds. Other papers mainly studied the dual variant of our question.
Smorodinsky [39] has shown that any pseudo-disk family can be colored with a bounded
number of colors such that every point covered at least twice is covered by at least two
differently colored disks. He also proved that 4 colors are sufficient for disks, and later this
was generalized by Cardinal and Korman [9] to the homothetic copies of any convex body.
Smorodinsky has also shown that any family of n axis-parallel rectangles can be colored
with O(logn) colors such that every region covered at least twice is covered by at least two
differently colored rectangles. This was shown to be optimal by Pach and Tardos [32]; they
proved that there is a C such that for every m there is a family of n axis-parallel rectangles
such that for any (C log n

m log m
)-coloring of the family there is a point covered by exactly m

rectangles, all of the same color. It was shown by Chen et al. [10], answering a question of
Brass, Moser and Pach [5], that for every c and m there is a finite point set S such that for

4 A bottomless rectangle is a planar set of the form {(x, y) ∣ a ≤ x ≤ b, y ≤ c}.
5 The dual of a hypergraph H = (V,E) is the hypergraph H with vertex set E , edge set V , and with the

incidences reversed, i.e., in H a vertex corresponding to e ∈ E is contained in the edge corresponding to
v ∈ V if and only if v is contained in e in H.

SoCG 2017

47:4 Proper Coloring of Geometric Hypergraphs

every c-coloring of S there is an axis-parallel rectangle containing m points that are all of
the same color. This latter construction is the closest to the problem that we study. It also
shows why the pseudo-disk property is crucial in Conjecture 3.

Rotation invariant families have also been studied. It was shown in [33] using the Hales-
Jewett theorem [16] that for every c and m there is a finite planar point set S such that
for every c-coloring of S there is a line containing m points that are all of the same color.
Using duality, they have also shown that this implies that for every c and m there is a
finite collection of lines such that for every c-coloring of the lines there is a point covered by
exactly m lines, all of the same color. Halfplanes, on the other hand, behave much more like
one-dimensional sets and admit polychromatic colorings. It was shown in [40], improving on
earlier results [2, 17, 34], that any finite point set can be k-colored such that any halfplane
that contains mk = 2k − 1 points contains all k colors, and this is best possible. In the dual,
they have shown that any finite set of halfplanes can be k-colored such that any point that
is covered by at least mk = 3k − 2 halfplanes is covered by all k colors. This bound is not
known to be best possible, except for k = 2 [12]. Except for this last sharpness bound, all
other results were extended to pseudo-halfplanes in [22].

2 Generalized Delaunay triangulations

With a slight perturbation of the points, it is enough to prove Theorem 2 (or any similar
statement) for the case when the points are in a general position with respect to the convex
polygon D in the sense that no two points are on a line parallel to a side of D and no four
points are on the boundary of a homothet of D. In the following, we always suppose that
our point set S is in general position with respect to D. We will also suppose that D is open
– this does not alter the validity of the statements and makes some of the arguments simpler
to present.

We say that a halfplane H is supporting D at a side ab of D if H contains D and ab is
on the boundary of H. A point s ∈ S is extremal (for a side ab) if a translate of a halfplane
supporting D at a side ab contains s but no other point of S.

We define a plane graph whose vertices are the points of S, called the generalized Delaunay
triangulation of S with respect to D, and we denote it by DT D(S), or when clear from the
context, simply by DT . As it leads to no confusion, we will not differentiate between the
points and their associated vertices. Two points of S are connected by a straight-line edge
in DT if there is a homothet of D that contains only them from S. It follows [4, 24] that
DT is a well-defined connected plane graph whose inner faces are triangles. We recall a few
simple statements about DT , most of which also appeared in [1].

I Proposition 6. If D′ is a homothet of D, the points D′ ∩ S induce a connected subgraph
of DT D(S).
I Corollary 7 ([1]). If D′ is a homothet of D and e is an edge of DT that splits D′ into two
parts, then one of these parts does not contain any point from S.

We continue with a proposition that is quite similar to a statement of [1].

I Proposition 8. Suppose that D′ and Dy are two homothets of D, x, y, y′, z ∈Dy ∩ S and
y, y′ ∈D′ but x, z ∉D′, x and z are neighbors of y in DT , and for one of the two cones whose
sides are the halflines starting from y as yx and yz, denoted by C, we have C ∩D′ ⊂ Dy

and y′ ∈ C ∩D′. (See Figure 1 for an illustration.) Then y′ has a neighbor in DT that is
contained in D′ ∩Dy.

B. Keszegh and D. Pálvölgyi 47:5

D′

Dy

y

y′

x

z

C ∩D′

C

Figure 1 Illustration for Proposition 8 on the left and for Theorem 10 for triangles to the right
(shading is only to improve visibility.)

Proof. Using Proposition 6, y′ has a neighbor in D′. Since DT is planar, this neighbor must
be in C ∩D′ ⊂D′ ∩Dy. J

3 Framework

In this section we outline the main idea behind the proof of Theorem 2. As discussed in
Section 2, we can suppose that S is in general position with respect to D, and we can consider
the generalized Delaunay triangulation DT = DT D(S). We will take an initial coloring
of S that has some nice properties. More specifically, we need a 3-coloring for which the
assumptions of the following lemma hold for c = 3 and for some constant t that only depends
on D.

I Lemma 9. For every convex polygon D for every c and t there is an m such that if for a
c-coloring of a point set S and a set of points R ⊂ S it holds that
(i) for every homothet D′ if D′ ∩S is monochromatic with at least t vertices, D′ contains a

point of R,
(ii) for every homothet D′ if D′ contains t points from R colored with the same color, D′

also contains a point from S ∖R that has the same color,
then there is a c-coloring of S such that no homothet that contains at least m points of S is
monochromatic.

To prove Lemma 9, we use the following theorem about the so-called self-coverability of
convex polygons.

I Theorem 10 ([20]). Given a closed convex polygon D and a collection of k points in its
interior, we can take cDk homothets of D whose union is D such that none of the homothets
contains any of the given points in its interior, where cD is a constant that depends only on
D.

Proof of Lemma 9. The proper c-coloring will be simply taking the c-coloring given in the
hypothesis, and recoloring each vertex in R arbitrarily to a different color. Now we prove
the correctness of this new coloring. Let D′ be a homothet of D containing at least m points
(where m is to be determined later).

Suppose first that D′ contains m ≥ ct points from R. Using the pigeonhole principle, D′

contains at least t points from R that originally had the same color. Using (ii), D′ will have
a point both in R and in S ∖R that had the same color. These points will have different
colors after the recoloring, thus D′ will not be monochromatic.

SoCG 2017

47:6 Proper Coloring of Geometric Hypergraphs

Otherwise, suppose that D′ contains m points of which less than ct are from R. Apply
Theorem 10 with D′ and R′ = D′ ∩R. This gives cDct homothets (where cD comes from
Theorem 10), each of which might contain at most three points on their boundaries (which
include the points from R′), thus by the pigeonhole principle at least one homothet, D′′,
contains no points from R and at least m−3cDct

cDct
points from S ∖R. If we set m = cDct(t + 3),

this is at least t. Thus, by (i), D′′ was not monochromatic before the recoloring. As the
recoloring does not affect points in S ∖ R, after the recoloring D′′ (and so also D′) still
contains two points that have different colors. Thus m = cDct(t + 3) is a good choice for m
in both cases. J

Therefore, to prove Theorem 2, we only need to show that we can find a coloring with
three colors that satisfy the conditions of Lemma 9 for some t.

4 Proof of Theorem 2

In this section we prove Theorem 2, that is, we show that for every convex polygon D

there is an m such that any finite set of points S admits a 3-coloring such that there is no
monochromatic homothet of D that contains at least m points. If one could find a 3-coloring
where every monochromatic component of DT is bounded, then that would immediately
prove Theorem 2. This, however, is not true in general [25], only for bounded degree graphs
[11], but the DT can have arbitrarily high degree vertices for any convex polygon, thus we
cannot apply this result. Instead, we use the following result (whose proof is just a couple of
pages).

I Theorem 11 (Poh [38]; Goddard [14]). The vertices of any planar graph can be 3-colored
such that every monochromatic component is a path.

To prove Theorem 2, apply Theorem 11 to DT to obtain a 3-coloring where every
monochromatic component is a path. As discussed in Section 3, it is sufficient to show that
for t = 4n + 12 (where n denotes the number of sides of D) there is a set of points R ⊂ S for
which
(i) for every homothet D′ if D′ ∩S is monochromatic with at least t vertices, D′ contains a

point of R,
(ii) for every homothet D′ if D′ contains t points from R colored with the same color, D′

also contains a point from S ∖R that has the same color.
Now we describe how to select R. First, partition every monochromatic path that has at

least t vertices into subpaths, called sections, such that the number of vertices of each section
is at least t

4 but at most t
2 . We call such a section cuttable if there is a monochromatic

homothet of D that contains all of its points. R will consist of exactly one point from each
cuttable section. These points are selected arbitrarily from the non-extremal points of each
section, except that they are required to be non-adjacent on their monochromatic path.
By ruling out the extremal points and the two end vertices of a section, by the pigeonhole
principle we can select such a point from each section if t

4 ≥ n+ 3. For an r ∈ R we denote its
section by σr and a (fixed) monochromatic homothet containing it by Dr.

Now we prove that R satisfies the requirements (i) and (ii).
To prove (i), suppose that a homothet D′ is monochromatic with at least t vertices. Using

Proposition 6, the subgraph induced on these vertices is connected. As any monochromatic
connected component is a path, D′ contains at least t consecutive vertices of a monochromatic
path, and thus also a section. Because of D′ this section is cuttable, and thus contains a
point of R.

B. Keszegh and D. Pálvölgyi 47:7

r2

D′
r1

Λr1

Λr2

Dr2

Figure 2 Proof of Proposition 12.

To prove (ii), suppose that a homothet D′ contains t points from R colored with the
same color, red. Denote these points by R′. It is sufficient to prove that for some r ∈ R′

another point from σr is also contained in D′. Suppose the contrary. As the neighbors of r
in σr are red but not in R, they must be outside D′, or (ii) holds. For each r ∈ R′, denote the
geometric embedding of the two edges adjacent to r in σr by Λr. Therefore, Λr will intersect
the boundary of D′ in two points for each r ∈ R′. We claim that these points are usually on
the same side of D′.

I Proposition 12. Both intersection points of Λr and the boundary of D′ are on the same
side of D′ for all but at most n points of r ∈ R′.

Proof. Suppose that there are more than n points r ∈ R′ for which Λr intersects D′ in two
sides. For each such point r ∈ R′, for (at least) one of the two cones whose sides are the
halflines starting in Λr, denoted by Cr, we have Cr ∩D′ ⊂Dr. Since the intersection Cr ∩D′

is a connected curve, it contains a vertex of D′. Using the pigeonhole principle, there are
two points, r1, r2 ∈ R′, such that Cr1 and Cr2 contain the same vertex of D′. (See Figure 2.)
In this case r1 and r2 would be in the configuration described in Proposition 8, one playing
the role of y, the other of y′. The neighbor of y′ in D′ ∩Dy given by Proposition 8 must also
be red, as it is contained in Dy. As the red neighbors of any red point of R are not in R, we
have found a red point from S ∖R in D′, proving (ii). J

Divide the points r ∈ R′ for which Λr intersects only one side of D′ into n groups,
R′

1, . . . ,R
′

n, depending on which side is intersected. By the pigeonhole principle there is a
group, R′

i, that contains at least t−n
n

≥ 3 points. Suppose without loss of generality that the
side ab intersected by Λr for r ∈ R′

i is horizontal, bounding D′ from below. For each r ∈ R′

i,
fix and denote by xr a point from σr whose y-coordinate is larger than the y-coordinate of r.
(Such a point exists because no r ∈ R is extremal in σr.) Denote the path from r to xr in σr

by Pr, and the neighbor of r in Pr by qr.
The geometric embedding of Pr starts above ab with r, then goes below ab as qr ∉ D′,

and finally xr is again above the line ab. Denote the first intersection (starting from r) of
the embedding of the path Pr with the line ab by αr = ¯rqr ∩ āb, and the next intersection
by βr. Since ∣R′

i∣ ≥ 3, without loss of generality, there are r1, r2 ∈ R′

i such that βr1 is to the
left of αr1 and βr2 is to the left of αr2 . For readability and simplicity, let xi = xri , Pi = Pri ,
qi = qri , αi = αri , βi = βri .

Without loss of generality suppose that α1 is to the left of α2. Recall that P2 contains
only red points, of which only r2 is in R. Therefore, no other vertex of P2 can be in D′. If
β2 is to the right of α1, then one of the edges of P2 would separate r1 and r2 in the sense
described in Corollary 7. (See Figure 3.) As this cannot happen, β2 is to the left of α1.

SoCG 2017

47:8 Proper Coloring of Geometric Hypergraphs

r1

q1

α1
r2α2

q2

β2β1a b

D′

P1

x1

x2 P2

r1

q1

α1
r2α2

q2

β2 β1

q

a b

Dr2

D′
P1

P2

x2

x1

Figure 3 The two cases at the end of the proof of Theorem 2. To the left, β2 is to the right of
α1, the part of the edge splitting D′ is bold. To the right, β2 is to the left of α1, the shaded regions
must contain q1.

This implies that q1 ∉ P2 is in the convex hull of P2 below the ab line. Take the point
q ∈ S ∖ P2 with the smallest y-coordinate such that q is in the convex hull of P2 below
the ab line. As q is not an extremal point of S, it is connected in DT to some point in S
whose y-coordinate is smaller. By the definition of q, this neighbor must be in P2. As the
end vertices of P2, r2 and x2, are above the ab line, q is connected to an inner vertex of a
monochromatic red path. Since every monochromatic component is a path, q cannot be red.
The homothet Dr2 contains the red vertices of P2 and thus all the points in the convex hull
of P2. But Dr2 is monochromatic, so it cannot contain the non-red point q, a contradiction.

This finishes the proof of Theorem 2.

5 Higher dimensions

In this section we study the following natural extension of the problem to higher dimensions.
Given a finite set of points S ∈ Rd and a family F , can we c-color S such that every F ∈ F
contains at least two colors? First we show that for d = 3 there might be hope to find such
colorings for natural families, but not in higher dimensions. Define a (positive) hextant in
R4 as the set of points {(x, y, z,w) ∣ x ≥ x0, y ≥ y0, z ≥ z0,w ≥ w0} for some real numbers
x0, y0, z0,w0. Cardinal noticed that hextants can simulate the axis-parallel rectangles of an
appropriate subplane of R4 and thus the following holds.

I Theorem 13 (Cardinal6). For any c and m there is a finite point set S such that for every
c-coloring of S there is a hextant that contains exactly m points of S, all of the same color.

Proof. As mentioned in the introduction, Chen et al. [10] have shown that for any c and m
there is a finite planar point set S such that for every c-coloring of S there is an axis-parallel
rectangle that contains exactly m points of S, all of the same color. Place this construction on
the Π = {(x, y, z,w) ∣ x + y = 0, z +w = 0} subplane of R4. A hextant {(x, y, z,w) ∣ x ≥ x0, y ≥
y0, z ≥ z0,w ≥ w0} intersects Π in {(x, y, z,w) ∣ x0 ≤ x = −y ≤ −y0, z0 ≤ z = −w ≤ −w0}, which is
a rectangle whose sides are parallel to the lines {x+y = 0, z = w = 0} and {x = y = 0, z+w = 0},
respectively. Taking these perpendicular lines as axes, thus any “axis-parallel” rectangle of Π
is realizable by an appropriate hextant, and the theorem follows. J

For d = 3, however, the following might hold.

6 Cardinal (personal communication) stated this for c = 2 using the same reduction based on [33] about
axis-parallel rectangles; Theorem 13 is only more general because we use a stronger result [10] about
axis-parallel rectangles.

B. Keszegh and D. Pálvölgyi 47:9

H1,2,2 H2,1,2 H2,2,1

p

Figure 4 H(1, 2, 2) drawn with sets (left) and H(2, 2, 2) drawn as graph (right). Different colors
represent the edges from the different families Ei.

I Conjecture 14. For every convex set D ⊂ R3 there is an m such that any finite set of
points admits a 4-coloring such that any homothetic copy of D that contains at least m points
contains at least two colors.

As an anonymous referee called our attention to it,7 a 3-dimensional Delaunay triangula-
tion of any number of points might induce a complete graph (for a recent proof, see [15]), so
it is not even clear that Conjecture 14 is true with any number of colors instead of 4, unlike
it was in 2 dimensions.

The reason why Conjecture 14 is stated with 4 colors is the following construction.

I Theorem 15. For every m there is a finite set of points S ∈ R3 such that for any 3-coloring
of S there is a unit ball that contains exactly m points of S, all of the same color.

Earlier such a construction with unit balls was only known for 2-colorings [33]. For
2-colorings the analogue of Theorem 15 was also shown to hold when the family is the
translates of any polyhedron instead of unit balls [36]. The only known positive result is
that for octants any finite set of points can be 2-colored such that any octant that contains
at least 9 points contains both colors [19, 23]. We do not, however, know the answer for
3-colorings and the translates or homothets of polyhedra.

The rest of this section contains a sketch of the proof of Theorem 15. The reason why
we only sketch the proof is that it is a simple modification of the planar construction with
similar properties for unit disks from [30].

Abstract hypergraph

First we define the abstract hypergraph that will be realized with unit balls. It is a straight-
forward generalization of the hypergraph defined first in [36]. Instead of a single parameter,
m, the induction will be on three parameters, k, ` and m. For any k, `,m we define the
(multi)hypergraph H(k, `,m) = (V (k, `,m),E(k, `,m)) recursively. The edge set E(k, `,m)
will be the disjoint union of three sets, E(k, `,m) = E1(k, `,m)⊍ E2(k, `,m)⊍ E3(k, `,m). All
edges belonging to E1(k, `,m) will be of size k, all edges belonging to E2(k, `,m) will be of
size `, and all edges belonging to E3(k, `,m) will be of size m. We will prove that in every
3-coloring of H(k, `,m) with colors c1, c2 and c3 there will be an edge in E i(k, `,m) such
that all of its vertices are colored ci for some i ∈ {1,2,3}. If k = ` =m, we get an m-uniform
hypergraph that cannot be properly 3-colored.

7 We have claimed the opposite in the first version of our manuscript.

SoCG 2017

47:10 Proper Coloring of Geometric Hypergraphs

Now we give the recursive definition. Define H(1,1,1) as a hypergraph on one vertex
with three edges containing it, with one edge in each of E1(1, 1, 1), E2(1, 1, 1) and E3(1, 1, 1).
If at least one of k, `,m is bigger than 1, define H(k, `,m) recursively from H(k − 1, `,m),
H(k, ` − 1,m), H(k, `,m − 1) by adding a “new” vertex p as follows.

V (k, `,m) = V (k − 1, `,m) ⊍ V (k, ` − 1,m) ⊍ V (k, `,m − 1) ⊍ {p}.

If k = 1, then E1(1, `,m) = {{v} ∶ v ∈ V (1, `,m)}, otherwise

E1(k, `,m) = {e ∪ {p} ∶ e ∈ E1(k − 1, `,m)} ⊍ E1(k, ` − 1,m) ⊍ E1(k, `,m − 1).

Similary, if ` = 1, then E2(k,1,m) = {{v} ∶ v ∈ V (k,1,m)}, otherwise

E2(k, `,m) = {e ∪ {p} ∶ e ∈ E2(k, ` − 1,m)} ⊍ E2(k − 1, `,m) ⊍ E2(k, `,m − 1),

and if m = 1, then E3(k, `,1) = {{v} ∶ v ∈ V (k, `,1)}, otherwise

E3(k, `,m) = {e ∪ {p} ∶ e ∈ E3(k, `,m − 1)} ⊍ E3(k − 1, `,m) ⊍ E3(k, ` − 1,m).

I Lemma 16. In every 3-coloring of H(k, `,m) with colors c1, c2 and c3 there is an edge
in E i(k, `,m) such that all of its vertices are colored ci for some i ∈ {1,2,3}. Therefore,
H(k, `,m) has no proper 3-coloring.

The proof is a simple modification of the respective statement from [36].

Proof. If k = ` =m = 1, the statement holds. Otherwise, suppose without loss of generality
that the color of p is c1. If k = 1, we are done as {p} ∈ E1(1, `,m). Otherwise, consider the
copy of H(k − 1, `,m) contained in H(k, `,m). If it contains an edge in E2(k − 1, `,m) or
E3(k − 1, `,m) such that its vertices are all colored c2 or all colored c3, respectively, we are
done. Otherwise, it contains an e ∈ E1(k − 1, `,m) such that its vertices are all colored c1.
But then all the vertices of (e ∪ {p}) ∈ E1(k, `,m) are also all colored c1, we are done. J

Geometric realization

Now we sketch how to realize H(k, `,m) by unit balls in R3. The construction will build
on the construction of [30], where the edges belonging to E1(k, `, 1) ⊍ E2(k, `, 1) of H(k, `, 1)
were realized by unit disks.

The vertices V (k, `,m) will be embedded as a point set, S(k, `,m), and the edge set
E i(k, `,m) as a collection of unit balls, Bi(k, `,m), where a point is contained in a ball if
and only if the respective vertex is in the respective edge. All the points of S(k, `,m) will
be placed in a small neighborhood of the origin. The centers of the balls from B1(k, `,m),
B2(k, `,m) and B3(k, `,m) will be close to (0,−1,0), (0,1,0) and (0,0,−1), respectively.
The realization of H(1,1,1) contains only one point, the origin, and one ball in each family,
centered appropriately close to the required center.

Suppose that not all of k, `,m are 1, and we have already realized the hypergraphs
H(k − 1, `,m), H(k, ` − 1,m) and H(k, `,m − 1). Place the new point p in the origin, and
shift the corresponding realizations (i.e., the point sets, S(k − 1, `,m), S(k, ` − 1,m) and
S(k, `,m−1), and the collection of balls, B(k−1, `,m), B(k, `−1,m) and B(k, `,m−1)) by the
following vectors, where ε = ε(k, `,m) is a small enough number, but such that ε(k − 1, `,m),
ε(k, ` − 1,m) and ε(k, `,m − 1) are all O(ε5(k, `,m)).

B. Keszegh and D. Pálvölgyi 47:11

p

S(k − 1, `,m)

B1(k, `− 1,m)

B1(k − 1, `,m)

B2(k, `− 1,m)

B2(k − 1, `,m)

S(k, `− 1,m)

B1(k, `,m− 1)

B2(k, `,m− 1)

B3(k, `,m− 1)

Figure 5 The intersection of H(k, `,m) with the z = 0 plane. Point sets/collections of balls that
are at distance O(ε5

) are represented by a single point/ball. As the balls B3(k − 1, `,m) intersect
in a O(ε5

) vicinity of S(k − 1, `,m) and the balls B3(k, ` − 1,m) intersect in a O(ε5
) vicinity of

S(k, ` − 1,m), they are not drawn to avoid overcrowding the picture.

1. Shift H(k − 1, `,m) by (2ε − 1.5ε3,2ε2,0).
2. Shift H(k, ` − 1,m) by (−2ε + 1.5ε3,−2ε2,0).
3. Shift H(k, `,m − 1) by (0,0,2ε2).

For an illustration, see Figure 5.

I Proposition 17. The above construction realizes H(k, `,m).
The proof of this proposition is a routine calculation, we only show some parts.

Proof. Denote by oB the center of the ball B and denote by dist(p, q) the Euclidean distance
of two points p, q.
1. p ∈ B ∈ B1(k − 1, `,m):

dist2(p, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 +O(ε5) = 1 − 2ε4 +O(ε5) < 1.

2. p ∉ B ∈ B1(k, ` − 1,m):

dist2(p, oB) = (2ε − 1.5ε3)2 + (1 + 2ε2)2 +O(ε5) = 1 + 4ε2 +O(ε3) > 1.

3. p ∉ B ∈ B1(k, `,m − 1):

dist2(p, oB) = 12 + (2ε2)2 +O(ε5) = 1 + 4ε4 +O(ε5) > 1.

4. If s ∈ S(k, ` − 1,m), then s ∉ B ∈ B1(k − 1, `,m):

dist2(s, oB) = (4ε − 3ε3)2 + (1 − 4ε2)2 +O(ε5) = 1 + 8ε2 +O(ε3) > 1.

SoCG 2017

47:12 Proper Coloring of Geometric Hypergraphs

5. If s ∈ S(k, ` − 1,m), then s ∉ B ∈ B1(k, `,m − 1):

dist2(s, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 + (2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε5) > 1.

6. If s ∈ S(k, ` − 1,m), then s ∉ B ∈ B3(k, `,m − 1):

dist2(s, oB) = (2ε − 1.5ε3)2 + (2ε2)2 + (1 − 2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε5) > 1.

7. If s ∈ S(k, `,m − 1), then s ∉ B ∈ B1(k − 1, `,m):

dist2(s, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 + (2ε2)2 +O(ε5) = 1 + 2ε4 +O(ε3) > 1.

The other incidences can be checked similarly and thus Proposition 17 follows. J

Lemma 16 and Proposition 17 imply Theorem 15 by selecting k = ` =m, therefore this
also finishes the proof of Theorem 15.

6 Further remarks

Combining Theorems 2 and 10, for any convex polygon, D, and for any finite point set,
S, we can first find a 3-coloring of S using Theorem 2 such that every large (in the sense
that it contains many points of S) homothet of D contains two differently colored points,
then using Theorem 10 we can conclude that every very large homothet of D contains many
points from at least two color classes, and finally we can recolor every color class separately
using Theorem 2. This proves that for every k there is a 3k-coloring such that every large
homothet of D contains at least 2k colors. Of course, the colors that we use when recoloring
need not be different for each color class, so we can also prove for example that there is a
6-coloring such that every large homothet of D contains at least 3 colors. What are the best
bounds of this type that can be obtained?

Given a planar graph, G, and a pair of paths on three vertices, uvw and u′vw′, we say
that the paths cross at v if u,u′,w,w′ appear in this order around v. A possible equivalent
reformulation of Conjecture 3 is the following. Is it true that for any planar graph and any
pairwise non-crossing collection of its paths on three vertices, P, there is a 3-coloring of the
vertices such that every path from P is non-monochromatic?

Finally, we would like to draw attention to the study of realizable hypergraphs. Unfortu-
nately, planar hypergraphs are traditionally defined dully as a hypergraph whose (bipartite)
incidence graph is planar. Instead, it would be more natural to define them as the hypergraphs
realizable by a pseudo-disk arrangement in the sense that the vertices are embedded as points
and the edges as pseudo-disks such that a point is contained in a pseudo-disk if and only if
the respective vertex is in the respective edge. This was done in [6], where it was proved that
such a hypergraph on n vertices can have at most O(k2n) edges that each contain at most
k points, while there can be at most 3n − 6 edges containing exactly two points, matching
Euler’s bound for planar graphs. Despite [6], these hypergraphs received little attention and
even simple statements are highly trivial; see the recent proof by Kisfaludi-Bak8 that the
complete 3-uniform hypergraph on 5 vertices is not realizable by pseudo-disks. We believe
that these hypergraphs deserve more attention.

8 http://mathoverflow.net/a/257212/955.

http://mathoverflow.net/a/257212/955

B. Keszegh and D. Pálvölgyi 47:13

Acknowledgment. We would like to thank our anonymous referees for several suggestions
that improved the presentation of our results, and to Arnau Padrol for explaining to us the
example in [15].

References
1 Eyal Ackerman, Balázs Keszegh, and Máté Vizer. Coloring points with respect to squares.

In Sándor P. Fekete and Anna Lubiw, editors, 32nd International Symposium on Computa-
tional Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA, volume 51 of LIPIcs,
pages 5:1–5:16. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

2 Greg Aloupis, Jean Cardinal, Sébastien Collette, Stefan Langerman, and Shakhar Smorod-
insky. Coloring geometric range spaces. Discrete & Computational Geometry, 41(2):348–
362, 2009.

3 Andrei Asinowski, Jean Cardinal, Nathann Cohen, Sébastien Collette, Thomas Hackl, Mi-
chael Hoffmann, Kolja B. Knauer, Stefan Langerman, Michal Lason, Piotr Micek, Günter
Rote, and Torsten Ueckerdt. Coloring hypergraphs induced by dynamic point sets and bot-
tomless rectangles. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack, editors,
Algorithms and Data Structures – 13th International Symposium, WADS 2013, London,
ON, Canada, August 12-14, 2013. Proceedings, volume 8037 of Lecture Notes in Computer
Science, pages 73–84. Springer, 2013.

4 Prosenjit Bose, Paz Carmi, Sébastien Collette, and Michiel H. M. Smid. On the stretch
factor of convex delaunay graphs. J. of Computational Geometry, 1(1):41–56, 2010.

5 Peter Brass, William O. J. Moser, and János Pach. Research problems in discrete geometry.
Springer, 2005.

6 Sarit Buzaglo, Rom Pinchasi, and Günter Rote. Topological hypergraphs. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 71–81. Springer New York, 2013.
doi:10.1007/978-1-4614-0110-0_6.

7 Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making triangles colorful.
J. of Computational Geometry, 4:240–246, 2013.

8 Jean Cardinal, Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. Making octants colorful
and related covering decomposition problems. SIAM J. on Discrete Math., 28(4):1948–1959,
2014.

9 Jean Cardinal and Matias Korman. Coloring planar homothets and three-dimensional
hypergraphs. Computational Geometry, 46(9):1027–1035, 2013.

10 Xiaomin Chen, János Pach, Mario Szegedy, and Gábor Tardos. Delaunay graphs of point
sets in the plane with respect to axis-parallel rectangles. Random Struct. Algorithms,
34(1):11–23, 2009. doi:10.1002/rsa.20246.

11 Louis Esperet and Gwenaël Joret. Colouring planar graphs with three colours and no
large monochromatic components. Combinatorics, Probability & Computing, 23(4):551–
570, 2014.

12 Radoslav Fulek. Coloring geometric hypergraph defined by an arrangement of half-planes.
In Proceedings of the 22nd Annual Canadian Conference on Computational Geometry, Win-
nipeg, Manitoba, Canada, August 9-11, 2010, pages 71–74, 2010.

13 Matt Gibson and Kasturi R. Varadarajan. Decomposing coverings and the planar sensor
cover problem. In 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 159–168. IEEE Computer
Society, 2009. doi:10.1109/FOCS.2009.54.

14 Wayne Goddard. Acyclic colorings of planar graphs. Discrete Math., 91(1):91–94, 1991.
15 B. Gonska and A. Padrol. Neighborly inscribed polytopes and delaunay triangulations.

Advances in Geometry, 16(3):349–360, 2016.

SoCG 2017

http://dx.doi.org/10.1007/978-1-4614-0110-0_6
http://dx.doi.org/10.1002/rsa.20246
http://dx.doi.org/10.1109/FOCS.2009.54

47:14 Proper Coloring of Geometric Hypergraphs

16 A.W. Hales and R. I. Jewett. Regularity and positional games. Trans. Amer. Math. Soc.,
106:222–229, 1963.

17 Balázs Keszegh. Coloring half-planes and bottomless rectangles. Computational Geometry,
45(9):495–507, 2012.

18 Balázs Keszegh, Nathan Lemons, and Dömötör Pálvölgyi. Online and quasi-online colorings
of wedges and intervals. Order, 33(3):389–409, 2016.

19 Balázs Keszegh and Dömötör Pálvölgyi. Octants are cover-decomposable. Discrete &
Computational Geometry, 47(3):598–609, 2012.

20 Balázs Keszegh and Dömötör Pálvölgyi. Convex polygons are self-coverable. Discrete &
Computational Geometry, 51(4):885–895, 2014.

21 Balázs Keszegh and Dömötör Pálvölgyi. Octants are cover-decomposable into many cover-
ings. Computational Geometry, 47(5):585–588, 2014.

22 Balázs Keszegh and Dömötör Pálvölgyi. An abstract approach to polychromatic coloring:
Shallow hitting sets in aba-free hypergraphs and pseudohalfplanes. In Ernst W. Mayr,
editor, Graph-Theoretic Concepts in Computer Science – 41st International Workshop, WG
2015, Garching, Germany, June 17-19, 2015, Revised Papers, volume 9224 of Lecture Notes
in Computer Science, pages 266–280. Springer, 2015.

23 Balázs Keszegh and Dömötör Pálvölgyi. More on decomposing coverings by octants. J. of
Computational Geometry, 6(1):300–315, 2015.

24 Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400. Springer Science &
Business Media, 1989.

25 Jon M. Kleinberg, Rajeev Motwani, Prabhakar Raghavan, and Suresh Venkatasubramanian.
Storage management for evolving databases. In 38th Annual Symposium on Foundations
of Computer Science, FOCS’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
353–362. IEEE Computer Society, 1997.

26 István Kovács. Indecomposable coverings with homothetic polygons. Discrete & Compu-
tational Geometry, 53(4):817–824, 2015.

27 L. Ma. Bisectors and Voronoi Diagrams for Convex Distance Functions. PhD thesis,
FernUniversität Hagen, Germany, 2000.

28 János Pach. Decomposition of multiple packing and covering. In 2. Kolloquium über
Diskrete Geometrie, pages 169–178. Institut für Mathematik der Universität Salzburg, 1980.

29 János Pach. Covering the plane with convex polygons. Discrete & Computational Geometry,
1:73–81, 1986. doi:10.1007/BF02187684.

30 János Pach and Dömötör Pálvölgyi. Unsplittable coverings in the plane. Advances in
Mathematics, 302:433–457, 2016.

31 János Pach, Dömötör Pálvölgyi, and Géza Tóth. Survey on decomposition of multiple
coverings. In Imre Bárány, Károly J. Böröczky, Gábor Fejes Tóth, and János Pach, editors,
Geometry – Intuitive, Discrete, and Convex, volume 24 of Bolyai Society Mathematical
Studies, pages 219–257. Springer Berlin Heidelberg, 2013.

32 János Pach and Gábor Tardos. Coloring axis-parallel rectangles. J. of Combinatorial
Theory, Series A, 117(6):776–782, 2010. doi:10.1016/j.jcta.2009.04.007.

33 János Pach, Gábor Tardos, and Géza Tóth. Indecomposable coverings. Canadian mathem-
atical bulletin, 52(3):451–463, 2009.

34 János Pach and Géza Tóth. Decomposition of multiple coverings into many parts. In
Proceedings of the twenty-third annual symposium on Computational geometry, pages 133–
137. ACM, 2007.

35 Dömötör Pálvölgyi. Decomposition of geometric set systems and graphs, phd thesis. arXiv
preprint arXiv:1009.4641, 2010.

36 Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete & Compu-
tational Geometry, 44(3):577–588, 2010. doi:10.1007/s00454-009-9194-y.

http://dx.doi.org/10.1007/BF02187684
http://dx.doi.org/10.1016/j.jcta.2009.04.007
http://dx.doi.org/10.1007/s00454-009-9194-y

B. Keszegh and D. Pálvölgyi 47:15

37 Dömötör Pálvölgyi and Géza Tóth. Convex polygons are cover-decomposable. Discrete &
Computational Geometry, 43(3):483–496, 2010.

38 K. S. Poh. On the linear vertex-arboricity of a planar graph. J. of Graph Theory, 14(1):73–
75, 1990.

39 Shakhar Smorodinsky. On the chromatic number of geometric hypergraphs. SIAM J. on
Discrete Math., 21(3):676–687, 2007.

40 Shakhar Smorodinsky and Yelena Yuditsky. Polychromatic coloring for half-planes. J. of
Combinatorial Theory, Series A, 119(1):146–154, 2012.

41 Gábor Tardos and Géza Tóth. Multiple coverings of the plane with triangles. Discrete &
Computational Geometry, 38(2):443–450, 2007. doi:10.1007/s00454-007-1345-4.

SoCG 2017

http://dx.doi.org/10.1007/s00454-007-1345-4

Computing Representative Networks for Braided
Rivers∗

Maarten Kleinhans1, Marc van Kreveld2, Tim Ophelders3,
Willem Sonke4, Bettina Speckmann5, and Kevin Verbeek6

1 Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
m.g.kleinhans@uu.nl

2 Dept. of Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands
m.j.vankreveld@uu.nl

3 Dept. of Mathematics and Computer Science, TU Eindhoven, Eindhoven,
The Netherlands
t.a.e.ophelders@tue.nl

4 Dept. of Mathematics and Computer Science, TU Eindhoven, Eindhoven,
The Netherlands
w.m.sonke@tue.nl

5 Dept. of Mathematics and Computer Science, TU Eindhoven, Eindhoven,
The Netherlands
b.speckmann@tue.nl

6 Dept. of Mathematics and Computer Science, TU Eindhoven, Eindhoven,
The Netherlands
k.a.b.verbeek@tue.nl

Abstract
Drainage networks on terrains have been studied extensively from an algorithmic perspective.
However, in drainage networks water flow cannot bifurcate and hence they do not model braided
rivers (multiple channels which split and join, separated by sediment bars). We initiate the
algorithmic study of braided rivers by employing the descending quasi Morse-Smale complex on
the river bed (a polyhedral terrain), and extending it with a certain ordering of bars from the one
river bank to the other. This allows us to compute a graph that models a representative channel
network, consisting of lowest paths. To ensure that channels in this network are sufficiently
different we define a sand function that represents the volume of sediment separating them. We
show that in general the problem of computing a maximum network of non-crossing channels
which are δ-different from each other (as measured by the sand function) is NP-hard. However,
using our ordering between the river banks, we can compute a maximum δ-different network
that respects this order in polynomial time. We implemented our approach and applied it to
simulated and real-world braided rivers.

1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Braided rivers, Morse-Smale complex, persistence, network extraction,
polyhedral terrain

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.48

∗ T. Ophelders, W. Sonke and B. Speckmann are supported by the Netherlands Organisation for Scien-
tific Research (NWO) under project no. 639.023.208, and K. Verbeek under project no. 639.021.541.
M. Kleinhans is supported by the Dutch Technology Foundation STW (grant Vici 016.140.316/13710;
part of the Netherlands Organisation for Scientific Research (NWO), and partly funded by the Ministry
of Economic Affairs).

© Maarten Kleinhans, Marc van Kreveld, Tim Ophelders, Willem Sonke, Bettina Speckmann,
Kevin Verbeek;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 Computing Representative Networks for Braided Rivers

1 Introduction

Geomorphology is the study of the shape of natural terrains and the processes that create
them. One of these processes is erosion due to water flow. In mountainous areas, valleys are
nearly always shaped by rivers,1 which slowly transport solid material downstream. Due
to gravity, water usually follows the direction of steepest descent, although inertia may
result in deviations. The combination of terrain shape and water flow gives rise to various
computational problems that have been studied in geomorphology, geographic information
science (GIS), and computational geometry.

One prominent problem is the computation of drainage networks, also referred to as
flows [1, 2, 4]. Here computations are based on elevation data only and the shape of the
terrain is used to determine where rivers will form (see [26] for an extensive overview). A
second problem of interest concerns local minima. Due to erosion local minima are more rare
in natural terrains than local maxima. Minima in terrains are the bottoms of pits that will
be filled with water. When a pit overflows at the lowest saddle surrounding it, the saddle
may be eroded and eventually both pit and saddle will be removed simultaneously. For this
reason certain terrain types do not have local minima and minor local minima are often
measurement errors. Such errors are clearly undesirable when studying flow on terrains and
hence, minor local minima are removed by computational means [15, 16, 17, 25]. A third
commonly studied problem deals with watersheds. Watershed boundaries are steepest ascent
paths following the ridges of mountains [5, 19, 26].

Braided rivers. The usual models (as discussed above) for water flow in terrains allow
rivers to merge, which is natural because side valleys join main valleys. And clearly, if
water always follows the direction of steepest descent, a river cannot split (except due to
degeneracies). Yet splitting happens in deltas and various river types, in particular braided
river systems [12, 11] (see Figure 1 for an example). Such systems have islands called bars
ranging in length from about one water depth to ten times the overall river width, separating
different channels of the same river over their length after which the channels confluence [20].
Bifurcations are currently still poorly understood in geomorphology [14]. They are quite
dynamic in the sense that erosion or sedimentation leads to perpetual changes in the division
of water and sediment at bifurcations, which affects downstream morphological development
of channels and bars locally [3, 6, 23] and over surprisingly long distances downstream [22].
This makes braided river systems highly dynamic on the seasonal time scale. Within a year
the appearance and hydrological functioning is also highly variable due to changing water
levels during floods and low flow periods that emerge and submerge bars.

Many fundamental questions remain how rivers form shallow, ecologically valuable shoals,
carve deep channels for shipping, collapse banks with property on it, and flood built-up areas.
Part of the reason for slow progress is that sediment transport is a nonlinear function of flow
velocity, leading to self-amplifying changes in depth and width of channels. This leads to
changes in water and sediment conveyance, which in turn affects downstream channels that
split around other bars and so on ad nearly infinitum [14]. We know this quasi-quantitatively
from increasing gridded data of bed elevation and flow properties collected with advanced
remote sensing techniques [11, 18], in numerical two-phase modelling [23] and in controlled
laboratory experiments with small-scale braided rivers [9]. However, how small changes at

1 We use ‘rivers’ as unifying terminology for flowing water, including erosive rivulets, streams, brooks,
and large sediment-laden rivers that build their own landscapes through sedimentation.

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:3

Figure 1 Orthoimagery of the Crossbank reach of the Waimakariri river, a braided gravel river
in New Zealand. Thanks to Murray Hicks from NIWA Christchurch, NZ.

bifurcations and confluences propagate and grow or decay through the channel network and
how that leads to changes in the larger-scale network structure remains unknown. A main
reason is that there is currently no technique to extract morphologically meaningful networks,
nor to rigorously connect the networks at different water levels [12, 18].

Modeling braided rivers, where channels can both split and merge, is considerably more
complex than modeling standard drainage networks, where all rivers flow only downhill and
do not bifurcate. In this paper we initiate the study of braided rivers from the perspective of
computational geometry and topology.

Modeling braided rivers in a nutshell. To model a braided river we first need a represen-
tation of the basic geometry, independent of water level. We hence use the elevation of the
river bed as a starting point. In meandering rivers the so-called thalweg is often used as a
basic representation of the river. The thalweg is defined as the deepest part of a continuous
channel. In a meandering river that is simply one linear feature, which is usually not the
channel center line but more sinuous as it follows the deeper pools in the outer bends. We
are striving for a similar representation for braided rivers, consisting of linear features along
lowest paths in each channel. These linear features can merge and bifurcate, that is, they
form a planar graph or network. The use of graphs to model and analyze braided rivers was
recently pioneered in [18]. In a river, channels are deepest where water flows (or used to flow)
the fastest. This is due to the non-linearity of sediment transport: when velocity doubles,
sediment transport increases eight to perhaps hundredfold, which leads to the erosion of
channels and deposition in bars. We define lowest paths intuitively as the paths that do
not go higher than they need to go to connect the endpoints. To find lowest paths we use a
descending quasi Morse-Smale complex [10, 24]. We show that lowest paths must always lie
on this complex, except for, possibly, the ends of the path.

A representative network for a braided river should not necessarily contain all possible
channels. Topologically speaking a tiny local maximum in the river bed creates two channels.
We can use persistence to simplify our input and avoid such situations. But still, too many
channels might remain. We would hence like to select a set of channels which are sufficiently
different from each other. We model how different two channels are with a function (the
sand function) that relates to the volume of sediment the river has to move before the two
channels become one. More volume needs more time to be removed [13]. A bar of very small
volume separating two channels requires insignificant time to be removed, so the channels
are not significantly different. But a large bar with a large volume may require multiple

SoCG 2017

48:4 Computing Representative Networks for Braided Rivers

floods to be shaved off or cut through by a new channel, meaning that the two channels
separated by this bar are significantly different.

Our objective now is to compute a representative network of channels that is optimal in
some sense. We require (i) each channel to be (mostly) on the descending quasi Morse-Smale
complex (that is, locally lowest), (ii) any two channels to be sufficiently different (specified by
a parameter δ and the sand function), and (iii) the representative network to be maximum.
Unfortunately, the exact formulation of this problem is NP-hard. We deal with this by
computing a striation: a left-bank-to-right-bank sequence of non-crossing paths for the whole
braided river. We provide three different heuristics to compute a striation, each with various
strengths and weaknesses. We then limit the representative network to select channels only
from the striation. To make this selection, we compute the sand function between every two
channels. For this we compute a monotone isotopy between any two channels, to ensure
that only sand between the channels is measured, and without multiplicity. We require
this isotopy to be consistent with the striation. We then present three different models
to compute the sand function along a single matching path of the isotopy, which is then
integrated over the entire isotopy to compute the sand function between two channels. The
isotopy that minimizes the sand function is chosen. We show that the resulting sand function
can be computed efficiently between any two channels of the striation. Finally, we can use a
simple greedy algorithm to select the representative network from the striation.

Organization. Section 2 gives the definitions and the problem statement. Section 3 describes
the quasi Morse-Smale complex and shows that lowest paths lie mostly on this complex.
Section 4 shows NP-hardness of computing a representative network and introduces three
ways of computing a striation. Section 5 gives three ways of defining the sand function and
algorithms to compute it. Section 6 describes how to compute a representative network if a
striation and a sand function are given. Section 7 reports on experiments of an implementation
applied to data from a numerical model and to data collected from the real-world Waimakariri
river (see Fig. 1). Finally, a discussion is given in Section 8.

2 Definitions and problem statement

Let G = (V,E) be a triangulation of a topological disk M in the plane, and let h : M → R
be the height of the points in M , where the edges (respectively triangles) of G interpolate h
linearly between its vertices (respectively edges). So G can be viewed as a simplicial 2-complex
in R3 by adding h as a third dimension. Furthermore, let σ ∈ V be a source and τ ∈ V
be a sink, both on the boundary ∂M . The source and sink are assumed to be vertices
for simplicity, but our approach can be extended to the case where σ and τ are connected
components on the boundary of M . We refer to (G, h, σ, τ) as a river, and we refer to the
volume {(x, y, z) | (x, y) ∈ M, z ∈ R, z ≤ h(x, y)} as sand. We define the amount of sand
above a point (x, y, z) as max(0, h(x, y)− z).

Let π+
∂M and π−∂M (respectively clockwise and counterclockwise) be the two paths from σ

to τ along the boundary of M . We call a path π from σ to τ semi-simple if it has no self-
intersections, but it may coincide with itself, see the red path in Fig. 2. In such self-coinciding
parts, these parts are symbolically separated. Let P be a set of semi-simple, pairwise
non-crossing paths from σ to τ along edges of G. For two semi-simple paths π0 and π1 in
P, let D(π0, π1) be the region bounded by and including π0 and π1. So two semi-simple
paths π0 and π1 from σ to τ have no proper crossings if and only if D(π+

∂M , π0) ⊆ D(π+
∂M , π1)

or D(π+
∂M , π1) ⊆ D(π+

∂M , π0).

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:5

π+
∂M

M

σ τ

π−
∂M

Figure 2 The diskM and three paths of P without proper crossings, including the two paths π+
∂M

and π−∂M and a backtracking path.

A homotopy η : [0, 1]2 → M from π0 to π1 is a continuous map, such that η(p, 0) =
π0(αη(p)), η(p, 1) = π1(βη(p)), η(0, t) = σ and η(1, t) = τ , where reparameterizations αη
and βη : [0, 1]→ [0, 1] are continuous non-decreasing surjections aligning π0 and π1. We refer
to (αη, βη) as the matching between π0 and π1 given by η. We can equip a homotopy η
with a height function ζ : [0, 1]2 → R and define the surface Σζ

η : [0, 1]2 → R3 as Σζ
η(p, t) =

(η(p, t), ζ(p, t)). Define the volume above Σζ
η as the total volume of sand above the points

of Σζη (counted with multiplicity) given by

vol(Σζη) =
∫∫

[0,1]×[0,1]

max(0, h(η(p, t))− ζ(p, t))
∥∥∥∥∂η∂p × ∂η

∂t

∥∥∥∥dp dt.

Generally, we will choose η(p, t) in such a way that it does not surpass the height of η(p, 0)
or η(p, 1), so as to measure at least the volume of sand ‘above’ an extremal path (π0 or π1).

We measure the similarity between two paths using a sand function d : P × P → R,
and we say a path π0 is δ-dissimilar to π1 if and only if d(π0, π1) ≥ δ. The function d will
generally not be a metric, since it is generally not symmetric, does not satisfy the triangle
inequality, and d(π0, π1) can be 0 for distinct paths π0 and π1. Intuitively, we define d(π0, π1)
in such a way that measures the volume of sand that lies between π0 and π1. Since the height
of both paths may vary along the length of the river, it is unclear how to define this volume
in a natural way. We define d(π0, π1) = vol(Σζη), so the sand measured by d depends largely
on the homotopy η and the corresponding height function ζ. We discuss how to choose η
between π0 and π1 in Section 5.

Our goal is to compute a network whose paths represent channels in a river. Essentially,
such paths minimize the distance spent at high elevations. We define the cost of a path as
its lexicographic height [21]. For a path π : [0, 1]→M , define πh : [0, 1]→M × R to be the
path (π(p), h(π(p))) over the terrain, and let ρ(π, z) be the length of the path πh that has
height at least z. We say a path π0 is lower than π1 if and only if there exists a z∗ ∈ R,
such that for all z ≥ z∗, ρ(π0, z) = ρ(π1, z) and for all ε > 0, there is some z′ ∈ (z∗ − ε, z∗)
with ρ(π0, z

′) < ρ(π1, z
′). A path is lowest if no lower paths exist. We motivate this choice

by the property of Lemma 2 that lowest paths follow steepest descent – a property often
assumed for water flow as well [26]. Instead of stopping in local minima, lowest paths can
proceed by taking a steepest descent from a saddle point in reverse (note that this is not a
steepest ascent path from the minimum).

Call a subset Π ⊆ P of paths a δ-network if no pair of paths in Π has proper crossings,
and d(π0, π1) ≥ δ if the lexicographic height of π0 ∈ Π is at least that of π1 ∈ Π. Intuitively, a
representative δ-network is one that contains as many lowest paths as possible. More precisely,

SoCG 2017

48:6 Computing Representative Networks for Braided Rivers

if Π and Π′ are δ-networks, then Π′ is better than Π if there exists some k ≤ min{|Π|+1, |Π′|},
such that for each i < k, the i-th lowest path of Π and that of Π′ are equally low, and
either |Π| < k, or the k-th lowest path of Π′ is lower than that of Π. A δ-network is
representative if no better δ-networks exist.

Assumptions and problem statement. Assume that a polyhedral terrain is given: a trian-
gulation with n vertices that have a height, and linear interpolation over edges and triangles.
We assume that all vertices have a different height and any two edges incident to the same
vertex have different slope. The latter assumption ensures that steepest descent and steepest
ascent over edges is unique from every vertex. We artificially connect all vertices of the
boundary of the terrain to an extra vertex v∞ that is higher than all vertices on the boundary.
All local minima on the boundary will stay local minima, whereas all local maxima on the
boundary become regular. We do not need a geometric embedding for this modification.

Given such a modified terrain, a source σ, a sink τ , and a difference parameter δ, we study
the problem of computing a representative δ-network over the edges of the triangulation for
various choices of the sand function d.

3 Morse-Smale complex and lowest paths

An important topological tool for computing a representative δ-network, and lowest paths
in particular, is the Morse-Smale complex. Here we briefly introduce some of the concepts
related to (quasi) Morse-Smale complexes that are relevant to our work. We do so in a
simplified manner to make the paper more accessible (full technical details are given in [10]).
We furthermore specify the relation between Morse-Smale complexes and lowest paths.

3.1 Morse-Smale complex
Let M be a smooth, compact 2-dimensional manifold without boundary, and let h : M→ R be
a height function on M. A point p on M is critical with respect to h if all partial derivatives
vanish at p. Otherwise, p is called regular. There are three types of critical points: (local)
minima, (local) maxima, and saddle points. For each regular point p we define the path of
steepest ascent (or steepest descent) as the path that follows the gradient of h at p. These
paths are also known as integral lines and are open at both ends, with at each end a critical
point. Using these integral lines, we can subdivide M as follows: two regular points p and q
belong to the same cell if the integral lines through p and q end at the same critical points
on both sides. The resulting complex is known as the Morse-Smale complex, or MS-complex
in short. Note that if one of the endpoints of an integral line is a saddle point, then the
corresponding cell is 1-dimensional. We refer to 2-dimensional cells of the MS-complex as
MS-cells, 1-dimensional cells as MS-edges, and the vertices simply correspond to the critical
points. It can be shown ([10]) that every MS-cell is a quadrilateral with a minimum, a saddle,
a maximum, and again a saddle along the boundary of the cell in that order.

Our input consists of a triangulation, and all paths must follow the edges of the triangu-
lation. Therefore, the MS-complex as defined above is not directly useful for our purpose.
Instead, we use a quasi MS-complex as defined in [10]. A quasi MS-complex has the same
combinatorial structure as an ordinary MS-complex, but it can be required to follow the
edges of a triangulation. Let v be a vertex of the triangulation, and let S(v) be the edge
star of v consisting of the set of edges incident to v. Note that, if we order the edges
of S(v) around v, then the endpoints of two neighboring edges must be connected by an
edge in the triangulation. The lower edge star S↓(v) consists of the subset of edges whose

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:7

endpoints are lower than v with respect to h. Symmetrically, we can define the upper edge
star S↑(v) = S(v) \ S↓(v) (recall that we have no horizontal edges). The lower edge star
can naturally be subdivided into wedges of consecutive edges in S↓(v) separated by edges
in S↑(v). We can now classify points based on the wedges in its lower edge star: minima
have 0 wedges, regular points have 1 wedge but not the whole edge star, saddles have 2 or
more wedges, and maxima have one complete wedge (S(v) = S↓(v)). Given these definitions,
we can construct a quasi MS-complex as follows. From every saddle point v we construct
a steepest descent path in every wedge of S↓(v) until it reaches a minimum. Similarly, we
construct a steepest ascent path in every wedge of S↑(v) until it reaches a maximum. This
construction can lead to crossings, as a steepest descent path may cross a steepest ascent
path (two steepest descent paths may merge, but will never cross). Therefore, to ensure the
correct combinatorial structure, the construction of a path must also end if it encounters an
already constructed path. The resulting subdivision is a quasi MS-complex and thus depends
on the order in which the paths are constructed. Since, for our purposes, the steepest descent
paths are more important, we require that all steepest descent paths are constructed first.
In fact, we do not need the steepest ascent paths, and hence we will completely omit these
paths from the construction. The resulting complex is commonly referred to as a descending
(quasi) MS-complex [24]. The cells of a descending MS-complex are bounded by alternating
minima and saddle points, and every cell contains exactly one maximum. In the remainder
of this paper we refer to the descending quasi MS-complex as constructed above simply as
the MS-complex, unless stated otherwise. The same rule applies to the components of the
complex, namely the MS-cells and MS-edges.

The quasi MS-complex and therefore the descending quasi MS-complex can be computed
in O(n logn) time [10].

3.2 Lowest paths
The following lemmas state that the lowest paths lie mostly on the MS-complex. The proofs
can be found in the full version of the paper. We also sketch how lowest paths can be
computed.

I Lemma 1. Let π be the lowest path between two vertices u and v in G. Then the highest
point of π is at u, v, or a saddle point.

I Lemma 2. Let u and v be two adjacent vertices on a lowest path π with h(u) > h(v).
Then the edge (u, v) must be the edge of steepest descent among the edges in the wedge of
S↓(u) that contains (u, v).

I Lemma 3. Let π be the lowest path between two vertices u and v in G, where both u and
v lie on MS-edges. Then all vertices of π lie on MS-edges.

I Lemma 4. Let π be the lowest path between two vertices u and v in G, and let u′ and v′
be the first vertices on an MS-edge encountered by following the steepest descent path from u

and v, respectively. Then π is the concatenation of the steepest descent path from u to u′,
the lowest path from u′ to v′, and the steepest descent path from v to v′ in reverse.

We can compute lowest paths efficiently using the MS-complex. Specifically, we construct a
lowest path tree from the source vertex as follows. We start with a disconnected set of vertices
consisting of the source and all minima. Then we add all saddle points in increasing order
of height. For every saddle, we add the saddle point and the MS-edges to adjacent minima
in the MS-complex. However, if two (or more) minima are already in the same connected

SoCG 2017

48:8 Computing Representative Networks for Braided Rivers

π

Figure 3 Example of a path π such that {π+
∂M , π, π−∂M} is a δ-network if π partitions the total

volume of the pyramids equally. Points in the different subsets are shown in white and gray.

component in the lowest path tree, then we remove the first edges of the corresponding
MS-edges (the edges incident to the saddles), except for the first edge that descends the
steepest. After all saddle points are added, we compute the steepest descent edge for all
vertices internal to MS-cells. This results in the correct lowest path tree by Lemma 3 and
Lemma 4. The method runs in O(n+m logm) time using sorting, where m is the number
of critical vertices.

4 Striation

Before we specify the sand function needed to construct a δ-network, we can consider the
complexity of the problem of computing a representative δ-network for a generic sand function.
Let π0 and π1 be two semi-simple non-crossing paths from σ to τ . For any reasonable sand
function d, the value of d(π0, π1) should measure only sand in the region D(π0, π1) in between
the paths. To enforce this, we can restrict the domain of the homotopy η from π0 to π1 to
D(π0, π1). Furthermore, we want to ensure that each volume of sand is measured at most
once. This can be achieved by restricting η to be an isotopy,2 as well as monotone.3

Now consider an input terrain consisting of a sequence of pyramids with different heights
as shown in Figure 3, where all non-peak vertices are at height 0. Let π0 and π1 be two
paths from source to sink at height 0 and let P be the set of pyramids in D(π0, π1). We say
that a sand function d is well-behaved if d(π0, π1) =

∑
p∈P vol(p) where vol(p) is the sand

volume of the pyramid p. It is easy to see that computing a representative δ-network for
a terrain of this type is NP-hard if the sand function is well-behaved, by reduction from
Partition (see Fig. 3). We note that all sand functions that we use are well-behaved.

To make the problem tractable, we put a restriction on the paths that can be used in
a representative δ-network. It is not sufficient to restrict the paths to be monotone, since
the NP-hardness reduction still works for monotone paths. As a stronger restriction we can
specify a monotone isotopy η between the boundaries π−∂M and π+

∂M . We require every path
in a δ-network to be a level curve of η. This ensures that the candidate paths cannot cross
each other or themselves. The resulting δ-network then strongly depends on the choice of η.
Naturally we want to choose η in such a way that many low paths are included as candidates.
To that end we use the MS-complex. Instead of completely specifying η, we specify only a
discrete subset thereof consisting of suitable candidate paths. We define a striation S as an

2 That is, a homotopy whose intermediate curves have no self-intersections.
3 That is, for t ≤ t′, η(·, t) and η(·, t′) have no proper crossings and η(·, t) ⊆ D(η(·, 0), η(·, t′)).

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:9

π

v

qu1

u2

u1

u2

πcw

πi+1

u1

u2

πccw

πi

Figure 4 Computing the striation paths around the MS-complex cell c of a maximum q; the
cell c is shown darker and triangulated.

π+
∂M

σ τ

π−
∂M

u1

q

u2

π+
∂M

σ τ

π−
∂M

D3

D2

D1

πi+1

πi

πi+1

πi

Figure 5 Splitting the triangulation by the striation paths around an MS-complex cell.

ordered set of non-crossing paths S = {π0, . . . , πr} from σ to τ with π0 = π−∂M and πr = π+
∂M .

Every path in a striation must be composed of MS-edges and between every two consecutive
paths πi and πi+1 in a striation there can be at most one MS-cell and possibly several
one-dimensional features. The one-dimensional features arise from overlapping MS-edges or
from the way the striation is computed. Note that every striation can be completed to a
monotone isotopy between π−∂M and π+

∂M .

Computing a striation. The hardness result of the previous section also directly implies
that computing a striation that includes a representative δ-network is NP-hard. Therefore
we consider several heuristics. For every heuristic we require that the lowest path between
source and sink is in the striation. This is possible, since by Lemma 3, the lowest path is
composed of MS-edges.

Two of our three heuristics for computing the striation use the persistence of local maxima.
The persistence of a local maximum is the difference in height to a saddle with which it is
paired, and a local maximum is paired with the lowest saddle on a highest path to a higher
maximum. It can be computed in linear time from the contour tree, which can be computed
in O(n+m logm) time [7, 8] when there are m critical points. All local maxima except for
v∞ will be paired and have their persistence defined.

Iterated lowest path. As a first step we compute the lowest path π from source to sink. We
then subdivide G along π into two parts: D1 = D(π, π−∂M) and D2 = D(π+

∂M , π). Next,
we recursively apply the algorithm in D1 and D2. The obtained striations S1 and S2 can
then be concatenated to obtain the final striation S = {S1, π,S2}. Finally we can add
π−∂M and π+

∂M to the striation. The recursion stops when G contains at most one MS-cell.
We have to be careful when computing π, since π must be distinct from π−∂M and π+

∂M .

SoCG 2017

48:10 Computing Representative Networks for Braided Rivers

More precisely, π must have an MS-cell on both sides. Since π is also a path in D1 and
D2, we must often compute the second or third lowest path. We can do so by computing
the lowest paths through all edges that are not in the lowest path tree. The lowest path
that is not one of the boundary paths can then easily be obtained.

Highest persistence first. The first path π is obtained by computing the lowest path from
source to sink that passes through the maximum q with the highest persistence (excluding
v∞). Since π actually consists of two lowest paths (from source to q, and from q to sink),
π has the form of a path π′ with a special vertex v from which there is a path to q and
back to v (Lemma 4). We now subdivide G as follows. Let c be the MS-cell containing
q, and let u1 and u2 be the first and last vertices of π that are on the boundary of c,
respectively (see Fig. 4). Furthermore, let πcw and πccw be the paths between u1 and u2
along the boundary of c in clockwise and counterclockwise direction, respectively. We can
now obtain the path πi as the concatenation of the subpath of π from σ to u1, the path
πccw, and the subpath of π from u2 to τ . Similarly, we can obtain πi+1 by replacing πccw
by πcw in πi. If u1 = u2, then either πi or πi+1 may backtrack from u1. In that case we
can replace the respective path with π′. The paths πi and πi+1 subdivide G into three
parts (see Fig. 5): D1 = D(πi, π−∂M), D2 = D(πi+1, πi), and D3 = D(π+

∂M , πi+1). Since
D2 contains only one MS-cell, we recurse only in D1 and D3 to obtain S1 and S3. The
final striation then consists of S = {S1, πi+1, πi,S3}. During recursive calls we do not
recompute the persistence of maxima, but use the persistence computed initially.

Hybrid. We first compute the lowest path π from source to sink. Next we pick the maximum
q with the highest persistence among all maxima for which π contains an MS-edge on the
boundary of the corresponding MS-cell. This heuristic then proceeds in the same way as
the highest persistence first heuristic, using the lowest path through q.

It is easy to verify that all heuristics produce a striation and that this striation includes the
lowest path from source to sink (none of the chosen paths can cross the lowest path). The
complexity of the striation – the summed complexities of its paths – is O(nm) in all cases,
where m is the number of local maxima. The first heuristic may seem the most natural.
However, lowest paths computed in recursive steps will often stay close to the original lowest
path and differ only in bars with low persistence. It may make more sense to deviate first
in the bar with highest persistence, as this may lead directly to a path that is δ-dissimilar
to the lowest path. This is what the second heuristic is designed for. However, the lowest
path through the maximum with highest persistence might require a long backtracking path
to reach this maximum. This will force many paths to go around possibly the wrong side
of a bar. Note that, in a sense, this problem is dual to the problem of the first heuristic.
The final heuristic, a hybrid of the first two, tries to alleviate this problem by requiring the
chosen maximum to be close to the lowest path.

5 Sand function

Before we can compute a representative δ-network from a striation, we need to define the
sand function and show how to compute it for two paths. Let πi and πj (i < j) be two
paths in the striation. To compute d(πi, πj) we first need to specify a monotone isotopy
η between πi and πj . For consistency, we require η to be monotone with respect to the
striation. An isotopy η is striation monotone with respect to a striation S = {π0, . . . , πr}
if for every k (i ≤ k ≤ j) there exists a tk such that η(·, t) ⊆ D(πi, πk) for all t ≤ tk and
η(·, t) ⊆ D(πk, πj) for all t ≥ tk. Intuitively, for every path πk in the striation between πi
and πj there must exist a level curve of η that matches πk, and other level curves cannot

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:11

(a) (b) (c)

ζ(p, t)

h(η(p, t))

t

Figure 6 The area of sand (shaded) above curve ζ(p, ·) (dashed), where ζ is minimizing in the
(a) water level model, (b) water flow model, (c) symmetric flow model.

cross πk. Similarly, a path f : [0, 1]→M with f(0) ∈ πi and f(1) ∈ πj is striation monotone
with respect to a striation S = {π0, . . . , πr} if for every k (i ≤ k ≤ j) there exist a tk such
that f(t) ∈ D(πi, πk) for t ≤ tk and f(t) ∈ D(πk, πj) for t ≥ tk. Note that every matching
curve η(p, ·) of a striation monotone isotopy η is striation monotone.

We now define the sand function along a matching curve η(p, t) of the isotopy (for some
fixed p) between πi and πj . This function can then be extended to a sand function d(πi, πj)
from πi to πj as described in Section 2. We consider three different models (see Fig. 6):

Water level model. This sand function simply measures the amount of sand above h(η(p, 0)).
Intuitively, the sand function measures the minimum amount of sand that needs to be
removed such that πi and πj merge if the water level is at the height of πi. Formally, we
set ζ(p, t) = h(η(p, 0)).

Water flow model. This sand function measures the amount of sand that needs to be
removed such that the function h(η(p, ·)) becomes non-increasing. Formally, we set
ζ(p, t) = mint′≤t h(η(p, t′)).

Symmetric flow model. This sand function measures the amount of sand that needs to be re-
moved such that h(η(p, t)) is unimodal. Formally, we set ζ(p, t) = max(mint′≤t h(η(p, t′)),
mint′≥t h(η(p, t′))).

Note that the sand functions in the water level model and the water flow model are not
symmetric, whereas the sand function in the symmetric flow model is symmetric. In general
we do not assume that the sand function is symmetric.

Finally, we need to compute the isotopy η between two paths πi and πj . In general
we define the sand function as d(πi, πj) = infη vol(Σζ

η), where ζ is defined by the model as
described above. Below we describe how to compute d(πi, πj) only for the water flow model,
but it is straightforward to extend the same approach to the other models.

Following the definition of the water flow model, we say that πi is similar to πj if there
exists a striation monotone isotopy η such that all matching curves are non-increasing in
h. Note that d(πi, πj) = 0 if πi is similar to πj . To be able to argue the correctness of our
computation, we introduce a different but related definition. We say that πi is pseudo-similar
to πj if, for every point q in D(πi, πj), there exists a point p ∈ πi and a striation monotone
path π from p to q such that π is non-increasing in h. Omitted proofs can be found in the
full version of the paper.

I Lemma 5. If πi is pseudo-similar to πj, then d(πi, πj) = 0.

Computing the sand function. We now show how to compute d(πi, πj) efficiently in the
water flow model. The algorithm can operate directly on the MS-complex. First consider
two consecutive paths πi and πi+1 in the striation. Let B(πi, πi+1) and T (πi, πi+1) be the
sets of critical points that are bounding the MS-cell ci between πi and πi+1 and are on πi

SoCG 2017

48:12 Computing Representative Networks for Braided Rivers

and πi+1, respectively. Now let h∗ be the maximum height among all points in B(πi, πi+1)
and assign h∗ to ci. We claim that the volume of sand in ci above h∗ equals d(πi, πi+1).
For non-consecutive paths πi and πj , we need to propagate the heights. After assigning h∗
to ci, we also lower the height of all points in T (πi, πi+1) to h∗ (points with lower height
than h∗ keep their height). We continue the propagation until we reach πj . In case there is
a one-dimensional feature between two consecutive paths, then we also need to propagate
the height over this one-dimensional feature separately from propagating over MS-cells.
However, note that one-dimensional features do not add any volume to the sand function.
This process assigns certain height values h∗k to each of the MS-cells ck between πi and πj ,
and d(πi, πj) =

∑j−1
k=i vol(ck, h∗k), where vol(ck, h∗k) is the volume of sand in ck above h∗k.

I Lemma 6. If D(πi, πj) is altered by lowering every MS-cell ck in D(πi, πj) to h∗k, then πi
is pseudo-similar to πj.

I Lemma 7. For any two paths πi and πj in the striation d(πi, πj) ≥
∑j−1
k=i vol(ck, h∗k).

Proof. For the sake of contradiction, assume that we can make πi similar to πj by removing
less than

∑j−1
k=i vol(ck, h∗k) volume of sand from D(πi, πj). By Lemma 5 we can then also

make πi pseudo-similar to πj by removing the same volume of sand. Now there must be some
point q in some MS-cell ck (if q is on an MS-edge, then let k be as small as possible) that has
height higher than h∗k in the altered D(πi, πj). We now show by induction on k that there is
no striation monotone non-decreasing path from q to πi, refuting that πi is pseudo-similar
to πj . If k = i, then any non-decreasing path from q to πi must end at some point q′ on
the boundary of ci. But since the height of q′ can be at most the maximum height of all
points in B(πi, πi+1), which is h∗i , this is not possible. If k > i, then any non-decreasing path
from q to πi must hit πk at some point q′ at a height above h∗k. If q′ ∈ πi, then there must
exist a point among B(πk, πk+1) that is on πi and has height above h∗k. However, this is not
possible by construction. Otherwise, q′ lies on some MS-cell cl with l < k. By construction
h∗l ≤ h∗k and thus q′ has height higher than h∗l . The result now follows by induction. J

Lemma 6 and Lemma 7 prove that we can compute d(πi, πj) as
∑j−1
k=i vol(ck, h∗k). To compute

the values h∗k we simply need to propagate the height values on the MS-complex by following
the striation. To compute vol(ck, x) efficiently for some height x, we can preprocess each
MS-cell. Note that vol(ck, x) is a monotone function of O(nk) complexity, where nk is the
number of vertices in ck. After computing this function in O(nk lognk) time using a plane
sweep, we can query vol(ck, x) for any height x in O(lognk) time. The total preprocessing
time is O(n logn), after which the sand function from any πi to any πj can be determined in
O(|i− j| logn) = O(m logn) time.

To compute the sand functions for other models, we only need slight modifications. For
the water level model we need the following modification: when we propagate a height h∗k to
all points in T (πi, πi+1), we also update heights lower than h∗k to h∗k. The symmetric flow
model requires the propagation in both directions, that is from πi to πj and from πj to πi.
The height assigned to an MS-cell is then the maximum height assigned by any direction of
the propagation. The correctness proofs are very similar to those of the water flow model.

6 Representative network

To obtain our representative network, we sort the O(m) paths of our striation S = {π0, . . . , πr}
based on lexicographic height. Each path πi contains O(n) edges. We preprocess each path
in O(n logn) time to compute its height profile function [21]. After this, we can compare

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:13

Figure 7 A numerically modeled river, the Morse-Smale complex overlaid, and two representative
δ-networks for two different values of δ.

the lexicographic heights of two striation paths in O(n) time. Hence, sorting the paths
by lexicographic height takes O(mn logn + mn logm) = O(mn logn) time. By our non-
degeneracy assumptions, all paths have different lexicographic height. Assume S is the sorted
set of paths.

To compute the representative network, we initialize the representative network as an
empty set R of paths. We iterate over the paths in S in order of increasing lexicographic
height, and we add a path π to R if each path π′ already in R has d(π, π′) ≥ δ. This
can be tested in O(m logn) time by testing only the two paths of R in between which π
would be inserted. Overall, this yields an O(mn logn) running time given the striation. By
construction we obtain a representative δ-network, that is, no better δ-network exists.

7 Experimental results

We performed experiments on two data sets: a numerically modeled river and a real-world
braided river. To do so we implemented the highest persistence first heuristic for the striation
and the sand function in the water flow model. The numerically modeled river was created
by a state-of-the-art model suite that is used in the civil engineering and fluvial and coastal
morphology disciplines worldwide, indicating its usefulness and quality [23]. The real-world
case is an iconic braided gravel river in New Zealand called Waimakariri, one of the largest
in the world of this type, that was the first with spatial cover of the bed through remote
sensing techniques [11].

Figure 7 shows our results for the numerically modeled river. The representative network
is capturing most channels of the river. Channels that are added in the denser network cross
big bars and are in most cases located in small tie-channels that formed at water levels when
water was spilling over the bar. These are essential in the natural braiding dynamics in that
these can be the locations where bars split during floods. Furthermore, the sparser network
also avoids deep short channels which are connected on one or no end. Some of these formed
as filling lows between two merging bars rather than active channels, and the fact that they
only partake in the dense network when connected at small tie-channels is evidence that the
network method represents the river channel network in these important aspects.

Figure 8 shows a representative network for the Waimakariri. This complex topography
has many large remnant channels that became inactive while smaller channels may be

SoCG 2017

48:14 Computing Representative Networks for Braided Rivers

Figure 8 Representative network for the Waimakariri river (same area as shown in Fig. 1).

Figure 9 Mountains splitting the river.

growing. The network captures some smaller channels and leaves out the unconnected
remnant channels. The network sometimes loops to flow upstream, meaning that such
channels should either not be connected or that minor tie-channels were missed, which can
now for the first time be investigated through comparison of sparser and denser networks.

8 Discussion and future work

The representative δ-networks computed using our approach already look very promising,
even though we have implemented only one striation heuristic and only one sand function.
The next step is a thorough testing on different river bed terrain data using each combination
of a striation and a sand function, and with different values of δ. The output can be further
assessed by geomorphologists, for example by comparing the computed networks with the
corresponding actual river networks at different water levels. Other striations and other sand
functions can also be considered, and may give better results in certain scenarios.

In particular, our striation heuristic may give counter-intuitive results when M includes
the banks of the river. To illustrate this, consider the two high mountains on both sides
of the river banks in Figure 9. It can occur that such mountains are the most significant
maxima, and cause the majority of the river to go over the banks, instead of between the
mountains. For this reason, we may want to base the significance of maxima also on their
distance to the main channel of the river. Our hybrid heuristic already tries to address this
issue, but a more refined approach may be needed.

In the future we also want to consider time-varying data on rivers, both as a tool to
improve the results by eliminating features that do not persist over time, and as a way to
analyze how the river structure evolves over time. However, to perform such an analysis
efficiently, we may need to simplify our model.

References
1 Pankaj Agarwal, Mark de Berg, Prosenjit Bose, Katrin Dobrint, Marc van Kreveld, Mark

Overmars, Marko de Groot, Thomas Roos, Jack Snoeyink, and Sidi Yu. The complexity

M. Kleinhans, M. van Kreveld, T. Ophelders, W. Sonke, B. Speckmann, and K. Verbeek 48:15

of rivers in triangulated terrains. In Proc. 8th Canadian Conference on Computational
Geometry CCCG’96, pages 325–330, 1996.

2 Lars Arge, Jeffrey S. Chase, Patrick Halpin, Laura Toma, Jeffrey S. Vitter, Dean Urban,
and Rajiv Wickremesinghe. Efficient flow computation on massive grid terrain datasets.
GeoInformatica, 7(4):283–313, 2003.

3 Peter Ashmore. Channel morphology and bed load pulses in braided, gravel-bed streams.
Geografiska Annaler: Series A, Physical Geography, 73(1):37–52, 1991.

4 Mark de Berg, Otfried Cheong, Herman Haverkort, Jung-Gun Lim, and Laura Toma. The
complexity of flow on fat terrains and its I/O-efficient computation. Computational Geom-
etry, 43(4):331–356, 2010.

5 Mark de Berg and Constantinos Tsirogiannis. Exact and approximate computations of
watersheds on triangulated terrains. In Proc. 19th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages 74–83. ACM, 2011.

6 Walter Bertoldi, Luca Zanoni, and Marco Tubino. Planform dynamics of braided streams.
Earth Surface Processes and Landforms, 34:547–557, 2009.

7 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Computational Geometry, 24(2):75–94, 2003.

8 Yi-Jen Chiang, Tobias Lenz, Xiang Lu, and Günter Rote. Simple and optimal output-
sensitive construction of contour trees using monotone paths. Computational Geometry,
30(2):165–195, 2005.

9 Wout M. van Dijk, Wietse I. van de Lageweg, and Maarten G. Kleinhans. Formation of a
cohesive floodplain in a dynamic experimental meandering river. Earth Surface Processes
and Landforms, 38, 2013.

10 Herbert Edelsbrunner, John Harer, and Afra Zomorodian. Hierarchical Morse complexes
for piecewise linear 2-manifolds. In Proc. 17th Annual ACM Symposium on Computational
Geometry, pages 70–79, 2001.

11 D. Murray Hicks, Maurice J. Duncan, and Jeremy M. Walsh. New views of the morpho-
dynamics of large braided rivers from high-resolution topographic surveys and time-lapse
video. In The Structure, Function and Management Implications of Fluvial Sedimentary
Systems (Proceedings), pages 373–380. IAHS Publ. no. 276, 2002.

12 Alan D. Howard, Mary E. Keetch, and C. Linwood Vincent. Topological and geometrical
properties of braided streams. Water Resources Research, 6(6), 1970.

13 Maarten G. Kleinhans. Flow discharge and sediment transport models for estimating a min-
imum timescale of hydrological activity and channel and delta formation on Mars. Journal
of Geophysical Research, 110, 2005.

14 Maarten G. Kleinhans, Robert I. Ferguson, Stuart N. Lane, and Richard J. Hardy. Splitting
rivers at their seams: bifurcations and avulsion. Earth Surface Processes and Landforms,
38(1):47–61, 2013.

15 Thierry de Kok, Marc van Kreveld, and Maarten Löffler. Generating realistic terrains with
higher-order Delaunay triangulations. Computational Geometry, 36(1):52–65, 2007.

16 Marc van Kreveld and Rodrigo I. Silveira. Embedding rivers in triangulated irregular
networks with linear programming. International Journal of Geographical Information
Science, 25(4):615–631, 2011.

17 Yuanxin Liu and Jack Snoeyink. Flooding triangulated terrain. In Developments in Spatial
Data Handling, pages 137–148. Springer, 2005.

18 Wouter A. Marra, Maarten G. Kleinhans, and Elisabeth A. Addink. Network concepts
to describe channel importance and change in multichannel systems: test results for the
Jamuna river, Bangladesh. Earth Surface Processes and Landforms, 39(6):766–778, 2014.

19 Michael McAllister and Jack Snoeyink. Extracting consistent watersheds from digital river
and elevation data. In Proc. ASPRS/ACSM Annu. Conf, volume 138, 1999.

SoCG 2017

48:16 Computing Representative Networks for Braided Rivers

20 Gary Parker. On the cause and characteristic scales of meandering and braiding in rivers.
Journal of Fluid Mechanics, 76(3):457–480, 1976.

21 Günter Rote. Lexicographic Fréchet matchings. In Abstracts of the 30th European Workshop
on Computational Geometry, 2014.

22 Filip Schuurman, Maarten G. Kleinhans, and Hans Middelkoop. Network response to
disturbances in large sand-bed braided rivers. Earth Surface Dynamics, 4(1):25–45, 2016.

23 Filip Schuurman, Wouter A. Marra, and Maarten G. Kleinhans. Physics-based modeling
of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity. Journal
of Geophysical Research: Earth Surface, 118(4):2509–2527, 2013.

24 Nithin Shivashankar, Senthilnathan M, and Vijay Natarajan. Parallel computation of 2D
Morse-Smale complexes. IEEE Transactions on Visualization and Computer Graphics,
18(10):1757–1770, 2012.

25 Rodrigo I. Silveira and René van Oostrum. Flooding countries and destroying dams. In-
ternational Journal of Computational Geometry & Applications, 20(3):361–380, 2010.

26 Sidi Yu, Marc van Kreveld, and Jack Snoeyink. Drainage queries in TINs: from local to
global and back again. In Advances in GIS Research II: Proc. 7th International Symposium
on Spatial Data Handling, pages 829–842, 1997.

A Proof of the Orbit Conjecture for Flipping
Edge-Labelled Triangulations
Anna Lubiw1, Zuzana Masárová2, and Uli Wagner3

1 School of Computer Science, University of Waterloo, Waterloo, ON, Canada
alubiw@uwaterloo.ca

2 IST Austria, Klosterneuburg, Austria
zuzana.masarova@ist.ac.at

3 IST Austria, Klosterneuburg, Austria
uli@ist.ac.at

Abstract
Given a triangulation of a point set in the plane, a flip deletes an edge e whose removal leaves
a convex quadrilateral, and replaces e by the opposite diagonal of the quadrilateral. It is well
known that any triangulation of a point set can be reconfigured to any other triangulation by
some sequence of flips. We explore this question in the setting where each edge of a triangulation
has a label, and a flip transfers the label of the removed edge to the new edge. It is not true that
every labelled triangulation of a point set can be reconfigured to every other labelled triangulation
via a sequence of flips, but we characterize when this is possible. There is an obvious necessary
condition: for each label l, if edge e has label l in the first triangulation and edge f has label l
in the second triangulation, then there must be some sequence of flips that moves label l from
e to f , ignoring all other labels. Bose, Lubiw, Pathak and Verdonschot formulated the Orbit
Conjecture, which states that this necessary condition is also sufficient, i.e. that all labels can be
simultaneously mapped to their destination if and only if each label individually can be mapped
to its destination. We prove this conjecture. Furthermore, we give a polynomial-time algorithm
to find a sequence of flips to reconfigure one labelled triangulation to another, if such a sequence
exists, and we prove an upper bound of O(n7) on the length of the flip sequence.

Our proof uses the topological result that the sets of pairwise non-crossing edges on a planar
point set form a simplicial complex that is homeomorphic to a high-dimensional ball (this follows
from a result of Orden and Santos; we give a different proof based on a shelling argument). The
dual cell complex of this simplicial ball, called the flip complex, has the usual flip graph as its
1-skeleton. We use properties of the 2-skeleton of the flip complex to prove the Orbit Conjecture.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases triangulations, reconfiguration, flip, constrained triangulations, Delaunay
triangulation, shellability, piecewise linear balls

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.49

1 Introduction

The flip operation is fundamental to the study of triangulations of point sets in the plane. A
flip removes one edge and replaces it by the opposite diagonal of the resulting quadrilateral,
so long as that quadrilateral is convex. Lawson [18] proved the foundational result that any
triangulation can be transformed into any other triangulation of the same point set via a
sequence of flips. His second proof of this result [19] used the approach that is more widely
known – showing that any triangulation can be flipped to the Delaunay triangulation, which
then acts as a “hub” through which we can flip any triangulation to any other.

© Anna Lubiw, Zuzana Masárová, and Uli Wagner;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 49; pp. 49:1–49:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

The result that any triangulation can be flipped to any other is captured succinctly by
saying that the flip graph is connected, where the flip graph has a vertex for each triangulation
of the given point set, and an edge when two triangulations differ by one flip. The special case
of a point set in convex position has been very thoroughly studied. In this case triangulations
correspond to binary trees, and a flip corresponds to a rotation. The flip graph in this case
is the 1-skeleton of a polyhedron called the associahedron.

The use of flips to reconfigure triangulations is relevant to the study of associahedra [28]
and mixing [22]. Flips are also important in practice for mesh generation and for finding
triangulations that optimize certain quality measures [3, 13]. The survey by Bose and
Hurtado [6] discusses these and many other aspects of flips.

Despite the extensive work on flips, it is only recently that the question of where edges
go under flip operations has been investigated. This can be formalized by attaching a label
to each edge in a triangulation. Throughout, we fix a set P of n points in general position,
and we identify triangulations with their edge sets (i.e., a triangulation of P is a maximal
set T of pairwise non-crossing edges spanned by P). A labelled triangulation T of P is a pair
(T, `) where T is a triangulation of P and ` is a labelling function that maps the edges of T
one-to-one onto the labels 1, 2, . . . , tP . Here tP is the number of edges in any triangulation
of P . When we perform a flip operation on T , the label of the removed edge is transferred
to the new edge.

We can now capture “where an edge goes” under flip operations. We say that edges e
and f lie in the same orbit if we can attach label l to e in some triangulation and apply
some sequence of flips to arrive at a triangulation in which edge f has label l. The orbits are
exactly the connected components of a graph that Eppstein [14] called the quadrilateral graph
– this graph has a vertex for every one of the possible

(
n
2
)
edges formed by point set P , with e

and f being adjacent if they cross and their four endpoints form a convex quadrilateral that
is empty of other points. In particular, this implies that there is a polynomial-time algorithm
to find the orbits. The orbits can be very different depending on P . For a point set in convex
position, all the non-convex hull edges are in a single orbit [7], but at the other extreme, a
point set with no empty convex pentagon has the property that in any triangulation, the
edges are all in distinct orbits [14].

Orbits tell us where each individual edge label can go, but not how they combine. The
main question we address in this paper is: when is there a sequence of flips to reconfigure
one labelled triangulation of point set P to another labelled triangulation of P? A necessary
condition is that, for each label l, the edges with label l in the two triangulations must lie in
the same orbit. Bose et al. [7] conjectured that this condition is also sufficient. As our main
result we prove this “Orbit Conjecture,” and strengthen it by providing a polynomial-time
algorithm and a bound on the length of the flip sequence.

I Theorem 1 (Orbit Theorem). Given two edge-labelled triangulations T1 and T2 of a point
set, there is a flip sequence that transforms one into the other if and only if for every label
l, the edges of T1 and T2 having label l belong to the same orbit. Furthermore, there is a
polynomial-time algorithm that tests whether the condition is satisfied, and if it is, computes
a flip sequence of length O(n7) to transform T1 to T2.

The orbit theorem is stated for triangulations T1 and T2 that may have different edge
sets, but – since we know how to use flips to change the edge set – the crux of the matter is
the special case where the two triangulations have the same edge set T but different label
functions `1 and `2. In other words, we are given a permutation of the edge labels of a
triangulation, and we seek a flip sequence to realize the permutation. Furthermore, since
every permutation is a composition of transpositions, we concentrate first on finding a flip

A. Lubiw, Z. Masárová, and U. Wagner 49:3

a b
a

b
a

b

a

b

a
b ab

Figure 1 Five flips swap the edge labels (a and b) of two diagonals of a convex pentagon. In the
flip graph these five flips form a 5-cycle.

sequence to transpose (or “swap”) two labels. This idea of reducing the problem to the case
of swaps appears in [7].

One insight to be gained from previous work is that empty convex pentagons in the
point set seem to be crucial for swapping edge labels. Certainly, an empty convex pentagon
provides a label swap – Figure 1 shows how the edge labels of two diagonals of an empty
convex pentagon can be swapped by a sequence of five flips. In the other direction, the
special cases of the orbit theorem that were proved by Bose et al. [7] for convex and spiral
polygons involved moving pairs of labels into empty convex pentagons and swapping them
there. Furthermore, Eppstein [14] showed that in a triangulation of a point set with no
empty convex pentagons, no permutations of edge labels are possible via flips.

The foundation of our proof is to make this intuition about empty convex pentagons
rigorous. In particular, we show that the only elementary operation that is needed for label
permutation is to transpose two labels by moving them into an empty convex pentagon and
swapping them there. More formally, given a labelled triangulation T = (T , `), an elementary
swap of edges e and f in T is a transposition of the labels of e and f that is accomplished as
follows: perform a sequence, σ, of flips on T to get to a triangulation T ′ in which the labels
`(e) and `(f) are attached to the two diagonals of an empty convex pentagon; then perform
the 5-flip sequence, π, that transposes these two labels; then perform the sequence σ−1. We
say that the sequence σπσ−1 realizes the elementary swap. Observe that the effect of σπσ−1

on T is to transpose the labels of e and f while leaving all other labels unchanged. We will
prove that an elementary swap can always be realized by a flip sequence of length O(n6),
and furthermore, that such a sequence can be found in polynomial time.

One of our main results is the following, from which the Orbit Theorem can readily be
derived:

I Theorem 2. In a labelled triangulation T , two edges are in the same orbit if and only if
there is an elementary swap between them.

In order to prove Theorem 2, we use the following key result:

I Theorem 3 (Elementary Swap Theorem). Given a labelled triangulation T , any permutation
of the labels that can be realized by a sequence of flips can be realized by a sequence of elementary
swaps.

This theorem is proved using topological properties of the flip complex, whose 1-skeleton
is the flip graph. A result of Orden and Santos [24] can be used to show that the flip complex
has the topology of a high-dimensional ball1. We give an alternate proof of this. We use the
2-skeleton of the flip complex, and show that its 2-cells correspond to cycles in the flip graph
of two types: quadrilaterals, which do not permute labels; and pentagons, which correspond
precisely to the 5-cycles of flips shown in Figure 1. Then we prove the Elementary Swap

1 Technically speaking, the flip complex is homotopy equivalent to a ball.

SoCG 2017

49:4 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

Theorem by translating it into a result about decomposing closed walks in the flip graph
into simpler elementary walks.

Although there is a rich literature on associahedra and on cell complexes associated
with triangulations of point sets, we are not aware of any previous combinatorial results on
triangulations that require topological proofs, as our proof of the Orbit Theorem seems to.

We now briefly describe the rest of our method after the Elementary Swap Theorem is
established. In order to prove Theorem 2, we need one more ingredient about the structure
of elementary swaps: we will show that any sequence of elementary swaps that moves the
label of edge e to edge f can be “completed” to get the label of f back to e, and that, in
fact, the resulting sequence provides an elementary swap of e and f .

The high-level idea of our proof of Theorem 2 is then as follows: From our hypothesis
that two edges e and f lie in the same orbit, we show that there is a sequence of flips that
permutes the labels of triangulation T , taking the label of e to f . The Elementary Swap
Theorem then gives us a sequence of elementary swaps to do the same (this is the significant
step of the proof). Finally, from the structure of elementary swaps we can then find an
elementary swap of e and f .

Our paper is organized as follows. In Section 3 we prove the Elementary Swap Theorem
using topological methods. In Section 4 we prove the properties of elementary swaps that
were mentioned above. In top-down fashion, we begin in Section 2 by expanding on the
high-level ideas, and proving the Orbit Theorem assuming the results in the later sections.

1.1 Background
The diameter of the flip graph of a point set gives the worst-case number of flips required to
reconfigure one triangulation to another. For unlabelled triangulations, the diameter of the
flip graph is known to be Θ(n2), with the upper bound proved by Lawson [18] and the lower
bound proved by Hurtado et al. [16]. For the special case of points in convex position, there
is an exact bound of 2n− 10 [28, 26]. The problem of finding the distance in the flip graph
between two given triangulations of a point set is NP-hard [20], and even APX-hard [25].
The problem remains NP-hard for triangulations of a polygon [1], but the complexity status
is open for the case of points in convex position. For further results on flips, see the survey
by Bose and Hurtado [6].

The labelled flip graph of a point set has a vertex for every labelled triangulation of
the point set and an edge when two labelled triangulations differ by a flip. Bose et al. [7]
formulated the Orbit Conjecture and proved it for the special case of triangulations of any
convex polygon, showing that the labelled flip graph has a single connected component
(ignoring convex hull edges, which cannot flip), and giving a tight bound of Θ(n logn) on
its diameter. Araujo-Pardo et al. [2] independently proved the Orbit Conjecture for convex
polygons, and introduced “colorful associahedra” which generalize associahedra to the setting
of labelled (or coloured) triangulations. Bose et al. also proved the Orbit Conjecture for
spiral polygons. In this case the labelled flip graph may be disconnected but each connected
component has diameter O(n2), which is a tight bound.

The best known lower bound on the diameter of a connected component of the labelled
flip graph for a point set is Ω(n3) [7]. There is a large gap between this lower bound and our
upper bound of O(n7).

The Orbit Theorem holds for combinatorial triangulations [7], and for pseudotriangula-
tions [8]. In both these cases there is a single orbit, so the labelled flip graph is connected.
There are also some related results using variants of the flip operation, for example, Cano et
al. [9] reconfigured edge-labelled non-maximal plane graphs by “rotating” edges around one

A. Lubiw, Z. Masárová, and U. Wagner 49:5

of their endpoints; again there is a single orbit. A related result where there are multiple
orbits is an analogue of the Orbit Theorem for labelled (or “ordered”) bases of a matroid –
one labelled basis can be turned into another labelled basis via basis exchange steps if and
only if elements with the same label lie in the same connected component of the matroid [21].

For more general problems of reconfiguring one structure to another via elementary steps,
see [17, 30].

1.2 Preliminaries and Definitions
Most definitions were given above, but we fill in a few missing details. Throughout, we
assume a set of n point in general position in the plane. A point set determines

(
n
2
)
edges

which are the line segments between pairs of points. Two edges cross if they intersect in a
point that is interior to at least one of the two edges. An empty convex k-gon is a subset of k
points that forms a convex polygon with no point of P in its interior. A diagonal of a convex
polygon is an edge joining two points that are not consecutive on the polygon boundary.

Several times in our proofs we will use the result that if two unlabelled triangulations of
the same point set have a subset, S, of constrained edges in common, then there is a sequence
of flips that transforms one triangulation into the other, without ever flipping any edge of S,
i.e. the edges in S remain fixed throughout the flip sequence. This was first proved by Dyn
et al. [12], and can alternatively be proved using constrained Delaunay triangulations [3].

2 Proof of the Orbit Theorem

In this section we prove the Orbit Theorem assuming the Elementary Swap Theorem
(Theorem 3, proved in Section 3), and assuming the following two results on elementary
swaps. The first result shows that every elementary swap can be realized by a relatively
short flip sequence that can be found efficiently, and the second result gives us a way to
combine elementary swaps so that, after moving e’s label to f , we can get f ’s label back to
e. These lemmas will be proved in Section 4.

I Lemma 4. If there is an elementary swap between two edges in a triangulation T then
there is a flip sequence of length O(n6) to realize the elementary swap, and, furthermore, this
sequence can be found in polynomial time.

I Lemma 5. Let T be a labelled triangulation containing two edges e and f . If there is a
sequence of elementary swaps on T that takes the label of edge e to edge f , then there is an
elementary swap of e and f in T .

We prove the Orbit Theorem in stages, first Theorem 2 (the case of swapping two labels
in a triangulation), then the more general case of permuting edge labels in a triangulation,
and finally the full result.

Proof of Theorem 2. The “if” direction is clear, so we address the “only if” direction.
Suppose that T = (T, `) is the given edge-labelled triangulation and that e and f are edges
of T that are in the same orbit. Then there is a sequence of flips that changes T to an
edge-labelled triangulation T ′ = (T ′, `′) where T ′ contains f and `′(f) = `(e). We now apply
the result that any constrained triangulation of a point set can be flipped to any other. Fix
edge f and flip T ′ to T . Applying the same flip sequence to the labelled triangulation T ′
yields an edge-labelling of triangulation T in which edge f has the label `(e). Thus we have
a sequence of flips that permutes the labels of T and moves the label of e to f .

SoCG 2017

49:6 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

By the Elementary Swap Theorem (Theorem 3) there is a sequence of elementary swaps
whose effect is to move the label of edge e to edge f . By Lemma 5 there is an elementary
swap of e and f in T . J

I Theorem 6 (Edge Label Permutation Theorem). Let T be a triangulation of a point set
with two edge-labellings `1 and `2 such that for each label l, the edge with label l in `1 and the
edge with label l in `2 are in the same orbit. Then there is a sequence of O(n) elementary
swaps to transform the first labelling to the second. Such a sequence can be realized via a
sequence of O(n7) flips, which can be found in polynomial time.

Proof. The idea is to effect the permutation as a sequence of swaps. If every edge has the
same label in `1 and `2 we are done. So consider a label l that is attached to a different edge
in `1 and in `2. Suppose `1(e) = l and `2(f) = l, with e 6= f . By hypothesis, e and f are
in the same orbit. By Theorem 2 there is an elementary swap of e and f in (T, `1) which
results in a new labelling `′1 that matches `2 in one more edge (namely the edge f) and still
has the property that for every label l, the edge with label l in `′1 and the edge with label l
in `2 are in the same orbit. Thus we can continue this process until all edge labels match
those of `2. In total we use O(n) elementary swaps. These can be realized via a sequence of
O(n7) flips by Lemma 4. Furthermore, the sequence can be found in polynomial time. J

We can now prove the Orbit Theorem.

Proof of Theorem 1. The necessity of the condition is clear, and we can test it in polynomial
time by finding all the orbits, so we address sufficiency. The idea is to reconfigure T1 to have
the same underlying unlabelled triangulation as T2 and then apply the previous theorem.
The details are as follows. Let T1 = (T1, `1) and T2 = (T2, `2). There is a sequence σ of O(n2)
flips to reconfigure the unlabelled triangulation T1 to T2, and σ can be found in polynomial
time. Applying σ to the labelled triangulation T1 yields a labelled triangulation T3 = (T2, `3).
Note that for every label l, the edges of T1 and T3 having label l belong to the same orbit.
This is because flips preserve orbits (by definition of orbits). Thus by Theorem 6 there is a
flip sequence τ that reconfigures T3 to T2, and this flip sequence can be found in polynomial
time and has length O(n7). The concatenation of the two flip sequences, στ , reconfigures T1
to T2, has length O(n7), and can be found in polynomial time. J

3 Proof of the Elementary Swap Theorem

As mentioned in the introduction, we prove the Elementary Swap Theorem using topological
properties of the flip complex, whose 1-skeleton (i.e. vertices and edges) is the flip graph. In
fact, we will only need the 2-cells of the flip complex, not any higher-dimensional structure.
We will show that 2-cells of the flip complex correspond to 4- and 5-cycles in the flip graph.

The basic idea is as follows. We will translate the Elementary Swap Theorem to a
statement about walks in the flip graph. The hypothesis of the Elementary Swap Theorem is
that we have a sequence of flips that permutes the edge labels of a triangulation T . In the
flip graph, this sequence corresponds to a closed walk w that starts and ends at triangulation
T . Our main topological result is that the flip complex has a trivial fundamental group,
which will imply that such a closed walk w can be decomposed into simpler elementary
walks. Each elementary walk starts at T , traces a path in the flip graph, then traverses the
edges of a 2-cell, then retraces the path back to T . The edge-label permutation induced
by an elementary walk depends on the 2-cell. If the 2-cell is a 4-cycle, the permutation
is the identity; and if the 2-cell is a 5-cycle, then the permutation is a transposition, and

A. Lubiw, Z. Masárová, and U. Wagner 49:7

fefe

(a) (b)

Figure 2 (a) Triangulations that differ in the diagonals of two internally disjoint quadrilaterals
form an elementary 4-cycle in the flip graph. The cycle does not permute the labels (shown as red
and blue). (b) Triangulations that differ in the diagonals of a convex pentagon form an elementary
5-cycle in the flip graph. This cycle permutes labels as shown in Figure 1.

the elementary walk corresponds to an elementary swap. Altogether, this implies that the
permutation induced by the closed walk w can be expressed as a composition of elementary
swaps, which proves the Elementary Swap Theorem.

Before stating our main topological theorem, we first define the special cycles that will
be shown to correspond to 2-cells of the flip graph. In the same way that an edge of the flip
complex corresponds to two triangulations that differ on one edge, every 2-cell of the flip
complex corresponds to a set of triangulations that differ on two edges. Define an elementary
4-cycle to be a cycle of the flip graph obtained in the following way. Take a triangulation T
and two edges e, f ∈ T whose removal leaves two internally disjoint convex quadrilaterals in
T . Each quadrilateral can be triangulated in two ways, which results in four triangulations
that contain F := T \ {e, f}. These four triangulations form a 4-cycle in the flip graph, as
shown in Figure 2(a). Observe that a traversal of the cycle corresponds to a sequence of flips
that returns edge-labels to their original positions.

Define an elementary 5-cycle to be a cycle of the flip graph obtained in the following way.
Take a triangulation T and two edges e, f ∈ T whose removal leaves a convex pentagon in T .
There are five triangulations that contain F := T \ {e, f}, and they form a 5-cycle in the
flip graph, as shown in Figure 2(b). Observe that the sequence of flips around such a cycle
permutes labels of e and f as shown in Figure 1.

Our main topological theorem is the following.

I Theorem 7. Let P be a set of n points in general position in the plane. There is a
high-dimensional cell complex X = X(P), which we call the flip complex, such that:
1. The 1-skeleton of X is the flip graph of P ;
2. There is a one-to-one correspondence between the 2-cells of X and the elementary 4-cycles

and elementary 5-cycles of the flip graph of P ;
3. X has the topology of (i.e., is homotopy equivalent to) a high-dimensional ball; therefore

its fundamental group, π1(X), is trivial.

In what follows, we will use a number of notions from combinatorial topology; some
of these we will recall along the way, but others we will only describe informally or leave
undefined and instead refer the reader to standard textbooks for further background (in

SoCG 2017

49:8 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

particular, we refer the reader to [5, Appendix 4.7] and [15] for background on regular cell
complexes, shellability, and piecewise linear balls and spheres, to [29] for background on the
fundamental group of cell complexes, and to [15, 23] for background on dual complexes; we
will provide more detailed references for specific results below).

Theorem 7 follows from a result of Orden and Santos [24]; we are grateful to F. Santos for
bringing this reference to our attention. In fact, Orden and Santos show something stronger:
There exists a simple polytope Y = Y(P) and a face F of Y such that X can be taken to be
the complement of the star of F in Y.

Before becoming aware of the work of Orden and Santos, we found a different proof of
Theorem 7 that starts out by considering the simplicial complex T = T(P) whose faces
are the sets of pairwise non-crossing edges (line segments) spanned by P . This complex T
is shown to be a shellable simplicial ball (by an argument based on constrained Delaunay
triangulations), and X is then constructed as the dual complex of T. We hope that this
alternative proof of Theorem 7 is of some independent interest and present it in Sections 3.2
and 3.3 below. Before that, in Section 3.1, we show how to derive the Elementary Swap
Theorem from Theorem 7.

3.1 From Topology to the Elementary Swap Theorem
In this section we use Theorem 7 to prove the Elementary Swap Theorem. We begin
by defining elementary walks. A walk in the flip graph is a sequence T0, T1, . . . , Tk of
triangulations (possibly with repetitions) such that Ti−1 and Ti differ by a flip. We will refer
to T0 and Tk as the start and the end of the walk, respectively. A walk is closed if it starts
and ends at the same triangulation. If w1 and w2 are walks such that the end of w1 equals
the start of w2 then we can define their composition w1w2 in the obvious way. Furthermore,
if w = (T = T0, T1, . . . , Tk) is a walk, we will use the notation w−1 = (Tk, Tk−1, . . . , T0) for
the inverse walk.

Fix a triangulation T0. An elementary quadrilateral walk is a closed walk of the form
wzw−1, where z is an elementary 4-cycle in the flip graph, and w is a walk from T0 to
some triangulation on z. An elementary pentagonal walk is defined analogously, with z an
elementary 5-cycle.

It is straightforward to check the effect of these elementary walks on labellings:

I Lemma 8. Let (T0, `) be a labelled triangulation. An elementary quadrilateral walk does
not permute the labels. An elementary pentagonal walk swaps the labels of two edges (e and
f in Figure 2(b)) and leaves all other labels fixed; this corresponds exactly to the notion of
an elementary swap introduced earlier.

Another operation that does not affect the permutation of labels induced by a closed
walk is the following. A spur ww−1 starting and ending at T is an arbitrary walk w starting
at T , immediately followed by the inverse walk. If w1 and w2 are walks in the flip graph
such that w1 ends at a triangulation T and w2 starts there, and if s is a spur at T , then
we say that the walk w1sw2 differs from w1w2 by a spur insertion The inverse operation is
called a spur deletion.

I Lemma 9. If two closed walks w and w′ in the flip graph differ only by a finite number of
spur insertions and deletions then they yield the same permutation of edge labels.

Proof. A flip immediately followed by its inverse flip has no effect on labels. The lemma
follows by induction on the length of a spur and the number of spur insertions and del-
etions. J

A. Lubiw, Z. Masárová, and U. Wagner 49:9

By Lemmas 8 and 9, the Elementary Swap Theorem directly reduces to the following,
which we prove using Theorem 7:

I Proposition 10. Let w be a closed walk in the flip graph starting and ending at T0. Then,
up to a finite number of spur insertions and deletions, w can be written as the composition
of finitely many elementary walks.

Proof. We use the well-known fact that the fundamental group of a cell complex can be
defined combinatorially in terms of closed walks in the 1-skeleton and this definition is
equivalent to the usual topological definition in terms of continuous loops, see [27, Chap. 7]
or [29, Chap. 4]. In particular, in a cell complex with trivial fundamental group any two
closed walks in the 1-skeleton starting at the same vertex are related by a finite number of
spur insertions, deletions and so-called 2-cell relations.

We describe the combinatorial definition of the fundamental group of the flip complex X
in detail. By Theorem 7, the 1-skeleton of X is the flip graph of P . Fix a base triangulation
T0, and, for every triangulation T , fix a walk pT from T0 to T . Given two triangulations
T1, T2 that differ by a flip, we form the closed walk wT1,T2 in the flip graph, called a generating
walk, that goes from T0 to T1 along pT1 , then flips to T2, and then returns to T0 along p−1

T2
.

It is easy to see that, up to a finite number of spur insertions and deletions, every closed
walk starting and ending at T0 can be written as a composition of generating walks.

We say that walks w and w′ are 2-cell related if we can express them as w = w1w2 and
w′ = w1zw2, where z is a closed walk traversing the boundary of a 2-cell (an elementary
cycle) exactly once in either orientation. Notice that w1w2 and w1zz

−1w2 differ only by the
spur zz−1, hence, up to spur insertion and deletion, being 2-cell related is symmetric.

Also, notice the precomposition property: if w and w′ are 2-cell related as above and
if w is precomposed with the closed walk w1zw

−1
1 then the result w′′ = (w1zw

−1
1)w =

w1z(w−1
1 w1)w2 differs from w′ only by the spur w−1

1 w1. By Theorem 7, a boundary of a
2-cell is an elementary 4- or 5-cycle and so the walk w1zw

−1
1 above is an elementary walk.

Two walks in the flip graph are called equivalent if they differ by a finite number of spur
insertion and/or deletions and by applying a finite number of 2-cell relations. It is not hard
to check that this defines an equivalence relation, and the fundamental group π1(X) is given
as the set of equivalence classes of closed walks starting and ending at T0.

By Theorem 7, the fundamental group of the flip complex X is trivial. This translates
into the fact that every closed walk starting and ending at T0 is equivalent to the trivial walk.
By the precomposition property, this means that, up to a finite number of spur insertions
and deletions, every closed walk is a composition of finitely many elementary walks. J

3.2 The Simplicial Complex of Plane Graphs

Let P be a set of n points in general position in the plane. Let E be the set of edges (closed
line segments) spanned by P . Two edges e, f ∈ E are said to be non-crossing if they are
disjoint or if they intersect in a single point of P that is an endpoint of both edges. We say
that a subset F ⊆ E is non-crossing if every pair of distinct edges e, f ∈ F is non-crossing.
If G is non-crossing and F ⊆ G then F is non-crossing as well. Thus, the non-crossing sets
of edges form an abstract simplicial complex

T = T(P) := {F : F ⊆ E,F non-crossing},

which we call the complex of plane graphs on P . We collect some basic properties of T:

SoCG 2017

49:10 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

1. The facets (inclusion-maximal faces) of T are exactly the triangulations of P (every
non-crossing set of edges F ⊆ E can be extended to a triangulation). Thus, the simplicial
complex T is of dimension m− 1, where m is the number of edges in any triangulation of
P , and it is pure, i.e., every face of T is contained in a face of dimension m− 1.

2. Every face F of T of dimension m− 2 is contained in either one or two triangulations. In
the latter case, F corresponds to a flip between these two triangulations.

We will show that the topology of T is particularly simple, namely that T is a homeo-
morphic to an (m− 1)-dimensional ball. Furthermore, there is a combinatorial certificate
(shellability) for this homeomorphism. This implies that the homeomorphism is particularly
nice and that T is a piecewise-linear ball. We refer to [15] and [5, Appendix 4.7] for more
details and further references on shellability and piecewise-linear balls, spheres, and manifolds.
In this extended abstract, we will leave the notion of piecewise-linearity undefined – the only
property that we will need is that it ensures that the construction of the dual cell complex
T
∗ (see Proposition 13 below) is well-behaved.
We recall that a pure d-dimensional simplicial complex is shellable if there exists a total

ordering of its facets F1, F2, · · · , FN (called a shelling order) such that, for every 2 ≤ j ≤ N ,
the intersection of Fj with the simplicial complex generated by the preceding facets2 is pure
of dimension d− 1.

We will need the following result (which appears implicitly in [4], and explicitly in [10];
see [5, Prop. 4.7.22] for a short proof):

I Proposition 11. Suppose K is a finite d-dimensional simplicial complex that is a pseudo-
manifold, i.e., K is pure and every (d− 1)-dimensional face of K is contained in at most two
d-faces. If K is shellable then K is either a piecewise-linear ball or a piecewise-linear sphere.
The former case occurs iff there is at least one (d− 1)-dimensional face that is contained in
only one d-face of K.3

I Theorem 12. T is shellable, and hence a piecewise-linear (m− 1)-dimensional ball.

Proof. We observed earlier that T is a pure (m− 1)-dimensional simplicial complex, and
that every (m− 2)-dimensional face of T is contained in at most two (m− 1)-dimensional
faces, hence T is a pseudomanifold. Moreover, if T is a triangulation of P and if e ∈ T is a
non-flippable edge (e.g., if e is a convex hull edge) then F := T \{e} is an (m−2)-dimensional
face of T that is contained in a unique (m− 1)-face, namely T .

Thus, by Proposition 11, it suffices to show that T is shellable, i.e., to exhibit a shelling
order for the facets of T.

With every triangulation T of P , we associate the sorted vector of angles α(T) =
(α1(T), α2(T), · · · , α3t(T)), where α1(T) ≤ α2(T) ≤ · · · ≤ α3t(T) are the angles occurring in
the triangulation T . We order the triangulations of P by sorting the corresponding angle
vectors α(T) lexicographically from largest to smallest; if the point set is in general position,
this defines a total ordering

T1, T2, . . . , TN , α(T1) >LEX α(T2) >LEX · · · >LEX α(TN), (1)

where N is the number of triangulations of P .

2 More formally, for any set F , let 2F denote the simplicial complex of all subsets of F . Then the
requirement for a shelling is that, for 2 ≤ j ≤ N , the intersection of the complexes 2Fj and

⋃
i<j

2Fi be
pure of dimension d − 1.

3 We remark that the property of being a shellable pseudomanifold (which is a combinatorial and
algorithmically verifiable condition) is strictly stronger than being a piecewise-linear ball or sphere,
which in turn is strictly stronger than being a simplicial complex homeomorphic to a ball or sphere.

A. Lubiw, Z. Masárová, and U. Wagner 49:11

It is well known (see, for example, [11, Chap. 3.4]) that in this ordering, T1 is the Delaunay
triangulation of P . Moreover, if we consider only triangulations containing a particular plane
subgraph corresponding to a face F of T and the corresponding subsequence of the angle
vectors, the first of these vectors corresponds to the Delaunay triangulation constrained to F .

We claim that the triangulation ordering (1) defines a shelling. For this, we need to prove
that the following holds for 2 ≤ j ≤ N : If F is a face of T that is contained in Tj ∩ Ti for
some i < j, then there exists an (m− 2)-dimensional face G of Tj and some i′ < j such that
F ⊆ G = Ti′ ∩ Tj .

To see this, consider the subsequence Tk1 , Tk2 , . . . of the sequence (1) consisting only
of those triangulations that contain the edge set F . Then Tk1 is the constrained Delaunay
triangulation with respect to the edge set F , and Ti and Tj both appear in that subsequence;
in particular, Tj 6= Tk1 since Ti precedes it. Since every triangulation containing F can be
transformed to the constrained Delaunay triangulation Tk1 , (see, e.g., the description of the
Lawson flip algorithm in [11]) there must exist an edge e ∈ Tj \ Tk1 such that flipping e (a
Lawson flip) increases the angle vector; thus, the triangulation resulting from flipping e is
some Tk with k < j and satisfies F ⊆ Tk ∩ Tj as desired. J

3.3 Boundary and Interior Faces of T, and the Dual Flip Complex X
Let B be a piecewise-linear ball of dimension d. By definition, the boundary ∂B of B is the
subcomplex of B consisting of all faces F for which there exists a (d− 1)-dimensional face G
of B, with F ⊆ G, such that G is contained in a unique d-dimensional face of B. (In the case
B = T, the latter condition means that G = T \ {e} for some triangulation T and some edge
e ∈ T that is not flippable.) A face F of B that does not lie in ∂B is called an interior face.

To define the flip complex X, we need the notion of dual cells and the dual cell decom-
position of a piecewise-linear ball; for the precise definition, we refer to [15, Sec. I.6] or [23,
§64 and §70].4 Here, we simply collect the properties that we will need:

I Proposition 13. Let B be a d-dimensional piecewise-linear ball.
1. For each interior k-dimensional face F of B, one can define a dual cell F ∗ (a certain

subcomplex of the barycentric subdivision of B that is a piecewise-linear ball of dimension
d− k [15, Lemma I.19]).

2. The construction reverses inclusion, i.e., for interior faces F , G of B, F ⊆ G iff F ∗ ⊇ G∗.
3. The dual cells of the interior faces of B form a regular cell complex, denoted B∗ and

called the dual cell complex. B∗ need not be a manifold or pure d-dimensional, but it is
homotopy equivalent to B [23, Lem. 70.1].5

We define the flip complex X := T∗ as the dual complex of the simplicial complex T.

Proof of Theorem 7. By Prop. 13, X = T
∗ is a regular cell complex that is homotopy

equivalent to the ball T; consequently, the fundamental group π1(X) vanishes.
It remains to show the characterization of the vertices, edges, and 2-cells of X.

4 In [23], the terminology dual blocks is used instead of dual cells, since the construction is described
in a more general setting (for arbitrary triangulated manifolds or homology manifolds) in which the
dual blocks need not be cells (homeomorphic to balls). In the setting of piecewise-linear manifolds, in
particular piecewise-linear balls, however, this technical issue does not arise.

5 More specifically, the dual complex of a piecewise-linear manifold with boundary is a deformation
retraction of the manifold. For manifolds without boundary, the dual complex is piecewise-linearly
homeomorphic to the original manifold.

SoCG 2017

49:12 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

e f

 T' T'' T'''

e' f'f e

Figure 3 The case of the proof of Theorem 7 where e and f lie in a non-convex pentagon.

The vertices of X correspond (are dual) to the faces of T of the highest dimension
(m− 1) = dimT, i.e., to the triangulations of P (these are automatically interior faces of T).

The edges of X correspond to (m− 2)-dimensional faces F of T that are interior, i.e.,
such that F is contained in two triangulations T and T ′ that differ by a flip. Thus, the
1-skeleton of X is exactly the flip graph of P .

Every 2-cell of X is the dual cell F ∗ of an interior face F of T of dimension dimF = m−3.
Consider an arbitrary triangulation T containing F , i.e., F is obtained from T by deleting

two edges e, f . If one of these edges, say e, were not flippable in T , then T \ {e} and hence
F would lie in the boundary ∂T and not be interior. Thus, both edges e and f must be
flippable.

If e and f are not incident to a common triangle in T , (or, equivalently, removing both
e and f from T creates two internally disjoint convex quadrilaterals) then there exist four
triangulations containing F and these form an elementary 4-cycle in the flip graph. The
4-cycle is by definition the boundary of the dual cell F ∗.

If e and f are incident to a common triangle in T , and the union of the three triangles
of T containing either e or f forms a convex pentagon, then there are five triangulations
containing F and these form an elementary 5-cycle in the flip graph. The 5-cycle is by
definition the boundary of the dual cell F ∗.

It remains to consider the case that the union of the three triangles of T containing e or
f is a non-convex pentagon with a single reflex vertex, see Figure 3. In that case, there are
three triangulations of P containing F , corresponding to the three triangulations of such a
non-convex pentagon. These triangulations form a path of length 2 in the flip graph, say
T ′, T ′′, T ′′′ in that order. Then T ′ contains an edge (f in Figure 3) that is not flippable in
T ′, hence T ′ \ {f} is a boundary face containing F , i.e., F is not interior and does not give
rise to a dual 2-cell of X.

Hence, every 2-cell of X corresponds to an elementary 4- or 5-cycle of the flip graph.
Conversely, every elementary 4- or 5-cycle of the flip graph gives rise to a 2-cell F ∗ of X:

more precisely, F ∗ corresponds to the intersection of the triangulations in the elementary
cycle. J

4 Proofs of Properties of Elementary Swaps

In this section we prove Lemmas 4 and 5.

Proof of Lemma 4. Construct a graph GD called the double quadrilateral graph. Vertices of
the graph GD are pairs of non-crossing edges on the point set P , and we define two vertices
(e1, f1) and (e2, f2) of GD to be adjacent if either e1 = e2 and f1 and f2 are adjacent in
the quadrilateral graph, or if f1 = f2 and e1 and e2 are adjacent in the quadrilateral graph.
(Recall that two edges a and b are adjacent in the quadrilateral graph if a and b cross and
their four endpoints form an empty quadrilateral.)

A. Lubiw, Z. Masárová, and U. Wagner 49:13

In the graph GD we identify some vertices as “swap vertices”. These are the vertices
(g, h) such that g and h are diagonals of some empty convex pentagon in the point set. Note
that the swap vertices can be identified in polynomial time.

We claim that there is an elementary swap of e and f in labelled triangulation T = (T , `)
if and only if there is a path in GD from vertex (e, f) to a swap vertex. For the forward
direction, suppose there is such an elementary swap. It begins with a sequence σ of flips from
T to a labelled triangulation T ′ in which labels `(e) and `(f) are attached to two diagonals
g and h of some empty convex pentagon. The subsequence of σ consisting of those flips that
apply to an edge whose current label is `(e) or `(f) corresponds to a path in GD from (e, f)
to the swap vertex (g, h).

For the other direction, let π be a path in GD from (e, f) to a swap vertex. It suffices
to show that the path π provides a sequence of flips, σ, that takes T to some labelled
triangulation T ′ in which labels `(e) and `(f) are attached to two diagonals of an empty
convex pentagon, because the rest of the elementary swap is then determined. Consider
the first edge of π and suppose without loss of generality that it goes from (e, f) to (e, f ′)
(the case when e changes is similar). Then e and f ′ are non-crossing. Because f and f ′ are
adjacent in the quadrilateral graph, they cross and form an empty convex quadrilateral Q.
Note that e does not intersect the interior of Q, since Q is empty and e does not cross f or
f ′. We apply the result that any constrained triangulation can be flipped to any other with
O(n2) flips. Fix edges e and f in T and flip T to a labelled triangulation that contains the
edges of Q. In this triangulation, we can flip f to f ′, transferring `(f) to f ′. We continue in
this way to realize each edge of π via O(n2) flips, arriving finally at a labelled triangulation
in which labels `(e) and `(f) are attached to edges that are the diagonals of some empty
convex pentagon in the point set. Fixing the two diagonals, we can flip to a triangulation
that contains the edges of the convex pentagon, and at this point we are done.

Because the graph GD has O(n4) vertices, the diameter of any of its connected components
is O(n4). Thus, if there is an elementary swap that exchanges the labels of edges e and f ,
then there is one corresponding to a path in GD of length O(n4). We can explicitly construct
GD and find such a path in polynomial time. As argued above, every edge of GD can be
realized by O(n2) flips. This proves that, for any elementary swap, we can construct a
sequence of O(n6) flips to realize it, and the construction takes polynomial time. J

Proof of Lemma 5. An elementary swap in triangulation T acts on two edges of T . We
define a graph GS called the elementary swap graph of T . GS has a vertex for every edge of
T , and we define vertices e and f to be adjacent in GS if there is an elementary swap of e
and f in T .

By hypothesis, there is a sequence of elementary swaps that takes the label of edge e to
edge f . Observe that no sequence of elementary swaps will take the label of edge e outside
the connected component of GS that contains e. Therefore e and f must lie in the same
connected component of GS . We will now show that each connected component of GS is a
clique. This implies that there is an elementary swap of e and f , and completes our proof.

Consider a simple path (e0, e1), (e1, e2), . . . , (ek−1, ek) in GS . Let σi, i = 1, . . . , k be a
flip sequence that realizes the elementary swap (ei−1, ei), and let σ = σ1σ2 . . . σk−1. Observe
that σ takes the label of e0 to ek−1, and does not change the label of ek (by the assumption
that the path is simple). By definition of an elementary swap, the flip sequence σk has the
form ρπρ−1 where ρ is a sequence of flips that moves the labels of ek−1 and ek into an empty
convex pentagon, and π is the sequence of five flips that exchanges the labels of ek−1 and ek.

Consider the flip sequence σσkσ
−1 = σρπρ−1σ−1 = σρπ(σρ)−1. The first part of this

flip sequence, σρ, moves the labels of e0 and ek into an empty convex pentagon; the middle

SoCG 2017

49:14 A Proof of the Orbit Conjecture for Flipping Edge-Labelled Triangulations

part, π, exchanges them; and the final part, (σρ)−1 reverses the first part. Therefore this
flip sequence realizes an elementary swap of e0 and ek. J

5 Conclusions

We have characterized when two labelled triangulations of a set of n points belong to the
same connected component of the labelled flip graph, and proved that the diameter of each
connected component is bounded by O(n7). We conclude with some open problems:
1. Reduce the gap between the upper bound, O(n7), and the best known lower bound of

O(n3) [7] on the diameter of a component of the labelled flip graph.
2. We did not analyze the run-time of our algorithms in the main text. A crude bound is

O(n8), with the bottleneck being the explicit construction in the proof of Lemma 4 of the
double quadrilateral graph which has O(n4) vertices and thus O(n8) edges. This bound
can surely be improved.

3. What is the complexity of the following flip distance problem for labelled triangulations:
Given two labelled triangulations and a number k, is there a flip sequence of length at most
k to transform the first triangulation to the second one? This problem is NP-complete in
the unlabelled setting, but knowing the mapping of edges might make the problem easier.

Acknowledgements. This research was initiated at the 2016 Bellairs Workshop on Geometry
and Graphs.

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangula-

tions of a simple polygon is NP-complete. Discrete & Computational Geometry, 54(2):368–
389, 2015. doi:10.1007/s00454-015-9709-7.

2 Gabriela Araujo-Pardo, Isabel Hubard, Deborah Oliveros, and Egon Schulte. Colorful
associahedra and cyclohedra. Journal of Combinatorial Theory, Series A, 129:122–141,
2015. doi:10.1016/j.jcta.2014.09.001.

3 Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In
Ding-Zhu Du and Frank Hwang, editors, Computing in Euclidean geometry, volume 1 of
Lecture Notes Series on Computing, pages 23–90. World Scientific, 1992. doi:10.1142/
9789814355858_0002.

4 R.H. Bing. Some aspects of the topology of 3-manifolds related to the Poincaré conjecture.
In Lectures on modern mathematics, Vol. II, pages 93–128. Wiley, New York, 1964.

5 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler.
Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, 2nd edition, 1999. doi:10.1017/CBO9780511586507.

6 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry
Theory and Applications, 42(1):60–80, 2009. doi:10.1016/j.comgeo.2008.04.001.

7 Prosenjit Bose, Anna Lubiw, Vinayak Pathak, and Sander Verdonschot. Flipping edge-
labelled triangulations. arXiv:1310.1166, 2013. To appear in Computational Geometry.
URL: http://arxiv.org/abs/1310.1166.

8 Prosenjit Bose and Sander Verdonschot. Flips in edge-labelled pseudo-triangulations. Com-
putational Geometry, 60:45–54, 2017.

9 Javier Cano, José-Miguel Díaz-Báñez, Clemens Huemer, and Jorge Urrutia. The edge
rotation graph. Graphs and Combinatorics, 29(5):1207–1219, 2013. doi:10.1007/
s00373-012-1201-z.

http://dx.doi.org/10.1007/s00454-015-9709-7
http://dx.doi.org/10.1016/j.jcta.2014.09.001
http://dx.doi.org/10.1142/9789814355858_0002
http://dx.doi.org/10.1142/9789814355858_0002
http://dx.doi.org/10.1017/CBO9780511586507
http://dx.doi.org/10.1016/j.comgeo.2008.04.001
http://arxiv.org/abs/1310.1166
http://dx.doi.org/10.1007/s00373-012-1201-z
http://dx.doi.org/10.1007/s00373-012-1201-z

A. Lubiw, Z. Masárová, and U. Wagner 49:15

10 Gopal Danaraj and Victor Klee. Shellings of spheres and polytopes. Duke Mathematical
Journal, 41(2):443–451, 1974.

11 Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geometry. Prin-
ceton University Press, 2011.

12 N. Dyn, I. Goren, and S. Rippa. Transforming triangulations in polygonal domains. Com-
puter Aided Geometric Design, 10:531–536, 1993.

13 Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University
Press, Cambridge, 2001. doi:10.1017/CBO9780511530067.

14 David Eppstein. Happy endings for flip graphs. Journal of Computational Geometry,
1(1):3–28, 2010. doi:10.20382/jocg.v1i1a2.

15 J. F. P. Hudson. Piecewise Linear Topology. W. A. Benjamin, Inc., New York-Amsterdam,
1969.

16 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
& Computational Geometry, 22(3):333–346, 1999. doi:10.1007/PL00009464.

17 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.
005.

18 Charles L. Lawson. Transforming triangulations. Discrete Mathematics, 3(4):365–372, 1972.
19 Charles L. Lawson. Software for C1 surface interpolation. In Mathematical Software III,

pages 161–194. Academic Press, New York, 1977.
20 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set

is NP-complete. Computational Geometry, 49:17–23, 2015. doi:10.1016/j.comgeo.2014.
11.001.

21 Anna Lubiw and Vinayak Pathak. Reconfiguring ordered bases of a matroid.
arXiv:1612.00958, 2016.

22 Michael Molloy, Bruce Reed, and William Steiger. On the mixing rate of the triangulation
walk. In DIMACS-AMS volume on Randomization Methods in Algorithm Design, volume 43
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 179–
190. AMS, 1999.

23 James R. Munkres. Elements of Algebraic Topology. Addison-Wesley Publishing Company,
Menlo Park, CA, 1984.

24 David Orden and Francisco Santos. The polytope of non-crossing graphs on a planar
point set. Discrete & Computational Geometry, 33(2):275–305, 2005. doi:10.1007/
s00454-004-1143-1.

25 Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard.
Computational Geometry, 47(5):589–604, 2014. doi:10.1016/j.comgeo.2014.01.001.

26 Lionel Pournin. The diameter of associahedra. Advances in Mathematics, 259:13–42, 2014.
doi:10.1016/j.aim.2014.02.035.

27 Herbert Seifert and William Threlfall. A Textbook of Topology, volume 89 of Pure and
Applied Mathematics. Academic Press, 1980.

28 Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, tri-
angulations, and hyperbolic geometry. Journal of the American Mathematical Society,
1(3):647–681, 1988. doi:10.2307/1990951.

29 John Stillwell. Classical Topology and Combinatorial Group Theory, volume 72 of
Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1993. doi:10.1007/
978-1-4612-4372-4.

30 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics, 409:127–160,
2013.

SoCG 2017

http://dx.doi.org/10.1017/CBO9780511530067
http://dx.doi.org/10.20382/jocg.v1i1a2
http://dx.doi.org/10.1007/PL00009464
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.comgeo.2014.11.001
http://dx.doi.org/10.1016/j.comgeo.2014.11.001
http://dx.doi.org/10.1007/s00454-004-1143-1
http://dx.doi.org/10.1007/s00454-004-1143-1
http://dx.doi.org/10.1016/j.comgeo.2014.01.001
http://dx.doi.org/10.1016/j.aim.2014.02.035
http://dx.doi.org/10.2307/1990951
http://dx.doi.org/10.1007/978-1-4612-4372-4
http://dx.doi.org/10.1007/978-1-4612-4372-4

A Spectral Gap Precludes Low-Dimensional
Embeddings
Assaf Naor

Mathematics Department, Princeton University, Princeton, NJ, USA
naor@math.princeton.edu

Abstract
We prove that there is a universal constant C > 0 with the following property. Suppose that
n ∈ N and that A = (aij) ∈Mn(R) is a symmetric stochastic matrix. Denote the second-largest
eigenvalue of A by λ2(A). Then for any finite-dimensional normed space (X, ‖ · ‖) we have

∀x1, . . . , xn ∈ X, dim(X) > 1
2 exp

(
C

1− λ2(A)√
n

(∑n
i=1
∑n

j=1 ‖xi − xj‖2∑n
i=1
∑n

j=1 aij‖xi − xj‖2

) 1
2
)

.

It follows that if an n-vertex O(1)-expander embeds with average distortion D > 1 into X, then
necessarily dim(X) & nc/D for some universal constant c > 0. This is sharp up to the value of
the constant c, and it improves over the previously best-known estimate dim(X) & (log n)2/D2

of Linial, London and Rabinovich, strengthens a theorem of Matoušek, and answers a question
of Andoni, Nikolov, Razenshteyn and Waingarten.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations

Keywords and phrases Metric embeddings, dimensionality reduction, expander graphs, nonlin-
ear spectral gaps, nearest neighbor search, complex interpolation, Markov type

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.50

1 Introduction

Given n ∈ N and a symmetric stochastic matrix A ∈ Mn(R), the eigenvalues of A will be
denoted below by 1 = λ1(A) > . . . > λn(A) > −1. Here we prove the following statement.

I Theorem 1. There is a universal constant C > 0 with the following property. Fix n ∈ N
and a symmetric stochastic matrix A = (aij) ∈Mn(R). For any finite-dimensional normed
space (X, ‖ · ‖),

∀x1, . . . , xn ∈ X, dim(X) > 1
2 exp

(
C

1− λ2(A)√
n

(∑n
i=1
∑n

j=1 ‖xi − xj‖2∑n
i=1
∑n

j=1 aij‖xi − xj‖2

) 1
2
)

. (1)

We shall next explain a noteworthy geometric consequence of Theorem 1 that arises from an
examination of its special case when the matrix A is the normalized adjacency matrix of a
connected graph. Before doing so, we briefly recall some standard terminology related to
metric embeddings.

Suppose that (M, d) is a finite metric space and (X, ‖ · ‖) is a normed space. For L > 0,
a mapping φ : M → X is said to be L-Lipschitz if ‖φ(x) − φ(y)‖ 6 Ld(x, y) for every
x, y ∈ M. For D > 1, one says that M embeds into X with (bi-Lipschitz) distortion
D if there is a D-Lipschitz mapping φ : M → X such that ‖φ(x) − φ(y)‖ > d(x, y) for
every x, y ∈ M. Following Rabinovich [46], given D > 1 one says that M embeds into

© Assaf Naor;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 50; pp. 50:1–50:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 A Spectral Gap Precludes Low-Dimensional Embeddings

X with average distortion D if there exists a D-Lipschitz mapping φ :M→ X such that∑
x,y∈M ‖φ(x)− φ(y)‖ >

∑
x,y∈M d(x, y).

For n ∈ N write [n] = {1, . . . , n}. Fix k ∈ {3, . . . , n} and let G = ([n], EG) be a k-regular
connected graph whose vertex set is [n]. The shortest-path metric that is induced by G on [n]
is denoted dG : [n]× [n]→ N ∪ {0}. A simple (and standard) counting argument (e.g. [31])
gives

1
n2

n∑
i=1

n∑
j=1

dG(i, j) & log n

log k
, (2)

where in (2), as well as in the rest of this article, we use the following (standard) asymptotic
notation. Given two quantities Q, Q′ > 0, the notations Q . Q′ and Q′ & Q mean
that Q 6 KQ′ for some universal constant K > 0. The notation Q � Q′ stands for
(Q . Q′) ∧ (Q′ . Q). If we need to allow for dependence on certain parameters, we indicate
this by subscripts. For example, in the presence of an auxiliary parameter ψ, the notation
Q .ψ Q′ means that Q 6 c(ψ)Q′, where c(ψ) > 0 is allowed to depend only on ψ, and
similarly for the notations Q &ψ Q′ and Q �ψ Q′.

The normalized adjacency matrix of the graph G, denoted AG, is the matrix whose entry
at (i, j) ∈ [n]× [n] is equal to 1

k 1{i,j}∈EG . Denote from now on λ2(G) = λ2(AG). Let (X, ‖ · ‖)
be a finite-dimensional normed space. Fix D > 1 and a mapping φ : [n]→ X that satisfies(

1
|EG|

∑
{i,j}∈EG

‖φ(i)− φ(j)‖2
) 1

2

=
(

1
n

n∑
i=1

n∑
j=1

(AG)ij‖φ(i)− φ(j)‖2
) 1

2

6 D. (3)

Condition (3) holds true, for example, if φ is D-Lipschitz as a mapping from ([n], dG) to
(X, ‖ · ‖). Let η > 0 be the implicit constant in the right hand side of (2), and suppose that
φ also satisfies(

1
n2

n∑
i=1

n∑
j=1
‖φ(i)− φ(j)‖2

) 1
2

> η
log n

log k
. (4)

Due to (2) and the Cauchy–Schwarz inequality, conditions (3) and (4) hold true simultaneously
(for an appropriately chosen φ) if e.g. ([n], dG) embeds with average distortion D into (X, ‖·‖).
At the same time, by an application of Theorem 1 with xi = φ(i) and A = AG,

dim(X) & e
Cη(1−λ2(A)) log n

D log k = n
Cη(1−λ2(A))

D log k .

For ease of later reference, we record this conclusion as the following corollary.

I Corollary 2. There exists a universal constant ρ ∈ (0,∞) such that for every n ∈ N
and k ∈ [n], if G = ([n], EG) is a connected n-vertex k-regular graph and D > 1, then the
dimension of any normed space (X, ‖ · ‖) into which the metric space ([n], dG) embeds with
average distortion D must satisfy dim(X) & nc(G)/D, where c(G) = ρ(1− λ2(A))/ log k.

For every n ∈ N there exists a 4-regular graph Gn = ([n], EGn) with λ2(Gn) 6 1 − δ,
where δ ∈ (0, 1) is a universal constant; see the survey [18] for this statement as well as much
more on such expander graphs. It therefore follows from Corollary 2 that for every n ∈ N
there exists an n-point metric spaceMn with the property that its embeddability into any
normed space with average distortion D forces the dimension of that normed space to be at
least nc/D, where c > 0 is a universal constant. The significance of this statement will be
discussed in Section 1.1 below.

A. Naor 50:3

The desire to obtain Corollary 2 was the goal that initiated our present investigation,
because Corollary 2 resolves (negatively) a question that was posed by Andoni, Nikolov,
Razenshteyn and Waingarten [3, Section 1.6] in the context of their work on efficient
approximate nearest neighbor search (NNS). Specifically, they devised in [3] an approach
for proving a hardness result for NNS that requires the existence of an n-vertex expander
that embeds with bi-Lipschitz distortion O(1) into some normed space of dimension no(1).
Corollary 2 shows that no such expander exists. One may view this statement as a weak
indication that perhaps an algorithm for NNS in general norms could be designed with better
performance than what is currently known, but we leave this interesting algorithmic question
for future research and refer to [3] for a full description of this connection. The previously
best-known bound in the context of Corollary 2 was due to Linial, London and Rabinovich
in [28, Proposition 4.2], where it was shown that if G is O(1)-regular and λ2(G) = 1− Ω(1),
then any normed space X into which G embeds with average distortion D must satisfy
dim(X) & (log n)2/D2. The above exponential improvement over [28] is sharp, up to the
value of c, as shown by Johnson, Lindenstrauss and Schechtman [21].

1.1 Dimensionality reduction
The present work relates to fundamental questions in mathematics and computer science
that have been extensively investigated over the past three decades, and are of major current
importance. The overarching theme is that of dimensionality reduction, which corresponds
to the desire to “compress" n-point metric spaces using representations with few coordinates,
namely embeddings into Rk with (hopefully) k small, in such a way that pairwise distances
could be (approximately) recovered by computing lengths in the image with respect to an
appropriate norm on Rk. Corollary 2 asserts that this cannot be done in general if one aims
for compression to k = no(1) coordinates. In essence, it states that a spectral gap induces
an inherent (power-type) high-dimensionality even if one allows for recovery of pairwise
distances with large multiplicative errors, or even while only approximately preserving two
averages of the squared distances: along edges and all pairs, corresponding to (3) and (4),
respectively. In other words, we isolate two specific averages of pairwise squared distances
of a finite collection of vectors in an arbitrary normed space, and show that if the ratio of
these averages is roughly (i.e., up to a fixed but potentially large factor) the same as in an
expander then the dimension of the ambient space must be large.

In addition to obtaining specific results along these lines, there is need to develop
techniques to address dimensionality questions that relate nonlinear (metric) considerations
to the linear dimension of the vector space. Our main conceptual contribution is to exhibit a
new approach to a line of investigations that previously yielded comparable results using
algebraic techniques. In contrast, here we use an analytic method arising from a recently
developed theory of nonlinear spectral gaps.

Adopting the terminology of [28, Definition 2.1], given D ∈ [1,∞), n ∈ N and an n-point
metric spaceM, define a quantity dimD(M) ∈ N, called the (distortion-D) metric dimension
ofM, to be the minimum k ∈ N for which there exists a k-dimensional normed space XM such
thatM embeds into XM with distortion D. We always have dimD(M) 6 dim1(M) 6 n− 1
by the classical Fréchet isometric embedding [17] into `n−1

∞ . In their seminal work [20],
Johnson and Lindenstrauss asked [20, Problem 3] whether dimD(M) = O(log n) for some
D = O(1) and every n-point metric space M. Observe that the O(log n) bound arises
naturally here, as it cannot be improved due to a standard volumetric argument when
one considers embeddings of the n-point equilateral space; see also Remark 4 below for
background on the Johnson–Lindenstrauss question in the context of the Ribe program.

SoCG 2017

50:4 A Spectral Gap Precludes Low-Dimensional Embeddings

Nevertheless, Bourgain proved [11, Corollary 4] that this question has a negative answer.
He showed that for arbitrarily large n ∈ N there is an n-point metric spaceMn such that
dimD(M) & (log n)2/(D log log n)2 for every D ∈ [1,∞). He also posed in [11] the natural
question of determining the asymptotic behavior of the maximum of dimD(M) over all
n-point metric spacesM. It took over a decade for this question to be resolved.

In terms of upper bounds, Johnson, Lindenstrauss and Schechtman [21] proved that
there exists a universal constant α > 0 such that for every D > 1 and n ∈ N we have
dimD(M) .D nα/D for any n-point metric spaceM. In [29, 30], Matoušek improved this
result by showing that one can actually embedM with distortion D into `k

∞ for some k ∈ N
satisfying k .D nα/D, i.e., the target normed space need not depend on M (Matoušek’s
proof is also simpler than that of [21], and it yields a smaller value of α; see the exposition
in Chapter 15 of the monograph [32]).

In terms of lower bounds, an asymptotic improvement over [11] was made by Linial,
London and Rabinovich [28, Proposition 4.2], who showed that for arbitrarily large n ∈ N
there exists an n-point metric space Mn such that dimD(Mn) & (log n)2/D2 for every
D ∈ [1,∞). For small distortions, Arias-de-Reyna and Rodríguez-Piazza proved [4] the
satisfactory assertion that for arbitrarily large n ∈ N there exists an n-point metric spaceMn

such that dimD(Mn) &D n for every 1 6 D < 2. For larger distortions, it was asked in [4,
page 109] whether for every D ∈ (2,∞) and n ∈ N we have dimD(M) .D (log n)O(1) for any
n-point metric spaceM. In [30], Matoušek famously answered this question negatively by
proving Theorem 3 below via a clever argument that relies on (a modification of) graphs of
large girth with many edges and an existential counting argument (inspired by ideas of Alon,
Frankl and Rödl [1]) that uses the classical theorem of Milnor [37] and Thom [50] from real
algebraic geometry.

I Theorem 3 (Matoušek). For every D > 1 and arbitrarily large n ∈ N, there is an n-point
metric spaceMn(D) such that dimD

(
Mn(D)

)
&D nc/D, where c > 0 is a universal constant.

Due to the upper bound that was quoted above, Matoušek’s theorem satisfactorily answers the
questions of Johnson–Lindenstrauss and Bourgain, up to the universal constant c. Corollary 2
also resolves these questions, via an approach for deducing dimensionality lower bounds from
rough (bi-Lipschitz) metric information that differs markedly from Matoušek’s argument.

Our solution has some new features. The spacesMn(D) of Theorem 3 can actually be
taken to be independent of the distortion D, while the construction of [30] depends on D (it
is based on graphs of girth of order D). One could alternatively achieve this by considering
the disjoint union of the spaces {Mn(2k)}m

k=0 for m � log n, which is a metric space of size
O(n log n). More importantly, rather than using an ad-hoc construction (relying also on a
non-constructive existential statement) as in [30], here we specify a natural class of metric
spaces, namely the shortest-path metrics on expanders (see also Remark 5 below), for which
Theorem 3 holds. Obtaining this result for this concrete class of metric spaces is needed
to answer the question of [3] that was quoted above. Finally, Matoušek’s approach based
on the Millnor–Thom theorem uses the fact that the embedding has controlled bi-Lipschitz
distortion, while our approach is robust in the sense that it deduces the stated lower bound
on the dimension from an embedding with small average distortion.

I Remark 4. The Ribe program aims to uncover an explicit “dictionary" between the local
theory of Banach spaces and general metric spaces, inspired by an important rigidity theorem
of Ribe [47] that indicates that a dictionary of this sort should exist. See the introduction
of [12] as well as the surveys [22, 38, 6] and the monograph [44] for more on this topic. While
more recent research on dimensionality reduction is most often motivated by the need to
compress data, the initial motivation of the question of Johnson and Lindenstrauss [20] that

A. Naor 50:5

we quoted above arose from the Ribe program. It seems simplest to include here a direct
quotation of Matoušek’s explanation in [30, page 334] for the origin of the investigations that
led to Theorem 3.

...This investigation started in the context of the local Banach space theory, where
the general idea was to obtain some analogs for general metric spaces of notions and
results dealing with the structure of finite dimensional subspaces of Banach spaces.
The distortion of a mapping should play the role of the norm of a linear operator, and
the quantity log n, where n is the number of points in a metric space, would serve as
an analog of the dimension of a normed space. Parts of this programme have been
carried out by Bourgain, Johnson, Lindenstrauss, Milman and others...

Despite many previous successes of the Ribe program, not all of the questions that it raised
turned out to have a positive answer (see e.g. [33]). Theorem 3 is among the most extreme
examples of failures of natural steps in the Ribe program, with the final answer being
exponentially worse than the initial predictions. Corollary 2 provides a further explanation
of this phenomenon.
I Remark 5. The reasoning prior to Corollary 2 gives the following statement that applies
to regular graphs that need not have bounded degree. Fix β > 0 and n ∈ N. Suppose that
G = ([n], EG) is a connected regular graph that satisfies (1 − λ2(G))

∑n
i=1
∑n

j=1 dG(i, j) >

βn2 log n. Then, dimD(G) & nCβ/D for every D > 1, where C > 0 is the universal constant of
Theorem 1 and we use the notation dimD([n], dG) = dimD(G). Let diam(G) be the diameter
of ([n], dG) and suppose (for simplicity) that G is vertex-transitive (e.g., G can be the Cayley
graph of a finite group). Then, it is simple to check that n2 diam(G) >

∑n
i=1
∑n

j=1 dG(i, j) >
n2 diam(G)/4 (see. e.g. equation (4.24) in [40]), and therefore the above reasoning shows
that every vertex-transitive graph satisfies

∀D > 1, dimD(G) & e
C

4D (1−λ2(G)) diam(G). (5)

In particular, it follows from (5) that if ([n], dG) embeds with distortion O(1) into some
normed space of dimension (log n)O(1), then necessarily (1− λ2(G)) diam(G) . log log n.

There are many examples of Cayley graphs G = ([n], EG) for which λ2(G) = 1−Ω(1) and
diam(G) & log n (see e.g. [2, 43]). In all such examples, (5) asserts that dimD(G) & nc/D

for some universal constant c > 0. The Cayley graph that was studied in [23] (a quotient
of the Hamming cube by a good code) now shows that there exist arbitrarily large n-point
metric spaces Mn with dim1(Mn) . log n (indeed, Mn embeds isometrically into `k

1 for
some k . log n), yetMn has a O(1)-Lipschitz quotient (see [9] for the relevant definition)
that does not embed with distortion O(1) into any normed space of dimension no(1). To the
best of our knowledge, it wasn’t previously known that the metric dimension dimD(·) can
become asymptotically larger (and even increase exponentially) under Lipschitz quotients,
which is yet another major departure from the linear theory, in contrast to what one would
normally predict in the context of the Ribe program.

2 Proof of Theorem 1

Modulo the use of a theorem about nonlinear spectral gaps which is a main result of [40],
our proof of Theorem 1 is not long. We rely here on an argument that perturbs any finite-
dimensional normed space (by complex interpolation with its distance ellipsoid) so as to
make the result of [40] become applicable, and we proceed to show that by optimizing over
the size of the perturbation one can deduce the desired dimensionality-reduction lower bound.
This idea is the main conceptual contribution of the present work. We begin with an informal
overview of this argument.

SoCG 2017

50:6 A Spectral Gap Precludes Low-Dimensional Embeddings

2.1 Overview
The precursors of our approach are the works [26] and [25] about the impossibility of
dimensionality reduction in `1 and `∞, respectively. It was shown in [26] (respectively [25])
that a certain n-point metric spaceM1 (respectivelyM∞) does not admit a low-distortion
embedding into X = `k

1 (respectively X = `k
∞) with k small, by arguing that if k were indeed

small then there would be a normed space Y that is “close" to X, yet any embedding ofM1
(respectivelyM∞) into Y incurs large distortion. This leads to a contradiction, provided that
the assumed embedding ofM1 (respectivelyM∞) into X had sufficiently small distortion
relative to the closeness of Y to X. In the setting of [26, 25], there is a natural one-parameter
family of normed spaces that tends to X, namely the spaces `k

p with p → 1 or p → ∞,
respectively, and indeed the space Y is taken to be an appropriate member of this family.
For a general normed space X, it is a priori unclear how to perturb it so as to implement
this strategy. Moreover, the arguments of [26, 25] rely on additional special properties of
the specific normed spaces in question that hinder their applicability to general normed
spaces: The example of [26] is unsuited to the question that we study here because it was
shown in [24] that in fact dimD(M1) . log n for some D = O(1); and, the proof in [25] of
the non-embeddability ofM∞ into Y is based on a theorem of Matoušek [31] whose proof
relies heavily on the coordinate structure of Y = `k

p. We shall overcome the former difficulty
by using the complex interpolation method to perturb X, and we shall overcome the latter
difficulty by invoking the theory of nonlinear spectral gaps.

Suppose that (X, ‖ · ‖) is a finite-dimensional normed space. The perturbative step of
our argument considers the Hilbert space H whose unit ball is an ellipsoid that is closest to
the unit ball of X, i.e., a distance ellipsoid of X; see Section 2.2 below. We then use the
complex interpolation method (see Section 2.4.3 below) to obtain a one-parameter family of
normed spaces {[XC, HC]θ}θ∈[0,1] that intertwines the complexifications (see Section 2.4.2
below) of X and H, respectively. These intermediate spaces will serve as a proxy for the
one-parameter family {`n

p}p∈[1,∞] that was used in [25]. In order to see how they fit into this
picture we briefly recall the argument of [25].

Suppose that G = ([n], EG) is a O(1)-regular graph with λ2(G) = 1 − Ω(1) (i.e., an
expander). In [25, Proposition 4.1] it was shown that for every D > 1 and k ∈ N, if
([n], dG) embeds with distortion D into `k

∞, then necessarily k & nc/D for some universal
constant c > 0. This is so because Matoušek proved in [31] that for any p ∈ [1,∞), any
embedding of ([n], dG) into `p incurs distortion at least η(log n)/p, where η > 0 is a universal
constant. The norms on `k

∞ and `k
log k are within a factor of e of each other, so it follows

that D > η(log n)/(e log k), i.e., k > nη/(eD).
The reason for the distortion lower bound of [31] that was used above is that [31] shows

that there exists a universal constant C > 0 such that for every p > 1 we have

∀ t1, . . . , tn ∈ R,
1
n2

n∑
i=1

n∑
j=1
|ti − tj |p 6

(Cp)p

|EG|
∑

{i,j}∈EG

|ti − tj |p. (6)

The proof of (6) relies on the fact that the case p = 2 of (6) is nothing more than the usual
Poincaré inequality that follows through elementary linear algebra from the fact that λ2(G)
is bounded away from 1, combined with an extrapolation argument that uses elementary
inequalities for real numbers (see also the expositions in [8, 42]). By summing (6) over
coordinates we deduce that

∀x1, . . . , xn ∈ `p,

(
1
n2

n∑
i=1

n∑
j=1
‖xi − xj‖p

p

) 1
p

. p

(
1
|EG|

∑
{i,j}∈EG

‖xi − xj‖p
p

) 1
p

. (7)

A. Naor 50:7

This implies that any embedding of ([n], dG) into `p incurs average distortion at least a
constant multiple of (log n)/p via the same reasoning as the one that preceded Corollary 2.

The reliance on coordinate-wise inequalities in the derivation of (7) is problematic when it
comes to the need to treat a general finite-dimensional normed space (X, | · ‖). This “scalar"
way of reasoning also leads to the fact that in (7) the `p norm is raised to the power p. Since,
even in the special case X = `k

p, (7) is applied in the above argument when p = log dim(X),
this hinders our ability to deduce an estimate such as the conclusion (1) of Theorem 1.

To overcome this obstacle, we consider a truly nonlinear (quadratic) variant of (7) which
is known as a nonlinear spectral-gap inequality. See Section 2.3 below for the formulation
of this concept, based on a line of works in metric geometry that has been more recently
investigated systematically in [34, 35, 40, 36]. Our main tool is a result of [40], which is
quoted as Theorem 9 below. It provides an estimate in the spirit of (7) for n-tuples of vectors
in each of the complex interpolation spaces {[XC, HC]θ}θ∈(0,1], in terms of the parameter θ
and the p-smoothness constant of the normed space [XC, HC]θ (see Section 2.4.1 below for
the relevant definition). We then implement the above perturbative strategy by estimating
the closeness of X to a subspace of [XC, HC]θ, and optimizing over the auxiliary interpolation
parameter θ.

While the result of [40] that we use here is substantial, we encourage readers to examine
its proof rather than relying on it as a “black box," because we believe that this proof
is illuminating and accessible to non-experts. Specifically, the proof in [40] of Theorem 9
below relies on Ball’s notion of Markov type [5] p through the martingale method of [41],
in combination with complex interpolation and a trick of V. Lafforgue that was used by
Pisier in [45]. It is interesting to observe that here we use the fact that the bound that
is obtained in [40] depends on the p-smoothness constant of [XC, HC]θ, but it contains no
other dependence on p. Since in our final optimization over θ we take p to be very close
to 1, we can’t allow for an implicit dependence on p that is unbounded as p → 1. Such a
p-independent bound is indeed obtained in [40], but unlike the present application, it was a
side issue in [40], where only the case p = 2 was used.

2.2 Distance ellipsoids
Recall that given d ∈ [1,∞), a Banach space (X, ‖ · ‖) is said to be d-isomorphic to a Hilbert
space if it admits a scalar product 〈·, ·〉 : X ×X → R, such that if we denote its associated
Hilbertian norm by |x| =

√
〈x, x〉, then

∀x ∈ X, |x| 6 ‖x‖ 6 d|x|. (8)

The (Banach–Mazur) Euclidean distance of X, denoted dX ∈ [1,∞), is then defined to be
the infimum over those d ∈ [1,∞) for which (8) holds true. If X is not d-isomorphic to a
Hilbert space for any d ∈ [1,∞), then we write dX = ∞. If X is finite-dimensional, then
John’s theorem [19] asserts that dX 6

√
dim(X). By a standard compactness argument, if

X is finite-dimensional, then the infimum in the definition of dX is attained. In that case,
the unit ball of the Hilbertian norm | · |, i.e., the set {x ∈ X : |x| 6 1}, is commonly called a
distance ellipsoid of X.

2.3 Nonlinear spectral gaps
Suppose that (M, dM) is a metric space, n ∈ N and p ∈ (0,∞). Following [35], the
(reciprocal of) the nonlinear spectral gap with respect to dp

M of a symmetric stochastic matrix

SoCG 2017

50:8 A Spectral Gap Precludes Low-Dimensional Embeddings

A = (aij) ∈Mn(R), denoted γ(A, dp
M), is the smallest γ ∈ (0,∞) such that

∀x1, . . . , xn ∈M,
1
n2

n∑
i=1

n∑
j=1

dM(xi, xj)p 6
γ

n

n∑
i=1

n∑
j=1

aijdM(xi, xj)p.

We refer to [35] for an extensive discussion of this notion; it suffices to state here that
the reason for this nomenclature is that if we denote the standard metric on the real line
by dR (i.e., dR(s, t) = |s − t| for every s, t ∈ R), then it is straightforward to check that
γ(A, d2

R) = 1/(1− λ2(A)).
In general, nonlinear spectral gaps can differ markedly from the usual (reciprocal of) the

gap in the (linear) spectrum, though [40] is devoted to an investigation of various settings in
which one can obtain comparison inequalities for nonlinear spectral gaps when the underlying
metric is changed. Estimates on γ(A, dp

M) have a variety of applications in metric geometry,
and here we establish their relevance to dimensionality reduction. Specifically, we shall derive
below the following result, which will be shown to imply Theorem 1.

I Theorem 6 (Nonlinear spectral gap for Hilbert isomorphs). Fix n ∈ N and a symmetric
stochastic matrix A = (aij) ∈Mn(R). Then for every normed space (X, ‖ · ‖) with dX <∞,
we have

γ
(
A, ‖ · ‖2) .

d2

X

1−λ2(A) if dX

√
1− λ2(A) 6 e,(

log
(

dX

√
1−λ2(A)

)
1−λ2(A)

)2

if dX

√
1− λ2(A) > e.

(9)

Proof of Theorem 1 assuming Theorem 6. We claim that (9) implies the following simpler
bound.

γ
(
A, ‖ · ‖2) . (log

(
dX

√
2
)

1− λ2(A)

)2

. (10)

Indeed, if dX

√
1− λ2(A) > e, then the right hand side of (10) is at least the right hand

side of (9) due to the fact that, since A is symmetric and stochastic, λ2(A) > −1, so
that

√
1− λ2(A) 6

√
2. On the other hand, if dX

√
1− λ2(A) 6 e then d2

X/(1 − λ2(A)) 6
e2/(1− λ2(A))2, which is at most a universal constant multiple of the right hand side of (10)
because dX > 1.

By the definition of γ
(
A, ‖ · ‖2), it follows from (10) that there exists a universal constant

α > 0 such that for every x1, . . . , xn ∈ X we have

1
n2

n∑
i=1

n∑
j=1
‖xi − xj‖2 6 α

(
log
(
dX

√
2
)

1− λ2(A)

)2

· 1
n

n∑
i=1

n∑
j=1

aij‖xi − xj‖2.

This estimate simplifies to give

dX >
1√
2

exp
(

1− λ2(A)√
αn

(∑n
i=1
∑n

j=1 ‖xi − xj‖2∑n
i=1
∑n

j=1 aij‖xi − xj‖2

) 1
2
)

. (11)

The desired estimate (1) (with C = 2/
√
α) now follows because dX 6

√
dim(X) by [19]. J

I Remark 7. Suppose that G = ([n], EG) is a Cayley graph of a finite group such that
λ2(G) = 1− Ω(1). The metric space ([n], dG) embeds with distortion diam(G) into `n−1

2 by
considering any bijection between [n] and the vertices of the n-simplex. There is therefore no

A. Naor 50:9

a priori reason why it wouldn’t be possible to embed ([n], dG) with distortion O(1) into some
normed space X whose Banach–Mazur distance from a Hilbert space is at least a sufficiently
large multiple of diam(G). But this is not so if diam(G) is sufficiently large. Indeed, recalling
Remark 5, it follows from (11) that any embedding of ([n], dG) into X incurs distortion that
is at least a universal constant multiple of diam(G)/ log(2dX). Thus, even if we allow dX to
be as large as diam(G)O(1), then any embedding of ([n], dG) into X incurs distortion that
is at least a universal constant multiple of diam(G)/ log diam(G). Also, if diam(G) & log n

(e.g., if G has bounded degree) then this means that any embedding of ([n], dG) into X incurs
distortion that is at least a universal constant multiple of (log n)/ log(2dX) and, say, even
if we allow dX to be as large as (log n)O(1), then any embedding of ([n], dG) into X incurs
distortion that is at least a universal constant multiple of (log n)/ log log n.

2.4 Proof of Theorem 6
We have seen that in order to prove Theorem 1 it suffices to prove Theorem 6. In order to
do so, we shall first describe several ingredients that appear in its proof.

2.4.1 Uniform convexity and smoothness
Suppose that (X, ‖ · ‖) is a normed space and fix p, q > 0 satisfying 1 6 p 6 2 6 q. Following
Ball, Carlen and Lieb [7], the p-smoothness constant of X, denoted Sp(X), is the infimum
over those S > 0 such that

∀x, y ∈ X, ‖x + y‖p + ‖x− y‖p 6 2‖x‖p + 2Sp‖y‖p. (12)

(If no such S exists, then define Sp(X) = ∞.) By the triangle inequality we always have
S1(X) = 1. The q-convexity constant of X, denoted Kq(X), is the infimum over those K > 0
such that

∀x, y ∈ X, 2‖x‖q + 2
Kq
‖y‖q 6 ‖x + y‖q + ‖x− y‖q.

(As before, if no such K exists, then define Kq(X) = ∞.) We refer to [7] for the relation
of these parameters to more traditional moduli of uniform convexity and smoothness that
appear in the literature. It is beneficial to work with the quantities Sp(X),Kq(X) rather
than the classical moduli because they are well-behaved with respect to basic operations, an
example of which is the duality Kp/(p−1)(X∗) = Sp(X), as shown in [7]. Another example
that is directly relevant to us is their especially clean behavior under complex interpolation,
as derived in Section 2.4.3 below.

2.4.2 Complexification
All of the above results were stated for normed spaces over the real numbers, but in the
ensuing proofs we need to consider normed spaces over the complex numbers. We do so
through the use of the standard notion of complexification. Specifically, for every normed
space (X, ‖ · ‖X) over R one associates as follows a normed space (XC, ‖ · ‖XC) over C. The
underlying vector space is XC = X ×X, which is viewed as a vector space over C by setting
(α+ βi)(x, y) = (αx − βy,βx + αy) for every α,β ∈ R and x, y ∈ X. The norm on XC is
given by

∀x, y ∈ X, ‖(x, y)‖XC =
(

1
π

∫ 2π

0

∥∥(cos θ)x− (sin θ)y
∥∥2

X
dθ
) 1

2

. (13)

SoCG 2017

50:10 A Spectral Gap Precludes Low-Dimensional Embeddings

The normalization in (13) ensures that x 7→ (x, 0) is an isometric embedding of X into XC.
It is straightforward to check that for every n ∈ N and every symmetric stochastic matrix
A ∈Mn(R) we have γ(A, ‖·‖2

X) = γ(A, ‖·‖2
XC

). Also, S2(XC) = S2(X) and K2(XC) = K2(X).
When p ∈ (1, 2) and q ∈ (2,∞) we have Sp(XC) � Sp(X) and Kq(XC) � Kq(X); if one were
to allow the implicit constants in these asymptotic equivalences to depend on p, q then this
follows from the results of [16, 15, 7], and the fact that these constants can actually be taken
to be universal follows from carrying out the relevant arguments with more care, as done
in [39, 35] (see specifically Lemma 6.3 and Corollary 6.4 of [35]). Finally, we have dXC = dX .

2.4.3 Complex interpolation
We very briefly recall Calderón’s vector-valued complex interpolation method [13]; see
Chapter 4 of the monograph [10] for an extensive treatment. A pair of complex Banach
spaces (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) is said to be compatible if they are both linearly embedded into a
complex linear space W with Y +Z = W . The space W is a complex Banach space under the
norm ‖w‖W = inf{‖y‖Y + ‖z‖Z : y + z = w}. Let F(Y, Z) denote the space of all bounded
continuous functions ψ : {ζ ∈ C : 0 6 <(ζ) 6 1} →W that are analytic on the open strip
{ζ ∈ C : 0 < <(ζ) < 1}. To every θ ∈ [0, 1] one associates a Banach space [Y, Z]θ as follows.
The underlying vector space is {ψ(θ) : ψ ∈ F(Y, Z)}, and the norm of w ∈ [Y, Z]θ is given by
‖w‖[Y,Z]θ = inf{ψ∈F(Y,Z): ψ(θ)=w}max{supt∈R ‖ψ(ti)‖Y , supt∈R ‖ψ(1 + ti)‖Z}. This turns
[Y, Z]θ into a Banach space, and we have [Y, Z]0 = Y, [Y, Z]1 = Z. Also, [Y, Y]θ = Y for
every θ ∈ [0, 1].

Calderón’s vector-valued version [13] of the Riesz–Thorin theorem [48, 51] asserts that if
(Y, ‖ · ‖Y), (Z, ‖ · ‖Z) and (U, ‖ · ‖U), (V, ‖ · ‖V) are two compatible pairs of complex Banach
spaces and T : Y ∩Z → U ∩V is a linear operator that extends to a bounded linear operator
from (Y, ‖ · ‖Y) to (U, ‖ · ‖U) and from (Z, ‖ · ‖Z) to (V, ‖ · ‖V), then the following operator
norm bounds hold true.

∀ θ ∈ [0, 1], ‖T‖[Y,Z]θ→[U,V]θ 6 ‖T‖1−θ
Y→U‖T‖

θ
Z→V . (14)

The ensuing proof of Theorem 6 uses the interpolation inequality (14) four times (one of
which is within the proof of a theorem that we shall quote from [40]; see Theorem 9 below).
We shall now proceed to derive some preparatory estimates that will be needed in what
follows.

For p > 1, a complex Banach space (Z, ‖ · ‖Z), and a weight ω : {1, 2} → [0,∞) on the
2-point set {1, 2}, we denote (as usual) by Lp(ω; Z) the space Z×Z equipped with the norm
that is given by setting ‖(a, b)‖p

Lp(ω;Z) = ω(1)‖a‖p
Z +ω(2)‖b‖p

Z for every a, b ∈ Z.
If (Y, ‖ · ‖Y), (Z, ‖ · ‖Z) is a compatible pair of complex Banach spaces then by Calderón’s

vector-valued version of Stein’s interpolation theorem [49, Theorem 2] (see part(i) of §13.6
in [13] or Theorem 5.3.6 in [10]), for every p, q ∈ [1,∞], θ ∈ [0, 1] and ω, τ : {1, 2} → [0,∞)
we have

[Lp(ω; Y), Lq(τ; Z)]θ = Lr

(
ω

1−θ
p τ

θ
q ; [Y, Z]θ

)
, where r = pq

θp + (1− θ)q . (15)

The equality in (15) is in the sense of isometries, i.e., the norms on both sides coincide.
Suppose that p1, p2 ∈ [1, 2] and that the smoothness constants Sp1(Y),Sp2(Z) are finite.

Fix S1 > Sp1(Y) and S2 > Sp2(Z). Then by (12) we have

∀ y1, y2 ∈ Y, ‖y1 + y2‖p1
Y + ‖y1 − y2‖p1

Y 6 2‖y1‖p1
Y + 2Sp1

1 ‖y2‖p1
Y , (16)

A. Naor 50:11

and

∀ z1, z2 ∈ Z, ‖z1 + z2‖p2
Z + ‖z1 − z2‖p2

Z 6 2‖z1‖p2
Z + 2Sp2

2 ‖z2‖p2
Z . (17)

For every S > 0 and p > 1 defineω(S, p) : {1, 2} → (0,∞) byω(S, p)(1) = 2 andω(S, p)(2) =
2Sp. Also, denote the constant function 1{1,2} by τ : {1, 2} → (0,∞), i.e., τ(1) = τ(2) = 1.
With this notation, if we consider the linear operator T : (Y +Z)×(Y +Z)→ (Y +Z)×(Y +Z)
that is given by setting T (w1, w2) = (w1 + w2, w1 − w2) for every w1, w2 ∈ Y + Z, then

‖T‖Lp1 (ω(S1,p1);Y)→Lp1 (τ;Y)
(16)
6 1 and ‖T‖Lp2 (ω(S2,p2);Z)→Lp2 (τ;Z)

(17)
6 1. (18)

Denoting r = p1p2/(θp1 +(1−θ)p2), note that ω(S1, p1)(1−θ)/rω(S2, p2)θ/r = ω(S1−θ
1 Sθ2 , r).

Hence, by (15) we have [Lp1(ω(S1, p1); Y), Lp2(ω(S2, p2); Z)]θ = Lr(ω(S1−θ
1 Sθ2 , r); [Y, Z]θ)

and also [Lp1(τ; Y); Lp2(τ; Z)]θ = Lr(τ, [Y, Z]θ). In combination with (14) and (18), these
identities imply that the norm of T as an operator from Lr(ω(S1−θ

1 Sθ2 , r); [Y, Z]θ) to
Lr(τ, [Y, Z]θ) is at most 1. In other words, every w1, w2 ∈ [Y, Z]θ satisfy

‖w1 + w2‖r
[Y,Z]θ + ‖w1 − w2‖r

[Y,Z]θ 6 2‖w1‖r
[Y,Z]θ + 2

(
S1−θ

1 Sθ2

)r

‖w2‖r
[Y,Z]θ .

Since S1 and S2 can be arbitrarily close to Sp1(Y) and Sp2(Z), respectively, we conclude
that

S p1p2
θp1+(1−θ)p2

(
[Y, Z]θ

)
6 Sp1(Y)1−θSp2(Z)θ. (19)

By an analogous argument, if q1, q2 > 2 and the convexity constants Kq1(Y),Kq2(Z) are
finite, then

K q1q2
θq1+(1−θ)q2

(
[Y, Z]θ

)
6 Kq1(Y)1−θKq2(Z)θ. (20)

I Remark 8. If one considers the traditional moduli of uniform convexity and smoothness
(see e.g. [27] for the definitions), then interpolation statements that are analogous to (19),
(20) are an old result of Cwikel and Reisner [14], with the difference that [14] involves
implicit constants that depend on p1, p2, q1, q2. By [7], this statement of [14] yields the
estimates (19), (20) with additional factors in the right hand side that depend on p1, p2, q1, q2.
For our present purposes, i.e., for the proof of Theorem 6, it is important to obtain universal
constants here. We believe that by carrying out the proofs in [14] with more care this could
be achieved, but by working instead with the quantities Sp(·),Kq(·) through the above simple
(and standard) interpolation argument, we circumvented the need to do this and obtained
the clean interpolation statements (19), (20).

Next, suppose that (X, ‖ · ‖) is a Banach space over R with dX <∞. Fix d > dX and a
Hilbertian norm | · | : X → [0,∞) that satisfies (8). Denote by H the Hilbert space that is
induced by | · |. Consider the complexifications XC and HC. Observe that by (13) and (8)
for every x, y ∈ X we have

‖(x, y)‖HC =
√
|x|2 + |y|2 and ‖(x, y)‖HC 6 ‖(x, y)‖XC 6 d‖(x, y)‖HC . (21)

Since XC and HC are isomorphic Banach space with the same underlying vector space (over
C), they are a compatible, and therefore for every θ ∈ [0, 1] we can consider the complex
interpolation space [HC, XC]θ. The formal identity operator IX×X : X×X → X×X satisfies

‖IX×X‖XC→XC 6 1, ‖IX×X‖HC→HC 6 1, ‖IX×X‖XC→HC 6 1, ‖IX×X‖HC→XC 6 d. (22)

SoCG 2017

50:12 A Spectral Gap Precludes Low-Dimensional Embeddings

The first two inequalities in (22) are tautological, and the final two inequalities in (22) are a
consequence of the inequalities in (21). Hence,

‖IX×X‖[XC,HC]θ→XC = ‖IX×X‖[XC,HC]θ→[XC,XC]θ

(14)
6 ‖IX×X‖1−θ

XC→XC
‖IX×X‖θHC→XC

(22)
6 dθ,

and

‖IX×X‖XC→[XC,HC]θ = ‖IX×X‖[XC,XC]θ→[XC,HC]θ

(14)
6 ‖IX×X‖1−θ

XC→XC
‖IX×X‖θXC→HC

(22)
6 1.

These two estimates can be restated as follows.

∀x, y ∈ X, ‖(x, y)‖[XC,HC]θ 6 ‖(x, y)‖XC 6 dθ‖(x, y)‖[XC,HC]θ . (23)

In what follows, we will use crucially the following theorem, which relates nonlinear
spectral gaps to complex interpolation and uniform smoothness; this result appears in [40]
as Corollary 4.7.

I Theorem 9. Suppose that (H, ‖ · ‖H) and (Z, ‖ · ‖Z) are a compatible pair of complex
Banach spaces, with (H, ‖ · ‖H) being a Hilbert space. Suppose that q ∈ [1, 2] and θ ∈ (0, 1].
For every n ∈ N and every symmetric stochastic matrix A ∈Mn(R) we have

γ
(

A, ‖ · ‖2
[Z,H]θ

)
.
Sq ([Z,H]θ)2

θ
2
q (1− λ2(A))

2
q

. (24)

We note in passing that in [40] (specifically, in the statement of [40, Theorem 4.5]) we have
the following misprint: (24) is stated there for the transposed interpolation space [H, X]θ
rather than the correct space [X,H]θ as above. This misprint is not confusing when one
reads [40] in context rather the statement of [40, Theorem 4.5] in isolation (e.g., clearly (24)
should not deteriorate as the interpolation space approaches the Hilbert space H). Also,
the proof itself in [40] deals with the correct interpolation space [X,H]θ throughout (see
equation (4.14) in [40]).

2.4.4 Completion of the proof of Theorem 6
Since for every Banach space (X, ‖ · ‖) we have S1(X) = 1, Theorem 6 is the special case
p = 1 of the following more refined theorem.

I Theorem 10. Fix p ∈ [1, 2] and suppose that (X, ‖·‖) is a Banach space satisfying dX <∞
and Sp(X) <∞. For every n ∈ N and every symmetric stochastic matrix A = (aij) ∈Mn(R),
we have

γ
(
A, ‖ · ‖2)

.

d2

X

1−λ2(A) if dp
X (1− λ2(A))1− p

2 6 eSp(X)p,

Sp(X)2

(1−λ2(A))
2
p

(
log
(

dp
X

(1−λ2(A))1− p
2

Sp(X)p

)) 2
p

if dp
X (1− λ2(A))1− p

2 > eSp(X)p.
(25)

Proof. Fix d > dX and θ ∈ (0, 1]. Consider a Hilbertian norm | · | : X → [0,∞) that
satisfies (8) and denote by H the Hilbert space that is induced by | · |. As we explained in
Section 2.4.2, the complexification XC satisfies Sp(XC) � Sp(X). Also, by the parallelogram
identity, the complex Hilbert space HC satisfies S2(HC) = 1. Hence, by (19) with Y = XC,
Z = HC, p1 = p and p2 = 2,

S 2p
θp+2(1−θ)

([XC, HC]θ) 6 Sp(XC)1−θ . Sp(X)1−θ.

A. Naor 50:13

We may therefore apply Theorem 9 with q = (2p)/(θp + 2(1− θ)) to deduce that

γ
(

A, ‖ · ‖2
[XC,HC]θ

)
.

Sp(X)2(1−θ)

θθ+ 2(1−θ)
p (1− λ2(A))θ+ 2(1−θ)

p

� Sp(X)2(1−θ)

θ
2
p (1− λ2(A))θ+ 2(1−θ)

p

. (26)

By the definition of γ
(

A, ‖ · ‖2
[XC,HC]θ

)
, for every (x1, y1), . . . , (xn, yn) ∈ X ×X we have

1
n2

n∑
i=1

n∑
j=1
‖(xi − xj , yi − yj)‖2

[XC,HC]θ

6
γ
(

A, ‖ · ‖2
[XC,HC]θ

)
n

n∑
i=1

n∑
j=1

aij‖(xi − xj , yi − yj)‖2
[XC,HC]θ .

By (23), this implies that

1
n2

n∑
i=1

n∑
j=1
‖(xi−xj , yi−yj)‖2

XC
6

d2θγ
(

A, ‖ · ‖2
[XC,HC]θ

)
n

n∑
i=1

n∑
j=1

aij‖(xi−xj , yi−yj)‖2
XC

.

Due to (26) and because X is isometric to a subspace of XC, this implies that

∀ θ ∈ (0, 1], γ
(
A, ‖ · ‖2) . d2θ

X Sp(X)2(1−θ)

θ
2
p (1− λ2(A))θ+ 2(1−θ)

p

. (27)

If dp
X (1− λ2(A))1−p/2 6 eSp(X)p, then by substituting θ = 1 into (27) we obtain the

first range of (25). When dp
X (1− λ2(A))1−p/2

> eSp(X)p the following value of θ minimizes
the right hand side of (27) and belongs to the interval (0, 1].

θopt
def= 1

log
(

dp
X

(1−λ2(A))1− p
2

Sp(X)p

) .

A substitution of θopt into (27) yields the second range of (25). J

Acknowledgements. I thank Alex Andoni and Ilya Razenshteyn for encouragement to work
on the question that is solved here. I also thank Gideon Schechtman for helpful discussions.

References
1 Noga Alon, Peter Frankl, and Vojtech Rödl. Geometrical realization of set systems and

probabilistic communication complexity. In 26th Annual Symposium on Foundations of
Computer Science, pages 277–280, 1985. doi:10.1109/SFCS.1985.30.

2 Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Struc-
tures Algorithms, 5(2):271–284, 1994. doi:10.1002/rsa.3240050203.

3 A. Andoni, A. Nikolov, I. Razenshteyn, and E. Waingarten. Approximate near neighbors
for general symmetric norms. To appear in STOC 2017. Preprint, available at https:
//arxiv.org/pdf/1611.06222, 2016.

4 Juan Arias-de Reyna and Luis Rodríguez-Piazza. Finite metric spaces needing high di-
mension for Lipschitz embeddings in Banach spaces. Israel J. Math., 79(1):103–111, 1992.
doi:10.1007/BF02764804.

SoCG 2017

http://dx.doi.org/10.1109/SFCS.1985.30
http://dx.doi.org/10.1002/rsa.3240050203
https://arxiv.org/pdf/1611.06222
https://arxiv.org/pdf/1611.06222
http://dx.doi.org/10.1007/BF02764804

50:14 A Spectral Gap Precludes Low-Dimensional Embeddings

5 K. Ball. Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal.,
2(2):137–172, 1992. doi:10.1007/BF01896971.

6 Keith Ball. The Ribe programme. Astérisque, (352):Exp. No. 1047, viii, 147–159, 2013.
Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058.

7 Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness in-
equalities for trace norms. Invent. Math., 115(3):463–482, 1994. doi:10.1007/BF01231769.

8 Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric Ramsey-type
phenomena. Ann. of Math. (2), 162(2):643–709, 2005. doi:10.4007/annals.2005.162.
643.

9 S. Bates, W.B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman. Affine approxim-
ation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal., 9(6):1092–1127,
1999. doi:10.1007/s000390050108.

10 Jöran Bergh and Jörgen Löfström. Interpolation spaces. An introduction. Springer-Verlag,
Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

11 J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J.
Math., 52(1-2):46–52, 1985. doi:10.1007/BF02776078.

12 J. Bourgain. The metrical interpretation of superreflexivity in Banach spaces. Israel J.
Math., 56(2):222–230, 1986. doi:10.1007/BF02766125.

13 A.-P. Calderón. Intermediate spaces and interpolation, the complex method. Studia Math.,
24:113–190, 1964.

14 Michael Cwikel and Shlomo Reisner. Interpolation of uniformly convex Banach spaces.
Proc. Amer. Math. Soc., 84(4):555–559, 1982. doi:10.2307/2044034.

15 T. Figiel. On the moduli of convexity and smoothness. Studia Math., 56(2):121–155, 1976.
16 Tadeusz Figiel and Gilles Pisier. Séries aléatoires dans les espaces uniformément convexes

ou uniformément lisses. C.R. Acad. Sci. Paris Sér. A, 279:611–614, 1974.
17 M. Fréchet. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo, 22:1–74,

1906. doi:10.1007/BF03018603.
18 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applica-

tions. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006. doi:10.1090/
S0273-0979-06-01126-8.

19 Fritz John. Extremum problems with inequalities as subsidiary conditions. In Studies and
Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187–204.
Interscience Publishers, Inc., New York, N. Y., 1948.

20 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn.,
1982), volume 26 of Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI,
1984. doi:10.1090/conm/026/737400.

21 William B. Johnson, Joram Lindenstrauss, and Gideon Schechtman. On Lipschitz em-
bedding of finite metric spaces in low-dimensional normed spaces. In Geometrical aspects
of functional analysis (1985/86), volume 1267 of Lecture Notes in Math., pages 177–184.
Springer, Berlin, 1987. doi:10.1007/BFb0078145.

22 Nigel J. Kalton. The nonlinear geometry of Banach spaces. Rev. Mat. Complut., 21(1):7–60,
2008. doi:10.5209/rev_REMA.2008.v21.n1.16426.

23 Subhash Khot and Assaf Naor. Nonembeddability theorems via Fourier analysis. Math.
Ann., 334(4):821–852, 2006. doi:10.1007/s00208-005-0745-0.

24 R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: a new em-
bedding method for finite metrics. Geom. Funct. Anal., 15(4):839–858, 2005. doi:
10.1007/s00039-005-0527-6.

http://dx.doi.org/10.1007/BF01896971
http://dx.doi.org/10.1007/BF01231769
http://dx.doi.org/10.4007/annals.2005.162.643
http://dx.doi.org/10.4007/annals.2005.162.643
http://dx.doi.org/10.1007/s000390050108
http://dx.doi.org/10.1007/BF02776078
http://dx.doi.org/10.1007/BF02766125
http://dx.doi.org/10.2307/2044034
http://dx.doi.org/10.1007/BF03018603
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1090/conm/026/737400
http://dx.doi.org/10.1007/BFb0078145
http://dx.doi.org/10.5209/rev_REMA.2008.v21.n1.16426
http://dx.doi.org/10.1007/s00208-005-0745-0
http://dx.doi.org/10.1007/s00039-005-0527-6
http://dx.doi.org/10.1007/s00039-005-0527-6

A. Naor 50:15

25 James R. Lee, Manor Mendel, and Assaf Naor. Metric structures in L1: dimension,
snowflakes, and average distortion. European J. Combin., 26(8):1180–1190, 2005. doi:
10.1016/j.ejc.2004.07.002.

26 J.R. Lee and A. Naor. Embedding the diamond graph in Lp and dimension reduction in
L1. Geom. Funct. Anal., 14(4):745–747, 2004. doi:10.1007/s00039-004-0473-8.

27 Joram Lindenstrauss and Lior Tzafriri. Classical Banach spaces. II, volume 97 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas].
Springer-Verlag, Berlin-New York, 1979. Function spaces.

28 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995. doi:10.1007/BF01200757.

29 Jiří Matoušek. Note on bi-Lipschitz embeddings into normed spaces. Comment. Math.
Univ. Carolin., 33(1):51–55, 1992.

30 Jiří Matoušek. On the distortion required for embedding finite metric spaces into normed
spaces. Israel J. Math., 93:333–344, 1996. doi:10.1007/BF02761110.

31 Jiří Matoušek. On embedding expanders into lp spaces. Israel J. Math., 102:189–197, 1997.
doi:10.1007/BF02773799.

32 Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

33 Manor Mendel and Assaf Naor. Markov convexity and local rigidity of distorted metrics.
J. Eur. Math. Soc. (JEMS), 15(1):287–337, 2013. doi:10.4171/JEMS/362.

34 Manor Mendel and Assaf Naor. Spectral calculus and Lipschitz extension for barycentric
metric spaces. Anal. Geom. Metr. Spaces, 1:163–199, 2013. doi:10.2478/agms-2013-0003.

35 Manor Mendel and Assaf Naor. Nonlinear spectral calculus and super-expanders. Publ.
Math. Inst. Hautes Études Sci., 119:1–95, 2014. doi:10.1007/s10240-013-0053-2.

36 Manor Mendel and Assaf Naor. Expanders with respect to Hadamard spaces and random
graphs. Duke Math. J., 164(8):1471–1548, 2015. doi:10.1215/00127094-3119525.

37 J. Milnor. On the Betti numbers of real varieties. Proc. Amer. Math. Soc., 15:275–280,
1964.

38 Assaf Naor. An introduction to the Ribe program. Jpn. J. Math., 7(2):167–233, 2012.
doi:10.1007/s11537-012-1222-7.

39 Assaf Naor. On the Banach-space-valued Azuma inequality and small-set isoperimetry of
Alon-Roichman graphs. Combin. Probab. Comput., 21(4):623–634, 2012. doi:10.1017/
S0963548311000757.

40 Assaf Naor. Comparison of metric spectral gaps. Anal. Geom. Metr. Spaces, 2:1–52, 2014.
doi:10.2478/agms-2014-0001.

41 Assaf Naor, Yuval Peres, Oded Schramm, and Scott Sheffield. Markov chains in smooth
Banach spaces and Gromov-hyperbolic metric spaces. Duke Math. J., 134(1):165–197, 2006.
doi:10.1215/S0012-7094-06-13415-4.

42 Assaf Naor and Lior Silberman. Poincaré inequalities, embeddings, and wild groups. Com-
pos. Math., 147(5):1546–1572, 2011. doi:10.1112/S0010437X11005343.

43 Ilan Newman and Yuri Rabinovich. Hard metrics from Cayley graphs of abelian groups.
Theory Comput., 5:125–134, 2009. doi:10.4086/toc.2009.v005a006.

44 Mikhail I. Ostrovskii. Metric embeddings. Bilipschitz and coarse embeddings into Banach
spaces, volume 49 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2013. doi:
10.1515/9783110264012.

45 Gilles Pisier. Complex interpolation between Hilbert, Banach and operator spaces. Mem.
Amer. Math. Soc., 208(978):vi+78, 2010. doi:10.1090/S0065-9266-10-00601-0.

46 Yuri Rabinovich. On average distortion of embedding metrics into the line. Discrete
Comput. Geom., 39(4):720–733, 2008. doi:10.1007/s00454-007-9047-5.

47 M. Ribe. On uniformly homeomorphic normed spaces. Ark. Mat., 14(2):237–244, 1976.

SoCG 2017

http://dx.doi.org/10.1016/j.ejc.2004.07.002
http://dx.doi.org/10.1016/j.ejc.2004.07.002
http://dx.doi.org/10.1007/s00039-004-0473-8
http://dx.doi.org/10.1007/BF01200757
http://dx.doi.org/10.1007/BF02761110
http://dx.doi.org/10.1007/BF02773799
http://dx.doi.org/10.1007/978-1-4613-0039-7
http://dx.doi.org/10.4171/JEMS/362
http://dx.doi.org/10.2478/agms-2013-0003
http://dx.doi.org/10.1007/s10240-013-0053-2
http://dx.doi.org/10.1215/00127094-3119525
http://dx.doi.org/10.1007/s11537-012-1222-7
http://dx.doi.org/10.1017/S0963548311000757
http://dx.doi.org/10.1017/S0963548311000757
http://dx.doi.org/10.2478/agms-2014-0001
http://dx.doi.org/10.1215/S0012-7094-06-13415-4
http://dx.doi.org/10.1112/S0010437X11005343
http://dx.doi.org/10.4086/toc.2009.v005a006
http://dx.doi.org/10.1515/9783110264012
http://dx.doi.org/10.1515/9783110264012
http://dx.doi.org/10.1090/S0065-9266-10-00601-0
http://dx.doi.org/10.1007/s00454-007-9047-5

50:16 A Spectral Gap Precludes Low-Dimensional Embeddings

48 Marcel Riesz. Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta
Math., 49(3-4):465–497, 1927. doi:10.1007/BF02564121.

49 Elias M. Stein. Interpolation of linear operators. Trans. Amer. Math. Soc., 83:482–492,
1956.

50 René Thom. Sur l’homologie des variétés algébriques réelles. In Differential and Combinat-
orial Topology (A Symposium in Honor of Marston Morse), pages 255–265. Princeton Univ.
Press, Princeton, N.J., 1965.

51 G.O. Thorin. Convexity theorems generalizing those of M. Riesz and Hadamard with some
applications. Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 9:1–58, 1948.

http://dx.doi.org/10.1007/BF02564121

Dynamic Geodesic Convex Hulls in Dynamic
Simple Polygons∗

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
heekap@postech.ac.kr

Abstract
We consider the geodesic convex hulls of points in a simple polygonal region in the presence of
non-crossing line segments (barriers) that subdivide the region into simply connected faces. We
present an algorithm together with data structures for maintaining the geodesic convex hull of
points in each face in a sublinear update time under the fully-dynamic setting where both input
points and barriers change by insertions and deletions. The algorithm processes a mixed update
sequence of insertions and deletions of points and barriers. Each update takes O(n2/3 log2 n) time
with high probability, where n is the total number of the points and barriers at the moment. Our
data structures support basic queries on the geodesic convex hull, each of which takes O(polylogn)
time. In addition, we present an algorithm together with data structures for geodesic triangle
counting queries under the fully-dynamic setting. With high probability, each update takes
O(n2/3 logn) time, and each query takes O(n2/3 logn) time.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Dynamic geodesic convex hull, dynamic simple polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.51

1 Introduction

A set X of points in a (weakly) simple polygon P is geodesically convex if the shortest path
between any two points of X with respect to P is contained in X. The geodesic convex hull
of a set of points contained in a simple polygon, which was introduced by Sklansky et al. [18],
is defined as the intersection of all geodesic convex sets containing the set.

Geodesic convex hulls have been widely used for a variety of applications including collision
detection [1], robotics [10], and motion planning [19]. These algorithms assume that the
input points and the region where the points lie are static, that is, all input elements remain
the same over the time. However, in many real-world geometric applications, particularly
those that run in real-time, input data may change over time–input data elements may be
inserted or deleted. Therefore it is required to handle these changes to maintain the geodesic
convex hull for dynamically changing input data efficiently.

In this paper, we consider the problem of maintaining the geodesic convex hulls of dynamic
points in a dynamic simple polygonal region. In the problem, points are inserted and deleted
in a simple polygonal region as well as the region changes by insertions and deletions of

∗ This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

non-crossing line segments (barriers) under the restriction that the dynamic line segments
always subdivide the region into simply connected faces.

We also study data structures that support a geodesic triangle counting query under the
dynamic environment. The geodesic triangle defined by three points contained in a simple
polygon P is the geodesic convex hull of them. Given a set S of input points in P , a geodesic
triangle counting query asks for the number of input points contained in the interior of the
geodesic triangle defined by three query points. No algorithm or data structure is known for
the dynamic geodesic triangle counting problem in a dynamic region while an algorithm for
the Euclidean version of the problem is known [14].

Related work for dynamic geodesic convex hulls. The convex hull of a set S of n points in
the plane is defined to be the intersection of all convex sets containing S. The first nontrivial
algorithm for maintaining the convex hull under point insertions and deletions in the plane
was given by Overmars and Leeuwen [16]. Their data structure supports each update in
O(log2 n) worst-case time, where n is the number of points they have at the moment. The
data structure can answer several basic queries including finding the extreme point in a
direction and finding tangent points. Each query takes O(logn) worst-case time. Later, the
update time was improved to O(logn) amortized time [3].

Surprisingly, little has been known for maintaining geodesic convex hulls of dynamic
points in a dynamic region, except the one by Ishaque and Tóth [12]. They considered
the problem in a semi-dynamic setting where point insertions and barrier deletions are not
allowed (a barrier is an edge of a simple polygon in their work). With this restriction, they
observe that the geodesic convex hull of points contained in a connected face of the barrier
arrangement gradually decreases. Moreover, the total number of changes to their convex hull
representations is O(n+m), where n is the number of points in the initial state and m is the
number of barriers in the final state. With this observations, they presented an algorithm to
maintain the geodesic convex hulls in O((n+m) log2(n+m) logn) total time. Their data
structure supports several basic queries in O(polylog{n,m}) time.

A natural question one may ask is whether the geodesic convex hulls can be maintained
with a sublinear update time in a more general setting where both insertions and deletions
of points and barriers are allowed.

Related work for geodesic triangle counting. The simplex counting problem is a funda-
mental query problem which has been studied extensively in the literature [4, 6, 14]. For a
set of n static points in Rd, Chan [4] gave a near-optimal algorithm which achieves O(n1−1/d)
query time with high probability after O(n logn)-time preprocessing using linear space. The
dynamic version of this problem where insertions and deletions of points are allowed is
decomposable in the sense that a query over D∪D′ can be answered in constant time from the
answers from D and D′ for any pair of disjoint data sets D and D′ [14]. Thus, we can obtain
a dynamic data structure from a static data structure of this problem using the framework
of Bentley and Saxe [2], or Overmars and Leeuwen [17].

The geodesic triangle counting problem in a simple polygon is a generalization of the
simplex counting problem. In the problem, we are given three query points in a simple
polygon and want to count all input points contained in the interior of the geodesic triangle
defined by the query points. We do not know any previous work achieving nontrivial results
on this problem. We consider this problem in the fully-dynamic setting where both input
points and barriers change by insertions and deletions. The problem is not decomposable
because the simple polygon changes in the course of updates. Therefore, it is unclear how to

E. Oh and H.-K. Ahn 51:3

apply the framework of Bentley and Saxe [2], or Overmars and Leeuwen [17] even if we have
a data structure for the static version of the problem.

Our results. We present an algorithm and data structures to maintain the geodesic convex
hulls in the fully-dynamic setting where both input points and barriers change by insertions
and deletions. Each update can be processed in O(n2/3 log2 n) amortized time with high
probability, where n is the total number of points and barriers at the moment. In addition,
we show that any data structure for maintaining all edges of the geodesic convex hull requires
Ω(n1/3) update time. By maintaining the geodesic convex hulls, we can answer various basic
queries in O(polylogn) time in the worst case: line stabbing, inclusion, and tangent queries.

In this algorithm, we use a subprocedure to answer a geodesic triangle counting query
under insertions and deletions of points and barriers. Each update can be processed in
O(n2/3 logn) amortized time with high probability, and each query can be answered in
O(n2/3 logn) time with high probability, where n is the total number of points and barriers
at the moment. We believe that this algorithm is of independent interest.

All these algorithms are randomized in terms of their running times because we use the
partition tree given by Chan [4]. We can obtain algorithms with deterministic running times
by using the partition tree of Chazelle et al. [8] instead of the one of Chan [4]. In this case,
the update times increase slightly while the query times remain the same.

1.1 Outline

We first present a data structure for a geodesic triangle counting query for static points
contained in a static simple polygon P . This data structure consists of three levels. The first
level is the geodesic triangulation of P obtained from the algorithm by Chazelle et al. [7].
In the second level, each geodesic triangle of the geodesic triangulation is associated with a
balanced binary search tree with respect to the x-coordinates of the input points contained
in the geodesic triangle. In the third level, each node of the balanced binary search tree is
associated with a data structure for an Euclidean triangle counting query.

Given three query points which define the geodesic triangle contained in P , we first
find the nodes of the balanced binary search trees whose associated point sets contain input
points contained in . For each such node, we find an Euclidean triangle 4 such that S′ ∩4
coincides with S′ ∩ for a set S′ of the input points associated with the node. Then we use
a query algorithm of an Euclidean triangle counting query with 4. This procedure takes
O(n1/2 logn) time with high probability, where n is the total number of points and barriers.

We use this data structure to answer a geodesic triangle counting query for dynamic
points contained in a dynamic simple polygon P . The key idea is that we reconstruct the data
structure periodically, instead of updating it for each change. To be specific, we reconstruct
the data structure after n1/3 updates are made, where n is the total number of the points
and barriers at the moment.

Given the geodesic triangle defined by three query points, may not be the geodesic
convex hull of its three corners with respect to the barriers we had when the data structure
was constructed, because the barrier set has changed after the (re)construction of the data
structure. To overcome this difficulty, we decompose into smaller geodesic triangles with
respect to the barriers we had at the last time the data structure was constructed such that
for each smaller geodesic triangle ˜ , there are O(n1/3 logn) nodes of the balanced binary
search trees whose associated point sets contain some input points contained in ˜ . Using
these properties, we apply the query algorithm for the static data structure with each smaller

SoCG 2017

51:4 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

geodesic triangle in the decomposition of . By careful analysis, we show that the query
time is O(n2/3 logn) with high probability.

Then we use this dynamic structure for geodesic triangle counting queries and show how
to maintain the geodesic convex hulls in the fully-dynamic setting. We observed that the
total number of distinct edges that appear on the geodesic convex hulls is less than the total
changes to their convex hull representations. Based on this observation, we compute some
edges that may appear on the geodesic convex hull in advance when we construct the data
structure of a geodesic triangle counting query.

To handle each update, we replace part of the convex hull with a chain of edges precom-
puted and maintained in the data structure. To find such a chain, we apply a geodesic triangle
counting query. Then we can achieve O(n2/3 log2 n) update time with high probability.

Due to lack of space, some of the proofs and details are omitted.

2 Preliminaries

Arrangements of Barriers. Let R be a sufficiently large rectangle. We consider the ar-
rangement of a set B of non-crossing line segments, called barriers, contained in R. The set
B is initially empty and changes by insertions and deletions of barriers.

The intersection graph of B is defined as follows. The graph has |B|+ 1 nodes, one for
each barrier in B and an additional node for R, where |X| denotes the number of elements in
a set X. Two nodes of the graph are connected by an edge if and only if their corresponding
barriers (or the boundary of R) are adjacent: one endpoint of a barrier lies on the other
barrier (or the boundary of R). We restrict the intersection graph to be connected at any
time, which gives a certain constraint on barriers that we consider. This restriction was
also assumed in the papers [5, 9, 11, 12]. Moreover, we require a barrier to have a constant
number of adjacent barriers, that is, each node in the intersection graph has a constant
degree, which was also assumed in the papers [5, 9, 11].

Each connected region of R \ ∪b∈Bb together with its boundary forms a weakly simple
polygon under the restriction. A single point may appear on the boundary of a weakly simple
polygon more than once, but we treat them as distinct points. We call each connected region
of R \ ∪b∈Bb together with its boundary a face of the arrangement of B.

In the following, we assume that the intersection graph of B is a tree. Thus the
arrangement of B consists of exactly one face at all times. We use R(B) to denote the unique
face (weakly simple polygon) of the arrangement. A more general case that the intersection
graph of B has cycles can also be handled analogously in the same time and space since
there are a constant amount of changes to the arrangement for each update. See Figure 1(a).
We can get rid of this assumption by modifying our algorithm slightly.

Update Sequences. Initially, both S and B are empty. We are given updates for points
and barriers one by one. An update is either an insertion or a deletion of a point or a barrier.
With these updates, S and B change accordingly. We are to process each update before we
receive the next update. Let U = 〈u1, u2, . . .〉 be a mixed sequence of updates. Let Si and
Bi denote S and B, respectively, after ui is processed for an index i. Let CHi denote the
geodesic convex hull of Si with respect to Bi. Let ni be the total complexity of Si and Bi.

For two sets X and Y , we use X ⊕ Y to denote the symmetric difference between X and
Y , that is, (X \ Y)∪ (Y \X). By definition, it holds that |Si ⊕ Sj |+ |Bi ⊕Bj | ≤ |i− j|. We
sometimes use an index i of U to denote the interval between the time when we receive ui
and the time when we receive ui+1. Time i indicates an arbitrary time in this interval.

E. Oh and H.-K. Ahn 51:5

`

(a) (b)

b

Figure 1 (a) The geodesic convex hull of points in a weakly simple polygon. (b) Every point on
` appears on the geodesic convex hull when barrier b is inserted.

Geodesic triangles and geodesic triangulations. For any two points x and y in R(B), the
geodesic path between x and y, denoted by πB(x, y) (or simply by π(x, y)), is the shortest
path between x and y in R(B). The boundary of the geodesic triangle defined by three points
p1, p2 and p3 in R(B) consists of three geodesic paths πB(p1, p2), πB(p2, p3) and πB(p3, p1).
The three vertices p1, p2 and p3 are called the corners of the geodesic triangle. The interior
of the geodesic triangle is bounded by three concave chains πB(p′1, p′2), πB(p′2, p′3), πB(p′3, p′1),
where p′i is the point such that πB(pi, p′i) is the maximal common path of πB(pi, pj) and
πB(pi, pk) for three distinct indices i, j and k in {1, 2, 3}. We call the interior of a geodesic
triangle the deltoid of it. We slightly abuse the term “deltoid” to denote a geodesic triangle
excluding its boundary whose deltoid coincides with itself.

We sometimes mention a geodesic triangle (or deltoid) without specifying its corners. In
this case, we mention it together with a barrier set B such that the boundary of the geodesic
triangle consists of three geodesic paths with respect to B.

A geodesic triangulation of R(B) is the decomposition of R(B) into a number of interior-
disjoint geodesic triangles with respect to B such that the union of the geodesic triangles
coincides with R(B). We say that a geodesic triangulation of R(B) is balanced if any
line segment that avoids the barriers in B intersects O(log |B|) geodesic triangles of the
triangulation.

A lower bound for maintaining the geodesic convex hull. To maintain the geodesic convex
hull at all times, we have to store the edges appearing on the boundary of the geodesic
convex hull in the algorithm, which takes Ω(n4/3) time in total by the following lemma.

I Lemma 1. For a mixed sequence of n updates of points and barriers, the number of distinct
edges appearing on the boundary of the geodesic convex hull is Ω(n4/3).

Proof. We prove this lemma using a lower bound example of a point-line incidence [15].
This lower bound example consists of a set P of N points and a set L of N lines such that
there are Ω(N4/3) distinct point-line pairs (p, `) with p ∈ ` for p ∈ P and ` ∈ L.

We construct a mixed sequence of n updates as follows. Let N = n/3. We first insert
the points of P one by one. For a line ` ∈ L, there is a barrier with one endpoint on the
boundary of R such that the insertion of the barrier makes all points of P lying on ` appear
on the boundary of the geodesic convex hull. See Figure 1(b). We insert such a barrier, and
then we remove it. We repeat this for every line in L. Then we have n/3 point insertions,
n/3 barrier insertions, and n/3 barrier deletions.

For the insertion of a barrier, the number of the new edges appearing on the geodesic
convex hull is at least the number of the points of P lying on the line ` ∈ L corresponding

SoCG 2017

51:6 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

to the barrier. Moreover, the new edges are contained in `. Therefore, all such edges are
distinct for every line in L. This implies that the number of distinct edges of the geodesic
convex hull is Ω(n4/3). J

Note that this lower bound example contains collinear points. We can perturb the points
slightly in a certain way such that no three distinct points are collinear and the bound still
holds. We omit details due to lack of space.

3 Dynamic Geodesic Triangle Range Queries

We are given three points c1, c2 and c3 in R(Bi) as a query for a geodesic triangle counting
problem. We show how to compute the number of points of Si lying in the deltoid of the
geodesic triangle of c1, c2 and c3 at time i.

3.1 Two Data Structures
We maintain two data structures: a geodesic-path data structure and an α-geodesic-
triangulated subdivision. The first one is given by Goodrich and Tamassia [11]. With
their structure, we can compute the geodesic path between any two query points in R(Bi)
represented as a balanced binary search tree in O(log2 ni) time.

The second one is our main data structure. At time i, an α-geodesic-triangulated
subdivision is a balanced geodesic triangulation of R(Bi−α) for some 0 ≤ α ≤ i such that
every geodesic triangle C in the triangulation is associated with a hierarchy of the partition
trees given by Chan [4] on the point set C ∩ Si−α, which will be described later.

The first level: balanced geodesic triangulation. We use the balanced geodesic triangu-
lation Ti of R(Bi−α) given by Chazelle at al. [7]. We call α the inconsistency of Ti. The
choice of α will be described in Section 3.2. Let B̃i and S̃i be Bi−α and Si−α, respectively.
We call a deltoid in the geodesic triangulation a cell of Ti. To make the description easier,
we assume that no point of S̃i lies on the boundary of any cell of Ti. If it is not the case,
we assume that a point of Ti lying on the common boundary of two cells of Ti belongs to
exactly one of them to avoid overcounting.

The geodesic triangulation is for a static simple polygonal region. We do not make any
change to this structure for updates until the inconsistency of the structure exceeds a certain
level. Then we reconstruct it from scratch so that the structure has no inconsistency for
the current set of barriers. Thus, B̃i and S̃i are B and S we had at the last time the data
structures were constructed, respectively. Details will be described in Section 3.2.

I Lemma 2. A deltoid with respect to Bi intersects O((α+1) log |B̃i|) cells in the α-geodesic-
triangulated subdivision. Moreover, they can be found in O((α+ 1)(log2 |B̃i|+ logα)) time.

The second and third levels: a hierarchy of partition trees. Imagine that we construct
Chan’s partition tree on S̃i ∩ C for every cell C of Ti that answers a Euclidean triangle
counting query [4]. The partition tree requires O(N) preprocessing time, O(N) space, and
O(
√
N) query time with high probability, where N is the number of input points.

I Lemma 3. Let C be a cell of Ti and ˜ be a deltoid with respect to B̃i. We can compute the
number of points in (C ∩ S̃i) ∩ ˜ in O(n1/2

C) time with high probability, where nC = |C ∩ S̃i|.

E. Oh and H.-K. Ahn 51:7

In our problem, a query is given as a deltoid with respect to Bi, not B̃i. Thus, we cannot
apply the algorithm in Lemma 3 to the query deltoid directly. Instead, for a query deltoid ,
we construct a set Q̃(C,) of pairwise disjoint deltoids with respect to B̃i for each cell C of
Ti such that the closures of the deltoids in Q̃(C,) contain C ∩ in their union. We apply
the algorithm in Lemma 3 to each deltoid in Q̃(C,) and get the answer. The running time
of this approach is O(mCn

1/2
C), where mC = |Q̃(C,)| and nC = |C ∩ S̃i|.

To reduce the running time, instead of constructing Chan’s partition tree on the set
C ∩ S̃i for each cell C of Ti, we construct a hierarchy of Chan’s partition trees on C ∩ S̃i using
a range tree. We construct a one-dimensional range tree (balanced binary search tree) on
C ∩ S̃i with respect to the x-coordinates of the points. Each node v of the tree corresponds
to a vertical slab H(v). The root corresponds to the (degenerate) vertical slab R2. The
left child and the right child of a node v correspond to the left vertical slab and the right
vertical slab obtained from the partition of H(v) with respect to the median x-coordinate
of S̃i contained in C ∩H(v), respectively. For each node v of the range tree, we construct
Chan’s partition tree on the set (C ∩H(v)) ∩ S̃i (excluding the points of S̃i lying on the
right vertical side of H(v)) as the associated data structure of v.

In the query algorithm, we construct a set Q̃(C,) of pairwise disjoint deltoids with
respect to B̃i satisfying Property (?) such that the closures of the deltoids contains C ∩
in their union. This procedure is described in Section 3.3.1. Then we apply Lemma 4 as a
subprocedure.

I Property (?). Any vertical line intersects O(1) deltoids in Q̃(C,) for every cell C in Ti.

I Lemma 4. Given a deltoid with respect to Bi, we can compute the number of points of
S̃i contained in C ∩ for a cell C of Ti in O((mCnC)1/2 lognC) time with high probability,
where mC = |Q̃(C,)| and nC = |C ∩ S̃i|.

I Lemma 5. We can construct the hierarchy of Chan’s partition trees for every cell C of Ti
in O(|S̃i| log(|B̃i|+ |S̃i|)) time in total with high probability.

Maintaining the point-location data structure. We store one more piece of information
in the second level of the α-geodesic-triangulated subdivision. For each cell C of Ti, we
maintain the dynamic point-location data structure of Chan and Nekrich [5] on the boundary
of C and the barriers of Bi \ B̃i intersecting C. Their data structure supports two types
of queries: a point-location query and a vertical ray-shooting query. Each query takes
O(logN(log logN)2) time and each update takes O(logN log logN) time, where N is the
complexity of the boundary of C and the barriers of Bi \ B̃i intersecting C.

3.2 A Procedure for Updates
We do not make any change to the geodesic-triangulated subdivision for updates until the
inconsistency α becomes larger than n1/3

i . Then we reconstruct the subdivision from scratch
so that the structure has no inconsistency, that is, we set S̃i = Si and B̃i = Bi and construct
Ti accordingly when the inconsistency becomes larger than n1/3

i . We can reconstruct the
geodesic-triangulated subdivision in O(n2/3

i logni) amortized time.
For the other two data structures, we update them for each insertion and deletion of

barriers: the point-location data structure for every cell C of Ti intersecting the barrier in
O(n1/3

i log3 ni(log logni)) time, and the geodesic-path data structure in O(log2 ni) time.

I Lemma 6. At any time i, the amortized time complexity for the reconstruction of the
geodesic-triangulated subdivision is O(n2/3

i logni) with high probability.

SoCG 2017

51:8 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

3.3 A Procedure for Geodesic Triangle Counting Queries
Assume that we have an update ui to process and we have the α-geodesic-triangulated
subdivision Ti with α ≤ n

1/3
i . Note that |B̃i| = O(ni) and |S̃i| = O(ni). Given any three

query points c1, c2 and c3 in R(Bi), we present an algorithm that returns the number of
points of Si contained in the deltoid of the geodesic triangle defined by c1, c2, c3 with
respect to Bi in O(n2/3

i logni) time. Recall that the geodesic triangulated subdivision is
constructed on R(B̃i) while is a deltoid with respect to Bi. Thus we cannot apply the
algorithm in Lemma 3 directly to . Instead, we decompose into a number of deltoids
with respect to B̃i and apply the algorithm in Lemma 3 to each such deltoid.

The query algorithm consists of three steps. In the first step, we find all cells of Ti
intersecting in O((α+1) log2 ni) time using Lemma 2. Let C() be the set of such cells. In
the second step described in Section 3.3.1, for each cell C ∈ C(), we construct a set Q̃(C,)
of pairwise disjoint deltoids satisfying Property (?) with respect to B̃i whose closures contain
C ∩ in their union. The total complexity of this set for every cell in C() is O(1 + α).
Then, in the last step described in Section 3.3.2, we compute the number X1 of the points of
S̃i contained in using the set Q̃(C,) for every cell C ∈ C(). In addition, we compute
the numbers of points in Si \ S̃i and S̃i \ Si contained in , and denote them by X2 and X3,
respectively. Then X1 +X2 −X3 is the number of points of Si contained in .

3.3.1 Constructing a Set of Deltoids with respect to B̃i

Let C be a cell in C(). In brief, we construct a set Q̃(C,) of pairwise disjoint deltoids
with respect to B̃i as follows. We compute the vertical decomposition of C with respect to
the barriers in Bi ⊕ B̃i. Then we find all cells of the vertical decomposition intersecting .
For each such cell, we compute the intersection of the cell with , which is the geodesic
convex hull of at most six points with respect to B̃i. Then for each intersection, we obtain
at most four deltoids from a geodesic triangulation of it. All such deltoids form Q̃(C,).

Computing the vertical decomposition. Let V(C) be the set of the endpoints of the
barriers of Bi ⊕ B̃i contained in the closure of C. We consider two vertical extensions from
every endpoint in V(C) going to opposite directions until they hit a barrier in Bi ⊕ B̃i or
the boundary of C. Note that no barrier in B̃i intersects the interior of C. Thus, we can
compute all extensions in O(|V(C)| logni(log logni)2) time in total using the point-location
data structure associated with C that supports a vertical ray-shooting query.

The extensions together with the barriers in Bi \ B̃i decompose C into O(1 + α) cells.
We call this decomposition the vertical decomposition of C. We dynamically maintain the
arrangement of Bi ⊕ B̃i using the point-location data structure associated with C. Thus by
computing all extensions, we can obtain the vertical decomposition of C.

Note that each cell (connected region) of the vertical decomposition contains at most four
convex vertices on its boundary. Moreover, the closure of each cell is the geodesic convex
hull of its four convex vertices with respect to both B̃i and Bi.

Traversing the vertical decomposition. Then we find all cells of the vertical decomposition
of C intersecting by traversing the vertical decomposition of C. In the case that C is
contained in , every cell in the vertical decomposition intersects . Thus we consider the
case that the boundary of intersects C.

We observe that we can compute the intersection of the boundary of C with the boundary
of while we compute the set C(). Then, starting from the intersection points, we traverse

E. Oh and H.-K. Ahn 51:9

the vertical decomposition of C along the boundary of . In this way, we can visit every cell
of the vertical decomposition intersecting . Moreover, we visit only the cells intersecting .

Every cell of the decomposition intersecting contains an endpoint of at most one barrier
of Bi \ B̃i on its boundary. Thus, during the traversal, we can find a neighboring cell of the
vertical decomposition intersecting the boundary of in O(logni) time. The running time
of this procedure is bounded by the number of cells of the decomposition intersecting
times O(logni).

Computing the set of deltoids. For each cell of the vertical decomposition of C intersecting
, consider the intersection of with the cell. It is the geodesic convex hull of at most six

points with respect to both B̃i and Bi. By computing a geodesic triangulation of it with
respect to B̃i, we can obtain at most four deltoids with respect to B̃i from the intersection
in O(log2 ni) time. Here, we do not explicitly compute the deltoids. Instead, we compute
the corners of each deltoid using the geodesic-path data structure we maintain. Then we can
compute the convex vertices of the deltoid of the geodesic triangle in O(log2 ni) time.

Let Q̃(C,) be the set of all such deltoids obtained from all cells in the vertical decom-
position of C intersecting . Note that the number of all cells of the decomposition of C
intersecting is asymptotically the same as the size of Q̃(C,). The running time of this
procedure is bounded by the size of Q̃(C,) times O(log2 ni).

Analysis. For analysis, we prove the followings.
The total number of deltoids in Q̃(C,) for all cells C ∈ C() is O(α+ 1).
The set Q̃(C,) satisfies Property (?).

The first claim implies that the running time for computing Q̃(C,) for all cells C ∈ C()
is O((α+ 1) logni(log logni)2), which is dominated by the time for constructing the vertical
decomposition for every cell in C(). The first and second claims give properties for Q̃(C,)
we want to achieve.

3.3.2 Computing the Number of Points in a Deltoid

We compute the number of points in (C ∩ ˜) ∩ S̃i for every cell C in C() and every deltoid˜ of Q̃(C,). Due to properties of Q̃(C,), we can compute it by applying Lemma 4 in
O(n2/3

i logni) time. Then we handle the points in Si ⊕ S̃i by deciding whether each of them
is contained in in O(log2 ni) time. We omit details due to lack of space.

I Theorem 7. A geodesic triangle counting query can be answered in O(n2/3 logn) time with
high probability under insertions and deletions of points and barriers, where n is the total
number of the points and barriers at the moment. We process each update in O(n2/3 logn)
amortized time with high probability using O(n logn) space.

4 Maintaining the Geodesic Convex Hull

In this section, we present an algorithm together with three data structures including the
data structures described in Section 3 to maintain the geodesic convex hull under insertions
and deletions of points and barriers.

SoCG 2017

51:10 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

t(v)

t(v′′)

t(v′)
e

Figure 2 The nodes v′ and v′′ are children of the node v. For v, we compute the bridges (dashed
segments). The edge e is the bridge of the convex hull of P (v′) and the convex hull of P (v′′).

4.1 A Triangle-Range Hull Tree
In addition to the data structures for a geodesic triangle query, we maintain a data structure,
which we call a triangle-range hull tree. The triangle-range hull tree is constructed on the set
Pi = (Si ∩ S̃i)∪ V (Bi ∩ B̃i), where V (B) denotes the vertices of R(B) for a set B of barriers.
Note that |Pi| = O(ni). Given a set of points, this data structure allows us to compute the
Euclidean convex hull of the points of Pi lying inside a query Euclidean triangle. In this
section, we present an algorithm to construct the triangle-range hull tree and an algorithm
to compute the Euclidean convex hull of the points contained in a query Euclidean triangle.

A partition tree of Chan. The triangle-range hull tree is a partition tree constructed on Pi
containing additional information. There are several variants of a partition tree with different
partitioning schemes. Among them, we use the partition tree given by Chan [4]. This is
because in their scheme, the triangle t(v) corresponding to a node v is subdivided into a
constant number of interior-disjoint triangles each of which corresponds to a child of v. Each
node v is associated with a point set P (v) = t(v) ∩ Pi. Moreover, for any Euclidean triangle
4, the number of nodes v in T such that t(v) intersects the boundary of 4 is O(

√
|Pi|).

Construction of the triangle-range hull tree. In our problem, we use the partition tree
constructed on Pi to compute the Euclidean convex hull of points contained in a query
Euclidean triangle. Recall that Pi consists of points from Si ∩ S̃i and points from V (Bi ∩ B̃i).
For a vertex p of the Euclidean convex hull of P ′ ⊆ Pi, we call the vertex of the Euclidean
convex hull that comes first from p in clockwise order along the convex hull among all vertices
from Si ∩ S̃i (or, V (Bi) ∩ V (B̃i)) the S-neighbor (or, B-neighbor) of p.

For every node v of the partition tree, we compute a part of the convex hull of P (v) such
that the partition tree supports the following operations for the convex hull of P (v):

(O1) Given two edges e1 and e2 of the convex hull, we can compute the number of edges
of the convex hull lying from e1 to e2 in clockwise order in O(logni) time.
(O2) For an integer j and an edge e of the convex hull, we can access the jth edge of the
convex hull from e in clockwise order in O(logni) time.
(O3) Given a vertex p of the convex hull, we can find the S-neighbor and B-neighbor of
p in clockwise order along the convex hull in O(logni) time.

Let v be a node of T . Assume that for every descendant v′ of v, we have already computed
a part of the convex hull of P (v′) such that the partition tree supports all three operations.
We show how to compute a part of the convex hull of P (v) as follows. We compute a constant
number of edges of the convex hull of P (v) that do not appear on the convex hull of P (v′)
for any child v′ of v, which we call bridges for v. For illustration, see Figure 2. By property
of the partition tree, P (v) is the union of P (v′) for all children v′ of v, and t(v) contains

E. Oh and H.-K. Ahn 51:11

the union of the triangles t(v′) for all children v′ of v. A bridge for v is an outer common
tangent of two convex hulls of P (v1) and of P (v2) for two children v1 and v2 of v.

Kirkpatrick and Snoeyink [13] presented an algorithm to compute the outer common
tangents of two given convex polygons with k vertices in O(log k) time once the vertices of
each convex polygon are stored in an array. In our case, we need O(log k) time for accessing
the jth edge of the convex hull of P (v1) (or P (v2)) from a given edge for an integer j. Since
a node of T has a constant number of children, we can compute all bridges for v in O(log2 ni)
time. We maintain the bridges for v in clockwise order along the convex hull of P (v). In
addition, we compute information for the bridges to support operations O1, O2 and O3 for
v. (We omit details due to lack of space.)

I Lemma 8. The triangle-range hull tree supports operations O1, O2 and O3 for every node.

To construct the triangle-range hull tree, we spend O(log2 ni) time for each node v, thus
the running time for the construction is O(ni log2 ni). Moreover, the number of bridges we
compute additionally is asymptotically bounded by the number of edges of the partition tree.
Thus, the size of the partition tree remains the same and we have the following lemma.

I Lemma 9. The triangle-range hull tree can be constructed on Pi in O(ni log2 ni) time with
high probability. The size of the triangle-range hull tree is O(ni).

Computation of the convex hull of points in a query Euclidean triangle. Let 4 be a
Euclidean triangle. We compute the Euclidean convex hull of Pi ∩ 4. To be specific, we
compute a tree of size O(

√
ni) supporting all three operations for the convex hull of Pi ∩4.

Each node of the tree is associated with a sequence of edges of the convex hull of Pi ∩4.
The algorithm is similar to the one for triangle range searching. We start from the root of

the triangle-range hull tree T . Let v be a node we just reached. Then we compute the convex
hull of P (u) ∩4 recursively for every child u of v. There are three possible cases: (1) t(u)
intersects the boundary of 4, (2) t(u) is contained in the interior of 4, or (3) t(u) does not
intersect 4. For the first case, we search further the subtrees rooted at u recursively. For
the second case, we already have the convex hull of P (u) ∩4. This is because the subtree of
T rooted at u supports the three operations for P (u) = P (u) ∩4. For the third case, we do
not search further the subtree rooted at u.

After computing the convex hull of P (u)∩4 for every child u of v, we compute the edges
of the convex hull of P (v) ∩4 which do not appear on the boundary of the convex hull of
P (u) ∩4 for any child u of v, which are bridges for v on the convex hull of P (v) ∩4. Note
that such a bridge is an outer common tangent of the convex hull of P (u1) ∩ 4 and the
convex hull of P (u2) ∩4 for two children u1 and u2 of v. Since v has a constant number of
children, there are a constant number of bridges for v. We compute them in O(log2 n) time
using the algorithm by Kirkpatrick and Snoeyink [13], and sort them in clockwise order along
the convex hull of P (v) ∩4. We also compute additional information to support operations
O1, O2 and O3 for v. Finally, we reach leaf nodes v of T . Since P (v) has a constant size, we
compute the convex hull of all points of P (v) lying inside 4 explicitly in constant time.

As a result of handling the query, we return the nodes of T we visited and the sequence
of bridges for each such node. That is, the output of the query algorithm is a tree consisting
of the nodes of T we visited each of which stores the sequence of bridges. Since we visited
O(
√
ni) nodes, the size of the output is O(

√
ni). One difference of the partition tree and

the output tree is that a leaf node of the output tree does not necessarily correspond to a
constant number of points. It happens when t(u) is contained in 4 for some node u of T . In

SoCG 2017

51:12 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

this case, the leaf node of the output tree points to its corresponding node of T . Thus we
can apply all three operations on the leaf node of the output tree.

With a simple analysis, we can show that the running time of this query algorithm is
O(N log2 ni), where N is the number of nodes v in T such that t(v) intersects the boundary
of 4. Therefore, the running time for our query algorithm is O(

√
ni log2 ni).

I Lemma 10. We can compute a tree of size O(
√
ni) in O(

√
ni log2 ni) time with high

probability that supports the three operations for the convex hull of points of P contained in
a query Euclidean triangle.

Whenever we reconstruct the data structure for a geodesic triangle counting query, we
also reconstruct the triangle-range hull tree. Additionally, we handle the deletion of a point
p from S ∪ V (B) by removing it from the triangle-range hull tree in O(log3 ni) time.

4.2 Representation of the Geodesic Convex Hull
Ishaque and Tóth [12] showed that n updates may induce Ω(n2) combinatorial changes in
the geodesic convex hull. However, we observe that the total number of distinct edges of the
geodesic convex hull under n updates is less than n2. Based on this observation, we compute
a number of chains in advance, which are geodesic paths stored in the geodesic-path data
structure and the boundaries of convex hulls stored in the triangle-range hull tree. Then at
any time i, we represent the geodesic convex hull CHi of Si with respect to Bi as a sequence
consisting of subchains along the boundary of CHi.

We maintain this sequence using a concatenable queue implemented by AVL-trees, and
call it the representation tree. A concatenable queue is used also in [16] to represent the
Euclidean convex hull. This data structure allows us to split a sequence, merge two sequences,
insert or delete an element in O(logni) time. Each element in the representation tree
corresponds to a subchain of the boundary of CHi of one of the three types:

(T1) A single edge of CHi connecting two points in Si
(T2) A geodesic path with respect to Bi connecting two points in Si
(T3) A subchain of the convex hull of P ∩4 for some Euclidean triangle 4

For a T1 element e, we simply store its corresponding edge to e. For an element of
other types, instead of storing the subchain directly, we store information that supports the
three operations for the element. Moreover, we store additional information to each node v
(element) to support operations O1, O2 and O3 for CHi.

I Lemma 11. The representation tree supports operations O1, O2 and O3 for CHi.

4.3 Procedures for Various Types of Queries
Lemma 11 allows us to answer various basic queries. Here, we show how to answer queries
of three types, which were considered by Ishaque and Tóth [12]: a line stabbing query, an
inclusion query and a tangent query.

For a line stabbing query with a line segment ` contained in R(Bi), we want to find
the intersection of ` with CHi. For an inclusion query with a point p in R(Bi), we want to
determine whether or not p is contained in CHi. For a tangent query with a point p lying
outside of CHi, we want to find the vertices v of CHi where p is tangent to CHi. Each query
can be answered in polylogarithmic time.

I Lemma 12. We can answer a line stabbing and inclusion query in O(log2 ni) time in the
worst case. We can answer a tangent query in O(log3 ni) time in the worst case.

E. Oh and H.-K. Ahn 51:13

b

CHi

y

s1

s2

x

1
2

(a)

y

(b)

x

γ1

s1 = q y

(c)

x

γ1

s1
q q′

y′

Figure 3 (a) When b is inserted, we replace πBi−1 (s1, s2) with two convex chains in 1 and 2.
(b), (c) We compute q such that the maximal common path of π(s1, y) and γ1 is π(s1, q).

4.4 Procedures for Updates
We update the triangle-range hull tree when a point or a barrier is deleted. But we do
not update it for insertions of points or barriers. Instead, we reconstruct it whenever we
reconstruct the data structure for a geodesic triangle counting query. We also compute
the geodesic convex hull of S with respect to B when we reconstruct them. After the
reconstruction, the representation tree consists of T1 elements only.

In this paper, we present algorithms for processing an insertion of a barrier b. We omit
details of the procedures for the other cases. At time i, we have the geodesic convex hull
CHi−1. We first check whether b intersects the interior of CHi−1 by applying the stabbing
query with the line segment b. If b does not intersect the interior of CHi−1, it holds that
CHi = CHi−1. Otherwise, the intersection of b with the interior of CHi−1 consists of at most
two connected components. (This happens when ` contains an edge of CHi−1.) If it consists
of two connected components, we consider them as two distinct barriers. So, in the following,
we assume that the intersection of b with the interior of CHi−1 is connected.

Now we consider the intersection of b with the boundary of CHi−1. The intersection
consists of at most two points. We consider the case that the intersection is a single point y.
The other case can be handled analogously.

Let s1 and s2 be the S-neighbors of y along the boundary of CHi−1 in clockwise and
counterclockwise orders, and let x be the endpoint of b lying inside CHi−1. See Figure 3(a).
We can compute s1 and s2 in O(logni) time using operation O3. As the barrier b is inserted,
some points of Si lying in the interior of CHi−1 appear on the boundary of CHi. Such points
lie in the deltoid of the geodesic triangle with three corners s1, s2 and x with respect to
Bi. Moreover, we have the following observation.

I Observation 13. CHi is the geodesic convex hull of (CHi−1 \) ∪ (Si ∩) w.r.t. Bi.

Let 1 and 2 be the two deltoids such that their union including their common boundary
xy is . Without loss of generality, we assume that s1 ∈ 1 and s2 ∈ 2. We use γt to
denote the part of the boundary of the geodesic convex hull of (Si∩ t)∪{st, x} with respect
to Bi that connects st and x (and is not π(st, x)) for t = 1, 2. See Figure 3(b). To obtain
CHi, we replace π(s1, s2) with γ1 and γ2 in the representation tree of CHi−1. We show how
to compute γ1 only. The polygonal chain γ2 can be computed analogously. Then we show
how to replace π(s1, s2) with them in the representation tree.

The procedure for computing γ1 consists of three steps. First, we find a smaller deltoid
′ ⊆ 1 with properties similar to ones of 1. Second, we find an Euclidean triangle 4

such that the part of the boundary of the Euclidean convex hull of (Si ∪ V (Bi)) ∩4 from x

SoCG 2017

51:14 Dynamic Geodesic Convex Hulls in Dynamic Simple Polygons

to q in clockwise order is exactly γ1 \ π(s1, q), where q is the corner of 4 that does not lie on
xy. Third, we compute the convex hull of (Si ∪ V (Bi))∩4 using the triangle-range hull tree
and update CHi using this information.

Finding a smaller deltoid. Here, instead of considering 1, we choose a deltoid ′ ⊆ 1
satisfying the following properties:

The boundary of ′ consists of one (maximal) concave chain and two line segments.
The boundary of the geodesic convex hull of Si ∩ ′ excluding πBi

(x, q) is exactly
γ1 \ πBi(s1, q), where q is the corner of ′ that does not lie on xy.

We observe that π(s1, y)∩γ1 is connected. We find the point q ∈ π(s1, y) closest to y such
that π(s1, q) ⊆ γ1. It is possible that q = s1. See Figure 3(b) and (c). We can compute q in
O(n2/3

i log2 ni) time by applying binary search on π(s1, y) with a geodesic triangle counting
query described in Section 3. We extend the edge of π(s1, q) incident to q until it hits xy.
Let y′ be the intersection of xy with the extension. We let ′ be the geodesic triangle with
corners q, y′ and x. Then this geodesic triangle satisfies the properties we want to achieve.

Finding an Euclidean triangle 4. We choose the Euclidean triangle 4 whose three corners
are the three corners of ′. Since ′ is a deltoid with respect to Bi, the line segment xq
connecting x and q appears on the boundary of the Euclidean convex hull CH of (Si∪V (Bi))∩
4. Moreover, any point of Si ∪ V (Bi) contained in the interior of the region bounded by
π(x, q) and xq does not appear on the boundary of CH. Thus the following holds.

I Lemma 14. The polygonal chain γ1 \ π(s1, q) coincides with the part of the boundary of
the Euclidean convex hull of (Si ∪ V (Bi)) ∩4 excluding xq.

Computing the convex hull of (Si ∪ V (Bi)) ∩ 4. Let P = (S̃i ∩ Si) ∪ V (B̃i ∩Bi). We
first compute the convex hull of P ∩ 4 using the triangle-range hull tree. Let CH be the
convex hull. Then we consider each point p in Si \ S̃i one by one, and update CH to be
the convex hull of CH and p. Each update takes O(log2 ni) time because we have to spend
O(logni) time to access the jth vertex of CH for some index j. Finally, we compute the
Euclidean convex hull of (Si ∪ V (Bi)) ∩4.

I Lemma 15. We can compute the Euclidean convex hull of (Si∪V (Bi))∩4 in O(ni1/2 log2 ni)
time with high probability.

Now we have γ1 and γ2 consisting of O(ni1/3) subchains belonging to T1, T2, or T3.
We insert them to the representation tree in O(ni1/3 logni) time. Then we remove π(s1, s2)
from the representation tree. This takes O(logni) time since the representation tree is a
concatenable queue supporting split operation.

Therefore, the running time for handling the insertion of a barrier is dominated by the
running time for the second step, which takes O(n2/3

i log2 ni) time.

I Lemma 16. The geodesic convex hull of Si with respect to Bi−1 ∪ {b} for some barrier b
can be computed in O(n2/3

i log2 ni) time with high probability once we have CHi−1.

I Theorem 17. We can update the geodesic convex hull in O(n2/3 log2 n) amortized time
with high probability under insertions and deletions of points and barriers, where n is the
total number of the points and barriers at the moment. A line stabbing query, inclusion query,
and tangent query can be answered in polylogarithmic time in the worst case.

E. Oh and H.-K. Ahn 51:15

References
1 Julien Basch, Jeff Erickson, Leonidas J. Guibas, John Hershberger, and Li Zhang. Kinetic

collision detection between two simple polygons. Computational Geometry, 27(3):211–235,
2004.

2 Jon Louis Bentley and James B. Saxe. Decomposable searching problems 1: Static-to-
dynamic transformations. Journal of Algorithms, 1(4):297–396, 1980.

3 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2002), pages
617–626, 2002.

4 Timothy M. Chan. Optimal partition trees. Discrete & Computational Geometry,
47(4):661–690, 2012.

5 Timothy M. Chan and Yakov Nekrich. Towards an optimal method for dynamic planar
point location. In Proceedings of the IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS 2015), pages 390–409, 2015.

6 Bernard Chazelle. Lower bounds on the complexity of polytope range searching. Journal
of the American Mathematical Society, 2(4):637–666, 1989.

7 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, John Her-
shberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

8 Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8(1):407–429, 1992.

9 Yi-Jen Chiang, Franco P. Preparata, and Roberto Tamassia. A unified approach to dy-
namic point location, ray shooting, and shortest paths in planar maps. SIAM Journal on
Computing, 25(1):207–233, 1996.

10 Anurag Ganguli, Jorge Cortés, and Francesco Bullo. Multirobot rendezvous with visibility
sensors in nonconvex environments. IEEE Transactions on Robotics, 25(2):340–352, 2009.

11 Michael T. Goodrich and Roberto Tamassia. Dynamic ray shooting and shortest paths in
planar subdivisions via balanced geodesic triangulations. Journal of Algorithms, 23(1):51–
73, 1997.

12 Mashhood Ishaque and Csaba D. Tóth. Relative convex hulls in semi-dynamic arrange-
ments. Algorithmica, 68(2):448–482, 2014.

13 David Kirkpatrick and Jack Snoeyink. Computing common tangents without a separating
line. In Proceedings of the 4th International Workshop on Algorithms and Data Structures
(WADS 1995), pages 183–193, 1995.

14 Jiří Matousěk. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

15 Jiří Matousěk. Lectures on discrete geometry. Springer Science & Business Media, 2013.
16 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.

Journal of Computer and System Science, 23(2):166–204, 1981.
17 Mark H. Overmars and Jan van Leeuwen. Worst-case optimal insertion and deletion meth-

ods for decomposable searching problem. Information Processing Letters, 12(4):168–173,
1981.

18 Jack Sklansky, Robert L. Chazin, and Bruce J. Hansen. Minimum-perimeter polygons of
digitized silhouettes. IEEE Transactions on Computers, C-21(3):260–268, 1972.

19 Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete and Compu-
tational Geometry, 34:587–635, 2005.

SoCG 2017

Voronoi Diagrams for a Moderate-Sized Point-Set
in a Simple Polygon∗

Eunjin Oh1 and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
jin9082@postech.ac.kr

2 Department of Computer Science and Engineering, POSTECH, Pohang, Korea
heekap@postech.ac.kr

Abstract
Given a set of sites in a simple polygon, a geodesic Voronoi diagram partitions the polygon into re-
gions based on distances to sites under the geodesic metric. We present algorithms for computing
the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a
simple n-gon, which improve the best known ones form ≤ n/polylogn. Moreover, the algorithms
for the nearest-point and farthest-point Voronoi diagrams are optimal for m ≤ n/ polylogn. This
partially answers a question posed by Mitchell in the Handbook of Computational Geometry.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Simple polygons, Voronoi diagrams, geodesic distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.52

1 Introduction

The geodesic distance between any two points x and y contained in a simple polygon is the
length of the shortest path contained in the polygon connecting x and y. A geodesic Voronoi
diagram of a set S of m sites contained in a simple polygon P partitions P into regions based
on distances to sites of S under the geodesic metric. The geodesic nearest-point Voronoi
diagram of S partitions P into cells, exactly one cell per site, such that every point in a
cell has the same nearest site of S under the geodesic metric. The higher-order Voronoi
diagram, also known as the order-k Voronoi diagram, is a generalization of the nearest-point
Voronoi diagram. For an integer k with 1 ≤ k ≤ m− 1, the geodesic order-k Voronoi diagram
of S partitions P into cells, at most one cell per k-tuple of sites, such that every point in
a cell has the same k nearest sites under the geodesic metric. Thus, the geodesic order-1
Voronoi diagram is the geodesic nearest-point Voronoi diagram. The geodesic order-(m− 1)
Voronoi diagram is called the geodesic farthest-point Voronoi diagram. Hence, the geodesic
farthest-point Voronoi diagram of S partitions P into cells, at most one cell per site, such
that every point in a cell has the same farthest site under the geodesic metric.

In this paper, we study the problem of computing the geodesic nearest-point, higher-order
and farthest-point Voronoi diagrams of a set S of m points contained in a simple n-gon
P . Each edge of a geodesic Voronoi diagram is either a hyperbolic arc or a line segment
consisting of points equidistant from two sites [2, 3, 11]. The boundary between any two
neighboring cells of a geodesic Voronoi diagram is a chain of O(n) edges. Each end vertex

∗ This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of
Korea.

© Eunjin Oh and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

of the boundary is of degree 1 or 3 under the assumption that no point in the polygon
is equidistant from four distinct sites while every other vertex is of degree 2. There are
O(k(m − k)) degree-3 vertices in the geodesic order-k Voronoi diagram of S [11]. Every
degree-3 vertex is equidistant from three sites and is a point where three Voronoi cells meet.
The number of degree-2 vertices is Θ(n) for the geodesic nearest-point Voronoi diagram and
the geodesic farthest-point Voronoi diagram [2, 3]. For the geodesic order-k Voronoi diagram,
it is known that the number of degree-2 vertices is O(kn) [11], but this bound is not tight.

The first nontrivial algorithm for computing the geodesic nearest-point Voronoi diagram
was given by Aronov in 1989 [2]. Their algorithm takes O((n+m) log2(n+m)) time. Later,
Papadopoulou and Lee [15] improved the running time to O((n+m) log(n+m)). However,
there has been no progress since then while the best known lower bound of the running time
remains to be Ω(n+m logm). In fact, Mitchell posed a question whether this gap can be
resolved in the Handbook of Computational Geometry [13, Chapter 27].

For the geodesic order-k Voronoi diagram, the first nontrivial algorithm was given by Liu
and Lee [11] in 2013. Their algorithm works for a polygonal domain with holes and takes
O(k2(n+m) log(n+m)) time. Thus, this algorithm also works for a simple polygon. They
presented an asymptotically tight combinatorial complexity of the geodesic order-k Voronoi
diagram for a polygonal domain with holes, which is Θ(k(m− k) + kn). However, it is not
tight for a simple polygon: the geodesic order-(m − 1) Voronoi diagram of m points in a
simple n-gon has complexity Θ(n+m) [3]. There is no bound better than the one by Liu and
Lee known for the complexity of the geodesic order-k Voronoi diagram in a simple polygon.

For the geodesic farthest-point Voronoi diagram, the first nontrivial algorithm was given
by Aronov et al. [3] in 1993, which takes O((n+m) log(n+m)) time. While the best known
lower bound is Ω(n + m logm), there has been no progress until Oh et al. [14] presented
a faster O((n + m) log logn)-time algorithm for the special case that all sites are on the
boundary of the polygon in 2016. They also claimed that their algorithm can be extended to
compute the geodesic farthest-point Voronoi diagram for any m points contained in a simple
n-gon in O(n log logn+m log(n+m)) time.1

Our results. Our main contributions are the algorithms for computing the nearest-point,
higher-order and farthest-point Voronoi diagrams of m sites in a simple n-gon, which improve
the best known ones for m ≤ n/ polylogn. To be specific, we present

an O(n+m logm log2 n)-time algorithm for the nearest-point Voronoi diagram,
an O(k2m logm log2 n + min{nk, n(m − k)})-time algorithm for the order-k Voronoi
diagram, and
an O(n+m logm+m log2 n)-time algorithm for the farthest-point Voronoi diagram.

Moreover, our algorithms reduce the gaps of the running times towards the lower bounds.
Our algorithm for the geodesic nearest-point Voronoi diagram is optimal for m ≤ n/ log3 n.
Since the algorithm by Papadopoulou and Lee is optimal for m ≥ n, our algorithm together
with the one by Papadopoulou and Lee gives the optimal running time for computing the
diagram, except for the case that n/ log3 n < m < n.

Similarly, our algorithm for the geodesic farthest-point Voronoi diagram is optimal for
m ≤ n/ log2 n. Since the algorithm by Aronov et al. [3] is optimal for m ≥ n, our algorithm
together with the one by Aronov et al. gives the optimal running time for computing the
diagram, except for the case that n/ log2 n < m < n. This answers the question posed by

1 Details will be found in the journal version of their paper.

Eunjin Oh and Hee-Kap Ahn 52:3

Mitchell on the geodesic nearest-point and farthest-point Voronoi diagrams, except for the
short intervals of n/ polylogn < m < n stated above.

For the geodesic order-k Voronoi diagram, we analyze an asymptotically tight combinator-
ial complexity of the diagram for a simple polygon, which is Θ(k(m−k)+min{nk, n(m−k)}).

Other contributions of this paper are the algorithms for computing the topological
structures of the geodesic nearest-point, order-k and farthest-point Voronoi diagrams which
take O(m logm log2 n), O(k2m logm log2 n) and O(m logm log2 n) time, respectively. These
algorithms allow us to obtain a dynamic data structure for answering nearest or farthest
point queries. In this problem, we are given a static simple n-gon P and a dynamic point
set S ⊆ P . We are allowed to insert points to S and delete points from S. After processing
updates, we are to find the point of S nearest (or farthest) from a query point efficiently.
This data structure requires O(

√
m log(n+m)) query time and O(

√
m logm log2 n) update

time, where m is the number of points in S at the moment.

1.1 Outline
Our algorithms for computing the geodesic nearest-point, higher-order and farthest-point
Voronoi diagrams are based on a polygon-sweep paradigm. For the geodesic nearest-point and
higher-order Voronoi diagrams, we fix a point o on the boundary of the polygon and move
another point x from o in clockwise direction along the boundary of the polygon. While
x moves along the boundary, we compute the Voronoi diagram of sites contained in the
subpolygon bounded by the shortest path between o and x and the part of the boundary of
P from o to x in clockwise order. For the geodesic farthest-point Voronoi diagram, we sweep
the polygon with a curve consisting of points equidistant from the geodesic center of the
sites. The curve moves from the boundary towards the geodesic center. During the sweep,
we gradually compute the diagram restricted to the region we have swept.

To achieve algorithms faster than the best known ones for m ≤ n/ polylogn, we first
compute the topological structure of a diagram instead of computing the diagram itself
directly. The topological structure, which will be defined later, represents the adjacency of
the Voronoi cells and has complexity smaller than the one of the complete Voronoi diagram.
Once we have the topological structure, we can compute the complete Voronoi diagram in
O(T1 + T2 logn) time, where T1 is the combinatorial complexity of the complete Voronoi
diagram and T2 is the combinatorial complexity of the topological structure of the diagram.

We define four types of events where the topological structure changes. To handle each
event, we compute a point equidistant from three points under the geodesic metric. There is
no algorithm known for computing a point equidistant from three points efficiently, except
an O(n)-time trivial algorithm. We present an O(log2 n)-time algorithm assuming that the
data structure of Guibas and Hershberger [9] is constructed for P . This algorithm allows us
to handle each event in O(polylog{n,m}) time.

One application of an algorithm for computing the topological structure is a data structure
for nearest (or farthest) point queries for a dynamic point set. To obtain this data structure,
we apply the framework given by Bentley and Saxe [4]. We observe that we can find the
Voronoi cell of the diagram containing a query point in O(log(n+m)) time once we have
the topological structure of the diagram.

2 Preliminaries

Let P be a simple n-gon and S be a set of m points in P . For ease of description, we use
VD[S], k-VD[S] and FVD[S] (or simply VD, k-VD and FVD if they are understood in the

SoCG 2017

52:4 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

context) to denote the geodesic nearest-point, order-k and farthest-point Voronoi diagrams
of S in P , respectively. We assume the general position condition that no vertex of P is
equidistant from two distinct sites of S and no point of P is equidistant from four distinct
sites of S. This was also assumed in previous work [3, 11, 15] on geodesic Voronoi diagrams.
This condition can be obtained by applying a slight perturbation of the positions of sites [6].

Consider any three points x, y and z in P . We use π(x, y) to denote the shortest path
(geodesic path) between x and y contained in P , and d(x, y) to denote the geodesic distance
between x and y. Two geodesic paths π(x, y) and π(x, z) do not cross each other, but may
overlap with each other. We call a point x′ the junction of π(x, y) and π(x, z) if π(x, x′) is
the maximal common path of π(x, y) and π(x, z). Refer to Figure 1(a).

Given a point p ∈ P and a closed set A ⊆ P , we slightly abuse the notation π(p,A) to
denote the shortest path contained in P connecting p and a point in A. Similarly, we abuse
the notation d(p,A) to denote the length of π(p,A). It holds that d(p,A) ≤ d(p, q) + d(q, A)
for any two points p, q ∈ P and any closed set A ⊆ P .

We say a set A ⊆ P is geodesically convex if π(x, y) ⊆ A for any two points x and y in A.
The geodesic convex hull of S is the intersection of all geodesic convex sets containing S. The
geodesic convex hull of a set of m points can be computed in O(n+m log(n+m)) time [9].

The geodesic center of a simple polygon P is the point c that minimizes maxp∈P d(c, p).
The center is unique [16] and can be computed in O(n) time [1]. Similarly, the geodesic
center of S can be defined as the point c that minimizes maxs∈S d(c, s). It is known that the
geodesic center of a set S of m points in P coincides with the geodesic center of the geodesic
convex hull of S [3]. Therefore, we can compute the center of S by computing the geodesic
convex hull of S and its center. This takes O(n+m log(n+m)) time in total.

Due to lack of space, some of the proofs are omitted. All missing proofs can be found in
the full version of this paper.

3 Computing the Geodesic Center of Points in a Simple Polygon

We first present an O(log2 n)-time algorithm for computing the geodesic center of three points
contained in P , assuming that we have the data structure of Guibas and Hershberger [9, 10].
This algorithm will be used as a subprocedure for computing the geodesic Voronoi diagrams.

3.1 Computing the Geodesic Center of Three Points
Let p1, p2 and p3 be three points in P , and let c be the geodesic center of them. The geodesic
convex hull of p1, p2, p3 is bounded by π(p1, p2), π(p2, p3), and π(p3, p1). The geodesic convex
hull may have complexity Ω(n), but its interior is bounded by at most three concave chains.
This allows us to compute the geodesic center of it efficiently.

We first construct the data structure of Guibas and Hershberger [9, 10] for P that allows
us to compute the geodesic distance between any two points in O(logn) time. To compute c,
we compute the shortest paths π(p1, p2), π(p2, p3), and π(p3, p1). Each shortest path has a
linear size, but we can compute them in O(logn) time using the data structure of Guibas
and Hershberger. Then we find a convex t-gon with t ≤ 6 containing c such that the geodesic
path π(x, pi) has the same combinatorial structure for any point x in the t-gon for each
i = 1, 2, 3. To find such a convex t-gon, we apply two-level binary search. Then we can
compute c directly in constant time inside the t-gon.

The data structure given by Guibas and Hershberger. Guibas and Hershberger [9, 10]
gave a data structure of linear size that enables us to compute the geodesic distance between

Eunjin Oh and Hee-Kap Ahn 52:5

p′1

p′2 p′3

(b)

p1

p2

p3
(a)

p′1

p′3

p′2

(c)

p′1

p′2

e

Figure 1 (a) p′
i is the junction of π(pi, pj) and π(pi, pk) for three distinct indices i, j and k in

{1, 2, 3}. (b) The subdivision of 4 with respect to p′
1. (c) The subdivision of e with respect to p′

2.

any two query points lying inside P in O(logn) time. We call this structure the shortest path
data structure. They showed that this data structure can be constructed in O(n) time.

In the preprocessing, they compute a number of shortest paths such that for any two
points p and q in P , the shortest path π(p, q) consists of O(logn) subchains of precomputed
shortest paths and O(logn) additional edges. In the query algorithm, they find such subchains
and edges connecting them in O(logn) time. Then the query algorithm returns the shortest
path between two query points represented as a binary tree of height O(logn) [10]. Therefore,
we can apply binary search on the vertices of the shortest path between any two points.

Computing the geodesic center of three points: two-level binary search. Let 4 be the
geodesic convex hull of p1, p2 and p3. The geodesic center c of the three points is the geodesic
center of 4 [3], thus is contained in 4. If the center lies on the boundary of 4, we can
compute it in O(logn) time since it is the midpoint of two points. So, we assume that the
center lies in the interior of 4. Let p′i be the junction of π(pi, pj) and π(pi, pk) for three
distinct indices i, j and k in {1, 2, 3}. See Figure 1(a).

We use the following lemmas to apply two-level binary search.

I Lemma 1 ([9]). We can compute the junctions p′1, p′2 and p′3 in O(logn) time.

I Lemma 2 ([5]). Given a point p ∈ 4 and a direction, we can find the first intersection
point of the boundary of 4 with the ray from p in the direction in O(logn) time.

The first level. Imagine that we subdivide4 into O(n) cells with respect to p′1 by extending
the edges of π(p′1, p′2) ∪ π(p′1, p′3) towards π(p′2, p′3). See Figure 1(b). The extensions of the
edges can be sorted in the order of their endpoints appearing along π(p′2, p′3). Consider the
subdivision of 4 by the extensions, and assume that we can determine which side of a given
extension in 4 contains c in T (n) time. Then we can compute the cell of the subdivision
containing c in O(T (n) logn) time by applying binary search on the extensions. Note that
any point x in the same cell has the same combinatorial structure of π(x, p1) (and π(x, p′1)).

We also do this for p′2 and p′3. Then we have three cells whose intersection contains c.
Let D be the intersection of these three cells. We can find D in constant time by the the
fact that D is a convex polygon with at most six edges from extensions of the cells.

We do not subdivide 4 explicitly. Because we have π(p′1, p′2) and π(p′1, p′3) in binary trees
of height O(logn), we can apply binary search on the extensions of the edges of the geodesic
paths without subdividing 4 explicitly. In this case, during the binary search, we compute
the extension of a given edge of π(p′1, p′2) ∪ π(p′1, p′3) using Lemma 2 in O(logn) time.

There is a vertex p on the boundary of 4 such that for any point x contained in D we
have d(p1, x) = d(p1, p) + ‖p− x‖, where ‖p− x‖ is the Euclidean distance between p and x.

SoCG 2017

52:6 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

Moreover, we already have p from the computation of the cell containing c in the subdivision
with respect to p′1. The same holds for p2 and p3. Therefore, we can compute the point c
that minimizes the maximum of d(c, p1), d(c, p2) and d(c, p3) in constant time inside D.

Therefore, we have the following lemma.

I Lemma 3. Assuming that we can determine which side of an extension in 4 contains c
in T (n) time, we can compute the geodesic center c in O((T (n) + logn) logn) time.

The second level. In the second level binary search, we determine which side of an extension
e in 4 contains c. Without loss of generality, we assume that e comes from the subdivision
with respect to p′1. Then π(p1, x) has the same combinatorial structure for any point x ∈ e.

This subproblem was also considered in previous works on computing the geodesic center of
a simple polygon [1, 16]. They first compute the point ce in e that minimizes maxp∈P d(p, ce),
that is, the geodesic center of the polygon restricted to e. Based on ce and its farthest point,
Pollack et al. [16] presented a way to decide which side of e contains the geodesic center of
the polygon in constant time. However, to compute ce, they spend O(n) time.

In our problem, we can do this in logarithmic time using the fact that the interior of 4 is
bounded by at most three concave chains. By this fact, there are two possible cases: ce is an
endpoint of e, or ce is equidistant from p1 and pi for i = 2 or 3. We compute the point on e
equidistant from p1 and p2, and the point on e equidistant from p1 and p3. Then we find the
point ce among the two points and the two endpoints of e. In the following, we show how to
compute the point on e equidistant from p1 and p2 if it exists. The point on e equidistant
from p1 and p3 can be computed analogously.

Observe that e can be subdivided into O(n) disjoint line segments by the extensions of the
edges of π(p′2, v1) ∪ π(p′2, v2) towards e, where v1 and v2 are endpoints of e. See Figure 1(c).
For any point x in the same line segment, π(p2, x) has the same combinatorial structure.

There is at most one point on e equidistant from p1 and p2. (For a proof, see the full
paper.) Thus we can apply binary search on the line segments in the subdivision of e. As we
did before, we do not subdivide e explicitly. Instead, we use the binary trees representing
π(p′2, v1) and π(p′2, v2). For a point x in e, by comparing d(p1, x) and d(p2, x), we can
determine which part of x on e contains the point equidistant from p1 and p2 in constant
time. In this case, we can compute the extension from an edge towards e in constant time
since e is a line segment. Thus, we complete the binary search in O(logn) time.

Therefore, we can compute ce in O(logn) time and determine which side of e in 4
contains c in the same time using the method of Pollack et al [16]. The following lemma
summarizes this section.

I Lemma 4. Given any three points p1, p2 and p3 contained in a simple n-gon P , the
geodesic center of p1, p2 and p3 can be computed in O(log2 n) time after the shortest path
data structure for P is constructed in linear time.

Similarly, we can compute a point equidistant from any three points in P (or, two points
and a line segment). They are used as subprocedures for computing the Voronoi diagrams.
Note that the geodesic center of three points may not be equidistant from all of them.
Moreover, there may be an infinite number of points equidistant from the three points (or,
two points and a line segment). In this case, we compute the one closest to them.

I Lemma 5. Given any three points contained in a simple n-gon, we can compute the closest
equidistant point from them under the geodesic metric in O(log2 n) time if it exists.

Eunjin Oh and Hee-Kap Ahn 52:7

s1

s2

v

u

s′1 s′2

(b)(a)

V1

V2

V3

Figure 2 (a) The adjacency graph of a Voronoi diagram. (b) The number of edges in the common
boundary of two adjacent Voronoi cells is bounded by the total complexity of π(s′

1, v), π(s′
1, u),

π(s′
2, v) and π(s′

2, u), where u and v are endpoints of the common boundary.

I Lemma 6. Given any two points and any line segment contained in a simple n-gon, we
can compute the closest equidistant point from them under the geodesic metric in O(log2 n)
time if it exists.

Combining the result in this subsection with the algorithms for computing the center of
points in the plane [12] and computing the geodesic center of a simple polygon [16], we can
compute the geodesic center of m points contained in P . (For details, see the full version.)

I Theorem 7. The geodesic center of m points contained in a simple polygon with n vertices
can be computed in O(m logm log2 n) time after the shortest path data structure for the
simple polygon is constructed.

4 Topological Structures of Voronoi Diagrams

In this section, we define the topological structure of Voronoi diagrams and show how to
compute the complete Voronoi diagrams from their topological structures. The topological
structure of a Voronoi diagram represents the adjacency of their Voronoi cells.

The common boundary of any two adjacent Voronoi cells is connected for the nearest-point
and farthest-point Voronoi diagrams of point sites in a simple polygon [2, 3]. Similarly, it
can be shown that this also holds for the higher-order Voronoi diagram of point sites in a
simple polygon.

The topological structure of k-VD is defined as follows for 1 ≤ k ≤ m − 1. Imagine
that we apply vertex suppression for every degree-2 vertex of the Voronoi diagram while
preserving the topology of the Voronoi diagram. Vertex suppression of a vertex v of degree 2
is the operation of removing v and adding an edge connecting the two neighbors of v. We
call the dual of this graph the adjacency graph of the Voronoi diagram. See Figure 2(a). It
represents the topological structure of the Voronoi diagram. The adjacency graph is a planar
graph with complexity O(k(m− k)), because the number of degree-1 and degree-3 vertices
of k-VD is O(k(m− k)) [11].

Assume that we have the adjacency graph of the Voronoi diagram together with the exact
positions of the degree-1 and degree-3 vertices of the diagram. Consider two Voronoi cells V1
and V2 which are adjacent to each other. Each Voronoi cell is defined by k sites, but any two
adjacent Voronoi cells share k − 1 sites. Let s1 and s2 be the two sites defining V1 and V2,
respectively, which are not shared by them. There are two Voronoi vertices v and u defined
by a triple (s1, s2, s) and a triple (s1, s2, s

′) of sites defining v and u, respectively, for some

SoCG 2017

52:8 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

sites s, s′. Each Voronoi edge in the common boundary of V1 and V2 is a part of the bisector
of s1 and s2 lying between v and u. See Figure 2(b).

To compute the Voronoi edges in the common boundary of V1 and V2, we consider the
geodesic paths π(s′i, v) and π(s′i, u) for i = 1, 2, where s′i is the junction of π(si, v) and
π(si, u). Then for any vertex x in π(s′1, v) ∪ π(s′1, u), there exists a point q in the bisector of
s1 and s2 lying between v and u such that π(s1, q) and π(s1, x) have the same combinatorial
structure. The same holds for s2. Thus, the number of edges in the common boundary is
bounded by the total complexity of π(s′1, v) ∪ π(s′1, u) and π(s′2, v) ∪ π(s′2, u). Thus, we may
compute the geodesic paths explicitly and consider every edge of the geodesic paths.

Therefore, we can compute the common boundary of two adjacent Voronoi cells in time
linear to its complexity plus O(logn). This leads to O(T1 + T2 logn) time for computing the
complete Voronoi diagram from its topological structure, where T1 is the complexity of the
complete Voronoi diagram and T2 is the complexity of the adjacency graph.

I Lemma 8. We can compute the complete Voronoi diagram of m points in a simple polygon
with n vertices in O(T1 + T2 logn) time once its adjacency graph, and the degree-1 and
degree-3 vertices at their places are given, where T1 is the complexity of the complete Voronoi
diagram and T2 is the complexity of the adjacency graph.

Therefore, in the following, we focus on computing the topological structure of VD, k-VD
and FVD, that is, the adjacency graphs of them with degree-3 vertices at their places.

5 The Geodesic Nearest-Point Voronoi Diagram

Fortune [7] presented an O(m logm)-time algorithm to compute the nearest-point Voronoi
diagram of m points in the plane by sweeping the plane with a horizontal line from top to
bottom. During the sweep, they compute a part of the Voronoi diagram of sites lying above
the horizontal line, which finally becomes the complete Voronoi diagram in the end of the
sweep. To do this, they define two types of events and handle O(m) events in total. Each
event can be handled in O(logm) time, which leads to O(m logm) total running time.

In our case, we sweep the polygon with a geodesic path π(o, x) for a fixed point o on the
boundary of P and a point x moving along the boundary of P from o in clockwise direction.
The point x is called the sweep point. If we compute all O(n+m) degree-1, degree-2 and
degree-3 vertices of the Voronoi diagram during the sweep, we may not achieve the running
time better than O((n+m) log(n+m)). The key to improve the running time is to compute
the topological structure of the Voronoi diagram first which consists of the degree-1 and
degree-3 vertices of the Voronoi diagram and the adjacency graph of Voronoi cells. Then we
construct the complete Voronoi diagram, including degree-2 vertices, from its topological
structure using Lemma 8.

Let o be an arbitrary point on ∂P , where ∂P denotes the boundary of P . Consider the
sweep point x that moves from o along ∂P in clockwise order. We use P (x) to denote the
subpolygon of P bounded by π(o, x) and the part of ∂P from o to x in clockwise order. Note
that P (x) is weakly simple. See Figure 3. As x moves along ∂P , P (x) does not decrease.
That is, P (x1) ⊆ P (x2) for any two points x1 and x2 on ∂P such that x1 comes before x2
from o in clockwise order.

For a site s ∈ P (x), let Rs(x) be the region {p ∈ P (x) | d(p, s) ≤ d(p, π(o, x))}. By
definition, Rs(x) does not decrease as x moves along ∂P in clockwise order.

I Lemma 9. Rs(x) is connected.

Eunjin Oh and Hee-Kap Ahn 52:9

Proof. To prove the lemma, we show that π(p, s) ⊆ Rs(x) for any point p ∈ Rs(x). This
implies that Rs(x) is connected because s is contained in Rs(x) if s ∈ P (x) by definition.
Let p be a point in Rs(x). Consider a point r ∈ π(p, s). We have d(r, s) = d(p, s)− d(p, r).
Moreover, we have d(p, π(o, x)) − d(p, r) ≤ d(r, π(o, x)). Since p ∈ Rs(x), it holds that
d(p, s) ≤ d(p, π(o, x)). Thus, d(r, s) ≤ d(r, π(o, x)). Therefore, r is in Rs(x), and therefore,
Rs(x) is connected. J

We say that a subset A of P is weakly monotone with respect to a geodesic path π′ if the
intersection of π(p, π′) with A is connected for any point p ∈ A.

I Lemma 10. The boundary of Rs(x) consists of one polygonal chain of ∂P and a simple
curve whose both endpoints lie on ∂P (x) unless s ∈ π(o, x). Moreover, the simple curve is
weakly monotone with respect to π(o, x).

Proof. For any point p ∈ Rs(x), the geodesic ray from p in direction opposite to the
edge of π(p, π(o, x)) incident to p is contained in Rs(x). This is because d(r, π(o, x)) =
d(p, π(o, x)) + d(p, r) ≥ d(p, s) + d(p, r) ≥ d(r, s) by triangle inequality for any point r in the
geodesic ray. The lemma follows from this fact and Lemma 9. J

Now we consider the union of Rs(x) for every site s in P (x) and denote it by R(x). The
dashed region in Figure 3(a) is R(x). Note that for any point p ∈ P (x) and any site s ∈ S
lying outside of P (x), it holds that d(p, π(o, x)) < d(p, s). This implies that for any point
p ∈ R(x), the nearest site of p is in P (x). Therefore, to compute VD restricted to R(x), we
do not need to consider the sites lying outside of P (x).

I Corollary 11. The closure of P (x) \R(x) is weakly simple.

I Corollary 12. Each connected component of R(x) consists of a polygonal chain of ∂P and
a connected simple curve with endpoints on ∂P unless π(o, x) contains some site. Moreover,
the union of such curves is weakly monotone with respect to π(o, x) at any time.

We maintain the nearest-point Voronoi diagram of sites contained in P (x) restricted
to R(x) while x moves along ∂P . However, after the sweep, R(x) does not coincide with
P . This means that we cannot obtain VD in this way. To solve this problem, we attach a
long and very thin triangle to ∂P to make a bit larger simple polygon P ′, as illustrated in
Figure 3, so that once we finish the sweep (when the sweep point returns back to o) in P ′ we
have the complete Voronoi diagram in P . (The triangle has height of the diameter of P .)

The beach line and the breakpoints. There are O(m) connected components of R(x) each
of whose boundaries consists of a polygonal chain of ∂P and a connected simple curve.
The beach line is defined to be the union of O(m) simple curves of R(x). It has properties
similar to those of the beach line of the Euclidean Voronoi diagram. It consists of O(n+m)
hyperbolic or linear arcs. We do not maintain them explicitly because the complexity of the
sequence is too large for our purpose. Instead, we maintain the combinatorial structure of
the beach line using O(m) space as follows.

A point on the beach line is called a breakpoint if it is equidistant from two distinct sites.
Each breakpoint moves and traces out some Voronoi edge as the sweep point moves along
∂P ′. We represent each breakpoint symbolically. That is, a breakpoint is represented as the
pair of sites equidistant from it. We say that such a pair defines the breakpoint. Given the
pair defining a breakpoint and the position of the sweep point, we can find the exact position
of the breakpoint using Lemma 6 in O(log2 n) time.

SoCG 2017

52:10 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

s

(b)

o

s

(a)

s1

s2
s3

(c)

k
k′

γ(k′)
γ(k)

x = k k

attached triangle
o o

p

s1

s2
s3

s1

s2
s3

Figure 3 (a) The site event defined by s with key k. Two (degenerate) breakpoints appear in
B(k). (b) Two (degenerate) endpoints appear in B(k). (c) The vanishing event defined by the
breakpoint of (s1, s2) with key k. The endpoint defined by s1 and the breakpoint merge into the
endpoint defined by s2.

Additionally, we consider the endpoints of O(m) connected curves of the beach line. We
simply call them the endpoints of the beach line. For an endpoint p, there is the unique site
s with d(p, s) = d(p, π(o, x)). We say that s defines p.

By Corollary 11 and Corollary 12, we can define the order of these breakpoints and these
endpoints. Let B(x) = 〈β1, . . . , βm′〉 be the sequence of the breakpoints and the endpoints of
the beach line sorted in clockwise order along the boundary of P (x) \R(x) with m′ = O(m).
We maintain B(x) instead of all arcs on the beach line. As x moves along ∂P ′, the sequence
B(x) changes.

While maintaining B(x), we compute the adjacency graph of VD together with the
degree-1 and degree-3 vertices of VD restricted to R(x). (Recall that a cell of VD restricted
to R(x) is associated with a site in P (x).) Specifically, when a new breakpoint defined by a
pair (s, s′) of sites is added to B(x), we add an edge connecting the node for s and the node
for s′ into the adjacency graph.

Events. We have four types of events: site events, circle events, vanishing events, and
merging events. Every event corresponds to a key, which is a point on the boundary of P ′.
We maintain the events with respect to their keys sorted in clockwise order from o along
the boundary. Given a sorted sequence of ν events for ν ∈ N, we can insert a new event in
O(log ν) time since we are given each point on the boundary of P ′ together with the edge of
P ′ where it lies. The event occurs when the sweep point x passes through the corresponding
key. The sequence B(x) changes only when x passes through the key of an event.

The definitions of the first two events are similar to the ones in Fortune’s algorithm. Each
site s in S defines a site event. The key k of the site event defined by s is the point on ∂P ′
closest to o among the points x′ with s ∈ π(o, x′). When the sweep point passes through k,
the site s appears on the beach line. Moreover, new breakpoints defined by s and some other
site s′, or new endpoints defined by s appear on B(x). See Figure 3(a) and (b).

The other events are defined by a pair of consecutive points in B(x) or a single breakpoint
in B(x). Before the sweep point reaches the key of an event, the points in the pair defining the
event may become non-consecutive, or the breakpoint defining the event may disappear from
B(x) due to the changes of B(·). In this case, we say that the event is invalid. Otherwise,
we say that the event is valid.

A pair (β1, β2) of consecutive breakpoints in B(x) defines a circle event if a point c
equidistant from s1, s2 and s3 exists, where (s1, s2) and (s2, s3) are two pairs of sites defining

Eunjin Oh and Hee-Kap Ahn 52:11

β1 and β2, respectively. The key k of this circle event is the point on ∂P ′ closest to o among
the points x′ with d(c, π(o, x′)) = d(c, s1)(= d(c, s2) = d(c, s3)). Assume that this event is
valid when x passes through k. At that time, c appears on the beach line. Moreover, β1 and
β2 disappear from the beach line, and a new breakpoint defined by (s1, s3) appears on the
beach line. (One may think that β1 and β2 merge into the breakpoint defined by (s1, s3).)

Each breakpoint β in B(x) defines a vanishing event. Let (s1, s2) be the pair of sites
defining β. Consider two points on ∂P ′ equidistant from s1 and s2. We observe that
exactly one of the two points lies outside of R(x). We denote it by p. See Figure 3(c).
The key k of the vanishing event is the point on ∂P ′ closest to o among the points x′ with
d(p, π(o, x′)) = d(p, s1). Assume that this event is valid when x passes through k. Then, β
traces out a Voronoi edge and reaches p, which is a degree-1 Voronoi vertex. Moreover, B(x)
changes accordingly as follows. Right before x reaches k, an endpoint defined by s1 or s2 is
a neighbor of β in B(x). (Otherwise, the beach line is not weakly monotone.) Without loss
of generality, we assume that an endpoint of s1 is a neighbor of β. When x reaches the key,
this endpoint and β disappear from B(x), and an endpoint defined by s2 appears in B(x).
(One may think that this endpoint and β merge into the endpoint defined by s2.)

A pair (β1, β2) of consecutive endpoints in B(x) defines a merging event if β1 and β2 are
endpoints of different connected curves of the beach line. Let s1 and s2 be the sites defining
β1 and β2, respectively. Without loss of generality, assume that β1 comes before β2 from
o in clockwise order. Let p be the (unique) point equidistant from s1, s2 that comes after
β1 and before β2 from o along ∂P ′ in clockwise order. The key k of the merging event is
the point on ∂P ′ closest to o among the points x′ with d(p, π(o, x′)) = d(p, s1). Assume that
this event is valid when x passes through k. Then, as the sweep point x moves along ∂P ′,
β1 and β2 are closer and finally meet each other at p. This means that the two connected
curves, one containing β1 and the other containing β2, merge into one connected curve. At
this time, β1 and β2 merge into a breakpoint defined by (s1, s2).

5.1 An algorithm
Initially, B(x) = B(o) is empty, so there is no circle, vanishing, or merging event. We compute
the keys of all site events in advance. For each site, we compute the key corresponding to its
event in O(logn) time [8].

As B(x) changes, we obtain new pairs of consecutive breakpoints or endpoints, and new
breakpoints. Then we compute the key of each event in O(log2 n) time using the following
lemmas and Lemma 5. In addition, as B(x) changes, some event becomes invalid. Once
an event becomes invalid, it does not become valid again. Thus we discard an event if it
becomes invalid. Therefore, the number of events we have is O(|B(x)|) at any time.

I Lemma 13. Given a point p in P ′ and a distance r ∈ R, the point on ∂P ′ closest to o
among the points x′ with d(p, π(o, x′)) = r can be found in O(log2 n) time.

I Lemma 14. For any two sites s1 and s2 in P ′, we can compute the two points equidistant
from s1 and s2 lying on the boundary of P ′ in O(log2 n) time.

Handling site events. To handle a site event defined by a site s with key k, we do the
following. By definition, the site s appears on the beach line when the sweep point x passes
through k. Thus, two breakpoints defined by (s, s′) for other sites s′ (or two endpoints
defined by s) appear on B(k). See Figure 3(a) and (b). We find the positions of them in
B(x) and update B(x) by adding them using Lemma 15.

SoCG 2017

52:12 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

I Lemma 15. We can obtain B(k) from B(k′) in O(log2 n log |B(k′)|) time, where k′ is the
key previous to k.

Adding two breakpoints or two endpoints to B(x) makes a constant number of new pairs
of consecutive breakpoints or endpoints, which define circle or merging events. This also
makes a constant number of new vanishing events. We compute the key for each event in
O(log2 n) time and add the events to the event queue in O(log |B(x)|) time. Recall that
the number of events we have is O(|B(x)|) at any time. Therefore, each site event can be
handled in O(log2 n log |B(x)|) time.

Handling the other events. Let k be the key of a circle, vanishing, or merging event. For
a circle event, two breakpoints defining the event disappear from the beach line, and a
new breakpoint appears. For a vanishing event, the breakpoint defining the event and its
neighboring endpoint disappear from the beach line, and a new endpoint appears. For a
merging event, two endpoints defining the event are replaced with a new breakpoint. In any
case, we can update B(x) in O(log |B(x)|) time.

After updating B(x), we have a constant number of new pairs of consecutive breakpoints
or endpoints, and a constant number of new breakpoints. We compute the keys of events
defined by them in O(log2 n) time.

Analysis. During the sweep, we handle O(m) events in total. Each event can be processed
in O(log2 n logm) time since the length of B(x) is O(m) at any time. Thus we have the
following lemma and theorem.

I Lemma 16. After computing the shortest path data structure for P ′ and the shortest
path map for P ′ from the point o, we can compute the topological structure of VD in
O(m logm log2 n) time using O(m) space (excluding the two data structures).

I Theorem 17. Given a set of m point sites contained in a simple polygon with n vertices, we
can compute the geodesic nearest-point Voronoi diagram of the sites in O(n+m logm log2 n)
time using O(n+m) space.

6 The Geodesic Higher-order Voronoi Diagram

In this section, we first present an asymptotically tight combinatorial complexity of the
geodesic higher-order Voronoi diagram of points. Then we present an algorithm to compute
the diagram by applying the polygon-sweep paradigm introduced in Section 5. In the plane,
Zavershynskyi and Papadopoulou [17] presented a plane-sweep algorithm to compute the
higher-order Voronoi diagram. We use their approach together with our approach in Section 5.
In the following, we assume that 1 ≤ k ≤ m− 1.

6.1 The Complexity of the Diagram inside a Simple Polygon
Liu and Lee [11] presented an asymptotically tight complexity of the geodesic higher-order
Voronoi diagram of points in a polygonal domain with holes, which is Θ(k(m − k) + nk).
However, it is not tight for a simple polygon.

Figure 4 shows an example that the order-k Voronoi diagram has complexity of Ω(k(m−
k) + min{nk, n(m− k)}). We construct a simple polygon P and a set of sites with respect to
a reference point o. Let `1 be a sufficiently long horizontal line segment whose right endpoint
is o and `2 be a sufficiently long line segment with a positive slope whose left endpoint is

Eunjin Oh and Hee-Kap Ahn 52:13

k sites

m− k sites

n− 4 vertices
v1 o

`1

`2
u1

Figure 4 An example that the order-k Voronoi diagram has complexity of Ω(k(m − k) +
min{nk, n(m− k)}).

o. (`1 and `2 are not parts of the simple polygon, but they are auxiliary line segments to
locate the points.) We put m− k sites on `1 such that the sites are sufficiently close to each
other. Similarly, we put k sites on `2 such that sites are sufficiently close to each other and
‖vm−k − o‖ � ‖u1 − o‖, where vi’s are sites on `1 sorted along `1 from o and u′j ’s are sites
on `2 sorted along `2 from o, for i = 1, . . . ,m− k and j = 1, . . . , k.

As a part of the boundary of P , we put a concave and y-monotone polygonal curve with
n − 4 vertices below `2 such that the highest point of the curve is sufficiently close to u1.
Then we put another four vertices of P sufficiently far from the sites such that P contains
all sites and there is no simple polygon containing more Voronoi vertices than P contains.

In the full version, we show that k-VD of this example has complexity of Ω(k(m− k) +
min{nk, n(m− k)}). Moreover, we show that k-VD for any simple polygon and any point
set has complexity of O(k(m− k) + min{nk, n(m− k)}).

I Lemma 18. The geodesic order-k Voronoi diagram of m points inside a simple polygon
with n vertices has complexity of Θ(k(m− k) + min{nk, n(m− k)}).

6.2 Computing the Topological Structure of the Diagram
Due to lack of space, we present only an outline of our algorithm. For details, refer to the full
version. The algorithm is similar to the one in Section 5. Recall that for a site s ∈ P (x), the
boundary of Rs(x) consists of one polygonal chain of ∂P and a simple curve with endpoints
on ∂P . We call the simple curve the wave-curve for s. The wave-curve for s is monotone
with respect to π(o, x).

We say that a point p ∈ P (x) lies above a curve if π(p, π(o, x)) intersects the curve.
We use Li(x) to denote the region of P (x) consisting of all points lying above at least i
wave-curves for sites contained in P (x). The ith-level of the arrangement of wave-curves of
sites contained in P (x) is defined to be the boundary of Li(x) excluding ∂P . The ith-level
for each i is weakly monotone with respect to π(o, x) and consists of at most m simple curves
with endpoints lying on ∂P .

k-VD[S] restricted to Lk(x) coincides with k-VD[S ∩P (x)] restricted to Lk(x). Therefore,
we can obtain the topological structure of k-VD[S] by maintaining the topological structure
of the kth-level of the arrangement of wave-curves. In addition to this, we maintain the
topological structures of the ith-levels of the arrangement for all i < k to detect the changes
to the topological structure of the kth-level.

There are four types of events; site events, circle events, vanishing events and merging
events. The definitions of the event types are analogous to the ones in Section 5. We can
handle the site and circle events in a way similar to the one for the Euclidean order-k Voronoi
diagram given by Zavershynskyi and Papadopoulou [17]. We can handle the other events in
a way similar to the one in Section 5.

SoCG 2017

52:14 Voronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon

I Theorem 19. Given a set of m points contained in a simple polygon with n vertices, we can
compute the geodesic order-k Voronoi of the points in O(k2m logm log2 n+min{nk, n(m−k)})
time using O(n+ km) space.

7 The Geodesic Farthest-Point Voronoi Diagram

We present an outline of our algorithm for computing the topological structure of FVD. For
details, refer to the full version. Aronov et al. [3] showed that FVD forms a tree whose root
is the geodesic center c of the sites. They first compute c and the geodesic convex hull of
the sites. Then they compute FVD restricted to the boundary of the polygon. Then they
compute the edges of FVD towards the geodesic center by a reverse geodesic sweep method.
We follow the framework of the algorithm by Aronov et al. [3], but we can achieve a faster
algorithm for m ≤ n/ log2 n by applying their approach to compute the topological structure
of FVD.

In the reverse geodesic sweep, a sweep line is a simple curve consisting of points equidistant
from c. Let B be the (circular) sequence of the sites that have their Voronoi cells on the
sweep line in clockwise order. As an exception, in the initial state, we set B to be the
sequence of the sites whose Voronoi cells appear on ∂P .

No site, vanishing, or merging event occurs during the sweep because FVD forms a tree.
So we handle only circle events. Every triple of consecutive sites in B defines a circle event.
The key defined by a triple (s1, s2, s3) is d(c, c′) for the point c′ equidistant from s1, s2 and
s3. We can compute the key of each triple of consecutive sites in B in O(log2 n) time.

I Lemma 20. We can compute the topological structure of FVD in O(m logm log2 n) or
O(n+m logm+m log2 n) time after computing the shortest path data structure for P .

I Theorem 21. Given a set of m points contained in a simple polygon with n vertices, we can
compute the geodesic farthest-point Voronoi diagram of the points in O(n+m logm+m log2 n)
time using O(n+m) space.

8 Dynamic Data Structures for Nearest or Farthest Point Queries

We showed that the topological structure of a Voronoi diagram can be computed without
considering the whole polygon. The topological structure can be used for data structures for
answering nearest or farthest point queries for dynamic point sets.

We apply the framework given by Bentley and Saxe [4]. At all times, we maintain O(
√
m)

disjoint sets each of which consists of O(
√
m) points. For each set, we compute the topological

structure of the nearest-point (or farthest-point) Voronoi diagram of the points in the set.
For a nearest (or farthest) point query, we simply find the Voronoi cells containing the

query point for O(
√
m) Voronoi diagrams. Then we have O(

√
m) candidates for the nearest

(or farthest) point from the query point. We find the nearest (or farthest) point from the
query point directly among them. Inside a simple polygon, the complexity of each complete
Voronoi diagram is O(n +

√
m). Thus each update takes O(n +

√
mpolylog{n,m}) time

if we maintain the complete Voronoi diagrams. This is why we compute the topological
structures of the Voronoi diagrams.

In the full version of this paper, we show how to find the Voronoi cell containing a query
point using the topological structure of a Voronoi diagram. The key idea is to approximate
the Voronoi diagram into a polygonal subdivision of complexity O(

√
m) using its adjacency

graph and the exact positions of degree-1 and degree-3 vertices.

Eunjin Oh and Hee-Kap Ahn 52:15

I Theorem 22. We can construct a data structure of size O(n+m) that supports a nearest-
point (or a farthest) query for point insertions and deletions. Each query time is O(

√
m log(n+

m)) and each update time is O(
√
m logm log2 n)).

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discrete
& Computational Geometry, 56(4):836–859, 2016.

2 Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Al-
gorithmica, 4(1):109–140, 1989.

3 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi
diagram. Discrete & Computational Geometry, 9(1):217–255, 1993.

4 Jon Louis Bentley and James B. Saxe. Decomposable searching problems 1: Static-to-
dynamic transformations. Journal of Algorithms, 1(4):297–396, 1980.

5 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, John Her-
shberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

6 Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–
104, 1990.

7 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153–174,
1987.

8 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1):209–233, 1987.

9 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. Journal of Computer and System Sciences, 39(2):126–152, 1989.

10 John Hershberger. A new data structure for shortest path queries in a simple polygon.
Information Processing Letters, 38(5):231–235, 1991.

11 Chih-Hung Liu and D.T. Lee. Higher-order geodesic Voronoi diagrams in a polygonal
domain with holes. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pages 1633–1645, 2013.

12 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Computing, 12(4):759–776, 1983.

13 Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In Handbook
of Computational Geometry, pages 633–701. Elsevier, 2000.

14 Eunjin Oh, Luis Barba, and Hee-Kap Ahn. The farthest-point geodesic voronoi diagram
of points on the boundary of a simple polygon. In Proceedings of the 32nd International
Symposium on Computational Geometry (SoCG 2016), pages 56:1–56:15, 2016.

15 Evanthia Papadopoulou and D.T. Lee. A new approach for the geodesic Voronoi dia-
gram of points in a simple polygon and other restricted polygonal domains. Algorithmica,
1998(4):319–352, 1998.

16 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a
simple polygon. Discrete & Computational Geometry, 4(6):611–626, 1989.

17 Maksym Zavershynskyi and Evanthia Papadopoulou. A sweepline algorithm for higher
order voronoi diagrams. In Proceedings of the 10th International Symposium on Voronoi
Diagrams in Science and Engineering (ISVD 2013), pages 16–22, 2013.

SoCG 2017

A Quest to Unravel the Metric Structure Behind
Perturbed Networks∗†

Srinivasan Parthasarathy1, David Sivakoff2, Minghao Tian3, and
Yusu Wang4

1 Computer Science and Engineering Department, The Ohio State University,
Columbus, OH, USA
srini@cse.ohio-state.edu

2 Statistics and Mathematics Departments, The Ohio State University,
Columbus, OH, USA
dsivakoff@stat.osu.edu

3 Computer Science and Engineering Department, The Ohio State University,
Columbus, OH, USA
tian.394@osu.edu

4 Computer Science and Engineering Department, The Ohio State University,
Columbus, OH, USA
yusu@cse.ohio-state.edu

Abstract
Graphs and network data are ubiquitous across a wide spectrum of scientific and application
domains. Often in practice, an input graph can be considered as an observed snapshot of a (po-
tentially continuous) hidden domain or process. Subsequent analysis, processing, and inferences
are then performed on this observed graph. In this paper we advocate the perspective that an
observed graph is often a noisy version of some discretized 1-skeleton of a hidden domain, and
specifically we will consider the following natural network model: We assume that there is a true
graph G∗ which is a certain proximity graph for points sampled from a hidden domain X ; while
the observed graph G is an Erdös-Rényi type perturbed version of G∗.

Our network model is related to, and slightly generalizes, the much-celebrated small-world
network model originally proposed by Watts and Strogatz. However, the main question we
aim to answer is orthogonal to the usual studies of network models (which often focuses on
characterizing / predicting behaviors and properties of real-world networks). Specifically, we
aim to recover the metric structure of G∗ (which reflects that of the hidden space X as we will
show) from the observed graph G. Our main result is that a simple filtering process based on the
Jaccard index can recover this metric within a multiplicative factor of 2 under our network model.
Our work makes one step towards the general question of inferring structure of a hidden space
from its observed noisy graph representation. In addition, our results also provide a theoretical
understanding for Jaccard-Index-based denoising approaches.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases metric structure, Erdös-Rényi perturbation, graphs, doubling measure

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.53

∗ A full version of the paper is available at https://arxiv.org/abs/1703.05475.
† This work is in part supported by National Science Foundation under grants IIS-1550757 and CCF-
1618247. SP and DS would like to acknowledge NSF grant #DMS: 1418265 for partially supporting
this work. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

© Srinivasan Parthasarathy, David Sivakoff, Minghao Tian, and Yusu Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.53
https://arxiv.org/abs/1703.05475
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 A Quest to Unravel the Metric Structure Behind Perturbed Networks

1 Introduction

Graphs and networks are ubiquitous across a wide spectrum of scientific and application
domains. Analyzing various types of graphs and network data play a fundamental role in
modern data science. In the past several decades, there has been a large amount of research
studying various aspects of graphs, ranging from developing efficient algorithms to process
graphs, to information retrieval and inference based on graph data.

In many cases, we can view an input graph as an observed (discrete) 1-skeleton of a
(potentially continuous) hidden domain. Subsequent analysis, processing, and inferences
are then performed on this observed graph, with the ultimate goal being to understand the
hidden space where the graph is sampled from. Many beautiful generative models for graphs
have been proposed [9, 20], aiming to understand this transition process from a hidden space
to the observed 1-skeleton, and to facilitate further tasks performed on graphs.

One line of such generative graph models assumes that an observed network is obtained
by adding random perturbation to a specific type of underlying “structured graph” (such
as a grid or a ring). For example, the much-celebrated small-world model by Watts and
Strogatz [26] generates a graph by starting with a k-nearest neighbor graph spanned by nodes
regularly distributed along a ring. It then randomly “rewires” some of the edges connecting
neighboring points to instead connect nodes possibly far away. Watts and Strogatz showed
that this simple model can generate networks that possess features of both a random graph
and a proximity graph, and display two important characteristics often seen in real networks:
low diameter in shortest path metric and high clustering coefficients. There have since been
many variants of this model proposed so as to generate networks with different properties,
such as adding random edges in a distance-dependent manner [23, 15], or extending similar
ideas to incorporate hierarchical structures in networks; e.g, [16, 25]. There have also been
numerous studies on characterizing statistical summaries, such as the average path lengths
or the degree distributions, of small-world like networks; e.g [5, 11]; see [24, 6] for surveys.

Our work. In this paper, we take the perspective that an observed graph can be viewed as
a noisy snapshot of the discretized 1-skeleton of a hidden domain of interest, and propose
the following network model: Assume that the hidden space that generates data is a “nice”
measure µ supported on a compact metric space X = (X, dX) (e.g, the uniform measure
supported on an embedded smooth low-dimensional Riemannian manifold). Suppose that
the data points V are sampled i.i.d from this measure µ, and the “true graph” G∗r connecting
them is the r-neighborhood graph spanned by V (i.e, two points u, v are connected if their
distance dX(u, v) ≤ r). The observed graph G however is only a noisy version of the true
proximity graph G∗r , and we model this noise by an Erdös-Rényi (ER) type perturbation –
each edge in the true graph G∗r can be deleted with probability p, while a “short-cut” edge
between two unconnected nodes u, v could be inserted to G with probability q.

To motivate this model, imagine in a social network a person typically makes friends
with other persons that are close to herself in the unknown feature space modeled by our
metric space X . The distribution of people (graph nodes) is captured by the measure µ on X .
However, there are always (or may be even many) exceptions – friends could be established
by chance, and two seemingly similar persons (say, close geographically and in tastes) may
not develop friendship. Thus it is reasonable to model an observed social network G as an
ER-type perturbation of the proximity graph G∗r to account for such exceptions.

The general question we hope to address is how to recover various properties of the hidden
domain X from the observed graph G. In this paper we investigate a specific problem: how

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:3

to recover the metric structure of G∗r (induced by the shortest path distances in G∗r) from the
noisy observation G. As we show in Theorem 5, the metric structure of G∗r “approximates”
that of the hidden domain X . Note that a few inserted “short-cuts” could significantly
change the shortest path metric, one potential factor leading to the small-world phenomenon.
Our main result is that a simple filtering procedure based on the so-called Jaccard index
can recover the shortest path metric of G∗r within a multiplicative factor of 2 (with high
probabilities). We also provide some preliminary experimental results.

Remarks and discussion. The problem of recovering G∗r from the observed graph G is
different and orthogonal to the usual studies on similar network models: Those studies often
focus on characterizing the graphs generated by such models and whether those characteristics
match with real networks. We instead aim to recover metric structure of a hidden true graph
G∗r from a given graph G. There are different motivations for this task. For example, it could
be that the true graph G∗r is the real object of interest, and we wish to “denoise” the observed
graph G to get a more accurate representation of G∗r . Indeed, in [12], Godberg and Roth
empirically show how to use small-world model to help remove false edges in protein-protein
interaction (PPI) networks. See [4] for more examples.

Furthermore, even if the observed graph G is of interest itself, we may still want to recover
information about the domain X where G is generated from. For example, suppose we are
given two networks G1 and G2 modeling say the collaboration networks from two different
disciplines, and our goal is to compare the hidden collaboration structures behind the two
disciplines. Comparing the precise graph structures of observed graphs G1 and G2 could be
misleading, as even if they are generated from the same hidden space X , they could still look
different due to the random generation process. It is more robust if we can compare the two
hidden spaces generating them instead.

Finally, we remark that similar to the small-world network models, our model also overlays
a random perturbation over a “structured” network. Indeed, our network model in some
sense generalizes the small-world network model by Watts and Strogaz. Specifically, in the
model by Watts and Strogaz (and some later variants), the underlying “structured” network
is a ring (or lattice). In our case, we assume that graph nodes P are sampled from a measure
µ and using the r-neighborhood proximity graph G∗r to model this underlying “structured”
network. This setup adds generality to our model: For example, it allows us to produce
non-uniform and more complex degree distributions than those previously produced by
starting with lattice vertices. At the same time, by putting conditions on the measure µ, it
still gives us sufficient structure to relate G∗r and G, as we will show in this paper. We also
point out that the theoretical results hold for graphs across a range of density, where the
number of edges could range from Θ(n logn) to Θ(n2).

All missing proofs due to lack space can be found in the full version [19].

2 Model for Perturbed Network

We now introduce a general model to generate an observed network G. Suppose we are given
a compact geodesic metric space X = (X, dX) 1[7]. Intuitively, we view an observed graph
G = (V,E) as a noisy 1-skeleton of X , where graph nodes V of G are sampled from this

1 A geodesic metric space is a metric space where any two points in it are connected by a path whose
length equals the distance between them. Riemannian manifolds or compact sets in the Euclidean space
are all geodesic metric spaces.

SoCG 2017

53:4 A Quest to Unravel the Metric Structure Behind Perturbed Networks

hidden metric space. More precisely, we will assume that V is sampled i.i.d. from a measure
µ : X → IR+ supported on X.

I Definition 1 (Measure). Given a topological space X, a measure µ on X is simply a
function that maps every Borel subset B of X to a non-negative number µ(B) which is
additive: that is the measure of a countable family of pairwise-disjoint Borel subsets of X
equals the sum of their respective measures.

In this paper, a measure is always a probability measure, meaning that µ(X) = 1. To provide
sufficient structure to the observed graph G so that it is not completely arbitrary, we want
to assert some reasonable conditions on µ. To this end, we consider doubling measures:

I Definition 2 (Doubling measure [13]). Given a metric space X = (X, dX), let B(x, r) ⊂ X
denotes the open metric ball B(x, r) = {y ∈ X | dX(x, y) < r}. A measure µ on X is said to
be doubling if balls have finite and positive measure and there is a constant L = L(µ) s.t.
for all x ∈ X and any r > 0, we have µ(B(x, 2r)) ≤ L · µ(B(x, r)). We call L the doubling
constant and say µ is an L-doubling measure.

These conditions on the measure also implies conditions on the underlying space X supporting
the measure. Specifically, it is known that any metric space supporting a doubling measure
has to be doubling as well, with its doubling constant depending on that of the measure [13].

Network model. We now describe our network model. Given a compact metric space X =
(X, dX) and an L-doubling measure µ : X → IR+ supported on X, let V be a set of n points
sampled i.i.d. from µ. We assume that the true graph G∗r = (V,E∗) is the r-neighborhood
graph for some parameter r > 0; that is, E(G∗) = E∗ = {(u, v) | dX(u, v) ≤ r, u, v ∈ V }.

I Definition 3. The observed graph G(r, p, q) = (V,E) is based on G∗r = (V,E∗), but with
the following two types of random perturbations:
p-deletion: For each edge (u, v) ∈ E∗, (u, v) is in the observed graph G(r, p, q) with
probability 1− p (that is, an edge in E∗ is deleted with probability p).

q-insertion: For any pair of nodes u, v ∈ V s.t. (u, v) /∈ E∗, we have that (u, v) ∈ E with
probability q.

Intuitively, in our model, the observed network G is a random geometric graph sampled from
the metric space X which then undergoes Erdös-Rényi type perturbation. In what follows,
we often omit the parameters r, p, q from the notations G∗r and G(r, p, q), when their choices
are clear from the context. Note that both G∗ and G are unweighted graphs (that is, all
edges have weight 1). We now equip each graph with its shortest path metric, and obtain
two discrete metric space (V, dG∗) and (V, dG) induced by G∗ and G, respectively.

Problem statement and main results. Adding short-cuts (via q-insertions) could signific-
antly distort the shortest path metric in G∗. Our ultimate goal is to infer information about
both X and µ where points are sampled from, through the study of the observed graph G.
In this paper we aim to recover the metric structure of G∗ (as a reflection of metric structure
of X) from G. Specifically, we show that a simple filtering process based on the so-called
Jaccard index can remove sufficient “bad edges” in G so as to recover the shortest path
metric of G∗ up to a factor of 2 w.h.p.

I Definition 4 (Jaccard index). Given an arbitrary graph G, let NG(u) denote the set of
neighbors of u in G (i.e. nodes connected to u ∈ V (G) by edges in E(G)). Given any edge

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:5

(u, v) ∈ E(G), the Jaccard index ρu,v of this edge is defined as

ρu,v(G) = |NG(u) ∩NG(v)|
|NG(u) ∪NG(v)| . (1)

We remark that Jaccard index is a popular way to measure similarity between a pair of
nodes connected by an edge in a graph [17], and has been commonly used in practice for
denoising and sparsification purposes [22, 21]. Our results provide a theoretical understanding
for such empirical Jaccard-based denoising approaches.

The main result is stated in Theorem 13. To show how this is established, we show two
results on the influence of the shortest path under the p-deletion (Theorem 9) and under the
q-insertion (Theorem 12), respectively. The proof for Theorem 13 combines the ideas for
proofs of these two results.

Metric structures for G∗r versus for X . Our main results recover the shortest path metric
for G∗r approximately. In some sense, the metric of a proximity graph provides an approxim-
ation of that of X, the domain where input graph nodes are sampled from; see e.g, [1, 8] for
the case where X is a smooth Riemannian manifold embedded in Euclidean space.

We make this relationship precise for our setting as follows. The proof of this result is
rather standard (see e.g, the proof of Theorem 5.2 of [8]) and can be found in the full version
[19].

I Theorem 5. Let (X, dX) be a compact geodesic metric space and µ a doubling measure
supported on X. Let Vn be a set of n points sampled i.i.d. from µ, and G∗r the r-neighborhood
graph constructed on Vn (each edge in G∗r has equal weight 1) with the associated shortest
path metric dG∗r . For any sample Vn, consider the distance between r · dG∗r (dG∗r scaled by r)
and dX restricted to the sample Vn; that is,

‖r · dG∗r − dX |Vn‖∞ := max
v,v′∈Vn

|r · dG∗r (v, v′)− dX(v, v′)|.

Then we have that for a fixed r, lim supn→∞ ‖r · dG∗r − dX |Vn‖∞ ≤ r almost surely.

3 Recovering the shortest path metric of G∗

To illustrate the main idea, we first consider the deletion-only and insertion-only perturbation
of the true graph G∗ in Sections 3.1 and 3.2, respectively. As we will see below, the main
difficulty lies in handling insertions (short-cuts). We then combine the two cases and present
our main result, Theorem 13. First, we describe one (natural) assumption on r that we will
use later in all our statements.

Note that as r tends to 0, the corresponding r-neighborhood graph may be very sparse,
and a sparse graph G∗r is quite sensitive to random deletions and insertions. We would like
to consider r in a range where is meaningful. We make the following assumption, asserting a
lower-bound on the mass contained inside any metric ball of radius r/2:
[Assumption-R]: The parameter r is large enough such that for any x ∈ X, µ(B(x, r2)) ≥ s
where s satisfies s ≥ 12 lnn

n−2 (= Ω(lnn
n)).

Intuitively, r is large enough such that with high probability each vertex v in G∗r has
degree Ω(lnn). Note that requiring r to be large enough to have an Ω(lnn/n) lower bound
on the measure of any metric ball is natural. For example, for a random geometric graph
G(r, n) constructed as the r-neighborhood graph for points i.i.d. sampled from a uniform

SoCG 2017

53:6 A Quest to Unravel the Metric Structure Behind Perturbed Networks

measure on a Euclidean cube, asymptotically this is the same requirement so as to make
sure that the resulting r-neighborhood graph is connected with high probability [20].

The proof of the following observation is simple and can be found in [19].

I Lemma 6. Under Assumption-R, with probability at least 1−n−5/3, all vertices in G∗r have
more than s(n−1)

3 > 4 lnn neighbors.

Since µ is a doubling measure, any two neighbors (u, v) in the r-neighborhood graph G∗r
would share many neighbors. Specifically, if (u, v) is an edge in G∗r , that is, dX(u, v) ≤ r,
then B(u, r)∩B(v, r) must contain a metric ball of radius r/2 (say centered at midpoint z of
a shortest path connecting u to v in X; see Figure 1 (a)). Thus by a similar argument as
the proof of Lemma 6, we obtain the following bound on the number of common neighbors
between the nodes u, v if edge (u, v) ∈ G∗r .

I Corollary 7. Assume that the graph nodes V of G∗r are sampled i.i.d from an L-doubling
measure µ supported on a compact geodesic metric space (X, dX). Then under Assumption-R,
with probability at least 1−n−2/3, any two neighbors (u, v) ∈ G∗r have

s(n−1)
3 > 4 lnn = Ω(lnn)

number of common neighbors.

3.1 Deletion only
In this case, we assume that we remove each edge in G∗ independently with probability p to
obtain an observed empirical graph Ĝ. Our goal is to relate the shortest path metrics dG∗
of G∗ and d

Ĝ
of Ĝ respectively. Deletion-only means that shortest path distances in Ĝ are

larger than those in G∗. Since any two nodes u, v connected in G∗ share sufficient number
(Ω(lnn)) of common neighbors, intuitively, removing even a constant fraction of edges in G∗
can still guarantee that w.h.p. u and v will still have some common neighbors left, and thus
u and v can be connected through that common neighbor by a path of length 2 in Ĝ. Hence
overall, w.h.p. the distortion in shortest path distance is at most by a factor of 2.

I Definition 8. Let G and G′ be two graphs spanned on the same set of nodes V , and
equipped with graph shortest path metric dG and dG′ , respectively. By dG ≤ cdG′ , we mean
that for any two nodes u, v ∈ V , we have that dG(u, v) ≤ cdG′(u, v). We say that dG′ is a
c-approximation of dG if 1

cdG ≤ dG′ ≤ cdG.

I Theorem 9 (Random deletion). Let V be n points sampled i.i.d. from a probability measure
µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the r-neighborhood
graph for V ; and Ĝ a graph obtained by removing each edge in G∗ independently with
probability p. Under Assumption-R and for p < 1

2e
− 9 lnn
s(n−1) , we have with probability at least

1− 1
nΩ(1) , the shortest path metric d

Ĝ
is a 2-approximation of the shortest path metric dG∗ .

Specifically, since s > 12 lnn
n−1 , the statement holds for p < 1

2e3/4 . As s becomes larger, the
upper bound on p gets closer to 1/2.

Proof. For a node u ∈ V , let NG∗(u) and N
Ĝ

(u) denote the set of neighbors of u in graph
G∗ and graph Ĝ, respectively.

Since deletion cannot decrease the length of shortest paths, we have dG∗ ≤ dĜ. We now
show that d

Ĝ
≤ 2dG∗ .

Consider (u, v) ∈ E(G∗): Assume that they share ku,v number of common neighbors;
that is, ku,v = |NG∗(u) ∩NG∗(v)|. The probability that N

Ĝ
(u) ∩N

Ĝ
(v) = ∅ (i.e, u and v

have no common neighbor in graph Ĝ) is thus (2p)ku,v .

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:7

On the other hand, by Corollary 7, with probability at least 1 − n−2/3 we have that
ku,v ≥ s(n − 1)/3 for all (u, v) ∈ E(G∗). By applying the law of total probability, it then
follows that the probability that there exists any (u, v) ∈ E(G∗) with N

Ĝ
(u) ∩N

Ĝ
(v) = ∅ is

at most: n−2/3 + n2(2p)s(n−1)/3 < n−2/3 + n2(e−3 lnn) < n−1/3, where we plug in the bound
on p to derive the first inequality.

Hence with probability at least 1−n−1/3, we have that for all edges (u, v) ∈ E(G∗), their
distance in Ĝ satisfies d

Ĝ
(u, v) ≤ 2 (via one of their common neighbor in N

Ĝ
(u) ∩N

Ĝ
(v)).

This in turn implies that with probability at least 1− n−1/3, for any path π = 〈v1, . . . , vm〉
in G∗ with length m, we can find a path of length at most 2m in Ĝ to connect v1 to vm
(as each edge (vi, vi+1) in π corresponds to a path of length at most 2 in Ĝ). If u and v

are disconnected in G∗, then obviously they are still disconnected in Ĝ. Hence, for any two
u, v ∈ V , d

Ĝ
(u, v) ≤ 2dG∗(u, v), and the theorem follows. J

3.2 Insertion only
Now assume that the observed graph Ĝ is generated from the true graph G∗ where all edges
in G∗ also exist in Ĝ, and for any u, v ∈ V with (u, v) 6= E(G∗), we have (u, v) ∈ E(Ĝ) with
probability q. In this case, the shortest path metric can be significantly altered in d

Ĝ
. Hence

to recover the metric dG∗ , instead of operating on Ĝ directly, we will construct another graph
G̃ from Ĝ, so that its shortest path metric dG̃ approximates dG∗ .

We propose the following Jaccard-Index-based filtering process, which we call a τ -Jaccard
filtering, as it uses a parameter τ . (Recall the definition of Jaccard index in Def. 4). We
represent the output filtered (denoised) graph as G̃τ :
τ -Jaccard filtering: Given graph Ĝ, for each edge (u, v) ∈ E(Ĝ), we insert the edge (u, v)
into E(G̃τ) if and only if ρu,v(Ĝ) ≥ τ . That is, V (G̃τ) = V (Ĝ) and E(G̃τ) := {(u, v) ∈
E(Ĝ) | ρu,v(Ĝ) ≥ τ}.

Below we first show that w.h.p., all “good” edges in the true r-neighborhood graph G∗
will have a large Jaccard index, so that they will be kept in G̃τ after a τ -Jaccard filtering
procedure with appropriate τ .

I Lemma 10. Let V be a set of n points sampled i.i.d. from an L-doubling probability
measure µ supported on a compact geodesic metric space X = (X, dX). If Assumption-R holds
and q ≤ cs, then for ∀τ ≤ 1

(6+ 1
lnn+12c)L2 , we have with probability at least 1 − n−2/3, that

ρu,v(Ĝ) ≥ τ for all pairs of nodes u, v ∈ V with dX(u, v) ≤ r.
For example, if c = 1

2 (i.e, q ≤ s
2), then the bound on ρu,v holds for τ ≤ 1

13L2 . Note c
may not be a constant and can depend on n; as c increases, the upper bound on τ decreases.

Proof. Consider a fixed pair of nodes u, v ∈ V , and let F = F (u, v) be the event that
dX(u, v) ≤ r. Set α∗ = |NG∗(u) ∩NG∗(v)| to be the number of common neighbors of u and
v in G∗. Let β = |N

Ĝ
(u) ∪N

Ĝ
(v)| denote the total number of neighbors of u and v in the

perturbed graph Ĝ.
Since Ĝ can have only more edges than G∗, |N

Ĝ
(u) ∩N

Ĝ
(v)| ≥ |NG∗(u) ∩NG∗(v)| = α∗

and thus ρu,v(Ĝ) ≥ α∗
β . In what follows, we prove that α∗

β ≥ τ · IF (which implies that
ρu,v(Ĝ) ≥ τ · IF) with probability at least 1 − 2n−8/3. (Here, we use IA to denote the
indicator random variable of the event A, and the conventions that ρu,v(Ĝ) = 0 if (u, v) /∈ Ĝ
and 0/0 = 0.)

Note that α∗ is a random variable, which equals the number of (i.i.d. sampled) points
from V − {u, v} that fall in the region B(u, r) ∩ B(v, r). That is, conditional on u and v, α∗

SoCG 2017

53:8 A Quest to Unravel the Metric Structure Behind Perturbed Networks

u v
z

r
2

rr

2r

r

r
2

r
2

r
u v

p′

(a) (b)

Figure 1 In these figures, we draw metric balls as Euclidean balls just for illustration purpose.
(a) illustrates the bound pα∗ ≥ µ(B(z, r/2)) which follows from B(z, r/2) ⊆ B(u, r)∩B(v, r). (b) Key
observation for Lemma 11: as dX(u, v) > r, we have that the region [B(u, r) ∪B(v, r)] \ [B(u, r) ∩
B(v, r)] contains at least two metric balls, each of radius r/2.

is drawn from a binomial distribution Bin(n− 2, pα∗) with pα∗ = µ(B(u, r) ∩ B(v, r)), and
the conditional expectation of α∗ given u and v is δα∗ = (n− 2) · pα∗ .

Now observe that, conditional on u and v, the random variable β − 2 (see footnote2) has
distribution Bin(n−2, pβ) with pβ = pβ∗+(1−pβ∗)(2q−q2), where pβ∗ = µ(B(u, r)∪B(v, r)).
Indeed, observe that, conditional on u and v, points contributing to β can be generated
as follows. Let U = B(u, r) ∪ B(v, r). Independently, for each i = 1, . . . , n − 2, we draw
a point xi randomly from µ and we also perform an independent coin flip for this point,
with probability of heads equal to 1− (1− q)2 = 2q − q2. This quantity is the probability
for a point outside U to be connected to either u or v under edge-insertion probability q.
We set the indicator variable yi = 1 iff either xi ∈ U , or xi /∈ U and the ith coin flip is
heads. Conditional on u and v, the resulting n− 2 indicator random variables y1, . . . , yn−2
are i.i.d. with P[yi = 1 | u, v] = pβ∗ + (1− pβ∗)(2q − q2) = pβ . Therefore, given u and v, the
distribution of β − 2 =

∑
yi is Bin(n− 2, pβ). The conditional expectation of β given u and

v, denoted δβ , satisfies

(n− 2) · pβ∗ ≤ δβ = (n− 2) · pβ + 2 ≤ (n− 2) · pβ∗ + (n− 2) · 2q + 2. (2)

Let us for now assume that c1δα∗
c2δβ

≥ τIF a.s. for constants c1 = 1− σ1 and c2 = 1 + σ2
with 0 < σ1 < 1 and 0 < σ2 to be set shortly.

If dX(u, v) ≤ r, then B(u, r) ∩ B(v, r) contains at least one metric ball of radius r/2 (say
B(z, r/2) with z being the mid-point of a shortest path between u and v in X ; see Figure 1
(a)).

Hence by Assumption-R, on the event dX(u, v) ≤ r, we have

δα∗ ≥ (n− 2) · µ(B(z, r/2)) ≥ (n− 2) · 12 lnn
n− 2 = 12 lnn.

Similarly, using (2), the conditional expectation of β satisfies

δβ ≥ (n− 2) · pβ∗ ≥ (n− 2) · µ(B(u, r)) ≥ 12 lnn. (3)

We now set σ1 = 2/3 and σ2 = 1. It then follows from Chernoff bounds that

P[α∗ < c1δα∗ | u, v, F] + P[β > c2δβ | u, v] ≤ e−
σ2

1
2 δα∗ + e−

σ2
3 δβ ≤ n− 8

3 + n−4.

2 The subtraction of 2 in β − 2 accounts for points u and v, which are in N
Ĝ

(u) ∪N
Ĝ

(v). Similarly, in
the binomial distribution we will have only n− 2, accounting for points in V − {u, v}.

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:9

Taking expectation of the above with respect to u and v gives

P[α∗ < c1δα∗ | F] + P[β > c2δβ] ≤ 2n− 8
3 . (4)

On the other hand, since α∗
β ≥ 0, we have

P[α∗
β
< τIF] ≤ P[α∗

β
< τ | (α∗ ≥ c1δα∗) ∧ (β ≤ c2δβ) ∧ F]

+ P[({α∗ < c1δα∗} ∨ {β > c2δβ}) ∧ F].
(5)

Since we assumed that c1δα∗
c2δβ

≥ τIF , if α∗ ≥ c1δα∗ and β ≤ c2δβ and dX(u, v) ≤ r, then we
have α∗

β ≥
c1δα∗
c2δβ

≥ τ . This means that

P[α∗
β
< τ | (α∗ ≥ c1δα∗) ∧ (β ≤ c2δβ) ∧ F] = 0.

Hence the first term in the right-hand side of (5) is 0. Together with (4), and recalling
ρu,v(Ĝ) ≥ α∗

β , we have

P[ρu,v(Ĝ) < τIF] ≤ P[α∗
β
< τIF] ≤ 2n− 8

3 .

By the union bound, the probability that ρu,v(Ĝ) ≥ τ for all pairs of nodes u, v ∈ V such
that dX(u, v) ≤ r is thus at least 1− 1

2n
2(2n− 8

3) = 1− n− 2
3 .

Finally, we need to verify that c1δα∗
c2δβ

= δα∗
6δβ ≥ τIF holds for a.e. u and v. This holds

automatically if dX(u, v) > r, so assume dX(u, v) ≤ r. Recall that δβ ≤ (n− 2) · pβ∗ + (n−
2) · 2q + 2 by (2). Since q ≤ cs, we have (n − 2)2q ≤ 2(n − 2)cs. On the other hand, by
Assumption-R, pβ∗ ≥ µ(B(u, r)) ≥ s, hence 2(n− 2)q ≤ 2(n− 2)c · pβ∗ . Combining this with
the fact that (n− 2)pβ∗ ≥ 12 lnn from (3) (which also implies that 2 ≤ (n−2)pβ∗

6 lnn), it then
follows that

δα∗
6δβ
≥ δα∗

6((n− 2)(1 + 1
6 lnn)pβ∗ + 2(n− 2)c · pβ∗)

= pα∗
pβ∗
· 1

6 + 1
lnn + 12c

. (6)

Now let z be the midpoint of a geodesic connecting u and v; see Figure 1 (a). Observe
that pα∗ ≥ µ(B(z, r/2)), pβ∗ ≤ µ(B(z, 2r)) and since µ is L-doubling, we have:

pβ∗ ≤ µ(B(z, 2r)) ≤ Lµ(B(z, r)) ≤ L2µ(B(z, r/2)) ≤ L2pα∗ . (7)

Combining equations (6) and (7), we have that if τ ≤ 1
(6+ 1

lnn+12c)L2 , then
δα∗
6δβ ≥ τ is

satisfied. This proves the lemma. J

Discussion on the bounds of parameters. Lemma 10 implies that, with high probability,
we will not remove any good edges if the doubling constant L of the measure is at most
O(1√

τ
) and the insertion probability is small (q ≤ cs). The requirement that L = O(1√

τ
) is

rather mild; we now inspect the requirement q ≤ cs: Since sn lower-bounds the degree of a
node in the true graph G∗ (by Lemma 6), it is reasonable that the insertion probability q is
required to be small compared to s; as otherwise, the “noise” (inserted edges) will overwhelm
the signal (original edges). Furthermore, it is important to note that c is not necessarily a
constant – it can depend on n, but as c increases, the upper bound of the admissible range
for parameter τ decreases.

SoCG 2017

53:10 A Quest to Unravel the Metric Structure Behind Perturbed Networks

The following result complements Lemma 10 by stating that for insertion probability
q ≤ cs, all “really bad” edges in Ĝ will have small Jaccard index, and thus will be removed
by our τ -filtering process.

In particular, we define an edge (u, v) ∈ E(Ĝ) \ E(G∗) in the observed graph Ĝ to be
really-bad if NG∗(u) ∩NG∗(v) = ∅. Note that (u, v) /∈ E(G∗) is equivalent to dX(u, v) > r.

I Lemma 11. Let V be a set of n points sampled i.i.d. from an L-doubling probability
measure µ supported on a compact geodesic metric space X = (X, dX). If Assumption-R holds
and q ≤ cs, then ∀τ ≥ (c+ 2)q + 2(c+ 2)

√
lnn

s(n−2) , we have with probability at least 1− n−2,

ρu,v(Ĝ) < τ for all pairs of nodes u, v ∈ V such that (u, v) is really-bad.
For example, if c = 1 and s · n = ω(lnn), then the condition on τ is that τ ≥ 3q + o(1).

Proof. Consider a fixed pair of nodes u, v ∈ V , and let F = F (u, v) be the event that
NG∗(u) ∩NG∗(v) = ∅ and dX(u, v) > r. Let α = |N

Ĝ
(u) ∩N

Ĝ
(v)|,

αI =
∣∣{x ∈ NG∗(u) ∪NG∗(v) : x is connected to both u and v in Ĝ}

∣∣, and
αo =

∣∣{x /∈ NG∗(u) ∪NG∗(v) : x is connected to both u and v in Ĝ}
∣∣.

Then we have α = αI + αo. Set β∗ = |NG∗(u) ∪ NG∗(v)|, so we have |N
Ĝ

(u) ∪ N
Ĝ

(v)| ≥
β∗ + αo =: β. It is easy to see that

ρu,v(Ĝ) = α

|N
Ĝ

(u) ∪N
Ĝ

(v)| ≤
α

β∗ + αo
= α

β
.

We aim to show that with very high probability α
β IF < τ , which implies that ρu,v(Ĝ)IF < τ .

First, we claim that, conditional on the locations of u and v and the event F , the
distribution of α is Bin(n − 2, pα) with pα = pβ∗−p

′

1−p′ q + 1−pβ∗
1−p′ q

2, where pβ∗ = µ(B(u, r) ∪
B(v, r)) and p′ = µ(B(u, r) ∩B(v, r)). We also claim that the conditional distribution of β
given u, v and F is Bin(n− 2, pβ) with pβ = pβ∗−p

′

1−p′ + 1−pβ∗
1−p′ q

2. Details in [19].
If dX(u, v) > r, the region [B(u, r) ∪ B(v, r)] \ [B(u, r) ∩ B(v, r)] contains at least two

disjoint metric balls of radius r/2; see Figure 1(b). Therefore, pβ∗ − p′ ≥ 2µ(B(r2)) ≥ 2s.
The conditional expectation of α given u, v and F , denoted by δα(= (n− 2)pα), satisfies:

(n− 2)pβ∗ − p
′

1− p′ q ≤ δα = (n− 2)[pβ∗ − p
′

1− p′ q + 1− pβ∗
1− p′ q

2] ≤ (1 + c

2)(n− 2)pβ∗ − p
′

1− p′ q, (8)

where the last inequality follows from q ≤ cs ≤ c · pβ∗−p
′

2 . The conditional expectation of β
given u, v and F , denoted δβ , satisfies

δβ = (n− 2)pβ ≥ (n− 2)pβ∗ − p
′

1− p′ . (9)

Let us now assume that c1δα
c2δβ

IF ≤ τ a.s. for c1 = 1 + ε and some constant c2 = 1− σ with

ε = 2
q

√
lnn

s(n−2) and some 0 < σ < 1 to be set later.

If q ≤ 2
√

lnn
s(n−2) , then we have ε ≥ 1. In this case, combining Chernoff bounds with (8)

and the fact that pβ∗ − p′ ≥ 2µ(B(r2)) ≥ 2s obtained earlier, we have

P[α ≥ (1 + ε)δα | u, v, F] ≤ e− ε3 δα = e
− 2

3q

√
lnn

s(n−2) δα ≤ e−
2
3q

√
lnn

s(n−2) (n−2)
pβ∗−p

′

1−p′ q

≤ e− 4
3

√
(n−2)(lnn)s ≤ e−

4
3

√
(n−2)(lnn) 12 lnn

n−2 ≤ n−4. (10)

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:11

Otherwise, we have q > 2
√

lnn
s(n−2) , so 0 < ε < 1. In this case, by Chernoff bounds

P[α ≥ (1 + ε)δα | u, v, F] ≤ e− 1
2 ε

2δα ≤ e−2 lnn
s(n−2)

1
q2

(n−2)
pβ∗−p

′

1−p′ q

= e−2
lnn(pβ∗−p

′)
sq ≤ e−2 lnn· 2s

sq ≤ n−4. (11)

On the other hand, by Chernoff bounds, we have P[β ≤ c2δβ | u, v, F] ≤ e−
σ2
2 δβ . Note

that δβ ≥ (n− 2) · pβ∗−p
′

1−p′ ≥ (n− 2) · 2s ≥ 24 lnn. We now set σ = 1/2 so c2 = 1− σ = 1/2.
By taking expectation with respect to u and v, we have

P[α ≥ c1δα | F] + P[β ≤ c2δβ | F] ≤ 2n−4. (12)

Since τ > 0, we have that

P[α
β
IF ≥ τ] ≤ P[α

β
≥ τ | (α < c1δα) ∧ (β > c2δβ) ∧ F] P[{(α ≥ c1δα) ∨ (β ≤ c2δβ)} ∧ F].

(13)

Under our assumption that c1δα
c2δβ

IF ≤ τ a.s., if α < c1δα, β > c2δβ and dX(u, v) > r, then
α
β < c1δα

c2δB
≤ τ . Therefore, the first term on the right side of (13) is P[αβ ≥ τ | (α <

c1δα) ∧ (β > c2δβ) ∧ F] = 0. It then follows from (12) that:

P[α
β
IF ≥ τ] ≤ P[(α ≥ c1δα) ∨ (β ≤ c2δβ) | F] ≤ 2n−4

Since ρu,v(Ĝ) ≤ α
β , we have P[ρu,v(Ĝ)IF ≥ τ] ≤ P[αβ IF ≥ τ] ≤ 2n−4. By union bound,

the probability that ρu,v(Ĝ) < τ for all pairs of nodes u, v ∈ V satisfying the required
conditions is thus at least 1− 1

2n
2(2n−4) = 1− n−2.

Finally, for the above argument to hold, we need the assumption c1δα
c2δβ

IF ≤ τ to be satisfied
uniformly for all u and v. This comes from the choices and conditions of our parameters; see
[19] for details. The lemma then follows. J

The above result implies that after Jaccard filtering, although there still may be some extra
edges remaining in G̃τ , each such edge (u, v) is not really-bad. In fact, NG∗(u)∩NG∗(v) 6= ∅
for each such extra remaining edge (u, v), implying that dG∗(u, v) ≤ 2. This, combined with
Lemma 10, essentially leads to the following result. To simplify our statement, we assume
sn = ω(lnn) in the following result; a more complicated form can be obtained without this
assumption (similar to the statement in Lemma 11).

I Theorem 12 (Random Insertion). Let V be a set of n points sampled i.i.d. from an L-
doubling measure µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the
resulting r-neighborhood graph for V ; and Ĝ a graph obtained by inserting each edge not in
G∗ independently with probability q. Let G̃τ be the graph after τ -Jaccard filtering of Ĝ. Then,
if Assumption-R holds, q ≤ cs and sn = ω(lnn), then for ∀ 1

(6+ 1
lnn 12c)L2 ≥ τ ≥ (c+ 2)q+ o(1),

with high probability the shortest path distance metric dG̃τ satisfies: 1
2dG∗ ≤ dG̃τ ≤ dG∗ ; that

is, dG̃τ is a 2-approximation for dG∗ with high probability.

Proof. Define E1 to be the event when all the edges in G∗ are present in G̃τ . By Lemma 10,
event E1 happens with probability at least 1− n−2/3. Hence with at least this probability,
dG̃τ ≤ dG∗ . We now prove the lower bound for dG̃τ .

SoCG 2017

53:12 A Quest to Unravel the Metric Structure Behind Perturbed Networks

Let E2 be the event where for all edges (u, v) ∈ E(G̃τ) \ E(G∗), (u, v) is not really-
bad. Lemma 11 says that event E2 happens with probability at least 1 − n−2. To this
end, observe that if an edge (u, v) is not really-bad, then we have that dG∗(u, v) ≤ 2 as
NG∗(u) ∩NG∗(v) 6= ∅; specifically, there is a path u→ w → v connecting u and v through
some w ∈ NG∗(u) ∩NG∗(v).

In what follows, assume both events E1 and E2 happen – as discussed above, this
assumption holds with high probability due to Lemmas 10 and 11.

Now consider two points u, v ∈ V . First, suppose that u, v are connected in G̃τ . Let
π = 〈u0 = u, u1, . . . , us = v〉 be a shortest path between them in G̃τ . Consider each edge
(ui, ui+1) in the shortest path π in G̃τ . Either (ui, ui+1) ∈ E(G∗), in which case we set
π̂(ui, ui+1) = (ui, ui+1). Otherwise if (ui, ui+1) /∈ E(G∗), then (ui, ui+1) is not really-bad
due to event E2, meaning that dG∗(ui, ui+1) ≤ 2. Hence we can find a path π̂(ui, ui+1) ⊂ G∗
of length at most two to connect ui and ui+1 in G∗. Putting these two together, we can
construct a path π̂ = π̂(u0, u1) ◦ π̂(u1, u2) ◦ · · · ◦ π̂(us−1, us) connecting u = u0 to v = us
in G∗. Clearly, this path has length at most 2s. Hence, for any u, v ∈ V , we have that
dG∗(u, v) ≤ 2dG̃τ (u, v) if (u, v) is connected in G̃τ .

If u and v are not connected in G̃τ , then they are not connected in G∗ either; because
if there is a path connecting them in G∗, then the same path is present in G̃τ as event E1
holds. Putting everything together, we then have that with high probability, for any u, v ∈ V ,
dG∗(u, v) ≤ 2dG̃τ (u, v); that is dG̃τ ≥

1
2dG∗ . The theorem then follows. J

4 Combined case

The arguments used in Sections 3.1 and 3.2 can be modified to prove our main result when the
observed graph Ĝ = G(r, p, q) is generated via the network model described in Definition 3
that includes both edge deletion and insertion. The proof can be found in [19].

I Theorem 13. Let V be a set of n points sampled i.i.d. from an L-doubling measure
µ : X → IR+ supported on a compact metric space (X, dX). Let G∗ be the resulting r-
neighborhood graph for V ; and Ĝ a graph obtained by the network model G(r, p, q) described in
Definition 3. Let G̃τ be the graph after τ -Jaccard filtering of Ĝ. Then, if Assumption-R holds,
p ≤ 1

4 , q ≤ min{ 1
8 , cs} and sn = ω(lnn), then for any τ such that (1−p)2

(10+ 5
3 lnn+20c)L2 ≥ τ ≥

(c+2)q
1−p +o(1), with high probability the shortest path distance metric dG̃τ is a 2-approximation

of the shortest path metric dG∗ of the true graph G∗.

Extension to local doubling measure. We can relax the L-doubling condition of the measure
µ where points are sampled from to a local doubling condition, where the L-doubling property
is only required to hold for metric balls of small radius. Specifically,

I Definition 14 ((R0, LR0)-doubling measure). Given a metric space X = (X, dX), a measure
µ on X is said to be (R0, LR0)-doubling if balls have finite and positive measure and there is a
constant LR0 s.t. for all x ∈ X and any 0 < R ≤ R0, we have µ(B(x, 2R)) ≤ LR0 ·µ(B(x,R)).

All our results hold for (R0, LR0)-doubling measure, as long as the parameter r generating
the true graph G∗r satisfies r < R0. The proofs follow the same argument as those for
L-doubling measure almost verbatim, and thus are omitted.

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability

R
2a

pp
ro

x

tau_0.065_shortest_sparse_r_nbhd_hyperboloid_PCD_N_2581_p_0

After perturbing
After filtering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability

N
or

m
al

iz
ed

−
L2

−
av

er
ag

e

tau_0.065_shortest_sparse_r_nbhd_hyperboloid_PCD_N_2581_p_0

After perturbing
After filtering

(a) (b) (c)

Figure 2 (a) 2.5K points sampled from a hyperboloid surface and 24K points sampled from
mother-child model. (b) Comparison of 2-approximation rate R2approx as insertion probability
(x-axis) increases. Top curve is after Jaccard-filtering, while bottom one is for perturbed graph
without filtering. (c) Normalized L2-average error with top curve being the one without filtering,
and the bottom one (with significantly lower error) for after Jaccard-filtering. These plots are for
hyperboloid case.

5 Some empirical results

We provide some proof-of-principle results to show the effectiveness of the Jaccard filtering
process. See [19] for a complete version. There are two sets of experiments.

Synthetic datasets with ground truth. In this experiment we seek to demonstrate that the
Jaccard filtering approach works in a robust manner as predicted by our theoretical results.
In particular, we start with the following two measures: µ1 : S1 → IR+ is the “quasi-uniform”
measure on the hyperboloid S1 specified by x2 + y2 − z2 = 1 [2]; and µ2 : S2 → IR+ is a
non-uniform measure on the mother-and-child geometric model S2, where the measure is
proportional to the local feature size at each point. For each µi, we sample n points V i.i.d
and build an r-neighborhood graph (we will specify choice of r later). See Figure 2 (a) for
illustration of input samples. This gives rise to a ground-truth neighborhood graph G∗r . We
next generate a set of observed graph Gp,q, varying the deletion probability (p) and insertion
probability (q). Using a fixed parameter τ , we perform τ -Jaccard filtering for each Gp,q to
obtain a filtered graph Ĝτp,q. To measure the difference between two metrics D and D′, we
use two types of error to be introduced shortly. But first, note that since we delete edges,
the connectivity of the graph may change. Assume that Di,j =∞ if the two corresponding
points pi and pj are not connected in the graph. Note that if Di,j =∞ and D′i,j =∞, the
relationship 1

2Di,j ≤ D′i,j ≤ 2Di,j still hold.

2-approximation rate R2approx is defined by

R2approx(D,D′) =
|{(i, j), 1 ≤ i < j ≤ n | 1

2Di,j ≤ D′i,j ≤ 2Di,j}|
n(n− 1)/2 .

In other words, R2approx is the ratio of “good” pairwise distances from D′ that 2-
approximate those in D.

We also consider L2 type error. To avoid the cases that Di,j is not comparable with D′i,j , we
collect the following good-index set
Igood(D,D′) = {(i, j), 1 ≤ i < j ≤ n | either (Di,j <∞)∧ (D′i,j <∞); or (Di,j =∞)∧ (D′i,j =∞)}.

Normalized L2-average error δN (D,D′) is intuitively the root-mean-squared (RMS)
error δ(D,D′) normalized by the normalized L2-norm of D. More specifically,

SoCG 2017

53:14 A Quest to Unravel the Metric Structure Behind Perturbed Networks

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

q insertion probability

R
2a

pp
ro

x

tau_0.01_shortest_ppi_homo_sapiens_p_0

O vs. P
DF vs. FAP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q insertion probability

N
or

m
al

iz
ed

−
L2

−
av

er
ag

e

tau_0.01_shortest_ppi_homo_sapiens_p_0

O vs. P
DF vs. FAP

R2approx normalized L2

Figure 3 “O vs. P” is the error rate between DG and DGq ; while “DP vs. FAP” is between DGτ
and DGτq .

δ(D,D′) =

√∑
(i,j)∈Igood(Di,j −D′i,j)2

|Igood|
; δN (D,D′) = δ(D,D′)√

1
|{i<j,Di,j<∞}|

∑
i<j,Di,j<∞D2

i,j

.

Let DG denote the shortest path metric induced by a graph G. In Figure 2 (b), we
compare the 2-approximation rate R2approx(DG∗ , DGq) for the sequence of observed graphs
Gq for increasing insertion probability q, with R2approx(DG∗ , DĜτq

)s for the sequence of

filtered graph Ĝτq ; while the comparison of the normalized L2 error δN (DG∗ , DGq) versus
δN (DG∗ , DĜτq

)s for increasing qs is shown in Figure 2 (c). These plots are for the hyperboloid
model; those for mother-child model are in [19]. The deletion probability is fixed at p = 0,
as our experiments show (also matching our theoretical results) that the shortest path
metric is rather stable against deletion for a large range of deletion probability. As we can
see, randomly inserting edges distorts the shortest path metrics (with low 2-approximation
rate and high normalized L2 error for Gqs). However, our Jaccard-index filtering process
restores the metric not only w.r.t 2-approximation rate (which is predicted by our theoretical
results), but also w.r.t normalized L2 error. In this experiment, we choose r (to build the
r-neighborhood graph) to be twice of the average distance from a point to its 10-th nearest
neighbor in P . The resulting graph for hyperboloid has about 2.5K nodes and 38K edges.
Examples where the graphs are much denser are given in [19].

Real network without ground truth. For a given real network G, we can consider it as an
observed graph. However, we do not know how this network is generated and there is no
ground truth graph G∗. Nevertheless, we carry out the following experiments to indirectly
infer the effectiveness of Jaccard-filtering.

Specifically, given G, we gradually add random (p = 0, q)-perturbation to it, and compare
the shortest path metric DGq of the perturbed graph Gq with the metric DG of input
network G; q is the insertion probability. Next, we perform τ -Jaccard filtering for all these
graphs G and Gqs to obtain Gτ and Gτq respectively, and then compare the shortest path
metric DGτq

for filtered graphs Gτq with DGτ of Gτ . See Figure 3, where the input is a
protein-protein interaction network [14] (6327 nodes and 147547 edges). The distance metric
becomes more stable after Jaccard-filtering. More discussions and experiments are in [19],
including an example of co-authorships network [18] where Jaccard-filtering shows even
bigger improvement.

S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang 53:15

6 Concluding remarks

Our paper represents one step towards unraveling the structure of the space where data
are sampled from. There are many interesting problems along this direction, including how
to generalize our network model to better model real networks. We describe one direction
here: Our current work recovers the shortest path metric of the hidden graph G. However,
there are other common metrics induced from G, such as the diffusion distance metric.
In fact, for dense random graphs, say graphs generated from a graphon [10] (including
stochastic block models), the spectral structure of such random graphs are stable. This
may imply that diffusion distances could also be stable against random perturbations even
without any filtering process. Note that such graphs have Θ(n2) number edges asymptotically.
However, for sparse graphs (which our model could generate), empirically we observe that
diffusion distances are not stable under random perturbations. It would be interesting to see
whether the Jaccard filtering process (or other filtering procedure) could recover diffusion
distances with theoretical guarantees. (Interestingly, we have observed that empirically,
Jaccard filtering can recover diffusion distance as well in our experiments.) Finally, it would
be interesting to explore whether the analysis and ideas for network models from our paper
could be used to create a practical wormhole detector in wireless networks, akin to Ban et
al’s local connectivity tests based on [α, β]-rings [3].

Acknowledgement. The authors thank Samory Kpotufe for the pointer to the local version
of L-doubling measure.

References
1 Morteza Alamgir and Ulrike V. Luxburg. Shortest path distance in random k-nearest

neighbor graphs. In 29th Intl. Conf. Machine Learning (ICML), pages 1031–1038, 2012.
2 D. Asta and C. Shalizi. Geometric network comparisons. In 31st Annu. Conf. Uncertainty

in AI (UAI), 2015.
3 Xiaomeng Ban, Rik Sarkar, and Jie Gao. Local connectivity tests to identify wormholes in

wireless networks. In 12th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc’11, pages 13:1–13:11. ACM, 2011.

4 HS Bhadauria and ML Dewal. Efficient denoising technique for CT images to enhance
brain hemorrhage segmentation. Journal of digital imaging, 25(6):782–791, 2012.

5 Bela Bollobás and Fan R.K. Chung. The diameter of a cycle plus a random matching.
SIAM Journal on discrete mathematics, 1(3):328–333, 1988.

6 Béla Bollobás and Oliver M. Riordan. Mathematical results on scale-free random graphs.
Handbook of graphs and networks: from the genome to the internet, pages 1–34, 2003.

7 Martin R Bridson and André Haefliger. Metric spaces of non-positive curvature, volume
319. Springer Science & Business Media, 2011.

8 Frédéric Chazal, Leonidas J Guibas, Steve Y. Oudot, and Primoz Skraba. Persistence-based
clustering in riemannian manifolds. Journal of the ACM (JACM), 60(6):41, 2013.

9 Rick Durrett. Random Graph Dynamics, volume 20. Cambridge University Press, 2006.
10 Justin Eldridge, Mikhail Belkin, and Yusu Wang. Graphons, mergeons, and so on! In

Advances in Neural Information Processing Systems, pages 2307–2315, 2016.
11 Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships

of the internet topology. ACM SIGCOMM Computer Comm. Review, 29(4):251–262, 1999.
12 Debra S. Goldberg and Frederick P. Roth. Assessing experimentally derived interactions in

a small world. Proceedings of the National Academy of Sciences, 100(8):4372–4376, 2003.

SoCG 2017

53:16 A Quest to Unravel the Metric Structure Behind Perturbed Networks

13 Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,
2012.

14 G. Joshi-Tope, Marc Gillespie, Imre Vastrik, Peter D’Eustachio, Esther Schmidt, Bernard
de Bono, Bijay Jassal, G.R. Gopinath, G.R. Wu, Lisa Matthews, et al. Reactome: a
knowledgebase of biological pathways. Nucleic acids research, 33(suppl 1):D428–D432,
2005.

15 Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proc. 32nd.
ACM Symp. Theory Computing, pages 163–170. ACM, 2000.

16 Jon Kleinberg. Small-world phenomena and the dynamics of information. In Advances in
Neural Information Processing Systems (NIPS), pages 431–438. 2002.

17 Elizabeth A. Leicht, Petter Holme, and Mark E. J. Newman. Vertex similarity in networks.
Physical Review E, 73(2):026120, 2006.

18 Tiancheng Lou and Jie Tang. Mining structural hole spanners through information diffusion
in social networks. In WWW’13, 2013.

19 S. Parthasarathy, D. Sivakoff, M. Tian, and Y. Wang. A quest to unravel the metric
structure behind perturbed networks. ArXiv e-prints, March 2017. arXiv:1703.05475.

20 Mathew Penrose. Random geometric graphs. Oxford University Press, 2003.
21 Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. Local graph sparsification for

scalable clustering. In ACM SIGMOD Intl. Conf. Management Data, pages 721–732, 2011.
22 A. Singer and H.-T. Wu. Two-dimensional tomography from noisy projections taken at

unknown random directions. SIAM journal on imaging sciences, 6(1):136–175, 2013.
23 H.F. Song and X.-J. Wang. Simple, distance-dependent formulation of the Watts-Strogatz

model for directed and undirected small-world networks. Phys. Rev. E, 90:062801, 2014.
24 Xiao Fan Wang and Guanrong Chen. Complex networks: small-world, scale-free and bey-

ond. Circuits and Systems Magazine, IEEE, 3(1):6–20, 2003.
25 Duncan J. Watts, Peter Sheridan Dodds, and M.E. J. Newman. Identity and search in

social networks. Science, 296(5571):1302–1305, 2002. doi:10.1126/science.1070120.
26 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’networks.

nature, 393(6684):440–442, 1998.

http://arxiv.org/abs/1703.05475
http://dx.doi.org/10.1126/science.1070120

From Crossing-Free Graphs on Wheel Sets to
Embracing Simplices and Polytopes with Few
Vertices
Alexander Pilz∗1, Emo Welzl2, and Manuel Wettstein3

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
pilza@inf.ethz.ch

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
emo@inf.ethz.ch

3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
mw@inf.ethz.ch

Abstract
A set P = H ∪ {w} of n + 1 points in the plane is called a wheel set if all points but w are
extreme. We show that for the purpose of counting crossing-free geometric graphs on P , it
suffices to know the so-called frequency vector of P . While there are roughly 2n distinct order
types that correspond to wheel sets, the number of frequency vectors is only about 2n/2.

We give simple formulas in terms of the frequency vector for the number of crossing-free
spanning cycles, matchings, w-embracing triangles, and many more. Based on these formulas,
the corresponding numbers of graphs can be computed efficiently.

Also in higher dimensions, wheel sets turn out to be a suitable model to approach the problem
of computing the simplicial depth of a point w in a set H, i.e., the number of simplices spanned
by H that contain w. While the concept of frequency vectors does not generalize easily, we show
how to apply similar methods in higher dimensions. The result is an O(nd−1) time algorithm for
computing the simplicial depth of a point w in a set H of n d-dimensional points, improving on
the previously best bound of O(nd logn).

Configurations equivalent to wheel sets have already been used by Perles for counting the
faces of high-dimensional polytopes with few vertices via the Gale dual. Based on that we can
compute the number of facets of the convex hull of n = d+ k points in general position in Rd in
time O(nmax{ω,k−2}) where ω ≈ 2.373, even though the asymptotic number of facets may be as
large as nk.

1998 ACM Subject Classification G.2.1 Combinatorics, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases geometric graph, wheel set, simplicial depth, Gale transform, polytope

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.54

1 Introduction

Computing the number of crossing-free straight-line drawings of certain graph classes (e.g.,
triangulations, spanning trees, etc.) on a planar point set is a well-known problem in
computational and discrete geometry. While for point sets in convex position many of these
numbers have simple closed formulas, it seems difficult to compute them efficiently for a

∗ A.P. is supported by an Erwin Schrödinger fellowship, Austrian Science Fund (FWF): J-3847-N35.

© Alexander Pilz, Emo Welzl, and Manuel Wettstein;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.54
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54:2 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

given general point set, or to provide tight upper and lower bounds. In this work, we provide
means for solving these problems for a special class of point sets which we call wheel sets.

Let P = H ∪ {w} be a set of n + 1 points in the plane. Unless stated otherwise, P is
assumed to be in general position and the points in H are assumed to be extreme (i.e., part
of the boundary of the convex hull of P). P is in convex position if all points including w
are extreme, and P is a wheel set if all points except w are extreme. If P is either of them,
then we call it a conowheel set. We denote by Pcon a concrete set in convex position (say, the
vertex set of a regular (n+ 1)-gon) and by Pbar a barely-in wheel set (i.e., H is the vertex set
of a regular n-gon and w is sufficiently close to an edge e of the n-gon in such a way that w
is in the interior of every triangle spanned by e and a third point of H).

The numbers of triangulations and pseudo-triangulations on wheel sets [24], as well as
perfect matchings [26], have been studied before. Our work generalizes these approaches.
Wheel sets have also been used to represent vectors in the investigation of high-dimensional
polytopes with few vertices; already in the 1960s, Perles counted the number of combinatorially
different wheel sets (as reported by Grünbaum [15]). In the terminology of modern discrete
geometry, these correspond to the different order types of wheel sets.

Order types. The order type of a point set P is a combinatorial description that assigns
an orientation (either clockwise or counterclockwise) to every ordered triple of points. Two
point sets are said to have the same order type if there exists a bijection between the two
sets that preserves these orientations [13]. We follow the practice of considering two point
sets to have the same order type if there exists a bijection that reverses all orientations.

Many combinatorial properties of a point set can be recovered from its order type. In
particular, the order type determines whether two segments with endpoints in P cross, and
whether a given point in P is extreme. It is not hard to see that all sets in convex position
have the same order type. However, the same is not true for wheel sets.

I Theorem 1. The number of distinct order types of conowheel sets of size n+ 1 is1

1
4n
∑
2-k|n

ϕ(k)2n/k + 2b(n−3)/2c = Θ(2n/n) .

The above formula has been obtained first by Perles (as stated, without proof, in [15,
Chapter 6.3]) for the number of simplicial polytopes with few vertices, and we explain the
connection to wheel sets in Section 4. Perles also counted the number of equivalent so-called
distended standard forms of Gale diagrams, which basically correspond to wheel sets with
different order types. In Section 2 we describe this correspondence.

Frequency vectors. While the order type of a point set determines the set of crossing-free
geometric graphs on it, we show in Section 3 that we can rely on the following, coarser
classification when only considering wheel sets.

Let P = H ∪ {w} be a conowheel set and let h ∈ H be arbitrary. Let l(h) denote the
number of points strictly to the left of the directed line going from w to h, and let r(h)
denote the number of points strictly to the right of that line. The frequency vector of P
is the vector F (P) = (F0, F1, . . . , Fn−1) where Fi is the number of points h ∈ H satisfying
| l(h)− r(h)| = i. Consider the following examples for n = 7.

F (Pcon) = (1, 0, 2, 0, 2, 0, 2) F (Pbar) = (1, 0, 2, 0, 4, 0, 0)

1 Here, ϕ(k) denotes Euler’s totient function, which counts the integers coprime to k that are at most k.

A. Pilz, E. Welzl, and M. Wettstein 54:3

Note that the frequency vector can be computed in O(n logn) time by radially sorting H
around w. It is also clear that the order type determines the frequency vector. However, the
opposite is not true. In Section 2, we give a complete characterization of frequency vectors,
which allows us to conclude the following.

I Theorem 2. For any n ≥ 1, the number of frequency vectors realizable by a conowheel set
over n+ 1 points is exactly 2dn/2e−1.

Given that the number of frequency vectors is significantly smaller than the number
of order types, it is unclear how much the frequency vector reveals about a conowheel set.
However, we will show that for the purpose of counting crossing-free structures it is both
sufficient and necessary.

Moreover, there is again a connection to simplicial polytopes with few vertices. In
Section 4, we show that the number of frequency vectors is equal to the number of f -vectors
of polytopes in d-space with at most d+3 vertices (including the empty polytope). The latter
has been calculated by Linusson [17] using a sophisticated counting of so-called M -sequences.

Geometric graphs. A geometric graph on P is a graph with vertex set P and edges drawn
as straight segments between the corresponding endpoints, and it is crossing-free if no two
edges intersect in their respective relative interiors.

There exists a vast literature that is concerned with counting these crossing-free structures
on specific point sets or proving extremal upper and lower bounds [3, 27, 28, 29]. One
comparatively simple case is if P is in convex position. In that case, counting triangulations
is a classical problem that goes back to Euler, and it gives rise to the famous Catalan numbers.
For many other families of graphs (such as perfect matchings and spanning trees), simple
closed formulas can be obtained as well [7, 11, 22].

Randall et al. [24] were the first to consider geometric graphs on wheel sets. They
found the extremal configurations for triangulations and pseudo-triangulations by using an
argument that involves continuously moving the extra point w. The case of perfect matchings
has been studied by Ruiz-Vargas and Welzl [26]. The next theorem is a generalization of a
result from their paper.

In the following, let G be a set of abstract (unlabeled) graphs with n+ 1 vertices, and let
nbG(P) denote the number of crossing-free geometric graphs on P which are isomorphic to a
graph in G. In other words, nbG(P) is the number of non-crossing straight-line embeddings
of graphs in G on P .

I Theorem 3. thmggraph Let G be arbitrary, and let P = H ∪ {w} be a conowheel set of
size n+ 1. Then, nbG(P) depends only on the frequency vector F (P) = (F0, F1, . . . , Fn−1).
More concretely,

nbG(P) = γn −
1
2
∑
h∈H

λl(h),r(h) =
n−1∑
k=0

FkΛk ,

where γn and λl,r = λr,l are integers and Λk are rationals depending on G.

While the latter formula in the above theorem makes the dependency on the frequency
vector more obvious, the former will turn out to be more natural. The latter formula follows
from the former simply by putting Λk = γn/n+ 1/2 · λ(n+k−1)/2,(n−k−1)/2.

We give just one example here, which at the same time makes the connection to the later
parts of the paper. Let G = {K ···4 }, where K ···4 is obtained by adding n−3 additional isolated

SoCG 2017

54:4 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

vertices to the complete graph K4. The following formula is obtained alongside Theorem 3
in Section 3.

nbG(P) =
(
n

3

)
− 1

2
∑
h∈H

((
l(h)
2

)
+
(

r(h)
2

))
for G = {K ···4 } . (1)

Observe that all non-crossing embeddings of K ···4 on a given conowheel set P = H ∪ {w}
have the following property. One of the vertices of the underlying K4 is mapped to the
point w, while the other three vertices are mapped to three points which form a triangle
that contains the extra point w in its interior. We thus get a rather simple formula for the
number of w-embracing triangles (i.e., point triples in H whose convex hull contains w).
Note that the set of w-embracing triangles does not change if we replace a point p ∈ H by a
point p′ on the ray starting at w and passing through p; for counting w-embracing triangles,
the approach for conoweel sets thus generalizes to arbitrary point sets. In other words, the
formula in equation (1) also counts the number of w-embracing triangles in an arbitrary point
set H in general position. We note that the algorithm which counts w-embracing triangles
in [25] is essentially an implementation of equation (1).

Higher dimensions. The concept of conowheel sets can be generalized to arbitrary dimen-
sions, where we may again consider sets with at most one non-extreme point. However, even
for counting w-embracing tetrahedra in 3-space, the ideas from the proof of Theorem 3 do
not generalize. Nevertheless, in Section 4 we give a generalization of equation (1). From that
we obtain improved time bounds for computing the number of w-embracing simplices or, in
other words, the simplicial depth of a point w (as defined in [18]).

I Theorem 4. thmsimpldepth Let d ≥ 3 be fixed and let H be a set of n points in Rd. Then,
the simplicial depth of a point w in H can be computed in O(nd−1) time.

Again, this result is stated for arbitrary sets H and not for wheel sets only, as for the
simplicial depth only the position relative to w is relevant. We further note that the algorithm
generalizes to counting all k-element subsets of H whose convex hull contains w.

The simplicial depth of a point has attracted considerable attention as a measure of
data depth. Several authors describe the calculation of the simplicial depth of a point in
the plane [12, 16, 25]. O(n2) and O(n4) time algorithms for 3- and 4-space, respectively,
are provided by Cheng and Ouyang [6], who also point out flaws in previous algorithms
in 3-space. Our result improves over the previously best known general O(nd logn) time
algorithm for points in constant dimension d [2]. For arbitrary dimensions, the problem is
known to be #P -complete and W [1]-hard [2].

The work by Perles aimed at counting the number of facets of high-dimensional simplicial
polytopes with few vertices. Via the Gale dual, this number corresponds to the number of
simplices embracing the origin in a dual point set. In Section 4, we show how to compute
the number of facets of the convex hull of d + k points in general position in Rd in time
O(nmax{ω,k−2}) (with O(nω) being an upper bound for matrix multiplication).

2 Order Types and Frequency Vectors

The purpose of this section is to give an explanation for Table 1. The latter contains the
numbers of distinct order types and frequency vectors corresponding to conowheel sets of
size n+ 1. For completeness, we have also included the corresponding numbers if equivalence
over order types is defined to not include reflections.

A. Pilz, E. Welzl, and M. Wettstein 54:5

Table 1 Number of order types and frequency vectors of conowheel sets over n + 1 points.

Order Types Freq. Vectors Order Types Freq. Vectors
n with w/o n with w/o

reflection reflection

1 1 1 1 7 9 10 8
2 1 1 1 8 12 16 8
3 2 2 2 9 23 30 16
4 2 2 2 10 34 52 16
5 4 4 4 11 63 94 32
6 5 6 4 12 102 172 32

Figure 1 All order types of conowheel sets for n = 7. The extra point w is drawn in white.

Order types. Given a set H of n = 7 points forming the vertex set of a regular heptagon,
there are 8 conowheel sets P = H ∪ {w} with distinct order types that can be obtained by
adding an extra point w, see the left hand side of Figure 1. Notice the discrepancy with
the number 9 displayed in Table 1. The ninth and last order type can be obtained by first
deforming H as illustrated on the right hand side of Figure 1. This necessary deformation of
H seems to complicate matters significantly, but only at first sight.

I Theorem 1 (restated). The number of distinct order types of conowheel sets of size n+ 1
is2

1
4n
∑
2-k|n

ϕ(k)2n/k + 2b(n−3)/2c = Θ(2n/n) .

The asymptotic estimate is explained by taking the dominant summand with k = 1.
The exact formula was first obtained by Perles (cf. [15, Chapter 6.3]) as the number of
combinatorially different simplicial polytopes in dimension n− 3 with at most n vertices.

The formula was also obtained in the context of counting the number of 2-colored self-
dual necklaces with 2n beads with mirrored necklaces identified [5, 23]. These are binary
(say, black and white) circular sequences of length 2n such that elements at distance n
(i.e., opposing beads) are distinct (i.e., if one is black the other must be white, and vice
versa). The correspondence between simplicial polytopes and necklaces has been shown by
Montellano-Ballesteros and Strausz [21] using Radon complexes, unaware of Perles’ result.

A proof of Theorem 1 can be given by using a simple bijection to necklaces. We note
that a similar (and slightly simpler) formula is known if mirrored necklaces are not identified.
Naturally, that formula also counts order types of conowheel sets without reflection.

2 Here, ϕ(k) denotes Euler’s totient function, which counts the integers coprime to k that are at most k.

SoCG 2017

54:6 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

h1

h2

i j

P :

w

δi,j

δj,i

h1

h2

i j

P ′:

w′

Figure 2 Moving the extra point over the segment h1h2 for the case i = 3 and j = 2.

Frequency vectors. The following lemma gives a characterization of frequency vectors. The
proof is by letting a line rotate about the extra point w, and by observing how it dissects
the point set H during the process. Full details can be found in [26].

I Lemma 5. F = (F0, F1, . . . , Fn−1) ∈ Nn is the frequency vector of a conowheel set
P = H ∪ {w} of size n+ 1, i.e., F = F (P), if and only if
(i)

∑n−1
k=0 Fk = n,

(ii) Fk = 0 for all k ≡2 n,
(iii) Fk is even for all k ≥ 1, and
(iv) if Fk 6= 0 and k ≥ 2, then Fk−2 6= 0.

With this characterization, it is not hard to determine the number of frequency vectors.

I Theorem 2 (restated). For any n ≥ 1, the number of frequency vectors realizable by a
conowheel set over n+ 1 points is exactly 2dn/2e−1.

Proof. For n = 1 and n = 2 the formula evaluates to 1, which is consistent with the fact
that there is only one respective order type for either two or three points. For larger n, we
give a proof by induction for odd n, and note that even n can be handled analogously.

So let n = m+ 2 ≥ 3 be odd. Using Lemma 5, we can characterize the set of frequency
vectors that are realizable by n + 1 points by saying that it contains all vectors F =
(F0, F1, . . . , Fn−1) which have one of the following two mutually exclusive forms.

F0 = 1, F1 = 0, and (F2− 1, F3, F4, . . . , Fn−1) is any frequency vector realizable by m+ 1
points.
F0 ≥ 3 is odd, Fn−2 = Fn−1 = 0, and (F0 − 2, F1, F2, . . . , Fn−3) is any frequency vector
realizable by m+ 1 points.

If 2dm/2e−1 is the number of frequency vectors realizable by m+ 1 points, the corresponding
number for n+ 1 points is thus 2 · 2dm/2e−1 = 2dn/2e−1. J

3 Geometric Graphs

Recall that nbG(P) is the number of crossing-free geometric graphs on a point set P that are
isomorphic to a graph in the family G. Consider now two conowheel sets P = H ∪ {w} and
P ′ = H ∪ {w′} which can be transformed into each other by moving the extra point over
the segment between h1, h2 ∈ H (and without encountering any other collinearities). The
situation is illustrated in Figure 2. Assume that on the w-side of the segment h1h2 there are
i points of H, and on the w′-side there are j points of H (thus, i+ j = n− 2). Let δi,j be
the increment of nbG when going from P to P ′, i.e., δi,j = nbG(P ′)− nbG(P).

A. Pilz, E. Welzl, and M. Wettstein 54:7

I Lemma 6. For every G, δi,j is well-defined, i.e., its value depends only on i, j and G, and
not on the exact placement of H or the location where the extra point traverses the segment
between h1 and h2.

Proof. All geometric graphs that do not contain the edge {h1, h2} are not affected by the
mutation, i.e., they are crossing-free on P if and only if they are crossing-free on P ′. Therefore,
δi,j is equal to the number of crossing-free geometric graphs on P ′ containing {h1, h2} minus
the number of crossing-free geometric graphs on P containing {h1, h2}. For the following
reasons, these numbers only depend on i, j and G.

In the case of P , on the w-side we have i+ 3 points (including h1 and h2) in a barely-in
configuration, for which there exists a unique order type. On the opposite side we have
j + 2 points (including h1 and h2) in convex position, for which there also exists a unique
order type. Because of the presence of the edge {h1, h2} any other edges must be completely
contained in one of the two sides, and the claim follows. In the case of P ′, an analogous
argument works. J

Example, embracing triangles. Consider the case G = {K ···4 }. Observe that any crossing-
free embedding of K ···4 on P uses w as the inner vertex of the underlying K4. Furthermore, if
the embedding uses the edge {h1, h2}, which implies that h1 and h2 are outer vertices of K4,
then any one of the i points on the left hand side can be used as the third outer vertex of
K4. This gives exactly i crossing-free embeddings of K ···4 on P which use the edge {h1, h2}.
Similarly, we get j for the corresponding number of embeddings on P ′. Therefore, δi,j = j− i
for G = {K ···4 }.

I Theorem 3 (restated). Let G be arbitrary, and let P = H ∪ {w} be a conowheel set of size
n+ 1. Then, nbG(P) depends only on the frequency vector F (P) = (F0, F1, . . . , Fn−1). More
concretely,

nbG(P) = γn −
1
2
∑
h∈H

λl(h),r(h) =
n−1∑
k=0

FkΛk ,

where γn and λl,r = λr,l are integers and Λk are rationals depending on G.

Proof. We proceed by choosing the numbers λl,r such that the validity of the formula is
preserved under continuous motion of P , and then choose γn such that it holds for some
starting configuration. To be more concrete, we allow continuous motion of P where all
points are allowed to move if P is in convex position, and only w is allowed to move if P is a
wheel set. At discrete moments in time we allow collinearity of three points, the one in the
middle being w. In this way any two conowheel sets can be transformed into each other.

Let now P and P ′ be as in Figure 2. Note that the values l(h) and r(h) do not change for
any h ∈ H \ {h1, h2} when going from P to P ′. For h1 and h2 the corresponding values are

P : l(h1) = r(h2) = i r(h1) = l(h2) = j + 1
P ′ : l(h1) = r(h2) = i+ 1 r(h1) = l(h2) = j

We therefore preserve the validity of the formula as long as the numbers λl,r = λr,l are chosen
in such a way that the following equality holds.

δi,j = 1
2(λi,j+1 + λj+1,i)−

1
2(λi+1,j + λj,i+1) = λi,j+1 − λi+1,j .

The definition λl,r := δn−2,0 + δn−3,1 + · · ·+ δl,r−1 + cn satisfies this constraint. Moreover,
the assumed symmetry λl,r = λr,l follows from the skew-symmetry δi,j = −δj,i. Note that

SoCG 2017

54:8 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

l+ r = n− 1 always, and that cn is an arbitrary integer independent of l and r (for the proof
to go through one could simply fix cn = 0).

Finally, γn is chosen in such a way that the formula holds for some conowheel set. The
most natural choice for “anchoring” the formula is a set in convex position.

γn := nbG(Pcon) + 1
2

∑
l,r : l+r=n−1

λl,r J

Computing the frequency vector can be done in O(n logn) time. Given the values Λk,
computing the number nbG(P) of embeddings then requires only O(n) additional arithmetic
operations.

Example continued, embracing triangles. We already derived δi,j = j − i for G = {K ···4 }.
This now gives rise to

λl,r = δn−2,0 +δn−3,1 + · · ·+δl,r−1 +cn =
r−1∑
j=0

j−

((
n− 1

2

)
−

l−1∑
i=0

i

)
+cn =

(
l

2

)
+
(
r

2

)
,

if we choose cn =
(
n−1

2
)
. It can be checked that nbG(Pcon) = 0. Hence,

γn = nbG(Pcon) + 1
2

∑
l,r : l+r=n−1

λl,r = 0 + 1
2

n−1∑
l=0

(
l

2

)
+ 1

2

n−1∑
r=0

(
r

2

)
=
(
n

3

)
.

After putting everything together we obtain the exact formula displayed earlier in equation (1).

3.1 Further Examples
We call the following two simple applications “insensitive” since the number of crossing-free
embeddings is the same on all wheel sets, but may be different for sets in convex position.

Spanning cycles. Consider the case where G contains a cycle over n + 1 vertices. Then,
we have δi,j = 0 because no crossing-free spanning cycle can use the edge {h1, h2}. That is,
unless i = 0 or j = 0, in which case we have δ0,n−2 = −δn−2,0 = n − 1. For anchoring we
calculate nbG(Pcon) = 1. It follows that all wheel sets over n+ 1 points admit n crossing-free
spanning cycles (which can easily be seen directly).

Spanning paths. If G contains a path over n+ 1 vertices we also get δi,j = 0 unless i = 0
or j = 0, but for a different reason. On P there are 2 · 2i · 2j−1 crossing-free embeddings
that use the edge {h1, h2}, since there are 2 choices for deciding which one of h1 and h2
is connected to the left hand side, 2i choices for completing the left hand side to a path
and 2j−1 choices for completing the right hand side to a path. Likewise, on P ′ there are
2 · 2i−1 · 2j embeddings, which is the same number. Using a similar argument it can be
checked that

δ0,n−2 = −δn−2,0 = 2 · (2n−2 +
n−2∑
k=1

2k−1 · 2n−2−k)− 2 · 2n−3 = (n− 1)2n−2 .

For anchoring we compute nbG(Pcon) = (n+ 1)2n−2, implying nbG(P) = n2n−1 for any wheel
set P .

The following two applications are “sensitive” in the sense that different wheel sets in
general have different numbers of crossing-free embeddings. The running example with
embracing triangles also is of this kind.

A. Pilz, E. Welzl, and M. Wettstein 54:9

Matchings. Let G =M, the set of (not necessarily perfect) matchings over n+ 1 vertices.
It is known that nbM(Pcon) = Mn+1 :=

∑b(n+1)/2c
k=0

(
n+1
2k
)
Ck, the (n+ 1)-th Motzkin number

[22]. It is thus easy to compute δi,j = MiMj+1 −Mi+1Mj since, as always, we only have
to worry about embeddings that use the edge {h1, h2}. This gives λl,r = MlMr and
γn = Mn+1 + 1

2
∑
l,rMlMr. After simplifying3, we obtain the following formula.

nbG(P) = 3Mn+1 −Mn

2 − 1
2
∑
h∈H

Ml(h)Mr(h) for G =M (2)

Spanning trees. Let G = ST , the set of all trees over n + 1 vertices. We will make use
of the fact that nbST (Pcon) = Tn+1 := 1

2n+1
(3n
n

)
[7, 11]. Furthermore, we will use the

hypergeometric identity
∑i
k=0 Tk+1Ti−k+1 = 1

i+1
(3i+1

i

)
. To compute δi,j , consider the set

P as in Figure 2. In order to complete the left hand side into a spanning tree, we have to
build two disjoint trees rooted at h1 and h2, respectively. There are 2 choices for assigning w
either to the upper or the lower tree, and there are i+ 1 choices for distributing the i points
on the left among the two trees. Indeed, the latter claim holds because the k out of i points
assigned to h1, say, have to appear consecutively with h1 on the convex hull as otherwise we
are forced to create a crossing. Once the points have been distributed, we are left with two
point sets of size k + 1 and i− k + 2 in convex position. For completing the right hand side
into a spanning tree, a simpler argument can be used without the additional complication of
w. Moreover, the set P ′ can be handled analogously.

δi,j = 2
j∑

k=0
Tk+1Tj−k+2 ·

i∑
k=0

Tk+1Ti−k+1 − 2
i∑

k=0
Tk+1Ti−k+2 ·

j∑
k=0

Tk+1Tj−k+1

= 2
(

2
j + 2

(
3j + 3
j

)
· 1
i+ 1

(
3i+ 1
i

)
− 2
i+ 2

(
3i+ 3
i

)
· 1
j + 1

(
3j + 1
j

))

For this application, we do not know if a simple closed form expression for λl,r exists.
Still, note that if one were to compute nbST (P), the numbers δi,j can be summed up in
linear time and the value of γn can be computed on the fly for any given n.

Other applications. Observe that, for example, a geometric triangulation of Pcon can be
embedded as a plane graph on Pbar. However, this embedding is no longer a triangulation
(i.e., a tessellation of CH(Pbar) into triangles). Hence, there is no natural choice of G such
that nbG(P) is the number of triangulations of any conowheel set P . It turns out that there
are several other families of geometric graphs (pseudotriangulations, crossing-free convex
partitions, etc.) whose quantity on a conowheel set P cannot be expressed easily in the
form nbG(P), but for which the continuous motion argument is still applicable and leads to
similarly simple formulas. All that is required is a specialized version of Lemma 6.

Furthermore, we note that Theorem 3 generalizes to crossing-free embeddings of hyper-
graphs, where “crossing-free” means that the convex hulls of any two hyperedges intersect in
an at most 1-dimensional set.

3 A crossing-free matching on Pcon either leaves w unmatched (Mn possibilities) or it matches w with one
of the other n points (

∑
l,r

MlMr possibilities). Hence, as required, Mn+1 = Mn +
∑

l,r
MlMr.

SoCG 2017

54:10 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

3.2 Wheel Sets and the Rectilinear Crossing Number
Even though conowheel sets and the associated frequency vectors seem like a very specific
set of objects, they do occur naturally in more general settings. Consider for example an
arbitrary set P̃ of n+1 points in general position and let � and 4 be the number of 4-element
subsets of P̃ in convex and in non-convex position, respectively.4 Let p ∈ P̃ be any point.
We can construct a conowheel set P = H ∪ {w} containing w = p and, for every q ∈ P̃ \ {p},
the point h which lies on the intersection of the ray from p to q and a fixed circle centered at
w (as done also, e.g., in [16]). That is, P is simply a representation of the local sequence
of p in P̃ in terms of conowheel sets; see [14]. Further observe that a triangle spanned by
points in P̃ contains p iff its image in P contains w. Hence, nbK···

4
(P) is the number of such

triangles, which is given by equation (1). We thus obtain 4 by a summation over all points
p in P̃ . Since �+4 =

(
n+1

4
)
, we also obtain �. We note that this can be transformed into

equations from [1, 19, 30] that give � in terms of the number of j-edges (i.e., directed edges
spanned by P̃ with exactly j points of P̃ to their left).

To sum up, we can associate a frequency vector with every point of a given point set, and
this set of frequency vectors determines the value of �. Unfortunately, this simple approach
does not generalize to counting other types of graphs; there are examples of point sets with
the same set of frequency vectors but a different number of triangulations.

4 Higher Dimensions: Origin-embracing Simplices

As already noted in the introduction, the concept of conowheel sets can be generalized to
higher dimensions. However, already in R3 we face certain challenges. For example, the
number of tetrahedralizations of n+ 1 points in convex position in R3 does not only depend
on n, in contrast to the 2-dimensional case. Even when considering simpler structures, like
the set of w-embracing tetrahedra, the ideas from Section 3 do not generalize. (Intuitively,
our argument of w passing over a segment does not work in 3-space, as it can pass “behind” a
triangle.) Still, we can use similar techniques to obtain improved time bounds for computing
the simplicial depth of a point w.

Oriented simplices. Given a set T of d affinely independent points in Rd, its convex hull
CH(T) is a (d− 1)-simplex and its affine hull is a hyperplane. We want to be able to refer to
the two sides of this hyperplane by identifying a positive and a negative side. For that consider
a sequence p1p2 . . . pd of d affinely independent points. The affine hull of {p1, p2, . . . , pd}
can be described as the set of points q with σ(q, p1p2 . . . pd) = 0, where σ(q, p1p2 . . . pd) :=
det(p1−q, p2−q, . . . , pd−q).We call the set of points q with σ(q, p1p2 . . . pd) > 0 the positive
side of p1p2 . . . pd, and the set of points q with σ(q, p1p2 . . . pd) < 0 the negative side of
p1p2 . . . pd. Note that for d = 2, the positive side of p1p2 is the set of points left of the line
through p1 and p2, directed from p1 to p2. Also note that the positive side of p1p2 coincides
with the negative side of p2p1. For d ≥ 3, distinct orderings of the given d points may have
identical positive sides; this happens iff the orderings can be obtained from each other by
an even number of transpositions. An oriented (d− 1)-simplex is a sequence p1p2 . . . pd of d
affinely independent points, with its associated (d− 1)-simplex CH({p1, p2, . . . , pd}), and its
associated positive and negative side as defined above. Two such oriented (d− 1)-simplices

4 The number � is also the number of crossings of the complete geometric graph on P̃ , a quantity that
has obtained special attention in connection with the so-called rectilinear crossing number of Kn (i.e.,
the smallest number of crossings in a straight line drawing of the complete graph in the plane).

A. Pilz, E. Welzl, and M. Wettstein 54:11

are defined to be equivalent if their sequences can be obtained from each other by an even
number of transpositions (e.g., p1p2p3 ≡ p3p1p2 ≡ p2p3p1 and p3p2p1 ≡ p1p3p2 ≡ p2p1p3).

Via oriented simplices, the concept of order types generalizes to arbitrary dimensions; the
order type of a set P = H ∪ {w} of n+ 1 points in Rd determines the set of points on the
positive side of the oriented (d− 1)-simplex wh1 . . . hd−1, for each (d− 1)-tuple in H. Let
l(h1 . . . hd−1) be the number of these points, and let r(h1 . . . hd−1) = n−d+ 1− l(h1 . . . hd−1).
We can thus define the frequency vector F (P) = (F0, F1, . . . , Fn−d+1) by letting Fi denote
the number of tuples ρ ∈ Hd−1 s.t. | l(ρ)− r(ρ)| = i. However, already for d = 3 it turns out
that this frequency vector does not always determine the number of w-embracing tetrahedra,
i.e., the number of subsets of d+ 1 points of H whose convex hull contains w.

4.1 Embracing sets
Here, we generalize the notion of embracing triangles to larger sets. Consider a set P =
H ∪ {w} of n+ 1 points in Rd. A subset A ⊆ H is a w-embracing k-set if w ∈ CH(A) and
|A| = k. For simplicity, we will usually consider w = 0 and call A an embracing k-set.

Let us quickly return to dimension d = 2 and consider a conowheel set P = H ∪ {w}. As
follows, we can show that the number of embracing k-sets is determined by the frequency
vector of P for any k, and not just for k = 3 as seen earlier in equation (1). Indeed, since H
is in general position, for every non-embracing k-set A ⊆ H there exists a unique point h ∈ A
such that CH(A) is in the closed halfplane to the left of the directed segment wh. Observe
that for any choice of h ∈ H we can construct

(l(h)
k−1
)
such non-embracing k-sets, and thus

we get a generalization of equation (1). (This direct approach to counting non-embracing
triangles was, e.g., also used in [25].) Interestingly, the reverse is also true.

I Lemma 7. The sequence (embrk)nk=3, where embrk is the number of embracing k-sets in a
conowheel set P = H ∪ {w} of size n+ 1, determines the frequency vector of P .

Proof. Let E = (embrk)nk=3. Consider the vector L = (Lj)n−1
j=1 where Lj is the number of

points h ∈ H with l(h) = j. Clearly, L determines the frequency vector of P . It thus suffices
to show that E determines L.

The number embrk of embracing k-sets is

embrk =
(
n

k

)
−
∑
h∈H

(
l(h)
k − 1

)
,

which may be rewritten as(
n

k

)
− embrk =

n−1∑
j=1

Lj

(
j

k − 1

)
.

Observe that the above equation also holds for k = 2. We can thus define a vector
E′ = (ei)n−1

i=1 with ei =
(
n
i+1
)
− embri+1 and a square matrix A = (ai,j)n−1

i,j=1 with ai,j =
(
j
i

)
,

such that

E′ = AL .

Since the matrix A is unitriangular (i.e., triangular and without zeroes on the diagonal) it
has an inverse, from which we conclude that E′ determines L. J

I Corollary 8. Let P and P ′ be two conowheel sets. Then nbG(P) = nbG(P ′) for any graph
class G if and only if F (P) = F (P ′).

SoCG 2017

54:12 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

Proof. We already know from Theorem 3 that the frequency vector determines the number
of embeddings. For the other direction, we reconstruct the number of embracing k-sets by
appropriately choosing the graph classes G. After that, the frequency vector is determined
by Lemma 7.

The number of embracing triangles is equal to the number of embeddings of K ···4 and
therefore, by our assumption, the same for both P and P ′. We now simply generalize to
k-wheels, i.e., G contains a cycle with k vertices, each adjacent to one additional vertex. All
that is left to observe is that the number of distinct embeddings of such a k-wheel on a
conowheel set is the same as the number of embracing k-sets. J

Note that, for arbitrary point sets, we can compute the number of crossing-free embeddings
of such k-wheels in polynomial time: For k = 3, this number is equal to the number of
crossing-free embeddings of K ···4 , which can be obtained from the frequency vector associated
with each point, see Section 3.2. For k ≥ 4, we distinguish the cases where the geometric
embedding of a k-wheel has only three vertices on the unbounded cell and where it has more.
The latter case can be dealt with by computing the number of embracing k-sets for each
point. The former can be obtained by computing the number of triangles with j points in
the interior and multiplying this number by 3

(
j

k−2
)
. This is because for every vertex of such

a triangle, a path of k − 2 points inside this triangle in radial order around that vertex gives
a k-wheel with the triangle as the unbounded cell. For all j, the corresponding number of
triangles can be obtained in O(n3) time [4, 10].

Unfortunately, generalizing the above approach of counting embracing k-sets to higher
dimensions fails already in 3-space. Indeed, consider the set of non-embracing tetrahedra for
a set H ⊂ R3 in convex position. Observe now that any such tetrahedron has either three or
four edges that form a “tangent” plane through w.

Instead, consider a partition B
.
∪W = H defined by a plane φ through w that is disjoint

from H. Then, the set of non-embracing k-sets consists of those completely in B and W ,
respectively, and those intersected by φ. For the latter, consider the intersection of CH(A) of
such a set A with φ. There is again a single “tangent” point t = pq ∩ φ such that CH(A) ∩ φ
is on one side of the line wt on φ. Hence, the number of embracing k-sets in 3-space is

embrk =
(
n

k

)
−
(
|B|
k

)
−
(
|W |
k

)
−

∑
pq∈B×W

(
l(pq)
k − 2

)
.

We can generalize this approach in the following way.

I Lemma 9. Let H be a set of n points in Rd, with H ∪ {0} in general position, and let ψ
be a generic 2-flat containing the origin. Let proj : Rd → Rd−2 be a projection that maps all
of ψ to 0 ∈ Rd−2. Then, the number of embracing k-sets in H is

embrk(proj(H))− 1
2

∑
ρ∈(H

d−1)
CH(ρ)∩ψ 6=∅

((
l(ρ)

k − d+ 1

)
+
(

r(ρ)
k − d+ 1

))
.

Proof. Clearly, any embracing k-set is also an embracing k-set in the projection, so we only
have to subtract the number of non-embracing k-sets which happen to be embracing in the
projection. Let A be such a set. Since 0 ∈ proj(CH(A)), we have CH(A) ∩ ψ 6= ∅. In the
2-dimensional subspace defined by ψ, there is a unique point t on the boundary of CH(A)∩ψ
such that CH(A) ∩ ψ is in the left closed halfplane defined by 0t (recall that we assume
general position). Since ψ is generic, t is the intersection of ψ with a (d− 2)-simplex defined
by a tuple ρ of d− 1 points of A, and the oriented (d− 1)-simplex 0ρ has all points of A \ ρ

A. Pilz, E. Welzl, and M. Wettstein 54:13

either on its positive or negative side. We are thus counting each such non-embracing k-set
twice (for the left and the right “tangent”), and the claim follows. J

With the previous lemma at hand, it is now a simple task to give a proof of our main
computational result.

I Theorem 4 (restated). Let d ≥ 3 be fixed and let H be a set of n points in Rd. Then, the
simplicial depth of a point w in H can be computed in O(nd−1) time.

Proof. The proof of Lemma 9 is constructive (apart from the choice of ψ, which can be
done arbitrarily using the techniques in [8]). Whether a (d− 1)-simplex intersects ψ can be
computed in O(dd) time. It thus remains to compute the values of l(ρ) for the (d−1)-tuples ρ.
While a brute-force approach would take O(nd) time for this operation, we can actually
consider the points of H as vectors representing points in the (d− 1)-dimensional projective
plane. We compute the dual hyperplane arrangement [9] in O(nd−1) time, which allows us
to extract the values of l(ρ) within the same time bounds (as also discussed in [9]). J

Note that the part whose running time depends on d is computing the values of l(ρ).
After O(nd−1) time, we can produce a vector indicating the number of (d − 1)-simplices
intersecting ψ with a certain number of points on their positive side. Using this vector, we
only have to sum up over O(n) binomial coefficients in each recursion step to obtain the
number of embracing k-sets.

4.2 Polytopes with few vertices
Through the so-called Gale transform (cf. [31, 32, 33]), origin-embracing triangles are in
correspondence to facets ((n−4)-faces) of simplicial (n−3)-polytopes with at most n vertices.
More generally, subsets of size i containing the origin in their convex hull correspond to
(n − i − 1)-faces. Therefore, some of our results connect to such simplicial d-dimensional
polytopes with at most d+ 3 vertices (number of frequency vectors, number of order types,
computation of number of embracing triangles, etc.) and thus to known results in that
context.

Gale duality. For n > d, we call a matrix A ∈ Rn×d legal if A has full rank d and A>1n = 0d.
Let SA = (p1, p2, . . . , pn) be the sequence of points in Rd with the coordinates of pi obtained
from the ith row of A. Legal thus means that SA is not contained in a hyperplane and that
the origin is the centroid of SA. For legal matrices A ∈ Rn×d and B ∈ Rn×n−d−1, we call B
an orthogonal dual of A, in symbols A⊥B, if A>B = 0d×(n−d−1). SB is called a Gale dual
(Gale transform, Gale diagram) of SA.5 In other words, if A⊥B then all column vectors of
B are orthogonal to all column vectors of A; together with the legal condition, this means
that the column vectors of B span the space of all vectors orthogonal to the column vectors
of A and to 1n, i.e., it is a basis of the null space of the vector space spanned by the columns
of (A1n). (The matrix (A1n) is the matrix A with an extra column of 1’s.)

I Proposition 10 ([20, p. 111]). Let A⊥B with SA = (p1, p2, . . . , pn), SB = (p∗1, p∗2, . . . , p∗n).
For every I ⊆ [n], the set {pi | i ∈ I} is contained in a facet of CH(SA) iff {p∗i | i 6∈ I} is
embracing.

5 Following [32], we add the requirement that the origin is the centroid, in contrast to, e.g., [20, Chapter 5.6].

SoCG 2017

54:14 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

For a d-dimensional polytope P , the f -vector of P is defined as f(P) = (f−1, f0, . . . , fd−1),
where fi(P) is the number of i-dimensional faces (i-faces) of P (the empty face is the unique
(−1)-face, 0-faces are vertices, 1-faces are edges, . . . , (d− 1)-faces are facets). A property of
the Gale dual is that the points in SA are in general position iff the rows in B are linearly
independent [20, p. 111]. Thus, if S := {p1, p2, . . . , pn} is a set of n points in general position,
P := CH(S), and Q is the set {p∗1, p∗2, . . . , p∗n}, then fi(P) equals the number of embracing
(n− i− 1)-sets in Q.6 Computing the f -vector can thus be done by computing the Gale
dual and by using Proposition 10.

I Proposition 11. Given a legal matrix A ∈ Rn×d, an orthogonal dual can be computed in
time O(nω), where ω is the exponent for matrix multiplication over R.

I Corollary 12. For a set S of n = d+ k points in general position in Rd, the number of
facets of the simplicial polytope CH(S) can be computed in time O(nk−2) for k ≥ 5 and in
O(nω) otherwise, where ω is the exponent for matrix multiplication over R.

Note that the asymptotic number of facets may be as large as nk. A generalization of
Corollary 12 to sets not necessarily in general position is possible for k = 3. Our efficient
computation of the number of embracing k-sets thus lets us obtain not only the f -vector
of a polytope, but of course related vectors like the h- and the g-vector. We finally draw
the connection between order types of conowheel sets and the combinatorial structure of
simplicial d-polytopes with d+ 3 vertices.

I Proposition 13. The family of embracing triangles of a conowheel set P = H ∪ {w}
determines the order type of P .

It is therefore no coincidence that the number obtained in Theorem 1 is the same as the
one obtained by Perles for the number of simplicial d-polytopes with d+ 3 vertices (see [15,
Chapter 6.3]). Also, the number of f -vectors of polytopes with at most d+ 3 vertices, as
obtained by Linusson [17], equals the number of frequency vectors by Lemma 7; via the Gale
dual, we thus obtain a direct proof for the number of these f -vectors, as desired by Linusson.
Doing so for d+ 4 vertices, however, remains an open problem.

References

1 Bernardo M. Ábrego and Silvia Fernández-Merchant. A lower bound for the rectilinear cross-
ing number. Graphs Combin., 21(3):293–300, 2005. doi:10.1007/s00373-005-0612-5.

2 Peyman Afshani, Donald R. Sheehy, and Yannik Stein. Approximating the simplicial depth.
CoRR, abs/1512.04856, 2015.

3 Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Hannes Krasser, and
Birgit Vogtenhuber. On the number of plane geometric graphs. Graphs Combin., 23:67–84,
2007. doi:10.1007/s00373-007-0704-5.

4 Esther M. Arkin, Samir Khuller, and Joseph S. B. Mitchell. Geometric knapsack problems.
Algorithmica, 10(5):399–427, 1993. doi:10.1007/BF01769706.

5 Andries E. Brouwer. The enumeration of locally transitive tournaments. Technical Report
ZW 138/80, Mathematisch Centrum, Amsterdam, 1980.

6 Andrew Y. Cheng and Ming Ouyang. On algorithms for simplicial depth. In Proc. 13th

Canadian Conference on Computational Geometry, pages 53–56, 2001.

6 Note that linear independence of the rows of B does not assure general position of Q, but projecting Q
to the unit circle does, as no two points are collinear with 0.

http://dx.doi.org/10.1007/s00373-005-0612-5
http://dx.doi.org/10.1007/s00373-007-0704-5
http://dx.doi.org/10.1007/BF01769706

A. Pilz, E. Welzl, and M. Wettstein 54:15

7 Serge Dulucq and Jean-Guy Penaud. Cordes, arbres et permutations. Discr. Math.,
117(1):89–105, 1993. doi:10.1016/0012-365X(93)90326-O.

8 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.
doi:10.1145/77635.77639.

9 Herbert Edelsbrunner, Joseph O’Rourke, and Raimund Seidel. Constructing arrangements
of lines and hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986. doi:
10.1137/0215024.

10 David Eppstein, Mark H. Overmars, Günter Rote, and Gerhard J. Woeginger. Finding
minimum area k-gons. Discr. Comput. Geom., 7:45–58, 1992. doi:10.1007/BF02187823.

11 Philippe Flajolet and Marc Noy. Analytic combinatorics of non-crossing configurations.
Discr. Math., 204(1-3):203–229, 1999. doi:10.1016/S0012-365X(98)00372-0.

12 Joseph Gil, William L. Steiger, and Avi Wigderson. Geometric medians. Discr. Math.,
108(1-3):37–51, 1992. doi:10.1016/0012-365X(92)90658-3.

13 Jacob E. Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput.,
12(3):484–507, 1983.

14 Jacob E. Goodman and Richard Pollack. Semispaces of configurations, cell complexes of
arrangements. J. Combin. Theory Ser. A, 37(3):257–293, 1984.

15 Branko Grünbaum. Convex Polytopes. Springer, 2nd edition, 2003.
16 Samir Khuller and Joseph S. B. Mitchell. On a triangle counting problem. Inf. Process.

Lett., 33(6):319–321, 1990. doi:10.1016/0020-0190(90)90217-L.
17 Svante Linusson. The number ofM -sequences and f -vectors. Combinatorica, 19(2):255–266,

1999. doi:10.1007/s004930050055.
18 R. Y. Liu. On a notion of data depth based on random simplices. Annals of Statistics,

18:405–414, 1990.
19 László Lovász, Katalin Vesztergombi, Uli Wagner, and Emo Welzl. Convex quadrilaterals

and k-sets. In Towards a Theory of Geometric Graphs, pages 139–148. AMS, Providence,
2004.

20 Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002.
21 Juan José Montellano-Ballesteros and Ricardo Strausz. Counting polytopes via the Radon

complex. J. Comb. Theory, Ser. A, 106(1):109–121, 2004. doi:10.1016/j.jcta.2004.01.
005.

22 Theodore S. Motzkin. Relations between hypersurface cross ratios, and a combinatorial
formula for partitions of a polygon, for permanent preponderance, and for non-associative
products. Bull. Amer. Math. Soc., 54(4):352–360, 1948.

23 Edgar M. Palmer and Robert W. Robinson. Enumeration of self-dual configurations. Pacific
J. Math., 110(1):203–221, 1984.

24 Dana Randall, Günter Rote, Francisco Santos, and Jack Snoeyink. Counting triangulations
and pseudo-triangulations of wheels. In Proc. 13th Canadian Conference on Computational
Geometry, pages 149–152, 2001.

25 Peter J. Rousseeuw and Ida Ruts. Bivariate location depth. J. Royal Stat. Soc. Ser. C,
45(4):516–526, 1996.

26 Andres J. Ruiz-Vargas and Emo Welzl. Crossing-free perfect matchings in wheel point sets.
Unpublished manuscript, September 2015.

27 Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets. Electr. J.
Combin., 18(1), 2011.

28 Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: Perfect matchings,
spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A, 120(4):777–794, 2013.
doi:10.1016/j.jcta.2013.01.002.

SoCG 2017

http://dx.doi.org/10.1016/0012-365X(93)90326-O
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1137/0215024
http://dx.doi.org/10.1137/0215024
http://dx.doi.org/10.1007/BF02187823
http://dx.doi.org/10.1016/S0012-365X(98)00372-0
http://dx.doi.org/10.1016/0012-365X(92)90658-3
http://dx.doi.org/10.1016/0020-0190(90)90217-L
http://dx.doi.org/10.1007/s004930050055
http://dx.doi.org/10.1016/j.jcta.2004.01.005
http://dx.doi.org/10.1016/j.jcta.2004.01.005
http://dx.doi.org/10.1016/j.jcta.2013.01.002

54:16 From Crossing-Free Graphs on Wheel Sets to Embracing Simplices

29 Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and
partitions. SIAM J. Comput., 36(3):695–720, 2006. doi:10.1137/050636036.

30 Uli Wagner. On the rectilinear crossing number of complete graphs. In Proc. 14th Annual
Symposium on Discrete Algorithms, pages 583–588. ACM/SIAM, 2003.

31 Uli Wagner and Emo Welzl. A continuous analogue of the Upper Bound Theorem. Discr.
Comput. Geom., 26(2):205–219, 2001. doi:10.1007/s00454-001-0028-9.

32 Emo Welzl. Entering and leaving j-facets. Discr. Comput. Geom., 25(3):351–364, 2001.
doi:10.1007/s004540010085.

33 Günter M. Ziegler. Lectures on Polytopes. Springer, 1995.

http://dx.doi.org/10.1137/050636036
http://dx.doi.org/10.1007/s00454-001-0028-9
http://dx.doi.org/10.1007/s004540010085

Approximate Range Counting Revisited∗†

Saladi Rahul

Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN, USA
sala0198@umn.edu

Abstract
We study range-searching for colored objects, where one has to count (approximately) the num-
ber of colors present in a query range. The problems studied mostly involve orthogonal range-
searching in two and three dimensions, and the dual setting of rectangle stabbing by points. We
present optimal and near-optimal solutions for these problems. Most of the results are obtained
via reductions to the approximate uncolored version, and improved data-structures for them. An
additional contribution of this work is the introduction of nested shallow cuttings.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases geometric data structures, range searching, rectangle stabbing, approx-
imate counting, colors

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.55

1 Introduction

Let S be a set of n geometric objects in Rd which are segregated into disjoint groups (i.e.,
colors). Given a query q ⊆ Rd, a color c intersects (or is present in) q if any object in S of
color c intersects q, and let k be the number of colors of S present in q.

q

In the approximate colored range-counting problem, the task is to preprocess S into a data
structure, so that for a query q, one can efficiently report the approximate number of colors
present in q. Specifically, return any value in the range [(1− ε)k, (1 + ε)k], where ε ∈ (0, 1)
is a pre-specified parameter.

Colored range searching and its related problems have been studied before [8, 10, 11, 12].
They are known as GROUP-BY queries in the database literature. A popular variant is the
colored orthogonal range searching problem: S is a set of n colored points in Rd, and q is an
axes-parallel rectangle. As a motivating example for this problem, consider the following
query: “How many countries have employees aged between X1 and X2 while earning annually

∗ The full version of this work with the title “Approximate Range Counting Revisited" can be found on
https://arxiv.org/abs/1512.01713v3.

† This research was partly supported by a Doctoral Dissertation Fellowship (DDF) from the Graduate
School of University of Minnesota.

© Saladi Rahul;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
https://arxiv.org/abs/1512.01713v3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Approximate Range Counting Revisited

more than Y rupees?". An employee is represented as a colored point (age, salary), where
the color encodes the country, and the query is the axes-parallel rectangle [X1, X2]× [Y,∞).

1.1 Previous work and background.
In the standard approximate range counting problem there are no colors. One is interested
in the approximate number of objects intersecting the query. Specifically, if k is the number
of objects of S intersecting q, then return a value in the range [(1− ε)k, (1 + ε)k].

General reduction to companion problems. Aronov and Har-Peled [3], and Kaplan, Ramos
and Sharir [9] presented general techniques to answer approximate range counting queries. In
both instances, the authors reduce the task of answering an approximate counting query, into
answering a few queries in data-structures solving an easier (companion) problem. Aronov
and Har-Peled’s companion problem is the emptiness query, where the goal is to report
whether |S ∩ q| = 0. Specifically, assume that there is a data structure of size S(n) which
answers the emptiness query in O(Q(n)) time. Aronov and Har-Peled show that there is
a data structure of size O(S(n) logn) which answers the approximate counting query in
O(Q(n) logn) time (for simplicity we ignore the dependency on ε). Kaplan et al.’s companion
problem is the range-minimum query, where each object of S has a weight associated with it
and the goal is to report the object in S ∩ q with the minimum weight.

Even though the reductions of [3] and [9] seem different, there is an interesting discussion
in Section 6 of [3] about the underlying “sameness" of both techniques.

Levels. Informally, for a set S of n objects, a t-level of S is a surface such that if a point
q lies above (resp., on/below) the surface, then the number of objects of S containing q is
> t (resp., ≤ t). Range counting can be reduced in some cases to deciding the level of a
query point. Unfortunately, the complexity of a single level is not well understood. For
example, for hyperplanes in the plane, the t-level has super-linear complexity Ω(n2

√
log t)

in the worst-case (the known upper bound is O(nt1/3) and closing the gap is a major open
problem). In particular, the prohibitive complexity of such levels makes them inapplicable
for the approximate range counting problem, where one shoots for linear (or near-linear)
space data-structures.

Shallow cuttings A t-level shallow cutting is a set of simple cells, that lies strictly below the
2t-level, and their union covers all the points below (and on) the t-level. For many geometric
objects in two and three dimensions, such t-shallow cuttings have O(n/t) cells. Using such
cuttings leads to efficient data-structures for approximate range counting. Specifically, one
uses binary search on a “ladder” of approximate levels (realized via shallow cuttings) to find
the approximation.

For halfspaces in R3, Afshani and Chan [1] avoid doing the binary search and find the
two consecutive levels in optimal O(log n

k) expected time. Later, Afshani, Hamilton and
Zeh [2] obtained a worst-case optimal solution for many geometric settings. Interestingly,
their results hold in the pointer machine model, the I/O-model and the cache-oblivious
model. However, in the word-RAM model their solution is not optimal and the query time is
Ω(log logU + (log logn)2).

Specific problems. Approximate counting for orthogonal range searching in R2 was studied
by Nekrich [11], and Chan and Wilkinson [5] in the word-RAM model. In this setting, the

S. Rahul 55:3

input set is points in R2 and the query is a rectangle in R2. A hyper-rectangle in Rd is
(d + k)-sided if it is bounded on both sides in k out of the d dimensions and unbounded
on one side in the remaining d− k dimensions. Nekrich [11] presented a data structure for
approximate colored 3-sided range searching in R2, where the input is points and the query
is a 3-sided rectangle in R2. However, it has an approximation factor of (4 + ε), whereas
we are interested in obtaining a tighter approximation factor of (1 + ε). To the best of our
knowledge, this is the only work directly addressing an approximate colored counting query.

1.2 Motivation
Avoiding expensive counting structures. A search problem is decomposable if given two
disjoint sets of objects S1 and S2, the answer to F (S1 ∪ S2) can be computed in constant
time, given the answers to F (S1) and F (S2) separately. This property is widely used in the
literature for counting in standard problems (going back to the work of Bentley and Saxe [4]
in the late 1970s). For colored counting problems, however, F (·) is not decomposable. If
F (S1) (resp. F (S2)) has n1 (resp. n2) colors, then this information is insufficient to compute
F (S1 ∪ S2), as they might have common colors.

As a result, for many exact colored counting queries the known space and query time
bounds are expensive. For example, for colored orthogonal range searching problem in
Rd, existing structures use O(nd) space to achieve polylogarithmic query time [10]. Any
substantial improvement in the preprocessing time and the query time would lead to a
substantial improvement in the best exponent of matrix multiplication [10] (which is a major
open problem). Similarly, counting structures for colored halfspace counting in R2 and R3 [8]
are expensive.

Instead of an exact count, if one is willing to settle for an approximate count, then this
work presents a data structure with O(n polylog n) space and O(polylog n) query time.

Approximate counting in the speed of emptiness. In an emptiness query, the goal is to
decide if S ∩ q is empty. The approximate counting query is at least as hard as the emptiness
query: When k = 0 and k = 1, no error is tolerated. Therefore, a natural goal while answering
approximate range counting queries is to match the bounds of its corresponding emptiness
query.

1.3 Our results and techniques

1.3.1 Specific problems
The focus of the paper is building data structures for approximate colored counting queries,
which exactly match or almost match the bounds of their corresponding emptiness problem.

1.3.1.1 3-sided rectangle stabbing in 2d and related problems

In the colored interval stabbing problem, the input is n colored intervals with endpoints in
JUK = {1, . . . , U}, and the query is a point in JUK. We present a linear-space data structure
which answers the approximate counting query in O(log logU) time. The new data structure
can be used to handle some geometric settings in 2d: the colored dominance search (the input
is a set of n points, and the query is a 2-sided rectangle) and the colored 3-sided rectangle
stabbing (the input is a set of n 3-sided rectangles, and the query is a point). The results are
summarized in Table 1.

SoCG 2017

55:4 Approximate Range Counting Revisited

Table 1 A summary of the results obtained for several approximate colored counting queries. To
avoid clutter, the O(·) symbol and the dependency on ε is not shown in the space and the query
time bounds. For the second column in the table, the first entry is the input and the second entry
is the query. For each of the results column in the table, the first entry is the space occupied by
the data structure and the second entry is the time taken to answer the query. WR denotes the
word-RAM model and PM denotes the pointer machine model.

Dime- Input, New Results Previous Approx. Exact Counting Model
-nsion Query Counting Results Results

1 intervals, S: n, S: n, S: n,

point Q: log log U Q: log log U+ Q: log log U + logw n WR
2 points, (log log n)2

2-sided rectangle
2 3-sided rectangles, Theorem 1

point

2 points, S: n, S: n log2 n,

3-sided rectangle Q: log n Q: log2 n not studied PM
Theorem 15(A)

2 points, S: n log n, S: n log3 n, S: n2 log6 n,

4-sided rectangle Q: log n Q: log2 n Q: log7 n PM
Theorem 15(B) Kaplan et al. [10]

3 points, S: n log∗ n, S: n log2 n,

3-sided rectangle Q: log n · log log n Q: log2 n not studied PM
Theorem 7

1.3.1.2 Range searching in R2

The input is a set of n colored points in the plane. For 3-sided query rectangles, an optimal
solution (in terms of n) for approximate counting is obtained. For 4-sided query rectangles, an
almost-optimal solution for approximate counting is obtained. The size of our data structure
is off by a factor of log logn w.r.t. its corresponding emptiness structure which occupies
O(n log n

log log n) space and answers the emptiness query in O(logn) time [6]. The results are
summarized in Table 1.

1.3.1.3 Dominance search in R3

The input is a set of n colored points in R3 and the query is a 3-sided rectangle in R3 (i.e., an
octant). An almost-optimal solution is obtained requiring O(n log logn) space and O(logn)
time to answer the approximate counting query.

1.3.2 General reductions
We present two general reductions for solving approximate colored counting queries by
reducing them to “easy" companion queries.

Reduction-I (Reporting + C-approximation). In the first reduction a colored approximate
counting query is answered using two companion structures: (a) reporting structure (its
objective is to report the k colors), and (b) C-approximation structure (its objective is to

S. Rahul 55:5

report any value z s.t. k ∈ [z, Cz], where C is a constant). Significantly, unlike previous
reductions [3, 9], there is no asymptotic loss of efficiency in space and query time bounds
w.r.t. to the two companion problems.

Reduction-II (Only Reporting). The second reduction is a modification of the Aronov and
Har-Peled [3] reduction. We present the reduction for the following reasons: (A) Unlike
reduction-I, this reduction is “easier" to use since it uses only the reporting structure and
avoids the C-approximation structure, and (B) the analysis of Aronov and Har-Peled is
slightly complicated because of their insistence on querying emptiness structures. We show
that by using reporting structures the analysis becomes simpler. This reduction is useful
when the reporting query is not significantly costlier than the emptiness query. The full
version of this work will describe this reduction and its applications.

1.3.3 Our techniques
The results are obtained via a non-trivial combination of several techniques. For example,
(a) new reductions from colored problems to standard problems, (b) obtaining a linear-
space data structure by performing random sampling on a super-linear-size data structure,
(c) refinement of path-range trees of Nekrich [11] to obtain an optimal data structure for
C-approximation of colored 3-sided range search in R2, and (d) random sampling on colors
to obtain the two general reductions.

In addition, we introduce nested shallow cuttings for 3-sided rectangles in 2d. The idea
of using a hierarchy of cuttings (or samples) is, of course, not new. However, for this specific
setting, we get a hierarchy where there is no penalty for the different levels being compatible
with each other. Usually, cells in the lower levels have to be clipped to cells in the higher
levels of the hierarchy, leading to a degradation in performance. In our case, however, cells
of the lower levels are fully contained in the cells of the level above it.

1.3.3.1 Paper organization

In Section 2, we present a solution to the colored 3-sided rectangle stabbing in 2d problem. In
Section 3 we present a solution to the colored dominance search in R3 problem. In Section 4,
the first general reduction is presented. In Section 5, the application of the first reduction
to colored orthogonal range search in R2 problem is shown. Most of the proofs have been
omitted and can be found in the full version.

2 3-sided Rectangle Stabbing in 2d

The goal of this section is to prove the following theorem.

I Theorem 1. Consider the following three colored geometric settings:
1. Colored interval stabbing in 1d, where the input is a set S of n colored intervals in

one-dimension and the query q is a point. The endpoints of the intervals and the query
point lie on a grid JUK.

2. Colored dominance search in 2d, where the input is a set S of n colored points in
2d and the query q is a quadrant of the form [qx,∞)× [qy,∞). The input points and the
point (qx, qy) lie on a grid JUK× JUK.

3. Colored 3-sided rectangle stabbing in 2d, where the input is a set S of n colored
3-sided rectangles in 2d and the query q is a point. The endpoints of the rectangles and
the query point lie on a grid JUK× JUK.

SoCG 2017

55:6 Approximate Range Counting Revisited

Then there exists an Oε(n) size word-RAM data structure which can answer an approximate
counting query for these three settings in Oε(log logU) time. The notation Oε(·) hides the
dependency on ε.

Our strategy for proving this theorem is the following: In Subsection 2.1, we present a
transformation of these three colored problems to the standard 3-sided rectangle stabbing in
2d problem. Then in Subsection 2.2, we construct nested shallow cuttings and use them to
solve the standard 3-sided rectangle stabbing in 2d problem.

2.1 Transformation to a standard problem
From now on the focus will be on colored 3-sided rectangle stabbing in 2d problem, since
the geometric setting of (1) and (2) in Theorem 1 are its special cases. We present a
transformation of the colored 3-sided rectangle stabbing in 2d problem to the standard
3-sided rectangle stabbing in 2d problem.

Let Sc ⊆ S be the set of 3-sided rectangles of a color c. In the preprocessing phase, we
perform the following steps: (1) Construct a union of the rectangles of Sc. Call it U(Sc).
(2) The vertices of U(Sc) include original vertices of Sc and some new vertices. Perform a
vertical decomposition of U(Sc) by shooting a vertical ray upwards from every new vertex of
U(Sc) till it hits +∞. This leads to a decomposition of U(Sc) into Θ(|Sc|) pairwise-disjoint
3-sided rectangles. Call these new set of rectangles N (Sc).

Given a query point q, we can make the following two observations:
If Sc ∩ q = ∅, then N (Sc) ∩ q = ∅.
If Sc ∩ q 6= ∅, then exactly one rectangle in N (Sc) is stabbed by q.

Let N (S) =
⋃
∀cN (Sc), and clearly, |N (S)| = O(n). Therefore, the colored 3-sided

rectangle stabbing in 2d problem on S has been reduced to the standard 3-sided rectangle
stabbing in 2d problem on N (S).

2.2 Standard 3-sided rectangle stabbing in 2d
In this subsection we will prove the following lemma.

I Lemma 2 (Standard 3-sided rectangle stabbing in 2d). In this geometric setting, the input
is a set S of n uncolored 3-sided rectangles of the form [x1, x2]× [y,∞), and the query q is a
point. The endpoints of the rectangles lie on a grid JUK× JUK. There exists a data structure
of size Oε(n) which can answer an approximate counting query in Oε(log logU) time.

By a standard rank-space reduction, the rectangles of S can be projected to a J2nK× JnK
grid: Let Sx (resp., Sy) be the list of the 2n vertical (resp., n horizontal) sides of S in increasing
order of their x− (resp., y−) coordinate value. Then each rectangle r = [x1, x2]×[y,∞) ∈ S is
projected to a rectangle [rank(x1), rank(x2)]× [rank(y),∞), where rank(xi) (resp., rank(y))
is the index of xi (resp., y) in the list Sx (resp., Sy). Given a query point q ∈ JUK × JUK,
we can use the van Emde Boas structure to perform a predecessor search on Sx and Sy in
O(log logU) time to find the position of q on the J2nK× JnK grid. Now we will focus on the
new setting and prove the following result.

I Lemma 3. For the standard 3-sided rectangle stabbing in 2d problem, consider a setting
where the rectangles have endpoints lying on a grid J2nK × JnK. Then there exists a data
structure of size Oε(n) which can answer the approximate counting query in Oε(1) time.

S. Rahul 55:7

upper segments

2t

t
t

2t

22t

23t

qqy

(a) (b) (c)

(logn, n)-structure

k ≤ √logn: bit tricks

(
√
logn, logn)-structure

t 2t

Figure 1 (a) A portion of the t-level and 2t-level is shown. Notice that by our construction, each
cell in the t-level is contained inside a cell in the 2t-level. (b) A cell in the t-level and the set Cr

associated with it. (c) A high-level summary of our data structure.

2.2.1 Nested shallow cuttings
To prove Lemma 3, we will first construct shallow cuttings for 3-sided rectangles in 2d. Unlike
the general class of shallow cuttings, the shallow cuttings we construct for 3-sided rectangles
will have a stronger property of cells in the lower level lying completely inside the cells of a
higher level.

I Lemma 4. Let S be a set of 3-sided rectangles (of the form [x1, x2]×[y,∞)) whose endpoints
lie on a J2nK× JnK grid. A t-level shallow cutting of S produces a set C of interior-disjoint
3-sided rectangles/cells of the form [x1, x2]× (−∞, y]. There exists a set C with the following
three properties:
1. |C| = 2n/t.
2. If q does not lie inside any of the cell in C, then |S ∩ q| ≥ t.
3. Each cell in C intersects at most 2t rectangles of S.

Proof. Refer to the full version. J

I Observation 5 (Nested Property). Let t and i be integers. Consider a t-level and a 2it-level
shallow cutting. By our construction, each cell in 2it-level contains exactly 2i cells of the
t-level. More importantly, each cell in the t-level is contained inside a single cell of 2it-level
(see Figure 1(a)).

2.2.2 Data structure
Now we will use nested shallow cuttings to find a constant-factor approximation for the
3-sided rectangle stabbing in 2d problem. In [2], the authors show how to convert a constant-
factor approximation into a (1 + ε)-approximation for this geometric setting. The solution is
based on (t, t′)-level-structure and (≤

√
logn)-level shared table.

2.2.2.1 (t, t′)-level structure

Let i, t and t′ be integers s.t. t′ = 2it. If q(qx, qy) lies between the t-level and the t′-level
cutting of S, then a (t, t′)-level-structure will answer the approximate counting query in O(1)
time and occupy O

(
n+ n

t log t′
)
space.

SoCG 2017

55:8 Approximate Range Counting Revisited

Structure. Construct a shallow cutting of S for levels 2jt,∀j ∈ [0, i]. For each cell, say r, in
the t-level we do the following: Let Cr be the set of cells from the 21t, 22t, 23t, . . . , 2it-level,
which contain r (Observation 5 guarantees this property). Now project the upper segment of
each cell of Cr onto the y-axis (each segment projects to a point). Based on the y-coordinates
of these |Cr| projected points build a fusion-tree [7]. Since there are O(n/t) cells in the t-level
and |Cr| = O(log t′), the total space occupied is O(n

t log t′). See Figure 1(b).

Query algorithm. Since qx ∈ J2nK, it takes O(1) time to find the cell r of the t-level whose
x-range contains qx. If the predecessor of qy in Cr belongs to the 2jt-level, then 2jt is a
constant-factor approximation of k. The predecessor query also takes O(1) time.

2.2.2.2 (≤
√

log n)-level shared table

Suppose q lies in a cell in the
√

logn-level shallow cutting of S. Then constructing the
(≤
√

logn)-level shared table will answer the exact counting query in O(1) time. We will
need the following lemma.

I Lemma 6. For a cell c in the
√

logn-level shallow cutting of S, its conflict list Sc is
the set of rectangles of S intersecting c. Although the number of cells in the

√
logn-level is

O

(
n√
log n

)
, the number of combinatorially “different" conflict lists is merely O(

√
n).

Proof. Refer to the full version. J

Shared table. Construct a
√

logn-level shallow cutting of S. For each cell c, perform a
rank-space reduction of its conflict list Sc. Collect the combinatorially different conflict
lists. On each conflict list, the number of combinatorially different queries will be only
O(|Sc|2) = O(logn). In a lookup table, for each pair of (Sc, q) we store the exact value of
|Sc ∩ q|. The total number of entries in the lookup table is O(n1/2 logn).

Query algorithm. Given a query q(qx, qy), the following three O(1) time operations are
performed: (a) Find the cell c in the

√
logn-level which contains q. If no such cell is found,

then stop the query and conclude that k ≥
√

logn. (b) Otherwise, perform a rank-space
reduction on qx and qy to map it to the J2|Sc|K × J|Sc|K grid. Since, |Sc| = O(

√
logn), we

can build fusion trees [7] on Sc to perform the rank-space reduction in O(1) time. (c) Finally,
search for (Sc, q) in the lookup table and report the exact count.

2.2.2.3 Final structure

At first thought, one might be tempted to construct a (0, n)-level-structure. However, that
would occupy O(n logn) space. The issue is that the (t, t′)-level structure requires super-linear
space for small values of t. Luckily, the (≤

√
logn)-level shared table will efficiently handle

the small values of t.
Therefore, the strategy is to construct the following: (a) a (≤

√
logn)-level shared table,

(b) a (
√

logn, logn)-level-structure, and (c) a (logn, n)-level-structure. Now, the space
occupied by all the three structures will be O(n). See Figure 1(c) for a summary of our data
structure.

S. Rahul 55:9

3 Colored Dominance Search in R3

I Theorem 7. In the colored dominance search in R3 problem, the input set S is n colored
points in R3 and the query q is a point. Then there is a pointer machine data structure of size
Oε(n log∗ n) which can answer an approximate colored counting query in Oε(logn · log logn)
time. The notation Oε(·) hides the dependency on ε.

The strategy to prove this theorem is the following. First, we reduce the colored dominance
search in R3 problem to a standard problem of 5-sided rectangle stabbing in R3. Then in the
remaining section we solve the standard 5-sided rectangle stabbing in R3 problem.

3.1 Reduction to 5-sided rectangle stabbing in R3

In this subsection we present a reduction of colored dominance search in R3 problem to the
standard 5-sided rectangle stabbing in R3 problem. Let S be a set of n colored points lying
in R3. Let Sc ⊆ S be the set of points of color c, and p1, p2, . . . , pt be the points of Sc in
decreasing order of their z-coordinate value. With each point pi(pix, piy, piz), we associate a
region φi in R3 which satisfies the following invariant: a point (x, y, z) belongs to φi if and
only if in the region [x,+∞)× [y,+∞)× [z,+∞) the point of Sc with the largest z-coordinate
is pi. The following assignment of regions ensures the invariant:

φ1 = (−∞, p1x]× (−∞, p1y]× (−∞, p1z]
φi = (−∞, pix]× (−∞, piy]× (−∞, piz] \

⋃i−1
j=1 φj ,∀i ∈ [2, |Sc|].

By our construction, each region φi is unbounded in the negative z-direction. Each
region φi is broken into disjoint 5-sided rectangles via vertical decomposition in the xy-plane.
The vertical decomposition ensures that the total number of disjoint rectangles generated is
bounded by O(|Sc|). Now we can observe that (i) if a color c has at least one point inside
q, then exactly one of its transformed rectangle will contain q, and (ii) if a color c has no
point inside q, then none of its transformed rectangles will contain q. Therefore, the colored
dominance search in R3 has been transformed to the standard 5-sided rectangle stabbing
query.

3.2 Initial strcuture
I Lemma 8. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set S
of n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer machine
data structure of size Oε(n log logn) which can answer an approximate counting query in
Oε(logn · log logn) time.

The rest of the subsection is devoted to proving this lemma.

Recursion tree. Define a parameter t = log1+ε n. We will assume that the 5-sided rectangles
are unbounded along the z-axis. Consider the projection of the rectangles of S on to the
xy-plane and impose an orthogonal

q
2
√

n
t

y
×

q
2
√

n
t

y
grid such that each horizontal and

vertical slab contains the projections of
√
nt sides of S. Call this the root of the recursion

tree. Next, for each vertical and horizontal slab, we recurse on the rectangles of S which
are sent to that slab. At each node of the recursion tree, if we have m rectangles in the
subproblem, then t is changed to log1+ε m and the grid size changes to

q
2
√

m
t

y
×

q
2
√

m
t

y
.

We stop the recursion when a node has less than c rectangles, for a suitably large constant c.

SoCG 2017

55:10 Approximate Range Counting Revisited

(a) (b) (c) (d)

Figure 2

(a) (b) (c) (d)

Figure 3

Assignment of rectangles. For a node in the tree, the intersection of every pair of horizontal
and vertical grid line defines a grid point. Each rectangle of S is assigned to Oε(log logn)
nodes in the tree. The assignment of a rectangle to a node is decided by the following three
cases:

Case-I. The xy-projection of a rectangle intersects none of the grid points, i.e., it lies
completely inside one of the row slab or/and the column slab. Then the rectangle is not
assigned to this node, but sent to the child node corresponding to the row or column the
rectangle lies in.

Case-II. The xy-projection of a rectangle r intersects at least one of the grid points. Let cl

and cr be the leftmost and the rightmost column of the grid intersected by r. Similarly, let
rb and rt be the bottommost and the topmost row of the grid intersected by r.

Then the rectangle is broken into at most five disjoint pieces: a grid rectangle, which is
the bounding box of all the grid points lying inside r (see Figure 2(b)), two column rectangles,
which are the portions of r lying in column cl and cr (see Figure 2(d)), and two row rectangles,
which are the remaining portion of the rectangle r lying in row rb and rt (see Figure 2(c)).
The grid rectangle is assigned to the node. Note that each column rectangle (resp., row
rectangle) is now a 4-sided rectangle in R3 w.r.t. the column (resp., row) it lies in, and is
sent to its corresponding child node.

Case-III. The xy-projection of a 4-sided rectangle r intersects at least one of the grid
points. Without loss of generality, assume that the 4-sided rectangle r is unbounded along
the negative x-axis. Then the rectangle is broken into at most four disjoint pieces: a grid
rectangle, as shown in Figure 3(b), one column rectangle, as shown in Figure 3(d), and two
row rectangles, as shown in Figure 3(c). The grid rectangle and the two row rectangles are
assigned to the node. Note that the two row rectangles are now 3-sided rectangles in R3

w.r.t. their corresponding rows (unbounded in one direction along x−, y− and z−axis). The
column rectangle is sent to its corresponding child node. Analogous partition is performed
for 4-sided rectangles which are unbounded along positive x-axis, positive y-axis and negative
y-axis.

I Observation 9. A rectangle of S gets assigned to at most four nodes at each level in the
recursion tree.

S. Rahul 55:11

Proof. Consider a rectangle r ∈ S. If r falls under Case-II, then its grid rectangle is assigned
to the node. Note that r can fall under Case-II only once, since each of its four row and
column rectangles are now effectively 4-sided rectangles. Let r′ be one of these row or column
rectangles. If r′ falls under Case-III at a node, then it gets assigned there. However, this
time exactly one of the broken portion of r′ will be sent to the child node. Therefore, there
can be at most four nodes at each level where rectangle r (and broken portions of r) can get
assigned. J

Data structures at each node. We build two types of structures at each node in the tree.

Structure-I. A rectangle r′ is higher than rectangle r′′ if r′ has a larger span than r′′ along
z-direction. For each cell c of the grid, based on the rectangles which completely cover c, we
construct a sketch as follows: select the rectangle with the (1 + ε)0, (1 + ε)1, (1 + ε)2, . . .-th
largest span. For a given cell, the size of the sketch will be O(log1+ε m).

Structure-II. For a given row or column in the grid, let Ŝ be the 3-sided rectangles in R3

assigned to it. We build the linear-size structure of [2] on Ŝ, which will return a (1 + ε)-
approximation of |Ŝ ∩ q| in Oε(logn) time. This structure is built for each row and column
slab.

Space analysis. Consider a node in the recursion tree with m rectangles. There will
be
(
2
√

m
t

)
×
(
2
√

m
t

)
= 4 m

t cells at this node. The space occupied by structure-I will
be O

(
m
t · log1+ε m

)
= O(m). The space occupied by structure-II will be O(m). Using

Observation 9, the total space occupied by all the nodes at a particular level will be
O(n). Since the height of the recursion tree is Oε(log logn), the total space occupied is
Oε(n log logn).

Query algorithm. Given a query point q, we start at the root node. At each visited node,
the following three steps are performed:
1. Query structure-I. Locate the cell c on the grid containing q. Scan the sketch of cell c to

return a (1 + ε)-approximation of the number of rectangles which cover c and contain q.
This takes Oε(logm) time.

2. Query structure-II. Next, query structure-II of the horizontal and the vertical slab
containing q, to find a (1 + ε)-approximation of the 3-sided rectangles containing q. This
takes Oε(logm) time.

3. Recurse. Finally, we recurse on the horizontal and the vertical slab containing q.

The final output is the sum of the count returned by all the nodes queried.

Query time analysis. Let Q(n) denote the overall query time. Then

Q(n) = 2Q(
√
nt) +Oε(logn), t = log1+ε n.

This solves to Q(n) = Oε(logn · log logn). This finishes the proof of Lemma 8.

3.3 Final structure
I Lemma 10. In the standard 5-sided rectangle stabbing in R3 problem, the input is a set
S of n 5-sided rectangles in R3 and the query q is a point. Then there exists a pointer
machine data structure of size Oε(n log∗ n) which can solve an approximate counting problem
in Oε(logn · log logn) time.

Refer to the full version for a proof of this lemma.

SoCG 2017

55:12 Approximate Range Counting Revisited

4 Reduction-I: Reporting + C-approximation

Our first reduction states that given a colored reporting structure and a colored C-approximation
structure, one can obtain a colored (1 + ε)-approximation structure with no additional loss
of efficiency. We need a few definitions before stating the theorem. A geometric setting is
polynomially bounded if there are only nO(1) possible outcomes of S∩q, over all possible values
of q. For example, in 1d orthogonal range search on n points, there are only Θ(n2) possible
outcomes of S∩q. A function f(n) is converging if

∑t
i=0 ni = n, then

∑t
i=0 f(ni) = O(f(n)).

For example, it is easy to verify that f(n) = n logn is converging.

I Theorem 11. For a colored geometric setting, assume that we are given the following two
structures:

a colored reporting structure of Srep(n) size which can solve a query in O(Qrep(n) + κ)
time, where κ is the output-size, and
a colored C-approximation structure of Scapp(n) size which can solve a query in O(Qcapp(n))
time.

We also assume that: (a) Srep(n) and Scapp(n) are converging, and (b) the geometric setting
is polynomially bounded. Then we can obtain a (1 + ε)-approximation using a structure that
requires Sεapp(n) space and Qεapp(n) query time, such that

Sεapp(n) = O(Srep(n) + Scapp(n)) (1)
Qεapp(n) = O

(
Qrep(n) +Qcapp(n) + ε−2 · logn

)
. (2)

4.1 Refinement Structure
The goal of a refinement structure is to convert a constant-factor approximation of k into a
(1 + ε)-approximation of k.

I Lemma 12 (Refinement structure). Let C be the set of colors in set S, and C ∩ q be the set
of colors in C present in q. For a query q, assume we know that:

k = |C ∩ q| = Ω(ε−2 logn), and
k ∈ [z, Cz], where z is an integer.

Then there is a refinement structure of size O
(
Srep

(
ε−2n log n

z

))
which can report a value

τ ∈ [(1− ε)k, (1 + ε)k] in O(Qrep(n) + ε−2 logn) time.

The following lemma states that sampling colors (instead of input objects) is a useful
approach to build the refinement structure.

I Lemma 13. Consider a query q which satisfies the two conditions stated in Lemma 12.
Let c1 be a sufficiently large constant and c be another constant s.t. c = Θ(c1 log e). Choose a
random sample R where each color in C is picked independently with probabilityM = c1ε−2 log n

z .
Then with probability 1− n−c we have

∣∣∣k − |R∩q|
M

∣∣∣ ≤ εk.
Proof. Refer to the full version. J

I Lemma 14 (Finding a suitable R). Pick a random sample R as defined in Lemma 13. Let
nR be the number of objects of S whose color belongs to R. We say R is suitable if it satisfies
the following two conditions:∣∣∣k − |R∩q|

M

∣∣∣ ≤ εk for all queries which have k = Ω(ε−2 logn).
nR ≤ 10nM . This condition is needed to bound the size of the data structure.

A suitable R always exists.

Proof. Refer to the full version. J

S. Rahul 55:13

Refinement structure and query algorithm

In the preprocessing stage pick a random sample R ⊆ C as stated in Lemma 13. If the sample
R is not suitable, then discard R and re-sample, till we get a suitable sample. Based on all the
objects of S whose color belongs to R, build a colored reporting structure. Given a query q,
the colored reporting structure is queried to compute |R∩q|. We report τ ←− (|R ∩ q|/M) as
the final answer. The query time is bounded by O(Qrep(n) + ε−2 logn), since by Lemma 13,
|R∩q| ≤ (1+ε) ·kM = O(ε−2 logn). This finishes the description of the refinement structure.

4.2 Overall solution
Data structure

The data structure consists of the following three components:
1. Reporting structure. Based on the set S we build a colored reporting structure. This

occupies O(Srep(n)) space.
2.
√
C-approximation structure. Based on the set S we build a

√
C-approximation structure.

The choice of
√
C will become clear in the analysis. This occupies O(Scapp(n)) space.

3. Refinement structures. Build the refinement structure of Lemma 12 for the values z =
(
√
C)i · ε−2 logn,∀i ∈

[
0, log√C

(⌈
ε2n
⌉)]

. The total size of all the refinement structures
will be

∑
O (Srep(nM)) = O(Srep(n)), since Srep(·) is converging and

∑
nM = O(n).

Note that our choice of z ensures that the size of the data structure is independent of ε.

Query algorithm

The query algorithm performs the following steps:
1. Given a query object q, the colored reporting structure reports the colors present in S ∩ q

till all the colors have been reported or ε−2 logn+ 1 colors have been reported. If the
first event happens, then the exact value of k is reported. Otherwise, we conclude that
k = Ω(ε−2 logn). This takes O(Qrep(n) + ε−2 logn) time.

2. If k > ε−2 logn, then
a. First, query the

√
C-approximation structure. Let ka be the

√
C-approximate value

returned s.t. k ∈ [ka,
√
Cka]. This takes O(Qcapp(n)) time.

b. Then query the refinement structure with the largest value of z s.t. z ≤ ka ≤
√
Cz. It

is trivial to verify that k ∈ [z, Cz]. This takes O(Qrep(n) + ε−2 logn) time.

5 Colored Orthogonal Range Search in R2

To illustrate an application of Reduction-I, we study the approximate colored counting query
for orthogonal range search in R2. We only prove Theorem 15(1) here. Refer to the full
version for the proof of Theorem 15(2).

I Theorem 15. Consider the following two problems:
1. Colored 3-sided range search in R2. In this setting, the input set S is n colored points

in R2 and the query q is a 3-sided rectangle in R2. There is a data structure of O(n)
size which can answer the approximate colored counting query in O(ε−2 logn) time. This
pointer machine structure is optimal in terms of n.

2. Colored 4-sided range search in R2. In this setting, the input set S is n colored points
in R2 and the query q is a 4-sided rectangle in R2. There is a data structure of O(n logn)
size which can answer the approximate colored counting query in O(ε−2 logn) time.

SoCG 2017

55:14 Approximate Range Counting Revisited

5.1 Colored 3-sided range search in R2

We use the framework of Theorem 11 to prove the result of Theorem 15(1). For this geometric
setting, a colored reporting structure with Srep = n and Qrep = logn is already known [12].
The path-range tree of Nekrich [11] gives a (4 + ε)-approximation, but it requires super-linear
space. The C-approximation structure presented in this subsection is a refinement of the
path-range tree for the pointer machine model.

I Lemma 16. For the colored 3-sided range search in R2 problem, there is a C-approximation
structure which requires O(n) space and answers a query in O(logn) time.

We prove Lemma 16 in the rest of this subsection. Our solution is based on an interval tree
and we will need the following fact about it.

I Lemma 17. Using interval trees, a query on (3 + t)-sided rectangles in R3 can be broken
down into O(logn) queries on (2 + t)-sided rectangles in R3. Here t ∈ [1, 3].

Proof. Refer to the full version. J

5.1.1 Initial structure
I Lemma 18. For the colored 3-sided range search in R2 problem, there is a 2-approximation
structure which requires O(n) space and answers a query in O(log3 n) time.

Proof. By a simple exercise, the colored 3-sided range search in R2 can be reduced to the
colored dominance search in R3. Therefore, using the reduction of Subsection 3.1 the colored
3-sided range search in R2 also reduces to standard 5-sided rectangle stabbing problem (for
brevity, call it 5-sided RSP).

There is a simple linear-size data structure which reports inO(log3 n) time a 2-approximation
for the 5-sided RSP: By inductively applying Lemma 17 twice, we can decompose 5-sided
RSP to O(log2 n) 3-sided RSPs. For 3-sided RSP, there is a linear-size structure of which
reports a 2-approximation in O(logn) time [2]. By using this structure the 5-sided RSP can
be solved in O(log3 n) time. J

5.1.2 Final structure
Now we will present the optimal C-approximation structure of Lemma 16.

Structure. Sort the points of S based on their x-coordinate value and divide them into
buckets containing log2 n consecutive points. Based on the points in each bucket, build a
D-structure which is an instance of Lemma 18. Next, build a height-balanced binary search
tree T , where the buckets are placed at the leaves from left to right based on their ordering
along the x-axis. Let v be a proper ancestor of a leaf node u and let Π(u, v) be the path from
u to v (excluding u and v). Let Sl(u, v) be the set of points in the subtrees rooted at nodes
that are left children of nodes on the path Π(u, v) but not themselves on the path. Similarly,
let Sr(u, v) be the set of points in the subtrees rooted at nodes that are right children of
nodes on the path Π(u, v) but not themselves on the path. For each pair (u, v), let S′l(u, v)
(resp., S′r(u, v)) be the set of points that each have the highest y-coordinate value among the
points of the same color in Sl(u, v) (resp., Sr(u, v)).

Finally, for each pair (u, v), construct a sketch, S′′l (u, v), by selecting the 20, 21, 22, . . .-th
highest y-coordinate point in S′l(u, v). A symmetric construction is performed to obtain
S′′r (u, v). The number of (u, v) pairs is bounded by O((n/ log2 n) × (logn)) = O(n/ logn)
and hence, the space occupied by all the S′′l (u, v) and S′′r (u, v) sets is O(n).

S. Rahul 55:15

Query algorithm. To answer a query q = [x1, x2]× [y,∞), we first determine the leaf nodes
ul and ur of T containing x1 and x2, respectively. If ul = ur, then we query the D-structure
corresponding to the leaf node and we are done. If ul 6= ur, then we find the node v which
is the least common ancestor of ul and ur. The query is now broken into four sub-queries:
First, report the approximate count in the leaves ul and ur by querying the D-structure of
ul with [x1,∞)× [y,∞) and the D-structure of ur with (−∞, x2]× [y,∞). Next, scan the
list S′′r (ul, v) (resp., S′′l (ur, v)) to find a 2-approximation of the number of colors of Sr(ul, v)
(resp., Sl(ur, v)) present in q.

The final answer is the sum of the count returned by the four sub-queries. The time taken
to find ul, ur and v isO(logn). Querying the leaf structures takesO((log(log2 n))3) = O(logn)
time. The time taken for scanning the lists S′′r (ul, v) and S′′l (ur, v) is O(logn). Therefore,
the overall query time is bounded by O(logn). Since each of the four sub-queries give a
2-approximation, overall we get a 8-approximation.

References
1 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Dis-

crete & Computational Geometry, 42(1):3–21, 2009.
2 Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-

oblivious range reporting and approximate range counting. Computational Geometry: The-
ory and Applications, 43(8):700–712, 2010.

3 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SIAM Journal of Computing, 38(3):899–921, 2008.

4 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

5 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and approximate orthogonal range
counting. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 241–251, 2013.

6 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM Journal of
Computing, 15(3):703–724, 1986.

7 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. Journal of Computer and System Sciences (JCSS), 47(3):424–436, 1993.

8 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Computational geometry: Gen-
eralized intersection searching. In Handbook of Data Structures and Applications. 2004.

9 Haim Kaplan, Edgar Ramos, and Micha Sharir. Range minima queries with respect to a ran-
dom permutation, and approximate range counting. Discrete & Computational Geometry,
45(1):3–33, 2011.

10 Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Counting colors in boxes. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
785–794, 2007.

11 Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Transactions
on Database Systems (TODS), 39(1):9, 2014.

12 Qingmin Shi and Joseph JáJá. Optimal and near-optimal algorithms for generalized inter-
section reporting on pointer machines. Information Processing Letters (IPL), 95(3):382–388,
2005.

SoCG 2017

Coloring Curves That Cross a Fixed Curve∗

Alexandre Rok1 and Bartosz Walczak2

1 Department of Mathematics, Ben-Gurion University of the Negev,
Be’er Sheva, Israel
rok@math.bgu.ac.il

2 Department of Theoretical Computer Science, Faculty of Mathematics and
Computer Science, Jagiellonian University, Kraków, Poland
walczak@tcs.uj.edu.pl

Abstract
We prove that for every integer t > 1, the class of intersection graphs of curves in the plane
each of which crosses a fixed curve in at least one and at most t points is χ-bounded. This is
essentially the strongest χ-boundedness result one can get for this kind of graph classes. As a
corollary, we prove that for any fixed integers k > 2 and t > 1, every k-quasi-planar topological
graph on n vertices with any two edges crossing at most t times has O(n logn) edges.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases String graphs, χ-boundedness, k-quasi-planar graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.56

1 Introduction

Overview

A curve is a homeomorphic image of the real interval [0, 1] in the plane. The intersection
graph of a family of curves has these curves as vertices and the intersecting pairs of curves as
edges. Combinatorial and algorithmic aspects of intersection graphs of curves, known as string
graphs, have been attracting researchers for decades. A significant part of this research has
been devoted to understanding classes of string graphs that are χ-bounded, which means that
every graph G in the class satisfies χ(G) 6 f(ω(G)) for some function f : N→ N, where χ(G)
and ω(G) denote the chromatic number and the clique number (the maximum size of a clique)
of G, respectively. Recently, Pawlik et al. [24, 25] proved that the class of all string graphs is
not χ-bounded. However, all known constructions of string graphs with small clique number
and large chromatic number require a lot of freedom in placing curves around in the plane.

What restrictions on placement of curves lead to χ-bounded classes of intersection graphs?
McGuinness [19, 20] proposed studying families of curves that cross a fixed curve exactly once.
This initiated a series of results culminating in the proof that the class of intersection graphs of
such families is indeed χ-bounded [26]. By contrast, the class of intersection graphs of curves
each crossing a fixed curve at least once is equal to the class of all string graphs and therefore
is not χ-bounded. We prove an essentially farthest possible generalization of the former result,
allowing curves to cross the fixed curve at least once and at most t times, for any bound t.

I Theorem 1. For every integer t > 1, the class of intersection graphs of curves each
crossing a fixed curve in at least one and at most t points is χ-bounded.

∗ Alexandre Rok was partially supported by Israel Science Foundation grant 1136/12. Bartosz Walczak
was partially supported by National Science Center of Poland grant 2015/17/D/ST1/00585.

© Alexandre Rok and Bartosz Walczak;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 Coloring Curves That Cross a Fixed Curve

Additional motivation for Theorem 1 comes from its application to bounding the number of
edges in so-called k-quasi-planar graphs, which we discuss at the end of this introduction.

Context

Chromatic number of intersection graphs of geometric objects has been investigated since
the 1960s. In a seminal paper, Asplund and Grünbaum [3] proved that intersection graphs of
axis-parallel rectangles in the plane satisfy χ = O(ω2) and conjectured that for every integer
d > 1, there is a function fd : N→ N such that intersection graphs of axis-parallel boxes in
Rd satisfy χ 6 fd(ω). However, a few years later, a surprising construction due to Burling
[5] showed that there are triangle-free intersection graphs of axis-parallel boxes in R3 with
arbitrarily large chromatic number. Since then, the upper bound of O(ω2) and the trivial
lower bound of Ω(ω) on the maximum possible chromatic number of a rectangle intersection
graph have been improved only in terms of multiplicative constants [11, 13].

Another classical example of a χ-bounded class of geometric intersection graphs is provided
by circle graphs—intersection graphs of chords of a fixed circle. Gyárfás [10] proved that
circle graphs satisfy χ = O(ω24ω). The best known upper and lower bounds on the maximum
possible chromatic number of a circle graph are O(2ω) [14] and Ω(ω logω) [12].

McGuinness [19, 20] proposed investigating the problem when much more general geomet-
ric shapes are allowed but the way how they are arranged in the plane is restricted. In [19],
he proved that the class of intersection graphs of L-shapes crossing a fixed horizontal line is
χ-bounded. Families of L-shapes in the plane are simple, which means that any two members
of the family intersect in at most one point. McGuinness [20] also showed that triangle-free
intersection graphs of simple families of curves each crossing a fixed line in exactly one point
have bounded chromatic number. Further progress in this direction was made by Suk [27],
who proved that simple families of x-monotone curves crossing a fixed vertical line give rise
to a χ-bounded class of intersection graphs, and by Lasoń et al. [17], who reached the same
conclusion without assuming that the curves are x-monotone. Finally, in [26], we proved that
the class of intersection graphs of curves each crossing a fixed line in exactly one point is χ-
bounded. These results remain valid if the fixed straight line is replaced by a fixed curve [28].

The class of string graphs is not χ-bounded. Pawlik et al. [24, 25] presented a construction
of triangle-free intersection graphs of segments (or geometric shapes of various other kinds)
with chromatic number growing as fast as Θ(log logn) with the number of vertices n. It was
further generalized to a construction of string graphs with clique number ω and chromatic
number Θω((log logn)ω−1) [16]. The best known upper bound on the chromatic number of
string graphs in terms of the number of vertices is (logn)O(logω), proved by Fox and Pach [8]
using a separator theorem for string graphs due to Matoušek [18]. For intersection graphs of
segments or, more generally, x-monotone curves, an upper bound of the form χ = Oω(logn)
follows from the above-mentioned result in [27] or [26] via recursive halving. Upper bounds
of the form χ = Oω((log logn)f(ω)) (for some function f : N→ N) are known for very special
classes of string graphs: rectangle overlap graphs [15, 16] and subtree overlap graphs [16].
The former still allow the triangle-free construction with χ = Θ(log logn) and the latter the
construction with χ = Θω((log logn)ω−1).

Quasi-planarity

A topological graph is a graph with a fixed curvilinear drawing in the plane. For k > 2, a
k-quasi-planar graph is a topological graph with no k pairwise crossing edges. In particular, a
2-quasi-planar graph is just a planar graph. It is conjectured that k-quasi-planar graphs with

A. Rok and B. Walczak 56:3

n vertices have Ok(n) edges [4, 23]. For k = 2, this asserts a well-known property of planar
graphs. The conjecture is also verified for k = 3 [2, 22] and k = 4 [1], but it remains open
for k > 5. Best known upper bounds on the number of edges in a k-quasi-planar graph are
n(logn)O(log k) in general [7, 8], Ok(n logn) for the case of x-monotone edges [29], Ok(n logn)
for the case that any two edges intersect at most once [28], and 2α(n)ν

n logn for the case that
any two edges intersect in at most t points, where α is the inverse Ackermann function and
ν depends on k and t [28]. We apply Theorem 1 to improve the last bound to Ok,t(n logn).

I Theorem 2. Every k-quasi-planar topological graph G on n vertices such that any two
edges of G intersect in at most t points has at most µk,tn logn edges, where µk,t depends
only on k and t.

The proof follows the same line as the proof in [28] for the case t = 1 (see Section 3).

2 Proof of Theorem 1

Setup

Let N denote the set of positive integers. Graph-theoretic terms applied to a family of curves F
have the same meaning as applied to the intersection graph of F . In particular, the chromatic
number of F , denoted by χ(F), is the minimum number of colors in a proper coloring of F (a
coloring that distinguishes pairs of intersecting curves), and the clique number of F , denoted
by ω(F), is the maximum size of a clique in F (a set of pairwise intersecting curves in F).

I Theorem 1 (rephrased). For every t ∈ N, there is a non-decreasing function ft : N→ N
with the following property: for any fixed curve c0, every family F of curves each intersecting
c0 in at least one and at most t points satisfies χ(F) 6 ft(ω(F)).

A point p is a proper crossing of curves c1 and c2 if c1 passes from one side to the other
side of c2 in a sufficiently small neighborhood of p. From now on, without significant loss
of generality, we make the following implicit assumption: any two distinct curves that we
consider intersect in finitely many points, and each of their intersection points is a proper
crossing. There is one exception to the latter condition: a curve c may have an endpoint on
another curve if this is required by the definition of c (like for 1-curves defined below).

Initial reduction

We start by reducing Theorem 1 to a somewhat simpler and more convenient setting. We fix
a horizontal line in the plane and call it the baseline. The upper half-plane bounded by the
baseline is denoted by H+. A 1-curve is a curve in H+ that has one endpoint on the baseline
and does not intersect the baseline in any other point. Intersection graphs of 1-curves are
known as outerstring graphs and form a χ-bounded class of graphs—this result, due to the
authors, is the starting point of the proof of Theorem 1.

I Theorem 3 ([26]). There is a non-decreasing function f0 : N→ N such that every family
F of 1-curves satisfies χ(F) 6 f0(ω(F)).

An even-curve is a curve that has both endpoints above the baseline and intersects the
baseline in at least two points (this is an even number, by the proper crossing assumption).
For t ∈ N, a 2t-curve is an even-curve that intersects the baseline in exactly 2t points. The
basepoint of a 1-curve s is the endpoint of s on the baseline. A basepoint of an even-curve c

SoCG 2017

56:4 Coloring Curves That Cross a Fixed Curve

L(c)

M(c)

R(c)

I(c)

Figure 1 L(c), R(c), M(c) (all the dashed part), and I(c) for a 6-curve c.

is an intersection point of c with the baseline. Every even-curve c determines two 1-curves—
the two parts of c from an endpoint to the closest basepoint. They are called the 1-curves
of c and denoted by L(c) and R(c) so that the basepoint of L(c) lies to the left of the
basepoint of R(c) on the baseline (see Figure 1). A family F of even-curves is an LR-family
if every intersection between two curves c1, c2 ∈ F is an intersection between L(c1) and R(c2)
or between L(c2) and R(c1). The main effort in this paper goes to proving the following
statement on LR-families of even-curves.

I Theorem 4. There is a non-decreasing function f : N→ N such that every LR-family F
of even-curves satisfies χ(F) 6 f(ω(F)).

Theorem 4 makes no assumption on the maximum number of intersection points of an even-
curve with the baseline. We derive Theorem 1 from Theorem 4 in two steps, first proving
the following lemma, and then showing that Theorem 1 is essentially a special case of it.

I Lemma 5. For every t ∈ N, there is a non-decreasing function ft : N → N such that
every family F of 2t-curves no two of which intersect on or below the baseline satisfies
χ(F) 6 ft(ω(F)).

Proof of Lemma 5 from Theorem 4. The proof goes by induction on t. Let f0 and f be
the functions claimed by Theorem 3 and Theorem 4, respectively, and let ft(k) = f2

t−1(k)f(k)
for t > 1 and k ∈ N. We establish the base case for t = 1 and the induction step for t > 2
simultaneously. Namely, fix an integer t > 1, and let F be as in the statement of the lemma.
For every 2t-curve c ∈ F , enumerate the endpoints and basepoints of c as p0(c), . . . , p2t+1(c)
in their order along c so that p0(c) and p1(c) are the endpoints of L(c) while p2t(c) and
p2t+1(c) are the endpoints of R(c). Build two families of curves F1 and F2 putting the part
of c from p0(c) to p2t−1(c) to F1 and the part of c from p2(c) to p2t+1(c) to F2 for every
c ∈ F . If t = 1, then F1 and F2 are families of 1-curves. If t > 2, then F1 and F2 are
equivalent to families of 2(t− 1)-curves, because the curve in F1 or F2 obtained from a 2t-
curve c ∈ F can be shortened a little at p2t−1(c) or p2(c), respectively, losing that basepoint
but no intersection points with other curves. Therefore, by Theorem 3 or the induction
hypothesis, we have χ(Fk) 6 ft−1(ω(Fk)) 6 ft−1(ω(F)) for k ∈ {1, 2}. For c ∈ F and
k ∈ {1, 2}, let φk(c) be the color of the curve obtained from c in an optimal proper coloring
of Fk. Every subfamily of F on which φ1 and φ2 are constant is an LR-family and therefore,
by Theorem 4 and monotonicity of f , has chromatic number at most f(ω(F)). We conclude
that χ(F) 6 χ(F1)χ(F2)f(ω(F)) 6 f2

t−1(ω(F))f(ω(F)) = ft(ω(F)). J

A closed curve is a homeomorphic image of a unit circle in the plane. For a closed curve γ,
the Jordan curve theorem asserts that the set R2 r γ consists of two connected components:
one bounded, denoted by int γ, and one unbounded, denoted by ext γ.

A. Rok and B. Walczak 56:5

Proof of Theorem 1 from Theorem 4. We elect to present this proof in an intuitive rather
than rigorous way. Let F be a family of curves each intersecting c0 in at least one and at
most t points. Let γ0 be a closed curve surrounding c0 very closely so that γ0 intersects every
curve in F in exactly 2t points (winding if necessary to increase the number of intersections)
and all endpoints of curves in F and intersection points of pairs of curves in F lie in ext γ0.
We “invert” int γ0 with ext γ0 to obtain an equivalent family of curves F ′ and a closed curve
γ′0 with the same properties except that all endpoints of curves in F ′ and intersection points
of pairs of curves in F ′ lie in int γ′0. It follows that some part of γ′0 lies in the unbounded
component of R2 r

⋃
F ′. We “cut” γ′0 there and “unfold” it into the baseline, transforming

F ′ into an equivalent family F ′′ of 2t-curves all endpoints of which and intersection points of
pairs of which lie above the baseline. The “equivalence” of F , F ′, and F ′′ means in particular
that the intersection graphs of F , F ′, and F ′′ are isomorphic, so the theorem follows from
Lemma 5 (and thus Theorem 4). J

A statement analogous to Theorem 4 fails for families of objects each consisting of two
1-curves only, without the “middle part” connecting them. Specifically, we define a double-
curve as a set X ⊂ H+ that is a union of two disjoint 1-curves, denoted by L(X) and R(X)
so that the basepoint of L(X) lies to the left of the basepoint of R(X), and we call a family
X of double-curves an LR-family if every intersection between two double-curves X1, X2 ∈ X
is an intersection between L(X1) and R(X2) or between L(X2) and R(X1).

I Theorem 6. For every ζ ∈ N, there is a triangle-free LR-family of double-curves X such
that χ(X) > ζ.

The proof of Theorem 6 is an easy adaptation of the construction from [24, 25]. We omit the
details. The rest of this section is devoted to the proof of Theorem 4.

Overview of the proof of Theorem 4

Recall the assertion of Theorem 4: the LR-families of even-curves are χ-bounded. The proof
is quite long and technical, so we find it useful to provide a high-level overview of its structure.
The proof will be presented via a series of reductions. First, we will reduce Theorem 4 to the
following statement (Lemma 7): the LR-families of 2-curves are χ-bounded. This statement
will be proved by induction on the clique number. Specifically, we will prove the following as
the induction step: if every LR-family of 2-curves F with ω(F) 6 k − 1 satisfies χ(F) 6 ξ,
then every LR-family of 2-curves F with ω(F) 6 k satisfies χ(F) 6 ζ, where ζ is a constant
depending only on k and ξ. The only purpose of the induction hypothesis is to infer that if
ω(F) 6 k and c ∈ F , then the family of 2-curves in F r {c} that intersect c has chromatic
number at most ξ. For notational convenience, LR-families of 2-curves with the latter
property will be called ξ-families. We will thus reduce the problem to the following statement
(Lemma 9): the ξ-families are χ-bounded, where the χ-bounding function depends on ξ.

We will deal with ξ-families via a series of technical lemmas of the following general form:
every ξ-family with chromatic number large enough contains a specific configuration of curves.
Two kinds of such configurations are particularly important: (a) a large clique, and (b) a
2-curve c and a subfamily F ′ with large chromatic number such that the basepoints of the
2-curves in F ′ lie between the basepoints of c. In the core of the argument are the proofs that

every ξ-family with chromatic number large enough contains (a) or (b) (Lemma 16),
assuming the above, every ξ-family with chromatic number large enough contains (a).

Combined, they complete the argument. Since the two proofs are almost identical, we
introduce one more reduction—to (ξ, h)-families (Lemma 15). A (ξ, h)-family is just a ξ-
family that satisfies an additional technical condition sufficient to carry both proofs at once.

SoCG 2017

56:6 Coloring Curves That Cross a Fixed Curve

More notation and terminology

Let ≺ denote the left-to-right order of points on the baseline (p1 ≺ p2 means that p1 is
to the left of p2). For convenience, we also use the notation ≺ for curves intersecting the
baseline (c1 ≺ c2 means that every basepoint of c1 is to the left of every basepoint of c2) and
for families of such curves (C1 ≺ C2 means that c1 ≺ c2 for any c1 ∈ C1 and c2 ∈ C2). For a
family C of curves intersecting the baseline (even-curves or 1-curves) and two 1-curves x and
y, let C(x, y) = {c ∈ C : x ≺ c ≺ y} or C(x, y) = {c ∈ C : y ≺ c ≺ x} depending on whether
x ≺ y or y ≺ x. For a family C of curves intersecting the baseline and a segment I on the
baseline, let C(I) denote the family of curves in C with all basepoints on I.

For an even-curve c, let M(c) denote the subcurve of c connecting the basepoints of
L(c) and R(c), and let I(c) denote the segment on the baseline connecting the basepoints
of L(c) and R(c) (see Figure 1). For a family F of even-curves, let L(F) = {L(c) : c ∈ F},
R(F) = {R(c) : c ∈ F}, and I(F) denote the minimal segment on the baseline that contains
I(c) for every c ∈ F .

A cap-curve is a curve inH+ that has both endpoints on the baseline and does not intersect
the baseline in any other point. For a cap-curve γ, it follows from the Jordan curve theorem
that the set H+ r γ consists of two connected components: one bounded, denoted by int γ,
and one unbounded, denoted by ext γ. Any two cap-curves one with endpoints p1, q1 and the
other with endpoints p2, q2 such that p1 ≺ p2 ≺ q1 ≺ q2 intersect in an odd number of points.

Reduction to LR-families of 2-curves

We will reduce Theorem 4 to the following statement on LR-families of 2-curves, which is
essentially a special case of Theorem 4.

I Lemma 7. There is a non-decreasing function f : N→ N such that every LR-family F of
2-curves satisfies χ(F) 6 f(ω(F)).

A component of a family of 1-curves S is a connected component of
⋃
S (the union of all

curves in S). The following easy but powerful observation reuses an idea from [17, 20, 27].

I Lemma 8. For every LR-family of even-curves F , if F? is the family of curves c ∈ F
such that L(c) and R(c) lie in distinct components of L(F) ∪R(F), then χ(F?) 6 4.

Proof. Let G be an auxiliary graph where the vertices are the components of L(F) ∪R(F)
and the edges are the pairs V1V2 of components such that there is a curve c ∈ F? with
L(c) ⊆ V1 and R(c) ⊆ V2 or L(c) ⊆ V2 and R(c) ⊆ V1. Since F is an LR-family, the curves in
F? cannot intersect “outside” the components of L(F)∪R(F). It follows that G is planar and
thus 4-colorable. Fix a proper 4-coloring of G, and assign the color of a component V to every
curve c ∈ F? with L(c) ⊆ V . For any c1, c2 ∈ F?, if L(c1) and R(c2) intersect, then L(c1) and
R(c2) lie in the same component V1 while L(c2) lies in a component V2 such that V1V2 is an
edge of G, so c1 and c2 are assigned distinct colors. The coloring of F? is therefore proper. J

Proof of Theorem 4 from Lemma 7. We show that χ(F) 6 f(ω(F)) + 4, where f is the
function claimed by Lemma 7. We have F = F1 ∪ F2, where F1 = {c ∈ F : L(c) and
R(c) lie in the same component of L(F) ∪ R(F)} and F2 = {c ∈ F : L(c) and R(c) lie in
distinct components of L(F) ∪R(F)}. Lemma 8 yields χ(F2) 6 4. It remains to show that
χ(F1) 6 f(ω(F)).

Let c1, c2 ∈ F1. We claim that the intervals I(c1) and I(c2) are nested or disjoint.
Suppose they are not. For ε > 0 and a component V of L(F) ∪ R(F), let V ε denote the
ε-neighborhood of V in H+. We assume that ε is small enough so that the sets V ε for all

A. Rok and B. Walczak 56:7

components V of L(F) ∪ R(F) and the curves M(c) for all c ∈ F1 are pairwise disjoint
(except at common basepoints). For k ∈ {1, 2}, since L(ck) and R(ck) belong to the same
component Vk of L(F) ∪R(F), there is a cap-curve γk ⊂ V εk that connects the basepoints
of L(ck) and R(ck). We can assume without loss of generality that γ1 and γ2 intersect in
a finite number of points and each of their intersection points is a proper crossing (this is
why we take γk ⊂ V εk instead of γk ⊆ Vk). Since I(c1) and I(c2) are neither nested nor
disjoint, the basepoints of L(c2) and R(c2) lie one in int γ1 and the other in ext γ1, so γ1 and
γ2 intersect in an odd number of points. For k ∈ {1, 2}, let γ̃k be the closed curve obtained
as the union of γk and M(ck). It follows that γ̃1 and γ̃2 intersect in an odd number of points
and each of their intersection points is a proper crossing, which is a contradiction.

Transform F1 into a family of 2-curves F ′1 replacing the part M(c) of every curve
c ∈ F1 by the lower semicircle connecting the endpoints of M(c). These semicircles are
pairwise disjoint (because I(c1) and I(c2) are nested or disjoint for any c1, c2 ∈ F1), so
F ′1 is an LR-family with intersection graph isomorphic to that of F1. Lemma 7 yields
χ(F1) = χ(F ′1) 6 f(ω(F ′1)) 6 f(ω(F)). J

Reduction to ξ-families

For ξ ∈ N, a ξ-family is an LR-family of 2-curves F with the following property: for every
2-curve c ∈ F , the family of 2-curves in F r {c} that intersect c has chromatic number at
most ξ. We reduce Lemma 7 to the following statement on ξ-families.

I Lemma 9. For any ξ, k ∈ N, there is a constant ζ ∈ N such that every ξ-family F with
ω(F) 6 k satisfies χ(F) 6 ζ.

Proof of Lemma 7 from Lemma 9. Let f(1) = 1. For k > 2, let f(k) be the constant
claimed by Lemma 9 such that every f(k− 1)-family F with ω(F) 6 k satisfies χ(F) 6 f(k).
Let k = ω(F), and proceed by induction on k to prove χ(F) 6 f(k). Clearly, if k = 1, then
χ(F) = 1. For the induction step, assume k > 2. For every c ∈ F , the family of 2-curves in
F r {c} that intersect c has clique number at most k − 1 and therefore, by the induction
hypothesis, has chromatic number at most f(k − 1). That is, F is an f(k − 1)-family, and
the definition of f yields χ(F) 6 f(k). J

Dealing with ξ-families

First, we establish the following special case of Lemma 9.

I Lemma 10. For every ξ ∈ N, every ξ-family F with
⋂
c∈F I(c) 6= ∅ satisfies χ(F) 6 4ξ+4.

The proof of Lemma 10 is essentially the same as the proof of Lemma 19 in [28]. We need
the following elementary lemma, which was also used in various forms in [17, 19, 20, 26, 27].

I Lemma 11 (McGuinness [19, Lemma 2.1]). Let G be a graph, ≺ be a total order on the
vertices of G, and α, β ∈ N. If χ(G) > (2β + 2)α, then G has an induced subgraph H such
that χ(H) > α and χ(G(u, v)) > β for every edge uv of H. In particular, if χ(G) > 2β + 2,
then G has an edge uv with χ(G(u, v)) > β. Here, G(u, v) denotes the subgraph of G induced
on the vertices strictly between u and v in the order ≺.

Proof of Lemma 10. Suppose χ(F) > 4ξ + 4. Since
⋂
c∈F I(c) 6= ∅, the 2-curves in F can

be enumerated as c1, . . . , c|F| so that L(c1) ≺ · · · ≺ L(c|F|) ≺ R(c|F|) ≺ · · · ≺ R(c1). Apply
Lemma 11 to the intersection graph of F and the order c1, . . . , c|F| to obtain two indices
i, j ∈ {1, . . . , |F|} such that the 2-curves ci and cj intersect and χ

(
{ci+1, . . . , cj−1}

)
> 2ξ+ 1.

SoCG 2017

56:8 Coloring Curves That Cross a Fixed Curve

Assume L(ci) and R(cj) intersect; the argument for the other case is analogous. There is
a cap-curve γ ⊆ L(ci) ∪ R(cj) connecting the basepoints of L(ci) and R(cj). Every curve
intersecting γ intersects ci or cj . Since F is a ξ-family, the 2-curves in {ci+1, . . . , cj−1} that
intersect ci have chromatic number at most ξ, and so do those that intersect cj . Every 2-
curve ck ∈ {ci+1, . . . , cj−1} not intersecting γ satisfies L(ck) ⊂ int γ and R(ck) ⊂ ext γ, so
these 2-curves are pairwise disjoint. We conclude that χ

(
{ci+1, . . . , cj−1}

)
6 2ξ + 1, which is

a contradiction. J

Lemma 11 easily implies that every family of 2-curves F with χ(F) > (2β+ 2)2α contains
a subfamily H with χ(H) > α such that χ(F(L(c1), L(c2))) > β and χ(F(R(c1), R(c2))) > β

for any two intersecting 2-curves c1, c2 ∈ H. This is considerably strengthened by the
following lemma. Its proof extends the idea used in [19] for the proof of Lemma 11.

I Lemma 12. For every ξ ∈ N, there is a function f : N×N→ N with the following property:
for any α, β ∈ N and every ξ-family F with χ(F) > f(α, β), there is a subfamily H ⊆ F such
that χ(H) > α and χ(F(x, y)) > β for any two intersecting 1-curves x ∈ R(H) and y ∈ L(H).

Proof. Let f(α, β) = (2β+ 12ξ+ 20)α. Let F be a ξ-family with χ(F) > f(α, β). Construct
a sequence of points p0 ≺ · · · ≺ pm+1 on the baseline with the following properties:

the points p0, . . . , pm+1 are distinct from all basepoints of 2-curves in F ,
p0 lies to the left of and pm+1 lies to the right of all basepoints of 2-curves in F ,
χ(F(pipi+1)) = β + 1 for 0 6 i 6 m− 1, and χ(F(pmpm+1)) 6 β + 1.

This is done greedily by first choosing p1 so that χ(F(p0p1)) = β+1, then choosing p2 so that
χ(F(p1p2)) = β + 1, and so on. For 0 6 i 6 j 6 m, let Fi,j = {c ∈ F : pi ≺ L(c) ≺ pi+1 and
pj ≺ R(c) ≺ pj+1}. In particular, Fi,i = F(pipi+1) for 0 6 i 6 m. Since F =

⋃
06i6j6m Fi,j ,

at least one of the following holds:

χ
(⋃m

i=0 Fi,i
)
> (2β + 2)α, χ

(⋃m−1
i=0 Fi,i+1

)
> (12ξ + 12)α, χ

(⋃m−2
i=0

⋃m
j=i+2 Fi,j

)
> 6α.

In each case, we will find a subfamily H ⊆ F such that any two intersecting 1-curves x ∈ R(H)
and y ∈ L(H) satisfy x ∈ R(Fi,j) and y ∈ L(Fr,s), where 0 6 i 6 j 6 m, 0 6 r 6 s 6 m,
and |j − r| > 2. Then, χ(F(x, y)) > χ(F(pmax(j,r)−1pmax(j,r))) = β + 1, as required.

Suppose χ
(⋃m

i=0 Fi,i
)
> (2β + 2)α. We have χ(Fi,i) 6 β + 1 for 0 6 i 6 m. Color the

2-curves in every Fi,i properly using the same set of β + 1 colors on Fi,i and Fr,r whenever
i ≡ r (mod 2), thus using 2β + 2 colors in total. It follows that χ(H) > α for some family
H ⊆

⋃m
i=0 Fi,i of 2-curves of the same color. To conclude, for any two intersecting 1-curves

x ∈ R(H) and y ∈ L(H), we have x ∈ R(Fi,i) and y ∈ L(Fr,r) for some distinct indices
i, r ∈ {0, . . . ,m} with i ≡ r (mod 2) and thus |i− r| > 2.

Now, suppose χ
(⋃m−1

i=0 Fi,i+1
)
> (12ξ + 12)α. By Lemma 10, we have χ(Fi,i+1) 6 4ξ + 4

for 0 6 i 6 m− 1. Color the 2-curves in every Fi,i+1 properly using the same set of 4ξ + 4
colors on Fi,i+1 and Fr,r+1 whenever i ≡ r (mod 3), thus using 12ξ + 12 colors in total. It
follows that χ(H) > α for some family H ⊆

⋃m−1
i=0 Fi,i+1 of 2-curves of the same color. To

conclude, for any two intersecting 1-curves x ∈ R(H) and y ∈ L(H), we have x ∈ R(Fi,i+1)
and y ∈ L(Fr,r+1) for some distinct indices i, r ∈ {0, . . . ,m − 1} with i ≡ r (mod 3) and
thus |i+ 1− r| > 2.

Finally, suppose χ
(⋃m−2

i=0
⋃m
j=i+2 Fi,j

)
> 6α. It follows that χ

(⋃
i∈I
⋃m
j=i+2 Fi,j

)
> 3α,

where I = {i ∈ {0, . . . ,m− 2} : i ≡ 0 (mod 2)} or I = {i ∈ {0, . . . ,m− 2} : i ≡ 1 (mod 2)}.
Consider an auxiliary graph G with vertex set I and edge set {ij : i, j ∈ I, i < j, and
Fi,j−1 ∪ Fi,j 6= ∅}. Since no two 2-curves in F cross below the baseline, G has no two edges
i1j1 and i2j2 such that i1 < i2 < j1 < j2. In particular, G is an outerplanar graph, and

A. Rok and B. Walczak 56:9

c?

c1

c2

c3

γ

int γ

Figure 2 Illustration for Lemma 14: G = {c1, c2, c3}.

thus χ(G) 6 3. Fix a proper 3-coloring of G, and use the color of i on every 2-curve in⋃m
j=i+2 Fi,j for every i ∈ I. It follows that χ(H) > α for some family H ⊆

⋃
i∈I
⋃m
j=i+2 Fi,j

of 2-curves of the same color. To conclude, for any two intersecting 1-curves x ∈ R(H) and
y ∈ L(H), we have x ∈ R(Fi,j) and y ∈ L(Fr,s) for some indices i, r ∈ I, j ∈ {i+ 2, . . . ,m},
and s ∈ {r+2, . . . ,m} such that j /∈ {r−1, r} (otherwise ir would be an edge of G), j 6= r+1
(otherwise two 2-curves, one from Fi,r+1 and one from Fr,s, would cross below the baseline),
and thus |j − r| > 2. J

It is proved in [26] that for every family of 1-curves S, there are a cap-curve γ and a
subfamily U ⊆ S with χ(U) > 1

2χ(S) such that every 1-curve in U is contained in int γ and
intersects some 1-curve in S that intersects ext γ. The proof follows an idea from [10], used
subsequently also in [17, 19, 20, 21, 27], where U is chosen as one of the sets of 1-curves at a
fixed distance from an appropriately chosen 1-curve in the intersection graph of S, and γ is
a cap-curve surrounding U very closely. However, this method fails to imply an analogous
statement for 2-curves. We will need a more powerful tool—part of the recent series of works
on induced subgraphs that must be present in graphs with sufficiently large chromatic number.

I Theorem 13 (Chudnovsky, Scott, Seymour [6, Theorem 1.8]). There is a function f : N→ N
with the following property: for every α ∈ N, every string graph G with χ(G) > f(α) contains
a vertex v such that χ(G2

v) > α, where G2
v denotes the subgraph of G induced on the vertices

within distance at most 2 from v.

The special case of Theorem 13 for triangle-free intersection graphs of curves any two of
which intersect in at most one point was proved earlier by McGuinness [21, Theorem 5.3].

I Lemma 14 (see Figure 2). For every ξ ∈ N, there is a function f : N → N with the
following property: for every α ∈ N and every ξ-family F with χ(F) > f(α), there are a
cap-curve γ and a subfamily G ⊆ F with χ(G) > α such that every 2-curve c ∈ G satisfies
L(c), R(c) ⊂ int γ and intersects some 2-curve in F that intersects ext γ.

Proof. Let f(α) = f1(3α+5ξ+5), where f1 is the function claimed by Theorem 13. Let F be
a ξ-family with χ(F) > f(α). It follows that there is a 2-curve c? ∈ F such that the family of
curves within distance at most 2 from c? in the intersection graph of F has chromatic number
greater than 3α+ 5ξ + 5. For k ∈ {1, 2}, let Fk be the 2-curves in F at distance exactly k
from c? in the intersection graph of F . Since χ({c?}∪F1 ∪F2) > 3α+ 5ξ+ 5 and χ(F1) 6 ξ

(because F is a ξ-family), we have χ(F2) > 3α+4ξ+4. We have F2 = G1∪G2∪G3∪G4, where

SoCG 2017

56:10 Coloring Curves That Cross a Fixed Curve

G1 = {c ∈ F2 : L(c) ≺ R(c) ≺ L(c?) ≺ R(c?)}, G2 = {c ∈ F2 : L(c?) ≺ L(c) ≺ R(c) ≺ R(c?)},
G3 = {c ∈ F2 : L(c?) ≺ R(c?) ≺ L(c) ≺ R(c)}, G4 = {c ∈ F2 : L(c) ≺ L(c?) ≺ R(c?) ≺ R(c)}.
Since χ(F2) > 3α + 4ξ + 4 and χ(G4) 6 4ξ + 4 (by Lemma 10), we have χ(Gk) > α for
some k ∈ {1, 2, 3}. Since neither basepoint of c? lies on I(Gk), there is a cap-curve γ with
L(c?), R(c?) ⊂ ext γ and L(c), R(c) ⊂ int γ for all c ∈ Gk. The lemma follows with G = Gk. J

Reduction to (ξ, h)-families

For ξ ∈ N and a function h : N → N, a (ξ, h)-family is a ξ-family F with the following
additional property: for every α ∈ N and every subfamily G ⊆ F with χ(G) > h(α), there is
a subfamily H ⊆ G with χ(H) > α such that every 2-curve in F with a basepoint on I(H)
has both basepoints on I(G). We will prove the following lemma.

I Lemma 15. For any ξ, k ∈ N and any function h : N→ N, there is a constant ζ ∈ N such
that every (ξ, h)-family F with ω(F) 6 k satisfies χ(F) 6 ζ.

The notion of a (ξ, h)-family and Lemma 15 provide a convenient abstraction of what is
needed to prove the next lemma and then to prove Lemma 9 with the use of the next lemma.

I Lemma 16. For any ξ, k ∈ N, there is a function f : N → N such that for every α ∈ N,
every ξ-family F with ω(F) 6 k and χ(F) > f(α) contains a 2-curve c with χ(F(I(c))) > α.

Proof of Lemma 16 from Lemma 15. Let hα : N 3 β 7→ β + 2α + 2 ∈ N, and let f(α)
be the constant claimed by Lemma 15 such that every (ξ, hα)-family F with ω(F) 6 k

satisfies χ(F) 6 f(α). Let F be a ξ-family with ω(F) 6 k and χ(F(I(c))) 6 α for every
c ∈ F . It is enough to show that F is a (ξ, hα)-family. To this end, consider a subfamily
G ⊆ F with χ(G) > hα(β) for some β ∈ N. Take GL,GR ⊆ G so that L(GL) ≺ L(G r GL),
χ(GL) = α+ 1, R(G r GR) ≺ R(GR), and χ(GR) = α+ 1. Let H = G r (GL ∪ GR). It follows
that χ(H) > χ(G)− 2α− 2 > β. If there is a 2-curve c ∈ F with one basepoint on I(H) and
the other basepoint not on I(G), then GL ⊆ F(I(c)) or GR ⊆ F(I(c)), so χ(F(I(c))) > α+ 1,
which is a contradiction. Therefore, every 2-curve in F with a basepoint on I(H) has both
basepoints on I(G). This shows that F is a (ξ, hα)-family. J

Proof of Lemma 9 from Lemma 15. Let h be the function claimed by Lemma 16 for ξ and
k. Let F be a ξ-family with ω(F) 6 k. In view of Lemma 15, it is enough to show that
F is a (ξ, h)-family. To this end, consider a subfamily G ⊆ F with χ(G) > h(α) for some
α ∈ N. Lemma 16 yields a 2-curve c ∈ G such that χ(G(I(c))) > α. Every 2-curve in F
with a basepoint on I(c) has both basepoints on I(c), otherwise it would cross c below the
baseline. Therefore, the condition of a (ξ, h)-family is satisfied with H = G(I(c)). J

Dealing with (ξ, h)-families

The rest of the proof is inspired from the ideas in [26]. A family of 1-curves S supports a
family of 2-curves F if every 2-curve in F intersects some 1-curve in S. A skeleton is a pair
(γ,U) such that γ is a cap-curve and U is a family of pairwise disjoint 1-curves each of which
has one endpoint (other than the basepoint) on γ and all the remaining part in int γ (see
Figure 3). For a family of 1-curves S, a skeleton (γ,U) is an S-skeleton if every 1-curve in U
is a subcurve of some 1-curve in S. A skeleton (γ,U) supports a family of 2-curves F if every
2-curve c ∈ F satisfies L(c), R(c) ⊂ int γ and intersects some 1-curve in U .

I Lemma 17. For every function h : N→ N, there is a function f : N× N→ N such that
for any α, β ∈ N, every (ξ, h)-family F with χ(F) > f(α, β) contains one of the following
configurations:

A. Rok and B. Walczak 56:11

γ

u1 u2 u3 u4

c1
c2

int γ

Figure 3 A skeleton
(
γ, {u1, u2, u3, u4}

)
, which supports c1 but not c2.

a subfamily G ⊆ F with χ(G) > α supported by an L(F)-skeleton or an R(F)-skeleton,
a subfamily H ⊆ F with χ(H) > β supported by a family of 1-curves S with S ⊆ L(F)
or S ⊆ R(F) such that s ≺ H or H ≺ s for every 1-curve s ∈ S.

Proof. Let f(α, β) = f1(2α + h(2β) + 4), where f1 is the function claimed by Lemma 14.
Apply Lemma 14 to obtain a cap-curve γ and a subfamily G ⊆ F with χ(G) > 2α+h(2β) + 4
such that every 2-curve c ∈ G satisfies L(c), R(c) ⊂ int γ and intersects some 2-curve in Fext.
Here and further on, Fext denotes the family of 2-curves in F that intersect ext γ. Let UL
be the 1-curves that are subcurves of 1-curves in L(F), have one endpoint (other than the
basepoint) on γ, and have all the remaining part in int γ. Let UR be the 1-curves that are
subcurves of 1-curves in R(F), have one endpoint (other than the basepoint) on γ, and have
all the remaining part in int γ. Thus (γ,UL) is an L(F)-skeleton, and (γ,UR) is an R(F)-
skeleton. Let GL be the 2-curves in G that intersect some 1-curve in UL, and let GR be those
that intersect some 1-curve in UR. If χ(GL) > α or χ(GR) > α, then the first conclusion
of the lemma holds. Thus assume χ(GL) 6 α and χ(GR) 6 α. Let G′ = G r (GL ∪ GR). It
follows that χ(G′) > χ(G)− 2α > h(2β) + 4.

By Lemma 8, the 2-curves c ∈ G′ such that L(c) and R(c) lie in distinct components
of L(G′) ∪R(G′) have chromatic number at most 4. Therefore, there is a component V of
L(G′) ∪R(G′) such that χ(G′V) > χ(G′)− 4 > h(2β), where G′V = {c ∈ G′ : L(c), R(c) ⊆ V }.
There is a cap-curve ν ⊆ V connecting the two endpoints of the segment I(G′V). Suppose
there is a 2-curve c ∈ Fext with both basepoints on I(G′V). If L(c) intersects ext γ, then the
part of L(c) from the basepoint to the first intersection point with γ, which is a 1-curve in
UL, must intersect ν (as ν ⊆ V ⊂ int γ) and thus a curve in G′ (as V is a component of G′).
Thus G′ ∩ GL 6= ∅, which is a contradiction. An analogous contradiction is reached if R(c)
intersects ext γ. This shows that no curve in Fext has both basepoints on I(G′V).

Since F is a (ξ, h)-family and χ(G′V) > h(2β), there is a subfamily H′ ⊆ G′V such that
χ(H′) > 2β and every 2-curve in F with a basepoint on I(H′) has the other basepoint on
I(G′V). This and the above imply that no curve in Fext has a basepoint on I(H′). Since every
curve in H′ intersects some curve in Fext, we have H′ = HL∪HR, where HL are the 2-curves
in H′ that intersect some 1-curve in L(Fext) and HR are those that intersect some 1-curve in
R(Fext). Since χ(H′) > 2β, we conclude that χ(HL) > β or χ(HR) > β and thus the second
conclusion of the lemma holds with (H,S) = (HL, L(Fext)) or (H,S) = (HR, R(Fext)). J

I Lemma 18. For every function h : N → N, there is a function f : N → N such that for
every α ∈ N, every (ξ, h)-family F with χ(F) > f(α) contains a subfamily G ⊆ F with
χ(G) > α supported by an L(F)-skeleton or an R(F)-skeleton.

SoCG 2017

56:12 Coloring Curves That Cross a Fixed Curve

Proof. Let f(α) = f1(α, f1(α, f1(α, 4ξ))), where f1 is the function claimed by Lemma 17.
Suppose to the contrary that no such subfamily G exists. Let F0 = F . Apply Lemma 17
three times to obtain families F1, F2, F3, S1, S2, and S3 with the following properties:
F = F0 ⊇ F1 ⊇ F2 ⊇ F3,
for i ∈ {1, 2, 3}, we have Si ⊆ L(Fi−1) or Si ⊆ R(Fi−1), Fi is supported by Si, and
s ≺ Fi or Fi ≺ s for every 1-curve s ∈ Si.
χ(F1) > f1(α, f1(α, 4ξ)), χ(F2) > f1(α, 4ξ) and χ(F3) > 4ξ.

There are indices i, j ∈ {1, 2, 3} with i < j such that Si and Sj are of the same “type”: either
Si ⊆ L(Fi−1) and Sj ⊆ L(Fj−1) or Si ⊆ R(Fi−1) and Sj ⊆ R(Fj−1). Assume for the rest of
the proof that Si ⊆ R(Fi−1) and Sj ⊆ R(Fj−1); the argument for the other case is analogous.

Let S≺ = {s ∈ Sj : s ≺ Fj}, S� = {s ∈ Sj : Fj ≺ s}, F≺ be the 2-curves in Fj that
intersect some 1-curve in S≺, and F� be those that intersect some 1-curve in S�. Thus
F≺ ∪ F� = Fj . This and χ(Fj) > χ(F3) > 4ξ yield χ(F≺) > 2ξ or χ(F�) > 2ξ. Assume for
the rest of the proof that χ(F≺) > 2ξ; the argument for the other case is analogous.

Let Smin
≺ be an inclusion-minimal subfamily of S≺ with the property that Smin

≺ still
supports F≺. Let s? be the 1-curve in Smin

≺ with rightmost basepoint, and let F?≺ = {c ∈
F≺ : L(c) intersects s?}. Since F is a ξ-family, we have χ(F?≺) 6 ξ. By the choice of Smin

≺ ,
there exists a 2-curve c? ∈ F?≺ disjoint from every 1-curve in Smin

≺ other than s?. Since F≺ is
supported by Si, there is a 1-curve si ∈ Si that intersects L(c?). We show that every 2-curve
in F≺ r F?≺ intersects si.

Let c ∈ F≺rF?≺, and let s be a 1-curve in Smin
≺ that intersects L(c). Thus s 6= s?, by the

definition of F?≺. There is a cap-curve γ ⊆ L(c) ∪ s. Since s ≺ s? ≺ L(c) and s? intersects
neither s nor L(c), we have s? ⊂ int γ. Since L(c?) intersects s? but neither s nor L(c), we
also have L(c?) ⊂ int γ. Since si ≺ Fi or Fi ≺ si, the basepoint of si lies in ext γ. Therefore,
since si intersects L(c?), the 1-curve si must enter int γ through a point on L(c). This shows
that every 2-curve in F≺ r F?≺ intersects si. This and the assumption that F is a ξ-family
yield χ(F≺ r F?≺) 6 ξ. We conclude that χ(F≺) 6 χ(F?≺) + χ(F≺ r F?≺) 6 2ξ, which is a
contradiction. J

A chain of length n is a sequence
(
(a1, b1), . . . , (an, bn)

)
of pairs of 2-curves such that

for 1 6 i 6 n, the 1-curves R(ai) and L(bi) intersect,
for 2 6 i 6 n, the basepoints of R(ai) and L(bi) lie between the basepoints of R(ai−1) and
L(bi−1), and L(ai) intersects R(a1), . . . , R(ai−1) or R(bi) intersects L(b1), . . . , L(bi−1).

I Lemma 19. For every ξ ∈ N and every function h : N→ N, there is a function f : N→ N
such that for every n ∈ N, every (ξ, h)-family F with χ(F) > f(n) contains a chain of
length n.

Proof (see Figure 4). We define the function f by induction. Let f(1) = 1; if χ(F) > 1,
then F contains two intersecting 2-curves, which form a chain of length 1. For the induction
step, fix n > 1, and assume that every (ξ, h)-family H with χ(H) > f(n) contains a chain of
length n. Let β = f1

(
f(n), h(2ξ) + 4ξ + 2

)
and f(n + 1) = f2(f2(f2(β))), where f1 is the

function claimed by Lemma 12 and f2 is the function claimed by Lemma 18. Let F be a
(ξ, h)-family with χ(F) > f(n+ 1). We claim that F contains a chain of length n+ 1.

Let F0 = F . Apply Lemma 18 three times to find families of 2-curves F1, F2, F3 and
skeletons (γ1,U1), (γ2,U2), (γ3,U3) with the following properties:
F = F0 ⊇ F1 ⊇ F2 ⊇ F3,
for i ∈ {1, 2, 3}, (γi,Ui) is an L(Fi−1)-skeleton or an R(Fi−1)-skeleton supporting Fi,
χ(F1) > f2(f2(β)), χ(F2) > f2(β), and χ(F3) > β.

A. Rok and B. Walczak 56:13

γi

γj

u` x u`+1 u`′

I(G)
ur′ uk ur−1 y ur

c?

u?

Figure 4 Illustration for the proof of Lemma 19.

There are two indices i, j ∈ {1, 2, 3} with i < j such that the skeletons (γi,Ui) and (γj ,Uj)
are of the same “type”: either an L(Fi−1)-skeleton and an L(Fj−1)-skeleton or an R(Fi−1)-
skeleton and an R(Fj−1)-skeleton. Assume for the rest of the proof that (γi,Ui) is an L(Fi−1)-
skeleton and (γj ,Uj) is an L(Fj−1)-skeleton; the argument for the other case is analogous.

By Lemma 12, since χ(Fj) > χ(F3) > β, there is a subfamily H ⊆ Fj such that χ(H) >
f(n) and χ(Fj(x, y)) > h(2ξ) + 4ξ + 2 for any two intersecting 1-curves x, y ∈ L(H) ∪R(H).
Since χ(H) > f(n), the family H contains a chain

(
(a1, b1), . . . , (an, bn)

)
of length n. Let x

and y be the 1-curves R(an) and L(bn) assigned so that x ≺ y. By the definition of a chain,
x and y intersect, and therefore χ(Fj(x, y)) > h(2ξ) + 4ξ + 2.

Enumerate the 1-curves in Ui as u1, . . . , um so that u1 ≺ · · · ≺ um, where m = |Ui|.
Assume u1 ≺ x ≺ y ≺ um for simplicity (adjusting the proof to the general case is straight-
forward). There are indices ` and r with 1 6 ` < r 6 m, u` ≺ x ≺ u`+1, and ur−1 ≺ y ≺ ur.
Let FLj = {c ∈ Fj : x ≺ L(c) ≺ u`+1} and FRj = {c ∈ Fj : ur−1 ≺ R(c) ≺ y}. It follows that
Fj(x, y) ⊆ FLj ∪ Fj(u`+1, ur−1) ∪ FRj .

Since F is a ξ-family, the 2-curves in FLj that intersect u` have chromatic number at most ξ,
and so do the 2-curves in FLj that intersect u`+1. The remaining 2-curves c ∈ FLj (intersecting
neither u` nor u`+1) are pairwise disjoint, because their 1-curves L(c) are contained in and
R(c) are disjoint from the part of int γi between u` and u`+1. Thus χ(FLj) 6 2ξ+1. Similarly,
χ(FRj) 6 2ξ+1. This yields `+1 6 r−1 and χ(Fj(u`+1, ur−1)) > χ(Fj(x, y))−4ξ−2 > h(2ξ).

Since F is a (ξ, h)-family, there is a subfamily G ⊆ Fj(u`+1, ur−1) with χ(G) > 2ξ such
that every 2-curve c ∈ F with a basepoint on I(G) satisfies u`+1 ≺ c ≺ ur−1.

Let u`′ be the 1-curve in Uj with rightmost basepoint to the left of I(G), and let ur′ be
the 1-curve in Uj with leftmost basepoint to the right of I(G). Every 2-curve in G must
intersect u`′ , some 1-curve in Uj(I(G)), or ur′ . Since F is a ξ-family, the 2-curves in G that
intersect u`′ have chromatic number at most ξ, and so do the 2-curves in G that intersect
ur′ . Therefore, since χ(G) > 2ξ, some 2-curve in G must intersect a 1-curve in Uj(I(G)). In
particular, the family Uj(I(G)) is non-empty.

Let u? ∈ Uj(I(G)). The 1-curve u? is a subcurve of L(c?) for some 2-curve c? ∈ Fj−1.
Since the basepoint of L(c?) lies on I(G), the property of G implies u`+1 ≺ c? ≺ ur−1. Since
c? ∈ Fj−1 ⊆ Fi and Fi is supported by (γi,Ui), the 1-curve R(c?) intersects at least one of
the 1-curves u`+1, . . . , ur−1, say uk. Let an+1 = c? and bn+1 be the 2-curve in Fi−1 such
that uk is a subcurve of L(bn+1). For 1 6 t 6 n, the 1-curves R(at) and L(bt) intersect and

SoCG 2017

56:14 Coloring Curves That Cross a Fixed Curve

they are both contained in int γj (because at, bt ∈ H), the basepoint of L(an+1) is between
the basepoints of R(at) and L(bt), and L(an+1) intersects γj (as it contains u?). Therefore,
L(an+1) intersects all R(a1), . . . , R(an). We conclude that

(
(a1, b1), . . . , (an+1, bn+1)

)
is a

chain of length n+ 1. J

Proof of Lemma 15. Let ζ = f(2k + 1), where f is the function claimed by Lemma 19 for
ξ and h. Suppose χ(F) > ζ. It follows that F contains a chain of length 2k + 1. This chain
contains a subchain

(
(a1, b1), . . . , (ak+1, bk+1)

)
of pairs of the same “type”: L(ai) intersects

R(a1), . . . , R(ai−1) for 2 6 i 6 k + 1 and thus {a1, . . . , ak+1} is a clique, or R(bi) intersects
L(b1), . . . , L(bi−1) for 2 6 i 6 k + 1 and thus {b1, . . . , bk+1} is a clique. Thus ω(F) > k. J

3 Proof of Theorem 2

I Lemma 20 (Fox, Pach, Suk [9, Lemma 3.2]). For every t ∈ N, there is a constant νt > 0
such that every family of curves F any two of which intersect in at most t points has
subfamilies F1, . . . ,Fd ⊆ F with the following properties:

for 1 6 i 6 d, there is a curve ci ∈ Fi intersecting all curves in Fi r {ci},
for 1 6 i < j 6 d, every curve in Fi is disjoint from every curve in Fj,
|F1 ∪ · · · ∪ Fd| > νt|F|/ log |F|.

Proof of Theorem 2. Let F be a family of curves obtained from the edges of G by shortening
them slightly so that they do not intersect at the endpoints but all other intersection
points are preserved. If follows that ω(F) 6 k − 1 (as G is k-quasi-planar) and any two
curves in F intersect in at most t points. Let νt, F1, . . . ,Fd, and c1, . . . , cd be as claimed
by Lemma 20. For 1 6 i 6 d, since ω(Fi r {ci}) 6 ω(F) − 1 6 k − 2, Theorem 1
yields χ(Fi r {ci}) 6 ft(k − 2). Thus χ(F1 ∪ · · · ∪ Fd) 6 ft(k − 2) + 1. For every
color class C in a proper coloring of F1 ∪ · · · ∪ Fd with ft(k − 2) + 1 colors, the vertices
of G and the curves in C form a planar topological graph, and thus |C| < 3n. Thus
|F1 ∪ · · · ∪ Fd| < 3(ft(k − 2) + 1)n. This, the third property in Lemma 20, and the fact that
|F| < n2 yield |F| < 3ν−1

t (ft(k − 2) + 1)n log |F| < 6ν−1
t (ft(k − 2) + 1)n logn. J

References
1 Eyal Ackerman. On the maximum number of edges in topological graphs with no four

pairwise crossing edges. Discrete Comput. Geom., 41(3):365–375, 2009.
2 Pankaj K. Agarwal, Boris Aronov, János Pach, Richard Pollack, and Micha Sharir. Quasi-

planar graphs have a linear number of edges. Combinatorica, 17(1):1–9, 1997.
3 Edgar Asplund and Branko Grünbaum. On a colouring problem. Math. Scand., 8:181–188,

1960.
4 Peter Brass, William Moser, and János Pach. Research Problems in Discrete Geometry.

Springer, New York, 2005.
5 James P. Burling. On coloring problems of families of prototypes. PhD thesis, University

of Colorado, Boulder, 1965.
6 Maria Chudnovsky, Alex Scott, and Paul Seymour. Induced subgraphs of graphs with large

chromatic number. V. Chandeliers and strings. arXiv:1609.00314.
7 Jacob Fox and János Pach. Coloring Kk-free intersection graphs of geometric objects in

the plane. European J. Combin., 33(5):853–866, 2012.
8 Jacob Fox and János Pach. Applications of a new separator theorem for string graphs.

Combin. Prob. Comput., 23(1):66–74, 2014.

A. Rok and B. Walczak 56:15

9 Jacob Fox, János Pach, and Andrew Suk. The number of edges in k-quasi-planar graphs.
SIAM J. Discrete Math., 27(1):550–561, 2013.

10 András Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs.
Discrete Math., 55(2):161–166, 1985. Corrigendum. Discrete Math., 62(3):333, 1986.

11 Clemens Hendler. Schranken für Färbungs- und Cliquenüberdeckungszahl geometrisch
repräsentierbarer Graphen. Master’s thesis, Freie Universität Berlin, 1998.

12 Alexandr V. Kostochka. O verkhnikh otsenkakh khromaticheskogo chisla grafov (On upper
bounds for the chromatic number of graphs). In Vladimir T. Dementyev, editor, Modeli
i metody optimizacii, volume 10 of Trudy Inst. Mat., pages 204–226. Akad. Nauk SSSR SO,
Novosibirsk, 1988.

13 Alexandr V. Kostochka. Coloring intersection graphs of geometric figures with a given
clique number. In János Pach, editor, Towards a Theory of Geometric Graphs, volume 342
of Contemp. Math., pages 127–138. AMS, Providence, 2004.

14 Alexandr V. Kostochka and Jan Kratochvíl. Covering and coloring polygon-circle graphs.
Discrete Math., 163(1–3):299–305, 1997.

15 Tomasz Krawczyk, Arkadiusz Pawlik, and Bartosz Walczak. Coloring triangle-free rectangle
overlap graphs with O(log logn) colors. Discrete Comput. Geom., 53(1):199–220, 2015.

16 Tomasz Krawczyk and Bartosz Walczak. On-line approach to off-line coloring problems on
graphs with geometric representations. Combinatorica. in press.

17 Michał Lasoń, Piotr Micek, Arkadiusz Pawlik, and Bartosz Walczak. Coloring intersection
graphs of arc-connected sets in the plane. Discrete Comput. Geom., 52(2):399–415, 2014.

18 Jiří Matoušek. Near-optimal separators in string graphs. Combin. Prob. Comput.,
23(1):135–139, 2014.

19 Sean McGuinness. On bounding the chromatic number of L-graphs. Discrete Math.,
154(1–3):179–187, 1996.

20 Sean McGuinness. Colouring arcwise connected sets in the plane I. Graphs Combin.,
16(4):429–439, 2000.

21 Sean McGuinness. Colouring arcwise connected sets in the plane II. Graphs Combin.,
17(1):135–148, 2001.

22 János Pach, Radoš Radoičić, and Géza Tóth. Relaxing planarity for topological graphs.
In Ervin Győri, Gyula O. H. Katona, and László Lovász, editors, More Graphs, Sets and
Numbers, volume 15 of Bolyai Soc. Math. Stud., pages 285–300. Springer, Berlin, 2006.

23 János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing number.
Algorithmica, 16(1):111–117, 1996.

24 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T.
Trotter, and Bartosz Walczak. Triangle-free geometric intersection graphs with large chro-
matic number. Discrete Comput. Geom., 50(3):714–726, 2013.

25 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T.
Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. J. Combin. Theory Ser. B, 105:6–10, 2014.

26 Alexandre Rok and Bartosz Walczak. Outerstring graphs are χ-bounded. In Siu-Wing
Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational Geometry
(SoCG 2014), pages 136–143. ACM, New York, 2014.

27 Andrew Suk. Coloring intersection graphs of x-monotone curves in the plane. Combinator-
ica, 34(4):487–505, 2014.

28 Andrew Suk and Bartosz Walczak. New bounds on the maximum number of edges in k-
quasi-planar graphs. Comput. Geom., 50:24–33, 2015.

29 Pavel Valtr. Graph drawing with no k pairwise crossing edges. In Giuseppe Di Battista,
editor, 5th International Symposium on Graph Drawing (GD 1997), volume 1353 of Lecture
Notes Comput. Sci., pages 205–218. Springer, Berlin, 1997.

SoCG 2017

Barcodes of Towers and a Streaming Algorithm
for Persistent Homology∗

Michael Kerber1 and Hannah Schreiber2

1 Graz University of Technology, Graz, Austria
kerber@tugraz.at

2 Graz University of Technology, Graz, Austria
hschreiber@tugraz.at

Abstract
A tower is a sequence of simplicial complexes connected by simplicial maps. We show how to
compute a filtration, a sequence of nested simplicial complexes, with the same persistent barcode
as the tower. Our approach is based on the coning strategy by Dey et al. (SoCG 2014). We
show that a variant of this approach yields a filtration that is asymptotically only marginally
larger than the tower and can be efficiently computed by a streaming algorithm, both in theory
and in practice. Furthermore, we show that our approach can be combined with a streaming
algorithm to compute the barcode of the tower via matrix reduction. The space complexity of the
algorithm does not depend on the length of the tower, but the maximal size of any subcomplex
within the tower. Experimental evaluations show that our approach can efficiently handle towers
with billions of complexes.

1998 ACM Subject Classification G.4 Algorithm Design and Analysis

Keywords and phrases Persistent Homology, Topological Data Analysis, Matrix reduction,
Streaming algorithms, Simplicial Approximation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.57

1 Introduction

Motivation and problem statement. Persistent homology [16, 6, 15] is a paradigm to
analyze how topological properties of general data sets evolve across multiple scales. Thanks
to the success of the theory in finding applications (see, e.g., [25, 18] for recent enumerations),
there is a growing demand for efficient computations of the involved topological invariants.

In this paper, we consider a sequence of simplicial complexes (Ki)i=0,...,m and simplicial
maps φi : Ki → Ki+1 connecting them, calling this data a (simplicial) tower of length m.
Applying the homology functor with an arbitrary field, we obtain a persistence module, a
sequence of vector spaces connected by linear maps. Such a module decomposes into a
barcode, a collection of intervals, each representing a homological feature in the tower that
spans over the specified range of scales.

Our computational problem is to compute the barcode of a given tower efficiently. The
most prominent case of a tower is when all maps fi are inclusion maps. In this case one
obtains a filtration, a sequence of nested simplicial complexes. A considerable amount of
work went into the study of fast algorithms for the filtration case, which culminated in fast
software libraries for this task. The more general case of towers recently received growing

∗ The authors are supported by the Austrian Science Fund (FWF) grant number P 29984-N35.

© Michael Kerber and Hannah Schreiber;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.57
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

interest in the context of sparsification technique for the Vietoris-Rips and Čech complexes;
see the related work section below for a detailed discussion.

Results. As our first result, we show that any tower can be efficiently converted into a small
filtration with the same barcode. Dey et al. [13] give an explicit construction, called “coning”,
for the generalized case of zigzag towers. Using a simple variant of their strategy, we obtain
a filtration whose size is only marginally larger than the length of the tower. Furthermore,
we experimentally show that the size is even smaller on realistic instances.

To describe our improved coning strategy, we discuss the case that a simplicial map in
the tower contracts two vertices u and v. The coning strategy by Dey et al. proposes to join
u with the closed star of v, making all incident simplices of v incident to u without changing
the homotopy type. The vertex u is then taken as the representative of the contracted pair.
We refer to the number of simplices that the join operation adds to the complex as the cost
of the contraction. Quite obviously, the method is symmetric in u and v, and we have two
choices to pick the representative, leading to potentially quite different costs. We employ the
self-evident strategy to pick the representative that leads to smaller costs. This idea leads to
an asymptotically improved size bound on the filtration. We prove this by an abstraction to
path decompositions on weighted forest. Altogether, the worst-case size of the filtration is
O(∆ · n · log(n0)), where ∆ is the maximal dimension of any complex in the tower, and n/n0
is the number of simplices/vertices added to the tower.

We also provide a conversion algorithm whose time complexity is roughly proportional to
the total number of simplices in the resulting filtration. One immediate benefit is a generic
solution to compute barcodes of towers: just convert the tower to a filtration and apply one
of the efficient implementations for barcodes of filtrations. Indeed, we experimentally show
that on not-too-large towers, our approach is competitive with, and sometimes outperforms
Simpers, an alternative approach that computes the barcode of towers with annotations, a
variant of the persistent cohomology algorithm.

Our second contribution is a space-efficient version of the just mentioned algorithmic
pipeline that is applicable to very large towers. To motivate the result, let the width of a
tower denote the maximal size of any simplicial complex among the Ki. Consider a tower
with a very large length (say, larger than the number of bytes in main memory) whose width
remains relatively small. In this case, our conversion algorithm yields a filtration that is
very large as well. Most implementations for barcode computation read the entire filtration
on initialization and algorithms based on matrix reduction are required to keep previously
reduced columns. This leads to a high memory consumption for the barcode computation.

We show that with minor modifications, the standard persistent algorithm can be turned
into a streaming algorithm with smaller space complexity in the case of towers. The idea
is that upon contractions, simplices become inactive and cannot get additional cofaces.
Our approach makes use of this observation by modifying the boundary matrix such that
columns associated to inactive simplices can be removed. Combined with our conversion
algorithm, we can compute the barcode of a tower of width ω keeping only up to O(ω)
columns of the boundary matrix in memory. This yields a space complexity of O(ω2) and a
time complexity of O((∆ · n · log(n0)) · ω2) in the worst case. We implemented a practically
improved variant that makes use of additional heuristics to speed up the barcode computation
in practice and resembles the chunk algorithm presented in [1]. We tested our implementation
on various challenging data sets. The source code of the implementation is available at
https://bitbucket.org/schreiberh/sophia/.

https://bitbucket.org/schreiberh/sophia/

M. Kerber and H. Schreiber 57:3

Related work. Already the first works on persistent homology pointed out the existence of
efficient algorithm to compute the barcode invariant (or equivalently, the persistent diagram)
for filtrations [16, 27]. As a variant of Gaussian elimination, the worst-case complexity is cubic.
Remarkable theoretical follow-up results are a persistence algorithm in matrix multiplication
time [23], an output-sensitive algorithm to compute only high-persistent features with linear
space complexity [9], and a conditional lower bound on the complexity relating the problem
to rank computations of sparse matrices [17].

On realistic instances, the standard algorithm has shown a quasi-linear behavior in
practice despite its pessimistic worst-case complexity. Nevertheless, many improvements of
the standard algorithm have been presented in the last years which improve the runtime
by several orders of magnitude. One line of research exploits the special structure of the
boundary matrix to speed up the reduction process [8]. This idea has led to efficient parallel
algorithms for persistence in shared [1] and distributed memory [2]. Moreover, of same
importance as the reduction strategy is an appropriate choice of data structures in the
reduction process as demonstrated by the Phat library [3]. A parallel development was
the development of dual algorithms using persistent cohomology, based on the observation
that the resulting barcode is identical [12]. The annotation algorithm [13, 4] is an optimized
variant of this idea realized in the Gudhi library [21]. It is commonly considered as an
advantage of annotations that only a cohomology basis must be kept during the reduction
process, making it more space efficient than reduction-based approaches. We refer to the
comparative study [24] for further approaches and software for persistence on filtrations.

Moreover, generalizations of the persistence paradigm are an active field of study. Zigzag
persistence is a variant of persistence where the maps in the filtration are allowed to map
in either direction (that is, either φi : Ki ↪→ Ki+1 or φi : Ki ←↩ Ki+1) – see [25] for a
comprehensive introduction. The initial algorithms to compute this barcode [7] has been
improved recently [22]. Our case of towers of complexes and simplicial maps can be modeled
as a zigzag filtration and therefore sits in-between the standard and the zigzag filtration case.

Dey et al. [13] described the first efficient algorithm to compute the barcode of towers.
Instead of the aforementioned coning approach explained in their paper, their implementation
handles contractions with an empirically smaller number of insertions, based on the link
condition. Recently, the authors have released the SimPers library that implements their
annotation algorithm from the paper.

The case of towers has received recent attention in the context of approximate Vietoris-
Rips and Čech filtrations. The motivation for approximation is that the (exact) topological
analysis of a set of n points in d-dimensions requires a filtration of size O(nd+1) which is
prohibitive for most interesting input sizes. The first such type of result by Sheehy [26]
resulted in a approximate filtration; however, it has been observed that the concept of towers
somewhat simplifies the approximation schemes conceptually. See [13, 5, 20, 10] for examples.
Very recently, the SimBa library [14] brings these theoretical approximation techniques for
Vietoris-Rips complexes into practice.

Outline. We introduce the necessary basic concepts in Section 2. We describe our conversion
algorithm from general towers to barcodes in Section 3. The streaming algorithm for
persistence is discussed in Section 4. Several proofs and constructions are only sketched due
to space constraints; see the arxiv version [19] for full arguments.

SoCG 2017

57:4 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

2 Background

Simplicial Complexes. Given a finite vertex set V , a simplex is a non-empty subset of
V ; more precisely, a k-simplex is a subset consisting of k + 1 vertices, and k is called the
dimension of the simplex. For a k-simplex σ, a simplex τ is a face of σ if τ ⊆ σ. If τ is of
dimension `, we call it a `-face. If ` < k, we call τ a proper face of σ, and if ` = k− 1, we call
it a facet. For a simplex σ and a vertex v /∈ σ, we define the join v ∗σ as the simplex {v}∪σ.

An (abstract) simplicial complex K over V is a set of simplices that is closed under
taking faces. We call V the vertex set of K and write V(K) := V . The dimension of K is
the maximal dimension of its simplices. For σ, τ ∈ K, we call σ a coface of τ in K if τ is
a face of σ. In this case, σ is a cofacet of τ if their dimensions differ by exactly one. A
simplicial complex L is a subcomplex of K if L ⊆ K. Given W ⊆ V, the induced subcomplex
by W is the set of all simplices σ in K with σ ⊆ W. For a subcomplex L ⊆ K and a vertex
v ∈ V(K) \ V(L), we define the join v ∗ L := {v ∗ σ | σ ∈ L}. For a vertex v ∈ K, the star of
v in K, denoted by St(v,K), is the set of all cofaces of v in K. In general, the star is not a
subcomplex, but we can make it a subcomplex by adding all faces of star simplices, which is
denoted by the closed star St(v,K). Equivalently, the closed star is the smallest subcomplex
of K containing the star of v. The link of v, Lk(v,K), is defined as St(v,K) \ St(v,K). It
can be checked that the link is a subcomplex of K. When the complex is clear from context,
we will sometimes omit the K in the notation of stars and links.

Simplicial maps. A map K φ→ L between simplicial complexes is called simplicial if with
σ = {v0, . . . , vk} ∈ K, φ(σ) is equal to {φ(v0), . . . , φ(vk)} and φ(σ) is a simplex in L. By
definition, a simplicial map maps vertices to vertices and is completely determined by its
action on the vertices. Moreover, the composition of simplicial maps is again simplicial.

A simple example of a simplicial map is the inclusion map L
φ
↪→ K where L is a subcomplex

of K. If K = L ∪ {σ} with σ /∈ L, we call φ an elementary inclusion. The simplest example
of a non-inclusion simplicial map is K φ→ L such that there exist two vertices u, v ∈ K with
V(L) = V(K) \ {v}, φ(u) = φ(v) = u, and φ is the identity on all remaining vertices of K.
We call φ an elementary contraction and write (u, v) u as a shortcut. These notions were
introduced by Dey, Fan and Wang in [13] and they also showed that any simplicial map
K φ→ L can be written as the composition of elementary contractions1 and inclusions.

A tower of length m is a collection of simplicial complexes K0, . . . ,Km and simplicial
maps φi : Ki → Ki+1 for i = 0, . . . ,m− 1. From this initial data, we obtain simplicial maps
φi,j : Ki → Kj for i ≤ j by composition, where φi,i is simply the identity map on Ki. A tower
is called a filtration if all φi are inclusion maps. The dimension of a tower is the maximal
dimension among the Ki, and the width of a tower is the maximal number of simplices in a
Ki. For filtrations, dimension and width are determined by the dimension and size of the
last complex Km, but this is not necessarily true for general towers.

Homology and Collapses. For a fixed base field F, let Hp(K) := Hp(K,F) the p-dimensional
homology group of K. It is well-known that Hp(K) is a F-vector space. Moreover, a simplicial
map K φ→ L induces a linear map Hp(K) φ∗

→ Hp(L). In categorical terms, the equivalent

1 They talk about “collapses” instead of “contractions”, but this notion clashes with the standard notion
of simplicial collapses of free faces that we use later. Therefore, we decided to use “contraction”, even
though the edge between the contracted vertices might not be present in the complex.

M. Kerber and H. Schreiber 57:5

statement is that homology is a functor from the category of simplicial complexes and
simplicial maps to the category of vector spaces and linear maps.

We will make use of the following homology-preserving operation: a free face in K, is a
simplex with exactly one proper coface in K. An elementary collapse in K is the operation
of removing a free face and its unique coface from K, yielding a subcomplex of K. We say
that K collapses to L, if there is a sequence of elementary collapses transforming K into L.
It is then well-known that the inclusion map L

φ
↪→ K induces an isomorphism φ∗ between

Hp(L) and Hp(K).

Barcodes. A persistence module is a sequence vector spaces V0, . . . ,Vm and linear maps
fi,j : Vi → Vj for i < j such that fi,i = idVi

and fi,k = fj,k ◦ fi,j for i ≤ k ≤ j. Persistence
modules admit a decomposition into indecomposable summands in the following sense.
Writing Ib,d with b ≤ d for the persistence module

0 0−−−−→ . . .
0−−−−→ 0︸ ︷︷ ︸

b− 1 times

0−−−−→ F id−−−−→ . . .
id−−−−→ F︸ ︷︷ ︸

d− b+ 1 times

0−−−−→ 0 0−−−−→ . . .
0−−−−→ 0︸ ︷︷ ︸

m− d times

,

we can write every persistence module as the direct sum Ib1,d1 ⊕ . . .⊕ Ibs,ds
, where the direct

sum of persistence modules is defined component-wise for vector spaces and linear maps in
the obvious way. Moreover, this decomposition is uniquely defined up to isomorphisms and
re-ordering, thus the pairs (b1, d1), . . . , (bs, ds) are an invariant of the persistence module,
called its barcode. When the persistence module was generated by a tower, we also talk about
the barcode of the tower.

Matrix reduction. In this paragraph, we assume that (Ki)i=0,...,m is a filtration such that
K0 = ∅ and Ki+1 has exactly one more simplex than Ki. We label the simplices of Km
accordingly as σ1, . . . , σm, with Ki\Ki−1 = {σi}. The filtration can be encoded as a boundary
matrix ∂ of dimension m×m, where the (ij)-entry is 1 if σi is a facet of σj , and 0 otherwise.
In other words, the j-th column of ∂ encodes the facets of σj , and the i-th row of ∂ encodes
the cofacets of σi. Moreover, ∂ is upper-triangular because every Ki is a simplicial complex.
We will sometimes identify rows and columns in ∂ with the corresponding simplex in Km.
Adding the k-simplex σi to Ki−1 either introduces one new homology class (of dimension k),
or turns a non-trivial homology class (of dimension k − 1) trivial. We call σi and the i-th
column of ∂ positive or negative, respectively (with respect to the given filtration).

For the computation of the barcode, we assume for simplicity homology over the base field
Z2, and interpret the coefficients of ∂ accordingly. In an arbitrary matrix A, a left-to-right
column addition is an operation of the form Ak ← Ak +A` with ` < k, where Ak and A` are
columns of the matrix. The pivot of a non-zero column is the largest non-zero index of the
corresponding column. A non-zero entry is called a pivot if its row is the pivot of the column.
A matrix R is called a reduction of A if R is obtained by a sequence of left-to-right column
additions from A and no two columns in R have the same pivot. It is well-known that,
although ∂ does not have a unique reduction, the pivots of all its reductions are the same.
Moreover, the pivots (b1, d1), . . . , (bs, ds) of R are precisely the barcode of the filtration. A
direct consequence is that a simplex σi is positive if and only if the i-th column in R is zero.

The standard persistence algorithm processes the columns from left to right. In the
j-th iteration, as long as the j-th column is not empty and has a pivot that appears in a
previous column, it performs a left-to-right column addition. In this work, we use a simple
improvement of this algorithm that is called compression: before reducing the j-th column,
it first scans through the non-zero entries of the column. If a row index i corresponds to

SoCG 2017

57:6 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

u

v
w

u

v

contraction of u and v to w

K L

L∗

Figure 1 Construction example of L∗, were u and v in K are contracted to w in L.

a negative simplex (i.e., if the i-th column is not zero at this point in the algorithm), the
row index can be deleted without changing the pivots of the matrix. After this initial scan,
the column is reduced in the same way as in the standard algorithm. See [1, §. 3] for a
discussion (we remark that this optimization was also used in [27]).

3 From towers to filtrations

We phrase now our first result which says that any tower can be converted into a filtration
of only marginally larger size with a space-efficient streaming algorithm:

I Theorem 1 (Conversion Theorem). Let T : K0
φ0 // K1

φ1 // . . .
φm−1

// Km be a tower
where, w.l.o.g., K0 = ∅ and each φi is either an elementary inclusion or an elementary
contraction. Let ∆ denote the dimension and ω the width of the tower, and let n ≤ m

denote the total number of elementary inclusions, and n0 the number of vertex inclusions.
Then, there exists a filtration F : K̂0

� � // K̂1
� � // . . . �

�
// K̂m , where the inclusions

are not necessarily elementary, such that T and F have the same barcode and the width of
the filtration |K̂m| is at most O(∆ · n logn0). Moreover, F can be computed from T with a
streaming algorithm in O(∆ · |K̂m| ·Cω) time and space complexity O(∆ ·ω), where Cω is the
cost of an operation in a dictionary with ω elements.

The remainder of the section is organized as follows. We define F in Section 3.1 and
prove that it yields the same barcode as T in Section 3.2. In Section 3.3, we prove the upper
bound on the width of the filtration. In Section 3.4, we explain the algorithm to compute F
and analyze its time and space complexity.

3.1 Active and small coning
Coning. We briefly revisit the coning strategy introduced by Dey, Fan and Wang [13]. Let
φ : K→ L be an elementary contraction (u, v) u and define

L∗ = K ∪
(
u ∗ St(v,K)

)
(see Figure 1).

Dey et al. show that L ⊆ L∗ and that the map induced by inclusion is an isomorphism
between H(L) and H(L∗). By applying this result at any elementary contraction, this implies
that every zigzag tower can be transformed into a zigzag filtration with identical barcode.

Given a tower T , we can also obtain an non-zigzag filtration using coning, if we continue
the operation on L∗ instead of going back to L. More precisely, we set K̃0 := K0 and if φi is
an inclusion of simplex σ, we set K̃i+1 := K̃i ∪ {σ}. If φi is a contraction (u, v) u, we set
K̃i+1 = K̃i ∪

(
u ∗ St(v, K̃i)

)
. Indeed, it can be proved that (K̃i)i=0,...,m has the same barcode

as T . However, the filtration will not be small, and we will define a smaller variant now.

M. Kerber and H. Schreiber 57:7

Our new construction yields a sequence of complexes K̂0, . . . , K̂m with K̂i ⊆ K̂i+1. During
the construction, we maintain a flag for each vertex in K̂i, which marks the vertex as active
or inactive. A simplex is called active if all its vertices are active, and inactive otherwise.
For a vertex u and a complex K̂i, let ActSt(u, K̂i) denote its active closed star, which is the
set of active simplices in K̂i in the closed star of u.

The construction is inductive, starting with K̂0 := ∅. If Ki
φi→ Ki+1 is an elementary

inclusion with Ki+1 = Ki ∪ {σ}, set K̂i+1 := K̂i ∪ {σ}. If σ is a vertex, we mark it as active.
It remains the case that Ki

φi→ Ki+1 is an elementary contraction of the vertices u and v. If
|ActSt(u, K̂i)| ≤ |ActSt(v, K̂i)|, we set

K̂i+1 = K̂i ∪
(
v ∗ActSt(u, K̂i)

)
and mark u as inactive. Otherwise, we do the same by inverting the role of u and v in the
construction. This ends the description of the construction. We write F for the filtration
(K̂i)i=0,...,m.

There are two major changes compared to the construction of (K̃i)i=0,...,m. First, to
counteract the potentially large growth of the involved cones, we restrict coning to active
simplices. We will show below that the subcomplex of K̂i induced by the active vertices is
isomorphic to Ki. As a consequence, we add the same number of simplices by passing from
K̂i to K̂i+1 as in the approach by Dey et al. does when passing from K to L∗.

A second difference is that our strategy exploits that an elementary contraction of two
vertices u and v leaves us with a choice: we can either take u or v as the representative of
the contracted vertex. In terms of simplicial maps, these two choices correspond to setting
φi(u) = φi(v) = u or φi(u) = φi(v) = v, if φi is the elementary contraction of u and v.
It is obvious that both choices yield identical complexes Ki+1 up to renaming of vertices.
However, the choices make a difference in terms of the size of K̂i+1, because the active closed
star of u to v in K̂i might differ in size. Our construction simply choose the representative
which causes the smaller K̂i+1.

3.2 Topological equivalence

We assume w.l.o.g. that the vertices in Ki are named such that, whenever our construction
encounters an elementary contraction φi of u and v and turns v inactive, we have φi(u) =
φi(v) = u. With this convention, Ki is the subcomplex of K̂i induced by the active vertices.

I Lemma 2. A simplex σ is in Ki if and only if σ is an active simplex in K̂i.

The proof works by induction on i, analyzing carefully the effect of a contraction on
K̂i and Ki. Moreover, when an elementary contraction of u and v turns v inactive, every
simplex σ = {v, v1, . . . , vd} that becomes inactive in K̂i has a corresponding simplex τ =
{u, v, v1, . . . , vd} that also becomes inactive. The pairs (σ, τ) can be arranged in collapsible
pairs, which implies with an inductive argument:

I Lemma 3. For every 0 ≤ i ≤ m, the complex K̂i collapses to Ki.

I Proposition 4. T and F have the same barcode.

Proof Sketch. Let φ̂i : K̂i → K̂i+1 and inci : Ki → K̂i denote inclusion maps. Lemma 3
implies that the induced homology map inc∗i : H(Ki) → H(K̂i) is an isomorphism for all

SoCG 2017

57:8 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

0 ≤ i ≤ m. The following diagram connects the persistence modules induced by T and F :

H(K0) φ∗
0−−−−→ H(K1) φ∗

1−−−−→ ...
φ∗

m−1−−−−→ H(Km)yinc∗
0

yinc∗
1

yinc∗
m

H(K̂0) φ̂∗
0−−−−→ H(K̂1) φ̂∗

1−−−−→ ...
φ̂∗

m−1−−−−→ H(K̂m)

(1)

Our result follows from the Persistence Equivalence Theorem [15, p.159] which asserts
that (Kj)j=0,...,m and (K̂j)j=0,...,m have the same barcode if (1) commutes, that is, if
inc∗i+1 ◦ φ∗i = φ̂∗i ◦ inc∗i , for all 0 ≤ i < m. The latter statements follows from the fact that
inci+1 ◦ φi and φ̂i ◦ inci are contiguous maps. J

3.3 Size analysis

The contracting forest. We associate a rooted labeled forest Wj to a prefix ∅ = K0
φ0→

. . .
φj−1→ Kj of T inductively as follows: For j = 0, W0 is the empty forest. Let Wj−1 be the

forest of K0 → . . .→ Kj−1. If φj−1 is an elementary inclusion of a d-simplex, we have two
cases: if d > 0, set Wj :=Wj−1. If a vertex v is included, Wj :=Wj−1 ∪{x}, with x a single
node tree labeled with v. If φj−1 is an elementary contraction contracting two vertices u
and v in Kj−1, there are two trees in Wj−1, whose roots are labeled u and v. In Wj , these
two trees are merged by making their roots children of a new root, which is labeled with the
vertex that u and v are mapped to. So Wj is full, that is, every node has 0 or 2 children.

Let W :=Wm denote the forest of the tower T . Let Σ denote the set of all simplices that
are added at elementary inclusions in T , and recall that n = |Σ|. For a node x in W, we
denote by E(x) ⊆ Σ the subset of simplices with at least one vertex that appears as label in
the subtree of W rooted at x. If y1 and y2 are the children of x, the following follows at once:

|E(x)| ≥ |E(y1)|+ |E(y2) \ E(y1)| . (2)

We say that the set N of nodes in W is independent, if there are no two nodes x1 6= x2 in
N , such that x1 is an ancestor of x2 in W. A vertex in Ki appears as label in at most one
W-subtree rooted at a vertex in the independent set N . Thus, a d-simplex σ can only appear
in up to d+ 1 E-sets of vertices in N . That implies:

I Lemma 5. Let N be an independent set of vertices inW. Then,
∑
x∈N |E(x)| ≤ (∆+1) ·n.

The cost of contracting. In order to bound the total size of K̂m, we need to bound the
number of simplices added in all these contractions. We define the cost of a contraction φi
as |K̂i+1 \ K̂i|. Since each contraction corresponds to a node x in W , we can associate these
costs to the internal nodes in the forest, denoted by c(x). The leaves get cost 0.

I Lemma 6. For an internal node x of W with children y1, y2, c(x) ≤ 2 · |E(y1) \ E(y2)|.

Proof Sketch. Let φi : Ki → Ki+1 denote the contraction that is represented by the node
x, and let w1 and w2 the labels of its children y1 and y2, respectively. By construction, w1
and w2 are vertices in Ki that are contracted by φi. Let C1 = St(w1,Ki) \ St(w2,Ki) and
C2 = St(w2,Ki) \ St(w1,Ki). By Lemma 2, St(w1,Ki) = ActSt(w1, K̂i), and the same for
w2. So, because the common simplices of the two active closed stars do not influence the
cost of the contraction, we have c(x) ≤ min{|C1|, |C2|}, because the contraction is defined
such that the resulting complex is as small as possible.

M. Kerber and H. Schreiber 57:9

W(0) W(1)

W(2) W(3) = ∅

Figure 2 Iterations of the pruning procedure. The only-child-paths are marked in color.

In particular, c(x) ≤ |C1|. It is left to show that |C1| ≤ 2 · |E(y1) \E(y2)|. We do this by
a simple charging scheme which attributes the existence of a simplex in C1 to a simplex in
E(y1) \ E(y2) such that no simplex in the latter set is charged more than twice. J

An ascending path (x1, ..., xL), with L ≥ 1, is a path in a forest such that xi+1 is the
parent of xi, for 1 ≤ i < L. We call L the length of the path and xL its endpoint. For
ascending paths in W, the cost of the path is the sum of the costs of the nodes. The set P
of ascending paths is independent, if the endpoints in P are pairwise different and form an
independent set of nodes. We define the cost of P as the sum of the costs of the paths in P .

I Lemma 7. An ascending path with endpoint x has cost at most 2 · |E(x)|. An independent
set of ascending paths in W has cost at most 2 · (∆ + 1) · n.

Proof. For the first statement, let p = (x1, ..., xL) be an ascending path with vL = v. Without
loss of generality, we can assume the the path starts with a leaf x1, because otherwise, we can
always extend the path to a longer path with at least the same cost. We let pi = (x1, . . . , xi)
denote the sub-path ending at xi, for i = 1, . . . , L, so that pL = p. We let c(pi) denote the
cost of the path pi and show by induction that c(pi) ≤ 2 · |E(xi)|. For i = 1, this follows
because c(p1) = 0. For i = 2, . . . , L, xi is an internal node, and its two children are xi−1 and
some other node x′i−1. Using induction and Lemma 6, we have that

c(pi) = c(pi−1) + c(xi) ≤ 2 · (|E(xi−1)|+ |E(x′i−1) \ E(xi−1)|) ≤ 2 · |E(xi)|,

where the last inequality follows from (2). The second statement follows from Lemma 5
because the endpoints of the paths form an independent set in W. J

Ascending path decomposition. An only-child-path in a binary tree is an ascending path
starting in a leaf and ending at the first encountered node that has a sibling, or at the root of
the tree. Consider the following pruning procedure for a full binary forest W . Set W(0) ←W .
In iteration i, we obtain the forest W(i) from W(i−1) by deleting the only-child-paths of
W(i−1). We stop when W(i) is empty. Figure 2 shows the pruning procedure on an example.
We define the following integer valued function for nodes in W:

r(x) =

1, if x is a leaf,
r(y1) + 1, if x has children y1, y2 and r(y1) = r(y2),
max{r(y1), r(y2)}, if x has children y1, y2 and r(y1) 6= r(y2).

With two simple inductive arguments, we can show the next two lemmas:

I Lemma 8. A node x of a full binary forest W is deleted in the pruning procedure during
the r(x)-th iteration.

SoCG 2017

57:10 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

I Lemma 9. For a node x in a full binary forest, let s(x) denote the number of nodes in the
subtree rooted at x. Then s(x) ≥ 2r(x) − 1. In particular, r(x) ≤ log2(s(x) + 1).

With that, we can bound the size of the constructed filtration.

I Proposition 10. |K̂m| ≤ n+ 2 · (∆ + 1) · n · (1 + log2(n0)) = O(n ·∆ · log2(n0)), where n0
is the number of vertices included in T .

Proof Sketch. The first summand counts the number of elementary inclusions, the second
one the total cost of the contractions. The costs of all nodes removed in one iteration
of the pruning procedure are at most 2 · (∆ + 1) · n by Lemma 7 because the considered
only-child-paths form an independent set of ascending paths. By Lemma 9, all nodes have
been considered after 1 + log2(n0) iterations. J

3.4 Algorithm
A dictionary is a data structure that stores a set of items of the form (k,v), where k is
called the key and is unique and v is called the value of the item. The dictionary supports
three operations: insert(k,v) adds a new item, delete(k) removes the item with key k
and search(k) returns the item with key k, or returns that no such item exists. Common
realizations are balanced binary search trees [11, §12] and hash tables [11, §11].

Simplicial complexes by dictionaries. The main data structure of our algorithm is a
dictionary D that represents a simplicial complex. Every item stored in the dictionary
represents a simplex, whose key is the list of its vertices. Every simplex σ itself stores an
dictionary CoFσ. Every item in CoFσ is a pointer to another item in D, representing a
cofacet τ of σ. The key of the item is a vertex identifier (e.g., an integer) for v such that
τ = v ∗σ. Assuming that the size of a dictionary is linear in the number n of stored elements,
the size of D is in O(n∆), if ∆ is the dimension of the represented complex. With the right
search(k) function and key encoding, each simplex insertion and deletion requires O(∆)
dictionary operations. In what follows, it is convenient to assume that dictionary operations
have unit costs; we multiply the time complexity with the cost of a dictionary operation at
the end to compensate for this simplification.

The conversion algorithm. We assume that the tower T is given to us as a stream where
each element represents a simplicial map φi in the tower: an element starts with a token {I,
C} that specifies the type of the map and ends with the identifiers of the involved vertices.
The algorithm outputs a stream of simplices specifying the filtration F : while handling the
i-th input element, it outputs the simplices of K̂i+1 \ K̂i in increasing order of dimension. We
use an initially empty dictionary D and maintain the invariant that after the i-th iteration,
D represents the active subcomplex of K̂i, which is equal to Ki by Lemma 2.

If the algorithm reads an inclusion of a simplex σ from the stream, it simply adds σ to
D and writes σ to the output stream. If the algorithm reads a contraction of two vertices
u and v, from Ki to Ki+1, we let ci = |K̂i+1 \ K̂i| denote the cost of the contraction. The
first step is to determine which of the vertices has the smaller closed star in Ki. The size of
the closed star of a vertex v could be computed by a simple graph traversal in D, starting
at a vertex v and following the cofacet pointers recursively. However, we want to identify
the smaller star with only O(ci) operations. Therefore, we change the traversal in several
ways: First of all, observe that |St(u)| ≤ |St(v)| if and only if |St(u)| ≤ |St(v)|. Now define
St(u,¬v) := St(u) \ St(v). Then, |St(u)| ≤ |St(v)| if and only if |St(u,¬v)| ≤ |St(v,¬u)|,

M. Kerber and H. Schreiber 57:11

because we subtracted the intersection of the stars on both sides. Finally, note that
min{|St(u,¬v)|, |St(v,¬u)|} ≤ ci. Moreover, we can count the size of St(u,¬v) by a cofacet
traversal from u, ignoring cofacets that contain v in O(|St(u,¬v)|) time. Finally, we count
the sizes of St(u,¬v) and St(v,¬u) at the same time by a simultaneous graph traversal
of both, terminating as soon as one of the traversal stops. The running time is then
proportional to 2 ·min{|St(u,¬v)|, |St(v,¬u)|} = O(ci), as required. Assume w.l.o.g. that
|St(u)| ≤ |St(v)|. Also in time O(ci), we can obtain St(u,¬v). We sort its elements by
increasing dimension, which can be done in O(ci + ∆) using integer sort. For each simplex
σ = {u, v1, . . . , vk} ∈ St(u,¬v) in order, we check whether {v, v1, . . . , vk} is in D. If not, we
add it to D and also write it to the output stream. Then, we output {u, v, v1, . . . , vk}. At the
end of the loop, we wrote exactly the simplices in Ki+1 \Ki to the output stream. It remains
to maintain the invariant on D. Assuming still that |St(u)| ≤ |St(v)|, u turns inactive in
K̂i+1. We simply traverse over all cofaces of u and remove all encountered simplices from D.

Complexity analysis. By applying the operation costs on the above described algorithm,
we obtain the following statement. Combined with Propositions 4 and 10, it completes the
proof of Theorem 1.

I Proposition 11. The algorithm requires O(∆ · ω) space and O(∆ · |K̂m| · Cω) time, where
ω = maxi=0,...,m |Ki| and Cω is the cost of an operation in a dictionary with ω elements.

Proof Sketch. By the above description, the cost of a contraction can be bounded by
O(∆(ci + di)Cω), where ci is the number of simplices added, and di the number of simplices
that become inactive in the i-th iteration. Because

∑
ci and

∑
di are both in O(|Km|), the

result follows. J

Using balanced binary trees as dictionary, we get Cω = O(∆ logω) because comparing
two keys costs O(∆). Using hash tables, the expected complexity is Cω = O(∆).

Experimental results. The following tests where made on a 64-bit Linux (Ubuntu) HP
machine with a 3.50 GHz Intel processor and 63 GB RAM. The programs were all implemented
in C++ and compiled with optimization level –O2.

To test the performance of our algorithm, we compared it to the software Simpers
(downloaded in May 2016)2, which is the implementation of the Annotation Algorithm from
Dey, Fan and Wang described in [13]. Simpers computes the persistence of the given filtration,
so we add to our time the time the library PHAT (version 1.4.1) needs to compute the
persistence from the generated filtration (with default parameters).

The results of the tests are in Table 1. The timings for File IO are not included in the
process time of PHAT and Simpers. The memory peak was obtained via the ’/usr/bin/time
–v’ Linux command. The first three towers in the table, data1-3, were generated incrementally
on a set of n0 vertices: In each iteration, with 90% probability, a new simplex is included, that
is picked uniformly at random among the simplices whose facets are all present in the complex,
and with 10% probability, two randomly chosen vertices of the complex are contracted. This
is repeated until the complex on the remaining k vertices forms a k − 1-simplex, in which
case no further simplex can be added. The remaining data was generated from the SimBa
(downloaded in June 2016) library with default parameters using the point clouds from [14].
To obtain the towers that SimBa computes internally, we included a print command at a
suitable location in the SimBa code.

2 http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html

SoCG 2017

http://web.cse.ohio-state.edu/~tamaldey/SimPers/Simpers.html

57:12 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

Table 1 Experimental results. The symbol ∞ means that the calculation time exceeded 12 hours.

Alg1 + PHAT Simpers

c n n0 ∆ ω
filtration

size
time
(s)

mem. peak (kB)
Alg1 / total

time
(s)

mem. peak
(kB)

data1 495 4 833 500 4 2 908 19 747 0.12 4 644 / 7 040 2.49 10188

data2 795 7 978 800 4 4 816 35 253 0.20 5 424 / 10 228 13.97 20308

data3 794 8 443 800 5 5 155 38 101 0.22 5 744 / 10 916 19.29 24 924

GPS 1 746 8 585 1 747 3 1 747 9 063 0.07 4 072 / 5 292 0.35 6 064

KB 22 499 95 019 22 500 3 22 500 133 433 0.50 10 520 / 18 712 2.83 24 460

MC 23 074 143 928 23 075 3 28 219 185 447 0.72 14 636 / 25 272 4.12 26 020

S3 252 995 1 473 580 252 996 4 252 996 1 824 461 10.09 94 020 / 221 636 49.86 239 404

PC25 14 999 10 246 125 15 000 3 2 191 701 12 283 003 135.02 1 029 680 / 2 223 544 ∞ –

To verify that the space consumption of our algorithm does not dependent on the length
of the tower, we constructed an additional example whose size exceeds our RAM capacity,
but whose width is small: we obtained a tower of length about 3.5 ·109 which has a file size of
about 73 GB, but only has a width of 367. Our algorithm took about 2 hours to convert this
tower into a filtration of size roughly 4.6 · 109. During the conversion, the virtual memory
used was constantly around 22 MB and the resident set size about 3.8 MB only, confirming
the theoretical prediction that the space consumption is independent of the length.

4 Persistence by Streaming

If the original tower is small, we want to be able to compute its persistence even if the tower
is extremely long. So we design here a streaming variation of the reduction algorithm that
computes the barcode of filtrations with a more efficient memory use than the standard
algorithm. More precisely, we will prove the following theorem:

I Theorem 12. With the same notation as in Theorem 1, we can compute the barcode of a
tower T in worst-case time O(ω2 ·∆ · n · logn0) and space complexity O(ω2)

Algorithmic description. The input to the algorithm is a stream of elements, each starting
with a token {Add, I} followed by an identifier which represents a simplex σ. In the Add case,
this is followed by the identifiers of the facets of σ. The I means that σ has become inactive.

The algorithm uses a matrix data type M as its main data structure. We realize M as
a dictionary of columns, indexed by a simplex identifier. Each column is a sorted linked
list of identifiers corresponding to the non-zero row indices of the column. In particular,
we can access the pivot of the column in constant time and we can add two columns in
time proportional to the maximal size of the involved lists. There are two secondary data
structures that we mention briefly. Firstly, a dictionary where the keys represents row
indices r and their corresponding value is the column that has r as pivot. Secondly, a
dictionary representing the set of active simplex identifiers, plus a positive/negative flag. It
is straight-forward to maintain these structures during the algorithm, and we will omit the
description of the required operations.

The algorithm uses two subroutines. The first one, called reduce_column, takes a column
identifier j as input and iterate through the non-zero row indices of j: if an index i is the
index of an inactive and negative column in M , remove the entry from the column j (cf. to
“compression” at end of Section 2). Afterwards, while the column is non-empty, and its

M. Kerber and H. Schreiber 57:13

pivot i is the pivot of another column k < j in the matrix, add column k to column j. The
second subroutine, remove_row, takes a index ` as input: let j be the column with ` as
pivot. Traverse all non-zero columns of the matrix except column j. If a column i 6= j has a
non-zero entry at row `, add column j to column i. After traversing all columns, remove
column j from M .

The main algorithm can be described easily now: if we add a simplex, we add the column
to M and call reduce_column on it. If at the end of that routine, the column is empty,
it is removed from M . If the column is not empty and has pivot `, we report (`, j) as a
persistence pair and check whether ` is active. If not, we call remove_row(`). If the input
stream specifies that simplex ` becomes inactive, we check whether ` appears as pivot in the
matrix and call remove_row(`) in this case.

I Proposition 13. The algorithm computes the correct barcode.

Proof Sketch. First, note that removing a column fromM within the procedure remove_row
does not affect further reduction steps. Then, remove_row might also include right-to-left
column additions. But we can easily show that a column reduced with right-to-left additions
can also be expressed by a sequence of left-to-right column additions, and thus yields the
same pivot as in the standard algorithm. J

Complexity analysis. We analyze how large the structure M can become during the al-
gorithm. After every iteration, the matrix represents the reduced boundary matrix of some
intermediate complex L̂ with K̂i ⊆ L̂ ⊆ K̂i+1 for some i = 0, . . . ,m. Moreover, the active
simplices define a subcomplex L ⊆ L̂ and there is a moment during the algorithm where
L̂ = K̂i and L = Ki, for every i = 0, . . . ,m. We call this the i-th checkpoint.

I Lemma 14. At every moment, the number of columns stored in M is at most 2ω.

This come from the fact that, throughout the algorithm, a column is stored in M only if
it has an active pivot. The number of rows is more difficult to bound because we cannot
guarantee that each column in M corresponds to an active simplex. Still, the number of
rows is asymptotically the same:

I Lemma 15. At every moment, the number of rows stored in M is at most 4ω.

Proof Sketch. Consider a row index ` and a time in the algorithm where M represents L̂.
There are at most 2ω active row indices at any time. Moreover, following the algorithm, `
cannot represent an inactive negative simplex neither an active one that was paired with
another index. Therefore, we restrict our attention to the remaining case, that ` is inactive,
positive and has not been paired so far. It is well-known that in this case, ` is the generator
of an homology class of L̂. Let β(L̂) :=

∑∆
i=0 βi(L̂) denote the sum of the Betti numbers of

the complex. Then, it follows that the number of such row indices is at most β(L̂). We have
that β(K̂i) = β(Ki) by Lemma 3, and since Ki has at most ω simplices, β(Ki) ≤ ω. Since we
add at most ω simplices to get from K̂i to L̂, and each addition can increase β by at most
one, we have that β(L̂) ≤ 2ω. J

I Proposition 16. The algorithm runs in time O(ω2 ·∆ · n · logn0) with O(ω2) space.

Proof. The space complexity is immediately clear from the preceding two lemmas, as M is
the dominant data structure in terms of space consumption. For the time complexity, we
observe that both subroutines reduce_column and remove_row need O(ω) column additions
and O(ω) dictionary operations in the worst case. A column addition costs O(ω), and a

SoCG 2017

57:14 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

0

100000

200000

300000

400000

500000

600000

0

20

40

60

80

100

120

140

160

1000 10000 100000 1000000

total_time	(s) memory_peak	 (kB)

Figure 3 Evolution of processing time (left Y-axis in sec) and process memory peak (right Y-axis
in kB) depending on the chunk size (logarithmic X-axis).

dictionary operation is not more expensive So, the complexity of both methods is O(ω2).
Since each routine is called at most once per input element, and there are O(∆ · n · logn0)
elements by Theorem 1, the bound follows. J

Implementation. The algorithm just described is not efficient in practice, partially because
remove_row scans the entire matrix M which should be avoided. We outline a variant that
behaves better in practice. The idea is to perform a “batch” variant of the previous algorithm:
We define a chunk size C and read in C elements from the stream; we insert added columns
in the matrix, but not reducing the columns yet. After having read C elements, we start the
reduction of the newly inserted columns using the clearing optimization: that is, we go in
decreasing dimension and remove a column as soon as its index becomes the pivot of another
column; see [8] for details. After the reduction ends, except for the last chunk, we go over
the columns of the matrix and check for each pivot whether it is active. If it is, we traverse
its row entries in decreasing order, but skipping the pivot. Let ` be the current entry. If ` is
the inactive pivot of some column j, we add j to the current column. If ` is inactive and
represents a negative column, we delete ` from the current column. After performing these
steps for all remaining columns of the matrix, we go over all columns again, deleting every
column with inactive pivot.

How to choose the parameter C? The chunk provides a trade-off between time and space
efficiency. Roughly speaking, the matrix can have up to O(ω + C) columns during this
reduction, but the larger the chunks are, the more benefit one can draw from clearing.

Experimental evaluation. The tests were made with the same setup as in Section 3.4.
Figure 3 shows the effect of the chunk size parameter C on the runtime and memory
consumption of the algorithm. The data used is S3 (see Section 3.4); we also performed the
tests on the other examples from Table 1, with similar outcome. The File IO operations
are included in the measurements. Confirming the theory, as the chunk size decreases, our
implementation needs less space but more computation time (while the running time seems
to increase slightly again for larger chunk sizes).

For the 4.6 · 109-inclusions-tower from Section 3.4, with C = 200 000, the algorithm took
around 4.5 hours, the virtual memory used was constantly around 68 MB and the resident
set size constantly around 49 MB, confirming the theoretical statement that the memory
size does not depend on the length of the filtration.

M. Kerber and H. Schreiber 57:15

References
1 U. Bauer, M. Kerber, and J. Reininghaus. Clear and Compress: Computing Persistent

Homology in Chunks. In Topological Methods in Data Analysis and Visualization III, Math-
ematics and Visualization, pages 103–117. Springer, 2014.

2 U. Bauer, M. Kerber, and J. Reininghaus. Distributed Computation of Persistent Homology.
In Workshop on Algorithm Engineering and Experiments (ALENEX), pages 31–38, 2014.

3 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Phat – Persistent Homology Al-
gorithms Toolbox. Journal of Symbolic Computation, 78:76–90, 2017.

4 J.-D. Boissonnat, T. Dey, and C. Maria. The Compressed Annotation Matrix: An Efficient
Data Structure for Computing Persistent Cohomology. In European Symp. on Algorithms
(ESA), pages 695–706, 2013.

5 M. Botnan and G. Spreemann. Approximating Persistent Homology in Euclidean space
through collapses. Applied Algebra in Engineering, Communication and Computing, 26:73–
101, 2015.

6 G. Carlsson. Topology and Data. Bulletin of the AMS, 46:255–308, 2009.
7 G. Carlsson, V. de Silva, and D. Morozov. Zigzag Persistent Homology and Real-valued

Functions. In ACM Symp. on Computational Geometry (SoCG), pages 247–256, 2009.
8 C. Chen and M. Kerber. Persistent Homology Computation With a Twist. In European

Workshop on Computational Geometry (EuroCG), pages 197–200, 2011.
9 C. Chen and M. Kerber. An output-sensitive algorithm for persistent homology. Compu-

tational Geometry: Theory and Applications, 46:435–447, 2013.
10 A. Choudhary, M. Kerber, and S. Raghvendra. Polynomial-Sized Topological Approxima-

tions Using The Permutahedron. In 32nd Int. Symp. on Computational Geometry (SoCG),
pages 31:1–31:16, 2016.

11 T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms. The MIT
press, 3rd edition, 2009.

12 V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Dualities in persistent (co)homology.
Inverse Problems, 27:124003, 2011.

13 T. Dey, F. Fan, and Y. Wang. Computing Topological Persistence for Simplicial Maps. In
ACM Symp. on Computational Geometry (SoCG), pages 345–354, 2014.

14 T. Dey, D. Shi, and Y. Wang. SimBa: An efficient tool for approximating Rips-filtration
persistence via Simplicial Batch-collapse. In European Symp. on Algorithms (ESA), pages
35:1–35:16, 2016.

15 H. Edelsbrunner and J. Harer. Computational Topology: an introduction. American Math-
ematical Society, 2010.

16 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persistence and Simplific-
ation. Discrete & Computational Geometry, 28:511–533, 2002.

17 H. Edelsbrunner and S. Parsa. On the Computational Complexity of Betti Numbers: Re-
ductions from Matrix Rank. In ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
152–160, 2014.

18 M. Kerber. Persistent Homology: State of the art and challenges. Internationale Mathem-
atische Nachrichten, 231:15–33, 2016.

19 M. Kerber and H. Schreiber. Barcodes of Towers and a Streaming Algorithm for Persistent
Homology. arXiv, abs/1701.02208, 2017. URL: http://arxiv.org/abs/1701.02208.

20 M. Kerber and R. Sharathkumar. Approximate Čech Complex in Low and High Dimensions.
In Int. Symp. on Algortihms and Computation (ISAAC), pages 666–676, 2013.

21 C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec. The Gudhi Library: Simplicial
Complexes and Persistent Homology. In Int. Congress on Mathematical Software (ICMS),
volume 8592 of Lecture Notes in Computer Science, pages 167–174, 2014.

SoCG 2017

http://arxiv.org/abs/1701.02208

57:16 Barcodes of Towers and a Streaming Algorithm for Persistent Homology

22 C. Maria and S. Oudot. Zigzag Persistence via Reflections and Transpositions. In ACM-
SIAM Symp. on Discrete Algorithms (SODA), pages 181–199, 2015.

23 N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multi-
plication time. In ACM Symp. on Computational Geometry (SoCG), pages 216–225, 2011.

24 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the
computation of persistent homology. arXiv, abs/1506.08903, 2015.

25 S. Oudot. Persistence theory: From Quiver Representation to Data Analysis, volume 209
of Mathematical Surveys and Monographs. American Mathematical Society, 2015.

26 D. Sheehy. Linear-size approximation to the Vietoris-Rips Filtration. Discrete & Compu-
tational Geometry, 49:778–796, 2013.

27 A. Zomorodian and G. Carlsson. Computing Persistent Homology. Discrete & Computa-
tional Geometry, 33:249–274, 2005.

Algorithmic Interpretations of Fractal Dimension∗†

Anastasios Sidiropoulos1 and Vijay Sridhar2

1 Dept. of Mathematics and Dept. of Computer Science & Engineering,
The Ohio State University, Columbus, OH, USA
sidiropoulos.1@osu.edu

2 Dept. of Computer Science & Engineering, The Ohio State University,
Columbus, OH, USA
sridhar.38@buckeyemail.osu.edu

Abstract
We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These
spaces are the subject of intensive study in various branches of mathematics, including geometry,
topology, and measure theory. There are several well-studied notions of fractal dimension for sets
and measures in Euclidean space. We consider a definition of fractal dimension for finite metric
spaces which agrees with standard notions used to empirically estimate the fractal dimension of
various sets. We define the fractal dimension of some metric space to be the infimum δ > 0, such
that for any ε > 0, for any ball B of radius r ≥ 2ε, and for any ε-net N (that is, for any maximal
ε-packing), we have |B ∩N | = O((r/ε)δ).

Using this definition we obtain faster algorithms for a plethora of classical problems on sets
of low fractal dimension in Euclidean space. Our results apply to exact and fixed-parameter
algorithms, approximation schemes, and spanner constructions. Interestingly, the dependence
of the performance of these algorithms on the fractal dimension nearly matches the currently
best-known dependence on the standard Euclidean dimension. Thus, when the fractal dimension
is strictly smaller than the ambient dimension, our results yield improved solutions in all of these
settings.

We remark that our definition of fractal definition is equivalent up to constant factors to
the well-studied notion of doubling dimension. However, in the problems that we consider, the
dimension appears in the exponent of the running time, and doubling dimension is not precise
enough for capturing the best possible such exponent for subsets of Euclidean space. Thus our
work is orthogonal to previous results on spaces of low doubling dimension; while algorithms
on spaces of low doubling dimension seek to extend results from the case of low dimensional
Euclidean spaces to more general metric spaces, our goal is to obtain faster algorithms for special
pointsets in Euclidean space.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases fractal dimension, exact algorithms, fixed parameter tractability, approx-
imation schemes, spanners

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.58

∗ A full version of the paper is available at https://arxiv.org/abs/1703.09324.
† This work was supported by the National Science Foundation (NSF) under grant CCF 1423230 and

award CAREER 1453472.

© Anastasios Sidiropoulos and Vijay Sridhar;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.58
https://arxiv.org/abs/1703.09324
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Algorithmic Interpretations of Fractal Dimension

1 Introduction

Sets of non-integral dimension are ubiquitous in nature and can be used to model a plethora
of processes and phenomena in science and engineering [26]. Sets and measures in Euclidean
space of certain fractal dimension are the subject of study in several branches of mathematics,
including geometry, topology, and measure theory.

In many problems in computational geometry, the dimension of the input set often
determines the complexity of the best-possible algorithms. In this work we study the
computational complexity of geometric problems on sets of bounded fractal dimension in
low-dimensional Euclidean space. We observe the following interesting phenomenon: For
many problems, it is possible to obtain algorithms with dependence on the fractal dimension
similar to the best-possible dependence to the standard Euclidean dimension. This implies
asymptotically faster algorithms when the fractal dimension of the input is smaller than the
ambient dimension.

1.1 Definition of fractal dimension
Intuitively, some X ⊆ Rd has fractal dimension δ ∈ [0, d] if when scaling X by a factor of
α > 0, the “volume” of X is multiplied by a factor αδ. There are many different ways this
intuition can be formalized, such as Hausdorff dimension, Minkowski dimension, and so on.
Unfortunately, some of these definitions are not directly applicable in the context of discrete
computational problems. For example, the Hausdorff dimension of any countable set is 0.

Despite this, there are some natural methods that are used to estimate the fractal
dimension of a set in practice. Let X ⊆ Rd. Let Γε be a d-dimensional grid where each cell
has width ε > 0, and let Iε(X) be the number of cells in Γε that intersect X. The fractal
box-counting dimension of X is defined to be limε→0 log(Iε(X))/ log(1/ε) [8]. This definition
is often used experimentally as follows: Intersect X with a regular lattice (εZ)d, and estimate
the rate by which the cardinality of the intersection grows when ε→ 0. In that context, X
has fractal dimension δ when the size of the intersection grows as (1/ε)δ [18].

We consider a definition that is closely related to box-counting dimension, but is more
easily amenable to algorithmic analysis. Let S ⊆ A. We say that S is an ε-covering of A
if for any x ∈ A we have that dist({x}, S) ≤ ε. For any x ∈ A and y ∈ S we say that x is
covered by y if ρ(x, y) ≤ ε. S is an ε-packing if for any x, y ∈ S we have ρ(x, y) ≥ ε. If S is
both an ε-covering and an ε-packing of A then we say that S is an ε-net of A. We define
the fractal dimension of some family of pointsets P ⊆ Rd, denoted by dimf(P), to be the
infimum δ, such that for any ε > 0 and r ≥ 2ε, for any ε-net1 N of P , and for any x ∈ Rd, we
have |N ∩ ball(x, r)| = O((r/ε)δ). For the sake of notational simplicty, we will be referring to
the fractal dimension of some familty of pointsets P , as the fractal dimension of the pointset
P , with the understanding that in the asymptotic notation |P | is unbounded.

Figure 1 depicts an example of an infinite family of discrete pointsets P with non-integral
fractal dimension constructed as follows: We begin with the 3k × 3k integer grid, for some
k ∈ N, we partition it into 9 subgrids of equal size, we delete all the points in the central
subgrid, and we recurse on the remaining 8 subgrids. The recursion stops when we arrive
at a subgrid containing a single point. This is a natural discrete variant of the Sierpiński
carpet. It can be shown that dimf(P) = log3 8, which is equal to the Hausdorff dimension of
the standard Sierpiński carpet.

1 We arrive at an equivalent definition if we require N to be a ε-packing instead of a ε-net.

A. Sidiropoulos and V. Sridhar 58:3

Figure 1 A discrete variant of the Sierpiński carpet for k = 3.

1.2 Why yet another notion of dimension?

We now briefly compare the above notion of fractal dimension to previous definitions and
motivate its importance. The most closely related notion that has been previously studied
in the context of algorithm design is doubling dimension [2, 15, 10]. We recall that the
doubling dimension of some metric space M , denoted by dimd(M), is defined to be log κ,
where κ is the minimum integer such that for all r > 0, any ball in M of radius r can be
covered by at most κ balls of radius r/2. It is easy to show that for any metric space M ,
we have2 dimd(M) = dimf(M) + O(1) and dimf(M) = O(dimd(M)). Thus our definition
is equivalent to doubling dimension up to constant factors. However, in the problems we
consider, the dimension appears in the exponent of the running time of the best-known
algorithms; therefore, determining the best-possible constant is of importance. As we shall
see, for several algorithmic problems, our definition yields nearly optimal bounds on this
exponent, while doubling dimension is not precise enough for this task.

Let us illustrate this phenomenon on the problem of solving TSP exactly of a set of n
points in the Euclidean plane. It is known that TSP admits an algorithm with running
time 2O(

√
n logn)nO(1) in this case [25]. Moreover, the exponent of O(

√
n logn) is known to

be nearly optimal assuming the Exponential Time Hypothesis (ETH) [23] (see later in this
Section for a more precise statement). We show that for sets of fractal dimension δ ∈ (1, 2],
there exists an algorithm with running time 2O(n1−1/δ logn). Thus, for any fixed δ < 2,
we achieve an asymptotically faster algorithm than what is possible for general pointsets
(assuming ETH). On the other hand, it is known that the unit disk cannot be covered
with 6 disks of radius 1/2 (see [29]). Thus dimd(R2) ≥ log2 7 > 2.807, while dimf(R2) = 2.
Therefore doubling dimension is not precise enough to capture the best-possible exponent in
this setting.

In summary, while algorithms on spaces of low doubling dimension seek to extend results
from the case of low dimensional Euclidean space to a more general setting, our goal is to
obtain faster algorithms for special classes of pointsets in Euclidean space.

1.3 Our results

We obtain algorithms for various problems on sets of low fractal dimension in Euclidean space.
We consider exact algorithms, fixed parameter algorithms, and approximation schemes. In
each one of these settings, we pick classical representative problems. We believe that our
techniques should be directly applicable to many other problems.

2 Note that for a set X containing two distinct points we have dimf(X) = 0 while dimd(X) = 1 and thus
it is not always the case that dimd(X) = O(dimf(X)).

SoCG 2017

58:4 Algorithmic Interpretations of Fractal Dimension

Exact algorithms. We first consider exact algorithms in Rd. It is known that for any fixed
d, TSP on a set of n points in Rd can be solved in time 2O(n1−1/d logn) [25]. By adapting
ideas from the Euclidean setting, we show that TSP on a set of n points of fractal dimension
δ > 1 in constant-dimensional Euclidean space, can be solved in time 2O(n1−1/δ logn). When
δ = 1 and δ < 1, our algorithm has running time nO(log2 n) and nO(logn) respectively. We
remark that it has been shown by Marx and Sidiropoulos [23] that assuming ETH, there is
no algorithm for TSP in Rd with running time 2O(n1−1/d−ε), for any ε > 0. Thus, our result
bypasses this lower bound for sets of low fractal dimension. In particular, our result implies
that, in a certain sense, the hardest instances for TSP in Rd must be close to full-dimensional;
that is, they must have fractal dimension close to d. Our technique also extends to the
Minimum Rectilinear Steiner Tree problem in R2. Due to lack of space, this extension is
omitted.

Parameterized problems. We also consider algorithms for problems parameterized by
the value of the optimum solution. A prototypical geometric problem in this setting is
Independent Set of unit balls in Rd. Formally, we show that given a set D of unit balls in Rd,
the k-Independent Set problem on D can be solved in time nO(k1−1/δ), for any fixed d, where
δ > 1 is the fractal dimension of the set of centers of the disks in D. When δ ≤ 1, we get
an algorithm with running time nO(log k). Previously known algorithms for this problem in
d-dimensional Euclidean space have running time nO(k1−1/d), for any d ≥ 2 [1, 23]. Moreover,
it has been shown that there is no algorithm with running time f(k)no(k1−1/d), for any
computable function f , assuming ETH [23] (see also [22]). Thus, our result implies that this
lower bound can also be bypassed for sets of fractal dimension δ < d.

Approximation schemes. We next consider approximation schemes. Let P be a set of
n points of fractal dimension δ > 0, in d-dimensional Euclidean space. We show that for
any R > 0, for any ` > 0, we can compute a (1 + d/`)-approximate R-cover of P in time
`d+δnO((`

√
d)δ). This matches the performance of the algorithm of Hochbaum and Maass [16]

after replacing δ by d. We also obtain a similar algorithm for the R-packing problem.

Spanners and pathwidth. Recall that for any pointset in Rd, and for any c ≥ 1, a c-spanner
for P is a graph G with V (G) = P , such that for all x, y ∈ P , we have ‖x− y‖2 ≤ dG(x, y) ≤
c · ‖x− y‖2, where dG denotes the shortest path distance in G. The parameter c is called the
dilation of G. It is known that for any ε > 0, any set of n points in Rd admits a (1+ε)-spanner
of size n(1/ε)O(d) [24, 28]. We strengthen this result in the following way. We show that
for any ε > 0, any set of n points of fractal dimension δ in constant-dimensional Euclidean
space admits a (1 + ε)-spanner of size n(1/ε)O(d), and of pathwidth at most O(n1−1/δ logn)
if δ > 1, at most O(log2 n) if δ = 1, and at most O(logn) if δ < 1. Our spanner is obtained
via a modification of the construction due to Vaidya [28]. This provides a general polynomial-
time reduction for geometric optimization problems on Euclidean instances of low fractal
dimension to corresponding graph instances of low pathwidth. This result can be understood
as justification for the fact that instances of low fractal dimension appear to be “easier”
than arbitrary instances. We remark that our construction also implies, as a special case,
that arbitrary n-pointsets in Rd admit (1 + ε)-spanners of size n(1/ε)O(d) and pathwidth
O(n1−1/d logn); this bound on the pathwidth appears to be new, even for the case d = 2.

1.4 Related work
There is a large body of work on various notions of dimensionality in computational geometry.
Most notably, there has been a lot of effort on determining the effect of doubling dimension

A. Sidiropoulos and V. Sridhar 58:5

on the complexity of many problems [14, 3, 7, 19, 9, 21, 4, 6, 11, 27]. Other notions that have
been considered include low-dimensional negatively curved spaces [20], growth-restricted
metrics [17], as well as generalizations of doubling dimension to metrics of bounded global
growth [5].

A common goal in all of the above lines of research is to extend tools and ideas from
the Euclidean setting to more general geometries. In contrast, as explained above, we study
restricted classes of Euclidean instances, with the goal of obtaining faster algorithms than
what is possible for arbitrary Euclidean pointsets.

1.5 Notation and definitions

Let (X, ρ) be some metric space. For any x ∈ X and r ≥ 0, we define ball(x, r) = {y ∈
X : ρ(x, y) ≤ r} and sphere(x, r) = {y ∈ X : ρ(x, y) = r}. For some A,B ⊆ X, we
write dist(A,B) = infx∈A,y∈B{ρ(x, y)}. For some r ≥ 0, we write N(A, r) = {x ∈ X :
dist(A, {x}) ≤ r}. Let S ⊆ A. We say that S is an ε-covering of A if for any x ∈ A we have
that dist({x}, S) ≤ ε. For any x ∈ A and y ∈ S we say that x is covered by y if ρ(x, y) ≤ ε.
S is an ε-packing if for any x, y ∈ S we have ρ(x, y) ≥ ε. If S is both an ε-covering and an
ε-packing of A then we say that S is an ε-net of A.

We recall the following definition from [25]. Let D be a collection of subsets of Rd. D is
said to be κ-thick if no point is covered by more than κ elements of D. Let D′ be any subset
of D such that the ratio between the diameters of any pair of elements in D′ is at most λ.
Then D′ is said to be λ-related. D is said to be (λ, κ)-thick if no point is covered by more
than κ elements of any λ-related subset of D.

The pathwidth of some graph G, denoted by pw(G), is the minimum integer k ≥ 1, such
that there exists a sequence C1, . . . , C` of subsets of V (G) of cardinality at most k + 1, such
that for all {u, v} ∈ E(G), there exists i ∈ {1, . . . , `} with {u, v} ⊆ Ci, and for all w ∈ V (G),
for all i1 < i2 < i3 ∈ {1, . . . , `}, if w ∈ Ci1 ∩ Ci3 then w ∈ Ci2 .

1.6 Organization

The rest of the paper is organized as follows. In Section 2 we derive a separator Theorem for
a set of balls whose set of centers has bounded fractal dimension. In Section 3 we present our
exact algorithm for TSP. In Section 4 we give a fixed-parameter algorithm for Independent
Set of unit balls. In Section 5 we give approximation schemes for packing and covering unit
balls. Finally, in Section 6 we present our spanner construction. Due to lack of space, some
of the proofs have been deferred to the Appendix.

2 A separator theorem

In this section we prove a separator theorem for a set of d-balls intersecting a set of points
with bounded fractal dimension. Subsequently, this result will form the basis for some of our
algorithms. The proof uses an argument due to Har-Peled [13].

I Theorem 1. Let d ≥ 2 be some integer, and let δ ∈ (0, d] be some real number. Let P ⊂ Rd
such that dimf(P) = δ. Let B be a (λ, κ)-thick set of d-balls in Rd, with |B| = n, λ ≥ 2 and
such that for all b ∈ B we have b ∩ P 6= ∅. Then there exists a (d− 1)-sphere C such that at
most (1− 2−O(d))n of the elements in B are entirely contained in the interior of C, at most

SoCG 2017

58:6 Algorithmic Interpretations of Fractal Dimension

(1− 2−O(d))n of the elements in B are entirely outside C, and

|A| =

O
(
κ(5λ)d6δ λ

1−λ(1−δ)n
1−1/δ

)
if δ > 1

O
(
κ(5λ)d6δ logn

)
if δ = 1

O
(
κ(5λ)d6δ
λ1−δ−1

)
if δ < 1

,

where A = {b ∈ B : diam(b) ≤ diam(C) and b ∩ C 6= ∅}.

Proof. It is known that any ball in Rd of radius r can be covered by at most k(d) = 2O(d)

balls of radius r
2 . Let C

′ be the d-ball of minimum radius that contains at least 1
k(d)+1n of

the elements in B, breaking ties by choosing the ball that contains the maximum number of
elements in B. Let o denote the origin in Rd. Without loss of generality we can scale and
translate the elements of B and P until the radius of C ′ is 1 and it is centered at o. Now,
let B∗ denote the set of d-balls in B of diameter less than or equal to 4 after scaling. We
pick uniformly at random r ∈ [1, 2] and let C = sphere(o, r). Now we are ready to obtain an
upper bound on the number of elements of B∗ that intersect sphere(o, r) in expectation.

Consider any d-ball b ∈ B∗ of diameter x. The probability that sphere(o, r) intersects b is
at most x. Now let M1 = {b ∈ B∗ : diam(b) ≤ n−1

δ and b ∩ sphere(o, r) 6= ∅} and M2 = {b ∈
B∗ : n−1

δ < diam(b) ≤ 4 and b ∩ sphere(o, r) 6= ∅}. |M1| in expectation is at most O(n1− 1
δ)

as |B∗| ≤ n. It remains to bound the expected value of |M2|.
Let Bi = {b ∈ B∗ : λin−1

δ < diam(b) ≤ min{λi+1n
−1
δ , 4} and b ∩ sphere(o, r) 6= ∅}. Let

ni denote |Bi|. We will construct a λin−1
δ -net of P as follows. Let B′i = Bi. Let π be some

arbitrary ordering of the elements of B′i. In the sequence determined by π pick the next d-ball
b from B′i. Remove all d-balls from B′i that are entirely within a ball of diameter 5 · λi+1n

−1
δ

centered at the center of b. Repeat this procedure for the next element determined by π
until all the remaining d-balls in B′i have been visited. From the fact that B is (λ, κ)-thick
we have that there can be at most κ5dλd elements in B′i that are contained within a ball of
diameter 5 · λi+1n

−1
δ . This implies that we retain at least a constant fraction of the elements

of Bi in B′i. Now from each b ∈ B′i pick a point pb that also belongs to P and take the
union of all such points to get a set of points Ni. From the choice of d-balls in the above
argument |Ni| ≥ 1

κ5dλdni and Ni is λin
−1
δ -packing. We can add more points from P to

Ni to obtain a λin−1
δ -net N ′i . We have that |Ni| ≤ |N ′i ∩ ball(o, 6)| ≤ O((6

λin
−1
δ

)δ) since
dimf(P) = δ and the points of Ni are contained within the ball of radius 6 centered at the
origin. This implies that |Bi| ≤ O(κ(5λ)d6δλ−iδn). Since the d-balls in Bi are intersected by
sphere(o, r) with probability at most λi+1n

−1
δ we have that the expected number of elements

of Bi that are intersected by sphere(o, r) is O(κ(5λ)d6δλi+1−iδn1− 1
δ). We thus get E[|M2|] ≤

logn
δ +2∑
i=0

|Bi|λi+1n
−1
δ ≤

logn
δ +2∑
i=0

O(κ(5λ)d6δλi+1−iδn1− 1
δ). When δ > 1 this implies E[|M2|] ≤

O(κ(5λ)d6δ(λ
1−λ(1−δ))n1− 1

δ). When δ = 1 we have E[|M2|] ≤ O(κ(5λ)d6δλ(logn
δ + 3)n1− 1

δ) ≤

O(κ(5λ)d6δ logn). When δ < 1 we have E[|M2|] ≤ O(κ(5λ)d6δλ(λ
(logn

δ
+3)(1−δ)−1

λ(1−δ)−1)n1− 1
δ) ≤

O(κ(5λ)d6δ
λ1−δ−1).
For any r ∈ [1, 2] we have that A ⊆ B∗. Thus E[|A|] = E[|M1|] + E[|M2|] ≤ O(n1− 1

δ) +
E[|M2|], which implies that

E[|A|] =

O(κ(5λ)d6δ(λ

1−λ(1−δ))n1− 1
δ) if δ > 1

O(κ(5λ)d6δ logn) if δ = 1
O(κ(5λ)d6δ

λ1−δ−1) if δ < 1

A. Sidiropoulos and V. Sridhar 58:7

Finally we need to ensure that C separates a constant fraction of the elements of B. The
choice of C ′ ensures that at least 1

k(d)+1n = 1
2O(d)n of the elements in B are entirely contained

in the interior of C. This implies that at most (1 − 2−O(d))n of the elements of B are in
the exterior of C. Since the (d − 1)-ball of radius 2 is covered by the union of at most
k(d) (d− 1)-balls of unit radius we have that there are at most k(d)

k(d)+1n = (1− 2−O(d))n of
the elements in B contained in the interior of C. We note that the upper bound on E[|A|]
remains unaltered for any choice of C ′. We further remark that using a more complicated
argument similar to the one used by Smith and Wormald [25] a cube separator can be found
that separates a constant fraction of d-balls where the constant is independent of d. J

3 Exact algorithms

In this Section we give an exact algorithm for TSP. We first use Theorem 1 with the following
Lemmas due to Smith and Wormald [25] to obtain a separator for any optimal TSP solution.

I Lemma 2 (Smith and Wormald [25]). Let d ≥ 2 be some integer, and let P ⊂ Rd. Let W
be the edge set of an optimal traveling salesman tour of the points of P . Let B be the set of
circumballs of the edges of W . Then B is (2, κ)-thick where κ = 2O(d).

I Lemma 3 (Smith and Wormald [25]). Let d ≥ 2 be some integer, and let P ⊂ Rd. Let W
be the edge set of an optimal traveling salesman tour of the points of P . For any x ∈ Rd let
Wx = {w ∈W : diam(w) ≥ 1 and w ∩ ball(x, 1) 6= ∅}. Then |Wx| ≤ 2O(d) for all x ∈ Rd.

I Theorem 4. Let d ≥ 2 be some integer, and let δ ∈ (0, d] be some real number. Let P be a
set of n points in Rd with dimf(P) = δ. Let W be the set of edges of any optimal Euclidean
TSP tour of P . Then there exists a (d− 1)-sphere C such that at most (1− 2−O(d))n points
in P are contained in the interior of C, at most (1 − 2−O(d))n points in P are contained
outside C, and

|WC | =

O(n1−1/δ) if δ > 1
O(logn) if δ = 1
O
(

1
21−δ−1

)
if δ < 1

,

where WC = {w ∈W : w ∩ C 6= ∅}.

Proof. Let B be the set of circumballs of the edges in W . From Lemma 2 we have that B is
(2, 2O(d))-thick. Every ball in B contains an edge in W and therefore also two points in P .
Therefore we can use Theorem 1 on B to find a separator C. It remains to bound the number
of edges inW that are intersected by C. LetW1 = {w ∈W : diam(w) ≤ diam(C) and w∩C 6=
∅} and W2 = {w ∈W : diam(w) > diam(C) and w∩C 6= ∅}. Therefore WC = W1 ∪W2. Let
B1 denote the circumballs of the edges in W1 and B2 denote the circumballs of the edges in
W2. If an edge in W1 is intersected by C then the corresponding circumball in B1 is also
intersected by C. From Theorem 1 we have that

|W1| =

O(n1−1/δ) if δ > 1
O(logn) if δ = 1
O
(

1
21−δ−1

)
if δ < 1

W.l.o.g. we can assume that C has unit radius and is centered at the origin by scaling and
translation. Therefore any edge in W2 also intersects the unit ball centered at the origin.
Combining this with Lemma 3 we have that |W2| ≤ O(1). Since |WC | ≤ |W1|+ |W2|, this
concludes the proof. J

SoCG 2017

58:8 Algorithmic Interpretations of Fractal Dimension

We now use Theorem 4 to obtain an exact algorithm for TSP. We note that the O-notation
hides a factor of nO(1)d .

I Theorem 5. Let d ≥ 2 be some fixed integer, and let δ ∈ (0, d] be some real number. Let
P be a set of n points in Rd with dimf(P) = δ. Then for any fixed d an optimal Euclidean
TSP tour for P can be found in time T (n), where

T (n) =

nO(n1−1/δ) if δ > 1
nO(log2 n) if δ = 1
nO(logn) if δ < 1

Proof. First we observe that the (d− 1)-sphere separator C described in Theorem 4 can be
assumed to intersect at least d+ 1 points in P . This is because we can always decrease the
radius of C without changing WC until at least one point in P lies on it. We exhaustively
consider all separating (d− 1)-spheres to find the separator from Theorem 4. Since every
relevant (d− 1)-sphere is uniquely defined by at most d+ 1 points of P intersecting it, there
are at most nO(d) spheres to consider. Let f(n, δ) denote the number of edges intersected by
the separator C. From Theorem 4 we have that

f(n, δ) =

O(n1−1/δ) if δ > 1
O(logn) if δ = 1
O(1) if δ < 1

We guess a set E′ of at most f(n, δ) edges in the optimal tour that intersect C. For each
such guess E′, we also guess the permutation of E′ defined by the order in which the optimal
tour traverses the edges in E′. For each such permutation we solve the two sub-problems in
the exterior and interior of the separator respecting the boundary conditions. The resulting
running time is T (n) ≤ nO(d)nO(f(n,δ))2T

(
(1− 2−O(d))n

)
which implies that for any fixed d

implies the assertion. J

4 Parameterized problems

In this section we present an algorithm for the parameterized version of the Independent Set
problem on a set of unit d-balls in Rd, where set of centers of the d-balls has bounded fractal
dimension. We first prove a separator theorem which will be used in the algorithm.

I Theorem 6. Let d ≥ 2 be an integer. Let δ ∈ (0, d] be a real number. Let P be a set of n
points in Rd with dimf(P) = δ. Let D = {ball(x, 1) : x ∈ P}. Let D′ ⊆ D be a set of disjoint
elements of D such that |D′| = k. Then there exists c ∈ Rd and r > 0 such that at most H
d-balls in D′ intersect sphere(c, r) and at most (1− 2−O(d))k d-balls in D′ are contained on
either side (interior and exterior) of sphere(c, r) where

H =
{
O(k1− 1

δ) if δ > 1
O(1) if δ ≤ 1

Proof. Let P ′ denote the set of centers of the d-balls in D′. We have |P ′| = |D′| = k. Also
since the d-balls in D′ are disjoint we have that P ′ is a 2-packing of P . Consider any c ∈ Rd
and any r ≥ 1. Consider a random (d− 1)-sphere sphere(c, r′) with radius r′ ∈ [r, 2r] chosen
uniformly at random. Now we can bound the number of d-balls in D′ that intersect the
sphere(c, r′). First we note that the center of any d-ball in D′ that potentially intersects
sphere(c, r′) lies within ball(c, 2r+1). Therefore the number of d-balls that potentially intersect

A. Sidiropoulos and V. Sridhar 58:9

sphere(c, r′) is at most |P ′ ∩ ball(c, 2r + 1)|. Since P ′ is a 2-packing that can be augmented
into a 2-net by only adding points, we have that |P ′ ∩ ball(c, 2r + 1)| ≤ O((2r+1

2)δ) = O(rδ).
Therefore we have that the number of d-balls that potentially intersect sphere(c, r′) is at
most min{k,O(rδ)}. Any d-ball in D′ intersects sphere(c, r′) with probability at most 2

r since
r′ is chosen uniformly at random from the interval [r, 2r]. So in expectation the number
of d-balls in D′ that intersect sphere(c, r′) is at most min{k · 2

r , O(rδ) · 2
r}. When r ≤ k

1
δ

and δ > 1 this is at most O(rδ) · 2
r = O(k1− 1

δ), when r ≤ k
1
δ and δ ≤ 1 this is at most

O(rδ) · 2
r = O(rδ−1) = O(1), and when r > k

1
δ this is again at most k · 2

r = O(k1− 1
δ). This

implies that there exists some specific r′ ∈ [r, 2r] such that the number of d-balls in D′ that
intersect sphere(c, r′) is at most O(k1− 1

δ) when δ > 1 and O(1) when δ ≤ 1.
Now it remains to specify our choice of c and r so that sphere(c, r′) induces a balanced

separator. We will use the fact that for any r > 0 any d-ball of radius 2r can be covered by
at most g(d) = 2O(d) d-balls of radius r. Let c and r be chosen such that sphere(c, r) is the
(d− 1)-sphere with minimum radius that also contains in its interior 1

g(d)+1k elements of D′.
Since the d-balls have unit radius it follows that the r ≥ 1. This ensures that there are at
least 1

2O(d) elements of D′ in the interior of sphere(c, r) and therefore at most (1− 2−O(d))k
elements of D′ in the exterior of sphere(c, r). We have that ball(c, r′) is contained within
ball(c, 2r). Since ball(c, 2r) can be covered by at most g(d) d-balls of radius r, by our choice
of c and r we have that sphere(c, r′) encloses at most g(d)

g(d)+1k = (1− 2−O(d))k d-balls in D′
concluding the proof. J

I Theorem 7. Let d ≥ 2 be an integer. Let δ ∈ (0, d] be a real number. Let P be a set of n
points in Rd with dimf(P) = δ. Let D = {ball(x, 1) : x ∈ P}. Then there exists an algorithm
that computes an independent set in D of size k, if one exists, in time T (n, k), where for
any fixed d we have

T (n, k) =
{

nO(k1−1/δ) if δ > 1
nO(log k) if δ ≤ 1

Proof. Let D′ ⊆ D denote the set of k disjoint d-balls in any fixed optimal solution. Let P ′
denote the set of centers of the d-balls in D′. We have |P ′| = |D′| = k. We use a divide and
conquer approach using the separator from Theorem 6. First we guess the center c and radius
r of the smallest (d− 1)-sphere enclosing 1

g(d)+1 of the d-balls in D′. W.l.o.g. we can assume
that there exist a set of d-balls in D′ that are tangential to sphere(c, r) and are enclosed by
sphere(c, r), of cardinality d+1. Moreover sphere(c, r) is uniquely defined by the d-balls that it
is tangential to. This implies that sphere(c, r−1) intersects at least d+ 1 points in P and can
be uniquely defined by at most d+ 1 points in P . We can exhaustively guess c by searching
through all (d− 1)-spheres uniquely defined by at most d+ 1 points in P in time nO(d). Next
we can assume w.l.o.g. that sphere(c, r′) from Theorem 6 is tangential to at least one d-ball
in D′ (otherwise r′ can be increased or decreased until this condition is met without altering
the set of d-balls in D′ that are intersected by the separator). This means that given a fixed
center c we need to search through at most 2n different radii to guess r′. We enumerate over
all such separators. For each such separator we again enumerate over all ways to pick the
d-balls in D′ that are intersected. This can be done in time nO(k1−1/δ) when δ > 1 and nO(1)

when δ ≤ 1. Therefore we have T (n, k) = nO(d) · O(n) · nO(k1−1/δ) · 2 · T
(
n, (1− 2−O(d))k

)
when δ > 1 or T (n, k) = nO(d) ·O(n) ·nO(1) ·2 ·T

(
n, (1− 2−O(d))k

)
when δ ≤ 1, which solves

to the desired bound. J

SoCG 2017

58:10 Algorithmic Interpretations of Fractal Dimension

5 Approximation schemes

In this section we describe polynomial time approximation schemes for covering and packing
problems. We use the approach of Hochbaum and Maass [16].

I Theorem 8. Let d ≥ 2 be some integer, and let δ ∈ (0, d] be some real number. Let P be a
set of n points in Rd with dimf(P) = δ. Then there exists a polynomial time approximation
scheme which given a natural number l > 0 and any ε > 0, computes a (1 + d

l)-approximation
to the ε-cover of P , in time ld+δnO((l

√
d)δ).

Proof. Let A be a d-rectangle that encloses the points in P . Consider a set of hyperplanes
perpendicular to an axis of the ambient space that subdivide A into strips of width 2lε, which
are left closed and right open. This gives a partition P0 of A where each strip has width
2lε. Now for any integer i where 0 < i < l we shift the hyperplanes that define the partition
P0 by 2iε to the right to get the partition Pi. Let S = {P0, P1, . . . , Pl−1}. Let OPT be the
optimal ε-cover of P . Let D be the set of d-balls of radius ε centered at the points in OPT.
Any d-ball in D intersects the hyperplanes from at most one partition in S. Therefore there
exists a partition Pi such that at most |D|l d-balls in D are intersected by the hyperplanes
defining Pi. In other words at most |D|l d-balls in D intersect more than one strip in Pi.
Now we consider partitioning A similarly along each axis to get a grid of hypercubes of side
length 2lε, which we call cells. Using the argument described above it follows that there
exits a partition P ′ such that at most d|D|

l d-balls in D intersect more than one cell in P ′.
Now consider a cell C of side length 2lε. Since dimf(P) = δ and C is contained in a ball

of radius
√
dlε we have that there exists an ε-cover of the points in C of cardinality at most

O(
√
dlε
ε)δ = O(

√
dl)δ.

We combine the above observations to obtain our algorithm as follows. The algorithm
enumerates all ld partitions of P into cells of side length 2lε. Next it enumerates exhaustively
all ε-covers of cardinality at most O((

√
dl)δ) for each cell. Since verifying whether a set of

points is a valid cover takes time O(n(
√
dl)δ) = O(nlδ) this step overall takes time at most

nO((
√
dl)δ) · lδ. Finally the algorithm takes the union of the ε-covers of all the cells to get

an ε-cover of P and returns the best solution over all partitions. Since there exists at least
one partition where at most d|D|

l d-balls in D intersect more than one cell in the partition,
we have that the size of the solution returned is at most (1 + d

l)|D| = (1 + d
l)|OPT|. The

running time of the algorithm is ld · nO((
√
dl)δ) · lδ = ld+δnO((l

√
d)δ). J

I Theorem 9. Let d ≥ 2 be some integer, and let δ ∈ (0, d] be some real number. Let P be a
set of n points in Rd with dimf(P) = δ. There exists a polynomial time approximation scheme
which given a natural number l > 0 and any ε > 0, computes a (1 + d

l−d)-approximation to
the ε-packing of P , in time ld+δnO((l

√
d)δ).

Proof. We use the partitioning approach described in Theorem 8. We consider cells of side
length lε. Since any ε-packing can be augmented into an ε-net we have that any ε-packing
of the points in a cell has cardinality at most O((

√
dl
2)δ). We consider ε-packings for each

cell where the points in the packing are all at least distance ε
2 from the boundary of the cell;

this ensures that the d-balls of radius ε
2 centered at these points do not intersect multiple

cells. Then we take the union of these points over all cells and take the minimum cardinality
set over all partitions. The running time is ld+δnO((l

√
d)δ) by the same reasoning used in

Theorem 8. Let OPT be the optimal ε-packing of P . Since at most d
l |OPT| d-balls in the

optimal packing intersect more than one cell we have that the solution returned by the
algorithm has cardinality at least (1− d

l)|OPT|, as required. J

A. Sidiropoulos and V. Sridhar 58:11

6 Spanners and pathwidth

We remark that several other constructions of (1 + ε)-spanners for finite subsets of d-
dimensional Euclidean space are known. However, they do not yield graphs of small
pathwidth. Here we use a construction that is a modified version of the spanner due to
Vaidya [28]. Let P be a set of n points in Rd. Let us first recall the construction from [28].
Let ε > 0. We will define a graph G with V (G) = P , that is a (1 + ε)-spanner for P .

Let I1, . . . , Id ⊂ R be intervals, all having the same length, and such that each Ii
is either closed, open, or half-open. Then we say that b = I1 × . . . × Id is a box. We
define size(b) to be the length of the interval I1. For each i ∈ {1, . . . , d}, let ψ(b)i be
the center of Ii, and define the half-spaces Li(b) = {(x1, . . . , xd) ∈ Rd : xi < ψi(b)}
and Ri(b) = {(x1, . . . , xd) ∈ Rd : xi ≥ ψi(b)} Let S(b) be the set of boxes such that
S(b) =

{
b′ : b′ = b ∩

(⋂d
i=1 fi

)
, where for all i ∈ {1, . . . , d}, fi = Li(b) or fi = Ri(b)

}
. We

also define shrunk(b) to be some box satisfying the following conditions:
1. If |b ∩ P | ≤ 1 then shrunk(b) = b ∩ P . Note that we allow shrunk(b) to be empty.
2. If |b∩P | ≥ 2 then shrunk(b) is some minimal box contained in b with shrunk(b)∩P = b∩P .

Note that if there are multiple choices for shrunk(b), then we choose one arbitrarily.

For some box b with |b ∩ P | ≥ 2, we define S′(b) to be the set of boxes such that
S′(b) = {b′ : there exists b′′ ∈ S(b) s.t. b′′ ∩ P 6= ∅ and b′ = shrunk(b′′)}. If |b∩P | ≤ 1, then
we define S′(b) = ∅.

The box-tree of P is defined to be a tree T where every node is some box. We set the
root of T to be some minimal box b∗ containing P . For each b ∈ V (T), the set of children of
b in T is S′(b). Note that |b ∩ P | = 1 if and only if b is a leaf of T . For each b ∈ V (T) \ {b∗}
we denote by father(b) the father of b in T .

For each b ∈ V (T) let

Near(b) =
{

b′ ∈ V (T) \ {b∗} : size(b′) < size(b) ≤ size(father(b′)) and dist(b, b′) ≤ 6
√

d

ε
size(b)

}
.

It follows by the construction that for each b ∈ V (T), we have b ∩ P 6= ∅. For each
b ∈ V (T) pick some arbitrary point rep(b) ∈ b ∩ P . We say that rep(b) is the representative
of b. We further impose the constraint that for each non-leaf b ∈ V (T), if b′ is the unique
child of b with rep(b) ∈ b′, then rep(b′) = rep(b). This implies that for every b ∈ V (T), there
exists a branch in T starting at b and terminating at some leaf, such that all the boxes in
the branch have the same representative as b. We remark that this additional requirement is
not necessary in the original construction of Vaidya [28].

We define E(G) = E1 ∪ E2, where E1 = {{rep(b), rep(b′)} : b ∈ V (T), b′ ∈ S′(b), rep(b) 6=
rep(b′)} and E2 = {{rep(b), rep(b′)} : b ∈ V (T), b′ ∈ Near(father(b))}. This completes the
description of the spanner construction due to Vaidya [28]. His result is summarized in the
following.

I Theorem 10 (Vaidya [28]). G is a (1 + ε)-spanner for P . Moreover |E(G)| = O(ε−dn).

For each e = {u, v} ∈ E(G), let De be the circumscribed ball for the segment u-v. Let
D =

⋃
e∈E(G){De}. For each i ∈ {1, 2} let Di =

⋃
e∈Ei{De}.

I Lemma 11. D1 is (2, dO(d))-thick.

Proof. Let r > 0 and define E1,r = {{x, y} ∈ E1 : r ≤ ‖x − y‖2 < 2r}. Let D1,r = {De ∈
D1 : e ∈ E1,r}. It suffices to show that D1,r is dO(d)-thick.

SoCG 2017

58:12 Algorithmic Interpretations of Fractal Dimension

For each e = {x, y} ∈ E1,r we define some unordered pair of boxes γ(e) = {B(e), B′(e)}, as
follows. By the definition of E1, there exists some b ∈ V (T), b′ ∈ S′(b), with rep(b) 6= rep(b′),
such that {x, y} = {rep(b), rep(b′)}. Assume w.l.o.g. that x = rep(b) and y = rep(b′). By the
choice of the representatives, there exist some branch b0, . . . , bt of T , for some t ≥ 1 with
b0 = b, that terminates at some leaf bt, such that x = rep(b) = rep(b0) = . . . = rep(bt). Since
x, y ∈ b, it follows that r ≤ ‖x− y‖2 ≤

√
d · size(b). Since bt is a leaf, we have size(bt) = 0.

Let t∗ ∈ {1, . . . , t} be the maximum integer such that size(bt∗−1) ≥ r/
√
d. Let A ∈ S(bt∗−1)

such that bt∗ ⊆ A. Note that size(A) ≥ r/(2
√
d), and size(bt∗) < r/

√
d. Pick some box B(e),

with bt∗ ⊆ B(e) ⊆ A, such that

size(B(e)) ∈
[
r/(2
√
d), r/

√
d
]

(1)

in a consistent fashion (i.e. for a fixed choice of bt∗ and A we always pick the same box).
Similarly, let b′0, . . . , b′s be a sequence of boxes such that b′0 ∈ S′(b), with b′ ⊆ b′0, and
b′1, . . . , b

′
s is a branch of T starting at b′1 = b′ and terminating at some leaf b′s. Arguing

as before, let s∗ ∈ {1, . . . , s} be the maximum integer such that size(b′s∗−1) ≥ r/(2
√
d). If

s∗ = 1 then let A′ ∈ S′(b′s∗−1), with b′s∗ ⊆ A′; pick some box B′(e), with bs∗ ⊆ B′(e) ⊆ A′,
such that

size(B′(e)) ∈
[
r/(4
√
d), r/(2

√
d)
]

(2)

in a consistent fashion.
We say that e is charged to γ(e). By construction, there exists at most one edge in E1,r

that is charged to each pair of boxes.
By (1) and (2) we have that for each e ∈ E1,r, the pair γ(e) consists of two boxes, each

of size Θ(r/
√
d). Moreover by construction and our choice of boxes we have that for any

e, f ∈ E1,r B(e) and B(f) are disjoint or equal. Similarly B′(e) and B′(f) are also disjoint or
equal. Thus, each point in Rd can be contained in at most O(1) boxes in all the pairs γ(e), for
all e ∈ E1,r. Moreover, dist(B(e), B′(e)) ≤ ‖x− y‖ < 2r. Thus, each box participates in at
most (

√
d)O(d) = dO(d) pairs. For each e ∈ E1,r, let A(e) = N(B(e), r) ∪N(B′(e), r), where

N(X, r) denotes the r-neighborhood of X in Rd. It follows that {A(e)}e∈E1,r is dO(d)-thick.
Since for each e ∈ E1,r, we have De ∈ A(e), it follows that D1 is dO(d)-thick, as required. J

I Lemma 12. D2 is (2, (d/ε)O(d))-thick.

Proof. Let r > 0 and define E2,r = {{x, y} ∈ E2 : r ≤ ‖x − y‖2 < 2r}. Let D2,r = {De ∈
D2 : e ∈ E2,r}. It suffices to show that D2,r is dO(d)-thick.

As in the proof of Lemma 11, for each e ∈ D1,r we define some unordered pair of
boxes γ(e) = {B(e), B′(e)}. By the definition of E2, there exists some b ∈ V (T), b′ ∈
Near(father(b)), such that {x, y} = {rep(b), rep(b′)}. Assume w.l.o.g. that x = rep(b) and
y = rep(b′). Thus we have size(b′) < size(father(b)) ≤ size(father(b′)) and dist(b′, father(b)) ≤
6
√
d
ε size(father(b)). Thus r ≤ ‖x − y‖2 ≤

√
d · size(b) +

√
d · size(b′) + dist(b, b′) <

√
d ·

size(father(b)) +
√
d · size(father(b)) + dist(b′, father(b)) +

√
d · size(father(b)) ≤ (3 + 6/ε)

√
d ·

size(father(b)). Thus size(father(b)) > rε/(9
√
d). Let b0, . . . , bt be a branch in T with

b0 = father(b), and bt = {x}. Arguing as in Lemma 11, let t∗ ∈ {0, . . . , t − 1} be the
maximum integer such that size(bt∗) ≥ rε/(9

√
d). Let A ∈ S′(bt∗), with bt∗+1 ⊆ A, and pick

some box B(e) ⊂ A, with

size(B(e)) ∈
[
(rε)/(18

√
d), (rε)/(9

√
d)
]

(3)

A. Sidiropoulos and V. Sridhar 58:13

Similarly, let b′0, . . . , b′s be a branch of T with b′0 = father(b′), and b′s is a leaf with b′s =
{y}. Arguing as in Lemma 11, let s∗ ∈ {0, . . . , s − 1} be the maximum integer such that
size(b′s∗−1) ≥ (rε)/(9

√
d). Let A′ ∈ S′(bs∗−1) with bs∗ ⊆ A, and pick some box B′(e), with

bs∗ ⊆ A ⊆ B′(e), such that

size(B′(e)) ∈
[
(εr)/(18

√
d), (εr)/(9

√
d)
]

(4)

We say that e is charged to γ(e). By construction, there exists at most one edge in E1,r that
is charged to each pair of boxes.

By (3) and (4) we have that for each e ∈ E2,r, the pair γ(e) consists of two boxes,
each of size Θ((εr)/

√
d). Thus, each point in Rd can be contained in at most O(1) distinct

boxes in all the pairs γ(e), for all e ∈ E2,r. Moreover, dist(B(e), B′(e)) ≤ ‖x − y‖ < 2r.
Thus, each box participates in at most (

√
d/ε)O(d) = (d/ε)O(d) pairs. For each e ∈ E2,r, let

A(e) = N(B(e), r) ∪N(B′(e), r). It follows that {A(e)}e∈E2,r is (d/ε)O(d)-thick. Since for
each e ∈ E2,r, we have De ∈ A(e), it follows that D2 is (d/ε)O(d)-thick, as required. J

I Lemma 13. D is (2, (d/ε)O(d))-thick.

Proof of Lemma 13. By Lemma 11 we have that D1 is (2, dO(d))-thick, and by Lemma 12
we have that D2 is (2, (d/ε)O(d))-thick. Since D = D1 ∪ D2, we get that D is (2, κ)-thick,
where κ = dO(d) + (d/ε)O(d) = (d/ε)O(d), as required. J

Let x, y, z, w ∈ Rd. We say that zw is a shortcut for xy if the following conditions holds:
1. ‖x− z‖2 ≤ ε‖z − w‖2/20.
2. The angle formed by the segments x-y and x-(w − z + x) is at most ε/20.

We now proceed to modify G to obtain a graph G′. Initially, G′ contains no edges. We
consider all edges in G in increasing order of length. When considering an edge e = {x, y}, if
there exists {z, w} ∈ E(G′) such that either zw is a shortcut for xy or zw is a shortcut for
yx, then we do not add e to G′; otherwise we add e to G′. This completes the construction
of G′. We next argue that G′ is a spanner with low dilation for P . The proof of the following
is standard (see e.g. [12]).

I Lemma 14. G′ is a (1 + 2ε)-spanner for P .

Due to lack of space, the proof of Lemma 14 is deferred to the full version.

I Lemma 15. Let c ∈ Rd and let r > 0. Let E∗ = {{x, y} ∈ E(G′) : ‖x− y‖ > 2r and x-y∩
sphere(c, r) 6= ∅}. Then |E∗| ≤ (d/ε)O(d).

Proof of Lemma 15. Let E∗0 = {{x, y} ∈ E∗ : ‖x − y‖ ≤ 100r/ε}. We can partition E∗0
into O(log(1/ε)) buckets, where the i-th bucket contains the balls with radius in [r2i, r2i+1).
Since by Lemma 13, D is (2, (d/ε)O(d))-thick, and all the balls in E∗ are contained in a ball
of radius O(r/ε), it follows that each bucket can contain at most (1/ε)O(d) · (d/ε)O(d) balls.
Thus |E∗0 | = O(log(1/ε)) · (1/ε)O(d) · (d/ε)O(d) = (d/ε)O(d).

Let E∗1 = E∗ \ E∗0 . Suppose that |E∗1 | > (d/ε)Cd. Setting C to be a sufficiently large
universal constant it follows that there exist distinct edges {x, y}, {z, w} ∈ E∗1 that form
an angle of less than ε/20. Assume w.l.o.g. that ‖x − y‖2 ≥ ‖z − w‖2, x ∈ ball(c, r),
and z ∈ ball(c, r). Then zw must be a shortcut for xy, which is a contradiction since
{x, y} ∈ E(G′), concluding the proof. J

We now prove the main result of this section.

SoCG 2017

58:14 Algorithmic Interpretations of Fractal Dimension

I Theorem 16. Let d ≥ 2 be some fixed integer, and let δ ∈ (0, d] be some real number. Let
P ⊂ Rd be some finite point set with |P | = n, such that dimf(P) = δ. Then, for any fixed
ε ∈ (0, 1], there exists a (1 + ε)-spanner, G′, for P , with a linear number of edges, and with

pw(G) =

O(n1−1/δ logn) if δ > 1
O(log2 n) if δ = 1
O(logn) if δ < 1

Moreover, given P , the graph G′ can be computed in polynomial time.

Proof. Let G′ be the spanner constructed above. The bound on the number of edges of G′
follows by Theorem 10 since G′ ⊆ G. We will bound the pathwidth of G′. By Lemma 13 we
have that D is (2, (d/ε)O(d))-thick. By Theorem 1 there exists some (d− 1)-sphere C with
radius r such that at most (1− 2−O(d))n points of P are contained in either side of C, and
|A| ≤M , where

M =

O(n1−1/δ) if δ > 1
O(logn) if δ = 1
O(1) if δ < 1

,

and A = {{x, y} ∈ E(G) : ‖x− y‖ ≤ 2r and x-y ∩ C 6= ∅}.
Let A′ = {{x, y} ∈ E(G′) : ‖x− y‖ ≤ 2r and x-y ∩ C 6= ∅}. We have A′ ⊆ A, and thus

|A′| ≤ |A|. Let A′′ = {{x, y} ∈ E(G′) : ‖x − y‖ > 2r and x-y ∩ C 6= ∅}. By Lemma 15 we
have |A′′| = O(1) (for fixed d and ε). Let S be the set of all endpoints of all the edges
in A′ ∪ A′′. We have |S| ≤ 2|A′ ∪ A′′| = O(|A|). Let U (resp. U ′) be the set of points
in P that are inside (resp. outside) C. Then S separates in G′ every vertex in U from
every vertex in U ′. We may thus recurse on G′[U \ (S ∪ U ′)] and G′[U ′ \ (S ∪ U)] and
obtain path decompositions X1, . . . , Xt and Y1, . . . , Ys respectively. We now obtain the path
decomposition X1 ∪ S, . . . ,Xt ∪ S, Y1 ∪ S, . . . , Ys ∪ S for G′. The width of the resulting path
decomposition is at most O(M logn), concluding the proof. J

Acknowledgements. The authors wish to thank Sariel Har-Peled, Dimitrios Thilikos, and
Yusu Wang for fruitful discussions.

References
1 Jochen Alber and Jiří Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. In Foundations of Information Technology in the
Era of Network and Mobile Computing, pages 26–37. Springer, 2002.

2 Patrice Assouad. Plongements lipschitziens dans Rn. Bulletin de la Société Mathématique
de France, 111:429–448, 1983.

3 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
low-dimensionality implies a polynomial time approximation scheme. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 663–672. ACM, 2012.

4 T.H. Hubert Chan and Anupam Gupta. Small hop-diameter sparse spanners for doubling
metrics. Discrete & Computational Geometry, 41(1):28–44, 2009.

5 T.H. Hubert Chan and Anupam Gupta. Approximating tsp on metrics with bounded
global growth. SIAM Journal on Computing, 41(3):587–617, 2012.

6 T.H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical
routing in doubling metrics. In Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 762–771. Society for Industrial and Applied Mathematics,
2005.

A. Sidiropoulos and V. Sridhar 58:15

7 Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with bounded
doubling dimension. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 574–583. ACM, 2006.

8 Kenneth Falconer. Fractal geometry: mathematical foundations and applications. John
Wiley & Sons, 2004.

9 Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces.
In European Symposium on Algorithms, pages 478–489. Springer, 2008.

10 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on, pages 534–543. IEEE, 2003.

11 Anupam Gupta and Kevin Lewi. The online metric matching problem for doubling metrics.
In International Colloquium on Automata, Languages, and Programming, pages 424–435.
Springer, 2012.

12 Sariel Har-Peled. Geometric approximation algorithms, volume 173. American Mathemat-
ical Society, Providence, 2011.

13 Sariel Har-Peled. A simple proof of the existence of a planar separator. arXiv preprint
arXiv:1105.0103, 2011.

14 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

15 Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,
2012.

16 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

17 David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics.
In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 741–
750. ACM, 2002.

18 Marc Khoury and Rephael Wenger. On the fractal dimension of isosurfaces. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):1198–1205, 2010.

19 Robert Krauthgamer and James R. Lee. The black-box complexity of nearest-neighbor
search. Theoretical Computer Science, 348(2):262–276, 2005.

20 Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
119–132. IEEE, 2006.

21 Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured descent:
A new embedding method for finite metrics. Geometric & Functional Analysis GAFA,
15(4):839–858, 2005.

22 Dániel Marx. Efficient approximation schemes for geometric problems? In European
Symposium on Algorithms, pages 448–459. Springer, 2005.

23 Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1-1/d is the best possible exponent for d-dimensional geometric problems. In Proceedings
of the thirtieth annual symposium on Computational geometry, page 67. ACM, 2014.

24 Jeffrey S Salowe. Construction of multidimensional spanner graphs, with applications to
minimum spanning trees. In Proceedings of the seventh annual symposium on Computa-
tional geometry, pages 256–261. ACM, 1991.

25 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems and applications.
In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages
232–243. IEEE, 1998.

26 Hideki Takayasu. Fractals in the physical sciences. Manchester University Press, 1990.

SoCG 2017

58:16 Algorithmic Interpretations of Fractal Dimension

27 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
281–290. ACM, 2004.

28 Pravin M. Vaidya. A sparse graph almost as good as the complete graph on points ink
dimensions. Discrete & Computational Geometry, 6(3):369–381, 1991.

29 C.T. Zahn. Black box maximization of circular coverage. Journal of Research of the
National Bureau of Standards B, 66:181–216, 1962.

Disjointness Graphs of Segments∗

János Pach1, Gábor Tardos2, and Géza Tóth3

1 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; and
Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
pach@renyi.hu

2 Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
tardos@renyi.hu

3 Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
geza@renyi.hu

Abstract
The disjointness graph G = G(S) of a set of segments S in Rd, d ≥ 2, is a graph whose vertex
set is S and two vertices are connected by an edge if and only if the corresponding segments
are disjoint. We prove that the chromatic number of G satisfies χ(G) ≤ (ω(G))4 + (ω(G))3,
where ω(G) denotes the clique number of G. It follows, that S has Ω(n1/5) pairwise intersecting
or pairwise disjoint elements. Stronger bounds are established for lines in space, instead of
segments.

We show that computing ω(G) and χ(G) for disjointness graphs of lines in space are NP-hard
tasks. However, we can design efficient algorithms to compute proper colorings of G in which
the number of colors satisfies the above upper bounds. One cannot expect similar results for sets
of continuous arcs, instead of segments, even in the plane. We construct families of arcs whose
disjointness graphs are triangle-free (ω(G) = 2), but whose chromatic numbers are arbitrarily
large.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations

Keywords and phrases disjointness graph, chromatic number, clique number, χ-bounded

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.59

1 Introduction

Given a set of (geometric) objects, their intersection graph is a graph whose vertices correspond
to the objects, two vertices being connected by an edge if and only if their intersection is
nonempty. Intersection graphs of intervals on a line [19], more generally, chordal graphs [3, 8]
and comparability graphs [7], turned out to be perfect graphs, that is, for them and for
each of their induced subgraph H, we have χ(H) = ω(H), where χ(H) and ω(H) denote
the chromatic number and the clique number of H, respectively. It was shown [18] that
the complements of these graphs are also perfect, and based on these results, Berge [3]
conjectured and Lovász [29] proved that the complement of every perfect graph is perfect.

Most geometrically defined intersection graphs are not perfect. However, in many
cases they still have nice coloring properties. For example, Asplund and Grünbaum [2]

∗ János Pach was supported by Swiss National Science Foundation Grants 200021-165977 and 200020-
162884, Gábor Tardos was supported by the Cryptography “Lendület” project of the Hungarian Academy
of Sciences and by the National Research, Development and Innovation Office, NKFIH, projects K-116769
and SNN-117879, Géza Tóth was supported by National Research, Development and Innovation Office,
NKFIH, K-111827.

© János Pach, Gábor Tardos, and Géza Tóth;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 Disjointness Graphs of Segments

proved that every intersection graph G of axis-parallel rectangles in the plane satisfies
χ(G) = O((ω(G))2). It is not known if the stronger bound χ(G) = O(ω(G)) also holds for
these graphs. For intersection graphs of chords of a circle, Gyárfás [13, 14] established the
bound χ(G) = O((ω(G))24ω(G)), which was improved to O(2ω(G)) in [24]. Here we have
examples of χ(G) slightly superlinear in ω(G) [25]. In some cases, there is no functional
dependence between χ and ω. The first such example was found by Burling [5]: there are
sets of axis-parallel boxes in R3, whose intersection graphs are triangle-free (ω = 2), but
their chromatic numbers are arbitrarily large. Following Gyárfás and Lehel [16], we call
a family G of graphs χ-bounded if there exists a function f such that all elements G ∈ G
satisfy the inequality χ(G) ≤ f(ω(G)). The function f is called a bounding function for G.
Heuristically, if a family of graphs is χ-bounded, then its members can be regarded “nearly
perfect". Consult [17, 15, 23] for surveys.

At first glance, one might believe that, in analogy to perfect graphs, a family of intersection
graphs is χ-bounded if and only if the family of their complements is. Burling’s above
mentioned constructions show that this is not the case: the family of complements of
intersection graphs of axis-parallel boxes in Rd is χ-bounded with bounding function f(x) =
O(x logd−1 x), see [21]. More recently, Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter, and
Walczak [33] have proved that Burling’s triangle-free graphs can be realized as intersection
graphs of segments in the plane. Consequently, the family of these graphs is not χ-bounded
either. On the other hand, the family of their complements is, see Theorem 0.

To simplify the exposition, we call the complement of the intersection graph of a set of
objects their disjointness graph. That is, in the disjointness graph two vertices are connected
by an edge if and only if the corresponding objects are disjoint. Using this terminology, the
following is a direct consequence of a result of Larman, Matoušek, Pach, and Törőcsik.

I Theorem 0 ([28]). The family of disjointness graphs of segments in the plane is χ-bounded.
More precisely, every such graph G satisfies the inequality χ(G) ≤ (ω(G))4.

For the proof of Theorem 0, one has to introduce four partial orders on the family of
segments, and apply Dilworth’s theorem [7] four times. Although this method does not seem
to generalize to higher dimensions, the statement does. We establish the following.

I Theorem 1. The disjointness graph G of any system of segments in Rd, d ≥ 2 satisfies
the inequality χ(G) ≤ (ω(G))4 + (ω(G))3.

Moreover, there is a polynomial time algorithm that, given the segments corresponding to
the vertices of G, finds a complete subgraph K ⊆ G and a proper coloring of G with at most
|V (K)|4 + |V (K)|3 colors.

If we consider full lines in place of segments, we obtain stronger bounds.

I Theorem 2.
(i) Let G be the disjointness graph of a set of lines in Rd, d ≥ 3. Then we have χ(G) ≤

(ω(G))3.

(ii) Let G be the disjointness graph of a set of lines in the projective space Pd, d ≥ 3. Then
we have χ(G) ≤ (ω(G))2.

In both cases, there are polynomial time algorithms that, given the lines corresponding to
the vertices of G, find complete subgraphs K ⊆ G and proper colorings of G with at most
|V (K)|3 and |V (K)|2 colors, respectively.

Note that the difference between the two scenarios comes from the fact that parallel
lines in the Euclidean space are disjoint, but the corresponding lines in the projective space
intersect.

J. Pach, G. Tardos, and G. Tóth 59:3

Most computational problems for geometric intersection and disjointness graphs are hard.
It was shown by Kratochvíl and Nešetřil [26] and by Cabello, Cardinal, and Langerman [6]
that finding the clique number ω(G) resp. the independence number α(G) of disjointness
graphs of segments in the plane are NP-hard. It is also known that computing the chromatic
number χ(G) of disjointness and intersection graphs of segments in the plane is NP-hard [9].
Our next theorem shows that some of the analogous problems are also NP-hard for disjointness
graphs of lines in space, while others are tractable in this case. In particular, according
to Theorem 3 (i), in a disjointness graph G of lines, it is NP-hard to determine ω(G) and
χ(G). In view of this, it is interesting that one can design polynomial time algorithms to
find proper colorings and complete subgraphs in G, where the number of colors is bounded
in terms of the size of the complete subgraphs, in the way specified in the closing statements
of Theorems 1 and 2.

I Theorem 3.
(i) Computing the clique number ω(G) and the chromatic number χ(G) of disjointness

graphs of lines in R3 or in P3 are NP-hard problems.
(ii) Computing the independence number α(G) of disjointness graphs of lines in R3 or in

P3, and deciding for a fixed k whether χ(G) ≤ k, can be done in polynomial time.

The bounding functions in Theorems 0 1, and 2 are not likely to be optimal. As for
Theorem 2 (i), we will prove that there are disjointness graphs G of lines in R3 for which
χ(G)
ω(G) are arbitrarily large. Our best constructions for disjointness graphs G′ of lines in the
projective space satisfy χ(G′) ≥ 2ω(G′)− 1; see Theorem 9.

The proof of Theorem 1 is based on Theorem 0. Any strengthening of Theorem 0 leads to
improvements of our results. For example, if χ(G) = O((ω(G))γ) holds with any 3 ≤ γ ≤ 4
for the disjointness graph of every set of segments in the plane, then the proof of Theorem 1
implies the same bound for disjointness graphs of segments in higher dimensions. In fact, it
is sufficient to verify this statement in 3 dimensions. For d ≥ 4, we can find a projection in a
generic direction to the 3-dimensional space that does not create additional intersections and
then we can apply the 3-dimensional bound. We focus on the case d = 3.

It follows immediately from Theorem 0 that the disjointness (and, hence, the intersection)
graph of any system of n segments in the plane has a clique or an independent set of size at
least n1/5. Indeed, denoting by α(G) the maximum number of independent vertices in G, we
have

α(G) ≥ n

χ(G) ≥
n

(ω(G))4 ,

so that α(G)(ω(G))4 ≥ n. Analogously, Theorem 1 implies that max(α(G), ω(G)) ≥ (1 −
o(1))n1/5 holds for disjointness (and intersection) graphs of segments in any dimension d ≥ 2.
For disjointness graphs of n lines in Rd (respectively, in Pd), we obtain that max(α(G), ω(G))
is Ω(n1/4) (resp., Ω(n1/3)). Using more advanced algebraic techniques, Cardinal, Payne, and
Solomon [35] proved the stronger bounds Ω(n1/3) (resp., Ω(n1/2)).

If the order of magnitude of the bounding functions in Theorems 0 and 1 are improved,
then the improvement carries over to the lower bound on max(α(G), ω(G)). Despite many
efforts [28, 22, 27] to construct intersection graphs of planar segments with small clique and
independence numbers, the best known construction, due to Kynčl [27], gives only

max(α(G), ω(G)) ≤ nlog 8/ log 169 ≈ n0.405,

where n is the number of vertices. This bound is roughly the square of the best known lower
bound.

SoCG 2017

59:4 Disjointness Graphs of Segments

Our next theorem shows that any improvement on the lower bound on max(α(G), ω(G))
in the plane, even if it was not achieved by an improvement of the bounding function in
Theorem 0, would also carry over to higher dimensions.

I Theorem 4. If the disjointness graph of any set of n segments in the plane has a clique or
an independent set of size Ω(nβ) for some fixed β ≤ 1/4, then the same is true for disjointness
graphs of segments in Rd for any d > 2.

A continuous arc in the plane is called a string. One may wonder whether Theorem 0
can be extended to disjointness graphs of strings in place of segments. The answer is no, in a
very strong sense.

I Theorem 5. There exist triangle-free disjointness graphs of n strings in the plane with
arbitrarily large chromatic numbers. Moreover, we can assume that these strings are simple
polygonal paths consisting of at most 4 segments.

Very recently, Mütze, Walczak, and Wiechert [32] improved this result. They proved that
the statement holds even if the strings are simple polygonal paths of at most 3 segments,
moreover, any two intersect at most once.

The following problems remain open.

I Problem 6.
(i) Is the family of disjointness graphs of polygonal paths, each consisting of at most two

segments, χ-bounded?
(ii) Is the previous statement true under the additional assumption that any two of the

polygonal paths intersect in at most one point?

I Problem 7. Is the family of intersection graphs of lines in R3 χ-bounded?

By Theorem 2, the family of complements of intersection graphs of lines in R3 is χ-
bounded.

This paper is organized as follows. In the next section, we prove Theorem 2, which is
needed for the proof of Theorem 1. Theorem 1 is established in Section 3. In Section 4, we
construct several examples of disjointness graphs whose chromatic numbers are much larger
than their clique numbers. In particular, we prove Theorem 5 and some similar statements.
The last section contains the proof of Theorem 3 and remarks on the computational complexity
of related problems. The proof of Theorem 4 is omitted in this conference version.

2 Disjointness graphs of lines – Proof of Theorem 2

I Claim 8. Let G be the disjointness graph of a set of n lines in Pd. If G has an isolated
vertex, then G is perfect.

Proof. Let L0 ∈ V (G) be a line representing an isolated vertex of G. Consider the bipartite
multigraph H with vertex set V (H) = A ∪ B, where A consists of all points of L0 that
belong to at least one other line L ∈ V (G), and B is the set of all (2-dimensional) planes
passing through L0 that contain at least one other line L ∈ V (G) different from L0. We
associate with any line L ∈ V (G) different from L0 an edge eL of H, connecting the point
p = L ∩ L0 ∈ A to the plane π ∈ B that contains L. Note that there may be several parallel
edges in H. See Figure 1.

Observe that two lines L,L′ ∈ V (G) \ {L0} intersect if and only if eL and eL′ share an
endpoint. This means that G minus the isolated vertex L0 is isomorphic to the complement

J. Pach, G. Tardos, and G. Tóth 59:5

l

π’

π

p’

p

0

π

π

’

p

p’

Figure 1 Construction of graph H in the proof of Claim 8.

of the line graph of H. The line graphs of bipartite multigraphs and their complements are
known to be perfect. (For the complements of line graphs, this is the König-Hall theorem;
see, e. g., [31].) The graph G can be obtained by adding the isolated vertex L0 to a perfect
graph, and is, therefore, also perfect. J

Proof of Theorem 2. We start with the proof of part (ii). Let G be a disjointness graph of
lines in Pd. Let C ⊆ G be a maximal clique in G. Clearly, |C| ≤ ω(G). By the maximality of
C, for every L ∈ V (G) \C, there exists c ∈ C that is not adjacent to L in G. Hence, there is
a partition of V (G) into disjoint sets Vc, c ∈ C, such that c ∈ Vc and c is an isolated vertex
in the induced subgraph G[Vc] of G. Applying Claim 8 separately to each subgraph G[Vc],
we obtain

χ(G) ≤
∑
c∈C

χ(G[Vc]) =
∑
c∈C

ω(G[Vc]) ≤ |C|ω(G) ≤ (ω(G))2.

Now we turn to the proof of part (i) of Theorem 2. Let G be a disjointness graph of
lines in Rd. Consider the lines in V (G) as lines in the projective space Pd, and consider the
disjointness graph G′ of these projective lines. Clearly, G′ is a subgraph of G with the lines
L, L′ ∈ V (G) adjacent in G but not adjacent in G′ if and only if L and L′ are parallel. Thus,
an independent set in G′ induces a disjoint union of complete subgraphs in G, where the
vertices of each complete subgraph correspond to pairwise parallel lines. If k is the maximal
number of pairwise parallel lines in V (G), then k ≤ ω(G) and each independent set in G′
can be partitioned into at most k independent sets in G. Applying part (ii), we obtain

χ(G) ≤ kχ(G′) ≤ ω(G)(ω(G′))2 ≤ (ω(G))3.

Finally, we prove the last claim concerning polynomial time algorithms. In the proof of
part (ii), we first took a maximal clique C in G. Such a clique can be efficiently found by
a greedy algorithm. The partition of V (G) into subsets Vc, c ∈ C, such that c ∈ Vc is an
isolated vertex in the subgraph G[Vc], can also be done efficiently. It remains to find a clique

SoCG 2017

59:6 Disjointness Graphs of Segments

of maximum size and a proper coloring of each perfect graph G[Vc] with the smallest number
of colors. It is well known that for perfect graphs, both of these tasks can be completed in
polynomial time. See e.g. Corollary 9.4.8 on page 298 of [12]. Alternatively, notice that in
the proof of Claim 8 we showed that G[Vc] is, in fact, the complement of the line graph of a
bipartite multigraph (plus an isolated vertex). Therefore, finding a maximum size complete
subgraph corresponds to finding a maximum size matching in a bipartite graph, while finding
an optimal proper coloring of G[Vc] corresponds to finding a minimal size vertex cover in a
bipartite graph. This can be accomplished by much simpler and faster algorithms than the
general purpose algorithms developed for perfect graphs.

To finish the proof of the algorithmic claim for part (ii), we can simply output as K the
set C or one of the largest maximum cliques in G[Vc] over all c ∈ C, whichever is larger. We
color each Vc optimally, with pairwise disjoint sets of colors.

For the algorithmic claim about part (i), first color the corresponding arrangement of
projective lines, and then refine the coloring by partitioning each color class into at most k
smaller classes, where k is the maximum number of parallel lines in the arrangement. It is
easy to find the value of k, just partition the lines into groups of parallel lines. Output as K
the set we found for the projective lines, or a set of k parallel lines, whichever is larger. J

I Theorem 9.
(i) There exist disjointness graphs G of families of lines in R3 for which the ratio χ(G)/ω(G)

is arbitrarily large.
(ii) For any k one can find a system of lines in P3 whose disjointness graph G satisfies

ω(G) = k and χ(G) = 2k − 1.

Proof. First, we prove (i). For some m and d to be determined later, consider the set W d
m

of integer points in the d-dimensional hypercube [1,m]d. That is, W d
m = {1, 2, . . . ,m}d. A

combinatorial line is a sequence of m distinct points of x1, . . . xm ∈W d
m such that for every

1 ≤ i ≤ d, their ith coordinates (xj)i are either the same for all 1 ≤ j ≤ m or we have
(xj)i = j for all 1 ≤ j ≤ m. Note that the points of any combinatorial line lie on a geometric
straight line. Let L denote the set of these geometric lines.

Let G denote the disjointness graph of L. Since each line in L passes through m points
of W d

m, and |W d
m| = md, we have ω(G) ≤ md−1. (It is easy to see that equality holds here,

but we do not need this fact for the proof.)
Consider any proper coloring of G. The color classes are families of pairwise crossing

lines in L. Observe that any such family has a common point in W d
m, except some families

consisting of 3 lines. Take an optimal proper coloring of G with χ(G) colors, and split each
3-element color class into two smaller classes. In the resulting coloring, there are at most
2χ(G) color classes, each of which has a point of W d

m in common. This means that the set of
at most 2χ(G) points of W d

m (the “centers” of the color classes) “hits” every combinatorial
line. By the density version of the Hales-Jewett theorem, due to Furstenberg and Katznelson
[4, 11], if d is large enough relative to m, then any set containing fewer than half of the
points of W d

m will miss an entire combinatorial line. Choosing any m and a sufficiently large
d depending on m, we conclude that 2χ(G) ≥ md/2 and χ(G)/ω(G) ≥ m/4.

Note that the family L consists of lines in Rd. To find a similar family in 3-space, simply
take the image of L under a projection to R3. One can pick a generic projection that does not
change the disjointness graph G. This completes the proof of part (i). Note that the same
construction does not work for projective lines, as the combinatorial lines in W d

m fall into
2d − 1 parallel classes, so the chromatic number of the corresponding projective disjointness
graph is smaller than 2d.

J. Pach, G. Tardos, and G. Tóth 59:7

To establish part (ii), fix a positive integer k, and consider a set S of 2k + 1 points
in general position (no four in a plane) in R3 ⊆ P3. Let L denote the set of

(2k+1
2
)
lines

determined by them. Note that by the general position assumption, two lines in L intersect
if and only if they have a point of S in common. This means that the disjointness graph G
of L is isomorphic to the Kneser graph G∗(2k + 1, 2) formed by all 2-element subsets of a
(2k + 1)-element set. Obviously, ω(G∗(n,m)) = bn/mc, so ω(G) = k. By a celebrated result
of Lovász [30], χG∗(n,m) = n− 2m+ 2 for all n ≥ 2m− 1. Thus, we have χ(G) = 2k − 1,
as claimed. J

3 Disjointness graphs of segments – Proof of Theorem 1

If all segments lie in the same plane, then by Theorem 0 we have χ(G) ≤ (ω(G))4. Our next
theorem generalizes this result to the case where the segments lie in a bounded number of
distinct planes.

I Theorem 10. Let G be the disjointness graph of a set of segments in Rd, d > 2, that lie in
the union of k two-dimensional planes. We have

χ(G) ≤ (k − 1)ω(G) + (ω(G))4.

Given the segments representing the vertices of G and k planes containing them, there is
a polynomial time algorithm to find a complete subgraph K ⊆ G and a proper coloring of G
with at most (k − 1)|V (K)|+ |V (K)|4 colors.

Proof. Let π1, π2, . . . , πk be the planes containing the segments. Partition the vertex set
of G into the classes V1, V2, . . . , Vk by putting a segment s into the class Vi, where i is the
largest index for which πi contains s.

For i = 1, 2, . . . , k, we define subsets Wi, Zi ⊆ Vi with Zi ⊆ Wi ⊆ Vi by a recursive
procedure, as follows. Let W1 = V1 and let Z1 ⊆W1 be a maximal size clique in G[W1].

Assume that the sets W1, . . . ,Wi and Z1, . . . , Zi have already been defined for some
i < k. Let Wi+1 denote the set of all vertices in Vi+1 that are adjacent to every vertex in
Z1 ∪ Z2 ∪ . . . ∪ Zi, and let Zi+1 be a maximal size clique in G[Wi+1]. By definition,

⋃k
i=1 Zi

induces a complete subgraph in G, and we have

k∑
i=1
|Zi| ≤ ω(G).

Let s be a segment belonging to Zi, for some 1 ≤ i < k. A point p of s is called a piercing
point if p ∈ πj for some j > i. Notice that in this case, s “pierces” the plane πj in a single
point, otherwise we would have s ⊂ πj , contradicting our assumption that s ∈ Vi. Letting P
denote the set of piercing points of all segments in

⋃k
i=1 Zi, we have

|P | ≤
k∑
i=1

(k − i)|Zi| ≤ (k − 1)
k∑
i=1
|Zi| ≤ (k − 1)ω(G).

Let V0 = V (G) \
⋃k
i=1Wi. We claim that every segment in V0 contains at least one

piercing point. Indeed, if s ∈ Vi \Wi for some i ≤ k, then s is not adjacent in G to at least
one segment t ∈ Z1 ∪ . . . ∪ Zi−1. Thus, s and t are not disjoint, and their intersection point
is a piercing point, at which t pierces the plane πi.

SoCG 2017

59:8 Disjointness Graphs of Segments

Assign a color to each piercing point p ∈ P . Coloring every segment in V0 by the color
of one of its piercing points, we get a proper coloring of G[V0] with |P | colors, so that
χ(G[V0]) ≤ |P |.

For every i ≤ k, all segments of Wi lie in the plane πi. Therefore, we can apply
Theorem 0 to their disjointness graph G[Wi], to conclude that χ(G[Wi]) ≤ (ω(G[Wi]))4. By
definition, Zi induces a maximum complete subgraph in G[Wi], hence |Zi| = ω(G[Wi]) and
χ(G[Wi]) ≤ |Zi|4.

Putting together the above estimates, and taking into account that
⋃k
i=1 Zi induces a

complete subgraph in G, we obtain

χ(G) ≤ χ(G[V0]) +
k∑
i=1

χ(G[Wi]) ≤ |P |+
k∑
i=1
|Zi|4

≤ (k − 1)ω(G) + (
k∑
i=1
|Zi|)4 ≤ (k − 1)ω(G) + (ω(G))4,

as required.
We can turn this estimate into a polynomial time algorithm as required, using the fact

that the proof of Theorem 0 is constructive. In particular, we use that, given a family of
segments in the plane, one can efficiently find a subfamily K of pairwise disjoint segments
and a proper coloring of the disjointness graph with at most |K|4 colors. This readily follows
from the proof of Theorem 0, based on the four easily computable (semi-algebraic) partial
orders on the family of segments, introduced in [28].

Our algorithm finds the sets Vi, as in the proof. However, finding Wi and a maximum
size clique Zi ⊆ Wi is a challenge. Instead, we use the constructive version of Theorem 0
to find Zi ⊆ Wi and a proper coloring of G[Wi]. The definition of Wi remains unchanged.
Next, the algorithm identifies the piercing points.

The algorithm outputs the clique K =
⋃
Zi and the coloring of G. The latter one is

obtained by combining the previously constructed colorings of the subgraphs G[Wi] (using
disjoint sets of colors for different subgraphs), and coloring each remaining vertex by a
previously unused color, associated with one of the piercing points the corresponding segment
passes through. J

Proof of Theorem 1. Consider the set of all lines in the projective space Pd that contain at
least one segment belonging to V (G). Let Ḡ′ denote the disjointness graph of these lines.
Obviously, we have ω(Ḡ′) ≤ ω(G). Thus, Theorem 2(ii) implies that

χ(Ḡ′) ≤ (ω(Ḡ′))2 ≤ (ω(G))2.

Let C be the set of lines corresponding to the vertices of a maximum complete subgraph
in Ḡ′. Fix an optimal proper coloring of Ḡ′. Suppose that we used k “planar” colors (each
such color is given to a set of lines that lie in the same plane) and χ(Ḡ′)− k “pointed” colors
(each given to the vertices corresponding to a set of lines passing through a common point).

Consider now G, the disjointness graph of the segments. Let G0 denote the subgraph of
G induced by the set of segments whose supporting lines received one of the k planar colors
in the above coloring of Ḡ′. These segments lie in at most k planes. Therefore, applying
Theorem 10 to G0, we obtain

χ(G0) ≤ (k − 1)ω(G0) + (ω(G0))4 ≤ (k − 1)ω(G) + (ω(G))4.

J. Pach, G. Tardos, and G. Tóth 59:9

For i, 1 ≤ i ≤ χ(Ḡ′)− k, let Gi denote the subgraph of G induced by the set of segments
whose supporting lines are colored by the ith pointed color. It is easy to see that Gi is the
complement of a chordal graph. That is, the complement of Gi contains no induced cycle of
length larger than 3. According to a theorem of Hajnal and Surányi [18], any graph with
this property is perfect, so that

χ(Gi) = ω(Gi) ≤ ω(G).

Putting these bounds together, we obtain that

χ(G) ≤ χ(G0) +
χ(Ḡ′)−k∑
i=1

χ(Gi) ≤ (k − 1)ω(G) + (ω(G))4 +
χ(Ḡ′)−k∑
i=1

ω(G)

≤ ((ω(Ḡ′))2 − 1)ω(G) + (ω(G))4 < (ω(G))3 + (ω(G))4.

To prove the algorithmic claim in Theorem 1, we first apply the algorithm of Theorem 2
to the disjointness graph Ḡ′. We distinguish between planar and pointed color classes and
find the subgraphs Gi. We output a coloring of G, where for each Gi, i > 0 we use the
smallest possible number of colors (Gi is perfect, so its optimal coloring can be found in
polynomial time), and we color G0 by the algorithm described in Theorem 10. The subgraphs
Gi are colored using pairwise disjoint sets of colors. We output the largest clique K that we
can find. This may belong to a subgraph Gi with i > 0, or may be found in G0 or in Ḡ′ by
the algorithms given by Theorem 10 or Theorem 2, respectively. (In the last case, we need
to turn a clique in Ḡ′ into a clique of the same size in G, by picking an arbitrary segment
from each of the pairwise disjoint lines.) J

4 Constructions – Proof of Theorem 5

The aim of this section is to describe various arrangements of geometric objects in 2, 3,
and 4 dimensions with triangle-free disjointness graphs, whose chromatic numbers grow
logarithmically with the number of objects. (This is much faster than the rate of growth in
Theorem 9.) Our constructions can be regarded as geometric realizations of a sequence of
graphs discovered by Erdős and Hajnal.

I Definition 11 ([10]). Given m > 1, let Hm, the m-th shift graph, be a graph whose vertex
set consists of all ordered pairs (i, j) with 1 ≤ i < j ≤ m, and two pairs (i, j) and (k, l) are
connected by an edge if and only if j = k or l = i.

Obviously, Hm is triangle-free for every m > 1. It is not hard to show (see, e.g., [31],
Problem 9.26) that χ(Hm) = dlog2me. Therefore, Theorem 5 follows directly from part (vii)
of the next theorem.

I Theorem 12. For every m, the shift graph Hm can be obtained as a disjointness graph,
where each vertex is represented by
(i) a line minus a point in R2;
(ii) a two-dimensional plane in R4;
(iii) the intersection of two general position half-spaces in R3;
(iv) the union of two segments in R2;
(v) a triangle in R4;
(vi) a simplex in R3;
(vii) a polygonal curve in R2, consisting of four line segments.

SoCG 2017

59:10 Disjointness Graphs of Segments

Proof.
(i) Let L1, . . . , Lm be lines in general position in the plane. For any 1 ≤ i < j ≤ m, let us

represent the pair (i, j) by the “pointed line” pij = Li \ Lj .
Fix 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, and set X = pij ∩ pkl = (Li ∩ Lk) \ (Lj ∪ Ll). If
i = k, then X is an infinite set.
Otherwise, Li ∩ Lk consists of a single point. In this case, X is empty if and only if
this point belongs to Lj ∪ Ll. By the general position assumption, this happens if and
only if j = k or l = i. Thus, the disjointness graph of the sets pij , 1 ≤ i < j ≤ m, is
isomorphic to the shift graph Hm.

(ii) Let h1, . . . hm be hyperplanes in general position in R4. For every i, fix another hyper-
plane h′i, parallel (but not identical) to hi. For any 1 ≤ i < j ≤ m, represent the pair
(i, j) by the two dimensional plane pij = hi ∩ h′j .
Given 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m, the set X = pij ∩ pk,l = hi ∩ h′j ∩ hk ∩ h′l is the
intersection of four hyperplanes. If the four hyperplanes are in general position, then X
consists of a single point.
If the hyperplanes are not in general position, then some of the four indices must coincide.
If i = k or j = l, then two of the hyperplanes coincide and X is a line. In the remaining
cases, when j = k or l = i, among the four hyperplanes two are parallel, so their
intersection X is empty.

(iii) For i = 1, . . . ,m, define the half-space hi as

hi = {(x, y, z) ∈ R3 | ix+ i2y + i3z < 1}.

Note that the bounding planes of these half-spaces are in general position. For any
1 ≤ i < j ≤ m, represent the pair (i, j) by pij = hj \ hi.
Now let 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m. If j = k or l = i, the sets pij and pkl are
obviously disjoint. If i = k or j = l, then pij ∩ pkl is the intersection of at most 3
half-spaces in general position, so it is unbounded and not empty.
It remains to analyze the case when all four indices are distinct. This requires some
calculation. We assume without loss of generality that j < l. Consider the point
P = (x, y, z) ∈ R3 with x = 1

i + 1
j + 1

k , y = − 1
ij −

1
jk −

1
ki and z = 1

ijk . This is the
intersection point of the bounding planes of hi, hj and hk. Therefore, the polynomial
zu3 + yu2 + xu− 1 vanishes at u = i, j, k, and it must be positive at u = l, as l > i, j, k

and the leading coefficient is positive. This means that P lies in the open half-space hl.
As the bounding planes of hi, hj and hk are in general position, one can find a point P ′
arbitrarily close to P (the intersection point of these half-planes) with P ′ ∈ hj \ (hi∪hk).
If we choose P ′ close enough to P , it will also belong to hl. Thus, P ′ ∈ pij ∩ pkl, and so
pij and pkl are not disjoint.

(iv), (v), and (vi) directly follow from (i), (ii) and (iii), respectively, by replacing the
unbounded geometric objects representing the vertices with their sufficiently large bounded
subsets.
(vii) Let C be an almost vertical, very short curve (arc) in the plane, convex from the right

(that is, the set of points to the right of C is convex) lying in a small neighborhood
of (0, 1). Let p1, p2, . . . , pm be a sequence of m points on C such that pj is above pi if
and only if j > i. For every 1 ≤ i ≤ m, let Ti be an equilateral triangle whose base is
horizontal, whose upper vertex is pi, and whose center is on the x-axis. Let qi and ri
be the lower right and lower left vertices of Ti, respectively. It is easy to see that Tj
contains Ti in its interior if j > i. Let si be a point on ripi, very close to pi.
Let us represent the vertex (i, j) of the shift graph Hm by the polygonal curve pij =

J. Pach, G. Tardos, and G. Tóth 59:11

tijpjqjrjsj , where the point tij is on the x-axis slightly to the left of the line pipj . Note
that if C is short enough and close enough to vertical, then tij can be chosen so that
it belongs to the interior of all triangles Tk for 1 ≤ k ≤ m. In particular, the entire
polygonal path pij belongs to Tj .
It depends on our earlier choices of the vertices pi′ , how close we have to choose si to pi.
Analogously, it depends on our earlier choices of pi′ and si′ , how close we have to choose
tij to the line. Instead of describing an explicit construction, we simply claim that with
proper choices of these points, we obtain a disjointness representation of the shift graph.

To see this, let 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ m. If j = l, then three of the four line segments in
pij and pkl are the same, so they intersect. Otherwise, assume without loss of generality that
j < l. As noted above, pij belongs to the triangle Tj , which, in turn, lies in the interior of Tl.
Three segments of pkl lie on the edges of Tl, so if pij and pkl meet, the fourth segment, tklpl,
must meet pij . This segment enters the triangle Tj , so it meets one of its edges. Namely, for
j > k it follows from the convexity of the curve C that the segment tklpl intersects the edge
pjqj and, hence, also pij . Analogously, if j < k, then tklpl intersects the interior of the edge
rjpj . This is true even if tkl were chosen on the line pkpl, so choosing sj close enough to pj ,
one can make sure that tklpl intersects rjsj and, hence, also pij . On the other hand, if j = k,
we choose tkl so that tklpl is just slightly to the left of pj = pk, so it enters Tj through the
interior of the segment sjpj that is not contained in pij . To see that in this case pij and pkl
are disjoint, it is enough to check that tklpl and tijpj are disjoint. This is true, because pj is
on the right of tklpl and (from the convexity of C) the slope of the segments is such that pj
is the closest point of the segment tijpj to tklpl. J

5 Complexity issues – Proof of Theorem 3

The aim of this section is to outline the proof of Theorem 3 and to establish some related
complexity results. For simplicity, we only consider systems of lines in the projective space
P3. It is easy to see that by removing a generic hyperplane (not containing any of the
intersection points), we can turn a system of projective lines into a system of lines into R3

without changing the corresponding disjointness graph.
It is more convenient to speak about intersection graphs rather than their complement in

formulating the next theorem.

I Theorem 13.
(i) If G is a graph with maximum degree at most 3, then G is an intersection graph of lines

in P3.
(ii) For an arbitrary graph G the line graph of G is an intersection graph of lines in P3.

Proof.
(i) Suppose first that G is triangle-free. Let V (G) = {v1, . . . , vk}. Let vertex v1 be

represented by an arbitrary line L1. Suppose, recursively, that the line Lj representing
vertex j has already been defined for every j < i. We will maintain the “general position”
property that no doubly ruled surface contains more than 3 pairwise disjoint lines. We
must choose Li representing vi such that
(a) it intersects the lines representing the neighbors vj of vi with j < i,
(b) it does not intersect the lines representing the non-neighbors vj with j < i, and
(c) we maintain our general position conditions.
These are simple algebraic conditions. The vertex vi has at most 3 neighbors among vj
for j < i, and they must be represented by pairwise disjoint lines. Thus, the Zariski-

SoCG 2017

59:12 Disjointness Graphs of Segments

closed conditions from (a) determine an irreducible variety of lines, so unless they
force the violation of a specific other (Zariski-open) condition from (b) or (c), all of
those conditions can be satisfied with a generic line through the lines representing the
neighbors. In case vi has three neighbors vj with j < i, the corresponding condition
forces Li to be in one of the two families of lines on a doubly ruled surface Σ. This
further forces Li to intersect all lines of the other family on Σ, but due to the general
position condition, none of the vertices of G is represented by lines there, except the
three neighbors of vi. We would violate the general position condition with the new
line Li if the family we choose it from already had three members representing vertices.
However, this would mean that the degrees of the neighbors of vi would be at least 4, a
contradiction. In case vi has fewer than 3 neighbors, the requirement of Li intersecting
the corresponding lines does not force Li to intersect any further lines or to lie on any
doubly ruled surface.
We prove the general case by induction on |V (G)|. Suppose that a, b, c ∈ V (G) form a
triangle in G and that the subgraph of G induced by V (G) \ {a, b, c} can be represented
as the intersection graph of distinct lines in P3. Note that each of a, b and c has at
most a single neighbor in the rest of the graph. We extend the representation of the
subgraph by adding three lines La, Lb and Lc, representing the vertices of the triangle.
We choose these lines in a generic way so that they pass through a common point p,
and La intersects the line representing the neighbor of a (in case it exists), and similarly
for Lb and Lc. It is clear that we have enough degrees of freedom (at least six) to avoid
creating any further intersection. For instance, it suffices to choose p outside all lines in
the construction and all planes determined by intersecting pairs of lines.

(ii) Assign distinct points of P3 to the vertices of G so that no four points lie in a plane.
Represent each edge xx′ ∈ E(G) by the line connecting the points assigned to x and x′.
As no four points are coplanar, two lines representing a pair of edges will cross if and
only if the edges share an endpoint. Therefore, the intersection graph of these lines is
isomorphic to the edge graph of G. J

The following theorem implies Theorem 3, as the disjointness graph H = Ḡ is the complement
of the intersection graph G, and we have ω(G) = α(H), α(G) = ω(H), χ(G) = θ(H), and
θ(G) = χ(H). Here θ(H) denotes the clique covering number of H, that is, the smallest
number of complete subgraphs of H whose vertex sets cover V (H).

I Theorem 14. Let H be an intersection graph of n lines in the Euclidean space R3 or in
the projective space P3.
(i) Computing α(H), the independence number of H, is NP-hard.
(ii) Computing θ(H), the clique covering number of H, is NP-hard.
(iii) Deciding whether χ(H) ≤ 3, that is, whether H is 3-colorable, is NP-complete.
(iv) Computing ω(H), the clique number of H, is in P.
(v) Deciding whether θ(H) ≤ k for a fixed k is in P.
(vi) All the above statements remain true if H is not given as an abstract graph, but with its

intersection representation with lines.

Proof. We only deal with the case where the lines are in P3. The reduction of the Euclidean
case to this case is easy.
(i) The problem of determining the independence number of 3-regular graphs is NP -hard;

see [1]. By Theorem 13 (i), all 3-regular graphs are intersection graphs of lines in P3.
(ii) The vertex cover number of a graph H is the smallest number of vertices with the

property that every edge of H is incident to at least one of them. Note that the

J. Pach, G. Tardos, and G. Tóth 59:13

vertex cover number of H is |V (H)| − α(H). In [34], it was shown that the problem of
determining the vertex cover number is NP -hard even for triangle-free graphs. We can
reduce this problem to the problem of determining the clique covering number of an
intersection graph of lines. For this, note that each complete subgraph of the line graph
H ′ of H corresponds to a star of H and thus θ(H ′) is the vertex cover number of H.
The reduction is complete, as H ′ is the intersection graph of lines in P3, by Theorem 13
(ii).

(iii) Deciding whether the chromatic index (chromatic number of the line graph) of a 3-
regular graph is 3 is NP-complete, see [20]. Using that the line graph of any graph is an
intersection graph of lines in P3 (Theorem 13 (ii)), the statement follows.

(iv) A maximal complete subgraph corresponds to a set of lines passing through the same
point p or lying in the same plane Π. Any such point p or plane Π is determined by
two lines, and in both cases we can verify for each remaining line whether it belongs
to the corresponding complete subgraph (whether it passes through p or belongs to Π,
respectively). This gives an O(n3)-time algorithm, but we suspect that the running time
can be much improved.

(v) As we have seen in part (iv), there are polynomially many maximal complete subgraphs
in H. We can check all k-tuples of them, and decide whether they cover all vertices in
H.

(vi) For this, we need to consider the constructions of lines in the representations described
in the proof of Theorem 13, and show that they can be built in polynomial time. This
is obvious in part (ii) of the theorem. For part (i), the situation is somewhat more
complex. To find many possible representations of the next vertex intersecting the lines
it should, is an algebraically simple task. In polynomial time, we can find one of them
that is generic in the sense needed for the construction. However, if the coordinates of
each line would be twice as long as those of the preceding line (a condition that is hard
to rule out a priori), then the whole construction takes more than polynomial time.
A simple way to avoid this problem is the following. First, color the vertices of the
triangle-free graph G of maximal degree at most 3 by at most 4 colors, by a simple
greedy algorithm. Find the lines representing the vertices in the following order: first
for the first color class, next for second color class, etc. The coordinates of each line will
be just slightly more complex than the coordinates of the lines representing vertices in
earlier color classes. Therefore, the construction can be performed in polynomial time. A
similar argument works also for graphs G with triangles: First we find a maximal subset
of pairwise vertex-disjoint triangles in G. Let G0 be the graph obtained from G by
removing these triangles. Then we construct an auxiliary graph G′ with these triangles
as vertices by connecting two of them with an edge if there is an edge in G between the
triangles. The graph G′ has maximum degree at most 3, so it can be greedily 4-colored.
If we construct G by adding back the triangles to G0, in the order determined by their
colors, then the procedure will end in polynomial time. J

References
1 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. The-

oretical Computer Science, 237(1-2):123–134, 2000.
2 Edgar Asplund and Branko Grünbaum. On a coloring problem. Mathematica Scandinavica,

8(1):181–188, 1960.
3 Claude Berge. Färbung von Graphen, deren sämtliche bzw. ungerade Kreise starr sind

(Zusammenfassung). Wiss. Z. Martin-Luther-Univ. Halle Wittenberg Math. Natur. Reihe,
114, 1961.

SoCG 2017

59:14 Disjointness Graphs of Segments

4 Béla Bollobás. Modern Graph Theory, Graduate Texts in Mathematics vol. 184. Springer-
Verlag, New York, 1998.

5 James P. Burling. On coloring problems of families of prototypes. (PhD thesis), University
of Colorado, Boulder, 1965.

6 Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray intersec-
tion graphs. Discrete & computational geometry, 50(3):771–783, 2013.

7 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Math-
ematics, pages 161–166, 1950.

8 Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

9 Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves in
the plane. Journal of Combinatorial Theory, Series B, 21(1):8–20, 1976.

10 Paul Erdős and András Hajnal. Some remarks on set theory. ix: Combinatorial problems
in measure theory and set theory. Michigan Math. J, 11(2):107–127, 1964.

11 Hillel Furstenberg and Yitzhak Katznelson. A density version of the hales-jewett theorem.
Journal d’Analyse Mathématique, 57(1):64–119, 1991.

12 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization. Springer-Verlag, Berlin, 1988.

13 András Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs.
Discrete mathematics, 55(2):161–166, 1985.

14 András Gyárfás. Corrigendum. Discrete mathematics, 62(3):333, 1986.
15 András Gyárfás. Problems from the world surrounding perfect graphs. Applicationes Math-

ematicae, 19(3-4):413–441, 1987.
16 András Gyárfás and Jenő Lehel. Hypergraph families with bounded edge cover or trans-

versal number. Combinatorica, 3(3-4):351–358, 1983.
17 András Gyárfás and Jenő Lehel. Covering and coloring problems for relatives of intervals.

Discrete Mathematics, 55(2):167–180, 1985.
18 András Hajnal and János Surányi. Über die auflösung von graphen in vollständige teil-

graphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113–121, 1958.
19 György Hajós. Über eine Art von Graphen. Internationale Mathematische Nachrichten,

11:65, 1957.
20 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–

720, 1981.
21 Gyula Károlyi. On point covers of parallel rectangles. Periodica Mathematica Hungarica,

23:105–107, 1991.
22 Gyula Károlyi, János Pach, and Géza Tóth. Ramsey-type results for geometric graphs, i.

Discrete & Computational Geometry, 18(3):247–255, 1997.
23 Alexandr Kostochka. Coloring intersection graphs of geometric figures with a given clique

number. Contemporary Mathematics, 342:127–138, 2004.
24 Alexandr Kostochka and Jan Kratochvíl. Covering and coloring polygon-circle graphs.

Discrete Mathematics, 163(1):299–305, 1997.
25 Alexandr V. Kostochka. Upper bounds for the chromatic numbers of graphs. Modeli i

Metody Optim. (Russian), 10:204–226, 1988.
26 Jan Kratochvíl and Jaroslav Nešetřil. Independent set and clique problems in intersection-

defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae, 31(1):85–
93, 1990.

27 Jan Kynčl. Ramsey-type constructions for arrangements of segments. European Journal
of Combinatorics, 33(3):336–339, 2012.

28 David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik. A Ramsey-type result for
convex sets. Bulletin of the London Mathematical Society, 26(2):132–136, 1994.

J. Pach, G. Tardos, and G. Tóth 59:15

29 László Lovász. Normal hypergraphs and the perfect graph conjecture. Discrete Mathemat-
ics, 2(3):253–267, 1972.

30 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combin-
atorial Theory, Series A, 25(3):319–324, 1978.

31 László Lovász. Combinatorial problems and exercises. American Mathematical Soc., 1993.
32 Torsten Mütze, Bartosz Walczak, and Veit Wiechert. Realization of shift graphs as dis-

jointness graphs of 1-intersecting curves in the plane. Manuscript, 2017.
33 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T.

Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. Journal of Combinatorial Theory, Series B, 105:6–10, 2014.

34 Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Math-
ematicae Universitatis Carolinae, 15(2):307–309, 1974.

35 Noam Solomon, Michael S. Payne, and Jean Cardinal. Ramsey-type theorems for lines in
3-space. Discrete Mathematics & Theoretical Computer Science, 18, 2016.

SoCG 2017

Bicriteria Rectilinear Shortest Paths among
Rectilinear Obstacles in the Plane∗†

Haitao Wang

Department of Computer Science, Utah State University, Logan, UT, USA
haitao.wang@usu.edu

Abstract
Given a rectilinear domain P of h pairwise-disjoint rectilinear obstacles with a total of n vertices
in the plane, we study the problem of computing bicriteria rectilinear shortest paths between
two points s and t in P. Three types of bicriteria rectilinear paths are considered: minimum-link
shortest paths, shortest minimum-link paths, and minimum-cost paths where the cost of a path
is a non-decreasing function of both the number of edges and the length of the path. The one-
point and two-point path queries are also considered. Algorithms for these problems have been
given previously. Our contributions are threefold. First, we find a critical error in all previous
algorithms. Second, we correct the error in a not-so-trivial way. Third, we further improve
the algorithms so that they are even faster than the previous (incorrect) algorithms when h is
relatively small. For example, for computing a minimum-link shortest s-t path, the previous
algorithm runs in O(n log3/2 n) time while the time of our new algorithm is O(n+ h log3/2 h).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases rectilinear paths, shortest paths, minimum-link paths, bicriteria paths,
rectilinear polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.60

1 Introduction

Let P be a rectilinear domain with a total of h holes and n vertices in the plane, i.e., P is a
multiply-connected region whose boundary is a union of n axis-parallel line segments, forming
h + 1 closed polygonal cycles (i.e., h holes plus an outer boundary). A simple rectilinear
polygon is a special case of a rectilinear domain with h = 0. A rectilinear path is a path
consisting of only horizontal and vertical line segments.

For a rectilinear path π, we define its length as the total sum of the lengths of the segments
of π, and we define its link distance as the number of edges of π (each edge is also called a
link). We use the measure of π to refer to both its length and its link distance. For any two
points s and t in P, a shortest rectilinear path from s to t is a rectilinear path connecting s
to t in P with the minimum length, and a minimum-link rectilinear path is a rectilinear s-t
path with the minimum link distance. Among all shortest rectilinear s-t paths, one with the
minimum link distance is called a minimum-link shortest s-t path; among all minimum-link
s-t paths, one with the minimum length is called a shortest minimum-link s-t path. We define
the cost of π as a non-decreasing function f of both the length and the link distance of π.
We assume that given the number of links of π and the length of π, its cost can be computed

∗ A full version of the paper is available at https://arxiv.org/abs/1703.04466.
† This research was supported in part by NSF under Grant CCF-1317143.

© Haitao Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 60; pp. 60:1–60:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.60
https://arxiv.org/abs/1703.04466
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

in constant time. Depending on the context, the measure of π may also refer to its cost. A
minimum-cost path from s to t is a rectilinear s-t path in P with the minimum cost.

All the three types of paths discussed above (i.e., minimum-link shortest paths, shortest
minimum-link paths, and minimum-cost paths) are called bicriteria shortest paths. In order
to differentiate between “bicriteria shortest paths” and “shortest paths”, we will use optimal
paths to refer to these bicriteria shortest paths. Since some observations and algorithmic
schemes may be applicable to all three types of optimal paths, unless otherwise stated, a
statement made to “optimal paths” should be applicable to all three types of optimal paths.

In this paper, we study the problem of computing all three types of optimal paths between
two points s and t in P. Their one-point and two-point queries are also considered.

Previous Work. The following results are applicable to all three types of optimal paths.
Yang et al. [24] first presented an O(nr + n logn) time algorithm, where r is the number

of extreme edges of P (an edge e is extreme if its two adjacent edges lie on the same side
of the line containing e; r = Ω(n) in the worst case). Later, Yang et al. [25] proposed an
algorithm of O(n log2 n) time and O(n logn) space and another algorithm of O(n log3/2 n)
time and space; Chen et. al. [2] improved it to O(n log3/2 n) time and O(n logn) space.

The one-point optimal path query problem, where s is the source and t is a query point,
was also studied. Based on the algorithm of Yang et al. [25], Chen et. al. [2] built a data
structure of O(n logn) size in O(n log3/2 n) time such that for each query point t, the measure
of the optimal s-t path can be computed in O(logn) time and an actual path can be output
in additional time linear in the number of edges of the path. For simplicity, in the following,
when we say that the query time of a data structure for finding a path is O(g(n)), we mean
that the measure of the path can be computed in O(g(n)) time and an actual path can be
output in additional time linear in the number of edges of the path.

The two-point optimal path query problem, i.e., both s and t are query points, was
also studied by Chen et. al. [2], where a data structure of O(n2 log2 n) size was built in
O(n2 log2 n) time such that each two-point query can be answered in O(log2 n) time.

Our Results. We provide a comprehensive study on these problems and our contributions
are threefold.

First, we show that all above algorithms in the previous work are incorrect. More
specifically, we find a critical error in the algorithm of Yang et al. [25]. Since the results of
Chen et. al. [2] are all based on the method of Yang et al. [25], they are not correct either. A
similar error also appears in [24]. Note that the technique of Chen et. al. [2], which follows
the similar idea in [4] for computing L1 shortest paths in arbitrary polygonal domains, would
work if it was based on a correct algorithm (for example, it still works in our new algorithm).

Second, we fix the error of Yang et al. [25] in a not-so-trivial way. However, the
complexities are not the same as before for all three types of optimal paths. Specifically, for
computing a minimum-link shortest path, our corrected algorithm runs in O(n log3/2 n) time
and O(n logn) space (with the help of the technique of Chen et. al. [2] to reduce a factor
of log1/2 n). For the other two types of optimal paths, however, the complexities have one
more O(n) factor, i.e., O(n2 log3/2 n) time and O(n2 logn) space.

Third, we further improve the algorithms in the way that the complexities only depend
on h, in addition to O(n). For computing a minimum-link shortest path, our algorithm
runs in O(n+ h log3/2 h) time and O(n+ h log h) space. For computing other two types of
optimal paths, our algorithm runs in O(n+h2 log2 h) time and O(n+h2 log h) space. We also
obtain data structures for one-point and two-point queries, and the results are summarized

H. Wang 60:3

Table 1 Summary of our data structures on one-point and two-point optimal path queries. Note
that log2 h · 4

√
logh = O(hε) for any ε > 0. The “Prep. Time” stands for “Preprocessing Time”.

Types of Paths One-Point Queries Two-Point Queries

Min-Link Shortest
Prep. Time O(n+ h log3/2 h) O(n+ h2 log2 h) O(n+ h2 log2 h4

√
logh)

Space O(n+ h log h) O(n+ h2 log2 h) O(n+ h2 log h4
√

logh)
Query Time O(logn) O(logn+ log2 h) O(logn)

Shortest Min-Link
Prep. Time O(n+ h2 log3/2 h) O(n+ h3 log2 h) O(n+ h3 log2 h4

√
logh)

Space O(n+ h2 log h) O(n+ h3 log2 h) O(n+ h3 log h4
√

logh)
Query Time O(logn+ log2 h) O(logn+ log3 h) O(logn+ log2 h)

Minimum-Cost
Prep. Time O(n+ h2 log3/2 h) O(n+ h3 log2 h) O(n+ h3 log2 h4

√
logh)

Space O(n+ h2 log h) O(n+ h3 log2 h) O(n+ h3 log h4
√

logh)
Query Time O(logn+ h log h) O(logn+ h log2 h) O(logn+ h log h)

Minimum-Link
Prep. Time O(n+ h2 log2 h) O(n+ h2 log2 h4

√
logh)

Space O(n+ h2 log2 h) O(n+ h2 log h4
√

logh)
Query Time O(logn+ log2 h) O(logn)

in Table 1. Note that for two-point queries, we give two data structures for each problem
with tradeoff between the preprocessing and the query time. We also consider the two-point
query problem for minimum-link paths (without considering the lengths) since the problem
was not studied before (but its one-point query problem has been solved, as discussed below).

Our results are particularly interesting when h is relatively small. For example if
h = O(n1/2−ε) for any ε > 0, then for finding a single optimal path of any type, our
algorithm runs in O(n) time, and our data structures for the minimum-link shortest path
and minimum-link path queries are also optimal.

It is easy to see that the minimum-link shortest paths and the shortest minimum-link paths
are special cases of minimum-cost paths, and we discuss them separately mainly because our
results for the two special cases are generally better that those for the minimum-cost paths.
In fact, as the cost function f is quite general, our algorithm for computing minimum-cost
paths may find many applications. We give two examples below.

Polishchuk and Mitchell [19] gave an O(kn log2 n) time algorithm for computing a shortest
s-t path with at most k links for a given integer k, which improves the O(kn2) time algorithm
in [24]. As indicated in [19], the problem can be solved using any algorithm that can find a
minimum-cost path with the cost function defined as f(a, b) = a if b ≤ k and f(a, b) =∞
otherwise, where a and b are the length and the link distance of the path, respectively.
Partially due to this reason, Polishchuk and Mitchell [19] already suspected that there is a
misunderstanding on the algorithms of [2, 25] for computing minimum-cost paths. We thus
confirm their suspicion. On the other hand, applying our new (and correct) algorithm for
minimum-cost paths can solve the problem in O(n+ h2 log3/2 h) time, which is faster than
the algorithm in [19] when h is sufficiently small or when k is relatively large.

As a dual problem, finding a minimum-link s-t path with length at most a given value l
was also studied in [24], where a worst-case O(n2(r + logn)) time algorithm was given with
r as the number of extreme edges of P. Note that r ≥ h. The problem can also be solved
using any minimum-cost path algorithm by defining the cost function as f(a, b) = b if a ≤ l
and f(a, b) =∞ otherwise. Hence, applying our algorithm for minimum-cost paths can solve
the problem in O(n+ h2 log3/2 h), which clearly improves the algorithm of [24].

SoCG 2017

60:4 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

Other Related Work. If P is a simple rectilinear polygon (i.e., h = 0), then there always
exists a rectilinear s-t path that has both the minimum length and the minimum link distance
for any s and t in P [10, 11]. de Berg [10] built a data structure of O(n logn) size in O(n logn)
time that can find such a path in O(logn) time for any two-point query. The preprocessing
time and space were both reduced to O(n) by Schuierer [21] (with O(logn) query time).

If P is a general rectilinear domain with h 6= 0, then there may not exist a rectilinear path
that is both a minimum-link path and a shortest path [24]. The problems of finding only
minimum-link paths or only shortest paths have been studied extensively. Imai and Asano [12]
presented an O(n logn) time and space algorithm for finding a minimum-link s-t path in
P, and the space was reduced to O(n) [9, 16, 20]. Recently, Mitchell et al. [17] proposed
an O(n+ h log h) time and O(n) space algorithm for the problem, after P is triangulated
(which can be done in O(n logn) time or O(n + h log1+ε h) time for any ε > 0 [1]). The
algorithms in [9, 16, 17] also construct an O(n) size data structure that can answer each
one-point minimum-link path query in O(logn) time.

For computing shortest s-t paths in P , Clarkson et al. [7] gave an algorithm of O(n log2 n)
time and O(n logn) space, and as a tradeoff between time and space, they modified their
algorithm so that it runs in O(n log3/2 n) time and space [8]. Wu et al. [23] proposed an
O(n log r + r2 log r) time algorithm, where r is the number of extreme edges of P, and the
algorithm was later improved to O(n log r + r log3/2 r) time [25]. Mitchell [14, 15] solved the
problem in O(n logn) time and O(n) space, and Chen and Wang [5, 6] reduced the time to
O(n+ h log h) after P is triangulated.

If P is an arbitrary polygonal domain (i.e., not rectilinear), then the results from
[5, 6, 7, 8, 14, 15] are also applicable to finding arbitrary shortest paths under L1 metric.
In addition, the algorithms in [5, 6, 14, 15] can be used to compute an O(n) size data
structure so that each one-point L1 shortest path query can be answered in O(logn) time.
For two-point L1 shortest path queries, Chen et al. [4] constructed a data structure of size
O(n2 logn) in O(n2 log2 n) time that can answer each query in O(log2 n) time. Recently,
Chen et al. [3] reduced the query time to O(logn) by building a data structure of size
O(n+ h2 · log h · 4

√
logh) in O(n+ h2 · log2 h · 4

√
logh) time.

To find a minimum-link s-t path between two points s and t in an arbitrary polygonal
domain P, Mitchell [18] gave an O(Eα(n) log2 n) time algorithm, where α(n) is the inverse
of Ackermann’s function and E is the size of the visibility graph of P and E = Θ(n2) in the
worst case. The one-point query problem was also studied in [18].

In the following, unless otherwise stated, a path always refers to a rectilinear path.

Our Techniques. Given two points s and t in the rectilinear domain P , to find an optimal
s-t path, the algorithm of Yang et al. [25] first built a “path-preserving” graph G of size
O(n logn) by using the idea of Clarkson et al. [7]. Then, it is shown that G contains an s-t
path πG(s, t) that is homotopic to an optimal s-t path π(s, t) in P with the same length, and
further, π(s, t) can be obtained from πG(s, t) by performing certain “dragging” operations.
Motivated by this observation, Yang et al. [25] computed an optimal s-t path by applying
Dijkstra’s algorithm on G and simultaneously performing the dragging operations. We find
a critical error in their way of applying Dijkstra’s algorithm. We fix the error by using
a “path-based” Dijkstra’s algorithm and maintaining some additional information, and we
prove that our algorithm is correct. Due to that we need to maintain more information on
computing shortest minimum-link paths and minimum-cost paths, our algorithm for them
runs slower than that for computing minimum-link shortest paths.

To further reduce the running time (for small h), our main idea is to use a reduced graph
Gr of size O(h log h) instead of G. We show that Gr contains an s-t path πGr (s, t) that

H. Wang 60:5

is homotopic to an optimal s-t path π(s, t) in P with the same length, and further, π(s, t)
can be obtained from πGr

(s, t) by performing the dragging operations as in [25] and a new
kind of operations, called through-corridor-path generating operations. The graph Gr is built
based on a corridor structure of P , which was used to find minimum-link paths in [17]. More
specifically, we decompose P into O(h) junction rectangles and O(h) corridors. Each corridor
is a simple rectilinear polygon. Although each corridor may have Θ(n) vertices, we show
that we only need to consider at most four points of each corridor to build the graph Gr. To
this end, we make use of the histogram partitions of rectilinear simple polygons [21].

For the one-point queries, Chen et al. [2] “insert” the query point t to the graph G to
obtain a set Vg(t) of O(logn) vertices (called “gateways”) of G such that an optimal path can
be obtained by performing the dragging operations from the gateways. We follow the similar
scheme but on our reduced graph Gr, where only O(log h) gateways are necessary. Further,
we also need to utilize the techniques of Schuierer [21] for simple rectilinear polygons.

For the two-point queries, the approach of [2] inserts both query points s and t to the
graph G to obtain a set Vg(s) of O(logn) gateways for s and a set Vg(t) of O(logn) gateways
for t, so that an optimal s-t path can be obtained by performing dragging operations from
these gateways. The query time becomes O(log2 n) because every pair of points (p, q) with
p ∈ Vg(s) and q ∈ Vg(t) needs to be considered. We again use the same scheme but on the
graph Gr with only O(log h) gateways for both s and t, and the query time is O(logn+log2 h).
To reduce the query time to O(logn), we follow the scheme in [3] for two-point L1 shortest
path queries in arbitrary polygonal domains. The main idea is to build a larger graph by
adding more vertices to Gr so that O(

√
log h) gateways are sufficient for each query point.

The rest of the paper is organized as follows. We define some notation in Section 2. In
Section 3, we review the algorithm given by Yang, Lee, and Wong [25] (we refer to it as
the YLW algorithm), point out the error, and correct it. In Section 4, we further improve
the algorithm for finding a single optimal s-t path. Due to the space limit, some details are
omitted but can be found in the full paper [22]. Our data structures for the one-point and
two-point path queries are also omitted and in the full paper.

2 Preliminaries

In this section, we define some concepts and notation. For any two points p and q of P, if
the line segment pq is in P, then we say that p is visible to q. Consider a vertical line l and
a point p ∈ P . Let p′ be the point on l whose y-coordinate is the same as that of p. We call
p′ the horizontal projection of p on l. If p is visible to p′, then p is horizontally visible to l.

For any two points p and q, we use Rpq to denote the rectangle with pq as a diagonal. A
path in P is L-shaped if it consists of a horizontal segment and a vertical segment (each of
them may be empty). A path is U-shaped if it consists of three segments s1, s2, and s3 such
that s1 and s3 are on the same side of the line containing s2. A path is called a staircase
path if it does not contain a U-shaped subpath. Note that a staircase path is a shortest path.

Let V denote the set of all vertices of P. We let V also include the two points s and
t. We review a “path-preserving” graph G(V) on V [7]. The vertex set of G(V) consists
of the points of V and Steiner points on some vertical lines, called cut-lines. The cut-lines
and the Steiner points are defined as follows. Let vm be the point of V with the median
x-coordinate. The vertical line lm through vm is a cut-line. For each point v ∈ V, if v is
horizontally visible to lm, then the horizontal projection of v on lm is a Steiner point. Let Vl
(resp., Vr) be the points of V on the left (resp., right) side of lm. The cut-lines and Steiner
points on the left and right sides of lm are defined on Vl and Vr, recursively. We use a

SoCG 2017

60:6 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

binary tree T (V) to represent the above recursive procedure, called cut-line tree. Each node
u ∈ T (V) corresponds to a cut-line l(u) and a subset V (u) ⊆ V . If u is the root, then l(u) is
lm and V (u) = V. The left and right subtrees of the root are defined recursively on Vl and
Vr. Hence, T (V) has O(n) nodes and each point of V can define a Steiner point on at most
O(logn) cut-lines. Therefore, there are O(n logn) Steiner points in total.

The vertex set of G(V) consists of all points of V and all Steiner points defined above.
The edges of the graph are defined as follows. First, if a point v ∈ V defines a Steiner point
v′ on a cut-line, then G(V) has an edge vv′. Second, for any two adjacent Steiner points p1
and p2 on each cut-line, if they are visible to each other, then G(V) has an edge p1p2.

Clearly, G(V) has O(n logn) nodes and edges. Each edge of G(V) is either horizontal or
vertical, whose weight is the length of the corresponding line segment. The graph G(V) can
be built in O(n log2 n) time [7, 13, 25]. The following lemma was proved before [7, 13, 25].

I Lemma 1 ([7, 13, 25]). For any two points p and q in V, if Rpq is empty (i.e., Rpq is in
P), then G(V) contains a staircase path from p to q.

For any path π in P, let L1(π) denote its length and let Ld(π) denote its link distance.
For any two points a and b on π, if the context is clear, we often use π(a, b) to denote the
subpath of π between a and b. For any two points p and q in the plane, we say that q is to
the northeast of p if q is in the first quadrant (including its boundary) with respect to p.

3 The YLW Algorithm and Our Correction

In this section, we first review the YLW algorithm [25] and then point out the error. Finally,
we will fix the error. The YLW algorithm is essentially based on the following observation.

I Lemma 2 (Yang et al. [25]). For any optimal path π from s to t in P, there is path πG
in G(V) such that L1(πG) = L1(π) and πG is homotopic to π (i.e., πG can be continuously
dragged to π without going outside of P).

We briefly review the proof of Lemma 2 because it will help to understand the algorithm.
Let π be any optimal path from s to t. It is shown (Lemma 2.1 [25]) that π can be

divided into a sequence of staircase subpaths, and the two endpoints of each such subpath
are in V . Hence, it is sufficient to prove the lemma for any staircase subpath of π. Consider a
staircase subpath π(p, q) of π with p and q as the two endpoints. We further obtain a pushed
staircase path as follows. Without loss of generality, we assume q is to the northeast of p and
the segment of π(p, q) incident to p is horizontal. We push the first vertical segment of π(p, q)
rightwards until either it hits a vertex of V or it becomes collinear with the second vertical
segment of π(p, q). In the latter case, we merge the two vertical segments and keep pushing
the merged segment rightwards. In the former case, we push the next horizontal segment
upwards in a similar way. The procedure stops until we arrive at the segment incident to
q. Let π′ denote the resulting path. Observe that L1(π′) = L1(π(p, q)), π′ is homotopic to
π(p, q), and π′ is also a staircase path. π′ is called a pushed staircase path [25]. Also note
that each segment of π′ contains at least one vertex of V. There are eight types of pushed
staircase paths from p to q depending on which quadrant of p the point q lies in and also
depending on whether the first segment of the path incident to p is horizontal or vertical.

The vertices of V partition π′ into subpaths. To prove the lemma, it is sufficient to show
the following claim: for any subpath π′(p′, q′) of π′ between any two adjacent vertices p′ and
q′ of V on π′, there is a path πG(p′, q′) connecting p′ and q′ in G(V) with the same length
and the two paths are homotopic. Because every segment of π′ contains at least one vertex

H. Wang 60:7

p′

q′

Figure 1 Converting πG(p′, q′) (the dashed red
path) to π′(p′, q′) (the solid blue path between p′ and
q′).

p

t

π2

π1

Figure 2 Illustrating a counter example
for the YLW algorithm.

of V, π′(p′, q′) must be an L-shaped path. Without loss of generality, we assume q′ is to the
northwest of p′. If the rectangle Rp′q′ is empty, then by Lemma 1, the above claim is true.
Otherwise, as shown in [25] (Lemma 4.5), there are some points of V in Rp′q′ that can be
ordered as p′ = v0, v1, . . . , vt = q′ with Rvi−1vi

being empty and vi to the northwest of vi−1
for each 1 ≤ i ≤ t, and further, π′(p′, q′) is homotopic to the concatenation of vi−1vi for all
1 ≤ i ≤ t. By Lemma 1, for each 1 ≤ i ≤ t, G(V) contains a staircase path connecting vi−1
and vi and the path is in Rvi−1vi (and thus is homotopic to vi−1vi). Hence, by concatenating
the staircase paths from vi−1 to vi for all i = 1, 2, . . . , t, we obtain a staircase path from p′ to
q′ and the path is homotopic to π′(p′, q′). Note that the staircase path has the same length
as π′(p′, q′) since π′(p′, q′) is an L-shaped path. The above claim thus follows.

This proves Lemma 2. The proof actually constructs the path πG in G(V) corresponding
to the optimal path π, and πG is called a target path. Yang et al. [25] also showed that π can
be obtained from πG by applying certain dragging operations during searching the graph
G(V). Instead of describing the details of the operation (refer to our full paper or [25]), we
give some intuition on how π can be obtained from πG by using the dragging operations.
Based on the above constructive proof for Lemma 2, we only need to show that for each
L-shaped path π′(p′, q′), it can be obtained from the corresponding staircase path πG(p′, q′)
in G(V). Without loss of generality, we assume that q′ is to the northeast of p′ and the
segment incident to p′ in π′(p′, q′) is vertical. Because πG(p′, q′) is homotopic to π′(p′, q′),
we can convert πG(p′, q′) to π′(p′, q′) as follows (e.g., see Fig. 1). Starting from p′, for each
horizontal segment of πG(p′, q′), drag it upwards until either it hits the horizontal segment of
π′(p′, q′) or it becomes collinear with the next horizontal segment of πG(p′, q′). In the former
case, we have obtained π′(p′, q′). In the latter case, we continue to drag the new horizontal
segment upwards in the same way as before.

The YLW algorithm applies Dijkstra’s algorithm using the measure vector (L1(π), Ld(π))
for a path π. Initially, all vertices of G(V) are in a priority queue Q with measure vectors
(∞,∞) except that the measure vector for s is (0, 0). While Q is not empty, the algorithm
removes from Q the vertex p with the smallest measure vector (lexicographically) and advance
the paths stored at p to each of p’s neighbor q by the dragging operations. Let π(s, q) be a
path obtained for q. There may be other paths already stored at q and the types of the last
staircase subpaths of these paths are also stored (recall that there are eight types of pushed
staircase subpaths). The YLW algorithm relies on the following two rules to determine
whether the new path π(s, q) should be stored at q, and if yes, whether some paths stored at
q should be removed. Let π′(s, q) be any path that has already been stored at q.

Rule(a) If the measure vectors of π(s, q) and π′(s, q) are not the same, then discard the one
whose measure vector is strictly larger.

Rule(b) If π(s, q) and π′(s, q) have the same measure vector and of the same type, compare
their last segments. If they overlap, discard the path whose last segment is longer.

SoCG 2017

60:8 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

It is claimed in [25] that once the point t is processed, among all paths stored at t, the
one with the smallest measure vector is an optimal s-t path.

The Error. We find that the algorithm is not correct, mainly due to Rule(a). Figure 2
illustrates a counterexample. Assume that both π1 and π2 are paths from s to p with
L1(π1) = L1(π2) and Ld(π1) + 1 = Ld(π2). Thus, the measure vector of π1 is strictly smaller
than that of π2. According to Rule(a), we should discard π2. Observe that we can obtain an
s-t path from s to t using π2 without any extra link. However, to obtain an s-t path using
π1, we need at least two more links. Therefore, π2 can lead to a better s-t path than π1, and
thus, we should not discard π2. Notice that the reason this happens is that although the
measure vector of π1 is strictly smaller than that of π2, the last segment of π2 is shorter than
that of π1 (and thus it may be “freely” dragged upwards higher than that of π1).

In fact, the most essential reason for this error to happen might be the following. If π is
a shortest s-t path, then for any two points p and q in π, the subpath π(p, q) of π between p
and q is also a shortest path from p to q. However, this may not be the case for minimum-link
paths. Namely, if π is a minimum-link s-t path, then it is possible that for two points p and q
in π, π(p, q) is not a minimum-link path from p to q. Due to this reason, one can verify that
the O(nt+ n logn) time algorithm given by Yang et al. [24] for computing optimal paths is
not correct either. Indeed, the approach in [24] also applies Dijkstra’s algorithm on a graph
to search the optimal paths using the measure vectors like (L1(π), Ld(π)).

3.1 Our New Algorithm
To fix the error, we need to fix Rule(a). We first consider the minimum-link shortest paths.
We replace Rule(a) by the following Rule(a1), but still keep Rule(b). (Recall that π′(s, q)
denotes any path that has already been stored at q.)

Rule(a1) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If L1(π1) < L1(π2), or
L1(π1) = L1(π2) but Ld(π1) ≤ Ld(π2)− 2, then we discard π2.

By Rule(a1), we may need to store two paths π1 and π2 at q even if the measure vector
of one path is strictly smaller than that of the other, in which case L1(π1) = L1(π2) and
Ld(π1) = Ld(π2)± 1. Hence, unlike the YLW algorithm, each vertex q of G(V) may store
paths with different measure vectors. Therefore, we cannot apply the same “vertex-based”
Dijkstra’s algorithm as before. Instead, we propose a “path-based” Dijkstra’s algorithm.
Roughly speaking, we will process individual paths instead of vertices. Specifically, in the
beginning there is only one path from s to s itself in the priority queue Q. In general, as long
as Q is not empty, we remove from Q the path π with the smallest measure vector. Assume
that the endpoint of π is p. Then, we advance π from p to each of p’s neighbors q. If π(s, q)
is stored at q by our rules (i.e., both Rule(a1) and Rule(b)), then we (implicitly) insert π(s, q)
to Q. The algorithm stops once Q is empty. Since we process paths following the increasing
measure order, the algorithm will eventually stop. Finally, among all paths stored at t, we
return the one with the smallest measure as the optimal solution. The correctness of the
algorithm is proved in the full paper.

In terms of the running time, the YLW algorithm maintains at most eight paths at each
vertex p of G(V). To see this, due to Rule(b), for each type of staircase paths, p maintains
at most one path. In our new algorithm, the paths maintained at p always have the same
length but their link distances differ by at most one. Hence, again due to Rule(b), there
are at most sixteen paths maintained at p. Clearly, this does not affect both the time and

H. Wang 60:9

π2
π3

q

t1

t2

t3

π1

Figure 3 Illustrating an example on why we
need Rule(a2).

Figure 4 Illustrating the vertical visibility de-
composition VD(P) and its dual graph Gvd.

the space complexities of the algorithm asymptotically. Thus, the algorithm still runs in
O(n log2 n) time and O(n logn) space, as the YLW algorithm.

In addition, using another path-preserving graph G∗(V) of O(n log1/2 n) vertices and
O(n log3/2 n) edges [8], Yang et al. [25] proposed another O(n log3/2 n) time and space
algorithm (see Section 4.2 of [25]). Further, Chen et al. [2] reduced the space of the algorithm
to O(n logn) with the same O(n log3/2 n) time (similar technique was also used in [4]). By
applying the techniques of both [25] and [2] to our new method, we can also obtain an
algorithm of O(n log3/2 n) time and O(n logn) space. We omit the details.

We proceed on the problem of finding a minimum-cost s-t path. Recall that we have a
cost function f . For any path π, we use f(π) to denote the cost of the path. Our algorithm
is the same as above with the following changes. First, the paths π in the priority Q are
prioritized by f(π). Second, we replace both Rule(a1) and Rule(b) by the following rule.

Rule(a2) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If the last segments of π1
and π2 are exactly the same and f(π1) ≤ f(π2), then we discard π2.

We give some intuition on why we use the above rule. Refer to Fig. 3, where there are
three paths π1, π2, and π3 from s to q. Let si be the last segment of πi for each 1 ≤ i ≤ 3,
and we assume that they overlap with |s1| < |s2| < |s3|, where |si| is the length of each si.
We also assume that Ld(π1) = Ld(π2) = Ld(π3) and L1(π1) > L1(π2) > L1(π3). In this
case, we have to keep all three paths because any of them may lead to the best path from s

to t. For example, for each 1 ≤ i ≤ 3, the path πi may lead to the best path from s to ti.
One can generalize the example so that a total of Ω(n) paths may need to be stored at p.
However, O(n) is the upper bound since the last segment of each such path starts from a
different vertex of G(V) in the horizontal line through q and there are O(n) such vertices.
For this reason, their are O(n2 logn) paths stored in all O(n logn) vertices of G(V). Hence,
the running time of the algorithm becomes O(n2 log2 n) and the space becomes O(n2 logn).
As for the minimum-link shortest paths, by using the graph G∗(V) and the techniques in
[2, 25], we can reduce the running time by a factor of

√
logn. We omit the details.

For computing a shortest minimum-link s-t path, we use a similar algorithm as above but
with the following changes. First, we use the measure vector (Ld(π), L1(π)) instead. Second,
we use the following rule, which is similar to Rule(a2). The complexities are the same as the
above for minimum-cost paths.

Rule(a3) Let π1 be one of π′(s, q) and π(s, q), and π2 the other. If the last segments of π1
and π2 are exactly the same and the measure vector of π1 is no larger than that of π2,
then we discard π2.

SoCG 2017

60:10 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

d

Figure 5 Illustrating the corridor structure and the
corridor graph Gcor of three vertices. There are three
junction rectangles, which are highlighted. Each con-
nected white region is a corridor, which corresponds to
an edge of Gcor. The diagonal d forms a degenerated
corridor.

e H

Figure 6 Illustrating the maximal histo-
gram H, which has three windows shown
with (red) dotted segments.

4 The Improved Algorithm

We further improve our algorithm, so that in addition to O(n), the complexities of our
improved algorithm only depend on h, i.e., the number of holes of P. We first review the
corridor structure of P [17] and the histogram partitions of rectilinear simple polygons [21].

The Corridor Structure of P. For ease of exposition, we make a general position assumption
that no two edges of P are collinear. The vertical visibility decomposition of P, denoted by
VD(P), is obtained by extending each vertical edge of P until it hits the boundary of P.
Each cell of VD(P) is a rectangle. Each extension segment is called a diagonal of VD(P).

Let Gvd be the dual graph of VD(P) (see Fig. 4), i.e., each node of Gvd corresponds
to a cell of VD(P) and two nodes have an edge if the corresponding cells share an edge.
Based on Gvd, we obtain a corridor graph Gcor as follows. First, we keep removing every
degree-one node from Gvd along with its incident edge until no such nodes remain. Second,
we keep contracting every degree-two node from Gvd (i.e., remove the node and replace its two
incident edges by a single edge) until no such nodes remain. The graph thus obtained is Gcor,
which has O(h) nodes and O(h) edges [17]. See Fig. 5. The cells of VD(P) corresponding to
the nodes of Gcor are called junction rectangles. If we remove all junction rectangles from
P, each connected region is a simple rectilinear polygon, which is called a corridor. Each
corridor has two diagonals each of which is on a vertical side of a junction rectangle, and we
call them the doors of the corridor. For convenience, if a diagonal d bounds two junction
rectangles (see Fig. 5), then we consider d itself as a “degenerate” corridor whose two doors
are both d. With the degenerated corridors, each vertex of P lies in a unique corridor.

The decomposition VD(P) can be computed in O(n+ h log1+ε h) time for any ε > 0 [1].
After VD(P) is known, the corridor structure of P can be obtained in O(n) time.

The Histogram Partitions. The histogram partition is a decomposition of a simple rec-
tilinear polygon [21]. We will need to build the histogram partitions on the corridors
of P.

A simple rectilinear polygon H is called a histogram if its boundary can be divided into
an x- or y-monotone chain and a single line segment, which is called the base of H.

Consider a simple rectilinear polygon Q (e.g., a corridor C of the corridor structure of
P) and let e be an edge of Q (e.g., a door of C). A histogram partition of Q with respect
to e, denoted by H(Q, e), is defined as follows. Let H be the maximal histogram with base

H. Wang 60:11

d1 d2R

Figure 7 Illustrating an open corridor: the
canal R and the two bridges are highlighted. The
four points on the two doors are backbone points.

d1

d2

w1q1

w2 q2

Figure 8 Illustrating a closed corridor. The
points q1 and q2 are backbone points on d1 and
d2, respectively.

e in Q, i.e., there is no other histogram in Q with base e that can properly contain it (see
Fig. 6). A window of H is a maximal segment on the boundary of H that is contained in
the interior of Q except its two endpoints. For each window w of H, it divides H into two
subpolygons, and we let Q(w) be the one that does not contain e. If H does not have a
window, we are done with the histogram partition of Q. Otherwise, for each window w, we
perform the above partition on Q(w) recursively with respect to w.

For any points p and q in Q, it is known that there exists a path from p to q in Q that is
both a shortest path and a minimum-link path [10, 11, 21], and we call it a smallest path.

4.1 A Reduced Path Preserving Graph
Recall that our algorithm in Section 3 use a graph G(V), which is built on the vertices of
V and has O(n logn) nodes and edges. In this section, as a major tool for reducing the
complexities of our algorithm, we propose a reduced graph of O(h log h) nodes and edges. We
first introduce a set B of O(h) backbone points on the doors of the corridors of P.

The Backbone Points. Consider a corridor C of the corridor structure of P . Let d1 and d2
be the two doors of C, which are both vertical. The region of C excluding the two doors is
called the interior of C. If there exist a point p1 ∈ d1 and a point p2 ∈ d2 such that p1p2 is
horizontal and p1p2 in C then we say that C is an open corridor ; otherwise, it is closed.

Consider an open corridor C (see Fig. 7). Let p1 and p2 be the points defined above.
Imagine that we drag p1p2 vertically upwards (resp., downwards) until we hit a vertex of C,
then the current locations of p1 and p2 are two backbone points. In this way, each door of
C has two backbone points. Clearly, the rectangle R with the four backbone points as the
vertices is in C and we call R the canal of C. The two horizontal edges of R are called bridges
of C. Further, the top edge of R is the upper bridge and the bottom edge is the lower bridge.

If C is a degenerate corridor, which is a single diagonal d, then C is also an open corridor
and the upper (resp., lower) bridge is degenerated to the upper (resp., lower) endpoint of d.

Next, we consider the case where C is closed (see Fig. 8). Let H1 be the maximal histogram
in C with base d1. As C is closed, H1 has a window w1 that separates d1 from d2, that is, w1
divides C into two sub-polygons that contain d1 and d2, respectively. By the definition of
windows, if we extend w1 to d1, the extension will hit d1 at a point, denoted by q1, before it
goes out of C. Similarly, we define H2, w2, and q2, with respect to the other door d2. The
two points q1 and q2 are backbone points of C.

The above defines two backbone points on each door of every open corridor and one
backbone point on each door of every closed corridor. Let B denote the set of all such
backbone points. Since there are O(h) corridors, the size of B is O(h).

SoCG 2017

60:12 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

The Reduced Graph G(B). In the sequel, we introduce the reduced graph, denoted by
G(B). We first consider the case where both s and t are in junction rectangles. With a little
abuse of notation, we let B also contain both s and t.

We build the graph G(B) with respect to the points of B in the same way as G(V) with
respect to V in Section 3. Hence, G(B) has O(h log h) vertices and O(h log h) edges. In
addition, we add the following O(h) edges to G(B). Consider a closed corridor C with the
two backbone points q1 and q2 on its two doors. Note that q1 and q2 are also two vertices
in G(B). We add to G(B) an edge e(q1, q2) to connect q1 and q2 with length equal to
L1(π(C, q1, q2)), where π(C, q1, q2) is a shortest path from q1 to q2 in C. We call e(q1, q2) a
corridor edge of G(B), and call π(C, q1, q2) a corridor path of C. We do this for all closed
corridors. This completes the construction of G(B). Since there are O(h) corridors, G(B)
has O(h) corridor edges. For differentiation, other edges of G(B) that are not corridor edges
are called ordinary edges. Hence, G(B) has O(h log h) edges in total. Note that every path
πG(B) in G(B) corresponds to a path π in P with the same length in the sense that if the
path πG(B) contains a corridor edge, then π contains the corresponding corridor path.

The following lemma is analogous to Lemma 2, but on the reduced graph G(B). It
explains why the graph G(B) can help to find optimal paths.

I Lemma 3. There exists a path πG(B) in G(B) from s to t that is homotopic to an optimal
s-t path and the two paths have the same length; we call πG(B) a target path.

Lemma 3 implies that a shortest s-t path in G(B) is a shortest s-t path in P . Hence, G(B)
is indeed a “path-preserving” graph. We can compute G(B) in O(n+ h log2 h) time using
the previous algorithm [7, 13, 25] as well as a so-called reduced domain Pr, which consists of
all junction rectangles and the canals of all open corridors of P. The details are omitted.

4.2 Computing an Optimal Path
In this section, we compute an optimal s-t path using G(B). We will show that an optimal
s-t path can be computed by applying the dragging operations as in [25] on the ordinary
edges of πG(B) and applying a new kind of operations, called through-corridor-path generating
operations, on corridor edges of πG(B), where πG(B) is a target path defined in Lemma 3.

The algorithmic scheme is similar to that in Section 3.1. When we advance the searching
process through an ordinary edge, we perform a dragging operation as in [25]. If we are
advancing along a corridor edge, then we apply a through-corridor-path generating operation,
which is introduced in the following. We first review some results from Schuierer [21].

Consider a closed corridor C. Let d be a door of C and let q be the backbone point on d.
Recall that q is an extension of a window w of the maximal histogram H in C with base d.

Let p be a point in C. Following the terminology in [21], a rectilinear path from p to a
point on d is called an admissible path if the last link is orthogonal to d. A minimum-link
admissible path from p to d is an admissible path from p to any point of d with the smallest
number of links, and we use Ld(p, d) to denote the number of links in the path. Let I1(p, d)
(resp., I2(p, d)) denote the set of points on d that can be reached by p with an admissible
path of at most Ld(p, d) (resp., Ld(p, d) + 1) links (e.g., see Fig. 9). It is known that each
of I1(p, d) and I2(p, d) is an interval of d, and I1(p, d) ⊆ I2(p, d) [21]. Further, if p is not
horizontally visible to d, then both intervals have q as one of their endpoints. By using the
histogram partition H(C, d), Schuierer [21] built a data structure in O(|C|) time such that
given any point p ∈ C, the two intervals I1(p, d) and I2(p, d) can be determined in O(log |C|)
time. With a little abuse of notation, we also use H(C, d) to refer to the above data structure.

H. Wang 60:13

q

d

I1(p, d)
I2(p, d)

p

wa b

Figure 9 Illustrating the two intervals I1(p, d)
and I2(p, d), where Ld(p, d) = 3 and ab is the
window w. The two blue segments are doors of
the corridor.

q

d

p

λ2(p, d)

p′

λ1(p, d)

p1 p2

w

Figure 10 Illustrating the two points λ1(p, d)
and λ2(p, d) on the window w. p′ is also a back-
bone point.

Suppose p is a point on the other door of C than d (so p is not horizontally visible to d).
Then, I1(p, d) is uniquely determined by a point, denoted by λ1(p, d), on the window w in
the following way [21] (e.g., see Fig. 10). Recall that d is vertical and thus w is horizontal.
Without loss of generality, assume that the histogram H is locally above w and locally on
the left of d. We shoot a ray from λ1(p, d) upwards until a point p1 on the boundary of C
and then we project p1 perpendicular to d and let p2 be the projection point. The point p2
is the other endpoint of the interval I1(p, d), i.e., I1(p, d) = qp2. Note that p2 is above q.
Let I ′1(p, d) denote the segment λ1(p, d)q, which is on the extension of the window w. We
can also understand the two intervals I1(p, d) and I ′1(p, d) in the following way. There exists
an admissible path of Ld(p, d) links from p to q, denoted by π1(C, p, q), which is actually a
smallest path from p to q, and its last link is I ′1(p, d); for any point q′ ∈ I1(p, d), by dragging
the last segment of π1(C, p, q) upwards until q′, we can obtain an admissible path of Ld(p, d)
links from p to q′. The data structure H(C, d) can also report λ1(p, d) in O(logn) time and
the path π1(C, p, q) can be output in additional time linear in the link distance of the path.

The interval I2(p, d) is uniquely determined by a point λ2(p, d) on the window w in the
similar way as above. Similarly, we define I ′2(p, d) and the corresponding admissible path of
Ld(p, d) + 1 links from p to q whose last link is I ′2(p, d), denoted by π2(C, p, q), which is a
shortest path (but not necessarily a smallest path) from p to q in C [21]. Similarly, the data
structure H(C, d) can also report λ2(p, d) in O(logn) time and the path π2(C, p, q) can be
output in additional time linear in the link distance of the path.

In the following, we introduce our through-corridor-path generating operations for advan-
cing paths along corridor edges in our algorithm for searching the graph G(B).

Consider a corridor edge e(q1, q2) connecting two vertices q1 and q2 of G(B). Note that
q1 and q2 are two backbone points that are on the two doors d1 and d2 of a closed corridor
C, respectively. Consider a path π(s, q1) from s to q1 maintained by our algorithm. Suppose
we want to advance π(s, q1) from q1 to q2 along the corridor edge e(q1, q2). We perform the
following through-corridor-path generating operation that will extend π(s, q1) from q1 to q2
to obtain a path π(s, q2) from s to q2.

Recall that q1 is an extension of a window w1 of the maximal histogram H1 in C with
base d1. Hence, w1 divides C into two sub-polygons that contain d1 and d2, respectively.
Without loss of generality, we assume that the sub-polygon containing d2 is locally above w1.
We also assume that C is locally on the right of d1 (e.g., see Fig. 11).

Let α be the last segment of π(s, q1) (i.e., the one incident to q1) and let p be the other
endpoint of α than q1. Suppose we have already built the data structure H(C, d2) for C with
respect to the door d2. Depending on whether α is horizontal or vertical, there are two cases.

SoCG 2017

60:14 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

d2

q1

q2

d1

w1

w2

p

α

π(s, q1)

Figure 11 Illustrating the through-corridor-
path generating operation for the case where α is
horizontal. The path π1(C, q1, q2) are shown with
red dashed segments.

d2

q1

q2
d1

p

α

π(s, q1)

λ1(p, d2)w2

w1

Figure 12 Illustrating the through-corridor-
path generating operation for the case where α
is vertical and p is on d1 below q1. The smallest
path πopt(C, q1, q2) are shown with red dashed
segments. Note that I ′

1(p, d2) = λ1(p, d2)q2.

1. If α is horizontal (e.g., see Fig. 11), then p must be to the left of q1 since C is locally
on the right side of d1. In this case, we use H(C, d2) to determine the path π1(C, q1, q2)
(whose last link is I ′1(q1, d2)) and concatenate it with π(s, q1) to obtain π(s, q2). We also
compute the number of links of π(s, q2) and its length, and store them at q2. Note that
L1(π(s, q1)) and Ld(π(s, q1)) are already stored at q1.

2. If α is vertical, then depending on whether p is above q1, there are two subcases.
a. If p is above q1, then we use the same approach as above to obtain π(s, q2). Note that

in this case the path makes a turn at q1 while there is no turn at q1 in the above case.
b. If p is below q1, then depending on whether p is on d1, there are further two subcases.

i. If p is not on d1, then we use the same approach as above to obtain π(s, q2).
ii. If p is on d1, this is the trickiest case. Let πopt(C, p, q2) denote the smallest path

from p to q2 in C whose last link is I ′1(p, d2) (e.g., see Fig. 12). πopt(C, p, q2) can also
be determined in O(logn) time by the data structure H(C, d2). We obtain π(s, q2)
by concatenating πopt(C, p, q2) with the subpath of π(s, q1) between s and p.

As a summary, to obtain π(s, q2), if Case 2(b)ii happens, then we connect the subpath of
π(s, q1) between s and p with πopt(C, p, q2); otherwise, we connect π(s, q1) with π1(C, q1, q2).
Note that in either case the last link of π(s, q2) is I ′1(q1, d2). In either case, let π′ be the
subpath of π(s, q2) contained in C. With the histogram partition H(C, d2), we can obtain
L1(π′) and Ld(π′) as well as the first and last links of π′ in O(logn) time (the path π′ can be
output in additional O(Ld(π′)) time). Hence, we can compute L1(π(s, p2)) and Ld(π(s, p2))
as well as its last link in O(logn) time, without explicitly computing the path π′. Therefore,
the through-corridor-path generating operation can be performed in O(logn) time.

As discussed before, our algorithm works in the same way as the one in Section 3 except
that we apply through-corridor-path generating operations on corridor edges of G(B) instead
of the dragging operations. We can compute the histogram partitions for all closed corridors
as the preprocessing for performing the through-corridor-path generating operations, and the
total preprocessing time is O(n) since the size of all corridors is O(n). After the algorithm
finishes, the path stored at t with the smallest measure is an optimal s-t path.

The above only discussed the case where both s and t are in junction rectangles. We
can generalizes the approach to other cases if at least one of them is in a corridor. This
is done by introducing corridor-connection points and adding a beginning procedure and a
concatenation procedure to the algorithm. The details can be found in the full paper [22].

H. Wang 60:15

I Theorem 4. We can compute a minimum-link shortest s-t path in O(n+ h log3/2 h) time
and O(n+ h log h) space, and compute a shortest minimum-link s-t path or a minimum-cost
s-t path in O(n+ h2 log3/2 h) time and O(n+ h2 log h) space.

References
1 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal

of Computational Geometry and Applications, 4(4):475–481, 1994.
2 D.Z. Chen, O. Daescu, and K. S. Klenk. On geometric path query problems. International

Journal of Computational Geometry and Applications, 11(6):617–645, 2001.
3 D.Z. Chen, R. Inkulu, and H. Wang. Two-point L1 shortest path queries in the plane. In

Proc. of the 30th Annual Symposium on Computational Geometry, pages 406–415, 2014.
4 D.Z. Chen, K. S. Klenk, and H.-Y.T. Tu. Shortest path queries among weighted obstacles

in the rectilinear plane. SIAM Journal on Computing, 29(4):1223–1246, 2000.
5 D.Z. Chen and H. Wang. A nearly optimal algorithm for finding L1 shortest paths among

polygonal obstacles in the plane. In Proc. of the 19th European Symposium on Algorithms,
pages 481–492, 2011.

6 D.Z. Chen and H. Wang. L1 shortest path queries among polygonal obstacles in the plane.
In Proc. of 30th Symp. on Theoretical Aspects of Computer Science, pages 293–304, 2013.

7 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2 n) time. In Proc. of the 3rd Annual Symposium on Computational
Geometry, pages 251–257, 1987.

8 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal
obstacles in O(n log2/3 n) time. Manuscript, 1988.

9 G. Das and G. Narasimhan. Geometric searching and link distance. In Proc. of the 2nd
Workshop of Algorithms and Data Structures, pages 261–272, 1991.

10 M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Applica-
tions, 1:13–34, 1991.

11 J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

12 H. Imai and T. Asano. Efficient algorithms for geometric graph search problems. SIAM
Journal on Computing, 15(2):478–494, 1986.

13 D.T. Lee, C.D. Yang, and T.H. Chen. Shortest rectilinear paths among weighted obstacles.
International Journal of Computational Geometry and Applications, 1(2):109–124, 1991.

14 J. S. B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles.
Abstracts of the 1st Canadian Conference on Computational Geometry, 1989.

15 J. S. B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica,
8(1):55–88, 1992.

16 J. S. B. Mitchell, V. Polishchuk, and M. Sysikaski. Minimum-link paths revisited. CGTA,
47:651–667, 2014.

17 J. S. B. Mitchell, V. Polishchuk, M. Sysikaski, and H. Wang. An optimal algorithm for
minimum-link rectilinear paths in triangulated rectilinear domains. In Proc. of the 42nd
International Colloquium on Automata, Languages and Programming, pages 947–959, 2015.

18 J. S. B. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles in the
plane. Algorithmica, 8:431–459, 1992.

19 V. Polishchuk and J. S. B. Mitchell. k-Link rectilinear shortest paths among rectilinear
obstacles in the plane. In Proc. of the 17th Canadian Conference on Computational Geo-
metry (CCCG), pages 101–104, 2005.

20 M. Sato, J. Sakanaka, and T. Ohtsuki. A fast line-search method based on a tile plane. In
Proc. of the IEEE International Symposium on Circuits and Systems, pages 588–597, 1987.

SoCG 2017

60:16 Bicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane

21 S. Schuierer. An optimal data structure for shortest rectilinear path queries in a simple
rectilinear polygon. International Journal of Computational Geometry and Applications,
6:205–226, 1996.

22 H. Wang. Bicriteria rectilinear shortest paths among rectilinear obstacles in the plane.
arXiv:1703.04466, 2017.

23 Y.-F. Wu, P. Widmayer, M.D. F. Schlag, and C.K. Wong. Rectilinear shortest paths and
minimum spanning trees in the presence of rectilinear obstacles. IEEE Transactions on
Computers, 36:321–331, 1987.

24 C.D. Yang, D.T. Lee, and C.K. Wong. On bends and lengths of rectilinear paths: A
graph-theoretic approach. Int. J. Comput. Geom. Appl., 02:61–74, 1992.

25 C.D. Yang, D.T. Lee, and C.K. Wong. Rectilinear path problems among rectilinear
obstacles revisited. SIAM Journal on Computing, 24:457–472, 1995.

Quickest Visibility Queries in Polygonal Domains∗†

Haitao Wang

Department of Computer Science, Utah State University, Logan, UT, USA
haitao.wang@usu.edu

Abstract
Let s be a point in a polygonal domain P of h−1 holes and n vertices. We consider the following
quickest visibility query problem. Given a query point q in P, the goal is to find a shortest path in
P to move from s to see q as quickly as possible. Previously, Arkin et al. (SoCG 2015) built a data
structure of size O(n22α(n) logn) that can answer each query in O(K log2 n) time, where α(n) is
the inverse Ackermann function and K is the size of the visibility polygon of q in P (and K can
be Θ(n) in the worst case). In this paper, we present a new data structure of size O(n log h+h2)
that can answer each query in O(h log h logn) time. Our result improves the previous work when
h is relatively small. In particular, if h is a constant, then our result even matches the best result
for the simple polygon case (i.e., h = 1), which is optimal. As a by-product, we also have a new
algorithm for the following shortest-path-to-segment query problem. Given a query line segment
τ in P, the query seeks a shortest path from s to all points of τ . Previously, Arkin et al. gave a
data structure of size O(n22α(n) logn) that can answer each query in O(log2 n) time, and another
data structure of size O(n3 logn) with O(logn) query time. We present a data structure of size
O(n) with query time O(h log n

h), which favors small values of h and is optimal when h = O(1).

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases shortest paths, visibility, quickest visibility queries, shortest path to
segments, polygons with holes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.61

1 Introduction

Let P be a polygonal domain with h − 1 holes and a total of n vertices, i.e., there is an
outer simple polygon containing h− 1 pairwise disjoint holes and each hole itself is a simple
polygon. If h = 1, then P becomes a simple polygon. For any two points s and t in P, a
shortest path from s to t is a path in P connecting s and t with the minimum Euclidean
length. Two points p and q are visible to each other if the line segment pq is in P. For any
point q in P, its visibility polygon consists of all points of P visible to q, denoted by Vis(q).

We consider the following quickest visibility query problem. Let s be a source point in
P. Given any point q in P, the query asks for a path to move from s to see q as quickly as
possible. Such a “quickest path” is actually a shortest path from s to all points of Vis(q).
The problem has been recently studied by Arkin et al. [1], who built a data structure of size
O(n22α(n) logn) that can answer each query in O(K log2 n) time, where K is the size of Vis(q).
In this paper, we present a new data structure of O(n log h+ h2) size with O(h log h logn)
query time. Our result improves the previous work when h is relatively small. Interesting is
that the query time is independent of K, which can be Θ(n) in the worst case. Our result is

∗ A full version of the paper is available at https://arxiv.org/abs/1703.03048.
† This research was supported in part by NSF under Grant CCF-1317143.

© Haitao Wang;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 61; pp. 61:1–61:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.61
https://arxiv.org/abs/1703.03048
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Quickest Visibility Queries in Polygonal Domains

also interesting in that when h = O(1), the data structure has O(n) size and O(logn) query
time, which matches the result for the simple polygon case [1] and is optimal.

As in [1], in order to solve the quickest visibility queries, we also solve a shortest-path-to-
segment query problem (or segment query for short), which may have independent interest.
Given any line segment τ in P , the segment query asks for a shortest path from s to all points
of τ . Arkin et al. [1] gave a data structure of size O(n22α(n) logn) that can answer each
query in O(log2 n) time, and another data structure of size O(n3 logn) with O(logn) query
time. We present a new data structure of O(n) size with O(h log n

h) query time. Our result
again favors small values of h and attains optimality when h = O(1), which also matches the
best result for the simple polygon case [1, 7].

Given the shortest path map of s, our quickest visibility query data structure can be
built in O(n log h+ h2 log h) time and our segment query data structure can be built in O(n)
time. Arkin et al.’s quickest visibility query data structure and their first segment query data
structure can both be built in O(n22α(n) logn) time, and their second segment query data
structure can be built in O(n3 logn) time [1].

Throughout the paper, whenever we talk about a query related to paths in P, the query
time always refers to the time for computing the path length, and to output the actual path,
it needs additional time linear in the number of edges of the path by standard techniques.

1.1 Related Work
The traditional shortest path problem is to compute a shortest path to move from s to
“reach” a query point. Each shortest path query can be answered in O(logn) time by using
the shortest path map of s, denoted by SPM(s), which is of O(n) size. To build SPM(s),
Mitchell [14] gave an algorithm of O(n3/2+ε) time for any ε > 0 and O(n) space, and later
Hershberger and Suri [10] presented an algorithm of O(n logn) time and space. If P is a
simple polygon (i.e., h = 1), SPM(s) can be built in O(n) time, e.g., see [8].

For the quickest visibility queries, Arkin et al. [1] also built a “quickest visibility map” of
O(n7) size in O(n8 logn) time, which can answer each query in O(logn) time. In addition,
Arkin et al. [1] gave a conditional lower bound on the problem by showing that the 3SUM
problem on n numbers can be solved in O(τ1 + n · τ2) time, where τ1 is the preprocessing
time and τ2 is the query time. Therefore, a data structure of o(n2) preprocessing time and
o(n) query time would lead to an o(n2) time algorithm for 3SUM.

In the simple polygon case (i.e., h = 1), better results are known. For the quickest
visibility queries, Khosravi and Ghodsi [11] first proposed a data structure of O(n2) size that
can answer each query in O(logn) time. Arkin et al. [1] gave an improved result and they
built a data structure of O(n) size in O(n) time, with O(logn) query time. For the segment
queries, Arkin et al. [1] built a data structure of O(n) size in O(n) time, with O(logn) query
time. Chiang and Tamassia [7] achieved the same result for the segment queries and they
also gave some more general results (e.g., when the query is a convex polygon).

Similar in spirit to the “point-to-segment” shortest path problem, Cheung and Daescu [6]
considered a “point-to-face” shortest path problem in 3D and approximation algorithms were
given for the problem.

1.2 Our Techniques
We first propose a decomposition D of P by O(h) shortest paths from s to certain vertices of
SPM(s). The decomposition D, whose size is O(n), has O(n) cells with the following three
key properties. First, any segment τ in P can intersect at most O(h) cells of D. Second, for

H. Wang 61:3

each cell ∆ of D, τ ∩∆ consists of at most two sub-segments of τ . Third, after O(n) time
preprocessing, for each sub-segment τ ′ of τ in any cell of D, the shortest path from s to τ ′
can be computed in O(logn) time. With D, we can easily answer each segment query in
O(h log n

h) time by a “pedestrian” algorithm.
To solve the quickest visibility queries, an observation is that the shortest path from s to

see q is a shortest path from s to a window of Vis(q), i.e., an extension of the segment qu for
some reflex vertex u of P. Hence, the query can be answered by calling segment queries on
all O(K) windows of Vis(s). This leads to the O(K log2 n) time query algorithm in [1].

If we follow the same algorithmic scheme and using our new segment query algorithm,
then we would obtain an algorithm of O(K · h · log n

h) time for the quickest visibility queries.
We instead present a “smarter” algorithm that prunes some “unnecessary” portions of the
windows such that it suffices to consider the remaining parts of the windows. Further, with
the help of the decomposition D, we show that a shortest path from s to the remaining
windows can be found in O((K + h) log h logn) time. We refer to it as the preliminary result.
To achieve this result, we solve many other problems, which may be of independent interest.
For example, we build a data structure of O(n log h) size such that given any query point t
and line segment τ in P, we can compute in O(log h logn) time the intersection between τ
and the shortest path from s to t in P.

To further reduce the query time to O(h log h logn), by using the extended corridor
structure of P [3, 5], we show that there exists a set S(q) of O(h) candidate windows such
that a shortest path from s to see the query point q must be a shortest path from s to a
window in S(q). This is actually quite consistent with the result in the simple polygon case,
where only one window is needed for answering each quickest visibility query [1]. Once the
set S(q) is computed, we can apply our pruning algorithm discussed above on S(q) to answer
the quickest visibility query in additional O(h log h logn) time. To compute S(q), we give an
algorithm of O(h logn) time, without having to explicitly compute Vis(s). The algorithm is
based on a modification of the algorithm given in [4] that can compute Vis(q) in O(K logn)
time for any point q, after O(n+ h2) space and O(n+ h2 log h) time preprocessing.

The rest of the paper is organized as follows. In Section 2, we define notation and review
some concepts. In Section 3, we introduce the decomposition D of P , and discuss the segment
queries. We present our preliminary result for quickest visibility queries in Section 4, and the
improved result is discussed in Section 5. Due to the space limit, we only sketch the main
idea and all details can be found in the full paper [15].

2 Preliminaries

For any subset A of P , we say that a point p is (weakly) visible to A if p is visible to at least
one point of A. For any point t ∈ P, we use π(s, t) to denote a shortest path from s to t in
P, and in the case where the shortest path is not unique, π(s, t) may refer to an arbitrary
such path. With a little abuse of notation, for any subset A of P , we use π(s,A) to denote a
shortest path from s to all points of A; we use d(s,A) to denote the length of π(s,A), i.e.,
d(s,A) = mint∈A d(s, t). Let V denote the set of all vertices of P.

The shortest path map. The shortest path map SPM(s) is a decomposition of P into
regions (or cells) such that in each cell σ, the sequence of obstacle vertices along π(s, t) is
fixed for all t in σ [10, 14]. Further, the root of σ, denoted by r(σ), is the last vertex of
V ∪ {s} in π(s, t) for any point t ∈ σ (hence π(s, t) = π(s, r(σ)) ∪ r(σ)t; note that r(σ) is s
if s is visible to t). We classify each edge of a cell σ into three types: a portion of an edge

SoCG 2017

61:4 Quickest Visibility Queries in Polygonal Domains

of P, an extension segment, which is a line segment extended from r(σ) along the opposite
direction from r(σ) to the vertex of π(s, t) preceding r(σ), and a bisector curve/edge that is a
hyperbolic arc. For each point t on a bisector edge of SPM(s), t is on the common boundary
of two cells and there are two different shortest paths from s to t through the roots of the two
cells, respectively. The vertices of SPM(s) include V ∪ {s} and all intersections of edges of
SPM(s). The intersection of two bisector edges is called a triple point, which has more than
two shortest paths from s. The map SPM(s) has O(n) vertices, edges, and cells [10, 14].

For differentiation, we call the vertices and edges of P the obstacle vertices and the
obstacle edges, respectively. The holes and the outer polygon of P are also called obstacles.

The shortest path tree SPT (s) is the union of shortest paths from s to all obstacle vertices
of P . SPT (s) has O(n) edges [10, 14]. Given SPM(s), SPT (s) can be obtained in O(n) time.

For ease of exposition, we make a general position assumption that no obstacle vertex
has more than one shortest path from s and no point of P has more than three shortest
paths from s. Hence, no bisector edge of SPM(s) intersects an obstacle vertex and no three
bisector edges intersect at the same point.

For any polygon P , we use |P | to denote the number of vertices of P and use ∂P to
denote the boundary of P .

Ray-shooting queries in simple polygons. Let P be a simple polygon. With O(|P |) time
and space preprocessing, each ray-shooting query in P (i.e., given a ray in P , find the first
point on ∂P hit by the ray) can be answered in O(log |P |) time [2, 9]. The result can be
extended to curved simple polygons or splinegons [12].

The canonical lists and cycles of planar trees. We will often talk about certain planar
trees in P (e.g., SPT (s)). Consider a tree T with root r. A leaf v is called a base leaf if it
is the leftmost leaf of a subtree rooted at a child of r. Denote by L(T, v) the post-order
traversal list of T starting from such a base leaf v, and we call it a canonical list of T . The
root r must be the last node in L(T, v). We remove r from L(T, v) and make the remaining
list a cycle by connecting its rear to its front, and let C(T) denote the circular list. Although
T may have multiple base leaves, C(T) is unique and we call C(T) the canonical cycle of T .
We further use Ll(T, v) to denote the list of the leaves of T following their relative order in
L(T, v) and use Cl(T) to denote the circular list of Ll(T, v). One reason we introduce these
notation is the following. Let e be any edge of T . All nodes of T whose paths to r in T
contain e are consecutive in L(T, v) and C(T). Similarly, all leaves of T whose paths to r in
T contain e must be consecutive in Ll(T, v) and Cl(T).

The following observation on shortest paths will be frequently referred to in the paper.

I Observation 1.
1. Suppose π1 and π2 are two shortest paths from s to two points in P, respectively; then π1

and π2 do not cross each other.
2. Suppose π1 is a shortest path from s to a point in P and τ is a line segment in P; then

the intersection of π1 and τ is a sub-segment of τ (which may be a single point or empty).

3 The Decomposition D and the Segment Queries

In this section, we introduce a decomposition D of P and use it to solve the segment query
problem. The decomposition D will also be useful for solving the quickest visibility queries.

We first define a set V of points. Let p be an intersection between a bisector edge of
SPM(s) and an obstacle edge. Since p is on a bisector edge, it is in two cells of SPM(s) and

H. Wang 61:5

has two shortest paths from s. We make two copies of p in the way that each copy belongs
to only one cell (and thus corresponds to only one shortest path from s). We add the two
copies of p to V . We do this for all intersections between bisector edges and obstacle edges.
Consider a triple point p, which is in three cells of SPM(s) and has three shortest paths from
s. Similarly, we make three copies of p that belong to the three cells, respectively. We add
the three copies of p to V . We do this for all triple points. This finishes the definition of V .

By definition, each point of V has exactly one shortest path from s. Let ΠV denote the
set of shortest paths from s to all points of V . Let TV be the union of all shortest paths of
ΠV . We consider points of V distinct although some of them are copies of the same physical
point. In this way, we can consider TV as a “physical” tree rooted at s.

I Definition 1. Define D to be the decomposition of P by the edges of TV .

In the following, we assume the shortest path map SPM(s) has already been computed.
We have the following lemma about the decomposition D.

I Lemma 2.
1. The size of the set V is O(h).
2. The combinatorial size of D is O(n).
3. Each cell of D is simply connected.
4. For any segment τ in P, τ can intersect at most O(h) cells of D. Further, for each cell

∆ of D, the intersection τ and ∆ consists of at most two (maximal) sub-segments of τ .
5. After O(n) time preprocessing, for any segment τ ′ in a cell ∆ of D, the shortest path

from s to τ ′ can be computed in O(log |∆|) time, where |∆| is the combinatorial size of ∆.
6. For each cell ∆ of D, ∆ has at most two vertices r1 and r2 (both in V ∪ {s}), called

“super-roots”, such that for any point t ∈ ∆, π(s, t) is the concatenation of π(s, r) and the
shortest path from r to t in ∆, for a super-root r in {r1, r2}.

7. Given the shortest path map SPM(s), D can be computed in O(n) time.

Using D, we can easily answer each segment query in O(h log n
h) time by a “pedestrian”

algorithm, similar in spirit to the ray-shooting algorithm of Hershberger and Suri [9].

I Theorem 3. Given the shortest path map SPM(s), we can build a data structure of O(n)
size in O(n) time, such that each segment query can be answered in O(h log n

h) time.

4 The Quickest Visibility Queries: The Preliminary Result

In this section, we give our preliminary result on quickest visibility queries, which sets the
stage for our improved result.

For any subset A of P, a point p ∈ A is called a closest point of A (with respect to s) if
d(s,A) = d(s, p). Given any query point q in P , our goal is to find a shortest path from s to
Vis(q). Let q∗ be a closest point of Vis(q). To answer the query, it is sufficient to determine
q∗. Thus we will focus on finding q∗. Note that if q is visible to s, then q∗ = s. We can
determine whether s is visible to q in O(logn) time by checking whether q is in the cell of
SPM(s) whose root is s. In the following, we assume that s is not visible to q.

We define the windows of q and Vis(q). Consider an obstacle vertex u that is visible to q
such that the two incident obstacle edges of u are on the same side of the line through q and
u (e.g., see Fig. 1). Let q(u) denote the first point on ∂P hit by the ray from u along the
direction from q to u. Then uq(u) is called a window of q; we say that the window is defined
by u. Further, we call qq(u) the extended window of uq(u).

SoCG 2017

61:6 Quickest Visibility Queries in Polygonal Domains

q
u

q(u)

Figure 1 Illustrating a win-
dow uq(u) of q.

q

s

π0

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

q1

q2
q3
q4

q5

q6

Figure 2 Illustrating the map f(·): f(1) = 1, f(2) = 2, f(3) = 5,
f(4) = 4, f(5) = 6, and f(6) = 3. Note that the paths could be
“below” π0, but for ease of exposition, we “flip” them above π0, and
this flip operation does not change the topology of these paths.

Each window of q is an edge of Vis(q), and thus the number of windows of q is O(K),
where K = |Vis(q)|. Further, there must be a closest point q∗ that is on a window of q [1].
Hence, as in [1], a straightforward algorithm to compute q∗ is to compute shortest paths
from s to all windows of s and the path of minimum length determines q∗. To compute
shortest paths from s to all windows, if we apply our segment queries on all windows using
Theorem 3, then the total time would be O(K · h · log n

h). In the rest of this section, we
present an algorithm that can compute q∗ in O((K + h) log h logn) time, without having to
compute shortest paths to all windows.

4.1 The Algorithm Overview
As the first step, we compute Vis(q), which can be done in O(K logn) time after O(n+h2 log h)
time and O(n+ h2) space preprocessing [4]. Then, we can find all windows and extended-
windows in O(K) time. For ease of exposition, we make a general position assumption for q
that q is not collinear with any two obstacle vertices. The assumption implies that q is in
the interior of P and no two windows are collinear.

Let u0 be the root of the cell of SPM(s) containing q (if q is on the boundary of multiple
cells, then we take an arbitrary such cell). Hence, π(s, u0)∪u0q is a shortest path π(s, q) from
s to q. Note that u0 must define a window u0q(u0) of q [13]. Let u0q(u0), u1q(u1), . . . , ukq(uk)
be all windows of q ordered clockwise around q. Clearly, k = O(K). For each 0 ≤ i ≤ k, let
qi = q(ui). Note that the window u0q0 is special in the sense that u0 is in π(s, q). So we first
apply our algorithm in Theorem 3 on u0q0 to compute a closest point q∗0 of u0q0. Clearly, if
q∗ ∈ u0q0, then q∗ = q∗0 . In the following, we assume q∗ 6∈ u0q0. Let Q = {q, q1, q2, . . . , qk}.
Note that Q does not contain q0 but q. If q∗ ∈ Q, then we can find q∗ by computing d(s, p)
for all p ∈ Q, in O(k logn) time using SPM(s). Below, we assume q∗ 6∈ Q. Note that the
above assumption that q∗ 6∈ u0q0 ∪ Q is only for arguing the correctness of our following
algorithm, which actually proceeds without knowing whether the assumption is true or not.

For each 0 ≤ i ≤ k, let wi = qqi, i.e., the extended window of uiqi. Let W = {wi | 1 ≤
i ≤ k}. For convenience of discussion, we assume that each wi of W does not contain its two
endpoints q and qi (but the endpoints of wi still refer to q and qi). Since q∗ 6∈ u0q0 ∪Q, q∗
must be on an extended window in W . Clearly, q∗ is also a closest point of W . Since no
two windows of q are collinear, no extended-window of W contains another. We assign each
window wi ∈W a direction from q to qi, so that we can talk about its left or right side.

Suppose q∗ is on wi ∈ W . Since wi is an open segment, by the definition of q∗, the
shortest path π(s, q∗) must reach q∗ from either the left side or the right side of wi. Formally,

H. Wang 61:7

we say that π(s, q∗) reaches q∗ from the left side (resp., right side) of wi if there is a small
neighborhood of q∗ such that all points of π(s, q∗) in the neighborhood are on the left side
(resp., right side) of wi. Let wli (resp., wri) denote the set of points p on wi whose shortest
path from s to p is from the left (resp., right) side of wi. Hence, q∗ is either on wli or on wri .

Our algorithm will find two points q∗l and q∗r such that if q∗ is on wli for some i ∈ [1, k],
then q∗ = q∗l , and otherwise (i.e.,q∗ is in wri for some i ∈ [1, k]), q∗ = q∗r .

In the following, we will only present our algorithm for finding q∗l since the case for q∗r is
symmetric. In the following discussion, we assume q∗ is on wli for some i ∈ [1, k].

The rest of this section is organized as follows. In Section 4.2, we discuss some observations,
based on which we describe our pruning algorithm in Section 4.3 to prune some (portions of)
segments of W such that q∗ (= q∗l) is still in the remaining segments of W . In Section 4.4, we
will finally compute q∗l on the remaining segments of W . As will be clear later, our algorithm
uses extended windows instead of windows because extended windows can help us with the
pruning.

4.2 Observations
For any point t ∈ P with s 6= t, and its shortest path π(s, t), we use t+ to denote a point on
π(s, t) arbitrarily close to t (but t+ 6= t). If t is on wli for some i ∈ [1, k], then t+ must be on
the left side of wi. For any segment w of W , we say that w or a sub-segment of w can be
pruned if it does not contain q∗. Our pruning algorithm, albeit somewhat involved, is based
on the following simple observation.

I Observation 2. For any point t ∈ wli for some i ∈ [1, k], if π(s, t+) intersects any segment
w ∈W or an endpoint of it, then t can be pruned (i.e., t cannot be q∗).

Proof. Let t′ be a point on π(s, t+) that is a point on any segment w ∈W or an endpoint
of it. Clearly, t′ ∈ Vis(s) and d(s, t′) < d(s, t). Thus, t cannot be q∗. J

Consider the shortest paths π(s, qi) for i = 1, 2, . . . , k. To simplify the notation, let
πi = π(s, qi) for each i ∈ [1, k]. In particular, let π0 = π(s, q) (not π(s, q0)). Recall that
Q = {q, q1, . . . , qk}. The union of all paths πi for 0 ≤ i ≤ k forms a planar tree, denoted
by TQ, with root at s. Consider the canonical cycle C(TQ) as defined in Section 2. Let CQ
be the circular list of the points of Q following their relative order in C(TQ). We further
break CQ into a list LQ at q, such that LQ starts from q and all other points of LQ follow
the counterclockwise order in CQ. Assume LQ is {q, qf(1), qf(2), . . . , qf(k)}, i.e., the (i+ 1)-th
point of the list is qf(i) (e.g., see Fig. 2). So f(·) essentially maps each point of Q \ {q}
from its position in LQ to its position in the list {q1, q2, . . . , qk}. Hence, f(1) . . . , f(k) is a
permutation of 1, . . . , k, and f(i) 6= f(j) if i 6= j. The reason we introduce the list LQ is that
intuitively, for any 1 ≤ i < j ≤ k, the path πf(j) is counterclockwise from πf(i) with respect
to π0 around s. For convenience, we let f(0) = 0.

Given SPM(s), after O(n) time preprocessing, we can compute the list LQ and thus
determine the map f(·) in O(k logn) time. The details are omitted.

We can show that for any i ∈ [1, k], π0 does not contain qi and πi does not contain q.
The following lemma is proved based on Observation 2.

I Lemma 4. Suppose πj contains qi with i 6= j and i, j ∈ [1, k]. If i < j, then wj can be
pruned; otherwise, wi can be pruned.

In O(k logn) time, we can remove all extended-windows of W that can be pruned by
Lemma 4. The details are omitted. But to simplify the notation, we assume that none of the

SoCG 2017

61:8 Quickest Visibility Queries in Polygonal Domains

q
s

qf(j)
qf(i)

π0

πf(i)

πf(j)

q
s

qf(j)

qf(i)

π0

πf(i)

πf(j)

q
s

qf(j)

qf(i)

π0

πf(i)

πf(j)

p

(a) (b) (c)

Figure 3 Illustrating Lemma 5.

s

π0 q

Figure 4 The thick (red) segments are the remaining parts of the segments ofW after the pruning
algorithms (so that q∗l must be on the left side of a red segment). Again, we “flip” all paths above
π0.

segments of W is pruned since otherwise we could re-index all segments of W . So now W

has the following property: For any i ∈ [1, k], qi is not contained in any πj with j ∈ [0, k]
and j 6= i.

For each i ∈ [1, k], since π0 does not cross πi, π0 ∪ πi ∪ wi forms a closed curve that
separates the plane into two regions, one locally on the left of wi and the other locally on the
right wi. We let Di denote the region locally on the left side of wi including π0 ∪ πi ∪ wi as
its boundary (it is possible that Di is unbounded). If π0 ∩ πi is a sub-path including at least
one edge, then it is also considered to be in Di. We can show that if q∗ ∈ wli, then π(s, q∗)
must be in Di.

Our pruning algorithm mainly relies on Lemma 5, which is based on Observation 2.

I Lemma 5. Suppose i and j are two indices with 1 ≤ i < j ≤ k.
1. If f(i) < f(j), then πf(i) does not cross wf(j) and πf(j) does not cross wf(i), and further,

Df(i) is contained in Df(j) (e.g., see Fig. 3(a)).
2. If f(i) > f(j), then either πf(i) crosses wf(j) or πf(j) crosses wf(i). Further, in the

former case (see Fig. 3(b)), wf(i) can be pruned, and in the latter case (see Fig. 3(c)), the
sub-segment qp of wf(i) can be pruned, where p is the point at which πf(j) crosses wf(i).

For any 1 ≤ i < j ≤ k, we say πi and πj are consistent if f(i) < f(j). By Lemma 5, if
πi and πj are not consistent, then we can do some pruning, based on which we present our
pruning algorithm in Section 4.3. Figure 4 gives an example showing the remaining parts of
the segments of W after the pruning.

4.3 A Pruning Algorithm for Pruning the Segments of W

We process the paths πf(1), πf(2), . . . , πf(k) in this order. Assume that πf(i−1) has just been
processed and we are about to process πf(i). Our algorithm maintains a sequence of bundles,

H. Wang 61:9

q

s

π0

f(3)

f(4)

f(6)

f(7)

f(8)

f(13)

f(15)
f(16)

f(20)

Figure 5 Illustrating the shortest paths corresponding to the indices in the current bundle se-
quence B = {{3}, {4}, {{{6}, {7}}, {8}}, {{13}, {{15}, {16}}, {20}}}, where each underline indicates
a bundle of B. For example, the last bundle is a composite bundle consisting of three children
bundles with 20 as its wrap index. In the figure, the indices of the paths are labeled. Again, we
“flip” all paths above π0.

denoted by B = {B1, B2, . . . Bg}. Each bundle B ∈ B is defined recursively as follows.
Essentially B is a list of sorted indices of a subset of {1, 2, . . . , i − 1}, but the indices are
grouped in a special and systematic way.

There are two types of bundles: atomic and composite. If B has only one index, then it
is an atomic bundle. Otherwise, B is a composite bundle consisting of a sequence of at least
two bundles B′1, . . . , B′g′ (with g′ ≥ 2) such that the last bundle B′g′ must be atomic (others
can be either atomic or composite), and we call the index contained in B′g′ the wrap index of
B. We consider the bundles B′1, . . . , B′g′ as the children bundles of B.

Let fmin(B) and fmax(B) denote the smallest and largest f(j) of all indices j of B,
respectively. If B is composite, then B further has the following three bundle-properties.
(1) The indices of B are distinct and sorted increasingly by their order in B. (2) For any
1 ≤ b < g′ − 1, fmax(B′b) < fmin(B′b+1). (3) If j is the wrap index of B, then fmin(B) = f(j)
and πf(j) crosses wf(j′) for every j′ ∈ B \ {j} (intuitively, πf(j) “wraps” the point qf(j′), and
this is why we call j a “wrap” index). Refer to Fig. 5 for an example.

For convenience, if the context is clear, we also consider a bundle B as a set of sorted
indices. So if an index j is in B, we can write “j ∈ B”. We use the word “bundle” because
each index j of B refers to the path πf(j). Therefore, B is a “bundle” of shortest paths.

In addition, the bundle sequence B = {B1, B2, . . . , Bg} maintained by our algorithm
has two B-properties. (1) The indices in all bundles are distinct in [1, i− 1] and are sorted
increasingly by their order in the sequence. (2) For any 1 ≤ b < g, fmax(Bb) < fmin(Bb+1).

I Observation 3.
1. For any 1 ≤ b < b′ ≤ g and any indices j ∈ Bb and j′ ∈ Bb′ (both Bb and Bb′ are from

B), the two shortest paths πf(j) and πf(j′) are consistent (see Fig. 5).
2. For any composite bundle B = {B′1, . . . , B′g′}, for any 1 ≤ b < b′ ≤ g′− 1 and any indices

j ∈ B′b and j′ ∈ B′b′ , the two shortest paths πf(j) and πf(j′) are consistent (see Fig. 5).

In the following, we describe our algorithm for processing the shortest path πf(i), during
which B will be updated. Initially when i = 1, B contains the only atomic bundle B = {1}
and this finishes our processing for πf(1). In general when i > 1, we do the following.

We first find the index β such that fmax(Bβ) < f(i) < fmax(Bβ+1). We can maintain
the bundle sequence B in a data structure so that β can be found in O(logn) time. The

SoCG 2017

61:10 Quickest Visibility Queries in Polygonal Domains

details are omitted. If β = g (so Bβ+1 does not exist in this case), then we add a new atomic
bundle Bg+1 = {i} to the rear of B and this finishes the processing of πf(i).

If β 6= g, we check whether fmin(Bβ+1) < f(i). If fmin(Bβ+1) < f(i), we can show that
wf(i) can be pruned. Hence, in this case, we simply ignore πf(i) and finish the processing
of πf(i). In the following, we assume f(i) < fmin(Bβ+1) (note that f(i) 6= fmin(Bβ+1) since
i 6∈ B). Next, we are going to find all such indices j of B that πf(j) crosses wf(i). To this
end, the following two lemmas are crucial.

I Lemma 6.
1. For any index j in Bb for any b ∈ [1, β], πf(j) does not cross wf(i).
2. For any index j in Bb for any b ∈ [β + 1, g], if πf(j) crosses wf(i), then wf(j) can be

pruned; otherwise, πf(i) must cross wf(j).
3. If j is in Bb for some b ∈ [β + 2, g] and πf(j) crosses wf(i), then πf(j′) crosses wf(i) for

any j′ ∈ Bb′ and any b′ ∈ [β + 1, b− 1].
4. If j is in Bb for some b ∈ [β + 1, g − 1] and πf(j) does not cross wf(i), then πf(j′) does

not cross wf(i) for any j′ ∈ Bb′ and any b′ ∈ [b+ 1, g].

For any bundle B in {Bβ+1, Bβ+2, . . . , Bg}, if B has two indices j and j′ such that wf(i)
crosses πf(j) but does not cross πf(j′), then we say that B is a mixed bundle, which is
necessarily a composite bundle.

I Lemma 7. For any mixed bundle B = {B′1, B′2, . . . , B′g′}, the following holds.
1. The path πf(r) must cross wf(i), where r is the wrap index of B, i.e., B′g′ = {r}.
2. If an index j is in B′b for some b ∈ [2, g′ − 1] and πf(j) crosses wf(i), then πf(j′) crosses

wf(i) for any j′ ∈ B′b′ and any b′ ∈ [1, b− 1].
3. If an index j is in B′b for some b ∈ [1, g′ − 2] and πf(j) does not cross wf(i), then πf(j′)

does not cross wf(i) for any j′ ∈ B′b′ and any b′ ∈ [b+ 1, g′ − 1].
4. If a bundle B′ of B has two indices j and j′ such that wf(i) crosses πf(j) but does not

cross πf(j′), then B′ is also a mixed bundle. This lemma applies to B′ recursively.

In light of the preceding two lemmas, in the following we will find the indices j of B such
that πf(j) crosses wf(i) and then prune wf(j) by Lemma 6(2) (i.e., remove j from B); we say
that such an index j is prunable.

Before describing our algorithm, we discuss an operation that will be used in the algorithm.
Consider a composite bundle B = {B′1, B′2, . . . , B′g′} of B. Let r be a wrap index of B, i.e.,
B′g′ = {r}. Suppose wf(i) crosses πf(r). Our algorithm will remove r from B and thus
from B. This is done by a wrap-index-removal operation. Further, suppose B is the j-th
bundle of B, i.e., B = Bj . After r is removed, the operation will implicitly insert the
bundles B′1, B′2, . . . , B′g′−1 into the position of B in B, i.e., after the operation, B becomes
B1, . . . , Bj−1, B

′
1, . . . , B

′
g′−1, Bj+1, . . . , Bg. Note that this new bundle list still has the two B-

properties. Indeed, fmax(Bj−1) < fmin(B) = f(r) < fmin(B′1) and fmax(B′g′−1) ≤ fmax(B) <
fmin(Bj+1). We can maintain the bundles of B in a data structure so that each wrap-index-
removal operation can be performed in O(logn) time. The details are omitted.

Another operation that is often used in the algorithm is the following. Given any
i, j ∈ [1, k], we want to determine whether wf(i) crosses πf(j). We call it the shortest
path segment intersection (or SP-segment-intersection) query. Our full paper presents an
algorithm that can answer each such query in O(log h logn) time, after O(n log h) time and
space preprocessing.

We are ready to describe our algorithm for removing all prunable indices from B. By
Lemma 6(1), each bundle Bb of B for 1 ≤ b ≤ β does not contain any prunable index.

H. Wang 61:11

For each bundle B of Bβ+1, Bβ+2, . . . , Bg in order, we call a procedure prune(B) until the
procedure returns “false”.

If all indices of B are prunable, then prune(B) will return “true” and the entire bundle B
will be removed from B. Otherwise, the procedure will return false. Further, if B is a mixed
bundle, then all prunable indices of B will be removed (and the procedure returns false).

The procedure prune(B) works as follows. It is a recursive procedure. As a base case, if
B is an atomic bundle {j}, then we call an SP-segment-intersection query to check whether
πf(j) crosses wf(i). If yes, we remove B and return true; otherwise, return false. If B is a
composite bundle {B′1, B′2, . . . , B′g′} with r as the wrap index (i.e., B′g′ = {r}), then we first
call an SP-segment-intersection to check whether πf(r) crosses wf(i). If not, by Lemma 7(1),
B does not have any prunable index and thus we simply return false. If yes, then we call
a wrap-index-removal operation to remove B′g′ . Afterwards, for each b′ = 1, 2, . . . , g′ − 1
in order, we call prune(B′b′) recursively. If prune(B′b′) returns false, then we return false
(without calling prune(B′b′+1)). If it returns true, we remove B′b′ (in fact all children bundles
of B′b′ have been removed by prune(B′b′)). If b′ = g′ − 1, then we return true (since all
bundles of B have been removed); otherwise, we proceed on calling prune(B′b′+1).

If prune(Bb) returns true for every b with β + 1 ≤ b ≤ g, then we add a new atomic
bundle {i} at the end of B, which now becomes {B1, B2, . . . , Bβ , {i}}. This also finishes our
preprocessing for πf(i). Otherwise, prune(Bb) returns false for some b with β + 1 ≤ b ≤ g. In
this case, as a final step, we create a new composite bundle B, consisting of all bundles of B
after Bβ (not including Bβ) and the atomic bundle {i} as the last child bundle of B. This is
done by a bundle-creation operation, which can be implemented in O(logn) time (the details
are omitted). Afterwards, the new bundle sequence B becomes {B1, B2, . . . , Bβ , B}. It can
be shown that the new bundle B is a “valid” composite bundle and the updated B maintains
the two B-properties.

To analyze the running time of the above algorithm, let m be the number of indices that
have been removed from B. Then, the algorithm makes at mostm+1 SP-segment-intersection
queries. To see this, once the query discovers an index j that is not prunable, the algorithm
will stop without making any more such queries. On the other hand, each wrap-index-removal
operation removes an index, and thus the number of such operations is at most m. Further,
observe that for each bundle B, whenever we make a recursive call on a child bundle of B,
the wrap index of B is guaranteed to be removed. Therefore, the number of total recursive
calls is at most m as well. Hence, the running time of the algorithm is O((m+ 1) log h logn).

This finishes our algorithm for processing the path πf(i). The total time for processing
πf(i) is O((m+1) log h logn). Since once an index is removed from B, it will never be inserted
into B again, the sum of all such m in the entire algorithm for processing all paths πf(i) for
i = 1, 2, . . . , k is at most k. Hence, the total time of the entire algorithm is O(k log h logn).

4.4 Computing the Closest Point q∗

Recall that we have assumed that q∗ is on wli for some i ∈ [1, k], i.e., q∗ = q∗l . According to
our pruning algorithm for computing the bundle sequence B, q∗ must be on wlf(j) for some
j ∈ B. In this section, we will compute q∗ by using the bundle sequence B. For example, in
Fig 4, our goal is to compute q∗ on the left sides of those (red) thick segments.

4.4.1 The Set of Regions R

Our algorithm for computing q∗ uses a set R of regions of P, which is introduced below.

SoCG 2017

61:12 Quickest Visibility Queries in Polygonal Domains

Let O denote the obstacle space, which is the complement of the free space of P. More
specifically, O consists of the h− 1 simple polygonal holes of P and the (unbounded) region
outside the outer boundary of P. Let B denote the union of all bisector edges of SPM(s).
Mitchell [13] proved that O ∪B is simply connected and P \ B is also simply connected (e.g.,
see Fig.1 in the appendix). We consider O ∪ B as a planar graph G. Specifically, the vertex
set of G consists of all obstacles of O and all triple points of SPM(s). For any two vertices of
G, if they are connected by a chain of bisector edges in SPM(s) such that the chain does not
contain any other vertex of G, then G has an edge connecting the two vertices, and further,
we call the above chain of bisector edges a bisector super-curve. It can be shown that G is a
simple graph with O(h) vertices, edges, and faces.

Since |V | = O(h) (by Lemma 2(1)), ΠV is a set of O(h) shortest paths. Recall that TV is
the union of all shortest paths of ΠV and TV is considered as a “physical” tree rooted at
s. Note that each edge of any path of ΠV except the last edge (i.e., the one connecting a
point of V) is an edge of SPT (s). Hence, the total number of edges of the tree TV is O(n).
Throughout the paper, let h∗ = |V |. Thus, h∗ = O(h).

It is known that P \B is simply connected and π(s, t) is in P \B for any point t ∈ P [13].
To simplify the discussion, together with the copies of the points of V , we consider P ′ = P \B
as a simple polygon (with some curved edges) by making two copies for each interior point of
every bisector super-curve such that they respectively belong to the two sides of the curve.

Since TV is a planar tree, we can define its canonical lists as discussed in Section 2. Let
v1 be an arbitrary base leaf of TV . Let the leaf list Ll(TV , v1) be v1, v2, . . . , vh∗ , which follow
the counterclockwise order along ∂P ′.

For each 1 ≤ i ≤ h∗, let αi denote the portion of ∂P ′ counterclockwise from vi to vi+1
(let vh∗+1 refer to v1). Note that αi is either a bisector super-curve or a chain of obstacle
edges. Suppose we move a point t on αi from vi to vi+1. The shortest path π(s, t) will
continuously change with the same topology since π(s, t) is always in P ′ (which is simply
connected). Let Ri be the region of P ′ that is “swept” by π(s, t) during the above movement
of t. More specifically, let pi be the common point on π(s, vi) ∩ π(s, vi+1) that is farthest to
s. Then, Ri is bounded by π(pi, vi), π(pi, vi+1), and αi. For convenience of discussion, we
let Ri also contain the common sub-path π(s, pi) = π(s, vi) ∩ π(s, vi+1) and we call π(s, pi)
the tail of Ri. We call the region bounded by π(pi, vi), π(pi, vi+1), and αi the cell of Ri. We
consider π(s, vi), π(s, vi+1), and αi as the three portions of the boundary ∂Ri of Ri. The
definition implies that for any point t in Ri, π(s, t) is in Ri. In fact, if t is in the cell of Ri,
then π(s, t) is the concatenation of π(s, pi) and the shortest path from pi to t in the cell.
Clearly, P ′ is the union of R1, R2, . . . , Rh∗ . Roughly speaking, the regions R1, . . . , Rh∗ are
counterclockwise around s. Define R = {R1, R2, . . . , Rh∗}.

4.4.2 The Algorithm for Computing q∗

Let τ be any segment in P such that a region Ri ∈ R contains π(s, τ). Suppose Ri is known.
With the help of the decomposition D proposed in Section 3, we give a region-processing
algorithm in the full paper to compute π(s, τ) in O(log h logn) time.

Recall that R = {R1, R2, . . . , Rh∗}. Due to our general position assumption that q is not
collinear with any two obstacle vertices, none of {q, q1, . . . , qk} is an obstacle vertex. Then,
for each k′ ∈ [0, k], there is a unique region Ri of R whose cell contains qf(k′), such that the
shortest path πf(k′) is contained in Ri, and we let z(k′) refer to the index i of Ri. Computing
the indices z(0), z(1), . . . , z(k) can be done in O(k logn) time by point location queries on
the cells of the regions of R.

For any two indices k1 and k2 in [1, h∗], if k1 ≤ k2, then let [k1, k2]R denote the set of all
integers k′ ∈ [k1, k2]; otherwise, let [k1, k2]R denote the set of all integers k′ ∈ [k1, h

∗]∪ [1, k2].

H. Wang 61:13

q
s

qf(j)

qf(i)

π0

D q∗

Figure 6 Illustrating Observation 4.

q
s

qf(j′)

qf(i)

π0

D
qf(j)

Figure 7 j is the wrap index of Bb and j′ is
another index of Bb with j′ 6= j; πf(j′) is in the
region D.

Recall that the regions R1, . . . , Rh∗ are counterclockwise around s. We actually use [k1, k2]R
to refer to the set of indices of the regions of R from Rk1 to Rk2 counterclockwise around s.

Next we compute q∗ on wlf(j) for j ∈ B. Consider the bundles of B = {B1, B2, . . . , Bg}.
For each b with 1 ≤ b ≤ g, we call a procedure path(Bb, z(i)), where i is the last index of
Bb−1 if b ≥ 2 and i = 0 otherwise. Note that i < j for any index j ∈ Bb. The procedure
path(Bb, z(i)) works as follows. Depending on whether Bb is atomic, there are two cases.

The atomic case. If Bb is atomic, let j be the only index of Bb. According to the bundle-
properties, i < j and f(i) < f(j). So πf(j) and πf(i) are consistent. By Lemma 5(1), Di is
contained in Dj . Let D be Dj minus the interior of Di.

I Observation 4. If q∗ is on wlf(j), then π(s, q∗) must be in D (see Fig. 6).

I Lemma 8. If q∗ is on wlf(j), then π(s, q∗) is in Rk′ for some index k′ ∈ [z(i), z(j)]R, and
further, any shortest path π(s, wf(j)) from s to wf(j) is π(s, q∗).

For each k′ ∈ [z(i), z(j)]R, we apply our region-processing algorithm on Rk′ and wf(j)
to obtain a path, and we keep the shortest path π among all such paths; let qlf(j) be the
endpoint of π on wf(j). According to Lemma 8, if q∗ is on wlf(j), then q∗ must be qlf(j).

For analyzing the total running time of our algorithm, as will be seen later, for each
k′ ∈ [z(i), z(j)]R with k′ 6= z(i) and k′ 6= z(j), the region-processing algorithm will not be
called on Rk′ again in the entire algorithm for computing q∗l . On the other hand, we charge
the two algorithm calls on Rk′ for k′ = z(i) and k′ = z(j) to the index j of B. In this way, the
total number of calls to the region-processing procedure in the entire algorithm is O(h∗ + k)
since the total number of indices of B is at most k and the total number of regions Rk′ is h∗.

The composite case. If Bb is composite, the algorithm is more complicated. Let j be the
wrap index of Bb. Observation 4 and Lemma 8 still hold on j. However, since now the region
D contains a portion of wf(j′) for each j′ ∈ Bb \ {j} (see Fig. 7), D may also contain the
shortest path from s to wf(j′). In order to avoid calling the region-processing procedure on
the same region of R too many times, we use the following approach to process wf(j).

For any two different indices of k′ and k′′ in a range [k1, k2]R of indices of the regions of
R, we say that k′′ is ccw-larger than k′ if [k′, k′′]R is a subset of [k1, k2]R (e.g., if k1 < k2,
then k′ < k′′). Define zij to be the ccw-largest index in [z(i), z(j)] such that wf(j) crosses
∂Rzij

(if no such index exists, then let zij = z(i)).
We first compute zij (to be discussed later). Then, we call the region-processing procedure

on Rk′ for all k′ ∈ [z(i), zij] and return the shortest path π that is found; let qlf(j) be the
endpoint of π on wf(j). By the following lemma, if q∗ is on wlf(j), then qlf(j) is q∗.

I Lemma 9. If q∗ is on wlf(j), then π(s, q∗) is in Rk′ for some index k′ ∈ [z(i), zij]R, and
further, any shortest path π(s, wf(j)) from s to wf(j) is π(s, q∗).

SoCG 2017

61:14 Quickest Visibility Queries in Polygonal Domains

The following lemma makes sure that when we process wf(j′) for any other index j′ of Bb
with j′ 6= j, we do not need to consider the regions Rk′ for k′ ∈ [z(i), zij − 1] if zij 6= z(i).

I Lemma 10. Suppose zij 6= z(i). If q∗ is on wlf(j′) for some j′ ∈ Bb and j′ 6= j, then
π(s, q∗) is in Rk′ for some k′ ∈ [zij , z(j′)]R.

In order to compute the index zij , we will use a R-region range query. Namely, given the
index range [z(i), z(j)]R as well as wf(j), the query can be used to compute zij . In the full
paper, we give a data structure that can answer each such query in O(log h logn) time, after
O(n log h) time and space preprocessing.

After wf(j) is processed as above, qlf(j) is computed. By Lemma 10, to process wf(j′) for
other indices j′ of Bb \ {j}, we only need to consider the indices of the regions of R after zij .
Let B′1, B′2, . . . , B′g′−1 be the bundles in Bb other than the last one. For each 1 ≤ b′ ≤ g′ − 1,
if b′ = 1, we call path(B′b′ , zij) recursively; otherwise, we call path(B′b′ , z(i′)) recursively,
where i′ is the last index of B′b′−1.

After wf(j) is processed for each j ∈ B, qlf(j) is computed for every j ∈ B; among these
at most k points, we return the point q′ whose value d(s, q′) is the smallest as q∗l , which is
q∗ based on our above analysis (and also due to our assumption that q∗ is on wli for some
i ∈ [1, k]). The total number of calls on the region-processing procedures is O(k + h∗). The
total number of R-region range queries is O(k) since each such query is for a composite
bundle and there are at most k bundles in total. Hence, the total time of the algorithm is
O((h+ k) log h logn). Recall that k ≤ K.

We summarize our overall algorithm in the following theorem.

I Theorem 11. Given SPM(s), we can build a data structure of O(n log h + h2) size
in O(n log h + h2 log h) time, such that each quickest visibility query can be answered in
O((K + h) log h logn) time, where K is the size of the visibility polygon of the query point q.

Proof. In the preprocessing, we compute the visibility polygon query data structure in [4]
for computing Vis(q), which is of O(n + h2) size and can be built in O(n + h2 log h) time.
The rest of the preprocessing work includes building the decomposition D and the segment
query data structure of Theorem 3, performing the preprocessing for computing the map
f(·), for the region-processing algorithms, for answering SP-segment-intersection queries, for
answering R-region range queries, etc; these work takes O(n log h) time and space in total.

Given any query point q, we first compute Vis(q) in O(K logn) time by the query
algorithm in [4]. Then, we obtain the extended window set W . Let k = |W |, which is O(K).
Next, we compute a closest point q∗ on a segment of W in O(k log h logn) time. To this
end, we compute a set S of O(k) candidate points as follows. We first add q, q1, . . . , qk to
S. Then, we compute the closest point q∗0 of u0q0 and add q∗0 to S. Next we compute the
point q∗l in O((k + h) log h logn) time by using our pruning algorithm in Sections 4.3 and
4.4. By a symmetric algorithm, we can also compute q∗r . We add both q∗l and q∗r to S. By
our analysis, q∗ must be one of the points of S. Since |S| = O(k), we can find q∗ in S in
additional O(k logn) time by using the shortest path map SPM(s). J

In fact, we have the following more general result, which might have independent interest.

I Corollary 12. Given SPM(s), we can build a data structure of O(n log h) size in O(n log h)
time, such that given k = O(n) segments in P intersecting at the same point, we can compute
a shortest path from s to all these segments in O((k + h) log h logn) time.

Proof. The preprocessing step is the same as in Theorem 11 except that the visibility polygon
query data structure [4] is not necessary any more. Hence, the total preprocessing time and

H. Wang 61:15

space is O(n log h). Given a set S of k segments intersecting at the same point, denoted
by p, we break each segment at p to obtain two segments and we still use S to denote the
new set of at most 2k segments. Next we compute a closest point p∗ on the segments of
S. To do so, we can apply the same algorithm as in Theorem 11 for computing q∗ on the
extended-windows of W . Indeed, the only key property of the segments of W we need is
that all segments of W have a common endpoint at q. Now that all segments of S have a
common endpoint p, the same algorithm still works. J

5 The Quickest Visibility Queries: The Improved Result

To further reduce the query time of Theorem 11 to O(h log h logn), independent of K, the
key idea is the following. First, we show that for any query point q, there exists a subset
S(q) of O(h) windows such that a closest point q∗ is on a segment of S(q). This is done
by making use of the extended corridor structure [3, 5]. Second, we give an algorithm that
can compute S(q) in O(h logn) time, without computing Vis(q), after O(n log h+ h2) space
and O(n log h+ h2 log h) time preprocessing. The result is obtained by modifying the query
algorithm for computing Vis(q) in [4]. Refer to our full paper [15] for all these details.

I Theorem 13. Given SPM(s), we can build a data structure of O(n log h + h2) size
in O(n log h + h2 log h) time, such that each quickest visibility query can be answered in
O(h log h logn) time.

References
1 E.M. Arkin, A. Efrat, C. Knauer, J. S. B. Mitchell, V. Polishchuk, G. Rote, L. Schlipf,

and T. Talvitie. Shortest path to a segment and quickest visibility queries. Journal of
Computational Geometry, 7:77–100, 2016.

2 B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algorithmica,
12(1):54–68, 1994.

3 D.Z. Chen and H. Wang. L1 shortest path queries among polygonal obstacles in the plane.
In Proc. of 30th Symposium on Theoretical Aspects of Computer Science, pages 293–304,
2013.

4 D.Z. Chen and H. Wang. Visibility and ray shooting queries in polygonal domains. Com-
putational Geometry: Theory and Applications, 48:31–41, 2015.

5 D.Z. Chen and H. Wang. Computing the visibility polygon of an island in a polygonal
domain. Algorithmica, 77:40–64, 2017.

6 Y.K. Cheung and O. Daescu. Approximate point-to-face shortest paths in R3.
arXiv:1004.1588, 2010.

7 Y.-J. Chiang and R. Tamassia. Optimal shortest path and minimum-link path queries
between two convex polygons in the presence of obstacles. International Journal of Com-
putational Geometry and Applications, 7:85–121, 1997.

8 L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2(1-4):209–233, 1987.

9 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a
walk. Journal of Algorithms, 18(3):403–431, 1995.

10 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28(6):2215–2256, 1999.

SoCG 2017

61:16 Quickest Visibility Queries in Polygonal Domains

11 R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple polygons. In
Proc. of the 24th European Workshop on Computational Geometry, pages 187–190, 2005.

12 E. Melissaratos and D. Souvaine. Shortest paths help solve geometric optimization problems
in planar regions. SIAM Journal on Computing, 21(4):601–638, 1992.

13 J. S. B. Mitchell. A new algorithm for shortest paths among obstacles in the plane. Annals
of Mathematics and Artificial Intelligence, 3(1):83–105, 1991.

14 J. S. B. Mitchell. Shortest paths among obstacles in the plane. International Journal of
Computational Geometry and Applications, 6(3):309–332, 1996.

15 H. Wang. Quickest visibility queries in polygonal domains. arXiv:1703.03048, 2017.

Zapping Zika with a Mosquito-Managing Drone:
Computing Optimal Flight Patterns with
Minimum Turn Cost∗

Aaron T. Becker1, Mustapha Debboun2, Sándor P. Fekete3,
Dominik Krupke4, and An Nguyen5

1 Department of Electrical and Computer Engineering, University of Houston,
Houston, TX, USA
atbecker@uh.edu

2 Mosquito & Vector Control Division, Harris County Public Health, Houston,
TX, USA
mdebboun@hcphes.org

3 Dept. of Computer Science, TU Braunschweig, Braunschweig, Germany
s.fekete@tu-bs.de

4 Dept. of Computer Science, TU Braunschweig, Braunschweig, Germany
d.krupke@tu-bs.de

5 Department of Electrical and Computer Engineering, University of Houston,
Houston, TX, USA
an.nguyen.vn@ieee.org

Abstract
We present results arising from the problem of sweeping a mosquito-infested area with an Un-
manned Aerial Vehicle (UAV) equipped with an electrified metal grid. This is related to the
Traveling Salesman Problem, the Lawn Mower Problem and, most closely, Milling with Turn
Cost. Planning a good trajectory can be reduced to considering penalty and budget variants of
covering a grid graph with minimum turn cost. On the theoretical side, we show the solution
of a problem from The Open Problems Project that had been open for more than 15 years, and
hint at approximation algorithms. On the practical side, we describe an exact method based on
Integer Programming that is able to compute provably optimal instances with over 500 pixels.
These solutions are actually used for practical trajectories, as demonstrated in the video.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations, I.2.9 [Robotics] Autonomous Vehicles

Keywords and phrases Covering tours, turn cost, complexity, exact optimization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.62

Category Multimedia Contribution

1 Introduction

Consider an outdoor setting that is populated by swarms of mosquitoes, with a number of
known hotspots. How can we lower the danger of diseases by zapping the mosquitos with a
flying drone, such as the one shown in Fig. 1?

∗ This work was supported by the National Science Foundation Grant No. [CNS-1646607].

© Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, An Nguyen;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 62; pp. 62:1–62:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.62
https://nsf.gov/awardsearch/showAward?AWD_ID=1646607
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Zapping Zika with a Mosquito-Managing Drone

Mul$copter	UAV	

θ

dd

ds

hs vd

vf

hm ms

ms hd

Region	to	Clear		
of	Mosquitos	

	

htop

hbottom

Region	Cleared		
of	Mosquitos	

	

5 0 5 10 15 20 25 30 35
x[m]

0

5

10

15

20

25

30

35

y
[m

]

180

240

300

360

420

480

540

600

660

E
n
e
rg

y
 p

e
r

m
e
te

r
[J

/m
]

Figure 1 (Left) A drone equipped with an electrical grid for killing mosquitoes. (Middle) Physical
aspects of the flying drone. (Right) Making turns is expensive.

Visiting a set of points by an optimal tour is a natural and important problem, both in
theory and practice. If we are only concerned with minimizing the total distance traveled
for visiting all points, we get the classic Traveling Salesman Problem (TSP). However, for
path planning by a flying robot, we also incur a cost for changing direction, as illustrated in
Fig. 1 (Right). This is related to the Angular-Metric TSP (AM-TSP), in which the objective
is to minimize the total turn cost. In addition, we may want to focus on a subset of the
points in order to provide better coverage, incurring a penalty for the uncovered ones.

2 Related Work

The classic Traveling Salesman Problem (TSP) has enjoyed a huge amount of attention;
see Cook [7] for a general overview, and Applegate et al. [2] for a more advanced textbook
on computing provably exact solutions. For theoretical work on the Lawn Mower Problem,
see Arkin, Fekete and Mitchell [5, 6]. Angle-restricted tour problems were studied by Fekete
and Woeginger [10]. Touring points in the plane with minimal continuous turn cost was
considered by Aggarwal et al. [1]. Arkin et al. [4] consider different grid-based versions of
covering with turn cost, and provide a spectrum of approximation algorithms. They pose
the complexity of finding a cycle cover with minimum total turn cost as an open problem,
first published in the conference version in 2001 [3]; this problem gained additional attention
by becoming part of The Open Problems Project [8] as Problem #53 in 2003.

3 Problems

We are given a grid graph, which arises as the dual graph from a set of pixels. We consider
several different covering tour problems and their cycle cover relaxations. We identify three
different ways that a pixel can be traversed, each with a different cost: straight, by a simple
turn, and by a U-turn. The ratio between straight traversal and simple turns is arbitrary
but fixed, while the cost of a U-turn is twice as much as for a simple turn. The following
emerge for full coverage, cheap coverage of a subset, and coverage with a budget constraint.

Given a grid graph, find a minimum-cost tour/cycle cover that covers all vertices.
Given a grid graph and an individual penalty per vertex, find a minimum-cost tour/cycle
cover in which instead of covering a vertex, its penalty may be paid.
Given a grid graph, an individual value per vertex and a total budget, find a maximum-
value tour/cycle cover of a subset of vertices, subject to the budget constraint.

A.T. Becker, M. Debboun, S. P. Fekete, D. Krupke, and A. Nguyen 62:3

2D 3D Hexagonal General grids
Full cycle cover 4⇤ 6 6 2!

Full tour 6⇤ 12 12 4!
Subset cycle cover 4 6 6 2!

Subset tour 10 14 14 4! + 2
Penalty cycle cover 6 8 8 2(! + 1)

Penalty tour 16 20 20 4(! + 1) + 4

Figure 2 (Left) The NP-completeness construction for the 1-in-3 3SAT instance. (x1 ∨ x2 ∨ x3)∧
(x1∨x2∨x4). The provided solution is x1 = 0, x2 = 1, x3 = 0, x4 = 1. (Right) Approximation factors
of our approximation techniques. ω is the maximum number of distinct full strips (or orientations)
by which a grid point is covered. (∗) Note that Arkin et al. [4] achieve a factor of 2.5 on the number
of turns for cycle cover and a factor of 3.75 on the number of turns for tours in 2-dimensional grid
graphs. With distance costs it becomes a 4-approximation for cycle cover and tour.

4 Complexity and Approximation

We can prove that computing a minimum-turn cycle cover in 2-dimensional grid graphs is
NP-hard. This solves Problem #53 in The Open Problems Project [8]. The hardness of
the problem is not obvious: usually large parts of a solution can be easily deduced by local
information and 2-factor techniques.

I Theorem 1. It is NP-hard to find a cycle cover with a minimum number of turns in a
2-dimensional grid graph.

See Fig. 2 (Left) for an idea of the construction. For a full proof, see Krupke [11] and the
upcoming paper [9]. In addition, we can give a number of approximation algorithms; see
Fig. 2 (Right) for an overview, and [11, 9] for details.

5 Integer Programming

The following is an Integer Programming formulation for finding an optimal budget cycle
cover with turn cost.

max
∑
v∈V

dv(1− yv) (1)

s.t. 1 ≤ 4yv +
∑

{u,w}⊆N(v)

xv,{u,w} ≤ 4 ∀v ∈ V (2)

2xv,{w} +
∑

u∈N(v),u6=w

xv,{w,u} = 2xw,{v} +
∑

u∈N(w),u 6=v

xw,{u,v} ∀{v, w} ∈ E (3)

∑
v∈V

∑
{u,w}⊆N(v)

cost(uvw)xv,{u,w} ≤ B (4)

xv,{u,w} ∈ N0, yv ∈ {0, 1} ∀v ∈ V, {u, w} ⊆ N(v)

Variable xv,{u,w} counts the traversals of v with end points in u and w, while yv indicates
whether a variable is left uncovered. The objective function in Eq. (1) sums up the densities

SoCG 2017

62:4 Zapping Zika with a Mosquito-Managing Drone

dv of all pixels for which the not covered variable is false. Eq. (2) enforces a pixel to be
covered or the not covered variable to be set to true. Arkin et al. [4] showed that no pixel
needs to be visited more than four times, otherwise a simple local optimization can be
performed. Eq. (3) enforces the transitions between two adjacent pixels to match. Eq. (4)
limits the costs of the tour to the budget B (the battery runtime).

The separation of subtours is more complicated than for the classic TSP, because there
may be subtours that cross but are not connected (due to turn cost); moreover, instead of
connecting two subtours, one subtour can also be discarded. The following can separate
any given solution with multiple subtours. Let C be the pixels of a selected subtour. Let p

be a pixel in C not traversed by other subtours, and another covered pixel p′ 6∈ C. Cs are
the pixels that are traversed by the subtour without turning. T (v) describes the 90°-turn
variables of a pixel v. x′ refers to the variable assignment in the current solution.

yp + yp′ +
∑

{u,w}⊆N(p)
x′

p,{u,w}=0

xp,{u,w} +
∑

t∈T (v)
v∈Cs\{p}

t +
∑

v∈C\(Cs∪{p})
u6=w∈V

x′
v,{u,w}=0

xv,{u,w} ≥ 1 (5)

6 The Video

The video opens with an introduction of the challenge of controlling mosquitoes with a UAV,
followed by a discussion of geometric modeling aspects, leading to finding minimum-turn
covering tours and the closely related minimum-turn cycle covers. The complexity of the
latter is a long-standing open problem, whose solution is stated. For purposes of coverage
with flying drones, the further variants with penalties and budget constraint are introduced,
followed by a sketch of an approximation approach. An exact method based on Integer
Programming is described next, which is able to solve relevant real-world instances to provable
optimality. The video concludes by showing how such trajectories are used by the drone.

References
1 Alok Aggarwal, Don Coppersmith, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber.

The angular-metric Traveling Salesman Problem. SIAM Journal on Computing, 29(3):697–
711, 2000.

2 David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook. The Traveling
Salesman Problem: A computational study. Princeton University Press, 2011.

3 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S.B.
Mitchell, and Saurabh Sethia. Optimal covering tours with turn costs. In Proc. 12th Ann.
ACM-SIAM Symp. Disc. Algorithms (SODA 2001), pages 138–147. SIAM, 2001.

4 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S.B.
Mitchell, and Saurabh Sethia. Optimal covering tours with turn costs. SIAM Journal on
Computing, 35(3):531–566, 2005.

5 Esther M. Arkin, Sándor P. Fekete, and Joseph S.B. Mitchell. The lawnmower problem.
In Proc. 5th Canad. Conf. Sympos. Geom. (CCCG93), pages 461–466, 1993.

6 Esther M. Arkin, Sándor P. Fekete, and Joseph S.B. Mitchell. Approximation algorithms
for lawn mowing and milling. Computational Geometry, 17(1):25–50, 2000.

7 William Cook. In pursuit of the traveling salesman: Mathematics at the limits of compu-
tation. Princeton University Press, 2012.

8 Erik D. Demaine, Joseph S.B. Mitchell, and O’Rourke Joseph. The open problems project.
URL: http://cs.smith.edu/~orourke/TOPP/.

http://cs.smith.edu/~orourke/TOPP/

A.T. Becker, M. Debboun, S. P. Fekete, D. Krupke, and A. Nguyen 62:5

9 Sándor P. Fekete and Dominik Krupke. Covering tours and cycle covers with turn costs:
Hardness and approximation. Manuscript, 2017.

10 Sándor P. Fekete and Gerhard J. Woeginger. Angle-restricted tours in the plane. Compu-
tational Geometry, 8(4):195–218, 1997.

11 Dominik Krupke. Algorithmic methods for complex dynamic sweeping problems. Master’s
thesis, Department of Computer Science, TU Braunschweig, Braunschweig, Germany, 2016.

SoCG 2017

Ruler of the Plane – Games of Geometry
Sander Beekhuis1, Kevin Buchin2, Thom Castermans3,
Thom Hurks4, and Willem Sonke5

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Eindhoven University of Technology, Eindhoven, The Netherlands

k.a.buchin@tue.nl
3 Eindhoven University of Technology, Eindhoven, The Netherlands

t.h.a.castermans@tue.nl
4 Eindhoven University of Technology, Eindhoven, The Netherlands
5 Eindhoven University of Technology, Eindhoven, The Netherlands

w.m.sonke@tue.nl

Abstract
Ruler of the Plane is a set of games illustrating concepts from combinatorial and computational
geometry. The games are based on the art gallery problem, ham-sandwich cuts, the Voronoi
game, and geometric network connectivity problems like the Euclidean minimum spanning tree
and traveling salesperson problem.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases art gallery problem, ham-sandwich cuts, Voronoi game, traveling sales-
person problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.63

Category Multimedia Contribution

1 Concept

Geometry being inherently tangible, lends itself to be the base of puzzles and games. Ruler of
the Plane is a set of four games with a medieval theme illustrating concepts from combinatorial
and computational geometry. The games are based on the art gallery problem, ham-sandwich
cuts, the Voronoi game, and geometric network connectivity problems like the Euclidean
minimum spanning tree and traveling salesperson problem (TSP), see Figure 1.

The games also aim at providing the interested player with background on the geometric
algorithms and data structures needed to implement such games. They do so by providing
some pointers to geometric concepts in the game explanations, and by allowing to visualize
some of the underlying data structures. For instance, the game on the ham-sandwich cuts
can show the dual arrangements of the different color classes, the Voronoi game allows to
show the Delaunay triangulation and empty circles. Furthermore, the games are open source
and implemented using C# in the game engine Unity, and therefore provide the possibility
to explore the underlying algorithms and data structures.

The geometric problems and the underlying algorithms and data structures of the games
are common content of a Computational Geometry course. We developed the game primarily
to introduce students taking such a course to these concepts in an entertaining way. An
additional goal is to provide a stepping stone to introduce Combinatorial and Computational
Geometry and also other algorithmic concepts like NP-hardness problems to a wider audience.

© Sander Beekhuis, Kevin Buchin, Thom Castermans, Thom Hurks, and Willem Sonke;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 63; pp. 63:1–63:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 Ruler of the Plane – Games of Geometry

(a) illuminate a dungeon (b) divide forces into equal units

(c) conquer new lands (d) connect your new settlements

Figure 1 Games in Ruler of the Plane.

2 The Games

The game conquer implements the classical Voronoi game [1]: Two players place castles in
turn, and the player whose Voronoi regions occupy the most area at the end wins.

The Voronoi diagram is implemented as dual of the Delaunay triangulation. The Delaunay
triangulation is constructed using an implementation of a textbook randomized incremental
construction [6]. Out of the four games, this is the only two-player game. To demonstrate
the underlying geometry the game allows to toggle the Voronoi diagram, empty circumcircles
and the dual Delaunay triangulation (see Figure 2a).

The game divide implements the two-dimensional ham sandwich cuts [9], but with three
types of points. That is, the player needs to find a line that splits all three types of points in
half. Some levels also ask to swap positions of points, before drawing a cut.

In a course on computational geometry, ham sandwich cuts are commonly covered as
an application of duality and arrangements. In this context typically a simple O(n2)-time
algorithm is discussed: dualizing the points, computing the line arrangements and intersecting
the n/2 levels. This is also the algorithm implemented in the game. The game allows to
toggle possible cuts and the dual arrangements (see Figure 2b).

The game connect consists of three separate games. In the first the player has to find the
Euclidean minimum spanning tree, in the second a Euclidean traveling salesperson tour, and
in the third a 1.5-spanner [11] of short length. While in the first game the player has to find
the exact tree, in the two other games the player has to beat an approximation computed by
the game, namely Christofides algorithm [7] and the greedy spanner [4].

We included the TSP with Christofides algorithm and minimum spanning trees, since
they are very natural geometric problems, suitable to discuss computational complexity with
a wider audience, and since they often feature in other algorithms courses. spanners are
often discussed in the context of well-separated pair decompositions.

The spanner game also provides a limited number of ‘hints’ in the form of the next edge
the greedy spanner would add. After exhausting the base levels, the game continues with
levels that ask to connect randomly generated sites.

S. Beekhuis, K. Buchin, T. Castermans, T. Hurks, and W. Sonke 63:3

(a) Delaunay triangulation of the castles (b) cells in the dual arrangement

Figure 2 Visualizing the underlying algorithms and data structures.

The game illuminate is an implementation of art gallery problem [2] with point guards in
a simple polygon. In a Computational Geometry course, the art gallery problem with vertex
guards is often discussed as a motivation for polygon triangulation, but is also interlinked
with other topics, like visibility computation and boolean operations on polygons. The game
computes visibility regions by a circular sweep. To remove duplicate regions it then uses the
Weiler–Atherton algorithm [13]. The implementation is not yet robust, and therefore only
small levels are included in the game.

3 Educational Context

As described above the games are intended for demonstration purposes for students of
Computational Geometry and for a wider audience. However, also the game development
was embedded in an educational context.

Various concepts for games where first implemented and tested as course projects in
Computational Geometry. Some of these concepts where then integrated into the game.
Most of Ruler of the Plane was then implemented by Master students after taking a course in
Computational Geometry, partially as practical component to a reading course on algorithm
engineering [10] and robust geometric algorithms [12], partially as student assistantship. The
task to extend the games may result in engaging future course projects. Ruler of the Plane is
open-source using C# in the game engine Unity, and therefore lends itself to such extensions.

4 Future Work

The games leave many opportunities for future work from designing interesting levels and
variants, to improving and providing alternative implementations, to designing games on
other geometric and algorithmic topics. In the following we discuss some more concrete ideas.

The Voronoi game allows for a very simple, effective strategy, which in the basic variant
makes the game conquer less interesting. Including other variants would make the game more
multi-facetted. These could include castles with different magnitudes/ranges of influence,
or region of different worth, or restrictions on where castles can be placed. Also a puzzle
variant where castles of one color are already placed, and the player only places castles of
the other color could be challenging.

Currently the game divide has a small number of levels. It would be possible to generate
additional levels based on random instances, but the question of generating challenging levels
remains open. And again, more variants could bring more variation to the game.

SoCG 2017

63:4 Ruler of the Plane – Games of Geometry

In the game connect Christofides algorithm may be instructive, but the results are quite
easy to beat. To demonstrate the NP-hardness of the problem, it would be interesting to
include small, difficult instances. Other TSP heuristics would be instructive as ‘hints’.

Generating interesting levels for the art gallery problem in the game illuminate seems
challenging. Possible starting points could be gadgets used in NP-hardness constructions [8]
and families of polygons used in experimental evaluations [5]. The art gallery problem has
many variants, and more of these would again bring more variation to the game. In particular
vertex guards would provide a game more closely to the art gallery problem as motivation to
polygon triangulation.

So far games about four topics have been implemented. Obviously a course on Com-
putational Geometry [6] leaves room for more games on other topics. For some topics, for
instance orthogonal range searching, it might be more challenging to design an interesting
game. And then there are other topics, which are intuitively accessible and seem to lend
themselves as a base of a game, e.g, man-and-dog problems [3].

5 Resources

The games can be played online at http://www.win.tue.nl/~kbuchin/proj/ruler/webgl/.
The game can be downloaded from http://www.win.tue.nl/~kbuchin/proj/ruler/ and
its sources from https://github.com/kbuchin/ruler. A video demonstrating the game is
available at http://www.win.tue.nl/~kbuchin/proj/ruler/video/PlaneRuler.mp4.

Acknowledgments. The development of the game was supported by the TU/e Educational
award.

References
1 Hee-Kap Ahn, Siu-Wing Cheng, Otfried Cheong, Mordecai Golin, and Rene Van Oostrum.

Competitive facility location: the Voronoi game. Theoretical Computer Science, 310(1-
3):457–467, 2004.

2 Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK. Springer, 4th edition,
2009.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geom. Appl., 5:75–91, 1995.

4 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

5 Yoav Amit, Joseph S.B. Mitchell, and Eli Packer. Locating guards for visibility coverage
of polygons. Int. J. Comput. Geom. Appl., 20:601–630, 2010.

6 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

7 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

8 Der-Tsai Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

9 Chi-Yuan Lo, Jiří Matoušek, and William Steiger. Algorithms for ham-sandwich cuts.
Discrete & Computational Geometry, 11(4):433–452, 1994.

10 Matthias Müller-Hannemann and Stefan Schirra, editors. Algorithm engineering: bridging
the gap between algorithm theory and practice, volume 5971 of LNCS. Springer, 2010.

http://www.win.tue.nl/~kbuchin/proj/ruler/webgl/
http://www.win.tue.nl/~kbuchin/proj/ruler/
https://github.com/kbuchin/ruler
http://www.win.tue.nl/~kbuchin/proj/ruler/video/PlaneRuler.mp4

S. Beekhuis, K. Buchin, T. Castermans, T. Hurks, and W. Sonke 63:5

11 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA, 2007.

12 Jonathan Richard Shewchuk. Lecture notes on geometric robustness, 2013.
13 Kevin Weiler and Peter Atherton. Hidden surface removal using polygon area sorting. ACM

SIGGRAPH computer graphics, 11(2):214–222, 1977.

SoCG 2017

Folding Free-Space Diagrams: Computing the
Fréchet Distance between 1-Dimensional Curves∗

Kevin Buchin1, Jinhee Chun2, Maarten Löffler3,
Aleksandar Markovic4, Wouter Meulemans5, Yoshio Okamoto6,
and Taichi Shiitada7

1 Eindhoven University of Technology, Eindhoven, The Netherlands
k.a.buchin@tue.nl

2 Tohoku University, Sendai, Japan
jinhee@dais.is.tohoku.ac.jp

3 Utrecht University, Utrecht, The Netherlands
m.loffler@uu.nl

4 Eindhoven University of Technology, Eindhoven, The Netherlands
a.markovic@tue.nl

5 Eindhoven University of Technology, Eindhoven, The Netherlands
w.meulemans@tue.nl

6 University of Electro-Communications, Chofu, Japan
okamotoy@uec.ac.jp

7 University of Electro-Communications, Chofu, Japan
shiitada@gmail.com

Abstract
By folding the free-space diagram for efficient preprocessing, we show that the Fréchet distance
between 1D curves can be computed in O(nk logn) time, assuming one curve has ply k.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases Fréchet distance, ply, k-packed curves

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.64

Category Multimedia Contribution

1 Introduction

The Fréchet distance is a popular similarity metric in computational geometry. Computing this
distance between curves is mostly well understood: slightly super-quadratic time algorithms
for 2D (or higher) are known [1, 5], with a nearly matching conditional lower bound: a
O(n2−δ)-time algorithm with δ > 0 would imply that the strong exponential time hypothesis
(SETH) fails [2]. For the discrete variant in 1D, this same lower bound is also known [4].
However, in the continuous case in 1D, no non-trivial lower bound is known; the fastest
known algorithm runs in quadratic time [6]. A near-linear time algorithm is known [3] when
the curves are separated: essentially a greedy strategy works. Thus we ask: can we compute
the Fréchet distance in 1D in subquadratic time?

∗ K.B. is supported by NWO (612.001.207); W.M. by NLeSC (027.015.G02) and NWO (639.023.208); and
Y.O. by Kayamori Foundation of Informational Science Advancement, JST CREST (JPMJCR1402),
and JSPS KAKENHI (JP24106005, JP15K00009).

© Kevin Buchin, Jinhee Chun, Maarten Löffler, Aleksandar Markovic, Wouter Meulemans,
Yoshio Okamoto, Taichi Shiitada;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 64; pp. 64:1–64:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Folding Free-Space Diagrams

(a)

P

Q

ε
(b) (c)

(d) (e) (f)

Figure 1 (a) Two 1D curves, lifted to 2D for legibility. (b) The corresponding free-space diagram
F . (c–d) Folding up the last two columns. (e) The result of folding all rows and columns. (f) View of
each cell in F from the folded diagram. One orange cell is high-lighted to track through the process.

Contributions. While we leave the question open in general, we answer positively for the
case that the number k of times one of the curves revisits the same point on R is bounded;
no restrictions are posed on the other curve. This gives us a running time of O(nk logn).
The crucial ingredient is a structural insight in the free-space diagram for 1D curves: we can
fold it to find a simpler representation and solve the decision version in O(n(k + logn)) time.

In 1D, a k-packed curve has a ply of Θ(k), and vice versa. Near-linear approximation
algorithms for k-packed curves exist [3, 7], with matching conditional lower bounds in higher
dimensions [3]. Our results show that efficient exact algorithms exist for 1D k-packed curves.

Preliminaries. A 1D curve P is described by n+ 1 vertices 〈p0, . . . , pn〉, with pi ∈ R and
n edges pi−1pi. We assume that the direction of the curve changes at every vertex. |P |
denotes the geometric length of P ; we use |pi| =

∑i
j=1 |pj−1 − pj | to denote the length up to

vertex pi. Note that |p0| = 0 and |pn| = |P |. We also consider P as a continuous function
P : [0, |P |] → R with P (|pi|) = pi and linearly interpolated between vertices. The ply of a
curve P is maxr∈R |P−1(r)| = maxr∈R |{t | t ∈ [0, |P |] ∧ P (t) = r}|.

For a definition of the Fréchet distance dF, see [1]. The free-space diagram F represents
the parameter space of two curves [1]. It is a [0, |P |]× [0, |Q|] diagram and a point (s, t) ∈ F
represents a pair of curve points: P (s) and Q(t). (s, t) ∈ F is free if |P (s)−Q(t)| ≤ ε; the
union of free points is the free space of F (Fig. 1(b)). If a monotone path from (0, 0) to
(s, t) exists in the free space, (s, t) ∈ F is reachable. Then, dF(P,Q) ≤ ε holds if and only if
(|P |, |Q|) is reachable in F [1]. Each edge pi−1pi of P is a column of width |pi−1 − pi| in the
free-space diagram; edges of Q define rows. A combination of two edges defines a cell.

2 Folding free-space diagrams

The central idea for our results is that we can fold the free-space diagram, see Fig. 1. This
works for the following reason. First, pick a vertex pi of P and a point q on Q. Now, consider
points p on pi−1pi and p′ on pipi+1 that are equidistant to pi. Due to minimality, p = p′,
and thus |p− q| ≤ ε if and only if |p′ − q| ≤ ε. Considering the vertical line in F represents
pi, the free space before and after this line are thus a reflection of each other.

K. Buchin et al. 64:3

Folding up all columns and rows (Fig. 1(c–d)), we find one basic “cell” with lines specifying
certain views that the edges of the curves give on this space (Fig. 1(e)). We can compose all
these views to recover F (Fig. 1(f)): assuming both curves start in a rightward direction, we
need to only reflect cells in even rows vertically and in even columns horizontally.

With a physical sheet of paper, the size of an unfolded free-space diagram, we only need
to fold each row and column, and cut along the two remaining boundaries of the free space.
If we unfold it, we have the free space of F . Computing this quadratically sized structure
can thus be done in a linear number of operations, using the “parallelism” of the cut.

3 One curve with bounded ply

Here, we sketch a proof for the decision algorithm, which uses folding, in the theorem below.

I Theorem 1. Let P and Q be two 1D curves of complexity n; let the ply of Q be k. There
is an algorithm to decide in O(n(k + logn)) time whether dF(P,Q) ≤ ε and an algorithm to
compute dF(P,Q) in O(nk logn) time.

We fold all columns (but not the rows) to obtain the free-space structure between the infinite
line and Q. Consider the points q on Q for which ‖q − r‖ ≤ ε for some r ∈ R: the free space
on the vertical line at r in the free-space structure. We focus on the maximal intervals of free
space along such a line. Each interval is bounded by two edges qi−1qi and qj−1qj such that
i < j, |qi−1 − r| > ε and |qj − r| > ε. Our algorithm consists of the following three steps.
1. Decompose the free-space structure into vertical slabs. Each slab has the same structure

of free space, that is, defined by the same edges of Q. (Lemma 3)
2. Precompute reachability information for the free-space structure. (Lemma 4)
3. Walk through the free-space diagram on a column-by-column basis, keeping track of

intervals on Q that are reachable at vertex pi. (Lemma 6)

I Lemma 2. There are at most k + 1 maximal intervals in Q for a given r ∈ R.

I Lemma 3 (Decomposition structure). We can compute in O(nk) time and space, a data
structure S such that: (1) each slab stores the O(k) edges of Q that bound the maximal
intervals in order; (2) we can find the slab that contains a point r ∈ R in O(logn) time.

Proof Sketch. We sort events (vertices of Q, ± ε) in O(nk) time using a linked list, starting
at the previous event. Then, a sweepline decomposes the structure into slabs; only the
maximal interval(s) at the event change. Query (2) is a binary search on the sorted events. J

I Lemma 4 (Reachability structure). In O(nk) time, we can determine for each edge qi−1qi
in Q the highest reachable point H(qi−1qi) in rightward direction in the free-space structure,
starting from any point (r, q) ∈ R× [0, |Q|] with |r − q| ≤ ε, |r − qi| > ε and q ∈ qi−1qi.

Proof Sketch. We do this by walking down the free-space structure, computing or using H
for the boundary that we hit when we shoot a vertical ray up from (r, q). Using S (Lemma 3),
we can answer such queries in constant time: we obtain a running time of O(nk). J

We need the reachability structure H (Lemma 4) also in leftward direction, for leftward
edges of P . For simplicity, we describe the algorithm only for rightward edges. For each
vertex pi of P , we compute the (maximal) reachable intervals: intervals reachable from
(0, 0) in F . As a maximal interval contains at most one reachable interval, a vertex has
O(k) reachable intervals (Lemma 2). Lemma 5 captures what is reachable at pi+1 from a
reachable interval at pi. We process F column by column, as formalized by Lemma 6 below.
Afterwards, dF(P,Q) ≤ ε if and only if qn is in a reachable interval of pn.

SoCG 2017

64:4 Folding Free-Space Diagrams

I Lemma 5. Let (r, q) be a point in S; r′′ ≥ r; qi−1qi the edge corresponding to the boundary
of the free-space structure that we hit when shooting a ray up from (r, q); and (r′, q′) the highest
reachable point in the free-space structure from (r, q) with r′ ≤ r′′. Either (r′, q′) = H(qi−1qi)
or the boundary slope at (r′, q′) is positive and r′ = r′′.

Proof Sketch. We distinguish three cases for (r′, q′): (1) If (r′, q′) is not on the boundary of
the free space, this immediately contradicts the definition of (r′, q′); (2) if (r′, q′) is on an
upward-sloped boundary, either r′′ = r′ or we can find a higher reachable point; (3) if (r′, q′)
is on a downward-sloped boundary and monotonicity prevents us from going higher to the
left, (r′, q′) must actually be equal to H(qi−1qi). J

I Lemma 6. Given the decomposition structure S, the reachability structure H and the
sorted reachable intervals at pi, we can compute the sorted reachable intervals at pi+1 in
O(logn+ k) time.

Proof Sketch. We use the decomposition structure S to find the slab of pi+1 in O(logn)
time (Lemma 3). Let A denote the maximal intervals at pi+1, derived from the slab. Let
E be the reachable intervals at pi. We use H(E[j]) as the highest reachable point in the
free-space structure, stored in H (Lemma 4) with the edge defining the upper end of E[j].

We walk over E and A simultaneously, with indices j and x respectively, to find all
reachable intervals for pi+1. We repeatedly do one of the following, checking them in order.
(1) If the lower bound of E[j] is above the upper bound of A[x], we increment x by one. (2) If
H(E[j]) is below the lower bound of A[x], we increment j by one. (3) If |q− pj−1| ≤ ε where
q is the point on Q represented by the lower end of E[j], then we can cut across straight
from E[j] at q into interval A[x] and we record a reachable interval starting at q and ending
at A[x]. (4) Finally, if none of the previous cases apply, we can reach the lower end of A[x]
and A[x] is completely reachable. At the end of (3) and (4), we increment as follows: if the
upper bound of A[x] is upward sloped, we increment j until we find a value such that E[j] is
above A[x] (or run out of values in E). Then, we increment x by one.

Each case takes O(1) time, thus this runs in O(|A| + |E|) = O(k) time (Lemma 2).
Including the query in S, this results in a total time of O(logn + k). Correctness follows
from the invariant that we collected all reachable intervals before A[x], that intervals before
E[j] cannot reach up to A[x] or later intervals, and that intervals before A[x] do not limit
how high E[j] can reach (via Lemma 5). J

Acknowledgments. This research was initiated at the Dutch-Japanese Bilateral Work-
shop on Kinetic Geometric Networks, supported under the Japan-Netherlands Research
Cooperative Program by NWO (grant 040.05.033) and JSPS.

References
1 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.

IJCGA, 5(1–2):78–99, 1995.
2 K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-

quadratic algorithms unless SETH fails. In Proc. 55th FOCS, pages 661–670, 2014.
3 K. Bringmann and M. Künnemann. Improved approximation for Fréchet distance on c-

packed curves matching conditional lower bounds. In Proc. 26th ISAAC, pages 517–528,
2015.

4 K. Bringmann and W. Mulzer. Approximability of the discrete fréchet distance. JoCG,
7(2):46–76, 2016.

K. Buchin et al. 64:5

5 K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the dog: im-
proved bounds for computing the Fréchet distance. DCG, 2017.

6 K. Buchin, M. Buchin, R. van Leusden, W. Meulemans, and W. Mulzer. Computing the
Fréchet distance with a retractable leash. DCG, 56(2):315–336, 2016.

7 A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic
curves in near linear time. In Proc. 26th SoCG, pages 365–374, 2010.

SoCG 2017

Cardiac Trabeculae Segmentation: an Application
of Computational Topology
Chao Chen∗1, Dimitris Metaxas2, Yusu Wang3, and Pengxiang Wu4

1 City University of New York, Queens College and Graduate Center, Flushing,
NY, USA
chao.chen.cchen@gmail.com

2 Rutgers University, New Brunswick, NJ, USA
dnm@rutgers.edu

3 Ohio State University, Columbus, OH, USA
yusu@cse.ohio-state.edu

4 Rutgers University, New Brunswick, NJ, USA
pw241@rutgers.edu

Abstract
In this video, we present a research project on cardiac trabeculae segmentation. Trabeculae are
fine muscle columns within human ventricles whose both ends are attached to the wall. Extracting
these structures are very challenging even with state-of-the-art image segmentation techniques.
We observed that these structures form natural topological handles. Based on such observation,
we developed a topological approach, which employs advanced computational topology methods
and achieve high quality segmentation results.

1998 ACM Subject Classification F.2.2 Geometric Problems and Computations

Keywords and phrases image segmentation, trabeculae, persistent homology, homology localiz-
ation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.65

Category Multimedia Contribution

1 Problem

The interior of a human cardiac ventricle is filled with fine structures including the papillary
muscles and the trabeculae, i.e., muscle columns of various width whose both ends are
attached to the ventricular wall (Figure 1). Accurately capturing these fine structures are
very important in understanding the functionality of human hearts and in the diagnostic of
cardiac diseases. These structures compose 23% of left ventricle (LV) end-diastolic volume
in average and thus is critical in accurately estimating any volume-based metrics, e.g.,
ejection fraction (EF) and myocardial mass; these measures are critical in most cardiac
disease diagnostics. A detailed interior surface model will also be the basis of a high quality
ventricular flow simulation [10], which reveals deeper insight into the cardiac functionality of
patients with diseases like hypokinesis and dyssynchrony.

With modern advanced imaging techniques, e.g., Computed Tomography (CT), we can
capture details within cardiac ventricles (Fig. 1(left)). However, most state-of-the-art cardiac
analysis methods [13, 12], although very efficient, can not accurately capture these complex

∗ Chao Chen’s research is partially supported by PSC-CUNY-69844-00-47.

© Chao Chen, Dimitris Metaxas, Yusu Wang, and Pengxiang Wu;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 65; pp. 65:1–65:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 Cardiac Trabeculae Segmentation: an Application of Computational Topology

Figure 1 Left: our input CT image. Middle: interior of LV [7]. Right: our result (a 3D triangle
mesh) successfully captures the trabeculae.

structures. The challenge is twofold. First, large variation of geometry and intensity of
trabeculae makes it difficult to distinguish them from noise. Second, most segmentation
models, e.g., region competition [14] and Markov random field [1], employ global priors,
which tend to work against fine structures. A prior is certain function that measures the
certain quality of the segmentation results. By optimizing such prior while fitting the
segmentation result to the data, we achieve a segmentation with certain desired properties.
In most segmentation models, a smoothness prior is employed, which prefers a simplified
segmentation result and thus removes fine structures that we want to capture.

2 A Topological Approach

We exploit novel global information which is more suitable for the extraction of trabeculae,
namely, the topological prior. A trabeculae is naturally a topological handle; both of its
ends are attached to the wall, while the intermediate section is freely mobile. We propose a
topological method that explicitly computes topological handles which are salient compared
with their surrounding regions. The saliency is measured based on the theory of persistent
homology [6] and can be computed efficiently. To improve the quality of the extracted handle,
we further optimize the cycle representing such handle. The optimization is based on the
previous methods from homology localization [3, 5, 8, 4, 2]. We propose an A∗ search strategy
to further improve the practical performance of the method.

Our system has the following modules. First, we localize the location of the left ventricle
and enhance the image. This way our method could be more focused and more efficient.
Second, we extract the interior surface model using traditional image segmentation methods,
in particular, region competition. As show in Figure 2 Middle-Left, such method will give
us a reasonable result but missing most trabeculae structures. Third, our system identifies
topological handles by computing persistence homology using the intensity function of
the image. Persistent dots on the diagram with high persistence (based on hand-selected
threshold) are chosen as hypothetical trabeculae structures. We also filter these structures
using a classifier trained on the geometric features. Fourth, we extract cycles representing
these topological structures. We compute the optimal representative cycle, namely, the
shortest cycle (Figure 2 Middle-Right). The remaining structures are considered the true
signal and are included in the final segmentation (Figure 2 Right).

The related publications include [11, 9]. Source code for computing the shortest 1D
cycle representing each persistent dot can be found at the first author’s webpage: http:
//eniac.cs.qc.cuny.edu/cchen .

http://eniac.cs.qc.cuny.edu/cchen
http://eniac.cs.qc.cuny.edu/cchen

C. Chen, D. Metaxas, Y. Wang, and P. Wu 65:3

Figure 2 Left: a 2D slice of the intensity function, shaded bridges through the white regions are
trabeculae. Middle-left: existing methods will miss the trabeculae completely. Middle-right: our
method recovers missed trabeculae using persistent homology. Right: including these trabeculae in
the final segmentation gives a better quality segmentation.

References

1 Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11):1222–
1239, 2001.

2 Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotat-
ing simplices with a homology basis and its applications. In Scandinavian Workshop on
Algorithm Theory, pages 189–200. Springer Berlin Heidelberg, 2012.

3 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homo-
logous cycles. In Proceedings of the 25th Annual Symposium on Computational Geometry,
pages 377–385. ACM, 2009.

4 Chao Chen and Daniel Freedman. Hardness results for homology localization. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1594–1604, 2010.

5 Chao Chen and Daniel Freedman. Measuring and computing natural generators for homo-
logy groups. Computational Geometry, 43(2):169–181, 2010.

6 H. Edelsbrunner and J. Harer. Computational topology: an introduction. American Math-
ematical Society, 2010.

7 Jr. Edwin P. Ewing. Gross pathology of idiopathic cardiomyopathy – Wikipedia, the free
encyclopedia, 2016. [Online; accessed 09-December-2016].

8 Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via
homology covers. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1166–1176. Society for Industrial and Applied Mathematics, 2011.

9 Mingchen Gao, Chao Chen, Shaoting Zhang, Zhen Qian, Dimitris Metaxas, and Leon
Axel. Segmenting the papillary muscles and the trabeculae from high resolution cardiac ct
through restoration of topological handles. In Information Processing in Medical Imaging
(IPMI), 2013.

10 Scott Kulp, Mingchen Gao, Shaoting Zhang, Zhen Qian, Szilard Voros, Dimitris Metaxas,
and Leon Axel. Using high resolution cardiac CT data to model and visualize patient-
specific interactions between trabeculae and blood flow. In MICCAI, LNCS, pages 468–475.
2011. doi:10.1007/978-3-642-23623-5_59.

11 Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian,
Dimitris Metaxas, and Leon Axel. Optimal topological cycles and their application in
cardiac trabeculae restoration. In Information Processing in Medical Imaging (IPMI), 2017.

12 Xiantong Zhen, Heye Zhang, Ali Islam, Mousumi Bhaduri, Ian Chan, and Shuo Li. Dir-
ect and simultaneous estimation of cardiac four chamber volumes by multioutput sparse
regression. Medical Image Analysis, 2016.

SoCG 2017

http://dx.doi.org/10.1007/978-3-642-23623-5_59

65:4 Cardiac Trabeculae Segmentation: an Application of Computational Topology

13 Yefeng Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu. Four-chamber
heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal
space learning and steerable features. TMI, 27(11):1668–1681, nov. 2008.

14 S.C. Zhu, T. S. Lee, and A. L. Yuille. Region competition: unifying snakes, region growing,
energy/Bayes/MDL for multi-band image segmentation. In ICCV, pages 416–423, June
1995.

MatchTheNet – An Educational Game on
3-Dimensional Polytopes
Michael Joswig∗1, Georg Loho2, Benjamin Lorenz3, and
Rico Raber4

1 Institut für Mathematik, MA 6-2, Technische Universität Berlin, Berlin,
Germany
joswig@math.tu-berlin.de

2 Institut für Mathematik, MA 6-2, Technische Universität Berlin, Berlin,
Germany
loho@math.tu-berlin.de

3 Institut für Mathematik, MA 6-2, Technische Universität Berlin, Berlin,
Germany
lorenz@math.tu-berlin.de

4 Institut für Mathematik, MA 6-2, Technische Universität Berlin, Berlin,
Germany
raber@math.tu-berlin.de

Abstract
We present an interactive game which challenges a single player to match 3-dimensional polytopes
to their planar nets. It is open source, and it runs in standard web browsers.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases three-dimensional convex polytopes; unfoldings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.66

Category Multimedia Contribution

1 Introduction

A polytope is the convex hull of finitely many points in Euclidean space. While their study
goes back to antiquity, polytopes are still an active research topic; see, e.g., Ziegler [6]. The
dimension of a polytope is the dimension of its affine span. The first non-trivial class of
polytopes are the 3-polytopes, i.e, those of dimension three. This includes the Platonic and
Archimedean solids as their most prominent examples. The combinatorics of a 3-polytope P
is determined by its (vertex–edge) graph Γ, which is planar. Our game MatchTheNet invites
to play with these geometric objects. It is based on the infrastructure of the software system
polymake [3].

We obtain a planar net of a 3-polytope by cutting the boundary along several edges.
The resulting shape unfolds to a flat and connected figure, similar to Fig. 1. Given a planar
net on a sheet of paper, one can cut out the shape, fold it along sketched edges and glue it

∗ Research by M. Joswig is supported by Einstein Foundation Berlin and Deutsche Forschungsgemeinschaft
(Priority Program 1489: “Experimental methods in algebra, geometry, and number theory”, SFB/TRR
109: “Discretization in Geometry and Dynamics” and SFB/TRR 195: “Symbolic Tools in Mathematics
and their Application”)

© Michael Joswig, Georg Loho, Benjamin Lorenz, and Rico Raber;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 66; pp. 66:1–66:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66:2 MatchTheNet – An Educational Game on 3-Dimensional Polytopes

Figure 1 Unfolding the truncated octahedron, which is an Archimedean solid.

along some boundary edges to regain the original polytope. In the following, planar nets are
described more formally.

The dual graph ∆ of a 3-polytope P is the abstract graph which has the facets of P as
nodes, while its edges are given by those pairs of facets which share a common edge. If we
pick a spanning tree T of ∆, then, as in von Staudt’s proof of Euler’s formula, the edges of Γ
which are not dual to any edge in T form a spanning tree T ∗ of Γ. In topological terms, the
complementary pair (T, T ∗) of spanning trees corresponds to the two critical points of an
optimal Morse function of the 2-sphere. We may view the dual spanning tree T ∗ as a subset
of the boundary ∂P . Then we obtain a map from π : ∂P \ T ∗ → R2 as follows. We start
out by picking a facet R of P and map it isometrically into the plane. Then, for each facet
F adjacent to R there is a unique way of extending this map such that it is an isometry if
restricted to F . Now π is defined inductively by following the unique path from any facet to
the root facet R in the spanning tree T . The dual tree T ∗ is said to define an edge cutting,
and the map π only depends on T ∗, but not on the choice of the root facet R. If π is injective,
the closure of the image π(∂P \ T ∗) is called a planar net (or an unfolding) of P . It is an
interesting open problem, whether or not each 3-polytope admits a planar net; see, e.g., [5]
and [1] as well as the monograph [2] for an overview of topics related. Figure 2 shows that
an attempt to unfold may fail.

MatchTheNet is a game where a single player is asked to match a set of planar nets to a
set of 3-polytopes. The difficulty ranges from easy (suitable for kids in elementary school)
to hard (recreational puzzle for grown-up mathematicians). The game mechanics is written
in JavaScript, and it runs in any web browser, either locally or over the Internet. It can
be played online at www.matchthenet.de, downloaded at https://github.com/polymake/
matchthenet, and it is part of the Imaginary project.

2 Playing the Game

The front page of MatchTheNet explains the rules, and the player can choose the language,
the level of difficulty and the number of polytopes per round. That number, which we will
refer to as k here, ranges between two and five. One game lasts for five rounds. In each round
the player sees k polytopes in the top row of the screen and k planar nets in the bottom row.
The player swaps the planar nets with the mouse until she is confident that each polytope
sits right above its planar net. Hitting the “submit” button reveals the score, which is the

www.matchthenet.de
https://github.com/polymake/matchthenet
https://github.com/polymake/matchthenet

M. Joswig, G. Loho, B. Lorenz, and R. Raber 66:3

Figure 2 Tetrahedron with an attempt to unfold that fails. It arises from a spanning tree in the
dual graph which is a path. Each spanning tree which has a node of degree three gives a proper
planar net; this works for any tetrahedron.

total number of correct matches. Afterwards the player can either look at the solution or
continue with the next round. After the fifth round the final score is displayed and compared
to the current high score. During the game the polytopes can be rotated freely with mouse
to look at them from all sides.

There are various ways to make the game easier or more difficult. We offer seven levels.
In general, the more facets the polytope has the more difficult it is to recognize. Further,
it makes a difference if the coloring of the facets gives some guidance to the combinatorics.
For instance, on Level 5 there are polytopes which come from a random construction, but
color helps to identify the number of vertices on each facet. On Level 6 the polytopes are
the same, but all facets are green. The highest Level 7 has triplets of polytopes chosen by
hand, which are very similar to one another. For this level, only k = 3 is available.

3 Our Collection of Polytopes

The bulk of our pre-computed 3-polytopes are regular polytopes and their generalizations.
A Platonic solid (or regular 3-polytope) admits an automorphism group (of rigid motions)
which acts transitively on the set of maximal flags, i.e., the triplets consisting of a vertex, an
edge and a facet which are incident; there are five combinatorial types. More generally, the
Johnson solids are the 3-polytopes whose facets are regular polygons of various gonalities.
An Archimedean solid (or semi-regular 3-polytope) is a Johnson solid which admits a vertex-
transitive group; there are 13 combinatorial types in addition to the regular ones. The
Catalan solids are the duals of the Archimedean solids. There are 92 combinatorial types of
proper Johnson solids, i.e., those which are not Archimedean [4]. Taking also the duals of the
proper Johnson solids into account we arrive at five classes of 3-polytopes which are pairwise
disjoint. Their numbers add up to 5 + 13 + 13 + 92 + 92 = 215. All of them are contained in
the data base of MatchTheNet. Figure 1 shows an unfolding of an Archimedean solid.

Additionally, we computed fifty random 3-polytopes by the following two-step procedure.
In the first step we choose hyperplanes tangent to the unit sphere uniformly at random.
Almost surely the resulting polytope Q is simple, i.e., each vertex is contained in precisely
three facets. In the second step we pick a certain portion of the vertices of Q, again uniformly
at random, take their convex hull, and this is our random polytope. Usually, such a polytope
is neither simple nor dual to simple, i.e., simplicial.

For each level there is a subset of the entire collection from which polytopes are chosen
at random during the game. The highest level is different in that certain triplets of Johnson
polytopes are chosen by hand.

SoCG 2017

66:4 MatchTheNet – An Educational Game on 3-Dimensional Polytopes

4 Computations in polymake

polymake is open source software for research in polyhedral geometry [3]. It deals with
polytopes, polyhedra and fans as well as simplicial complexes, matroids, graphs, tropical
hypersurfaces, and other objects. For MatchTheNet we use polymake as an engine to pre-
compute all 3-polytopes and their planar nets used in our game.

To give an example we show how to produce the planar net of the truncated octahedron
shown in Figure 1 to the right. This code is valid for polymake version 3.0 or higher. First we
construct the polytope and its planar net. The latter employs a heuristic with backtracking.

polytope> $polytope = archimedean_solid(’truncated_octahedron’);

polytope> $net = fan::planar_net($polytope);

For visualization polymake offers several backends. Here, as for MatchTheNet, we use the
library three.js for a direct rendering in a web browser.

polytope> @colors = (’green’,’blue’,’purple’,’red’,’grey’);

polytope> threejs($net->VISUAL(VertexLabels => "hidden",

VertexColor => "black",

FacetTransparency => 0.8,

FacetColor => sub {

$colors[min($net->MAXIMAL_POLYTOPES->[shift]->

size-3, @colors-1)]

}));

In this example the color of each facet is determined by its number of vertices. So triangles
become green, quadrangles blue, pentagons purple and hexagons red; all others will be shown
in gray.

Acknowledgements. We are indebted to the Imaginary team for a lot of inspiration and
fruitful discussions during the design of MatchTheNet.

References

1 Marshall Bern, Erik D. Demaine, David Eppstein, Eric Kuo, Andrea Mantler, and Jack
Snoeyink. Ununfoldable polyhedra with convex faces. Comput. Geom., 24(2):51–62, 2003.
Special issue on the Fourth CGC Workshop on Computational Geometry (Baltimore, MD,
1999). doi:10.1016/S0925-7721(02)00091-3.

2 Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms. Cambridge
University Press, Cambridge, 2007. Linkages, origami, polyhedra. doi:10.1017/
CBO9780511735172.

3 Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex poly-
topes. In Polytopes—combinatorics and computation (Oberwolfach, 1997), volume 29 of
DMV Sem., pages 43–73. Birkhäuser, Basel, 2000.

4 Norman W. Johnson. Convex polyhedra with regular faces. Canad. J. Math., 18:169–200,
1966. doi:10.4153/CJM-1966-021-8.

http://dx.doi.org/10.1016/S0925-7721(02)00091-3
http://dx.doi.org/10.1017/CBO9780511735172
http://dx.doi.org/10.1017/CBO9780511735172
http://dx.doi.org/10.4153/CJM-1966-021-8

M. Joswig, G. Loho, B. Lorenz, and R. Raber 66:5

5 Geoffrey C. Shephard. Convex polytopes with convex nets. Math. Proc. Cambridge Philos.
Soc., 78(3):389–403, 1975. doi:10.1017/S0305004100051860.

6 Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. doi:10.1007/978-1-4613-8431-1.

SoCG 2017

http://dx.doi.org/10.1017/S0305004100051860
http://dx.doi.org/10.1007/978-1-4613-8431-1

On Balls in a Hilbert Polygonal Geometry
Frank Nielsen1 and Laëtitia Shao2

1 École Polytechnique, LIX, Palaiseau, France
Frank.Nielsen@acm.org

2 École Polytechnique, Palaiseau, France
Laetitia.Shao@polytechnique.edu

Abstract
Hilbert geometry is a metric geometry that extends the hyperbolic Cayley-Klein geometry. In this
video, we explain the shape of balls and their properties in a convex polygonal Hilbert geometry.
First, we study the combinatorial properties of Hilbert balls, showing that the shapes of Hilbert
polygonal balls depend both on the center location and on the complexity of the Hilbert domain
but not on their radii. We give an explicit description of the Hilbert ball for any given center
and radius. We then study the intersection of two Hilbert balls. In particular, we consider the
cases of empty intersection and internal/external tangencies.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Projective geometry, Hilbert geometry, balls

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.67

Category Multimedia Contribution

1 Introduction: Hilbert geometry

Hilbert geometry is a projective geometry relying on the properties of the cross-ratio:

I Definition 1 (Cross-ratio). For four collinear points a, b, c, d the cross ratio is defined as
follows:

(a, b; c, d) = ‖ac‖‖bd‖
‖ad‖‖bc‖

(1)

The cross-ratio is an invariant measure under perspective transformation:

I Property 2 (Projective invariance of the cross-ratio). Given four points a, b, c, d and
A, B, C, D their images through a projective transformation, (a, b; c, d) = (A, B; C, D). [5]

In a Hilbert geometry, the distance between two points is defined using the cross-ratio as
follows:

I Definition 3 (Hilbert distance). A Hilbert distance is defined in the interior of a convex
bounded domain C. Given two distinct points, a and b of the domain, the distance is defined
as follows:

dHG(a, b) = log((a, b; A, B)) (2)

where (a, b; A, B) is the cross-ratio where A and B denote the intersection points of line (a, b)
with the domain. By definition, dHG(x, x) = 0 for all x ∈ C.

© Frank Nielsen and Laëtitia Shao;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 67; pp. 67:1–67:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 On Balls in a Hilbert Polygonal Geometry

Figure 1 Left: In blue, two Hilbert balls in a circular domain. Right: In blue, three Hilbert balls
in a polygonal convex domain.

I Property 4 (Properties of the Hilbert distance). Given two points a and b.
The Hilbert distance is a signed distance: dHG(a, b) = −dHG(b, a).
dHG(a, a) = 0 (law of the indiscernibles).
When a is on the boundary of the convex, ∀b ∈ C, dHG(a, b) =∞.
|dHG| respects the triangular inequality and therefore |dHG| is a metric distance [1].

A key property in Hilbert geometry is that shortest-path geodesics are straight lines. The
Klein disk representation of hyperbolic geometry is an example of Hilbert geometry for the
unit disk (convex and smooth) domain.

In this work, we consider convex polygonal Hilbert geometries, that is, Hilbert geometries
defined on a convex polygonal domain. C now refers to a convex polygon with s vertices:
e1, ..es. The distance between two points p and q in this domain is noted dC(p, q) . The ball
of radius r and center c is denoted by B(c, r). The sphere is denoted by S(c, r). See [4] for
an application of Hilbert geometry to clustering in the open probability simplex.

2 Combinatorial properties of Hilbert balls

In Klein ball hyperbolic geometry or Cayley-Klein hyperbolic geometry, the balls have the
shape of (Euclidean) Mahalanobis balls with displaced centers, see [2, 3]. To contrast with
this smooth shape representation of balls, let us observe that when the domain is a convex
polygon, the shapes of Hilbert balls are (Euclidean) polygons.

I Definition 5 (Rays). Given a center point c in the domain, line (c, ei), i ∈ [s] = {1, . . . , s}
is a ray.

I Lemma 6 (Description of a Hilbert ball). B(c, r) is a Euclidean polygon with at most 2s

edges and at least s edges. Each vertex of B(c, r) belongs to a ray.

Proof. We first partition the polygonal domain with s to 2s triangles, by tracing rays
(c, ei), i ∈ [s]. We will show that each triangle induces a linear edge of the Hilbert ball.
We consider a pair of triangles (A, B, c) and (c, C, D) such that A, c, D and B, c, C are
respectively collinear. Let P ∈ [A, c]∩B(c, r) and O = (A, B)∩ (C, D), we will show that line
(O, P) clipped to the triangle (A, B, c) is an edge of B(c, r). Let U be a point on the clipped
line, and M, N the intersections points of line (Uc) with the domain such that M ∈ [A, B] and
N ∈ [C, D]. Then M, U, c, N and A, P, c, D are related by the same projective transformation.
Using the invariance property of the cross-ratio, we conclude that dC(c, P) = dC(c, U) = r.
Thus, we proved Lemma 6. It is remarkable that depending on the position of the center,
the number of triangles (and hence the complexity of the ball) varies. J

F. Nielsen and L. Shao 67:3

A

B

C

D

c

O

P

M

U

N

Q

l1

l2

l3

l4

Figure 2 Left: Configuration for proof 2 (see text). Right: Varying number of rays in a square
domain depending on the position of the center of the ball.

Figure 3 Left: Configuration for proof of Lemma 8 when Ei = Ek. Right: Configuration for
proof of Lemma 8 when all edges are distinct.

I Definition 7. Given an edge [P, Q] of a Hilbert ball that belongs to a pair of triangles
(A, B, c) and (c, D, E), we say that [P, Q] is induced by edges Ei and Ej of the domain, if
[A, B] ⊂ Ei and [D, E] ⊂ Ej .

I Lemma 8 (Shape invariance with varying radius). For c a fixed center point, and r a varying
radius, B(c, r) has the same number of edges.

Proof. Let [P, Q] and [Q, R] be two adjacent edges of a Hilbert ball such that Ei, Ej induces
[P, Q] and Ek, El induces [Q, R]. We show that P, Q, R cannot be collinear. We note M the
intersection points of the lines supported by Ei and Ej and N the intersection points of the
lines supported by Ek and El. According to the previous proof, P, Q, M and Q, R, N are
respectively collinear.

If Ei, Ej , Ek, El are distinct edges, because [P, Q] and [Q, R] are adjacent, we can assume
without loss of generality that Ei is adjacent to Ek and Ej is adjacent to El. If P, Q, R

are collinear, then Ei = Ek or Ej = El, which contradicts the previous assumption.
Otherwise, we can assume that Ei = Ek. In this case, if P, Q, R are collinear, then they
belong to line (M, N) ⊂ Ei. Which is impossible unless r =∞.

Therefore, as the radius varies but stay finite, the number of edges remains constant. See
Figure 3 for a visualization of the proof. For infinite radius, all balls fully cover the polygonal
domain. J

I Lemma 9 (Shape invariance in a simplex domain). In a simplex domain ∆, Hilbert polygonal
balls do not change shape, and have a fixed complexity of 2s edges.

Proof. It is a direct consequence of the two previous lemmas. J

SoCG 2017

67:4 On Balls in a Hilbert Polygonal Geometry

Figure 4 In a triangular domain. Left: Two cases of outer tangency. The red sphere is externally
tangent to the blue spheres and share one edge with one sphere and one vertex with the other.
Middle and Right: Two cases of inner tangency between the red sphere and the blue sphere. Middle:
The two spheres share one edge. Right: the two spheres share two edges.

3 Intersection of Hilbert spheres

We now consider the interaction scenario of two spheres. First, let us mention a simple
condition to check whether two spheres intersect or not:

I Lemma 10 (Condition for empty intersection). Given two points c1, c2 ∈ C and two reals
r1, r2 > 0, with r2 >= r1:

S(c1, r1) ∩ S(c2, r2) 6= ∅ ⇒ r2 − r1 ≤ dC(c1, c2) ≤ r1 + r2 (3)

Proof. This follows from the fact that dC respects the triangular inequality [1]. J

In the case of external tangency, i. e., dC(c1, c2) = r1 +r2, if c2 is a vertex of B(c1, r1 +r2),
the intersection of the two Hilbert spheres is reduced to a vertex. Otherwise, the two Hilbert
spheres share part of an edge. In the case of internal tangency, i. e., dC(c1, c2) = r2 − r1,
if c1 is a vertex of B(c2, r2 − r1), the two spheres share part of two edges. Otherwise
the shared part is one edge. See Figure 4 for some illustrating examples. The Java™
applet is available from https://www.lix.polytechnique.fr/~nielsen/software.html:
The pop menu let one choose the demo to play. The online explanatory video is available
at https://www.youtube.com/watch?v=XE5x5rAK8Hk

References
1 Curtis T. McMullen. Coxeter groups, Salem numbers and the Hilbert metric. Publications

mathématiques de l’IHÉS, 95:151–183, 2002.
2 Frank Nielsen, Boris Muzellec, and Richard Nock. Classification with mixtures of curved

Mahalanobis metrics. In IEEE International Conference on Image Processing (ICIP), pages
241–245. IEEE, 2016.

3 Frank Nielsen, Boris Muzellec, and Richard Nock. Large margin nearest neighbor clas-
sification using curved Mahalanobis distances. CoRR, abs/1609.07082, 2016. URL:
http://arxiv.org/abs/1609.07082.

4 Frank Nielsen and Ke Sun. Clustering in Hilbert simplex geometry. ArXiv 1704.00454,
April 2017.

5 Jürgen Richter-Gebert. Perspectives on Projective Geometry: A Guided Tour Through Real
and Complex Geometry. Springer Publishing Company, Incorporated, 1st edition, 2011.

https://www.lix.polytechnique.fr/~nielsen/software.html
https://www.youtube.com/watch?v=XE5x5rAK8Hk
http://arxiv.org/abs/1609.07082

	p00-frontmatter
	Foreword
	Conference Organization
	Additional Reviewers
	Sponsors

	p01-robins
	p01-ZZZ-Blank
	p02-sharir
	p02-ZZZ-Blank
	p03-abrahamsen
	Introduction
	The Polygon
	Intuition
	Proof of Theorems 1 and 2
	Rectilinear Polygon
	Future Work

	p03-ZZZ-Blank
	p04-abrahamsen
	Introduction
	Our contribution

	The exact algorithm
	Geometric properties of an optimal partition
	The algorithm

	The approximation algorithm

	p04-ZZZ-Blank
	p05-abrahamsen
	Introduction
	Approximate Range-Clustering Queries
	Approximate Capacitated k-Center Queries
	Exact k-Center Queries in 1D
	Exact Rectilinear 2- and 3-Center Queries in the Plane

	p06-abrahamsen
	Introduction
	Definitions

	The Man Surviving Two Lions in a Bounded Area
	The Fast Man Surviving any Number of Lions in the Plane

	p07-agarwal
	Introduction
	A Near-Linear Approximation
	A high-level description
	Cost analysis
	An efficient implementation

	A (1+epsilon)-Approximate Algorithm

	p08-aichholzer
	Introduction
	Proof of Theorem 1
	Preliminaries
	Proof of Theorem 2
	Sequences of a*-wedges with at most two points of B
	Computer-assisted results
	Applications of the computer-assisted results
	Extremal points of l-critical sets
	Two extremal points of C in A
	Two extremal points of C in B

	Finalizing the proof of Theorem 2

	p09-angelini
	Introduction
	Preliminaries
	Triconnected Planar Graphs
	Biconnected Planar Graphs
	Conclusions and Open Problems

	p10-arya
	Introduction
	Static Results
	Data Structure Results
	Techniques

	Geometric Preliminaries
	Caps and Macbeath Regions
	Shadows of Macbeath regions
	Representation Conversions

	Hierarchy of Macbeath Ellipsoids
	Kernel Construction
	Approximate Polytope Membership

	p10-ZZZ-Blank
	p11-ashok
	Introduction
	Preliminaries
	Subexponential Algorithm
	The Planar Graph Ps
	The Existence of Exploitable Partitions
	Divide-and-Conquer

	Parameterized Algorithm for Orthogonal Terrain Guarding
	Ignoring Exposed Vertices
	Describing Solutions via Clique Covers in Chordal Graphs
	Hamming Distance
	Double-Branching

	Conclusion

	p11-ZZZ-Blank
	p12-balko
	Introduction
	Preliminaries
	Covering lattice points by subspaces
	Point-hyperplane incidences

	Our results
	Covering lattice points by linear subspaces
	Covering lattice points by affine subspaces
	Point-hyperplane incidences

	Proof of Theorem 4
	Sketch of the proof for balls
	The general case

	Proof of Theorem 5
	Proof of Theorem 8
	Proofs of Theorems 9 and 10

	p13-barba
	Introduction
	Our results
	Definitions
	Previous Results

	Nonuniform algorithm for explicit 3POL
	Uniform algorithm for explicit 3POL
	Polynomial Dominance Reporting
	3POL
	Applications

	p13-ZZZ-Blank
	p14-barth
	Introduction
	Ortho-Radial Drawings
	Ortho-Radial Representations
	Properties of Labelings
	Characterization of Rectangular Graphs
	Characterization of 4-Planar Graphs
	Rectangulation Algorithm
	Correctness of the Rectangulation Algorithm

	Conclusion

	p15-basit
	Introduction
	Proof overview
	Preliminaries
	Matrix Scaling and Rank Bounds
	Latin squares

	The dependency matrix
	Proof of Theorem 8
	Proof Idea of Theorem 10

	p15-ZZZ-Blank
	p16-bekos
	Introduction
	Preliminaries
	Properties of optimal 2- and 3-planar graphs
	Characterization of optimal 2-planar graphs
	Characterization of optimal 3-planar graphs
	Further Insights and Open Problems

	p17-binham
	Introduction
	Notation and preliminary
	Overview
	First algorithm
	Properties of the skeleton
	Faster algorithm
	Data structures for beams
	Procedure Construct Tunnel
	Main result

	p17-ZZZ-Blank
	p18-biro
	Introduction
	Intermediate problems
	Two-Dimensional Lower Bounds
	Higher Dimensional Lower Bounds
	Segments

	p19-boissonnat
	Introduction
	Riemannian geometry
	Riemannian metric
	Geodesy
	Power protected nets

	Riemannian Delaunay triangulations
	Sufficient conditions for Del-g(P) to be a triangulation of P
	Sufficient conditions for bar-Del-g(P) to be a triangulation of P

	Discrete Riemannian structures
	The discrete Riemannian Voronoi Diagram
	The discrete Riemannian Delaunay complex

	Equivalence between the discrete and the exact structures
	Equality of the Riemannian Delaunay complexes in the Euclidean setting
	Sperner's Lemma
	The triangulation T-v
	Building the triangulation C-v

	Extension to more complex settings
	Uniform metric field
	Arbitrary metric field

	Extensions of the main result
	Implementation

	p20-bonnet
	Introduction
	Counterexample
	Detailed exposition of the proof
	Benefit of Integer Coordinates
	Surrounding Grid Points
	Local Visibility Containment
	Global Visibility Containment

	Conclusion

	p20-ZZZ-Blank
	p21-bose
	Introduction
	Preliminaries
	Involutes

	Properties of a shortest self-approaching path
	Existence of a self-approaching path
	Shortest path algorithm

	Self-approaching polygon

	p21-ZZZ-Blank
	p22-bringmann
	Introduction
	Further Related Work
	Our Results

	Preliminaries
	Hardness in 3 dimensions
	Triangular grid
	The point set
	The reduction

	Exact Algorithm in 3 Dimensions
	Efficient Polynomial-time Approximation Scheme
	Description of the algorithm
	Running Time
	Correctness
	Computing an Output Set

	Conclusions

	p22-ZZZ-Blank
	p23-buchet
	Introduction
	Preliminaries
	Decluttering
	Parameter-free decluttering
	Preliminary experimental results
	Discussions

	p24-karthik
	Introduction
	Our Results
	Our Techniques and Proof Overview
	Related Works
	Organization of the Paper

	Preliminaries
	Notations
	Hyperspherical Harmonics
	Query Model

	Equivalence of Ham Sandwich and Borsuk-Ulam Theorems
	Query Complexity Lower Bounds
	Borsuk-Ulam problem in Query Model
	Ham Sandwich Problem in Query Model

	Discussion and Conclusion

	p24-ZZZ-Blank
	p25-carriere
	Introduction
	Background
	Morse-Type Functions
	Extended Persistence
	Reeb Graphs
	Distances for Reeb graphs

	Local Equivalence
	Proof of Theorem 9
	Graph Transformation
	Properties of the transformed graph

	Induced Intrinsic Metrics
	Discussion

	p25-ZZZ-Blank
	p26-chan
	Introduction
	First Algorithm
	Applications
	Second Algorithm
	Applications
	Final Remarks
	Finding Witnesses
	Small Improvement

	p26-ZZZ-Blank
	p27-chan
	Introduction
	Online Dominance Range Searching
	Offline Dominance Range Searching
	Approximate ell-infinity Nearest Neighbor Searching
	Online Dominance Range Searching (Continued)
	Slightly Improved Version
	Offline Packed-Output Version, with Application to APSP

	p27-ZZZ-Blank
	p28-chan
	Introduction
	Preliminaries
	Part 1: Micro-Structures
	Static universe
	Dynamic universe

	Part 2: Macro-Structures
	Range tree transformation I
	Range tree transformation II

	Future Work

	p28-ZZZ-Blank
	p29-chang
	Introduction
	Preliminaries
	Theorems of Rahman et al.
	Orthogonal Representations and Min Cost Flow Formulation.

	The Main Algorithm
	Constrained Orthogonal Drawing
	Merging Subgraphs
	SPQR-tree Implementation

	p29-ZZZ-Blank
	p30-cheng
	Introduction
	Basics
	Planar convex subdivision
	First solution
	Triangulation Delta-j
	Structure D-j, querying, and frequencies
	Analysis

	Optimal solution

	Planar connected subdivision
	Conclusion

	p30-ZZZ-Blank
	p31-chiu
	Introduction
	Preliminaries
	Previous work
	Results overview and paper organization

	Extending the total order construction to higher dimensions
	Constructing a CDR in Zd from a total order
	Properties of the total order construction
	Gluing orthants to obtain CDRs

	Necessary and sufficient conditions for CDSs
	Two dimensional preliminaries
	Application in high dimensional spaces

	Characterization of necessary and sufficient conditions
	Conclusions

	p31-ZZZ-Blank
	p32-citovsky
	Introduction
	3-Approximation for Arbitrary Regions in a Metric Space
	Unit Line Segments of the Same Orientation in the Plane
	PTAS for Disjoint Unit Disks in the Plane
	Discretization and a Structural Theorem
	The m-Guillotine Structure Theorem
	The Dynamic Program
	Extracting an Approximating ATSP Tour

	p33-dalozzo
	Introduction
	Preliminaries
	Proof of Theorem 3
	Conclusions

	p34-demaine
	Introduction
	Problem Statement and Overview
	Tuck Proxy and Waffles
	Waffle Pocket Squashing
	Placing Streams
	Placing Sites
	Voronoi Folding

	p35-despre
	Introduction
	Our strategy for counting intersections
	Combinatorial framework
	Systems of quads
	Geodesics
	Crossing Double-paths
	Counting intersections combinatorially: the primitive case
	Non-primitive curves and proof of Theorem 1
	Computing a minimal immersion
	The unzip algorithm
	Concluding remarks

	p35-ZZZ-Blank
	p36-dey
	Introduction
	Topological background and motivation
	Surjectivity in H-1-persistence
	Nerves
	From space to nerves
	From nerves to nerves
	Mapper and multiscale mapper

	Analysis of persistent H-1-classes
	H-1-classes of nerves of pseudometric spaces
	H-1-classes in Reeb space
	Persistence of H-1-classes in mapper and multiscale mapper
	Two special covers and intrinsic Cech complex

	Higher dimensional homology groups
	MM(W, f)for a tower of covers W

	p37-driemel
	Introduction
	State of the art
	Our results

	Preliminaries
	Distance measures for curves
	Distances measures with constraints
	Locality-sensitive hashing

	Linear approximation factor
	Algorithm
	Analysis

	Constant approximation factor
	Algorithm
	Analysis

	Trade-off between approximation factor and query time
	Algorithm
	Analysis

	Handling constrained alignments
	LSH for anchored distances
	LSH for bounded-speed distances

	Extensions to dynamic time warping
	Analysis of the basic LSH
	Handling constrained alignments

	Conclusion

	p38-dutta
	Introduction
	Shallow-cell Complexity of Set Systems
	Macbeath regions and Mnets
	Packing Lemma for Geometric Set Systems

	Our Contributions
	Optimality of Shallow Packings (Proof in Section 3)
	Mnets for Semialgebraic Set Systems (Proof in Section 4)
	l-Wise k-Shallow delta-Packings (Proof in Section 5)

	Proof of Theorem 4
	Proof of Theorem 5, Corollary 7
	Preliminaries
	Proofs

	Proof of Theorem 8
	Conclusion

	p38-ZZZ-Blank
	p39-edelsbrunner
	Introduction
	Bregman Divergences
	Proximity Complexes for Bregman divergences
	Algorithms
	Discussion

	p40-elbassioni
	Introduction
	Preliminaries
	Notation
	Assumptions
	Range spaces of bounded VC-dimension
	epsilon-nets
	epsilon-approximations
	The fractional problem
	Rounding the fractional solution

	Solving the fractional problem – Main result
	The algorithm
	Analysis
	Bounding the potential
	Bounding the number of iterations
	Convergence to an ((1+5e)/(1-v),1-delta)-approximate solution

	Implementation of the maximization oracle
	Applications
	Art gallery problem
	Covering a polygonal region by translates of a convex polygon
	Polyhedral separation in RRd

	p40-ZZZ-Blank
	p41-ezra
	Introduction
	Preliminaries: Arrangements and Vertical Decomposition
	epsilon-Cuttings from Vertical Decompositions
	The Clarkson Framework
	Key Properties in the Proof of Theorem 5

	The Algorithm
	Algorithm outline

	p41-ZZZ-Blank
	p42-fan
	Introduction
	Preliminaries
	Fréchet Distance and Fréchet Gap Distance
	Free Space
	Relative Free Space

	The Fréchet Gap Decision Problem
	Finding the Relative Free Space Critical Events
	Bounding the number of critical intervals
	Function Description of Floating Monotonicity Events
	Events minimizing the gap

	Exact Computation of the Fréchet Gap Distance
	Approximation

	p43-fox
	Introduction
	Regularity partition for hypergraphs with bounded VC-dimension
	Proof of Theorem 1
	Random constructions
	Concluding remarks

	p43-ZZZ-Blank
	p44-iordanov
	Introduction
	The Bolza surface
	Representation of the triangulation
	Canonical representative of a face
	Data structure in CGAL

	Constructing the triangulation
	Initialization
	Finding faces in conflict with a new point
	Insertion

	Algebraic complexity
	Experimental results

	p44-ZZZ-Blank
	p45-kattis
	Introduction
	Prior Work

	Preliminaries
	Convex Geometry
	Known Bounds

	Basic Properties of Sample Complexity
	Optimality of the Gaussian Mechanism
	Gaussian Width Lower Bounds in ell-position
	Gaussian Width Lower Bounds for Arbitrary Bodies
	From Mean Point to Query Release

	p46-kerber
	Introduction
	Problem statement and results
	Number theoretic background
	Geometric background
	Organization

	Geometric concepts
	Polytopes and simplicial complexes
	Spines
	Star triangulations
	Pulling triangulations

	Spinal triangulations
	Folds and lifts
	Volumes

	The Everest polytope
	Vertex sets

	Projections of simplotopes
	Simplotopes
	A linear transformation

	Conclusions and further remarks

	p46-ZZZ-Blank
	p47-keszegh
	Introduction
	Generalized Delaunay triangulations
	Framework
	Proof of Theorem 2
	Higher dimensions
	Further remarks

	p47-ZZZ-Blank
	p48-kleinhans
	Introduction
	Definitions and problem statement
	Morse-Smale complex and lowest paths
	Morse-Smale complex
	Lowest paths

	Striation
	Sand function
	Representative network
	Experimental results
	Discussion and future work

	p49-lubiw
	Introduction
	Background
	Preliminaries and Definitions

	Proof of the Orbit Theorem
	Proof of the Elementary Swap Theorem
	From Topology to the Elementary Swap Theorem
	The Simplicial Complex of Plane Graphs
	Boundary and Interior Faces of TT, and the Dual Flip Complex XX

	Proofs of Properties of Elementary Swaps
	Conclusions

	p49-ZZZ-Blank
	p50-naor
	Introduction
	Dimensionality reduction

	Proof of Theorem 1
	Overview
	Distance ellipsoids
	Nonlinear spectral gaps
	Proof of Theorem 6
	Uniform convexity and smoothness
	Complexification
	Complex interpolation
	Completion of the proof of Theorem 6

	p51-oh
	Introduction
	Outline

	Preliminaries
	Dynamic Geodesic Triangle Range Queries
	Two Data Structures
	A Procedure for Updates
	A Procedure for Geodesic Triangle Counting Queries
	Constructing a Set of Deltoids with respect to B
	Computing the Number of Points in a Deltoid

	Maintaining the Geodesic Convex Hull
	A Triangle-Range Hull Tree
	Representation of the Geodesic Convex Hull
	Procedures for Various Types of Queries
	Procedures for Updates

	p51-ZZZ-Blank
	p52-oh
	Introduction
	Outline

	Preliminaries
	Computing the Geodesic Center of Points in a Simple Polygon
	Computing the Geodesic Center of Three Points

	Topological Structures of Voronoi Diagrams
	The Geodesic Nearest-Point Voronoi Diagram
	An algorithm

	The Geodesic Higher-order Voronoi Diagram
	The Complexity of the Diagram inside a Simple Polygon
	Computing the Topological Structure of the Diagram

	The Geodesic Farthest-Point Voronoi Diagram
	Dynamic Data Structures for Nearest or Farthest Point Queries

	p52-ZZZ-Blank
	p53-parthasarathy
	Introduction
	Model for Perturbed Network
	Recovering the shortest path metric of G*
	Deletion only
	Insertion only

	Combined case
	Some empirical results
	Concluding remarks

	p54-pilz
	Introduction
	Order Types and Frequency Vectors
	Geometric Graphs
	Further Examples
	Wheel Sets and the Rectilinear Crossing Number

	Higher Dimensions: Origin-embracing Simplices
	Embracing sets
	Polytopes with few vertices

	p55-rahul
	Introduction
	Previous work and background.
	Motivation
	Our results and techniques
	Specific problems
	General reductions
	Our techniques

	3-sided Rectangle Stabbing in 2d
	Transformation to a standard problem
	Standard 3-sided rectangle stabbing in 2d
	Nested shallow cuttings
	Data structure

	Colored Dominance Search in R3
	Reduction to 5-sided rectangle stabbing in R3
	Initial strcuture
	Final structure

	Reduction-I: Reporting + C-approximation
	Refinement Structure
	Overall solution

	Colored Orthogonal Range Search in R2
	Colored 3-sided range search in R2
	Initial structure
	Final structure

	p55-ZZZ-Blank
	p56-rok
	Introduction
	Proof of Theorem 1
	Proof of Theorem 2

	p56-ZZZ-Blank
	p57-kerber
	Introduction
	Background
	From towers to filtrations
	Active and small coning
	Topological equivalence
	Size analysis
	Algorithm

	Persistence by Streaming

	p58-sidiropoulos
	Introduction
	Definition of fractal dimension
	Why yet another notion of dimension?
	Our results
	Related work
	Notation and definitions
	Organization

	A separator theorem
	Exact algorithms
	Parameterized problems
	Approximation schemes
	Spanners and pathwidth

	p59-pach
	Introduction
	Disjointness graphs of lines – Proof of Theorem 2
	Disjointness graphs of segments – Proof of Theorem 1
	Constructions – Proof of Theorem 5
	Complexity issues – Proof of Theorem 3

	p59-ZZZ-Blank
	p60-wang
	Introduction
	Preliminaries
	The YLW Algorithm and Our Correction
	Our New Algorithm

	The Improved Algorithm
	A Reduced Path Preserving Graph
	Computing an Optimal Path

	p61-wang
	Introduction
	Related Work
	Our Techniques

	Preliminaries
	The Decomposition D and the Segment Queries
	The Quickest Visibility Queries: The Preliminary Result
	The Algorithm Overview
	Observations
	A Pruning Algorithm for Pruning the Segments of W
	Computing the Closest Point q*
	The Set of Regions R
	The Algorithm for Computing q*

	The Quickest Visibility Queries: The Improved Result

	p62-becker
	Introduction
	Related Work
	Problems
	Complexity and Approximation
	Integer Programming
	The Video

	p62-ZZZ-Blank
	p63-beekhuis
	Concept
	The Games
	Educational Context
	Future Work
	Resources

	p63-ZZZ-Blank
	p64-buchin
	Introduction
	Folding free-space diagrams
	One curve with bounded ply

	p64-ZZZ-Blank
	p65-chen
	Problem
	A Topological Approach

	p66-joswig
	Introduction
	Playing the Game
	Our Collection of Polytopes
	Computations in polymake

	p66-ZZZ-Blank
	p67-nielsen
	Introduction: Hilbert geometry
	Combinatorial properties of Hilbert balls
	Intersection of Hilbert spheres

